Science.gov

Sample records for gain energy amplifier

  1. Microsecond gain-switched master oscillator power amplifier (1958 nm) with high pulse energy

    SciTech Connect

    Ke Yin; Weiqiang Yang; Bin Zhang; Ying Li; Jing Hou

    2014-02-28

    An all-fibre master oscillator power amplifier (MOPA) emitting high-energy pulses at 1958 nm is presented. The seed laser is a microsecond gain-switched thulium-doped fibre laser (TDFL) pumped with a commercial 1550-nm pulsed fibre laser. The TDFL operates at a repetition rate f in the range of 10 to 100 kHz. The two-stage thulium-doped fibre amplifier is built to scale the energy of the pulses generated by the seed laser. The maximum output pulse energy higher than 0.5 mJ at 10 kHz is achieved which is comparable with the theoretical maximum extractable pulse energy. The slope efficiency of the second stage amplifier with respect to the pump power is 30.4% at f = 10 kHz. The wavelength of the output pulse laser is centred near 1958 nm at a spectral width of 0.25 nm after amplification. Neither nonlinear effects nor significant amplified spontaneous emission (ASE) is observed in the amplification experiments. (lasers)

  2. Digital automatic gain amplifier

    NASA Technical Reports Server (NTRS)

    Holley, L. D.; Ward, J. O. (Inventor)

    1978-01-01

    A circuit is described for adjusting the amplitude of a reference signal to a predetermined level so as to permit subsequent data signals to be interpreted correctly. The circuit includes an operational amplifier having a feedback circuit connected between an output terminal and an input terminal; a bank of relays operably connected to a plurality of resistors; and a comparator comparing an output voltage of the amplifier with a reference voltage and generating a compared signal responsive thereto. Means is provided for selectively energizing the relays according to the compared signal from the comparator until the output signal from the amplifier equals to the reference signal. A second comparator is provided for comparing the output of the amplifier with a second voltage source so as to illuminate a lamp when the output signal from the amplifier exceeds the second voltage.

  3. Very high gain Nd:YLF amplifiers

    SciTech Connect

    Knights, M.G.; Thomas, M.D.; Chicklis, E.P.; Rines, G.A.; Seka, W.

    1988-05-01

    The authors report on high gain Nd:YLF rod amplifiers in which single-pass, small signal gains of over 1700 have been obtained along with stored energy densitiesgreater than or equal to0.4J/cm/sup 3/. The ability of Nd:YLF amplifiers to support such gains is a result of high parasitic oscillation thresholds, due primarily to the low refractive index of the material. These results suggest that Nd:YLF is an excellent candidate for amplifiers where high specific stored energies and/or very high gains are required.

  4. High gain holmium-doped fibre amplifiers.

    PubMed

    Simakov, Nikita; Li, Zhihong; Jung, Yongmin; Daniel, Jae M O; Barua, Pranabesh; Shardlow, Peter C; Liang, Sijing; Sahu, Jayanta K; Hemming, Alexander; Clarkson, W Andrew; Alam, Shaif-Ul; Richardson, David J

    2016-06-27

    We investigate the operation of holmium-doped fibre amplifiers (HDFAs) in the 2.1 µm spectral region. For the first time we demonstrate a diode-pumped HDFA. This amplifier provides a peak gain of 25 dB at 2040 nm with a 15 dB gain window spanning the wavelength range 2030 - 2100 nm with an external noise figure (NF) of 4-6 dB. We also compare the operation of HDFAs when pumped at 1950 nm and 2008 nm. The 1950 nm pumped HDFA provides 41 dB peak gain at 2060 nm with 15 dB of gain spanning the wavelength range 2050 - 2120 nm and an external NF of 7-10 dB. By pumping at the longer wavelength of 2008 nm the gain bandwidth of the amplifier is shifted to longer wavelengths and using this architecture a HDFA was demonstrated with a peak gain of 39 dB at 2090 nm and 15 dB of gain spanning the wavelength range 2050 - 2150 nm. The external NF over this wavelength range was 8-14 dB. PMID:27410557

  5. Variable Gain Semiconductor Optical Linear Amplifier (OLA)

    NASA Astrophysics Data System (ADS)

    Michie, W. Craig; Kelly, Tony; Tomlinson, Andy; Andonovic, Ivan

    2002-12-01

    The semiconductor optical amplifier (SOA) is a versatile component that can be deployed to meet the expanding applications associated with the introduction of additional functionalities at the optical level in wavelength division multiplexed systems. The future network requires low cost, small footprint, directly controllable amplification throughout the different application layers from long haul through to metro; the intrinsic size and integration capability advantages will ensure that the SOA plays a key role in this evolution. In multi-wavelength gating/amplification applications the gain dynamics, oscillating at timescales comparable to that of the data which is being amplified, introduce issues of pattern dependent waveform distortion (patterning) in single channel, and inter-channel cross-talk in multi-wavelength cases which require management through careful SOA design and understanding of the network application scenarios. In this paper, an optical linear amplifier (OLA) architecture with the unique capability to provide variable gain whilst maintaining linear operation at high output saturation powers will be described. Initial characterisation results for the OLA will be presented.

  6. Theory of noise in high-gain surface plasmon-polariton amplifiers incorporating dipolar gain media.

    PubMed

    De Leon, Israel; Berini, Pierre

    2011-10-10

    A theoretical analysis of noise in high-gain surface plasmon-polariton amplifiers incorporating dipolar gain media is presented. An expression for the noise figure is obtained in terms of the spontaneous emission rate into the amplified surface plasmon-polariton taking into account the different energy decay channels experienced by dipoles in close proximity to the metallic surface. Two amplifier structures are examined: a single-interface between a metal and a gain medium and a thin metal film bounded by identical gain media on both sides. A realistic configuration is considered where the surface plasmon-polariton undergoing amplification has a Gaussian field profile in the plane of the metal and paraxial propagation along the amplifier's length. The noise figure of these plasmonic amplifiers is studied considering three prototypical gain media with different permittivities. It is shown that the noise figure exhibits a strong dependance on the real part of the permittivities of the metal and gain medium, and that its minimum value is 4/π(∼3.53 dB). The origin of this minimum value is discussed. It is also shown that amplifier configurations supporting strongly confined surface plasmon-polaritons suffer from a large noise figure, which follows from an enhanced spontaneous emission rate due to the Purcell effect.

  7. Intracavity gain shaping in millijoule-level, high gain Ho:YLF regenerative amplifiers.

    PubMed

    Murari, Krishna; Cankaya, Huseyin; Kroetz, Peter; Cirmi, Giovanni; Li, Peng; Ruehl, Axel; Hartl, Ingmar; Kärtner, Franz X

    2016-03-15

    We demonstrate intracavity gain shaping inside a 2 μm Ho:YLF regenerative amplifier with a spectral bandwidth of 2.9 nm broadened to 5.4 nm, corresponding to Fourier-limited pulses of 1 ps duration. The intracavity gain shaping is achieved by using a simple etalon, which acts as a frequency-selective filter. The output of the regenerative amplifier is amplified by a single-pass amplifier, and we achieve total energy of 2.2 mJ and pulse duration of 2.4 ps at 1 kHz with pulse fluctuations <1%. The amplifier chain is seeded by a home-built mode-locked holmium-doped fiber oscillator. PMID:26977647

  8. Active rc filter permits easy trade-off of amplifier gain and sensitivity to gain

    NASA Technical Reports Server (NTRS)

    Kerwin, W. J.; Shaffer, C. V.

    1968-01-01

    Passive RC network was designed with zeros of transmission in the right half of the complex frequency plane in the feedback loop of a simple negative-gain amplifier. The proper positioning provides any desired trade-off between amplifier gain and sensitivity to amplifier gain.

  9. Use of a photonic crystal for optical amplifier gain control

    DOEpatents

    Lin, Shawn-Yu; Fleming, James G.; El-Kady, Ihab

    2006-07-18

    An optical amplifier having a uniform gain profile uses a photonic crystal to tune the density-of-states of a gain medium so as to modify the light emission rate between atomic states. The density-of-states of the gain medium is tuned by selecting the size, shape, dielectric constant, and spacing of a plurality of microcavity defects in the photonic crystal. The optical amplifier is particularly useful for the regeneration of DWDM signals in long optical fibers.

  10. Digitally gain controlled linear high voltage amplifier for laboratory applications.

    PubMed

    Koçum, C

    2011-08-01

    The design of a digitally gain controlled high-voltage non-inverting bipolar linear amplifier is presented. This cost efficient and relatively simple circuit has stable operation range from dc to 90 kHz under the load of 10 kΩ and 39 pF. The amplifier can swing up to 360 V(pp) under these conditions and it has 2.5 μs rise time. The gain can be changed by the aid of JFETs. The amplifiers have been realized using a combination of operational amplifiers and high-voltage discrete bipolar junction transistors. The circuit details and performance characteristics are discussed.

  11. Crystal oscillators using negative voltage gain, single pole response amplifiers

    NASA Technical Reports Server (NTRS)

    Kleinberg, Leonard L. (Inventor)

    1989-01-01

    A simple and inexpensive crystal oscillator is provided which employs negative voltage gain, single pole response amplifiers. The amplifiers may include such configurations as gate inverters, operational amplifiers and conventional bipolar transistor amplifiers, all of which operate at a frequency which is on the roll-off portion of their gain versus frequency curve. Several amplifier feedback circuit variations are employed to set desired bias levels and to allow the oscillator to operate at the crystal's fundamental frequency or at an overtone of the fundamental frequency. The oscillator is made less expensive than comparable oscillators by employing relatively low frequency amplifiers and operating them at roll-off, at frequencies beyond which they are customarily used. Simplicity is provided because operation at roll-off eliminates components ordinarily required in similar circuits to provide sufficient phase-shift in the feedback circuitry for oscillation to occur.

  12. A neural amplifier with high programmable gain and tunable bandwidth.

    PubMed

    Perlin, Gayatri E; Sodagar, Amir M; Wise, Kensall D

    2008-01-01

    A neural recording amplifier having programmable gain and bandwidth is presented. The gain can be digitally programmed using 6 bits from 100x to 1100x in steps of 100x. The low-frequency cutoff can be varied from less than 10Hz to above 100Hz to accept or reject field potentials while the high-frequency cutoff is fixed at 9kHz. The input referred noise of this amplifier is 4.8microV(rms) and it consumes 50microW operating from +/-1.5V. Implemented in a 0.5microm technology, the amplifier occupies an area of 0.098mm(2). This amplifier has been successfully demonstrated in-vivo and compared to a commercial amplifier.

  13. Possibility of a high-power, high-gain amplifier FEL

    SciTech Connect

    Nguyen, D. C.; Freund, H. P.

    2002-01-01

    High-gain amplifier FEL offer many unique advantages such as robust operation without a high-Q optical cavity and potentially high extraction eaciencies with the use of tapered wigglers. Although a high average power, cw amplifier FEL has not been demonstrated, many key physics issues such as electron beam brightness requirements, single-pass gains, saturation, etc. have been resolved. In this paper, we study the feasibility of a high-power FEL based on the high-gain amplifier concept. We show that with suitable electron beam parameters, i.e. high peak current, low emittance, low energy spread, and sufficient tapered wiggler length, peak output power of 1 QW and optical pulse energy of 8 mJ can be achieved. We also outline a possible configuration of a high-power, high-gain amplifier FEL with energy recovery.

  14. Memristive devices as parameter setting elements in programmable gain amplifiers

    NASA Astrophysics Data System (ADS)

    Berdan, R.; Prodromakis, T.; Salaoru, I.; Khiat, A.; Toumazou, C.

    2012-12-01

    In this paper, we investigate the AC performance of a variable gain amplifier that utilizes an in-house manufactured memristor as a gain setting element. Analysis includes frequency and phase responses as the memristor is programmed at different resistive states. A TiO2-based solid-state memristor was employed in the feedback branch of an inverting voltage amplifier and was programmed externally. We have also observed indications of memcapacitive effects and a correlation with resistive states is presented. We demonstrate that our TiO2 memristive devices, although possessing relatively low ROFF/RON switching ratios (˜10), are versatile and can be used reliably in programmable gain amplifiers.

  15. High gain amplifiers: Power oscillations and harmonic generation

    SciTech Connect

    Dattoli, G.; Ottaviani, P. L.; Pagnutti, S.

    2007-08-01

    We discuss the power oscillations in saturated high gain free electron laser amplifiers and show that the relevant period can be written in terms of the gain length. We use simple arguments following from the solution of the pendulum equation in terms of Jacobi elliptic functions. Nontrivial effects due to nonlinear harmonic generation and inhomogeneous broadening are discussed too, as well as the saturated dynamics of short pulses.

  16. Low-dispersion, high-gain femtosecond optical pulse amplifier.

    PubMed

    Rodenberger, D C; Grossman, C H; Garito, A F

    1990-05-01

    We demonstrate a novel amplifier for femtosecond optical pulses. The output of a colliding-pulse mode-locked laser is amplified to 0.3 microJ per pulse at a repetition rate of 8 kHz by using 1 W of pump power from a copper-vapor laser. Our high-efficiency amplifier focuses the beam for four gain passes through a thin dye stream that uses a Z configuration with matched focusing. Because of low group-velocity dispersion, the output pulses are only slightly broadened, from 63 to 73 fsec, and may be used directly to generate a white-light continuum without pulse compression after amplification. PMID:19767988

  17. High-gain multipassed Yb:YAG amplifier for ultrashort pulse laser

    NASA Astrophysics Data System (ADS)

    Vetrovec, John; Copeland, Drew A.; Litt, Amardeep S.; Du, Detao

    2016-05-01

    We report on a Yb:YAG laser amplifier for ultrashort pulse applications at kW-class average power. The laser uses two large-aperture, disk-type gain elements fabricated from composite ceramic YAG material, and a multi-pass extraction architecture to obtain high gain in a chirped-pulse amplification system. The disks are edge-pumped, thus allowing for reduced doping of the host material with laser ions, which translates to lower lasing threshold and lower heat dissipation in the Yb:YAG material. The latter makes it possible to amplify a near diffraction-limited seed without significant thermo-optical distortions. This work presents results of testing the laser amplifier with relay optics and passive polarization switching configured for energy extraction with up to 40 passes through the disks. Applications for the ultrashort pulse laser amplifier include producing a laser-induced plasma channel, laser material ablation, and laser acceleration of atomic particles.

  18. Gain dynamics in Er(3+):Yb(+) co-doped fiber amplifiers.

    PubMed

    Steinke, M; Neumann, J; Kracht, D; Wessels, P

    2015-06-01

    Understanding the gain dynamics of fiber amplifiers is essential for the implementation and active stabilization of low noise amplifiers or for coherent beam combining schemes. The gain dynamics of purely Er3+ or Yb3+ doped fiber amplifiers are well studied, whereas no analysis for co-doped systems, especially for Er3+:Yb3+ co-doped fiber amplifiers has been performed, so far. Here, we analyze for the first time the gain dynamics of Er3+:Yb3+ co-doped fiber amplifiers theoretically and experimentally. It is shown that due to the energy transfer between the Yb3+ and Er3+ ions a full analytical solution is not possible. Thus, we used numerical simulations to gain further insights. Comparison of experimental and numerical results shows good qualitative agreement. In addition, we were able to determine the Yb3+-Er3+ transfer function of the energy transfer experimentally.

  19. High gain broadband amplification of ultraviolet pulses in optical parametric chirped pulse amplifier.

    PubMed

    Wnuk, Paweł; Stepanenko, Yuriy; Radzewicz, Czesław

    2010-04-12

    We report on a high gain amplification of broadband ultraviolet femtosecond pulses in an optical parametric chirped pulse amplifier. Broadband ultraviolet seed pulses were obtained by an achromatic frequency doubling of the output from a femtosecond Ti:Sapphire oscillator. Stretched seed pulses were amplified in a multipass parametric amplifier with a single BBO crystal pumped by a ns frequency quadrupled Nd:YAG laser. A noncollinear configuration was used for a broadband amplification. The total (after compression) amplification of 2.510(5) was achieved, with compressed pulse energy of 30 microJ and pulse duration of 24 fs. We found that the measured gain was limited by thermal effects induced by the absorption of the pump laser by color centers created in the BBO crystal.

  20. Gain measurements on a waveguide FEL amplifier with pre-bunched electron beam

    SciTech Connect

    Dearden, G.; Mayhew, S.E.; Lucas, J.

    1995-12-31

    A theory proposed by Doria et al. suggests that a synchronous pre-bunched electron beam should amplify radiation with a power gain which is inversely proportional to the square root of the input power. We have measured the power gain experimentally for a waveguide FEL system using a low-voltage (55kV) pre-bunched electron beam produced by a waveguide cavity buncher. The gain has been observed as a function of the electron beam current and energy; the results are compared with theory.

  1. A 1 to 18 GHz high gain ultra-broadband amplifier with temperature compensation

    NASA Astrophysics Data System (ADS)

    Ariel, D.; Thibout, T.; Lacombe, J. L.

    1989-05-01

    Design and performance of a high gain ultra-broadband hybrid amplifier with temperature compensation are presented. The amplifier consists of six distributed amplifier stages using GaAs FETs. Design emphasis was on minimizing gain variations with temperature; this was achieved by biasing the gates of the FETs with a temperature varying voltage. The amplifier exhibits a gain of 35 dB with a maximum deviation of + or - 4 dB over the frequency range from 1 to 18 GHz and the temperature range from -55 to +85 C. The gain flatness and temperature stability performance of this amplifier make it useful for EW subsystem applications.

  2. Measuring the energy of amplified spontaneous emission (ASE) in a short pulse laser amplifier

    NASA Astrophysics Data System (ADS)

    Iliev, Marin; Adams, Daniel; Greco, Michael; Meier, Amanda; Squier, Jeff; Durfee, Charles

    2010-10-01

    In high-gain pulsed laser amplifiers, amplified spontaneous emission (ASE) tends to limit the gain in single stage fiber amplifiers. Even if ASE is not strong enough to deplete the gain of the amplifier, it still contributes strongly to a low-intensity background output in the amplified signal. The intensity contrast between the amplified short pulse and this background ASE pedestal can be measured with third-order autocorrelation, but this method cannot be used to completely specify the ASE's energy, which is distributed over many nanoseconds. We have developed a novel method that allows us to determine the energy and the spectrum of the ASE. We use a cross polarized wave (XPW) generating crystal such as BaF2 to ``clean up'' the ASE from the short pulse(SP). The input pulse (SP and ASE) and the cross-polarized signal are passed through a birefringent crystal such as sapphire. The relative group velocity difference along each crystal axis results in a delay between both channels. After passing through a polarizer, an interferogram is obtained in a spectrometer. This interferogram results from interference of the XPW pulse with the short-pulse content of the amplifier output, with a background of the ASE spectrum. Fourier analysis yields both the ASE energy and its spectrum.

  3. High-gain amplifier has excellent stability and low power consumption

    NASA Technical Reports Server (NTRS)

    Kleinberg, L. L.

    1965-01-01

    Transistorized amplifier, in which an external reference voltage controls gain, combines high gain with stability and low power consumption. This circuit is useful in electronic servo and portable audio equipment.

  4. Gain and energy storage in holmium YLF

    NASA Technical Reports Server (NTRS)

    Storm, Mark E.; Deyst, John P.

    1991-01-01

    It is demonstrated that Q-switched holmium lasers are capable of high-gain and high-energy operation at 300 K. Small-signal gain coefficients of 0.50 and 0.12/cm have been measured in YLF and YAG, respectively. Small-signal gains of 0.50/cm are comparable to those achievable in Nd:YAG and are not typical of low-gain materials. This large gain in the Ho:YLF material is made possible by operating the amplifier in the ground state depletion mode. The amplifier performance data and associated analysis presented demonstrate that efficient energy storage is possible with very high excited state ion densities of the Ho 5I7 upper laser level. This is an important result since upconversion can limit the 5I7 population. Although upconversion was still present in this experiment, it was possible to achieve efficient energy storage, demonstrating that the problem is manageable even at high excitation densities in YLF.

  5. Fast iterative technique for the calculation of frequency dependent gain in excimer laser amplifiers

    SciTech Connect

    Sze, R.C.

    1991-01-01

    The motivation in initiating these calculations is to allow us to observe the frequency evolution of a laser pulse as it propagates through an amplifier and then through a sequence of amplifiers. The question we seek to answer is what pulse shape do we need to produce out of a front-end oscillator so that after it propagates through the whole Aurora KrF fusion amplifier chain will result in high energy, broad-band laser fields of a given bandwidth that can be focussed onto a fusion target. The propagation of a single frequency source through an amplifier with distributed loss was considered by Rigrod and was significantly expanded by Hunter and Hunter. The latter included amplified spontaneous emission (ASE) considerations both in the direction of and transverse to the coherent field. Analytic solutions that include forward and backward prapagating fields and ASE were derived which were transcendental in nature but allowed for fairly easy computer calculations. Transverse ASE were calculated using the unsaturated gain resulting from longitudinal fields and were used to compare this with the longitudinal field equations. Large computer programs are now available at LANL which include the influence of transverse ASE on the longitudinal fields. However, none of these considerations have worried about the changes in the frequency characteristics of the propagating field or of how each of the frequency field components contributes to the saturation of the gain. The inclusion of full frequency characteristics to the analytic solutions of Hunter and Hunter proved impossible at least for this author and a new calculational technique was developed and is the subject of this talk.

  6. Analysis of optical amplifier gain competition attack in a point-to-point WDM link

    NASA Astrophysics Data System (ADS)

    Deng, Tao; Subramaniam, Suresh

    2002-07-01

    Gain competition in an optical amplifier can result in a performance-degrading reduction in the gain of a channel if the overall input power of the amplifier is increased. A gain competition attack may be realized by one or more attackers (pretending to be legitimate users) increasing their source powers in order to degrade the quality of service seen by other users. In this paper, we study the effect of an optical amplifier gain competition attack in a point-to-point WDM link. By looking at the relative OSNR degradation ratio of the attacked channels, we show that Automatic Gain Control mechanisms can alleviate the absolute OSNR degradation to a significant extent, but cannot immunize the system from performance deterioration if the attacking user's power is strong enough. Adding more amplifiers to a link will enhance the service quality as well as the system's robustness against a gain competition attack at the price of higher network cost.

  7. Static gain saturation in quantum dot semiconductor optical amplifiers.

    PubMed

    Meuer, Christian; Kim, Jungho; Laemmlin, Matthias; Liebich, Sven; Capua, Amir; Eisenstein, Gadi; Kovsh, Alexey R; Mikhrin, Sergey S; Krestnikov, Igor L; Bimberg, Dieter

    2008-05-26

    Measurements of saturated amplified spontaneous emission-spectra of quantum dot semiconductor optical amplifiers demonstrate efficient replenishment of the quantum-dot ground state population from excited states. This saturation behavior is perfectly modeled by a rate equation model. We examined experimentally the dependence of saturation on the drive current and the saturating optical pump power as well as on the pump wavelength. A coherent noise spectral hole is observed with which we assess dynamical properties and propose optimization of the SOA operating parameters for high speed applications.

  8. A High Gain, Composite Nd:YVO4/SiC Thin Disk Amplifier

    NASA Astrophysics Data System (ADS)

    Newburgh, G. A.; Dubinskii, Mark

    2014-06-01

    We have demonstrated a new form of Nd:YVO4 amplifier operating at 1064 nm based on a 800 µm thick Nd:YVO4 gain layer bonded to a 4H-SiC prism. The amplifier was tested in the `master oscillator - power amplifier' (MOPA) configuration, where both the seed source and the single pass amplifier were operated in a quasi-continuous wave (Q-CW) regime: pulse duration 500 µs, pulse repetition frequency (PRF) - 100 Hz. The Nd:YVO4gain element was pumped by a 808 nm laser diode bar stack to amplify seed inputs in the power range of 1 to 55 W with a gains of 4 to 2.6, respectively, with 25% optical-to-optical extraction efficiency. The temperature distribution of the gain medium was measured under operational conditions using thermography.

  9. Simplified ASE correction algorithm for variable gain-flattened erbium-doped fiber amplifier.

    PubMed

    Mahdi, Mohd Adzir; Sheih, Shou-Jong; Adikan, Faisal Rafiq Mahamd

    2009-06-01

    We demonstrate a simplified algorithm to manifest the contribution of amplified spontaneous emission in variable gain-flattened Erbium-doped fiber amplifier (EDFA). The detected signal power at the input and output ports of EDFA comprises of both signal and noise. The generated amplified spontaneous emission from EDFA cannot be differentiated by photodetector which leads to underestimation of the targeted gain value. This gain penalty must be taken into consideration in order to obtain the accurate gain level. By taking the average gain penalty within the dynamic gain range, the targeted output power is set higher than the desired level. Thus, the errors are significantly reduced to less than 0.15 dB from 15 dB to 30 dB desired gain values.

  10. Optical gain control of GaAs microwave monolithic integrated circuit distributed amplifier

    NASA Astrophysics Data System (ADS)

    Paolella, Arthur; Herczfeld, Peter R.

    1989-02-01

    An optical gain control circuit for controlling the gain of a GaAs MMIC distributed amplifier having a dc gain control is provided. Variable intensity light from a controlled LED is directed to the surface of a GaAs multi-finger FET by means of an optical fiber. The FET is gate biased to a point near pinch-off to maximize its light sensitivity and the drain and source of the FET are serially connected with a fixed resistance in a dc voltage divider circuit so that the output of the voltage divider circuit changes as a function of the change in light intensity of the LED. A MMIC operational amplifier connected in an inverter mode is coupled between the output of the voltage divider circuit and the dc gain control of the distributed amplifier to control the gain of that amplifier.

  11. 12 THz flat gain fiber optical parametric amplifiers with dispersion varying fibers.

    PubMed

    Fourcade-Dutin, Coralie; Bassery, Quentin; Bigourd, Damien; Bendahmane, Abdelkrim; Kudlinski, Alexandre; Douay, Marc; Mussot, Arnaud

    2015-04-20

    We report a fiber-optic parametric amplifier with ultra-broad and flat gain band by using a longitudinally tailored optical fiber. The parametric amplifier has been designed from realistic numerical simulations combined with an inverse algorithm to obtain a flat and wide gain band through fiber dispersion management. We experimentally report ~12 THz gain bandwidth on the Stokes side of the pump with a gain ripple as low as 7 dB and a mean gain up to ~60 dB. Experimental results show good agreement with numerical predictions for different pump powers and wavelength detuning.

  12. Time Difference Amplifier with Robust Gain Using Closed-Loop Control

    NASA Astrophysics Data System (ADS)

    Nakura, Toru; Mandai, Shingo; Ikeda, Makoto; Asada, Kunihiro

    This paper presents a Time Difference Amplifier (TDA) that amplifies the input time difference into the output time difference. Cross coupled chains of variable delay cells with the same number of stages are applicable for TDA, and the gain is adjusted via the closed-loop control. The TDA was fabricated using 65nm CMOS and the measurement results show that the time difference gain is 4.78 at a nominal power supply while the designed gain is 4.0. The gain is stable enough to be less than 1.4% gain shift under ±10% power supply voltage fluctuation.

  13. Optoelectronic gain control of a microwave single stage GaAs MESFET amplifier

    NASA Technical Reports Server (NTRS)

    Simons, Rainee N.

    1988-01-01

    Gain control of a single stage GaAs MESFET amplifier is demonstrated by the use of optical illumination of photon energy greater than the GaAs bandgap. The optical illumination is supplied by a semiconductor laser diode and is coupled to the Schottky gate of the MESFET by an optical fiber. The increase in gain is observed to be as much as 5.15 dB when the MESFET is biased close to pinchoff, that is, V(sub gs) equals -1.5 V and with optical illumination of 1.5 mW. The computed maximum available gain (MAG) and current gain (bar h sub 21 bar) from the de-embedded s-parameters show that MAG is unaffected by optical illumination, however, bar h(sub 21)bar increases by more than 2 dB under optical illumination of 1.5 mW. The maximum frequency of oscillation (F sub max) and the unity current gain cut-off frequency (F sub t) obtained by extrapolating the MAG and bar h(sub 21)bar curves, respectively, show that the F(sub max) is insensitive to optical illumination but F(sub t) increases by 5 GHz.

  14. MMIC Amplifier Produces Gain of 10 dB at 235 GHz

    NASA Technical Reports Server (NTRS)

    Dawson, Douglas; Fung, King Man; Lee, Karen; Samoska, Lorene; Wells, Mary; Gaier, Todd; Kangaslahti, Pekka; Grundbacher, Ronald; Lai, Richard; Raja, Rohit; Liu, Po-Hsin

    2007-01-01

    The first solid-state amplifier capable of producing gain at a frequency >215 GHz has been demonstrated. This amplifier was fabricated as a monolithic microwave integrated-circuit (MMIC) chip containing InP high-electron-mobility transistors (HEMTs) of 0.07 micron gate length on a 50- m-thick InP substrate.

  15. Design of a high-gain laser diode-array pumped Nd:YAG alternating precessive slab amplifier (APS amplifier)

    NASA Technical Reports Server (NTRS)

    Coyle, D. B.

    1991-01-01

    In the design of space-qualifiable laser systems for ranging and altimetry, such as NASA's Geodynamic Laser Ranging System (GLRS), the transmitter must be kept small, powerful yet efficient, and must consist of as few components as possible. A novel preamplifier design is examined which requires no external beam steering optics, yielding a compact component with simple alignment procedures. The gains achieved are comparable to multipass zigzag amplifiers using two or more sets of external optics for extra passes through the amplifying medium.

  16. Gain-controlled erbium-doped fiber amplifier using mode-selective photonic lantern

    NASA Astrophysics Data System (ADS)

    Lopez-Galmiche, G.; Sanjabi Eznaveh, Z.; Antonio-Lopez, J. E.; Velazquez-Benitez, A. M.; Rodriguez-Asomoza, J.; Herrera-Piad, L. A.; Sanchez-Mondragon, J. J.; Gonent, C.; Sillard, P.; Li, G.; SchuÌlzgen, A.; Okonkwo, C.; Amezcua Correa, R.

    2016-02-01

    For the first time, we demonstrate the implementation of a core pumped few mode erbium amplifier utilizing a mode selective photonic lantern for spatial modal control of the pump light. This device is able to individually amplify the first six fiber modes with low differential modal gain. In addition, we obtained differential modal gain lower than 1 dB and signal gain of approximately 16.17 dB at λs = 1550 nm through forward pumping the LP21 modes at λp = 976 nm.

  17. X-ray amplifier energy deposition scaling with channeled propagation

    SciTech Connect

    Boyer, K.; Luk, T.S.; McPherson, A.

    1991-12-31

    The spatial control of the energy deposited for excitation of an x-ray amplifier plays an important role in the fundamental scaling relationship between the required energy, the gain and the wavelength. New results concerning the ability to establish confined modes of propagation of sort pulse radiation of sufficiently high intensity in plasmas lead to a sharply reduced need for the total energy deposited, since the concentration of deposited power can be very efficiently organized.

  18. Criterion of transverse coherence of self-amplified spontaneous emission in high gain free electron laser amplifiers

    SciTech Connect

    Xie, M.; Kim, K.J.

    1995-12-31

    In a high gain free electron laser amplifier based on Self-Amplified Spontaneous Emission (SASE) the spontaneous radiation generated by an electron beam near the undulator entrance is amplified many orders of magnitude along the undulator. The transverse coherence properties of the amplified radiation depends on both the amplification process and the coherence of the seed radiation (the undulator radiation generated in the first gain length or so). The evolution of the transverse coherence in the amplification process is studied based on the solution of the coupled Maxwell-Vlasov equations including higher order transverse modes. The coherence of the seed radiation is determined by the number of coherent modes in the phase space area of the undulator radiation. We discuss the criterion of transverse coherence and identify governing parameters over a broad range of parameters. In particular we re-examine the well known emittance criterion for the undulator radiation, which states that full transverse coherence is guaranteed if the rms emittance is smaller than the wavelength divided by 4{pi}. It is found that this criterion is modified for SASE because of the different optimization conditions required for the electron beam. Our analysis is a generalization of the previous study by Yu and Krinsky for the case of vanishing emittance with parallel electron beam. Understanding the transverse coherence of SASE is important for the X-ray free electron laser projects now under consideration at SLAC and DESY.

  19. Gain recovery dynamics in semiconductor optical amplifiers with distributed feedback grating under assist light injection

    NASA Astrophysics Data System (ADS)

    Qin, Cui; Zhao, Jing; Yu, Huilong; Zhang, Jian

    2016-07-01

    The gain recovery dynamic characteristics of the semiconductor optical amplifier (SOA) with distributed feedback (DFB) grating are theoretically investigated. The interaction of the grating structure and the assist light is used to accelerate the gain recovery process in the SOA. The effects of the assist light that is injected into the SOA with DFB structure on the gain recovery dynamics, the steady-state carrier density, and field intensity distributions are analyzed, respectively. Results show that the recovery time in the DFB SOA is successfully reduced by injecting relatively high power assist light, whose wavelength is set at the gain region. Finally, under assist light injection, the effects of DFB grating on the gain recovery process are also discussed. It is shown that the gain recovery in the SOA with DFB grating is faster than that in the SOA without DFB grating. In addition, the coupling factor in the DFB grating structure can be optimized to shorten the gain recovery time.

  20. Programmable gain amplifiers with DC suppression and low output offset for bioelectric sensors.

    PubMed

    Carrera, Albano; de la Rosa, Ramón; Alonso, Alonso

    2013-09-27

    DC-offset and DC-suppression are key parameters in bioelectric amplifiers. However, specific DC analyses are not often explained. Several factors influence the DC-budget: the programmable gain, the programmable cut-off frequencies for high pass filtering and, the low cut-off values and the capacitor blocking issues involved. A new intermediate stage is proposed to address the DC problem entirely. Two implementations were tested. The stage is composed of a programmable gain amplifier (PGA) with DC-rejection and low output offset. Cut-off frequencies are selectable and values from 0.016 to 31.83 Hz were tested, and the capacitor deblocking is embedded in the design. Hence, this PGA delivers most of the required gain with constant low output offset, notwithstanding the gain or cut-off frequency selected.

  1. Programmable Gain Amplifiers with DC Suppression and Low Output Offset for Bioelectric Sensors

    PubMed Central

    Carrera, Albano; de la Rosa, Ramón; Alonso, Alonso

    2013-01-01

    DC-offset and DC-suppression are key parameters in bioelectric amplifiers. However, specific DC analyses are not often explained. Several factors influence the DC-budget: the programmable gain, the programmable cut-off frequencies for high pass filtering and, the low cut-off values and the capacitor blocking issues involved. A new intermediate stage is proposed to address the DC problem entirely. Two implementations were tested. The stage is composed of a programmable gain amplifier (PGA) with DC-rejection and low output offset. Cut-off frequencies are selectable and values from 0.016 to 31.83 Hz were tested, and the capacitor deblocking is embedded in the design. Hence, this PGA delivers most of the required gain with constant low output offset, notwithstanding the gain or cut-off frequency selected. PMID:24084109

  2. Laser aperture diagnostics system for gain and wavefront measurements on NIF/LMJ amplifiers

    SciTech Connect

    Zapata, L. E., LLNL

    1996-12-17

    We are in the midst of constructing an amplifier laboratory (Arnplab) that will be the physics and engineering proving ground for fill sized segmented glass amplifiers of designs that will outfit the National Ignition Facility (NIF) and Laser Megajoule (LMJ) projects. Amplab will demonstrate the cornerstone mechanical, electrical and optical concepts that support the NW and LMJ amplifier schemes. Here we address the optical diagnostics that will be used to characterize optical performance of the amplifiers. We describe, the apparatus that will be used in pulsed measurements of gain distribution and wave-front distortions. The large aperture diagnostic system or LADS, is now being built through a collaborative effort between CEL-V and LLNL. The LADS will provide measurements of gain and wave front distortions over the fill extracting aperture of the NIF and LMJ prototype amplifiers. The LADS will be able to address each of eight apertures via motorized stages and following semi-automated alignment, take data on the aperture of interest. The LADS should be operational in mid-1997 at LLNL and will be used to characterize the optical performance of the very first fill scale prototype 4 x 2 NIF and LMJ amplifiers. It will be transported to Bordeaux, France to make similar measurements during activation of the first 8-aperture LMJ-like facility (LIL) that is planned to start in the near future.

  3. Optical properties of the output of a high gain, self-amplified free-electron laser.

    SciTech Connect

    Krinsky, S.; Lewellen , J.; Sajaev, V.; Accelerator Systems Division; BNL

    2004-01-01

    The temporal structure and phase evolutions of a high-gain, self-amplified free-electron laser are measured, including single-shot analysis and statistics over many shots. Excellent agreement with the theory of free-electron laser and photon statistics is found.

  4. Gain spectrum self controlling device and algorithm for mutiply pumped Raman amplifiers

    NASA Astrophysics Data System (ADS)

    Wang, Jia Ying

    2004-05-01

    For both forward- and backward-pumped Raman amplifiers, devices to perform gain-spectrum self-control of multi-laser pumps are depicted in this paper. The algorithm supporting the devices is presented also. The function of automatic control is suitable for on-line maintenance of WDM equipment.

  5. Gain control dynamics of thulium-doped fiber amplifier at 2 μm

    NASA Astrophysics Data System (ADS)

    Khamis, M. A.; Ennser, K.

    2016-02-01

    This work is novel in that it explains the modeling and simulation of a thulium-doped fiber amplifier (TDFA) in a reconfigurable wavelength division multiplexing (WDM) system operating at 2 μm. We use the optical gain-clamping technique in order to control gain amplification and eliminate deleterious channel power fluctuations resulting from input power variation at the TDFA. The investigated system consists of 12 channels with -4 dBm total input power. Simulation results indicate that approximately1.5dB power excursion is produced after dropping 11 channels in unclamped-gain amplifier, and only 0.005 dB in a clamped-gain amplifier. Additionally, a clamped configuration brings the power excursion from 4.2 dB to under 0.08 dB, after adding 11 channels to the investigated system. Hence, optical gainclamping is a simple and robust technique for controlling the power transient in amplifiers at 2 μm.

  6. Use of a Mild Gain Amplifier with Preschoolers with Language Delay.

    ERIC Educational Resources Information Center

    Flexer, Carol; Hallie, Savage

    1993-01-01

    This study examined effects on test-taking performance of enhancing the examiner's speech by means of an inexpensive mild gain hard-wired assistive listening device. Subjects were 11 preschoolers with mild expressive language delays. Results revealed a significant reduction in test-taking time in the amplified condition. (Author/DB)

  7. Gain characteristics of quantum dot fiber amplifier based on asymmetric tapered fiber coupler

    NASA Astrophysics Data System (ADS)

    Guo, Hairun; Pang, Fufei; Zeng, Xianglong; Wang, Tingyun

    2013-03-01

    We theoretically analyzed the gain characteristics of an integrated semiconductor quantum dot (QD) fiber amplifier (SQDFA) by using a 2 × 2 tapered fiber coupler with a PbS QD-coated layer. The asymmetric structure of the fiber coupler is designed to have a maximum working bandwidth around 1550-nm band and provide a desired optical power ratio of the output signals. By using 600 mW of 980-nm pump, 10 dB gain of a 1550-nm signal is estimated with the gain efficiency of 4.5 dB/cm.

  8. Gain saturation studies in LG-750 and LG-770 amplifier glass

    SciTech Connect

    Pennington, D.M.; Milam, D.; Eimerl, D.

    1997-03-10

    Experiments were performed on the 100-J class Optical Sciences Laser (OSL) at LLNL to characterize the saturation fluence and small-signal gain of a solid-state Nd:glass amplifier utilizing LG-750 and LG-770, an amplifier glass developed for the National Ignition Facility (NIF). These high quality measurements of gain saturation at NIF level fluences, i.e., 10-15 J/cm{sup 2}, provide essential parameters for the amplifier performance codes used to design NIF and future high power laser systems. The small-signal gain, saturation fluence and square-pulse distortion were measured as a function of input fluence and pulse length in platinum-free LG-750 and LG-770. The input fluence, output fluence, small-signal gain and passive losses were measured to allow calculation of the saturation fluence. Least square fits of the output vs. input fluence data using a Frantz-Nodvik model was used to obtain an average saturation fluence for each data set. Overall, gain saturation in LG-750 and LG-770 is comparable at long pulse lengths. For shorter pulse length, < 5 ns, LG-770 exhibits a stronger pulse length dependence than LG-750, possibly due to a longer terminal level lifetime. LG-770 also has a higher cross- section, which is reflected by its slightly higher extraction efficiency. 52 refs., 11 figs., 2 tabs.

  9. Tandem chirped quasi-phase-matching grating optical parametric amplifier design for simultaneous group delay and gain control.

    PubMed

    Charbonneau-Lefort, M; Fejer, M M; Afeyan, Bedros

    2005-03-15

    We present a broadband optical parametric amplifier design using tapered gain and tandem chirped quasi-phase-matching gratings to obtain flat gain and group-delay spectra suitable for applications such as ultrashort-pulse amplification and fiber-optic communication systems. Although a tapered-gain amplifier consisting of a single chirped grating can provide constant gain over a wide frequency range, it cannot be used to control the group delay across the spectrum. We propose controlling both the gain and the group delay profiles using a two-stage amplifier configuration, in which the idler of the first is used as the input signal of the second. PMID:15792000

  10. Broadband Josephson parametric amplifiers: Beyond the standard gain-bandwidth product

    NASA Astrophysics Data System (ADS)

    Roy, Tanay; Kundu, Suman; Chand, Madhavi; Vadiraj, A. M.; Ranadive, A.; Nehra, N.; Patankar, Meghan P.; Aumentado, J.; Clerk, A. A.; Vijay, R.

    Recent development of multiplexed qubit measurement schemes demand broadband quantum-limited amplifiers to enable high fidelity readout with minimal resources. We present a simple technique to enhance the bandwidth of a resonator based Josephson Parametric Amplifier (JPA) beyond the standard gain-bandwidth product. This is achieved by introducing a positive linear slope in the imaginary component of the input impedance seen by the JPA using a λ / 2 transformer. Our theoretical model predicts an extremely flat gain profile with a bandwidth enhancement proportional to the square root of the amplitude gain. Experimentally, we achieved a nearly flat 20 dB gain profile over a 640 MHz band, with a mean 1-dB compression point of -110 dBm along with nearly quantum-limited noise performance. The results are in excellent agreement with our theoretical model. We will then discuss strategies to further enhance the performance in terms of bandwidth and dynamic range of the JPA. Finally, we will consider the applicability of our technique to different parametric pumping methods and other parametric amplifier designs as well.

  11. Comparison of pulse propagation and gain saturation characteristics among different input pulse shapes in semiconductor optical amplifiers

    NASA Astrophysics Data System (ADS)

    Barua, Suchi; Das, Narottam; Nordholm, Sven; Razaghi, Mohammad

    2016-01-01

    This paper presents the pulse propagation and gain saturation characteristics for different input optical pulse shapes with different energy levels in semiconductor optical amplifiers (SOAs). A finite-difference beam propagation method (FD-BPM) is used to solve the modified nonlinear Schrödinger equation (MNLSE) for the simulation of nonlinear optical pulse propagation and gain saturation characteristics in the SOAs. In this MNLSE, the gain spectrum dynamics, gain saturation are taken into account those are depend on the carrier depletion, carrier heating, spectral hole-burning, group velocity dispersion, self-phase modulation and two photon absorption. From this simulation, we obtained the output waveforms and spectra for different input pulse shapes considering different input energy levels. It has shown that the output pulse shape has changed due to the variation of input parameters, such as input pulse shape, input pulse width, and input pulse energy levels. It also shown clearly that the peak position of the output waveforms are shifted toward the leading edge which is due to the gain saturation of the SOA. We also compared the gain saturation characteristics in the SOA for different input pulse shapes.

  12. Gain and noise properties of InAs/InP quantum dash semiconductor optical amplifiers

    NASA Astrophysics Data System (ADS)

    Bilenca, A.; Hadass, D.; Alizon, R.; Dery, H.; Mikhelashvili, V.; Eisenstein, G.; Somers, A.; Kaiser, W.; Deubert, S.; Reithmaier, J. P.; Forchel, A.; Calligaro, M.; Bansropun, S.; Krakowski, M.

    2005-10-01

    Semiconductor optical amplifiers (SOAs) based on nanostructure gain media such as quantum dots (QD) and quantum dashes (QDASH) have several basic characteristics which offer significant performance improvements over commonly used quantum well (QW) or bulk amplifiers. Among these are broadband optical gain bandwidth (which is two to three times broader than that of QW/bulk gain media), fast gain dynamics, large saturation powers, and low α parameter and population inversion factor. Originally, these properties have been demonstrated for QD/QDASH SOAs operating at 1000 nm and 1300 nm. However, it is imperative that QD/QDASH SOAs operating at 1550 nm be materialized in order for them to have the expected impact on fiber-optic communication. Operation at 1550 nm has been achieved using InAs / InP QD and QDASH laser structures. In this paper the unique gain and noise properties of InAs / InP QDASH SOAs operating at 1550 nm will be presented. Specifically, cross-gain-modulation, four-wave-mixing and chirp measurements which explore the complex spectral cross relaxation dynamics of these SOAs will be described and highlighted in the context of simultaneous, distortionless, high bit-rate multiwavelength data amplification, as well as wideband / high-speed optical signal processing applications. Also, an experimental study of the gain and noise in saturated QDASH SOAs will be described together with a theoretical analysis comprising both coherent and incoherent gain phenomena. The impact of the partially inhomogeneously broadened gain spectrum, fast population pulsation dynamics, α parameter and wetting layer density of states on the noise characteristics will be discussed.

  13. Net gain demonstration with glass hybrid optical amplifiers made by ion-exchange and wafer bonding

    NASA Astrophysics Data System (ADS)

    Gardillou, Florent; Broquin, Jean-Emmanuel

    2006-02-01

    Thanks to the maturing of rare-earth highly-doped materials, erbium-doped waveguide amplifiers (EDWAs) present a compact alternative to fiber amplifiers. While ion-exchanged EDWAs implemented on glass substrates provide the best passive characteristics, EDWAs based on thin films technologies offer a higher integration and amplification efficiencies. This paper proposes the realization of EDWAs in a new configuration which combines all these advantages. Indeed, this optical amplifier consists of an erbium/ytterbium-codoped glass guiding layer reported on an ion-exchanged strip formed on a passive glass substrate. The electromagnetic principle of operation of this hybrid structure is presented as well as simulations of its behaviour. Then, the realization and characterization of two different hybrid amplifiers is presented: the first one, based on a Tl +/K + ion-exchanged strip provides a high gain coefficient of 3.66 +/- 0.25 dB/cm; whereas the second one, realized with a Ag +/Na + ion-exchanged strip, presents a good coupling efficiency with optical fibers, which allows the measurement of a 1 dB net gain.

  14. Transient gain and cross talk in erbium-doped fiber amplifiers.

    PubMed

    Giles, C R; Desurvire, E; Simpson, J R

    1989-08-15

    Transient gain saturation and recovery with 110-340-microsec time constants were observed in erbium-doped fiber amplifiers. This slow response reduces the effects of saturation-induced cross talk and intermodulation distortion associated with multichannel signal amplification. In a two-channel amplification experiment, negligible saturation-induced cross talk was measured at signal modulation frequencies >5 kHz. Increased suppression of saturation-induced cross talk was achieved through feed-forward compensation to reduce low-frequency gain fluctuations. PMID:19752999

  15. High-efficiency high-gain monolithic heterostructure FET amplifier at 31 GHz

    NASA Technical Reports Server (NTRS)

    Tserng, H. Q.; Saunier, P.; Kao, Y.-C.

    1993-01-01

    A three-stage heterostructure FET monolithic amplifier has achieved a power-added efficiency of 36 percent with 200 mW output and 18 dB gain at 31 GHz. At a higher drain voltage, the output power increases to 280 mW (with 17.5 dB gain and 31 percent PAE) at a power density of 0.7 W/mm. The MMIC chip measures 2.63 x 1.35 sq mm and requires only a single drain bias and a single gate bias.

  16. Erbium-doped spiral amplifiers with 20 dB of net gain on silicon.

    PubMed

    Vázquez-Córdova, Sergio A; Dijkstra, Meindert; Bernhardi, Edward H; Ay, Feridun; Wörhoff, Kerstin; Herek, Jennifer L; García-Blanco, Sonia M; Pollnau, Markus

    2014-10-20

    Spiral-waveguide amplifiers in erbium-doped aluminum oxide on a silicon wafer are fabricated and characterized. Spirals of several lengths and four different erbium concentrations are studied experimentally and theoretically. A maximum internal net gain of 20 dB in the small-signal-gain regime is measured at the peak emission wavelength of 1532 nm for two sample configurations with waveguide lengths of 12.9 cm and 24.4 cm and concentrations of 1.92 × 10(20) cm(-3) and 0.95 × 10(20) cm(-3), respectively. The noise figures of these samples are reported. Gain saturation as a result of increasing signal power and the temperature dependence of gain are studied.

  17. Phase and gain measurements in a distributed-loss cyclotron-resonance maser amplifier

    NASA Astrophysics Data System (ADS)

    Kesar, Amit; Jerby, Eli

    2002-03-01

    The control of gain and phase delay in a cyclotron-resonance maser (CRM) amplifier is essential for a variety of applications. In this experiment, the gain and phase-delay variations are measured with respect to controlling parameters; the electron-beam current and the axial magnetic field. Following Chu et al. [Phys. Rev. Lett. 74, 1103 (1995)], the CRM amplifier comprises of a distributed-loss waveguide to enable high gain without oscillations. Our experiment yields an amplification up to 26 dB, and a phase-delay control range of 360°. In order to keep a fixed gain with the varying phase delay, the two controlling parameters (i.e., the solenoid field and the beam current) are operated together in a compensating mode. The experiment is conducted in a frequency of 7.3 GHz, with an electron beam of 18-kV voltage and 0.25-0.4-A current. The experimental results are compared with a theoretical model. Practical implementations of gain and phase control in CRM devices are discussed.

  18. High Gain Submicrometer Optical Amplifier at Near-Infrared Communication Band.

    PubMed

    Wang, Xiaoxia; Zhuang, Xiujuan; Yang, Sen; Chen, Yu; Zhang, Qinglin; Zhu, Xiaoli; Zhou, Hong; Guo, Pengfei; Liang, Junwu; Huang, Yu; Pan, Anlian; Duan, Xiangfeng

    2015-07-10

    Nanoscale near-infrared optical amplification is important but remains a challenge to achieve. Here we report a unique design of silicon and erbium silicate core-shell nanowires for high gain submicrometer optical amplification in the near-infrared communication band. The high refraction index silicon core is used to tightly confine the optical field within the submicron structures, and the single crystalline erbium-ytterbium silicates shell is used as the highly efficient gain medium. Both theoretical and experimental results show that, by systematically tuning the core diameter and shell thickness, a large portion of the optical power can be selectively confined to the erbium silicate shell gain medium to enable a low loss waveguide and high gain optical amplifier. Experimental results further demonstrate that an optimized core-shell nanowire can exhibit an excellent net gain up to 31  dB mm(-1), which is more than 20 times larger than the previously reported best results on the micron-scale optical amplifiers.

  19. Low-FPN high-gain capacitive transimpedance amplifier for low-noise CMOS image sensors

    NASA Astrophysics Data System (ADS)

    Fowler, Boyd A.; Balicki, Janusz; How, Dana; Godfrey, Michael

    2001-05-01

    In this paper we introduce a low fixed pattern noise (LFPN) capacitive transimpedance amplifier (CTIA) for active pixel CMOS image sensors (APS) with high switchable gain and low read noise. The LFPN CTIA APS uses a switched capacitor voltage divider feedback circuit to achieve high sensitivity, low gain FPN, and low read noise. This paper discusses the operation of the LFPN CTIA APS, and presents a theoretical analysis of its gain FPN and read noise. We do not analyze the effect of 1/f noise, since it is typically much smaller than the thermal and shot noise effects. Monte Carlo simulation of gain FPN and SPICE simulation of read noise are also presented. For a 0.35 micrometers CMOS LFPN CTIA at room temperature and an output data rate of 16Mpixel/sec, we show that the pixel amplifier gain FPN is less than 0.0064, where FPN is defined as the ratio of standard deviation to mean. The read noise and dynamic range are less than 3 electrons RMS and greater than 90dB respectively. We find that theory and simulated results match closely.

  20. Gain Filtering for Single-Spatial-Mode Operation of Large-Mode-Area Fiber Amplifiers

    SciTech Connect

    Marciante, J.R.

    2009-02-06

    Gain filtering of higher order modes in large-mode-area fibers is an extremely robust method for providing diffraction-limited performance regardless of core diameter or input beam quality. Analytic calculations demonstrate that reducing the diameter of the gain dopants compared to the waveguide diameter produces differential gain that is higher for the fundamental mode than all other fiber modes at all saturation levels. Matching the gain dopant to the mode profile is not as beneficial as a simple step profile since the primarymechanism of gain filtering is to deny gain toward the edge of the waveguide where most of the higher order mode power is contained. Numerical simulations of multikilowatt fiber amplifiers with up to 100-μm-diameter cores show that gain filtering is extremely robust, providing 99% of the output power in the fundamental mode output with only 90% of the seed power in the fundamental mode. Even with poor seed launch with 50% of the power in the fundamental mode, gain filtering can provide up to 90% of the output power in the fundamental mode.

  1. Investigation of a versatile pulsed laser source based on a diode seed and ultra-high gain bounce geometry amplifiers.

    PubMed

    Teppitaksak, A; Thomas, G M; Damzen, M J

    2015-05-01

    We present an investigation of a versatile pulsed laser source using a low power, gain-switched diode laser with independently variable repetition rate and pulse duration to seed an ultra-high gain Nd:YVO4 bounce geometry amplifier system at 1064nm. Small-signal gain as high as 50dB was demonstrated in a bounce geometry pre-amplifier from just 24W pumping, with good preservation of TEM00 beam quality. The single amplifier is shown to be limited by amplified spontaneous emission. Study is made of further scaling with a second power amplifier, achieving average output power of ~14W for a pulsed diode seed input of 188μW. This investigation provides some guidelines for using the bounce amplifier to obtain flexible pulse amplification of low-power seed sources to reach scientifically and commercially useful power levels. PMID:25969318

  2. Graphene Distributed Amplifiers: Generating Desirable Gain for Graphene Field-Effect Transistors

    PubMed Central

    Lyu, Hongming; Lu, Qi; Huang, Yilin; Ma, Teng; Zhang, Jinyu; Wu, Xiaoming; Yu, Zhiping; Ren, Wencai; Cheng, Hui-Ming; Wu, Huaqiang; Qian, He

    2015-01-01

    Ever since its discovery, graphene bears great expectations in high frequency electronics due to its irreplaceably high carrier mobility. However, it has long been blamed for the weakness in generating gains, which seriously limits its pace of development. Distributed amplification, on the other hand, has successfully been used in conventional semiconductors to increase the amplifiers’ gain-bandwidth product. In this paper, distributed amplification is first applied to graphene. Transmission lines phase-synchronize paralleled graphene field-effect transistors (GFETs), combining the gain of each stage in an additive manner. Simulations were based on fabricated GFETs whose fT ranged from 8.5 GHz to 10.5 GHz and fmax from 12 GHz to 14 GHz. A simulated four-stage graphene distributed amplifier achieved up to 4 dB gain and 3.5 GHz bandwidth, which could be realized with future IC processes. A PCB level graphene distributed amplifier was fabricated as a proof of circuit concept. PMID:26634442

  3. Exploiting the short wavelength gain of silica-based thulium-doped fiber amplifiers.

    PubMed

    Li, Z; Jung, Y; Daniel, J M O; Simakov, N; Tokurakawa, M; Shardlow, P C; Jain, D; Sahu, J K; Heidt, A M; Clarkson, W A; Alam, S U; Richardson, D J

    2016-05-15

    Short wavelength operation (1650-1800 nm) of silica-based thulium-doped fiber amplifiers (TDFAs) is investigated. We report the first demonstration of in-band diode-pumped silica-based TDFAs working in the 1700-1800 nm waveband. Up to 29 dB of small-signal gain is achieved in this spectral region, with an operation wavelength accessible by diode pumping as short as 1710 nm. Further gain extension toward shorter wavelengths is realized in a fiber laser pumped configuration. A silica-based TDFA working in the 1650-1700 nm range with up to 29 dB small-signal gain and noise figure as low as 6.5 dB is presented. PMID:27176961

  4. The 'SuperFET' - A monolithic device for high-gain amplifiers

    NASA Astrophysics Data System (ADS)

    Crescenzi, E. J., Jr.; Wilser, W. T.; Oglesbee, R. W.; Algeri, S. J.

    1981-07-01

    The development of minimum area GaAs FET chips which resulted in ICs with two FETs on a single .7 sq mm chip linked with microstrip matching circuitry is described. Cost considerations are given, noting that the figure of merit was high due to matching elements covering over half of the total chip area. The gain for the X- and Ku-bands over discrete transistors were 6 and 5 dB, at 20 and 18 GHz respectively. Design objectives for the X-band IC of 7-12.5 GHz minimum bandwidth, multistage cascadability for amplifier gains in the 25 to 50 dB range, low VSWR gain flatness, and cost competitiveness with thin film discrete FETs were achieved. The Ku-band 'superFET' was designed for small size, application flexibility, and mechanical ruggedness and reliability, with an eye to EW military applications.

  5. SLUG Microwave Amplifier as a Nonreciprocal Gain Element for Scalable Qubit Readout

    NASA Astrophysics Data System (ADS)

    Thorbeck, Ted; Leonard, Edward; Zhu, Shaojiang; McDermott, Robert

    Josephson parametric amplifiers for superconducting qubits require several stages of cryogenic isolation to protect the qubit from strong microwave pump tones and downstream noise. But isolators and circulators are large, expensive and magnetic, so they are an obstacle to scaling up a superconducting quantum computer. In contrast, the SLUG (Superconducting Low-inductance Undulatory Galvanometer) is a high gain, broadband, low noise microwave amplifier that provides built-in reverse isolation. Here, we describe the dependence of the SLUG reverse isolation on signal frequency and device operating point. We show that the reverse isolation of the SLUG can be as large as or larger than that of a bulk commercial isolator. Finally, we discuss the use of the SLUG to read out a transmon qubit without isolators or circulators.

  6. Maximization of net optical gain in silicon-waveguide Raman amplifiers.

    PubMed

    Rukhlenko, Ivan D; Dissanayake, Chethiya; Premaratne, Malin; Agrawal, Govind P

    2009-03-30

    We present a novel method for maximizing signal gain in continuously pumped silicon-waveguide Raman amplifiers made with silicon-on-insulator technology. Our method allows for pump-power depletion during Raman amplification and makes use of a variational technique. Its use leads to a system of four coupled nonlinear differential equations, whose numerical solution provides the optimal axial profile of the effective mode area along the waveguide length that maximizes the output signal power for a given amplifier length and a preset input (or output) cross-section area. In practice, the optimum profile can be realized by varying the cross-section area of a silicon waveguide along its length by tapering its width appropriately.

  7. High power gain-switched diode laser master oscillator and amplifier

    SciTech Connect

    Poelker, M.

    1995-11-06

    A tapered-stripe, traveling-wave semiconductor optical amplifier was seeded with 3.3 mW of gain-switched diode laser light to obtain over 200 mW average power with pulse widths{approx}105 ps full width at half-maximum (FWHM) and a pulse repetition rate of 499 MHz corresponding to a peak power of 3.8 W. Shorter pulse widths were obtained when the amplifier was driven with less current at the expense of reduced output power. Pulse widths as short as 31 ps FWHM and an average power of 98 mW corresponding to a peak power of 6.3 W were obtained when a different, lower power seed laser was used. {copyright} {ital 1995} {ital American} {ital Institute} {ital of} {ital Physics}.

  8. Nonlinear optomechanics with gain and loss: amplifying higher-order sideband and group delay

    NASA Astrophysics Data System (ADS)

    Jiao, Y.; Lü, H.; Qian, J.; Li, Y.; Jing, H.

