Sample records for gain intestinal microbiota

  1. The nonfermentable dietary fiber hydroxypropyl methylcellulose modulates intestinal microbiota

    PubMed Central

    Cox, Laura M.; Cho, Ilseung; Young, Scott A.; Anderson, W. H. Kerr; Waters, Bartholomew J.; Hung, Shao-Ching; Gao, Zhan; Mahana, Douglas; Bihan, Monika; Alekseyenko, Alexander V.; Methé, Barbara A.; Blaser, Martin J.

    2013-01-01

    Diet influences host metabolism and intestinal microbiota; however, detailed understanding of this tripartite interaction is limited. To determine whether the nonfermentable fiber hydroxypropyl methylcellulose (HPMC) could alter the intestinal microbiota and whether such changes correlated with metabolic improvements, C57B/L6 mice were normalized to a high-fat diet (HFD), then either maintained on HFD (control), or switched to HFD supplemented with 10% HPMC, or a low-fat diet (LFD). Compared to control treatment, both LFD and HPMC reduced weight gain (11.8 and 5.7 g, respectively), plasma cholesterol (23.1 and 19.6%), and liver triglycerides (73.1 and 44.6%), and, as revealed by 454-pyrosequencing of the microbial 16S rRNA gene, decreased microbial α-diversity and differentially altered intestinal microbiota. Both LFD and HPMC increased intestinal Erysipelotrichaceae (7.3- and 12.4-fold) and decreased Lachnospiraceae (2.0- and 2.7-fold), while only HPMC increased Peptostreptococcaceae (3.4-fold) and decreased Ruminococcaceae (2.7-fold). Specific microorganisms were directly linked with weight change and metabolic parameters in HPMC and HFD mice, but not in LFD mice, indicating that the intestinal microbiota may play differing roles during the two dietary modulations. This work indicates that HPMC is a potential prebiotic fiber that influences intestinal microbiota and improves host metabolism.—Cox, L. M., Cho, I., Young, S. A., Kerr Anderson, W. H., Waters, B. J., Hung, S.-C., Gao, Z., Mahana, D., Bihan, M., Alekseyenko, A. V., Methé, B. A., Blaser, M. J. The nonfermentable dietary fiber hydroxypropyl methylcellulose modulates intestinal microbiota. PMID:23154883

  2. Intestinal microbiota in liver disease.

    PubMed

    Haque, Tanvir R; Barritt, A Sidney

    2016-02-01

    The intestinal microbiota have emerged as a topic of intense interest in gastroenterology and hepatology. The liver is on the front line as the first filter of nutrients, toxins and bacterial metabolites from the intestines and we are becoming increasingly aware of interactions among the gut, liver and immune system as important mediators of liver health and disease. Manipulating the microbiota with therapeutic intent is a rapidly expanding field. In this review, we will describe what is known about the contribution of intestinal microbiota to liver homeostasis; the role of dysbiosis in the pathogenesis of liver disease including alcoholic and non-alcoholic fatty liver disease, cirrhosis and hepatocellular carcinoma; and the therapeutic manifestations of altering intestinal microbiota via antibiotics, prebiotics, probiotics and fecal microbiota transplantation. Copyright © 2016. Published by Elsevier Ltd.

  3. Intestinal Microbiota Influences Non-intestinal Related Autoimmune Diseases

    PubMed Central

    Opazo, Maria C.; Ortega-Rocha, Elizabeth M.; Coronado-Arrázola, Irenice; Bonifaz, Laura C.; Boudin, Helene; Neunlist, Michel; Bueno, Susan M.; Kalergis, Alexis M.; Riedel, Claudia A.

    2018-01-01

    The human body is colonized by millions of microorganisms named microbiota that interact with our tissues in a cooperative and non-pathogenic manner. These microorganisms are present in the skin, gut, nasal, oral cavities, and genital tract. In fact, it has been described that the microbiota contributes to balancing the immune system to maintain host homeostasis. The gut is a vital organ where microbiota can influence and determine the function of cells of the immune system and contributes to preserve the wellbeing of the individual. Several articles have emphasized the connection between intestinal autoimmune diseases, such as Crohn's disease with dysbiosis or an imbalance in the microbiota composition in the gut. However, little is known about the role of the microbiota in autoimmune pathologies affecting other tissues than the intestine. This article focuses on what is known about the role that gut microbiota can play in the pathogenesis of non-intestinal autoimmune diseases, such as Grave's diseases, multiple sclerosis, type-1 diabetes, systemic lupus erythematosus, psoriasis, schizophrenia, and autism spectrum disorders. Furthermore, we discuss as to how metabolites derived from bacteria could be used as potential therapies for non-intestinal autoimmune diseases. PMID:29593681

  4. Intestinal microbiota pathogenesis and fecal microbiota transplantation for inflammatory bowel disease.

    PubMed

    Wang, Zi-Kai; Yang, Yun-Sheng; Chen, Ye; Yuan, Jing; Sun, Gang; Peng, Li-Hua

    2014-10-28

    The intestinal microbiota plays an important role in inflammatory bowel disease (IBD). The pathogenesis of IBD involves inappropriate ongoing activation of the mucosal immune system driven by abnormal intestinal microbiota in genetically predisposed individuals. However, there are still no definitive microbial pathogens linked to the onset of IBD. The composition and function of the intestinal microbiota and their metabolites are indeed disturbed in IBD patients. The special alterations of gut microbiota associated with IBD remain to be evaluated. The microbial interactions and host-microbe immune interactions are still not clarified. Limitations of present probiotic products in IBD are mainly due to modest clinical efficacy, few available strains and no standardized administration. Fecal microbiota transplantation (FMT) may restore intestinal microbial homeostasis, and preliminary data have shown the clinical efficacy of FMT on refractory IBD or IBD combined with Clostridium difficile infection. Additionally, synthetic microbiota transplantation with the defined composition of fecal microbiota is also a promising therapeutic approach for IBD. However, FMT-related barriers, including the mechanism of restoring gut microbiota, standardized donor screening, fecal material preparation and administration, and long-term safety should be resolved. The role of intestinal microbiota and FMT in IBD should be further investigated by metagenomic and metatranscriptomic analyses combined with germ-free/human flora-associated animals and chemostat gut models.

  5. Intestinal microbiota pathogenesis and fecal microbiota transplantation for inflammatory bowel disease

    PubMed Central

    Wang, Zi-Kai; Yang, Yun-Sheng; Chen, Ye; Yuan, Jing; Sun, Gang; Peng, Li-Hua

    2014-01-01

    The intestinal microbiota plays an important role in inflammatory bowel disease (IBD). The pathogenesis of IBD involves inappropriate ongoing activation of the mucosal immune system driven by abnormal intestinal microbiota in genetically predisposed individuals. However, there are still no definitive microbial pathogens linked to the onset of IBD. The composition and function of the intestinal microbiota and their metabolites are indeed disturbed in IBD patients. The special alterations of gut microbiota associated with IBD remain to be evaluated. The microbial interactions and host-microbe immune interactions are still not clarified. Limitations of present probiotic products in IBD are mainly due to modest clinical efficacy, few available strains and no standardized administration. Fecal microbiota transplantation (FMT) may restore intestinal microbial homeostasis, and preliminary data have shown the clinical efficacy of FMT on refractory IBD or IBD combined with Clostridium difficile infection. Additionally, synthetic microbiota transplantation with the defined composition of fecal microbiota is also a promising therapeutic approach for IBD. However, FMT-related barriers, including the mechanism of restoring gut microbiota, standardized donor screening, fecal material preparation and administration, and long-term safety should be resolved. The role of intestinal microbiota and FMT in IBD should be further investigated by metagenomic and metatranscriptomic analyses combined with germ-free/human flora-associated animals and chemostat gut models. PMID:25356041

  6. Preterm infant gut microbiota affects intestinal epithelial development in a humanized microbiome gnotobiotic mouse model.

    PubMed

    Yu, Yueyue; Lu, Lei; Sun, Jun; Petrof, Elaine O; Claud, Erika C

    2016-09-01

    Development of the infant small intestine is influenced by bacterial colonization. To promote establishment of optimal microbial communities in preterm infants, knowledge of the beneficial functions of the early gut microbiota on intestinal development is needed. The purpose of this study was to investigate the impact of early preterm infant microbiota on host gut development using a gnotobiotic mouse model. Histological assessment of intestinal development was performed. The differentiation of four epithelial cell lineages (enterocytes, goblet cells, Paneth cells, enteroendocrine cells) and tight junction (TJ) formation was examined. Using weight gain as a surrogate marker for health, we found that early microbiota from a preterm infant with normal weight gain (MPI-H) induced increased villus height and crypt depth, increased cell proliferation, increased numbers of goblet cells and Paneth cells, and enhanced TJs compared with the changes induced by early microbiota from a poor weight gain preterm infant (MPI-L). Laser capture microdissection (LCM) plus qRT-PCR further revealed, in MPI-H mice, a higher expression of stem cell marker Lgr5 and Paneth cell markers Lyz1 and Cryptdin5 in crypt populations, along with higher expression of the goblet cell and mature enterocyte marker Muc3 in villus populations. In contrast, MPI-L microbiota failed to induce the aforementioned changes and presented intestinal characteristics comparable to a germ-free host. Our data demonstrate that microbial communities have differential effects on intestinal development. Future studies to identify pioneer settlers in neonatal microbial communities necessary to induce maturation may provide new insights for preterm infant microbial ecosystem therapeutics. Copyright © 2016 the American Physiological Society.

  7. The Intestinal Microbiota in Colorectal Cancer.

    PubMed

    Tilg, Herbert; Adolph, Timon E; Gerner, Romana R; Moschen, Alexander R

    2018-06-11

    Experimental evidence from the past years highlights a key role for the intestinal microbiota in inflammatory and malignant gastrointestinal diseases. Diet exhibits a strong impact on microbial composition and provides risk for developing colorectal carcinoma (CRC). Large metagenomic studies in human CRC associated microbiome signatures with the colorectal adenoma-carcinoma sequence, suggesting a fundamental role of the intestinal microbiota in the evolution of gastrointestinal malignancy. Basic science established a critical function for the intestinal microbiota in promoting tumorigenesis. Further studies are needed to decipher the mechanisms of tumor promotion and microbial co-evolution in CRC, which may be exploited therapeutically in the future. Copyright © 2018 Elsevier Inc. All rights reserved.

  8. Host-microbiota interactions in the intestine.

    PubMed

    Elson, Charles O; Alexander, Katie L

    2015-01-01

    The comprehensive collection of bacterial species, termed microbiota, within human and other mammalian hosts has profound effects on both innate and adaptive immunity. Multiple host innate mechanisms contribute to intestinal homeostasis, including epithelial production of protective mucin layers maintaining spatial segregation in the intestine as well as epithelial cell secretion of a broad range of antimicrobial peptides. Additionally, epithelial cells employ autophagy to contain and eliminate invading bacteria; interestingly, genetic variants in specific autophagy genes are linked to susceptibility to Crohn's disease. Innate lymphoid cells, which rapidly respond to cytokine and microbial signals, have emerged as important regulators of the intestinal immune response to the microbiota. With regard to adaptive immunity, specific microbial species stimulate induction of regulatory T cells while others induce effector T cells within the gut. Such stimulation is subject to dysregulation during inflammation and disease, contributing to 'dysbiosis' or an abnormal microbiota composition that has been associated with a variety of immune-mediated inflammatory disorders, including celiac disease. The microbiota communicates with the immune system and vice versa; thus, an abnormal microbiota composition likely translates into an altered host immune response, though the exact mechanisms of such are not yet clear. Immunoglobulin A plays a critical role in limiting bacterial access to the host and in maintaining mutualism with the microbiota. Perturbation of the mucosal barrier via infection or other means can induce effector T cells reactive to the intestinal microbiota, and these cells can persist as memory cells for extended periods of time and potentially serve as pathogenic effector cells upon re-encounter with antigen. Health is associated with a diverse microbiota that functions to maintain the balance between T effector and T regulatory cells in the intestine. Whether

  9. Impact of Intestinal Microbiota on Intestinal Luminal Metabolome

    PubMed Central

    Matsumoto, Mitsuharu; Kibe, Ryoko; Ooga, Takushi; Aiba, Yuji; Kurihara, Shin; Sawaki, Emiko; Koga, Yasuhiro; Benno, Yoshimi

    2012-01-01

    Low–molecular-weight metabolites produced by intestinal microbiota play a direct role in health and disease. In this study, we analyzed the colonic luminal metabolome using capillary electrophoresis mass spectrometry with time-of-flight (CE-TOFMS) —a novel technique for analyzing and differentially displaying metabolic profiles— in order to clarify the metabolite profiles in the intestinal lumen. CE-TOFMS identified 179 metabolites from the colonic luminal metabolome and 48 metabolites were present in significantly higher concentrations and/or incidence in the germ-free (GF) mice than in the Ex-GF mice (p < 0.05), 77 metabolites were present in significantly lower concentrations and/or incidence in the GF mice than in the Ex-GF mice (p < 0.05), and 56 metabolites showed no differences in the concentration or incidence between GF and Ex-GF mice. These indicate that intestinal microbiota highly influenced the colonic luminal metabolome and a comprehensive understanding of intestinal luminal metabolome is critical for clarifying host-intestinal bacterial interactions. PMID:22724057

  10. Weight gain in anorexia nervosa does not ameliorate the faecal microbiota, branched chain fatty acid profiles, and gastrointestinal complaints

    PubMed Central

    Mack, Isabelle; Cuntz, Ulrich; Grämer, Claudia; Niedermaier, Sabrina; Pohl, Charlotte; Schwiertz, Andreas; Zimmermann, Kurt; Zipfel, Stephan; Enck, Paul; Penders, John

    2016-01-01

    The gut microbiota not only influences host metabolism but can also affect brain function and behaviour through the microbiota-gut-brain axis. To explore the potential role of the intestinal microbiota in anorexia nervosa (AN), we comprehensively investigated the faecal microbiota and short-chain fatty acids in these patients before (n = 55) and after weight gain (n = 44) in comparison to normal-weight participants (NW, n = 55) along with dietary intake and gastrointestinal complaints. We show profound microbial perturbations in AN patients as compared to NW participants, with higher levels of mucin-degraders and members of Clostridium clusters I, XI and XVIII and reduced levels of the butyrate-producing Roseburia spp. Branched-chain fatty acid concentrations, being markers for protein fermentation, were elevated. Distinct perturbations in microbial community compositions were observed for individual restrictive and binge/purging AN-subtypes. Upon weight gain, microbial richness increased, however perturbations in intestinal microbiota and short chain fatty acid profiles in addition to several gastrointestinal symptoms did not recover. These insights provide new leads to modulate the intestinal microbiota in order to improve the outcomes of the standard therapy. PMID:27229737

  11. Intestinal microbiota in pathophysiology and management of irritable bowel syndrome

    PubMed Central

    Lee, Kang Nyeong; Lee, Oh Young

    2014-01-01

    Irritable bowel syndrome (IBS) is a functional bowel disorder without any structural or metabolic abnormalities that sufficiently explain the symptoms, which include abdominal pain and discomfort, and bowel habit changes such as diarrhea and constipation. Its pathogenesis is multifactorial: visceral hypersensitivity, dysmotility, psychosocial factors, genetic or environmental factors, dysregulation of the brain-gut axis, and altered intestinal microbiota have all been proposed as possible causes. The human intestinal microbiota are composed of more than 1000 different bacterial species and 1014 cells, and are essential for the development, function, and homeostasis of the intestine, and for individual health. The putative mechanisms that explain the role of microbiota in the development of IBS include altered composition or metabolic activity of the microbiota, mucosal immune activation and inflammation, increased intestinal permeability and impaired mucosal barrier function, sensory-motor disturbances provoked by the microbiota, and a disturbed gut-microbiota-brain axis. Therefore, modulation of the intestinal microbiota through dietary changes, and use of antibiotics, probiotics, and anti-inflammatory agents has been suggested as strategies for managing IBS symptoms. This review summarizes and discusses the accumulating evidence that intestinal microbiota play a role in the pathophysiology and management of IBS. PMID:25083061

  12. When pathogenic bacteria meet the intestinal microbiota

    PubMed Central

    Rolhion, Nathalie

    2016-01-01

    The intestinal microbiota is a large and diverse microbial community that inhabits the intestinal tract, containing about 100 trillion bacteria from 500–1000 distinct species that, collectively, provide multiple benefits to the host. The gut microbiota contributes to nutrient absorption and maturation of the immune system, and also plays a central role in protection of the host from enteric bacterial infection. On the other hand, many enteric pathogens have developed strategies in order to be able to outcompete the intestinal community, leading to infection and/or chronic diseases. This review will summarize findings describing the complex relationship occurring between the intestinal microbiota and enteric pathogens, as well as how future therapies can ultimately benefit from such discoveries. This article is part of the themed issue ‘The new bacteriology’. PMID:27672153

  13. Intestinal Microbiota in Healthy Adults: Temporal Analysis Reveals Individual and Common Core and Relation to Intestinal Symptoms

    PubMed Central

    Nikkilä, Janne; Immonen, Outi; Kekkonen, Riina; Lahti, Leo; Palva, Airi; de Vos, Willem M.

    2011-01-01

    Background While our knowledge of the intestinal microbiota during disease is accumulating, basic information of the microbiota in healthy subjects is still scarce. The aim of this study was to characterize the intestinal microbiota of healthy adults and specifically address its temporal stability, core microbiota and relation with intestinal symptoms. We carried out a longitudinal study by following a set of 15 healthy Finnish subjects for seven weeks and regularly assessed their intestinal bacteria and archaea with the Human Intestinal Tract (HIT)Chip, a phylogenetic microarray, in conjunction with qPCR analyses. The health perception and occurrence of intestinal symptoms was recorded by questionnaire at each sampling point. Principal Findings A high overall temporal stability of the microbiota was observed. Five subjects showed transient microbiota destabilization, which correlated not only with the intake of antibiotics but also with overseas travelling and temporary illness, expanding the hitherto known factors affecting the intestinal microbiota. We identified significant correlations between the microbiota and common intestinal symptoms, including abdominal pain and bloating. The most striking finding was the inverse correlation between Bifidobacteria and abdominal pain: subjects who experienced pain had over five-fold less Bifidobacteria compared to those without pain. Finally, a novel computational approach was used to define the common core microbiota, highlighting the role of the analysis depth in finding the phylogenetic core and estimating its size. The in-depth analysis suggested that we share a substantial number of our intestinal phylotypes but as they represent highly variable proportions of the total community, many of them often remain undetected. Conclusions/Significance A global and high-resolution microbiota analysis was carried out to determine the temporal stability, the associations with intestinal symptoms, and the individual and common

  14. Dietary Additive Probiotics Modulation of the Intestinal Microbiota.

    PubMed

    Hu, Shenglan; Wang, Li; Jiang, Zongyong

    2017-01-01

    The importance of the intestinal microbiota of animals is widely acknowledged because of its vital role in the health of animals. There are complex communities of microbiota, which colonize the gastrointestinal tract. Intestinal microbiota are conductive to animal health and the development of the host immune system. Probiotics are commonly used dietary additives where they provide the host with many beneficial functions, such as modulating intestinal homeostasis and promoting gut health. These beneficial effects of probiotics may accrue from the inhibiting the growth of pathogenic bacteria and promoting the growth of beneficial flora in the gastrointestinal tract. Probiotics colonization and its impact on gut microbiota members are highly species specific. Different probiotics have been shown to have dramatically different capacities of modulation physiological function. This review summarizes existing studies of the influence of dietary additive probiotics on the gut microbiota in different animals, such as humans, mice, pigs and chickens, to clarify the contribution of different kinds of probiotics to the intestinal microbiota. Moreover, the probable mechanism for the benefits of dietary supplementation with probiotics will be discussed. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  15. Host-microbiota interactions within the fish intestinal ecosystem.

    PubMed

    Pérez, T; Balcázar, J L; Ruiz-Zarzuela, I; Halaihel, N; Vendrell, D; de Blas, I; Múzquiz, J L

    2010-07-01

    Teleost fish are in direct contact with the aquatic environment, and are therefore in continual contact with a complex and dynamic microbiota, some of which may have implications for health. Mucosal surfaces represent the main sites in which environmental antigens and intestinal microbiota interact with the host. Thus, the gut-associated lymphoid tissues (GALT) must develop mechanisms to discriminate between pathogenic and commensal microorganisms. Colonization of intestinal mucosal surfaces with a normal microbiota has a positive effect on immune regulatory functions of the gut, and disturbance in these immune regulatory functions by an imbalanced microbiota may contribute to the development of diseases. Significant attention has therefore been recently focused on the role of probiotics in the induction or restoration of a disturbed microbiota to its normal beneficial composition. Given this, this article explores the fascinating relationship between the fish immune system and the bacteria that are present in its intestinal microbiota, focusing on the bacterial effect on the development of certain immune responses.

  16. Changes in intestinal microbiota composition and metabolism coincide with increased intestinal permeability in young adults under prolonged physiological stress.

    PubMed

    Karl, J Philip; Margolis, Lee M; Madslien, Elisabeth H; Murphy, Nancy E; Castellani, John W; Gundersen, Yngvar; Hoke, Allison V; Levangie, Michael W; Kumar, Raina; Chakraborty, Nabarun; Gautam, Aarti; Hammamieh, Rasha; Martini, Svein; Montain, Scott J; Pasiakos, Stefan M

    2017-06-01

    The magnitude, temporal dynamics, and physiological effects of intestinal microbiome responses to physiological stress are poorly characterized. This study used a systems biology approach and a multiple-stressor military training environment to determine the effects of physiological stress on intestinal microbiota composition and metabolic activity, as well as intestinal permeability (IP). Soldiers ( n = 73) were provided three rations per day with or without protein- or carbohydrate-based supplements during a 4-day cross-country ski-march (STRESS). IP was measured before and during STRESS. Blood and stool samples were collected before and after STRESS to measure inflammation, stool microbiota, and stool and plasma global metabolite profiles. IP increased 62 ± 57% (mean ± SD, P < 0.001) during STRESS independent of diet group and was associated with increased inflammation. Intestinal microbiota responses were characterized by increased α-diversity and changes in the relative abundance of >50% of identified genera, including increased abundance of less dominant taxa at the expense of more dominant taxa such as Bacteroides Changes in intestinal microbiota composition were linked to 23% of metabolites that were significantly altered in stool after STRESS. Together, pre-STRESS Actinobacteria relative abundance and changes in serum IL-6 and stool cysteine concentrations accounted for 84% of the variability in the change in IP. Findings demonstrate that a multiple-stressor military training environment induced increases in IP that were associated with alterations in markers of inflammation and with intestinal microbiota composition and metabolism. Associations between IP, the pre-STRESS microbiota, and microbiota metabolites suggest that targeting the intestinal microbiota could provide novel strategies for preserving IP during physiological stress. NEW & NOTEWORTHY Military training, a unique model for studying temporal dynamics of intestinal barrier and intestinal

  17. Intestinal Microbiota Signatures Associated With Histological Liver Steatosis in Pediatric-Onset Intestinal Failure.

    PubMed

    Korpela, Katri; Mutanen, Annika; Salonen, Anne; Savilahti, Erkki; de Vos, Willem M; Pakarinen, Mikko P

    2017-02-01

    Intestinal failure (IF)-associated liver disease (IFALD) is the major cause of mortality in IF. The link between intestinal microbiota and IFALD is unclear. We compared intestinal microbiota of patients with IF (n = 23) with healthy controls (n = 58) using culture-independent phylogenetic microarray analysis. The microbiota was related to histological liver injury, fecal markers of intestinal inflammation, matrix metalloproteinase 9 and calprotectin, and disease characteristics. Overabundance of Lactobacilli, Proteobacteria, and Actinobacteria was observed in IF, whereas bacteria related to Clostridium clusters III, IV, and XIVa along with overall diversity and richness were reduced. Patients were segregated into 3 subgroups based on dominating bacteria: Clostridium cluster XIVa, Proteobacteria, and bacteria related to Lactobacillus plantarum. In addition to liver steatosis and fibrosis, Proteobacteria were associated with prolonged current parenteral nutrition (PN) as well as liver and intestinal inflammation. Lactobacilli were related to advanced steatosis and fibrosis mostly after weaning off PN without associated inflammation. In multivariate permutational analysis of variance, liver steatosis, bowel length, PN calories, and antibiotic treatment best explained the microbiota variation among patients with IF. Intestinal microbiota composition was associated with liver steatosis in IF and better predicted steatosis than duration of PN or length of the remaining intestine. Our results may be explained by a model in which steatosis is initiated during PN in response to proinflammatory lipopolysaccharides produced by Proteobacteria and progresses after weaning off PN, as the L plantarum group Lactobacilli becomes dominant and affects lipid metabolism by altering bile acid signaling.

  18. Intestinal microbiota and blue baby syndrome

    PubMed Central

    Ellis, Collin L; Rutledge, John C

    2010-01-01

    Necrotizing enterocolitis (NEC) is the most common intestinal emergency among premature infants. Risk factors in premature infants include immature intestinal immunity and an intestinal microbiota dominated by hospital-acquired bacteria. Some probiotics have been shown to decrease the incidence of NEC in premature infants. Among term infants, NEC is rare. However, among term infants with cyanotic congenital heart disease (CCHD), the incidence of NEC is similar to that of premature infants but with even greater mortality rates. Mechanisms by which NEC occurs in term infants with CCHD are unknown. Of central interest is the potential role of changes in the intestinal microbiota and whether these can be modified with probiotic bacteria; accordingly, we review the literature, propose hypotheses and present the rationale for future studies involving preliminary probiotic clinical trials. PMID:21468216

  19. Intestinal microbiota, fecal microbiota transplantation, and inflammatory bowel disease.

    PubMed

    Weingarden, Alexa R; Vaughn, Byron P

    2017-05-04

    Inflammatory bowel disease (IBD) is a complex set of diseases that lead to chronic inflammation in the gastrointestinal tract. Although the etiology of IBD is not fully understood, it is well-known that the intestinal microbiota is associated with the development and maintenance of IBD. Manipulation of the gut microbiota, therefore, may represent a target for IBD therapy. Fecal microbiota transplantation (FMT), where fecal microbiota from a healthy donor is transplanted into a patient's GI tract, is already a successful therapy for Clostridium difficile infection. FMT is currently being explored as a potential therapy for IBD as well. In this review, the associations between the gut microbiota and IBD and the emerging data on FMT for IBD will be discussed.

  20. Host and Environmental Factors Affecting the Intestinal Microbiota in Chickens

    PubMed Central

    Kers, Jannigje G.; Velkers, Francisca C.; Fischer, Egil A. J.; Hermes, Gerben D. A.; Stegeman, J. A.; Smidt, Hauke

    2018-01-01

    The initial development of intestinal microbiota in poultry plays an important role in production performance, overall health and resistance against microbial infections. Multiplexed sequencing of 16S ribosomal RNA gene amplicons is often used in studies, such as feed intervention or antimicrobial drug trials, to determine corresponding effects on the composition of intestinal microbiota. However, considerable variation of intestinal microbiota composition has been observed both within and across studies. Such variation may in part be attributed to technical factors, such as sampling procedures, sample storage, DNA extraction, the choice of PCR primers and corresponding region to be sequenced, and the sequencing platforms used. Furthermore, part of this variation in microbiota composition may also be explained by different host characteristics and environmental factors. To facilitate the improvement of design, reproducibility and interpretation of poultry microbiota studies, we have reviewed the literature on confounding factors influencing the observed intestinal microbiota in chickens. First, it has been identified that host-related factors, such as age, sex, and breed, have a large effect on intestinal microbiota. The diversity of chicken intestinal microbiota tends to increase most during the first weeks of life, and corresponding colonization patterns seem to differ between layer- and meat-type chickens. Second, it has been found that environmental factors, such as biosecurity level, housing, litter, feed access and climate also have an effect on the composition of the intestinal microbiota. As microbiota studies have to deal with many of these unknown or hidden host and environmental variables, the choice of study designs can have a great impact on study outcomes and interpretation of the data. Providing details on a broad range of host and environmental factors in articles and sequence data repositories is highly recommended. This creates opportunities to

  1. Host and Environmental Factors Affecting the Intestinal Microbiota in Chickens.

    PubMed

    Kers, Jannigje G; Velkers, Francisca C; Fischer, Egil A J; Hermes, Gerben D A; Stegeman, J A; Smidt, Hauke

    2018-01-01

    The initial development of intestinal microbiota in poultry plays an important role in production performance, overall health and resistance against microbial infections. Multiplexed sequencing of 16S ribosomal RNA gene amplicons is often used in studies, such as feed intervention or antimicrobial drug trials, to determine corresponding effects on the composition of intestinal microbiota. However, considerable variation of intestinal microbiota composition has been observed both within and across studies. Such variation may in part be attributed to technical factors, such as sampling procedures, sample storage, DNA extraction, the choice of PCR primers and corresponding region to be sequenced, and the sequencing platforms used. Furthermore, part of this variation in microbiota composition may also be explained by different host characteristics and environmental factors. To facilitate the improvement of design, reproducibility and interpretation of poultry microbiota studies, we have reviewed the literature on confounding factors influencing the observed intestinal microbiota in chickens. First, it has been identified that host-related factors, such as age, sex, and breed, have a large effect on intestinal microbiota. The diversity of chicken intestinal microbiota tends to increase most during the first weeks of life, and corresponding colonization patterns seem to differ between layer- and meat-type chickens. Second, it has been found that environmental factors, such as biosecurity level, housing, litter, feed access and climate also have an effect on the composition of the intestinal microbiota. As microbiota studies have to deal with many of these unknown or hidden host and environmental variables, the choice of study designs can have a great impact on study outcomes and interpretation of the data. Providing details on a broad range of host and environmental factors in articles and sequence data repositories is highly recommended. This creates opportunities to

  2. Interactions between the intestinal microbiota and innate lymphoid cells

    PubMed Central

    Chen, Vincent L; Kasper, Dennis L

    2014-01-01

    The mammalian intestine must manage to contain 100 trillion intestinal bacteria without inducing inappropriate immune responses to these microorganisms. The effects of the immune system on intestinal microorganisms are numerous and well-characterized, and recent research has determined that the microbiota influences the intestinal immune system as well. In this review, we first discuss the intestinal immune system and its role in containing and maintaining tolerance to commensal organisms. We next introduce a category of immune cells, the innate lymphoid cells, and describe their classification and function in intestinal immunology. Finally, we discuss the effects of the intestinal microbiota on innate lymphoid cells. PMID:24418741

  3. Cerebral Low-Molecular Metabolites Influenced by Intestinal Microbiota: A Pilot Study

    PubMed Central

    Matsumoto, Mitsuharu; Kibe, Ryoko; Ooga, Takushi; Aiba, Yuji; Sawaki, Emiko; Koga, Yasuhiro; Benno, Yoshimi

    2013-01-01

    Recent studies suggest that intestinal microbiota influences gut-brain communication. In this study, we aimed to clarify the influence of intestinal microbiota on cerebral metabolism. We analyzed the cerebral metabolome of germ-free (GF) mice and Ex-GF mice, which were inoculated with suspension of feces obtained from specific pathogen-free mice, using capillary electrophoresis with time-of-flight mass spectrometry (CE-TOFMS). CE-TOFMS identified 196 metabolites from the cerebral metabolome in both GF and Ex-GF mice. The concentrations of 38 metabolites differed significantly (p < 0.05) between GF and Ex-GF mice. Approximately 10 of these metabolites are known to be involved in brain function, whilst the functions of the remainder are unclear. Furthermore, we observed a novel association between cerebral glycolytic metabolism and intestinal microbiota. Our work shows that cerebral metabolites are influenced by normal intestinal microbiota through the microbiota-gut-brain axis, and indicates that normal intestinal microbiota closely connected with brain health and disease, development, attenuation, learning, memory, and behavior. PMID:23630473

  4. Longitudinal Analysis of the Intestinal Microbiota in Liver Transplantation.

    PubMed

    Kato, Karin; Nagao, Miki; Miyamoto, Kentaro; Oka, Kentaro; Takahashi, Motomichi; Yamamoto, Masaki; Matsumura, Yasufumi; Kaido, Toshimi; Uemoto, Shinji; Ichiyama, Satoshi

    2017-04-01

    Increasing evidence suggests that the intestinal microbiota plays an important role in liver diseases. However, the dynamics of the intestinal microbiota during liver transplantation (LT) and its potential role in clinical course remain unknown. We prospectively analyzed the intestinal microbiota of 38 patients who underwent LT in Kyoto University Hospital. We characterized the microbial compositions of fecal specimens from LT patients using a metagenomics approach by an Illumina MiSeq platform. We analyzed the diversity of microbiota sequentially from pretransplantation until 2 months after LT and also compared the microbiota during an episode of acute cellular rejection (ACR) and bloodstream infections (BSI) to the microbial composition of time-matched fecal specimens obtained from patients who did not experience ACR or BSI, respectively. Three hundred twenty fecal specimens were analyzed. Dynamic changes were observed in the microbial composition of LT recipients during the perioperative period. Over the course of LT, the mean diversity index decreased during the first 3 weeks after LT and gradually increased during our observation period. The loss of intestinal microbiota diversity was associated with high Child-Pugh scores, high model for end-stage liver disease scores, ACR, and BSI. At the family level, Bacteroides , Enterobacteriaceae , Streptococcaceae, and Bifidobacteriaceae were increased whereas Enterococcaceae , Lactobacillaceae , Clostridiaceae , Ruminococcaceae, and Peptostreptococcaceae were decreased in ACR patients. The microbiota of LT patients was associated with the severity of liver diseases and the presence of ACR and BSI. These results lay the groundwork for more comprehensive investigations of microbiota characteristics to identify diagnostic markers for transplant health and to guide intervention strategies to improve transplant outcomes.

  5. Intestinal, extra-intestinal and systemic sequelae of Toxoplasma gondii induced acute ileitis in mice harboring a human gut microbiota

    PubMed Central

    von Klitzing, Eliane; Ekmekciu, Ira; Kühl, Anja A.; Bereswill, Stefan

    2017-01-01

    Background Within seven days following peroral high dose infection with Toxoplasma gondii susceptible conventionally colonized mice develop acute ileitis due to an underlying T helper cell (Th) -1 type immunopathology. We here addressed whether mice harboring a human intestinal microbiota developed intestinal, extra-intestinal and systemic sequelae upon ileitis induction. Methodology/Principal findings Secondary abiotic mice were generated by broad-spectrum antibiotic treatment and associated with a complex human intestinal microbiota following peroral fecal microbiota transplantation. Within three weeks the human microbiota had stably established in the murine intestinal tract as assessed by quantitative cultural and culture-independent (i.e. molecular 16S rRNA based) methods. At day 7 post infection (p.i.) with 50 cysts of T. gondii strain ME49 by gavage human microbiota associated (hma) mice displayed severe clinical, macroscopic and microscopic sequelae indicating acute ileitis. In diseased hma mice increased numbers of innate and adaptive immune cells within the ileal mucosa and lamina propria and elevated intestinal secretion of pro-inflammatory mediators including IFN-γ, IL-12 and nitric oxide could be observed at day 7 p.i. Ileitis development was accompanied by substantial shifts in intestinal microbiota composition of hma mice characterized by elevated total bacterial loads and increased numbers of intestinal Gram-negative commensals such as enterobacteria and Bacteroides / Prevotella species overgrowing the small and large intestinal lumen. Furthermore, viable bacteria translocated from the inflamed ileum to extra-intestinal including systemic compartments. Notably, pro-inflammatory immune responses were not restricted to the intestinal tract as indicated by increased pro-inflammatory cytokine secretion in extra-intestinal (i.e. liver and kidney) and systemic compartments including spleen and serum. Conclusion/Significance With respect to the intestinal

  6. Intestinal, extra-intestinal and systemic sequelae of Toxoplasma gondii induced acute ileitis in mice harboring a human gut microbiota.

    PubMed

    von Klitzing, Eliane; Ekmekciu, Ira; Kühl, Anja A; Bereswill, Stefan; Heimesaat, Markus M

    2017-01-01

    Within seven days following peroral high dose infection with Toxoplasma gondii susceptible conventionally colonized mice develop acute ileitis due to an underlying T helper cell (Th) -1 type immunopathology. We here addressed whether mice harboring a human intestinal microbiota developed intestinal, extra-intestinal and systemic sequelae upon ileitis induction. Secondary abiotic mice were generated by broad-spectrum antibiotic treatment and associated with a complex human intestinal microbiota following peroral fecal microbiota transplantation. Within three weeks the human microbiota had stably established in the murine intestinal tract as assessed by quantitative cultural and culture-independent (i.e. molecular 16S rRNA based) methods. At day 7 post infection (p.i.) with 50 cysts of T. gondii strain ME49 by gavage human microbiota associated (hma) mice displayed severe clinical, macroscopic and microscopic sequelae indicating acute ileitis. In diseased hma mice increased numbers of innate and adaptive immune cells within the ileal mucosa and lamina propria and elevated intestinal secretion of pro-inflammatory mediators including IFN-γ, IL-12 and nitric oxide could be observed at day 7 p.i. Ileitis development was accompanied by substantial shifts in intestinal microbiota composition of hma mice characterized by elevated total bacterial loads and increased numbers of intestinal Gram-negative commensals such as enterobacteria and Bacteroides / Prevotella species overgrowing the small and large intestinal lumen. Furthermore, viable bacteria translocated from the inflamed ileum to extra-intestinal including systemic compartments. Notably, pro-inflammatory immune responses were not restricted to the intestinal tract as indicated by increased pro-inflammatory cytokine secretion in extra-intestinal (i.e. liver and kidney) and systemic compartments including spleen and serum. With respect to the intestinal microbiota composition "humanized" mice display acute ileitis

  7. Intestinal Microbiota and Celiac Disease: Cause, Consequence or Co-Evolution?

    PubMed

    Cenit, María Carmen; Olivares, Marta; Codoñer-Franch, Pilar; Sanz, Yolanda

    2015-08-17

    It is widely recognized that the intestinal microbiota plays a role in the initiation and perpetuation of intestinal inflammation in numerous chronic conditions. Most studies report intestinal dysbiosis in celiac disease (CD) patients, untreated and treated with a gluten-free diet (GFD), compared to healthy controls. CD patients with gastrointestinal symptoms are also known to have a different microbiota compared to patients with dermatitis herpetiformis and controls, suggesting that the microbiota is involved in disease manifestation. Furthermore, a dysbiotic microbiota seems to be associated with persistent gastrointestinal symptoms in treated CD patients, suggesting its pathogenic implication in these particular cases. GFD per se influences gut microbiota composition, and thus constitutes an inevitable confounding factor in studies conducted in CD patients. To improve our understanding of whether intestinal dysbiosis is the cause or consequence of disease, prospective studies in healthy infants at family risk of CD are underway. These studies have revealed that the CD host genotype selects for the early colonizers of the infant's gut, which together with environmental factors (e.g., breast-feeding, antibiotics, etc.) could influence the development of oral tolerance to gluten. Indeed, some CD genes and/or their altered expression play a role in bacterial colonization and sensing. In turn, intestinal dysbiosis could promote an abnormal response to gluten or other environmental CD-promoting factors (e.g., infections) in predisposed individuals. Here, we review the current knowledge of host-microbe interactions and how host genetics/epigenetics and environmental factors shape gut microbiota and may influence disease risk. We also summarize the current knowledge about the potential mechanisms of action of the intestinal microbiota and specific components that affect CD pathogenesis.

  8. Intestinal barrier: A gentlemen’s agreement between microbiota and immunity

    PubMed Central

    Caricilli, Andrea Moro; Castoldi, Angela; Câmara, Niels Olsen Saraiva

    2014-01-01

    Our body is colonized by more than a hundred trillion commensals, represented by viruses, bacteria and fungi. This complex interaction has shown that the microbiome system contributes to the host’s adaptation to its environment, providing genes and functionality that give flexibility of diet and modulate the immune system in order not to reject these symbionts. In the intestine, specifically, the microbiota helps developing organ structures, participates of the metabolism of nutrients and induces immunity. Certain components of the microbiota have been shown to trigger inflammatory responses, whereas others, anti-inflammatory responses. The diversity and the composition of the microbiota, thus, play a key role in the maintenance of intestinal homeostasis and explain partially the link between intestinal microbiota changes and gut-related disorders in humans. Tight junction proteins are key molecules for determination of the paracellular permeability. In the context of intestinal inflammatory diseases, the intestinal barrier is compromised, and decreased expression and differential distribution of tight junction proteins is observed. It is still unclear what is the nature of the luminal or mucosal factors that affect the tight junction proteins function, but the modulation of the immune cells found in the intestinal lamina propria is hypothesized as having a role in this modulation. In this review, we provide an overview of the current understanding of the interaction of the gut microbiota with the immune system in the development and maintenance of the intestinal barrier. PMID:24891972

  9. Longitudinal Analysis of the Intestinal Microbiota in Liver Transplantation

    PubMed Central

    Kato, Karin; Nagao, Miki; Miyamoto, Kentaro; Oka, Kentaro; Takahashi, Motomichi; Yamamoto, Masaki; Matsumura, Yasufumi; Kaido, Toshimi; Uemoto, Shinji; Ichiyama, Satoshi

    2017-01-01

    Background Increasing evidence suggests that the intestinal microbiota plays an important role in liver diseases. However, the dynamics of the intestinal microbiota during liver transplantation (LT) and its potential role in clinical course remain unknown. Methods We prospectively analyzed the intestinal microbiota of 38 patients who underwent LT in Kyoto University Hospital. We characterized the microbial compositions of fecal specimens from LT patients using a metagenomics approach by an Illumina MiSeq platform. We analyzed the diversity of microbiota sequentially from pretransplantation until 2 months after LT and also compared the microbiota during an episode of acute cellular rejection (ACR) and bloodstream infections (BSI) to the microbial composition of time-matched fecal specimens obtained from patients who did not experience ACR or BSI, respectively. Results Three hundred twenty fecal specimens were analyzed. Dynamic changes were observed in the microbial composition of LT recipients during the perioperative period. Over the course of LT, the mean diversity index decreased during the first 3 weeks after LT and gradually increased during our observation period. The loss of intestinal microbiota diversity was associated with high Child-Pugh scores, high model for end-stage liver disease scores, ACR, and BSI. At the family level, Bacteroides, Enterobacteriaceae, Streptococcaceae, and Bifidobacteriaceae were increased whereas Enterococcaceae, Lactobacillaceae, Clostridiaceae, Ruminococcaceae, and Peptostreptococcaceae were decreased in ACR patients. Conclusions The microbiota of LT patients was associated with the severity of liver diseases and the presence of ACR and BSI. These results lay the groundwork for more comprehensive investigations of microbiota characteristics to identify diagnostic markers for transplant health and to guide intervention strategies to improve transplant outcomes. PMID:28405600

  10. Intestinal Microbiota and Its Relationship with Necrotizing Enterocolitis

    PubMed Central

    Patel, Ravi Mangal; Denning, Patricia W.

    2015-01-01

    Necrotizing enterocolitis is a leading cause of morbidity and mortality in infants born prematurely. After birth, the neonatal gut must acquire a healthy complement of commensal bacteria. Disruption or delay of this critical process, leading to deficient or abnormal microbial colonization of the gut, has been implicated as key risk factor in the pathogenesis of NEC. Conversely, a beneficial complement of commensal intestinal microbiota may protect the immature gut from inflammation and injury. Interventions aimed at providing or restoring a healthy complement of commensal bacteria, such as probiotic therapy, are currently the most promising treatment to prevent NEC. Shifting the balance of intestinal microbiota from a pathogenic to protective complement of bacteria can protect the gut from inflammation and subsequent injury that leads to NEC. Herein, we review the relationship of intestinal microbiota and NEC in preterm infants. PMID:25992911

  11. Interactions Between Diet and the Intestinal Microbiota Alter Intestinal Permeability and Colitis Severity in Mice.

    PubMed

    Llewellyn, Sean R; Britton, Graham J; Contijoch, Eduardo J; Vennaro, Olivia H; Mortha, Arthur; Colombel, Jean-Frederic; Grinspan, Ari; Clemente, Jose C; Merad, Miriam; Faith, Jeremiah J

    2018-03-01

    It is not clear how the complex interactions between diet and the intestinal microbiota affect development of mucosal inflammation or inflammatory bowel disease. We investigated interactions between dietary ingredients, nutrients, and the microbiota in specific pathogen-free (SPF) and germ-free (GF) mice given more than 40 unique diets; we quantified individual and synergistic effects of dietary macronutrients and the microbiota on intestinal health and development of colitis. C56BL/6J SPF and GF mice were placed on custom diets containing different concentrations and sources of protein, fat, digestible carbohydrates, and indigestible carbohydrates (fiber). After 1 week, SPF and GF mice were given dextran sulfate sodium (DSS) to induce colitis. Disease severity was determined based on the percent weight change from baseline, and modeled as a function of the concentration of each macronutrient in the diet. In unchallenged mice, we measured intestinal permeability by feeding mice labeled dextran and measuring levels in blood. Feces were collected and microbiota were analyzed by 16S rDNA sequencing. We collected colons from mice and performed transcriptome analyses. Fecal microbiota varied with diet; the concentration of protein and fiber had the strongest effect on colitis development. Among 9 fiber sources tested, psyllium, pectin, and cellulose fiber reduced the severity of colitis in SPF mice, whereas methylcellulose increased severity. Increasing dietary protein increased the density of the fecal microbiota and the severity of colitis in SPF mice, but not in GF mice or mice given antibiotics. Psyllium fiber reduced the severity of colitis through microbiota-dependent and microbiota-independent mechanisms. Combinatorial perturbations to dietary casein protein and psyllium fiber in parallel accounted for most variation in gut microbial density and intestinal permeability in unchallenged mice, as well as the severity of DSS-induced colitis; changes in 1 ingredient

  12. The Gastrointestinal Microbiome: Alcohol Effects on the Composition of Intestinal Microbiota.

    PubMed

    Engen, Phillip A; Green, Stefan J; Voigt, Robin M; Forsyth, Christopher B; Keshavarzian, Ali

    2015-01-01

    The excessive use of alcohol is a global problem causing many adverse pathological health effects and a significant financial health care burden. This review addresses the effect of alcohol consumption on the microbiota in the gastrointestinal tract (GIT). Although data are limited in humans, studies highlight the importance of changes in the intestinal microbiota in alcohol-related disorders. Alcohol-induced changes in the GIT microbiota composition and metabolic function may contribute to the well-established link between alcohol-induced oxidative stress, intestinal hyperpermeability to luminal bacterial products, and the subsequent development of alcoholic liver disease (ALD), as well as other diseases. In addition, clinical and preclinical data suggest that alcohol-related disorders are associated with quantitative and qualitative dysbiotic changes in the intestinal microbiota and may be associated with increased GIT inflammation, intestinal hyperpermeability resulting in endotoxemia, systemic inflammation, and tissue damage/organ pathologies including ALD. Thus, gut-directed interventions, such as probiotic and synbiotic modulation of the intestinal microbiota, should be considered and evaluated for prevention and treatment of alcohol-associated pathologies.