    2016-08-01

    We study the nonlinear optomechanically induced transparency (OMIT) with gain and loss. We find that (i) for a single active cavity, significant enhancement can be achieved for the higher-order sidebands, including the transmission rate and the group delay; (ii) for active-passive-coupled cavities, hundreds of microsecond of optical delay or advance are attainable for the nonlinear sideband pulses in the parity-time-symmetric regime. The active higher-order OMIT effects, as firstly revealed here, open up the way to make a low-power optomechaical amplifier, which can amplify both the strength and group delay of not only the probe light but also its higher-order sidebands.

  9. Tapered InAs/InGaAs quantum dot semiconductor optical amplifier design for enhanced gain and beam quality.

    PubMed

    Mesaritakis, Charis; Kapsalis, Alexandros; Simos, Hercules; Simos, Christos; Krakowski, Michel; Krestnikov, Igor; Syvridis, Dimitris

    2013-07-15

    In this Letter, a design for a tapered InAs/InGaAs quantum dot semiconductor optical amplifier is proposed and experimentally evaluated. The amplifier's geometry was optimized in order to reduce gain saturation effects and improve gain efficiency and beam quality. The experimental measurements confirm that the proposed amplifier allows for an elevated optical gain in the saturation regime, whereas a five-fold increase in the coupling efficiency to a standard single mode optical fiber is observed, due to the improvement in the beam quality factor M² of the emitted beam. PMID:23939062

  10. Modelling of noise suppression in gain-saturated fiber optical parametric amplifiers

    NASA Astrophysics Data System (ADS)

    Pakarzadeh, H.; Zakery, A.

    2013-11-01

    Noise properties of both one-pump (1-P) and two-pump (2-P) fiber optical parametric amplifiers (FOPAs) are theoretically investigated and particularly the unique feature of FOPAs for the noise suppression in the gain-saturated regime is modeled. For the 1-P FOPAs, the simulation results are compared with the available experimental data and a very good agreement is obtained. Also, for the 2-P FOPA where no experimental work has been reported regarding their noise properties in the saturation regime, the noise behavior of the amplified signal is simulated for the first time. It is shown that for a specific power in the deep saturation regime, the signal noise is suppressed; and with further increase of the signal power when the gain saturation reaches its new cycle, a periodic behavior of noise suppression is observed originating from the phase-matching condition. The existence of a negative feedback mechanism which is responsible to the suppression of the excess noise in the first cycle of the gain saturation is confirmed both for 1-P and 2-P FOPAs. Generally, it is shown that the noise suppression can be observed for several specific powers at which the slope of the output signal power versus the input one is zero. The results of this paper may have some applications in signal processing, e.g., cleaning noisy signals.

  11. Efficient use of hybrid Genetic Algorithms in the gain optimization of distributed Raman amplifiers.

    PubMed

    Neto, B; Teixeira, A L J; Wada, N; André, P S

    2007-12-24

    In this paper, we propose an efficient and accurate method that combines the Genetic Algorithm (GA) with the Nelder-Mead method in order to obtain the gain optimization of distributed Raman amplifiers. By using these two methods together, the advantages of both are combined: the convergence of the GA and the high accuracy of the Nelder-Mead. To enhance the convergence of the GA, several features were examined and correlated with fitting errors. It is also shown that when the right moment to switch between methods is chosen, the computation time can be reduced by a factor of two.

  12. Fast gain and phase recovery of semiconductor optical amplifiers based on submonolayer quantum dots

    SciTech Connect

    Herzog, Bastian Owschimikow, Nina; Kaptan, Yücel; Kolarczik, Mirco; Switaiski, Thomas; Woggon, Ulrike; Schulze, Jan-Hindrik; Rosales, Ricardo; Strittmatter, André; Bimberg, Dieter; Pohl, Udo W.

    2015-11-16

    Submonolayer quantum dots as active medium in opto-electronic devices promise to combine the high density of states of quantum wells with the fast recovery dynamics of self-assembled quantum dots. We investigate the gain and phase recovery dynamics of a semiconductor optical amplifier based on InAs submonolayer quantum dots in the regime of linear operation by one- and two-color heterodyne pump-probe spectroscopy. We find an as fast recovery dynamics as for quantum dot-in-a-well structures, reaching 2 ps at moderate injection currents. The effective quantum well embedding the submonolayer quantum dots acts as a fast and efficient carrier reservoir.

  13. Gain-saturated one-pump fiber optical parametric amplifiers in presence of longitudinal dispersion fluctuations.

    PubMed

    Bagheri, M; Pakarzadeh, H; Keshavarz, A

    2016-05-01

    In this paper, we investigate the impact of longitudinal dispersion fluctuations of the optical fiber on the gain spectrum and the saturation behavior of one-pump fiber-optical parametric amplifiers (1-P FOPAs). The gain spectra and the saturation curves of 1-P FOPAs are simulated by solving the coupled amplitude equations numerically and taking into account the dispersion fluctuations as a stochastic process with a given standard deviation and correlation length. Results show that the shape and the level of the gain spectrum and also the saturation power of 1-P FOPAs are considerably changed in the presence of dispersion fluctuations in comparison with the case when dispersion fluctuations are ignored. This feature is also totally different compared with the small-signal gain spectrum of the FOPA in the presence of dispersion fluctuations. Moreover, the value of the change in the gain and the saturation power depends strongly on the fluctuation parameters, i.e., the standard deviation and the correlation length. PMID:27140344

  14. An S-band high gain relativistic klystron amplifier with high phase stability

    SciTech Connect

    Wu, Y.; Li, Z. H.; Xu, Z.; Ma, Q. S.; Xie, H. Q.

    2014-11-15

    For the purpose of coherent high power microwave combining, an S-band high gain relativistic klystron amplifier with high phase stability is presented and studied. By the aid of 3D particle-in-cell code and circuit simulation software, the mechanism of parasitic oscillation in the device is investigated. And the RF lossy material is adopted in the simulation and experiment to suppress the oscillation. The experimental results show that with an input RF power of 10 kW, a microwave pulse with power of 1.8 GW is generated with a gain of 52.6 dB. And the relative phase difference fluctuation between output microwave and input RF signal is less than ±10° in 90 ns.

  15. Design of a high-gain laser diode-array pumped Nd:YAG Alternating Precessive Slab Amplifier (APS-Amplifier)

    NASA Technical Reports Server (NTRS)

    Coyle, D. Barry

    1991-01-01

    In the design of space qualifiable laser systems for ranging and altimetry, such as NASA's Geodynamic Laser Ranging System (GLRS), the transmitter must be kept small, powerful yet efficient, and must consist of as few components as possible. A novel preamplifier design is examined which requires no external beam steering optics, yielding a compact component with simple alignment procedures. The gains achieved are comparable to multipass zigzag amplifiers using two or more sets of external optics for extra passes through the amplifying medium.

  16. Continuous-Time ΣΔ ADC with Implicit Variable Gain Amplifier for CMOS Image Sensor

    PubMed Central

    Bermak, Amine; Abbes, Amira; Amor Benammar, Mohieddine

    2014-01-01

    This paper presents a column-parallel continuous-time sigma delta (CTSD) ADC for mega-pixel resolution CMOS image sensor (CIS). The sigma delta modulator is implemented with a 2nd order resistor/capacitor-based loop filter. The first integrator uses a conventional operational transconductance amplifier (OTA), for the concern of a high power noise rejection. The second integrator is realized with a single-ended inverter-based amplifier, instead of a standard OTA. As a result, the power consumption is reduced, without sacrificing the noise performance. Moreover, the variable gain amplifier in the traditional column-parallel read-out circuit is merged into the front-end of the CTSD modulator. By programming the input resistance, the amplitude range of the input current can be tuned with 8 scales, which is equivalent to a traditional 2-bit preamplification function without consuming extra power and chip area. The test chip prototype is fabricated using 0.18 μm CMOS process and the measurement result shows an ADC power consumption lower than 63.5 μW under 1.4 V power supply and 50 MHz clock frequency. PMID:24772012

  17. Beam combinable, kilowatt, all-fiber amplifier based on phase-modulated laser gain competition.

    PubMed

    Naderi, Nader A; Flores, Angel; Anderson, Brian M; Dajani, Iyad

    2016-09-01

    We report power scaling results of a highly efficient narrow-linewidth monolithic Yb-doped fiber amplifier seeded with two signals, operating at 1038 and 1064 nm. With the appropriate seed power ratio applied, this technique was shown to suppress stimulated Brillouin scattering in conjunction with phase modulation, while generating the output power in predominantly the longer wavelength signal. Notably, the integration of laser gain competition with pseudo-random bit sequence phase modulation, set at a clock rate of 2.5 GHz and utilizing an optimized pattern to match the shortened effective nonlinear length, yielded 1 kW of output power. The beam quality was measured to be near the diffraction limit with no sign of transverse mode instability. Furthermore, the coherent beam combination performance of the amplifier provided a 90% combining efficiency with no indication of spectral broadening when compared to the single-tone case. Overall, the power scaling results represent a significant reduction in spectral linewidth compared to that of commercially available narrow-linewidth Yb-doped fiber amplifiers. PMID:27607948

  18. Continuous-time ΣΔ ADC with implicit variable gain amplifier for CMOS image sensor.

    PubMed

    Tang, Fang; Bermak, Amine; Abbes, Amira; Benammar, Mohieddine Amor

    2014-01-01

    This paper presents a column-parallel continuous-time sigma delta (CTSD) ADC for mega-pixel resolution CMOS image sensor (CIS). The sigma delta modulator is implemented with a 2nd order resistor/capacitor-based loop filter. The first integrator uses a conventional operational transconductance amplifier (OTA), for the concern of a high power noise rejection. The second integrator is realized with a single-ended inverter-based amplifier, instead of a standard OTA. As a result, the power consumption is reduced, without sacrificing the noise performance. Moreover, the variable gain amplifier in the traditional column-parallel read-out circuit is merged into the front-end of the CTSD modulator. By programming the input resistance, the amplitude range of the input current can be tuned with 8 scales, which is equivalent to a traditional 2-bit preamplification function without consuming extra power and chip area. The test chip prototype is fabricated using 0.18 μm CMOS process and the measurement result shows an ADC power consumption lower than 63.5 μW under 1.4 V power supply and 50 MHz clock frequency. PMID:24772012

  19. Dressed Gain from the Parametrically Amplified Four-Wave Mixing Process in an Atomic Vapor

    PubMed Central

    Zhang, Zhaoyang; Wen, Feng; Che, Junling; Zhang, Dan; Li, Changbiao; Zhang, Yanpeng; Xiao, Min

    2015-01-01

    With a forward cone emitting from the strong pump laser in a thermal rubidium atomic vapor, we investigate the non-degenerate parametrically amplified four-wave mixing (PA-FWM) process with dressing effects in a three-level “double-Λ” configuration both theoretically and experimentally. By seeding a weak probe field into the Stokes or anti-Stokes channel of the FWM, the gain processes are generated in the bright twin beams which are called conjugate and probe beams, respectively. However, the strong dressing effect of the pump beam will dramatically affect the gain factors both in the probe and conjugate channels, and can inevitably impose an influence on the quantum effects such as entangled degree and the quantum noise reduction between the two channels. We systematically investigate the intensity evolution of the dressed gain processes by manipulating the atomic density, the Rabi frequency and the frequency detuning. Such dressing effects are also visually evidenced by the observation of Autler-Townes splitting of the gain peaks. The investigation can contribute to the development of quantum information processing and quantum communications. PMID:26463588

  20. Dressed Gain from the Parametrically Amplified Four-Wave Mixing Process in an Atomic Vapor.

    PubMed

    Zhang, Zhaoyang; Wen, Feng; Che, Junling; Zhang, Dan; Li, Changbiao; Zhang, Yanpeng; Xiao, Min

    2015-01-01

    With a forward cone emitting from the strong pump laser in a thermal rubidium atomic vapor, we investigate the non-degenerate parametrically amplified four-wave mixing (PA-FWM) process with dressing effects in a three-level "double-Λ" configuration both theoretically and experimentally. By seeding a weak probe field into the Stokes or anti-Stokes channel of the FWM, the gain processes are generated in the bright twin beams which are called conjugate and probe beams, respectively. However, the strong dressing effect of the pump beam will dramatically affect the gain factors both in the probe and conjugate channels, and can inevitably impose an influence on the quantum effects such as entangled degree and the quantum noise reduction between the two channels. We systematically investigate the intensity evolution of the dressed gain processes by manipulating the atomic density, the Rabi frequency and the frequency detuning. Such dressing effects are also visually evidenced by the observation of Autler-Townes splitting of the gain peaks. The investigation can contribute to the development of quantum information processing and quantum communications. PMID:26463588

  1. Optical amplifier exhibiting net phase-mismatch selected to at least partially reduce gain-induced phase-matching during operation and method of operation

    DOEpatents

    Feve, Jean-Philippe; Kliner, Dahv A. V.; Farrow; Roger L.

    2011-02-01

    An optical amplifier, such as an optical waveguide amplifier (e.g., an optical fiber amplifier or a planar waveguide) or a non-guiding optical amplifier, that exhibits a net phase-mismatch selected to at least partially reduce gain-induced phase-matching during operation thereof is disclosed. In one aspect of the invention, an optical amplifier structure includes at least one optical amplifier having a length and a gain region. The at least one optical amplifier exhibits a net phase-mismatch that varies along at least part of the length thereof selected to at least partially reduce gain-induced phase-matching during operation thereof.

  2. Can LENR Energy Gains Exceed 1000?

    NASA Astrophysics Data System (ADS)

    Nagel, David J.

    2011-03-01

    Energy gain is defined as the energy realized from reactions divided by the energy required to produce those reactions. Low Energy Nuclear Reactions (LENR) have already been measured to significantly exceed the energy gain of 10 projected from ITER,possibly 15 years from now. Electrochemical experiments using the Pd-D system have shown energy gains exceeding 10. Gas phase experiments with the Ni-H system were reported to yield energy gains of over 100. Neither of these reports has been adequately verified or reproduced. However, the question in the title still deserves consideration. If, as thought by many, it is possible to trigger nuclear reactions that yield MeV energies with chemical energies of the order of eV, then the most optimistic expectation is that LENR gains could approach one million. Hence, the very tentative answer to the question above is yes. However, if LENR could be initiated with some energy cost, and then continue to ``burn,'' very high energy gains might be realized. Consider a match and a pile of dry logs. The phenomenon termed ``heat after death'' will be examined to see if it might be the initial evidence for nuclear ``burning.''

  3. Gain media edge treatment to suppress amplified spontaneous emission in a high power laser

    DOEpatents

    Hackel, Lloyd A.; Soules, Thomas F.; Fochs, Scott N.; Rotter, Mark D.; Letts, Stephan A.

    2011-02-22

    A novel method and apparatus for suppressing ASE and/or parasitic oscillation modes in a laser is introduced. By roughening one or more peripheral edges of a solid-state crystal or ceramic laser gain media and by bonding such edges to a predetermined electromagnetic absorbing material arranged adjacent to the entire outer surface of the peripheral edges of the roughened laser gain media, ASE, parasitic oscillation modes and/or residual pump energy can be effectively suppressed.

  4. Amplified Spontaneous Emission and Gain from Optically Pumped Films of Dye-Doped Polymers

    NASA Astrophysics Data System (ADS)

    Lu, Wu; Zhong, Bo; Ma, Dongge

    2004-09-01

    The amplified spontaneous emission and gain characteristics of various fluorescent dyes, 2-(1,1-dimethylethyl)-6(2-(2,3,6,7-tetrahydro-1,1,7,7-tetramethyl-1H,5H-benzo[ij] quinolizin-9-1)ethenyl)-4H-pyran-4-ylidene) propanedinitrile (DCJTB) and 4-dicyanomethylene-2-methyl-6-(p-dimethyl-aminostyryl)-4H-pyran (DCM), doped in polystyrene (PS) matrices were studied and compared. It was found that DCJTB has a larger net gain, 40.72 cm^-1, a lower loss, 2.49 cm^-1, and a lower threshold, 0.16 (mJ/pulse)/cm^2, than DCM, which has a net gain of 11.95 cm^-1, a loss of 9.25 cm^-1, and a threshold of 4(mJ/pulse)/cm^2. The improvement of performance in DCJTB PS films is attributed to the larger free volume of DCJTB caused by the introduction of steric spacer groups into the DCJTB molecule.

  5. Light reflector, amplifier, and splitter based on gain-assisted photonic band gaps

    NASA Astrophysics Data System (ADS)

    Zhang, Yan; Liu, Yi-Mou; Zheng, Tai-Yu; Wu, Jin-Hui

    2016-07-01

    We study both the steady and the dynamic optical response of cold atoms trapped in an optical lattice and driven to the three-level Λ configuration. These atoms are found to exhibit gain without population inversion when an incoherent pump is applied to activate spontaneously generated coherence. Gain-assisted double photonic band gaps characterized by reflectivities over 100% then grow up near the probe resonance due to the periodic distribution of the atomic density. These band gaps along with the neighboring allowed bands of transmissivities over 100% can be tuned by modulating the control field in amplitude, frequency, and, especially, phase. Consequently it is viable to realize a reflector, an amplifier, or a splitter when a weak incident light pulse is totally reflected in the photonic band gaps, totally transmitted in the allowed bands, or equally reflected and transmitted in the intersecting regions. Our results have potential applications in all-optical networks with respect to fabricating dynamically switchable devices for manipulating photon flows at low-light levels.

  6. Effects of undulator interruptions on the performance of high-gain FEL amplifiers

    SciTech Connect

    Kim, K.J.; Xie, M.; Pelligrini, C.

    1995-12-31

    The high-gain amplifiers for short wavelength free electron lasers (FELs) such as the LCLS project require a long undulator. The construction of the undulator as well as the FEL operation would become easier if the undulator could be interrupted with drift sections every few gain lengths. We have investigated the influence of such interruption on the FEL performances. Three effects are considered: (i) the diffraction loss, (ii) the phase mismatch and, (iii) the phase smearing due to velocity spread and to dispersion errors. The effect (i) is the loss during the process in which the optical mode in a section of the undulator leaves the undulator, propagates through the free space and then re-enters and re-adjusts in the next section. The effect (ii) is the fact that the phase of the optical beam is displaced with respect to the electrons density modulation for optical FEL interaction due to the slippage of the electron beam in the interruption region. The effect (iii) is the fact that electrons velocity spread, emittance, and dispersion due to misalignment of the quadrupoles used for additional focusing lead to a reduction of the bunching factor. We present an approximate analysis of these effects. When applied to the LCLS parameters, we find that the effect (i) is negligible, the effect (ii) gives a condition on the length of the drift section, and the effects (iii) are small, but could be non-negligible if there are sufficient number of interruptions.

  7. Pump scheme for gain-flattened Raman fiber amplifiers using improved particle swarm optimization and modified shooting algorithm.

    PubMed

    Jiang, Hai-ming; Xie, Kang; Wang, Ya-fei

    2010-05-24

    An effective pump scheme for the design of broadband and flat gain spectrum Raman fiber amplifiers is proposed. This novel approach uses a new shooting algorithm based on a modified Newton-Raphson method and a contraction factor to solve the two point boundary problems of Raman coupled equations more stably and efficiently. In combination with an improved particle swarm optimization method, which improves the efficiency and convergence rate by introducing a new parameter called velocity acceptability probability, this scheme optimizes the wavelengths and power levels for the pumps quickly and accurately. Several broadband Raman fiber amplifiers in C+L band with optimized pump parameters are designed. An amplifier of 4 pumps is designed to deliver an average on-off gain of 13.3 dB for a bandwidth of 80 nm, with about +/-0.5 dB in band maximum gain ripples.

  8. Cascaded gain fibers for increasing output power and the stimulated Brillouin scattering threshold of narrow linewidth fiber Raman amplifiers.

    PubMed

    Nagel, J A; Temyanko, V; Dobler, J T; Likhachev, M E; Bubnov, M M; Dianov, E M; Peyghambarian, N

    2016-05-20

    We show both experimentally and theoretically a method to increase the stimulated Brillouin scattering (SBS) threshold and output power of narrow linewidth fiber Raman amplifiers. This method employs two or more fibers with varying concentrations of the Raman gain material dopant such as GeO2 or P2O5 in silicate-based glasses. These fibers are then cascaded to form an amplifier gain stage, disrupting the buildup of SBS that normally occurs in single continuous fibers. The numerical model shown is applicable to arbitrary amplifier systems for gain stage optimization and increased power scaling. We give experimental results for phosphosilicate fibers that agree well with simulation predictions that support the numerical model used. PMID:27411133

  9. Thermal modeling of gain competition in Yb-doped large-mode-area photonic-crystal fiber amplifier.

    PubMed

    Rosa, Lorenzo; Coscelli, Enrico; Poli, Federica; Cucinotta, Annamaria; Selleri, Stefano

    2015-07-13

    We propose a new model for gain competition effects in high-power fiber amplifiers, which accounts for the thermal effects of heat load on the doped core overlap of the propagating light field. The full-vectorial nature of the fiber modes is modeled by an embedded finite-element method modal solver, and the temperature profile is calculated by a simple and efficient radial heat propagation solver. The model is applied to a Yb³⁺-doped LPF45 air-clad photonic-crystal fiber amplifier for coand counter-propagating pumping setups, showing gain competition in conditions of severe heat load. PMID:26191922

  10. Interaction of frequency-modulated light beams in multistage parametric amplifiers at the maximum gain bandwidth

    SciTech Connect

    Vlasov, Sergei N; Koposova, E V; Freidman, Gennadii I

    2009-05-31

    Conditions of the applicability of equations in the quasi-static approximation for studying the parametric interaction of frequency-modulated light beams in multistage amplifiers are considered. This approximation is used to simulate numerically processes in a multistage DKDP crystal amplifier with the output power exceeding 10 PW and suppressed luminescence. (lasers and amplifiers)

  11. Spiral amplifiers in a-Al2O3:Er on a silicon chip with 20 dB internal net gain

    NASA Astrophysics Data System (ADS)

    Vázquez-Córdova, S. A.; Bernhardi, E. H.; Wörhoff, Ke.; Herek, J. L.; García-Blanco, S. M.; Pollnau, M.

    2015-02-01

    Spiral-waveguide amplifiers in erbium-doped amorphous aluminum oxide are fabricated by RF reactive co-sputtering of 1-μm-thick layers onto a thermally-oxidized silicon wafer and chlorine-based reactive ion etching. The samples are overgrown by a SiO2 cladding. Spirals with several lengths ranging from 13 cm to 42 cm and four different erbium concentrations between 0.5-3.0×1020 cm-3 are experimentally characterized. A maximum internal net gain of 20 dB in the small-signal-gain regime is measured at the peak emission wavelength of 1532 nm for two sample configurations with waveguide lengths of 13 cm and 24 cm and erbium concentrations of 2×1020 cm-3 and 1×1020 cm-3, respectively. The obtained gain improves previous results by van den Hoven et al. in this host material by a factor of 9. Gain saturation as a result of increasing signal power is investigated. Positive net gain is measured in the saturated-gain regime up to ~100 μW of signal power, but extension to the mW regime seems feasible. The experimental results are compared to a rate-equation model that takes into account migration-accelerated energy-transfer upconversion (ETU) and a fast quenching process affecting a fraction of the erbium ions. Without these two detrimental processes, several tens of dB/cm of internal net gain per unit length would be achievable. Whereas ETU limits the gain per unit length to 8 dB/cm, the fast quenching process further reduces it to 2 dB/cm. The fast quenching process strongly deteriorates the amplifier performance of the Al2O3:Er3+ waveguide amplifiers. This effect is accentuated for concentrations higher than 2×1020 cm-3.

  12. Cryogenic Yb:YAG composite-thin-disk for high energy and average power amplifiers.

    PubMed

    Zapata, Luis E; Lin, Hua; Calendron, Anne-Laure; Cankaya, Huseyin; Hemmer, Michael; Reichert, Fabian; Huang, W Ronny; Granados, Eduardo; Hong, Kyung-Han; Kärtner, Franz X

    2015-06-01

    A cryogenic composite-thin-disk amplifier with amplified spontaneous emission (ASE) rejection is implemented that overcomes traditional laser system problems in high-energy pulsed laser drivers of high average power. A small signal gain of 8 dB was compared to a 1.5 dB gain for an uncapped thin-disk without ASE mitigation under identical pumping conditions. A strict image relayed 12-pass architecture using an off-axis vacuum telescope and polarization switching extracted 100 mJ at 250 Hz in high beam quality stretched 700 ps pulses of 0.6-nm bandwidth. PMID:26030570

  13. A clocked high-pass-filter-based offset cancellation technique for high-gain biomedical amplifiers

    NASA Astrophysics Data System (ADS)

    Pal, Dipankar; Goswami, Manish

    2010-05-01

    In this article, a simple offset cancellation technique based on a clocked high-pass filter with extremely low output offset is presented. The configuration uses the on-resistance of a complementary metal oxide semiconductor (CMOS) transmission gate (X-gate) and tunes the lower 3-dB cut-off frequency with a matched pair of floating capacitors. The results compare favourably with the more complex auto-zeroing and chopper stabilisation techniques of offset cancellation in terms of power dissipation, component count and bandwidth, while reporting inferior output noise performance. The design is suitable for use in biomedical amplifier systems for applications such as ENG-recording. The system is simulated in Spectre Cadence 5.1.41 using 0.6 μm CMOS technology and the total block gain is ∼83.0 dB while the phase error is <5°. The power consumption is 10.2 mW and the output offset obtained for an input monotone signal of 5 μVpp is 1.28 μV. The input-referred root mean square noise voltage between 1 and 5 kHz is 26.32 nV/√Hz.

  14. Fluorene- and benzofluorene-cored oligomers as low threshold and high gain amplifying media

    SciTech Connect

    Kazlauskas, Karolis Kreiza, Gediminas; Bobrovas, Olegas; Adomėnienė, Ona; Adomėnas, Povilas; Juršėnas, Saulius; Jankauskas, Vygintas

    2015-07-27

    Deliberate control of intermolecular interactions in fluorene- and benzofluorene-cored oligomers was attempted via introduction of different-length alkyl moieties to attain high emission amplification and low amplified spontaneous emission (ASE) threshold at high oligomer concentrations. Containing fluorenyl peripheral groups decorated with different-length alkyl moieties, the oligomers were found to express weak concentration quenching of emission, yet excellent carrier drift mobilities (close to 10{sup −2} cm{sup 2}/V/s) in the amorphous films. Owing to the larger radiative decay rates (>1.0 × 10{sup 9 }s{sup −1}) and smaller concentration quenching, fluorene-cored oligomers exhibited down to one order of magnitude lower ASE thresholds at higher concentrations as compared to those of benzofluorene counterparts. The lowest threshold (300 W/cm{sup 2}) obtained for the fluorene-cored oligomers at the concentration of 50 wt % in polymer matrix is among the lowest reported for solution-processed amorphous films in ambient conditions, what makes the oligomers promising for lasing application. Great potential in emission amplification was confirmed by high maximum net gain (77 cm{sup −1}) revealed for these compounds. Although the photostability of the oligomers was affected by photo-oxidation, it was found to be comparable to that of various organic lasing materials including some commercial laser dyes evaluated under similar excitation conditions.

  15. High Energy Double-Pulsed Ho:Tm:YLF Laser Amplifier

    NASA Technical Reports Server (NTRS)

    Yu, Jirong; Braud, Alain; Petros, Mulugeta; Singh, Upendra N.

    2002-01-01

    A high energy double-pulsed Ho:Tm:YLF 2-micrometer laser amplifier has been demonstrated. 600 mJ per pulse pair under Q-switch operation is achieved with the gain of 4.4. This solid-state laser source can be used as lidar transmitter for multiple lidar applications such as coherent wind and carbon dioxide measurements.

  16. Optical properties of the output of a high-gain, self-amplified free-electron laser.

    SciTech Connect

    Li, Y.; Lewellen, J.; Huang, Z.; Krinsky, S.; Accelerator Systems Division; BNL

    2004-01-01

    The temporal structure and phase evolutions of a high-gain, self-amplified free-electron laser are measured, including single-shot analysis and statistics over many shots. Excellent agreement with the theory of free-electron laser and photon statistics is found.

  17. An inductorless CMOS programmable-gain amplifier with a > 3 GHz bandwidth for 60 GHz wireless transceivers

    NASA Astrophysics Data System (ADS)

    Wei, Zhu; Baoyong, Chi; Lixue, Kuang; Wen, Jia; Zhihua, Wang

    2014-10-01

    An inductorless wideband programmable-gain amplifier (PGA) for 60 GHz wireless transceivers is presented. To attain wideband characteristics, a modified Cherry—Hooper amplifier with a negative capacitive neutralization technique is employed as the gain cell while a novel circuit technique for gain adjustment is adopted; this technique can be universally applicable in wideband PGA design and greatly simplifying the design of wideband PGA. By cascading two gain cells and an output buffer stage, the PGA achieves the highest gain of 30 dB with the bandwidth much wider than 3 GHz. The PGA has been integrated into one whole 60 GHz wireless transceiver and implemented in the TSMC 65 nm CMOS process. The measurements on the receiver front-end show that the receiver front-end achieves an 18 dB variable gain range with a > 3 GHz bandwidth, which proves the proposed PGA achieves an 18 dB variable gain range with a bandwidth much wider than 3 GHz. The PGA consumes 10.7 mW of power from a 1.2-V supply voltage with a core area of only 0.025 mm2.

  18. Cold test, spontaneous emission and gain in a rectangular Cerenkov amplifier

    SciTech Connect

    Scharer, J.E.; Joe, J.; Booske, J.H.; Basten, M.; Kirolous, H.

    1994-12-31

    The authors present experimental results for the rectangular Cerenkov grating amplifier. This research is being carried out to develop a Ka-band (35 GHz), low voltage (10 kV), moderate power (10 kW) source. They have constructed a Ku-band grating structure to study a scaled version of this source. The tapered grating consists of two tapered Ku-band smooth wave guide sections and two 3.5-inch sections of five-step-tapered gratings. Both tapered and untapered grating structures have been cold tested utilizing the network analyzer measurements. They find that their taper design reduced the reflection coefficient from {minus}5 dB to less than {minus}20 dB over a 12--15 GHz bandwidth. Spontaneous emission results resulting from passing the circular electron beam from a Litton thermionic gun over the grating structure will be presented. They have theoretically investigated the sheet beam interaction with hybrid modes in a deep groove rectangular grating waveguide. A complex dispersion relation, which includes a finite axial energy spread of the beam, describing the interaction has been solved. The authors find that the instability is always convective in the forward wave mode regime.

  19. Laser amplifier chain

    DOEpatents

    Hackel, R.P.

    1992-10-20

    A laser amplifier chain has a plurality of laser amplifiers arranged in a chain to sequentially amplify a low-power signal beam to produce a significantly higher-power output beam. Overall efficiency of such a chain is improved if high-gain, low efficiency amplifiers are placed on the upstream side of the chain where only a very small fraction of the total pumped power is received by the chain and low-gain, high-efficiency amplifiers are placed on the downstream side where a majority of pumping energy is received by the chain. 6 figs.

  20. Laser amplifier chain

    DOEpatents

    Hackel, Richard P.

    1992-01-01

    A laser amplifier chain has a plurality of laser amplifiers arranged in a chain to sequentially amplify a low-power signal beam to produce a significantly higher-power output beam. Overall efficiency of such a chain is improved if high-gain, low efficiency amplifiers are placed on the upstream side of the chain where only a very small fraction of the total pumped power is received by the chain and low-gain, high-efficiency amplifiers are placed on the downstream side where a majority of pumping energy is received by the chain.

  1. All-optical pulse data generation in a semiconductor optical amplifier gain controlled by a reshaped optical clock injection

    NASA Astrophysics Data System (ADS)

    Lin, Gong-Ru; Chang, Yung-Cheng; Yu, Kun-Chieh

    2006-05-01

    Wavelength-maintained all-optical pulse data pattern transformation based on a modified cross-gain-modulation architecture in a strongly gain-depleted semiconductor optical amplifier (SOA) is investigated. Under a backward dark-optical-comb injection with 70% duty-cycle reshaping from the received data clock at 10GHz, the incoming optical data stream is transformed into a pulse data stream with duty cycle, rms timing jitter, and conversion gain of 15%, 4ps, and 3dB, respectively. The high-pass filtering effect of the gain-saturated SOA greatly improves the extinction ratio of data stream by 8dB and reduces its bit error rate to 10-12 at -18dBm.

  2. Wideband and flat-gain amplifier based on high concentration erbium-doped fibres in parallel double-pass configuration

    SciTech Connect

    Hamida, B A; Cheng, X S; Harun, S W; Naji, A W; Arof, H; Al-Khateeb, W; Khan, S; Ahmad, H

    2012-03-31

    A wideband and flat gain erbium-doped fibre amplifier (EDFA) is demonstrated using a hybrid gain medium of a zirconiabased erbium-doped fibre (Zr-EDF) and a high concentration erbium-doped fibre (EDF). The amplifier has two stages comprising a 2-m-long ZEDF and 9-m-long EDF optimised for C- and L-band operations, respectively, in a double-pass parallel configuration. A chirp fibre Bragg grating (CFBG) is used in both stages to ensure double propagation of the signal and thus to increase the attainable gain in both C- and L-band regions. At an input signal power of 0 dBm, a flat gain of 15 dB is achieved with a gain variation of less than 0.5 dB within a wide wavelength range from 1530 to 1605 nm. The corresponding noise figure varies from 6.2 to 10.8 dB within this wavelength region.

  3. A Novel Erbium-Doped Fiber Amplifier Simulator for Gain Excursion Estimation in Multi-Channel Dynamic Optical Network

    NASA Astrophysics Data System (ADS)

    Roy, Sharbani; Priye, Vishnu

    2012-01-01

    A novel erbium-doped fiber amplifier simulator designed using the SIMULINK toolbox of MATLAB 7.0 (The MathWorks, Natick, MA, USA) is reported in this article. The present simulator has an ability to incorporate multi-channel amplification simultaneously in both the C- and L-bands. It is realized by defining new FUNCTION block sets and replacing the MATLAB FUNCTION block set reported earlier for multi-channel amplification. Spectral variation of gain for an erbium-doped fiber amplifier simulator is first verified in both the C- and L-bands. Next, the simulator is employed to study gain excursion in a multi-channel dynamic optical network, where the change in the gain excursion by varying the pump power has also been estimated. The present approach to estimate the gain excursion will find applications in quantifying inter-channel cross-talk due to cross-gain saturation among co-propagating multi-channels in a dynamic optical network.

  4. 2.4 GHz CMOS Power Amplifier with Mode-Locking Structure to Enhance Gain

    PubMed Central

    2014-01-01

    We propose a mode-locking method optimized for the cascode structure of an RF CMOS power amplifier. To maximize the advantage of the typical mode-locking method in the cascode structure, the input of the cross-coupled transistor is modified from that of a typical mode-locking structure. To prove the feasibility of the proposed structure, we designed a 2.4 GHz CMOS power amplifier with a 0.18 μm RFCMOS process for polar transmitter applications. The measured power added efficiency is 34.9%, while the saturated output power is 23.32 dBm. The designed chip size is 1.4 × 0.6 mm2. PMID:25045755

  5. Gain enhanced L-band optical fiber amplifiers and tunable fiber lasers with erbium-doped fibers

    NASA Astrophysics Data System (ADS)

    Chen, H.; Leblanc, M.; Schinn, G. W.

    2003-02-01

    We report on the experimental investigation of gain enhanced L-band erbium-doped fiber amplifiers (EDFA) by either recycling residual ASE or using a second C-band wavelength pump laser and on the experimental demonstration of L-band tunable erbium-doped fiber ring lasers. We observed that by reflecting ASE from pumped erbium-doped fiber (EDF) the L-band EDFA gain can be enhanced of 2-15 dB depending on amplifier designs. We also studied wavelength and power dependence of second pump laser on the gain enhanced L-band EDFA and found that an optimum wavelength for second pump laser was between 1550 and 1560 nm. Finally, a L-band tunable erbium-doped fiber laser was also constructed in which lazing oscillation was observed closed to 1624 nm by recycling residual ASE. This L-band tunable laser has a line-width of about 300 MHz, an output power of 1 mW, and a signal to source spontaneous emission ratio of 60 dB.

  6. Gain media edge treatment to suppress amplified spontaneous emission in a high power laser

    DOEpatents

    Hackel, Lloyd A.; Soules, Thomas F.; Fochs, Scott N.; Rotter, Mark D.; Letts, Stephan A.

    2008-12-09

    A novel method and apparatus for suppressing ASE and parasitic oscillation modes in a high average power laser is introduced. By roughening one or more peripheral edges of a solid-state crystal or ceramic laser gain media and by bonding such edges using a substantially high index bonding elastomer or epoxy to a predetermined electromagnetic absorbing arranged adjacent to the entire outer surface of the peripheral edges of the roughened laser gain media, ASE and parasitic oscillation modes can be effectively suppressed.

  7. An AC modulated near infrared gain calibration system for a "Violin-Mode" transimpedance amplifier, intended for advanced LIGO suspensions.

    PubMed

    Lockerbie, N A; Tokmakov, K V

    2016-07-01

    The background to this work was a prototype shadow sensor, which was designed for retro-fitting to an advanced LIGO (Laser Interferometer Gravitational wave Observatory) test-mass/mirror suspension, in which a 40 kg test-mass/mirror is suspended by four approximately 600 mm long by 0.4 mm diameter fused-silica suspension fibres. The shadow sensor comprised a LED source of Near InfraRed (NIR) radiation, and a "tall-thin" rectangular silicon photodiode detector, which together were to bracket the fibre under test. The photodiode was positioned so as to be sensitive (primarily) to transverse "Violin-Mode" vibrations of such a fibre, via the oscillatory movement of the shadow cast by the fibre, as this moved across the face of the detector. In this prototype shadow sensing system the photodiode was interfaced to a purpose-built transimpedance amplifier, this having both AC and DC outputs. A quasi-static calibration was made of the sensor's DC responsivity, i.e., incremental rate of change of output voltage versus fibre position, by slowly scanning a fused-silica fibre sample transversely through the illuminating beam. The work reported here concerns the determination of the sensor's more important AC (Violin-Mode) responsivity. Recognition of the correspondence between direct AC modulation of the source, and actual Violin-Mode signals, and of the transformative role of the AC/DC gain ratio for the amplifier, at any modulation frequency, f, resulted in the construction of the AC/DC calibration source described here. A method for determining in practice the transimpedance AC/DC gain ratio of the photodiode and amplifier, using this source, is illustrated by a specific numerical example, and the gain ratio for the prototype sensing system is reported over the frequency range 1 Hz-300 kHz. In fact, a maximum DC responsivity of 1.26 kV.m(-1) was measured using the prototype photodiode sensor and amplifier discussed here. Therefore, the measured AC/DC transimpedance gain

  8. An AC modulated near infrared gain calibration system for a "Violin-Mode" transimpedance amplifier, intended for advanced LIGO suspensions

    NASA Astrophysics Data System (ADS)

    Lockerbie, N. A.; Tokmakov, K. V.

    2016-07-01

    The background to this work was a prototype shadow sensor, which was designed for retro-fitting to an advanced LIGO (Laser Interferometer Gravitational wave Observatory) test-mass/mirror suspension, in which a 40 kg test-mass/mirror is suspended by four approximately 600 mm long by 0.4 mm diameter fused-silica suspension fibres. The shadow sensor comprised a LED source of Near InfraRed (NIR) radiation, and a "tall-thin" rectangular silicon photodiode detector, which together were to bracket the fibre under test. The photodiode was positioned so as to be sensitive (primarily) to transverse "Violin-Mode" vibrations of such a fibre, via the oscillatory movement of the shadow cast by the fibre, as this moved across the face of the detector. In this prototype shadow sensing system the photodiode was interfaced to a purpose-built transimpedance amplifier, this having both AC and DC outputs. A quasi-static calibration was made of the sensor's DC responsivity, i.e., incremental rate of change of output voltage versus fibre position, by slowly scanning a fused-silica fibre sample transversely through the illuminating beam. The work reported here concerns the determination of the sensor's more important AC (Violin-Mode) responsivity. Recognition of the correspondence between direct AC modulation of the source, and actual Violin-Mode signals, and of the transformative role of the AC/DC gain ratio for the amplifier, at any modulation frequency, f, resulted in the construction of the AC/DC calibration source described here. A method for determining in practice the transimpedance AC/DC gain ratio of the photodiode and amplifier, using this source, is illustrated by a specific numerical example, and the gain ratio for the prototype sensing system is reported over the frequency range 1 Hz-300 kHz. In fact, a maximum DC responsivity of 1.26 kV.m-1 was measured using the prototype photodiode sensor and amplifier discussed here. Therefore, the measured AC/DC transimpedance gain ratio

  9. An AC modulated near infrared gain calibration system for a "Violin-Mode" transimpedance amplifier, intended for advanced LIGO suspensions.

    PubMed

    Lockerbie, N A; Tokmakov, K V

    2016-07-01

    The background to this work was a prototype shadow sensor, which was designed for retro-fitting to an advanced LIGO (Laser Interferometer Gravitational wave Observatory) test-mass/mirror suspension, in which a 40 kg test-mass/mirror is suspended by four approximately 600 mm long by 0.4 mm diameter fused-silica suspension fibres. The shadow sensor comprised a LED source of Near InfraRed (NIR) radiation, and a "tall-thin" rectangular silicon photodiode detector, which together were to bracket the fibre under test. The photodiode was positioned so as to be sensitive (primarily) to transverse "Violin-Mode" vibrations of such a fibre, via the oscillatory movement of the shadow cast by the fibre, as this moved across the face of the detector. In this prototype shadow sensing system the photodiode was interfaced to a purpose-built transimpedance amplifier, this having both AC and DC outputs. A quasi-static calibration was made of the sensor's DC responsivity, i.e., incremental rate of change of output voltage versus fibre position, by slowly scanning a fused-silica fibre sample transversely through the illuminating beam. The work reported here concerns the determination of the sensor's more important AC (Violin-Mode) responsivity. Recognition of the correspondence between direct AC modulation of the source, and actual Violin-Mode signals, and of the transformative role of the AC/DC gain ratio for the amplifier, at any modulation frequency, f, resulted in the construction of the AC/DC calibration source described here. A method for determining in practice the transimpedance AC/DC gain ratio of the photodiode and amplifier, using this source, is illustrated by a specific numerical example, and the gain ratio for the prototype sensing system is reported over the frequency range 1 Hz-300 kHz. In fact, a maximum DC responsivity of 1.26 kV.m(-1) was measured using the prototype photodiode sensor and amplifier discussed here. Therefore, the measured AC/DC transimpedance gain

  10. Analysis of nonlinear optical and dynamic gain effects of moderate-power, pulse-position-modulated, erbium-doped fiber amplifiers for deep-space applications.

    PubMed

    Yao, Haomin; Wright, Malcolm W; Marciante, John R

    2014-09-20

    Lasers for use in deep-space applications such as interplanetary optical communications employ multiwatt resonantly pumped dual-clad erbium-doped fiber amplifiers and the pulse-position modulation scheme. Nonlinear optical effects and dynamic gain effects often impair their performance and limit their operational range. These effects are analyzed theoretically and numerically with a time-dependent two-level propagation model, respectively. Self-phase modulation and stimulated Raman scattering are found to limit the usable data format space. In operational regimes free from nonlinear effects, dynamic gain effects such as the variation in the output pulse energy and square-pulse distortion are quantified. Both are found to primarily depend on the symbol duration and can be as large as 28% and 21%, respectively.

  11. Influence of optical pumping wavelength on the ultrafast gain and phase recovery acceleration of quantum-dot semiconductor optical amplifiers

    NASA Astrophysics Data System (ADS)

    Kim, Jungho

    2013-10-01

    We numerically investigate the influence of the optical pumping wavelength on the ultrafast gain and phase recovery acceleration of quantum-dot (QD) semiconductor optical amplifiers (SOAs) by solving 1088 coupled rate equations. The temporal variations of the gain and phase recovery response at the ground state (GS) of QDs are calculated at various signal wavelengths when the optical pumping wavelengths at the excited state (ES) of QDs are varied. The phase recovery response is fastest when the wavelength of the signal and pumping beams corresponds to the respective emission wavelength of the GS and the ES in the same size of QDs. The absorption efficiency of the optical pumping beam at the ES is determined by the Lorentzian line shape function of the homogeneous broadening.

  12. Gain-guided index-antiguided fiber with a Fabry-Perot layer for large mode area laser amplifiers.

    PubMed

    Lai, Chih-Hsien; Chen, Hsuan-Yu; Du, Cheng-Han; Chiou, Yih-Peng

    2015-02-23

    We propose a modified gain-guided index-antiguided (GGIAG) fiber structure for large mode area laser amplifiers, in which a thin dielectric layer is placed between the low-index core and the high-index cladding. The introduced dielectric layer functions as a Fabry-Perot etalon. By letting the resonant wavelength of the Fabry-Perot layer coincide with the signal wavelength, the signal is gain-guided in the fiber core. Moreover, the pump is confined in the low-index core owing to the antiresonant reflection originated from the Fabry-Perot layer. Numerical results indicate that the leakage loss of the pump can be minified over two orders of magnitude in the proposed structure, and thus the end-pumping efficiency could be enhanced significantly.

  13. Gain-guided index-antiguided fiber with a Fabry-Perot layer for large mode area laser amplifiers.

    PubMed

    Lai, Chih-Hsien; Chen, Hsuan-Yu; Du, Cheng-Han; Chiou, Yih-Peng

    2015-02-23

    We propose a modified gain-guided index-antiguided (GGIAG) fiber structure for large mode area laser amplifiers, in which a thin dielectric layer is placed between the low-index core and the high-index cladding. The introduced dielectric layer functions as a Fabry-Perot etalon. By letting the resonant wavelength of the Fabry-Perot layer coincide with the signal wavelength, the signal is gain-guided in the fiber core. Moreover, the pump is confined in the low-index core owing to the antiresonant reflection originated from the Fabry-Perot layer. Numerical results indicate that the leakage loss of the pump can be minified over two orders of magnitude in the proposed structure, and thus the end-pumping efficiency could be enhanced significantly. PMID:25836427

  14. Er(3)/Yb(3)-codoped phosphate glass for short-length high-gain fiber lasers and amplifiers.

    PubMed

    Wang, Fengxiao; Song, Feng; An, Shuangxin; Wan, Wenshun; Guo, Hao; Liu, Shujing; Tian, Jianguo

    2015-02-10

    Er(3)/Yb(3)-codoped phosphate glass with compositions of (78.2-x)P(2)O(5)-14Al(2)O(3)-5Li(2)O-1K(2)O-1.8Yb(2)O(3)-xEr(2)O(3)(x=0.2,0.4,0.6) in mol. % were investigated. Judd-Ofelt (JO) intensity parameters have been calculated to predict radiative properties based on absorption spectra. The stimulated emission cross section (σ(e)) calculated according to McCumber theory was 1.50×10(-20)  cm(2), almost twice larger than values reported before. The effective line width (Δ(eff)), full width at half-maximum (FWHM) and the quality parameters for designing optical amplifier devices were listed in the table compared with other types of phosphate glass matrices. A theoretical model of a Er(3)/Yb(3)-codoped system based on rate and power propagation equations was put forward to investigate the potential advantages of the materials applied for short-length, high-gain fiber amplifiers. A simulated gain of 32.2 and 2.6  dB/cm per unit length was achieved in 12.5-cm-long fiber. PMID:25968040

  15. Time-domain simulation of channel crosstalk and inter-modulation distortion in gain-clamped semiconductor optical amplifiers

    NASA Astrophysics Data System (ADS)

    Li, Xun; Park, Jongwoon

    2006-07-01

    A time-domain model is implemented for gain-clamped semiconductor optical amplifiers (GC-SOAs) based on a combination of the separated traveling-wave equations and effective Bloch equations. The key feature of this model lies in its capability of handling the lasing-signal, signal-signal, and signal-noise interactions over a broad wavelength band. Therefore, various nonlinear phenomena such as the cross-gain saturation (XGS) and nondegenerate four-wave mixing (ND-FWM) can readily be captured. After being implemented and validated, this model is applied to the simulation of GC-SOA dynamic behaviors such as the channel crosstalk and intermodulation distortion (IMD). Simulation results show that the third-order IMD can be effectively suppressed by a gain-clamping lasing mode in GC-SOAs in comparison with that in conventional SOAs. The channel crosstalk can also be suppressed to some extent in GC-SOAs, but not as effectively. Other than a homogeneous reduction, the gain-clamping in GC-SOAs does not change the dependence of the channel crosstalk and IMD on the input signal power and channel spacing. It is also shown that the channel crosstalk, unlike the IMD, cannot be efficiently reduced by enlarging the channel spacing even in GC-SOAs.

  16. A multifunctional switched-capacitor programmable gain amplifier for high-definition video analog front-ends

    NASA Astrophysics Data System (ADS)

    Hong, Zhang; Jie, Zhang; Mudan, Zhang; Xue, Li; Jun, Cheng

    2015-03-01

    A multifunctional programmable gain amplifier (PGA) that provides gain and offset adjusting abilities for high-definition video analog front-ends (AFE) is presented. With a switched-capacitor structure, the PGA also acts as a sample and holder of the analog-to-digital converter (ADC) in the AFE to reduce the power consumption and chip area of the whole AFE. Furthermore, the PGA converts the single-ended video signal into differential signal for the following ADC to reject common-mode noise and interferences. The 9-bit digital-to-analog converter (DAC) for gain and offset adjusting is embedded into the switched capacitor networks of the PGA. A video AFE integrated circuit based on the proposed PGA is fabricated in a 0.18-μm process. Simulation and measurement results show that the PGA achieves a gain control range of 0.90 to 2.34 and an offset control range of -220 to 220 mV while consuming 10.1 mA from a 1.8 V power supply. Project supported by the National Natural Science Foundation of China (No. 61106027), and the Science and Technology Project of Shanxi Province (No. 2014K05-14).

  17. Gain and noise characteristics of high-bit-rate silicon parametric amplifiers.

    PubMed

    Sang, Xinzhu; Boyraz, Ozdal

    2008-08-18

    We report a numerical investigation on parametric amplification of high-bit-rate signals and related noise figure inside silicon waveguides in the presence of two-photon absorption (TPA), TPA-induced free-carrier absorption, free-carrier-induced dispersion and linear loss. Different pump parameters are considered to achieve net gain and low noise figure. We show that the net gain can only be achieved in the anomalous dispersion regime at the high-repetition-rate, if short pulses are used. An evaluation of noise properties of parametric amplification in silicon waveguides is presented. By choosing pulsed pump in suitably designed silicon waveguides, parametric amplification can be a chip-scale solution in the high-speed optical communication and optical signal processing systems.

  18. Effects of bandwidth, compression speed, and gain at high frequencies on preferences for amplified music.

    PubMed

    Moore, Brian C J

    2012-09-01

    This article reviews a series of studies on the factors influencing sound quality preferences, mostly for jazz and classical music stimuli. The data were obtained using ratings of individual stimuli or using the method of paired comparisons. For normal-hearing participants, the highest ratings of sound quality were obtained when the reproduction bandwidth was wide (55 to 16000 Hz) and ripples in the frequency response were small (less than ± 5 dB). For hearing-impaired participants listening via a simulated five-channel compression hearing aid with gains set using the CAM2 fitting method, preferences for upper cutoff frequency varied across participants: Some preferred a 7.5- or 10-kHz upper cutoff frequency over a 5-kHz cutoff frequency, and some showed the opposite preference. Preferences for a higher upper cutoff frequency were associated with a shallow high-frequency slope of the audiogram. A subsequent study comparing the CAM2 and NAL-NL2 fitting methods, with gains slightly reduced for participants who were not experienced hearing aid users, showed a consistent preference for CAM2. Since the two methods differ mainly in the gain applied for frequencies above 4 kHz (CAM2 recommending higher gain than NAL-NL2), these results suggest that extending the upper cutoff frequency is beneficial. A system for reducing "overshoot" effects produced by compression gave small but significant benefits for sound quality of a percussion instrument (xylophone). For a high-input level (80 dB SPL), slow compression was preferred over fast compression. PMID:23172008

  19. Effects of Bandwidth, Compression Speed, and Gain at High Frequencies on Preferences for Amplified Music

    PubMed Central

    2012-01-01

    This article reviews a series of studies on the factors influencing sound quality preferences, mostly for jazz and classical music stimuli. The data were obtained using ratings of individual stimuli or using the method of paired comparisons. For normal-hearing participants, the highest ratings of sound quality were obtained when the reproduction bandwidth was wide (55 to 16000 Hz) and ripples in the frequency response were small (less than ± 5 dB). For hearing-impaired participants listening via a simulated five-channel compression hearing aid with gains set using the CAM2 fitting method, preferences for upper cutoff frequency varied across participants: Some preferred a 7.5- or 10-kHz upper cutoff frequency over a 5-kHz cutoff frequency, and some showed the opposite preference. Preferences for a higher upper cutoff frequency were associated with a shallow high-frequency slope of the audiogram. A subsequent study comparing the CAM2 and NAL-NL2 fitting methods, with gains slightly reduced for participants who were not experienced hearing aid users, showed a consistent preference for CAM2. Since the two methods differ mainly in the gain applied for frequencies above 4 kHz (CAM2 recommending higher gain than NAL-NL2), these results suggest that extending the upper cutoff frequency is beneficial. A system for reducing “overshoot” effects produced by compression gave small but significant benefits for sound quality of a percussion instrument (xylophone). For a high-input level (80 dB SPL), slow compression was preferred over fast compression. PMID:23172008

  20. Holmium YLF amplifier performance and the prospects for multi-Joule energies using diode-laser pumping

    NASA Technical Reports Server (NTRS)

    Storm, Mark E.

    1993-01-01

    Laser studies were performed to examine the amplifier characteristics of holmium-doped yttrium lithium fluoride (YLF) at 300 K. An inversion ratio of 0.37 was reached resulting in a measured small-signal gain coefficient of 0.50/cm. In a flashlamp pumping experiment, an output energy of 240 mJ was achieved for 38.5 mJ of input energy resulting in a large gain of 6.2. An amplifier model was developed for diode laser pumping and adapted to consider this flashlamp-pumped case. There is good agreement between the theory and experiment. Multipass amplifier calculations using the model suggest that the Ho: Tm: YLF laser crystal can support a 12 percent electrical to optical efficiency at 300 K even in the presence of upconversion.

  1. Holmium YLF amplifier performance and the prospects for multi-Joule energies using diode-laser pumping

    SciTech Connect

    Storm, M.E. )

    1993-02-01

    Laser studies were performed that examined the amplifier characteristics of holmium-doped yttrium lithium fluoride (YLF) at 300 K. An inversion ratio n[sup 5]I[sub 7]/n[sub H0] of 0.37 was reached resulting in a measured small-signal gain coefficient of 0.50 cm[sub [minus]1]. In a flashlamp pumping experiment, an output energy of 240 mJ was achieved for 38.5 Mj of input energy resulting in a large gain of 6.2. An amplifier model was developed for diode laser pumping and adapted to consider this flashlamp-pumped case. There is good agreement between the theory and experiment. Multipass amplifier calculations using the model suggest that the Ho:Tm:YLF laser crystal can support a 12% electrical to optical efficiency at 300 K even in the presence of upconversion.

  2. An experimental analysis of the waveguide modes in a high-gain free-electron laser amplifier

    SciTech Connect

    Anderson, B.R.

    1989-01-01

    The presence, growth, and interaction of transverse waveguide modes in high-gain free-electron laser (FEL) amplifiers has been observed and studied. Using the Electron Laser Facility at Lawrence Livermore National Laboratory, a 3 MeV, 800 A electron beam generated by the Experimental Test Accelerator was injected into a planar wiggler. Power was then extracted and measured in the fundamental (TE{sub 01}) an higher-order modes (Te{sub 21} and TM{sub 21}) under various sets of operating conditions. Horizontal focusing through the wiggler was provided by external quadrupole magnets. There was no axial guide field. The input microwave signal for amplification was generated by a 100 kW magnetron operating at 34.6 Ghz. Power measurements were taken for both flat and tapered wigglers, for two sizes of waveguide, and for both flat and tapered wigglers, for two sizes of waveguide, and for both fundamental and higher mode injection. Mode content was determined by sampling the radiated signal at specific points in the radiation patter. For the flat wiggler and with the large waveguide (2.9 cm {times} 9.8 cm) the power in the higher modes was comparable to power in the fundamental. both exhibited gains greater than 30 dB/m prior to saturation and both reached powers in excess of 80 MW. Choice of injection mode had little effect on the operation of the system. Operation with the smaller guide (WR-229) provided much better mode selectivity. The fundamental mode continued to show optimum gain in excess of 30 dB/m while the higher-mode gain was of order 20 dB/m. As expected, power output increased significantly with the tapered wigglers. The relative mode content depended on the specific taper used.

  3. Monolithically integrated quantum dot optical gain modulator with semiconductor optical amplifier for 10-Gb/s photonic transmission

    NASA Astrophysics Data System (ADS)

    Yamamoto, Naokatsu; Akahane, Kouichi; Umezawa, Toshimasa; Kawanishi, Tetsuya

    2015-03-01

    Short-range interconnection and/or data center networks require high capacity and a large number of channels in order to support numerous connections. Solutions employed to meet these requirements involve the use of alternative wavebands to increase the usable optical frequency range. We recently proposed the use of the T- and O-bands (Thousand band: 1000-1260 nm, Original band: 1260-1360 nm) as alternative wavebands because large optical frequency resources (>60 THz) can be easily employed. In addition, a simple and compact Gb/s-order high-speed optical modulator is a critical photonic device for short-range communications. Therefore, to develop an optical modulator that acts as a highfunctional photonic device, we focused on the use of self-assembled quantum dots (QDs) as a three-dimensional (3D) confined structure because QD structures are highly suitable for realizing broadband optical gain media in the T+O bands. In this study, we use the high-quality broadband QD optical gain to develop a monolithically integrated QD optical gain modulator (QD-OGM) device that has a semiconductor optical amplifier (QD-SOA) for Gb/s-order highspeed optical data generation in the 1.3-μm waveband. The insertion loss of the device can be compensated through the SOA, and we obtained an optical gain change of up to ~7 dB in the OGM section. Further, we successfully demonstrate a 10-Gb/s clear eye opening using the QD-OGM/SOA device with a clock-data recovery sequence at the receiver end. These results suggest that the monolithic QD-EOM/SOA is suitable for increasing the number of wavelength channels for smart short-range communications.

  4. Design of ultrahigh energy laser amplifier system with high storage energy extraction.

    PubMed

    Gong, Mali; Sui, Zhan; Liu, Qiang; Fu, Xing

    2013-01-20

    A design concept of realizing high storage energy extraction efficiency is presented for an ultrahigh energy laser system, stressing the advantage of variable-diameter aperture structure for the multistage amplifier system over the constant-aperture design. Based on the established modeling, the conceptual schematic of an amplifier system with optimized high storage energy extraction is developed, which is expected to produce 15 kJ output energy from three stages, with an extremely high storage extraction efficiency of 50.3%.

  5. Effect of a backward wave on the stability of an ultrahigh gain gyrotron traveling-wave amplifier

    NASA Astrophysics Data System (ADS)

    Du, Chao-Hai; Liu, Pu-Kun; Xue, Qian-Zhong; Wang, Ming-Hong

    2008-12-01

    A systematic stability analysis method using theoretical tools combining linear and self-consistent nonlinear theory is presented to analyze an ultrahigh gain gyrotron traveling-wave (gyro-TWT) amplifier operated in the fundamental TE11 mode in the Ka-band. It characterizes the role that the backward-wave component plays in the internal feedback physical processes of two major kinds of self-induced oscillations associated with TE11(1) absolute instability and TE21(2) gyrobackward-wave oscillation. For the first time, self-induced constriction in TE11(1) absolute instability caused by a strong backward-wave component is revealed through simulation. Both the thickness and resistivity of the distributed wall loss loaded on the inside of the interaction waveguide have obvious effects on stabilizing both kinds of oscillations. Following the stability analysis, a multistage interaction circuit is proposed by nonlinear analysis which shortens the length of the entire structure and enables the ultrahigh gain gyro-TWT to operate with high stability and wide bandwidth.

  6. Effect of a backward wave on the stability of an ultrahigh gain gyrotron traveling-wave amplifier

    SciTech Connect

    Du Chaohai; Liu Pukun; Xue Qianzhong; Wang Minghong

    2008-12-15

    A systematic stability analysis method using theoretical tools combining linear and self-consistent nonlinear theory is presented to analyze an ultrahigh gain gyrotron traveling-wave (gyro-TWT) amplifier operated in the fundamental TE{sub 11} mode in the Ka-band. It characterizes the role that the backward-wave component plays in the internal feedback physical processes of two major kinds of self-induced oscillations associated with TE{sub 11}{sup (1)} absolute instability and TE{sub 21}{sup (2)} gyrobackward-wave oscillation. For the first time, self-induced constriction in TE{sub 11}{sup (1)} absolute instability caused by a strong backward-wave component is revealed through simulation. Both the thickness and resistivity of the distributed wall loss loaded on the inside of the interaction waveguide have obvious effects on stabilizing both kinds of oscillations. Following the stability analysis, a multistage interaction circuit is proposed by nonlinear analysis which shortens the length of the entire structure and enables the ultrahigh gain gyro-TWT to operate with high stability and wide bandwidth.

  7. Polarization beam combination technique for gain saturation effect compensation in high-energy systems

    NASA Astrophysics Data System (ADS)

    Chen, Junchi; Peng, Yujie; Su, Hongpeng; Leng, Yuxin

    2016-06-01

    To compensate for the gain saturation effect in the high-energy laser amplifier, a modified polarization beam combination (PBC) method is introduced to reshape temporal waveform of the injected laser pulse to obtain a controlled high-energy laser pulse shape after amplification. One linearly polarized beam is divided into two orthogonal polarized beams, which spatially recombine together collinearly after propagating different optical paths with relative time delay in PBC structure. The obtained beam with polarization direction being rotated by the following half wave plate is divided and combined again to reform a new beam in another modified polarization beam structure. The reformed beam is injected into three cascaded laser amplifiers. The amplified pulse shape can be controlled by the incident pulse shape and amplifier gain, which is agreeable to the simulation by the Frank-Nodvik equations. Based on the simple method, the various temporal waveform of output pulse with tunable 7 to 20 ns pulse duration can be obtained without interferometric fringes.

  8. Polarization beam combination technique for gain saturation effect compensation in high-energy systems

    NASA Astrophysics Data System (ADS)

    Chen, Junchi; Peng, Yujie; Su, Hongpeng; Leng, Yuxin

    2016-06-01

    To compensate for the gain saturation effect in the high-energy laser amplifier, a modified polarization beam combination (PBC) method is introduced to reshape temporal waveform of the injected laser pulse to obtain a controlled high-energy laser pulse shape after amplification. One linearly polarized beam is divided into two orthogonal polarized beams, which spatially recombine together collinearly after propagating different optical paths with relative time delay in PBC structure. The obtained beam with polarization direction being rotated by the following half wave plate is divided and combined again to reform a new beam in another modified polarization beam structure. The reformed beam is injected into three cascaded laser amplifiers. The amplified pulse shape can be controlled by the incident pulse shape and amplifier gain, which is agreeable to the simulation by the Frank-Nodvik equations. Based on the simple method, the various temporal waveform of output pulse with tunable 7 to 20 ns pulse duration can be obtained without interferometric fringes.

  9. Amplified energy harvester from footsteps: design, modeling, and experimental analysis

    NASA Astrophysics Data System (ADS)

    Wang, Ya; Chen, Wusi; Guzman, Plinio; Zuo, Lei

    2014-04-01

    This paper presents the design, modeling and experimental analysis of an amplified footstep energy harvester. With the unique design of amplified piezoelectric stack harvester the kinetic energy generated by footsteps can be effectively captured and converted into usable DC power that could potentially be used to power many electric devices, such as smart phones, sensors, monitoring cameras, etc. This doormat-like energy harvester can be used in crowded places such as train stations, malls, concerts, airport escalator/elevator/stairs entrances, or anywhere large group of people walk. The harvested energy provides an alternative renewable green power to replace power requirement from grids, which run on highly polluting and global-warming-inducing fossil fuels. In this paper, two modeling approaches are compared to calculate power output. The first method is derived from the single degree of freedom (SDOF) constitutive equations, and then a correction factor is applied onto the resulting electromechanically coupled equations of motion. The second approach is to derive the coupled equations of motion with Hamilton's principle and the constitutive equations, and then formulate it with the finite element method (FEM). Experimental testing results are presented to validate modeling approaches. Simulation results from both approaches agree very well with experimental results where percentage errors are 2.09% for FEM and 4.31% for SDOF.

  10. Experimental study of a modulated beam AlGaAs/GaAs diode amplifier operating in the highly saturated gain regime

    SciTech Connect

    D'yachkov, N V; Bogatov, A P; Gushchik, T I; Drakin, A E

    2014-11-30

    The variation in the modulation parameters of an optical signal in a diode power amplifier has been studied experimentally. The experimental data obtained agree well with theory that takes into account nonlinear interaction between fields in the gain medium of a laser through inversion beating. It is shown that the dominant type of output signal modulation is phase modulation, whose depth depends on the amplitude – phase coupling coefficient of the gain medium of the amplifier and the nature of the modulation (the phase relationships between the spectral components) of the output signal. (lasers)

  11. High-Gain, Polarization-Preserving, Yb-Doped Fiber Amplifier for Low-Duty-Cycle Pulse Amplification

    SciTech Connect

    Marciante, J.R.; Zuegel, J.D.

    2006-08-22

    Amplified spontaneous emission (ASE) suppression techniques were utilized to fabricate a double-pass, Yb-doped amplifier with the noise properties of a single-pass amplifier. Simulations based on a rate equation model were used to analyze the ASE and the effectiveness of the suppression techniques.

  12. Effect of additional optical pumping injection into the ground-state ensemble on the gain and the phase recovery acceleration of quantum-dot semiconductor optical amplifiers

    NASA Astrophysics Data System (ADS)

    Kim, Jungho

    2014-02-01

    The effect of additional optical pumping injection into the ground-state ensemble on the ultrafast gain and the phase recovery dynamics of electrically-driven quantum-dot semiconductor optical amplifiers is numerically investigated by solving 1088 coupled rate equations. The ultrafast gain and the phase recovery responses are calculated with respect to the additional optical pumping power. Increasing the additional optical pumping power can significantly accelerate the ultrafast phase recovery, which cannot be done by increasing the injection current density.

  13. Optimization of the alignment sensitivity and energy stability of the NIF regenerative amplifier cavity/011

    SciTech Connect

    Hopps, N. W., Atomic Weapons Research Establishment, Aldermaston, Great Britain

    1998-06-24

    The work to improve the energy stability of the regenerative amplifier (`regen`) for the National Ignition Facility is described. This includes a fast feed-forward system, designed to regulate the output energy of the regen by monitoring how quickly a pulse builds up over many round trips. Shot-to-shot energy fluctuations of all elements prior to (and including) the regen may be compensated for in this way, at the expense of a loss of approximately 50%. Also included is a detailed study into the alignment sensitivity of the regen cavity, with the goal of quantifying the effect of misalignment on the output energy. This is done by calculating the displacement of the eigenmode by augmenting the cavity ABCD matrix with the misalignment matrix elements, E, F. In this way, cavity misalignment issues due to thermal loading of the gain medium are investigated. Alternative cavity designs, which reduce the alignment sensitivity and therefore the energy drift over periods of continuous operation, are considered. Alterations to the amplifier head design are also considered.

  14. A novel low-noise linear-in-dB intermediate frequency variable-gain amplifier for DRM/DAB tuners

    NASA Astrophysics Data System (ADS)

    Keping, Wang; Zhigong, Wang; Jianzheng, Zhou; Xuemei, Lei; Mingzhu, Zhou

    2009-03-01

    A broadband CMOS intermediate frequency (IF) variable-gain amplifier (VGA) for DRM/DAB tuners is presented. The VGA comprises two cascaded stages: one is for noise-canceling and another is for signal-summing. The chip is fabricated in a standard 0.18 μm 1P6M RF CMOS process of SMIC. Measured results show a good linear-in-dB gain characteristic in 28 dB dynamic gain range of -10 to 18 dB. It can operate in the frequency range of 30-700 MHz and consumes 27 mW at 1.8 V supply with the on-chip test buffer. The minimum noise figure is only 3.1 dB at maximum gain and the input-referred 1 dB gain compression point at the minimum gain is -3.9 dBm.

  15. Double-passed, high-energy quasi-phase-matched optical parametric chirped-pulse amplifier

    SciTech Connect

    Jovanovic, I; Forget, N; Brown, C G; Ebbers, C A; Blanc, C L; Barty, C J

    2005-09-19

    Quasi-phase-matched (QPM) optical parametric chirped-pulse amplification (OPCPA) in periodically poled materials such as periodically poled LiNbO{sub 3} (PPLN) and periodically poled KTiOPO{sub 4} (PPKTP) has been shown to exhibit advantages over the OPCPA in bulk nonlinear crystals. [GHH98, RPN02] The use of the maximum material nonlinear coefficient results in ultra-high gain with low pump peak power. Furthermore, propagation of signal, pump, and idler beams along one of the crystal principal axes eliminates the birefringent walk-off, reduces angular sensitivity, and improves beam quality. Relatively high level of parasitic parametric fluorescence (PF) in QPM OPCPA represents an impediment for simple, single-stage, high-gain amplification of optical pulses from nJ to mJ energies. PF in QPM is increased when compared to PF in critical phase matching in bulk crystals as a result of broader angular acceptance of the nonlinear conversion process. PF reduces prepulse contrast and conversion efficiency by competition with the signal pulse for pump pulse energy. Previous experiments with QPM OPCPA have thus resulted in pulse energies limited to tens of {mu}J. [JSE03] Optical parametric amplification of a narrowband signal pulse in PPKTP utilizing two pump beams has been demonstrated at a mJ-level, [FPK03] but the conversion efficiency has been limited by low energy extraction of pump pulse in the first pass of amplification. Additionally, narrow spectral bandwidth was the result of operation far from signal-idler degeneracy. Here we present a novel double-pass, broad-bandwidth QPM OPCPA. 1.2 mJ of amplified signal energy is produced in a single PPKTP crystal utilizing a single 24-mJ pump pulse from a commercial pump laser. [JFE05] To our knowledge, this is the highest energy demonstrated in QPM OPCPA. Double-passed QPM OPCPA exhibits high gain (> 3 x 10{sup 6}), high prepulse contrast (> 3 x 10{sup 7}), high energy stability (3% rms), and excellent beam quality. We

  16. PULSE AMPLIFIER

    DOEpatents

    Johnstone, C.W.

    1958-06-17

    The improvement of pulse amplifiers used with scintillation detectors is described. The pulse amplifier circuit has the advantage of reducing the harmful effects of overloading cause by large signal inputs. In general the pulse amplifier circuit comprises two amplifier tubes with the input pulses applied to one amplifier grid and coupled to the second amplifier tube through a common cathode load. The output of the second amplifier is coupled from the plate circuit to a cathode follower tube grid and a diode tube in connected from grid to cathode of the cathode follower tube. Degenerative feedback is provided in the second amplifier by coupling a signal from the cathode follower cathode to the second amplifier grid. The circuit proqides moderate gain stability, and overload protection for subsequent pulse circuits.

  17. 18 CFR 11.13 - Energy gains calculations.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 18 Conservation of Power and Water Resources 1 2011-04-01 2011-04-01 false Energy gains calculations. 11.13 Section 11.13 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT OF ENERGY REGULATIONS UNDER THE FEDERAL POWER ACT ANNUAL CHARGES UNDER PART I OF...

  18. 18 CFR 11.13 - Energy gains calculations.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 18 Conservation of Power and Water Resources 1 2013-04-01 2013-04-01 false Energy gains calculations. 11.13 Section 11.13 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT OF ENERGY REGULATIONS UNDER THE FEDERAL POWER ACT ANNUAL CHARGES UNDER PART I OF...

  19. 18 CFR 11.13 - Energy gains calculations.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 18 Conservation of Power and Water Resources 1 2014-04-01 2014-04-01 false Energy gains calculations. 11.13 Section 11.13 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT OF ENERGY REGULATIONS UNDER THE FEDERAL POWER ACT ANNUAL CHARGES UNDER PART I OF...

  20. 18 CFR 11.13 - Energy gains calculations.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 18 Conservation of Power and Water Resources 1 2010-04-01 2010-04-01 false Energy gains calculations. 11.13 Section 11.13 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT OF ENERGY REGULATIONS UNDER THE FEDERAL POWER ACT ANNUAL CHARGES UNDER PART I OF...

  1. 18 CFR 11.13 - Energy gains calculations.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 18 Conservation of Power and Water Resources 1 2012-04-01 2012-04-01 false Energy gains calculations. 11.13 Section 11.13 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT OF ENERGY REGULATIONS UNDER THE FEDERAL POWER ACT ANNUAL CHARGES UNDER PART I OF...

  2. Gain-switched laser diode seeded Yb-doped fiber amplifier delivering 11-ps pulses at repetition rates up to 40-MHz

    NASA Astrophysics Data System (ADS)

    Ryser, Manuel; Neff, Martin; Pilz, Soenke; Burn, Andreas; Romano, Valerio

    2012-02-01

    Here, we demonstrate all-fiber direct amplification of 11 picosecond pulses from a gain-switched laser diode at 1063 nm. The diode was driven at a repetition rate of 40 MHz and delivered 13 μW of fiber-coupled average output power. For the low output pulse energy of 0.33 pJ we have designed a multi-stage core pumped preamplifier based on single clad Yb-doped fibers in order to keep the contribution of undesired amplified spontaneous emission as low as possible and to minimize temporal and spectral broadening. After the preamplifier we reduced the 40 MHz repetition rate to 1 MHz using a fiber coupled pulse-picker. The final amplification was done with a cladding pumped Yb-doped large mode area fiber and a subsequent Yb-doped rod-type fiber. With our setup we achieved amplification of 72 dBs to an output pulse energy of 5.7 μJ, pulse duration of 11 ps and peak power of >0.6 MW.

  3. LOGARITHMIC AMPLIFIER

    DOEpatents

    De Shong, J.A. Jr.

    1957-12-31

    A logarithmic current amplifier circuit having a high sensitivity and fast response is described. The inventor discovered the time constant of the input circuit of a system utilizing a feedback amplifier, ionization chamber, and a diode, is inversely proportional to the input current, and that the amplifier becomes unstable in amplifying signals in the upper frequency range when the amplifier's forward gain time constant equals the input circuit time constant. The described device incorporates impedance networks having low frequency response characteristic at various points in the circuit to change the forward gain of the amplifler at a rate of 0.7 of the gain magnitude for every two times increased in frequency. As a result of this improvement, the time constant of the input circuit is greatly reduced at high frequencies, and the amplifier response is increased.

  4. Laser amplifier and method

    DOEpatents

    Backus, S.; Kapteyn, H.C.; Murnane, M.M.

    1997-07-01

    Laser amplifiers and methods for amplifying a laser beam are disclosed. A representative embodiment of the amplifier comprises first and second curved mirrors, a gain medium, a third mirror, and a mask. The gain medium is situated between the first and second curved mirrors at the focal point of each curved mirror. The first curved mirror directs and focuses a laser beam to pass through the gain medium to the second curved mirror which reflects and recollimates the laser beam. The gain medium amplifies and shapes the laser beam as the laser beam passes therethrough. The third mirror reflects the laser beam, reflected from the second curved mirror, so that the laser beam bypasses the gain medium and return to the first curved mirror, thereby completing a cycle of a ring traversed by the laser beam. The mask defines at least one beam-clipping aperture through which the laser beam passes during a cycle. The gain medium is pumped, preferably using a suitable pumping laser. The laser amplifier can be used to increase the energy of continuous-wave or, especially, pulsed laser beams including pulses of femtosecond duration and relatively high pulse rate. 7 figs.

  5. Laser amplifier and method

    DOEpatents

    Backus, Sterling; Kapteyn, Henry C.; Murnane, Margaret M.

    1997-01-01

    Laser amplifiers and methods for amplifying a laser beam are disclosed. A representative embodiment of the amplifier comprises first and second curved mirrors, a gain medium, a third mirror, and a mask. The gain medium is situated between the first and second curved mirrors at the focal point of each curved mirror. The first curved mirror directs and focuses a laser beam to pass through the gain medium to the second curved mirror which reflects and recollimates the laser beam. The gain medium amplifies and shapes the laser beam as the laser beam passes therethough. The third mirror reflects the laser beam, reflected from the second curved mirror, so that the laser beam bypasses the gain medium and return to the first curved mirror, thereby completing a cycle of a ring traversed by the laser beam. The mask defines at least one beam-clipping aperture through which the laser beam passes during a cycle. The gain medium is pumped, preferably using a suitable pumping laser. The laser amplifier can be used to increase the energy of continuous-wave or, especially, pulsed laser beams including pulses of femtosecond duration and relatively high pulse rate.

  6. Energy harvesting through a backpack employing a mechanically amplified piezoelectric stack

    NASA Astrophysics Data System (ADS)

    Feenstra, Joel; Granstrom, Jon; Sodano, Henry

    2008-04-01

    Over the past few decades, the use of portable and wearable electronics has grown steadily. These devices are becoming increasingly more powerful, however, the gains that have been made in the device performance has resulted in the need for significantly higher power to operate the electronics. This issue has been further complicated due to the stagnate growth of battery technology over the past decade. In order to increase the life of these electronics, researchers have begun investigating methods of generating energy from ambient sources such that the life of the electronics can be prolonged. Recent developments in the field have led to the design of a number of mechanisms that can be used to generate electrical energy, from a variety of sources including thermal, solar, strain, inertia, etc. Many of these energy sources are available for use with humans, but their use must be carefully considered such that parasitic effects that could disrupt the user's gait or endurance are avoided. This study develops a novel energy harvesting backpack that can generate electrical energy from the differential forces between the wearer and the pack. The goal of this system is to make the energy harvesting device transparent to the wearer such that his or her endurance and dexterity is not compromised. This will be accomplished by replacing the strap buckle with a mechanically amplified piezoelectric stack actuator. Piezoelectric stack actuators have found little use in energy harvesting applications due to their high stiffness which makes straining the material difficult. This issue will be alleviated using a mechanically amplified stack which allows the relatively low forces generated by the pack to be transformed to high forces on the piezoelectric stack. This paper will develop a theoretical model of the piezoelectric buckle and perform experimental testing to validate the model accuracy and energy harvesting performance.

  7. Low-noise and high-gain Brillouin optical amplifier for narrowband active optical filtering based on a pump-to-signal optoelectronic tracking.

    PubMed

    Souidi, Yahia; Taleb, Fethallah; Zheng, Junbo; Lee, Min Won; Du Burck, Frédéric; Roncin, Vincent

    2016-01-10

    We implement and characterize an optical narrowband amplifier based on stimulated Brillouin scattering with pump-to-signal relative frequency fluctuations overcome thanks to an active pump tracking. We achieve a precise characterization of this amplifier in terms of gain and noise degradation (noise figure). The performances of this stable selective amplification are compared to those of a conventional erbium-doped fiber amplifier in order to highlight the interest of the Brillouin amplification solution for active narrow optical filtering with a bandpass of 10 MHz. Thanks to the simple optoelectronic pump-to-signal tracking, the Brillouin active filter appears as a stable and reliable solution for narrowband optical processing in the coherent optical communication context and optical sensor applications. PMID:26835759

  8. On-Wafer Measurement of a Multi-Stage MMIC Amplifier with 10 dB of Gain at 475 GHz

    NASA Technical Reports Server (NTRS)

    Samoska, Lorene A.; Fung, KingMan; Pukala, David M.; Kangaslahti, Pekka P.; Lai, Richard; Ferreira, Linda

    2012-01-01

    JPL has measured and calibrated a WR2.2 waveguide wafer probe from GGB Industries in order to allow for measurement of circuits in the 325-500 GHz range. Circuits were measured, and one of the circuits exhibited 10 dB of gain at 475 GHz. The MMIC circuit was fabricated at Northrop Grumman Corp. (NGC) as part of a NASA Innovative Partnerships Program, using NGC s 35-nm-gatelength InP HEMT process technology. The chip utilizes three stages of HEMT amplifiers, each having two gate fingers of 10 m in width. The circuits use grounded coplanar waveguide topology on a 50- m-thick substrate with through substrate vias. Broadband matching is achieved with coplanar waveguide transmission lines, on-chip capacitors, and open stubs. When tested with wafer probing, the chip exhibited 10 dB of gain at 475 GHz, with over 9 dB of gain from 445-490 GHz. Low-noise amplifiers in the 400-500 GHz range are useful for astrophysics receivers and earth science remote sensing instruments. In particular, molecular lines in the 400-500 GHz range include the CO 4-3 line at 460 GHz, and the CI fine structure line at 492 GHz. Future astrophysics heterodyne instruments could make use of high-gain, low-noise amplifiers such as the one described here. In addition, earth science remote sensing instruments could also make use of low-noise receivers with MMIC amplifier front ends. Present receiver technology typically employs mixers for frequency down-conversion in the 400-500 GHz band. Commercially available mixers have typical conversion loss in the range of 7-10 dB with noise figure of 1,000 K. A low-noise amplifier placed in front of such a mixer would have 10 dB of gain and lower noise figure, particularly if cooled to low temperature. Future work will involve measuring the noise figure of this amplifier.

  9. Potential impact of contrails on solar energy gain

    NASA Astrophysics Data System (ADS)

    Weihs, P.; Rennhofer, M.; Baumgartner, D.; Gadermaier, J.; Wagner, J.; Laube, W.

    2014-08-01

    We investigated the effect of contrails on global shortwave radiation and on solar energy gain. The study was done for days with a high contrail persistence and looking at situations where the contrails were obstructing the sun. Measurements of cloudiness using a fish eye camera, diffuse and direct shortwave measurements and measurements of the short circuit current of three different types of photovoltaic (PV) modules were performed at the solar observatory Kanzelhöhe (1540 m a.s.l.) during a period of one year with a time resolution of one minute. Our results show that contrails moving between sun and observer/sensor may reduce the global radiation by up to 72%. A statistic of contrail persistence and influence of contrails on global irradiance and solar energy gain is presented. The losses in solar energy gain that were recorded may even be critical under some circumstances for PV system performance.

  10. Potential impact of contrails on solar energy gain

    NASA Astrophysics Data System (ADS)

    Weihs, P.; Rennhofer, M.; Baumgartner, D. J.; Gadermaier, J.; Wagner, J. E.; Gehring, J. E.; Laube, W.

    2015-03-01

    The effect of contrails on global short-wave radiation (sum of direct and downward diffuse solar radiation) and on solar energy gain was investigated. The study was performed during days with high contrail persistence and focused on situations where the contrails were obstructing the sun. Measurements of cloudiness using a fish-eye camera, diffuse and direct short-wave measurements and measurements of the short circuit current of three different types of photovoltaic (PV) modules were performed at the Kanzelhöhe Observatory (1540 m a.s.l.) with a time resolution of 1 min over a period of 1 year. The results show that contrails moving between sun and observer/sensor may reduce the global radiation by up to 72%. An analysis of contrail persistence and the influence of contrails on global irradiance and solar energy gain is presented. The losses in solar energy gain that were recorded may be critical under specific circumstances.

  11. Enhanced photo-assisted electrical gating in vanadium dioxide based on saturation-induced gain modulation of erbium-doped fiber amplifier.

    PubMed

    Lee, Yong Wook; Kim, Bong-Jun; Choi, Sungyoul; Lee, Yong Wan; Kim, Hyun-Tak

    2009-10-26

    By incorporating saturation-induced gain modulation of an erbium-doped fiber amplifier (EDFA), we have demonstrated a high-speed photo-assisted electrical gating with considerably enhanced switching characteristics in a two-terminal device fabricated by using vanadium dioxide thin film. The gating operation was performed by illuminating the output light of the EDFA, whose transient gain was modulated by adjusting the chopping frequency of the input light down to 1 kHz, onto the device. In the proposed gating scheme, gated signals with a temporal duration of approximately 40 micros were successively generated at a repetition rate of 1 kHz. PMID:19997180

  12. Bi-doped fiber amplifier with a flat gain of 25  dB operating in the wavelength band 1320-1360  nm.

    PubMed

    Thipparapu, N K; Umnikov, A A; Barua, P; Sahu, J K

    2016-04-01

    Bismuth (Bi)-doped phosphosilicate fibers have been fabricated by the modified chemical vapor deposition (MCVD)-solution doping technique under different process conditions. The influence of fabrication conditions on unsaturable loss in fibers has been investigated. Pump wavelength dependent Bi gain has been studied to obtain a flat gain over a wide bandwidth. A diode pumped all-fiber Bi-doped amplifier with a flat gain of 25±1  dB from 1320-1360 nm (40 nm) has been demonstrated for -10  dBm of input signal power with a noise figure (NF) ranging from 4-6 dB. Moreover, a small signal gain of 29 dB and a NF of 4.5 dB at 1340 nm has been achieved for an input signal power of -30  dBm.

  13. Bi-doped fiber amplifier with a flat gain of 25  dB operating in the wavelength band 1320-1360  nm.

    PubMed

    Thipparapu, N K; Umnikov, A A; Barua, P; Sahu, J K

    2016-04-01

    Bismuth (Bi)-doped phosphosilicate fibers have been fabricated by the modified chemical vapor deposition (MCVD)-solution doping technique under different process conditions. The influence of fabrication conditions on unsaturable loss in fibers has been investigated. Pump wavelength dependent Bi gain has been studied to obtain a flat gain over a wide bandwidth. A diode pumped all-fiber Bi-doped amplifier with a flat gain of 25±1  dB from 1320-1360 nm (40 nm) has been demonstrated for -10  dBm of input signal power with a noise figure (NF) ranging from 4-6 dB. Moreover, a small signal gain of 29 dB and a NF of 4.5 dB at 1340 nm has been achieved for an input signal power of -30  dBm. PMID:27192276

  14. Femtosecond pulse spectral synthesis in coherently-spectrally combined multi-channel fiber chirped pulse amplifiers.

    PubMed

    Chang, Wei-zung; Zhou, Tong; Siiman, Leo A; Galvanauskas, Almantas

    2013-02-11

    We demonstrate coherent spectral beam combining and femtosecond pulse spectral synthesis using three parallel fiber chirped pulse amplifiers, each amplifying different ultrashort-pulse spectra. This proof-of-concept experiment opens a path to simultaneously overcome individual-amplifier energy and power limitations, as well as limitations on amplified pulse spectra due to the gain narrowing in a single fiber amplifier.

  15. Low cost instrumentation amplifier

    NASA Technical Reports Server (NTRS)

    Sturman, J. C.

    1974-01-01

    Amplifier can be used for many applications requiring high input impedance and common mode rejection, low drift, and gain accuracy on order of one percent. Performance of inexpensive amplifier approaches that of some commercial instrumentation amplifiers in many specifications.

  16. Application of small-signal fusion energy gain

    SciTech Connect

    Jassby, D.L.

    1986-11-01

    The measured burnup fraction of the 1-MeV tritons produced in a deuterium tokamak plasma, multiplied by 17.5, is essentially the small-signal fusion energy gain g/sub T/ for an ideal 1-MeV triton beam injected into the deuterium plasma. The measured g/sub T/ can be converted directly into the two-component fusion energy gain that would be realized if a lower energy tritium beam were injected into the plasma, or if a deuterium beam were injected into a tritium target plasma having the same parameters as the acutal deuterium plasma. Under certain conditions, g/sub T/ greater than or equal to 1 can be obtained by injection of a low-current 225-keV tritium beam into a hot deuterium plasma, thereby verifying that the plasma has the essential characteristics needed for achieving macroscopic fusion energy ''break-even.''

  17. Gain Characteristics of Polymer Waveguide Amplifiers Based on NaYF4:Ybl+, Er3+ Nanocrystals at 0.54 µm Wavelength.

    PubMed

    Zhang, Meiling; Yin, Jiao; Jia, Zhixu; Song, Weiye; Wang, Xibin; Qin, Guanshi; Zhao, Dan; Qin, Weiping; Wang, Fei; Zhang, Daming

    2016-04-01

    Gain characteristics of polymer waveguide amplifiers based on NaYF4:Yb3+, Er3+ nanocrystals (NCs) at 0.54 µm wavelength were investigated through numerical simulations. NaYF4:18%Yb3+, 1 0%Er3+ NCs were doped into SU-8 2005 polymer matrix as the core of a polymer waveguide. The absorption spectrum and photoluminescence spectrum of the NCs were recorded and analyzed. The Judd-Ofelt parameters were achieved by means of Judd-Ofelt theory: Ω2 = 6.302 x 10(-20) cm2, Ω4 = 0.69 x 10(-20) cm2, Ω6 =7.572 x 10(-20) cm2. We simulated the gain characteristics of the waveguide amplifier at 0.54 µm wavelength by combining the atomic rate equations with power propaga- tion equations. The gain curves had the saturation effects. A maximum gain -4.3 dB for the 5 cm waveguide with the Er3+ concentration of ~7.5 x 1025 m-3 was obtained.

  18. Gain Characteristics of Polymer Waveguide Amplifiers Based on NaYF4:Ybl+, Er3+ Nanocrystals at 0.54 µm Wavelength.

    PubMed

    Zhang, Meiling; Yin, Jiao; Jia, Zhixu; Song, Weiye; Wang, Xibin; Qin, Guanshi; Zhao, Dan; Qin, Weiping; Wang, Fei; Zhang, Daming

    2016-04-01

    Gain characteristics of polymer waveguide amplifiers based on NaYF4:Yb3+, Er3+ nanocrystals (NCs) at 0.54 µm wavelength were investigated through numerical simulations. NaYF4:18%Yb3+, 1 0%Er3+ NCs were doped into SU-8 2005 polymer matrix as the core of a polymer waveguide. The absorption spectrum and photoluminescence spectrum of the NCs were recorded and analyzed. The Judd-Ofelt parameters were achieved by means of Judd-Ofelt theory: Ω2 = 6.302 x 10(-20) cm2, Ω4 = 0.69 x 10(-20) cm2, Ω6 =7.572 x 10(-20) cm2. We simulated the gain characteristics of the waveguide amplifier at 0.54 µm wavelength by combining the atomic rate equations with power propaga- tion equations. The gain curves had the saturation effects. A maximum gain -4.3 dB for the 5 cm waveguide with the Er3+ concentration of ~7.5 x 1025 m-3 was obtained. PMID:27451666

  19. Helical Fiber Amplifier

    DOEpatents

    Koplow, Jeffrey P.; Kliner, Dahy; Goldberg, Lew

    2002-12-17

    A multi-mode gain fiber is provided which affords substantial improvements in the maximum pulse energy, peak power handling capabilities, average output power, and/or pumping efficiency of fiber amplifier and laser sources while maintaining good beam quality (comparable to that of a conventional single-mode fiber source). These benefits are realized by coiling the multimode gain fiber to induce significant bend loss for all but the lowest-order mode(s).

  20. Generation of 25-ns pulses with a peak power of over 10 kW from a gain-switched, 2-mm Tm-doped fibre laser and amplifier system

    SciTech Connect

    Swiderski, J; Michalska, M; Pichola, W; Mamajek, M

    2014-04-28

    We report on an all-fibre, gain-switched, Tm{sup 3+}-doped silica fibre laser and amplifier system generating a train of pulses at a wavelength of 1994.4 nm. When operating at a pulse repetition frequency f=''100'' kHz, it delivered the maximum average power as high as 9.03 W with a slope efficiency of 36.4%. At f = 26 kHz, stable 25-ns pulses with an energy of 0.28 mJ corresponding to a peak power of 10.5 kW were obtained. The performance of the laser system is described. (lasers)

  1. Effect of wetting-layer density of states on the gain and phase recovery dynamics of quantum-dot semiconductor optical amplifiers

    NASA Astrophysics Data System (ADS)

    Kim, Jungho; Yu, Bong-Ahn

    2015-03-01

    We numerically investigate the effect of the wetting-layer (WL) density of states on the gain and phase recovery dynamics of quantum-dot semiconductor optical amplifiers in both electrical and optical pumping schemes by solving 1088 coupled rate equations. The temporal variations of the ultrafast gain and phase recovery responses at the ground state (GS) are calculated as a function of the WL density of states. The ultrafast gain recovery responses do not significantly depend on the WL density of states in the electrical pumping scheme and the three optical pumping schemes such as the optical pumping to the WL, the optical pumping to the excited state ensemble, and the optical pumping to the GS ensemble. The ultrafast phase recovery responses are also not significantly affected by the WL density of states except the optical pumping to the WL, where the phase recovery component caused by the WL becomes slowed down as the WL density of states increases.

  2. Effective Parameters on the Energy Gain of Ignited Fuel

    NASA Astrophysics Data System (ADS)

    Mahdavi, M.; Khodadadi Azadboni, F.

    2012-10-01

    The minimum energy needed to ignite a D/3 He capsule is a considerable problem in the optimization of an inertial fusion driver. The minimum energy depends on the driver efficiency and the capsule drive pressure. This dependence is examined using a series of numerical simulations to find ignited capsules which have different values of the driver efficiency, isentrope parameter and drive pressure. The goal of this article is an appropriate description of the main parameter at high energy gain. With 1,000 MJ laser irradiation and the coupling efficiency of 10%, it is found that attaining a quasi-isobaric state with a temperature of 14 keV and areal density value of 80 g/cm2 for the D/3 He fuel would suffice to obtain a target gain of 50-60 required for the D/3 He reactor.

  3. Wavelength tunable alexandrite regenerative amplifier

    SciTech Connect

    Harter, D.J.; Bado, P.

    1988-11-01

    We describe a wavelength tunable alexandrite regenerative amplifier which is used to amplify nanosecond slices from a single-frequency cw dye laser or 50-ps pulses emitted by a diode laser to energies in the 10-mJ range. The amplified 5-ns slices generated by the cw-pumped line narrowed dye laser are Fourier transform limited. The 50-ps pulses emitted by a gain-switched diode laser are amplified by more than 10 orders of magnitude in a single stage.

  4. Factors limiting the sensitivity and dynamic range of a seismic system employing analog magnetic tape recording and a seismic amplifier with adjustable gain settings and several output levels

    USGS Publications Warehouse

    Eaton, Jerry P.; Van Schaack, John R.

    1977-01-01

    In the course of modernizing the low-speed-tape-recorder portable seismic systems and considering the possibilities for the design of a cassette-tape-recorder seismic refraction system, the factors that limit the sensitivity and dynamic range of such systems have been reviewed. These factors will first be stated briefly, and then their influence on systems such as the new 5-day-tape seismic system will be examined in more detail. To fix ideas, we shall assume that the system consists of the following elements: 1. A seismic sensor: usually a moving coil inertial seismometer with a period of about 1 second, a coil resistance of about 5000 ohms, and an effective motor constant of 1.0 V/cm/sec (across a 10K load terminating the seismometer sensitivity-and-damping-adjustment resistive network). 2. A seismic amplifier/voltage controlled oscillator unit made up of the following components: a) A fixed gain preamplifier with an input resistance of 10K and an internal noise level of 0.5 muVpp referred to the preamp input (0.1 Hz <= freq. <= 30 hz). b) An adjustable gain (0 to 42 db in 6 db steps) intermediate amplifier c) One or more fixed gain output amplifiers. d) Two sections of 6 db/octave bandpass filter serving to couple the 3 amplifier stages together. e) Voltage controlled oscillators for each output amplifier to produce modulated FM carriers for recording on separate tape tracks or modulated FM subcarriers for subsequent multiplexing and direct recording on tape in the California Network format. 3. An analog magnetic tape recorder: e.g. the PI 5100 (15/80 ips recording in the FM mode or in the direct mode with the 'broad-band' variant-of the Cal Net multiplex system, or 15/16 ips recording in the direct mode with the standard Cal Net multiplex system), or the Sony TC-126 cassette recorder operating in the direct record mode with the standard Cal Net multiplex system. 4. Appropriate magnetic tape playback equipment: e.g., the Bell and Howell 3700-B for the PI-5100 or

  5. Synchronous Photoinjection Using a Frequency-Doubled Gain-Switched Fiber-Coupled Seed Laser and ErYb-Doped Fiber Amplifier

    SciTech Connect

    John Hansknecht; Benard Poelker

    2006-06-01

    Light at 1.56 um from a gain-switched fiber-coupled diode laser and ErYb-doped fiber amplifier was frequency doubled to obtain over 2W average power at 780 nm with {approx} 40ps pulses and pulse repetition rate of 499 MHz. This light was used to drive the 100kV DC high voltage GaAs photoemission gun at CEBAF at Jefferson Laboratory to produce a high average current beam (100uA) of highly spin-polarized electrons (>80%). This new drive laser system represents a significant advance over laser systems used previously, providing significantly higher power and enhanced reliability.

  6. 1.2 MW peak power, all-solid-state picosecond laser with a microchip laser seed and a high gain single-passing bounce geometry amplifier

    NASA Astrophysics Data System (ADS)

    Wang, Chunhua; Shen, Lifeng; Zhao, Zhiliang; Liu, Bin; Jiang, Hongbo; Chen, Jun; Liu, Chong

    2016-11-01

    A semiconductor saturable absorber mirror (SESAM) based passively Q-switched microchip Nd:YVO4 seed laser with pulse duration of 90 ps at repetition rate of 100 kHz is amplified by single-passing a Nd:YVO4 bounce amplifier with varying seed input power from 20 μW to 10 mW. The liquid pure metal greasy thermally conductive material is used to replace the traditional thin indium foil as the thermal contact material for better heat load transfer of the Nd:YVO4 bounce amplifier. Temperature distribution at the pump surface is measured by an infrared imager to compare with the numerically simulated results. A highest single-passing output power of 11.3 W is obtained for 10 mW averaged seed power, achieving a pulse peak power of ~1.25 MW and pulse energy of ~113 μJ. The beam quality is well preserved with M2 ≤1.25. The simple configuration of this bounce laser amplifier made the system flexible, robust and cost-effective, showing attractive potential for further applications.

  7. Numerical study of spectral shaping in high energy Ho:YLF amplifiers.

    PubMed

    Kroetz, Peter; Ruehl, Axel; Murari, Krishna; Cankaya, Huseyin; Kärtner, Franz X; Hartl, Ingmar; Miller, R J Dwayne

    2016-05-01

    We present a new chromatic numerical approach to simulate the amplification of laser pulses in multipass laser amplifiers. This enables studies on spectral effects such as gain narrowing and spectral shaping with optical elements expressed by a transmission transfer function. We observe good agreement between our simulations and measurements with a Ho:YLF regenerative amplifier (RA). To demonstrate the capabilities of our simulation model, we numerically integrate an intra-cavity etalon in this laser and find optimum etalon parameters that enhance the peak power of the output pulses up to 65%. PMID:27137602

  8. Tuning Broadband Microwave Amplifiers

    SciTech Connect

    Alaniz, Gabriel

    2003-09-05

    The PEP-II/DA {Phi} NE/ALS longitudinal feedback systems are complex wide bandwidth systems requiring analog, digital and microwave circuits. The solid-state amplifier is one of the components in the microwave circuit that is required to suppress the coupled bunch instabilities that exist in the PEP-II accelerator. The suppression is achieved by using an antenna as a kicker structure that provides an electric field in order to increase or decrease the energy of particles passing through the structure. The amplifier is made up of sixteen 30 to 35W microstrip GaAs FET modules that are combined to obtain 500W over a bandwidth of 850MHz to 1850MHz. The amplifier malfunctioned causing a reduction in the functionality and power output of the individual GaAs FET modules. The amplifier must be repaired. After repair, the amplifier must be tuned to optimize the gain while maintaining proper power output. The amplifier is tuned using microstrip circuit techniques. A variety of microstrip methods are used to obtain the proper line impedance. The result is a working amplifier that operates efficiently.

  9. HIGH AVERAGE POWER OPTICAL FEL AMPLIFIERS.

    SciTech Connect

    BEN-ZVI, ILAN, DAYRAN, D.; LITVINENKO, V.

    2005-08-21

    Historically, the first demonstration of the optical FEL was in an amplifier configuration at Stanford University [l]. There were other notable instances of amplifying a seed laser, such as the LLNL PALADIN amplifier [2] and the BNL ATF High-Gain Harmonic Generation FEL [3]. However, for the most part FELs are operated as oscillators or self amplified spontaneous emission devices. Yet, in wavelength regimes where a conventional laser seed can be used, the FEL can be used as an amplifier. One promising application is for very high average power generation, for instance FEL's with average power of 100 kW or more. The high electron beam power, high brightness and high efficiency that can be achieved with photoinjectors and superconducting Energy Recovery Linacs (ERL) combine well with the high-gain FEL amplifier to produce unprecedented average power FELs. This combination has a number of advantages. In particular, we show that for a given FEL power, an FEL amplifier can introduce lower energy spread in the beam as compared to a traditional oscillator. This properly gives the ERL based FEL amplifier a great wall-plug to optical power efficiency advantage. The optics for an amplifier is simple and compact. In addition to the general features of the high average power FEL amplifier, we will look at a 100 kW class FEL amplifier is being designed to operate on the 0.5 ampere Energy Recovery Linac which is under construction at Brookhaven National Laboratory's Collider-Accelerator Department.

  10. Energy Gain. Teacher's Guide and Student Guide. Net Energy Unit. Draft.

    ERIC Educational Resources Information Center

    McLeod, Richard J.

    This module focuses on gains and losses of energy as society processes resources for energy production. It particularly focuses on the end point of energy conversion and addresses decisions which society must make concerning benefits and costs of various energy production methods and generating facilities. One class period is needed to implement…

  11. Energy intake and energy expenditure for determining excess weight gain in pregnant women

    Technology Transfer Automated Retrieval System (TEKTRAN)

    To conduct a secondary analysis designed to test whether gestational weight gain is the result of increased energy intake or adaptive changes in energy expenditures. In this secondary analysis, energy intake and energy expenditure of 45 pregnant women (body mass index [BMI] 18.5-24.9 [n=33] and BMI ...

  12. Single crystalline Er{sub 2}O{sub 3}:sapphire films as potentially high-gain amplifiers at telecommunication wavelength

    SciTech Connect

    Kuznetsov, A. S.; Sadofev, S.; Schäfer, P.; Kalusniak, S.; Henneberger, F.

    2014-11-10

    Single crystalline thin films of Er{sub 2}O{sub 3}, demonstrating efficient 1.5 μm luminescence of Er{sup 3+} at room temperature were grown on Al{sub 2}O{sub 3} substrate by molecular beam epitaxy. The absorption coefficient at 1.536 μm was found to reach 270 cm{sup −1} translating in a maximal possible gain of 1390 dBcm{sup −1}. In conjunction with the 10% higher refractive index as compared to Al{sub 2}O{sub 3}, this opens the possibility to use Er{sub 2}O{sub 3}:sapphire films as short-length waveguide amplifiers in telecommunication.

  13. Method for generating high-energy and high repetition rate laser pulses from CW amplifiers

    DOEpatents

    Zhang, Shukui

    2013-06-18

    A method for obtaining high-energy, high repetition rate laser pulses simultaneously using continuous wave (CW) amplifiers is described. The method provides for generating micro-joule level energy in pico-second laser pulses at Mega-hertz repetition rates.

  14. High-gain 1.3  μm GaInNAs semiconductor optical amplifier with enhanced temperature stability for all-optical signal processing at 10  Gb/s.

    PubMed

    Fitsios, D; Giannoulis, G; Korpijärvi, V-M; Viheriälä, J; Laakso, A; Iliadis, N; Dris, S; Spyropoulou, M; Avramopoulos, H; Kanellos, G T; Pleros, N; Guina, M

    2015-01-01

    We report on the complete experimental evaluation of a GaInNAs/GaAs (dilute nitride) semiconductor optical amplifier that operates at 1.3 μm and exhibits 28 dB gain and a gain recovery time of 100 ps. Successful wavelength conversion operation is demonstrated using pseudorandom bit sequence 27-1 non-return-to-zero bit streams at 5 and 10  Gb/s, yielding error-free performance and showing feasibility for implementation in various signal processing functionalities. The operational credentials of the device are analyzed in various operational regimes, while its nonlinear performance is examined in terms of four-wave mixing. Moreover, characterization results reveal enhanced temperature stability with almost no gain variation around the 1320 nm region for a temperature range from 20°C to 50°C. The operational characteristics of the device, along with the cost and energy benefits of dilute nitride technology, make it very attractive for application in optical access networks and dense photonic integrated circuits. PMID:25967005

  15. High-gain 1.3  μm GaInNAs semiconductor optical amplifier with enhanced temperature stability for all-optical signal processing at 10  Gb/s.

    PubMed

    Fitsios, D; Giannoulis, G; Korpijärvi, V-M; Viheriälä, J; Laakso, A; Iliadis, N; Dris, S; Spyropoulou, M; Avramopoulos, H; Kanellos, G T; Pleros, N; Guina, M

    2015-01-01

    We report on the complete experimental evaluation of a GaInNAs/GaAs (dilute nitride) semiconductor optical amplifier that operates at 1.3 μm and exhibits 28 dB gain and a gain recovery time of 100 ps. Successful wavelength conversion operation is demonstrated using pseudorandom bit sequence 27-1 non-return-to-zero bit streams at 5 and 10  Gb/s, yielding error-free performance and showing feasibility for implementation in various signal processing functionalities. The operational credentials of the device are analyzed in various operational regimes, while its nonlinear performance is examined in terms of four-wave mixing. Moreover, characterization results reveal enhanced temperature stability with almost no gain variation around the 1320 nm region for a temperature range from 20°C to 50°C. The operational characteristics of the device, along with the cost and energy benefits of dilute nitride technology, make it very attractive for application in optical access networks and dense photonic integrated circuits.

  16. Research of energy characteristics of power amplifier containing KNFS Nd:phosphate glass slabs and MIRO Silver foil reflectors at the “Luch” facility

    NASA Astrophysics Data System (ADS)

    Belov, I. A.; Bel'kov, S. A.; Voronich, I. N.; Garanin, S. G.; Derkach, V. N.; Koshechkin, S. V.; Lysov, M. I.; Markov, S. S.; Savkin, S. V.

    2016-09-01

    The amplifier elements upgrade at the “Luch” laser facility was carried out. Measurements showed that the upgrade of the amplifier elements resulted in the amplifier's small signal gain coefficient K0 increase from 12.9% to 14.3% depending on the capacitor charging voltage; the linear gain coefficient increase was about g0 ≈ (6-8)%. Full-scale laser experiments at the facility showed the power amplifier gain coefficient increase consistent with active medium gain coefficient measurement results.

  17. Bidirectional amplifier

    DOEpatents

    Wright, James T.

    1986-01-01

    A bilateral circuit is operable for transmitting signals in two directions without generation of ringing due to feedback caused by the insertion of the circuit. The circuit may include gain for each of the signals to provide a bidirectional amplifier. The signals are passed through two separate paths, with a unidirectional amplifier in each path. A controlled sampling device is provided in each path for sampling the two signals. Any feedback loop between the two signals is disrupted by providing a phase displacement between the control signals for the two sampling devices.

  18. Bidirectional amplifier

    DOEpatents

    Wright, J.T.

    1984-02-02

    A bilateral circuit is operable for transmitting signals in two directions without generation of ringing due to feedback caused by the insertion of the circuit. The circuit may include gain for each of the signals to provide a bidirectional amplifier. The signals are passed through two separate paths, with a unidirectional amplifier in each path. A controlled sampling device is provided in each path for sampling the two signals. Any feedback loop between the two signals is disrupted by providing a phase displacement between the control signals for the two sampling devices.

  19. Optical parametric amplifier pumped by two mutually incoherent laser beams

    NASA Astrophysics Data System (ADS)

    Tamošauskas, G.; Dubietis, A.; Valiulis, G.; Piskarskas, A.

    2008-05-01

    We report on the experimental proof-of-principle demonstration of the ultrashort pulse single-pass beta-barium borate, BBO optical parametric amplifier pumped by two mutually incoherent laser sources. We show that the amplified signal at 1054 nm gains energy from both pump pulses with wavelengths of 680 and 527 nm, respectively, with overall energy conversion of 36%, and exhibits low wavefront distortions and improved energy stability in the gain saturation regime.

  20. High power regenerative laser amplifier

    DOEpatents

    Miller, John L.; Hackel, Lloyd A.; Dane, Clifford B.; Zapata, Luis E.

    1994-01-01

    A regenerative amplifier design capable of operating at high energy per pulse, for instance, from 20-100 Joules, at moderate repetition rates, for instance from 5-20 Hertz is provided. The laser amplifier comprises a gain medium and source of pump energy coupled with the gain medium; a Pockels cell, which rotates an incident beam in response to application of a control signal; an optical relay system defining a first relay plane near the gain medium and a second relay plane near the rotator; and a plurality of reflectors configured to define an optical path through the gain medium, optical relay and Pockels cell, such that each transit of the optical path includes at least one pass through the gain medium and only one pass through the Pockels cell. An input coupler, and an output coupler are provided, implemented by a single polarizer. A control circuit coupled to the Pockels cell generates the control signal in timed relationship with the input pulse so that the input pulse is captured by the input coupler and proceeds through at least one transit of the optical path, and then the control signal is applied to cause rotation of the pulse to a polarization reflected by the polarizer, after which the captured pulse passes through the gain medium at least once more and is reflected out of the optical path by the polarizer before passing through the rotator again to provide an amplified pulse.

  1. High power regenerative laser amplifier

    DOEpatents

    Miller, J.L.; Hackel, L.A.; Dane, C.B.; Zapata, L.E.

    1994-02-08

    A regenerative amplifier design capable of operating at high energy per pulse, for instance, from 20-100 Joules, at moderate repetition rates, for instance from 5-20 Hertz is provided. The laser amplifier comprises a gain medium and source of pump energy coupled with the gain medium; a Pockels cell, which rotates an incident beam in response to application of a control signal; an optical relay system defining a first relay plane near the gain medium and a second relay plane near the rotator; and a plurality of reflectors configured to define an optical path through the gain medium, optical relay and Pockels cell, such that each transit of the optical path includes at least one pass through the gain medium and only one pass through the Pockels cell. An input coupler, and an output coupler are provided, implemented by a single polarizer. A control circuit coupled to the Pockels cell generates the control signal in timed relationship with the input pulse so that the input pulse is captured by the input coupler and proceeds through at least one transit of the optical path, and then the control signal is applied to cause rotation of the pulse to a polarization reflected by the polarizer, after which the captured pulse passes through the gain medium at least once more and is reflected out of the optical path by the polarizer before passing through the rotator again to provide an amplified pulse. 7 figures.

  2. Experimental and analytical study of a high gain self amplified spontaneous emission free electron laser operating in a large spectral bandwidth regime

    NASA Astrophysics Data System (ADS)

    Andonian, Gerard Cosmos

    The drive to create and measure ultra-short pulses in the x-ray regime advances the ongoing development of free electron lasers (FEL). Several proposed schemes, to shorten the pulse length of the radiation, involve driving the FEL with a chirped (linear longitudinal phase space correlation) electron beam in the self amplified spontaneous emission (SASE) mode. This dissertation examines the experiments conducted under such conditions, canvassing analytical and numerical studies of beam dynamics and radiation properties, experimental observations, and descriptions of the development of novel diagnostics. The VISA (Visible-Infrared SASE Amplifier) program has achieved saturation at 840 nm within a 4 m long undulator. A novel bunch compression mechanism during transport was discovered and ultimately responsible for the high peak current required to drive the FEL. Start-to-end simulations, detailing the dynamics from electron beam inception at the photocathode to the FEL radiation properties at the undulator, were successfully benchmarked to observable data. The VISA II experiment is an extension of this SASE FEL operating under different experimental conditions. Driving the SASE FEL with a chirped electron beam requires maintaining the chirp throughout transport by the use of sextupole magnets to correct for second-order compression effects. The emitted radiation is frequency chirped, diagnosed via a modified frequency resolved optical gating (FROG) technique. Specific numerical simulations and diagnostic developments are presented. A set of measurements, without sextupole corrections, displays anomalous features, namely large spectral bandwidth of the radiation at stable and sustained high gain lasing. The bandwidth has an rms value of 21 nm (12% full width), previously unobserved in a FEL. In addition, the far-field angular distribution yields a hollow mode structure, similar to earlier results yet more pronounced in angle. Start-to-end simulations reproduced the

  3. Polarization Maintaining, Very-Large-Mode Area, Er Fiber Amplifier for High Energy Pulses at 1572.3 nm

    NASA Technical Reports Server (NTRS)

    Nicholoson, J. W.; DeSantolo, A.; Yan, M. F.; Wisk, P.; Mangan, B.; Puc, G.; Yu, A.; Stephen, M.

    2016-01-01

    We demonstrate the first polarization maintaining, very-large-mode-area Er-doped fiber amplifier with 1000 square micron effective area. The amplifier is core pumped by a Raman fiber laser and is used to generate single frequency one microsecond pulses with pulse energy of 368 microJoules, M2 of 1.1, and polarization extinction greater than 20 dB. The amplifier operates at 1572.3 nm, a wavelength useful for trace atmospheric CO2 detection.

  4. Gyromagnetron amplifier

    SciTech Connect

    Lau, Y.-Y.; Barnett, L. R.

    1985-10-29

    A gyromagnetron amplifier for radiation at millimeter wavelengths comprising a tapered waveguide tube with longitudinally running vanes in the walls of the tube with the number of vanes chosen to coincide with a desired cyclotron harmonic frequency to be amplified. A beam of spiralling mildly relativistic electrons with an energy of 100 keV or less is directed into the small end of the tapered waveguide tube. A tapered axial magnetic field is set up within the waveguide tube with a low value appropriate to the amplification of a cyclotron harmonic frequency. An electromagnetic wave to be amplified is launched into the waveguide tube to co-propagate and be amplified by the spiralling electron beam. This device is characterized by a wide bandwidth, a low operating magnetic field, a relatively low operating beam voltage, with high power, and the capability of continuous wave operation.

  5. Design and implementation of a wireless (Bluetooth) four channel bio-instrumentation amplifier and digital data acquisition device with user-selectable gain, frequency, and driven reference.

    PubMed

    Cosmanescu, Alin; Miller, Benjamin; Magno, Terence; Ahmed, Assad; Kremenic, Ian

    2006-01-01

    A portable, multi-purpose Bio-instrumentation Amplifier and Data AcQuisition device (BADAQ) capable of measuring and transmitting EMG and EKG signals wirelessly via Bluetooth is designed and implemented. Common topologies for instrumentation amplifiers and filters are used and realized with commercially available, low-voltage, high precision operational amplifiers. An 8-bit PIC microcontroller performs 10-bit analog-to-digital conversion of the amplified and filtered signals and controls a Bluetooth transceiver capable of wirelessly transmitting the data to any Bluetooth enabled device. Electrical isolation between patient/subject, circuitry, and ancillary equipment is achieved by optocoupling components. The design focuses on simplicity, portability, and affordability.

  6. Dynamic energy-balance model predicting gestational weight gain

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Gestational weight gains (GWGs) that exceed the 2009 Institute of Medicine recommended ranges increase risk of long-term postpartum weight retention; conversely, GWGs within the recommended ranges are more likely to result in positive maternal and fetal outcomes. Despite this evidence, recent epide...

  7. Progress on diamond amplified photo-cathode

    SciTech Connect

    Wang, E.; Ben-Zvi, I.; Burrill, A.; Kewisch, J.; Chang, X.; Rao, T.; Smedley, J.; Wu, Q.; Muller, E.; Xin, T.

    2011-03-28

    Two years ago, we obtained an emission gain of 40 from the Diamond Amplifier Cathode (DAC) in our test system. In our current systematic study of hydrogenation, the highest gain we registered in emission scanning was 178. We proved that our treatments for improving the diamond amplifiers are reproducible. Upcoming tests planned include testing DAC in a RF cavity. Already, we have designed a system for these tests using our 112 MHz superconducting cavity, wherein we will measure DAC parameters, such as the limit, if any, on emission current density, the bunch charge, and the bunch length. The diamond-amplified photocathode, that promises to support a high average current, low emittance, and a highly stable electron beam with a long lifetime, is under development for an electron source. The diamond, functioning as a secondary emitter amplifies the primary current, with a few KeV energy, that comes from the traditional cathode. Earlier, our group recorded a maximum gain of 40 in the secondary electron emission from a diamond amplifier. In this article, we detail our optimization of the hydrogenation process for a diamond amplifier that resulted in a stable emission gain of 140. We proved that these characteristics are reproducible. We now are designing a system to test the diamond amplifier cathode using an 112MHz SRF gun to measure the limits of the emission current's density, and on the bunch charge and bunch length.

  8. Chip-scale parametric amplifier with 11 dB gain at 1550 nm based on a slow-light GaInP photonic crystal waveguide.

    PubMed

    Cestier, Isabelle; Combrié, Sylvain; Xavier, Stéphane; Lehoucq, Gaëlle; De Rossi, Alfredo; Eisenstein, Gadi

    2012-10-01

    We report on a chip scale parametric amplifier based on a GaInP photonic crystal waveguide. The amplifier operates with both pump and signal in the 1550 nm wavelength range and offers an on-chip gain of 11 dB (5 dB including the 6 dB coupling losses) when pumped at only 800 mW. It enables us, therefore, to incorporate the many advantages of parametric amplification within photonic chips for optical communication applications.

  9. Net electron energy gain from interaction with a chirped “plane-wave” laser pulse

    NASA Astrophysics Data System (ADS)

    Salamin, Yousef I.

    2012-07-01

    According to the Lawson-Woodward theorem, an electron cannot gain any energy from interaction with an ideal plane-wave laser pulse. We demonstrate analytically and numerically that chirping the frequency of the pulse distorts it in a sensitive way and leads to net energy gain by an electron submitted to it.

  10. Segmented amplifier configurations for laser amplifier

    DOEpatents

    Hagen, Wilhelm F.

    1979-01-01

    An amplifier system for high power lasers, the system comprising a compact array of segments which (1) preserves high, large signal gain with improved pumping efficiency and (2) allows the total amplifier length to be shortened by as much as one order of magnitude. The system uses a three dimensional array of segments, with the plane of each segment being oriented at substantially the amplifier medium Brewster angle relative to the incident laser beam and with one or more linear arrays of flashlamps positioned between adjacent rows of amplifier segments, with the plane of the linear array of flashlamps being substantially parallel to the beam propagation direction.

  11. An ultra-low-power pulse oximeter implemented with an energy-efficient transimpedance amplifier.

    PubMed

    Tavakoli, M; Turicchia, L; Sarpeshkar, R

    2010-02-01

    Pulse oximeters are ubiquitous in modern medicine to noninvasively measure the percentage of oxygenated hemoglobin in a patient's blood by comparing the transmission characteristics of red and infrared light-emitting diode light through the patient's finger with a photoreceptor. We present an analog single-chip pulse oximeter with 4.8-mW total power dissipation, which is an order of magnitude below our measurements on commercial implementations. The majority of this power reduction is due to the use of a novel logarithmic transimpedance amplifier with inherent contrast sensitivity, distributed amplification, unilateralization, and automatic loop gain control. The transimpedance amplifier, together with a photodiode current source, form a high-performance photoreceptor with characteristics similar to those found in nature, which allows LED power to be reduced. Therefore, our oximeter is well suited for portable medical applications, such as continuous home-care monitoring for elderly or chronic patients, emergency patient transport, remote soldier monitoring, and wireless medical sensing. Furthermore, our design obviates the need for an A-to-D and digital signal processor and leads to a small single-chip solution. We outline how extensions of our work could lead to submilliwatt oximeters.

  12. Method and system for compact and efficient high energy pulsed laser amplifier

    DOEpatents

    Erlandson, Alvin Charles

    2014-03-11

    An optical amplifier system includes an input aperture operable to receive light propagating along an optical path in a first direction and a first polarizer disposed along the optical path. The first polarizer is operable to pass light having a polarization state aligned with a first polarization axis. The system also includes a first Pockels cell operable to receive light passing through the first polarizer, an optical gain element disposed along the optical path, a second Pockels cell disposed along the optical path, and a second polarizer disposed along the optical path. The second polarizer is operable to pass light having a polarization state aligned with the first polarization axis. The system further includes a first mirror operable to receive light reflected from the second polarizer, a second mirror operable to receive light reflected from the first polarizer, and an output aperture operable to transmit light passing through the second polarizer.

  13. Generation of sub-100 ps pulses with a peak power of 65 W by gain switching, pulse shortening, and pulse amplification using a semiconductor-based master oscillator-power amplifier system.