  13. Macrobiota - helminths as active participants and partners of the microbiota in host intestinal homeostasis.

    PubMed

    Gause, William C; Maizels, Rick M

    2016-08-01

    Important insights have recently been gained in our understanding of the intricate relationship in the intestinal milieu between the vertebrate host mucosal immune response, commensal bacteria, and helminths. Helminths are metazoan worms (macrobiota) and trigger immune responses that include potent regulatory components capable of controlling harmful inflammation, protecting barrier function and mitigating tissue damage. They can secrete a variety of products that directly affect immune regulatory function but they also have the capacity to influence the composition of microbiota, which can also then impact immune function. Conversely, changes in microbiota can affect susceptibility to helminth infection, indicating that crosstalk between these two disparate groups of endobiota can play an essential role in host intestinal immune function and homeostasis. Copyright © 2016. Published by Elsevier Ltd.

  14. Intestinal microbiota-related effects on graft-versus-host disease.

    PubMed

    Shono, Yusuke; Docampo, Melissa D; Peled, Jonathan U; Perobelli, Suelen M; Jenq, Robert R

    2015-05-01

    Allogeneic hematopoietic stem cell transplantation (allo-HSCT) is an increasingly important treatment for conditions including hematopoietic malignancies and inherited hematopoietic disorders, and is considered to be the most effective form of tumor immunotherapy available to date. However, graft-versus-host disease (GVHD) remains a major source of morbidity and mortality following allo-HSCT, and understanding the mechanisms of GVHD has been highlighted as a key research priority. During development of GVHD, activation of various immune cells, especially donor T cells, leads to damage of target organs including skin, liver, hematopoietic system, and of particular clinical importance, gut. In addition to histocompatibility complex differences between the donor and recipient, pretransplant conditioning with chemotherapy and irradiation also contributes to GVHD by damaging the gut, resulting in systemic exposure to microbial products normally confined to the intestinal lumen. The intestinal microbiota is a modulator of gastrointestinal immune homeostasis. It also promotes the maintenance of epithelial cells. Recent reports provide growing evidence of the impact of intestinal microbiota on GVHD pathophysiology. This review summarizes current knowledge of changes and effects of intestinal microbiota in the setting of allo-HSCT. We will also discuss potential future strategies of intestinal microbiota manipulation that might be advantageous in decreasing allo-HSCT-related morbidity and mortality.

  15. Intestinal microbiota-related effects on graft-versus-host disease

    PubMed Central

    Shono, Yusuke; Docampo, Melissa D.; Peled, Jonathan U.; Perobelli, Suelen M.; Jenq, Robert R.

    2016-01-01

    Allogeneic hematopoietic stem cell transplantation (allo-HSCT) is an increasingly important treatment for conditions including hematopoietic malignancies and inherited hematopoietic disorders, and is considered to be the most effective form of tumor immunotherapy available to date. However, graft-versus-host disease (GVHD) remains a major source of morbidity and mortality following allo-HSCT, and understanding the mechanisms of GVHD has been highlighted as a key research priority. During development of GVHD, activation of various immune cells, especially donor T cells, leads to damage of target organs including skin, liver, hematopoietic system, and of particular clinical importance, gut. In addition to histocompatibility complex differences between the donor and recipient, pre-transplant conditioning with chemotherapy and irradiation also contributes to GVHD by damaging the gut, resulting in systemic exposure to microbial products normally confined to the intestinal lumen. The intestinal microbiota is a modulator of gastrointestinal immune homeostasis. It also promotes the maintenance of epithelial cells. Recent reports provide growing evidence of the impact of intestinal microbiota on GVHD pathophysiology. This review summarizes current knowledge of changes and effects of intestinal microbiota in the setting of allo-HSCT. We will also discuss potential future strategies of intestinal-microbiota manipulation that might be advantageous in decreasing allo-HSCT related morbidity and mortality. PMID:25812838

  16. Intestinal Microbiota Modulates Gluten-Induced Immunopathology in Humanized Mice

    PubMed Central

    Galipeau, Heather J.; McCarville, Justin L.; Huebener, Sina; Litwin, Owen; Meisel, Marlies; Jabri, Bana; Sanz, Yolanda; Murray, Joseph A.; Jordana, Manel; Alaedini, Armin; Chirdo, Fernando G.; Verdu, Elena F.

    2016-01-01

    Celiac disease (CD) is an immune-mediated enteropathy triggered by gluten in genetically susceptible individuals. The recent increase in CD incidence suggests that additional environmental factors, such as intestinal microbiota alterations, are involved in its pathogenesis. However, there is no direct evidence of modulation of gluten-induced immunopathology by the microbiota. We investigated whether specific microbiota compositions influence immune responses to gluten in mice expressing the human DQ8 gene, which confers moderate CD genetic susceptibility. Germ-free mice, clean specific-pathogen-free (SPF) mice colonized with a microbiota devoid of opportunistic pathogens and Proteobacteria, and conventional SPF mice that harbor a complex microbiota that includes opportunistic pathogens were used. Clean SPF mice had attenuated responses to gluten compared to germ-free and conventional SPF mice. Germ-free mice developed increased intraepithelial lymphocytes, markers of intraepithelial lymphocyte cytotoxicity, gliadin-specific antibodies, and a proinflammatory gliadin-specific T-cell response. Antibiotic treatment, leading to Proteobacteria expansion, further enhanced gluten-induced immunopathology in conventional SPF mice. Protection against gluten-induced immunopathology in clean SPF mice was reversed after supplementation with a member of the Proteobacteria phylum, an enteroadherent Escherichia coli isolated from a CD patient. The intestinal microbiota can both positively and negatively modulate gluten-induced immunopathology in mice. In subjects with moderate genetic susceptibility, intestinal microbiota changes may be a factor that increases CD risk. PMID:26456581

  17. Bidirectional interactions between indomethacin and the murine intestinal microbiota

    PubMed Central

    Liang, Xue; Bittinger, Kyle; Li, Xuanwen; Abernethy, Darrell R; Bushman, Frederic D; FitzGerald, Garret A

    2015-01-01

    The vertebrate gut microbiota have been implicated in the metabolism of xenobiotic compounds, motivating studies of microbe-driven metabolism of clinically important drugs. Here, we studied interactions between the microbiota and indomethacin, a nonsteroidal anti-inflammatory drug (NSAID) that inhibits cyclooxygenases (COX) -1 and -2. Indomethacin was tested in both acute and chronic exposure models in mice at clinically relevant doses, which suppressed production of COX-1- and COX-2-derived prostaglandins and caused small intestinal (SI) damage. Deep sequencing analysis showed that indomethacin exposure was associated with alterations in the structure of the intestinal microbiota in both dosing models. Perturbation of the intestinal microbiome by antibiotic treatment altered indomethacin pharmacokinetics and pharmacodynamics, which is probably the result of reduced bacterial β-glucuronidase activity. Humans show considerable inter-individual differences in their microbiota and their responses to indomethacin — thus, the drug-microbe interactions described here provide candidate mediators of individualized drug responses. DOI: http://dx.doi.org/10.7554/eLife.08973.001 PMID:26701907

  18. Intestinal microbiota: a potential target for the treatment of postmenopausal osteoporosis

    PubMed Central

    Xu, Xin; Jia, Xiaoyue; Mo, Longyi; Liu, Chengcheng; Zheng, Liwei; Yuan, Quan; Zhou, Xuedong

    2017-01-01

    Postmenopausal osteoporosis (PMO) is a prevalent metabolic bone disease characterized by bone loss and structural destruction, which increases the risk of fracture in postmenopausal women. Owing to the high morbidity and serious complications of PMO, many efforts have been devoted to its prophylaxis and treatment. The intestinal microbiota is the complex community of microorganisms colonizing the gastrointestinal tract. Probiotics, which are dietary or medical supplements consisting of beneficial intestinal bacteria, work in concert with endogenous intestinal microorganisms to maintain host health. Recent studies have revealed that bone loss in PMO is closely related to host immunity, which is influenced by the intestinal microbiota. The curative effects of probiotics on metabolic bone diseases have also been demonstrated. The effects of the intestinal microbiota on bone metabolism suggest a promising target for PMO management. This review seeks to summarize the critical effects of the intestinal microbiota and probiotics on PMO, with a focus on the molecular mechanisms underlying the pathogenic relationship between bacteria and host, and to define the possible treatment options. PMID:28983411

  19. Intestinal microbiota and type 2 diabetes: from mechanism insights to therapeutic perspective.

    PubMed

    Han, Jun-Ling; Lin, Hui-Ling

    2014-12-21

    The incidence of type 2 diabetes (T2DM) is rapidly increasing worldwide. However, the pathogenesis of T2DM has not yet been well explained. Recent evidence suggests that the intestinal microbiota composition is associated with obesity and T2DM. In this review, we provide an overview about the mechanisms underlying the role of intestinal microbiota in the pathogenesis of T2DM. There is clear evidence that the intestinal microbiota influences the host through its effect on body weight, bile acid metabolism, proinflammatory activity and insulin resistance, and modulation of gut hormones. Modulating gut microbiota with the use of probiotics, prebiotics, antibiotics, and fecal microbiota transplantation may have benefits for improvement in glucose metabolism and insulin resistance in the host. Further studies are required to increase our understanding of the complex interplay between intestinal microbiota and the host with T2DM. Further studies may be able to boost the development of new effective therapeutic approaches for T2DM.

  20. Zebrafish Axenic Larvae Colonization with Human Intestinal Microbiota.

    PubMed

    Arias-Jayo, Nerea; Alonso-Saez, Laura; Ramirez-Garcia, Andoni; Pardo, Miguel A

    2018-04-01

    The human intestine hosts a vast and complex microbial community that is vital for maintaining several functions related with host health. The processes that determine the gut microbiome composition are poorly understood, being the interaction between species, the external environment, and the relationship with the host the most feasible. Animal models offer the opportunity to understand the interactions between the host and the microbiota. There are different gnotobiotic mice or rat models colonized with the human microbiota, however, to our knowledge, there are no reports on the colonization of germ-free zebrafish with a complex human intestinal microbiota. In the present study, we have successfully colonized 5 days postfertilization germ-free zebrafish larvae with the human intestinal microbiota previously extracted from a donor and analyzed by high-throughput sequencing the composition of the transferred microbial communities that established inside the zebrafish gut. Thus, we describe for first time which human bacteria phylotypes are able to colonize the zebrafish digestive tract. Species with relevant interest because of their linkage to dysbiosis in different human diseases, such as Akkermansia muciniphila, Eubacterium rectale, Faecalibacterium prausnitzii, Prevotella spp., or Roseburia spp. have been successfully transferred inside the zebrafish digestive tract.

  1. Salmonella enterica Serovar Typhimurium Exploits Inflammation to Modify Swine Intestinal Microbiota.

    PubMed

    Drumo, Rosanna; Pesciaroli, Michele; Ruggeri, Jessica; Tarantino, Michela; Chirullo, Barbara; Pistoia, Claudia; Petrucci, Paola; Martinelli, Nicola; Moscati, Livia; Manuali, Elisabetta; Pavone, Silvia; Picciolini, Matteo; Ammendola, Serena; Gabai, Gianfranco; Battistoni, Andrea; Pezzotti, Giovanni; Alborali, Giovanni L; Napolioni, Valerio; Pasquali, Paolo; Magistrali, Chiara F

    2015-01-01

    Salmonella enterica serovar Typhimurium is an important zoonotic gastrointestinal pathogen responsible for foodborne disease worldwide. It is a successful enteric pathogen because it has developed virulence strategies allowing it to survive in a highly inflamed intestinal environment exploiting inflammation to overcome colonization resistance provided by intestinal microbiota. In this study, we used piglets featuring an intact microbiota, which naturally develop gastroenteritis, as model for salmonellosis. We compared the effects on the intestinal microbiota induced by a wild type and an attenuated S. Typhimurium in order to evaluate whether the modifications are correlated with the virulence of the strain. This study showed that Salmonella alters microbiota in a virulence-dependent manner. We found that the wild type S. Typhimurium induced inflammation and a reduction of specific protecting microbiota species (SCFA-producing bacteria) normally involved in providing a barrier against pathogens. Both these effects could contribute to impair colonization resistance, increasing the host susceptibility to wild type S. Typhimurium colonization. In contrast, the attenuated S. Typhimurium, which is characterized by a reduced ability to colonize the intestine, and by a very mild inflammatory response, was unable to successfully sustain competition with the microbiota.

  2. Salmonella enterica Serovar Typhimurium Exploits Inflammation to Modify Swine Intestinal Microbiota

    PubMed Central

    Drumo, Rosanna; Pesciaroli, Michele; Ruggeri, Jessica; Tarantino, Michela; Chirullo, Barbara; Pistoia, Claudia; Petrucci, Paola; Martinelli, Nicola; Moscati, Livia; Manuali, Elisabetta; Pavone, Silvia; Picciolini, Matteo; Ammendola, Serena; Gabai, Gianfranco; Battistoni, Andrea; Pezzotti, Giovanni; Alborali, Giovanni L.; Napolioni, Valerio; Pasquali, Paolo; Magistrali, Chiara F.

    2016-01-01

    Salmonella enterica serovar Typhimurium is an important zoonotic gastrointestinal pathogen responsible for foodborne disease worldwide. It is a successful enteric pathogen because it has developed virulence strategies allowing it to survive in a highly inflamed intestinal environment exploiting inflammation to overcome colonization resistance provided by intestinal microbiota. In this study, we used piglets featuring an intact microbiota, which naturally develop gastroenteritis, as model for salmonellosis. We compared the effects on the intestinal microbiota induced by a wild type and an attenuated S. Typhimurium in order to evaluate whether the modifications are correlated with the virulence of the strain. This study showed that Salmonella alters microbiota in a virulence-dependent manner. We found that the wild type S. Typhimurium induced inflammation and a reduction of specific protecting microbiota species (SCFA-producing bacteria) normally involved in providing a barrier against pathogens. Both these effects could contribute to impair colonization resistance, increasing the host susceptibility to wild type S. Typhimurium colonization. In contrast, the attenuated S. Typhimurium, which is characterized by a reduced ability to colonize the intestine, and by a very mild inflammatory response, was unable to successfully sustain competition with the microbiota. PMID:26835435

  3. Modulation of the intestinal microbiota is associated with lower plasma cholesterol and weight gain in hamsters fed chardonnay grape seed flour.

    PubMed

    Kim, Hyunsook; Kim, Dong-Hyeon; Seo, Kun-Ho; Chon, Jung-Whan; Nah, Seung-Yeol; Bartley, Glenn E; Arvik, Torey; Lipson, Rebecca; Yokoyama, Wallace

    2015-02-11

    The relationship between the intestinal microbiota and the hypocholesterolemic and antiobesity effects of whole grape seed flour from white and red winemaking was evaluated. Male Golden Syrian hamsters were fed a high-fat (HF) control diet or a HF diet supplemented with 10% partially defatted grape seed flours from either Chardonnay (ChrSd) or Cabernet Sauvignon (CabSd) grapes for 3 weeks. The numbers of total bacteria and relative abundances of Bifidobacterium spp., Lactobacillus spp., and Firmicutes in feces were significantly lower, while the relative abundance of Bacteroides fragilis was greater than the control from feeding the ChrSd diet. The ratio of Firmicutes/Bacteroidetes (F/B) was lower in the ChrSd diet. There were significantly positive correlations between Lactobacillus spp., ratio of F/B, and plasma total- and LDL-cholesterol and liver weight. The reduction of Lactobacillus spp. by the ChrSd diet was accompanied by inhibition of Farnesoid X receptor (FXR) signaling in the intestine as expression of intestinal fibrablast growth factor (FGF)15, positively regulated by FXR, was decreased. Expression of CYP7A1, negatively regulated by FGF15, was up-regulated in the liver, which indicates that alteration of the intestinal microbiota may regulate bile acid and lipid metabolism. These findings suggest that beneficial health effects of Chardonnay grape seed flour on HF-induced metabolic disease relate in part to modulation of intestinal microbiota and their metabolic processes.

  4. Macrobiota — helminths as active participants and partners of the microbiota in host intestinal homeostasis

    PubMed Central

    Gause, William C; Maizels, Rick M

    2016-01-01

    Important insights have recently been gained in our understanding of the intricate relationship in the intestinal milieu between the vertebrate host mucosal immune response, commensal bacteria, and helminths. Helminths are metazoan worms (macrobiota) and trigger immune responses that include potent regulatory components capable of controlling harmful inflammation, protecting barrier function and mitigating tissue damage. They can secrete a variety of products that directly affect immune regulatory function but they also have the capacity to influence the composition of microbiota, which can also then impact immune function. Conversely, changes in microbiota can affect susceptibility to helminth infection, indicating that crosstalk between these two disparate groups of endobiota can play an essential role in host intestinal immune function and homeostasis. PMID:27116368

  5. Intestinal microbiota - a key to understanding the pathophysiology of anorexia nervosa?

    PubMed

    Karakuła-Juchnowicz, Hanna; Pankowicz, Hanna; Juchnowicz, Dariusz; Valverde Piedra, Jose Luis; Małecka-Massalska, Teresa

    2017-10-29

    Anorexia nervosa (AN) is a psychiatric disorder related to very serious consequences for physical and mental health of patients. Due to a complex clinical picture, which consists of anumber of somatic and mental symptoms, AN remains a serious problem of modern medicine and encourages the search for possible causes of the illness and new, more effective therapies. The recent reports emphasize the role of the intestinal microbiota in regulation of body weight. In this light, the hypothesis that in AN patients there is a significant imbalance of the intestinal microbiota, which contributes to the pathogenesis of the illness, seems interesting. The results of the latest research suggest that abnormal composition of the intestinal microbiota may be an important factor supporting cachexia of AN patients. Detailed analyzes of the composition of the microbiota characteristic for anorexia nervosa could be useful in developing new methods for monitoring and treatment of this illness. This paper aims to present the current state of the art about the role of the intestinal microbiota in the pathogenesis, course and treatment of AN.

  6. Intestinal microbiota modulates gluten-induced immunopathology in humanized mice.

    PubMed

    Galipeau, Heather J; McCarville, Justin L; Huebener, Sina; Litwin, Owen; Meisel, Marlies; Jabri, Bana; Sanz, Yolanda; Murray, Joseph A; Jordana, Manel; Alaedini, Armin; Chirdo, Fernando G; Verdu, Elena F

    2015-11-01

    Celiac disease (CD) is an immune-mediated enteropathy triggered by gluten in genetically susceptible individuals. The recent increase in CD incidence suggests that additional environmental factors, such as intestinal microbiota alterations, are involved in its pathogenesis. However, there is no direct evidence of modulation of gluten-induced immunopathology by the microbiota. We investigated whether specific microbiota compositions influence immune responses to gluten in mice expressing the human DQ8 gene, which confers moderate CD genetic susceptibility. Germ-free mice, clean specific-pathogen-free (SPF) mice colonized with a microbiota devoid of opportunistic pathogens and Proteobacteria, and conventional SPF mice that harbor a complex microbiota that includes opportunistic pathogens were used. Clean SPF mice had attenuated responses to gluten compared to germ-free and conventional SPF mice. Germ-free mice developed increased intraepithelial lymphocytes, markers of intraepithelial lymphocyte cytotoxicity, gliadin-specific antibodies, and a proinflammatory gliadin-specific T-cell response. Antibiotic treatment, leading to Proteobacteria expansion, further enhanced gluten-induced immunopathology in conventional SPF mice. Protection against gluten-induced immunopathology in clean SPF mice was reversed after supplementation with a member of the Proteobacteria phylum, an enteroadherent Escherichia coli isolated from a CD patient. The intestinal microbiota can both positively and negatively modulate gluten-induced immunopathology in mice. In subjects with moderate genetic susceptibility, intestinal microbiota changes may be a factor that increases CD risk. Copyright © 2015 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  7. Sex differences in NSAID-induced perturbation of human intestinal barrier function and microbiota.

    PubMed

    Edogawa, Shoko; Peters, Stephanie A; Jenkins, Gregory D; Gurunathan, Sakteesh V; Sundt, Wendy J; Johnson, Stephen; Lennon, Ryan J; Dyer, Roy B; Camilleri, Michael; Kashyap, Purna C; Farrugia, Gianrico; Chen, Jun; Singh, Ravinder J; Grover, Madhusudan

    2018-06-13

    Intestinal barrier function and microbiota are integrally related and play critical roles in maintenance of host physiology. Sex is a key biologic variable for several disorders. Our aim was to determine sex-based differences in response to perturbation and subsequent recovery of intestinal barrier function and microbiota in healthy humans. Twenty-three volunteers underwent duodenal biopsies, mucosal impedance, and in vivo permeability measurement. Permeability testing was repeated after administration of indomethacin, then 4 to 6 wk after its discontinuation. Duodenal and fecal microbiota composition was determined using 16S rRNA amplicon sequencing. Healthy women had lower intestinal permeability and higher duodenal and fecal microbial diversity than healthy men. Intestinal permeability increases after indomethacin administration in both sexes. However, only women demonstrated decreased fecal microbial diversity, including an increase in Prevotella abundance, after indomethacin administration. Duodenal microbiota composition did not show sex-specific changes. The increase in permeability and microbiota changes normalized after discontinuation of indomethacin. In summary, women have lower intestinal permeability and higher microbial diversity. Intestinal permeability is sensitive to perturbation but recovers to baseline. Gut microbiota in women is sensitive to perturbation but appears to be more stable in men. Sex-based differences in intestinal barrier function and microbiome should be considered in future studies.-Edogawa, S., Peters, S. A., Jenkins, G. D., Gurunathan, S. V., Sundt, W. J., Johnson, S., Lennon, R. J., Dyer, R. B., Camilleri, M., Kashyap, P. C., Farrugia, G., Chen, J., Singh, R. J., Grover, M. Sex differences in NSAID-induced perturbation of human intestinal barrier function and microbiota.

  8. Appropriate dose of Lactobacillus buchneri supplement improves intestinal microbiota and prevents diarrhoea in weaning Rex rabbits.

    PubMed

    Zhou, Y; Ni, X; Wen, B; Duan, L; Sun, H; Yang, M; Zou, F; Lin, Y; Liu, Q; Zeng, Y; Fu, X; Pan, K; Jing, B; Wang, P; Zeng, D

    2018-04-25

    This study examined the effects on intestinal microbiota and diarrhoea of Lactobacillus buchneri supplementation to the diet of weaning Rex rabbits. To this end, rabbits were treated with L. buchneri at two different doses (LC: 10 4 cfu/g diet and HC: 10 5 cfu/g diet) for 4 weeks. PCR-DGGE was used to determine the diversity of the intestinal microbiota, while real-time PCR permitted the detection of individual bacterial species. ELISA and real-time PCR allowed the identification of numerous cytokines in the intestinal tissues. Zonula occludens-1, polymeric immunoglobulin receptor and immunoglobulin A genes were examined to evaluate intestinal barriers. Results showed that the biodiversity of the intestinal microbiota of weaning Rex rabbits improved in the whole tract of the treated groups. The abundance of most detected bacterial species was highly increased in the duodenum, jejunum and ileum after L. buchneri administration. The species abundance in the HC group was more increased than in the LC group when compared to the control. Although the abundance of Enterobacteriaceae exhibited a different pattern, Escherichia coli was inhibited in all treatment groups. Toll-like receptor (TLR)2 and TLR4 genes were down-regulated in all intestinal tissues as the microbiota changed. In the LC group, the secretion of the inflammatory cytokine tumour necrosis factor-α was reduced, the gene expression of the anti-inflammatory cytokine interleukin (IL)-4 was up-regulated and the expression of intestinal-barrier-related genes was enhanced. Conversely, IL-4 expression was increased and the expression of other tested genes did not change in the HC group. The beneficial effects of LC were greater than those of HC or the control in terms of improving the daily weight gain and survival rate of weaning Rex rabbits and reducing their diarrhoea rate. Therefore, 10 4 cfu/g L. buchneri treatment improved the microbiota of weaning Rex rabbits and prevented diarrhoea in these animals.

  9. Community composition, diversity, and metabolism of intestinal microbiota in cultivated European eel (Anguilla anguilla).

    PubMed

    Huang, Wei; Cheng, Zhiqiang; Lei, Shaonan; Liu, Lanying; Lv, Xin; Chen, Lihua; Wu, Miaohong; Wang, Chao; Tian, Baoyu; Song, Yongkang

    2018-05-01

    The intestinal tract, which harbours tremendous numbers of bacteria, plays a pivotal role in the digestion and absorption of nutrients. Here, high-throughput sequencing technology was used to determine the community composition and complexity of the intestinal microbiota in cultivated European eels during three stages of their lifecycle, after which the metabolic potentials of their intestinal microbial communities were assessed. The results demonstrated that European eel intestinal microbiota were dominated by bacteria in the phyla Proteobacteria and Fusobacteria. Statistical analyses revealed that the three cultured European eel life stages (elver, yellow eel, and silver eel) shared core microbiota dominated by Aeromonas. Phylogenetic Investigation of Communities by Reconstruction of Unobserved States (PICRUSt) predictions of metagenome function revealed that the European eel intestinal microbiota might play significant roles in host nutrient metabolism. Biolog AN MicroPlate™ analysis and extracellular enzyme assays of culturable intestinal bacteria showed that the intestinal microbiota have a marked advantage in the metabolism of starch, which is the main carbohydrate component in European eel formulated feed. Understanding the ecology and functions of the intestinal microbiota during different developmental stages will help us improve the effects of fish-based bacteria on the composition and metabolic capacity of nutrients in European eels.

  10. The Role of Intestinal Microbiota in Acute Graft-versus-Host Disease.

    PubMed

    Chen, Yuanyuan; Zhao, Ye; Cheng, Qiao; Wu, Depei; Liu, Haiyan

    2015-01-01

    The mammalian intestinal microbiota is a complex ecosystem that plays an important role in host immune responses. Recent studies have demonstrated that alterations in intestinal microbiota composition are linked to multiple inflammatory diseases in humans, including acute graft-versus-host disease (aGVHD). aGVHD is one of the major obstacles in allogeneic hematopoietic stem cell transplantation (allo-HSCT), characterized by tissue damage in the gastrointestinal (GI) tract, liver, lung, and skin. Here, we review the current understanding of the role of intestinal microbiota in the control of immune responses during aGVHD. Additionally, the possibility of using probiotic strains for potential treatment or prevention of aGVHD will be discussed.

  11. Preweaning modulation of intestinal microbiota by oligosaccharides or amoxicillin can contribute to programming of adult microbiota in rats.

    PubMed

    Morel, Fanny B; Oozeer, Raish; Piloquet, Hugues; Moyon, Thomas; Pagniez, Anthony; Knol, Jan; Darmaun, Dominique; Michel, Catherine

    2015-03-01

    Increasing evidence suggests that early nutrition has programming effects on adult health. Identifying mechanisms underlying nutritional programming would aid in the design of new disease prevention strategies. The intestinal microbiota could be a key player in this programming because it affects host metabolic homeostasis, postnatal gut colonization is sensitive to early nutrition, and initial microbial set-up is thought to shape microbiota composition for life. The aim of this study was to determine whether early manipulation of intestinal microbiota actually programs adult microbiota in rats. Suckling rats pups were supplemented with fructo-oligosaccharides, galacto-oligosaccharides/long-chain fructan mix (GOS/lcF, 9/1), acidic oligosaccharides, amoxicillin, or vehicle from the fifth to the fourteenth day of life, and weaned to standard chow at day 21. Ceco-colonic microbiota was characterized at 14 and 131 d by real-time polymerase chain reaction analysis. At day 14, all treatments affected microbiota. Amoxicillin had the most significant effect. All oligosaccharides decreased Firmicutes levels, whereas only fructo-oligosaccharides and GOS/lcF increased bifidobacteria. At day 131, most of these effects had faded away but a significant, albeit minor, adult microbiota programming was observed for rats that received GOS/lcF mix before weaning, regarding Roseburia intestinalis cluster, one subdivision of the Erysipelotrichaceae family as well as butyrate kinase gene. As revealed by a targeted quantitative polymerase chain reaction approach, programming of adult intestinal microbiota seems to vary according to the nature of the preweaning microbiotal modulator. This suggests that intestinal microbiota may, only under specific circumstances, serve as a relay of neonatal nutrition and thus potentially contribute to nutritional programming of host physiology. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. Toxicological significance of azo dye metabolism by human intestinal microbiota

    PubMed Central

    Feng, Jinhui; Cerniglia, Carl E.; Chen, Huizhong

    2018-01-01

    Approximately 0.7 million tons of azo dyes are synthesized each year. Azo dyes are composed of one or more R1-N=N-R2 linkages. Studies have shown that both mammalian and microbial azoreductases cleave the azo bonds of the dyes to form compounds that are potentially genotoxic. The human gastrointestinal tract harbors a diverse microbiota comprised of at least several thousand species. Both water-soluble and water-insoluble azo dyes can be reduced by intestinal bacteria. Some of the metabolites produced by intestinal microbiota have been shown to be carcinogenic to humans although the parent azo dyes may not be classified as being carcinogenic. Azoreductase activity is commonly found in intestinal bacteria. Three types of azoreductases have been characterized in bacteria. They are flavin dependent NADH preferred azoreductase, flavin dependent NADPH preferred azoreductase, and flavin free NADPH preferred azoreductase. This review highlights how azo dyes are metabolized by intestinal bacteria, mechanisms of azo reduction, and the potential contribution in the carcinogenesis/mutagenesis of the reduction of the azo dyes by intestinal microbiota. PMID:22201895

  13. Domestication and cereal feeding developed domestic pig-type intestinal microbiota in animals of suidae.

    PubMed

    Ushida, Kazunari; Tsuchida, Sayaka; Ogura, Yoshitoshi; Toyoda, Atsushi; Maruyama, Fumito

    2016-06-01

    Intestinal microbiota are characterized by host-specific microorganisms, which have been selected through host-microbe interactions under phylogenetic evolution and transition of feeding behavior by the host. Although many studies have focused on disease-related intestinal microbiota, the origin and evolution of host-specific intestinal microbiota have not been well elucidated. Pig is the ideal mammal model to reveal the origin and evolution of host-specific intestinal microbiota because their direct wild ancestor and close phylogenetic neighbors are available for comparison. The pig has been recognized as a Lactobacillus-type animal. We analyzed the intestinal microbiota of various animals in Suidae: domestic pigs, wild boars and Red river hogs to survey the origin and evolution of Lactobacillus-dominated intestinal microbiota by metagenomic approach and following quantitative PCR confirmation. The metagenomic datasets were separated in two clusters; the wild animal cluster being characterized by a high abundance of Bifidobacterium, whereas the domesticated (or captured) animal cluster by Lactobacillus. In addition, Enterobacteriaceae were harbored as the major family only in domestic Sus scrofa. We conclude that domestication may have induced a larger Enterobacteriaceae population in pigs, and the introduction of modern feeding system further caused the development of Lactobacillus-dominated intestinal microbiota, with genetic and geographical factors possibly having a minor impact. © 2015 Japanese Society of Animal Science.

  14. Short- and long-term effects of oral vancomycin on the human intestinal microbiota

    PubMed Central

    Isaac, Sandrine; Scher, Jose U.; Djukovic, Ana; Jiménez, Nuria; Littman, Dan R.; Abramson, Steven B.; Pamer, Eric G.; Ubeda, Carles

    2017-01-01

    Background Oral vancomycin remains the mainstay of therapy for severe infections produced by Clostridium difficile, the most prevalent cause of healthcare-associated infectious diarrhoea in developed countries. However, its short- and long-term effects on the human intestinal microbiota remain largely unknown. Methods We utilized high-throughput sequencing to analyse the effects of vancomycin on the faecal human microbiota up to 22 weeks post-antibiotic cessation. The clinical relevance of the observed microbiota perturbations was studied in mice. Results During vancomycin therapy, most intestinal microbiota genera and operational taxonomic units (OTUs) were depleted in all analysed subjects, including all baseline OTUs from the phylum Bacteroidetes. This was accompanied by a vast expansion of genera associated with infections, including Klebsiella and Escherichia/Shigella. Following antibiotic cessation, marked differences in microbiota resilience were observed among subjects. While some individuals recovered a microbiota close to baseline composition, in others, up to 89% of abundant OTUs could no longer be detected. The clinical relevance of the observed microbiota changes was further demonstrated in mice, which developed analogous microbiota alterations. During vancomycin treatment, mice were highly susceptible to intestinal colonization by an antibiotic-resistant pathogen and, upon antibiotic cessation, a less-resilient microbiota allowed higher levels of pathogen colonization. Conclusions Oral vancomycin induces drastic and consistent changes in the human intestinal microbiota. Upon vancomycin cessation, the microbiota recovery rate varied considerably among subjects, which could influence, as validated in mice, the level of susceptibility to pathogen intestinal colonization. Our results demonstrate the negative long-term effects of vancomycin, which should be considered as a fundamental aspect of the cost–benefit equation for antibiotic prescription. PMID

  15. Intestinal microbiota metabolism of L-carnitine, a nutrient in red meat, promotes atherosclerosis

    PubMed Central

    Koeth, Robert A.; Wang, Zeneng; Levison, Bruce S.; Buffa, Jennifer A.; Org, Elin; Sheehy, Brendan T.; Britt, Earl B.; Fu, Xiaoming; Wu, Yuping; Li, Lin; Smith, Jonathan D.; DiDonato, Joseph A.; Chen, Jun; Li, Hongzhe; Wu, Gary D.; Lewis, James D.; Warrier, Manya; Brown, J. Mark; Krauss, Ronald M.; Tang, W. H. Wilson; Bushman, Frederic D.; Lusis, Aldons J.; Hazen, Stanley L.

    2013-01-01

    Intestinal microbiota metabolism of choline/phosphatidylcholine produces trimethylamine (TMA), which is further metabolized to a proatherogenic species, trimethylamine-N-oxide (TMAO). Herein we demonstrate that intestinal microbiota metabolism of dietary L-carnitine, a trimethylamine abundant in red meat, also produces TMAO and accelerates atherosclerosis. Omnivorous subjects are shown to produce significantly more TMAO than vegans/vegetarians following ingestion of L-carnitine through a microbiota-dependent mechanism. Specific bacterial taxa in human feces are shown to associate with both plasma TMAO and dietary status. Plasma L-carnitine levels in subjects undergoing cardiac evaluation (n = 2,595) predict increased risks for both prevalent cardiovascular disease (CVD) and incident major adverse cardiac events (MI, stroke or death), but only among subjects with concurrently high TMAO levels. Chronic dietary L-carnitine supplementation in mice significantly altered cecal microbial composition, markedly enhanced synthesis of TMA/TMAO, and increased atherosclerosis, but not following suppression of intestinal microbiota. Dietary supplementation of TMAO, or either carnitine or choline in mice with intact intestinal microbiota, significantly reduced reverse cholesterol transport in vivo. Intestinal microbiota may thus participate in the well-established link between increased red meat consumption and CVD risk. PMID:23563705

  16. Impact of the Gut Microbiota on Intestinal Immunity Mediated by Tryptophan Metabolism

    PubMed Central

    Gao, Jing; Xu, Kang; Liu, Hongnan; Liu, Gang; Bai, Miaomiao; Peng, Can; Li, Tiejun; Yin, Yulong

    2018-01-01

    The gut microbiota influences the health of the host, especially with regard to gut immune homeostasis and the intestinal immune response. In addition to serving as a nutrient enhancer, L-tryptophan (Trp) plays crucial roles in the balance between intestinal immune tolerance and gut microbiota maintenance. Recent discoveries have underscored that changes in the microbiota modulate the host immune system by modulating Trp metabolism. Moreover, Trp, endogenous Trp metabolites (kynurenines, serotonin, and melatonin), and bacterial Trp metabolites (indole, indolic acid, skatole, and tryptamine) have profound effects on gut microbial composition, microbial metabolism, the host's immune system, the host-microbiome interface, and host immune system–intestinal microbiota interactions. The aryl hydrocarbon receptor (AhR) mediates the regulation of intestinal immunity by Trp metabolites (as ligands of AhR), which is beneficial for immune homeostasis. Among Trp metabolites, AhR ligands consist of endogenous metabolites, including kynurenine, kynurenic acid, xanthurenic acid, and cinnabarinic acid, and bacterial metabolites, including indole, indole propionic acid, indole acetic acid, skatole, and tryptamine. Additional factors, such as aging, stress, probiotics, and diseases (spondyloarthritis, irritable bowel syndrome, inflammatory bowel disease, colorectal cancer), which are associated with variability in Trp metabolism, can influence Trp–microbiome–immune system interactions in the gut and also play roles in regulating gut immunity. This review clarifies how the gut microbiota regulates Trp metabolism and identifies the underlying molecular mechanisms of these interactions. Increased mechanistic insight into how the microbiota modulates the intestinal immune system through Trp metabolism may allow for the identification of innovative microbiota-based diagnostics, as well as appropriate nutritional supplementation of Trp to prevent or alleviate intestinal inflammation

  17. Intestinal microbiota determine severity of myocardial infarction in rats

    PubMed Central

    Lam, Vy; Su, Jidong; Koprowski, Stacy; Hsu, Anna; Tweddell, James S.; Rafiee, Parvaneh; Gross, Garrett J.; Salzman, Nita H.; Baker, John E.

    2012-01-01

    Signals from the intestinal microbiota are important for normal host physiology; alteration of the microbiota (dysbiosis) is associated with multiple disease states. We determined the effect of antibiotic-induced intestinal dysbiosis on circulating cytokine levels and severity of ischemia/reperfusion injury in the heart. Treatment of Dahl S rats with a minimally absorbed antibiotic vancomycin, in the drinking water, decreased circulating leptin levels by 38%, resulted in smaller myocardial infarcts (27% reduction), and improved recovery of postischemic mechanical function (35%) as compared with untreated controls. Vancomycin altered the abundance of intestinal bacteria and fungi, measured by 16S and 18S ribosomal DNA quantity. Pretreatment with leptin (0.12 μg/kg i.v.) 24 h before ischemia/reperfusion abolished cardioprotection produced by vancomycin treatment. Dahl S rats fed the commercially available probiotic product Goodbelly, which contains the leptin-suppressing bacteria Lactobacillus plantarum 299v, also resulted in decreased circulating leptin levels by 41%, smaller myocardial infarcts (29% reduction), and greater recovery of postischemic mechanical function (23%). Pretreatment with leptin (0.12 μg/kg i.v.) abolished cardioprotection produced by Goodbelly. This proof-of-concept study is the first to identify a mechanistic link between changes in intestinal microbiota and myocardial infarction and demonstrates that a probiotic supplement can reduce myocardial infarct size.—Lam, V., Su, J., Koprowski, S., Hsu, A., Tweddell, J. S., Rafiee, P., Gross, G. J., Salzman, N. H., Baker, J. E. Intestinal microbiota determine severity of myocardial infarction in rats. PMID:22247331

  18. The Interplay between the Intestinal Microbiota and the Immune System

    PubMed Central

    Lei, Yuk Man Kevin; Nair, Lekha; Alegre, Maria-Luisa

    2015-01-01

    Summary The relationship between commensal microbes and their hosts has been studied for many years. Commensal microorganisms are known to have a significant role in regulating the physiology of their hosts and preventing pathogenic infections while the hosts’ immune system is important in determining the composition of the microbiota. More recently, specific effects of the intestinal microbiota on the local and distal immune systems have been uncovered with important consequences for health and disease, and alterations in intestinal microbial composition has been associated with various disease states. Here, we will review the current understanding of the microbiota/immune system crosstalk, highlight the clinical consequences of changes in the microbiota and consider how to harness this symbiotic relationship to improve public health. PMID:25481240

  19. The Role of Intestinal Microbiota in Acute Graft-versus-Host Disease

    PubMed Central

    Chen, Yuanyuan; Zhao, Ye; Cheng, Qiao; Wu, Depei; Liu, Haiyan

    2015-01-01

    The mammalian intestinal microbiota is a complex ecosystem that plays an important role in host immune responses. Recent studies have demonstrated that alterations in intestinal microbiota composition are linked to multiple inflammatory diseases in humans, including acute graft-versus-host disease (aGVHD). aGVHD is one of the major obstacles in allogeneic hematopoietic stem cell transplantation (allo-HSCT), characterized by tissue damage in the gastrointestinal (GI) tract, liver, lung, and skin. Here, we review the current understanding of the role of intestinal microbiota in the control of immune responses during aGVHD. Additionally, the possibility of using probiotic strains for potential treatment or prevention of aGVHD will be discussed. PMID:26090477

  20. Short- and long-term effects of oral vancomycin on the human intestinal microbiota.

    PubMed

    Isaac, Sandrine; Scher, Jose U; Djukovic, Ana; Jiménez, Nuria; Littman, Dan R; Abramson, Steven B; Pamer, Eric G; Ubeda, Carles

    2017-01-01

    Oral vancomycin remains the mainstay of therapy for severe infections produced by Clostridium difficile, the most prevalent cause of healthcare-associated infectious diarrhoea in developed countries. However, its short- and long-term effects on the human intestinal microbiota remain largely unknown. We utilized high-throughput sequencing to analyse the effects of vancomycin on the faecal human microbiota up to 22 weeks post-antibiotic cessation. The clinical relevance of the observed microbiota perturbations was studied in mice. During vancomycin therapy, most intestinal microbiota genera and operational taxonomic units (OTUs) were depleted in all analysed subjects, including all baseline OTUs from the phylum Bacteroidetes. This was accompanied by a vast expansion of genera associated with infections, including Klebsiella and Escherichia/Shigella. Following antibiotic cessation, marked differences in microbiota resilience were observed among subjects. While some individuals recovered a microbiota close to baseline composition, in others, up to 89% of abundant OTUs could no longer be detected. The clinical relevance of the observed microbiota changes was further demonstrated in mice, which developed analogous microbiota alterations. During vancomycin treatment, mice were highly susceptible to intestinal colonization by an antibiotic-resistant pathogen and, upon antibiotic cessation, a less-resilient microbiota allowed higher levels of pathogen colonization. Oral vancomycin induces drastic and consistent changes in the human intestinal microbiota. Upon vancomycin cessation, the microbiota recovery rate varied considerably among subjects, which could influence, as validated in mice, the level of susceptibility to pathogen intestinal colonization. Our results demonstrate the negative long-term effects of vancomycin, which should be considered as a fundamental aspect of the cost-benefit equation for antibiotic prescription. © The Author 2016. Published by Oxford

  1. Intestinal microbiota metabolism of L-carnitine, a nutrient in red meat, promotes atherosclerosis.

    PubMed

    Koeth, Robert A; Wang, Zeneng; Levison, Bruce S; Buffa, Jennifer A; Org, Elin; Sheehy, Brendan T; Britt, Earl B; Fu, Xiaoming; Wu, Yuping; Li, Lin; Smith, Jonathan D; DiDonato, Joseph A; Chen, Jun; Li, Hongzhe; Wu, Gary D; Lewis, James D; Warrier, Manya; Brown, J Mark; Krauss, Ronald M; Tang, W H Wilson; Bushman, Frederic D; Lusis, Aldons J; Hazen, Stanley L

    2013-05-01

    Intestinal microbiota metabolism of choline and phosphatidylcholine produces trimethylamine (TMA), which is further metabolized to a proatherogenic species, trimethylamine-N-oxide (TMAO). We demonstrate here that metabolism by intestinal microbiota of dietary L-carnitine, a trimethylamine abundant in red meat, also produces TMAO and accelerates atherosclerosis in mice. Omnivorous human subjects produced more TMAO than did vegans or vegetarians following ingestion of L-carnitine through a microbiota-dependent mechanism. The presence of specific bacterial taxa in human feces was associated with both plasma TMAO concentration and dietary status. Plasma L-carnitine levels in subjects undergoing cardiac evaluation (n = 2,595) predicted increased risks for both prevalent cardiovascular disease (CVD) and incident major adverse cardiac events (myocardial infarction, stroke or death), but only among subjects with concurrently high TMAO levels. Chronic dietary L-carnitine supplementation in mice altered cecal microbial composition, markedly enhanced synthesis of TMA and TMAO, and increased atherosclerosis, but this did not occur if intestinal microbiota was concurrently suppressed. In mice with an intact intestinal microbiota, dietary supplementation with TMAO or either carnitine or choline reduced in vivo reverse cholesterol transport. Intestinal microbiota may thus contribute to the well-established link between high levels of red meat consumption and CVD risk.