    PubMed

    Schwertfeger, Sven; Klehr, Andreas; Hoffmann, Thomas; Liero, Armin; Wenzel, Hans; Erbert, Götz

    2013-05-10

    We present a method of the generation of sub-100 ps pulses with an all-semiconductor master oscillator-power amplifier (MOPA) system, consisting of a three section distributed Bragg reflector (DBR) laser as MO and a two section tapered PA. The pulses generated by the gain-switched DBR laser are first shortened by the ridge-waveguide input section of the PA acting as a saturable absorber and then amplified by the tapered gain region section. We generate laser pulses with a minimum duration of 35 ps and a peak power of more than 65 W. The spectral width is less than 0.25 nm around a center wavelength of 1063 nm. PMID:23669852

  14. 615 fs pulses with 17 mJ energy generated by an Yb:thin-disk amplifier at 3 kHz repetition rate.

    PubMed

    Fischer, Jonathan; Heinrich, Alexander-Cornelius; Maier, Simon; Jungwirth, Julian; Brida, Daniele; Leitenstorfer, Alfred

    2016-01-15

    A combination of Er/Yb:fiber and Yb:thin-disk technology produces 615 fs pulses at 1030 nm with an average output power of 72 W. The regenerative amplifier allows variation of the repetition rate between 3 and 5 kHz with pulse energies from 13 to 17 mJ. A broadband and intense seed provided by the compact and versatile fiber front-end minimizes gain narrowing. The resulting sub-ps performance is ideal for nonlinear frequency conversion and pulse compression. Operating in the upper branch of a bifurcated pulse train, the system exhibits exceptional noise performance and stability.

  15. Reflex ring laser amplifier system

    SciTech Connect

    Summers, M.A.

    1983-08-31

    The invention is a method and apparatus for providing a reflex ring laser system for amplifying an input laser pulse. The invention is particularly useful in laser fusion experiments where efficient production of high-energy and high power laser pulses is required. The invention comprises a large aperture laser amplifier in an unstable ring resonator which includes a combination spatial filter and beam expander having a magnification greater than unity. An input pulse is injected into the resonator, e.g., through an aperture in an input mirror. The injected pulse passes through the amplifier and spatial filter/expander components on each pass around the ring. The unstable resonator is designed to permit only a predetermined number of passes before the amplified pulse exits the resonator. On the first pass through the amplifier, the beam fills only a small central region of the gain medium. On each successive pass, the beam has been expanded to fill the next concentric non-overlapping region of the gain medium.

  16. LEAP Phase II, Net Energy Gain From Laser Fields in Vacuum

    SciTech Connect

    Barnes, C.D.; Colby, E.R.; Plettner, T.; /SLAC /Stanford U., Appl. Mech. Dept.

    2005-09-27

    The current Laser Electron Acceleration Program (LEAP) seeks to modulate the energy of an electron bunch by interaction of the electrons with a copropagating pair of crossed laser beams at 800 nm. We present an optical injector design for a LEAP cell so that it can be used to give net energy gain to an electron bunch. Unique features of the design are discussed which will allow this net energy gain and which will also provide a robust signature for the LEAP interaction.

  17. Diode amplifier of modulated optical beam power

    SciTech Connect

    D'yachkov, N V; Bogatov, A P; Gushchik, T I; Drakin, A E

    2014-11-30

    Analytical relations are obtained between characteristics of modulated light at the output and input of an optical diode power amplifier operating in the highly saturated gain regime. It is shown that a diode amplifier may act as an amplitude-to-phase modulation converter with a rather large bandwidth (∼10 GHz). The low sensitivity of the output power of the amplifier to the input beam power and its high energy efficiency allow it to be used as a building block of a high-power multielement laser system with coherent summation of a large number of optical beams. (lasers)

  18. Image formation using stimulated raman scattering gain

    NASA Astrophysics Data System (ADS)

    Bespalov, V. G.; Makarov, E. A.; Stasel'ko, D. I.

    2016-07-01

    Theoretical analysis of the spatial, noise, and energy characteristics of an amplifier has been performed in the mode of spectral and time selection using subnanosecond stimulated Raman Scattering gain of weak echo signals in crystalline active media that are known for high (up to 10-1 cm/MW) gain coefficients. The possibility to reach high gain values has been demonstrated for weak signals from objects at acceptable angular sizes of the field of vision of an amplifier. To provide a signal-to-noise ratio that exceeds unity over the entire field of vision, the number of photons at the input to an amplifier that is required has to exceed the number of its resolution elements. Accurate determination of the possibilities of recording of weak echo signals and quality of images of targets that are obtained using amplifiers under stimulated Raman Scattering requires additional special experiments.

  19. Generalized formula for continuous-wave end-pumped Yb-doped material amplifier gain and laser output power in various pumping configurations.

    PubMed

    Bourdet, Gilbert L; Bartnicki, Eric

    2006-12-20

    We present a general formula fitted for computing the amplification and laser output power in a Yb-doped material under various quasi-end-pumping configurations. These configurations include single pass pumping, backreflection pumping in which the pump is reflected by a mirror set on the rear face of the amplifier medium, contrapropagation pumping where two pump beams are launched on both sides of the amplifier and, for every configuration, regenerative pumping in which the transmitted or reflected pump beam is recycled using the proper apparatus. We show that, with regenerative pumping, the efficiency is drastically improved and the optimum amplifier length leading to the maximum laser output power is shorter compared with the one obtained with conventional pumping. In this model, we do not take temperature effect into account. PMID:17151761

  20. Selection of energy optimized pump concepts for multi core and multi mode erbium doped fiber amplifiers.

    PubMed

    Krummrich, Peter M; Akhtari, Simon

    2014-12-01

    The selection of an appropriate pump concept has a major impact on amplifier cost and power consumption. The energy efficiency of different pump concepts is compared for multi core and multi mode active fibers. In preamplifier stages, pump power density requirements derived from full C-band low noise WDM operation result in superior energy efficiency of direct pumping of individual cores in a multi core fiber with single mode pump lasers compared to cladding pumping with uncooled multi mode lasers. Even better energy efficiency is achieved by direct pumping of the core in multi mode active fibers. Complexity of pump signal combiners for direct pumping of multi core fibers can be reduced by deploying integrated components.

  1. A 4-W 56-dB gain microstrip amplifier at 15 GHz utilizing GaAs FET's and IMPATT diodes

    NASA Technical Reports Server (NTRS)

    Sokolov, V.; Namordi, M. R.; Doerbeck, F. H.

    1979-01-01

    Performance results and design considerations are presented for an all solid-state Ku-band power amplifier which is feasible for use in PM communication systems for airborne or spacecraft transmitter applications. A six-stage GaAs FET preamplifier and a driver and balanced power amplifier utilizing GaAs IMPATT diodes operating in the injection locked oscillator mode are discussed. For high power and efficiency Schottky-Read IMPATT's with low-high-low doping profiles are employed. For improved reliability the IMPATT's incorporate a TiW barrier metallization to retard degradation of the IMPATT's. Results of accelerated life testing of the IMPATT devices are also presented.

  2. Development of high-power and high-energy 2μm bulk solid-state lasers and amplifiers

    NASA Astrophysics Data System (ADS)

    Koen, Wayne; Jacobs, Cobus; Wu, Lorinda; Strauss, Hencharl

    2016-05-01

    A selection of 2 μm lasers and amplifiers developed at the CSIR National Laser Centre in South Africa is presented. A diverse range of near diffraction-limited 2 μm lasers and amplifiers were developed which varied from high-energy, single-frequency oscillators and amplifiers, to compact and efficient MOPA systems delivering high average powers. This was made possible by exploiting various advantageous properties of holmium-doped YLF while mitigating its detrimental properties through the use of novel pump and laser design approaches.

  3. Differential Amplifier with Current-Mirror Load: Influence of Current Gain, Early Voltage, and Supply Voltage on the DC Output Voltage

    ERIC Educational Resources Information Center

    Paulik, G. F.; Mayer, R. P.

    2012-01-01

    A differential amplifier composed of an emitter-coupled pair is useful as an example in lecture presentations and laboratory experiments in electronic circuit analysis courses. However, in an active circuit with zero input load V[subscript id], both laboratory measurements and PSPICE and LTspice simulation results for the output voltage…

  4. Linearly polarized fiber amplifier

    SciTech Connect

    Kliner, Dahv A.; Koplow, Jeffery P.

    2004-11-30

    Optically pumped rare-earth-doped polarizing fibers exhibit significantly higher gain for one linear polarization state than for the orthogonal state. Such a fiber can be used to construct a single-polarization fiber laser, amplifier, or amplified-spontaneous-emission (ASE) source without the need for additional optical components to obtain stable, linearly polarized operation.

  5. Systematic measurements of the gain and the energy resolution of single and double mask GEM detectors

    NASA Astrophysics Data System (ADS)

    Biswas, S.; Schmidt, D. J.; Abuhoza, A.; Frankenfeld, U.; Garabatos, C.; Hehner, J.; Kleipa, V.; Morhardt, T.; Schmidt, C. J.; Schmidt, H. R.; Wiechula, J.

    2016-07-01

    Systematic studies on the gain and the energy resolution have been carried out by varying the voltage across the GEM foils for both single mask and double mask triple GEM detector prototypes. Variation of the gain and the energy resolution has also been measured by varying either the drift voltage, transfer voltage and induction voltage keeping other voltages constant. The results of the systematic measurements have been presented.

  6. 18 CFR 11.11 - Energy gains method of determining headwater benefits charges.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... most likely alternative source during the period for which the charge is assessed. ... 18 Conservation of Power and Water Resources 1 2014-04-01 2014-04-01 false Energy gains method of... ENERGY REGULATORY COMMISSION, DEPARTMENT OF ENERGY REGULATIONS UNDER THE FEDERAL POWER ACT ANNUAL...

  7. 18 CFR 11.11 - Energy gains method of determining headwater benefits charges.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... most likely alternative source during the period for which the charge is assessed. ... 18 Conservation of Power and Water Resources 1 2011-04-01 2011-04-01 false Energy gains method of... ENERGY REGULATORY COMMISSION, DEPARTMENT OF ENERGY REGULATIONS UNDER THE FEDERAL POWER ACT ANNUAL...

  8. Modeling and optimizing of low-repetition-rate high-energy pulse amplification in high-concentration erbium-doped fiber amplifiers

    NASA Astrophysics Data System (ADS)

    Li, Jianfeng; Dai, Zhiyong; Ou, Zhonghua; Zhang, Lixun; Liu, Yongzhi; Liu, Yong

    2009-09-01

    Starting from the modeling of isolated ions and ion-pairs, a closed form rate and power evolution equations for pulse amplification in high-concentration erbium-doped fiber amplifiers (EDFAs) are constructed. According to the equations, the effects of ion-pairs on the performance of a high-concentration EDFA in steady state including upper-state population, ASE powers without input signal are analyzed numerically. Furthermore, the effects of ion-pairs on the dynamic characteristics of low-repetition-rate pulse amplification in the EDFA including the storied energy, output pulse energy and evolution of pulse waveform distortion are systematically studied by using the finite-difference method. The results show that the presence of the ion-pairs deteriorates amplifier performance, such as the upper-state population, ASE power, storied energy, output pulse energy, and saturated gain, etc. For the high-concentration EDFA, the optimum fiber length should be modified to achieve a better performance. The relations between the evolution of pulse waveform distortion or output pulse energy and the input pulse peak power are also discussed. The results can provide important guide for the design and optimization of the low-repetition-rate pulse amplification in high-concentration EDFAs.

  9. FEL and Optical Klystron Gain for an Electron Beam with Oscillatory Energy Distribution

    SciTech Connect

    Stupakov, G.; Ding, Y.; Huang, Z.; /SLAC

    2009-12-09

    If the energy spread of a beam is larger then the Pierce parameter, the FEL gain length increases dramatically and the FEL output gets suppressed. We show that if the energy distribution of such a beam is made oscillatory on a small scale, the gain length can be considerably decreased. Such an oscillatory energy distribution is generated by first modulating the beam energy with a laser via the mechanism of inverse FEL, and then sending it through a strong chicane. We show that this approach also works for the optical klystron enhancement scheme. Our analytical results are corroborated by numerical simulations.

  10. Energy gain of a thin DT shell target in inertial confinement fusion

    NASA Astrophysics Data System (ADS)

    Khoshbinfar, Soheil

    2014-11-01

    Estimation of maximum possible energy gain for a given energy of driver has always become a key point in inertial confinement fusion. It has direct impact on the cost of produced electricity. Here, we employ a hydrodynamics model to assess energy gain in the case of a symmetrical hydrodynamics implosion where a narrow fuel shell consisting of deuterium-tritium (DT), can experience an isentropic compression in a self-similar regime. Introducing a set of six state parameters {Hhs, Ths, Uimp, αc, ξhs and μhs}, the final fuel state close to ignition is fully described. It enables us to calculate energy gain curves for specific set of these state variables. The envelope of the energy gain family curves provide a limiting gain curve Gfuel fuel* ∝ Ef0.36. Next, we took into account the inertial of cold surrounding fuel on the ignition process. It changes the limiting gain curve slope to 0.41. Finally, the analytical model results assessed and validated using numerical simulation code.

  11. High-energy, in-band pumped erbium doped fiber amplifiers.

    PubMed

    Lim, Ee-Leong; Shaif-ul Alam; Richardson, David J

    2012-08-13

    We have demonstrated and compared high-energy, in-band pumped erbium doped fiber amplifiers operating at 1562.5 nm under both a core pumping scheme (CRS) and a cladding pumping scheme (CLS). The CRS/CLS sources generated smooth, single-peak pulses with maximum pulse energies of ~1.53/1.50 mJ, and corresponding pulse widths of ~176/182 ns respectively, with an M2 of ~1.6 in both cases. However, the conversion efficiency for the CLS was >1.5 times higher than the equivalent CRS variant operating at the same pulse energy due to the lower pump intensity in the CLS that mitigates the detrimental effects of ion concentration quenching. With a longer fiber length in a CLS implementation a pulse energy of ~2.6 mJ is demonstrated with a corresponding M2 of ~4.2. Using numerical simulations we explain that the saturation of pulse energy observed in our experiments is due to saturation of the pump absorption.

  12. Multi-level multi-thermal-electron FDTD simulation of plasmonic interaction with semiconducting gain media: applications to plasmonic amplifiers and nano-lasers.

    PubMed

    Chen, X; Bhola, B; Huang, Y; Ho, S T

    2010-08-01

    Interactions between a semiconducting gain medium and confined plasmon-polaritons are studied using a multilevel multi-thermal-electron finite-difference time-domain (MLMTE-FDTD) simulator. We investigated the amplification of wave propagating in a plasmonic metal-semiconductor-metal (MSM) waveguide filled with semiconductor gain medium and obtained the conditions required to achieve net optical gain. The MSM gain waveguide is used to form a plasmonic semiconductor nano-ring laser(PSNRL) with an effective mode volume of 0.0071 microm3, which is about an order of magnitude smaller than the smallest demonstrated integrated photonic crystal based laser cavities. The simulation shows a lasing threshold current density of 1kA/cm2 for a 300 nm outer diameter ring cavity with 80 nm-wide ring. This current density can be realistically achieved in typical III-V semiconductor, which shows the experimental feasibility of the proposed PSNRL structure.

  13. Cooking increases net energy gain from a lipid-rich food

    PubMed Central

    Groopman, Emily E.; Carmody, Rachel N.; Wrangham, Richard W.

    2014-01-01

    Starch, protein, and lipid are three major sources of calories in the human diet. The unique and universal human practice of cooking has been demonstrated to increase the energy gained from foods rich in starch or protein. Yet no studies have tested whether cooking has equivalent effects on the energy gained from lipid-rich foods. Using mice as a model, we addressed this question by examining the impact of cooking on the energy gained from peanuts, a lipid-rich oilseed, and compared this impact against that of nonthermal processing (blending). We found that cooking consistently increased the energy gained per calorie, whereas blending had no detectable energetic benefits. Assessment of fecal fat excretion showed increases in lipid digestibility when peanuts were cooked, and examination of diet microstructure revealed concomitant alterations to the integrity of cell walls and the oleosin layer of proteins that otherwise shield lipids from digestive lipases. Both effects were consistent with the greater energy gain observed with cooking. Our findings highlight the importance of cooking in increasing dietary energy returns for humans, both past and present. PMID:25293786

  14. Cooking increases net energy gain from a lipid-rich food.

    PubMed

    Groopman, Emily E; Carmody, Rachel N; Wrangham, Richard W

    2015-01-01

    Starch, protein, and lipid are three major sources of calories in the human diet. The unique and universal human practice of cooking has been demonstrated to increase the energy gained from foods rich in starch or protein. Yet no studies have tested whether cooking has equivalent effects on the energy gained from lipid-rich foods. Using mice as a model, we addressed this question by examining the impact of cooking on the energy gained from peanuts, a lipid-rich oilseed, and compared this impact against that of nonthermal processing (blending). We found that cooking consistently increased the energy gained per calorie, whereas blending had no detectable energetic benefits. Assessment of fecal fat excretion showed increases in lipid digestibility when peanuts were cooked, and examination of diet microstructure revealed concomitant alterations to the integrity of cell walls and the oleosin layer of proteins that otherwise shield lipids from digestive lipases. Both effects were consistent with the greater energy gain observed with cooking. Our findings highlight the importance of cooking in increasing dietary energy returns for humans, both past and present.

  15. Improved-Bandwidth Transimpedance Amplifier

    NASA Technical Reports Server (NTRS)

    Chapsky, Jacob

    2009-01-01

    The widest available operational amplifier, with the best voltage and current noise characteristics, is considered for transimpedance amplifier (TIA) applications where wide bandwidth is required to handle fast rising input signals (as for time-of-flight measurement cases). The added amplifier inside the TIA feedback loop can be configured to have slightly lower voltage gain than the bandwidth reduction factor.

  16. Wireless Josephson amplifier

    SciTech Connect

    Narla, A.; Sliwa, K. M.; Hatridge, M.; Shankar, S.; Frunzio, L.; Schoelkopf, R. J.; Devoret, M. H.

    2014-06-09

    Josephson junction parametric amplifiers are playing a crucial role in the readout chain in superconducting quantum information experiments. However, their integration with current 3D cavity implementations poses the problem of transitioning between waveguide, coax cables, and planar circuits. Moreover, Josephson amplifiers require auxiliary microwave components, like directional couplers and/or hybrids, that are sources of spurious losses and impedance mismatches that limit measurement efficiency and amplifier tunability. We have developed a wireless architecture for these parametric amplifiers that eliminates superfluous microwave components and interconnects. This greatly simplifies their assembly and integration into experiments. We present an experimental realization of such a device operating in the 9–11 GHz band with about 100 MHz of amplitude gain-bandwidth product, on par with devices mounted in conventional sample holders. The simpler impedance environment presented to the amplifier also results in increased amplifier tunability.

  17. The influence of mass configurations on velocity amplified vibrational energy harvesters

    NASA Astrophysics Data System (ADS)

    O'Donoghue, D.; Frizzell, R.; Kelly, G.; Nolan, K.; Punch, J.

    2016-05-01

    Vibrational energy harvesters scavenge ambient vibrational energy, offering an alternative to batteries for the autonomous operation of low power electronics. Velocity amplified electromagnetic generators (VAEGs) utilize the velocity amplification effect to increase power output and operational bandwidth, compared to linear resonators. A detailed experimental analysis of the influence of mass ratio and number of degrees-of-freedom (dofs) on the dynamic behaviour and power output of a macro-scale VAEG is presented. Various mass configurations are tested under drop-test and sinusoidal forced excitation, and the system performances are compared. For the drop-test, increasing mass ratio and number of dofs increases velocity amplification. Under forced excitation, the impacts between the masses are more complex, inducing greater energy losses. This results in the 2-dof systems achieving the highest velocities and, hence, highest output voltages. With fixed transducer size, higher mass ratios achieve higher voltage output due to the superior velocity amplification. Changing the magnet size to a fixed percentage of the final mass showed the increase in velocity of the systems with higher mass ratios is not significant enough to overcome the reduction in transducer size. Consequently, the 3:1 mass ratio systems achieved the highest output voltage. These findings are significant for the design of future reduced-scale VAEGs.

  18. Impact of Energy Gain and Subsystem Characteristics on Fusion Propulsion Performance

    NASA Technical Reports Server (NTRS)

    Chakrabarti, S.; Schmidt, G. R.

    2001-01-01

    Rapid transport of large payloads and human crews throughout the solar system requires propulsion systems having very high specific impulse (I(sub sp) > 10(exp 4) to 10(exp 5) s). It also calls for systems with extremely low mass-power ratios (alpha < 10(exp -1) kg/kW). Such low alpha are beyond the reach of conventional power-limited propulsion, but may be attainable with fusion and other nuclear concepts that produce energy within the propellant. The magnitude of energy gain must be large enough to sustain the nuclear process while still providing a high jet power relative to the massive energy-intensive subsystems associated with these concepts. This paper evaluates the impact of energy gain and subsystem characteristics on alpha. Central to the analysis are general parameters that embody the essential features of any 'gain-limited' propulsion power balance. Results show that the gains required to achieve alpha = 10(exp -1) kg/kW with foreseeable technology range from approximately 100 to over 2000, which is three to five orders of magnitude greater than current fusion state of the arL Sensitivity analyses point to the parameters exerting the most influence for either: (1) lowering a and improving mission performance or (2) relaxing gain requirements and reducing demands on the fusion process. The greatest impact comes from reducing mass and increasing efficiency of the thruster and subsystems downstream of the fusion process. High relative gain, through enhanced fusion processes or more efficient drivers and processors, is also desirable. There is a benefit in improving driver and subsystem characteristics upstream of the fusion process, but it diminishes at relative gains > 100.

  19. High energy gain in three-dimensional simulations of light sail acceleration

    SciTech Connect

    Sgattoni, A.; Sinigardi, S.; Macchi, A.

    2014-08-25

    The dynamics of radiation pressure acceleration in the relativistic light sail regime are analysed by means of large scale, three-dimensional (3D) particle-in-cell simulations. Differently to other mechanisms, the 3D dynamics leads to faster and higher energy gain than in 1D or 2D geometry. This effect is caused by the local decrease of the target density due to transverse expansion leading to a “lighter sail.” However, the rarefaction of the target leads to an earlier transition to transparency limiting the energy gain. A transverse instability leads to a structured and inhomogeneous ion distribution.

  20. High power, high beam quality regenerative amplifier

    DOEpatents

    Hackel, Lloyd A.; Dane, Clifford B.

    1993-01-01

    A regenerative laser amplifier system generates high peak power and high energy per pulse output beams enabling generation of X-rays used in X-ray lithography for manufacturing integrated circuits. The laser amplifier includes a ring shaped optical path with a limited number of components including a polarizer, a passive 90 degree phase rotator, a plurality of mirrors, a relay telescope, and a gain medium, the components being placed close to the image plane of the relay telescope to reduce diffraction or phase perturbations in order to limit high peak intensity spiking. In the ring, the beam makes two passes through the gain medium for each transit of the optical path to increase the amplifier gain to loss ratio. A beam input into the ring makes two passes around the ring, is diverted into an SBS phase conjugator and proceeds out of the SBS phase conjugator back through the ring in an equal but opposite direction for two passes, further reducing phase perturbations. A master oscillator inputs the beam through an isolation cell (Faraday or Pockels) which transmits the beam into the ring without polarization rotation. The isolation cell rotates polarization only in beams proceeding out of the ring to direct the beams out of the amplifier. The diffraction limited quality of the input beam is preserved in the amplifier so that a high power output beam having nearly the same diffraction limited quality is produced.

  1. High power, high beam quality regenerative amplifier

    DOEpatents

    Hackel, L.A.; Dane, C.B.

    1993-08-24

    A regenerative laser amplifier system generates high peak power and high energy per pulse output beams enabling generation of X-rays used in X-ray lithography for manufacturing integrated circuits. The laser amplifier includes a ring shaped optical path with a limited number of components including a polarizer, a passive 90 degree phase rotator, a plurality of mirrors, a relay telescope, and a gain medium, the components being placed close to the image plane of the relay telescope to reduce diffraction or phase perturbations in order to limit high peak intensity spiking. In the ring, the beam makes two passes through the gain medium for each transit of the optical path to increase the amplifier gain to loss ratio. A beam input into the ring makes two passes around the ring, is diverted into an SBS phase conjugator and proceeds out of the SBS phase conjugator back through the ring in an equal but opposite direction for two passes, further reducing phase perturbations. A master oscillator inputs the beam through an isolation cell (Faraday or Pockels) which transmits the beam into the ring without polarization rotation. The isolation cell rotates polarization only in beams proceeding out of the ring to direct the beams out of the amplifier. The diffraction limited quality of the input beam is preserved in the amplifier so that a high power output beam having nearly the same diffraction limited quality is produced.

  2. Direct solar-pumped iodine laser amplifier

    NASA Technical Reports Server (NTRS)

    Han, Kwang S.; Hwang, In H.; Stock, Larry V.

    1988-01-01

    A XeCl laser which was developed earlier for an iodine laser oscillator was modified in order to increase the output pulse energy of XeCl laser so that the iodine laser output energy could be increased. The electrical circuit of the XeCl laser was changed from a simple capacitor discharge circuit of the XeCl laser to a Marx system. Because of this improvement the output energy from the XeCl laser was increased from 60 mj to 80 mj. Subsequently, iodine laser output energy was increased from 100 mj to 3 mj. On the other hand, the energy storage capability and amplification characteristics of the Vortek solar simulator-pumped amplifier was calculated expecting the calculated amplification factor is about 2 and the energy extraction efficiency is 26 percent due to the very low input energy density to the amplifier. As a result of an improved kinetic modeling for the iodine solar simulator pumped power amplifier, it is found that the I-2 along the axis of the tube affects seriously the gain profile. For the gas i-C3F7I at the higher pressures, the gain will decrease due to the I-2 as the pumping intensity increases, and at these higher pressures an increase in flow velocity will increase the gain.

  3. Generation of sub-50 fs pulses from a high-power Yb-doped fiber amplifier.

    PubMed

    Deng, Yujun; Chien, Ching-Yuan; Fidric, Bernard G; Kafka, James D

    2009-11-15

    We demonstrate the generation of 48 fs pulses with 18 W average power and 226 nJ of pulse energy from a Yb-doped fiber amplifier. The system uses a simple stretcher-free single-stage amplifier configuration operating in the parabolic pulse regime. The gain fiber length and pump wavelength are chosen in order to reduce the gain per unit length and generate both shorter pulses and higher pulse energy.

  4. Measurement of energy contrast of amplified ultrashort pulses using cross-polarized wave generation and spectral interferometry.

    PubMed

    Iliev, Marin; Meier, Amanda K; Galloway, Benjamin; Adams, Daniel E; Squier, Jeff A; Durfee, Charles G

    2014-07-28

    We present a method using spectral interferometry (SI) to characterize a pulse in the presence of an incoherent background such as amplified spontaneous emission (ASE). The output of a regenerative amplifier is interfered with a copy of the pulse that has been converted using third-order cross-polarized wave generation (XPW). The ASE shows as a pedestal background in the interference pattern. The energy contrast between the short-pulse component and the ASE is retrieved. The spectra of the interacting beams are obtained through an improvement to the self-referenced spectral interferometry (SRSI) analysis. PMID:25089416

  5. 2-μm wavelength, high-energy Ho:YLF chirped-pulse amplifier for mid-infrared OPCPA.

    PubMed

    Hemmer, M; Sánchez, D; Jelínek, M; Smirnov, Vadim; Jelinkova, H; Kubeček, V; Biegert, J

    2015-02-15

    A 2-μm wavelength laser delivering up to 39-mJ energy, ∼10  ps duration pulses at 100-Hz repetition rate is reported. The system relies on chirped pulse amplification (CPA): a modelocked Er:Tm:Ho fiber-seeder is followed by a Ho:YLF-based regenerative amplifier and a cryogenically cooled Ho:YLF single pass amplifier. Stretching and compressing are performed with large aperture chirped volume Bragg gratings (CVBG). At a peak power of 3.3 GW, the stability was <1%  rms over 1 h, confirming high suitability for OPCPA and extreme nonlinear optics applications. PMID:25680122

  6. 18 CFR 11.14 - Procedures for establishing charges without an energy gains investigation.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... establishing charges without an energy gains investigation. 11.14 Section 11.14 Conservation of Power and Water... ANNUAL CHARGES UNDER PART I OF THE FEDERAL POWER ACT Charges for Headwater Benefits § 11.14 Procedures... being assessed headwater benefit charges on or before September 16, 1986, the Commission will...

  7. 18 CFR 11.11 - Energy gains method of determining headwater benefits charges.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... power generation is not a function of the headwater project, section 10(f) costs will be apportioned... 18 Conservation of Power and Water Resources 1 2013-04-01 2013-04-01 false Energy gains method of determining headwater benefits charges. 11.11 Section 11.11 Conservation of Power and Water Resources...

  8. 18 CFR 11.11 - Energy gains method of determining headwater benefits charges.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... power generation is not a function of the headwater project, section 10(f) costs will be apportioned... 18 Conservation of Power and Water Resources 1 2012-04-01 2012-04-01 false Energy gains method of determining headwater benefits charges. 11.11 Section 11.11 Conservation of Power and Water Resources...

  9. 18 CFR 11.11 - Energy gains method of determining headwater benefits charges.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... power generation is not a function of the headwater project, section 10(f) costs will be apportioned... 18 Conservation of Power and Water Resources 1 2010-04-01 2010-04-01 false Energy gains method of determining headwater benefits charges. 11.11 Section 11.11 Conservation of Power and Water Resources...

  10. 9 GeV energy gain in a beam-driven plasma wakefield accelerator

    NASA Astrophysics Data System (ADS)

    Litos, M.; Adli, E.; Allen, J. M.; An, W.; Clarke, C. I.; Corde, S.; Clayton, C. E.; Frederico, J.; Gessner, S. J.; Green, S. Z.; Hogan, M. J.; Joshi, C.; Lu, W.; Marsh, K. A.; Mori, W. B.; Schmeltz, M.; Vafaei-Najafabadi, N.; Yakimenko, V.

    2016-03-01

    An electron beam has gained a maximum energy of 9 GeV per particle in a 1.3 m-long electron beam-driven plasma wakefield accelerator. The amount of charge accelerated in the spectral peak was 28.3 pC, and the root-mean-square energy spread was 5.0%. The mean accelerated charge and energy gain per particle of the 215 shot data set was 115 pC and 5.3 GeV, respectively, corresponding to an acceleration gradient of 4.0 GeV m-1at the spectral peak. The mean energy spread of the data set was 5.1%. These results are consistent with the extrapolation of the previously reported energy gain results using a shorter, 36 cm-long plasma source to within 10%, evincing a non-evolving wake structure that can propagate distances of over a meter in length. Wake-loading effects were evident in the data through strong dependencies observed between various spectral properties and the amount of accelerated charge.

  11. Effect of the upper limbs muscles activity on the mechanical energy gain in pole vaulting.

    PubMed

    Frère, Julien; Göpfert, Beat; Slawinski, Jean; Tourny-chollet, Claire

    2012-04-01

    The shoulder muscles are highly solicited in pole vaulting and may afford energy gain. The objective of this study was to determine the bilateral muscle activity of the upper-limbs to explain the actions performed by the vaulter to bend the pole and store elastic energy. Seven experienced athletes performed 5-10 vaults which were recorded using two video cameras (50Hz). The mechanical energy of the centre of gravity (CG) was computed, while surface electromyographic (EMG) profiles were recorded from 5 muscles bilateral: deltoideus, infraspinatus, biceps brachii, triceps, and latissimus dorsi muscles. The level of intensity from EMG profile was retained in four sub phases between take-off (TO1) and complete pole straightening (PS). The athletes had a mean mechanical energy gain of 22% throughout the pole vault, while the intensities of deltoideus, biceps brachii, and latissimus dorsi muscles were sub phases-dependent (p<0.05). Stabilizing the glenohumeral joint (increase of deltoideus and biceps brachii activity) and applying a pole bending torque (increase of latissimus dorsi activity) required specific muscle activation. The gain in mechanical energy of the vaulter could be linked to an increase in muscle activation, especially from latissimusdorsi muscles.

  12. Amplifying Real Estate Value through Energy&WaterManagement: From ESCO to 'Energy Services Partner'

    SciTech Connect

    Mills, Evan

    2004-06-08

    The energy service company (ESCO) business model could become significantly more effective by integrating the energy-efficiency purveyor and their capital into the underlying building ownership and operation partnership, rather than the current model in which the ESCO remains an outsider with higher transaction costs and limited interest and participation in the value created by the cost savings. Resource conservation advocates rarely use the language of real estate to articulate the cost effectiveness of capital improvements aimed at reducing utility costs in commercial and residential income properties. Conventional methods that rely on rarefied academic notions of simple payback time or a narrow definition of return on investment fail to capture a significant component of the true market value created by virtue of reduced operating expenses. Improvements in energy and water efficiency can increase the fundamental profitability of real estate investments by raising Net Operating Income (NOI), and hence returns during the holding period, and, ultimately, proceeds at time of sale. We introduce the concept of an Energy Services Partner, who takes an equity interest in a real estate partnership in exchange for providing the expertise and capital required to reduce utility operating costs. Profit to all partners increases considerably as a result. This approach would also help to address a crisis facing ESCOs today stemming from their considerable liabilities (through guaranteed savings) and negligible offsetting assets.

  13. Mid-IR supercontinuum generation in a ZBLAN fiber pumped by a gain-switched mode-locked Tm-doped fiber laser and amplifier system.

    PubMed

    Swiderski, Jacek; Michalska, Maria; Maze, Gwenael

    2013-04-01

    We demonstrate a novel method of mid-infrared (mid-IR) supercontinuum (SC) generation with the use of a 2 µm gain-switched self-mode-locked thulium-doped fiber laser. SC radiation ranging from ~1.9 to 3.8 µm wavelength, generated in a single-mode ZBLAN fiber with a zero-dispersion wavelength (ZDW) shifted to ~1.9 µm, is reported. An average output power of 0.74 W with 0.27 W at wavelengths longer than 2.4 µm was measured. It is, to the best of our knowledge, the first report on such an approach to generate a mid-IR SC in optical fibers.

  14. Nonlinear compression of high energy fiber amplifier pulses in air-filled hypocycloid-core Kagome fiber.

    PubMed

    Guichard, Florent; Giree, Achut; Zaouter, Yoann; Hanna, Marc; Machinet, Guillaume; Debord, Benoît; Gérôme, Frédéric; Dupriez, Pascal; Druon, Frédéric; Hönninger, Clemens; Mottay, Eric; Benabid, Fetah; Georges, Patrick

    2015-03-23

    We report on the generation of 34 fs and 50 µJ pulses from a high energy fiber amplifier system with nonlinear compression in an air-filled hypocycloid-core Kagome fiber. The unique properties of such fibers allow bridging the gap between solid core fibers-based and hollow capillary-based post-compression setups, thereby operating with pulse energies obtained with current state-of-the-art fiber systems. The overall transmission of the compression setup is over 70%. Together with Yb-doped fiber amplifier technologies, Kagome fibers therefore appear as a promising tool for efficient generation of pulses with durations below 50 fs, energies ranging from 10 to several hundreds of µJ, and high average powers.

  15. Remote Acquisition Amplifier For 50-Ohm Cable

    NASA Technical Reports Server (NTRS)

    Amador, Jose J.

    1995-01-01

    Buffer-amplifier unit designed to drive 50-Ohm cables up to 100 ft. (30 m) long, compensating for attenuation in cables and enabling remote operation of oscilloscopes. Variable resistor provides for adjustment of gain of amplifier, such that overall gain from input terminals of amplifier to output end of cable set to unity.

  16. Spatial Light Amplifier Modulators

    NASA Technical Reports Server (NTRS)

    Eng, Sverre T.; Olsson, N. Anders

    1992-01-01

    Spatial light amplifier modulators (SLAM's) are conceptual devices that effect two-dimensional spatial modulation in optical computing and communication systems. Unlike current spatial light modulators, these provide gain. Optical processors incorporating SLAM's designed to operate in reflection or transmission mode. Each element of planar SLAM array is optical amplifier - surface-emitting diode laser. Array addressed electrically with ac modulating signals superimposed on dc bias currents supplied to lasers. SLAM device provides both desired modulation and enough optical gain to enable splitting of output signal into many optical fibers without excessive loss of power.

  17. A grid amplifier

    NASA Technical Reports Server (NTRS)

    Kim, Moonil; Weikle, Robert M., II; Hacker, Jonathan B.; Delisio, Michael P.; Rutledge, David B.; Rosenberg, James J.; Smith, R. P.

    1991-01-01

    A 50-MESFET grid amplifier is reported that has a gain of 11 dB at 3.3 GHz. The grid isolates the input from the output by using vertical polarization for the input beam and horizontal polarization for the transmitted output beam. The grid unit cell is a two-MESFET differential amplifier. A simple calibration procedure allows the gain to be calculated from a relative power measurement. This grid is a hybrid circuit, but the structure is suitable for fabrication as a monolithic wafer-scale integrated circuit, particularly at millimeter wavelengths.

  18. Impact of Energy Gain and Subsystem Characteristics on Fusion Propulsion Performance Balances

    NASA Technical Reports Server (NTRS)

    Chakrabarti, Suman; Schmidt, George R.

    2000-01-01

    Rapid transportation of large payloads and human crews to destinations throughout the solar system will require propulsion systems having not only very high exhaust velocities (I (sub sp) greater than or equal to 10 (exp 4) to 10 (exp 5) sec) but also extremely low mass-power ratios (alpha less than or equal to 10 (exp -1) kg/kW). Such low a are difficult to achieve with power-limited propulsion systems. but may be attainable with fusion and other high I (sub SP) nuclear concepts that produce energy within the propellant. The magnitude of this energy gain is of fundamental importance. It must be large enough to sustain the nuclear process while still providing a high jet power relative to the massive power-intensive subsystems associated with these types of concepts. This paper evaluates the energy gain and mass-power characteristics required for a consistent with 1-year roundtrip planetary missions ranging up to 100 AU. Central to this analysis is an equation for overall system a, which is derived from the power balance of a generalized "gain-limited" propulsion system. Results show that the gain required to achieve alpha approximately 10 (exp -1) kg/kW with foreseeable subsystem technology can vary from 50 to as high as 10,000, which is 2 to 5 orders of magnitude greater than current state-of-the art. However, order of magnitude improvements in propulsion subsystem mass and efficiency could reduce gain requirements to 10 to 1,000 - still a very challenging goal.

  19. Impact of insufficient sleep on total daily energy expenditure, food intake, and weight gain.

    PubMed

    Markwald, Rachel R; Melanson, Edward L; Smith, Mark R; Higgins, Janine; Perreault, Leigh; Eckel, Robert H; Wright, Kenneth P

    2013-04-01

    Insufficient sleep is associated with obesity, yet little is known about how repeated nights of insufficient sleep influence energy expenditure and balance. We studied 16 adults in a 14- to 15-d-long inpatient study and quantified effects of 5 d of insufficient sleep, equivalent to a work week, on energy expenditure and energy intake compared with adequate sleep. We found that insufficient sleep increased total daily energy expenditure by ∼5%; however, energy intake--especially at night after dinner--was in excess of energy needed to maintain energy balance. Insufficient sleep led to 0.82 ± 0.47 kg (±SD) weight gain despite changes in hunger and satiety hormones ghrelin and leptin, and peptide YY, which signaled excess energy stores. Insufficient sleep delayed circadian melatonin phase and also led to an earlier circadian phase of wake time. Sex differences showed women, not men, maintained weight during adequate sleep, whereas insufficient sleep reduced dietary restraint and led to weight gain in women. Our findings suggest that increased food intake during insufficient sleep is a physiological adaptation to provide energy needed to sustain additional wakefulness; yet when food is easily accessible, intake surpasses that needed. We also found that transitioning from an insufficient to adequate/recovery sleep schedule decreased energy intake, especially of fats and carbohydrates, and led to -0.03 ± 0.50 kg weight loss. These findings provide evidence that sleep plays a key role in energy metabolism. Importantly, they demonstrate physiological and behavioral mechanisms by which insufficient sleep may contribute to overweight and obesity.

  20. Impact of insufficient sleep on total daily energy expenditure, food intake, and weight gain

    PubMed Central

    Markwald, Rachel R.; Melanson, Edward L.; Smith, Mark R.; Higgins, Janine; Perreault, Leigh; Eckel, Robert H.; Wright, Kenneth P.

    2013-01-01

    Insufficient sleep is associated with obesity, yet little is known about how repeated nights of insufficient sleep influence energy expenditure and balance. We studied 16 adults in a 14- to 15-d-long inpatient study and quantified effects of 5 d of insufficient sleep, equivalent to a work week, on energy expenditure and energy intake compared with adequate sleep. We found that insufficient sleep increased total daily energy expenditure by ∼5%; however, energy intake—especially at night after dinner—was in excess of energy needed to maintain energy balance. Insufficient sleep led to 0.82 ± 0.47 kg (±SD) weight gain despite changes in hunger and satiety hormones ghrelin and leptin, and peptide YY, which signaled excess energy stores. Insufficient sleep delayed circadian melatonin phase and also led to an earlier circadian phase of wake time. Sex differences showed women, not men, maintained weight during adequate sleep, whereas insufficient sleep reduced dietary restraint and led to weight gain in women. Our findings suggest that increased food intake during insufficient sleep is a physiological adaptation to provide energy needed to sustain additional wakefulness; yet when food is easily accessible, intake surpasses that needed. We also found that transitioning from an insufficient to adequate/recovery sleep schedule decreased energy intake, especially of fats and carbohydrates, and led to −0.03 ± 0.50 kg weight loss. These findings provide evidence that sleep plays a key role in energy metabolism. Importantly, they demonstrate physiological and behavioral mechanisms by which insufficient sleep may contribute to overweight and obesity. PMID:23479616

  1. Optimization of single-step tapering amplitude and energy detuning for high-gain FELs

    NASA Astrophysics Data System (ADS)

    Li, He-Ting; Jia, Qi-Ka

    2015-01-01

    We put forward a method to optimize the single-step tapering amplitude of undulator strength and initial energy tuning of electron beam to maximize the saturation power of high gain free-electron lasers (FELs), based on the physics of longitudinal electron beam phase space. Using the FEL simulation code GENESIS, we numerically demonstrate the accuracy of the estimations for parameters corresponding to the linac coherent light source and the Tesla test facility.

  2. Multiple pass laser amplifier system

    DOEpatents

    Brueckner, Keith A.; Jorna, Siebe; Moncur, N. Kent

    1977-01-01

    A laser amplification method for increasing the energy extraction efficiency from laser amplifiers while reducing the energy flux that passes through a flux limited system which includes apparatus for decomposing a linearly polarized light beam into multiple components, passing the components through an amplifier in delayed time sequence and recombining the amplified components into an in phase linearly polarized beam.

  3. Body composition and energy and protein nutritional requirements for weight gain in Santa Ines crossbred sheep.

    PubMed

    Cutrim, Darley Oliveira; Alves, Kaliandra Souza; dos Santos, Rozilda da Conceição; da Mata, Vanessa Jaqueline Veloso; Oliveira, Luis Rennan Sampaio; Gomes, Daiany Íris; Mezzomo, Rafael

    2016-03-01

    This study was conducted to evaluate the body composition and net energy and protein requirements for weight gain in Santa Ines crossbred sheep. Thirty woolless, 4-month-old, castrated male sheep with an initial body weight (BW) of 19.77 ± 1.99 kg were used. Six animals (reference group) were slaughtered after the adaptation period to estimate empty body weight (EBW) and initial body composition. The remaining 24 animals were randomly distributed among four treatments (experimental diets) and slaughtered when they reached 30.24 ± 0.78 kg BW. The body composition ranged from 162.88 to 160.4 g protein/kg EBW, from 59.49 to 164.23 g fat/kg EBW and from 1.54 to 2.46 Mcal energy/kg EBW for animals ranging between 20 and 30 kg BW. The net energy requirement for Santa Ines crossbred sheep linearly increased when BW increased from 20 to 30 kg. Within that same weight range, the net protein requirement for weight gain in sheep was constant, ranging from 12.61 to 12.42 g/day to 100 g daily weight gain.

  4. First Lasing of the Regenerative Amplifier FEL

    SciTech Connect

    Nguyen, D.C.; Sheffield, R.L.; Fortang, C.M.; Goldstein, J.C.; Kinross-Wright, J.M.; Ebrahim, N.A.

    1998-08-17

    The Regenerative Amplifier Free-Electron Laser (RAFEL) is a high-gain RF-linac FEL capable of producing high optical power from a compact design. The combination of a high-gain and small optical feedback enables the FEL to reach saturation and produce a high optical power and high extraction efficiency without risk of optical damage to the mirrors. This paper summarizes the first lasing of the Regenerative Amplifier FEL and describes recent experimental results. The highest optical energy achieved thus far at 16.3 {micro}m is 1.7 J over an 9-{micro}s macropulse, corresponding to an average power during the macropulse of 190 kW. They deduce an energy of 1.7 mJ in each 16 ps micropulse, corresponding to a peak power of 110 MW.

  5. Ignition feedback regenerative free electron laser (FEL) amplifier

    DOEpatents

    Kim, Kwang-Je; Zholents, Alexander; Zolotorev, Max

    2001-01-01

    An ignition feedback regenerative amplifier consists of an injector, a linear accelerator with energy recovery, and a high-gain free electron laser amplifier. A fraction of the free electron laser output is coupled to the input to operate the free electron laser in the regenerative mode. A mode filter in this loop prevents run away instability. Another fraction of the output, after suitable frequency up conversion, is used to drive the photocathode. An external laser is provided to start up both the amplifier and the injector, thus igniting the system.

  6. Health and productivity gains from better indoor environments and their relationship with building energy efficiency

    SciTech Connect

    Fisk, William J.

    2000-04-01

    Theoretical considerations and empirical data suggest that existing technologies and procedures can improve indoor environments in a manner that significantly increases productivity and health. Existing literature contains moderate to strong evidence that characteristics of buildings and indoor environments significantly influence rates of communicable respiratory illness, allergy and asthma symptoms, sick building symptoms, and worker performance. While there is considerable uncertainty in the estimates of the magnitudes of productivity gains that may be obtained by providing better indoor environments, the projected gains are very large. For the U.S., the estimated potential annual savings and productivity gains are $6 to $14 billion from reduced respiratory disease, $2 to $4 billion from reduced allergies and asthma, $10 to $30 billion from reduced sick building syndrome symptoms, and $20 to $160 billion from direct improvements in worker performance that are unrelated to health. Productivity gains that are quantified and demonstrated could serve as a strong stimulus for energy efficiency measures that simultaneously improve the indoor environment.

  7. 9 GeV energy gain in a beam-driven plasma wakefield accelerator

    DOE PAGES

    Litos, M.; Adli, E.; Allen, J. M.; An, W.; Clarke, C. I.; Corde, S.; Clayton, C. E.; Frederico, J.; Gessner, S. J.; Green, S. Z.; et al

    2016-02-15

    An electron beam has gained a maximum energy of 9 GeV per particle in a 1.3 m-long electron beam-driven plasma wakefield accelerator. The amount of charge accelerated in the spectral peak was 28.3 pC, and the root-mean-square energy spread was 5.0%. The mean accelerated charge and energy gain per particle of the 215 shot data set was 115 pC and 5.3 GeV, respectively, corresponding to an acceleration gradient of 4.0 GeV m-1 at the spectral peak. Moreover, the mean energy spread of the data set was 5.1%. Our results are consistent with the extrapolation of the previously reported energy gainmore » results using a shorter, 36 cm-long plasma source to within 10%, evincing a non-evolving wake structure that can propagate distances of over a meter in length. Wake-loading effects were evident in the data through strong dependencies observed between various spectral properties and the amount of accelerated charge.« less

  8. When and how does a prominence-like jet gain kinetic energy?

    SciTech Connect

    Liu, Jiajia; Liu, Rui; Zhang, Quanhao; Liu, Kai; Shen, Chenglong; Wang, S.; Wang, Yuming

    2014-02-20

    A jet is a considerable amount of plasma being ejected from the chromosphere or lower corona into the higher corona and is a common phenomenon. Usually, a jet is triggered by a brightening or a flare, which provides the first driving force to push plasma upward. In this process, magnetic reconnection is thought to be the mechanism to convert magnetic energy into thermal, nonthermal, and kinetic energies. However, most jets could reach an unusual high altitude and end much later than the end of its associated flare. This fact implies that there is another way to continuously transfer magnetic energy into kinetic energy even after the reconnection. The picture described above is well known in the community, but how and how much magnetic energy is released through a way other than reconnection is still unclear. By studying a prominence-like jet observed by SDO/AIA and STEREO-A/EUVI, we find that the continuous relaxation of the post-reconnection magnetic field structure is an important process for a jet to climb up higher than it could through only reconnection. The kinetic energy of the jet gained through the relaxation is 1.6 times that gained from the reconnection. The resultant energy flux is hundreds of times larger than the flux required for the local coronal heating, suggesting that such jets are a possible source to keep the corona hot. Furthermore, rotational motions appear all the time during the jet. Our analysis suggests that torsional Alfvén waves induced during reconnection could not be the only mechanism to release magnetic energy and drive jets.

  9. SirT1 gain-of-function increases energy efficiency and prevents diabetes in mice

    PubMed Central

    Banks, Alexander S.; Kon, Ning; Knight, Colette; Matsumoto, Michihiro; Gutiérrez-Juárez, Roger; Rossetti, Luciano; Gu, Wei; Accili, Domenico

    2011-01-01

    Summary In yeast, worms and flies, an extra copy of the gene encoding the Sirtuin Sir2 increases metabolic efficiency, as does administration of polyphenols like resveratrol, thought to act through Sirtuins. But evidence that Sirtuin gain-of-function results in increased metabolic efficiency in mammals is limited. We generated transgenic mice with moderate overexpression of SirT1, designed to mimic the Sirtuin gain-of-function that improves metabolism in C.elegans. These mice exhibit normal insulin sensitivity, but decreased food intake and locomotor activity, resulting in decreased energy expenditure. However, in various models of insulin resistance and diabetes, SirT1 transgenics display improved glucose tolerance due to decreased hepatic glucose production and increased adiponectin levels, without changes in body weight or composition. We conclude that SirT1 gain-of-function primes the organism for metabolic adaptation to insulin resistance, increasing hepatic insulin sensitivity and decreasing whole-body energy requirements. These findings have important implications for Sirtuin-based therapies in humans. PMID:18840364

  10. Universal signal conditioning amplifier

    NASA Technical Reports Server (NTRS)

    Medelius, Pedro J.; Hallberg, Carl; Cecil, Jim

    1994-01-01

    A state-of-the-art instrumentation amplifier capable of being used with most types of transducers has been developed at the Kennedy Space Center. This Universal Signal Conditioning Amplifier (USCA) can eliminate costly measurement setup item and troubleshooting, improve system reliability and provide more accurate data than conventional amplifiers. The USCA can configure itself for maximum resolution and accuracy based on information read from a RAM chip attached to each transducer. Excitation voltages or current are also automatically configured. The amplifier uses both analog and digital state-of-the-art technology with analog-to-digital conversion performed in the early stages in order to minimize errors introduced by offset and gain drifts in the analog components. A dynamic temperature compensation scheme has been designed to achieve and maintain 12-bit accuracy of the amplifier from 0 to 70 C. The digital signal processing section allows the implementation of digital filters up to 511th order. The amplifier can also perform real-time linearizations up to fourth order while processing data at a rate of 23.438 kS/s. Both digital and analog outputs are available from the amplifier.

  11. Proportional damping approximation using the energy gain and simultaneous perturbation stochastic approximation

    NASA Astrophysics Data System (ADS)

    Sultan, Cornel

    2010-10-01

    The design of vector second-order linear systems for accurate proportional damping approximation is addressed. For this purpose an error system is defined using the difference between the generalized coordinates of the non-proportionally damped system and its proportionally damped approximation in modal space. The accuracy of the approximation is characterized using the energy gain of the error system and the design problem is formulated as selecting parameters of the non-proportionally damped system to ensure that this gain is sufficiently small. An efficient algorithm that combines linear matrix inequalities and simultaneous perturbation stochastic approximation is developed to solve the problem and examples of its application to tensegrity structures design are presented.

  12. Goodyear Tire Plant Gains Traction on Energy Savings After Completing Save Energy Now Assessment (Revised)

    SciTech Connect

    Not Available

    2008-04-01

    This DOE Save Energy Now case study describes how the Goodyear Tire Plant saves approx. 93,000 MMBtu and $875,000 annually after increasing steam system energy efficiency in the Union City, TN, plant.

  13. Goodyear Tire Plant Gains Traction on Energy Savings After Completing Save Energy Now Assessment

    SciTech Connect

    2008-04-01

    This DOE Save Energy Now case study describes how the Goodyear Tire Plant saves approx. 93,000 MMBtu and $875,000 annually after increasing steam system energy efficiency in the Union City, TN, plant.

  14. Multi-stage FEL amplifier with diaphragm focusing line as direct energy driver for inertial confinement fusion

    SciTech Connect

    Saldin, E.L.; Schneidmiller, E.A.; Ulyanov, Yu.N.

    1995-12-31

    An FEL based energy driver for Inertial Confinement Fusion (ICF) is proposed. The key element of the scheme is free electron laser system. Novel technical solutions, namely, using of multichannel, multi-stage FEL amplifier with diaphragm focusing line, reveal a possibility to construct the FEL system operating at radiation wavelength {lambda} = 0.5 {mu}m and providing flush energy E = 1 MJ and brightness 4 x 10{sup 22} W cm{sup -2} sr{sup -1} within steering pulse duration {tau} {approximately} 0.1-2 ns. Total energy efficiency of the proposed ICF energy driver is about of 11% and repetition rate is 40 Hz. It is shown that the FEL based ICF energy driver may be constructed at the present level of accelerator technique R& D.

  15. Association of Proton Pump Inhibitor (PPI) Use with Energy Intake, Physical Activity, and Weight Gain

    PubMed Central

    Czwornog, Jennifer L.; Austin, Gregory L.

    2015-01-01

    Studies suggest proton pump inhibitor (PPI) use impacts body weight regulation, though the effect of PPIs on energy intake, energy extraction, and energy expenditure is unknown. We used data on 3073 eligible adults from the National Health and Nutrition Examination Survey (NHANES). Medication use, energy intake, diet composition, and physical activity were extracted from NHANES. Multivariate regression models included confounding variables. Daily energy intake was similar between PPI users and non-users (p = 0.41). Diet composition was similar between the two groups, except that PPI users consumed a slightly greater proportion of calories from fat (34.5% vs. 33.2%; p = 0.02). PPI users rated themselves as being as physically active as their age/gender-matched peers and reported similar frequencies of walking or biking. However, PPI users were less likely to have participated in muscle-strengthening activities (OR: 0.53; 95% CI: 0.30–0.95). PPI users reported similar sedentary behaviors to non-users. Male PPI users had an increase in weight (of 1.52 ± 0.59 kg; p = 0.021) over the previous year compared to non-users, while female PPI users had a non-significant increase in weight. The potential mechanisms for PPI-associated weight gain are unclear as we did not find evidence for significant differences in energy intake or markers of energy expenditure. PMID:26492268

  16. Operational Amplifiers.

    ERIC Educational Resources Information Center

    Foxcroft, G. E.

    1986-01-01

    Addresses the introduction of low cost equipment into high school and college physical science classes. Examines the properties of an "ideal" operational amplifier and discusses how it might be used under saturated and non-saturated conditions. Notes the action of a "real" operational amplifier. (TW)

  17. Amplifier Distortion

    NASA Astrophysics Data System (ADS)

    Keeports, David

    2006-12-01

    By definition, a high fidelity amplifier's instantaneous output voltage is directly proportional to its instantaneous input voltage. While high fidelity is generally valued in the amplification of recorded music, nonlinearity, also known as distortion, is desirable in the amplification of some musical instruments. In particular, guitar amplifiers exploit nonlinearity to increase both the harmonic content and sustain of a guitar's sound. I will discuss how both modifications in sound result from saturation of triode tubes and transistors. Additionally, I will describe the difference in the symmetry of saturation curves for transistors and tubes and the reason why tube guitar amplifiers are generally considered to be superior to solid-state amplifiers. Finally, I will discuss attempts to use solid-state electronics to replicate the sound of tube amplifiers.

  18. Experimental demonstration of nanosecond optical parametric amplifier in YCOB

    NASA Astrophysics Data System (ADS)

    Li, Huanhuan; Li, Shiguang; Ma, Xiuhua; Zhu, Xiaolei; Tu, Xiaoniu; Zheng, Yanqing

    2013-05-01

    In this letter, we provide the experimental demonstration of nanosecond optical parametric amplification in YCOB centered at 1572 nm. The optical gain characterization of YCOB crystal was simulated and tested in this optical parametric conversion. A saturated OPA gain of 2.4 was obtained. The results confirm that YCOB crystal has the potential to be used in a high-energy cascade of MOPA parametric amplifiers at 1572 nm.

  19. Innate olfactory preferences for flowers matching proboscis length ensure optimal energy gain in a hawkmoth.

    PubMed

    Haverkamp, Alexander; Bing, Julia; Badeke, Elisa; Hansson, Bill S; Knaden, Markus

    2016-01-01

    Cost efficient foraging is of especial importance for animals like hawkmoths or hummingbirds that are feeding 'on the wing', making their foraging energetically demanding. The economic decisions made by these animals have a strong influence on the plants they pollinate and floral volatiles are often guiding these decisions. Here we show that the hawkmoth Manduca sexta exhibits an innate preference for volatiles of those Nicotiana flowers, which match the length of the moth's proboscis. This preference becomes apparent already at the initial inflight encounter, with the odour plume. Free-flight respiration analyses combined with nectar calorimetry revealed a significant caloric gain per invested flight energy only for preferred-matching-flowers. Our data therefore support Darwin's initial hypothesis on the coevolution of flower length and moth proboscis. We demonstrate that this interaction is mediated by an adaptive and hardwired olfactory preference of the moth for flowers offering the highest net-energy reward. PMID:27173441

  20. Innate olfactory preferences for flowers matching proboscis length ensure optimal energy gain in a hawkmoth

    PubMed Central

    Haverkamp, Alexander; Bing, Julia; Badeke, Elisa; Hansson, Bill S.; Knaden, Markus

    2016-01-01

    Cost efficient foraging is of especial importance for animals like hawkmoths or hummingbirds that are feeding ‘on the wing', making their foraging energetically demanding. The economic decisions made by these animals have a strong influence on the plants they pollinate and floral volatiles are often guiding these decisions. Here we show that the hawkmoth Manduca sexta exhibits an innate preference for volatiles of those Nicotiana flowers, which match the length of the moth's proboscis. This preference becomes apparent already at the initial inflight encounter, with the odour plume. Free-flight respiration analyses combined with nectar calorimetry revealed a significant caloric gain per invested flight energy only for preferred—matching—flowers. Our data therefore support Darwin's initial hypothesis on the coevolution of flower length and moth proboscis. We demonstrate that this interaction is mediated by an adaptive and hardwired olfactory preference of the moth for flowers offering the highest net-energy reward. PMID:27173441

  1. Universal signal conditioning amplifier

    NASA Technical Reports Server (NTRS)

    Larson, William E.; Hallberg, Carl; Medelius, Pedro J.

    1994-01-01

    Engineers at NASA's Kennedy Space Center have designed a signal conditioning amplifier which automatically matches itself to almost any kind of transducer. The product, called Universal Signal Conditioning Amplifier (USCA), uses state-of-the-art technologies to deliver high accuracy measurements. USCA's features which can be either programmable or automated include: voltage, current, or pulsed excitation, unlimited resolution gain, digital filtering and both analog and digital output. USCA will be used at Kennedy Space Center's launch pads for environmental measurements such as vibrations, strains, temperatures and overpressures. USCA is presently being commercialized through a co-funded agreement between NASA, the State of Florida, and Loral Test and Information Systems, Inc.

  2. Experimental and theoretical investigation of a multipass, plane mirror, femtosecond dye laser amplifier

    NASA Astrophysics Data System (ADS)

    Wittmann, M.; Penzkofer, A.; Gössl, G.

    1995-08-01

    Femtosecond pulses of a passive mode-locked Rhodamine-6G dye laser are amplified in a double-stage, three-pass, plane mirror, Sulforhodamine-101 amplifier system. Saturable filters (Schott glass RG645 and Malachite Green) are used to suppress amplified spontaneous emission. Input pulses of 110-fs duration are broadened to 240 fs in the amplifier system and recompressed to 75 fs in a prism-pair compressor. Using a 20-Hz Q-switched Nd:YAG pump laser of 50-mJ second-harmonic output energy, we obtained amplified and recompressed pulses of 180- mu J energy at 625 nm starting with 40-pJ input pulses. The small-signal amplification dynamics is studied numerically. Relevant gain dye and saturable filter parameters are derived. The influence of amplified spontaneous emission is analyzed.

  3. High-Frequency Power Gain in the Mammalian Cochlea

    NASA Astrophysics Data System (ADS)

    Maoiléidigh, Dáibhid Ó.; Hudspeth, A. J.

    2011-11-01

    Amplification in the mammalian inner ear is thought to result from a nonlinear active process known as the cochlear amplifier. Although there is much evidence that outer hair cells (OHCs) play a central role in the cochlear amplifier, the mechanism of amplification remains uncertain. In non-mammalian ears hair bundles can perform mechanical work and account for the active process in vitro, yet in the mammalian cochlea membrane-based electromotility is required for amplification in vivo. A key issue is how OHCs conduct mechanical power amplification at high frequencies. We present a physical model of a segment of the mammalian cochlea that can amplify the power of external signals. In this representation both electromotility and active hair-bundle motility are required for mechanical power gain at high frequencies. We demonstrate how the endocochlear potential, the OHC resting potential, Ca2+ gradients, and ATP-fueled myosin motors serve as the energy sources underlying mechanical power gain in the cochlear amplifier.

  4. Room temperature broadband terahertz gains in graphene heterostructures based on inter-layer radiative transitions

    SciTech Connect

    Tang, Linlong; Du, Jinglei; Shi, Haofei Wei, Dongshan; Du, Chunlei

    2014-10-15

    We exploit inter-layer radiative transitions to provide gains to amplify terahertz waves in graphene heterostructures. This is achieved by properly doping graphene sheets and aligning their energy bands so that the processes of stimulated emissions can overwhelm absorptions. We derive an expression for the gain estimation and show the gain is insensitive to temperature variation. Moreover, the gain is broadband and can be strong enough to compensate the free carrier loss, indicating graphene based room temperature terahertz lasers are feasible.

  5. Yb:YAG master oscillator power amplifier for remote wind sensing.

    PubMed

    Sridharan, A K; Saraf, S; Byer, R L

    2007-10-20

    We have demonstrated key advances towards a solid-state laser amplifier at 1.03 microm for global remote wind sensing. We designed end-pumped zig-zag slab amplifiers to achieve high gain. We overcame parasitic oscillation limitations using claddings on the slab's total internal reflection (TIR) and edge surfaces to confine the pump and signal light by TIR and allow leakage of amplified spontaneous emission rays that do not meet the TIR condition. This enables e3, e5, and e8 single-, double-, and quadruple-pass small-signal amplifier gain, respectively. The stored energy density is 15.6 J/cm3, a record for a laser-diode end-pumped Yb:YAG zig-zag slab amplifier.

  6. Multistaged stokes injected Raman capillary waveguide amplifier

    DOEpatents

    Kurnit, Norman A.

    1980-01-01

    A multistaged Stokes injected Raman capillary waveguide amplifier for providing a high gain Stokes output signal. The amplifier uses a plurality of optically coupled capillary waveguide amplifiers and one or more regenerative amplifiers to increase Stokes gain to a level sufficient for power amplification. Power amplification is provided by a multifocused Raman gain cell or a large diameter capillary waveguide. An external source of CO.sub.2 laser radiation can be injected into each of the capillary waveguide amplifier stages to increase Raman gain. Devices for injecting external sources of CO.sub.2 radiation include: dichroic mirrors, prisms, gratings and Ge Brewster plates. Alternatively, the CO.sub.2 input radiation to the first stage can be coupled and amplified between successive stages.

  7. When and How Does A Prominence-like Jet Gain Kinetic Energy?

    NASA Astrophysics Data System (ADS)

    Liu, J.; Wang, Y.; Zhang, Q.; Liu, K.; Shen, C.

    2013-12-01

    Usually a jet is triggered by a brightening or flare, which provides the first driving force. In this process, magnetic reconnection is thought to be the mechanism to convert magnetic energy into jet's kinetic energy. However, most jets could reach an unusual height and end far after the end of its associated flare. This fact implies another way continuously transferring magnetic energy into kinetic energy after the reconnection. This picture is well known, but how and how much magnetic energy is released through the way other than the reconnection is still unclear. Here, through studying a prominence-like jet observed by AIA and EUVI, we reveal the continuously relaxation of post-reconnection magnetic field structure is an important process to support a jet. The kinetic energy of the jet gained through this way is 1.6 times of that from the reconnection. The resultant energy flux is hundreds of the required for local coronal heating, suggesting such jets are a possible source to keep corona hot. Rotational motion appearing all the time during the jet implies the torsional Alfven wave induced during reconnection is not the only mechanism to release magnetic energy and drive jets. Left column: Difference images taken by SDO/AIA at 304A passband. The FOV of the images is 430"x430". Right column: Difference images from STEREO-A/EUVI at the same passband. The FOV is 450"x450". Since STEREO-A was 120 degree apart away from SDO on 2012 July 8, the SDO limb event right happened ondisk in the view of STEREO-A. Black and red solid curve: integrated intensity over the cross-section of the jet at different height at 19:11 UT and 19:47 UT, respectively. The two horizontal dashed lines are their average values. Black and red dashed curve with asterisks: axial speed with errors of the eight sub-jets shown in Figure 3 at 19:11 UT and 19:47 UT , respectively. Blue dashed curve with diamonds: angular speed with errors of the jet at different height.

  8. Field effect transistors improve buffer amplifier

    NASA Technical Reports Server (NTRS)

    1967-01-01

    Unity gain buffer amplifier with a Field Effect Transistor /FET/ differential input stage responds much faster than bipolar transistors when operated at low current levels. The circuit uses a dual FET in a unity gain buffer amplifier having extremely high input impedance, low bias current requirements, and wide bandwidth.

  9. Electrospun amplified fiber optics.

    PubMed

    Morello, Giovanni; Camposeo, Andrea; Moffa, Maria; Pisignano, Dario

    2015-03-11

    All-optical signal processing is the focus of much research aiming to obtain effective alternatives to existing data transmission platforms. Amplification of light in fiber optics, such as in Erbium-doped fiber amplifiers, is especially important for efficient signal transmission. However, the complex fabrication methods involving high-temperature processes performed in a highly pure environment slow the fabrication process and make amplified components expensive with respect to an ideal, high-throughput, room temperature production. Here, we report on near-infrared polymer fiber amplifiers working over a band of ∼20 nm. The fibers are cheap, spun with a process entirely carried out at room temperature, and shown to have amplified spontaneous emission with good gain coefficients and low levels of optical losses (a few cm(-1)). The amplification process is favored by high fiber quality and low self-absorption. The found performance metrics appear to be suitable for short-distance operations, and the large variety of commercially available doping dyes might allow for effective multiwavelength operations by electrospun amplified fiber optics.

  10. Electrospun Amplified Fiber Optics

    PubMed Central

    2015-01-01

    All-optical signal processing is the focus of much research aiming to obtain effective alternatives to existing data transmission platforms. Amplification of light in fiber optics, such as in Erbium-doped fiber amplifiers, is especially important for efficient signal transmission. However, the complex fabrication methods involving high-temperature processes performed in a highly pure environment slow the fabrication process and make amplified components expensive with respect to an ideal, high-throughput, room temperature production. Here, we report on near-infrared polymer fiber amplifiers working over a band of ∼20 nm. The fibers are cheap, spun with a process entirely carried out at room temperature, and shown to have amplified spontaneous emission with good gain coefficients and low levels of optical losses (a few cm–1). The amplification process is favored by high fiber quality and low self-absorption. The found performance metrics appear to be suitable for short-distance operations, and the large variety of commercially available doping dyes might allow for effective multiwavelength operations by electrospun amplified fiber optics. PMID:25710188

  11. Laser amplifier based on a neodymium glass rod 150 mm in diameter

    SciTech Connect

    Shaykin, A A; Fokin, A P; Soloviev, A A; Kuzmin, A A; Shaikin, I A; Burdonov, K F; Khazanov, E A; Charukhchev, A V

    2014-05-30

    A unique large-aperture neodymium glass rod amplifier is experimentally studied. The small-signal gain distribution is measured at different pump energies. The aperture-averaged gain is found to be 2.3. The stored energy (500 J), the maximum possible pump pulse repetition rate, and the depolarisation in a single pulse and in a series of pulses with a repetition rate of one pulse per five minutes are calculated based on the investigations performed. It is shown that the use of this amplifier at the exit of the existing laser can increase the output pulse energy from 300 to 600 J. (lasers)

  12. One long and two short pumping pulses control for plasma x-ray amplifier optimization.

    PubMed

    Cojocaru, Gabriel V; Ungureanu, Razvan G; Banici, Romeo A; Ursescu, Daniel; Guilbaud, Olivier; Delmas, Olivier; Le Marec, Andrea; Neveu, Olivier; Demailly, Julien; Pittman, Moana; Kazamias, Sophie; Daboussi, Sameh; Cassou, Kevin; Li, Lu; Klisnick, Annie; Zeitoun, Phillipe; Ros, David

    2016-06-27

    Development of efficient soft x-ray laser plasma amplifiers adapted to seeded operation, requires a better control over amplifier transverse spatial extent, brilliance control and gain lifetime. Here it is shown that pumping the plasma amplifier with one long and two short pump pulses (1L2S) provides advantages in terms of control for the specified parameters in the case of Ni-like Ag x-ray laser. Also, significant tunability of the gain lifetime in the 1L2S pumping scheme for Ne-like Ti x-ray laser is observed. Direct harmonics seeding and chirped harmonics seeding amplification approaches may benefit from the control of the gain lifetime, in terms of better use of the pump energy and as a way to reduce the amplified spontaneous emission in x-ray lasers. PMID:27410582

  13. LOGARITHMIC AMPLIFIER

    DOEpatents

    Wade, E.J.; Stone, R.S.

    1959-03-10

    Electronic,amplifier circuits, especially a logai-ithmic amplifier characterizxed by its greatly improved strability are discussed. According to the in ention, means are provided to feed bach the output valtagee to a diode in the amplifier input circuit, the diode being utilized to produce the logarithmic characteristics. The diode is tics, The diode isition therewith and having its filament operated from thc same source s the filament of the logarithmic diode. A bias current of relatively large value compareii with the signal current is continuously passed through the compiting dioie to render the diode insensitivy to variations in the signal current. by this odes kdu to variaelled, so that the stability of the amlifier will be unimpaired.

  14. Power neodymium-glass amplifier of a repetitively pulsed laser

    SciTech Connect

    Vinogradov, Aleksandr V; Gaganov, V E; Garanin, Sergey G; Zhidkov, N V; Krotov, V A; Martynenko, S P; Pozdnyakov, E V; Solomatin, I I

    2011-11-30

    A neodymium-glass diode-pumped amplifier with a zigzag laser beam propagation through the active medium was elaborated; the amplifier is intended for operation in a repetitively pulsed laser. An amplifier unit with an aperture of 20 Multiplication-Sign 25 mm and a {approx}40-cm long active medium was put to a test. The energy of pump radiation amounts to 140 J at a wavelength of 806 nm for a pump duration of 550 {mu}s. The energy parameters of the amplifier were experimentally determined: the small-signal gain per pass {approx}3.2, the linear gain {approx}0.031 cm{sup -1} with a nonuniformity of its distribution over the aperture within 15%, the stored energy of 0.16 - 0.21 J cm{sup -3}. The wavefront distortions in the zigzag laser-beam propagation through the active element of the amplifier did not exceed 0.4{lambda} ({lambda} = 0.63 {mu}m is the probing radiation wavelength).

  15. Power neodymium-glass amplifier of a repetitively pulsed laser

    NASA Astrophysics Data System (ADS)

    Vinogradov, Aleksandr V.; Gaganov, V. E.; Garanin, Sergey G.; Zhidkov, N. V.; Krotov, V. A.; Martynenko, S. P.; Pozdnyakov, E. V.; Solomatin, I. I.

    2011-11-01

    A neodymium-glass diode-pumped amplifier with a zigzag laser beam propagation through the active medium was elaborated; the amplifier is intended for operation in a repetitively pulsed laser. An amplifier unit with an aperture of 20 × 25 mm and a ~40-cm long active medium was put to a test. The energy of pump radiation amounts to 140 J at a wavelength of 806 nm for a pump duration of 550 μs. The energy parameters of the amplifier were experimentally determined: the small-signal gain per pass ~3.2, the linear gain ~0.031 cm-1 with a nonuniformity of its distribution over the aperture within 15%, the stored energy of 0.16 — 0.21 J cm-3. The wavefront distortions in the zigzag laser-beam propagation through the active element of the amplifier did not exceed 0.4λ (λ = 0.63 μm is the probing radiation wavelength).

  16. A near-quantum-limited Josephson traveling-wave parametric amplifier.

    PubMed

    Macklin, C; O'Brien, K; Hover, D; Schwartz, M E; Bolkhovsky, V; Zhang, X; Oliver, W D; Siddiqi, I

    2015-10-16

    Detecting single-photon level signals—carriers of both classical and quantum information—is particularly challenging for low-energy microwave frequency excitations. Here we introduce a superconducting amplifier based on a Josephson junction transmission line. Unlike current standing-wave parametric amplifiers, this traveling wave architecture robustly achieves high gain over a bandwidth of several gigahertz with sufficient dynamic range to read out 20 superconducting qubits. To achieve this performance, we introduce a subwavelength resonant phase-matching technique that enables the creation of nonlinear microwave devices with unique dispersion relations. We benchmark the amplifier with weak measurements, obtaining a high quantum efficiency of 75% (70% including noise added by amplifiers following the Josephson amplifier). With a flexible design based on compact lumped elements, this Josephson amplifier has broad applicability to microwave metrology and quantum optics.

  17. Energy gains predict the distribution of plains bison across populations and ecosystems.

    PubMed

    Babin, Jean-Sébastien; Fortin, Daniel; Wilmshurst, John F; Fortin, Marie-Eve

    2011-01-01

    Developing tools that help predict animal distribution in the face of environmental change is central to understanding ecosystem function, but it remains a significant ecological challenge. We tested whether a single foraging currency could explain bison (Bison bison) distribution in dissimilar environments: a largely forested environment in Prince Albert National Park (Saskatchewan, Canada) and a prairie environment in Grasslands National Park (Saskatchewan, Canada). We blended extensive behavioral observations, relocations of radio-collared bison, vegetation surveys, and laboratory analyses to spatially link bison distribution in the two parks and expected gains for different nutritional currencies. In Prince Albert National Park, bison were more closely associated with the distribution of plants that maximized their instantaneous energy intake rate (IDE) than their daily intake of digestible energy. This result reflected both bison's intensity of use of individual meadows and their selection of foraging sites within meadows. On this basis, we tested whether IDE could explain the spatial dynamics of bison reintroduced to Grasslands National Park. As predicted, bison distribution in this park best matched spatial patterns of plants offering rapid IDE rather than rapid sodium intake, phosphorus intake, or daily intake of digestible energy. Because the two study areas have very different plant communities, a phenomenological model of resource selection developed in one area could not be used to predict animal distribution in the other. We were able, however, to successfully infer the distribution of bison from their foraging objective. This consistency in foraging currency across ecosystems and populations provides a strong basis for forecasting animal distributions in novel and dynamic environments.

  18. Amplified Policymaking

    ERIC Educational Resources Information Center

    Prince, Katherine; Woempner, Carolyn

    2010-01-01

    This brief examines the policy implications of two drivers of change presented in the "2020 Forecast: Creating the Future of Learning"-- Pattern Recognition and Amplified Organization. These drivers point toward a series of cultural shifts and illuminate how we are developing new ways of organizing, constructing, and managing knowledge.…

  19. Characterization of SLUG microwave amplifiers

    NASA Astrophysics Data System (ADS)

    Hoi, I.-C.; Zhu, S.; Thorbeck, T.; McDermott, R.; Mutus, J.; Jeffrey, E.; Barends, R.; Chen, Y.; Roushan, P.; Fowler, A.; Sank, D.; White, T.; Campbell, B.; Chen, Z.; Chiaro, B.; Dunsworth, A.; Kelly, J.; Megrant, A.; Neill, C.; O'Malley, P. J. J.; Quintana, C.; Vainsencher, A.; Wenner, J.; Martinis, J. M.

    2015-03-01

    With the rapid growth of superconducting circuits quantum technology, a near quantum-limited amplifier at GHz frequency is needed to enable high fidelity measurements. We describe such an amplifier, the SQUID based, superconducting low inductance undulatory galvanometer (SLUG) amplifier. We measure the full scattering matrix of the SLUG. In particular, we measure both forward and reverse gain, as well as reflection. We see 15dB forward gain with added noise from one quanta to several quanta. The -1 dB compression point is around -95 dBm, about two orders of magnitude higher than that of typical Josephson parametric amplifiers. With these properties, SLUG is well suited for the high fidelity, simultaneous multiplexed readout of superconducting qubits.

  20. Influence of Multi-Cascaded Semiconductor Optical Amplifiers on the Signal in an Energy-Efficient System

    NASA Astrophysics Data System (ADS)

    Chen, Xiao-Yong; Sheng, Xin-Zhi; Wu, Chong-Qing

    2012-01-01

    Signal impairment is experimentally studied by using the extinction ratio (ER), error bit rate (BER) and optical spectrum in a three-cascaded semiconductor optical amplifier (SOA) setup. The signal with the ER of 13 dB and BER of < 10-9 is achieved after the signal passing through the cascaded SOAs. With the results obtained from the experiment, we confirm that the three-cascaded SOAs used to compensate for power in the optical transmission can be accepted. This experimental result also offers the possibility of achieving a higher throughput of multiplane architecture by exploiting three switching domains instead of two switching domains in the energy-efficient design of a scalable optical multi-plane interconnection architecture. The space switches in output ports of multi-plane interconnection architecture can be improved to N = 32 × 32 × 32 = 32768.

  1. Low Cost RF Amplifier for Community TV

    NASA Astrophysics Data System (ADS)

    Ch, Syafaruddin; Sasongko, Sudi Mariyanto Al; Made Budi Suksmadana, I.; Mustiko Okta Muvianto, Cahyo; Ariessaputra, Suthami

    2016-01-01

    he capability of television to deliver audio video makes this media become the most effective method to spread information. This paper presents an experiment of RF amplifier design having low-cost design and providing sufficient RF power particularly for community television. The RF amplifier consists of two stages of amplifier. The first stage amplifier was used to leverage output of TV modulator from 11dBm to enable to drive next stage amplifier. CAD simulation and fabrication were run to reach optimum RF amplifier design circuit. The associated circuit was made by determining stability circle, stability gain, and matching impedance. Hence, the average power of first stage RF amplifier was 24.68dBm achieved. The second stage used RF modules which was ready match to 50 ohm for both input and output port. The experiment results show that the RF amplifier may operate at frequency ranging from 174 to 230MHz. The average output power of the 2nd stage amplifier was 33.38 Watt with the overall gain of 20.54dB. The proposed RF amplifier is a cheap way to have a stable RF amplifier for community TV. The total budget for the designed RF amplifier is only a 1/5 compared to local design of final TV amplifier.

  2. High energy, single-polarized, single-transverse-mode, nanosecond pulses generated by a multi-stage Yb-doped photonic crystal fiber amplifier

    NASA Astrophysics Data System (ADS)

    Shen, Xinglai; Zhang, Haitao; Hao, He; Li, Dan; Li, Qinghua; Yan, Ping; Gong, Mali

    2015-06-01

    We report the construction of a cascaded fiber amplifier where a 40-μm-core-diameter photonic crystal fiber is utilized in the main amplifier stage. Single-transverse-mode, linearly-polarized, 7.5 ns pulses with 1.5 mJ energy, 123 kW peak power and 10 nm spectral bandwidth centered at 1062 nm are generated. To our knowledge, the pulse energy we obtain is the highest from 40-μm-core-diameter photonic crystal fibers, and also the highest for long pulses (>1 ns) with linear polarization and single transverse mode.

  3. Dietary protein content alters energy expenditure and composition of the mass gain in grizzly bears (Ursus arctos horribilis).

    PubMed

    Felicetti, Laura A; Robbins, Charles T; Shipley, Lisa A

    2003-01-01

    Many fruits contain high levels of available energy but very low levels of protein and other nutrients. The discrepancy between available energy and protein creates a physiological paradox for many animals consuming high-fruit diets, as they will be protein deficient if they eat to meet their minimum energy requirement. We fed young grizzly bears both high-energy pelleted and fruit diets containing from 1.6% to 15.4% protein to examine the role of diet-induced thermogenesis and fat synthesis in dealing with high-energy-low-protein diets. Digestible energy intake at mass maintenance increased 2.1 times, and composition of the gain changed from primarily lean mass to entirely fat when the protein content of the diet decreased from 15.4% to 1.6%. Daily fat gain was up to three times higher in bears fed low-protein diets ad lib., compared with bears consuming the higher-protein diet and gaining mass at the same rate. Thus, bears eating fruit can either consume other foods to increase dietary protein content and reduce energy expenditure, intake, and potentially foraging time or overeat high-fruit diets and use diet-induced thermogenesis and fat synthesis to deal with their skewed energy-to-protein ratio. These are not discrete options but a continuum that creates numerous solutions for balancing energy expenditure, intake, foraging time, fat accumulation, and ultimately fitness, depending on food availability, foraging efficiency, bear size, and body condition.

  4. Transverse intensity transformation by laser amplifiers

    NASA Astrophysics Data System (ADS)

    Litvin, Igor A.; King, Gary; Collett, Oliver J. P.; Strauss, Hencharl J.

    2015-03-01

    Lasers beams with a specific intensity profile such as super-Gaussian, Airy or Dougnut-like are desirable in many applications such as laser materials processing, medicine and communications. We propose a new technique for laser beam shaping by amplifying a beam in an end-pumped bulk amplifier that is pumped with a beam that has a modified intensity profile. Advantages of this method are that it is relatively easy to implement, has the ability to reshape multimode beams and is naturally suited to high power/energy beams. Both three and four level gain materials can be used as amplifier media. However, a big advantage of using three level materials is their ability to attenuate of the seed beam, which enhances the contrast of the shaping. We first developed a numerical method to obtain the required pump intensity for an arbitrary beam transformation. This method was subsequently experimentally verified using a three level system. The output of a 2.07 μm seed laser was amplified in a Ho:YLF bulk amplifier which was being pumped by a 1.89 μm Tm:YLF laser which had roughly a TEM10 Hermit Gaussian intensity profile. The seed beam was amplified from 0.3 W to 0.55 W at the full pump power of 35 W. More importantly, the beam profile in one transverse direction was significantly shaped from Gaussian to roughly flat-top, as the model predicted. The concept has therefore been shown to be viable and can be used to optimise the beam profile for a wide range of applications.

  5. Molecular host-guest energy-transfer system with an ultralow amplified spontaneous emission threshold employing an ambipolar semiconducting host matrix.

    PubMed

    Toffanin, Stefano; Capelli, Raffaella; Hwu, Tsyr-Yuan; Wong, Ken-Tsung; Plötzing, Tobias; Först, Michael; Muccini, Michele

    2010-01-14

    We report on the characteristics of a host-guest lasing system obtained by coevaporation of an oligo(9,9-diarylfluorene) derivative named T3 with the red-emitter 4-(dicyanomethylene)-2-methyl-6-(p-dimethylaminostyryl)-4H-pyran dye (DCM). We demonstrate that the ambipolar semiconductor T3 can be implemented as an active matrix in the realization of a host-guest system in which an efficient energy transfer takes place from the T3 matrix to the lasing DCM molecules. We performed a detailed spectroscopic study on the system by systematically varying the DCM concentration in the T3 matrix. Measurements of steady-state photoluminescence (PL), PL quantum yield (PLQY), time-resolved picosecond PL, and amplified spontaneous emission (ASE) threshold are used to optimize the acceptor concentration at which the ASE from DCM molecules takes place with the lowest threshold. The sample with a DCM relative deposition ratio of 2% shows an ASE threshold as low as 0.6 kW/cm(2) and a net optical gain measured by femtosecond time-resolved pump-and-probe spectroscopy as high as 77 cm(-1). The reference model system Alq(3):DCM sample measured in exactly the same experimental conditions presents an one-order-of-magnitude higher ASE threshold. The ASE threshold of T3:DCM is the lowest reported to date for a molecular host-guest energy-transfer system, which makes the investigated blend an appealing system for use as an active layer in lasing devices. In particular, the ambipolar charge transport properties of the T3 matrix and its field-effect characteristics make the host-guest system presented here an ideal candidate for the realization of electrically pumped organic lasers.

  6. BOOK REVIEW: Inertial confinement fusion: The quest for ignition and energy gain using indirect drive

    NASA Astrophysics Data System (ADS)

    Yamanaka, C.

    1999-06-01

    Inertial confinement fusion (ICF) is an alternative way to control fusion which is based on scaling down a thermonuclear explosion to a small size, applicable for power production, a kind of thermonuclear internal combustion engine. This book extends many interesting topics concerning the research and development on ICF of the last 25 years. It provides a systematic development of the physics basis and also various experimental data on radiation driven implosion. This is a landmark treatise presented at the right time. It is based on the article ``Development of the indirect-drive approach to inertial confinement fusion and the target physics basis for ignition and gain'' by J.D. Lindl, published in Physics of Plasmas, Vol. 2, November 1995, pp. 3933-4024. As is well known, in the United States of America research on the target physics basis for indirect drive remained largely classified until 1994. The indirect drive approaches were closely related to nuclear weapons research at Lawrence Livermore and Los Alamos National Laboratories. In Japan and other countries, inertial confinement fusion research for civil energy has been successfully performed to achieve DT fuel pellet compression up to 1000 times normal density, and indirect drive concepts, such as the `Cannon Ball' scheme, also prevailed at several international conferences. In these circumstances the international fusion community proposed the Madrid Manifesto in 1988, which urged openness of ICF information to promote international collaboration on civil energy research for the future resources of the human race. This proposal was also supported by some of the US scientists. The United States Department of Energy revised its classification guidelines for ICF six years after the Madrid Manifesto. This first book from the USA treating target physics issues, covering topics from implosion dynamics to hydrodynamic stability, ignition physics, high-gain target design and the scope for energy applications is

  7. Reflections from a systematic review of dietary energy density and weight gain: is the inclusion of drinks valid?

    PubMed

    Johnson, L; Wilks, D C; Lindroos, A K; Jebb, S A

    2009-11-01

    The association between dietary energy density, increased energy intake and weight gain is supported by experimental evidence, but confirmation of an effect in free-living humans is limited. Experimental evidence supports a role of energy density in obesity through changes in food composition, not drinks consumption. The inclusion of drinks in the calculation creates a variable of questionable validity and has a substantive impact on the estimated energy density of the diet. We posit, based on the experimental evidence, that calculating the energy density of diets by excluding drinks and including calories from drinks as a covariate in the analysis is the most valid and reliable method of testing the relationship between energy density and weight gain in free-living humans. We demonstrate, by systematically reviewing existing observational studies of dietary energy density and weight gain in free-living humans, how current variation in the method for calculating energy density hampers the interpretation of these data. Reaching an a priori decision on the appropriate methodology will reduce the error caused by multiple comparisons and facilitate meaningful interpretation of epidemiological evidence to inform the development of effective obesity prevention strategies. PMID:19413706

  8. High-energy femtosecond Yb-doped all-fiber monolithic chirped-pulse amplifier at repetition rate of 1 MHz

    NASA Astrophysics Data System (ADS)

    Lv, Zhi-Guo; Teng, Hao; Wang, Li-Na; Wang, Jun-Li; Wei, Zhi-Yi

    2016-09-01

    A high-energy femtosecond all ytterbium fiber amplifier based on a chirped-pulse amplification (CPA) technique at a repetition rate of 1 MHz seeded by a dispersion-management mode-locked picosecond broadband oscillator is studied. We find that the compressed pulse duration is dependent on the amplified energy, the pulse duration of 804 fs corresponds to the maximum amplified energy of 10.5 μJ, while the shortest pulse duration of 424 fs corresponds to the amplified energy of 6.75 μJ. The measured energy fluctuation is approximately 0.46% root mean square (RMS) over 2 h. The low-cost femtosecond fiber laser source with super-stability will be widely used in industrial micromachines, medical therapy, and scientific studies. Project supported by the National Key Technology Research and Development Program of the Ministry of Science and Technology of China (Grant No. 2012BAC23B03), the National Key Basic Research Program of China (Grant No. 2013CB922401), and the National Natural Science Foundation of China (Grant No. 11474002).

  9. Coherent amplified optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Zhang, Jun; Rao, Bin; Chen, Zhongping

    2007-07-01

    A technique to improve the signal-to-noise ratio (SNR) of a high speed 1300 nm swept source optical coherence tomography (SSOCT) system was demonstrated. A semiconductor optical amplifier (SOA) was employed in the sample arm to coherently amplify the weak light back-scattered from sample tissue without increasing laser power illuminated on the sample. The image quality improvement was visualized and quantified by imaging the anterior segment of a rabbit eye at imaging speed of 20,000 A-lines per second. The theory analysis of SNR gain is given followed by the discussion on the technologies that can further improve the SNR gain.

  10. Design of fiber coupled Er:chalcogenide microsphere amplifier via particle swarm optimization algorithm

    NASA Astrophysics Data System (ADS)

    Palma, Giuseppe; Bia, Pietro; Mescia, Luciano; Yano, Tetsuji; Nazabal, Virginie; Taguchi, Jun; Moréac, Alain; Prudenzano, Francesco

    2014-07-01

    A mid-IR amplifier consisting of a tapered chalcogenide fiber coupled to an Er-doped chalcogenide microsphere has been optimized via a particle swarm optimization (PSO) approach. More precisely, a dedicated three-dimensional numerical model, based on the coupled mode theory and solving the rate equations, has been integrated with the PSO procedure. The rate equations have included the main transitions among the erbium energy levels, the amplified spontaneous emission, and the most important secondary transitions pertaining to the ion-ion interactions. The PSO has allowed the optimal choice of the microsphere and fiber radius, taper angle, and fiber-microsphere gap in order to maximize the amplifier gain. The taper angle and the fiber-microsphere gap have been optimized to efficiently inject into the microsphere both the pump and the signal beams and to improve their spatial overlapping with the rare-earth-doped region. The employment of the PSO approach shows different attractive features, especially when many parameters have to be optimized. The numerical results demonstrate the effectiveness of the proposed approach for the design of amplifying systems. The PSO-based optimization approach has allowed the design of a microsphere-based amplifying system more efficient than a similar device designed by using a deterministic optimization method. In fact, the amplifier designed via the PSO exhibits a simulated gain G=33.7 dB, which is higher than the gain G=6.9 dB of the amplifier designed via the deterministic method.

  11. Transverse pumped laser amplifier architecture

    SciTech Connect

    Bayramian, Andrew James; Manes, Kenneth R.; Deri, Robert; Erlandson, Alvin; Caird, John; Spaeth, Mary L.

    2015-05-19

    An optical gain architecture includes a pump source and a pump aperture. The architecture also includes a gain region including a gain element operable to amplify light at a laser wavelength. The gain region is characterized by a first side intersecting an optical path, a second side opposing the first side, a third side adjacent the first and second sides, and a fourth side opposing the third side. The architecture further includes a dichroic section disposed between the pump aperture and the first side of the gain region. The dichroic section is characterized by low reflectance at a pump wavelength and high reflectance at the laser wavelength. The architecture additionally includes a first cladding section proximate to the third side of the gain region and a second cladding section proximate to the fourth side of the gain region.

  12. Transverse pumped laser amplifier architecture

    DOEpatents

    Bayramian, Andrew James; Manes, Kenneth; Deri, Robert; Erlandson, Al; Caird, John; Spaeth, Mary

    2013-07-09

    An optical gain architecture includes a pump source and a pump aperture. The architecture also includes a gain region including a gain element operable to amplify light at a laser wavelength. The gain region is characterized by a first side intersecting an optical path, a second side opposing the first side, a third side adjacent the first and second sides, and a fourth side opposing the third side. The architecture further includes a dichroic section disposed between the pump aperture and the first side of the gain region. The dichroic section is characterized by low reflectance at a pump wavelength and high reflectance at the laser wavelength. The architecture additionally includes a first cladding section proximate to the third side of the gain region and a second cladding section proximate to the fourth side of the gain region.

  13. Predicting efficiency of use of metabolizable energy to net energy for gain and maintenance of Nellore cattle.

    PubMed

    Marcondes, M I; Tedeschi, L O; Valadares Filho, S C; Gionbelli, M P

    2013-10-01

    Twenty-six comparative slaughter studies were used (n = 752 animals) and coded within each experiment by gender (431 bulls, 204 steers, and 117 heifers) and breed (447 Nellore and 305 Bos indicus and Bos taurus crossbreds) to develop equations to predict the efficiency of use of ME to NE for growth (kg) and ME to NE for maintenance (km). The retained energy (RE) was regressed on ME intake (MEI) available for gain using orthogonal regression to obtain the kg within each experiment. The estimated kg was regressed on RE as protein (REp) according to the following equation: kg = a/(b + REp). Gender and breed effects were not tested because of limited number of experiments. The km was estimated as the intercept of the following equation: HP = β0 × e((β1 × MEI)), in which HP is heat production, β0 and β1 are coefficients, and e is the natural logarithm. The ME for maintenance (MEm) was computed assuming MEI equals to HP at maintenance. The km was obtained using the stepwise procedure of a multiple regression including ADG, empty body gain (EBG), empty BW (EBW), EBW(0.75), kg, and energy content in the EBW. A random coefficient model, assuming a random variation for study effects, was used to test breed and gender effects to identify the best model to estimate km. The overall equation to predict kg was 0.327 (±0.142)/[0.539 (±0.317) + REp], with an R(2) of 0.963. The equation to predict km was 0.513 (±0.024) + 0.173 (±0.061) × kg + a × EBG, R(2) = 0.92, in which a = 0.100 (±0.021) for B. indicus or a = 0.073 (±0.021) for crossbreds. Our results indicated that B. indicus were more efficient to use ME for maintenance. We concluded that km can be predicted from kg and EBG and that B. indicus × B. taurus crossbreds can affect km. Furthermore, kg can be predicted from REp and neither gender nor crossbreeding (B. indicus × B. taurus) affected kg. Because our database consisted of Nellore and B. indicus and B. taurus crossbreds, it is necessary to further

  14. Evaluation of dairy cattle manure as a supplement to improve net energy gain in fermentative hydrogen production from sucrose.

    PubMed

    Perera, Karnayakage Rasika J; Nirmalakhandan, Nagamany

    2011-09-01

    This study evaluated fermentative biohydrogen production from sucrose supplemented with dairy cattle manure at different sucrose:manure ratios. Hydrogen yields found in this study (2.9-5.3M hydrogen/M sucrose) at ambient temperature are higher than literature results obtained at mesophilic temperatures. This study demonstrated that dairy cattle manure could serve as a buffering agent to maintain recommended pH levels; as a nutrient source to provide the required nutrients for hydrogen production; as a seed to produce hydrogen from sucrose; and as a co-substrate to improve the hydrogen yield. Based on an analysis of the net energy gain, it is concluded that positive net energy gains can be realized with non-thermal pretreatment and/or by combining dark fermentation with anaerobic digestion or microbial fuel cells to extract additional energy from the aqueous products of dark fermentation.

  15. Novel Optical Parametric Amplifier at 1572 nm Wavelength Using KTP Crystal

    NASA Astrophysics Data System (ADS)

    Li, Huan-Huan; Li, Shi-Guang; Ma, Xiu-Hua; Wang, Jun-Tao; Zhu, Xiao-Lei

    2012-11-01

    A novel master oscillator/power amplifier architecture for optical parametric conversion of high pulse energy from 1.064 μm to 1.572 μm in KTiOPO4 crystal is presented. A high gain of more than 80 at 1.572 μm pumped by a high energy Q-switched pulse laser is realized. With a seeding signal energy of 1 mJ, and 400 mJ pump pulse at 100 Hz, an amplified signal pulse energy of over 80 mJ is obtained. The total optical-optical conversion efficiency reaches 21%.

  16. Theoretical studies of high-power Cerenkov amplifiers

    SciTech Connect

    Schaechter, L.; Nation, J.A.; Shiffler, D.A. )

    1991-07-01

    The main theoretical aspects of the experiments performed and reported recently are discussed here. First the one stage amplifier is considered. As a preliminary step the behavior of the electrons is followed in the phase space at different points along the interaction region. This analysis reveals that about 30% of the interaction region is utilized for construction of the electron bunches. It is shown that although the average energy of the electrons remains unchanged along most of the amplifier, their energy spread increases substantially. Since the system consists of two long tapered sections, it is suggested that the effective length of the interaction region might be significantly longer than the physical length of the uniform structure. It is further suggested that the electrostatic periodic potential induced by the beam may also improve the interaction process. The next subject addressed here is the bandwidth of a single stage amplifier. It is shown that the reason for the narrow measured bandwidth is the gain of the system. In fact the output signal from a short amplifier is narrowed by exactly the same amount the amplitude of the electromagnetic wave is increased. This result is general as long as part of the radiation field is reflected from both ends of the amplifier. In the second part of this paper the two stage amplifier is analyzed. As in the case of the single stage amplifier the behavior of the electrons is followed in phase space at various locations along the system. This discussion leads to an analysis of the development of sidebands'' which are not symmetrically located around the initial frequency at power levels that do not correspond to a nonlinear process. It is suggested that these sidebands are amplified noise{minus}produced basically in the first stage.

  17. Dual-range linearized transimpedance amplifier system

    DOEpatents

    Wessendorf, Kurt O.

    2010-11-02

    A transimpedance amplifier system is disclosed which simultaneously generates a low-gain output signal and a high-gain output signal from an input current signal using a single transimpedance amplifier having two different feedback loops with different amplification factors to generate two different output voltage signals. One of the feedback loops includes a resistor, and the other feedback loop includes another resistor in series with one or more diodes. The transimpedance amplifier system includes a signal linearizer to linearize one or both of the low- and high-gain output signals by scaling and adding the two output voltage signals from the transimpedance amplifier. The signal linearizer can be formed either as an analog device using one or two summing amplifiers, or alternately can be formed as a digital device using two analog-to-digital converters and a digital signal processor (e.g. a microprocessor or a computer).

  18. Providing for energy efficiency in homes and small buildings. Part II. Determining amount of energy lost or gained in a building

    SciTech Connect

    1980-06-01

    The training program is designed to educate students and individuals in the importance of conserving energy and to provide for developing skills needed in the application of energy-saving techniques that result in energy-efficient buildings. There are 3 parts to the training program. They are entitled: Understanding and Practicing Energy Conservation in Buildings; Determining Amount of Energy Lost or Gained in a Building; and Determining Which Practices Are Most Efficient and Installing Materials. For Part Two, it is recommended that cooling and heating load calculation manual (GRP 158) ASHRAE, 1979, be used. Specific subjects covered in Part II are: Terms Used to Measure Energy in Buildings; Understanding Heat Losses and Gains in Buildings; Estimating Heating Loads in Buildings; Special Applications for Estimating Cooling Loads in Buildings; Estimating Cooling Loads in Buildings; and Determining Cost Benefits of Using Energy-Saving Practices.

  19. Breed effects, dietary energy density effects, and retained heterosis on different measures of gain efficiency in beef cattle.

    PubMed

    Gregory, K E; Cundiff, L V; Koch, R M

    1994-05-01

    Retained heterosis for different measures of gain efficiency was estimated in F3 generation castrate male progeny in three composite populations finished on two levels of dietary energy density (2.82 and 3.07 Mcal of ME and 11.50% CP) and serially slaughtered at four end points at intervals of 20 to 22 d. Breed effects were evaluated in nine parental breeds (Red Poll [R], Hereford [H], Angus [A], Limousin [L], Braunvieh [B], Pinzgauer [P], Gelbvieh [G], Simmental [S], and Charolais [C]) that contributed to the three composite populations (MARC I = 1/4 B, 1/4 C, 1/4 L, 1/8 H, 1/8 A; MARC II = 1/4 G, 1/4 S, 1/4 H, 1/4 A; and MARC III = 1/4 R, 1/4 P, 1/4 H, and 1/4 A). Gain efficiency was evaluated in time constant (0 to 207 d), gain constant (310 to 540 kg), carcass weight constant (333 kg), and retail product weight constant (225 and 210 kg) end points and to different marbling score and longissimus muscle fat end points. Expressions of gain efficiency included live weight gain/megacalories of ME and retail product weight/megacalories of ME. Significant differences were observed among breeds in all measures of gain efficiency. Breeds that had the smallest weight to maintain tended to be more efficient in live weight gain in the time constant period, whereas breeds with the highest rate of gain tended to be more efficient in the gain constant period. To marbling score or longissimus muscle fat end points, breeds with the lowest marbling scores and smallest percentage fat in the longissimus muscle on an age constant basis (e.g., Limousin and Gelbvieh) tended to be less efficient, whereas breeds with the highest marbling score and highest percentage of fat in the longissimus muscle on an age constant basis (e.g., Hereford and Angus) tended to be more efficient. Breeds with the highest percentage of retail product (Limousin and Gelbvieh) were more efficient to retail product weight end points, or when retail product weight was the measure of output. Steers fed the

  20. Breed effects, dietary energy density effects, and retained heterosis on different measures of gain efficiency in beef cattle.

    PubMed

    Gregory, K E; Cundiff, L V; Koch, R M

    1994-05-01

    Retained heterosis for different measures of gain efficiency was estimated in F3 generation castrate male progeny in three composite populations finished on two levels of dietary energy density (2.82 and 3.07 Mcal of ME and 11.50% CP) and serially slaughtered at four end points at intervals of 20 to 22 d. Breed effects were evaluated in nine parental breeds (Red Poll [R], Hereford [H], Angus [A], Limousin [L], Braunvieh [B], Pinzgauer [P], Gelbvieh [G], Simmental [S], and Charolais [C]) that contributed to the three composite populations (MARC I = 1/4 B, 1/4 C, 1/4 L, 1/8 H, 1/8 A; MARC II = 1/4 G, 1/4 S, 1/4 H, 1/4 A; and MARC III = 1/4 R, 1/4 P, 1/4 H, and 1/4 A). Gain efficiency was evaluated in time constant (0 to 207 d), gain constant (310 to 540 kg), carcass weight constant (333 kg), and retail product weight constant (225 and 210 kg) end points and to different marbling score and longissimus muscle fat end points. Expressions of gain efficiency included live weight gain/megacalories of ME and retail product weight/megacalories of ME. Significant differences were observed among breeds in all measures of gain efficiency. Breeds that had the smallest weight to maintain tended to be more efficient in live weight gain in the time constant period, whereas breeds with the highest rate of gain tended to be more efficient in the gain constant period. To marbling score or longissimus muscle fat end points, breeds with the lowest marbling scores and smallest percentage fat in the longissimus muscle on an age constant basis (e.g., Limousin and Gelbvieh) tended to be less efficient, whereas breeds with the highest marbling score and highest percentage of fat in the longissimus muscle on an age constant basis (e.g., Hereford and Angus) tended to be more efficient. Breeds with the highest percentage of retail product (Limousin and Gelbvieh) were more efficient to retail product weight end points, or when retail product weight was the measure of output. Steers fed the

  1. Risperidone-induced weight gain is mediated through shifts in the gut microbiome and suppression of energy expenditure

    PubMed Central

    Bahr, Sarah M.; Weidemann, Benjamin J.; Castro, Ana N.; Walsh, John W.; deLeon, Orlando; Burnett, Colin M.L.; Pearson, Nicole A.; Murry, Daryl J.; Grobe, Justin L.; Kirby, John R.

    2015-01-01

    Risperidone is a second-generation antipsychotic that causes weight gain. We hypothesized that risperidone-induced shifts in the gut microbiome are mechanistically involved in its metabolic consequences. Wild-type female C57BL/6J mice treated with risperidone (80 μg/day) exhibited significant excess weight gain, due to reduced energy expenditure, which correlated with an altered gut microbiome. Fecal transplant from risperidone-treated mice caused a 16% reduction in total resting metabolic rate in naïve recipients, attributable to suppression of non-aerobic metabolism. Risperidone inhibited growth of cultured fecal bacteria grown anaerobically more than those grown aerobically. Finally, transplant of the fecal phage fraction from risperidone-treated mice was sufficient to cause excess weight gain in naïve recipients, again through reduced energy expenditure. Collectively, these data highlight a major role for the gut microbiome in weight gain following chronic use of risperidone, and specifically implicates the modulation of non-aerobic resting metabolism in this mechanism. PMID:26870798

  2. Yb:YAG single-crystal fiber amplifiers for picosecond lasers using the divided pulse amplification technique.

    PubMed

    Lesparre, Fabien; Gomes, Jean Thomas; Délen, Xavier; Martial, Igor; Didierjean, Julien; Pallmann, Wolfgang; Resan, Bojan; Druon, Frederic; Balembois, François; Georges, Patrick

    2016-04-01

    A two-stage master-oscillator power-amplifier (MOPA) system based on Yb:YAG single-crystal-fiber (SCF) technology and designed for high peak power is studied to significantly increase the pulse energy of a low-power picosecond laser. The first SCF amplifier has been designed for high gain. Using a gain medium optimized in terms of doping concentration and length, an optical gain of 32 dB has been demonstrated. The second amplifier stage designed for high energy using the divided pulse technique allows us to generate a recombined output pulse energy of 2 mJ at 12.5 kHz with a pulse duration of 6 ps corresponding to a peak power of 320 MW. Average powers ranging from 25 to 55 W with repetition rates varying from 12.5 to 500 kHz have been demonstrated. PMID:27192304

  3. High temperature charge amplifier for geothermal applications

    DOEpatents

    Lindblom, Scott C.; Maldonado, Frank J.; Henfling, Joseph A.

    2015-12-08

    An amplifier circuit in a multi-chip module includes a charge to voltage converter circuit, a voltage amplifier a low pass filter and a voltage to current converter. The charge to voltage converter receives a signal representing an electrical charge and generates a voltage signal proportional to the input signal. The voltage amplifier receives the voltage signal from the charge to voltage converter, then amplifies the voltage signal by the gain factor to output an amplified voltage signal. The lowpass filter passes low frequency components of the amplified voltage signal and attenuates frequency components greater than a cutoff frequency. The voltage to current converter receives the output signal of the lowpass filter and converts the output signal to a current output signal; wherein an amplifier circuit output is selectable between the output signal of the lowpass filter and the current output signal.

  4. Amplified spontaneous emission measurement of a line-narrowed, tunable, Ti:Al2O3 amplifier using rubidium absorption

    NASA Technical Reports Server (NTRS)

    Barnes, James C.; Barnes, Norman P.; Lockard, George E.; Cross, Patricia L.

    1989-01-01

    Amplified spontaneous emission, ASE, generated by a Ti:Al2O3 laser amplifier has been measured as a function of pump energy, and thus gain, using the atomic absorption of rubidium, Rb, gas at 0.780 micron. By tuning the Ti:Al2O3 laser, the Rb cell could selectively absorb the narrow spectral bandwidth laser radiation while transmitting the wide spectral bandwidth ASE. Transmission of laser amplifier pulses through a Rb absorption cell, measured at various temperatures, thus allows the measurement of the weak ASE in the vicinity of the strong laser pulse. A model for the transmission of Rb as a function of temperature and wavelength has been developed. The measured transmissions are in good agreement with the transmission model predictions.

  5. Blue whales (Balaenoptera musculus) optimize foraging efficiency by balancing oxygen use and energy gain as a function of prey density

    PubMed Central

    Hazen, Elliott Lee; Friedlaender, Ari Seth; Goldbogen, Jeremy Arthur

    2015-01-01

    Terrestrial predators can modulate the energy used for prey capture to maximize efficiency, but diving animals face the conflicting metabolic demands of energy intake and the minimization of oxygen depletion during a breath hold. It is thought that diving predators optimize their foraging success when oxygen use and energy gain act as competing currencies, but this hypothesis has not been rigorously tested because it has been difficult to measure the quality of prey that is targeted by free-ranging animals. We used high-resolution multisensor digital tags attached to foraging blue whales (Balaenoptera musculus) with concurrent acoustic prey measurements to quantify foraging performance across depth and prey density gradients. We parameterized two competing physiological models to estimate energy gain and expenditure based on foraging decisions. Our analyses show that at low prey densities, blue whale feeding rates and energy intake were low to minimize oxygen use, but at higher prey densities feeding frequency increased to maximize energy intake. Contrary to previous paradigms, we demonstrate that blue whales are not indiscriminate grazers but instead switch foraging strategies in response to variation in prey density and depth to maximize energetic efficiency. PMID:26601290

  6. Blue whales (Balaenoptera musculus) optimize foraging efficiency by balancing oxygen use and energy gain as a function of prey density.

    PubMed

    Hazen, Elliott Lee; Friedlaender, Ari Seth; Goldbogen, Jeremy Arthur

    2015-10-01

    Terrestrial predators can modulate the energy used for prey capture to maximize efficiency, but diving animals face the conflicting metabolic demands of energy intake and the minimization of oxygen depletion during a breath hold. It is thought that diving predators optimize their foraging success when oxygen use and energy gain act as competing currencies, but this hypothesis has not been rigorously tested because it has been difficult to measure the quality of prey that is targeted by free-ranging animals. We used high-resolution multisensor digital tags attached to foraging blue whales (Balaenoptera musculus) with concurrent acoustic prey measurements to quantify foraging performance across depth and prey density gradients. We parameterized two competing physiological models to estimate energy gain and expenditure based on foraging decisions. Our analyses show that at low prey densities, blue whale feeding rates and energy intake were low to minimize oxygen use, but at higher prey densities feeding frequency increased to maximize energy intake. Contrary to previous paradigms, we demonstrate that blue whales are not indiscriminate grazers but instead switch foraging strategies in response to variation in prey density and depth to maximize energetic efficiency. PMID:26601290

  7. Blue whales (Balaenoptera musculus) optimize foraging efficiency by balancing oxygen use and energy gain as a function of prey density.

    PubMed

    Hazen, Elliott Lee; Friedlaender, Ari Seth; Goldbogen, Jeremy Arthur

    2015-10-01

    Terrestrial predators can modulate the energy used for prey capture to maximize efficiency, but diving animals face the conflicting metabolic demands of energy intake and the minimization of oxygen depletion during a breath hold. It is thought that diving predators optimize their foraging success when oxygen use and energy gain act as competing currencies, but this hypothesis has not been rigorously tested because it has been difficult to measure the quality of prey that is targeted by free-ranging animals. We used high-resolution multisensor digital tags attached to foraging blue whales (Balaenoptera musculus) with concurrent acoustic prey measurements to quantify foraging performance across depth and prey density gradients. We parameterized two competing physiological models to estimate energy gain and expenditure based on foraging decisions. Our analyses show that at low prey densities, blue whale feeding rates and energy intake were low to minimize oxygen use, but at higher prey densities feeding frequency increased to maximize energy intake. Contrary to previous paradigms, we demonstrate that blue whales are not indiscriminate grazers but instead switch foraging strategies in response to variation in prey density and depth to maximize energetic efficiency.

  8. Real Time Calibration Method for Signal Conditioning Amplifiers

    NASA Technical Reports Server (NTRS)

    Medelius, Pedro J. (Inventor); Mata, Carlos T. (Inventor); Eckhoff, Anthony (Inventor); Perotti, Jose (Inventor); Lucena, Angel (Inventor)

    2004-01-01

    A signal conditioning amplifier receives an input signal from an input such as a transducer. The signal is amplified and processed through an analog to digital converter and sent to a processor. The processor estimates the input signal provided by the transducer to the amplifier via a multiplexer. The estimated input signal is provided as a calibration voltage to the amplifier immediately following the receipt of the amplified input signal. The calibration voltage is amplified by the amplifier and provided to the processor as an amplified calibration voltage. The amplified calibration voltage is compared to the amplified input signal, and if a significant error exists, the gain and/or offset of the amplifier may be adjusted as necessary.

  9. Semi-physical Identification and State Estimation of Energy Intake for Interventions to Manage Gestational Weight Gain

    PubMed Central

    Guo, Penghong; Rivera, Daniel E.; Downs, Danielle S.; Savage, Jennifer S.

    2016-01-01

    Excessive gestational weight gain (i.e., weight gain during pregnancy) is a significant public health concern, and has been the recent focus of novel, control systems-based interventions. This paper develops a control-oriented dynamical systems model based on a first-principles energy balance model from the literature, which is evaluated against participant data from a study targeted to obese and overweight pregnant women. The results indicate significant under-reporting of energy intake among the participant population. A series of approaches based on system identification and state estimation are developed in the paper to better understand and characterize the extent of under-reporting; these range from back-calculating energy intake from a closed-form of the energy balance model, to a constrained semi-physical identification approach that estimates the extent of systematic under-reporting in the presence of noise and possibly missing data. Additionally, we describe an adaptive algorithm based on Kalman filtering to estimate energy intake in real-time. The approaches are illustrated with data from both simulated and actual intervention participants. PMID:27570366

  10. Possible energy gain for a plasma-liner-driven magneto-inertial fusion concept

    SciTech Connect

    Knapp, C. E.; Kirkpatrick, R. C.

    2014-07-15

    A one-dimensional parameter study of a Magneto-Inertial Fusion (MIF) concept indicates that significant gain may be achievable. This concept uses a dynamically formed plasma shell with inwardly directed momentum to drive a magnetized fuel to ignition, which in turn partially burns an intermediate layer of unmagnetized fuel. The concept is referred to as Plasma Jet MIF or PJMIF. The results of an adaptive mesh refinement Eulerian code (Crestone) are compared to those of a Lagrangian code (LASNEX). These are the first published results using the Crestone and LASNEX codes on the PJMIF concept.

  11. Heat gain testing to energy balance protocol. Final report, August 1995-February 1997

    SciTech Connect

    Knappmiller, K.; Schrock, D.

    1997-02-01

    Under sponsorship of the Gas Research Institute, heat gain tests were conducted on gas and electric commercial cooking appliances, applying the American Society for Testing and Materials (ASTM) Standard Test Method for the Performance of Commercial Kitchen Ventilation Systems, F1704-96. The commercial cooking appliances tested in this program were gas and electric: griddles, ranges, convection ovens, charbroilers, and fryers. These appliances were all tested under a wall canopy hood operating at a single exhaust rate appropriate for the particular cooking appliance.

  12. Time ramped gain for borehole televiewer

    SciTech Connect

    Rambow, F.H.K.

    1989-08-08

    This patent describes an improvement in a borehole imaging apparatus wherein a rotating acoustic transducer means is periodically pulsed to emit a sequence of acoustic pulses into the borehole fluid toward the borehole wall and the reflected response of the acoustic pulse is received by the transducer means and converted to a related electrical signal. The improvement comprises: electrical signal compensating means located in the borehole for compensating substantially each of the electrical signals. The compensating means including variable gain amplifier means controllable from the surface for continuing to increase the amount of gain applied to each electrical signal as a function of the propagation time of the acoustic energy through the borehole fluid, to reduce the effects such as initial ringdown, mud reflections, and time-dependent borehole fluid attenuation of the acoustic energy.

  13. Gaining Campaign Support through Peer Networking: An Impact Analysis of Energy Efficiency Projects in Malaysia

    ERIC Educational Resources Information Center

    Mustafa, Hasrina

    2010-01-01

    This article presents a comprehensive evaluation of the impact of two community projects on energy efficiency held in Malaysia in January 2008. Specifically, the study was undertaken to compare levels of attitudes and practices of energy efficiency between baseline and post-campaign survey; compare electricity consumptions before, one month after,…

  14. High-speed holographic read-only memory replication systems with two-wave and four-wave photorefractive amplifier

    NASA Astrophysics Data System (ADS)

    Ito, Terumasa; Okamoto, Atsushi; Takahashi, Nobuhiro; Sano, Takayuki

    2007-06-01

    Copying speed is an important characteristic for optical read-only memory (ROM) replication systems. The copying speed of holographic ROM replication is, however, limited by small energy efficiency of the optical system due to the small diffraction efficiency of multiplexed holograms. In this paper we propose new holographic ROM replication systems with a photorefractive amplifier, and analyze the speed gain performance. We improve energy efficiency significantly and speed up replication by amplifying weak diffraction signal beams using photorefractive wave mixing. Our new theory and numerical calculations revealed that achievable speed gain can be evaluated from only a single dimensionless parameter that is the product of the three as follows: (i) the pump beam intensity ratio in the amplifier, (ii) the ratio of the photopolymer and photorefractive sensitivities, and (iii) the dynamic range per hologram of the copy medium. In current holographic recording systems, a practical copying speed gain of more than 10 is achievable with currently available photorefractive materials.

  15. Amplified OTDR Systems for Multipoint Corrosion Monitoring

    PubMed Central

    Nascimento, Jehan F.; Silva, Marcionilo J.; Coêlho, Isnaldo J. S.; Cipriano, Eliel; Martins-Filho, Joaquim F.

    2012-01-01

    We present two configurations of an amplified fiber-optic-based corrosion sensor using the optical time domain reflectometry (OTDR) technique as the interrogation method. The sensor system is multipoint, self-referenced, has no moving parts and can measure the corrosion rate several kilometers away from the OTDR equipment. The first OTDR monitoring system employs a remotely pumped in-line EDFA and it is used to evaluate the increase in system reach compared to a non-amplified configuration. The other amplified monitoring system uses an EDFA in booster configuration and we perform corrosion measurements and evaluations of system sensitivity to amplifier gain variations. Our experimental results obtained under controlled laboratory conditions show the advantages of the amplified system in terms of longer system reach with better spatial resolution, and also that the corrosion measurements obtained from our system are not sensitive to 3 dB gain variations. PMID:22737017

  16. The energy scaling in a side-pumped ultra-low-magnification unstable resonator by employing a compact master oscillator power amplifier

    NASA Astrophysics Data System (ADS)

    Cho, C. Y.; Huang, Y. P.; Su, K. W.

    2016-10-01

    The energy scaling for a diode-side-pumped passively Q-switched Nd:YAG laser in an ultra-low-magnification unstable convex-concave resonator is investigated. Theoretical analysis and experimental results indicate the fact that the energy scaling is restricted by the increasing of side-pumping sources inside the resonator because of the significant pump-to-mode size mismatching. It is verified that employing the master oscillation power amplifier can effectively enlarge the output pulse energy and improve the beam quality. Up to 60-mJ pulse energy with 17-MW peak power is obtained at a pump energy of 520 mJ. A 1573-nm eye-safe laser emission with pulse energy up to 25 mJ is further attended via the extracavity optical parametric oscillator.

  17. Ultra-broadband amplification properties of Ni2+-doped glass-ceramics amplifiers.

    PubMed

    Jiang, Chun

    2009-04-13

    The energy level, transition configuration and mathematical model of Ni(2+)-doped glass-ceramics amplifiers are presented for the first time, to the best of one's knowledge. A quasi-three-level system is employed to model the gain and noise characteristics of the doped system, and the rate and power propagation equations of the mathematical model are solved to analyze the effect of the active ion concentration, fiber length, pump power as well as thermal-quenching on the gain spectra. It is shown that our model is in agreement with experimental result, and when excited at longer wavelength, the center of gain spectra of the amplifier red shifts, the ultra-broad band room-temperature gain spectra can cover 1.25-1.65 microm range for amplification of signal in the low-loss windows of the all-wave fiber without absorption peak caused by OH group.