  2. Changes in intestinal microbiota across an altitudinal gradient in the lizard Phrynocephalus vlangalii.

    PubMed

    Zhang, Wenya; Li, Na; Tang, Xiaolong; Liu, Naifa; Zhao, Wei

    2018-05-01

    High altitude is an important driving force in animal evolution. However, the effect of altitude on gut microbial communities in reptiles has not been examined in detail. Here, we investigated the intestinal microbiota of three populations of the lizard Phrynocephalus vlangalii living at different altitudes using 16S rRNA gene sequencing. Bacteroidetes, Firmicutes, and Proteobacteria were the most abundant phyla. Bacteroides , Odoribacter , and Parabacteroides were the most abundant genera. Significant differences in the intestinal microbiota composition were found among the three populations from different altitudes. The proportions of Verrucomicrobia and Akkermansia decreased, whereas Bacteroides increased significantly with altitude. Greater abundance of Bacteroides at higher altitude led to the fractional increase in the phylum Bacteroides relative to other phyla. Hypoxia may be the main factor that caused intestinal microbiota variation in P. vlangalii along the altitude gradient. Overall, our study suggested that the community composition and structure of intestinal microbiota of the lizard P. vlangalii varied along altitudes, and such differences likely play a certain role in highland adaptation. Our findings warrant a further study that would determine whether ambient and body temperatures play a key role in the modulation of intestinal microbiota in reptiles.

  3. Interrelations between the microbiotas in the litter and in the intestines of commercial broiler chickens.

    PubMed

    Cressman, Michael D; Yu, Zhongtang; Nelson, Michael C; Moeller, Steven J; Lilburn, Michael S; Zerby, Henry N

    2010-10-01

    The intestinal microbiota of broiler chickens and the microbiota in the litter have been well studied, but the interactions between these two microbiotas remain to be determined. Therefore, we examined their reciprocal effects by analyzing the intestinal microbiotas of broilers reared on fresh pine shavings versus reused litter, as well as the litter microbiota over a 6-week cycle. Composite ileal mucosal and cecal luminal samples from birds (n = 10) reared with both litter conditions (fresh versus reused) were collected at 7, 14, 21, and 42 days of age. Litter samples were also collected at days 7, 14, 21, and 42. The microbiotas were profiled and compared within sample types based on litter condition using PCR and denaturing gradient gel electrophoresis (PCR-DGGE). The microbiotas were further analyzed using 16S rRNA gene clone libraries constructed from microbiota DNA extracted from both chick intestinal and litter samples collected at day 7. Results showed significant reciprocal effects between the microbiotas present in the litter and those in the intestines of broilers. Fresh litter had more environmental bacteria, while reused litter contained more bacteria of intestinal origin. Lactobacillus spp. dominated the ileal mucosal microbiota of fresh-litter chicks, while a group of bacteria yet to be classified within Clostridiales dominated in the ileal mucosal microbiota in the reused-litter chicks. The Litter condition (fresh versus reused) seemed to have a more profound impact on the ileal microbiota than on the cecal microbiota. The data suggest that the influence of fresh litter on ileal microbiota decreased as broilers grew, compared with temporal changes observed under reused-litter rearing conditions.

  4. Exploring a Possible Link between the Intestinal Microbiota and Feed Efficiency in Pigs

    PubMed Central

    McCormack, Ursula M.; Buzoianu, Stefan G.; Prieto, Maria L.; Ryan, Tomas; Varley, Patrick; Crispie, Fiona; Magowan, Elizabeth; Metzler-Zebeli, Barbara U.; Berry, Donagh; O'Sullivan, Orla; Cotter, Paul D.; Lawlor, Peadar G.

    2017-01-01

    ABSTRACT Feed efficiency (FE) is critical in pig production for both economic and environmental reasons. As the intestinal microbiota plays an important role in energy harvest, it is likely to influence FE. Therefore, our aim was to characterize the intestinal microbiota of pigs ranked as low, medium, and high residual feed intake ([RFI] a metric for FE), where genetic, nutritional, and management effects were minimized, to explore a possible link between the intestinal microbiota and FE. Eighty-one pigs were ranked according to RFI between weaning and day 126 postweaning, and 32 were selected as the extremes in RFI (12 low, 10 medium, and 10 high). Intestinal microbiota diversity, composition, and predicted functionality were assessed by 16S rRNA gene sequencing. Although no differences in microbial diversity were found, some RFI-associated compositional differences were revealed, principally among members of Firmicutes, predominantly in feces at slaughter (albeit mainly for low-abundance taxa). In particular, microbes associated with a leaner and healthier host (e.g., Christensenellaceae, Oscillibacter, and Cellulosilyticum) were enriched in low RFI (more feed-efficient) pigs. Differences were also observed in the ileum of low RFI pigs; most notably, Nocardiaceae (Rhodococcus) were less abundant. Predictive functional analysis suggested improved metabolic capabilities in these animals, especially within the ileal microbiota. Higher ileal isobutyric acid concentrations were also found in low RFI pigs. Overall, the differences observed within the intestinal microbiota of low RFI pigs compared with that of their high RFI counterparts, albeit relatively subtle, suggest a possible link between the intestinal microbiota and FE in pigs. IMPORTANCE This study is one of the first to show that differences in intestinal microbiota composition, albeit subtle, may partly explain improved feed efficiency (FE) in low residual feed intake (RFI) pigs. One of the main findings is

  5. Resurrecting the intestinal microbiota to combat antibiotic-resistant pathogens

    PubMed Central

    Pamer, Eric G.

    2016-01-01

    The intestinal microbiota, which is composed of diverse populations of commensal bacterial species, provides resistance against colonization and invasion by pathogens. Antibiotic treatment can damage the intestinal microbiota and, paradoxically, increase susceptibility to infections. Reestablishing microbiota-mediated colonization resistance after antibiotic treatment could markedly reduce infections, particularly those caused by antibiotic-resistant bacteria. Ongoing studies are identifying commensal bacterial species that can be developed into next-generation probiotics to reestablish or enhance colonization resistance. These live medicines are at various stages of discovery, testing, and production and are being subjected to existing regulatory gauntlets for eventual introduction into clinical practice. The development of next-generation probiotics to reestablish colonization resistance and eliminate potential pathogens from the gut is warranted and will reduce health care–associated infections caused by highly antibiotic-resistant bacteria. PMID:27126035

  6. Atopic dermatitis and the intestinal microbiota in humans and dogs.

    PubMed

    Craig, J Mark

    2016-05-01

    The prevalence of human and canine allergic diseases is commonly perceived to be increasing. Suggested predisposing factors in people and dogs include increased allergen load, increased exposure to pollutants, reduced family size, reduced microbial load and less exposure to infection at a young age, increasingly urbanised environment, and changes in dietary habits. Genetic make-up may provide a template for phenotypic predisposition which is strongly influenced by our diet and environment leading to constant regulation of gene expression. One way in which diet can alter gene expression is via its effects on the gut flora or microbiota, the collection of microbes residing in the gastrointestinal tract. The resident microbiota is important in maintaining structural and functional integrity of the gut and in immune system regulation. It is an important driver of host immunity, helps protect against invading enteropathogens, and provides nutritional benefits to the host. Disruption of the microbiota (dysbiosis) may lead to severe health problems, both in the gastrointestinal tract and extra-intestinal organ systems. The precise mechanisms by which the intestinal microbiota exerts its effects are only beginning to be unravelled but research is demonstrating close links between gut microflora and many factors involved in the pathogenesis of atopic dermatitis (AD). AD and indeed any other 'skin disease', may be seen as a possible manifestation of a more systemic problem involving gut dysbiosis and increased intestinal permeability, which may occur even in the absence of gastrointestinal signs. Manipulation of the canine intestinal microbiota as a method for modifying atopy, may be attempted in many ways including avoidance of certain foods, supplementation with probiotics and prebiotics, optimising nutrient intake, minimising stress, antimicrobial therapy, correction and prevention of low stomach acid, and faecal microbiota transplantation (FMT).

  7. Intestinal microbiota assessment in cirrhotic patients from a Mexican mestizo population.

    PubMed

    Pérez-Monter, C; Escalona-Nandez, I; Estanes-Hernández, A; Noriega-López, L G; Torre-Delgadillo, A

    2018-06-11

    The intestinal microbiota is significantly altered in cirrhotic patients, but the composition of the intestinal microbiota in Mexican patients with the pathology has not been reported. The present study is an attempt to determine the type of intestinal microbiota in healthy subjects and in patients of Mexican mestizo origin that present with cirrhosis of the liver. Biochemical liver function parameters (ALT, AST, GGT, BIL-T, etc.) were determined in 23 cirrhotic patients and 21 control subjects. The intestinal microbiota was established through 16S ribosomal RNA gene sequencing. The cirrhotic patients had elevated levels of ALT, AST, GGT (105.2±77.7 vs. 20.99±8.5UI/L, 110±68.6 vs. 23.39±5.2, and 119.1±79.1 vs. 19.3±15.2UI/L, respectively), IL-6 (1.64±0.38pg/ml, P<.001), or TNFα (1.78±0.3, P<.05). The intestinal microbiota of the cirrhotic patients was less diverse, compared with that of the control subjects. At the level of the phylum, there was a significant increase in Proteobacteria and Bacteroidetes in the patients with cirrhosis, compared with the controls (6.2 vs. 4.9% and 44 vs. 46%, respectively, P<.01). In contrast, there was a decrease in Firmicutes, Actinobacteria, and Fusobacteria in the cirrhotic patients. There was an increase in the Campylobacter and Gemella families in the cirrhotic patients, whereas Streptococcus and Veillonella had a positive association with serum ALT or AST levels. To the best of our knowledge, the present study is the first to demonstrate the type of intestinal microbiota in Mexican patients with cirrhosis of the liver. The extension of the findings in a larger cohort of subjects and the metagenome analysis will enable the creation of data that can have relevant treatment implications for this group of patients in Mexico. Copyright © 2018 Asociación Mexicana de Gastroenterología. Publicado por Masson Doyma México S.A. All rights reserved.

  8. Fecal Microbiota Transplantation in Gestating Sows and Neonatal Offspring Alters Lifetime Intestinal Microbiota and Growth in Offspring.

    PubMed

    McCormack, Ursula M; Curião, Tânia; Wilkinson, Toby; Metzler-Zebeli, Barbara U; Reyer, Henry; Ryan, Tomas; Calderon-Diaz, Julia A; Crispie, Fiona; Cotter, Paul D; Creevey, Christopher J; Gardiner, Gillian E; Lawlor, Peadar G

    2018-01-01

    Previous studies suggest a link between intestinal microbiota and porcine feed efficiency (FE). Therefore, we investigated whether fecal microbiota transplantation (FMT) in sows and/or neonatal offspring, using inocula derived from highly feed-efficient pigs, could improve offspring FE. Pregnant sows were assigned to control or FMT treatments and the subsequent offspring to control treatment, FMT once (at birth), or FMT four times (between birth and weaning). FMT altered sow fecal and colostrum microbiota compositions and resulted in lighter offspring body weight at 70 and 155 days of age when administered to sows and/or offspring. This was accompanied by FMT-associated changes within the offspring's intestinal microbiota, mostly in the ileum. These included transiently higher fecal bacterial diversity and load and numerous compositional differences at the phylum and genus levels (e.g., Spirochaetes and Bacteroidetes at high relative abundances and mostly members of Clostridia , respectively), as well as differences in the abundances of predicted bacterial pathways. In addition, intestinal morphology was negatively impacted, duodenal gene expression altered, and serum protein and cholesterol concentrations reduced due to FMT in sows and/or offspring. Taken together, the results suggest poorer absorptive capacity and intestinal health, most likely explaining the reduced body weight. An additive effect of FMT in sows and offspring also occurred for some parameters. Although these findings have negative implications for the practical use of the FMT regime used here for improving FE in pigs, they nonetheless demonstrate the enormous impact of early-life intestinal microbiota on the host phenotype. IMPORTANCE Here, for the first time, we investigate FMT as a novel strategy to modulate the porcine intestinal microbiota in an attempt to improve FE in pigs. However, reprogramming the maternal and/or offspring microbiome by using fecal transplants derived from highly feed

  9. Monosodium L-Glutamate and Dietary Fat Differently Modify the Composition of the Intestinal Microbiota in Growing Pigs

    PubMed Central

    Feng, Ze-Meng; Li, Tie-Jun; Wu, Li; Xiao, Ding-Fu; Blachier, Francois; Yin, Yu-Long

    2015-01-01

    Background The Chinese have been undergone rapid transition to a high-fat diet-consuming lifestyle, while monosodium L-glutamate (MSG) is widely used as a daily food additive. It has been reported that fat alters the composition of intestinal microbiota. However, little information is available on the effects of oral MSG on intestinal microbiota, and no study was done focusing on the interaction effect of fat and MSG with respect to intestinal microbiota. The present study thus aimed to determine the effects of MSG and/or fat on intestinal microbiota, and also to identify possible interactions between these two nutrients. Methods Four iso-nitrogenous and iso-caloric diets were provided to growing pigs. The microbiota from jejunum, ileum, cecum, and colon were analyzed. Results Our results show that both MSG and fat clearly increased the intestinal microbiota diversity. MSG and fat modified the composition of intestinal microbiota, particularly in the colon. Both MSG and fat promoted the colonization of microbes related to energy extraction in gastrointestinal tract via different ways. MSG promoted the colonization of Faecalibacterium prausnitzii and Roseburia, while fat increased the percentage of Prevotella in colon and other intestinal segments. Conclusion Our results will help to understand how individual or combined dietary changes modify the microbiota composition to prevent obesity. PMID:25791341

  10. Monosodium L-Glutamate and Dietary Fat Differently Modify the Composition of the Intestinal Microbiota in Growing Pigs.

    PubMed

    Feng, Ze-Meng; Li, Tie-Jun; Wu, Li; Xiao, Ding-Fu; Blachier, Francois; Yin, Yu-Long

    2015-01-01

    The Chinese have been undergone rapid transition to a high-fat diet-consuming lifestyle, while monosodium L-glutamate (MSG) is widely used as a daily food additive. It has been reported that fat alters the composition of intestinal microbiota. However, little information is available on the effects of oral MSG on intestinal microbiota, and no study was done focusing on the interaction effect of fat and MSG with respect to intestinal microbiota. The present study thus aimed to determine the effects of MSG and/or fat on intestinal microbiota, and also to identify possible interactions between these two nutrients. Four iso-nitrogenous and iso-caloric diets were provided to growing pigs. The microbiota from jejunum, ileum, cecum, and colon were analyzed. Our results show that both MSG and fat clearly increased the intestinal microbiota diversity. MSG and fat modified the composition of intestinal microbiota, particularly in the colon. Both MSG and fat promoted the colonization of microbes related to energy extraction in gastrointestinal tract via different ways. MSG promoted the colonization of Faecalibacterium prausnitzii and Roseburia, while fat increased the percentage of Prevotella in colon and other intestinal segments. Our results will help to understand how individual or combined dietary changes modify the microbiota composition to prevent obesity.

  11. Regulatory immune cells in regulation of intestinal inflammatory response to microbiota.

    PubMed

    Sun, M; He, C; Cong, Y; Liu, Z

    2015-09-01

    The intestinal lumen harbors nearly 100 trillion commensal bacteria that exert crucial function for health. An elaborate balance between immune responses and tolerance to intestinal microbiota is required to maintain intestinal homeostasis. This process depends on diverse regulatory mechanisms, including both innate and adaptive immunity. Dysregulation of the homeostasis between intestinal immune systems and microbiota has been shown to be associated with the development of inflammatory bowel diseases (IBD) in genetically susceptible populations. In this review, we discuss the recent progress reported in studies of distinct types of regulatory immune cells in the gut, including intestinal intraepithelial lymphocytes, Foxp3(+) regulatory T cells, regulatory B cells, alternatively activated macrophages, dendritic cells, and innate lymphoid cells, and how dysfunction of this immune regulatory system contributes to intestinal diseases such as IBD. Moreover, we discuss the manipulation of these regulatory immune cells as a potential therapeutic method for management of intestinal inflammatory disorders.

  12. Rebamipide inhibits indomethacin-induced small intestinal injury: possible involvement of intestinal microbiota modulation by upregulation of α-defensin 5.

    PubMed

    Tanigawa, Tetsuya; Watanabe, Toshio; Otani, Koji; Nadatani, Yuji; Ohkawa, Fumikazu; Sogawa, Mitsue; Yamagami, Hirokazu; Shiba, Masatsugu; Watanabe, Kenji; Tominaga, Kazunari; Fujiwara, Yasuhiro; Takeuchi, Koji; Arakawa, Tetsuo

    2013-03-15

    Enterobacteria play important roles in the pathophysiology of small intestinal injuries induced by nonsteroidal anti-inflammatory drugs (NSAIDs). We investigated the effects of rebamipide, a gastrointestinal mucoprotective drug, on indomethacin-induced small intestinal injuries, intestinal microbiota, and expression levels of α-defensin 5, which is a Paneth cell-specific antimicrobial peptide and is important for the regulation of intestinal microbiota. Indomethacin (10mg/kg) was orally administered to mice after oral administration of rebamipide (100 or 300 mg/kg) or vehicle for 1 week, and the small intestinal injuries were assessed. After oral administration of rebamipide, the small intestinal contents were subjected to terminal restriction fragment length polymorphism (T-RFLP) analysis to assess the intestinal microbiota composition. Further, the expression levels of mRNA and protein for α-defensin 5 in the ileal tissue were determined by real-time reverse transcription-polymerase chain reaction and western blotting analysis, respectively. Rebamipide inhibited indomethacin-induced small intestinal injuries and T-RFLP analysis showed that rebamipide increased the percentage of Lactobacillales and decreased the percentage of Bacteroides and Clostridium than that in vehicle-treated controls. The mice that were treated with rebamipide showed an increase in α-defensin 5 mRNA expression and protein levels in the ileal tissue compared to vehicle-treated control mice. Indomethacin reduced expression of α-defensin 5 mRNA in ileal tissue, while rebamipide reversed expression of α-defensin 5 mRNA. In conclusion, our study results suggest that rebamipide inhibits indomethacin-induced small intestinal injuries, possibly by modulating microbiota in the small intestine by upregulation of α-defensin 5. Copyright © 2013 Elsevier B.V. All rights reserved.

  13. Microbiota-Dependent Priming of Antiviral Intestinal Immunity in Drosophila.

    PubMed

    Sansone, Christine L; Cohen, Jonathan; Yasunaga, Ari; Xu, Jie; Osborn, Greg; Subramanian, Harry; Gold, Beth; Buchon, Nicolas; Cherry, Sara

    2015-11-11

    Enteric pathogens must overcome intestinal defenses to establish infection. In Drosophila, the ERK signaling pathway inhibits enteric virus infection. The intestinal microflora also impacts immunity but its role in enteric viral infection is unknown. Here we show that two signals are required to activate antiviral ERK signaling in the intestinal epithelium. One signal depends on recognition of peptidoglycan from the microbiota, particularly from the commensal Acetobacter pomorum, which primes the NF-kB-dependent induction of a secreted factor, Pvf2. However, the microbiota is not sufficient to induce this pathway; a second virus-initiated signaling event involving release of transcriptional paused genes mediated by the kinase Cdk9 is also required for Pvf2 production. Pvf2 stimulates antiviral immunity by binding to the receptor tyrosine kinase PVR, which is necessary and sufficient for intestinal ERK responses. These findings demonstrate that sensing of specific commensals primes inflammatory signaling required for epithelial responses that restrict enteric viral infections. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Microbiota promote secretory cell determination in the intestinal epithelium by modulating host Notch signaling.

    PubMed

    Troll, Joshua V; Hamilton, M Kristina; Abel, Melissa L; Ganz, Julia; Bates, Jennifer M; Stephens, W Zac; Melancon, Ellie; van der Vaart, Michiel; Meijer, Annemarie H; Distel, Martin; Eisen, Judith S; Guillemin, Karen

    2018-02-23

    Resident microbes promote many aspects of host development, although the mechanisms by which microbiota influence host tissues remain unclear. We showed previously that the microbiota is required for allocation of appropriate numbers of secretory cells in the zebrafish intestinal epithelium. Because Notch signaling is crucial for secretory fate determination, we conducted epistasis experiments to establish whether the microbiota modulates host Notch signaling. We also investigated whether innate immune signaling transduces microbiota cues via the Myd88 adaptor protein. We provide the first evidence that microbiota-induced, Myd88-dependent signaling inhibits host Notch signaling in the intestinal epithelium, thereby promoting secretory cell fate determination. These results connect microbiota activity via innate immune signaling to the Notch pathway, which also plays crucial roles in intestinal homeostasis throughout life and when impaired can result in chronic inflammation and cancer. © 2018. Published by The Company of Biologists Ltd.

  15. Intestinal microbiota are involved in the immunomodulatory activities of longan polysaccharide.

    PubMed

    Zhang, Jiachao; Yang, Guangmei; Wen, Yazhou; Liu, Sixin; Li, Congfa; Yang, Ruili; Li, Wu

    2017-11-01

    It is difficult for polysaccharides to be directly absorbed through the intestine, which implies other utilization mechanisms involved in the bioactivity performance of polysaccharide. In this study, the multi-omics approach was applied to investigate the impacts of longan polysaccharide on mouse intestinal microbiome and the interaction between the polysaccharide-derived microbiome and host immune system. According to the result, the longan polysaccharide showed a significant improvement in the typical intestinal immunity index of mice. Meanwhile, at the taxonomy level, the intestinal microbiota from the control group and polysaccharide group were highly distinct in organismal structure. At the functional level, a significant decline in the microbial metabolites of pyruvate, butanoate fructose and mannose in the control group was found. Additionally, a significant increase was observed in the succinic acid and the short-chain fatty acid, including acetic acid, propionic acid and butyric acid, in the polysaccharide group. Furthermore, the multi-omic based network analysis indicated that the intake of longan polysaccharide resulted in the changes of the intestinal microbiota as well as the gut metabolites, which led to the enhancement of host's immune function under the stress conditions. These results indicated the polysaccharide-derived changes in intestinal microbiota were involved in the immunomodulatory activities. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Intestinal Microbiota And Diet in IBS: Causes, Consequences, or Epiphenomena?

    PubMed Central

    Rajilić-Stojanović, Mirjana; Jonkers, Daisy M; Salonen, Anne; Hanevik, Kurt; Raes, Jeroen; Jalanka, Jonna; de Vos, Willem M; Manichanh, Chaysavanh; Golic, Natasa; Enck, Paul; Philippou, Elena; Iraqi, Fuad A; Clarke, Gerard; Spiller, Robin C; Penders, John

    2015-01-01

    Irritable bowel syndrome (IBS) is a heterogeneous functional disorder with a multifactorial etiology that involves the interplay of both host and environmental factors. Among environmental factors relevant for IBS etiology, the diet stands out given that the majority of IBS patients report their symptoms to be triggered by meals or specific foods. The diet provides substrates for microbial fermentation, and, as the composition of the intestinal microbiota is disturbed in IBS patients, the link between diet, microbiota composition, and microbial fermentation products might have an essential role in IBS etiology. In this review, we summarize current evidence regarding the impact of diet and the intestinal microbiota on IBS symptoms, as well as the reported interactions between diet and the microbiota composition. On the basis of the existing data, we suggest pathways (mechanisms) by which diet components, via the microbial fermentation, could trigger IBS symptoms. Finally, this review provides recommendations for future studies that would enable elucidation of the role of diet and microbiota and how these factors may be (inter)related in the pathophysiology of IBS. PMID:25623659

  17. Intestinal microbiota and diet in IBS: causes, consequences, or epiphenomena?

    PubMed

    Rajilić-Stojanović, Mirjana; Jonkers, Daisy M; Salonen, Anne; Hanevik, Kurt; Raes, Jeroen; Jalanka, Jonna; de Vos, Willem M; Manichanh, Chaysavanh; Golic, Natasa; Enck, Paul; Philippou, Elena; Iraqi, Fuad A; Clarke, Gerard; Spiller, Robin C; Penders, John

    2015-02-01

    Irritable bowel syndrome (IBS) is a heterogeneous functional disorder with a multifactorial etiology that involves the interplay of both host and environmental factors. Among environmental factors relevant for IBS etiology, the diet stands out given that the majority of IBS patients report their symptoms to be triggered by meals or specific foods. The diet provides substrates for microbial fermentation, and, as the composition of the intestinal microbiota is disturbed in IBS patients, the link between diet, microbiota composition, and microbial fermentation products might have an essential role in IBS etiology. In this review, we summarize current evidence regarding the impact of diet and the intestinal microbiota on IBS symptoms, as well as the reported interactions between diet and the microbiota composition. On the basis of the existing data, we suggest pathways (mechanisms) by which diet components, via the microbial fermentation, could trigger IBS symptoms. Finally, this review provides recommendations for future studies that would enable elucidation of the role of diet and microbiota and how these factors may be (inter)related in the pathophysiology of IBS.

  18. The Intestinal Microbiota Plays a Role in Salmonella-Induced Colitis Independent of Pathogen Colonization

    PubMed Central

    Ferreira, Rosana B. R.; Gill, Navkiran; Willing, Benjamin P.; Antunes, L. Caetano M.; Russell, Shannon L.; Croxen, Matthew A.; Finlay, B. Brett

    2011-01-01

    The intestinal microbiota is composed of hundreds of species of bacteria, fungi and protozoa and is critical for numerous biological processes, such as nutrient acquisition, vitamin production, and colonization resistance against bacterial pathogens. We studied the role of the intestinal microbiota on host resistance to Salmonella enterica serovar Typhimurium-induced colitis. Using multiple antibiotic treatments in 129S1/SvImJ mice, we showed that disruption of the intestinal microbiota alters host susceptibility to infection. Although all antibiotic treatments caused similar increases in pathogen colonization, the development of enterocolitis was seen only when streptomycin or vancomycin was used; no significant pathology was observed with the use of metronidazole. Interestingly, metronidazole-treated and infected C57BL/6 mice developed severe pathology. We hypothesized that the intestinal microbiota confers resistance to infectious colitis without affecting the ability of S. Typhimurium to colonize the intestine. Indeed, different antibiotic treatments caused distinct shifts in the intestinal microbiota prior to infection. Through fluorescence in situ hybridization, terminal restriction fragment length polymorphism, and real-time PCR, we showed that there is a strong correlation between the intestinal microbiota composition before infection and susceptibility to Salmonella-induced colitis. Members of the Bacteroidetes phylum were present at significantly higher levels in mice resistant to colitis. Further analysis revealed that Porphyromonadaceae levels were also increased in these mice. Conversely, there was a positive correlation between the abundance of Lactobacillus sp. and predisposition to colitis. Our data suggests that different members of the microbiota might be associated with S. Typhimurium colonization and colitis. Dissecting the mechanisms involved in resistance to infection and inflammation will be critical for the development of therapeutic and

  19. Intestinal microbiota of healthy and unhealthy Atlantic salmon Salmo salar L. in a recirculating aquaculture system

    NASA Astrophysics Data System (ADS)

    Wang, Chun; Sun, Guoxiang; Li, Shuangshuang; Li, Xian; Liu, Ying

    2017-04-01

    The present study sampled the intestinal content of healthy and unhealthy Atlantic salmon (Salmo salar L.), the ambient water of unhealthy fish, and the biofilter material in the recirculating aquaculture system (RAS) to understand differences in the intestinal microbiota. The V4-V5 regions of the prokaryotic 16S rRNA genes in the samples were analyzed by MiSeq high-throughput sequencing. The fish were adults with no differences in body length or weight. Representative members of the intestinal microbiota were identified. The intestinal microbiota of the healthy fish included Proteobacteria (44.33%), Actinobacteria (17.89%), Bacteroidetes (15.25%), and Firmicutes (9.11%), among which the families Micrococcaceae and Oxalobacteraceae and genera Sphingomonas, Streptomyces, Pedobacter, Janthinobacterium, Burkholderia, and Balneimonas were most abundant. Proteobacteria (70.46%), Bacteroidetes (7.59%), and Firmicutes (7.55%) dominated the microbiota of unhealthy fish, and Chloroflexi (2.71%), and Aliivibrio and Vibrio as well as genera in the family Aeromonadaceae were most strongly represented. Overall, the intestinal hindgut microbiota differed between healthy and unhealthy fish. This study offers a useful tool for monitoring the health status of fish and for screening the utility of probiotics by studying the intestinal microbiota.

  20. Intestinal microbiota of healthy and unhealthy Atlantic salmon Salmo salar L. in a recirculating aquaculture system

    NASA Astrophysics Data System (ADS)

    Wang, Chun; Sun, Guoxiang; Li, Shuangshuang; Li, Xian; Liu, Ying

    2018-03-01

    The present study sampled the intestinal content of healthy and unhealthy Atlantic salmon ( Salmo salar L.), the ambient water of unhealthy fish, and the biofilter material in the recirculating aquaculture system (RAS) to understand differences in the intestinal microbiota. The V4-V5 regions of the prokaryotic 16S rRNA genes in the samples were analyzed by MiSeq high-throughput sequencing. The fish were adults with no differences in body length or weight. Representative members of the intestinal microbiota were identified. The intestinal microbiota of the healthy fish included Proteobacteria (44.33%), Actinobacteria (17.89%), Bacteroidetes (15.25%), and Firmicutes (9.11%), among which the families Micrococcaceae and Oxalobacteraceae and genera Sphingomonas, Streptomyces, Pedobacter, Janthinobacterium, Burkholderia, and Balneimonas were most abundant. Proteobacteria (70.46%), Bacteroidetes (7.59%), and Firmicutes (7.55%) dominated the microbiota of unhealthy fish, and Chloroflexi (2.71%), and Aliivibrio and Vibrio as well as genera in the family Aeromonadaceae were most strongly represented. Overall, the intestinal hindgut microbiota differed between healthy and unhealthy fish. This study offers a useful tool for monitoring the health status of fish and for screening the utility of probiotics by studying the intestinal microbiota.

  1. Regulatory immune cells in regulation of intestinal inflammatory response to microbiota

    PubMed Central

    Cong, Y; Liu, Z

    2015-01-01

    The intestinal lumen harbors nearly 100 trillion commensal bacteria that exert crucial function for health. An elaborate balance between immune responses and tolerance to intestinal microbiota is required to maintain intestinal homeostasis. This process depends on diverse regulatory mechanisms, including both innate and adaptive immunity. Dysregulation of the homeostasis between intestinal immune systems and microbiota has been shown to be associated with the development of inflammatory bowel diseases (IBD) in genetically susceptible populations. In this review, we discuss the recent progress reported in studies of distinct types of regulatory immune cells in the gut, including intestinal intraepithelial lymphocytes, Foxp3+ regulatory T cells, regulatory B cells, alternatively activated macrophages, dendritic cells, and innate lymphoid cells, and how dysfunction of this immune regulatory system contributes to intestinal diseases such as IBD. Moreover, we discuss the manipulation of these regulatory immune cells as a potential therapeutic method for management of intestinal inflammatory disorders. PMID:26080708

  2. Supplementation of fructooligosaccharides to suckling piglets affects intestinal microbiota colonization and immune development.

    PubMed

    Schokker, Dirkjan; Fledderus, Jan; Jansen, Rutger; Vastenhouw, Stephanie A; de Bree, Freddy M; Smits, Mari A; Jansman, Alfons A J M

    2018-06-04

    Emerging knowledge shows the importance of early life events in programming the intestinal mucosal immune system and development of the intestinal barrier function. These processes depend heavily on close interactions between gut microbiota and host cells in the intestinal mucosa. In turn, development of the intestinal microbiota is largely dependent on available nutrients required for the specific microbial community structures to expand. It is currently not known what the specificities are of intestinal microbial community structures in relation to the programming of the intestinal mucosal immune system and development of the intestinal barrier function. The objective of the present study was to investigate the effects of a nutritional intervention on intestinal development of suckling piglets by daily oral administration of fructooligosaccharides (FOS) over a period of 12 d (days 2-14 of age). At the microbiota community level, a clear "bifidogenic" effect of the FOS administration was observed in the colon digesta at day 14. The former, however, did not translate into significant changes of local gene expression in the colonic mucosa. In the jejunum, significant changes were observed for microbiota composition at day 14, and microbiota diversity at day 25. In addition, significant differentially expressed gene sets in mucosal tissues of the jejunum were identified at both days 14 and 25 of age. At the age of 14 d, a lower activity of cell cycle-related processes and a higher activity of extracellular matrix processes were observed in the jejunal mucosa of piglets supplemented with FOS compared with control piglets. At day 25, the lower activity of immune-related processes in jejunal tissue was seen in piglets supplemented with FOS. Villi height and crypt depth in the jejunum were significantly different at day 25 between the experimental and control groups, where piglets supplemented with FOS had greater villi and deeper crypts. We conclude that oral FOS

  3. Recurrent Clostridium difficile infections: The importance of the intestinal microbiota

    PubMed Central

    Zanella Terrier, Marie Céline; Simonet, Martine Louis; Bichard, Philippe; Frossard, Jean Louis

    2014-01-01

    Clostridium difficile infections (CDI) are a leading cause of antibiotic-associated and nosocomial diarrhea. Despite effective antibiotic treatments, recurrent infections are common. With the recent emergence of hypervirulent isolates of C. difficile, CDI is a growing epidemic with higher rates of recurrence, increasing severity and mortality. Fecal microbiota transplantation (FMT) is an alternative treatment for recurrent CDI. A better understanding of intestinal microbiota and its role in CDI has opened the door to this promising therapeutic approach. FMT is thought to resolve dysbiosis by restoring gut microbiota diversity thereby breaking the cycle of recurrent CDI. Since the first reported use of FMT for recurrent CDI in 1958, systematic reviews of case series and case report have shown its effectiveness with high resolution rates compared to standard antibiotic treatment. This article focuses on current guidelines for CDI treatment, the role of intestinal microbiota in CDI recurrence and current evidence about FMT efficacy, adverse effects and acceptability. PMID:24966611

  4. Fecal Microbiota Transplantation in Gestating Sows and Neonatal Offspring Alters Lifetime Intestinal Microbiota and Growth in Offspring

    PubMed Central

    2018-01-01

    ABSTRACT Previous studies suggest a link between intestinal microbiota and porcine feed efficiency (FE). Therefore, we investigated whether fecal microbiota transplantation (FMT) in sows and/or neonatal offspring, using inocula derived from highly feed-efficient pigs, could improve offspring FE. Pregnant sows were assigned to control or FMT treatments and the subsequent offspring to control treatment, FMT once (at birth), or FMT four times (between birth and weaning). FMT altered sow fecal and colostrum microbiota compositions and resulted in lighter offspring body weight at 70 and 155 days of age when administered to sows and/or offspring. This was accompanied by FMT-associated changes within the offspring’s intestinal microbiota, mostly in the ileum. These included transiently higher fecal bacterial diversity and load and numerous compositional differences at the phylum and genus levels (e.g., Spirochaetes and Bacteroidetes at high relative abundances and mostly members of Clostridia, respectively), as well as differences in the abundances of predicted bacterial pathways. In addition, intestinal morphology was negatively impacted, duodenal gene expression altered, and serum protein and cholesterol concentrations reduced due to FMT in sows and/or offspring. Taken together, the results suggest poorer absorptive capacity and intestinal health, most likely explaining the reduced body weight. An additive effect of FMT in sows and offspring also occurred for some parameters. Although these findings have negative implications for the practical use of the FMT regime used here for improving FE in pigs, they nonetheless demonstrate the enormous impact of early-life intestinal microbiota on the host phenotype. IMPORTANCE Here, for the first time, we investigate FMT as a novel strategy to modulate the porcine intestinal microbiota in an attempt to improve FE in pigs. However, reprogramming the maternal and/or offspring microbiome by using fecal transplants derived from

  5. Intestinal alkaline phosphatase preserves the normal homeostasis of gut microbiota.

    PubMed

    Malo, M S; Alam, S Nasrin; Mostafa, G; Zeller, S J; Johnson, P V; Mohammad, N; Chen, K T; Moss, A K; Ramasamy, S; Faruqui, A; Hodin, S; Malo, P S; Ebrahimi, F; Biswas, B; Narisawa, S; Millán, J L; Warren, H S; Kaplan, J B; Kitts, C L; Hohmann, E L; Hodin, R A

    2010-11-01

    The intestinal microbiota plays a critical role in maintaining human health; however, the mechanisms governing the normal homeostatic number and composition of these microbes are largely unknown. Previously it was shown that intestinal alkaline phosphatase (IAP), a small intestinal brush border enzyme, functions as a gut mucosal defence factor limiting the translocation of gut bacteria to mesenteric lymph nodes. In this study the role of IAP in the preservation of the normal homeostasis of the gut microbiota was investigated. Bacterial culture was performed in aerobic and anaerobic conditions to quantify the number of bacteria in the stools of wild-type (WT) and IAP knockout (IAP-KO) C57BL/6 mice. Terminal restriction fragment length polymorphism, phylogenetic analyses and quantitative real-time PCR of subphylum-specific bacterial 16S rRNA genes were used to determine the compositional profiles of microbiotas. Oral supplementation of calf IAP (cIAP) was used to determine its effects on the recovery of commensal gut microbiota after antibiotic treatment and also on the colonisation of pathogenic bacteria. IAP-KO mice had dramatically fewer and also different types of aerobic and anaerobic microbes in their stools compared with WT mice. Oral supplementation of IAP favoured the growth of commensal bacteria, enhanced restoration of gut microbiota lost due to antibiotic treatment and inhibited the growth of a pathogenic bacterium (Salmonella typhimurium). IAP is involved in the maintenance of normal gut microbial homeostasis and may have therapeutic potential against dysbiosis and pathogenic infections.

  6. Intestinal Microbiota Distinguish Gout Patients from Healthy Humans

    PubMed Central

    Guo, Zhuang; Zhang, Jiachao; Wang, Zhanli; Ang, Kay Ying; Huang, Shi; Hou, Qiangchuan; Su, Xiaoquan; Qiao, Jianmin; Zheng, Yi; Wang, Lifeng; Koh, Eileen; Danliang, Ho; Xu, Jian; Lee, Yuan Kun; Zhang, Heping

    2016-01-01

    Current blood-based approach for gout diagnosis can be of low sensitivity and hysteretic. Here via a 68-member cohort of 33 healthy and 35 diseased individuals, we reported that the intestinal microbiota of gout patients are highly distinct from healthy individuals in both organismal and functional structures. In gout, Bacteroides caccae and Bacteroides xylanisolvens are enriched yet Faecalibacterium prausnitzii and Bifidobacterium pseudocatenulatum depleted. The established reference microbial gene catalogue for gout revealed disorder in purine degradation and butyric acid biosynthesis in gout patients. In an additional 15-member validation-group, a diagnosis model via 17 gout-associated bacteria reached 88.9% accuracy, higher than the blood-uric-acid based approach. Intestinal microbiota of gout are more similar to those of type-2 diabetes than to liver cirrhosis, whereas depletion of Faecalibacterium prausnitzii and reduced butyrate biosynthesis are shared in each of the metabolic syndromes. Thus the Microbial Index of Gout was proposed as a novel, sensitive and non-invasive strategy for diagnosing gout via fecal microbiota. PMID:26852926

  7. Xylitol affects the intestinal microbiota and metabolism of daidzein in adult male mice.

    PubMed

    Tamura, Motoi; Hoshi, Chigusa; Hori, Sachiko

    2013-12-10

    This study examined the effects of xylitol on mouse intestinal microbiota and urinary isoflavonoids. Xylitol is classified as a sugar alcohol and used as a food additive. The intestinal microbiota seems to play an important role in isoflavone metabolism. Xylitol feeding appears to affect the gut microbiota. We hypothesized that dietary xylitol changes intestinal microbiota and, therefore, the metabolism of isoflavonoids in mice. Male mice were randomly divided into two groups: those fed a 0.05% daidzein with 5% xylitol diet (XD group) and those fed a 0.05% daidzein-containing control diet (CD group) for 28 days. Plasma total cholesterol concentrations were significantly lower in the XD group than in the CD group (p < 0.05). Urinary amounts of equol were significantly higher in the XD group than in the CD group (p < 0.05). The fecal lipid contents (% dry weight) were significantly greater in the XD group than in the CD group (p < 0.01). The cecal microbiota differed between the two dietary groups. The occupation ratios of Bacteroides were significantly greater in the CD than in the XD group (p < 0.05). This study suggests that xylitol has the potential to affect the metabolism of daidzein by altering the metabolic activity of the intestinal microbiota and/or gut environment. Given that equol affects bone health, dietary xylitol plus isoflavonoids may exert a favorable effect on bone health.

  8. The Presence or Absence of Intestinal Microbiota Affects Lipid Deposition and Related Genes Expression in Zebrafish (Danio rerio).

    PubMed

    Sheng, Yi; Ren, Hui; Limbu, Samwel M; Sun, Yuhong; Qiao, Fang; Zhai, Wanying; Du, Zhen-Yu; Zhang, Meiling

    2018-01-01

    Understanding how intestinal microbiota alters energy homeostasis and lipid metabolism is a critical process in energy balance and health. However, the exact role of intestinal microbiota in the regulation of lipid metabolism in fish remains unclear. Here, we used two zebrafish models (germ-free and antibiotics-treated zebrafish) to identify the role of intestinal microbiota in lipid metabolism. Conventional and germ-free zebrafish larvae were fed with egg yolk. Transmission electron microscopy was used to detect the presence of lipid droplets in the intestinal epithelium. The results showed that, microbiota increased lipid accumulation in the intestinal epithelium. The mRNA sequencing technology was used to assess genes expression level. We found majority of the differentially expressed genes were related to lipid metabolism. Due to the limitation of germ-free zebrafish larvae, antibiotics-treated zebrafish were also used to identify the relationship between the gut microbiota and the host lipid metabolism. Oil-red staining showed antibiotics-treated zebrafish had less intestinal lipid accumulation than control group. The mRNA expression of genes related to lipid metabolism in liver and intestine was also quantified by using real-time PCR. The results indicated that apoa4 , hsl , cox15 , slc2a1a , and lss were more related to intestinal bacteria in fish, while the influence of intestinal microbiota on the activity of fabp6 , acsl5 , cd36 , and gpat2 was different between the liver and intestine. This study identified several genes regulated by intestinal microbiota. Furthermore, the advantages and disadvantages of each model have been discussed. This study provides valuable information for exploring host-microbiota interactions in zebrafish in future.

  9. [Physiological patterns of intestinal microbiota. The role of dysbacteriosis in obesity, insulin resistance, diabetes and metabolic syndrome].

    PubMed

    Halmos, Tamás; Suba, Ilona

    2016-01-03

    The intestinal microbiota is well-known for a long time, but due to newly recognized functions, clinician's attention has turned to it again in the last decade. About 100 000 billion bacteria are present in the human intestines. The composition of bacteriota living in diverse parts of the intestinal tract is variable according to age, body weight, geological site, and diet as well. Normal bacteriota defend the organism against the penetration of harmful microorganisms, and has many other functions in the gut wall integrity, innate immunity, insulin sensitivity, metabolism, and it is in cross-talk with the brain functions as well. It's a recent recognition, that intestinal microbiota has a direct effect on the brain, and the brain also influences the microbiota. This two-way gut-brain axis consists of microbiota, immune and neuroendocrine system, as well as of the autonomic and central nervous system. Emerging from fermentation of carbohydrates, short-chain fatty acids develop into the intestines, which produce butyrates, acetates and propionates, having favorable effects on different metabolic processes. Composition of the intestinal microbiota is affected by the circadian rhythm, such as in shift workers. Dysruption of circadian rhythm may influence intestinal microbiota. The imbalance between the microbiota and host organism leads to dysbacteriosis. From the membrane of Gram-negative bacteria lipopolysacharides penetrate into the blood stream, via impaired permeability of the intestinal mucosa. These processes induce metabolic endotoxaemia, inflammation, impaired glucose metabolism, insulin resistance, obesity, and contribute to the development of metabolic syndrome, type 2 diabetes, inflammarory bowel diseases, autoimmunity and carcinogenesis. Encouraging therapeutic possibility is to restore the normal microbiota either using pro- or prebiotics, fecal transplantation or bariatric surgery. Human investigations seem to prove that fecal transplant from lean

  10. A role for IL-22 in the relationship between intestinal helminths, gut microbiota and mucosal immunity

    PubMed Central

    Leung, Jacqueline M.; Loke, P’ng

    2014-01-01

    The intestinal tract is home to nematodes as well as commensal bacteria (microbiota), which have coevolved with the mammalian host. The mucosal immune system must balance between an appropriate response to dangerous pathogens and an inappropriate response to commensal microbiota that may breach the epithelial barrier, in order to maintain intestinal homeostasis. IL-22 has been shown to play a critical role in maintaining barrier homeostasis against intestinal pathogens and commensal bacteria. Here we review the advances in our understanding of the role of IL-22 in helminth infections, as well as in response to commensal and pathogenic bacteria of the intestinal tract. We then consider the relationship between intestinal helminths and gut microbiota and hypothesize that this relationship may explain how helminths may improve symptoms of inflammatory bowel diseases. We propose that by inducing an immune response that includes IL-22, intestinal helminths may enhance the mucosal barrier function of the intestinal epithelium. This may restore the mucosal microbiota populations from dysbiosis associated with colitis and improve intestinal homeostasis. PMID:23178750

  11. Mucin-Microbiota Interaction During Postnatal Maturation of the Intestinal Ecosystem: Clinical Implications.

    PubMed

    Rokhsefat, Sana; Lin, Aifeng; Comelli, Elena M

    2016-06-01

    The mucus layer and gut microbiota interplay contributes to host homeostasis. The mucus layer serves as a scaffold and a carbon source for gut microorganisms; conversely, gut microorganisms, including mucin degraders, influence mucin gene expression, glycosylation, and secretion. Conjointly they shield the epithelium from luminal pathogens, antigens, and toxins. Importantly, the mucus layer and gut microbiota are established in parallel during early postnatal life. During this period, the development of gut microbiota and mucus layer is coupled with that of the immune system. Developmental changes of different mucin types can impact the age-dependent patterns of intestinal infection in terms of incidence and severity. Altered mucus layer, dysbiotic microbiota, and abnormal mucus-gut microbiota interaction have the potential for inducing systemic effects, and accompany several intestinal diseases such as inflammatory bowel disease, colorectal cancer, and radiation-induced mucositis. Early life provides a pivotal window of opportunity to favorably modulate the mucus-microbiota interaction. The support of a health-compatible mucin-microbiota maturation in early life is paramount for long-term health and serves as an important opportunity for clinical intervention.