  18. Large-mode-area erbium-ytterbium-doped photonic-crystal fiber amplifier for high-energy femtosecond pulses at 1.55 µm

    NASA Astrophysics Data System (ADS)

    Shirakawa, Akira; Ota, Jun; Musha, Mitsuru; Nakagawa, Ken'Ichi; Ueda, Ken-Ichi; Riis Folkenberg, Jacob; Broeng, Jes

    2005-02-01

    We report a high-energy femtosecond fiber amplifier based on an air-cladded single-transverse-mode erbium-ytterbium-codoped photonic-crystal fiber with a 26-µm mode-field-diameter. 700-fs, 47-MHz pulses at 1557 nm were amplified and compressed to near-transform-limited 100-fs, 7.4-nJ pulses with 54-kW peak powers without chirped-pulse amplification. A linearly polarized output with an extinction ratio exceeding 42 dB was obtained by double-pass configuration. As an application, supercontinuum spanning from 1000 to 2500 nm was generated by a successive 2-m high-nonlinear fiber with a 140-mW average power.

  19. Large-mode-area erbium-ytterbium-doped photonic-crystal fiber amplifier for high-energy femtosecond pulses at 1.55 microm.

    PubMed

    Shirakawa, Akira; Ota, Jun; Musha, Mitsuru; Nakagawa, Ken'ichi; Ueda, Ken-Ichi; Folkenberg, Jacob Riis; Broeng, Jes

    2005-02-21

    We report a high-energy femtosecond fiber amplifier based on an air-cladded single-transverse-mode erbium-ytterbium-codoped photonic-crystal fiber with a 26-microm mode-field-diameter. 700-fs, 47-MHz pulses at 1557 nm were amplified and compressed to near-transform-limited 100-fs, 7.4-nJ pulses with 54-kW peak powers without chirped-pulse amplification. A linearly polarized output with an extinction ratio exceeding 42 dB was obtained by double-pass configuration. As an application, supercontinuum spanning from 1000 to 2500 nm was generated by a successive 2-m high-nonlinear fiber with a 140-mW average power. PMID:19494992

  20. Digital system provides superregulation of nanosecond amplifier-discriminator circuit

    NASA Technical Reports Server (NTRS)

    Forges, K. G.

    1966-01-01

    Feedback system employing a digital logic comparator to detect and correct amplifier drift provides stable gain characteristics for nanosecond amplifiers used in counting applications. Additional anticoincidence logic enables application of the regulation circuit to the amplifier and discriminator while they are mounted in an operable circuit.

  1. Multi-pass light amplifier

    NASA Technical Reports Server (NTRS)

    Plaessmann, Henry (Inventor); Grossman, William M. (Inventor)

    1997-01-01

    A multiple-pass laser amplifier that uses optical focusing between subsequent passes through a single gain medium so that a reproducibly stable beam size is achieved within the gain region. A confocal resonator or White Cell resonator is provided, including two or three curvilinearly shaped mirrors facing each other along a resonator axis and an optical gain medium positioned on the resonator axis between the mirrors (confocal resonator) or adjacent to one of the mirrors (White Cell). In a first embodiment, two mirrors, which may include adjacent lenses, are configured so that a light beam passing through the gain medium and incident on the first mirror is reflected by that mirror toward the second mirror in a direction approximately parallel to the resonator axis. A light beam translator, such as an optical flat of transparent material, is positioned to translate this light beam by a controllable amount toward or away from the resonator axis for each pass of the light beam through the translator. The optical gain medium may be solid-state, liquid or gaseous medium and may be pumped longitudinally or transversely. In a second embodiment, first and second mirrors face a third mirror in a White Cell configuration, and the optical gain medium is positioned at or adjacent to one of the mirrors. Defocusing means and optical gain medium cooling means are optionally provided with either embodiment, to controllably defocus the light beam, to cool the optical gain medium and to suppress thermal lensing in the gain medium.

  2. DIAMOND AMPLIFIED PHOTOCATHODES.

    SciTech Connect

    SMEDLEY,J.; BEN-ZVI, I.; BOHON, J.; CHANG, X.; GROVER, R.; ISAKOVIC, A.; RAO, T.; WU, Q.

    2007-11-26

    High-average-current linear electron accelerators require photoinjectors capable of delivering tens to hundreds of mA average current, with peak currents of hundreds of amps. Standard photocathodes face significant challenges in meeting these requirements, and often have short operational lifetimes in an accelerator environment. We report on recent progress toward development of secondary emission amplifiers for photocathodes, which are intended to increase the achievable average current while protecting the cathode from the accelerator. The amplifier is a thin diamond wafer which converts energetic (few keV) primary electrons into hundreds of electron-hole pairs via secondary electron emission. The electrons drift through the diamond under an external bias and are emitted into vacuum via a hydrogen-terminated surface with negative electron affinity (NEA). Secondary emission gain of over 200 has been achieved. Two methods of patterning diamond, laser ablation and reactive-ion etching (RIE), are being developed to produce the required geometry. A variety of diagnostic techniques, including FTIR, SEM and AFM, have been used to characterize the diamonds.

  3. Nondegenerate optical parametric chirped pulse amplifier

    DOEpatents

    Jovanovic, Igor; Ebbers, Christopher A.

    2005-03-22

    A system provides an input pump pulse and a signal pulse. A first dichroic beamsplitter is highly reflective for the input signal pulse and highly transmissive for the input pump pulse. A first optical parametric amplifier nonlinear crystal transfers part of the energy from the input pump pulse to the input signal pulse resulting in a first amplified signal pulse and a first depleted pump pulse. A second dichroic beamsplitter is highly reflective for the first amplified signal pulse and highly transmissive for the first depleted pump pulse. A second optical parametric amplifier nonlinear crystal transfers part of the energy from the first depleted pump pulse to the first amplified signal pulse resulting in a second amplified signal pulse and a second depleted pump pulse. A third dichroic beamsplitter receives the second amplified signal pulse and the second depleted pump pulse. The second depleted pump pulse is discarded.

  4. Toward the realization of erbium-doped GaN bulk crystals as a gain medium for high energy lasers

    NASA Astrophysics Data System (ADS)

    Sun, Z. Y.; Li, J.; Zhao, W. P.; Lin, J. Y.; Jiang, H. X.

    2016-08-01

    Er-doped GaN (Er:GaN) is a promising candidate as a gain medium for solid-state high energy lasers (HELs) at the technologically important and eye-safe 1.54 μm wavelength window, as GaN has superior thermal properties over traditional laser gain materials such as Nd:YAG. However, the attainment of wafer-scale Er:GaN bulk or quasi-bulk crystals is a prerequisite to realize the full potential of Er:GaN as a gain medium for HELs. We report the realization of freestanding Er:GaN wafers of 2-in. in diameter with a thickness on the millimeter scale. These freestanding wafers were obtained via growth by hydride vapor phase epitaxy in conjunction with a laser-lift-off process. An Er doping level of 1.4 × 1020 atoms/cm3 has been confirmed by secondary ion mass spectrometry measurements. The freestanding Er:GaN wafers exhibit strong photoluminescent emission at 1.54 μm with its emission intensity increasing dramatically with wafer thickness under 980 nm resonant excitation. A low thermal quenching of 10% was measured for the 1.54 μm emission intensity between 10 K and 300 K. This work represents a significant step in providing a practical approach for producing Er:GaN materials with sufficient thicknesses and dimensions to enable the design of gain media in various geometries, allowing for the production of HELs with improved lasing efficiency, atmosphere transmission, and eye-safety.

  5. Simulation of a regenerative MW FEL amplifier

    SciTech Connect

    Nguyen, R.T.; Colson, W.B.; Wong, R.K.; Sheffield, R.L.

    1997-08-01

    Both oscillator and regenerative amplifier configurations are being studied to optimize the design of a MW class FEL. The regenerative amplifier uses a longer undulator and relies on higher extraction efficiency to achieve high average power, whereas the oscillator is a more compact overall design requiring the transport of the high energy electron beam around bends for energy recovery. Using parameters extrapolated from the 1 kW LANL regenerative amplifier, simulations study the feasibility of achieving 1 MW average power.

  6. The Influence on Population Weight Gain and Obesity of the Macronutrient Composition and Energy Density of the Food Supply.

    PubMed

    Crino, Michelle; Sacks, Gary; Vandevijvere, Stefanie; Swinburn, Boyd; Neal, Bruce

    2015-03-01

    Rates of overweight and obesity have increased dramatically in all regions of the world over the last few decades. Almost all of the world's population now has ubiquitous access to low-cost, but highly-processed, energy-dense, nutrient-poor food products. These changes in the food supply, rather than decreases in physical activity, are most likely the primary driver of population weight gain and obesity. To-date, the majority of prevention efforts focus on personalised approaches targeting individuals. Population-wide food supply interventions addressing sodium and trans fat reduction have proven highly effective and comparable efforts are now required to target obesity. The evidence suggests that strategies focusing upon reducing the energy density and portion size of foods will be more effective than those targeting specific macronutrients. Government leadership, clearly specified targets, accountability and transparency will be the key to achieving the food supply changes required to address the global obesity epidemic.

  7. Analysis of FEL-based CeC amplification at high gain limit

    SciTech Connect

    Wang, G.; Litvinenko, V.; Jing, Y.

    2015-05-03

    An analysis of Coherent electron Cooling (CeC) amplifier based on 1D Free Electron Laser (FEL) theory was previously performed with exact solution of the dispersion relation, assuming electrons having Lorentzian energy distribution. At high gain limit, the asymptotic behavior of the FEL amplifier can be better understood by Taylor expanding the exact solution of the dispersion relation with respect to the detuning parameter. In this work, we make quadratic expansion of the dispersion relation for Lorentzian energy distribution and investigate how longitudinal space charge and electrons’ energy spread affect the FEL amplification process.

  8. Cross-talk free, low-noise optical amplifier

    DOEpatents

    Dijaili, Sol P.; Patterson, Frank G.; Deri, Robert J.

    1995-01-01

    A low-noise optical amplifier solves crosstalk problems in optical amplifiers by using an optical cavity oriented off-axis (e.g. perpendicular) to the direction of a signal amplified by the gain medium of the optical amplifier. Several devices are used to suppress parasitic lasing of these types of structures. The parasitic lasing causes the gain of these structures to be practically unusable. The lasing cavity is operated above threshold and the gain of the laser is clamped to overcome the losses of the cavity. Any increase in pumping causes the lasing power to increase. The clamping action of the gain greatly reduces crosstalk due to gain saturation for the amplified signal beam. It also reduces other nonlinearities associated with the gain medium such as four-wave mixing induced crosstalk. This clamping action can occur for a bandwidth defined by the speed of the laser cavity. The lasing field also reduces the response time of the gain medium. By having the lasing field off-axis, no special coatings are needed. Other advantages are that the lasing field is easily separated from the amplified signal and the carrier grating fluctuations induced by four-wave mixing are decreased. Two related methods reduce the amplified spontaneous emission power without sacrificing the gain of the optical amplifier.

  9. Cross-talk free, low-noise optical amplifier

    DOEpatents

    Dijaili, S.P.; Patterson, F.G.; Deri, R.J.

    1995-07-25

    A low-noise optical amplifier solves crosstalk problems in optical amplifiers by using an optical cavity oriented off-axis (e.g. perpendicular) to the direction of a signal amplified by the gain medium of the optical amplifier. Several devices are used to suppress parasitic lasing of these types of structures. The parasitic lasing causes the gain of these structures to be practically unusable. The lasing cavity is operated above threshold and the gain of the laser is clamped to overcome the losses of the cavity. Any increase in pumping causes the lasing power to increase. The clamping action of the gain greatly reduces crosstalk due to gain saturation for the amplified signal beam. It also reduces other nonlinearities associated with the gain medium such as four-wave mixing induced crosstalk. This clamping action can occur for a bandwidth defined by the speed of the laser cavity. The lasing field also reduces the response time of the gain medium. By having the lasing field off-axis, no special coatings are needed. Other advantages are that the lasing field is easily separated from the amplified signal and the carrier grating fluctuations induced by four-wave mixing are decreased. Two related methods reduce the amplified spontaneous emission power without sacrificing the gain of the optical amplifier. 11 figs.

  10. GLP-1(32-36)amide Pentapeptide Increases Basal Energy Expenditure and Inhibits Weight Gain in Obese Mice.

    PubMed

    Tomas, Eva; Stanojevic, Violeta; McManus, Karen; Khatri, Ashok; Everill, Paul; Bachovchin, William W; Habener, Joel F

    2015-07-01

    The prevalence of obesity-related diabetes is increasing worldwide. Here we report the identification of a pentapeptide, GLP-1(32-36)amide (LVKGRamide), derived from the glucoincretin hormone GLP-1, that increases basal energy expenditure and curtails the development of obesity, insulin resistance, diabetes, and hepatic steatosis in diet-induced obese mice. The pentapeptide inhibited weight gain, reduced fat mass without change in energy intake, and increased basal energy expenditure independent of physical activity. Analyses of tissues from peptide-treated mice reveal increased expression of UCP-1 and UCP-3 in brown adipose tissue and increased UCP-3 and inhibition of acetyl-CoA carboxylase in skeletal muscle, findings consistent with increased fatty acid oxidation and thermogenesis. In palmitate-treated C2C12 skeletal myotubes, GLP-1(32-36)amide activated AMPK and inhibited acetyl-CoA carboxylase, suggesting activation of fat metabolism in response to energy depletion. By mass spectroscopy, the pentapeptide is rapidly formed from GLP-1(9-36)amide, the major form of GLP-1 in the circulation of mice. These findings suggest that the reported insulin-like actions of GLP-1 receptor agonists that occur independently of the GLP-1 receptor might be mediated by the pentapeptide, and the previously reported nonapeptide (FIAWLVKGRamide). We propose that by increasing basal energy expenditure, GLP-1(32-36)amide might be a useful treatment for human obesity and associated metabolic disorders.

  11. Tapered semiconductor amplifiers for optical frequency combs in the near infrared.

    PubMed

    Cruz, Flavio C; Stowe, Matthew C; Ye, Jun

    2006-05-01

    A tapered semiconductor amplifier is injection seeded by a femtosecond optical frequency comb at 780 nm from a mode-locked Ti:sapphire laser. Energy gains of more than 17 dB(12 dB) are obtained for 1 mW(20 mW) of average input power when the input pulses are stretched into the picosecond range. A spectral window of supercontinuum light generated in a photonic fiber has also been amplified. Interferometric measurements show sub-Hertz linewidths for a heterodyne beat between the input and amplified comb components, yielding no detectable phase-noise degradation under amplification. These amplifiers can be used to boost the infrared power in f-to-2f interferometers used to determine the carrier-to-envelope offset frequency, with clear advantages for stabilization of octave-spanning femtosecond lasers and other supercontinuum light sources. PMID:16642104

  12. Injection seeded, diode pumped regenerative ring Nd:YAG amplifier for spaceborne laser ranging technology development

    NASA Technical Reports Server (NTRS)

    Coyle, D. Barry; Kay, Richard B.; Degnan, John J.; Krebs, Danny J.; Seery, Bernard D.

    1992-01-01

    A small, all solid state, regenerative ring amplifier designed as a prototype for space application is discussed. Novel features include dual side pumping of the Nd:YAG crystal and a triangular ring cavity design which minimizes the number of optical components and losses. The amplifier is relatively small (3 ns round trip time) even though standard optical elements are employed. The ring regeneratively amplifies a 100 ps single pulse by approximately 10(exp 5) at a repetition rate of 10 to 100 Hz. The amplifier is designed to be injection seeded with a pulsed, 100 ps laser diode at 1.06 microns, but another Nd:YAG laser system supplying higher pulse energies was employed for laboratory experiment. This system is a prototype laser oscillator for the Geoscience Laser Ranging System (GLRS) platform. Results on measurements of beam quality, astigmatism, and gain are given.

  13. SQUARE WAVE AMPLIFIER

    DOEpatents

    Leavitt, M.A.; Lutz, I.C.

    1958-08-01

    An amplifier circuit is described for amplifying sigmals having an alternating current component superimposed upon a direct current component, without loss of any segnnent of the alternating current component. The general circuit arrangement includes a vibrator, two square wave amplifiers, and recombination means. The amplifier input is connected to the vibrating element of the vibrator and is thereby alternately applied to the input of each square wave amplifier. The detailed circuitry of the recombination means constitutes the novelty of the annplifier and consists of a separate, dual triode amplifier coupled to the output of each square wave amplifier with a recombination connection from the plate of one amplifier section to a grid of one section of the other amplifier. The recombination circuit has provisions for correcting distortion caused by overlapping of the two square wave voltages from the square wave amplifiers.

  14. Cladding-pumped erbium-doped multicore fiber amplifier.

    PubMed

    Abedin, K S; Taunay, T F; Fishteyn, M; DiGiovanni, D J; Supradeepa, V R; Fini, J M; Yan, M F; Zhu, B; Monberg, E M; Dimarcello, F V

    2012-08-27

    A cladding pumped multicore erbium-doped fiber amplifier for simultaneous amplification of 6 channels is demonstrated. Peak gain over 32 dB has been obtained at a wavelength of 1560 nm and the bandwidth measured at 20-dB gain was about 35 nm. Numerical modeling of cladding pumped multicore erbium-doped amplifier was also performed to study the properties of the amplifier. The results of experiment and simulation are found to be in good agreement.

  15. Energy gain and spectral tailoring of ion beams using ultra-high intensity laser beams

    NASA Astrophysics Data System (ADS)

    Prasad, Rajendra; Swantusch, Marco; Cerchez, Mirela; Spickermann, Sven; Auorand, Bastian; Wowra, Thomas; Boeker, Juergen; Willi, Oswald

    2015-11-01

    The field of laser driven ion acceleration over the past decade has produced a huge amount of research. Nowadays, several multi-beam facilities with high rep rate system, e.g. ELI, are being developed across the world for different kinds of experiments. The study of interaction dynamics of multiple beams possessing ultra-high intensity and ultra-short pulse duration is of vital importance. Here, we present the first experimental results on ion acceleration using two ultra-high intensity beams. Thanks to the unique capability of Arcturus laser at HHU Düsseldorf, two almost identical, independent beams in laser parameters such as intensity (>1020 W/cm2), pulse duration (30 fs) and contrast (>1010), could be accessed. Both beams are focused onto a 5 μm thin Ti target. While ensuring spatial overlap of the two beams, at relative temporal delay of ~ 50 ps (optimum delay), the proton and carbon ion energies were enhanced by factor of 1.5. Moreover, strong modulation in C4+ions near the high energy cut-off is observed later than the optimum delay for the proton enhancement. This offers controlled tailoring of the spectral content of heavy ions.

  16. Carrier dynamics in inhomogeneously broadened InAs/AlGaInAs/InP quantum-dot semiconductor optical amplifiers

    SciTech Connect

    Karni, O. Mikhelashvili, V.; Eisenstein, G.; Kuchar, K. J.; Capua, A.; Sęk, G.; Misiewicz, J.; Ivanov, V.; Reithmaier, J. P.

    2014-03-24

    We report on a characterization of fundamental gain dynamics in recently developed InAs/InP quantum-dot semiconductor optical amplifiers. Multi-wavelength pump-probe measurements were used to determine gain recovery rates, following a powerful optical pump pulse, at various wavelengths for different bias levels and pump excitation powers. The recovery was dominated by coupling between the electronic states in the quantum-dots and the high energy carrier reservoir via capture and escape mechanisms. These processes determine also the wavelength dependencies of gain saturation depth and the asymptotic gain recovery level. Unlike quantum-dash amplifiers, these quantum-dots exhibit no instantaneous gain response, confirming their quasi zero-dimensional nature.

  17. Critical coupling and coherent perfect absorption for ranges of energies due to a complex gain and loss symmetric system

    SciTech Connect

    Hasan, Mohammad; Ghatak, Ananya; Mandal, Bhabani Prasad

    2014-05-15

    We consider a non-Hermitian medium with a gain and loss symmetric, exponentially damped potential distribution to demonstrate different scattering features analytically. The condition for critical coupling (CC) for unidirectional wave and coherent perfect absorption (CPA) for bidirectional waves are obtained analytically for this system. The energy points at which total absorption occurs are shown to be the spectral singular points for the time reversed system. The possible energies at which CC occurs for left and right incidence are different. We further obtain periodic intervals with increasing periodicity of energy for CC and CPA to occur in this system. -- Highlights: •Energy ranges for CC and CPA are obtained explicitly for complex WS potential. •Analytical conditions for CC and CPA for PT symmetric WS potential are obtained. •Conditions for left and right CC are shown to be different. •Conditions for CC and CPA are shown to be that of SS for the time reversed system. •Our model shows the great flexibility of frequencies for CC and CPA.

  18. Mineral carbonation: energy costs of pretreatment options and insights gained from flow loop reaction studies

    SciTech Connect

    Penner, Larry R.; O'Connor, William K.; Dahlin, David C.; Gerdemann, Stephen J.; Rush, Gilbert E.

    2004-01-01

    Sequestration of carbon as a stable mineral carbonate has been proposed to mitigate environmental concerns that carbon dioxide may with time escape from its sequestered matrix using alternative sequestration technologies. A method has been developed to prepare stable carbonate products by reacting CO2 with magnesium silicate minerals in aqueous bicarbonate/chloride media at high temperature and pressure. Because this approach is inherently expensive due to slow reaction rates and high capital costs, studies were conducted to improve the reaction rates through mineral pretreatment steps and to cut expenses through improved reactor technology. An overview is given for the estimated cost of the process including sensitivity to grinding and heating as pretreatment options for several mineral feedstocks. The energy costs are evaluated for each pretreatment in terms of net carbon avoided. New studies with a high-temperature, high-pressure flow-loop reactor have yielded information on overcoming kinetic barriers experienced with processing in stirred autoclave reactors. Repeated tests with the flow-loop reactor have yielded insights on wear and failure of system components, on challenges to maintain and measure flow, and for better understanding of the reaction mechanism.

  19. New insights gained on mechanisms of low-energy proton-induced SEUs by minimizing energy straggle

    SciTech Connect

    Dodds, Nathaniel Anson; Dodd, Paul E.; Shaneyfelt, Marty R.; Sexton, Frederick W.; Martinez, Marino J.; Black, Jeffrey D.; Marshall, P. W.; Reed, R. A.; McCurdy, M. W.; Weller, R. A.; Pellish, J. A.; Rodbell, K. P.; Gordon, M. S.

    2015-12-01

    In this study, we present low-energy proton single-event upset (SEU) data on a 65 nm SOI SRAM whose substrate has been completely removed. Since the protons only had to penetrate a very thin buried oxide layer, these measurements were affected by far less energy loss, energy straggle, flux attrition, and angular scattering than previous datasets. The minimization of these common sources of experimental interference allows more direct interpretation of the data and deeper insight into SEU mechanisms. The results show a strong angular dependence, demonstrate that energy straggle, flux attrition, and angular scattering affect the measured SEU cross sections, and prove that proton direct ionization is the dominant mechanism for low-energy proton-induced SEUs in these circuits.

  20. New insights gained on mechanisms of low-energy proton-induced SEUs by minimizing energy straggle

    DOE PAGES

    Dodds, Nathaniel Anson; Dodd, Paul E.; Shaneyfelt, Marty R.; Sexton, Frederick W.; Martinez, Marino J.; Black, Jeffrey D.; Marshall, P. W.; Reed, R. A.; McCurdy, M. W.; Weller, R. A.; et al

    2015-12-01

    In this study, we present low-energy proton single-event upset (SEU) data on a 65 nm SOI SRAM whose substrate has been completely removed. Since the protons only had to penetrate a very thin buried oxide layer, these measurements were affected by far less energy loss, energy straggle, flux attrition, and angular scattering than previous datasets. The minimization of these common sources of experimental interference allows more direct interpretation of the data and deeper insight into SEU mechanisms. The results show a strong angular dependence, demonstrate that energy straggle, flux attrition, and angular scattering affect the measured SEU cross sections, andmore » prove that proton direct ionization is the dominant mechanism for low-energy proton-induced SEUs in these circuits.« less

  1. Time-domain measurement of a self-amplified spontaneous emission free-electron laser with an energy-chirped electron beam and undulator tapering

    SciTech Connect

    Marcus, G.; Rosenzweig, J. B.; Artioli, M.; Ciocci, F.; Del Franco, M.; Giannessi, L.; Petralia, A.; Quattromini, M.; Bacci, A.; Bellaveglia, M.; Chiadroni, E.; Di Pirro, G.; Ferrario, M.; Filippetto, D.; Gatti, G.; Rossi, A. R.; Cianchi, A.; Labat, M.; Mostacci, A.; Petrillo, V.; and others

    2012-09-24

    We report, with an unequivocal time-domain measurement, that an appropriately chosen undulator taper can compensate for an electron beam longitudinal energy-chirp in a free-electron laser amplifier, leading to the generation of single-spike radiation close to the Fourier limit. The measurements were taken using the frequency-resolved optical gating technique by employing an advanced transient-grating diagnostic geometry. The reconstructed longitudinal radiation characteristics are compared in detail to prediction from time-dependent three-dimensional simulations.

  2. Compressed magnetic flux amplifier with capacitive load

    SciTech Connect

    Stuetzer, O.M.

    1980-03-01

    A first-order analysis is presented for a compressed magnetic flux (CMF) current amplifier working into a load with a capacitive component. Since the purpose of the investigation was to gain a general understanding of the arrangement, a number of approximations and limitations were accepted. The inductance of the transducer varies with time; the inductance/resistance/capacitance (LRC) circuit therefore is parametric and solutions are different for the stable regime (high C), the oscillation regime (low C), and the transition case. Solutions and performance depend strongly on circuit boundary conditions, i.e., energization of the circuit by either an injected current or by an applied capacitor charge. The behavior of current and energy amplification for the various cases are discussed in detail. A number of experiments with small CMF devices showed that the first-order theory presented predicts transducer performance well in the linear regime.

  3. Influence of electron-ion collisions in plasma on the electron energy gain using the TE11 mode inside an elliptical waveguide

    NASA Astrophysics Data System (ADS)

    Abdoli-Arani, A.; Basiry, M. J.

    2016-09-01

    The influence of electron-ion collisions in plasma on the electron energy gain and total energy of an externally injected electron inside an elliptical waveguide, including collisional plasma using the transverse electric mode, is investigated. It is noted that microwave radiation is used for excitations of the TE11 even mode in the configuration. The electromagnetic field components of the TE11 mode in the considered waveguide are obtained and graphically presented. It is seen that the strength of the fields reduces in the collisional plasma. Furthermore, the deflection angle, energy gain of the electron and total energy of the electron due to the mode are obtained. It is illustrated that electron-ion collisions in plasma reduce the energy gain and total energy of electrons injected into the elliptical waveguide.

  4. Influence of electron–ion collisions in plasma on the electron energy gain using the TE11 mode inside an elliptical waveguide

    NASA Astrophysics Data System (ADS)

    Abdoli-Arani, A.; Basiry, M. J.

    2016-09-01

    The influence of electron–ion collisions in plasma on the electron energy gain and total energy of an externally injected electron inside an elliptical waveguide, including collisional plasma using the transverse electric mode, is investigated. It is noted that microwave radiation is used for excitations of the TE11 even mode in the configuration. The electromagnetic field components of the TE11 mode in the considered waveguide are obtained and graphically presented. It is seen that the strength of the fields reduces in the collisional plasma. Furthermore, the deflection angle, energy gain of the electron and total energy of the electron due to the mode are obtained. It is illustrated that electron–ion collisions in plasma reduce the energy gain and total energy of electrons injected into the elliptical waveguide.

  5. Laser system using regenerative amplifier

    DOEpatents

    Emmett, J.L.

    1980-03-04

    High energy laser system is disclosed using a regenerative amplifier, which relaxes all constraints on laser components other than the intrinsic damage level of matter, so as to enable use of available laser system components. This can be accomplished by use of segmented components, spatial filters, at least one amplifier using solid state or gaseous media, and separated reflector members providing a long round trip time through the regenerative cavity, thereby allowing slower switching and adequate time to clear the spatial filters, etc. The laser system simplifies component requirements and reduces component cost while providing high energy output. 10 figs.

  6. Laser system using regenerative amplifier

    DOEpatents

    Emmett, John L. [Pleasanton, CA

    1980-03-04

    High energy laser system using a regenerative amplifier, which relaxes all constraints on laser components other than the intrinsic damage level of matter, so as to enable use of available laser system components. This can be accomplished by use of segmented components, spatial filters, at least one amplifier using solid state or gaseous media, and separated reflector members providing a long round trip time through the regenerative cavity, thereby allowing slower switching and adequate time to clear the spatial filters, etc. The laser system simplifies component requirements and reduces component cost while providing high energy output.

  7. Power-Amplifier Module for 145 to 165 GHz

    NASA Technical Reports Server (NTRS)

    Samoska, Lorene; Peralta, Alejandro

    2007-01-01

    A power-amplifier module that operates in the frequency range of 145 to 165 GHz has been designed and constructed as a combination of (1) a previously developed monolithic microwave integrated circuit (MMIC) power amplifier and (2) a waveguide module. The amplifier chip was needed for driving a high-electron-mobility-transistor (HEMT) frequency doubler. While it was feasible to connect the amplifier and frequency-doubler chips by use of wire bonds, it was found to be much more convenient to test the amplifier and doubler chips separately. To facilitate separate testing, it was decided to package the amplifier and doubler chips in separate waveguide modules. Figure 1 shows the resulting amplifier module. The amplifier chip was described in "MMIC HEMT Power Amplifier for 140 to 170 GHz" (NPO-30127), NASA Tech Briefs, Vol. 27, No. 11, (November 2003), page 49. To recapitulate: This is a three-stage MMIC power amplifier that utilizes HEMTs as gain elements. The amplifier was originally designed to operate in the frequency range of 140 to 170 GHz. The waveguide module is based on a previously developed lower frequency module, redesigned to support operation in the frequency range of 140 to 220 GHz. Figure 2 presents results of one of several tests of the amplifier module - measurements of output power and gain as functions of input power at an output frequency of 150 GHz. Such an amplifier module has many applications to test equipment for power sources above 100 GHz.

  8. Modeling and optimization of tapered-diode pumped Cr:LiCAF regenerative amplifiers

    NASA Astrophysics Data System (ADS)

    Demirbas, Umit

    2013-01-01

    We present a numerical study, which investigates the potential of diode pumped Cr:LiCAF regenerative amplifiers in detail. Special attention has been given to relevant material properties of the gain media, like the Auger energy transfer upconversion (ETU) process, to utilize the full potential of the material and to develop guidelines in choosing optimal material properties like chromium doping concentration and length. Moreover, importance of pulsed pumping, rather than continuous-wave (cw) pumping, in obtaining higher small signal gain values is discussed in detail. Effects of pump power, cavity losses, excited-state absorption, seed pulse energy, optical damage and ETU on obtainable pulse energies will also be presented. The modeling results have shown that, Cr:LiCAF regenerative amplifiers pumped by two 675 nm state-of-the-art 1-W tapered diodes have the potential to produce 50-fs long pulses around 800 nm with 70 μJ pulse energy and 1.4 GW peak power at repetition rates up to 5 kHz. Moreover, a 20-W diode pumped Cr:LiCAF amplifier has the potential to produce pulse energies of 1.1 mJ and peak powers of 20 GW. Expected optical-to-optical conversion efficiencies of the systems are about 30%. These results demonstrate that, with ongoing progress in laser diode technology, low-cost and efficient Cr:Colquiriite amplifiers has the potential to replace the expensive Ti:Sapphire technology in the future.

  9. Cross-differential amplifier

    NASA Technical Reports Server (NTRS)

    Hajimiri, Seyed-Ali (Inventor); Kee, Scott D. (Inventor); Aoki, Ichiro (Inventor)

    2008-01-01

    A cross-differential amplifier is provided. The cross-differential amplifier includes an inductor connected to a direct current power source at a first terminal. A first and second switch, such as transistors, are connected to the inductor at a second terminal. A first and second amplifier are connected at their supply terminals to the first and second switch. The first and second switches are operated to commutate the inductor between the amplifiers so as to provide an amplified signal while limiting the ripple voltage on the inductor and thus limiting the maximum voltage imposed across the amplifiers and switches.

  10. Cross-differential amplifier

    NASA Technical Reports Server (NTRS)

    Hajimiri, Seyed-Ali (Inventor); Kee, Scott D. (Inventor); Aoki, Ichiro (Inventor)

    2011-01-01

    A cross-differential amplifier is provided. The cross-differential amplifier includes an inductor connected to a direct current power source at a first terminal. A first and second switch, such as transistors, are connected to the inductor at a second terminal. A first and second amplifier are connected at their supply terminals to the first and second switch. The first and second switches are operated to commutate the inductor between the amplifiers so as to provide an amplified signal while limiting the ripple voltage on the inductor and thus limiting the maximum voltage imposed across the amplifiers and switches.

  11. Cross-differential amplifier

    NASA Technical Reports Server (NTRS)

    Hajimiri, Seyed-Ali (Inventor); Kee, Scott D. (Inventor); Aoki, Ichiro (Inventor)

    2010-01-01

    A cross-differential amplifier is provided. The cross-differential amplifier includes an inductor connected to a direct current power source at a first terminal. A first and second switch, such as transistors, are connected to the inductor at a second terminal. A first and second amplifier are connected at their supply terminals to the first and second switch. The first and second switches are operated to commutate the inductor between the amplifiers so as to provide an amplified signal while limiting the ripple voltage on the inductor and thus limiting the maximum voltage imposed across the amplifiers and switches.

  12. Cross-differential amplifier

    NASA Technical Reports Server (NTRS)

    Hajimiri, Seyed-Ali (Inventor); Kee, Scott D. (Inventor); Aoki, Ichiro (Inventor)

    2013-01-01

    A cross-differential amplifier is provided. The cross-differential amplifier includes an inductor connected to a direct current power source at a first terminal. A first and second switch, such as transistors, are connected to the inductor at a second terminal. A first and second amplifier are connected at their supply terminals to the first and second switch. The first and second switches are operated to commutate the inductor between the amplifiers so as to provide an amplified signal while limiting the ripple voltage on the inductor and thus limiting the maximum voltage imposed across the amplifiers and switches.

  13. Hybrid matrix amplifier

    DOEpatents

    Martens, J.S.; Hietala, V.M.; Plut, T.A.

    1995-01-03

    The present invention comprises a novel matrix amplifier. The matrix amplifier includes an active superconducting power divider (ASPD) having N output ports; N distributed amplifiers each operatively connected to one of the N output ports of the ASPD; and a power combiner having N input ports each operatively connected to one of the N distributed amplifiers. The distributed amplifier can included M stages of amplification by cascading superconducting active devices. The power combiner can include N active elements. The resulting (N[times]M) matrix amplifier can produce signals of high output power, large bandwidth, and low noise. 6 figures.

  14. Hybrid matrix amplifier

    DOEpatents

    Martens, Jon S.; Hietala, Vincent M.; Plut, Thomas A.

    1995-01-01

    The present invention comprises a novel matrix amplifier. The matrix amplifier includes an active superconducting power divider (ASPD) having N output ports; N distributed amplifiers each operatively connected to one of the N output ports of the ASPD; and a power combiner having N input ports each operatively connected to one of the N distributed amplifiers. The distributed amplifier can included M stages of amplification by cascading superconducting active devices. The power combiner can include N active elements. The resulting (N.times.M) matrix amplifier can produce signals of high output power, large bandwidth, and low noise.

  15. EuropeaN Energy balance Research to prevent excessive weight Gain among Youth (ENERGY) project: Design and methodology of the ENERGY cross-sectional survey

    PubMed Central

    2011-01-01

    Background Obesity treatment is by large ineffective long term, and more emphasis on the prevention of excessive weight gain in childhood and adolescence is warranted. To inform energy balance related behaviour (EBRB) change interventions, insight in the potential personal, family and school environmental correlates of these behaviours is needed. Studies on such multilevel correlates of EBRB among schoolchildren in Europe are lacking. The ENERGY survey aims to (1) provide up-to-date prevalence rates of measured overweight, obesity, self-reported engagement in EBRBs, and objective accelerometer-based assessment of physical activity and sedentary behaviour and blood-sample biomarkers of metabolic function in countries in different regions of Europe, (2) to identify personal, family and school environmental correlates of these EBRBs. This paper describes the design, methodology and protocol of the survey. Method/Design A school-based cross-sectional survey was carried out in 2010 in seven different European countries; Belgium, Greece, Hungary, the Netherlands, Norway, Slovenia, and Spain. The survey included measurements of anthropometrics, child, parent and school-staff questionnaires, and school observations to measure and assess outcomes (i.e. height, weight, and waist circumference), EBRBs and potential personal, family and school environmental correlates of these behaviours including the social-cultural, physical, political, and economic environmental factors. In addition, a selection of countries conducted accelerometer measurements to objectively assess physical activity and sedentary behaviour, and collected blood samples to assess several biomarkers of metabolic function. Discussion The ENERGY survey is a comprehensive cross-sectional study measuring anthropometrics and biomarkers as well as assessing a range of EBRBs and their potential correlates at the personal, family and school level, among 10-12 year old children in seven European countries. This study

  16. High-Frequency, Conformable Organic Amplifiers.

    PubMed

    Reuveny, Amir; Lee, Sunghoon; Yokota, Tomoyuki; Fuketa, Hiroshi; Siket, Christian M; Lee, Sungwon; Sekitani, Tsuyoshi; Sakurai, Takayasu; Bauer, Siegfried; Someya, Takao

    2016-05-01

    Large-bandwidth, low-operation-voltage, and uniform organic amplifiers are fabricated on ultrathin foils. By the integration of short-channel OTFTs and AlOx capacitors, organic amplifiers with a bandwidth of 25 kHz are realized, demonstrating the highest gain-bandwidth product (GBWP) reported to date. Owing to material and process advancements, closed-loop architectures operate at frequencies of several kilohertz with an area smaller than 30 mm(2) . PMID:26922899

  17. High-Frequency, Conformable Organic Amplifiers.

    PubMed

    Reuveny, Amir; Lee, Sunghoon; Yokota, Tomoyuki; Fuketa, Hiroshi; Siket, Christian M; Lee, Sungwon; Sekitani, Tsuyoshi; Sakurai, Takayasu; Bauer, Siegfried; Someya, Takao

    2016-05-01

    Large-bandwidth, low-operation-voltage, and uniform organic amplifiers are fabricated on ultrathin foils. By the integration of short-channel OTFTs and AlOx capacitors, organic amplifiers with a bandwidth of 25 kHz are realized, demonstrating the highest gain-bandwidth product (GBWP) reported to date. Owing to material and process advancements, closed-loop architectures operate at frequencies of several kilohertz with an area smaller than 30 mm(2) .

  18. Quasi-optical constrained lens amplifiers

    NASA Astrophysics Data System (ADS)

    Schoenberg, Jon S.

    1995-09-01

    A major goal in the field of quasi-optics is to increase the power available from solid state sources by combining the power of individual devices in free space, as demonstrated with grid oscillators and grid amplifiers. Grid amplifiers and most amplifier arrays require a plane wave feed, provided by a far field source or at the beam waist of a dielectric lens pair. These feed approaches add considerable loss and size, which is usually greater than the quasi-optical amplifier gain. In addition, grid amplifiers require external polarizers for stability, further increasing size and complexity. This thesis describes using constrained lens theory in the design of quasi optical amplifier arrays with a focal point feed, improving the power coupling between the feed and the amplifier for increased gain. Feed and aperture arrays of elements, input/output isolation and stability, amplifier circuitry, delay lines and bias distribution are all contained on a single planar substrate, making monolithic circuit integration possible. Measured results of X band transmission lenses and a low noise receive lens are presented, including absolute power gain up to 13 dB, noise figure as low as 1.7 dB, beam scanning to +/-30 deg, beam forming and beam switching of multiple sources, and multiple level quasi-optical power combining. The design and performance of millimeter wave power combining amplifier arrays is described, including a Ka Band hybrid array with 1 watt output power, and a V Band 36 element monolithic array with a 5 dB on/off ratio.

  19. Design and performance of the beamlet amplifiers

    SciTech Connect

    Erlandson, A.C.; Rotter, M.D.; Frank, M.D.; McCracken, R.W.

    1996-06-01

    In future laser systems, such as the National Ignition Facility (NIF), multi-segment amplifiers (MSAs) will be used to amplify the laser beam to the required levels. As a prototype of such a laser architecture, the authors have designed, built, and tested flash-lamp-pumped, Nd:Glass, Brewster-angle slab MSAs for the Beamlet project. In this article, they review the fundamentals of Nd:Glass amplifiers, describe the MSA geometry, discuss parameters that are important in amplifier design, and present our results on the characterization of the Beamlet MSAs. In particular, gain and beam steering measurements show that the Beamlet amplifiers meet all optical performance specifications and perform close to model predictions.

  20. High energy, 1572.3 nm pulses for CO2 LIDAR from a polarization-maintaining, very-large-mode-area, Er-doped fiber amplifier.

    PubMed

    Nicholson, J W; DeSantolo, A; Yan, M F; Wisk, P; Mangan, B; Puc, G; Yu, A W; Stephen, M A

    2016-08-22

    We demonstrate the first polarization-maintaining, very-large-mode-area, Er-doped fiber amplifier with ~1100 μm2 effective area. The amplifier is core pumped by a Raman fiber laser and is used to generate single-frequency, one-microsecond, pulses with pulse energy of 541 μJ, peak power of 700 W, M2 of 1.1, and polarization extinction > 20 dB. The amplifier operates at 1572.3 nm, a wavelength useful for trace atmospheric CO2 detection.

  1. High energy, 1572.3 nm pulses for CO2 LIDAR from a polarization-maintaining, very-large-mode-area, Er-doped fiber amplifier.

    PubMed

    Nicholson, J W; DeSantolo, A; Yan, M F; Wisk, P; Mangan, B; Puc, G; Yu, A W; Stephen, M A

    2016-08-22

    We demonstrate the first polarization-maintaining, very-large-mode-area, Er-doped fiber amplifier with ~1100 μm2 effective area. The amplifier is core pumped by a Raman fiber laser and is used to generate single-frequency, one-microsecond, pulses with pulse energy of 541 μJ, peak power of 700 W, M2 of 1.1, and polarization extinction > 20 dB. The amplifier operates at 1572.3 nm, a wavelength useful for trace atmospheric CO2 detection. PMID:27557271

  2. Nonuniform carrier distribution in semiconductor optical amplifiers

    NASA Astrophysics Data System (ADS)

    Evankow, Joseph David, Jr.

    This work discusses the experimental results and theoretical analysis of the longitudinal distribution of the spontaneous emission, amplified spontaneous emission, hole-electron pairs, and gain in semiconductor optical amplifiers. A novel, yet simple, technique was developed enabling, for the first time, the measurement of these distributions. This was accomplished with a high degree of spatial resolution using a single-mode micro-lensed fiber tip positioned perpendicular to the active region and moved longitudinally along the stripe. The cornerstone of this study centers on the theoretical analysis of the small portion of the isotropic spontaneous emission, emanating from the optical cavity, which is captured by the lensed fiber. Spectral as well as integrated power measurements were made along the length of the cavity. These spectral and integrated power measurements provide a direct link to the carrier concentration and gain along the optical cavity. The distribution of this spontaneous emission along the amplifier, and its relationship to other parameters, provide information about the carriers. Since the common mode of operation for linear optical amplifiers is deep in saturation, the devices in this study were analyzed in regimes significantly below the small-signal gain. While large carrier density non- uniformity occur with output powers equal to or greater than Psat, a significant amount can occur in amplifiers even with small input signals. In these amplifiers, the higher carder concentrations produce much higher internal gain coefficients making them more prone to non-uniform carrier density distributions. Moreover, even in semiconductor lasers, where the carrier concentration and the gain are pinned at the onset of lasing to rather pedestrian levels (approximately 1 × 1018 cm-3 and of 3 dB, respectively), previous theoretical analysis for more than a decade postulated that a significant spatial distribution occur. These measurements and analysis

  3. Multiple Differential-Amplifier MMICs Embedded in Waveguides

    NASA Technical Reports Server (NTRS)

    Kangaslahti, Pekka; Schlecht, Erich

    2010-01-01

    Compact amplifier assemblies of a type now being developed for operation at frequencies of hundreds of gigahertz comprise multiple amplifier units in parallel arrangements to increase power and/or cascade arrangements to increase gains. Each amplifier unit is a monolithic microwave integrated circuit (MMIC) implementation of a pair of amplifiers in differential (in contradistinction to single-ended) configuration. Heretofore, in cascading amplifiers to increase gain, it has been common practice to interconnect the amplifiers by use of wires and/or thin films on substrates. This practice has not yielded satisfactory results at frequencies greater than 200 Hz, in each case, for either or both of two reasons: Wire bonds introduce large discontinuities. Because the interconnections are typically tens of wavelengths long, any impedance mismatches give rise to ripples in the gain-vs.-frequency response, which degrade the performance of the cascade.

  4. Josephson parametric amplifiers for the ADMX-HF experiment

    NASA Astrophysics Data System (ADS)

    Malnou, Maxime; Palken, Daniel; Hilton, Gene; Vale, Leila; Lehnert, Konrad

    2016-03-01

    Dark matter search in the ADMX-HF experiment aims at detecting power generated by the axion-photon conversion, of a few hundred of yoctowatts, in the 4 - 12 GHz band. The sensitivity of detection directly depends on the amplifier noise temperature, and therefore requires state of the art microwave amplifiers. In contrast to amplifiers with dissipation on-chip, superconducting Josephson parametric amplifiers (JPA) reach and even circumvent the quantum limit. Over the past years, we have developed JPAs fabricated with arrays of superconducting quantum interference devices. Their gain, bandwidth and tunability are particularly well suited for efficient amplification in the band of interest. In this talk we will present numerical modeling of the behavior of our amplifiers, along with the first results from new designs that cover the 4-12 GHz band. Finally, we will present the ongoing work to increase the gain-bandwidth product and gain stability of our amplifiers.

  5. Phase-stable, microwave FEL amplifier

    SciTech Connect

    Carlsten, B.E.; Fazio, M.V.; Haynes, W.B.; May, L.; Potter, M.

    1995-07-01

    Free-electron laser (FEL) amplifiers have demonstrated high efficiency and high output power for microwave wavelengths. However, using present technology, microwave FEL amplifiers are not phase stable enough to be suitable for driving linear accelerators, where several much amplifiers need to be phase locked. The growing wave`s phase sensitivity to the beam voltage in the small-signal gain regime is responsible for the largest contribution to this phase instability. We discuss a scheme that reduces the phase sensitivity to the beam voltage by operating off synchronism and matching the phase variation resulting from the desynchronism to the phase variation from the reduced plasma wavenumber as the beam voltage changes.

  6. Noiseless Optical Amplifier Operating on Hundreds of Spatial Modes

    NASA Astrophysics Data System (ADS)

    Corzo, N. V.; Marino, A. M.; Jones, K. M.; Lett, P. D.

    2012-07-01

    We implement a noiseless optical amplifier using a phase-sensitive four-wave mixing process in rubidium vapor. We observe performance near the quantum limit for this type of amplifier over a range of experimental parameters and show that the noise figure is always better than would be obtained with a phase-insensitive amplifier with the same gain. Additionally, we observe that the amplifier supports hundreds of spatial modes, making it possible to amplify complex two-dimensional spatial patterns with less than a 10% degradation of the input signal-to-noise ratio for gains up to 4.6. To confirm the multimode character of the amplifier, we study the noise figure as a function of spatially-varying losses. Additionally, we investigate the spatial resolution of the amplifier and show that it supports a range of spatial frequencies from 1.3 to more than 35 line pairs per millimeter.

  7. High power Ka band TWT amplifier

    SciTech Connect

    Golkowski, C.; Ivers, J.D.; Nation, J.A.; Wang, P.; Schachter, L.

    1999-07-01

    Two high power 35 GHz TWT amplifiers driven by a relativistic pencil, 850 kV, 200A electron beam have been assembled and tested. The first had a dielectric slow wave structure and was primarily used to develop diagnostics, and to gain experience in working with high power systems in Ka band. The source of the input power for the amplifier was a magnetron producing a 30 kW, 200ns long pulse of which 10 kW as delivered to the experiment. The 30 cm long dielectric (Teflon) amplifier produced output power levels of about 1 MW with a gain of about 23 dB. These results are consistent with expectations from PIC code simulations for this arrangement. The second amplifier, which is a single stage disk loaded slow wave structure, has been designed. It consists of one hundred uniform cells with two sets of ten tapered calls at the ends to lower the reflection coefficient. The phase advance per cell is {pi}/2. The amplifier passband extends from 28 to 40 GHz. It is designed to increase the output power to about 20 MW. The amplifier is in construction and will be tested in the near future. Details of the design of both systems will be provided and initial results from the new amplifier presented.

  8. Self-consistent simulation of cyclotron autoresonance maser amplifiers

    SciTech Connect

    Pendergast, K.D.; Danly, B.G.; Temkin, R.J.; Wurtele, J.S.

    1988-04-01

    A self-consistent, one-dimensional model of the cyclotron autoresonance maser (CARM) amplifier is developed, and numerical simulations based on this model are described. Detailed studies of the CARM gain and efficiency for a wide range of initial energy and velocity spreads are presented. The interaction efficiency is found to be substantially increased when the axial magnetic field is tapered. For example, efficiencies of greater than 41 percent are obtained for a 140-GHz CARM amplifier with a tapered axial magnetic field and a 700-kV 4.5-A electron beam with parallel velocity spreads of less than 1 percent. A discussion of the nonlinear bandwidth and interaction sensitivity to axial field inhomogeneities is presented.

  9. Portable musical instrument amplifier

    DOEpatents

    Christian, David E.

    1990-07-24

    The present invention relates to a musical instrument amplifier which is particularly useful for electric guitars. The amplifier has a rigid body for housing both the electronic system for amplifying and processing signals from the guitar and the system's power supply. An input plug connected to and projecting from the body is electrically coupled to the signal amplifying and processing system. When the plug is inserted into an output jack for an electric guitar, the body is rigidly carried by the guitar, and the guitar is operatively connected to the electrical amplifying and signal processing system without use of a loose interconnection cable. The amplifier is provided with an output jack, into which headphones are plugged to receive amplified signals from the guitar. By eliminating the conventional interconnection cable, the amplifier of the present invention can be used by musicians with increased flexibility and greater freedom of movement.

  10. Single-mode operation of a coiled multimode fiber amplifier

    SciTech Connect

    Jeffrey P. Koplow; Dahv A. V. Kliner; Lew Goldberg

    2000-01-19

    The authors report a new approach to obtain single-transverse-mode operation of a multimode fiber amplifier, in which the gain fiber is coiled to induce significant bend loss for all but the lowest-order mode. They have demonstrated this method by constructing a coiled amplifier using Yb-doped, double-clad fiber with a core diameter of 25 {micro}m and NA of {minus}0.1 (V {approx} 7.4). When operated as an ASE source, the output beam had an M{sup 2} value of 1.09 {+-} 0.09; when seeded at 1,064 nm, the slope efficiency was similar to that of an uncoiled amplifier. This technique does not require exotic fiber designs or increase system complexity and is inexpensive to implement. It will allow scaling of pulsed fiber lasers and amplifiers to significantly higher pulse energies and peak powers and cw fiber sources to higher average powers while maintaining excellent beam quality.

  11. PASOTRON{trademark} amplifier experiments

    SciTech Connect

    Ponti, E.S.; Goebel, D.M.; Feicht, J.R.; Santoru, J.; Eisenhart, R.L.

    1995-11-01

    Preliminary experimental studies are reported of an L-Band amplifier based on Hughes` Plasma-Assisted, Slow-Wave Oscillator (PASOTRON) technology. The amplifier system utilizes a hollow-cathode-plasma electron-gun, and a plasma-filled Slow-Wave Structure (SWS) to produce {>=} 100-{micro}sec-long, 50 to 75-kV, 30 to 100-A electron-beam pulses that propagate in a plasma channel without the use of any externally applied axial magnetic field. The electron-beam pulse coincides with a 100-{micro}sec-long RF drive signal provided by a 2.6-kW TWT, which is coupled into the amplifier upstream of the SWS. The SWS consists of a ring-bar design which is novel to the PASOTRON family of devices and is used for its short length compared to a helix. Simulations on HP`s High Frequency Structure Simulator were used to optimize the ring-bar SWS. Preliminary data are reported showing the new L-Band amplifiers gain, power, efficiency, and bandwidth. Methods of eliminating a Backward Wave Oscillation (BWO), which was found to limit the performance of the tube, are also presented.

  12. Efficiency of use of metabolizable energy for body weight gain in pasture-based, nonlactating dairy cows.

    PubMed

    Mandok, K M; Kay, J K; Greenwood, S L; McNamara, J P; Crookenden, M; White, R; Shields, S; Edwards, G R; Roche, J R

    2014-07-01

    Four cohorts of nonlactating, pregnant dairy cows (n=50, 47, 45, and 42) were individually fed indoors to determine the amount of feed required for body weight (BW) gain from autumn pasture and commonly used supplementary feeds. These results were used to estimate the apparent efficiency with which metabolizable energy (ME) is used for BW gain (app_kg). Control cows were offered autumn pasture to estimated maintenance requirements (~0.55 MJ of ME/kg of BW(0.75)), with an additional 20 MJ of ME/d allocated for pregnancy and activity. All other cows received the same allowance of autumn pasture and an additional allowance (2.5 or 5.0 kg of dry matter/d) of autumn pasture (Past), spring pasture silage (Psil), maize silage (Msil), cracked maize grain (Mgr), or palm kernel expeller (PKE), resulting in a total of 11 treatments. Individual cow dry matter intake was determined daily; BW was recorded once per week for cohorts 1 and 2, and 3 times per week for cohorts 3 and 4. The ME contents of feeds were estimated from feed quality assays. Regression analyses were used on each feed to determine the ME requirement for 1 kg of BW gain. The app_kg of Past and Msil was 0.34 and 0.47, respectively; these estimates are in line with published literature. The app_kg of Psil (0.50) was consistent with the published kg for spring pasture, from which the silage was made. Palm kernel expeller had the greatest app_kg (0.61). The reasons for this cannot be deduced from the current study but may reflect the relatively high fat content of the feed and the high kg of fat. The app_kg for Mgr was low (0.38) in comparison with the other supplementary feeds and, in particular, relative to its feed ME and published kg estimates. Although the reason for the low app_kg cannot be deduced from the current data, the most plausible reason is the preferential use of propionate-derived glucose for conceptus metabolism rather than BW gain, a factor not accounted for in previous experimental models that

  13. Health and productivity gains from better indoor environments and their implications for the U.S. Department of Energy

    SciTech Connect

    Fisk, William J.

    2000-10-01

    A substantial portion of the US population suffers frequently from communicable respiratory illnesses, allergy and asthma symptoms, and sick building syndrome symptoms. We now have increasingly strong evidence that changes in building design, operation, and maintenance can significantly reduce these illnesses. Decreasing the prevalence or severity of these health effects would lead to lower health care costs, reduced sick leave, and shorter periods of illness-impaired work performance, resulting in annual economic benefits for the US in the tens of billions of dollars. Increasing the awareness of these potential health and economic gains, combined with other factors, could help bring about a shift in the way we design, construct, operate, and occupy buildings. The current goal of providing marginally adequate indoor environments could be replaced by the goal of providing indoor environments that maximize the health, satisfaction, and performance of building occupants. Through research and technology transfer, DOE and its contractors are well positioned to help stimulate this shift in practice and, consequently, improve the health and economic well-being of the US population. Additionally, DOE's energy-efficiency interests would be best served by a program that prepares for the potential shift, specifically by identifying and promoting the most energy-efficient methods of improving the indoor environment. The associated research and technology transfer topics of particular relevance to DOE are identified and discussed.

  14. Cascade amps for increased subsystem gain

    NASA Astrophysics Data System (ADS)

    Galla, Timothy J.

    1990-05-01

    Selecting cascadable TO-8 amplifiers integrated onto microstrip circuit boards is considered from the point of view of cascaded circuit design techniques and performance characteristics. Cascaded assemblies and circuit boards used in cascaded-amplifier applications are presented. It is noted that TO-8 package constrains allow as many as three transistor stages per housing, utilizing either passive or active biasing with choke decoupling; these configurations can achieve broadband performance with small-signal gain of 15 to 20 dB. Where higher gain levels are required, TO-8 amplifiers can be cascaded as gain blocks and assembled into aluminum housing with connectors. Increased reflection losses resulting in a higher voltage standing wave ratio are analyzed, along with noise minimization techniques. A model showing how to find a TO-8 amplifier's noise figure, input power, and third-order intercept point is described.

  15. Modeling of coherent beam combining from multimillijoule chirped pulse tapered fiber amplifiers

    NASA Astrophysics Data System (ADS)

    Andrianov, A. V.; Kim, A. V.; Anashkina, E. A.; Meyerov, I. B.; Lebedev, S. A.; Sergeev, A. M.; Koenig, K.; Mourou, G.

    2015-10-01

    The amplification of high energy chirped pulses in Large Mode Area tapered fiber amplifiers and their coherent combining have been investigated numerically. We have developed a three-dimensional model of strongly chirped nanosecond pulse amplification and compression back to femtosecond duration fully taking into account transverse and longitudinal variations of refractive index profile and distribution of active ions in the fiber, wavelength dependence of emission and absorption cross sections, gain saturation and Kerr nonlinearity. Modeling of Yb-doped fiber amplifier shows that up to 3 mJ of output energy can be extracted in 1 ns pulse with single-mode beam quality. Finally, we have investigated numerically the capabilities of compression and coherent combining of up to 36 perturbed amplifying channels in which high-order modes were excited and have obtained more than 70% combining efficiency and 380 fs compressed pulse duration.

  16. A semiconductor injection-switched high-pressure sub-10-picosecond carbon dioxide laser amplifier

    NASA Astrophysics Data System (ADS)

    Hughes, Michael Kon Yew

    A multiatmospheric-pressure-broadened CO2 laser amplifier was constructed to amplify sub-10-picosecond pulses generated with semiconductor switching. High-intensity, mid-infrared, amplified pulses have many applications: especially in fields such as non-linear optics, laser-plasma interaction, and laser particle acceleration. The injected pulses are produced by exciting GaAs (or an engineered, fast-recombination time semiconductor) with an ultrafast visible laser pulse to induce transient free carriers with sufficient density to reflect a co-incident hybrid-CO2 laser pulse. The short pulse is injected directly into the regenerative amplifier cavity from an intra-cavity semiconductor switch. The CO2-gas-mix amplifier is operated at 1.24 MPa which is sufficient to collisionally broaden the individual rotational spectral lines so that they merge to produce a gain spectrum wide enough to support pulses less than 10 ps long. After sufficient amplification, the pulse is switched out with another semiconductor switch pumped with a synchronized visible-laser pulse. This system is demonstrated and analysed spectrally and temporally. The pulse-train spectral analysis is done for a GaAs-GaAs double-switch arrangement using a standard spectrometer and two HgCdTe detectors; one of which is used for a reference signal. An infrared autocorrelator was designed and constructed to temporally analyse the pulse trains emerging from the amplifier. Interpretation of the results was aided by the development of a computer model for short-pulse amplification which incorporated saturation effects, rotational- and vibrational-mode energy redistribution between pulse round trips, and the gain enhancement due to one sequence band. The results show that a sub-10-picosecond pulse is injected into the cavity and that it is amplified with some trailing pulses at 18 ps intervals generated by coherent effects. The energy level reached, estimated through modelling, was >100 mJ/cm2.

  17. Amplified spontaneous emission in Cassegrainian amplifiers

    NASA Astrophysics Data System (ADS)

    Eimerl, David

    1987-05-01

    The paper considers all possible paths for amplifed spontaneous emission (ASE) in multipass laser amplifiers using a Cassegranian telescope geometry. In particular, ASE which is reflected back into the medium off the telescope mirrors themselves is studied. These ASE components are unavoidable in this amplifier geometry. It is shown that there is a component of the ASE which makes approximately double the number of passes through the amplifier as the laser signal makes. It is also shown that these high-order ASE components are also present in amplifiers which are almost Cassegrainian. They cannot be eliminated by changing the ratio of the scraper and hole radii or the separation of the mirrors. It is likely that these ASE components will be more significant in pulsed lasers than CW lasers.

  18. Matched wideband low-noise amplifiers for radio astronomy.

    PubMed

    Weinreb, S; Bardin, J; Mani, H; Jones, G

    2009-04-01

    Two packaged low noise amplifiers for the 0.3-4 GHz frequency range are described. The amplifiers can be operated at temperatures of 300-4 K and achieve noise temperatures in the 5 K range (<0.1 dB noise figure) at 15 K physical temperature. One amplifier utilizes commercially available, plastic-packaged SiGe transistors for first and second stages; the second amplifier is identical except it utilizes an experimental chip transistor as the first stage. Both amplifiers use resistive feedback to provide input reflection coefficient S11<-10 dB over a decade bandwidth with gain over 30 dB. The amplifiers can be used as rf amplifiers in very low noise radio astronomy systems or as i.f. amplifiers following superconducting mixers operating in the millimeter and submillimeter frequency range.

  19. Microchannels as axonal amplifiers.

    PubMed

    Fitzgerald, James J; Lacour, Stéphanie P; McMahon, Stephen B; Fawcett, James W

    2008-03-01

    An implantable neural interface capable of reliable long-term high-resolution recording from peripheral nerves has yet to be developed. Device design is challenging because extracellular axonal signals are very small, decay rapidly with distance from the axon, and in myelinated fibres are concentrated close to nodes of Ranvier, which are around 1 mum long and spaced several hundred micrometers apart. We present a finite element model examining the electrical behavior of axons in microchannels, and demonstrate that confining axons in such channels substantially amplifies the extracellular signal. For example, housing a 10-microm myelinated axon in a 1-cm-long channel with a 1000-microm(2) cross section is predicted to generate a peak extracellular voltage of over 10 mV. Furthermore, there is little radial signal decay within the channel, and a smooth axial variation of signal amplitude along the channel, irrespective of node location. Additional benefits include a greater extracellular voltage generated by large myelinated fibres compared to small unmyelinated axons, and the reduction of gain to unity at the end of the channel which ensures that there can be no crosstalk with electrodes in other channels nearby. A microchannel architecture seems well suited to the requirements of a peripheral nerve interface.

  20. A Low-Noise Semiconductor Optical Amplifier

    SciTech Connect

    Ratowsky, R.P.; Dijaili, S.; Kallman, J.S.; Feit, M.D.; Walker, J.

    1999-03-23

    Optical amplifiers are essential devices for optical networks, optical systems, and computer communications. These amplifiers compensate for the inevitable optical loss in long-distance propagation (>50 km) or splitting (>10x). Fiber amplifiers such as the erbium-doped fiber amplifier have revolutionized the fiber-optics industry and are enjoying widespread use. Semiconductor optical amplifiers (SOAs) are an alternative technology that complements the fiber amplifiers in cost and performance. One obstacle to the widespread use of SOAs is the severity of the inevitable noise output resulting from amplified spontaneous emission (ASE). Spectral filtering is often used to reduce ASE noise, but this constrains the source spectrally, and improvement is typically limited to about 10 dB. The extra components also add cost and complexity to the final assembly. The goal of this project was to analyze, design, and take significant steps toward the realization of an innovative, low-noise SOA based on the concept of ''distributed spatial filtering'' (DSF). In DSF, we alternate active SOA segments with passive free-space diffraction regions. Since spontaneous emission radiates equally in all directions, the free-space region lengthens the amplifier for a given length of gain region, narrowing the solid angle into which the spontaneous emission is amplified [1,2]. Our innovation is to use spatial filtering in a differential manner across many segments, thereby enhancing the effect when wave-optical effects are included [3]. The structure quickly and effectively strips the ASE into the higher-order modes, quenching the ASE gain relative to the signal.

  1. Amplified spontaneous emission in high power KrF lasers

    NASA Astrophysics Data System (ADS)

    Sasaki, Akira; Kasuya, Koichi; Ueda, Ken-Ichi; Takuma, Hiroshi

    1989-01-01

    This paper describes a three-dimensional simulation code for amplified spontaneous emission (ASE) for a high-power KrF laser amplifier. The results of parametric calculation show that the maximum transverse gain-length product of the amplifier without efficiency depletion is three, and the longitudinal gain-length product should be limited to ten. From a device of 10 m in length and 3 m in diameter, operated with 1-percent/cm small signal gain and 1-microsec duration, the corresponding maximum output will be 500 kJ.

  2. Plasma channel produced by femtosecond laser pulses as a medium for amplifying electromagnetic radiation of the subterahertz frequency range

    SciTech Connect

    Bogatskaya, A V; Volkova, E A; Popov, A M

    2013-12-31

    The electron energy distribution function in the plasma channel produced by a femtosecond laser pulse with a wavelength of 248 nm in atmospheric-pressure gases was considered. Conditions were determined whereby this channel may be employed for amplifying electromagnetic waves up to the terahertz frequency range over the energy spectrum relaxation time ∼10{sup -7} s. Gains were calculated as functions of time and radiation frequency. The effect of electron – electron collisions on the rate of relaxation processes in the plasma and on its ability to amplify the electromagnetic radiation was investigated. (interaction of laser radiation with matter)

  3. Improved energy coupling into the gain region of the Ni-like Pd transient collisional x-ray laser

    SciTech Connect

    Smith, R; Dunn, J; Filevich, J; Moon, S; Nilsen, J; Keenan, R; Shlyaptsev, V; Rocca, J; Hunter, J; Shepherd, R; Booth, R; Marconi, M

    2004-10-05

    We present within this paper a series of experiments, which yield new observations to further our understanding of the transient collisional x-ray laser medium. We use the recently developed technique of picosecond x-ray laser interferometry to probe the plasma conditions in which the x-ray laser is generated and propagates. This yields two dimensional electron density maps of the plasma taken at different times relative to the peak of the 600ps plasma-forming beam. In another experimental campaign, the output of the x-ray laser plasma column is imaged with a spherical multilayer mirror onto a CCD camera to give a two-dimensional intensity map of the x-ray laser output. Near-field imaging gives insights into refraction, output intensity and spatial mode structure. Combining these images with the density maps gives an indication of the electron density at which the x-ray laser is being emitted at (yielding insights into the effect of density gradients on beam propagation). Experimental observations coupled with simulations predict that most effective coupling of laser pump energy occurs when the duration of the main heating pulse is comparable to the gain lifetime ({approx}10ps for Ni-like schemes). This can increase the output intensity by more than an order of magnitude relative to the case were the same pumping energy is delivered within a shorter heating pulse duration (< 3ps). We have also conducted an experiment in which the output of the x-ray laser was imaged onto the entrance slit of a high temporal resolution streak camera. This effectively takes a one-dimensional slice of the x-ray laser spatial profile and sweeps it in time. Under some conditions we observe rapid movement of the x-ray laser ({approx} 3 {micro}m/ps) towards the target surface.

  4. Some Notes on Wideband Feedback Amplifiers

    DOE R&D Accomplishments Database

    Fitch, V.

    1949-03-16

    The extension of the passband of wideband amplifiers is a highly important problem to the designer of electronic circuits. Throughout the electronics industry and in many research programs in physics and allied fields where extensive use is made of video amplifiers, the foremost requirement is a passband of maximum width. This is necessary if it is desired to achieve a more faithful reproduction of transient wave forms, a better time resolution in physical measurements, or perhaps just a wider band gain-frequency response to sine wave signals. The art of electronics is continually faced with this omnipresent amplifier problem. In particular, the instrumentation techniques of nuclear physics require amplifiers with short rise times, a high degree of gain stability, and a linear response to high signal levels. While the distributed amplifier may solve the problems of those seeking only a wide passband, the requirements of stability and linearity necessitate using feedback circuits. This paper considers feedback amplifiers from the standpoint of high-frequency performance. The circuit conditions for optimum steady-state (sinusoidal) and transient response are derived and practical circuits (both interstage and output) are presented which fulfill these conditions. In general, the results obtained may be applied to the low-frequency end.

  5. Multiple excitation regenerative amplifier inertial confinement system

    DOEpatents

    George, V.E.; Haas, R.A.; Krupke, W.F.; Schlitt, L.G.

    1980-05-27

    The invention relates to apparatus and methods for producing high intensity laser radiation generation which is achieved through an optical amplifier-storage ring design. One or two synchronized, counterpropagating laser pulses are injected into a regenerative amplifier cavity and amplified by gain media which are pumped repetitively by electrical or optical means. The gain media excitation pulses are tailored to efficiently amplify the laser pulses during each transit. After the laser pulses have been amplified to the desired intensity level, they are either switched out of the cavity by some switch means, as for example an electro-optical device, for any well known laser end uses, or a target means may be injected into the regenerative amplifier cavity in such a way as to intercept simultaneously the counterpropagating laser pulses. One such well known end uses to which this invention is intended is for production of high density and temperature plasmas suitable for generating neutrons, ions and x-rays and for studying matter heated by high intensity laser radiation. 11 figs.

  6. Multiple excitation regenerative amplifier inertial confinement system

    DOEpatents

    George, Victor E. [Livermore, CA; Haas, Roger A. [Pleasanton, CA; Krupke, William F. [Pleasanton, CA; Schlitt, Leland G. [Livermore, CA

    1980-05-27

    The invention relates to apparatus and methods for producing high intensity laser radiation generation which is achieved through an optical amplifier-storage ring design. One or two synchronized, counterpropagating laser pulses are injected into a regenerative amplifier cavity and amplified by gain media which are pumped repetitively by electrical or optical means. The gain media excitation pulses are tailored to efficiently amplify the laser pulses during each transit. After the laser pulses have been amplified to the desired intensity level, they are either switched out of the cavity by some switch means, as for example an electro-optical device, for any well known laser end uses, or a target means may be injected into the regenerative amplifier cavity in such a way as to intercept simultaneously the counterpropagating laser pulses. One such well known end uses to which this invention is intended is for production of high density and temperature plasmas suitable for generating neutrons, ions and x-rays and for studying matter heated by high intensity laser radiation.

  7. High-energy noncollinear optical parametric amplifier producing 4  fs pulses in the visible seeded by a gas-phase filament.

    PubMed

    Odhner, Johanan H; Levis, Robert J

    2015-08-15

    We report on the design and characterization of a short-pulse-pumped, single-stage noncollinear optical parametric amplifier (NOPA) that achieves high pulse energies in the few-cycle pulse regime. Optimal pulse-front tilting and temporal compression of the short (35 fs) pump pulse are achieved using a 4f grating compressor, while spatial chirp at the NOPA crystal is eliminated with proper imaging using a pair of reflective telescopes. Gas-phase filamentation in an open-ended argon-filled cell provides a bright, stable seed source with little residual chirp that is suitable for temporal overlap with the short pump pulse without dispersion precompensation. Two seeding geometries are explored, and pulses as short as 3.5 fs are obtained by seeding with the entire filament bandwidth. Fourier-transform-limited 4 fs pulses are obtained by filtering the IR portion of the spectrum. PMID:26274667

  8. Plasma conditions for improved energy coupling into the gain region of the Ni-like Pd transient collisional x-ray laser

    SciTech Connect

    Smith, R F; Dunn, J; Filevich, J; Moon, S; Nilsen, J; Keenan, R; Shlyaptsev, V N; Rocca, J J; Hunter, J R; Marconi, M C

    2004-10-04

    We have directly probed the plasma conditions in which the Ni-like Pd transient collisional x-ray laser is generated and propagates by measuring the near-field image and by utilizing picosecond resolution soft x-ray laser interferometry of the preformed Pd plasma gain medium. The electron density and gain region of the plasma have been determined experimentally and are found to be in good agreement with simulations. We observe a strong dependence of the laser pump-gain medium coupling on the laser pump parameters. The most efficient coupling of laser pump energy into the gain region occurs with the formation of lower density gradients in the pre-formed plasma and when the duration of the main heating pulse is comparable to the gain lifetime ({approx}10ps for mid-Z Ni-like schemes). This increases the output intensity by more than an order of magnitude relative to the commonly utilized case where the same pumping energy is delivered within a shorter heating pulse duration (< 3ps). In contrast, the higher intensity heating pulses are observed to be absorbed at higher electron densities and in regions where steep density gradients limit the effective length of the gain medium.

  9. Generation of high beam quality, high-energy and broadband tunable mid-infrared pulse from a KTA optical parametric amplifier

    NASA Astrophysics Data System (ADS)

    Chen, Yun; Li, Yanyan; Li, Wenkai; Guo, Xiaoyang; Leng, Yuxin

    2016-04-01

    We have demonstrated efficient generation of high beam quality, high-energy and broadband tunable femtosecond mid-infrared pulses using a three-stage collinear optical parametric amplifier (OPA). The white-light continuum (WLC) seeded OPA setup, based on KTA crystal in three stages and pumped by a femtosecond laser pulse at 800 nm, is capable of producing idler wavelength ranging from 2.4 μm to 4.0 μm with energy up to 82 μJ at 3.27 μm, which corresponds to signal energy of 350 μJ at 1060 nm. The output pulse has excellent intensity distribution with measured beam quality factor M2~1.1 for signal and M2~1.7 for idler. To our knowledge, this is the best beam quality reported in 3-5 μm femtosecond OPA until now. The achieved mid-infrared pulse also has a good energy stability with a fluctuation of 1.01% rms over half an hour.

  10. Intermodulation characteristics of X-band IMPATT amplifiers.

    NASA Technical Reports Server (NTRS)

    Trew, R. J.; Masnari, N. A.; Haddad, G. I.

    1972-01-01

    Measurement of the intermodulation products produced when two equal amplitude signals are applied to the input of an X-band IMPATT diode amplifier. A Si p(+)nn(+) IMPATT diode was operated in a double-slug-tuned reflection amplifier circuit that was tuned to provide 20 dB of small-signal gain at 9.340 GHz. The intermodulation tests consist of measurements of the magnitudes and frequencies of the amplifier output signals as a function of the input signal drive levels and frequency separations. The gain and single-frequency characteristics of the amplifier were also measured and are used along with the theoretical device and circuit admittance characteristics as a basis for explanation of the intermodulation results. A low-frequency dominance mechanism is found to exist in which the low-frequency signals are amplified more than the high-frequency signals. This mechanism becomes more significant as the amplifier drive level is increased.

  11. Single mode terahertz quantum cascade amplifier

    SciTech Connect

    Ren, Y. Wallis, R.; Shah, Y. D.; Jessop, D. S.; Degl'Innocenti, R.; Klimont, A.; Kamboj, V.; Beere, H. E.; Ritchie, D. A.

    2014-10-06

    A terahertz (THz) optical amplifier based on a 2.9 THz quantum cascade laser (QCL) structure has been demonstrated. By depositing an antireflective coating on the QCL facet, the laser mirror losses are enhanced to fully suppress the lasing action, creating a THz quantum cascade (QC) amplifier. Terahertz radiation amplification has been obtained, by coupling a separate multi-mode THz QCL of the same active region design to the QC amplifier. A bare cavity gain is achieved and shows excellent agreement with the lasing spectrum from the original QCL without the antireflective coating. Furthermore, a maximum optical gain of ∼30 dB with single-mode radiation output is demonstrated.

  12. Cryogenic Amplifier Based Receivers at Submillimeter Wavelengths

    NASA Technical Reports Server (NTRS)

    Chattopadhyay, Goutam; Reck, Theodore and; Schlecht, Erich; Lin, Robert; Deal, William

    2012-01-01

    The operating frequency of InP high electron mobility transistor (HEMT) based amplifiers has moved well in the submillimeter-wave frequencies over the last couple of years. Working amplifiers with usable gain in waveguide packages has been reported beyond 700 GHz. When cooled cryogenically, they have shown substantial improvement in their noise temperature. This has opened up the real possibility of cryogenic amplifier based heterodyne receivers at submillimeter wavelengths for ground-based, air-borne, and space-based instruments for astrophysics, planetary, and Earth science applications. This paper provides an overview of the science applications at submillimeter wavelengths that will benefit from this technology. It also describes the current state of the InP HEMT based cryogenic amplifier receivers at submillimeter wavelengths.

  13. Integrated CMOS amplifier for ENG signal recording.

    PubMed

    Uranga, A; Navarro, X; Barniol, N

    2004-12-01

    The development and in vivo test of a fully integrated differential CMOS amplifier, implemented with standard 0.7-microm CMOS technology (one poly, two metals, self aligned twin-well CMOS process) intended to record extracellular neural signals is described. In order to minimize the flicker noise generated by the CMOS circuitry, a chopper technique has been chosen. The fabricated amplifier has a gain of 74 dB, a bandwidth of 3 kHz, an input noise of 6.6 nV/(Hz)0.5, a power dissipation of 1.3 mW, and the active area is 2.7 mm2. An ac coupling has been used to adapt the electrode to the amplifier circuitry for the in vivo testing. Compound muscle action potentials, motor unit action potentials, and compound nerve action potentials have been recorded in acute experiments with rats, in order to validate the amplifier. PMID:15605867

  14. X-Band, 17-Watt Solid-State Power Amplifier

    NASA Technical Reports Server (NTRS)

    Mittskus, Anthony; Stone, Ernest; Boger, William; Burgess, David; Honda, Richard; Nuckolls, Carl

    2005-01-01

    An advanced solid-state power amplifier that can generate an output power of as much as 17 W at a design operating frequency of 8.4 GHz has been designed and constructed as a smaller, lighter, less expensive alternative to traveling-wave-tube X-band amplifiers and to prior solid-state X-band power amplifiers of equivalent output power. This amplifier comprises a monolithic microwave integrated circuit (MMIC) amplifier module and a power-converter module integrated into a compact package (see Figure 1). The amplifier module contains an input variable-gain amplifier (VGA), an intermediate driver stage, a final power stage, and input and output power monitors (see Figure 2). The VGA and the driver amplifier are 0.5-m GaAs-based metal semiconductor field-effect transistors (MESFETs). The final power stage contains four parallel high-efficiency, GaAs-based pseudomorphic high-electron-mobility transistors (PHEMTs). The gain of the VGA is voltage-variable over a range of 10 to 24 dB. To provide for temperature compensation of the overall amplifier gain, the gain-control voltage is generated by an operational-amplifier circuit that includes a resistor/thermistor temperature-sensing network. The driver amplifier provides a gain of 14 dB to an output power of 27 dBm to drive the four parallel output PHEMTs, each of which is nominally capable of putting out as much as 5 W. The driver output is sent to the input terminals of the four parallel PHEMTs through microstrip power dividers; the outputs of these PHEMTs are combined by microstrip power combiners (which are similar to the microstrip power dividers) to obtain the final output power of 17 W.

  15. Compact laser amplifier system

    DOEpatents

    Carr, R.B.

    1974-02-26

    A compact laser amplifier system is described in which a plurality of face-pumped annular disks, aligned along a common axis, independently radially amplify a stimulating light pulse. Partially reflective or lasing means, coaxially positioned at the center of each annualar disk, radially deflects a stimulating light directed down the common axis uniformly into each disk for amplification, such that the light is amplified by the disks in a parallel manner. Circumferential reflecting means coaxially disposed around each disk directs amplified light emission, either toward a common point or in a common direction. (Official Gazette)

  16. Multi-pass light amplifier

    NASA Technical Reports Server (NTRS)

    Plaessmann, Henry (Inventor); Grossman, William M. (Inventor); Olson, Todd E. (Inventor)

    1996-01-01

    A multiple-pass laser amplifier that uses optical focusing between subsequent passes through a single gain medium so that a reproducibly stable beam size is achieved within the gain region. A resonator or a White Cell cavity is provided, including two or more mirrors (planar or curvilinearly shaped) facing each other along a resonator axis and an optical gain medium positioned on a resonator axis between the mirrors or adjacent to one of the mirrors. In a first embodiment, two curvilinear mirrors, which may include adjacent lenses, are configured so that a light beam passing through the gain medium and incident on the first mirror is reflected by that mirror toward the second mirror in a direction approximately parallel to the resonator axis. A light beam translator, such as an optical flat of transparent material, is positioned to translate this light beam by a controllable amount toward or away from the resonator axis for each pass of the light beam through the translator. A second embodiment uses two curvilinear mirrors and one planar mirror, with a gain medium positioned in the optical path between each curvilinear mirror and the planar mirror. A third embodiment uses two curvilinear mirrors and two planar mirrors, with a gain medium positioned adjacent to a planar mirror. A fourth embodiment uses a curvilinear mirror and three planar mirrors, with a gain medium positioned adjacent to a planar mirror. A fourth embodiment uses four planar mirrors and a focusing lens system, with a gain medium positioned between the four mirrors. A fifth embodiment uses first and second planar mirrors, a focusing lens system and a third mirror that may be planar or curvilinear, with a gain medium positioned adjacent to the third mirror. A sixth embodiment uses two planar mirrors and a curvilinear mirror and a fourth mirror that may be planar or curvilinear, with a gain medium positioned adjacent to the fourth mirror. In a seventh embodiment, first and second mirrors face a third

  17. Repetitively pulsed regime of Nd : glass large-aperture laser amplifiers

    SciTech Connect

    Kuzmin, A A; Khazanov, Efim A; Shaykin, A A

    2012-04-30

    A repetitively pulsed operation regime of neodymium glass rod laser amplifiers with apertures of 4.5, 6, 8.5, and 10 cm is analysed using experimental data. The limits of an increase in the pulse repetition rates are determined. Universal dependences are obtained, which help finding a compromise between increasing the repetition rate and enhancing the gain for each particular case. In particular, it is shown that an amplifier 4.5-cm in diameter exhibits a five-fold safety factor with respect to a thermo-mechanical breakdown at a repetition rate of 1 pulse min{sup -1} and stored energy of above 100 J. A strong thermally induced birefringence in two such amplifiers is experimentally reduced to a 'cold' level by employing a 90 Degree-Sign optical rotator.

  18. An optical parametric chirped-pulse amplifier for seeding high repetition rate free-electron lasers

    SciTech Connect

    Höppner, H.; Tanikawa, T.; Schulz, M.; Riedel, R.; Teubner, U.; Faatz, B.; Tavella, F.

    2015-05-15

    High repetition rate free-electron lasers (FEL), producing highly intense extreme ultraviolet and x-ray pulses, require new high power tunable femtosecond lasers for FEL seeding and FEL pump-probe experiments. A tunable, 112 W (burst mode) optical parametric chirped-pulse amplifier (OPCPA) is demonstrated with center frequencies ranging from 720–900 nm, pulse energies up to 1.12 mJ and a pulse duration of 30 fs at a repetition rate of 100 kHz. Since the power scalability of this OPCPA is limited by the OPCPA-pump amplifier, we also demonstrate a 6.7–13.7 kW (burst mode) thin-disk OPCPA-pump amplifier, increasing the possible OPCPA output power to many hundreds of watts. Furthermore, third and fourth harmonic generation experiments are performed and the results are used to simulate a seeded FEL with high-gain harmonic generation.

  19. 34-fs, all-fiber all-polarization-maintaining single-mode pulse nonlinear amplifier.

    PubMed

    Yu, Jia; Feng, Ye; Cai, Yajun; Li, Xiaohui; Hu, Xiaohong; Zhang, Wei; Duan, Lina; Yang, Zhi; Wang, Yishan; Liu, Yuanshan; Zhao, Wei

    2016-07-25

    We present an all-fiber all-polarization-maintaining (PM) single mode (SM) fiber pulse nonlinear amplification system. The seed laser with a repetition rate of 200 MHz is amplified by two-section erbium-doped PM gain fibers with different peak-absorption rate. The amplified pulse duration can be compressed into 34-fs with 320-mW output power, which corresponds to 1.6-nJ pulse energy and approximate 23.5-kW peak power. In addition, the amplified and compressed pulse is further coupled into the high nonlinear fiber and an octave-spanning supercontinuum generation can be obtained. To the best of our knowledge, it is the highest peak power and the shortest pulse duration obtained in the field of all-fiber all-PM SM pulse-amplification systems. PMID:27464117

  20. Low noise, tunable Ho:fiber soliton oscillator for Ho:YLF amplifier seeding

    NASA Astrophysics Data System (ADS)

    Li, Peng; Ruehl, Axel; Bransley, Colleen; Hartl, Ingmar

    2016-06-01

    We present a passively mode-locked, tunable soliton Ho:fiber ring oscillator, optimized for seeding of holmium-doped yttrium lithium flouride (Ho:YLF) amplifiers. The oscillator is independently tunable in central wavelength and spectral width from 2040 to 2070 nm and from 5 to 10 nm, respectively. At all settings the pulse energy within the soliton is around 800 pJ. The soliton oscillator was optimized to fully meet the spectral requirements for seeding Ho:YLF amplifiers. Its Kelly sidebands are located outside the amplifier gain spectrum, resulting in a train of about 1 ps long pedestal-free pulses with relative intensity noise of only 0.13% RMS when integrated from 1 Hz to Nyquist frequency.

  1. Amplified spontaneous emission in solar-pumped iodine laser

    NASA Technical Reports Server (NTRS)

    Cho, Yong S.; Hwang, In H.; Han, Kwang S.; Lee, Ja H.

    1992-01-01

    The amplified spontaneous emission (ASE) from a long pulse, solar-simulating radiation pumped iodine laser amplifier is studied. The ASE threshold pump intensity is almost proportional to the inverse of the laser gain length when the gas pressure is constant in the laser tube.

  2. Models of reduced-noise, probabilistic linear amplifiers

    NASA Astrophysics Data System (ADS)

    Combes, Joshua; Walk, Nathan; Lund, A. P.; Ralph, T. C.; Caves, Carlton M.

    2016-05-01

    We construct an amplifier that interpolates between a nondeterministic, immaculate linear amplifier and a deterministic, ideal linear amplifier and beyond to nonideal linear amplifiers. The construction involves cascading an immaculate linear amplifier that has amplitude gain g1 with a (possibly) nonideal linear amplifier that has gain g2. With respect to normally ordered moments, the device has output noise μ2(G2-1 ) where G =g1g2 is the overall amplitude gain and μ2 is a noise parameter. When μ2≥1 , our devices realize ideal (μ2=1 ) and nonideal (μ2>1 ) linear amplifiers. When 0 ≤μ2<1 , these devices work effectively only over a restricted region of phase space and with some subunity success probability p✓. We investigate the performance of our μ2 amplifiers in terms of a gain-corrected probability-fidelity product and the ratio of input to output signal-to-noise ratios corrected for success probability.

  3. K-band FET amplifier for satellite downlink

    NASA Technical Reports Server (NTRS)

    Goel, J.; Cheung, R. P.

    1984-01-01

    State-of-the-art performance is demonstrated with solid-state amplifiers in K-band. The amplifier provides 8.2 watts of power with 39 dB gain over a frequency band of 1.4 GHz. Nonlinearity analyses of solid-state amplifiers suggest that system performance can be improved significantly by using an FET amplifier. Preliminary investigations reveal that the solid-state amplifiers can be space-qualified and can be expected to replace the TWTA in many communication links in the near future. It is pointed out that with improvements in device technology, the power, bandwidth and efficiency of solid-state amplifiers using FETs can be further improved. With FETs operating at a junction temperature of less than 125 C, solid-state amplifiers are inherently reliable, indicating a ten-year mean time to failure.

  4. Method and system for edge cladding of laser gain media

    SciTech Connect

    Bayramian, Andrew James; Caird, John Allyn; Schaffers, Kathleen Irene

    2014-03-25

    A gain medium operable to amplify light at a gain wavelength and having reduced transverse ASE includes an input surface and an output surface opposing the input surface. The gain medium also includes a central region including gain material and extending between the input surface and the output surface along a longitudinal optical axis of the gain medium. The gain medium further includes an edge cladding region surrounding the central region and extending between the input surface and the output surface along the longitudinal optical axis of the gain medium. The edge cladding region includes the gain material and a dopant operable to absorb light at the gain wavelength.

  5. DIRECT COUPLED AMPLIFIER

    DOEpatents

    Dandl, R.A.

    1961-09-19

    A transistor amplifier is designed for vyery small currents below 10/sup -8/ amperes. The filrst and second amplifier stages use unusual selected transistors in which the current amplification increases markedly for values of base current below 10/sup -6/ amperes.

  6. Microstrip SQUID amplifiers for quantum information science

    NASA Astrophysics Data System (ADS)

    Defeo, M. P.; Plourde, B. L. T.

    2012-02-01

    Recent progress in SQUID amplifiers suggests that these devices might approach quantum-limited sensitivity in the microwave range, thus making them a viable option for measurement of superconducting quantum systems. In the microstrip SQUID amplifier configuration, gains of around 20dB are possible at frequencies of several hundred MHz, and the gain is limited by the maximum voltage modulation available from the SQUID. One route for increasing the voltage modulation involves using larger resistive shunts, however maintaining non-hysteretic device operation requires smaller junction capacitances than is possible with conventional photolithographically patterned junctions. Operating at higher frequencies requires a shorter input coil which reduces mutual inductance between the coil and washer and therefore gain. We have fabricated microstrip SQUID amplifiers using submicron Al-AlOx-Al junctions and large shunts. The input coil and SQUID washer are optimized for producing high gain at frequencies in the gigahertz range. Recent measurements of gain and noise temperature will be discussed as well as demonstrations of these devices as a first stage of amplification for a superconducting system

  7. DISTRIBUTED AMPLIFIER INCORPORATING FEEDBACK

    DOEpatents

    Bell, P.R. Jr.

    1958-10-21

    An improved distributed amplifier system employing feedback for stabilization is presented. In accordance with the disclosed invention, a signal to be amplified is applled to one end of a suitable terminated grid transmission line. At intervals along the transmission line, the signal is fed to stable, resistance-capacitance coupled amplifiers incorporating feedback loops therein. The output current from each amplifier is passed through an additional tube to minimize the electrostatic capacitance between the tube elements of the last stage of the amplifier, and fed to appropriate points on an output transmission line, similar to the grid line, but terminated at the opposite (input) end. The output taken from the unterminated end of the plate transmission line is proportional to the input voltage impressed upon the grid line.

  8. Post pulse shutter for laser amplifier

    DOEpatents

    Bradley, L.P.; Carder, B.M.; Gagnon, W.L.

    1981-03-17

    Disclosed are an apparatus and method for quickly closing off the return path for an amplified laser pulse at the output of an amplifier so as to prevent damage to amplifiers and other optical components appearing earlier in the chain by the return of an amplified pulse. The apparatus consists of a fast retropulse or post pulse shutter to suppress target reflection and/or beam return. This is accomplished by either quickly placing a solid across the light transmitting aperture of a component in the chain, such as a spatial filter pinhole, or generating and directing a plasma with sufficiently high density across the aperture, so as to, in effect, close the aperture to the returning amplified energy pulse. 13 figs.

  9. Post pulse shutter for laser amplifier

    DOEpatents

    Bradley, Laird P. [Livermore, CA; Carder, Bruce M. [Antioch, CA; Gagnon, William L. [Berkeley, CA

    1981-03-17

    Apparatus and method for quickly closing off the return path for an amplified laser pulse at the output of an amplifier so as to prevent damage to amplifiers and other optical components appearing earlier in the chain by the return of an amplified pulse. The apparatus consists of a fast retropulse or post pulse shutter to suppress target reflection and/or beam return. This is accomplished by either quickly placing a solid across the light transmitting aperture of a component in the chain, such as a spatial filter pinhole, or generating and directing a plasma with sufficiently high density across the aperture, so as to, in effect, close the aperture to the returning amplified energy pulse.

  10. Theoretical treatment of modal instability in high-power cladding-pumped Raman amplifiers

    NASA Astrophysics Data System (ADS)

    Naderi, Shadi; Dajani, Iyad; Grosek, Jacob; Madden, Timothy

    2015-03-01

    Cladding-pumped Raman fiber amplifiers (RFA) have been proposed as gain media to achieve power scaling. It is well-known that the onset of the modal instability (MI) phenomenon is a limiting factor for achieving higher output powers in Yb-doped fiber amplifiers with good beam quality. In this paper, we present an analytical approach to the investigation of the MI phenomenon in high-power, cladding-pumped RFAs. By utilizing the conservation of the number of photons and the conservation of energy in the absence of loss, the nonlinear equations for the propagation of the pump power and the total signal power can be decoupled from one another. Decoupling lead to exact solutions for the pump power and transverse modes signal powers. Further we investigate various MI suppression techniques including increasing the seed power and gain-tailored design.

  11. Optical-fiber laser amplifier for ultrahigh-speed communications

    SciTech Connect

    Gosnell, T.; Xie, Ping; Cockroft, N.

    1996-04-01

    This is the final report of a three-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The project objective was to develop a praseodymium-based 1.31-{mu}m fiber amplifier that can be optically pumped with off-the-shelf semiconductor diode lasers. Development of optical amplifiers for the 1.31-{mu}m communications window is motivated by the push towards ``all-optical`` networks that will support multigigabits per second communication rates. Our approach exploited radiationless energy transfer from optically pumped Yb{sup 3+} ions co-doped with Pr{sup 3+} into a fluorozirconate glass (ZBLAN). We obtained a gain of approximately 10 on a 1.31-{mu}m amplifier, a value too low for practical applications. In two spin- off applications, all-solid-state operation at all four output wavelengths was achieved in the development of a four-color visible laser, and laser cooling of a solid material was demonstrated for the first time in the development of a fluorescent cryogenic refrigerator.

  12. Some characteristic features of the construction of the amplifying channel for working with semiconductor detectors in the charged particle energy spectrometer. [noise minimization at preamplifier input

    NASA Technical Reports Server (NTRS)

    Kuzyuta, E. I.

    1974-01-01

    A transistorized spectrometric amplifier with a shaper is reported that selects the shape of the frequency characteristic of the amplifying channel for which the primary frequency spectrum of the signal will pass, but where the noise spectrum is limited to the maximum. A procedure is presented for selecting the shaping circuits and their inclusion principles.

  13. Atmospheric energy and water balance perspective to projection of global-scale precipitation increase: may mitigation policies unexpectedly amplify precipitation?

    NASA Astrophysics Data System (ADS)

    Alessandri, A.; Fogli, P.; Vichi, M.; Zeng, N.

    2012-12-01

    Future climate scenarios experiencing global warming are expected to strengthen hydrological cycle during 21st century by comparison with the last decades of 20th century. From the perspective of changes in whole atmospheric water and energy budgets, we analyze strengthening of the hydrological cycle as measured by the increase in global-scale precipitation. Furthermore, by combining energy and water equations for the whole atmosphere we profitably obtain constraints for the changes in surface fluxes and for the partitioning at the surface between sensible and latent components. Above approach is applied to investigate difference in precipitation increase in two scenario centennial simulations performed with an Earth System model forced with specified atmospheric concentration pathways. Alongside medium-high non-mitigation scenario (baseline), we considered an aggressive-mitigation scenario (E1) with reduced fossil fuel use for energy production aimed at stabilizing global warming below 2K. Quite unexpectedly, mitigation scenario is shown to strengthen hydrological cycle more than baseline till around 2070, that is a couple of decades after that mitigation of global temperature was already well established in E1. Our analysis shows that this is mostly a consequence of the larger increase in the negative radiative imbalance of atmosphere in E1 compared to baseline. This appears to be primarily related to the abated aerosol concentration in E1, which considerably reduces atmospheric absorption of solar radiation compared to baseline. In contrast, last decades of 21st century (21C) show marked increase of global precipitation in baseline compared to E1, despite the fact that the two scenarios display almost same overall increase of radiative imbalance with respect to 20th century. Our results show that radiative cooling is weakly effective in baseline throughout all 21C, so that two distinct mechanisms characterize the diverse strengthening of hydrological cycle in

  14. Flexible Low-power SiGe HBT Amplifier Circuits for Fast Single-shot Spin Readout

    NASA Astrophysics Data System (ADS)

    England, Troy; Lilly, Michael; Curry, Matthew; Carr, Stephen; Carroll, Malcolm

    Fast, low-power quantum state readout is one of many challenges facing quantum information processing. Single electron transistors (SETs) are potentially fast, sensitive detectors for performing spin readout of electrons bound to Si:P donors. From a circuit perspective, however, their output impedance and nonlinear conductance are ill suited to drive the parasitic capacitance of coaxial conductors used in cryogenic environments, necessitating a cryogenic amplification stage. We will introduce two new amplifier topologies that provide excellent gain versus power tradeoffs using silicon-germanium (SiGe) heterojunction bipolar transistors (HBTs). The AC HBT allows in-situ adjustment of power dissipation during an experiment and can provide gain in the millikelvin temperature regime while dissipating less than 500 nW. The AC Current Amplifier maximizes gain at nearly 800 A/A. We will also show results of using these amplifiers with SETs at 4 K. This work was performed, in part, at the Center for Integrated Nanotechnologies, a U.S. DOE Office of Basic Energy Sciences user facility. Sandia National Laboratories is a multi-program laboratory operated by Sandia Corporation, a Lockheed-Martin Company, for the U. S. Department of Energy under Contract No. DE-AC04-94AL85000. Flexible Low-power SiGe HBT Amplifier Circuits for Fast Single-shot Spin Readout.

  15. Cryogenic transimpedance amplifier for micromechanical capacitive sensors.

    PubMed

    Antonio, D; Pastoriza, H; Julián, P; Mandolesi, P

    2008-08-01

    We developed a cryogenic transimpedance amplifier that works at a broad range of temperatures, from room temperature down to 4 K. The device was realized with a standard complementary metal oxide semiconductor 1.5 mum process. Measurements of current-voltage characteristics, open-loop gain, input referred noise current, and power consumption are presented as a function of temperature. The transimpedance amplifier has been successfully applied to sense the motion of a polysilicon micromechanical oscillator at low temperatures. The whole device is intended to serve as a magnetometer for microscopic superconducting samples.

  16. Alexandrite-pumped alexandrite regenerative amplifier for femtosecond pulse amplification

    SciTech Connect

    Hariharan, A.; Fermann, M.E.; Stock, M.L.; Harter, D.J.; Squier, J.

    1996-01-01

    We demonstrate a regenerative amplifier incorporating alexandrite as the gain medium that is pumped by an alexandrite laser. Temperature-altered gain permitted the 728-nm alexandrite pump laser, operating at room temperature, to pump a 780{endash}800-nm alexandrite laser that was maintained at elevated temperatures. 200-fs pulses from a Ti:sapphire oscillator were amplified to the millijoule level. This system also amplified femtosecond pulses from a frequency-doubled Er-doped fiber laser. {copyright} {ital 1996 Optical Society of America.}

  17. Entanglement of Coupled Optomechanical Systems Improved by Optical Parametric Amplifiers

    NASA Astrophysics Data System (ADS)

    Pan, Guixia; Xiao, Ruijie; Zhou, Ling

    2016-08-01

    A scheme to generate the stationary entanglement of two distant coupled optical cavities placed optical parametric amplifiers is proposed. We study how the optical parametric amplifiers can affect the entanglement behaviors of the movable mirrors and the cavity fields. With the existence of optical parametric amplifiers, we show that larger stationary entanglement of optical and mechanical modes can be obtained and the entanglement increases with the increasing parametric gain. Especially, the degree of entanglement between the two cavity fields is more pronouncedly enhanced. Moreover, for a fixed parametric gain, the entanglement of distant cavity optomechanical systems increases as the input laser power is increased.

  18. Adaptive gain and filtering circuit for a sound reproduction system

    NASA Technical Reports Server (NTRS)

    Engebretson, A. Maynard (Inventor); O'Connell, Michael P. (Inventor)

    1998-01-01

    Adaptive compressive gain and level dependent spectral shaping circuitry for a hearing aid include a microphone to produce an input signal and a plurality of channels connected to a common circuit output. Each channel has a preset frequency response. Each channel includes a filter with a preset frequency response to receive the input signal and to produce a filtered signal, a channel amplifier to amplify the filtered signal to produce a channel output signal, a threshold register to establish a channel threshold level, and a gain circuit. The gain circuit increases the gain of the channel amplifier when the channel output signal falls below the channel threshold level and decreases the gain of the channel amplifier when the channel output signal rises above the channel threshold level. A transducer produces sound in response to the signal passed by the common circuit output.

  19. Ring cavity for a Raman capillary waveguide amplifier

    DOEpatents

    Kurnit, N.A.

    1981-01-27

    A regenerative ring amplifier and regenerative ring oscillator are described which function to feed back a portion of the Stokes signal to complete the ring cavity. The ring cavity configuration allows the CO/sub 2/ laser pump signal and Stokes signal to copropagate through the Raman capillary waveguide amplifier. A Raman capillary waveguide amplifier is also provided in the return leg of the ring cavity to increase gain without increasing the round trip time. Additionally, the ring cavity can be designed such that the amplified Stokes signal is synchronous with the mode-locked spikes of the incoming CO/sub 2/ laser pump signal.

  20. Ring cavity for a Raman capillary waveguide amplifier

    DOEpatents

    Kurnit, N.A.

    1983-07-19

    Disclosed is a regenerative ring amplifier and regenerative ring oscillator which function to feed back a portion of the Stokes signal to complete the ring cavity. The ring cavity configuration allows the CO[sub 2] laser pump signal and Stokes signal to copropagate through the Raman capillary waveguide amplifier. A Raman capillary waveguide amplifier is also provided in the return leg of the ring cavity to increase gain without increasing the round trip time. Additionally, the ring cavity can be designed such that the amplifier Stokes signal is synchronous with the mode-locked spikes of the incoming CO[sub 2] laser pump signal. 6 figs.

  1. Ring cavity for a raman capillary waveguide amplifier

    DOEpatents

    Kurnit, Norman A.

    1983-07-19

    A regenerative ring amplifier and regenerative ring oscillator which function to feed back a portion of the Stokes signal to complete the ring cavity. The ring cavity configuration allows the CO.sub.2 laser pump signal and Stokes signal to copropagate through the Raman capillary waveguide amplifier. A Raman capillary waveguide amplifier is also provided in the return leg of the ring cavity to increase gain without increasing the round trip time. Additionally, the ring cavity can be designed such that the amplifier Stokes signal is synchronous with the mode-locked spikes of the incoming CO.sub.2 laser pump signal.

  2. The solid-state Ku-band power amplifier

    NASA Technical Reports Server (NTRS)

    Geller, B. D.

    1975-01-01

    A survey of IMPATT diodes and negative resistance amplifiers is presented. The first phase of the amplifier effort is discussed in which a single diode reflection amplifier delivering 0.5 watt at 15 GHz with 10-dB gain over a 1-GHz band was developed. The design of a dominant mode resonant combiner is described along with the characterization of the IMPATT diodes. Results are given on the complete amplifier and on the thermal and graceful failure characteristics of the unit.

  3. Phase noise in RF and microwave amplifiers.

    PubMed

    Boudot, Rodolphe; Rubiola, Enrico

    2012-12-01

    Understanding amplifier phase noise is a critical issue in many fields of engineering and physics, such as oscillators, frequency synthesis, telecommunication, radar, and spectroscopy; in the emerging domain of microwave photonics; and in exotic fields, such as radio astronomy, particle accelerators, etc. Focusing on the two main types of base noise in amplifiers, white and flicker, the power spectral density of the random phase φ(t) is Sφ(f) = b(0) + b(-1)/f. White phase noise results from adding white noise to the RF spectrum in the carrier region. For a given RF noise level, b(0) is proportional to the reciprocal of the carrier power P(0). By contrast, flicker results from a near-dc 1/f noise-present in all electronic devices-which modulates the carrier through some parametric effect in the semiconductor. Thus, b(-1) is a parameter of the amplifier, constant in a wide range of P(0). The consequences are the following: Connecting m equal amplifiers in parallel, b(-1) is 1/m times that of one device. Cascading m equal amplifiers, b(-1) is m times that of one amplifier. Recirculating the signal in an amplifier so that the gain increases by a power of m (a factor of m in decibels) as a result of positive feedback (regeneration), we find that b(-1) is m(2) times that of the amplifier alone. The feedforward amplifier exhibits extremely low b(-1) because the carrier is ideally nulled at the input of its internal error amplifier. Starting with an extensive review of the literature, this article introduces a system-oriented model which describes the phase flickering. Several amplifier architectures (cascaded, parallel, etc.) are analyzed systematically, deriving the phase noise from the general model. There follow numerous measurements of amplifiers using different technologies, including some old samples, and in a wide frequency range (HF to microwaves), which validate the theory. In turn, theory and results provide design guidelines and give suggestions for CAD and

  4. Effects of bunch density gradient in high-gain free-electron lasers.

    SciTech Connect

    Huang, Z.; Kim, K.-J.

    1999-09-01

    The authors investigate effects of the bunch density gradient in self-amplified spontaneous emission (SASE), including the role of coherent spontaneous emission (CSE) in the evolution of the free-electron laser (FEL) process. In the exponential gain regime, the authors solve the coupled Maxwell-Vlasov equations and extend the linear theory to a bunched beam with energy spread. A time-dependent, nonlinear simulation algorithm is used to study the CSE effect and the nonlinear evolution of the radiation pulse.

  5. Multipass optical parametric amplifier

    SciTech Connect

    Jeys, T.H.

    1996-08-01

    A compact, low-threshold, multipass optical parametric amplifier has been developed for the conversion of short-pulse (360-ps) 1064-nm Nd:YAG laser radiation into eye-safe 1572-nm radiation for laser ranging and radar applications. The amplifier had a threshold pump power of as low as 45{mu}J, and at three to four times this threshold pump power the amplifier converted 30{percent} of the input 1064-nm radiation into 1572-nm output radiation. {copyright} {ital 1996 Optical Society of America.}

  6. Compensated gain control circuit for buck regulator command charge circuit

    DOEpatents

    Barrett, D.M.

    1996-11-05

    A buck regulator command charge circuit includes a compensated-gain control signal for compensating for changes in the component values in order to achieve optimal voltage regulation. The compensated-gain control circuit includes an automatic-gain control circuit for generating a variable-gain control signal. The automatic-gain control circuit is formed of a precision rectifier circuit, a filter network, an error amplifier, and an integrator circuit. 5 figs.

  7. Compensated gain control circuit for buck regulator command charge circuit

    DOEpatents

    Barrett, David M.

    1996-01-01

    A buck regulator command charge circuit includes a compensated-gain control signal for compensating for changes in the component values in order to achieve optimal voltage regulation. The compensated-gain control circuit includes an automatic-gain control circuit for generating a variable-gain control signal. The automatic-gain control circuit is formed of a precision rectifier circuit, a filter network, an error amplifier, and an integrator circuit.

  8. Symmetry breaking and multipeaked solitons in inhomogeneous gain landscapes

    SciTech Connect

    Kartashov, Yaroslav V.; Vysloukh, Victor A.; Konotop, Vladimir V.

    2011-04-15

    We address one-dimensional soliton formation in a cubic nonlinear medium with two-photon absorption and transversally inhomogeneous gain landscape consisting of a single or several amplifying channels. Existence of the solitons requires certain threshold gain while the properties of solitons strongly depend on whether the number of the amplifying channels is odd or even. In the former case, an increase of the gain leads to symmetry breaking, which occurs through the pitchfork bifurcation, and to emergence of a single or several coexisting stable asymmetric modes. In the case of an even number of amplifying channels, we have found only asymmetric stable states.

  9. Pulse laser imaging amplifier for advanced ladar systems

    NASA Astrophysics Data System (ADS)

    Khizhnyak, Anatoliy; Markov, Vladimir; Tomov, Ivan; Murrell, David

    2016-05-01

    Security measures sometimes require persistent surveillance of government, military and public areas Borders, bridges, sport arenas, airports and others are often surveilled with low-cost cameras. Their low-light performance can be enhanced with laser illuminators; however various operational scenarios may require a low-intensity laser illumination with the object-scattered light intensity lower than the sensitivity of the Ladar image detector. This paper discusses a novel type of high-gain optical image amplifier. The approach enables time-synchronization of the incoming and amplifying signals with accuracy <= 1 ns. The technique allows the incoming signal to be amplified without the need to match the input spectrum to the cavity modes. Instead, the incoming signal is accepted within the spectral band of the amplifier. We have gauged experimentally the performance of the amplifier with a 40 dB gain and an angle of view 20 mrad.

  10. Amplify Interest in STS.

    ERIC Educational Resources Information Center

    Chiappetta, Eugene L; Mays, John D.

    1992-01-01

    Presents activities in which students construct simple crystal radio sets and amplifiers out of diodes, transistors, and integrated circuits. Provides conceptual background, materials needed, instructions, diagrams, and classroom applications. (MDH)

  11. Fully relayed regenerative amplifier

    DOEpatents

    Glass, Alexander J.

    1981-01-01

    A regenerative laser apparatus and method using the optical relay concept to maintain high fill factors, to suppress diffraction effects, and to minimize phase distortions in a regenerative amplifier.

  12. Precision absolute value amplifier for a precision voltmeter

    DOEpatents

    Hearn, William E.; Rondeau, Donald J.

    1985-01-01

    Bipolar inputs are afforded by the plus inputs of first and second differential input amplifiers. A first gain determining resister is connected between the minus inputs of the differential amplifiers. First and second diodes are connected between the respective minus inputs and the respective outputs of the differential amplifiers. First and second FETs have their gates connected to the outputs of the amplifiers, while their respective source and drain circuits are connected between the respective minus inputs and an output lead extending to a load resister. The output current through the load resister is proportional to the absolute value of the input voltage difference between the bipolar input terminals. A third differential amplifier has its plus input terminal connected to the load resister. A second gain determining resister is connected between the minus input of the third differential amplifier and a voltage source. A third FET has its gate connected to the output of the third amplifier. The source and drain circuit of the third transistor is connected between the minus input of the third amplifier and a voltage-frequency converter, constituting an output device. A polarity detector is also provided, comprising a pair of transistors having their inputs connected to the outputs of the first and second differential amplifiers. The outputs of the polarity detector are connected to gates which switch the output of the voltage-frequency converter between up and down counting outputs.

  13. Precision absolute-value amplifier for a precision voltmeter

    DOEpatents

    Hearn, W.E.; Rondeau, D.J.

    1982-10-19

    Bipolar inputs are afforded by the plus inputs of first and second differential input amplifiers. A first gain determining resistor is connected between the minus inputs of the differential amplifiers. First and second diodes are connected between the respective minus inputs and the respective outputs of the differential amplifiers. First and second FETs have their gates connected to the outputs of the amplifiers, while their respective source and drain circuits are connected between the respective minus inputs and an output lead extending to a load resistor. The output current through the load resistor is proportional to the absolute value of the input voltage difference between the bipolar input terminals. A third differential amplifier has its plus input terminal connected to the load resistor. A second gain determining resistor is connected between the minus input of the third differential amplifier and a voltage source. A third FET has its gate connected to the output of the third amplifier. The source and drain circuit of the third transistor is connected between the minus input of the third amplifier and a voltage-frequency converter, constituting an output device. A polarity detector is also provided, comprising a pair of transistors having their inputs connected to the outputs of the first and second differential amplifiers. The outputs of the polarity detector are connected to gates which switch the output of the voltage-frequency converter between up and down counting outputs.

  14. Pre-Amplifier Module for Laser Inertial Confinement Fusion

    SciTech Connect

    Heebner, J E; Bowers, M W

    2008-02-06

    The Pre-Amplifier Modules (PAMs) are the heart of the National Ignition Facility (NIF), providing most of the energy gain for the most energetic laser in the world. Upon completion, NIF will be the only laboratory in which scientists can examine the fusion processes that occur inside stars, supernovae, and exploding nuclear weapons and that may someday serve as a virtually inexhaustible energy source for electricity. Consider that in a fusion power plant 50 cups of water could provide the energy comparable to 2 tons of coal. Of paramount importance for achieving laser-driven fusion ignition with the least energy input is the synchronous and symmetric compression of the target fuel--a condition known as laser power balance. NIF's 48 PAMs thus must provide energy gain in an exquisitely stable and consistent manner. While building one module that meets performance requirements is challenging enough, our design has already enabled the construction and fielding of 48 PAMs that are stable, uniform, and interchangeable. PAM systems are being tested at the University of Rochester's Laboratory for Laser Energetics, and the Atomic Weapons Enterprise of Great Britain has purchased the PAM power system.

  15. Energy and protein feed-to-food conversion efficiencies in the US and potential food security gains from dietary changes

    NASA Astrophysics Data System (ADS)

    Shepon, A.; Eshel, G.; Noor, E.; Milo, R.

    2016-10-01

    Feeding a growing population while minimizing environmental degradation is a global challenge requiring thoroughly rethinking food production and consumption. Dietary choices control food availability and natural resource demands. In particular, reducing or avoiding consumption of low production efficiency animal-based products can spare resources that can then yield more food. In quantifying the potential food gains of specific dietary shifts, most earlier research focused on calories, with less attention to other important nutrients, notably protein. Moreover, despite the well-known environmental burdens of livestock, only a handful of national level feed-to-food conversion efficiency estimates of dairy, beef, poultry, pork, and eggs exist. Yet such high level estimates are essential for reducing diet related environmental impacts and identifying optimal food gain paths. Here we quantify caloric and protein conversion efficiencies for US livestock categories. We then use these efficiencies to calculate the food availability gains expected from replacing beef in the US diet with poultry, a more efficient meat, and a plant-based alternative. Averaged over all categories, caloric and protein efficiencies are 7%–8%. At 3% in both metrics, beef is by far the least efficient. We find that reallocating the agricultural land used for beef feed to poultry feed production can meet the caloric and protein demands of ≈120 and ≈140 million additional people consuming the mean American diet, respectively, roughly 40% of current US population.

  16. An Introduction to Phase-Sensitive Amplifiers: An Inexpensive Student Instrument

    ERIC Educational Resources Information Center

    Temple, Paul A.

    1975-01-01

    Discusses the principle of operation of phase-sensitive amplifiers. Gives three examples, suitable for undergraduate laboratory use, of the use of phase-sensitive, or "lock-in" amplifiers. Concludes with a description of an inexpensive lock-in amplifier which has an overall voltage gain of 1000. (Author/MLH)

  17. FEL amplifier performance in the Compton regime

    NASA Astrophysics Data System (ADS)

    Cover, R. A.; Bhowmik, A.

    1984-01-01

    The Kroll-Morton-Rosenbluth equations of motion for electrons in a linearly polarized, tapered wiggler are utilized to describe gain in free-electron laser amplifiers. The three-dimensional amplifier model includes the effects of density variation in the electron beam, off-axis variations in the wiggler magnetic field, and betatron oscillations. The input electromagnetic field is injected and subsequently propagated within the wiggler by computing the Fresnel-Kirchhoff diffraction integral using the Gardner-Fresnel-Kirchhoff algorithm. The injected optical beam used in evaluating amplifier performance is initially a Gaussian which in general may be astigmatic. The importance of the above effects on extraction efficiency is computed both with rigorous three-dimensional electromagnetic wave propagation and a Gaussian treatment of the field.

  18. Ultra-broadband gain spectra of Co2+-doped fiber pumped at 1200 nm

    NASA Astrophysics Data System (ADS)

    Li, Guishun; Zhang, Chaomin; Zhu, Pengfei; Jiang, Chun; Song, Pei; Zhu, Kun

    2016-05-01

    This work investigates the energy levels, transition configuration and numerical model of Co2+-doped glass-ceramics fiber. A quasi-three-level system is employed to model the gain spectra of the doped fiber, and the rate and the power propagation equations are solved to analyze the effect of the fiber length, active ion concentration, pumping power as well as ambient temperature on the spectra. It is shown that the fiber has ultra-broadband gain spectra in 1.25-2.00 μm range via the 1200 nm pump, which is promising for full-band fiber amplifiers.

  19. Design and analysis of a novel multipumped Raman fiber amplifier

    NASA Astrophysics Data System (ADS)

    Liu, Pengcheng; Zhang, Jun; Hu, Lutan; Li, Qu; Chen, Yingli

    2001-10-01

    We design a Raman Fiber Amplifier(RFA) pumped by 1435nm and 1470nm wavelength lasers.Heavy GeO2-doped optical fibers are adopted as gain media for the more symmetrical gain curve.The amplifier is designed to be distributed in two fibers to avoid intense power transferring between the two pump lasers when propagating in single fiber.Considering the spontaneous Raman scattering and the fiber loss,the numerical calculation is made to optimize the design of the RFA to get wide bandwidth and flat gain.

  20. Reflected-wave maser. [low noise amplifier

    NASA Technical Reports Server (NTRS)

    Clauss, R. C. (Inventor)

    1976-01-01

    A number of traveling-wave, slow-wave maser structures, containing active maser material but absent the typical ferrite isolators, are immersed in a nonuniform magnetic field. The microwave signal to be amplified is inserted at a circulator which directs the signal to a slow-wave structure. The signal travels through the slow-wave structure, being amplified according to the distance traveled. The end of the slow-wave structure farthest from the circulator is arranged to be a point of maximum reflection of the signal traveling through the slow-wave structure. As a consequence, the signal to be amplified traverses the slow-wave structure again, in the opposite direction (towards the circulator) experiencing amplification equivalent to that achieved by a conventional traveling-wave maser having twice the length. The circulator directs the amplified signal to following like stages of amplification. Isolators are used in between stages to prevent signals from traveling in the wrong direction, between the stages. Reduced signal loss is experienced at each stage. The high gain produced by each slow-wave structure is reduced to a moderate value by use of a nonuniform magnetic field which also broadens the line width of the maser material. The resulting bandwidth can be exceptionally wide. Cascaded stages provide high gain, exceptionally wide bandwith and very low noise temperature.

  1. Tuneable, non-degenerated, nonlinear, parametrically-excited amplifier

    NASA Astrophysics Data System (ADS)

    Dolev, Amit; Bucher, Izhak

    2016-01-01

    The proposed parametric amplifier scheme can be tuned to amplify a wide range of input frequencies by altering the parametric excitation with no need to physically modify the oscillator. Parametric amplifiers had been studied extensively, although most of the work focused on amplifiers that are parametrically excited at a frequency twice the amplifier's natural frequency. These amplifiers are confined to amplifying predetermined frequencies. The proposed parametric amplifier's bandwidth is indeed tuneable to nearly any input frequency, not bound to be an integer multiple of a natural frequency. In order to tune the stiffness and induce a variable frequency parametric excitation, a digitally controlled electromechanical element must be incorporated in the realization. We introduce a novel parametric amplifier with nonlinearity, Duffing type hardening, that bounds the otherwise unlimited amplitude. Moreover, we present a multi degree of freedom system in which a utilization of the proposed method enables the projection of low frequency vector forces on any eigenvector and corresponding natural frequency of the system, and thus to transform external excitations to a frequency band where signal levels are considerably higher. Using the method of multiple scales, analytical expressions for the responses have been retrieved and verified numerically. Parametric studies of the amplifiers' gain, sensitivities and spatial projection of the excitation on the system eigenvectors were carried out analytically. The results demonstrate the advantage of the proposed approach over existing schemes. Practical applications envisaged for the proposed method will be outlined.

  2. Multipass diode-pumped solid-state optical amplifier

    NASA Technical Reports Server (NTRS)

    Plaessmann, Henry; Re, Sean A.; Alonis, Joseph J.; Vecht, David L.; Grossman, William M.

    1993-01-01

    A new diode-pumped solid-state multipass amplifier produced 38-dB small-signal gain at 1.047 micron in Nd:YLF with 1.6-W pump power and 37 percent extraction efficiency near saturation. The amplifier had a 1:1 confocally reimaging multipass design that generated both high gain and high efficiency. The same amplifier design with 13 W of pump power was tested with Nd:YAG at 1.064 micron, which gave 38-dB small-signal gain and 3.2 W of output power, and with Nd:YVO4, also at 1.064 micron, which gave greater than 50-dB small-signal gain and 4.3 W of output power.