  12. Interleukin-22-deficiency and microbiota contribute to the exacerbation of Toxoplasma gondii-induced intestinal inflammation.

    PubMed

    Couturier-Maillard, A; Froux, N; Piotet-Morin, J; Michaudel, C; Brault, L; Le Bérichel, J; Sénéchal, A; Robinet, P; Chenuet, P; Jejou, S; Dumoutier, L; Renauld, J C; Iovanna, J; Huber, S; Quesniaux, Vfj; Sokol, H; Ryffel, B

    2018-05-04

    Upon oral infection with Toxoplasma gondii cysts (76 K strain) tachyzoites are released into the intestinal lumen and cross the epithelial barrier causing damage and acute intestinal inflammation in C57BL/6 (B6) mice. Here we investigated the role of microbiota and IL-22 in T.gondii-induced small intestinal inflammation. Oral T.gondii infection in B6 mice causes inflammation with IFNγ and IL-22 production. In IL-22-deficient mice, T.gondii infection augments the Th1 driven inflammation. Deficiency in either IL-22bp, the soluble IL-22 receptor or Reg3γ, an IL-22-dependent antimicrobial lectin/peptide, did not reduce inflammation. Under germ-free conditions, T.gondii-induced inflammation was reduced in correlation with parasite load. But intestinal inflammation is still present in germ-free mice, at low level, in the lamina propria, independently of IL-22 expression. Exacerbated intestinal inflammation driven by absence of IL-22 appears to be independent of IL-22 deficiency associated-dysbiosis as similar inflammation was observed after fecal transplantation of IL-22 -/- or WT microbiota to germ-free-WT mice. Our results suggest cooperation between parasite and intestinal microbiota in small intestine inflammation development and endogenous IL-22 seems to exert a protective role independently of its effect on the microbiota. In conclusion, IL-22 participates in T.gondii induced acute small intestinal inflammation independently of microbiota and Reg3γ.

  13. Disrupted Intestinal Microbiota and Intestinal Inflammation in Children with Cystic Fibrosis and Its Restoration with Lactobacillus GG: A Randomised Clinical Trial

    PubMed Central

    Bruzzese, Eugenia; Callegari, Maria Luisa; Raia, Valeria; Viscovo, Sara; Scotto, Riccardo; Ferrari, Susanna; Morelli, Lorenzo; Buccigrossi, Vittoria; Lo Vecchio, Andrea; Ruberto, Eliana; Guarino, Alfredo

    2014-01-01

    Background & Aims Intestinal inflammation is a hallmark of cystic fibrosis (CF). Administration of probiotics can reduce intestinal inflammation and the incidence of pulmonary exacerbations. We investigated the composition of intestinal microbiota in children with CF and analyzed its relationship with intestinal inflammation. We also investigated the microflora structure before and after Lactobacillus GG (LGG) administration in children with CF with and without antibiotic treatment. Methods The intestinal microbiota were analyzed by denaturing gradient gel electrophoresis (DGGE), real-time polymerase chain reaction (RT-PCR), and fluorescence in situ hybridization (FISH). Intestinal inflammation was assessed by measuring fecal calprotectin (CLP) and rectal nitric oxide (rNO) production in children with CF as compared with healthy controls. We then carried out a small double-blind randomized clinical trial with LGG. Results Twenty-two children with CF children were enrolled in the study (median age, 7 years; range, 2–9 years). Fecal CLP and rNO levels were higher in children with CF than in healthy controls (184±146 µg/g vs. 52±46 µg/g; 18±15 vs. 2.6±1.2 µmol/L NO2 −, respectively; P<0.01). Compared with healthy controls, children with CF had significantly different intestinal microbial core structures. The levels of Eubacterium rectale, Bacteroides uniformis, Bacteroides vulgatus, Bifidobacterium adolescentis, Bifidobacterium catenulatum, and Faecalibacterium prausnitzii were reduced in children with CF. A similar but more extreme pattern was observed in children with CF who were taking antibiotics. LGG administration reduced fecal CLP and partially restored intestinal microbiota. There was a significant correlation between reduced microbial richness and intestinal inflammation. Conclusions CF causes qualitative and quantitative changes in intestinal microbiota, which may represent a novel therapeutic target in the treatment of CF. Administration of

  14. Xylitol Affects the Intestinal Microbiota and Metabolism of Daidzein in Adult Male Mice

    PubMed Central

    Tamura, Motoi; Hoshi, Chigusa; Hori, Sachiko

    2013-01-01

    This study examined the effects of xylitol on mouse intestinal microbiota and urinary isoflavonoids. Xylitol is classified as a sugar alcohol and used as a food additive. The intestinal microbiota seems to play an important role in isoflavone metabolism. Xylitol feeding appears to affect the gut microbiota. We hypothesized that dietary xylitol changes intestinal microbiota and, therefore, the metabolism of isoflavonoids in mice. Male mice were randomly divided into two groups: those fed a 0.05% daidzein with 5% xylitol diet (XD group) and those fed a 0.05% daidzein-containing control diet (CD group) for 28 days. Plasma total cholesterol concentrations were significantly lower in the XD group than in the CD group (p < 0.05). Urinary amounts of equol were significantly higher in the XD group than in the CD group (p < 0.05). The fecal lipid contents (% dry weight) were significantly greater in the XD group than in the CD group (p < 0.01). The cecal microbiota differed between the two dietary groups. The occupation ratios of Bacteroides were significantly greater in the CD than in the XD group (p < 0.05). This study suggests that xylitol has the potential to affect the metabolism of daidzein by altering the metabolic activity of the intestinal microbiota and/or gut environment. Given that equol affects bone health, dietary xylitol plus isoflavonoids may exert a favorable effect on bone health. PMID:24336061

  15. Intestinal microbiota in primary sclerosing cholangitis.

    PubMed

    Hov, Johannes R; Kummen, Martin

    2017-03-01

    Alterations of the gut-liver axis have been linked to the pathogenesis of primary sclerosing cholangitis (PSC) since the disease was first described. The purpose of this review is to discuss multiple recent studies on the intestinal microbiota in human PSC and experimental models of this disease. Data are available from eight cross-sectional studies of human PSC, which include a variable number of patients (n = 11-85), material (mucosal or fecal), and microbiota profiling methodology. Despite the heterogeneity of the studies, a pattern of differences is observed that could represent a theme or signature of the PSC gut microbiota, characterized by low diversity and with alterations in multiple bacterial taxa. In experimental models of PSC, re-derivation of animals into germ-free facilities may either aggravate or attenuate the disease, depending on host genetics and putative disease mechanisms (e.g., fibrotic or immune-driven processes, respectively). The present data provide a strong rationale to explore the functional consequences of the observed gut microbial alterations and their influence on the pathogenesis in PSC. Studies of gut microbiota as biomarker and treatment target may potentially also lead to early translation into clinical practice.

  16. Alternative Protein Sources in the Diet Modulate Microbiota and Functionality in the Distal Intestine of Atlantic Salmon (Salmo salar)

    PubMed Central

    Jaramillo-Torres, Alexander; Kortner, Trond M.; Merrifield, Daniel L.; Tinsley, John; Bakke, Anne Marie; Krogdahl, Åshild

    2016-01-01

    health status and effects of diet. The present study aimed to gain information about whether alternative dietary protein sources modulate the microbial communities in the Atlantic salmon intestine and whether alterations in microbiota profiles are reflected in alterations in host intestinal function and health status. We demonstrate here that there are substantial differences between the intestinal digesta and mucosa in the presence and abundance of bacteria. The digesta-associated microbiota showed clear dependence on the diet composition, whereas mucosa-associated microbiota appeared to be less affected by diet composition. Most important, the study identified bacterial groups associated with diet-induced gut dysfunction that may be utilized as microbial markers of gut health status in fish. PMID:27986728

  17. Alternative Protein Sources in the Diet Modulate Microbiota and Functionality in the Distal Intestine of Atlantic Salmon (Salmo salar).

    PubMed

    Gajardo, Karina; Jaramillo-Torres, Alexander; Kortner, Trond M; Merrifield, Daniel L; Tinsley, John; Bakke, Anne Marie; Krogdahl, Åshild

    2017-03-01

    status and effects of diet. The present study aimed to gain information about whether alternative dietary protein sources modulate the microbial communities in the Atlantic salmon intestine and whether alterations in microbiota profiles are reflected in alterations in host intestinal function and health status. We demonstrate here that there are substantial differences between the intestinal digesta and mucosa in the presence and abundance of bacteria. The digesta-associated microbiota showed clear dependence on the diet composition, whereas mucosa-associated microbiota appeared to be less affected by diet composition. Most important, the study identified bacterial groups associated with diet-induced gut dysfunction that may be utilized as microbial markers of gut health status in fish. Copyright © 2017 Gajardo et al.

  18. A role for IL-22 in the relationship between intestinal helminths, gut microbiota and mucosal immunity.

    PubMed

    Leung, Jacqueline M; Loke, P'ng

    2013-03-01

    The intestinal tract is home to nematodes as well as commensal bacteria (microbiota), which have coevolved with the mammalian host. The mucosal immune system must balance between an appropriate response to dangerous pathogens and an inappropriate response to commensal microbiota that may breach the epithelial barrier, in order to maintain intestinal homeostasis. IL-22 has been shown to play a critical role in maintaining barrier homeostasis against intestinal pathogens and commensal bacteria. Here we review the advances in our understanding of the role of IL-22 in helminth infections, as well as in response to commensal and pathogenic bacteria of the intestinal tract. We then consider the relationship between intestinal helminths and gut microbiota and hypothesize that this relationship may explain how helminths may improve symptoms of inflammatory bowel diseases. We propose that by inducing an immune response that includes IL-22, intestinal helminths may enhance the mucosal barrier function of the intestinal epithelium. This may restore the mucosal microbiota populations from dysbiosis associated with colitis and improve intestinal homeostasis. Copyright © 2012 Australian Society for Parasitology Inc. Published by Elsevier Ltd. All rights reserved.

  19. Reciprocal Interactions of the Intestinal Microbiota and Immune System

    PubMed Central

    Maynard, Craig L.; Elson, Charles O.; Hatton, Robin D.; Weaver, Casey T.

    2013-01-01

    Preface Emergence of the adaptive immune system in vertebrates set the stage for evolution of an advanced symbiotic relationship with the intestinal microbiota. The defining features of specificity and memory that characterize adaptive immunity have afforded vertebrates mechanisms for efficiently tailoring immune responses to diverse types of microbes, whether to promote mutualism or host defense. These same attributes carry risk for immune-mediated diseases that are increasingly linked to the intestinal microbiota. Understanding how the adaptive immune system copes with the remarkable number and diversity of microbes that colonize the digestive tract, and how it integrates with more primitive innate immune mechanisms to maintain immune homeostasis, holds considerable promise for new approaches to modulate immune networks in order to treat and prevent disease. PMID:22972296

  20. Intestinal microbiota determines development of non-alcoholic fatty liver disease in mice.

    PubMed

    Le Roy, Tiphaine; Llopis, Marta; Lepage, Patricia; Bruneau, Aurélia; Rabot, Sylvie; Bevilacqua, Claudia; Martin, Patrice; Philippe, Catherine; Walker, Francine; Bado, André; Perlemuter, Gabriel; Cassard-Doulcier, Anne-Marie; Gérard, Philippe

    2013-12-01

    Non-alcoholic fatty liver disease (NAFLD) is prevalent among obese people and is considered the hepatic manifestation of metabolic syndrome. However, not all obese individuals develop NAFLD. Our objective was to demonstrate the role of the gut microbiota in NAFLD development using transplantation experiments in mice. Two donor C57BL/6J mice were selected on the basis of their responses to a high-fat diet (HFD). Although both mice displayed similar body weight gain, one mouse, called the 'responder', developed hyperglycaemia and had a high plasma concentration of pro-inflammatory cytokines. The other, called a 'non-responder', was normoglycaemic and had a lower level of systemic inflammation. Germ-free mice were colonised with intestinal microbiota from either the responder or the non-responder and then fed the same HFD. Mice that received microbiota from different donors developed comparable obesity on the HFD. The responder-receiver (RR) group developed fasting hyperglycaemia and insulinaemia, whereas the non-responder-receiver (NRR) group remained normoglycaemic. In contrast to NRR mice, RR mice developed hepatic macrovesicular steatosis, which was confirmed by a higher liver concentration of triglycerides and increased expression of genes involved in de-novo lipogenesis. Pyrosequencing of the 16S ribosomal RNA genes revealed that RR and NRR mice had distinct gut microbiota including differences at the phylum, genera and species levels. Differences in microbiota composition can determine response to a HFD in mice. These results further demonstrate that the gut microbiota contributes to the development of NAFLD independently of obesity.

  1. Microbiota and innate immunity in intestinal inflammation and neoplasia.

    PubMed

    Cario, Elke

    2013-01-01

    This review focuses on recent advances and novel insights into the mechanistic events that may link commensal microbiota and host innate immunity in the pathophysiology of intestinal inflammation and neoplasia. Unanswered questions are discussed and future perspectives in the field are highlighted. Commensal microbiota, host innate immunity, and genetics form a multidimensional network that controls homeostasis of the mucosal barrier in the intestine. Large-scale sequencing projects have begun to catalog the healthy human microbiome. Converging evidence suggests that alterations in the regulation of the complex host environment [e.g., dysbiosis and overgrowth of select commensal bacterial species, dietary factors, copresence of facultative pathogens (including viruses), and changes in mucus characteristics] may trigger aberrant innate immune signaling, thereby contributing to the development of intestinal inflammation and associated colon cancer in the susceptible individual. Genetically determined innate immune malfunction may create an inflammatory environment that promotes tumor progression (such as the TLR4-D299G mutation). The next challenging steps to be taken are to decipher changes in the human microbiome (and virome) during well defined diseased states, and relate them to intestinal mucosal immune functions and host genotypes.

  2. Intestinal Alkaline Phosphatase Detoxifies Lipopolysaccharide and Prevents Inflammation in Response to the Gut Microbiota

    PubMed Central

    Bates, Jennifer M.; Akerlund, Janie; Mittge, Erika; Guillemin, Karen

    2009-01-01

    SUMMARY Vertebrates harbor abundant lipopolysaccharide (LPS) or endotoxin in their gut microbiota. Here we demonstrate that the brush border enzyme intestinal alkaline phosphatase (Iap), which dephosphorylates LPS, is induced during establishment of the microbiota and plays a crucial role in promoting mucosal tolerance to gut bacteria in zebrafish. We demonstrate that Iap deficient animals are hypersensitive to LPS toxicity through a mechanism mediated by Myd88 and Tumor Necrosis Factor Receptor (Tnfr). We further show that the endogenous microbiota establish the normal homeostatic level of neutrophils in the intestine through a process involving Myd88 and Tnfr. Iap deficient animals exhibit excessive intestinal neutrophil influx, similar to wild type animals exposed to LPS. When reared germ-free, however, the intestines of Iap deficient animals are devoid of neutrophils, demonstrating that Iap functions to prevent inflammatory responses to resident gut bacteria. PMID:18078689

  3. Honeybee gut microbiota promotes host weight gain via bacterial metabolism and hormonal signaling

    PubMed Central

    Powell, J. Elijah; Steele, Margaret I.; Dietrich, Carsten; Moran, Nancy A.

    2017-01-01

    Social bees harbor a simple and specialized microbiota that is spatially organized into different gut compartments. Recent results on the potential involvement of bee gut communities in pathogen protection and nutritional function have drawn attention to the impact of the microbiota on bee health. However, the contributions of gut microbiota to host physiology have yet to be investigated. Here we show that the gut microbiota promotes weight gain of both whole body and the gut in individual honey bees. This effect is likely mediated by changes in host vitellogenin, insulin signaling, and gustatory response. We found that microbial metabolism markedly reduces gut pH and redox potential through the production of short-chain fatty acids and that the bacteria adjacent to the gut wall form an oxygen gradient within the intestine. The short-chain fatty acid profile contributed by dominant gut species was confirmed in vitro. Furthermore, metabolomic analyses revealed that the gut community has striking impacts on the metabolic profiles of the gut compartments and the hemolymph, suggesting that gut bacteria degrade plant polymers from pollen and that the resulting metabolites contribute to host nutrition. Our results demonstrate how microbial metabolism affects bee growth, hormonal signaling, behavior, and gut physicochemical conditions. These findings indicate that the bee gut microbiota has basic roles similar to those found in some other animals and thus provides a model in studies of host–microbe interactions. PMID:28420790

  4. An intestinal microbiota-farnesoid X receptor axis modulates metabolic disease

    PubMed Central

    Gonzalez, Frank J.; Jiang, Changtao; Patterson, Andrew D.

    2016-01-01

    The gut microbiota is associated with metabolic diseases including obesity, insulin resistance and non-alcoholic fatty liver disease (NAFLD), as demonstrated by correlative studies and by transplant of microbiota from obese humans and mice into germ-free mice. Modification of the microbiota by treatment of high-fat diet (HFD)-fed mice with tempol or antibiotics resulted in decreased adverse metabolic phenotypes. This was due to lower levels of the genera Lactobacillus and decreased bile salt hydrolase (BSH) activity. The decreased BSH resulted in increased levels of tauro-β-muricholic acid (T-β-MCA), a substrate of BSH and a potent farnesoid X receptor (FXR) antagonist. Mice lacking expression of FXR in the intestine were resistant to HFD-induced obesity, insulin resistance and NAFLD thus confirming that intestinal FXR is involved in the potentiation of metabolic disease. A potent intestinal FXR antagonist glycine-β-muricholic acid (Gly-MCA) that is resistant to BSH, was developed that when administered to HFD-treated mice, mimics the effect of the altered microbiota on HFD-induced metabolic disease. Gly-MCA had similar effects on genetically obese leptin-deficient mice. The decreased in adverse metabolic phenotype by tempol, antibiotics and Gly-MCA was due to decreased serum ceramides. Mice lacking FXR in intestine also have lower serum ceramides, are metabolic fit and resistant to HFD-induced metabolic disease, and this is reversed by injection of C16:0 ceramide. In mouse ileum, due to the presence of endogenous FXR agonists produced in the liver, FXR target genes involved in ceramide synthesis are activated and when Gly-MCA is administered, they are repressed, which likely accounts for the decrease in serum ceramides. These studies reveal that ceramides produced in the ileum under control of FXR, influence metabolic diseases. PMID:27639801

  5. Intestinal Dysbiosis and Rheumatoid Arthritis: A Link between Gut Microbiota and the Pathogenesis of Rheumatoid Arthritis

    PubMed Central

    Montiel-Jarquín, Alvaro José; Pizano-Zárate, María Luisa

    2017-01-01

    Characterization and understanding of gut microbiota has recently increased representing a wide research field, especially in autoimmune diseases. Gut microbiota is the major source of microbes which might exert beneficial as well as pathogenic effects on human health. Intestinal microbiome's role as mediator of inflammation has only recently emerged. Microbiota has been observed to differ in subjects with early rheumatoid arthritis compared to controls, and this finding has commanded this study as a possible autoimmune process. Studies with intestinal microbiota have shown that rheumatoid arthritis is characterized by an expansion and/or decrease of bacterial groups as compared to controls. In this review, we present evidence linking intestinal dysbiosis with the autoimmune mechanisms involved in the development of rheumatoid arthritis. PMID:28948174

  6. Intestinal microbiota contributes to colonic epithelial changes in simulated microgravity mouse model.

    PubMed

    Shi, Junxiu; Wang, Yifan; He, Jian; Li, Pingping; Jin, Rong; Wang, Ke; Xu, Xi; Hao, Jie; Zhang, Yan; Liu, Hongju; Chen, Xiaoping; Wu, Hounan; Ge, Qing

    2017-08-01

    Exposure to microgravity leads to alterations in multiple systems, but microgravity-related changes in the gastrointestinal tract and its clinical significance have not been well studied. We used the hindlimb unloading (HU) mouse model to simulate a microgravity condition and investigated the changes in intestinal microbiota and colonic epithelial cells. Compared with ground-based controls (Ctrls), HU affected fecal microbiota composition with a profile that was characterized by the expansion of Firmicutes and decrease of Bacteroidetes. The colon epithelium of HU mice showed decreased goblet cell numbers, reduced epithelial cell turnover, and decreased expression of genes that are involved in defense and inflammatory responses. As a result, increased susceptibility to dextran sulfate sodium-induced epithelial injury was observed in HU mice. Cohousing of Ctrl mice with HU mice resulted in HU-like epithelial changes in Ctrl mice. Transplantation of feces from Ctrl to HU mice alleviated these epithelial changes in HU mice. Results indicate that HU changes intestinal microbiota, which leads to altered colonic epithelial cell homeostasis, impaired barrier function, and increased susceptibility to colitis. We further demonstrate that alteration in gastrointestinal motility may contribute to HU-associated dysbiosis. These animal results emphasize the necessity of evaluating astronauts' intestinal homeostasis during distant space travel.-Shi, J., Wang, Y., He, J., Li, P., Jin, R., Wang, K., Xu, X., Hao, J., Zhang, Y., Liu, H., Chen, X., Wu, H., Ge, Q. Intestinal microbiota contributes to colonic epithelial changes in simulated microgravity mouse model. © FASEB.

  7. Interactions of Giardia sp. with the intestinal barrier: Epithelium, mucus, and microbiota

    PubMed Central

    Amat, Christina B.; Buret, André G.

    2017-01-01

    ABSTRACT Understanding how intestinal enteropathogens cause acute and chronic alterations has direct animal and human health perspectives. Significant advances have been made on this field by studies focusing on the dynamic crosstalk between the intestinal protozoan parasite model Giardia duodenalis and the host intestinal mucosa. The concept of intestinal barrier function is of the highest importance in the context of many gastrointestinal diseases such as infectious enteritis, inflammatory bowel disease, and post-infectious gastrointestinal disorders. This crucial function relies on 3 biotic and abiotic components, first the commensal microbiota organized as a biofilm, then an overlaying mucus layer, and finally the tightly structured intestinal epithelium. Herein we review multiple strategies used by Giardia parasite to circumvent these 3 components. We will summarize what is known and discuss preliminary observations suggesting how such enteropathogen directly and/ or indirectly impairs commensal microbiota biofilm architecture, disrupts mucus layer and damages host epithelium physiology and survival. PMID:28452685

  8. Identification of an Intestinal Microbiota Signature Associated With Severity of Irritable Bowel Syndrome.

    PubMed

    Tap, Julien; Derrien, Muriel; Törnblom, Hans; Brazeilles, Rémi; Cools-Portier, Stéphanie; Doré, Joël; Störsrud, Stine; Le Nevé, Boris; Öhman, Lena; Simrén, Magnus

    2017-01-01

    We have limited knowledge about the association between the composition of the intestinal microbiota and clinical features of irritable bowel syndrome (IBS). We collected information on the fecal and mucosa-associated microbiota of patients with IBS and evaluated whether these were associated with symptoms. We collected fecal and mucosal samples from adult patients who met the Rome III criteria for IBS at a secondary/tertiary care outpatient clinics in Sweden, as well as from healthy subjects. The exploratory set comprised 149 subjects (110 with IBS and 39 healthy subjects); 232 fecal samples and 59 mucosal biopsy samples were collected and analyzed by 16S ribosomal RNA targeted pyrosequencing. The validation set comprised 46 subjects (29 with IBS and 17 healthy subjects); 46 fecal samples, but no mucosal samples, were collected and analyzed. For each subject, we measured exhaled H 2 and CH 4 , oro-anal transit time, and the severity of psychological and gastrointestinal symptoms. Fecal methanogens were measured by quantitative polymerase chain reaction. Numerical ecology analyses and a machine learning procedure were used to analyze the data. Fecal microbiota showed covariation with mucosal adherent microbiota. By using classic approaches, we found no differences in fecal microbiota abundance or composition between patients with IBS vs healthy patients. A machine learning procedure, a computational statistical technique, allowed us to reduce the 16S ribosomal RNA data complexity into a microbial signature for severe IBS, consisting of 90 bacterial operational taxonomic units. We confirmed the robustness of the intestinal microbial signature for severe IBS in the validation set. The signature was able to discriminate between patients with severe symptoms, patients with mild/moderate symptoms, and healthy subjects. By using this intestinal microbiota signature, we found IBS symptom severity to be associated negatively with microbial richness, exhaled CH 4 , presence

  9. Impact of Prematurity and Perinatal Antibiotics on the Developing Intestinal Microbiota: A Functional Inference Study.

    PubMed

    Arboleya, Silvia; Sánchez, Borja; Solís, Gonzalo; Fernández, Nuria; Suárez, Marta; Hernández-Barranco, Ana M; Milani, Christian; Margolles, Abelardo; de Los Reyes-Gavilán, Clara G; Ventura, Marco; Gueimonde, Miguel

    2016-04-29

    The microbial colonization of the neonatal gut provides a critical stimulus for normal maturation and development. This process of early microbiota establishment, known to be affected by several factors, constitutes an important determinant for later health. We studied the establishment of the microbiota in preterm and full-term infants and the impact of perinatal antibiotics upon this process in premature babies. To this end, 16S rRNA gene sequence-based microbiota assessment was performed at phylum level and functional inference analyses were conducted. Moreover, the levels of the main intestinal microbial metabolites, the short-chain fatty acids (SCFA) acetate, propionate and butyrate, were measured by Gas-Chromatography Flame ionization/Mass spectrometry detection. Prematurity affects microbiota composition at phylum level, leading to increases of Proteobacteria and reduction of other intestinal microorganisms. Perinatal antibiotic use further affected the microbiota of the preterm infant. These changes involved a concomitant alteration in the levels of intestinal SCFA. Moreover, functional inference analyses allowed for identifying metabolic pathways potentially affected by prematurity and perinatal antibiotics use. A deficiency or delay in the establishment of normal microbiota function seems to be present in preterm infants. Perinatal antibiotic use, such as intrapartum prophylaxis, affected the early life microbiota establishment in preterm newborns, which may have consequences for later health.

  10. Altered gut microbiota associated with intestinal disease in grass carp (Ctenopharyngodon idellus).

    PubMed

    Tran, Ngoc Tuan; Zhang, Jing; Xiong, Fan; Wang, Gui-Tang; Li, Wen-Xiang; Wu, Shan-Gong

    2018-05-18

    Gut microbiota plays a crucial importance in their host. Disturbance of the microbial structure and function is known to be associated with inflammatory intestinal disorders. Enteritis is a significant cause of high mortality in fish species, including grass carp (Ctenopharyngodon idellus). Study regarding the association between microbial alternations and enteritis in grass carp is still absent. In this study, changes in the gut microbiota of grass carp suffering from enteritis were investigated using NGS-based 16S rRNA sequencing. Six healthy and ten abnormal fish (showing reddening anus, red odiferous fluid accumulating in the abdominal capacity, and flatulence and haemorrhage in the intestine) were collected from a fish farm in Huanggang Fisheries Institute (Hubei, China). Our results revealed that the diversity, structure, and function of gut microbiota were significantly different between diseased and healthy fish (P < 0.05). Particularly, members of the genera Dechloromonas, Methylocaldum, Planctomyces, Rhodobacter, Caulobacter, Flavobacterium, and Pseudomonas were significantly increased in diseased fish compared with that in healthy fish (P < 0.05). Predicted function indicated that microbiota significantly changed the specific metabolic pathways (related to amino acid metabolism, xenobiotics biodegradation and metabolism, and carbohydrate metabolism) in diseased fish (P < 0.05). Taken together, our findings point out the association between changes of the gut microbiota and enteritis in grass carp, which provide basic information useful for diagnoses, prevention, and treatment of intestinal diseases occurring in cultured fish.

  11. Aberrant intestinal microbiota due to IL-1 receptor antagonist deficiency promotes IL-17- and TLR4-dependent arthritis.

    PubMed

    Rogier, Rebecca; Ederveen, Thomas H A; Boekhorst, Jos; Wopereis, Harm; Scher, Jose U; Manasson, Julia; Frambach, Sanne J C M; Knol, Jan; Garssen, Johan; van der Kraan, Peter M; Koenders, Marije I; van den Berg, Wim B; van Hijum, Sacha A F T; Abdollahi-Roodsaz, Shahla

    2017-06-23

    Perturbation of commensal intestinal microbiota has been associated with several autoimmune diseases. Mice deficient in interleukin-1 receptor antagonist (Il1rn -/- mice) spontaneously develop autoimmune arthritis and are susceptible to other autoimmune diseases such as psoriasis, diabetes, and encephalomyelitis; however, the mechanisms of increased susceptibility to these autoimmune phenotypes are poorly understood. We investigated the role of interleukin-1 receptor antagonist (IL-1Ra) in regulation of commensal intestinal microbiota, and assessed the involvement of microbiota subsets and innate and adaptive mucosal immune responses that underlie the development of spontaneous arthritis in Il1rn -/- mice. Using high-throughput 16S rRNA gene sequencing, we show that IL-1Ra critically maintains the diversity and regulates the composition of intestinal microbiota in mice. IL-1Ra deficiency reduced the intestinal microbial diversity and richness, and caused specific taxonomic alterations characterized by overrepresented Helicobacter and underrepresented Ruminococcus and Prevotella. Notably, the aberrant intestinal microbiota in IL1rn -/- mice specifically potentiated IL-17 production by intestinal lamina propria (LP) lymphocytes and skewed the LP T cell balance in favor of T helper 17 (Th17) cells, an effect transferable to WT mice by fecal microbiota. Importantly, LP Th17 cell expansion and the development of spontaneous autoimmune arthritis in IL1rn -/- mice were attenuated under germ-free condition. Selective antibiotic treatment revealed that tobramycin-induced alterations of commensal intestinal microbiota, i.e., reduced Helicobacter, Flexispira, Clostridium, and Dehalobacterium, suppressed arthritis in IL1rn -/- mice. The arthritis phenotype in IL1rn -/- mice was previously shown to depend on Toll-like receptor 4 (TLR4). Using the ablation of both IL-1Ra and TLR4, we here show that the aberrations in the IL1rn -/- microbiota are partly TLR4-dependent. We further

  12. Card9 mediates susceptibility to intestinal pathogens through microbiota modulation and control of bacterial virulence.

    PubMed

    Lamas, Bruno; Michel, Marie-Laure; Waldschmitt, Nadine; Pham, Hang-Phuong; Zacharioudaki, Vassiliki; Dupraz, Louise; Delacre, Myriam; Natividad, Jane M; Costa, Gregory Da; Planchais, Julien; Sovran, Bruno; Bridonneau, Chantal; Six, Adrien; Langella, Philippe; Richard, Mathias L; Chamaillard, Mathias; Sokol, Harry

    2017-08-08

    In association with innate and adaptive immunity, the microbiota controls the colonisation resistance against intestinal pathogens. Caspase recruitment domain 9 ( CARD9 ), a key innate immunity gene, is required to shape a normal gut microbiota. Card9 -/- mice are more susceptible to the enteric mouse pathogen Citrobacter rodentium that mimics human infections with enteropathogenic and enterohaemorrhagic Escherichia coli . Here, we examined how CARD9 controls C. rodentium infection susceptibility through microbiota-dependent and microbiota-independent mechanisms. C. rodentium infection was assessed in conventional and germ-free (GF) wild-type (WT) and Card9 -/- mice. To explore the impact of Card9 -/- microbiota in infection susceptibility, GF WT mice were colonised with WT (WT→GF) or Card9 -/- ( Card9 -/- →GF) microbiota before C. rodentium infection. Microbiota composition was determined by 16S rDNA gene sequencing. Inflammation severity was determined by histology score and lipocalin level. Microbiota-host immune system interactions were assessed by quantitative PCR analysis. CARD9 controls pathogen virulence in a microbiota-independent manner by supporting a specific humoral response. Higher susceptibility to C. rodentium -induced colitis was observed in Card9 -/- →GF mice. The microbiota of Card9 -/- mice failed to outcompete the monosaccharide-consuming C. rodentium , worsening the infection severity. A polysaccharide-enriched diet counteracted the ecological advantage of C. rodentium and the defective pathogen-specific antibody response in Card9 -/- mice. CARD9 modulates the susceptibility to intestinal infection by controlling the pathogen virulence in a microbiota-dependent and microbiota-independent manner. Genetic susceptibility to intestinal pathogens can be overridden by diet intervention that restores humoural immunity and a competing microbiota. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017

  13. Effect of in ovo administration of an adult-derived microbiota on establishment of the intestinal microbiome in chickens.

    PubMed

    Pedroso, Adriana A; Batal, Amy B; Lee, Margie D

    2016-05-01

    OBJECTIVE To determine effects of in ovo administration of a probiotic on development of the intestinal microbiota of 2 genetic lineages (modern and heritage) of chickens. SAMPLE 10 newly hatched chicks and 40 fertile eggs to determine intestinal microbiota at hatch, 900 fertile eggs to determine effects of probiotic on hatchability, and 1,560 chicks from treated or control eggs. PROCEDURES A probiotic competitive-exclusion product derived from adult microbiota was administered in ovo to fertile eggs of both genetic lineages. Cecal contents and tissues were collected from embryos, newly hatched chicks, and chicks. A PCR assay was used to detect bacteria present within the cecum of newly hatched chicks. Fluorescence in situ hybridization and vitality staining were used to detect viable bacteria within intestines of embryos. The intestinal microbiota was assessed by use of 16S pyrosequencing. RESULTS Microscopic evaluation of embryonic cecal contents and tissues subjected to differential staining techniques revealed viable bacteria in low numbers. Development of the intestinal microbiota of broiler chicks of both genetic lineages was enhanced by in ovo administration of adult microbiota. Although the treatment increased diversity and affected composition of the microbiota of chicks, most bacterial species present in the probiotic were transient colonizers. However, the treatment decreased the abundance of undesirable bacterial species within heritage lineage chicks. CONCLUSIONS AND CLINICAL RELEVANCE In ovo inoculation of a probiotic competitive-exclusion product derived from adult microbiota may be a viable method of managing development of the microbiota and reducing the prevalence of pathogenic bacteria in chickens.

  14. Salmonella enterica Serovar Typhimurium Exploits Inflammation to Compete with the Intestinal Microbiota

    PubMed Central

    Stecher, Bärbel; Westendorf, Astrid M; Barthel, Manja; Kremer, Marcus; Chaffron, Samuel; Macpherson, Andrew J; Buer, Jan; Parkhill, Julian; Dougan, Gordon; von Mering, Christian; Hardt, Wolf-Dietrich

    2007-01-01

    Most mucosal surfaces of the mammalian body are colonized by microbial communities (“microbiota”). A high density of commensal microbiota inhabits the intestine and shields from infection (“colonization resistance”). The virulence strategies allowing enteropathogenic bacteria to successfully compete with the microbiota and overcome colonization resistance are poorly understood. Here, we investigated manipulation of the intestinal microbiota by the enteropathogenic bacterium Salmonella enterica subspecies 1 serovar Typhimurium (S. Tm) in a mouse colitis model: we found that inflammatory host responses induced by S. Tm changed microbiota composition and suppressed its growth. In contrast to wild-type S. Tm, an avirulent invGsseD mutant failing to trigger colitis was outcompeted by the microbiota. This competitive defect was reverted if inflammation was provided concomitantly by mixed infection with wild-type S. Tm or in mice (IL10−/−, VILLIN-HACL4-CD8) with inflammatory bowel disease. Thus, inflammation is necessary and sufficient for overcoming colonization resistance. This reveals a new concept in infectious disease: in contrast to current thinking, inflammation is not always detrimental for the pathogen. Triggering the host's immune defence can shift the balance between the protective microbiota and the pathogen in favour of the pathogen. PMID:17760501

  15. Effects of Radiation on the Microbiota and Intestinal Inflammatory Disease

    DTIC Science & Technology

    2016-09-01

    focal (GI tract) irradiation of mice on the bacterial and fungal microbiota. We have identified substantial changes in intestinal microbial...minimal acute symptoms, will develop long-term consequences of irradiation including permanent changes to bowel function and intestinal fibrosis, which...mice exposed to total body irradiation (TBI) or focal radiation to the GI tract. Timeline Status Site 1 (Stephen Shiao, MD, PhD) Site 2

  16. Chronic Trichuris muris Infection Decreases Diversity of the Intestinal Microbiota and Concomitantly Increases the Abundance of Lactobacilli.

    PubMed

    Holm, Jacob Bak; Sorobetea, Daniel; Kiilerich, Pia; Ramayo-Caldas, Yuliaxis; Estellé, Jordi; Ma, Tao; Madsen, Lise; Kristiansen, Karsten; Svensson-Frej, Marcus

    2015-01-01

    The intestinal microbiota is vital for shaping the local intestinal environment as well as host immunity and metabolism. At the same time, epidemiological and experimental evidence suggest an important role for parasitic worm infections in maintaining the inflammatory and regulatory balance of the immune system. In line with this, the prevalence of persistent worm infections is inversely correlated with the incidence of immune-associated diseases, prompting the use of controlled parasite infections for therapeutic purposes. Despite this, the impact of parasite infection on the intestinal microbiota, as well as potential downstream effects on the immune system, remain largely unknown. We have assessed the influence of chronic infection with the large-intestinal nematode Trichuris muris, a close relative of the human pathogen Trichuris trichiura, on the composition of the murine intestinal microbiota by 16S ribosomal-RNA gene-based sequencing. Our results demonstrate that persistent T. muris infection dramatically affects the large-intestinal microbiota, most notably with a drop in the diversity of bacterial communities, as well as a marked increase in the relative abundance of the Lactobacillus genus. In parallel, chronic T. muris infection resulted in a significant shift in the balance between regulatory and inflammatory T cells in the intestinal adaptive immune system, in favour of inflammatory cells. Together, these data demonstrate that chronic parasite infection strongly influences the intestinal microbiota and the adaptive immune system. Our results illustrate the complex interactions between these factors in the intestinal tract, and contribute to furthering the understanding of this interplay, which is of crucial importance considering that 500 million people globally are suffering from these infections and their potential use for therapeutic purposes.

  17. Influence of Intestinal Indigenous Microbiota on Intrafamilial Infection by Helicobacter pylori in Japan

    PubMed Central

    Osaki, Takako; Zaman, Cynthia; Yonezawa, Hideo; Lin, Yingsong; Okuda, Masumi; Nozaki, Eriko; Hojo, Fuhito; Kurata, Satoshi; Hanawa, Tomoko; Kikuchi, Shogo; Kamiya, Shigeru

    2018-01-01

    Helicobacter pylori is a causative pathogen of chronic gastritis, gastric ulcer disease, and gastric cancer. Humans are known to be a natural host for H. pylori and tend to acquire the pathogen before the age of 5 years. The infection may then persist lifelong if eradication therapy is not applied. One of the modes of transmission of H. pylori is between family members, and therefore, the presence of infected family members is an important risk factor in children. However, other environmental factors have not been fully analyzed. The present study was performed to clarify whether and to what extent intestinal microbiota affect H. pylori intrafamilial infection. The fecal specimens from H. pylori-infected infants and H. pylori-infected and non-infected family members were collected in cohort studies conducted by Sasayama City, Hyogo Prefecture from 2010 to 2013. In total, 18 fecal DNA from 5 families were analyzed. Samples were amplified using 16S rRNA universal primers, and the amplicons were sequenced using the Ion PGM system. Principal-coordinate analysis demonstrated that there was no difference in intestinal microbiota between H. pylori-positive and H. pylori-negative groups. In intrafamilial comparison tests, the Manhattan distance of intestinal microbiota between the H. pylori-infected infant proband and H. pylori-negative mother was nearest in the family with low intestinal microbial diversity. However, in the family with the highest intestinal microbial diversity, the nearest Manhattan distance was shown between the H. pylori-infected infant proband and H. pylori-infected mother. The results in this study showed that the composition of the intestinal microbiota was very similar between members of the same family, and as such, colonization with organisms highly similar to the infected parent(s) may be a risk factor for H. pylori infection in children. PMID:29515585

  18. Prevention of Necrotizing Enterocolitis Through Manipulation of the Intestinal Microbiota of the Premature Infant

    PubMed Central

    Vongbhavit, Kannikar; Underwood, Mark A.

    2016-01-01

    In spite of four decades of research, necrotizing enterocolitis (NEC) remains the most common gastrointestinal complication in premature infants with high mortality and long-term morbidity. The composition of the intestinal microbiota of the premature infant differs dramatically from that of the healthy term infant and appears to be an important risk factor for NEC. Promising NEC prevention strategies that alter the intestinal microbiota include probiotics, prebiotics, synbiotics, lacteroferrin, and human milk feeding. PMID:26872618

  19. Natural polyreactive IgA antibodies coat the intestinal microbiota

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bunker, Jeffrey J.; Erickson, Steven A.; Flynn, Theodore M.

    Large quantities of immunoglobulin A (IgA) are constitutively secreted by intestinal plasma cells to coat and contain the commensal microbiota, yet the specificity of these antibodies remains elusive. In this paper, we profiled the reactivities of single murine IgA plasma cells by cloning and characterizing large numbers of monoclonal antibodies. IgAs were not specific to individual bacterial taxa but rather polyreactive, with broad reactivity to a diverse, but defined, subset of microbiota. These antibodies arose at low frequencies among naïve B cells and were selected into the IgA repertoire upon recirculation in Peyer’s patches. This selection process occurred independent ofmore » microbiota or dietary antigens. Furthermore, although some IgAs acquired somatic mutations, these did not substantially influence their reactivity. In conclusion, these findings reveal an endogenous mechanism driving homeostatic production of polyreactive IgAs with innate specificity to microbiota.« less

  20. Natural polyreactive IgA antibodies coat the intestinal microbiota

    DOE PAGES

    Bunker, Jeffrey J.; Erickson, Steven A.; Flynn, Theodore M.; ...

    2017-09-28

    Large quantities of immunoglobulin A (IgA) are constitutively secreted by intestinal plasma cells to coat and contain the commensal microbiota, yet the specificity of these antibodies remains elusive. In this paper, we profiled the reactivities of single murine IgA plasma cells by cloning and characterizing large numbers of monoclonal antibodies. IgAs were not specific to individual bacterial taxa but rather polyreactive, with broad reactivity to a diverse, but defined, subset of microbiota. These antibodies arose at low frequencies among naïve B cells and were selected into the IgA repertoire upon recirculation in Peyer’s patches. This selection process occurred independent ofmore » microbiota or dietary antigens. Furthermore, although some IgAs acquired somatic mutations, these did not substantially influence their reactivity. In conclusion, these findings reveal an endogenous mechanism driving homeostatic production of polyreactive IgAs with innate specificity to microbiota.« less

  1. The role of intestinal microbiota in the pathogenesis of metabolic diseases.

    PubMed

    Węgielska, Iwona; Suliburska, Joanna

    2016-01-01

    The incidence of metabolic diseases is increasing rapidly all over the world. This situation has led researchers to attempt to explain the pathomechanisms of these disorders and to develop specific recommendations for the prevention and treatment of diseases such as obesity, type-2 diabetes, and atherosclerosis. Recent studies show clear evidence of the role of human intestinal microbiota in health and in predispositions to diseases. Gut microbiota affect a number of complex metabolic reactions, significantly altering the functioning of the human body. Numerous experiments have shown the key role played by the formation process of the intestinal ecosystem in the early stages of human life for programming its metabolic health. The following article is a compilation of the literature available on the formation of the complex intestinal ecosystem and its impact on the incidence of diseases such as obesity, type-2 diabetes, and atherosclerosis.

  2. Lychee (Litchi chinensis Sonn.) Pulp Phenolic Extract Provides Protection against Alcoholic Liver Injury in Mice by Alleviating Intestinal Microbiota Dysbiosis, Intestinal Barrier Dysfunction, and Liver Inflammation.

    PubMed

    Xiao, Juan; Zhang, Ruifen; Zhou, Qiuyun; Liu, Lei; Huang, Fei; Deng, Yuanyuan; Ma, Yongxuan; Wei, Zhencheng; Tang, Xiaojun; Zhang, Mingwei

    2017-11-08

    Liver injury is the most common consequence of alcohol abuse, which is promoted by the inflammatory response triggered by gut-derived endotoxins produced as a consequence of intestinal microbiota dysbiosis and barrier dysfunction. The aim of this study was to investigate whether modulation of intestinal microbiota and barrier function, and liver inflammation contributes to the hepatoprotective effect of lychee pulp phenolic extract (LPPE) in alcohol-fed mice. Mice were treated with an ethanol-containing liquid diet alone or in combination with LPPE for 8 weeks. LPPE supplementation alleviated ethanol-induced liver injury and downregulated key markers of inflammation. Moreover, LPPE supplementation reversed the ethanol-induced alteration of intestinal microbiota composition and increased the expression of intestinal tight junction proteins, mucus protecting proteins, and antimicrobial proteins. Furthermore, in addition to decreasing serum endotoxin level, LPPE supplementation suppressed CD14 and toll-like receptor 4 expression, and repressed the activation of nuclear factor-κB p65 in the liver. These data suggest that intestinal microbiota dysbiosis, intestinal barrier dysfunction, and liver inflammation are improved by LPPE, and therefore, the intake of LPPE or Litchi pulp may be an effective strategy to alleviate the susceptibility to alcohol-induced hepatic diseases.

  3. Diet-Induced Dysbiosis of the Intestinal Microbiota and the Effects on Immunity and Disease

    PubMed Central

    Brown, Kirsty; DeCoffe, Daniella; Molcan, Erin; Gibson, Deanna L.

    2012-01-01

    The gastrointestinal (GI) microbiota is the collection of microbes which reside in the GI tract and represents the largest source of non-self antigens in the human body. The GI tract functions as a major immunological organ as it must maintain tolerance to commensal and dietary antigens while remaining responsive to pathogenic stimuli. If this balance is disrupted, inappropriate inflammatory processes can result, leading to host cell damage and/or autoimmunity. Evidence suggests that the composition of the intestinal microbiota can influence susceptibility to chronic disease of the intestinal tract including ulcerative colitis, Crohn’s disease, celiac disease and irritable bowel syndrome, as well as more systemic diseases such as obesity, type 1 diabetes and type 2 diabetes. Interestingly, a considerable shift in diet has coincided with increased incidence of many of these inflammatory diseases. It was originally believed that the composition of the intestinal microbiota was relatively stable from early childhood; however, recent evidence suggests that diet can cause dysbiosis, an alteration in the composition of the microbiota, which could lead to aberrant immune responses. The role of the microbiota and the potential for diet-induced dysbiosis in inflammatory conditions of the GI tract and systemic diseases will be discussed. PMID:23016134

  4. Intestinal alkaline phosphatase detoxifies lipopolysaccharide and prevents inflammation in zebrafish in response to the gut microbiota.

    PubMed

    Bates, Jennifer M; Akerlund, Janie; Mittge, Erika; Guillemin, Karen

    2007-12-13

    Vertebrates harbor abundant lipopolysaccharide (LPS) in their gut microbiota. Alkaline phosphatases can dephosphorylate and detoxify the endotoxin component of LPS. Here, we show that expression of the zebrafish intestinal alkaline phosphatase (Iap), localized to the intestinal lumen brush border, is induced during establishment of the gut microbiota. Iap-deficient zebrafish are hypersensitive to LPS toxicity and exhibit the excessive intestinal neutrophil influx characteristic of wild-type zebrafish exposed to LPS. Both of these Iap mutant phenotypes are dependent on Myd88 and Tumor Necrosis Factor Receptor (Tnfr), proteins also involved in LPS sensitivity in mammals. When reared germ-free, the intestines of Iap-deficient zebrafish are devoid of neutrophils. Together, these findings demonstrate that the endogenous microbiota establish the normal homeostatic level of neutrophils in the zebrafish intestine through a process involving Iap, Myd88, and Tnfr. Thus, by preventing inflammatory responses, Iap plays a crucial role in promoting mucosal tolerance to resident gut bacteria.

  5. Intestinal Microbiota of White Shrimp Penaeus vannamei Under Intensive Cultivation Conditions in Ecuador.

    PubMed

    Gainza, Oreste; Ramírez, Carolina; Ramos, Alfredo Salinas; Romero, Jaime

    2018-04-01

    The goal of the study was to characterize the intestinal tract bacterial microbiota composition of Penaeus vannamei in intensive commercial ponds in Ecuador, comparing two shrimp-farming phases: nursery and harvest. Bacterial microbiota was examined by sequencing amplicons V2-V3 of the 16S rRNA using Ion Torrent technology. Archaea sequences were detected in both phases. Sequence analyses revealed quantitative and qualitative differences between the nursery phase and the harvest phase in shrimp intestinal microbiota composition. The main differences were observed at the phylum level during the nursery phase, and the prevailing phyla were CKC4 (37.3%), Proteobacteria (29.8%), Actinobacteria (11.6%), and Firmicutes (10.1%). In the harvest phase, the prevailing phyla were Proteobacteria (28.4%), Chloroflexi (19.9%), and Actinobacteria (15.1%). At the genus level, microbiota from the nursery phase showed greater relative abundances of CKC4 uncultured bacterium (37%) and Escherichia-Shigella (18%). On the contrary, in the microbiota of harvested shrimp, the prevailing genera were uncultured Caldilinea (19%) and Alphaproteobacteria with no other assigned rate (10%). The analysis of similarity ANOSIM test (beta diversity) indicated significant differences between the shrimp microbiota for these two farming phases. Similarly, alfa-diversity analysis (Chao1) indicated that the microbiota at harvest was far more diverse than the microbiota during the nursery phase, which showed a homogeneous composition. These results suggest that shrimp microbiota diversify their composition during intensive farming. The present work offers the most detailed description of the microbiota of P. vannamei under commercial production conditions to date.

  6. Composition, diversity and function of intestinal microbiota in pacific white shrimp (Litopenaeus vannamei) at different culture stages.

    PubMed

    Zeng, Shenzheng; Huang, Zhijian; Hou, Dongwei; Liu, Jian; Weng, Shaoping; He, Jianguo

    2017-01-01

    Intestinal microbiota is an integral component of the host and plays important roles in host health. The pacific white shrimp is one of the most profitable aquaculture species commercialized in the world market with the largest production in shrimp consumption. Many studies revealed that the intestinal microbiota shifted significantly during host development in other aquaculture animals. In the present study, 22 shrimp samples were collected every 15 days from larval stage (15 day post-hatching, dph) to adult stage (75 dph) to investigate the intestinal microbiota at different culture stages by targeting the V4 region of 16S rRNA gene, and the microbial function prediction was conducted by PICRUSt. The operational taxonomic unit (OTU) was assigned at 97% sequence identity. A total of 2,496 OTUs were obtained, ranging from 585 to 1,239 in each sample. Forty-three phyla were identified due to the classifiable sequence. The most abundant phyla were Proteobacteria, Cyanobacteria, Tenericutes, Fusobacteria, Firmicutes, Verrucomicrobia, Bacteroidetes, Planctomycetes, Actinobacteria and Chloroflexi. OTUs belonged to 289 genera and the most abundant genera were Candidatus_Xiphinematobacter , Propionigenium , Synechococcus , Shewanella and Cetobacterium . Fifty-nine OTUs were detected in all samples, which were considered as the major microbes in intestine of shrimp. The intestinal microbiota was enriched with functional potentials that were related to transporters, ABC transporters, DNA repair and recombination proteins, two component system, secretion system, bacterial motility proteins, purine metabolism and ribosome. All the results showed that the intestinal microbial composition, diversity and functions varied significantly at different culture stages, which indicated that shrimp intestinal microbiota depended on culture stages. These findings provided new evidence on intestinal microorganism microecology and greatly enhanced our understanding of stage

  7. Role of intestinal microbiota and metabolites on gut homeostasis and human diseases.

    PubMed

    Lin, Lan; Zhang, Jianqiong

    2017-01-06

    A vast diversity of microbes colonizes in the human gastrointestinal tract, referred to intestinal microbiota. Microbiota and products thereof are indispensable for shaping the development and function of host innate immune system, thereby exerting multifaceted impacts in gut health. This paper reviews the effects on immunity of gut microbe-derived nucleic acids, and gut microbial metabolites, as well as the involvement of commensals in the gut homeostasis. We focus on the recent findings with an intention to illuminate the mechanisms by which the microbiota and products thereof are interacting with host immunity, as well as to scrutinize imbalanced gut microbiota (dysbiosis) which lead to autoimmune disorders including inflammatory bowel disease (IBD), Type 1 diabetes (T1D) and systemic immune syndromes such as rheumatoid arthritis (RA). In addition to their well-recognized benefits in the gut such as occupation of ecological niches and competition with pathogens, commensal bacteria have been shown to strengthen the gut barrier and to exert immunomodulatory actions within the gut and beyond. It has been realized that impaired intestinal microbiota not only contribute to gut diseases but also are inextricably linked to metabolic disorders and even brain dysfunction. A better understanding of the mutual interactions of the microbiota and host immune system, would shed light on our endeavors of disease prevention and broaden the path to our discovery of immune intervention targets for disease treatment.

  8. Intestinal Microbiota and Relapse After Hematopoietic-Cell Transplantation.

    PubMed

    Peled, Jonathan U; Devlin, Sean M; Staffas, Anna; Lumish, Melissa; Khanin, Raya; Littmann, Eric R; Ling, Lilan; Kosuri, Satyajit; Maloy, Molly; Slingerland, John B; Ahr, Katya F; Porosnicu Rodriguez, Kori A; Shono, Yusuke; Slingerland, Ann E; Docampo, Melissa D; Sung, Anthony D; Weber, Daniela; Alousi, Amin M; Gyurkocza, Boglarka; Ponce, Doris M; Barker, Juliet N; Perales, Miguel-Angel; Giralt, Sergio A; Taur, Ying; Pamer, Eric G; Jenq, Robert R; van den Brink, Marcel R M

    2017-05-20

    Purpose The major causes of mortality after allogeneic hematopoietic-cell transplantation (allo-HCT) are relapse, graft-versus-host disease (GVHD), and infection. We have reported previously that alterations in the intestinal flora are associated with GVHD, bacteremia, and reduced overall survival after allo-HCT. Because intestinal bacteria are potent modulators of systemic immune responses, including antitumor effects, we hypothesized that components of the intestinal flora could be associated with relapse after allo-HCT. Methods The intestinal microbiota of 541 patients admitted for allo-HCT was profiled by means of 16S ribosomal sequencing of prospectively collected stool samples. We examined the relationship between abundance of microbiota species or groups of related species and relapse/progression of disease during 2 years of follow-up time after allo-HCT by using cause-specific proportional hazards in a retrospective discovery-validation cohort study. Results Higher abundance of a bacterial group composed mostly of Eubacterium limosum in the validation set was associated with a decreased risk of relapse/progression of disease (hazard ratio [HR], 0.82 per 10-fold increase in abundance; 95% CI, 0.71 to 0.95; P = .009). When the patients were categorized according to presence or absence of this bacterial group, presence also was associated with less relapse/progression of disease (HR, 0.52; 95% CI, 0.31 to 0.87; P = .01). The 2-year cumulative incidences of relapse/progression among patients with and without this group of bacteria were 19.8% and 33.8%, respectively. These associations remained significant in multivariable models and were strongest among recipients of T-cell-replete allografts. Conclusion We found associations between the abundance of a group of bacteria in the intestinal flora and relapse/progression of disease after allo-HCT. These might serve as potential biomarkers or therapeutic targets to prevent relapse and improve survival after allo-HCT.

  9. Mosapride Stabilizes Intestinal Microbiota to Reduce Bacterial Translocation and Endotoxemia in CCl4-Induced Cirrhotic Rats.

    PubMed

    Xu, Hong; Xiong, Jingfang; Xu, Jianjun; Li, Shuiming; Zhou, Yang; Chen, Dongya; Cai, Xinjun; Ping, Jian; Deng, Min; Chen, Jianyong

    2017-10-01

    Impaired intestinal motility may lead to the disruption of gut microbiota equilibrium, which in turn facilitates bacterial translocation (BT) and endotoxemia in cirrhosis. We evaluated the influence of mosapride, a prokinetic agent, on BT and DNA fingerprints of gut microbiota in cirrhotic rats. A rat model of cirrhosis was set up via subcutaneous injection of carbon tetrachloride (CCl 4 ). The portal pressure, liver and intestinal damage, plasma endotoxin, BT, and intestinal transit rate (ITR) of cirrhotic rats were determined. Fecal DNA fingerprints were obtained by ERIC-PCR. The expressions of tight junction proteins were evaluated by western blotting. Mosapride treatment to cirrhotic rats significantly reduced the plasma endotoxin level and incidence of BT, accompanied by increased ITR. Cirrhotic rats (including those treated with mosapride) suffered from BT exhibited significantly lower ITR than those who are free of BT. Pearson coefficient indicated a significant and negative correlation between the plasma endotoxin level and ITR. The genomic fingerprints of intestinal microbiota from the three groups fell into three distinctive clusters. In the mosapride-treated group, Shannon's index was remarkably increased compared to the model group. Significantly positive correlation was detected between Shannon's index and ITR. Mosapride did not improve hepatic and intestinal damages and ileal expressions of occludin and ZO-1. Mosapride significantly increases intestinal motility in cirrhotic rats, thus to recover the disordered intestinal microbiota, finally resulting in decreased plasma endotoxin and BT.

  10. Know your neighbor: Microbiota and host epithelial cells interact locally to control intestinal function and physiology.

    PubMed

    Sommer, Felix; Bäckhed, Fredrik

    2016-05-01

    Interactions between the host and its associated microbiota differ spatially and the local cross talk determines organ function and physiology. Animals and their organs are not uniform but contain several functional and cellular compartments and gradients. In the intestinal tract, different parts of the gut carry out different functions, tissue structure varies accordingly, epithelial cells are differentially distributed and gradients exist for several physicochemical parameters such as nutrients, pH, or oxygen. Consequently, the microbiota composition also differs along the length of the gut, but also between lumen and mucosa of the same intestinal segment, and even along the crypt-villus axis in the epithelium. Thus, host-microbiota interactions are highly site-specific and the local cross talk determines intestinal function and physiology. Here we review recent advances in our understanding of site-specific host-microbiota interactions and discuss their functional relevance for host physiology. © 2016 WILEY Periodicals, Inc.

  11. Feed-additive probiotics accelerate yet antibiotics delay intestinal microbiota maturation in broiler chicken.

    PubMed

    Gao, Pengfei; Ma, Chen; Sun, Zheng; Wang, Lifeng; Huang, Shi; Su, Xiaoquan; Xu, Jian; Zhang, Heping

    2017-08-03

    Reducing antibiotics overuse in animal agriculture is one key in combat against the spread of antibiotic resistance. Probiotics are a potential replacement of antibiotics in animal feed; however, it is not clear whether and how probiotics and antibiotics differ in impact on physiology and microbial ecology of host animals. Host phenotype and fecal microbiota of broilers with either antibiotics or probiotics as feed additive were simultaneously sampled at four time points from birth to slaughter and then compared. Probiotic feeding resulted in a lower feed conversion ratio (FCR) and induced the highest level of immunity response, suggesting greater economic benefits in broiler farming. Probiotic use but not antibiotic use recapitulated the characteristics of age-dependent development of gut microbiota in the control group. The maturation of intestinal microbiota was greatly accelerated by probiotic feeding, yet significantly retarded and eventually delayed by antibiotic feeding. LP-8 stimulated the growth of many intestinal Lactobacillus spp. and led to an altered bacterial correlation network where Lactobacillus spp. are negatively correlated with 14 genera and positively linked with none, yet from the start antibiotic feeding featured a less-organized network where such inter-genera interactions were fewer and weaker. Consistently, microbiota-encoded functions as revealed by metagenome sequencing were highly distinct between the two groups. Thus, "intestinal microbiota maturation index" was proposed to quantitatively compare impact of feed additives on animal microecology. Our results reveal a tremendous potential of probiotics as antibiotics' substitute in poultry farming.

  12. Modulation of microbiota as treatment for intestinal inflammatory disorders: An uptodate

    PubMed Central

    Gallo, Antonella; Passaro, Giovanna; Gasbarrini, Antonio; Landolfi, Raffaele; Montalto, Massimo

    2016-01-01

    Alterations of intestinal microflora may significantly contribute to the pathogenesis of different inflammatory and autoimmune disorders. There is emerging interest on the role of selective modulation of microflora in inducing benefits in inflammatory intestinal disorders, by as probiotics, prebiotics, synbiotics, antibiotics, and fecal microbiota transplantation (FMT). To summarize recent evidences on microflora modulation in main intestinal inflammatory disorders, PubMed was searched using terms microbiota, intestinal flora, probiotics, prebiotics, fecal transplantation. More than three hundred articles published up to 2015 were selected and reviewed. Randomized placebo-controlled trials and meta-analysis were firstly included, mainly for probiotics. A meta-analysis was not performed because of the heterogeneity of these studies. Most of relevant data derived from studies on probiotics, reporting some efficacy in ulcerative colitis and in pouchitis, while disappointing results are available for Crohn’s disease. Probiotic supplementation may significantly reduce rates of rotavirus diarrhea. Efficacy of probiotics in NSAID enteropathy and irritable bowel syndrome is still controversial. Finally, FMT has been recently recognized as an efficacious treatment for recurrent Clostridium difficile infection. Modulation of intestinal flora represents a very interesting therapeutic target, although it still deserves some doubts and limitations. Future studies should be encouraged to provide new understanding about its therapeutical role. PMID:27621567

  13. Intestinal microbiota enhances pancreatic carcinogenesis in preclinical models.

    PubMed

    Thomas, Ryan M; Gharaibeh, Raad Z; Gauthier, Josee; Beveridge, Mark; Pope, Jillian L; Guijarro, Maria V; Yu, Qin; He, Zhen; Ohland, Christina; Newsome, Rachel; Trevino, Jose; Hughes, Steven J; Reinhard, Mary; Winglee, Kathryn; Fodor, Anthony A; Zajac-Kaye, Maria; Jobin, Christian

    2018-05-28

    Pancreatic ductal adenocarcinoma (PDAC) is the third leading cause of cancer death in the United States yet data are scant regarding host factors influencing pancreatic carcinogenesis. Increasing evidence support the role of the host microbiota in carcinogenesis but its role in PDAC is not well established. Herein we report that antibiotic-mediated microbial depletion of KrasG12D/PTENlox/+ mice showed a decreased proportion of poorly differentiated tumors compared to microbiota-intact KrasG12D/PTENlox/+ mice. Subsequent 16S rRNA PCR showed that ~50% of KrasG12D/PTENlox/+ mice with PDAC harbored intrapancreatic bacteria. To determine if a similar observation in humans correlates with presence of PDAC, benign and malignant human pancreatic surgical specimens demonstrated a microbiota by 16S bacterial sequencing and culture confirmation. However, the microbial composition did not differentiate PDAC from non-PDAC tissue. Furthermore, murine pancreas did not naturally acquire a pancreatic microbiota, as germ-free mice transferred to specific pathogen-free housing failed to acquire intrapancreatic bacteria over time, which was not augmented by a murine model of colitis. Finally, antibiotic-mediated microbial depletion of Nod-SCID mice, compared to microbiota-intact, showed increased time to PDAC xenograft formation, smaller tumors, and attenuated growth. Interestingly, both xenograft cohorts were devoid of intratumoral bacteria by 16S rRNA PCR, suggesting that intrapancreatic/intratumoral microbiota is not the sole driver of PDAC acceleration. Xenografts from microbiota-intact mice demonstrated innate immune suppression by immunohistochemistry and differential regulation of oncogenic pathways as determined by RNA sequencing. Our work supports a long-distance role of the intestinal microbiota on PDAC progression and opens new research avenues regarding pancreatic carcinogenesis.

  14. The enteric microbiota regulates jejunal Paneth cell number and function without impacting intestinal stem cells.

    PubMed

    Schoenborn, Alexi A; von Furstenberg, Richard J; Valsaraj, Smrithi; Hussain, Farah S; Stein, Molly; Shanahan, Michael T; Henning, Susan J; Gulati, Ajay S

    2018-06-08

    Paneth cells (PCs) are epithelial cells found in the small intestine, next to intestinal stem cells (ISCs) at the base of the crypts. PCs secrete antimicrobial peptides (AMPs) that regulate the commensal gut microbiota. In contrast, little is known regarding how the enteric microbiota reciprocally influences PC function. In this study, we sought to characterize the impact of the enteric microbiota on PC biology in the mouse small intestine. This was done by first enumerating jejunal PCs in germ-free (GF) versus conventionally-raised (CR) mice. We next evaluated the possible functional consequences of altered PC biology in these experimental groups by assessing epithelial proliferation, ISC numbers, and the production of AMPs. We found that PC numbers were significantly increased in CR versus GF mice; however, there were no differences in ISC numbers or cycling activity between groups. Of the AMPs assessed, only Reg3γ transcript expression was significantly increased in CR mice. Intriguingly, this increase was abrogated in cultured CR versus GF enteroids, and could not be re-induced with various bacterial ligands. Our findings demonstrate the enteric microbiota regulates PC function by increasing PC numbers and inducing Reg3γ expression, though the latter effect may not involve direct interactions between bacteria and the intestinal epithelium. In contrast, the enteric microbiota does not appear to regulate jejunal ISC census and proliferation. These are critical findings for investigators using GF mice and the enteroid system to study PC and ISC biology.

  15. Establishment and development of the intestinal microbiota of preterm infants in a Lebanese tertiary hospital.

    PubMed

    Itani, Tarek; Ayoub Moubareck, Carole; Melki, Imad; Rousseau, Clotilde; Mangin, Irène; Butel, Marie-José; Karam Sarkis, Dolla

    2017-02-01

    The establishment and development of the intestinal microbiota is known to be associated with profound short- and long-term effects on the health of full-term infants (FTI), but studies are just starting for preterm infants (PTI). The data also mostly come from western countries and little information is available for the Middle East. Here, we determined the composition and dynamics of the intestinal microbiota during the first month of life for PTI (n = 66) and FTI (n = 17) in Lebanon. Fecal samples were collected weekly and analyzed by quantitative PCR (q-PCR) and temporal temperature gradient gel electrophoresis (TTGE). We observed differences in the establishment and composition of the intestinal microbiota between the two groups. q-PCR showed that PTI were more highly colonized by Staphylococcus than FTI in the first three weeks of life; whereas FTI were more highly colonized by Clostridium clusters I and XI. At one month of life, PTI were mainly colonized by facultative anaerobes and a few strict anaerobes, such as Clostridium cluster I and Bifidobacterium. The type of feeding and antibiotic treatments significantly affected intestinal colonization. TTGE revealed low species diversity in both groups and high inter-individual variability in PTI. Our findings show that PTI had altered intestinal colonization with a higher occurrence of potential pathogens (Enterobacter, Clostridium sp) than FTI. This suggests the need for intervention strategies for PTI to modulate their intestinal microbiota and promote their health. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  16. Intestinal microbiota composition in fishes is influenced by host ecology and environment.

    PubMed

    Wong, Sandi; Rawls, John F

    2012-07-01

    The digestive tracts of vertebrates are colonized by complex assemblages of micro-organisms, collectively called the gut microbiota. Recent studies have revealed important contributions of gut microbiota to vertebrate health and disease, stimulating intense interest in understanding how gut microbial communities are assembled and how they impact host fitness (Sekirov et al. 2010). Although all vertebrates harbour a gut microbiota, current information on microbiota composition and function has been derived primarily from mammals. Comparisons of different mammalian species have revealed intriguing associations between gut microbiota composition and host diet, anatomy and phylogeny (Ley et al. 2008b). However, mammals constitute <10% of all vertebrate species, and it remains unclear whether similar associations exist in more diverse and ancient vertebrate lineages such as fish. In this issue, Sullam et al. (2012) make an important contribution toward identifying factors determining gut microbiota composition in fishes. The authors conducted a detailed meta-analysis of 25 bacterial 16S rRNA gene sequence libraries derived from the intestines of different fish species. To provide a broader context for their analysis, they compared these data sets to a large collection of 16S rRNA gene sequence data sets from diverse free-living and host-associated bacterial communities. Their results suggest that variation in gut microbiota composition in fishes is strongly correlated with species habitat salinity, trophic level and possibly taxonomy. Comparison of data sets from fish intestines and other environments revealed that fish gut microbiota compositions are often similar to those of other animals and contain relatively few free-living environmental bacteria. These results suggest that the gut microbiota composition of fishes is not a simple reflection of the micro-organisms in their local habitat but may result from host-specific selective pressures within the gut (Bevins

  17. High-Fat Diet Consumption Induces Microbiota Dysbiosis and Intestinal Inflammation in Zebrafish.

    PubMed

    Arias-Jayo, Nerea; Abecia, Leticia; Alonso-Sáez, Laura; Ramirez-Garcia, Andoni; Rodriguez, Alfonso; Pardo, Miguel A

    2018-05-07

    Energy-dense foods and overnutrition represent major starting points altering lipid metabolism, systemic inflammation and gut microbiota. The aim of this work was to investigate the effects of a high-fat diet (HFD) over a period of 25 days on intestinal microbiota and inflammation in zebrafish. Microbial composition of HFD-fed animals was analysed and compared to controls by 16S rRNA sequencing and quantitative PCR. The expression level on several genes related to inflammation was tested. Furthermore, microscopic assessment of the intestine was performed in both conditions. The consumption of the HFD resulted in microbial dysbiosis, characterised by an increase in the relative abundance of the phylum Bacteroidetes. Moreover, an emerging intestinal inflammation via NF-κβ activation was confirmed by the overexpression of several genes related to signalling receptors, antimicrobial metabolism and the inflammatory cascade. The intestinal barrier was also damaged, with an increase of goblet cell mucin production. This is the first study performed in zebrafish which suggests that the consumption of a diet enriched with 10% fat changes the intestinal microbial community composition, which was correlated with low-grade inflammation.

  18. Bacteriocin from epidemic Listeria strains alters the host intestinal microbiota to favor infection

    PubMed Central

    Quereda, Juan J.; Dussurget, Olivier; Nahori, Marie-Anne; Ghozlane, Amine; Volant, Stevenn; Dillies, Marie-Agnès; Regnault, Béatrice; Kennedy, Sean; Mondot, Stanislas; Villoing, Barbara; Cossart, Pascale; Pizarro-Cerda, Javier

    2016-01-01

    Listeria monocytogenes is responsible for gastroenteritis in healthy individuals and for a severe invasive disease in immunocompromised patients. Among the three identified L. monocytogenes evolutionary lineages, lineage I strains are overrepresented in epidemic listeriosis outbreaks, but the mechanisms underlying the higher virulence potential of strains of this lineage remain elusive. Here, we demonstrate that Listeriolysin S (LLS), a virulence factor only present in a subset of lineage I strains, is a bacteriocin highly expressed in the intestine of orally infected mice that alters the host intestinal microbiota and promotes intestinal colonization by L. monocytogenes, as well as deeper organ infection. To our knowledge, these results therefore identify LLS as the first bacteriocin described in L. monocytogenes and associate modulation of host microbiota by L. monocytogenes epidemic strains to increased virulence. PMID:27140611

  19. Intestinal microbiota and lipid metabolism responses in the common carp (Cyprinus carpio L.) following copper exposure.

    PubMed

    Meng, Xiao-Lin; Li, Shuai; Qin, Chao-Bin; Zhu, Zhen-Xiang; Hu, Wen-Pan; Yang, Li-Ping; Lu, Rong-Hua; Li, Wen-Jun; Nie, Guo-Xing

    2018-09-30

    The present study was conducted to determine the effects of waterborne copper exposure on the lipid metabolism and intestinal microbiota of juvenile common carp (Cyprinus carpio L.). Common carp were exposed to four waterborne copper (Cu) concentrations (0 (control), 0.07 (low), 0.14 (medium), and 0.28 (high) mg Cu/L) for 8 weeks. Exposure to a high concentration of Cu had a negative effect on growth indices (weight gain rate (WGR) and specific growth rate (SGR)). The biochemical indices measured in serum (low-density lipoprotein (LDL) and triglycerides (TGs)) were significantly affected by exposure to medium concentration levels of Cu. The mRNA levels of lipogenic enzymes (acetyl-CoA carboxylase 1 (ACC-1) and fatty acid synthase (FAS)) and sterol-regulator element-binding protein-1 (SREBP-1) in liver tissue and tight binding protein genes (ZO-1 and occludin) in intestinal epithelial tissue were significantly downregulated in the 0.14 and 0.28 mg/L Cu treatment groups, accompanied by upregulated mRNA levels of lipolysis enzymes (lipoprotein lipase (LPL) and carnitine palmitoyl transferase 1 (CPT-1)) in the liver. The data also showed that the composition of intestinal microbiota was changed following Cu exposure and could alter the α-diversity and β-diversity. The abundances of few putative short-chain fatty acid (SCFA)-producing bacteria, including Allobaculum, Blautia, Coprococcus, Faecalibacterium, Roseburia, and Ruminococcus, decreased significantly. More specifically, Roseburia sequences were positively associated with lipogenic enzymes, total protein (TP), and TGs and negatively associated with lipolysis enzymes. Other sequences related to probiotics (Lactobacillus, Bacillus and Akkermansia) were also found to decrease, accompanied by an increase in sequences related to pathogens (Pseudomonas and Acinetobacter). To the best of our knowledge, the present study provides the first evidence that waterborne, chronic Cu exposure can disturb the composition of

  20. Effects of n-3 PUFAs on Intestinal Mucosa Innate Immunity and Intestinal Microbiota in Mice after Hemorrhagic Shock Resuscitation.

    PubMed

    Tian, Feng; Gao, Xuejin; Zhang, Li; Wang, Xinying; Wan, Xiao; Jiang, Tingting; Wu, Chao; Bi, Jingcheng; Lei, Qiucheng

    2016-09-29

    n -3 polyunsaturated fatty acids (PUFAs) can improve the function of the intestinal barrier after damage from ischemia-reperfusion or hemorrhagic shock resuscitation (HSR). However, the effects of n -3 PUFAs on intestinal microbiota and the innate immunity of the intestinal mucosa after HSR remain unclear. In the present study, 40 C57BL/6J mice were randomly assigned to five groups: control, sham, HSR, HSR + n -3 PUFAs and HSR + n -6 PUFAs. Mice were sacrificed 12 h after HSR. Liver, spleen, mesenteric lymph nodes and terminal ileal tissues were collected. Intestinal mucosae were scraped aseptically. Compared with the HSR group, the number of goblet cells increased, expression of mucin 2 was restored and disturbed intestinal microbiota were partly stabilized in the PUFA-administered groups, indicating that both n -3 and n -6 PUFAs reduced overproliferation of Gammaproteobacteria while promoting the growth of Bacteroidetes. Notably, n -3 PUFAs had an advantage over n -6 PUFAs in improving ileal tissue levels of lysozyme after HSR. Thus, PUFAs, especially n -3 PUFAs, partly improved the innate immunity of intestinal mucosa in mice after HSR. These findings suggest a clinical rationale for providing n -3 PUFAs to patients recovering from ischemia-reperfusion.

  1. Intestinal microbiota in health and disease: role of bifidobacteria in gut homeostasis.

    PubMed

    Tojo, Rafael; Suárez, Adolfo; Clemente, Marta G; de los Reyes-Gavilán, Clara G; Margolles, Abelardo; Gueimonde, Miguel; Ruas-Madiedo, Patricia

    2014-11-07

    The pool of microbes inhabiting our body is known as "microbiota" and their collective genomes as "microbiome". The colon is the most densely populated organ in the human body, although other parts, such as the skin, vaginal mucosa, or respiratory tract, also harbour specific microbiota. This microbial community regulates some important metabolic and physiological functions of the host, and drives the maturation of the immune system in early life, contributing to its homeostasis during life. Alterations of the intestinal microbiota can occur by changes in composition (dysbiosis), function, or microbiota-host interactions and they can be directly correlated with several diseases. The only disease in which a clear causal role of a dysbiotic microbiota has been demonstrated is the case of Clostridium difficile infections. Nonetheless, alterations in composition and function of the microbiota have been associated with several gastrointestinal diseases (inflammatory bowel disease, colorectal cancer, or irritable bowel syndrome), as well as extra-intestinal pathologies, such as those affecting the liver, or the respiratory tract (e.g., allergy, bronchial asthma, and cystic fibrosis), among others. Species of Bifidobacterium genus are the normal inhabitants of a healthy human gut and alterations in number and composition of their populations is one of the most frequent features present in these diseases. The use of probiotics, including bifidobacteria strains, in preventive medicine to maintain a healthy intestinal function is well documented. Probiotics are also proposed as therapeutic agents for gastrointestinal disorders and other pathologies. The World Gastroenterology Organization recently published potential clinical applications for several probiotic formulations, in which species of lactobacilli are predominant. This review is focused on probiotic preparations containing Bifidobacterium strains, alone or in combination with other bacteria, which have been tested

  2. Intestinal microbiota is different in women with preterm birth: results from terminal restriction fragment length polymorphism analysis.

    PubMed

    Shiozaki, Arihiro; Yoneda, Satoshi; Yoneda, Noriko; Yonezawa, Rika; Matsubayashi, Takamichi; Seo, Genichiro; Saito, Shigeru

    2014-01-01

    Preterm birth is a leading cause of perinatal morbidity and mortality. Studies using a cultivation method or molecular identification have shown that bacterial vaginosis is one of the risk factors for preterm birth. However, an association between preterm birth and intestinal microbiota has not been reported using molecular techniques, although the vaginal microbiota changes during pregnancy. Our aim here was to clarify the difference in intestinal and vaginal microbiota between women with preterm birth and women without preterm labor. 16S ribosomal ribonucleic acid genes were amplified from fecal and vaginal DNA by polymerase chain reaction. Using terminal restriction fragment length polymorphism (T-RFLP), we compared the levels of operational taxonomic units of both intestinal and vaginal flora among three groups: pregnant women who delivered term babies without preterm labor (non-PTL group) (n = 20), those who had preterm labor but delivered term babies (PTL group) (n = 11), and those who had preterm birth (PTB group) (n = 10). Significantly low levels of Clostridium subcluster XVIII, Clostridium cluster IV, Clostridium subcluster XIVa, and Bacteroides, and a significantly high level of Lactobacillales were observed in the intestinal microbiota in the PTB group compared with those in the non-PTL group. The levels of Clostridium subcluster XVIII and Clostridium subcluster XIVa in the PTB group were significantly lower than those in the PTL group, and these levels in the PTL group were significantly lower than those in non-PTL group. However, there were no significant differences in vaginal microbiota among the three groups. Intestinal microbiota in the PTB group was found to differ from that in the non-PTL group using the T-RFLP method.

  3. Microbiota of the Small Intestine Is Selectively Engulfed by Phagocytes of the Lamina Propria and Peyer's Patches.

    PubMed

    Morikawa, Masatoshi; Tsujibe, Satoshi; Kiyoshima-Shibata, Junko; Watanabe, Yohei; Kato-Nagaoka, Noriko; Shida, Kan; Matsumoto, Satoshi

    2016-01-01

    Phagocytes such as dendritic cells and macrophages, which are distributed in the small intestinal mucosa, play a crucial role in maintaining mucosal homeostasis by sampling the luminal gut microbiota. However, there is limited information regarding microbial uptake in a steady state. We investigated the composition of murine gut microbiota that is engulfed by phagocytes of specific subsets in the small intestinal lamina propria (SILP) and Peyer's patches (PP). Analysis of bacterial 16S rRNA gene amplicon sequences revealed that: 1) all the phagocyte subsets in the SILP primarily engulfed Lactobacillus (the most abundant microbe in the small intestine), whereas CD11bhi and CD11bhiCD11chi cell subsets in PP mostly engulfed segmented filamentous bacteria (indigenous bacteria in rodents that are reported to adhere to intestinal epithelial cells); and 2) among the Lactobacillus species engulfed by the SILP cell subsets, L. murinus was engulfed more frequently than L. taiwanensis, although both these Lactobacillus species were abundant in the small intestine under physiological conditions. These results suggest that small intestinal microbiota is selectively engulfed by phagocytes that localize in the adjacent intestinal mucosa in a steady state. These observations may provide insight into the crucial role of phagocytes in immune surveillance of the small intestinal mucosa.

  4. Intestinal microbiota, probiotics and mental health: from Metchnikoff to modern advances: Part I - autointoxication revisited.

    PubMed

    Bested, Alison C; Logan, Alan C; Selhub, Eva M

    2013-03-18

    Mental health disorders, depression in particular, have been described as a global epidemic. Research suggests that a variety of lifestyle and environmental changes may be driving at least some portion of the increased prevalence. One area of flourishing research involves the relationship between the intestinal microbiota (as well as the related functional integrity of the gastrointestinal tract) and mental health. In order to appreciate the recent scientific gains in this area, and its potential future directions, it is critical to review the history of the topic. Probiotic administration (e.g. Lactobacillus) and fecal microbiota transfer for conditions associated with depression and anxiety is not a new concept. Here, in the first of a 3-part series, we begin by reviewing the origins of the contemporary research, providing a critical appraisal of what has become a revisionist history of the controversial term 'autointoxication'. We argue that legitimate interests in the gut-brain-microbiota connection were obscured for decades by its association with a narrow historical legacy. Historical perspectives provide a very meaningful context to the current state of the contemporary research as outlined in parts II and III.

  5. Significant improvement of intestinal microbiota of gibel carp (Carassius auratus gibelio) after traditional Chinese medicine feeding.

    PubMed

    Wu, Z B; Gatesoupe, F-J; Li, T T; Wang, X H; Zhang, Q Q; Feng, D Y; Feng, Y Q; Chen, H; Li, A H

    2018-03-01

    Increasing attention has been attracted to intestinal microbiota, due to interactions with nutrition, metabolism and immune defence of the host. Traditional Chinese medicine (TCM) feed additives have been applied in aquaculture to improve fish health, but the interaction with fish gut microbiota is still poorly understood. This study aimed to explore the effect of adding TCM in feed on the intestinal microbiota of gibel carp (Carassius auratus gibelio). Bacterial communities of 16 fish intestinal contents and one water sample were characterized by high-throughput sequencing and analysis of the V4-V5 region of the 16S rRNA gene. The results showed that the composition and structure of the bacterial community were significantly altered by the TCM feeding. Some phyla increased markedly (Proteobacteria, Actinobacteria, Acidobacteria, etc.), while Fusobacteria were significantly reduced. Concurrently, the richness and diversity of the taxonomic units increased, and the microbiota composition of TCM-treated fish was more homogeneous among individuals. At the genus level, the addition of TCM tended to reduce the incidence of potential pathogens (Aeromonas, Acinetobacter and Shewanella), while stimulating the emergence of some potential probiotics (Lactobacillus, Lactococcus, Bacillus and Pseudomonas). These data suggested that the feed additive could regulate the fish intestinal microbiota by reinforcing the microbial balance. This study may provide useful information for further application of TCM for diseases prevention and stress management in aquaculture. © 2017 The Society for Applied Microbiology.

  6. Can the composition of the intestinal microbiota predict the development of urinary tract infections?

    PubMed

    den Heijer, Casper Dj; Geerlings, Suzanne E; Prins, Jan M; Beerepoot, Mariëlle Aj; Stobberingh, Ellen E; Penders, John

    2016-10-01

    To evaluate whether intestinal microbiota predicts the development of new-onset urinary tract infections (UTIs) in postmenopausal women with prior recurrent UTIs (rUTIs). Fecal samples (n = 40) originated from women with rUTI who received 12 months' prophylaxis of either trimethoprim-sulfamethoxazole (TMP-SMX) or lactobacilli. Microbial composition was assessed by 16S rRNA pyrosequencing. At baseline, fecal microbiota of women with zero and more than or equal to four UTIs during follow-up showed no significant differences. Only TMP-SMX prophylaxis resulted in reduced microbial diversity. Microbial structure of two samples from the same woman showed limited relatedness. In postmenopausal women with rUTI, the intestinal microbiota was not predictive for new-onset UTIs. Only TMP-SMX, and not lactobacilli, prophylaxis had effects on the microbial composition. Data in ENA:PRJEB13868.

  7. Anaerobic bacteria in the intestinal microbiota of Brazilian children.

    PubMed

    Talarico, Silvia T; Santos, Florenza E; Brandt, Katia Galeão; Martinez, Marina B; Taddei, Carla R

    2017-03-01

    Changes in the neonatal gut environment allow for the colonization of the mucin layer and lumen by anaerobic bacteria. The aim of the present study was to evaluate Bifidobacterium, Lactobacillus and Lactococcus colonization through the first year of life in a group of 12 Brazilian infants and to correlate these data with the levels of Escherichia coli. The presence of anaerobic members of the adult intestinal microbiota, including Eubacterium limosum and Faecalibacterium prausnitzii, was also evaluated. Fecal samples were collected during the first year of life, and 16S rRNA from anaerobic and facultative bacteria was detected by real-time PCR. Bifidobacterium was present at the highest levels at all of the studied time points, followed by E. coli and Lactobacillus. E. limosum was rarely detected, and F. prausnitzii was detected only in the samples from the latest time points. These results are consistent with reports throughout the world on the community structure of the intestinal microbiota in infants fed a milk diet. Our findings also provide evidence for the influence of the environment on intestinal colonization due to the high abundance of E. coli. The presence of important anaerobic genera was observed in Brazilian infants living at a low socioeconomic level, a result that has already been well established for infants living in developed countries.

  8. Anaerobic bacteria in the intestinal microbiota of Brazilian children

    PubMed Central

    Talarico, Silvia T; Santos, Florenza E; Brandt, Katia Galeão; Martinez, Marina B; Taddei, Carla R

    2017-01-01

    OBJECTIVE: Changes in the neonatal gut environment allow for the colonization of the mucin layer and lumen by anaerobic bacteria. The aim of the present study was to evaluate Bifidobacterium, Lactobacillus and Lactococcus colonization through the first year of life in a group of 12 Brazilian infants and to correlate these data with the levels of Escherichia coli. The presence of anaerobic members of the adult intestinal microbiota, including Eubacterium limosum and Faecalibacterium prausnitzii, was also evaluated. METHODS: Fecal samples were collected during the first year of life, and 16S rRNA from anaerobic and facultative bacteria was detected by real-time PCR. RESULTS: Bifidobacterium was present at the highest levels at all of the studied time points, followed by E. coli and Lactobacillus. E. limosum was rarely detected, and F. prausnitzii was detected only in the samples from the latest time points. CONCLUSION: These results are consistent with reports throughout the world on the community structure of the intestinal microbiota in infants fed a milk diet. Our findings also provide evidence for the influence of the environment on intestinal colonization due to the high abundance of E. coli. The presence of important anaerobic genera was observed in Brazilian infants living at a low socioeconomic level, a result that has already been well established for infants living in developed countries. PMID:28355361

  9. Changes in Intestinal Microbiota Affect Metabolism of Ginsenoside Re.

    PubMed

    Zhang, Lei; Li, Fei; Qin, Wang-Jun; Fu, Chao; Zhang, Xiang-Lin

    2018-05-10

    Ginsenoside Re, an active ingredient in Panax ginseng, is widely used as a therapeutic and nutriment. Intestinal microbiota plays crucial roles in modulating the pharmacokinetics and pharmacological actions of ginsenoside Re. The aim of this study was to explore the relationship between bacterial community variety and the metabolic profiles of ginsenoside Re. We developed two models with intestinal dysbacteriosis: a pseudo-germ-free model induced by a non-absorbable antimicrobial mixture (ATM), and Qi-deficiency model established via over-fatigue and acute cold stress (OACS). First, the bacterial community structures in control, ATM, and OACS rats were compared via 16S rRNA amplicon sequencing. Then, gut microbial metabolism of ginsenoside Re was assessed qualitatively and quantitatively in the three groups by UPLC-Q-TOF/MS and HPLC-TQ-MS, respectively. Ten metabolites of ginsenoside Re were detected and tentatively identified, three of which were novel. Moreover, due to significant differences in bacterial communities, deglycosylated products, as the main metabolites of ginsenoside Re, were produced at lower levels in ATM and OACS models. Importantly, the levels of these deglycosylated metabolites correlated with alterations in Prevotella, Lactobacillus, and Bacteroides populations, as well as glycosidase activities. Collectively, biotransformation of ginsenoside Re is potentially influenced by regulating the composition of intestinal microbiota and glycosidase activities. This article is protected by copyright. All rights reserved.

  10. Arsenic exposure and intestinal microbiota in children from Sirajdikhan, Bangladesh

    PubMed Central

    Dong, Xiaoxi; Shulzhenko, Natalia; Lemaitre, Julien; Greer, Renee L.; Peremyslova, Kate; Quamruzzaman, Quazi; Rahman, Mahmudar; Hasan, Omar Sharif Ibn; Joya, Sakila Afroz; Golam, Mostofa; Christiani, David C.; Morgun, Andriy

    2017-01-01

    Background Arsenic has antimicrobial properties at high doses yet few studies have examined its effect on gut microbiota. This warrants investigation since arsenic exposure increases the risk of many diseases in which gut microbiota have been shown to play a role. We examined the association between arsenic exposure from drinking water and the composition of intestinal microbiota in children exposed to low and high arsenic levels during prenatal development and early life. Results 16S rRNA gene sequencing revealed that children with high arsenic exposure had a higher abundance of Proteobacteria in their stool compared to matched controls with low arsenic exposure. Furthermore, whole metagenome shotgun sequencing identified 332 bacterial SEED functions that were enriched in the high exposure group. A separate model showed that these genes, which included genes involved in virulence and multidrug resistance, were positively correlated with arsenic concentration within the group of children in the high arsenic group. We performed reference free genome assembly, and identified strains of E.coli as contributors to the arsenic enriched SEED functions. Further genome annotation of the E.coli genome revealed two strains containing two different arsenic resistance operons that are not present in the gut microbiome of a recently described European human cohort (Metagenomics of the Human Intestinal Tract, MetaHIT). We then performed quantification by qPCR of two arsenic resistant genes (ArsB, ArsC). We observed that the expression of these two operons was higher among the children with high arsenic exposure compared to matched controls. Conclusions This preliminary study indicates that arsenic exposure early in life was associated with altered gut microbiota in Bangladeshi children. The enrichment of E.coli arsenic resistance genes in the high exposure group provides an insight into the possible mechanisms of how this toxic compound could affect gut microbiota. PMID:29211769

  11. Arsenic exposure and intestinal microbiota in children from Sirajdikhan, Bangladesh.

    PubMed

    Dong, Xiaoxi; Shulzhenko, Natalia; Lemaitre, Julien; Greer, Renee L; Peremyslova, Kate; Quamruzzaman, Quazi; Rahman, Mahmudar; Hasan, Omar Sharif Ibn; Joya, Sakila Afroz; Golam, Mostofa; Christiani, David C; Morgun, Andriy; Kile, Molly L

    2017-01-01

    Arsenic has antimicrobial properties at high doses yet few studies have examined its effect on gut microbiota. This warrants investigation since arsenic exposure increases the risk of many diseases in which gut microbiota have been shown to play a role. We examined the association between arsenic exposure from drinking water and the composition of intestinal microbiota in children exposed to low and high arsenic levels during prenatal development and early life. 16S rRNA gene sequencing revealed that children with high arsenic exposure had a higher abundance of Proteobacteria in their stool compared to matched controls with low arsenic exposure. Furthermore, whole metagenome shotgun sequencing identified 332 bacterial SEED functions that were enriched in the high exposure group. A separate model showed that these genes, which included genes involved in virulence and multidrug resistance, were positively correlated with arsenic concentration within the group of children in the high arsenic group. We performed reference free genome assembly, and identified strains of E.coli as contributors to the arsenic enriched SEED functions. Further genome annotation of the E.coli genome revealed two strains containing two different arsenic resistance operons that are not present in the gut microbiome of a recently described European human cohort (Metagenomics of the Human Intestinal Tract, MetaHIT). We then performed quantification by qPCR of two arsenic resistant genes (ArsB, ArsC). We observed that the expression of these two operons was higher among the children with high arsenic exposure compared to matched controls. This preliminary study indicates that arsenic exposure early in life was associated with altered gut microbiota in Bangladeshi children. The enrichment of E.coli arsenic resistance genes in the high exposure group provides an insight into the possible mechanisms of how this toxic compound could affect gut microbiota.