  3. MMIC DHBT Common-Base Amplifier for 172 GHz

    NASA Technical Reports Server (NTRS)

    Paidi, Vamsi; Griffith, Zack; Wei, Yun; Dahlstrom, Mttias; Urteaga, Miguel; Rodwell, Mark; Samoska, Lorene; Fung, King Man; Schlecht, Erich

    2006-01-01

    Figure 1 shows a single-stage monolithic microwave integrated circuit (MMIC) power amplifier in which the gain element is a double-heterojunction bipolar transistor (DHBT) connected in common-base configuration. This amplifier, which has been demonstrated to function well at a frequency of 172 GHz, is part of a continuing effort to develop compact, efficient amplifiers for scientific instrumentation, wide-band communication systems, and radar systems that will operate at frequencies up to and beyond 180 GHz. The transistor is fabricated from a layered structure formed by molecular beam epitaxy in the InP/InGaAs material system. A highly doped InGaAs base layer and a collector layer are fabricated from the layered structure in a triple mesa process. The transistor includes two separate emitter fingers, each having dimensions of 0.8 by 12 m. The common-base configuration was chosen for its high maximum stable gain in the frequency band of interest. The input-matching network is designed for high bandwidth. The output of the transistor is matched to a load line for maximum saturated output power under large-signal conditions, rather than being matched for maximum gain under small-signal conditions. In a test at a frequency of 172 GHz, the amplifier was found to generate an output power of 7.5 mW, with approximately 5 dB of large-signal gain (see Figure 2). Moreover, the amplifier exhibited a peak small-signal gain of 7 dB at a frequency of 176 GHz. This performance of this MMIC single-stage amplifier containing only a single transistor represents a significant advance in the state of the art, in that it rivals the 170-GHz performance of a prior MMIC three-stage, four-transistor amplifier. [The prior amplifier was reported in "MMIC HEMT Power Amplifier for 140 to 170 GHz" (NPO-30127), NASA Tech Briefs, Vol. 27, No. 11 (November 2003), page 49.] This amplifier is the first heterojunction- bipolar-transistor (HBT) amplifier built for medium power operation in this

  4. Contrast degradation in a chirped-pulse amplifier due to generation of prepulses by postpulses.

    PubMed

    Didenko, N V; Konyashchenko, A V; Lutsenko, A P; Tenyakov, S Yu

    2008-03-01

    Experiment and modeling show that the refractive index nonlinearity can significantly degrade the contrast of a chirped-pulse amplifier seeded with a pulse and a single postpulse. Multiple powerful non-equidistant pre- and postpulses are generated. For a Gaussian pulse and a hat-top beam, an incident postpulse of energy W results in a prepulse of energy 0.58B(2)W, where B is the nonlinear phase (B-integral) of the main pulse. Calculations show that level of satellites due to gain saturation is negligibly small. Experimental results for Ti:Sapphire regenerative and multipass amplifiers and prepulse generation in fused silica agree well with the theory. PMID:18542405

  5. Multiwatts narrow linewidth fiber Raman amplifiers.

    PubMed

    Feng, Yan; Taylor, Luke; Bonaccini Calia, Domenico

    2008-07-21

    Up to 4.8 W, approximately 10 MHz, 1178 nm laser is obtained by Raman amplification of a distributed feedback diode laser in standard single mode fibers pumped by an 1120 nm Yb fiber laser. More than 10% efficiency and 27 dB amplification is achieved, limited by onset of stimulated Brillouin scattering. The ratio of Raman to Brillouin gain coefficient of a fiber is identified as a figure of merit for building a narrow linewidth fiber Raman amplifier.

  6. Multiwatts narrow linewidth fiber Raman amplifiers.

    PubMed

    Feng, Yan; Taylor, Luke; Bonaccini Calia, Domenico

    2008-07-21

    Up to 4.8 W, approximately 10 MHz, 1178 nm laser is obtained by Raman amplification of a distributed feedback diode laser in standard single mode fibers pumped by an 1120 nm Yb fiber laser. More than 10% efficiency and 27 dB amplification is achieved, limited by onset of stimulated Brillouin scattering. The ratio of Raman to Brillouin gain coefficient of a fiber is identified as a figure of merit for building a narrow linewidth fiber Raman amplifier. PMID:18648406

  7. Injection- Seeded Optoplasmonic Amplifier in the Visible

    PubMed Central

    Gartia, Manas Ranjan; Seo, Sujin; Kim, Junhwan; Chang, Te-Wei; Bahl, Gaurav; Lu, Meng; Liu, Gang Logan; Eden, J. Gary

    2014-01-01

    A hybrid optoplasmonic amplifier, injection-seeded by an internally-generated Raman signal and operating in the visible (563–675 nm), is proposed and evidence for amplification is presented. Comprising a gain medium tethered to a whispering gallery mode (WGM) resonator with a protein, and a plasmonic surface, the optical system described here selectively amplifies a single (or a few) Raman line(s) produced within the WGM resonator and is well-suited for routing narrowband optical power on-a-chip. Over the past five decades, optical oscillators and amplifiers have typically been based on the buildup of the field from the spontaneous emission background. Doing so limits the temporal coherence of the output, lengthens the time required for the optical field intensity to reach saturation, and often is responsible for complex, multiline spectra. In addition to the spectral control afforded by injection-locking, the effective Q of the amplifier can be specified by the bandwidth of the injected Raman signal. This characteristic contrasts with previous WGM-based lasers and amplifiers for which the Q is determined solely by the WGM resonator. PMID:25156810

  8. A compact, low input capacitance neural recording amplifier.

    PubMed

    Ng, K A; Xu, Yong Ping

    2013-10-01

    Conventional capacitively coupled neural recording amplifiers often present a large input load capacitance to the neural signal source and hence take up large circuit area. They suffer due to the unavoidable trade-off between the input capacitance and chip area versus the amplifier gain. In this work, this trade-off is relaxed by replacing the single feedback capacitor with a clamped T-capacitor network. With this simple modification, the proposed amplifier can achieve the same mid-band gain with less input capacitance, resulting in a higher input impedance and a smaller silicon area. Prototype neural recording amplifiers based on this proposal were fabricated in 0.35 μm CMOS, and their performance is reported. The amplifiers occupy smaller area and have lower input loading capacitance compared to conventional neural amplifiers. One of the proposed amplifiers occupies merely 0.056 mm(2). It achieves 38.1-dB mid-band gain with 1.6 pF input capacitance, and hence has an effective feedback capacitance of 20 fF. Consuming 6 μW, it has an input referred noise of 13.3 μVrms over 8.5 kHz bandwidth and NEF of 7.87. In-vivo recordings from animal experiments are also demonstrated.

  9. Analysis of dynamic behavior of semiconductor optical amplifiers

    NASA Astrophysics Data System (ADS)

    Quintana, Daniel; Olivares, Ricardo

    2001-08-01

    A study of the transient response of semiconductor optical amplifiers (SOAs) is presented. The gain saturation and recovery times, as well as the pulse distortion due to the cross-gain modulation produced by the bias current and input signal power variations have been evaluated for different scenarios. Observations of the temporal variation of the rate carrier density at the input and output of the amplifier show the effects on gain saturation for different input powers. Gain saturation and saturation-induced inter- channel crosstalk are evaluated. The results show that fast gain dynamic in SOAs. Transient effects of gain saturation and recovery times occur on a time scale of between 500 ps and 1 ns. It is concluded that SOAs are sensible to channel crosstalk in WDM systems operating at high bit rates.

  10. STABILIZED FEEDBACK AMPLIFIER

    DOEpatents

    Fishbine, H.L.; Sewell, C. Jr.

    1957-08-01

    Negative feedback amplifiers, and particularly a negative feedback circuit which is economical on amode power consumption, are described. Basically, the disclosed circuit comprises two tetrode tubes where the output of the first tube is capacitamce coupled to the grid of the second tube, which in turn has its plate coupled to the cathode of the first tube to form a degenerative feedback circuit. Operating potential for screen of the second tube is supplied by connecting the cathode resistor of the first tube to the screen, while the screen is by-passed to the cathode of its tube for the amplified frequencies. Also, the amplifier incorporates a circuit to stabilize the transconductance of the tubes by making the grid potential of each tube interdependent on anode currents of both lubes by voltage divider circuitry.

  11. Power gain exhibited by motile mechanosensory neurons in Drosophila ears

    PubMed Central

    Göpfert, M. C.; Humphris, A. D. L.; Albert, J. T.; Robert, D.; Hendrich, O.

    2005-01-01

    In insects and vertebrates alike, hearing is assisted by the motility of mechanosensory cells. Much like pushing a swing augments its swing, this cellular motility is thought to actively augment vibrations inside the ear, thus amplifying the ear's mechanical input. Power gain is the hallmark of such active amplification, yet whether and how much energy motile mechanosensory cells contribute within intact auditory systems has remained uncertain. Here, we assess the mechanical energy provided by motile mechanosensory neurons in the antennal hearing organs of Drosophila melanogaster by analyzing the fluctuations of the sound receiver to which these neurons connect. By using dead WT flies and live mutants (tilB2, btv5P1, and nompA2) with defective neurons as a background, we show that the intact, motile neurons do exhibit power gain. In WT flies, the neurons lift the receiver's mean total energy by 19 zJ, which corresponds to 4.6 times the energy of the receiver's Brownian motion. Larger energy contributions (200 zJ) associate with self-sustained oscillations, suggesting that the neurons adjust their energy expenditure to optimize the receiver's sensitivity to sound. We conclude that motile mechanosensory cells provide active amplification; in Drosophila, mechanical energy contributed by these cells boosts the vibrations that enter the ear. PMID:15623551

  12. Power gain exhibited by motile mechanosensory neurons in Drosophila ears.

    PubMed

    Göpfert, M C; Humphris, A D L; Albert, J T; Robert, D; Hendrich, O

    2005-01-11

    In insects and vertebrates alike, hearing is assisted by the motility of mechanosensory cells. Much like pushing a swing augments its swing, this cellular motility is thought to actively augment vibrations inside the ear, thus amplifying the ear's mechanical input. Power gain is the hallmark of such active amplification, yet whether and how much energy motile mechanosensory cells contribute within intact auditory systems has remained uncertain. Here, we assess the mechanical energy provided by motile mechanosensory neurons in the antennal hearing organs of Drosophila melanogaster by analyzing the fluctuations of the sound receiver to which these neurons connect. By using dead WT flies and live mutants (tilB(2), btv(5P1), and nompA(2)) with defective neurons as a background, we show that the intact, motile neurons do exhibit power gain. In WT flies, the neurons lift the receiver's mean total energy by 19 zJ, which corresponds to 4.6 times the energy of the receiver's Brownian motion. Larger energy contributions (200 zJ) associate with self-sustained oscillations, suggesting that the neurons adjust their energy expenditure to optimize the receiver's sensitivity to sound. We conclude that motile mechanosensory cells provide active amplification; in Drosophila, mechanical energy contributed by these cells boosts the vibrations that enter the ear. PMID:15623551

  13. Coherence optimization of vertical-cavity semiconductor optical amplifiers

    NASA Astrophysics Data System (ADS)

    Sanchez, Michael; Wen, Pengyue; Gross, Matthias; Kibar, Osman; Esener, Sadik C.

    2002-06-01

    Vertical cavity semiconductor optical amplifiers (VCSOAs) are attractive devices for use in coherent optical amplification, especially where 2-D amplifier arrays are required. However, the coherence preservation quality of a VCSOA depends strongly on the bias condition, resonant wavelength mismatch, and the optical input power level. We characterize the coherence degree of a VCSOA as a function of these parameters by measuring interference fringe visibility with an interferometer. The dominant factors influencing the contrast of the fringes are the ratio of coherent, stimulated emission photons to amplified spontaneous emission (ASE) photons, and the spectral distortion of the amplified signal. Mostly, the overall gain and the saturation characteristic of the amplifier determine the ratio of stimulated emission to ASE. The spectral distortion of the signal is due to the narrow gain window of the VCSOA, but the effect significantly degrades the visibility only for relatively large wavelength mismatch from the gain peak. Analytic expressions may be used to identify the optimal bias current and optical input power to maximize the amplifier gain and visibility of the interference.

  14. Photonic-Band-Gap Traveling-Wave Gyrotron Amplifier

    PubMed Central

    Nanni, E. A.; Lewis, S. M.; Shapiro, M. A.; Griffin, R. G.; Temkin, R. J.

    2014-01-01

    We report the experimental demonstration of a gyrotron traveling-wave-tube amplifier at 250 GHz that uses a photonic band gap (PBG) interaction circuit. The gyrotron amplifier achieved a peak small signal gain of 38 dB and 45 W output power at 247.7 GHz with an instantaneous −3 dB bandwidth of 0.4 GHz. The amplifier can be tuned for operation from 245–256 GHz. The widest instantaneous −3 dB bandwidth of 4.5 GHz centered at 253.25 GHz was observed with a gain of 24 dB. The PBG circuit provides stability from oscillations by supporting the propagation of transverse electric (TE) modes in a narrow range of frequencies, allowing for the confinement of the operating TE03-like mode while rejecting the excitation of oscillations at nearby frequencies. This experiment achieved the highest frequency of operation for a gyrotron amplifier; at present, there are no other amplifiers in this frequency range that are capable of producing either high gain or high output power. This result represents the highest gain observed above 94 GHz and the highest output power achieved above 140 GHz by any conventional-voltage vacuum electron device based amplifier. PMID:24476286

  15. Highly efficient, broadband coherent surface-mixing-wave generation using amplified surface plasmonic polaritons

    NASA Astrophysics Data System (ADS)

    Zhu, C. J.; Ren, Y.; Zhao, X.; Huang, G. X.; Deng, L.; Hagley, E. W.

    2014-05-01

    We show that coherent broadband surface mixing-wave (SMW) by a hyper-Raman process can be efficiently generated near a metallic surface abutting a quasi-three-level gain medium. The generation process is significantly enhanced by the amplified surface plasmonic polaritons (SPPs) in the gain layer, resulting in rapid growth of both fields. The highly efficient and directional amplified SPP and hyper-Raman SMW may facilitate engineering applications in which amplified-SPP propagation is desirable.

  16. CARM and harmonic gyro-amplifier experiments at 17 GHz

    SciTech Connect

    Menninger, W.L.; Danly, B.G.; Alberti, S.; Chen, C.; Rullier, J.L.; Temkin, R.J.; Giguet, E. |

    1993-11-01

    Cyclotron resonance maser amplifiers are possible sources for applications such as electron cyclotron resonance heating of fusion plasmas and driving high-gradient rf linear accelerators. For accelerator drivers, amplifiers or phase locked-oscillators are required. A 17 GHz cyclotron autoresonance maser (CARM) amplifier experiment and a 17 GHz third harmonic gyro-amplifier experiment are presently underway at the MIT Plasma Fusion Center. Using the SRL/MIT SNOMAD II introduction accelerator to provide a 380 kV, 180 A, 30 ns flat top electron beam, the gyro-amplifier experiment has produced 5 MW of rf power with over 50 dB of gain at 17 GHz. The gyro-amplifier operates in the TE{sub 31} mode using a third harmonic interaction. Because of its high power output, the gyro-amplifier will be used as the rf source for a photocathode rf electron gun experiment also taking place at MIT. Preliminary gyro-amplifier results are presented, including measurement of rf power, gain versus interaction length, and the far-field pattern. A CARM experiment designed to operate in the TE{sub 11} mode is also discussed.

  17. A unidirectional two-pulse amplifying architecture for laser fusion facilities

    NASA Astrophysics Data System (ADS)

    Li, Min; Zhang, Xiaomin; Wang, Wenyi; Wang, Zhenguo; Yan, Xiongwei; Jiang, Xinying; Zheng, Jiangang; Li, Mingzhong

    2016-01-01

    A unidirectional two-pulse amplifying architecture (UTPA) was proposed to amplify the laser pulses in inertial confinement fusion and fusion energy facilities. Compared with laser output performance in the conventional single pulse amplifier (SPA), the preliminary results show that although the performance in SPA and UTPA with the gain media of Yb:YAG operating at 200K are almost equal with output energies of 8.12 kJ and 8.26 kJ, and extraction efficiencies of 79.5% and 81.4%, respectively; however, at the maximum output in SPA, ΣB increases up to 3.499 rad close to the limitation of 3.5 rad, while in UTPA ΣB is relative small with the value of 1.769 rad, which reduces the nonlinear effects for high power pulses and is beneficial to system reliability and stability. In addition, for achieving a pulse with squared temporal shape, the demands for the pre-shaping ability of the laser system were significantly reduced in UTPA by around 6 times. With ΣB margins in UPTA, it is possible to scale the output performance with high extraction efficiency by increasing the gain coefficient or the slaps.

  18. Managing the water-energy-food nexus: Gains and losses from new water development in Amu Darya River Basin

    NASA Astrophysics Data System (ADS)

    Jalilov, Shokhrukh-Mirzo; Keskinen, Marko; Varis, Olli; Amer, Saud; Ward, Frank A.

    2016-08-01

    According to the UN, the population of Central Asia will increase from its current approximately 65 million people to a well over 90 million by the end of this century. Taking this increasing population into consideration, it is impossible to project development strategies without considering three key factors in meeting the demands of a growing population: water, food and energy. Societies will have to choose, for instance, between using land and fertilizer for food production or for bio-based or renewable energy production, and between using fresh water for energy production or for irrigating crops. Thus water, food and energy are inextricably linked and must be considered together as a system. Recently, tensions among the Central Asian countries over the use of water for energy and energy production have increased with the building of Rogun Dam on the Vakhsh River, a tributary of the Amu Darya River. The dam will provide upstream Tajikistan with hydropower, while downstream countries fear it could negatively impact their irrigated agriculture. Despite recent peer reviewed literature on water resources management in Amu Darya Basin, none to date have addressed the interconnection and mutual impacts within water-energy-food systems in face of constructing the Rogun Dam. We examine two potential operation modes of the dam: Energy Mode (ensuring Tajikistan's hydropower needs) and Irrigation Mode (ensuring water for agriculture downstream). Results show that the Energy Mode could ensure more than double Tajikistan's energy capacity, but would reduce water availability during the growing season, resulting in an average 37% decline in agricultural benefits in downstream countries. The Irrigation Mode could bring a surplus in agricultural benefits to Tajikistan and Uzbekistan in addition an increasing energy benefits in Tajikistan by two fold. However, energy production in the Irrigation Mode would be non-optimally distributed over the seasons resulting in the most of

  19. Generation of high-energy sub-20 fs pulses tunable in the 250-310 nm region by frequency doubling of a high-power noncollinear optical parametric amplifier.

    PubMed

    Beutler, Marcus; Ghotbi, Masood; Noack, Frank; Brida, Daniele; Manzoni, Cristian; Cerullo, Giulio

    2009-03-15

    We report on the generation of powerful sub-20 fs deep UV pulses with 10 microJ level energy and broadly tunable in the 250-310 nm range. These pulses are produced by frequency doubling a high-power noncollinear optical parametric amplifier and compressed by a pair of MgF2 prisms to an almost transform-limited duration. Our results provide a power scaling by an order of magnitude with respect to previous works.

  20. Grating enhanced solid-state laser amplifiers

    SciTech Connect

    Erlandson, Alvin C.; Britten, Jerald A.

    2010-11-09

    A novel method and apparatus for suppressing ASE and parasitic oscillation modes in a high average power laser is introduced. Such an invention, as disclosed herein, uses diffraction gratings to increase gain, stored energy density, and pumping efficiency of solid-state laser gain media, such as, but not limited to rods, disks and slabs. By coupling predetermined gratings to solid-state gain media, such as crystal or ceramic laser gain media, ASE and parasitic oscillation modes can be effectively suppressed.

  1. A gain-coefficient switched Alexandrite laser

    NASA Astrophysics Data System (ADS)

    Lee, Chris J.; van der Slot, Peter J. M.; Boller, Klaus-J.

    2013-01-01

    We report on a gain-coefficient switched Alexandrite laser. An electro-optic modulator is used to switch between high and low gain states by making use of the polarization dependent gain of Alexandrite. In gain-coefficient switched mode, the laser produces 85 ns pulses with a pulse energy of 240 mJ at a repetition rate of 5 Hz.

  2. 16.6 J chirped femtosecond laser pulses from a diode-pumped Yb:CaF2 amplifier.

    PubMed

    Kessler, Alexander; Hornung, Marco; Keppler, Sebastian; Schorcht, Frank; Hellwing, Marco; Liebetrau, Hartmut; Körner, Jörg; Sävert, Alexander; Siebold, Mathias; Schnepp, Matthias; Hein, Joachim; Kaluza, Malte C

    2014-03-15

    We report the amplification of laser pulses at a center wavelength of 1034 nm to an energy of 16.6 J from a fully diode-pumped amplifier using Yb:CaF2 as the active medium. Pumped by a total optical power of 300 kW from high-power laser diodes, a gain factor of g=6.1 was achieved in a nine-pass amplifier configuration agreeing with numerical simulations. A measured spectral bandwidth of 10 nm full width at half-maximum promises a bandwidth-limited compression of the pulses down to a duration of 150 fs. These are, to our knowledge, the most energetic laser pulses achieved from a diode-pumped chirped-pulse amplifier so far.

  3. Scalar wave propagation in random amplifying media: Influence of localization effects on length and time scales and threshold behavior

    SciTech Connect

    Frank, Regine; Lubatsch, Andreas

    2011-07-15

    We present a detailed discussion of scalar wave propagation and light intensity transport in three-dimensional random dielectric media with optical gain. The intrinsic length and time scales of such amplifying systems are studied and comprehensively discussed as well as the threshold characteristics of single- and two-particle propagators. Our semianalytical theory is based on a self-consistent Cooperon resummation, representing the repeated self-interference, and incorporates as well optical gain and absorption, modeled in a semianalytical way by a finite imaginary part of the dielectric function. Energy conservation in terms of a generalized Ward identity is taken into account.

  4. Fourier plane image amplifier

    DOEpatents

    Hackel, L.A.; Hermann, M.R.; Dane, C.B.; Tiszauer, D.H.

    1995-12-12

    A solid state laser is frequency tripled to 0.3 {micro}m. A small portion of the laser is split off and generates a Stokes seed in a low power oscillator. The low power output passes through a mask with the appropriate hole pattern. Meanwhile, the bulk of the laser output is focused into a larger stimulated Brillouin scattering (SBS) amplifier. The low power beam is directed through the same cell in the opposite direction. The majority of the amplification takes place at the focus which is the fourier transform plane of the mask image. The small holes occupy large area at the focus and thus are preferentially amplified. The amplified output is now imaged onto the multichip module where the holes are drilled. Because of the fourier plane amplifier, only about 1/10th the power of a competitive system is needed. This concept allows less expensive masks to be used in the process and requires much less laser power. 1 fig.

  5. Fourier plane image amplifier

    DOEpatents

    Hackel, Lloyd A.; Hermann, Mark R.; Dane, C. Brent; Tiszauer, Detlev H.

    1995-01-01

    A solid state laser is frequency tripled to 0.3 .mu.m. A small portion of the laser is split off and generates a Stokes seed in a low power oscillator. The low power output passes through a mask with the appropriate hole pattern. Meanwhile, the bulk of the laser output is focused into a larger stimulated Brillouin scattering (SBS) amplifier. The low power beam is directed through the same cell in the opposite direction. The majority of the amplification takes place at the focus which is the fourier transform plane of the mask image. The small holes occupy large area at the focus and thus are preferentially amplified. The amplified output is now imaged onto the multichip module where the holes are drilled. Because of the fourier plane amplifier, only .about.1/10th the power of a competitive system is needed. This concept allows less expensive masks to be used in the process and requires much less laser power.

  6. Study of silicon photomultipliers fast amplifier and thermoregulation

    NASA Astrophysics Data System (ADS)

    D'Antone, I.; Fabbri, L.; Foschi, E.; Guandalini, C.; Laurenti, G.; Lax, I.; Levi, G.; Quadrani, L.; Sbarra, Ca.; Sbarra, Cr.; Villa, M.; Zoccoli, A.; Zuffa, M.

    2011-02-01

    The silicon photomultipliers (SiPM) are adopted in various physical applications, from medical physics to astrophysics, for their advantages in terms of cost and weight with respect to traditional photo detectors. Their low bias voltage supply (about 30 V), hardiness and resistance to magnetic field are ideal characteristics for space application. In the frame of INFN-Irst collaboration, some of them have been developed and produced at FBK (Trento-Italy), and have been characterized in the INFN laboratories of Bologna (DaSiPM2 collaboration). The SiPM can be used in conjunction with fibres and counters in high energy physics experiments. To exploit the SiPM time resolution, a fast amplifier has been studied. The SiPM gain depends critically on temperature and a thermal stabilization is also necessary. The use of a thermoelectric cooler module based on a Peltier cell has been investigated, and the results are shown.

  7. Weight gain and reduced energy expenditure in low-income Brazilian women living in slums: a 4-year follow-up study.

    PubMed

    Florêncio, Telma M M T; Bueno, Nassib B; Clemente, Ana P G; Albuquerque, Fabiana C A; Britto, Revilane P A; Ferriolli, Eduardo; Sawaya, Ana L

    2015-08-14

    The present study aimed to investigate the possible changes in anthropometric and biochemical parameters in low-income women living in the outskirts of Maceió (northeast Brazil), and to explore the possible role of dietary intake and physical activity in these changes. A prospective longitudinal study was conducted in a cohort of mothers of malnourished children who attended the Center for Nutritional Recovery and Education, an outreach programme of the Federal University of Alagoas. Socio-economic, anthropometric, biochemical and dietary intake data were assessed at baseline and after a follow-up period of 4 years. Energy expenditure (using doubly labelled water) and physical activity (using triaxial accelerometers) were assessed only in a subgroup of women after 4 years. A total of eighty-five women were assessed. Participants showed an altered biochemical profile, increased systolic blood pressure, decreased thyroid hormone levels, and body-weight gain. However, dietary intakes of the participants did not include large quantities of highly processed and high-glycaemic index foods. The energy intake of the participants did not differ from their total energy expenditure (7990.3 (7173.7-8806.8) v. 8798.1 (8169.0-9432.4) kJ, respectively; P= 0.084). Multivariate analyses showed a significant effect of time spent watching television (β = 0.639 (0.003 to 1.275); P= 0.048) and dietary diversity score (β = -1.039 ( -2.010 to -0.067); P = 0.036) on weight gain. The present study indicates that poor women, who are mothers of malnourished children and have a reasonably balanced dietary intake, exhibit weight gain and are at risk of developing chronic diseases.

  8. Hybrid solid state laser system using a neodymium-based master oscillator and an ytterbium-based power amplifier

    DOEpatents

    Payne, Stephen A.; Marshall, Christopher D.; Powell, Howard T.; Krupke, William F.

    2001-01-01

    In a master oscillator-power amplifier (MOPA) hybrid laser system, the master oscillator (MO) utilizes a Nd.sup.3+ -doped gain medium and the power amplifier (PA) utilizes a diode-pumped Yb.sup.3+ -doped material. The use of two different laser gain media in the hybrid MOPA system provides advantages that are otherwise not available. The Nd-doped gain medium preferably serves as the MO because such gain media offer the lowest threshold of operation and have already been engineered as practical systems. The Yb-doped gain medium preferably serves in the diode-pumped PA to store pump energy effectively and efficiently by virtue of the long emission lifetime, thereby reducing diode pump costs. One crucial constraint on the MO and PA gain media is that the Nd and Yb lasers must operate at nearly the same wavelength. The 1.047 .mu.m Nd:YLF/Yb:S-FAP [Nd:LiYF.sub.4 /Yb:Sr.sub.5 (PO.sub.4).sub.3 F] hybrid MOPA system is a preferred embodiment of the hybrid Nd/Yb MOPA.

  9. A Hybrid Fiber/Solid-State Regenerative Amplifier with Tunable Pulse Widths for Satellite Laser Ranging

    NASA Technical Reports Server (NTRS)

    Coyle, Barry; Poulios, Demetrios

    2013-01-01

    A fiber/solid-state hybrid seeded regenerative amplifier, capable of achieving high output energy with tunable pulse widths, has been developed for satellite laser ranging applications. The regenerative amplifier cavity uses a pair of Nd:YAG zigzag slabs oriented orthogonally to one another in order to make thermal lensing effects symmetrical and simplify optical correction schemes. The seed laser used is a fiber-coupled 1,064-nm narrowband (<0.02 nm) diode laser that is discretely driven in a new short-pulsed mode, enabling continuously tunable seed pulse widths in the 0.2-to-0.4-ns range. The amplifier gain unit consists of a pair of Brewster-cut 6-bounce zigzag Nd:YAG laser slabs, oriented 90deg relative to each other in the amplifier head. This arrangement creates a net-symmetrical thermal lens effect (an opposing singleaxis effect in each slab), and makes thermo-optical corrections simple by optimizing the curvature of the nearest cavity mirror. Each slab is pumped by a single 120-W, pulsed 808-nm laser diode array. In this configuration, the average pump beam distribution in the slabs had a 1-D Gaussian shape, which matches the estimated cavity mode size. A half-wave plate between the slabs reduces losses from Fresnel reflections due to the orthogonal slabs Brewster-cut end faces. Successful "temporal" seeding of the regenerative amplifier cavity results in a cavity Q-switch pulse envelope segmenting into shorter pulses, each having the width of the input seed, and having a uniform temporal separation corresponding to the cavity round-trip time of approx. =10 ns. The pulse energy is allowed to build on successive passes in the regenerative amplifier cavity until a maximum is reached, (when cavity gains and losses are equal), after which the pulse is electro- optically switched out on the next round trip The overall gain of the amplifier is approx. =82 dB (or a factor of 1.26 million). After directing the amplified output through a LBO frequency doubling

  10. Positioning Your Library for Solar (and Financial) Gain. Improving Energy Efficiency, Lighting, and Ventilation with Primarily Passive Techniques

    ERIC Educational Resources Information Center

    Shane, Jackie

    2012-01-01

    This article stresses the importance of building design above technology as a relatively inexpensive way to reduce energy costs for a library. Emphasis is placed on passive solar design for heat and daylighting, but also examines passive ventilation and cooling, green roofs, and building materials. Passive design is weighed against technologies…

  11. Continuous-mode operation of a noiseless linear amplifier

    NASA Astrophysics Data System (ADS)

    Li, Yi; Carvalho, André R. R.; James, Matthew R.

    2016-05-01

    We develop a dynamical model to describe the operation of the nondeterministic noiseless linear amplifier (NLA) in the regime of continuous-mode inputs. We analyze the dynamics conditioned on the detection of photons and show that the amplification gain depends on detection times and on the temporal profile of the input state and the auxiliary single-photon state required by the NLA. We also show that the output amplified state inherits the pulse shape of the ancilla photon.

  12. A travelling-wave parametric amplifier utilizing Josephson junctions

    SciTech Connect

    Sweeny, M.; Mahler, R.

    1985-03-01

    Josephson junction parametric amplifiers of travelling-wave design have been designed for use as low-noise millimeter wave amplifiers. These devices have non-reciprocal gain, very wide bandwidths, power dissipations of a few tens of nanowatts, and an input impedance that can be as high as 50 ohms. The design is described and performance estimates, based on a small-signal model, are summarized.

  13. Class E power amplifiers for wireless communications

    NASA Astrophysics Data System (ADS)

    Sowlati Hashjani, Tirdad

    In this thesis, the use of Class E power amplifiers for digital wireless communication applications is presented for the first time. A linear transmitter design using Class E amplifier is proposed for the North American Digital Cellular Standard. In this architecture, a phase correcting feedback loop is used to cancel the AM-PM distortion in Class E power amplifier. Several low voltage Class E power amplifiers, and the phase correcting feedback loop are designed and implemented in a commercially available 0.8 mum GaAs MESFET process. A fully integrated Class E power module operating at 835 MHz is presented. The power module consists of a Class F driver stage and a Class E power amplifier, and delivers 250 mW to the standard 50 Omega load with a power added efficiency of 51%. The design and implementation of a hybrid Class E power module operating at 835 MHz is also discussed. In this design, the output matching network is implemented on an alumina substrate, and has a lower power dissipation than its GaAs counterpart. The power module delivers 443 mW to the 50 Omega load with a power added efficiency of 67%. A 1.8 GHz fully integrated Class E power module is also presented. In this case, the power module delivers 200 mW of power to the 50 Omega load with a power added efficiency of 57%. The design and implementation of the phase correcting feedback loop, which consists of a limiting amplifier, a phase detector and two phase shifters, are discussed. The phase correcting feedback loop is used to linearize the 835 MHz Class E hybrid power module. With a loop gain of 20, the maximum phase distortion in the power module was reduced from 30sp° to 4sp° and the total power added efficiency was 65%.

  14. Combination ring cavity and backward Raman waveguide amplifier

    DOEpatents

    Kurnit, Norman A.

    1983-01-01

    A combination regenerative ring and backward Raman waveguide amplifier and a combination regenerative ring oscillator and backward Raman waveguide amplifier which produce Raman amplification, pulse compression, and efficient energy extraction from the CO.sub.2 laser pump signal for conversion into a Stokes radiation signal. The ring cavity configuration allows the CO.sub.2 laser pump signal and Stokes signal to copropagate through the Raman waveguide amplifier. The backward Raman waveguide amplifier configuration extracts a major portion of the remaining energy from the CO.sub.2 laser pump signal for conversion to Stokes radiation. Additionally, the backward Raman amplifier configuration produces a Stokes radiation signal which has a high intensity and a short duration. Adjustment of the position of overlap of the Stokes signal and the CO.sub.2 laser pump signal in the backward Raman waveguide amplifiers alters the amount of pulse compression which can be achieved.

  15. Short pulse free electron laser amplifier

    DOEpatents

    Schlitt, Leland G.; Szoke, Abraham

    1985-01-01

    Method and apparatus for amplification of a laser pulse in a free electron laser amplifier where the laser pulse duration may be a small fraction of the electron beam pulse duration used for amplification. An electron beam pulse is passed through a first wiggler magnet and a short laser pulse to be amplified is passed through the same wiggler so that only the energy of the last fraction, f, (f<1) of the electron beam pulse is consumed in amplifying the laser pulse. After suitable delay of the electron beam, the process is repeated in a second wiggler magnet, a third, . . . , where substantially the same fraction f of the remainder of the electron beam pulse is consumed in amplification of the given short laser pulse in each wiggler magnet region until the useful electron beam energy is substantially completely consumed by amplification of the laser pulse.

  16. Two-stage optical parametric chirped-pulse amplifier using sub-nanosecond pump pulse generated by stimulated Brillouin scattering compression

    NASA Astrophysics Data System (ADS)

    Ogino, Jumpei; Miyamoto, Sho; Matsuyama, Takahiro; Sueda, Keiichi; Yoshida, Hidetsugu; Tsubakimoto, Koji; Miyanaga, Noriaki

    2014-12-01

    We demonstrate optical parametric chirped-pulse amplification (OPCPA) based on two-beam pumping, using sub-nanosecond pulses generated by stimulated Brillouin scattering compression. Seed pulse energy, duration, and center wavelength were 5 nJ, 220 ps, and ˜1065 nm, respectively. The 532 nm pulse from a Q-switched Nd:YAG laser was compressed to ˜400 ps in heavy fluorocarbon FC-40 liquid. Stacking of two time-delayed pump pulses reduced the amplifier gain fluctuation. Using a walk-off-compensated two-stage OPCPA at a pump energy of 34 mJ, a total gain of 1.6 × 105 was obtained, yielding an output energy of 0.8 mJ. The amplified chirped pulse was compressed to 97 fs.

  17. Effects of Gain Changes on RPM Performance

    SciTech Connect

    Lousteau, Angela L; York, Robbie Lynn; Livesay, Jake

    2012-03-01

    The mission of the U.S. Department of Energy/National Nuclear Security Administration's (DOE/NNSA's) Office of the Second Line of Defense (SLD) is to strengthen the capability of foreign governments to deter, detect, and interdict the illicit trafficking of special nuclear and other radioactive materials across international borders and through the global maritime shipping system. The goal of this mission is to reduce the probability of these materials being fashioned into a weapon of mass destruction or radiological dispersal device that could be used against the United States or its international partners. This goal is achieved primarily through the installation and operation of radiation detection equipment at border crossings, airports, seaports, and other strategic locations around the world. In order to effectively detect the movement of radioactive material, the response of these radiation detectors to various materials in various configurations must be well characterized. Oak Ridge National Laboratory (ORNL) investigated two aspects of Radiation Portal Monitor (RPM) settings, based on a preliminary investigation done by the Los Alamos National Laboratory (LANL): source-to-detector distance effect on amplifier gain and optimized discriminator settings. This report discusses this investigation. A number of conclusions can be drawn from the ORNL testing. First, for increased distance between the source and the detector, thus illuminating the entire detector rather than just the center of the detector (as is done during detector alignments), an increase in gain may provide a 5-15% increase in sensitivity (Fig. 4). However, increasing the gain without adjusting the discriminator settings is not recommended as this makes the monitor more sensitive to electronic noise and temperature-induced fluctuations. Furthermore, if the discriminators are adjusted in relation to the increase in gain, thus appropriately discriminating against electronic noise, the sensitivity

  18. Probiotic Lactobacillus gasseri SBT2055 improves glucose tolerance and reduces body weight gain in rats by stimulating energy expenditure.

    PubMed

    Shirouchi, Bungo; Nagao, Koji; Umegatani, Minami; Shiraishi, Aya; Morita, Yukiko; Kai, Shunichi; Yanagita, Teruyoshi; Ogawa, Akihiro; Kadooka, Yukio; Sato, Masao

    2016-08-01

    Probiotic Lactobacillus gasseri SBT2055 (LG2055) reduces postprandial TAG absorption and exerts anti-obesity effects in rats and humans; however, the underlying mechanisms are not fully understood. In the present study, we addressed the mechanistic insights of the anti-obesity activity of LG2055 by feeding Sprague-Dawley rats diets containing skimmed milk fermented or not by LG2055 for 4 weeks and by analysing energy expenditure, glucose tolerance, the levels of SCFA in the caecum and serum inflammatory markers. Rats fed the LG2055-containing diet demonstrated significantly higher carbohydrate oxidation in the dark cycle (active phase for rats) compared with the control group, which resulted in a significant increase in energy expenditure. LG2055 significantly reduced cumulative blood glucose levels (AUC) compared with the control diet after 3 weeks and increased the molar ratio of butyrate:total SCFA in the caecum after 4 weeks. Furthermore, the LG2055-supplemented diet significantly reduced the levels of serum amyloid P component - an indicator of the inflammatory process. In conclusion, our results demonstrate that, in addition to the inhibition of dietary TAG absorption reported previously, the intake of probiotic LG2055 enhanced energy expenditure via carbohydrate oxidation, improved glucose tolerance and attenuated inflammation, suggesting multiple additive and/or synergistic actions underlying the anti-obesity effects exerted by LG2055. PMID:27267802

  19. Raman-Enhanced Phase-Sensitive Fibre Optical Parametric Amplifier.

    PubMed

    Fu, Xuelei; Guo, Xiaojie; Shu, Chester

    2016-01-01

    Phase-sensitive amplification is of great research interest owing to its potential in noiseless amplification. One key feature in a phase-sensitive amplifier is the gain extinction ratio defined as the ratio of the maximum to the minimum gains. It quantifies the capability of the amplifier in performing low-noise amplification for high phase-sensitive gain. Considering a phase-sensitive fibre optical parametric amplifier for linear amplification, the gain extinction ratio increases with the phase-insensitive parametric gain achieved from the same pump. In this work, we use backward Raman amplification to increase the phase-insensitive parametric gain, which in turn improves the phase-sensitive operation. Using a 955 mW Raman pump, the gain extinction ratio is increased by 9.2 dB. The improvement in the maximum phase-sensitive gain is 18.7 dB. This scheme can significantly boost the performance of phase-sensitive amplification in a spectral range where the parametric pump is not sufficiently strong but broadband Raman amplification is available.

  20. Raman-Enhanced Phase-Sensitive Fibre Optical Parametric Amplifier

    PubMed Central

    Fu, Xuelei; Guo, Xiaojie; Shu, Chester

    2016-01-01

    Phase-sensitive amplification is of great research interest owing to its potential in noiseless amplification. One key feature in a phase-sensitive amplifier is the gain extinction ratio defined as the ratio of the maximum to the minimum gains. It quantifies the capability of the amplifier in performing low-noise amplification for high phase-sensitive gain. Considering a phase-sensitive fibre optical parametric amplifier for linear amplification, the gain extinction ratio increases with the phase-insensitive parametric gain achieved from the same pump. In this work, we use backward Raman amplification to increase the phase-insensitive parametric gain, which in turn improves the phase-sensitive operation. Using a 955 mW Raman pump, the gain extinction ratio is increased by 9.2 dB. The improvement in the maximum phase-sensitive gain is 18.7 dB. This scheme can significantly boost the performance of phase-sensitive amplification in a spectral range where the parametric pump is not sufficiently strong but broadband Raman amplification is available. PMID:26830136

  1. Cascaded, stagger-tuned, broadband, low-ripple optical amplifiers.

    PubMed

    Saleh, A A; Jopson, R M

    1988-11-01

    We show theoretically that the gain spectrum obtained by cascading two or more semiconductor optical amplifiers can have a ripple amplitude that is significantly smaller than that currently attainable with a single stage of optical amplification. For example, by cascading two stagger-tuned amplifiers, each having 10 dB of coupling loss and facet reflectivities of 10(-3), one can achieve a net (fiber-to-fiber) gain of 30 dB with less than 2 dB of ripple amplitude. We also show that, under some conditions, simple cascading of optical amplifiers, without the stagger tuning and associated control, can lead to low-ripple, high-gain optical amplification.

  2. Prismatic louver active façades for natural illumination and thermal energy gain in high-rise and commercial buildings

    NASA Astrophysics Data System (ADS)

    Vlachokostas, A.; Volkmann, C.; Madamopoulos, N.

    2013-06-01

    High-rise and commercial buildings in urban centers present a great challenge in terms of their energy consumption. Due to maximization of rentable square footage, the preferred urban façade system over the past 50 years has been the "curtain wall", only a few inches thick and comprised of modular steel or aluminum framing and predominant glass infills. The perceived Achilles heel of these modern glass façade systems is their thermal inefficiency: They are inadequate thermal barriers and exhibit excessive solar gain. The excessive solar gain has a negative impact on lighting and cooling loads of the entire building. This negative impact will be further exacerbated with rising energy costs. However, rather than view the glass façade's uncontrolled solar gain merely as a weakness contributing to higher energy consumption, the condition could indeed be considered as related to an energy solution. These glass façades can be retrofitted to operate as a provider of daylight and energy for the rest of the building, taking advantage of the overexposure to the sun. With today's technology, the sun's abundant renewable energy can be the driving force for the energy transition of these building envelopes. Illumination, thermal energy, and electricity production can be directly supplied from the sun, and when correctly and efficiently managed, they can lead to a significantly less energy-intensive building stock. We propose a multi-purpose, prismatic, louver-based façade to perform both daylight and thermal energy harvesting with a goal of offering a better daylight environment for the occupants, and reduce the energy consumption and carbon footprint of the building. While decentralized air-conditioning units are commonly accepted as façade "plug-ins", such decentralization could be utilized with more benefits by passively managing the interior space conditions, without using any extra power. Just as living organisms respond and adapt to the environmental changes in

  3. Amplifier circuit operable over a wide temperature range

    DOEpatents

    Kelly, Ronald D.; Cannon, William L.

    1979-01-01

    An amplifier circuit having stable performance characteristics over a wide temperature range from approximately 0.degree. C up to as high as approximately 500.degree. C, such as might be encountered in a geothermal borehole. The amplifier utilizes ceramic vacuum tubes connected in directly coupled differential amplifier pairs having a common power supply and a cathode follower output stage. In an alternate embodiment, for operation up to 500.degree. C, positive and negative power supplies are utilized to provide improved gain characteristics, and all electrical connections are made by welding. Resistor elements in this version of the invention are specially heat treated to improve their stability with temperature.

  4. STABILIZED TRANSISTOR AMPLIFIER

    DOEpatents

    Noe, J.B.

    1963-05-01

    A temperature stabilized transistor amplifier having a pair of transistors coupled in cascade relation that are capable of providing amplification through a temperature range of - 100 un. Concent 85% F to 400 un. Concent 85% F described. The stabilization of the amplifier is attained by coupling a feedback signal taken from the emitter of second transistor at a junction between two serially arranged biasing resistances in the circuit of the emitter of the second transistor to the base of the first transistor. Thus, a change in the emitter current of the second transistor is automatically corrected by the feedback adjustment of the base-emitter potential of the first transistor and by a corresponding change in the base-emitter potential of the second transistor. (AEC)

  5. Man-Amplifying Exoskeleton

    NASA Astrophysics Data System (ADS)

    Rosheim, Mark E.

    1990-03-01

    This paper describes a design for a man-amplifying exoskeleton, an electrically powered, articulated frame worn by an operator. The design features modular construction and employ anthropomorphic pitch-yaw joints for arms and legs. These singularity-free designs offer a significant advancement over simple pivot-type joints used in older designs. Twenty-six degrees-of-freedom excluding the hands gives the Man-Amplifier its unique dexterity. A five hundred-pound load capacity is engineered for a diverse range of tasks. Potential applications in emergency rescue work, restoring functionality to the handicapped, and military applications ranging from material handling to an elite fighting core are discussed. A bibliography concludes this paper.

  6. PEAK LIMITING AMPLIFIER

    DOEpatents

    Goldsworthy, W.W.; Robinson, J.B.

    1959-03-31

    A peak voltage amplitude limiting system adapted for use with a cascade type amplifier is described. In its detailed aspects, the invention includes an amplifier having at least a first triode tube and a second triode tube, the cathode of the second tube being connected to the anode of the first tube. A peak limiter triode tube has its control grid coupled to thc anode of the second tube and its anode connected to the cathode of the second tube. The operation of the limiter is controlled by a bias voltage source connected to the control grid of the limiter tube and the output of the system is taken from the anode of the second tube.

  7. Diode pumped, regenerative Nd:YAG ring amplifier for space application

    NASA Technical Reports Server (NTRS)

    Coyle, D. B.; Kay, Richard B.; Degnan, John J.; Krebs, Danny J.; Seery, Bernard D.

    1992-01-01

    The study reviews the research and development of a prototype laser used to study one possible method of short-pulse production and amplification, in particular, a pulsed Nd:YAG ring laser pumped by laser diode arrays and injected seeded by a 100-ps source. The diode array pumped, regenerative amplifier consists of only five optical elements, two mirrors, one thin film polarizer, one Nd:YAG crystal, and one pockels cell. The pockels cell performed both as a Q-switch and a cavity dumper for amplified pulse ejection through the thin film polarizer. The total optical efficiency was low principally due to the low gain provided by the 2-bar pumped laser head. After comparison with a computer model, a real seed threshold of about 10 exp -15 J was achieved because only about 0.1 percent of the injected energy mode-matched with the ring.

  8. Experimental demonstration of enhanced self-amplified spontaneous emission by an optical klystron.

    PubMed

    Penco, G; Allaria, E; De Ninno, G; Ferrari, E; Giannessi, L

    2015-01-01

    We report the first experimental evidence of enhancement of self-amplified spontaneous emission, due to the use of an optical klystron. In this free-electron laser scheme, a relativistic electron beam passes through two undulators, separated by a dispersive section. The latter converts the electron-beam energy modulation produced in the first undulator in density modulation, thus enhancing the free-electron laser gain. The experiment has been carried out at the FERMI facility in Trieste. Powerful radiation has been produced in the extreme ultraviolet range, with an intensity a few orders of magnitude larger than in pure self-amplified spontaneous emission mode. Data have been benchmarked with an existing theoretical model.

  9. DRIFT COMPENSATED DIRECT COUPLED AMPLIFIER

    DOEpatents

    Windsor, A.A.

    1959-05-01

    An improved direct-coupled amplifier having zerolevel drift correction is described. The need for an auxiliary corrective-potential amplifier is eliminated thereby giving protection against overload saturation of the zero- level drift correcting circuit. (T.R.H.)

  10. Amplified spontaneous emission spectrum at the output of a diode amplifier saturated by an input monochromatic wave

    NASA Astrophysics Data System (ADS)

    Bogatov, A. P.; Drakin, A. E.; D'yachkov, N. V.; Gushchik, T. I.

    2016-08-01

    Expressions for the amplitudes of amplified spontaneous emission waves in a diode amplifier near the frequency ω0 of a 'strong' input monochromatic wave have been derived in terms of a random function of a stationary Gaussian process. We have found expressions for the spectral density of the amplitudes and shown that, on the red side of the spectrum with respect to frequency ω0, spontaneous emission waves obtain additional nonlinear gain, induced by the strong wave, whereas on the blue side of the spectrum an additional loss is induced. Such behaviour of the amplitudes of amplified waves agrees with previous results.

  11. Self-similar propagation of high-power parabolic pulses in optical fiber amplifiers.

    PubMed

    Kruglov, V I; Peacock, A C; Dudley, J M; Harvey, J D

    2000-12-15

    Self-similarity techniques are used to study pulse propagation in a normal-dispersion optical fiber amplifier with an arbitrary longitudinal gain profile. Analysis of the nonlinear Schrödinger equation that describes such an amplifier leads to an exact solution in the high-power limit that corresponds to a linearly chirped parabolic pulse. The self-similar scaling of the propagating pulse in the amplifier is found to be determined by the functional form of the gain profile, and the solution is confirmed by numerical simulations. The implications for achieving chirp-free pulses after compression of the amplifier output are discussed.

  12. Ferroelectric Field-Effect Transistor Differential Amplifier Circuit Analysis

    NASA Technical Reports Server (NTRS)

    Phillips, Thomas A.; MacLeod, Todd C.; Ho, Fat D.

    2008-01-01

    There has been considerable research investigating the Ferroelectric Field-Effect Transistor (FeFET) in memory circuits. However, very little research has been performed in applying the FeFET to analog circuits. This paper investigates the use of FeFETs in a common analog circuit, the differential amplifier. The two input Metal-Oxide-Semiconductor (MOS) transistors in a general MOS differential amplifier circuit are replaced with FeFETs. Resistors are used in place of the other three MOS transistors. The FeFET model used in the analysis has been previously reported and was based on experimental device data. Because of the FeFET hysteresis, the FeFET differential amplifier has four different operating modes depending on whether the FeFETs are positively or negatively polarized. The FeFET differential amplifier operation in the different modes was analyzed by calculating the amplifier voltage transfer and gain characteristics shown in figures 2 through 5. Comparisons were made between the FeFET differential amplifier and the standard MOS differential amplifier. Possible applications and benefits of the FeFET differential amplifier are discussed.

  13. Direct solar-pumped iodine laser amplifier

    NASA Technical Reports Server (NTRS)

    Han, Kwang S.; Kim, K. H.; Stock, L. V.

    1986-01-01

    In order to evaluate the feasibility of the solar pumped dye laser, the parametric study of a dye laser amplifier pumped by a solar simulator and flashlamp was carried out, and the amplifier gains were measured at various pump beam irradiances on the dye cell. Rhodamine 6G was considered as a candidate for the solar pumped laser because of its good utilization of the solar spectrum and high quantum efficiency. The measurement shows that a solar concentration of 20,000 is required to reach the threshold of the dye. The work to construct a kinetic model algorithm which predicts the output parameter of laser was progressed. The kinetic model was improved such that there is good agreement between the theoretical model and experimental data for the systems defined previously as flashlamp pumped laser oscillator, and the long path length solar pumped laser.

  14. Gaining insight in the interaction of zinc and population density with a combined dynamic energy budget and population model.

    PubMed

    Klok, Chris

    2008-12-01

    Laboratory tests are typically conducted under optimal conditions testing the single effect of a toxicant In the field, due to suboptimal conditions, density dependence can both diminish and enhance effects of toxicants on populations. A review of the literature indicated that general insight on interaction of density and toxicants is lacking, and therefore no predictions on their combined action can be made. In this paper the influence of zinc was tested at different population densities on the demographic rates: growth, reproduction, and survival in the earthworm Lumbricus rubellus. Changes in these rates were extrapolated with a combined Dynamic energy budget (DEB) and a population model to assess consequences at the population level. Inference from the DEB model indicated that density decreased the assimilation of food whereas zinc increased the maintenance costs. The combined effects of density and zinc resulted in a decrease in the intrinsic rate of population increase which suddenly dropped to zero at combinations of zinc and density where development is so strongly retarded that individuals do not mature. This already happened at zinc levels where zinc induced mortality is low and therefore density enhances zinc effects and density dependent compensation is not expected. PMID:19192801

  15. Effects on weight gain and gut microbiota in rats given bacterial supplements and a high-energy-dense diet from fetal life through to 6 months of age.

    PubMed

    Karlsson, Caroline L J; Molin, Göran; Fåk, Frida; Johansson Hagslätt, Marie-Louise; Jakesevic, Maja; Håkansson, Åsa; Jeppsson, Bengt; Weström, Björn; Ahrné, Siv

    2011-09-01

    The aim of the present study was to assess the long-term effects of a high-energy-dense diet, supplemented with Lactobacillus plantarum (Lp) or Escherichia coli (Ec), on weight gain, fattening and the gut microbiota in rats. Since the mother's dietary habits can influence offspring physiology, dietary regimens started with the dams at pregnancy and throughout lactation and continued with the offspring for 6 months. The weight gain of group Lp was lower than that of groups C (control) and Ec (P = 0·086). More retroperitoneal adipose tissue (P = 0·030) and higher plasma leptin (P = 0·035) were observed in group Ec compared with group Lp. The viable count of Enterobacteriaceae was higher in group Ec than in group Lp (P = 0·019), and when all animals were compared, Enterobacteriaceae correlated positively with body weight (r 0·428, P = 0·029). Bacterial diversity was lower in group Ec than in groups C (P ≤ 0·05) and Lp (P ≤ 0·05). Firmicutes, Bacteroidetes and Verrucomicrobia dominated in all groups, but Bacteroidetes were more prevalent in group C than in groups Lp (P = 0·036) and Ec (P = 0·056). The same five bacterial families dominated the microbiota of groups Ec and C, and four of these were also present in group Lp. The other five families dominating in group Lp were not found in any of the other groups. Multivariate data analysis pointed in the same directions as the univariate statistics. The present results suggest that supplementation of L. plantarum or E. coli can have long-term effects on the composition of the intestinal microbiota, as well as on weight gain and fattening.

  16. High power diode laser Master Oscillator-Power Amplifier (MOPA)

    NASA Technical Reports Server (NTRS)

    Andrews, John R.; Mouroulis, P.; Wicks, G.

    1994-01-01

    High power multiple quantum well AlGaAs diode laser master oscillator - power amplifier (MOPA) systems were examined both experimentally and theoretically. For two pass operation, it was found that powers in excess of 0.3 W per 100 micrometers of facet length were achievable while maintaining diffraction-limited beam quality. Internal electrical-to-optical conversion efficiencies as high as 25 percent were observed at an internal amplifier gain of 9 dB. Theoretical modeling of multiple quantum well amplifiers was done using appropriate rate equations and a heuristic model of the carrier density dependent gain. The model gave a qualitative agreement with the experimental results. In addition, the model allowed exploration of a wider design space for the amplifiers. The model predicted that internal electrical-to-optical conversion efficiencies in excess of 50 percent should be achievable with careful system design. The model predicted that no global optimum design exists, but gain, efficiency, and optical confinement (coupling efficiency) can be mutually adjusted to meet a specific system requirement. A three quantum well, low optical confinement amplifier was fabricated using molecular beam epitaxial growth. Coherent beam combining of two high power amplifiers injected from a common master oscillator was also examined. Coherent beam combining with an efficiency of 93 percent resulted in a single beam having diffraction-limited characteristics. This beam combining efficiency is a world record result for such a system. Interferometric observations of the output of the amplifier indicated that spatial mode matching was a significant factor in the less than perfect beam combining. Finally, the system issues of arrays of amplifiers in a coherent beam combining system were investigated. Based upon experimentally observed parameters coherent beam combining could result in a megawatt-scale coherent beam with a 10 percent electrical-to-optical conversion efficiency.

  17. Compensation of pulse-distortion in saturated laser amplifiers.

    PubMed

    Schimpf, Damian N; Ruchert, Clemens; Nodop, Dirk; Limpert, Jens; Tünnermann, Andreas; Salin, Francois

    2008-10-27

    We derive an expression describing pre-compensation of pulse-distortion due to saturation effects in short pulse laser-amplifiers. The analytical solution determines the optimum input pulse-shape required to obtain any arbitrary target pulse-shape at the output of the saturated laser-amplifier. The relation is experimentally verified using an all-fiber amplifier chain that is seeded by a directly modulated laser-diode. The method will prove useful in applications of high power, high energy laser-amplifier systems that need particular pulse-shapes to be efficient, e.g. micromachining and scientific laser-matter-interactions. PMID:18958044

  18. The relationship between maximum tolerated light intensity and photoprotective energy dissipation in the photosynthetic antenna: chloroplast gains and losses

    PubMed Central

    Ruban, Alexander V.; Belgio, Erica

    2014-01-01

    The principle of quantifying the efficiency of protection of photosystem II (PSII) reaction centres against photoinhibition by non-photochemical energy dissipation (NPQ) has been recently introduced by Ruban & Murchie (2012 Biochim. Biophys. Acta 1817, 977–982 (doi:10.1016/j.bbabio.2012.03.026)). This is based upon the assessment of two key parameters: (i) the relationship between the PSII yield and NPQ, and (ii) the fraction of intact PSII reaction centres in the dark after illumination. In this paper, we have quantified the relationship between the amplitude of NPQ and the light intensity at which all PSII reaction centres remain intact for plants with different levels of PsbS protein, known to play a key role in the process. It was found that the same, nearly linear, relationship exists between the levels of the protective NPQ component (pNPQ) and the tolerated light intensity in all types of studied plants. This approach allowed for the quantification of the maximum tolerated light intensity, the light intensity at which all plant leaves become photoinhibited, the fraction of (most likely) unnecessary or ‘wasteful’ NPQ, and the fraction of photoinhibited PSII reaction centres under conditions of prolonged illumination by full sunlight. It was concluded that the governing factors in the photoprotection of PSII are the level and rate of protective pNPQ formation, which are often in discord with the amplitude of the conventional measure of photoprotection, the quickly reversible NPQ component, qE. Hence, we recommend pNPQ as a more informative and less ambiguous parameter than qE, as it reflects the effectiveness and limitations of the major photoprotective process of the photosynthetic membrane. PMID:24591709

  19. The relationship between maximum tolerated light intensity and photoprotective energy dissipation in the photosynthetic antenna: chloroplast gains and losses.

    PubMed

    Ruban, Alexander V; Belgio, Erica

    2014-04-19

    The principle of quantifying the efficiency of protection of photosystem II (PSII) reaction centres against photoinhibition by non-photochemical energy dissipation (NPQ) has been recently introduced by Ruban & Murchie (2012 Biochim. Biophys. Acta 1817, 977-982 (doi:10.1016/j.bbabio.2012.03.026)). This is based upon the assessment of two key parameters: (i) the relationship between the PSII yield and NPQ, and (ii) the fraction of intact PSII reaction centres in the dark after illumination. In this paper, we have quantified the relationship between the amplitude of NPQ and the light intensity at which all PSII reaction centres remain intact for plants with different levels of PsbS protein, known to play a key role in the process. It was found that the same, nearly linear, relationship exists between the levels of the protective NPQ component (pNPQ) and the tolerated light intensity in all types of studied plants. This approach allowed for the quantification of the maximum tolerated light intensity, the light intensity at which all plant leaves become photoinhibited, the fraction of (most likely) unnecessary or 'wasteful' NPQ, and the fraction of photoinhibited PSII reaction centres under conditions of prolonged illumination by full sunlight. It was concluded that the governing factors in the photoprotection of PSII are the level and rate of protective pNPQ formation, which are often in discord with the amplitude of the conventional measure of photoprotection, the quickly reversible NPQ component, qE. Hence, we recommend pNPQ as a more informative and less ambiguous parameter than qE, as it reflects the effectiveness and limitations of the major photoprotective process of the photosynthetic membrane.

  20. Historical gains in soybean (Glycine max Merr.) seed yield are driven by linear increases in light interception, energy conversion, and partitioning efficiencies

    PubMed Central

    Koester, Robert P.; Skoneczka, Jeffrey A.; Cary, Troy R.; Diers, Brian W.; Ainsworth, Elizabeth A.

    2014-01-01

    Soybean (Glycine max Merr.) is the world’s most widely grown leguminous crop and an important source of protein and oil for food and feed. Soybean yields have increased substantially throughout the past century, with yield gains widely attributed to genetic advances and improved cultivars as well as advances in farming technology and practice. Yet, the physiological mechanisms underlying the historical improvements in soybean yield have not been studied rigorously. In this 2-year experiment, 24 soybean cultivars released between 1923 and 2007 were grown in field trials. Physiological improvements in the efficiencies by which soybean canopies intercepted light (εi), converted light energy into biomass (εc), and partitioned biomass into seed (εp) were examined. Seed yield increased by 26.5kg ha–1 year–1, and the increase in seed yield was driven by improvements in all three efficiencies. Although the time to canopy closure did not change in historical soybean cultivars, extended growing seasons and decreased lodging in more modern lines drove improvements in εi. Greater biomass production per unit of absorbed light resulted in improvements in εc. Over 84 years of breeding, soybean seed biomass increased at a rate greater than total aboveground biomass, resulting in an increase in εp. A better understanding of the physiological basis for yield gains will help to identify targets for soybean improvement in the future. PMID:24790116