  12. Ontogenetic Characterization of the Intestinal Microbiota of Channel Catfish through 16S rRNA Gene Sequencing Reveals Insights on Temporal Shifts and the Influence of Environmental Microbes

    PubMed Central

    Bledsoe, Jacob W.; Peterson, Brian C.; Swanson, Kelly S.; Small, Brian C.

    2016-01-01

    Aquaculture recently overtook capture fisheries as the largest producer of food fish, but to continue increasing fish production the industry is in search of better methods of improving fish health and growth. Pre- and probiotic supplementation has gained attention as a means of solving these issues, however, for such approaches to be successful, we must first gain a more holistic understanding of the factors influencing the microbial communities present in the intestines of fish. In this study, we characterize the bacterial communities associated with the digestive tract of a highly valuable U.S. aquaculture species, channel catfish Ictalurus punctatus, over the first 193 days of life to evaluate temporal changes that may occur throughout ontogenetic development of the host. Intestinal microbiota were surveyed with high-throughput DNA sequencing of 16S rRNA V4 gene amplicons derived from fish at 3, 65, 125, and 193 days post hatch (dph), while also characterizing the environmental microbes derived from the water supply and the administered diets. Microbial communities inhabiting the intestines of catfish early in life were dynamic, with significant shifts occurring up to 125 dph when the microbiota somewhat stabilized, as shifts were less apparent between 125 to 193 dph. Bacterial phyla present in the gut of catfish throughout ontogeny include Bacteroidetes, Firmicutes, Fusobacteria, and Proteobacteria; with the species Cetobacterium somerae and Plesiomonas shigelloides showing the highest abundance in the catfish microbiota after 3 dph. Comparisons of the gut microbiota to the environmental microbes reveals that the fish gut is maintained as a niche habitat, separate from the overall microbial communities present in diets and water-supply. Although, there is also evidence that the environmental microbiota serves as an inoculum to the fish gut. Our results have implications for future research related to channel catfish biology and culture, and increase our

  13. [Breaking paradigms. Intestinal microbiota transplantation: Preliminar report].

    PubMed

    Zamudio-Tiburcio, Álvaro; Bermúdez-Ruiz, Héctor; Lezama-Guzmán, Hugo Ricardo; Guevara-Ortigoza, María Del Pilar; Islas-Solares, Elena; Sosa-López, Francisco Antonio

    2017-12-01

    In the fourth century, during the Chinese Dong Jin dynasty, the doctor Ge Hong described good results after the oral administration of a suspension prepared from human faeces in patients with severe diarrhoea or food poisoning. Faecal microbiota transplantation has been used for five years in order to treat different diseases in addition to the severe diarrhoea caused by Clostridium difficile 1 . This paper aims to confirm that intestinal microbiota transplantation succeeds in reducing the negative impact of diseases such as severe diarrhoea, irritable bowel syndrome, anxiety, allergies, metabolic syndrome and others and that it is not only indicated for severe diarrhoea caused by C. difficile. This preliminary study included six patients who underwent faecal microbiota transplantation, aged 83, 76, 66, 37 and 36 years (four men and two women). An improvement in symptoms of 70% was observed. The methodology and criteria to be followed with donors are described and the results are listed in three tables. The methodology followed for the microbiota transplant is the same as that reported by other researchers for the treatment of C. difficile diarrhoea and other diseases. The discussion addresses the issues raised in other parts of the world in handling different pathologic entities, as well as genetic advances. The conclusions show encouraging results. Copyright © 2017 Academia Mexicana de Cirugía A.C. Publicado por Masson Doyma México S.A. All rights reserved.

  14. Influence of Camembert consumption on the composition and metabolism of intestinal microbiota: a study in human microbiota-associated rats.

    PubMed

    Lay, Christophe; Sutren, Malène; Lepercq, Pascale; Juste, Catherine; Rigottier-Gois, Lionel; Lhoste, Evelyne; Lemée, Riwanon; Le Ruyet, Pascale; Doré, Joël; Andrieux, Claude

    2004-09-01

    The objective of the present study was to evaluate the consequence of Camembert consumption on the composition and metabolism of human intestinal microbiota. Camembert cheese was compared with milk fermented by yoghurt starters and Lactobacillus casei as a probiotic reference. The experimental model was the human microbiota-associated (HM) rat. HM rats were fed a basal diet (HMB group), a diet containing Camembert made from pasteurised milk (HMCp group) or a diet containing fermented milk (HMfm group). The level of micro-organisms from dairy products was measured in faeces using cultures on a specific medium and PCR-temporal temperature gradient gel electrophoresis. The metabolic characteristics of the caecal microbiota were also studied: SCFA, NH3, glycosidase and reductase activities, and bile acid degradations. The results showed that micro-organisms from cheese comprised 10(5)-10(8) bacteria/g faecal sample in the HMCp group. Lactobacillus species from fermented milk were detected in HMfm rats. Consumption of cheese and fermented milk led to similar changes in bacterial metabolism: a decrease in azoreductase activity and NH3 concentration and an increase in mucolytic activities. However, specific changes were observed: in HMCp rats, the proportion of ursodeoxycholic resulting from chenodeoxycholic epimerisation was higher; in HMfm rats, alpha and beta-galactosidases were higher than in other groups and both azoreductases and nitrate reductases were lower. The results show that, as for fermented milk, Camembert consumption did not greatly modify the microbiota profile or its major metabolic activities. Ingested micro-organisms were able to survive in part during intestinal transit. These dairy products exert a potentially beneficial influence on intestinal metabolism.

  15. Aquacultured Rainbow Trout (Oncorhynchus mykiss) Possess a Large Core Intestinal Microbiota That Is Resistant to Variation in Diet and Rearing Density

    PubMed Central

    Wong, Sandi; Waldrop, Thomas; Summerfelt, Steven; Davidson, John; Barrows, Frederic; Kenney, P. Brett; Welch, Timothy; Wiens, Gregory D.; Snekvik, Kevin

    2013-01-01

    As global aquaculture fish production continues to expand, an improved understanding of how environmental factors interact in fish health and production is needed. Significant advances have been made toward economical alternatives to costly fishmeal-based diets, such as grain-based formulations, and toward defining the effect of rearing density on fish health and production. Little research, however, has examined the effects of fishmeal- and grain-based diets in combination with alterations in rearing density. Moreover, it is unknown whether interactions between rearing density and diet impact the composition of the fish intestinal microbiota, which might in turn impact fish health and production. We fed aquacultured adult rainbow trout (Oncorhynchus mykiss) fishmeal- or grain-based diets, reared them under high- or low-density conditions for 10 months in a single aquaculture facility, and evaluated individual fish growth, production, fin indices, and intestinal microbiota composition using 16S rRNA gene sequencing. We found that the intestinal microbiotas were dominated by a shared core microbiota consisting of 52 bacterial lineages observed across all individuals, diets, and rearing densities. Variations in diet and rearing density resulted in only minor changes in intestinal microbiota composition despite significant effects of these variables on fish growth, performance, fillet quality, and welfare. Significant interactions between diet and rearing density were observed only in evaluations of fin indices and the relative abundance of the bacterial genus Staphylococcus. These results demonstrate that aquacultured rainbow trout can achieve remarkable consistency in intestinal microbiota composition and suggest the possibility of developing novel aquaculture strategies without overtly altering intestinal microbiota composition. PMID:23770898

  16. Immunization with intestinal microbiota-derived Staphylococcus aureus and Escherichia coli reduces bacteria-specific recolonization of the intestinal tract.

    PubMed

    Garfias-López, Julio Adrián; Castro-Escarpuli, Graciela; Cárdenas, Pedro E; Moreno-Altamirano, María Maximina Bertha; Padierna-Olivos, Juan; Sánchez-García, F Javier

    2018-04-01

    A wide array of microorganisms colonizes distinctive anatomical regions of animals, being the intestine the one that harbors the most abundant and complex microbiota. Phylogenetic analyses indicate that it is composed mainly of bacteria, and that Bacterioidetes and Firmicutes are the most represented phyla (>90% of the total eubacteria) in mice and humans. Intestinal microbiota plays an important role in host physiology, contributing to digestion, epithelial cells metabolism, stimulation of intestinal immune responses, and protection against intestinal pathogens. Changes in its composition may affect intestinal homeostasis, a condition known as dysbiosis, which may lead to non-specific inflammation and disease. The aim of this work was to analyze the effect that a bacteria-specific systemic immune response would have on the intestinal re-colonization by that particular bacterium. Bacteria were isolated and identified from the feces of Balb/c mice, bacterial cell-free extracts were used to immunize the same mice from which bacteria came from. Concurrently with immunization, mice were subjected to a previously described antibiotic-based protocol to eliminate most of their intestinal bacteria. Serum IgG and feces IgA, specific for the immunizing bacteria were determined. After antibiotic treatment was suspended, specific bacteria were orally administered, in an attempt to specifically re-colonize the intestine. Results showed that parenteral immunization with gut-derived bacteria elicited the production of both anti-bacterial IgG and IgA, and that immunization reduces bacteria specific recolonization of the gut. These findings support the idea that the systemic immune response may, at least in part, determine the bacterial composition of the gut. Copyright © 2018. Published by Elsevier B.V.

  17. Inflammation-associated alterations to the intestinal microbiota reduce colonization resistance against non-typhoidal Salmonella during concurrent malaria parasite infection.

    PubMed

    Mooney, Jason P; Lokken, Kristen L; Byndloss, Mariana X; George, Michael D; Velazquez, Eric M; Faber, Franziska; Butler, Brian P; Walker, Gregory T; Ali, Mohamed M; Potts, Rashaun; Tiffany, Caitlin; Ahmer, Brian M M; Luckhart, Shirley; Tsolis, Renée M

    2015-10-05

    Childhood malaria is a risk factor for disseminated infections with non-typhoidal Salmonella (NTS) in sub-Saharan Africa. While hemolytic anemia and an altered cytokine environment have been implicated in increased susceptibility to NTS, it is not known whether malaria affects resistance to intestinal colonization with NTS. To address this question, we utilized a murine model of co-infection. Infection of mice with Plasmodium yoelii elicited infiltration of inflammatory macrophages and T cells into the intestinal mucosa and increased expression of inflammatory cytokines. These mucosal responses were also observed in germ-free mice, showing that they are independent of the resident microbiota. Remarkably, P. yoelii infection reduced colonization resistance of mice against S. enterica serotype Typhimurium. Further, 16S rRNA sequence analysis of the intestinal microbiota revealed marked changes in the community structure. Shifts in the microbiota increased susceptibility to intestinal colonization by S. Typhimurium, as demonstrated by microbiota reconstitution of germ-free mice. These results show that P. yoelii infection, via alterations to the microbial community in the intestine, decreases resistance to intestinal colonization with NTS. Further they raise the possibility that decreased colonization resistance may synergize with effects of malaria on systemic immunity to increase susceptibility to disseminated NTS infections.

  18. Inflammation-associated alterations to the intestinal microbiota reduce colonization resistance against non-typhoidal Salmonella during concurrent malaria parasite infection

    PubMed Central

    Mooney, Jason P.; Lokken, Kristen L.; Byndloss, Mariana X.; George, Michael D.; Velazquez, Eric M.; Faber, Franziska; Butler, Brian P.; Walker, Gregory T.; Ali, Mohamed M.; Potts, Rashaun; Tiffany, Caitlin; Ahmer, Brian M. M.; Luckhart, Shirley; Tsolis, Renée M.

    2015-01-01

    Childhood malaria is a risk factor for disseminated infections with non-typhoidal Salmonella (NTS) in sub-Saharan Africa. While hemolytic anemia and an altered cytokine environment have been implicated in increased susceptibility to NTS, it is not known whether malaria affects resistance to intestinal colonization with NTS. To address this question, we utilized a murine model of co-infection. Infection of mice with Plasmodium yoelii elicited infiltration of inflammatory macrophages and T cells into the intestinal mucosa and increased expression of inflammatory cytokines. These mucosal responses were also observed in germ-free mice, showing that they are independent of the resident microbiota. Remarkably, P. yoelii infection reduced colonization resistance of mice against S. enterica serotype Typhimurium. Further, 16S rRNA sequence analysis of the intestinal microbiota revealed marked changes in the community structure. Shifts in the microbiota increased susceptibility to intestinal colonization by S. Typhimurium, as demonstrated by microbiota reconstitution of germ-free mice. These results show that P. yoelii infection, via alterations to the microbial community in the intestine, decreases resistance to intestinal colonization with NTS. Further they raise the possibility that decreased colonization resistance may synergize with effects of malaria on systemic immunity to increase susceptibility to disseminated NTS infections. PMID:26434367

  19. Comparative analysis of fecal microbiota and intestinal microbial metabolic activity in captive polar bears.

    PubMed

    Schwab, Clarissa; Gänzle, Michael

    2011-03-01

    The composition of the intestinal microbiota depends on gut physiology and diet. Ursidae possess a simple gastrointestinal system composed of a stomach, small intestine, and indistinct hindgut. This study determined the composition and stability of fecal microbiota of 3 captive polar bears by group-specific quantitative PCR and PCR-DGGE (denaturing gradient gel electrophoresis) using the 16S rRNA gene as target. Intestinal metabolic activity was determined by analysis of short-chain fatty acids in feces. For comparison, other Carnivora and mammals were included in this study. Total bacterial abundance was approximately log 8.5 DNA gene copies·(g feces)-1 in all 3 polar bears. Fecal polar bear microbiota was dominated by the facultative anaerobes Enterobacteriaceae and enterococci, and the Clostridium cluster I. The detection of the Clostridium perfringens α-toxin gene verified the presence of C. perfringens. Composition of the fecal bacterial population was stable on a genus level; according to results obtained by PCR-DGGE, dominant bacterial species fluctuated. The total short-chain fatty acid content of Carnivora and other mammals analysed was comparable; lactate was detected in feces of all carnivora but present only in trace amounts in other mammals. In comparison, the fecal microbiota and metabolic activity of captive polar bears mostly resembled the closely related grizzly and black bears.

  20. Extensive Intestinal Resection Triggers Behavioral Adaptation, Intestinal Remodeling and Microbiota Transition in Short Bowel Syndrome

    PubMed Central

    Mayeur, Camille; Gillard, Laura; Le Beyec, Johanne; Bado, André; Joly, Francisca; Thomas, Muriel

    2016-01-01

    Extensive resection of small bowel often leads to short bowel syndrome (SBS). SBS patients develop clinical mal-absorption and dehydration relative to the reduction of absorptive area, acceleration of gastrointestinal transit time and modifications of the gastrointestinal intra-luminal environment. As a consequence of severe mal-absorption, patients require parenteral nutrition (PN). In adults, the overall adaptation following intestinal resection includes spontaneous and complex compensatory processes such as hyperphagia, mucosal remodeling of the remaining part of the intestine and major modifications of the microbiota. SBS patients, with colon in continuity, harbor a specific fecal microbiota that we called “lactobiota” because it is enriched in the Lactobacillus/Leuconostoc group and depleted in anaerobic micro-organisms (especially Clostridium and Bacteroides). In some patients, the lactobiota-driven fermentative activities lead to an accumulation of fecal d/l-lactates and an increased risk of d-encephalopathy. Better knowledge of clinical parameters and lactobiota characteristics has made it possible to stratify patients and define group at risk for d-encephalopathy crises. PMID:27681910

  1. The Intestinal Microbiota Contributes to the Ability of Helminths to Modulate Allergic Inflammation

    PubMed Central

    Zaiss, Mario M.; Rapin, Alexis; Lebon, Luc; Dubey, Lalit Kumar; Mosconi, Ilaria; Sarter, Kerstin; Piersigilli, Alessandra; Menin, Laure; Walker, Alan W.; Rougemont, Jacques; Paerewijck, Oonagh; Geldhof, Peter; McCoy, Kathleen D.; Macpherson, Andrew J.; Croese, John; Giacomin, Paul R.; Loukas, Alex; Junt, Tobias; Marsland, Benjamin J.; Harris, Nicola L.

    2015-01-01

    Summary Intestinal helminths are potent regulators of their host’s immune system and can ameliorate inflammatory diseases such as allergic asthma. In the present study we have assessed whether this anti-inflammatory activity was purely intrinsic to helminths, or whether it also involved crosstalk with the local microbiota. We report that chronic infection with the murine helminth Heligmosomoides polygyrus bakeri (Hpb) altered the intestinal habitat, allowing increased short chain fatty acid (SCFA) production. Transfer of the Hpb-modified microbiota alone was sufficient to mediate protection against allergic asthma. The helminth-induced anti-inflammatory cytokine secretion and regulatory T cell suppressor activity that mediated the protection required the G protein-coupled receptor (GPR)-41. A similar alteration in the metabolic potential of intestinal bacterial communities was observed with diverse parasitic and host species, suggesting that this represents an evolutionary conserved mechanism of host-microbe-helminth interactions. PMID:26522986

  2. Obesity, fatty liver disease and intestinal microbiota

    PubMed Central

    Arslan, Nur

    2014-01-01

    Nonalcoholic fatty liver disease (NAFLD) is a chronic liver disorder that is increasing in prevalence with the worldwide epidemic of obesity. NAFLD is the hepatic manifestation of the metabolic syndrome. The term NAFLD describes a spectrum of liver pathology ranges from simple steatosis to steatosis with inflammation nonalcoholic steatohepatitis and even cirrhosis. Metabolic syndrome and NAFLD also predict hepatocellular carcinoma. Many genetic and environmental factors have been suggested to contribute to the development of obesity and NAFLD, but the exact mechanisms are not known. Intestinal ecosystem contains trillions of microorganisms including bacteria, Archaea, yeasts and viruses. Several studies support the relationship between the intestinal microbial changes and obesity and also its complications, including insulin resistance and NAFLD. Given that the gut and liver are connected by the portal venous system, it makes the liver more vulnerable to translocation of bacteria, bacterial products, endotoxins or secreted cytokines. Altered intestinal microbiota (dysbiosis) may stimulate hepatic fat deposition through several mechanisms: regulation of gut permeability, increasing low-grade inflammation, modulation of dietary choline metabolism, regulation of bile acid metabolism and producing endogenous ethanol. Regulation of intestinal microbial ecosystem by diet modifications or by using probiotics and prebiotics as a treatment for obesity and its complications might be the issue of further investigations. PMID:25469013

  3. IgA Function in Relation to the Intestinal Microbiota.

    PubMed

    Macpherson, Andrew J; Yilmaz, Bahtiyar; Limenitakis, Julien P; Ganal-Vonarburg, Stephanie C

    2018-04-26

    IgA is the dominant immunoglobulin isotype produced in mammals, largely secreted across the intestinal mucosal surface. Although induction of IgA has been a hallmark feature of microbiota colonization following colonization in germ-free animals, until recently appreciation of the function of IgA in host-microbial mutualism has depended mainly on indirect evidence of alterations in microbiota composition or penetration of microbes in the absence of somatic mutations in IgA (or compensatory IgM). Highly parallel sequencing techniques that enable high-resolution analysis of either microbial consortia or IgA sequence diversity are now giving us new perspectives on selective targeting of microbial taxa and the trajectory of IgA diversification according to induction mechanisms, between different individuals and over time. The prospects are to link the range of diversified IgA clonotypes to specific antigenic functions in modulating the microbiota composition, position and metabolism to ensure host mutualism.

  4. Microbiota of the Small Intestine Is Selectively Engulfed by Phagocytes of the Lamina Propria and Peyer’s Patches

    PubMed Central

    Morikawa, Masatoshi; Tsujibe, Satoshi; Kiyoshima-Shibata, Junko; Watanabe, Yohei; Kato-Nagaoka, Noriko; Shida, Kan; Matsumoto, Satoshi

    2016-01-01

    Phagocytes such as dendritic cells and macrophages, which are distributed in the small intestinal mucosa, play a crucial role in maintaining mucosal homeostasis by sampling the luminal gut microbiota. However, there is limited information regarding microbial uptake in a steady state. We investigated the composition of murine gut microbiota that is engulfed by phagocytes of specific subsets in the small intestinal lamina propria (SILP) and Peyer’s patches (PP). Analysis of bacterial 16S rRNA gene amplicon sequences revealed that: 1) all the phagocyte subsets in the SILP primarily engulfed Lactobacillus (the most abundant microbe in the small intestine), whereas CD11bhi and CD11bhiCD11chi cell subsets in PP mostly engulfed segmented filamentous bacteria (indigenous bacteria in rodents that are reported to adhere to intestinal epithelial cells); and 2) among the Lactobacillus species engulfed by the SILP cell subsets, L. murinus was engulfed more frequently than L. taiwanensis, although both these Lactobacillus species were abundant in the small intestine under physiological conditions. These results suggest that small intestinal microbiota is selectively engulfed by phagocytes that localize in the adjacent intestinal mucosa in a steady state. These observations may provide insight into the crucial role of phagocytes in immune surveillance of the small intestinal mucosa. PMID:27701454

  5. The intestinal microbiota determines the colitis‐inducing potential of T‐bet‐deficient Th cells in mice

    PubMed Central

    Zimmermann, Jakob; Durek, Pawel; Kühl, Anja A.; Schattenberg, Florian; Maschmeyer, Patrick; Siracusa, Francesco; Lehmann, Katrin; Westendorf, Kerstin; Weber, Melanie; Riedel, René; Müller, Susann; Radbruch, Andreas

    2017-01-01

    Abstract Conflicting evidence has been provided as to whether induction of intestinal inflammation by adoptive transfer of naïve T cells into Rag −/− mice requires expression of the transcription factor T‑bet by the T cells. Here, we formally show that the intestinal microbiota composition of the Rag −/− recipient determines whether or not T‐bet‐deficient Th cells can induce colitis and we have resolved the differences of the two microbiomes, permissive or non‐permissive to T‐bet‐independent colitis. Our data highlight the dominance of the microbiota over particular T cell differentiation programs in the pathogenesis of chronic intestinal inflammation. PMID:28875499

  6. Intestinal microbiota, probiotics and mental health: from Metchnikoff to modern advances: Part I – autointoxication revisited

    PubMed Central

    2013-01-01

    Mental health disorders, depression in particular, have been described as a global epidemic. Research suggests that a variety of lifestyle and environmental changes may be driving at least some portion of the increased prevalence. One area of flourishing research involves the relationship between the intestinal microbiota (as well as the related functional integrity of the gastrointestinal tract) and mental health. In order to appreciate the recent scientific gains in this area, and its potential future directions, it is critical to review the history of the topic. Probiotic administration (e.g. Lactobacillus) and fecal microbiota transfer for conditions associated with depression and anxiety is not a new concept. Here, in the first of a 3-part series, we begin by reviewing the origins of the contemporary research, providing a critical appraisal of what has become a revisionist history of the controversial term ‘autointoxication’. We argue that legitimate interests in the gut-brain-microbiota connection were obscured for decades by its association with a narrow historical legacy. Historical perspectives provide a very meaningful context to the current state of the contemporary research as outlined in parts II and III. PMID:23506618

  7. Smoking Cessation Induces Profound Changes in the Composition of the Intestinal Microbiota in Humans

    PubMed Central

    Biedermann, Luc; Zeitz, Jonas; Mwinyi, Jessica; Sutter-Minder, Eveline; Rehman, Ateequr; Ott, Stephan J.; Steurer-Stey, Claudia; Frei, Anja; Frei, Pascal; Scharl, Michael; Loessner, Martin J.; Vavricka, Stephan R.; Fried, Michael; Schreiber, Stefan; Schuppler, Markus; Rogler, Gerhard

    2013-01-01

    Background The human intestinal microbiota is a crucial factor in the pathogenesis of various diseases, such as metabolic syndrome or inflammatory bowel disease (IBD). Yet, knowledge about the role of environmental factors such as smoking (which is known to influence theses aforementioned disease states) on the complex microbial composition is sparse. We aimed to investigate the role of smoking cessation on intestinal microbial composition in 10 healthy smoking subjects undergoing controlled smoking cessation. Methods During the observational period of 9 weeks repetitive stool samples were collected. Based on abundance of 16S rRNA genes bacterial composition was analysed and compared to 10 control subjects (5 continuing smokers and 5 non-smokers) by means of Terminal Restriction Fragment Length Polymorphism analysis and high-throughput sequencing. Results Profound shifts in the microbial composition after smoking cessation were observed with an increase of Firmicutes and Actinobacteria and a lower proportion of Bacteroidetes and Proteobacteria on the phylum level. In addition, after smoking cessation there was an increase in microbial diversity. Conclusions These results indicate that smoking is an environmental factor modulating the composition of human gut microbiota. The observed changes after smoking cessation revealed to be similar to the previously reported differences in obese compared to lean humans and mice respectively, suggesting a potential pathogenetic link between weight gain and smoking cessation. In addition they give rise to a potential association of smoking status and the course of IBD. PMID:23516617

  8. Intestinal microbiota in health and disease: Role of bifidobacteria in gut homeostasis

    PubMed Central

    Tojo, Rafael; Suárez, Adolfo; Clemente, Marta G; de los Reyes-Gavilán, Clara G; Margolles, Abelardo; Gueimonde, Miguel; Ruas-Madiedo, Patricia

    2014-01-01

    The pool of microbes inhabiting our body is known as “microbiota” and their collective genomes as “microbiome”. The colon is the most densely populated organ in the human body, although other parts, such as the skin, vaginal mucosa, or respiratory tract, also harbour specific microbiota. This microbial community regulates some important metabolic and physiological functions of the host, and drives the maturation of the immune system in early life, contributing to its homeostasis during life. Alterations of the intestinal microbiota can occur by changes in composition (dysbiosis), function, or microbiota-host interactions and they can be directly correlated with several diseases. The only disease in which a clear causal role of a dysbiotic microbiota has been demonstrated is the case of Clostridium difficile infections. Nonetheless, alterations in composition and function of the microbiota have been associated with several gastrointestinal diseases (inflammatory bowel disease, colorectal cancer, or irritable bowel syndrome), as well as extra-intestinal pathologies, such as those affecting the liver, or the respiratory tract (e.g., allergy, bronchial asthma, and cystic fibrosis), among others. Species of Bifidobacterium genus are the normal inhabitants of a healthy human gut and alterations in number and composition of their populations is one of the most frequent features present in these diseases. The use of probiotics, including bifidobacteria strains, in preventive medicine to maintain a healthy intestinal function is well documented. Probiotics are also proposed as therapeutic agents for gastrointestinal disorders and other pathologies. The World Gastroenterology Organization recently published potential clinical applications for several probiotic formulations, in which species of lactobacilli are predominant. This review is focused on probiotic preparations containing Bifidobacterium strains, alone or in combination with other bacteria, which have been

  9. Current Hypothesis for the Relationship between Dietary Rice Bran Intake, the Intestinal Microbiota and Colorectal Cancer Prevention.

    PubMed

    So, Winnie K W; Law, Bernard M H; Law, Patrick T W; Chan, Carmen W H; Chair, Sek Ying

    2016-09-15

    Globally, colorectal cancer (CRC) is the third most common form of cancer. The development of effective chemopreventive strategies to reduce CRC incidence is therefore of paramount importance. Over the past decade, research has indicated the potential of rice bran, a byproduct of rice milling, in CRC chemoprevention. This was recently suggested to be partly attributable to modification in the composition of intestinal microbiota when rice bran was ingested. Indeed, previous studies have reported changes in the population size of certain bacterial species, or microbial dysbiosis, in the intestines of CRC patients and animal models. Rice bran intake was shown to reverse such changes through the manipulation of the population of health-promoting bacteria in the intestine. The present review first provides an overview of evidence on the link between microbial dysbiosis and CRC carcinogenesis and describes the molecular events associated with that link. Thereafter, there is a summary of current data on the effect of rice bran intake on the composition of intestinal microbiota in human and animal models. The article also highlights the need for further studies on the inter-relationship between rice bran intake, the composition of intestinal microbiota and CRC prevention.

  10. Current Hypothesis for the Relationship between Dietary Rice Bran Intake, the Intestinal Microbiota and Colorectal Cancer Prevention

    PubMed Central

    So, Winnie K. W.; Law, Bernard M. H.; Law, Patrick T. W.; Chan, Carmen W. H.; Chair, Sek Ying

    2016-01-01

    Globally, colorectal cancer (CRC) is the third most common form of cancer. The development of effective chemopreventive strategies to reduce CRC incidence is therefore of paramount importance. Over the past decade, research has indicated the potential of rice bran, a byproduct of rice milling, in CRC chemoprevention. This was recently suggested to be partly attributable to modification in the composition of intestinal microbiota when rice bran was ingested. Indeed, previous studies have reported changes in the population size of certain bacterial species, or microbial dysbiosis, in the intestines of CRC patients and animal models. Rice bran intake was shown to reverse such changes through the manipulation of the population of health-promoting bacteria in the intestine. The present review first provides an overview of evidence on the link between microbial dysbiosis and CRC carcinogenesis and describes the molecular events associated with that link. Thereafter, there is a summary of current data on the effect of rice bran intake on the composition of intestinal microbiota in human and animal models. The article also highlights the need for further studies on the inter-relationship between rice bran intake, the composition of intestinal microbiota and CRC prevention. PMID:27649240

  11. The Intestinal Microbiota Contributes to the Ability of Helminths to Modulate Allergic Inflammation.

    PubMed

    Zaiss, Mario M; Rapin, Alexis; Lebon, Luc; Dubey, Lalit Kumar; Mosconi, Ilaria; Sarter, Kerstin; Piersigilli, Alessandra; Menin, Laure; Walker, Alan W; Rougemont, Jacques; Paerewijck, Oonagh; Geldhof, Peter; McCoy, Kathleen D; Macpherson, Andrew J; Croese, John; Giacomin, Paul R; Loukas, Alex; Junt, Tobias; Marsland, Benjamin J; Harris, Nicola L

    2015-11-17

    Intestinal helminths are potent regulators of their host's immune system and can ameliorate inflammatory diseases such as allergic asthma. In the present study we have assessed whether this anti-inflammatory activity was purely intrinsic to helminths, or whether it also involved crosstalk with the local microbiota. We report that chronic infection with the murine helminth Heligmosomoides polygyrus bakeri (Hpb) altered the intestinal habitat, allowing increased short chain fatty acid (SCFA) production. Transfer of the Hpb-modified microbiota alone was sufficient to mediate protection against allergic asthma. The helminth-induced anti-inflammatory cytokine secretion and regulatory T cell suppressor activity that mediated the protection required the G protein-coupled receptor (GPR)-41. A similar alteration in the metabolic potential of intestinal bacterial communities was observed with diverse parasitic and host species, suggesting that this represents an evolutionary conserved mechanism of host-microbe-helminth interactions. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  12. Intestinal microbiota, probiotics and mental health: from Metchnikoff to modern advances: Part II - contemporary contextual research.

    PubMed

    Bested, Alison C; Logan, Alan C; Selhub, Eva M

    2013-03-14

    In recent years there has been a renewed interest concerning the ways in which the gastrointestinal tract - its functional integrity and microbial residents - might influence human mood (e.g. depression) and behavioral disorders. Once a hotbed of scientific interest in the early 20th century, this area lay dormant for decades, in part due to its association with the controversial term 'autointoxication'. Here we review contemporary findings related to intestinal permeability, small intestinal bacterial overgrowth, lipopolysaccharide endotoxin (LPS) exposure, D-lactic acid, propionic acid, and discuss their relevance to microbiota and mental health. In addition, we include the context of modern dietary habits as they relate to depression, anxiety and their potential interaction with intestinal microbiota.

  13. Intestinal Microbiota Is Influenced by Gender and Body Mass Index

    PubMed Central

    Haro, Carmen; Rangel-Zúñiga, Oriol A.; Alcalá-Díaz, Juan F.; Gómez-Delgado, Francisco; Pérez-Martínez, Pablo; Delgado-Lista, Javier; Quintana-Navarro, Gracia M.; Landa, Blanca B.; Navas-Cortés, Juan A.; Tena-Sempere, Manuel; Clemente, José C.; López-Miranda, José

    2016-01-01

    Intestinal microbiota changes are associated with the development of obesity. However, studies in humans have generated conflicting results due to high inter-individual heterogeneity in terms of diet, age, and hormonal factors, and the largely unexplored influence of gender. In this work, we aimed to identify differential gut microbiota signatures associated with obesity, as a function of gender and changes in body mass index (BMI). Differences in the bacterial community structure were analyzed by 16S sequencing in 39 men and 36 post-menopausal women, who had similar dietary background, matched by age and stratified according to the BMI. We observed that the abundance of the Bacteroides genus was lower in men than in women (P<0.001, Q = 0.002) when BMI was > 33. In fact, the abundance of this genus decreased in men with an increase in BMI (P<0.001, Q<0.001). However, in women, it remained unchanged within the different ranges of BMI. We observed a higher presence of Veillonella (84.6% vs. 47.2%; X2 test P = 0.001, Q = 0.019) and Methanobrevibacter genera (84.6% vs. 47.2%; X2 test P = 0.002, Q = 0.026) in fecal samples in men compared to women. We also observed that the abundance of Bilophila was lower in men compared to women regardless of BMI (P = 0.002, Q = 0.041). Additionally, after correcting for age and sex, 66 bacterial taxa at the genus level were found to be associated with BMI and plasma lipids. Microbiota explained at P = 0.001, 31.17% variation in BMI, 29.04% in triglycerides, 33.70% in high-density lipoproteins, 46.86% in low-density lipoproteins, and 28.55% in total cholesterol. Our results suggest that gut microbiota may differ between men and women, and that these differences may be influenced by the grade of obesity. The divergence in gut microbiota observed between men and women might have a dominant role in the definition of gender differences in the prevalence of metabolic and intestinal inflammatory diseases. PMID:27228093

  14. Routine Habitat Change: A Source of Unrecognized Transient Alteration of Intestinal Microbiota in Laboratory Mice

    PubMed Central

    Ma, Betty W.; Bokulich, Nicholas A.; Castillo, Patricia A.; Kananurak, Anchasa; Underwood, Mark A.; Mills, David A.; Bevins, Charles L.

    2012-01-01

    The mammalian intestine harbors a vast, complex and dynamic microbial population, which has profound effects on host nutrition, intestinal function and immune response, as well as influence on physiology outside of the alimentary tract. Imbalance in the composition of the dense colonizing bacterial population can increase susceptibility to various acute and chronic diseases. Valuable insights on the association of the microbiota with disease critically depend on investigation of mouse models. Like in humans, the microbial community in the mouse intestine is relatively stable and resilient, yet can be influenced by environmental factors. An often-overlooked variable in research is basic animal husbandry, which can potentially alter mouse physiology and experimental outcomes. This study examined the effects of common husbandry practices, including food and bedding alterations, as well as facility and cage changes, on the gut microbiota over a short time course of five days using three culture-independent techniques, quantitative PCR, terminal restriction fragment length polymorphism (TRFLP) and next generation sequencing (NGS). This study detected a substantial transient alteration in microbiota after the common practice of a short cross-campus facility transfer, but found no comparable alterations in microbiota within 5 days of switches in common laboratory food or bedding, or following an isolated cage change in mice acclimated to their housing facility. Our results highlight the importance of an acclimation period following even simple transfer of mice between campus facilities, and highlights that occult changes in microbiota should be considered when imposing husbandry variables on laboratory animals. PMID:23082164

  15. Routine habitat change: a source of unrecognized transient alteration of intestinal microbiota in laboratory mice.

    PubMed

    Ma, Betty W; Bokulich, Nicholas A; Castillo, Patricia A; Kananurak, Anchasa; Underwood, Mark A; Mills, David A; Bevins, Charles L

    2012-01-01

    The mammalian intestine harbors a vast, complex and dynamic microbial population, which has profound effects on host nutrition, intestinal function and immune response, as well as influence on physiology outside of the alimentary tract. Imbalance in the composition of the dense colonizing bacterial population can increase susceptibility to various acute and chronic diseases. Valuable insights on the association of the microbiota with disease critically depend on investigation of mouse models. Like in humans, the microbial community in the mouse intestine is relatively stable and resilient, yet can be influenced by environmental factors. An often-overlooked variable in research is basic animal husbandry, which can potentially alter mouse physiology and experimental outcomes. This study examined the effects of common husbandry practices, including food and bedding alterations, as well as facility and cage changes, on the gut microbiota over a short time course of five days using three culture-independent techniques, quantitative PCR, terminal restriction fragment length polymorphism (TRFLP) and next generation sequencing (NGS). This study detected a substantial transient alteration in microbiota after the common practice of a short cross-campus facility transfer, but found no comparable alterations in microbiota within 5 days of switches in common laboratory food or bedding, or following an isolated cage change in mice acclimated to their housing facility. Our results highlight the importance of an acclimation period following even simple transfer of mice between campus facilities, and highlights that occult changes in microbiota should be considered when imposing husbandry variables on laboratory animals.

  16. Lactobacillus rhamnosus GG Intake Modifies Preschool Children's Intestinal Microbiota, Alleviates Penicillin-Associated Changes, and Reduces Antibiotic Use.

    PubMed

    Korpela, Katri; Salonen, Anne; Virta, Lauri J; Kumpu, Minna; Kekkonen, Riina A; de Vos, Willem M

    2016-01-01

    Antibiotic use is considered among the most severe causes of disturbance to children's developing intestinal microbiota, and frequently causes adverse gastrointestinal effects ranging from mild and transient diarrhoea to life-threatening infections. Probiotics are commonly advocated to help in preventing antibiotic-associated gastrointestinal symptoms. However, it is currently unknown whether probiotics alleviate the antibiotic-associated changes in children's microbiota. Furthermore, it is not known how long-term probiotic consumption influences the developing microbiota of children. We analysed the influence of long-term Lactobacillus rhamnosus GG intake on preschool children's antibiotic use, and antibiotic-associated gastrointestinal complaints in a double blind, randomized placebo-controlled trial with 231 children aged 2-7. In addition, we analysed the effect of L. rhanmosus GG on the intestinal microbiota in a subset of 88 children. The results show that long-term L. rhamnosus GG supplementation has an influence on the composition of the intestinal microbiota in children, causing an increase in the abundance of Prevotella, Lactococcus, and Ruminococcus, and a decrease in Escherichia. The treatment appeared to prevent some of the changes in the microbiota associated with penicillin use, but not those associated with macrolide use. The treatment, however, did reduce the frequency of gastrointestinal complaints after a macrolide course. Finally, the treatment appeared to prevent certain bacterial infections for up to 3 years after the trial, as indicated by reduced antibiotic use. ClinicalTrials.gov NCT01014676.

  17. Purification and fermentation in vitro of sesaminol triglucoside from sesame cake by human intestinal microbiota.

    PubMed

    Zhu, Xiuling; Zhang, Xin; Sun, Yongkang; Su, Di; Sun, Yi; Hu, Bing; Zeng, Xiaoxiong

    2013-02-27

    Sesaminol triglucoside (STG), the most abundant lignan glycoside existing in sesame cake/meal, has exhibited various biological activities. However, little information about its in vitro fermentation with intestinal microbiota is available. Therefore, the effect of STG from sesame cake on the fermentation of human fecal microbiota was evaluated. First, high-purity STG was successfully prepared from defatted sesame cake by extraction with 80% ethanol and simple purification procedures of polyamide column chromatography and Toyopearl HW-40S column chromatography. Then the influence of STG on intestinal microbiota was conducted by monitoring bacterial populations and analyzing the concentrations of short-chain fatty acids (SCFA). We found that STG could significantly induce an increase in numbers of Lactobacillus - Enterococcus group and Bifidobacterium in fermentation in vitro with human fecal microbiota, while it did not stimulate the bacterial growth of Eubacterium rectale - Clostridium coccoides group, Clostridium histolyticum group, and Bacteroides - Prevotella group. Furthermore, it was found that concentrations of formic, acetic, propionic, and butyric acids in STG culture increased significantly during the fermentation, and its total SCFA concentration was relatively higher than those of the control and glucose cultures at 6 and 12 h fermentation. Our findings provided further evidence for the importance of human intestinal bacteria in the bioactivity of STG and its metabolites in the maintenance of human health.

  18. [Alteration of intestinal permeability: the missing link between gut microbiota modifications and inflammation in obesity?].

    PubMed

    Genser, Laurent; Poitou, Christine; Brot-Laroche, Édith; Rousset, Monique; Vaillant, Jean-Christophe; Clément, Karine; Thenet, Sophie; Leturque, Armelle

    2016-05-01

    The increasing incidence of obesity and associated metabolic complications is a worldwide public health issue. The role of the gut in the pathophysiology of obesity, with an important part for microbiota, is becoming obvious. In rodent models of diet-induced obesity, the modifications of gut microbiota are associated with an alteration of the intestinal permeability increasing the passage of food or bacterial antigens, which contribute to low-grade inflammation and insulin resistance. In human obesity, intestinal permeability modification, and its role in the crosstalk between gut microbiota changes and inflammation at systemic and tissular levels, are still poorly documented. Hence, further characterization of the triggering mechanisms of such inflammatory responses in obese subjects could enable the development of personalized intervention strategies that will help to reduce the risk of obesity-associated diseases. © 2016 médecine/sciences – Inserm.

  19. Effect of cocoa's theobromine on intestinal microbiota of rats.

    PubMed

    Martín-Peláez, Sandra; Camps-Bossacoma, Mariona; Massot-Cladera, Malen; Rigo-Adrover, Mar; Franch, Àngels; Pérez-Cano, Francisco J; Castell, Margarida

    2017-10-01

    To establish the role of cocoa theobromine on gut microbiota composition and fermentation products after cocoa consumption in rats. Lewis rats were fed either a standard diet (RF diet), a diet containing 10% cocoa (CC diet) or a diet including 0.25% theobromine (TB diet) for 15 days. Gut microbiota (fluorescence in situ hybridization coupled to flow cytometry and metagenomics analysis), SCFA and IgA-coated bacteria were analyzed in fecal samples. CC and TB diets induced lower counts of E. coli whereas TB diet led to lower counts of Bifidobacterium spp., Streptococcus spp. and Clostridium histolyticum-C. perfingens group compared to RF diet. Metagenomics analysis also revealed a different microbiota pattern among the studied groups. The SCFA content was higher after both CC and TB diets, which was mainly due to enhanced butyric acid production. Furthermore, both diets decreased the proportion of IgA-coated bacteria. Cocoa's theobromine plays a relevant role in some effects related to cocoa intake, such as the lower proportion of IgA-coated bacteria. Moreover, theobromine modifies gut microbiota although other cocoa compounds could also act on intestinal bacteria, attenuating or enhancing the theobromine effects. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Human cytokine responses induced by Gram-positive cell walls of normal intestinal microbiota

    PubMed Central

    Chen, T; Isomäki, P; Rimpiläinen, M; Toivanen, P

    1999-01-01

    The normal microbiota plays an important role in the health of the host, but little is known of how the human immune system recognizes and responds to Gram-positive indigenous bacteria. We have investigated cytokine responses of peripheral blood mononuclear cells (PBMC) to Gram-positive cell walls (CW) derived from four common intestinal indigenous bacteria, Eubacterium aerofaciens (Eu.a.), Eubacterium limosum(Eu.l.), Lactobacillus casei(L.c.), and Lactobacillus fermentum (L.f.). Our results indicate that Gram-positive CW of the normal intestinal microbiota can induce cytokine responses of the human PBMC. The profile, level and kinetics of these responses are similar to those induced by lipopolysaccharide (LPS) or CW derived from a pathogen, Streptococcus pyogenes (S.p.). Bacterial CW are capable of inducing production of a proinflammatory cytokine, tumour necrosis factor-alpha (TNF-α), and an anti-inflammatory cytokine, IL-10, but not that of IL-4 or interferon-gamma (IFN-γ). Monocytes are the main cell population in PBMC to produce TNF-α and IL-10. Induction of cytokine secretion is serum-dependent; both CD14-dependent and -independent pathways are involved. These findings suggest that the human cytokine responses induced by Gram-positive CW of the normal intestinal microbiota are similar to those induced by LPS or Gram-positive CW of the pathogens. PMID:10540188

  1. Ecological modeling from time-series inference: insight into dynamics and stability of intestinal microbiota.

    PubMed

    Stein, Richard R; Bucci, Vanni; Toussaint, Nora C; Buffie, Charlie G; Rätsch, Gunnar; Pamer, Eric G; Sander, Chris; Xavier, João B

    2013-01-01

    The intestinal microbiota is a microbial ecosystem of crucial importance to human health. Understanding how the microbiota confers resistance against enteric pathogens and how antibiotics disrupt that resistance is key to the prevention and cure of intestinal infections. We present a novel method to infer microbial community ecology directly from time-resolved metagenomics. This method extends generalized Lotka-Volterra dynamics to account for external perturbations. Data from recent experiments on antibiotic-mediated Clostridium difficile infection is analyzed to quantify microbial interactions, commensal-pathogen interactions, and the effect of the antibiotic on the community. Stability analysis reveals that the microbiota is intrinsically stable, explaining how antibiotic perturbations and C. difficile inoculation can produce catastrophic shifts that persist even after removal of the perturbations. Importantly, the analysis suggests a subnetwork of bacterial groups implicated in protection against C. difficile. Due to its generality, our method can be applied to any high-resolution ecological time-series data to infer community structure and response to external stimuli.

  2. Ecological Modeling from Time-Series Inference: Insight into Dynamics and Stability of Intestinal Microbiota

    PubMed Central

    Toussaint, Nora C.; Buffie, Charlie G.; Rätsch, Gunnar; Pamer, Eric G.; Sander, Chris; Xavier, João B.

    2013-01-01

    The intestinal microbiota is a microbial ecosystem of crucial importance to human health. Understanding how the microbiota confers resistance against enteric pathogens and how antibiotics disrupt that resistance is key to the prevention and cure of intestinal infections. We present a novel method to infer microbial community ecology directly from time-resolved metagenomics. This method extends generalized Lotka–Volterra dynamics to account for external perturbations. Data from recent experiments on antibiotic-mediated Clostridium difficile infection is analyzed to quantify microbial interactions, commensal-pathogen interactions, and the effect of the antibiotic on the community. Stability analysis reveals that the microbiota is intrinsically stable, explaining how antibiotic perturbations and C. difficile inoculation can produce catastrophic shifts that persist even after removal of the perturbations. Importantly, the analysis suggests a subnetwork of bacterial groups implicated in protection against C. difficile. Due to its generality, our method can be applied to any high-resolution ecological time-series data to infer community structure and response to external stimuli. PMID:24348232

  3. Microbiota-dependent crosstalk between macrophages and ILC3 promotes intestinal homeostasis.

    PubMed

    Mortha, Arthur; Chudnovskiy, Aleksey; Hashimoto, Daigo; Bogunovic, Milena; Spencer, Sean P; Belkaid, Yasmine; Merad, Miriam

    2014-03-28

    The intestinal microbiota and tissue-resident myeloid cells promote immune responses that maintain intestinal homeostasis in the host. However, the cellular cues that translate microbial signals into intestinal homeostasis remain unclear. Here, we show that deficient granulocyte-macrophage colony-stimulating factor (GM-CSF) production altered mononuclear phagocyte effector functions and led to reduced regulatory T cell (T(reg)) numbers and impaired oral tolerance. We observed that RORγt(+) innate lymphoid cells (ILCs) are the primary source of GM-CSF in the gut and that ILC-driven GM-CSF production was dependent on the ability of macrophages to sense microbial signals and produce interleukin-1β. Our findings reveal that commensal microbes promote a crosstalk between innate myeloid and lymphoid cells that leads to immune homeostasis in the intestine.

  4. [The intestinal microbiota: A new player in depression?

    PubMed

    Meyrel, M; Varin, L; Detaint, B; Mouaffak, F

    2018-02-01

    Depression is the leading cause of disability in the world according to the World Health Organization. The effectiveness of the available antidepressant therapies is limited. Data from the literature suggest that some subtypes of depression may be associated with chronic low grade inflammation. The uncovering of the role of intestinal microbiota in the development of the immune system and its bidirectional communication with the brain have led to growing interest on reciprocal interactions between inflammation, microbiota and depression. Our purpose is to review the state of knowledge on these interactions. We carried out a literature search on Pubmed, Go pubmed, psyC info, Elsevier, Embase until August 13, 2016 using the keywords "depression", "microbiota" and "inflammation". Dysbiosis reported in patients suffering from depression seems to contribute to low grade systemic inflammation which in turn feeds back depression. The hypothetical mechanisms behind these interactions are multiple: leaky gut, hyperreactivity of the corticotropic axis, disturbed neurotransmission. Abnormal microbial exposure during childhood and perinatal stress are reported to influence both the maturation of the immune system and the microbiota hence contributing to the ethiopathogeny of depression. There is no evidence in the literature to support a role for diet. The evidence supporting a causal relationship between dysbiosis and depression through low grade inflammation is limited and precludes us from drawing firm conclusions. Further studies are needed to improve our knowledge. Copyright © 2017 L'Encéphale, Paris. Published by Elsevier Masson SAS. All rights reserved.

  5. Antibiotics-induced depletion of mice microbiota induces changes in host serotonin biosynthesis and intestinal motility.

    PubMed

    Ge, Xiaolong; Ding, Chao; Zhao, Wei; Xu, Lizhi; Tian, Hongliang; Gong, Jianfeng; Zhu, Minsheng; Li, Jieshou; Li, Ning

    2017-01-13

    The gastrointestinal motility is affected by gut microbiota and the relationship between them has become a hot topic. However, mechanisms of microbiota in regulating motility have not been well defined. We thus investigated the effect of microbiota depletion by antibiotics on gastrointestinal motility, colonic serotonin levels, and bile acids metabolism. After 4 weeks with antibiotics treatments, gastrointestinal and colon transit, defecation frequency, water content, and other fecal parameters were measured and analyzed in both wild-type and antibiotics-treated mice, respectively. Contractility of smooth muscle, serotonin levels, and bile acids levels in wild-type and antibiotics-treated mice were also analyzed. After antibiotics treatment, the richness and diversity of intestinal microbiota decreased significantly, and the fecal of mice had less output (P < 0.01), more water content (P < 0.01), and longer pellet length (P < 0.01). Antibiotics treatment in mice also resulted in delayed gastrointestinal and colonic motility (P < 0.05), and inhibition of phasic contractions of longitudinal muscle from isolated proximal colon (P < 0.01). In antibiotics-treated mice, serotonin, tryptophan hydroxylase 1, and secondary bile acids levels were decreased. Gut microbiota play an important role in the regulation of intestinal bile acids and serotonin metabolism, which could probably contribute to the association between gut microbiota and gastrointestinal motility as intermediates.

  6. Intestinal microbiota in functional bowel disorders: a Rome foundation report

    PubMed Central

    Barbara, Giovanni; Flint, Harry J; Spiegel, Brennan M R; Spiller, Robin C; Vanner, Stephen; Verdu, Elena F; Whorwell, Peter J; Zoetendal, Erwin G

    2013-01-01

    It is increasingly perceived that gut host–microbial interactions are important elements in the pathogenesis of functional gastrointestinal disorders (FGID). The most convincing evidence to date is the finding that functional dyspepsia and irritable bowel syndrome (IBS) may develop in predisposed individuals following a bout of infectious gastroenteritis. There has been a great deal of interest in the potential clinical and therapeutic implications of small intestinal bacterial overgrowth in IBS. However, this theory has generated much debate because the evidence is largely based on breath tests which have not been validated. The introduction of culture-independent molecular techniques provides a major advancement in our understanding of the microbial community in FGID. Results from 16S rRNA-based microbiota profiling approaches demonstrate both quantitative and qualitative changes of mucosal and faecal gut microbiota, particularly in IBS. Investigators are also starting to measure host–microbial interactions in IBS. The current working hypothesis is that abnormal microbiota activate mucosal innate immune responses which increase epithelial permeability, activate nociceptive sensory pathways and dysregulate the enteric nervous system. While we await important insights in this field, the microbiota is already a therapeutic target. Existing controlled trials of dietary manipulation, prebiotics, probiotics, synbiotics and non-absorbable antibiotics are promising, although most are limited by suboptimal design and small sample size. In this article, the authors provide a critical review of current hypotheses regarding the pathogenetic involvement of microbiota in FGID and evaluate the results of microbiota-directed interventions. The authors also provide clinical guidance on modulation of gut microbiota in IBS. PMID:22730468

  7. Can Attention to the Intestinal Microbiota Improve Understanding and Treatment of Anorexia Nervosa?

    PubMed Central

    Carr, Jacquelyn; Kleiman, Susan C.; Bulik, Cynthia M.; Bulik-Sullivan, Emily C.; Carroll, Ian M.

    2016-01-01

    Summary Anorexia nervosa (AN) is characterized by severe dietary restriction or other weight loss behaviors and exhibits the highest mortality rate of any psychiatric disorder. Therapeutic renourishment in AN is founded primarily on clinical opinion and guidelines, with a weak evidence base. Genetic factors do not fully account for the etiology of AN, and non-genetic factors that contribute to the onset and persistence of this disease warrant investigation. Compelling evidence that the intestinal microbiota regulates adiposity and metabolism, and more recently, anxiety behavior, provides a strong rationale for exploring the role of this complex microbial community in the onset, maintenance of, and recovery from AN. This review explores the relationship between the intestinal microbiota and AN and a potential role for this enteric microbial community as a therapy for this severe illness. PMID:27003627

  8. Effect of Lactobacillus salivarius bacteriocin Abp118 on the mouse and pig intestinal microbiota.

    PubMed

    Riboulet-Bisson, Eliette; Sturme, Mark H J; Jeffery, Ian B; O'Donnell, Michelle M; Neville, B Anne; Forde, Brian M; Claesson, Marcus J; Harris, Hugh; Gardiner, Gillian E; Casey, Patrick G; Lawlor, Peadar G; O'Toole, Paul W; Ross, R Paul

    2012-01-01

    Lactobacilli are gram-positive bacteria that are a subdominant element in the human gastrointestinal microbiota, and which are commonly used in the food industry. Some lactobacilli are considered probiotic, and have been associated with health benefits. However, there is very little culture-independent information on how consumed probiotic microorganisms might affect the entire intestinal microbiota. We therefore studied the impact of the administration of Lactobacillus salivarius UCC118, a microorganism well characterized for its probiotic properties, on the composition of the intestinal microbiota in two model animals. UCC118 has anti-infective activity due to production of the bacteriocin Abp118, a broad-spectrum class IIb bacteriocin, which we hypothesized could impact the microbiota. Mice and pigs were administered wild-type (WT) L. salivarius UCC118 cells, or a mutant lacking bacteriocin production. The microbiota composition was determined by pyrosequencing of 16S rRNA gene amplicons from faeces. The data show that L. salivarius UCC118 administration had no significant effect on proportions of major phyla comprising the mouse microbiota, whether the strain was producing bacteriocin or not. However, L. salivarius UCC118 WT administration led to a significant decrease in Spirochaetes levels, the third major phylum in the untreated pig microbiota. In both pigs and mice, L. salivarius UCC118 administration had an effect on Firmicutes genus members. This effect was not observed when the mutant strain was administered, and was thus associated with bacteriocin production. Surprisingly, in both models, L. salivarius UCC118 administration and production of Abp118 had an effect on gram-negative microorganisms, even though Abp118 is normally not active in vitro against this group of microorganisms. Thus L. salivarius UCC118 administration has a significant but subtle impact on mouse and pig microbiota, by a mechanism that seems at least partially bacteriocin-dependent.

  9. Effect of Lactobacillus salivarius Bacteriocin Abp118 on the Mouse and Pig Intestinal Microbiota

    PubMed Central

    Riboulet-Bisson, Eliette; Sturme, Mark H. J.; Jeffery, Ian B.; O'Donnell, Michelle M.; Neville, B. Anne; Forde, Brian M.; Claesson, Marcus J.; Harris, Hugh; Gardiner, Gillian E.; Casey, Patrick G.; Lawlor, Peadar G.; O'Toole, Paul W.; Ross, R. Paul

    2012-01-01

    Lactobacilli are Gram-positive bacteria that are a subdominant element in the human gastrointestinal microbiota, and which are commonly used in the food industry. Some lactobacilli are considered probiotic, and have been associated with health benefits. However, there is very little culture-independent information on how consumed probiotic microorganisms might affect the entire intestinal microbiota. We therefore studied the impact of the administration of Lactobacillus salivarius UCC118, a microorganism well characterized for its probiotic properties, on the composition of the intestinal microbiota in two model animals. UCC118 has anti-infective activity due to production of the bacteriocin Abp118, a broad-spectrum class IIb bacteriocin, which we hypothesized could impact the microbiota. Mice and pigs were administered wild-type (WT) L. salivarius UCC118 cells, or a mutant lacking bacteriocin production. The microbiota composition was determined by pyrosequencing of 16S rRNA gene amplicons from faeces. The data show that L. salivarius UCC118 administration had no significant effect on proportions of major phyla comprising the mouse microbiota, whether the strain was producing bacteriocin or not. However, L. salivarius UCC118 WT administration led to a significant decrease in Spirochaetes levels, the third major phylum in the untreated pig microbiota. In both pigs and mice, L. salivarius UCC118 administration had an effect on Firmicutes genus members. This effect was not observed when the mutant strain was administered, and was thus associated with bacteriocin production. Surprisingly, in both models, L. salivarius UCC118 administration and production of Abp118 had an effect on Gram-negative microorganisms, even though Abp118 is normally not active in vitro against this group of microorganisms. Thus L. salivarius UCC118 administration has a significant but subtle impact on mouse and pig microbiota, by a mechanism that seems at least partially bacteriocin

  10. The Modulatory Effect of Anthocyanins from Purple Sweet Potato on Human Intestinal Microbiota in Vitro.

    PubMed

    Zhang, Xin; Yang, Yang; Wu, Zufang; Weng, Peifang

    2016-03-30

    In order to investigate the modulatory effect of purple sweet potato anthocyanins (PSPAs) on human intestinal microbiota, PSPAs were prepared by column chromatography and their influence on intestinal microbiota was analyzed by monitoring the bacterial populations and analyzing short-chain fatty acid (SCFA) concentrations at different time points. The numbers (log10 cell/mL) of Bifidobacterium and Lactobacillus/Enterococcus spp., Bacteroides-Prevotella, Clostridium histolyticum, and total bacteria after 24 h of culture in anaerobic fermentation broth containing PSPAs were 8.44 ± 0.02, 8.30 ± 0.01, 7.80 ± 0.03, 7.60 ± 0.03, and 9.00 ± 0.02, respectively, compared with 8.21 ± 0.03, 8.12 ± 0.02, 7.95 ± 0.02, 7.77 ± 0.02, and 9.01 ± 0.03, respectively, in the controls. The results showed that PSPAs induced the proliferation of Bifidobacterium and Lactobacillus/Enterococcus spp., inhibited the growth of Bacteroides-Prevotella and Clostridium histolyticum, and did not affect the total bacteria number. Total SCFA concentrations in the cultures with PSPAs were significantly higher than in the controls (P < 0.05). Moreover, during the fermentation, the PSPAs were partially fragmented to phenolic acids, which may exert a better effect on intestinal microecology, suggesting that PSPAs may have prebiotic-like activity by generating SCFAs and modulating the intestinal microbiota, contributing to improvements in human health.

  11. Biotransformation of 1-nitropyrene to 1-aminopyrene and N-formyl-1-aminopyrene by the human intestinal microbiota

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Manning, B.W.; Cerniglia, C.E.; Federle, T.W.

    The nitropolycyclic aromatic hydrocarbon 1-nitropyrene (1-NP) is an environmental pollutant, a potent bacterial and mammalian mutagen, and a carcinogen. The metabolism of 1-NP by the human intestinal microbiota was studied using a semicontinuous culture system that simulates the colonic lumen. (/sup 3/H)-1-Nitropyrene was metabolized by the intestinal microbiota to 1-aminopyrene (1-AP) and N-formyl-1-aminopyrene (FAP) as determined by high-performance liquid chromatography (HPLC) and mass spectrometry. Twenty-four hours after the addition of (/sup 3/H)-1-NP, the formylated compound and 1-AP accounted for 20 and 80% of the total metabolism respectively. This percentage increased to 66% for FAP after 24 h following 10 dmore » of chronic exposure to unlabeled 1-NP, suggesting metabolic adaptation to 1-NP by the microbiota. Both 1-AP and FAP have been shown to be nonmutagenic towards Salmonella typhimurium TA98, which indicates that the intestinal microflora may potentially detoxify 1-NP.« less

  12. Effects on intestinal microbiota and immune genes of Solea senegalensis after suspension of the administration of Shewanella putrefaciens Pdp11.

    PubMed

    Vidal, Sara; Tapia-Paniagua, Silvana Teresa; Moriñigo, Jesús Miguel; Lobo, Carmen; García de la Banda, Inés; Balebona, María Del Carmen; Moriñigo, Miguel Ángel

    2016-11-01

    The interaction host-intestinal microbiota is essential for the immunological homeostasis of the host. Probiotics, prebiotics and synbiotics are promising tools for the manipulation of the intestinal microbiota towards beneficial effects to the host. The objective of this study was to evaluate the modulation effect on the intestinal microbiota and the transcription of genes involved in the immune response in head kidney of Solea senegalensis after administration of diet supplemented with the prebiotic alginate and the probiotic Shewanella putrefaciens Pdp11 CECT 7627 (SpPdp11). The results showed higher adaptability to dietary changes in the intestinal microbiota of fish fed diet with alginate and SpPdp11 together compared to those fish that received an alginate-supplemented diet. The alginate-supplemented diet produced up-regulation of genes encoding proteins involved in immunological responses, such as complement, lysozyme G and transferrin, and oxidative stress, such as NADPH oxidase and glutation peroxidase. On the other hand, the administration of alginate combined with SpPdp11 resulted in a significant increase of the transcription of genes encoding for glutation peroxidase and HSP70, indicating a potential protective effect of SpPdp11 against oxidative stress. In addition, these effects were maintained after the suspension of the probiotic treatment. The relationship between the modulation of the intestinal microbiota and the expression of genes with protective effect against the oxidative stress was demonstrated by the Principal Components Analysis. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Modification of Intestinal Microbiota and Its Consequences for Innate Immune Response in the Pathogenesis of Campylobacteriosis

    PubMed Central

    Heimesaat, Markus M.; Bereswill, Stefan; Tareen, Abdul Malik; Lugert, Raimond; Groß, Uwe; Zautner, Andreas E.

    2013-01-01

    Campylobacter jejuni is the leading cause of bacterial food-borne gastroenteritis in the world, and thus one of the most important public health concerns. The initial stage in its pathogenesis after ingestion is to overcome colonization resistance that is maintained by the human intestinal microbiota. But how it overcomes colonization resistance is unknown. Recently developed humanized gnotobiotic mouse models have provided deeper insights into this initial stage and host's immune response. These studies have found that a fat-rich diet modifies the composition of the conventional intestinal microbiota by increasing the Firmicutes and Proteobacteria loads while reducing the Actinobacteria and Bacteroidetes loads creating an imbalance that exposes the intestinal epithelial cells to adherence. Upon adherence, deoxycholic acid stimulates C. jejuni to synthesize Campylobacter invasion antigens, which invade the epithelial cells. In response, NF-κB triggers the maturation of dendritic cells. Chemokines produced by the activated dendritic cells initiate the clearance of C. jejuni cells by inducing the actions of neutrophils, B-lymphocytes, and various subsets of T-cells. This immune response causes inflammation. This review focuses on the progress that has been made on understanding the relationship between intestinal microbiota shift, establishment of C. jejuni infection, and consequent immune response. PMID:24324507

  14. The Role of Intestinal Microbiota in Development of Irinotecan Toxicity and in Toxicity Reduction through Dietary Fibres in Rats

    PubMed Central

    Lin, Xiaoxi B.; Farhangfar, Arazm; Valcheva, Rosica; Sawyer, Michael B.; Dieleman, Levinus; Schieber, Andreas; Gänzle, Michael G.; Baracos, Vickie

    2014-01-01

    CPT-11 is a drug used as chemotherapy for colorectal cancer. CPT-11 causes toxic side-effects in patients. CPT-11 toxicity has been attributed to the activity of intestinal microbiota, however, intestinal microbiota may also have protective effects in CP!-11 chemotherapy. This study aimed to elucidate mechanisms through which microbiota and dietary fibres could modify host health. Rats bearing a Ward colon carcinoma were treated with a two-cycle CPT-11/5-fluorouracil therapy recapitulating clinical therapy of colorectal cancer. Animals were fed with a semi-purified diet or a semi-purified diet was supplemented with non-digestible carbohydrates (isomalto-oligosaccharides, resistant starch, fructo-oligosaccharides, or inulin) in 3 independent experiments. Changes in intestinal microbiota, bacteria translocating to mesenteric lymphnodes, cecal GUD activity, and cecal SCFA production, and the intestinal concentration of CPT-11 and its metabolites were analysed. Non-digestible carbohydrates significantly influenced feed intake, body weight and other indicators of animal health. The identification of translocating bacteria and their quantification in cecal microbiota indicated that overgrowth of the intestine by opportunistic pathogens was not a major contributor to CPT-11 toxicity. Remarkably, fecal GUD activity positively correlated to body weight and feed intake but negatively correlated to cecal SN-38 concentrations and IL1-β. The reduction in CPT-11 toxicity by non-digestible carbohydrates did not correlate to stimulation of specific bacterial taxa. However, cecal butyrate concentrations and feed intake were highly correlated. The protective role of intestinal butyrate production was substantiated by a positive correlation of the host expression of MCT1 (monocarboxylate transporter 1) with body weight as well as a positive correlation of the abundance of bacterial butyryl-CoA gene with cecal butyrate concentrations. These correlations support the interpretation

  15. Smoking cessation alters intestinal microbiota: insights from quantitative investigations on human fecal samples using FISH.

    PubMed

    Biedermann, Luc; Brülisauer, Karin; Zeitz, Jonas; Frei, Pascal; Scharl, Michael; Vavricka, Stephan R; Fried, Michael; Loessner, Martin J; Rogler, Gerhard; Schuppler, Markus

    2014-09-01

    There has been a dramatic increase in investigations on the potential mechanistic role of the intestinal microbiota in various diseases and factors modulating intestinal microbial composition. We recently reported on intestinal microbial shifts after smoking cessation in humans. In this study, we aimed to conduct further microbial analyses and verify our previous results obtained by pyrosequencing using a direct quantitative microbial approach. Stool samples of healthy smoking human subjects undergoing controlled smoking cessation during a 9-week observational period were analyzed and compared with 2 control groups, ongoing smoking and nonsmoking subjects. Fluorescence in situ hybridization was applied to quantify specific bacterial groups. Intestinal microbiota composition was substantially altered after smoking cessation as characterized by an increase in key representatives from the phyla of Firmicutes (Clostridium coccoides, Eubacterium rectale, and Clostridium leptum subgroup) and Actinobacteria (HGC bacteria and Bifidobacteria) as well as a decrease in Bacteroidetes (Prevotella spp. and Bacteroides spp.) and Proteobacteria (β- and γ-subgroup of Proteobacteria). As determined by fluorescence in situ hybridization, an independent direct quantitative microbial approach, we could confirm that intestinal microbiota composition in humans is influenced by smoking. The characteristics of observed microbial shifts suggest a potential mechanistic association to alterations in body weight subsequent to smoking cessation. More importantly, regarding previously described microbial hallmarks of dysbiosis in inflammatory bowel diseases, a variety of observed microbial alterations after smoking cessation deserve further consideration in view of the divergent effect of smoking on the clinical course of Crohn's disease and ulcerative colitis.

  16. Fecal and Mucosa-Associated Intestinal Microbiota in Patients with Diarrhea-Predominant Irritable Bowel Syndrome.

    PubMed

    Maharshak, Nitsan; Ringel, Yehuda; Katibian, David; Lundqvist, Ashley; Sartor, R Balfour; Carroll, Ian M; Ringel-Kulka, Tamar

    2018-05-17

    Irritable bowel syndrome (IBS) has been associated with changes in the intestinal microbiota. Only a few studies have explored differences in the mucosa-associated microbiota between IBS patients and healthy controls (HC). To characterize and compare the microbiota in mucosal and fecal samples from carefully selected patients with IBS-D and HC. The cohort was composed of 23 diarrhea-predominant IBS (IBS-D) patients and 24 HC. Fresh stool samples were collected from participants prior to the collection of colonic mucosal samples from an unprepped bowel. After DNA extraction, 16S rRNA genes were sequenced by 454 pyrosequencing and analyzed using the QIIME pipeline. The fecal microbiota (luminal niche) of IBS-D patients was found to have reduced enteric richness compared to HC (P < 0.05), whereas no differences were observed between the two groups within the mucosal microbiota. Within the luminal niche, the relative proportions of Faecalibacterium genus were found to be lower in IBS-D than in HC and the Dorea genus was higher in IBS-D. None of the taxa proportions were significantly different in IBS-D patients versus HC using an FDR of ≤ 0.1 when analyzing samples that appeared in > 25% samples of either niche. Fecal and mucosal microbiota of IBS-D patients and HC are very similar and are not sufficient to explain the reported altered physiology and symptomatology of IBS-D. Future studies should investigate intestinal microbiome-dependent functional activity in addition to the fecal and mucosal-associated microbial composition.

  17. Lactobacillus rhamnosus GG Intake Modifies Preschool Children’s Intestinal Microbiota, Alleviates Penicillin-Associated Changes, and Reduces Antibiotic Use

    PubMed Central

    Korpela, Katri; Salonen, Anne; Virta, Lauri J.; Kumpu, Minna; Kekkonen, Riina A.; de Vos, Willem M.

    2016-01-01

    Antibiotic use is considered among the most severe causes of disturbance to children’s developing intestinal microbiota, and frequently causes adverse gastrointestinal effects ranging from mild and transient diarrhoea to life-threatening infections. Probiotics are commonly advocated to help in preventing antibiotic-associated gastrointestinal symptoms. However, it is currently unknown whether probiotics alleviate the antibiotic-associated changes in children’s microbiota. Furthermore, it is not known how long-term probiotic consumption influences the developing microbiota of children. We analysed the influence of long-term Lactobacillus rhamnosus GG intake on preschool children’s antibiotic use, and antibiotic-associated gastrointestinal complaints in a double blind, randomized placebo-controlled trial with 231 children aged 2–7. In addition, we analysed the effect of L. rhanmosus GG on the intestinal microbiota in a subset of 88 children. The results show that long-term L. rhamnosus GG supplementation has an influence on the composition of the intestinal microbiota in children, causing an increase in the abundance of Prevotella, Lactococcus, and Ruminococcus, and a decrease in Escherichia. The treatment appeared to prevent some of the changes in the microbiota associated with penicillin use, but not those associated with macrolide use. The treatment, however, did reduce the frequency of gastrointestinal complaints after a macrolide course. Finally, the treatment appeared to prevent certain bacterial infections for up to 3 years after the trial, as indicated by reduced antibiotic use. Trial Registration: ClinicalTrials.gov NCT01014676 PMID:27111772

  18. Composition, variability, and temporal stability of the intestinal microbiota of the elderly

    PubMed Central

    Claesson, Marcus J.; Cusack, Siobhán; O'Sullivan, Orla; Greene-Diniz, Rachel; de Weerd, Heleen; Flannery, Edel; Marchesi, Julian R.; Falush, Daniel; Dinan, Timothy; Fitzgerald, Gerald; Stanton, Catherine; van Sinderen, Douwe; O'Connor, Michael; Harnedy, Norma; O'Connor, Kieran; Henry, Colm; O'Mahony, Denis; Fitzgerald, Anthony P.; Shanahan, Fergus; Twomey, Cillian; Hill, Colin; Ross, R. Paul; O'Toole, Paul W.

    2011-01-01

    Alterations in the human intestinal microbiota are linked to conditions including inflammatory bowel disease, irritable bowel syndrome, and obesity. The microbiota also undergoes substantial changes at the extremes of life, in infants and older people, the ramifications of which are still being explored. We applied pyrosequencing of over 40,000 16S rRNA gene V4 region amplicons per subject to characterize the fecal microbiota in 161 subjects aged 65 y and older and 9 younger control subjects. The microbiota of each individual subject constituted a unique profile that was separable from all others. In 68% of the individuals, the microbiota was dominated by phylum Bacteroides, with an average proportion of 57% across all 161 baseline samples. Phylum Firmicutes had an average proportion of 40%. The proportions of some phyla and genera associated with disease or health also varied dramatically, including Proteobacteria, Actinobacteria, and Faecalibacteria. The core microbiota of elderly subjects was distinct from that previously established for younger adults, with a greater proportion of Bacteroides spp. and distinct abundance patterns of Clostridium groups. Analyses of 26 fecal microbiota datasets from 3-month follow-up samples indicated that in 85% of the subjects, the microbiota composition was more like the corresponding time-0 sample than any other dataset. We conclude that the fecal microbiota of the elderly shows temporal stability over limited time in the majority of subjects but is characterized by unusual phylum proportions and extreme variability. PMID:20571116

  19. Role of intestinal microbiota in the development of multiple sclerosis.

    PubMed

    Castillo-Álvarez, F; Marzo-Sola, M E

    2017-04-01

    Multiple sclerosis (MS) is a demyelinating disease that affects young adults; in that age group, it represents the second leading cause of disability in our setting. Its precise aetiology has not been elucidated, but it is widely accepted to occur in genetically predisposed patients who are exposed to certain environmental factors. The discovery of the regulatory role played by intestinal microbiota in various autoimmune diseases has opened a new line of research in this field, which is discussed in this review. We reviewed published studies on the role of the microbiota in the development of both MS and its animal model, experimental autoimmune encephalomyelitis (EAE). In mice, it has been shown that intestinal microorganisms regulate the polarisation of T helper cells from Th1-Th17 up to Th2, the function of regulatory T cells, and the activity of B cells; they participate in the pathogenesis of EAE and contribute to its prevention and treatment. In contrast, evidence in humans is still scarce and mainly based on case-control studies that point to the presence of differences in certain bacterial communities. Multiple evidence points to the role of microbiota in EAE. Extrapolation of these results to MS is still in the early stages of research, and studies are needed to define which bacterial populations are associated with MS, the role they play in pathogenesis, and the therapeutic possibilities this knowledge offers us. Copyright © 2015 Sociedad Española de Neurología. Publicado por Elsevier España, S.L.U. All rights reserved.

  20. The Impact of Laparoscopic Sleeve Gastrectomy with Duodenojejunal Bypass on Intestinal Microbiota Differs from that of Laparoscopic Sleeve Gastrectomy in Japanese Patients with Obesity.

    PubMed

    Kikuchi, Rieko; Irie, Junichiro; Yamada-Goto, Nobuko; Kikkawa, Eri; Seki, Yosuke; Kasama, Kazunori; Itoh, Hiroshi

    2018-06-01

    Bariatric surgery improves metabolic diseases and alters the intestinal microbiota in animals and humans, but different procedures reportedly have different impacts on the intestinal microbiota. We developed laparoscopic sleeve gastrectomy with duodenojejunal bypass (LSG-DJB) as an alternative to laparoscopic Roux-en-Y gastric bypass (LRYGB) in addition to laparoscopic sleeve gastrectomy (LSG) for Japanese patients with obesity. We investigated the precise change in the intestinal microbiota induced by these procedures in the present study. A prospective observational study of 44 Japanese patients with obesity was conducted [22 patients underwent LSG, 18 underwent LSG-DJB, and 4 underwent laparoscopic adjustable gastric banding (LAGB)]. The patients' clinical parameters and intestinal microbiota were investigated before and for 6 months after surgery. The microbiota was analyzed by a 16S rDNA method. LSG and LSG-DJB significantly improved the metabolic disorders in the patients with obesity. The proportion of the phylum Bacteroidetes and order Lactobacillales increased significantly in the LSG group, and that of the order Enterobacteriales increased significantly in the LSG-DJB group. LSG and LSG-DJB improved obesity and type 2 diabetes in Japanese patients with obesity, but the impact of LSG-DJB on the intestinal microbiota differed from that of LSG. This difference in the impact on the intestinal environment could explain the different efficacies of LSG and LSG-DJB in terms of their ability to resolve metabolic disorders in the clinical setting.

  1. Nucleotide-Binding Domain Leucine-Rich Repeat Containing Proteins and Intestinal Microbiota: Pivotal Players in Colitis and Colitis-Associated Cancer Development.

    PubMed

    Prossomariti, Anna; Sokol, Harry; Ricciardiello, Luigi

    2018-01-01

    The nucleotide-binding domain leucine-rich repeat containing (NLR) proteins play a fundamental role in innate immunity and intestinal tissue repair. A dysbiotic intestinal microbiota, developed as a consequence of alterations in NLR proteins, has recently emerged as a crucial hit for the development of ulcerative colitis (UC) and colitis-associated cancer (CAC). The concept of the existence of functional axes interconnecting bacteria with NLR proteins in a causal role in intestinal inflammation and CAC aroused a great interest for the potential development of preventive and therapeutic strategies against UC and CAC. However, the most recent scientific evidence, which highlights many confounding factors in studies based on microbiota characterization, underlines the need for an in-depth reconsideration of the data obtained until now. The purpose of this review is to discuss the recent findings concerning the cross talk between the NLR signaling and the intestinal microbiota in UC and CAC development, and to highlight the open issues that should be explored and addressed in future studies.

  2. Intestinal microbiota, probiotics and mental health: from Metchnikoff to modern advances: Part II – contemporary contextual research

    PubMed Central

    2013-01-01

    In recent years there has been a renewed interest concerning the ways in which the gastrointestinal tract – its functional integrity and microbial residents – might influence human mood (e.g. depression) and behavioral disorders. Once a hotbed of scientific interest in the early 20th century, this area lay dormant for decades, in part due to its association with the controversial term ‘autointoxication’. Here we review contemporary findings related to intestinal permeability, small intestinal bacterial overgrowth, lipopolysaccharide endotoxin (LPS) exposure, D-lactic acid, propionic acid, and discuss their relevance to microbiota and mental health. In addition, we include the context of modern dietary habits as they relate to depression, anxiety and their potential interaction with intestinal microbiota. PMID:23497633

  3. Dietary soybean protein concentrate-induced intestinal disorder in marine farmed Atlantic salmon, Salmo salar is associated with alterations in gut microbiota.

    PubMed

    Green, Timothy J; Smullen, Richard; Barnes, Andrew C

    2013-09-27

    The aquaculture industry has made substantial progress in reducing the fishmeal content of feeds for carnivorous species, driven by demand for improved sustainability and reduced cost. Soybean protein concentrate (SPC) is an attractive replacement for fishmeal, but intestinal disorders have been reported in Atlantic salmon (Salmo salar) fed these diets at high seawater temperatures, with preliminary evidence suggesting SPC induces these disorders by altering the intestinal microbiota. We compared the intestinal microbiota of marine-farmed S. salar fed experimental diets with varying levels of SPC in mid- and late-summer. Terminal restriction fragment length polymorphism (T-RFLP) and 16S rRNA clone library analysis revealed the microbiota adherent to the intestinal tract of salmon is complex at the population level, but simple and highly variable at the individual level. Temporal changes were observed with the bacterial diversity increasing in the intestinal tract in late summer. A Verrucomicrobia was the most frequently observed ribotype in early summer, whilst an Aliivibrio was the most frequently observed ribotype in late summer. Feeding SPC to salmon increased the bacterial diversity of the intestinal tract and resulted in the presence of bacteria not normally associated with marine fish (Escherichia and Propionibacterium). These diet-induced changes to the intestinal-microbiome could be ameliorated by inclusion of a prebiotic (mannan-oligosaccharide or MOS) to the diet. None of the experimental diets induced inflammation of the intestine as assessed by histopathology and expression of inflammatory cytokines. Our results support the "dysbiosis" hypothesis that SPC adversely affects the intestinal microbiota of Atlantic salmon. Crown Copyright © 2013. Published by Elsevier B.V. All rights reserved.

  4. Association between intestinal permeability and faecal microbiota composition in Italian children with beta cell autoimmunity at risk for type 1 diabetes.

    PubMed

    Maffeis, Claudio; Martina, Alessia; Corradi, Massimiliano; Quarella, Sara; Nori, Nicole; Torriani, Sandra; Plebani, Mario; Contreas, Giovanna; Felis, Giovanna E

    2016-10-01

    Pancreatic organ-specific autoimmunity in subjects at risk for type 1 diabetes (T1D) is associated with increased intestinal permeability and an aberrant gut microbiota, but these factors have not yet been simultaneously investigated in the same subjects. Thus, the aim of this study was to assess both intestinal permeability and gut microbiota composition in an Italian sample of children at risk for T1D. Ten Italian children with beta cell autoimmunity at risk for T1D and 10 healthy children were involved in a case-control study. The lactulose/mannitol test was used to assess intestinal permeability. Analysis of microbiota composition was performed using polymerase chain reaction followed by denaturing gradient gel electrophoresis, based on the 16S rRNA gene. Intestinal permeability was significantly higher in children at risk for T1D than in healthy controls. Moreover, the gut microbiota of the former differed from that of the latter group: Three microorganisms were detected - Dialister invisus, Gemella sanguinis and Bifidobacterium longum - in association with the pre-pathologic state. The results of this study validated the hypothesis that increased intestinal permeability together with differences in microbiota composition are contemporaneously associated with the pre-pathological condition of T1D in a sample of Italian children. Further studies are necessary to confirm the microbial markers identified in this sample of children as well as to clarify the involvement of microbiota modifications in the mechanisms leading to increased permeability and the autoimmune mechanisms that promote diabetes onset. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  5. Effects of Radiation on the Microbiota and Intestinal Inflammatory Disease

    DTIC Science & Technology

    2016-09-01

    completion of initial experiments investigating the effect of whole body and focal (GI tract) irradiation of mice on the bacterial and fungal microbiota. We...acute symptoms, will develop long-term consequences of irradiation including permanent changes to bowel function and intestinal fibrosis, which can...exposed to total body irradiation (TBI) or focal radiation to the GI tract. Timeline Status Site 1 (Stephen Shiao, MD, PhD) Site 2

  6. Atlantic salmon (Salmo salar) protein hydrolysate in diets for weaning piglets ─ effect on growth performance, intestinal morphometry and microbiota composition.

    PubMed

    Opheim, Margareth; Strube, Mikael Lenz; Sterten, Hallgeir; Øverland, Margareth; Kjos, Nils Petter

    2016-01-01

    Salmon protein hydrolysates (SPH) from two different rest raw materials were evaluated in diets for weaning piglets. Four experimental diets were included in the study: a diet based on plant protein with soy protein as the main protein source (Diet PP), a diet based on fishmeal in exchange for soy protein (Diet FM) and two diets in which different SPH replaced fishmeal in the FM diet. The experimental diets were fed to piglets from the day of weaning until 32 d postweaning. In addition to the record of performance data, an intestinal sampling for mucosal morphometry and microbiota 16S rRNA gene sequencing were performed at day 11 on a subset of the animals. The duodenal villi absorption area was significantly larger in piglets receiving Diets SPH compared with Diet PP (p < 0.02). A significant positive correlation between duodenal villi height and average daily gain during the first 11 d postweaning was detected. Only small differences in intestinal microbiota community and no differences in growth performance were detected between the experimental diets. To conclude, SPH seem to be an interesting novel protein source in weanling piglets.

  7. Pilot study of diet and microbiota: interactive associations of fibers and polyphenols with human intestinal bacteria.

    PubMed

    Cuervo, Adriana; Valdés, Lorena; Salazar, Nuria; de los Reyes-Gavilán, Clara G; Ruas-Madiedo, Patricia; Gueimonde, Miguel; González, Sonia

    2014-06-11

    Several studies have addressed the use of dietary fibers in the modulation of intestinal microbiota; however, information about other highly correlated components in foods, such as polyphenols, is scarce. The aim of this work was to explore the association between the intake of fibers and polyphenols from a regular diet and fecal microbiota composition in 38 healthy adults. Food intake was recorded using an annual food frequency questionnaire (FFQ). Quantification of microbial populations in feces was performed by quantitative PCR. A negative association was found between the intake of pectins and flavanones from oranges and the levels of Blautia coccoides and Clostridium leptum. By contrast, white bread, providing hemicellulose and resistant starch, was directly associated with Lactobacillus. Because some effects on intestinal microbiota attributed to isolated fibers or polyphenols might be modified by other components present in the same food, future research should be focused on diet rather than individual compounds.

  8. C4B gene influences intestinal microbiota through complement activation in patients with paediatric-onset inflammatory bowel disease.

    PubMed

    Nissilä, E; Korpela, K; Lokki, A I; Paakkanen, R; Jokiranta, S; de Vos, W M; Lokki, M-L; Kolho, K-L; Meri, S

    2017-12-01

    Complement C4 genes are linked to paediatric inflammatory bowel disease (PIBD), but the mechanisms have remained unclear. We examined the influence of C4B gene number on intestinal microbiota and in-vitro serum complement activation by intestinal microbes in PIBD patients. Complement C4A and C4B gene numbers were determined by genomic reverse transcription-polymerase chain reaction (RT-PCR) from 64 patients with PIBD (Crohn's disease or ulcerative colitis). The severity of the disease course was determined from faecal calprotectin levels. Intestinal microbiota was assessed using the HITChip microarray. Complement reactivity in patients was analysed by incubating their sera with Yersinia pseudotuberculosis and Akkermansia muciniphila and determining the levels of C3a and soluble terminal complement complex (SC5b-9) using enzyme immunoassays. The microbiota diversity was wider in patients with no C4B genes than in those with one or two C4B genes, irrespective of intestinal inflammation. C4B and total C4 gene numbers correlated positively with soluble terminal complement complex (TCC, SC5b-9) levels when patient serum samples were stimulated with bacteria. Our results suggest that the C4B gene number associates positively with inflammation in patients with PIBD. Multiple copies of the C4B gene may thus aggravate the IBD-associated dysbiosis through escalated complement reactivity towards the microbiota. © 2017 British Society for Immunology.

  9. Impact of enrofloxacin on the human intestinal microbiota revealed by comparative molecular analysis.

    PubMed

    Kim, Bong-Soo; Kim, Jong Nam; Yoon, Seok-Hwan; Chun, Jongsik; Cerniglia, Carl E

    2012-06-01

    The indigenous human intestinal microbiota could be disrupted by residues of antibiotics in foods as well as therapeutically administered antibiotics to humans. These disruptions may lead to adverse health outcomes. To observe the possible impact of residues of antibiotics at concentrations below therapeutic levels on human intestinal microbiota, we performed studies using in vitro cultures of fecal suspensions from three individuals with 10 different concentrations (0, 0.1, 0.5, 1, 5, 10, 15, 25, 50 and 150 μg/ml) of the fluoroquinolone, enrofloxacin. The bacterial communities of the control and enrofloxacin dosed fecal samples were analyzed by denaturing gradient gel electrophoresis (DGGE) and pyrosequencing. In addition, changes of functional gene expression were analyzed by a pyrosequencing-based random whole-community mRNA sequencing method. Although each individual had a unique microbial composition, the communities of all individuals were affected by enrofloxacin. The proportions of two phyla, namely, Bacteroidetes and Proteobacteria, were significantly reduced with increasing concentrations of enrofloxacin exposure, while the proportion of Firmicutes increased. Principal Coordinate Analysis (PCoA) using the Fast UniFrac indicated that the community structures of intestinal microbiota were shifted by enrofloxacin. Most of the mRNA transcripts and the anti-microbial drug resistance genes increased with increasing concentrations of enrofloxacin. 16S rRNA gene pyrosequencing of control and enrofloxacin treated fecal suspensions provided valuable information of affected bacterial taxa down to the species level, and the community transcriptomic analyses using mRNA revealed the functional gene expression responses of the changed bacterial communities by enrofloxacin. Published by Elsevier Ltd.

  10. [Intestinal microbiota and emergence of new representations of the body: a psychosocial approach].

    PubMed

    Durif-Bruckert, Christine

    2016-11-01

    In view of the growing importance attached to the gut microbiota in preventive medicine and treatment, it would seem essential to identify and analyse the modalities of its representation in a psychosocial approach. In the first part of this article, we will discuss the renewal of representations of the digestive tract brought about by scientific discourse on the gut microbiota, mainly regarding the anthropological status of the intestines and faeces. Then in the second part we will focus on ways of taking advantage of the variable nature of the microbiota by food choices, and we will also focus on therapeutic approaches that use transplantations of faecal matter, and the ensuing loss of privacy entailed (an anthropological notion of defil). © 2016 médecine/sciences – Inserm.

  11. Intestinal Epithelial Toll-Like Receptor 4 Signaling Affects Epithelial Function and Colonic Microbiota and Promotes a Risk for Transmissible Colitis

    PubMed Central

    Dheer, Rishu; Santaolalla, Rebeca; Davies, Julie M.; Lang, Jessica K.; Phillips, Matthew C.; Pastorini, Cristhine; Vazquez-Pertejo, Maria T.

    2016-01-01

    Evidence obtained from gene knockout studies supports the role of Toll-like receptor 4 (TLR4) in intestinal inflammation and microbiota recognition. Increased epithelial TLR4 expression is observed in patients with inflammatory bowel disease. However, little is known of the effect of increased TLR4 signaling on intestinal homeostasis. Here, we examined the effect of increased TLR4 signaling on epithelial function and microbiota by using transgenic villin-TLR4 mice that overexpress TLR4 in the intestinal epithelium. Our results revealed that villin-TLR4 mice are characterized by increases in the density of mucosa-associated bacteria and bacterial translocation. Furthermore, increased epithelial TLR4 signaling was associated with an impaired epithelial barrier, altered expression of antimicrobial peptide genes, and altered epithelial cell differentiation. The composition of the colonic luminal and mucosa-associated microbiota differed between villin-TLR4 and wild-type (WT) littermates. Interestingly, WT mice cohoused with villin-TLR4 mice displayed greater susceptibility to acute colitis than singly housed WT mice did. The results of this study suggest that epithelial TLR4 expression shapes the microbiota and affects the functional properties of the epithelium. The changes in the microbiota induced by increased epithelial TLR4 signaling are transmissible and exacerbate dextran sodium sulfate-induced colitis. Together, our findings imply that host innate immune signaling can modulate intestinal bacteria and ultimately the host's susceptibility to colitis. PMID:26755160

  12. Diet shapes the ability of human intestinal microbiota to degrade phytate--in vitro studies.

    PubMed

    Markiewicz, L H; Honke, J; Haros, M; Świątecka, D; Wróblewska, B

    2013-07-01

    Investigation of intestinal bacterial groups involved in phytate degradation and the impact of diets with different phytate contents on phytase activity. Faecal samples of adults on conventional (n = 8) or vegetarian (n = 8) diets and breastfed infants (n = 6) were used as an inoculum for modified media supplemented with phytate. Populations of Gram-positive anaerobes (GPA), lactic acid bacteria (LAB), Proteobacteria-Bacteroides (P-B), coliforms and anaerobes were studied. The PCR-DGGE analysis revealed a random distribution of DGGE profiles in the dendrograms of GPA, P-B and coliforms, and a partially diet-specific distribution in the DGGE dendrograms of LAB and anaerobes. The degradation of phytic acid (PA) was determined with HPLC method in supernatants of the cultures. Regardless of the diet, the Gram-positive anaerobes and LAB displayed the lowest ability to degrade phytate, whereas the coliforms and P-B cultures produced higher amounts of intermediate myo-inositol phosphates. Bacterial populations grown in a nonselective medium were the most effective ones in phytate degradation. It was the vegetarians' microbiota that particularly degraded up to 100% phytate to myo-inositol phosphate products lower than InsP3. A diet rich in phytate increases the potential of intestinal microbiota to degrade phytate. The co-operation of aerobic and anaerobic bacteria is essential for the complete phytate degradation. This study provides insights on the effect of diet on specific metabolic activity of human intestinal microbiota. © 2013 The Society for Applied Microbiology.

  13. In-vitro activity of solithromycin against anaerobic bacteria from the normal intestinal microbiota.

    PubMed

    Weintraub, Andrej; Rashid, Mamun-Ur; Nord, Carl Erik

    2016-12-01

    Solithromycin is a novel fluoroketolide with high activity against bacteria associated with community-acquired respiratory tract infections as well as gonorrhea. However, data on the activity of solithromycin against anaerobic bacteria from the normal intestinal microbiota are scarce. In this study, 1024 Gram-positive and Gram-negative anaerobic isolates from the normal intestinal microbiota were analyzed for in-vitro susceptibility against solithromycin and compared to azithromycin, amoxicillin/clavulanic acid, ceftriaxone, metronidazole and levofloxacin by determining the minimum inhibitory concentration (MIC). Solithromycin was active against Bifidobacteria (MIC 50 , 0.008 mg/L) and Lactobacilli (MIC 50 , 0.008 mg/L). The MIC 50 for Clostridia, Bacteroides, Prevotella and Veillonella were 0.5, 0.5, 0.125 and 0.016 mg/L, respectively. Gram-positive anaerobes were more susceptible to solithromycin as compared to the other antimicrobials tested. The activity of solithromycin against Gram-negative anaerobes was equal or higher as compared to other tested agents. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Intestinal microbiota influence the early postnatal development of the enteric nervous system.

    PubMed

    Collins, J; Borojevic, R; Verdu, E F; Huizinga, J D; Ratcliffe, E M

    2014-01-01

    Normal gastrointestinal function depends on an intact and coordinated enteric nervous system (ENS). While the ENS is formed during fetal life, plasticity persists in the postnatal period during which the gastrointestinal tract is colonized by bacteria. We tested the hypothesis that colonization of the bowel by intestinal microbiota influences the postnatal development of the ENS. The development of the ENS was studied in whole mount preparations of duodenum, jejunum, and ileum of specific pathogen-free (SPF), germ-free (GF), and altered Schaedler flora (ASF) NIH Swiss mice at postnatal day 3 (P3). The frequency and amplitude of circular muscle contractions were measured in intestinal segments using spatiotemporal mapping of video recorded spontaneous contractile activity with and without exposure to lidocaine and N-nitro-L-arginine (NOLA). Immunolabeling with antibodies to PGP9.5 revealed significant abnormalities in the myenteric plexi of GF jejunum and ileum, but not duodenum, characterized by a decrease in nerve density, a decrease in the number of neurons per ganglion, and an increase in the proportion of myenteric nitrergic neurons. Frequency of amplitude of muscle contractions were significantly decreased in the jejunum and ileum of GF mice and were unaffected by exposure to lidocaine, while NOLA enhanced contractile frequency in the GF jejunum and ileum. These findings suggest that early exposure to intestinal bacteria is essential for the postnatal development of the ENS in the mid to distal small intestine. Future studies are needed to investigate the mechanisms by which enteric microbiota interact with the developing ENS. © 2013 John Wiley & Sons Ltd.

  15. Intestinal microbiota reduces genotoxic endpoints induced by high-energy protons.

    PubMed

    Maier, Irene; Berry, David M; Schiestl, Robert H

    2014-01-01

    Ionizing space radiation causes oxidative DNA damage and triggers oxidative stress responses, and compromised DNA repair mechanisms can lead to increased risk of carcinogenesis. Young adult mice with developed innate and adaptive immune systems that harbored either a conventional intestinal microbiota (CM) or an intestinal microbiota with a restricted microbial composition (RM) were irradiated with a total dose of 1 Gy delivered by high-energy protons (2.5 GeV/n, LET = 0.2-2 keV/μm) or silicon or iron ions (850 MeV/n, LET ≈ 50 keV/μm and 1 GeV/n, LET = 150 keV/μm, respectively). Six hours after whole-body irradiation, acute chromosomal DNA lesions were observed for RM mice but not CM mice. High-throughput rRNA gene sequencing of intestinal mucosal bacteria showed that Barnesiella intestinihominis and unclassified Bacterodiales were significantly more abundant in male RM mice than CM mice, and phylotype densities changed in irradiated mice. In addition, Helicobacter hepaticus and Bacteroides stercoris were higher in CM than RM mice. Elevated levels of persistently phosphorylated γ-H2AX were observed in RM mice exposed to high-energy protons compared to nonirradiated RM mice, and they also were associated with a decrease of the antioxidant glutathione in peripheral blood measured at four weeks after irradiation. After radiation exposure, CM mice showed lower levels of γ-H2AX phosphorylation than RM mice and an increase in specific RM-associated phylotypes, indicating a down-regulating force on DNA repair by differentially abundant phylotypes in RM versus a radiation-sensitive complex CM.

  16. [Saccharomyces boulardii modulates dendritic cell properties and intestinal microbiota disruption after antibiotic treatment].

    PubMed

    Collignon, A; Sandré, C; Barc, M-C

    2010-09-01

    Saccharomyces boulardii is a non-pathogenic yeast with biotherapeutic properties that has been used successfully to prevent and to treat various infectious and antibiotic-associated diarrheas. The intestinal microbiota is responsible for colonization resistance and immune response to pathogens but can be disrupted by antibiotics and lose its barrier effect. Dendritic cells (DCs) are professional antigen-presenting cells of the immune system with the ability to initiate a primary immune response or immune tolerance. In a human microbiota-associated mouse model, we evaluated the influence of S. boulardii on the composition of the microbiota and on the properties of dendritic cells in normal homeostatic conditions and after antibiotic-induced stress. The DCs were derived from splenic precursors. Membrane antigen expression and phagocytosis of FITC-latex beads by DCs were evaluated by flow cytometry. The molecular analysis of the microbiota was performed with fluorescence in situ hybridization (FISH) combined with flow cytometry or confocal microscopy using group specific 16S rRNA targeted probes. This evaluation was conducted during and after a 7-day oral treatment with amoxicillin-clavulanic acid alone and in combination with the administration of the yeast. The antibiotic treatment increased the phagocytic activity of DCs. Their antigen presenting function (MHC class II antigen and CD 86 costimulatory molecule membrane expression) was up-regulated. This reflects a functional activation of DCs. In the presence of S. boulardii, the modification of membrane antigen expression was down regulated. To correlate these modifications to the microbiota disruption, we analyzed in parallel the composition of the intestinal microbiota. As previously shown, the amoxicillin-clavulanic acid treatment, both alone and with S. boulardii, did not quantitatively alter the total microbiota. In contrast, after one day of the antibiotic treatment the Clostridium coccoides group decreased

  17. Porcine intestinal microbiota is shaped by diet composition based on rye or triticale.

    PubMed

    Burbach, K; Strang, E J P; Mosenthin, R; Camarinha-Silva, A; Seifert, J

    2017-12-01

    The present study aimed to compare the microbiota composition from pigs fed different cereal grain types, either rye or triticale, as sole energy source. Ileal digesta and faeces were sampled from eight pigs of each experiment. Illumina amplicon sequencing of the 16S rRNA gene was used to analyse the microbiota. Concentrations of short-chain fatty acids and ammonia were determined from faecal samples. The grain type revealed significant alterations in the overall microbiota structure. The rye-based diet was associated with an increased abundance of Lactobacillus in ileal digesta and Streptococcus in faeces and significantly higher concentrations of faecal short-chain fatty acids and ammonia compared to triticale. However, triticale significantly promoted the abundance of Streptococcus in ileal digesta and Clostridium sensu stricto in faeces. Diets based on rye or triticale affect varying intestinal microbiota, both of taxonomical and metabolic structure, with rye indicating an enhanced saccharolytic potential and triticale a more cellulolytic potential. Nutrient composition of rye and triticale are attractive for porcine nutrition. Both cereal grains show varying stimuli on the microbiota composition and microbial products of the ileum and faeces. © 2017 The Society for Applied Microbiology.

  18. The role of intestinal microbiota in the pathogenesis of NAFLD: starting points for intervention

    PubMed Central

    Vespasiani-Gentilucci, Umberto; Picardi, Antonio

    2016-01-01

    In recent years, close links between intestinal microbiota and host metabolism have been recognized. Intestinal bacteria can participate in the extraction of calories from food, and circulation of bacterial products, in particular lipopolysaccharides (LPS), is responsible for the “metabolic endotoxemia”, which contributes to insulin resistance and its complications, such as non-alcoholic fatty liver disease (NAFLD). Indeed, qualitative and quantitative intestinal dysbiotic changes have been clearly documented in NAFLD patients, and several mechanisms by which the intestinal microbiota can directly promote liver fat deposition, inflammation and fibrosis have also been described. Consistently, although with some differences concerning type and proportion of results, experimental and clinical studies are quite concordant in demonstrating beneficial effects of probiotic and/or prebiotic therapy in NAFLD. Although some physiopathological bases have been produced, major doubts still remain concerning how and when to intervene. Indeed, most of the available works were performed with mixtures of probiotics and/or prebiotics, and a baseline assessment of dysbiosis aimed at selecting the best candidates for treatment and predicting response has not been performed in any of the clinical studies in NAFLD. While future research is expected to solve these issues, the particularly favorable safety profile suggests that probiotic/prebiotic therapy could already be “tested” in NAFLD patients on an individual basis, at least once all the measures recommended by the latest guidelines have failed. PMID:29765460

  19. Exploration of the effect of probiotics supplementation on intestinal microbiota of food allergic mice

    PubMed Central

    Yang, Bo; Xiao, Liang; Liu, Sheng; Liu, Xiaoyu; Luo, Yan; Ji, Qiongmei; Yang, Pingchang; Liu, Zhigang

    2017-01-01

    Environmental factor-induced alterations in intestinal microbiota have been demonstrated to be associated with increasing prevalence of food allergy. However, it is not clear to what extent oral administration of probiotics can affect gut microbiota composition, thus inhibiting food allergy development. Using ovalbumin (OVA)-sensitized murine model, it was demonstrated that probiotics ameliorated allergic symptoms, including reducing OVA specific-IgE, and -IgG1 levels in the serum, Th2 cytokines release in spleen, and occurrence of diarrhea. Moreover, 16S rRNA analysis showed that the probiotics-mediated protection was conferred by an enrichment of Coprococcus and Rikenella. The present study supports the theory that probiotics can treat food allergy by modulating specific genera of the gut microbiota. PMID:28337267

  20. Exploration of the effect of probiotics supplementation on intestinal microbiota of food allergic mice.

    PubMed

    Yang, Bo; Xiao, Liang; Liu, Sheng; Liu, Xiaoyu; Luo, Yan; Ji, Qiongmei; Yang, Pingchang; Liu, Zhigang

    2017-01-01

    Environmental factor-induced alterations in intestinal microbiota have been demonstrated to be associated with increasing prevalence of food allergy. However, it is not clear to what extent oral administration of probiotics can affect gut microbiota composition, thus inhibiting food allergy development. Using ovalbumin (OVA)-sensitized murine model, it was demonstrated that probiotics ameliorated allergic symptoms, including reducing OVA specific-IgE, and -IgG1 levels in the serum, Th2 cytokines release in spleen, and occurrence of diarrhea. Moreover, 16S rRNA analysis showed that the probiotics-mediated protection was conferred by an enrichment of Coprococcus and Rikenella . The present study supports the theory that probiotics can treat food allergy by modulating specific genera of the gut microbiota.

  1. Effect of intestinal microbiota alteration on hepatic damage in rats with acute rejection after liver transplantation.

    PubMed

    Xie, Yirui; Chen, Huazhong; Zhu, Biao; Qin, Nan; Chen, Yunbo; Li, Zhengfeng; Deng, Min; Jiang, Haiyin; Xu, Xiangfei; Yang, Jiezuan; Ruan, Bing; Li, Lanjuan

    2014-11-01

    The previous studies all focus on the effect of probiotics and antibiotics on infection after liver transplantation. Here, we focus on the effect of gut microbiota alteration caused by probiotics and antibiotics on hepatic damage after allograft liver transplantation. Brown-Norway rats received saline, probiotics, or antibiotics via daily gavage for 3 weeks. Orthotopic liver transplantation (OLT) was carried out after 1 week of gavage. Alteration of the intestinal microbiota, liver function and histopathology, serum and liver cytokines, and T cells in peripheral blood and Peyer's patch were evaluated. Distinct segregation of fecal bacterial diversity was observed in the probiotic group and antibiotic group when compared with the allograft group. As for diversity of intestinal mucosal microbiota and pathology of intestine at 2 weeks after OLT, antibiotics and probiotics had a significant effect on ileum and colon. The population of Lactobacillus and Bifidobacterium in the probiotic group was significantly greater than the antibiotic group and the allograft group. The liver injury was significantly reduced in the antibiotic group and the probiotic group compared with the allograft group. The CD4/CD8 and Treg cells in Peyer's patch were decreased in the antibiotic group. The intestinal Treg cell and serum and liver TGF-β were increased markedly while CD4/CD8 ratio was significantly decreased in the probiotic group. It suggested that probiotics mediate their beneficial effects through increase of Treg cells and TGF-β and deduction of CD4/CD8 in rats with acute rejection (AR) after OLT.

  2. Effect of Dietary Fibers on Cecal Microbiota and Intestinal Tumorigenesis in Azoxymethane Treated A/J Min/+ Mice

    PubMed Central

    Måge, Ingrid; Knutsen, Svein Halvor; Rud, Ida; Hetland, Ragna Bogen; Paulsen, Jan Erik

    2016-01-01

    Foods naturally high in dietary fiber are generally considered to protect against development of colorectal cancer (CRC). However, the intrinsic effect of dietary fiber on intestinal carcinogenesis is unclear. We used azoxymethane (AOM) treated A/J Min/+ mice, which developed a significantly higher tumor load in the colon than in the small intestine, to compare the effects of dietary inulin (IN), cellulose (CE) or brewers spent grain (BSG) on intestinal tumorigenesis and cecal microbiota. Each fiber was tested at two dose levels, 5% and 15% (w/w) content of the AIN-93M diet. The microbiota was investigated by next-generation sequencing of the 16S rRNA gene (V4). We found that mice fed IN had approximately 50% lower colonic tumor load than mice fed CE or BSG (p<0.001). Surprisingly, all three types of fiber caused a dose dependent increase of colonic tumor load (p<0.001). The small intestinal tumor load was not affected by the dietary fiber interventions. Mice fed IN had a lower bacterial diversity than mice fed CE or BSG. The Bacteroidetes/Firmicutes ratio was significantly (p = 0.003) different between the three fiber diets with a higher mean value in IN fed mice compared with BSG and CE. We also found a relation between microbiota and the colonic tumor load, where many of the operational taxonomic units (OTUs) related to low tumor load were significantly enriched in mice fed IN. Among the OTUs related to low tumor load were bacteria affiliated with the Bacteroides genus. These results suggest that type of dietary fiber may play a role in the development of CRC, and that the suppressive effect of IN on colonic tumorigenesis is associated with profound changes in the cecal microbiota profile. PMID:27196124

  3. Effects of shenling baizhu powder herbal formula on intestinal microbiota in high-fat diet-induced NAFLD rats.

    PubMed

    Zhang, Yupei; Tang, Kairui; Deng, Yuanjun; Chen, Runsen; Liang, Shu; Xie, Huijun; He, Yifang; Chen, Yanning; Yang, Qinhe

    2018-06-01

    Worldwide, non-alcoholic fatty liver disease (NAFLD) is a common chronic liver disease closely associated with obesity, diabetes and other metabolic diseases. Shenling Baizhu powder (SLBZP), a formulation of a variety of natural medicinal plants, has hepatoprotective properties and clinical efficacy in treating non-infectious intestinal disease. SLBZP has improved NAFLD symptoms; however, its mechanism of action is unknown. We established an NAFLD model in rats given a high-fat diet (HFD), administered different interventions and measured serum biochemical indices and inflammatory factors. Liver tissues were stained with hematoxylin and eosin (HE) and oil red O, and colon tissues were analyzed by immunohistochemistry. The expression profiles of liver TLR4 pathway related protein was confirmed by western blotting. Changes in intestinal microbiota composition were analyzed using a 16S rDNA sequencing technique. Of note, SLBZP effectively reduced body weight in HFD-fed rats (p < 0.05). Serum biochemical analysis indicated that SLBZP decreased the serum level of total cholesterol (TC) and improved liver function. Additionally, SLBZP decreased the serum level of endotoxin, tumor necrosis factor α (TNF-α), interleukin-1β (IL-β) (p < 0.05), and decreased the expression of TLR4 pathway related protein. Pathological examination showed that SLBZP alleviates hepatic steatosis and repairs colon mucosa. Microbiome analysis revealed that SLBZP improved the abundance of intestinal microbiota. In taxonomy-based analysis, compared with control rats, SLBZP-treated rats showed obvious changes in intestinal microbiota composition. Moreover, SLBZP increased the relative abundance of short-chain fatty acid (SCFA)-producing bacteria, including Bifidobacterium and Anaerostipes. Taken together, these results suggest that the effects of SLBZP against NAFLD may be related to the increased abundance of beneficial gut microbiota and decreased levels of LPS in the portal vein

  4. Gut microbiota and the development of obesity.

    PubMed

    Boroni Moreira, A P; Fiche Salles Teixeira, T; do C Gouveia Peluzio, M; de Cássia Gonçalves Alfenas, R

    2012-01-01

    Advances in tools for molecular investigations have allowed deeper understanding of how microbes can influence host physiology. A very interesting field of research that has gained attention recently is the possible role of gut microbiota in the development of obesity and metabolic disorders. The aim of this review is to discuss mechanisms that explain the influence of gut microbiota on host metabolism. The gut microbiota is important for normal physiology of the host. However, differences in their composition may have different impacts on host metabolism. It has been shown that obese and lean subjects present different microbiota composition profile. These differences in microbiota composition may contribute to weight imbalance and impaired metabolism. The evidences from animal models suggest that it is possible that the microbiota of obese subjects has higher capacity to harvest energy from the diet providing substrates that can activate lipogenic pathways. In addition, microorganisms can also influence the activity of lipoprotein lipase interfering in the accumulation of triglycerides in the adipose tissue. The interaction of gut microbiota with the endocannabinoid system provides a route through which intestinal permeability can be altered. Increased intestinal permeability allows the entrance of endotoxins to the circulation, which are related to the induction of inflammation and insulin resistance in mice. The impact of the proposed mechanisms for humans still needs further investigations. However, the fact that gut microbiota can be modulated through dietary components highlights the importance to study how fatty acids, carbohydrates, micronutrients, prebiotics, and probiotics can influence gut microbiota composition and the management of obesity. Gut microbiota seems to be an important and promising target in the prevention and treatment of obesity and its related metabolic disturbances in future studies and in clinical practice.

  5. Faecal microbiota in lean and obese dogs.

    PubMed

    Handl, Stefanie; German, Alexander J; Holden, Shelley L; Dowd, Scot E; Steiner, Jörg M; Heilmann, Romy M; Grant, Ryan W; Swanson, Kelly S; Suchodolski, Jan S

    2013-05-01

    Previous work has shown obesity to be associated with changes in intestinal microbiota. While obesity is common in dogs, limited information is available about the role of the intestinal microbiota. The aim of this study was to investigate whether alterations in the intestinal microbiota may be associated with canine obesity. Using 16S rRNA gene pyrosequencing and quantitative real-time PCR, we evaluated the composition of the faecal microbiota in 22 lean and 21 obese pet dogs, as well as in five research dogs fed ad libitum and four research dogs serving as lean controls. Firmicutes, Fusobacteria and Actinobacteria were the predominant bacterial phyla. The phylum Actinobacteria and the genus Roseburia were significantly more abundant in the obese pet dogs. The order Clostridiales significantly increased under ad libitum feeding in the research dogs. Canine intestinal microbiota is highly diverse and shows considerable interindividual variation. In the pet dogs, influence on the intestinal microbiota besides body condition, like age, breed, diet or lifestyle, might have masked the effect of obesity. The study population of research dogs was small, and further work is required before the role of the intestinal microbiota in canine obesity is clarified. © 2013 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  6. Effects of dietary poly-β-hydroxybutyrate (PHB) on microbiota composition and the mTOR signaling pathway in the intestines of litopenaeus vannamei.

    PubMed

    Duan, Yafei; Zhang, Yue; Dong, Hongbiao; Wang, Yun; Zhang, Jiasong

    2017-12-01

    Poly-β-hydroxybutyrate (PHB) is a natural polymer of the short chain fatty acid β-hydroxybutyrate, which acts as a microbial control agent. The mammalian target of the rapamycin (mTOR) signaling pathway plays a crucial role in intestine inflammation and epithelial morphogenesis. In this study, we examined the composition of intestine microbiota, and mTOR signaling-related gene expression in Pacific white shrimp Litopenaeus vannamei fed diets containing different levels of PHB: 0% (Control), 1% (PHB1), 3% (PHB3), and 5% (PHB5) (w/w) for 35 days. High-throughput sequencing analysis revealed that dietary PHB altered the composition and diversity of intestine microbiota, and that the microbiota diversity decreased with the increasing doses of PHB. Specifically, dietary PHB increased the relative abundance of Proteobacteria and Tenericutes in the PHB1 and PHB5 groups, respectively, and increased that of Gammaproteobacteria in the three PHB groups. Alternatively, PHB decreased Alphaproteobacteria in the PHB3 and PHB5 groups. At the genus level, dietary PHB increased the abundance of beneficial bacteria, such as Bacillus, Lactobacillus, Lactococcus, Clostridium, and Bdellovibrio. The relative mRNA expression levels of the mTOR signaling-related genes TOR, 4E-BP, eIF4E1α, and eIF4E2 all increased in the three PHB treatment groups. These results revealed that dietary PHB supplementation had a beneficial effect on intestine health of L. vannamei by modulating the composition of intestine microbiota and activating mTOR signaling.

  7. Intestinal Microbiota in Pediatric Surgical Cases Administered Bifidobacterium Breve: A Randomized Controlled Trial.

    PubMed

    Okazaki, Tadaharu; Asahara, Takashi; Yamataka, Atsuyuki; Ogasawara, Yuki; Lane, Geoffrey J; Nomoto, Koji; Nagata, Satoru; Yamashiro, Yuichiro

    2016-07-01

    The efficacy of perioperative probiotic administration has been reported in adults. We examined the effects of orally administered Bifidobacterium breve strain Yakult (BBG-01) on outcomes in pediatric surgical cases by assessing intestinal and blood microbiota. BBG-01 was well tolerated without adverse effects, and postoperative infectious complications were significantly decreased. Fecal analysis showed increased Bifidobacterium and decreased Enterobacteriaceae, Clostridium difficile, and Pseudomonas. Concentrations of fecal acetic acid were significantly increased, maintaining fecal pH at <7.0. The incidence of detecting bacteria in blood was significantly reduced. BBG-01 improved the intestinal environment, and may be implicated in suppressing bacterial translocation.

  8. Gut Microbiota: A Key Modulator of Intestinal Healing in Inflammatory Bowel Disease.

    PubMed

    Lopetuso, L R; Petito, V; Zambrano, D; Orlando, D; Dal Lago, A; Serrichhio, L; Papa, A; Gasbarrini, A; Scaldaferri, F

    2016-01-01

    Mucosal healing (MH) represents a crucial factor for maintaining gut homeostasis. Indeed, in inflammatory bowel disease, MH has become the standard therapeutical target, because it is associated with more effective disease control, more frequent steroid-free remission, lower rates of hospitalization and surgery, and improved quality of life. In this scenario, gut microbiota is a crucial player in modulating intestinal repair and regeneration process. It can act on the tumor necrosis factor-α production, modulation of reactive oxygen and nitrogen species, activity of matrix metalloproteinases and on many other mechanisms strictly involved in restoring gut health. In this review, we analyze and review the literature on the role of gut microbiota in sustaining mucosal injury and achieving MH. © 2016 S. Karger AG, Basel.

  9. Metagenomic Characterization of the Human Intestinal Microbiota in Fecal Samples from STEC-Infected Patients

    PubMed Central

    Gigliucci, Federica; von Meijenfeldt, F. A. Bastiaan; Knijn, Arnold; Michelacci, Valeria; Scavia, Gaia; Minelli, Fabio; Dutilh, Bas E.; Ahmad, Hamideh M.; Raangs, Gerwin C.; Friedrich, Alex W.; Rossen, John W. A.; Morabito, Stefano

    2018-01-01

    The human intestinal microbiota is a homeostatic ecosystem with a remarkable impact on human health and the disruption of this equilibrium leads to an increased susceptibility to infection by numerous pathogens. In this study, we used shotgun metagenomic sequencing and two different bioinformatic approaches, based on mapping of the reads onto databases and on the reconstruction of putative draft genomes, to investigate possible changes in the composition of the intestinal microbiota in samples from patients with Shiga Toxin-producing E. coli (STEC) infection compared to healthy and healed controls, collected during an outbreak caused by a STEC O26:H11 infection. Both the bioinformatic procedures used, produced similar result with a good resolution of the taxonomic profiles of the specimens. The stool samples collected from the STEC infected patients showed a lower abundance of the members of Bifidobacteriales and Clostridiales orders in comparison to controls where those microorganisms predominated. These differences seemed to correlate with the STEC infection although a flexion in the relative abundance of the Bifidobacterium genus, part of the Bifidobacteriales order, was observed also in samples from Crohn's disease patients, displaying a STEC-unrelated dysbiosis. The metagenomics also allowed to identify in the STEC positive samples, all the virulence traits present in the genomes of the STEC O26 that caused the outbreak as assessed through isolation of the epidemic strain and whole genome sequencing. The results shown represent a first evidence of the changes occurring in the intestinal microbiota of children in the course of STEC infection and indicate that metagenomics may be a promising tool for the culture-independent clinical diagnosis of the infection. PMID:29468143

  10. Intestinal Microbiota of Broiler Chickens As Affected by Litter Management Regimens

    PubMed Central

    Wang, Lingling; Lilburn, Mike; Yu, Zhongtang

    2016-01-01

    Poultry litter is a mixture of bedding materials and enteric bacteria excreted by chickens, and it is typically reused for multiple growth cycles in commercial broiler production. Thus, bacteria can be transmitted from one growth cycle to the next via litter. However, it remains poorly understood how litter reuse affects development and composition of chicken gut microbiota. In this study, the effect of litter reuse on the microbiota in litter and in chicken gut was investigated using 2 litter management regimens: fresh vs. reused litter. Samples of ileal mucosa and cecal digesta were collected from young chicks (10 days of age) and mature birds (35 days of age). Based on analysis using DGGE and pyrosequencing of bacterial 16S rRNA gene amplicons, the microbiota of both the ileal mucosa and the cecal contents was affected by both litter management regimen and age of birds. Faecalibacterium, Oscillospira, Butyricicoccus, and one unclassified candidate genus closely related to Ruminococcus were most predominant in the cecal samples, while Lactobacillus was predominant in the ileal samples at both ages and in the cecal samples collected at day 10. At days 10 and 35, 8 and 3 genera, respectively, in the cecal luminal microbiota differed significantly in relative abundance between the 2 litter management regimens. Compared to the fresh litter, reused litter increased predominance of halotolerant/alkaliphilic bacteria and Faecalibacterium prausnitzii, a butyrate-producing gut bacterium. This study suggests that litter management regimens affect the chicken GI microbiota, which may impact the host nutritional status and intestinal health. PMID:27242676

  11. The interplay between the gut microbiota and the immune system.

    PubMed

    Geuking, Markus B; Köller, Yasmin; Rupp, Sandra; McCoy, Kathy D

    2014-01-01

    The impact of the gut microbiota on immune homeostasis within the gut and, importantly, also at systemic sites has gained tremendous research interest over the last few years. The intestinal microbiota is an integral component of a fascinating ecosystem that interacts with and benefits its host on several complex levels to achieve a mutualistic relationship. Host-microbial homeostasis involves appropriate immune regulation within the gut mucosa to maintain a healthy gut while preventing uncontrolled immune responses against the beneficial commensal microbiota potentially leading to chronic inflammatory bowel diseases (IBD). Furthermore, recent studies suggest that the microbiota composition might impact on the susceptibility to immune-mediated disorders such as autoimmunity and allergy. Understanding how the microbiota modulates susceptibility to these diseases is an important step toward better prevention or treatment options for such diseases.

  12. Effect of DS-2969b, a novel GyrB inhibitor, on rat and monkey intestinal microbiota.

    PubMed

    Kumar, Manoj; Mathur, Tarun; Joshi, Vattan; Upadhyay, Dilip J; Inoue, Shin-Ichi; Masuda, Nobuhisa

    2018-05-02

    DS-2969b, a novel GyrB inhibitor, transiently and reversibly altered the counts of limited intestinal microbiota at around 10 μg/g of faecal levels in rats and monkeys. Considering the high activity of DS-2969b against Clostridium difficile, 10 μg/g of faecal levels would be sufficient for clearing C. difficile from the intestine. Copyright © 2018 Elsevier Ltd. All rights reserved.

  13. The Intestinal Microbiota in Acute Anorexia Nervosa and During Renourishment: Relationship to Depression, Anxiety, and Eating Disorder Psychopathology

    PubMed Central

    Kleiman, Susan C.; Watson, Hunna J.; Bulik-Sullivan, Emily C.; Huh, Eun Young; Tarantino, Lisa M.; Bulik, Cynthia M.; Carroll, Ian M.

    2015-01-01

    Objective The relevance of the microbe-gut-brain axis to psychopathology is of interest in anorexia nervosa (AN), as the intestinal microbiota plays a critical role in metabolic function and weight regulation. Methods We characterized the composition and diversity of the intestinal microbiota in AN, using stool samples collected at inpatient admission (T1) (n=16) and discharge (T2) (n=10). At T1, participants completed the Beck Depression and Anxiety Inventories and the Eating Disorder Examination-Questionnaire. Patients with AN were compared to healthy individuals who participated in a previous study (healthy comparison group; HCG). Genomic DNA was isolated from stool samples, and bacterial composition was characterized by 454 pyrosequencing of the 16S rRNA gene. Sequencing results were processed by the Quantitative Insights Into Microbial Ecology pipeline. We compared T1 vs. T2 samples, samples from both points were compared to HCG (n=12), and associations between psychopathology and T1 samples were explored. Results In patients with AN, significant changes emerged between T1 and T2 in taxa abundance and beta (between-sample) diversity. Patients with AN had significantly lower alpha (within-sample) diversity than HCG at both T1 (p=0.0001) and T2 (p=0.016), and differences in taxa abundance were found between AN patients and HCG. Levels of depression, anxiety, and eating disorder psychopathology at T1 were associated with composition and diversity of the intestinal microbiota. Conclusions We provide evidence of intestinal dysbiosis in AN and an association between mood and the enteric microbiota in this patient population. Future directions include mechanistic investigations of the microbe-gut-brain axis in animal models and association of microbial measures with metabolic changes and recovery indices. PMID:26428446

  14. The Intestinal Microbiota in Acute Anorexia Nervosa and During Renourishment: Relationship to Depression, Anxiety, and Eating Disorder Psychopathology.

    PubMed

    Kleiman, Susan C; Watson, Hunna J; Bulik-Sullivan, Emily C; Huh, Eun Young; Tarantino, Lisa M; Bulik, Cynthia M; Carroll, Ian M

    2015-01-01

    The relevance of the microbe-gut-brain axis to psychopathology is of interest in anorexia nervosa (AN), as the intestinal microbiota plays a critical role in metabolic function and weight regulation. We characterized the composition and diversity of the intestinal microbiota in AN, using stool samples collected at inpatient admission (T1; n = 16) and discharge (T2; n = 10). At T1, participants completed the Beck Depression and Anxiety Inventories and the Eating Disorder Examination-Questionnaire. Patients with AN were compared with healthy individuals who participated in a previous study (healthy comparison group; HCG). Genomic DNA was isolated from stool samples, and bacterial composition was characterized by 454 pyrosequencing of the 16S rRNA gene. Sequencing results were processed by the Quantitative Insights Into Microbial Ecology pipeline. We compared T1 versus T2 samples, samples from both points were compared with HCG (n = 12), and associations between psychopathology and T1 samples were explored. In patients with AN, significant changes emerged between T1 and T2 in taxa abundance and beta (between-sample) diversity. Patients with AN had significantly lower alpha (within-sample) diversity than did HCG at both T1 (p = .0001) and T2 (p = .016), and differences in taxa abundance were found between AN patients and HCG. Levels of depression, anxiety, and eating disorder psychopathology at T1 were associated with composition and diversity of the intestinal microbiota. We provide evidence of an intestinal dysbiosis in AN and an association between mood and the enteric microbiota in this patient population. Future directions include mechanistic investigations of the microbe-gut-brain axis in animal models and association of microbial measures with metabolic changes and recovery indices.

  15. The role of gut microbiota in human obesity: recent findings and future perspectives.

    PubMed

    Tagliabue, A; Elli, M

    2013-03-01

    In recent years, gut microbiota have gained a growing interest as an environmental factor that may affect the predisposition toward adiposity. In this review, we describe and discuss the research that has focused on the involvement of gut microbiota in human obesity. We also summarize the current knowledge concerning the health effects of the composition of gut microbiota, acquired using the most recent methodological approaches, and the potential influence of gut microbiota on adiposity, as revealed by animal studies. Original research studies that were published in English or French until December 2011 were selected through a computer-assisted literature search. The studies conducted to date show that there are differences in the gut microbiota between obese and normal-weight experimental animals. There is also evidence that a high-fat diet may induce changes in gut microbiota in animal models regardless of the presence of obesity. In humans, obesity has been associated with reduced bacterial diversity and an altered representation of bacterial species, but the identified differences are not homogeneous among the studies. The question remains as to whether changes in the intestinal microbial community are one of the environmental causes of overweight and obesity or if they are a consequence of obesity, specifically of the unbalanced diet that often accompanies the development of excess weight gain. In the future, larger studies on the potential role of intestinal microbiota in human obesity should be conducted at the species level using standardized analytical techniques and taking all of the possible confounding variables into account. Copyright © 2012 Elsevier B.V. All rights reserved.

  16. Intestinal microbiota and immune related genes in sea cucumber (Apostichopus japonicus) response to dietary β-glucan supplementation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Gang; Xu, Zhenjiang; Tian, Xiangli, E-mail: xianglitian@ouc.edu.cn

    β-glucan is a prebiotic well known for its beneficial outcomes on sea cucumber health through modifying the host intestinal microbiota. High-throughput sequencing techniques provide an opportunity for the identification and characterization of microbes. In this study, we investigated the intestinal microbial community composition, interaction among species, and intestinal immune genes in sea cucumber fed with diet supplemented with or without β-glucan supplementation. The results show that the intestinal dominant classes in the control group are Flavobacteriia, Gammaproteobacteria, and Alphaproteobacteria, whereas Alphaproteobacteria, Flavobacteriia, and Verrucomicrobiae are enriched in the β-glucan group. Dietary β-glucan supplementation promoted the proliferation of the family Rhodobacteraceaemore » of the Alphaproteobacteria class and the family Verrucomicrobiaceae of the Verrucomicrobiae class and reduced the relative abundance of the family Flavobacteriaceae of Flavobacteria class. The ecological network analysis suggests that dietary β-glucan supplementation can alter the network interactions among different microbial functional groups by changing the microbial community composition and topological roles of the OTUs in the ecological network. Dietary β-glucan supplementation has a positive impact on immune responses of the intestine of sea cucumber by activating NF-κB signaling pathway, probably through modulating the balance of intestinal microbiota. - Highlights: • Dietary β-glucan supplementation increases the abundance of Rhodobacteraceae and Verrucomicrobiaceae in the intestine. • Dietary β-glucan supplementation changes the topological roles of OTUs in the ecological network. • Dietary β-glucan supplementation has a positive impact on the immune response of intestine of sea cucumber.« less

  17. Effect of two seaweed polysaccharides on intestinal microbiota in mice evaluated by illumina PE250 sequencing.

    PubMed

    Zhang, Zhongshan; Wang, Xiaomei; Han, Shuwen; Liu, Chundong; Liu, Feng

    2018-06-01

    Effect of polysaccharides from two seaweeds, Porphyra haitanensis and Ulva prolifera, on intestinal microbiota in mice was evaluated by illumina PE250 sequencing. Analysis showed significant structural changes in fecal microbiota among the three sample groups. There were significant differences in the composition of fecal microbiota among the three groups at phylum and genus levels. At the phylum level, the most predominant phylum was Bacteroidetes contributing 58.76%, 73.39%, 75.38% and 64.40% of the fecal microbiota in K, Z, H and D groups respectively, followed by Firmicutes, contributing 37.61%, 23.99%, 21.87% and 30.82% respectively. Many genera were significantly higher in the Z and H group than in the K group, including Prevotellaceae UCG-001 (p<0.05) and Rikenellaceae RC9 (p<0.01). In conclusion, our results suggest that polysaccharide type and glycoside may contribute to shaping mice gut microbiota. Copyright © 2018 Elsevier B.V. All rights reserved.

  18. Proanthocyanidin-Rich Grape Seed Extract Modulates Intestinal Microbiota in Ovariectomized Mice.

    PubMed

    Jin, Guangwen; Asou, Yoshinori; Ishiyama, Kirika; Okawa, Atsushi; Kanno, Taro; Niwano, Yoshimi

    2018-04-01

    Grape-seed extract (GSE) is rich in proanthocyanidins (polymers of flavan-3-ols). GSE is well known to have various beneficial effects to health. The objective of this study was to examine the effect of dietary GSE on the intestinal microbiota in ovariectomized (OVX) mice as a model of menopause. Phylum-level analyses using 16S rRNA-targeted group-specific polymerase-chain reaction primers in fecal samples collected 8 weeks postoperatively from OVX mice revealed that the proportion of Firmicutes and Bacteroidetes populations became imbalanced as compared with that in sham-operated control mice. That is, the ratio of Firmicutes:Bacteroidetes populations in the OVX group were increased significantly. When OVX animals were given dietary GSE, the imbalanced proportion of Firmicutes and Bacteroidetes populations was normalized to that seen in control mice. In addition, the body weight of OVX animals measured at 6 weeks postoperatively was significantly higher than that in sham-operated control animals. Dietary GSE also prevented OVX animals from increasing body weight. Thus, we postulated that GSE can improve imbalanced populations of intestinal microbiota, leading to prevention of obesity under conditions of not only menopause but morbidity. The GSE has a great potential to be a functional food to improve dysbiosis in post-menopausal women. © 2018 Institute of Food Technologists®.

  19. Breaking down the barriers: the gut microbiome, intestinal permeability and stress-related psychiatric disorders

    PubMed Central

    Kelly, John R.; Kennedy, Paul J.; Cryan, John F.; Dinan, Timothy G.; Clarke, Gerard; Hyland, Niall P.

    2015-01-01

    The emerging links between our gut microbiome and the central nervous system (CNS) are regarded as a paradigm shift in neuroscience with possible implications for not only understanding the pathophysiology of stress-related psychiatric disorders, but also their treatment. Thus the gut microbiome and its influence on host barrier function is positioned to be a critical node within the brain-gut axis. Mounting preclinical evidence broadly suggests that the gut microbiota can modulate brain development, function and behavior by immune, endocrine and neural pathways of the brain-gut-microbiota axis. Detailed mechanistic insights explaining these specific interactions are currently underdeveloped. However, the concept that a “leaky gut” may facilitate communication between the microbiota and these key signaling pathways has gained traction. Deficits in intestinal permeability may underpin the chronic low-grade inflammation observed in disorders such as depression and the gut microbiome plays a critical role in regulating intestinal permeability. In this review we will discuss the possible role played by the gut microbiota in maintaining intestinal barrier function and the CNS consequences when it becomes disrupted. We will draw on both clinical and preclinical evidence to support this concept as well as the key features of the gut microbiota which are necessary for normal intestinal barrier function. PMID:26528128

  20. Application of Sequence-Dependent Electrophoresis Fingerprinting in Exploring Biodiversity and Population Dynamics of Human Intestinal Microbiota: What Can Be Revealed?

    PubMed Central

    Huys, Geert; Vanhoutte, Tom; Vandamme, Peter

    2008-01-01

    Sequence-dependent electrophoresis (SDE) fingerprinting techniques such as denaturing gradient gel electrophoresis (DGGE) have become commonplace in the field of molecular microbial ecology. The success of the SDE technology lays in the fact that it allows visualization of the predominant members of complex microbial ecosystems independent of their culturability and without prior knowledge on the complexity and diversity of the ecosystem. Mainly using the prokaryotic 16S rRNA gene as PCR amplification target, SDE-based community fingerprinting turned into one of the leading molecular tools to unravel the diversity and population dynamics of human intestinal microbiota. The first part of this review covers the methodological concept of SDE fingerprinting and the technical hurdles for analyzing intestinal samples. Subsequently, the current state-of-the-art of DGGE and related techniques to analyze human intestinal microbiota from healthy individuals and from patients with intestinal disorders is surveyed. In addition, the applicability of SDE analysis to monitor intestinal population changes upon nutritional or therapeutic interventions is critically evaluated. PMID:19277102

  1. The gut microbiota and gastrointestinal surgery.

    PubMed

    Guyton, Kristina; Alverdy, John C

    2017-01-01

    Surgery involving the gastrointestinal tract continues to prove challenging because of the persistence of unpredictable complications such as anastomotic leakage and life-threatening infections. Removal of diseased intestinal segments results in substantial catabolic stress and might require complex reconstructive surgery to maintain the functional continuity of the intestinal tract. As gastrointestinal surgery necessarily involves a breach of an epithelial barrier colonized by microorganisms, preoperative intestinal antisepsis is used to reduce infection-related complications. The current approach to intestinal antisepsis varies widely across institutions and countries with little understanding of its mechanism of action, effect on the gut microbiota and overall efficacy. Many of the current approaches to intestinal antisepsis before gastrointestinal surgery run counter to emerging concepts of intestinal microbiota contributing to immune function and recovery from injury. Here, we review evidence outlining the role of gut microbiota in recovery from gastrointestinal surgery, particularly in the development of infections and anastomotic leak. To make surgery safer and further reduce complications, a molecular, genetic and functional understanding of the response of the gastrointestinal tract to alterations in its microbiota is needed. Methods can then be developed to preserve the health-promoting functions of the microbiota while at the same time suppressing their harmful effects.

  2. Gut microbiota and hepatitis-B-virus-induced chronic liver disease: implications for faecal microbiota transplantation therapy.

    PubMed

    Kang, Y; Cai, Y

    2017-08-01

    Hepatitis B is one of the most common infectious diseases globally. It has been estimated that there are 350 million chronic hepatitis B virus (HBV) carriers worldwide. The liver is connected to the small intestine by the bile duct, which carries bile formed in the liver to the intestine. Nearly all of the blood that leaves the stomach and intestines must pass through the liver. Human intestines contain a wide diversity of microbes, collectively termed the 'gut microbiota'. Gut microbiota play a significant role in host metabolic processes and host immune modulation, and influence host development and physiology (organ development). Altered gut microbiota is a common complication in liver disease. Changes in intestinal microbiota seem to play an important role in induction and promotion of HBV-induced chronic liver disease progression, and specific species among the intestinal commensal bacteria may play either a pathogenic or a protective role in the development of HBV-induced chronic liver disease. Thus, the gut microbiome may represent fertile targets for prevention or management of HBV-induced chronic liver disease. Faecal microbiota transplantation (FMT) may be a useful therapy for HBV-related disease in the future. However, the data available in this field remain limited, and relevant scientific work has only just commenced. New technologies have enabled systematic studies of gut microbiota, and provided more realistic information about its composition and pathological variance. This review summarizes the cutting edge of research into the relationship between gut microbiota and HBV-induced chronic liver disease, and the future prospects of FMT therapy. Copyright © 2017 The Healthcare Infection Society. Published by Elsevier Ltd. All rights reserved.

  3. Characterization of microbiota in Arapaima gigas intestine and isolation of potential probiotic bacteria.

    PubMed

    do Vale Pereira, G; da Cunha, D G; Pedreira Mourino, J L; Rodiles, A; Jaramillo-Torres, A; Merrifield, D L

    2017-11-01

    The aim of this study was to determine the intestinal microbiota of pirarucu (Arapaima gigas) in different growth stages (adult and fingerlings) and to isolate and identify potential probiotic bacteria. High-throughput sequencing analysis of the intestinal contents revealed that the majority of sequences belonged to the Proteobacteria, Fusobacteria and Firmicutes phyla. At the genus level, the greatest number of sequences belonged to Bradyrhizobium in adult fish, while Cetobacterium was the most abundant in juvenile fish. Twenty-three lactic-acid bacteria (LABs) were isolated on MRS agar from healthy juvenile fish. The isolates were tested in vitro for probiotic properties. Two isolates (identified as strains of Lactococcus lactis subsp. lactis and Enterococcus faecium) displayed antagonism against all 10 pathogens tested, were nonhaemolytic and maintained good viability for at least 3 weeks when supplemented to fish diets. The presence of a number of antibiotic resistance genes (ARGs), conferring resistance to erythromycin, tetracycline and chloramphenicol, was investigated by PCR. The absence of ARGs investigated the potential to antagonize pathogens, and favourable growth and survival characteristics indicate that these autochthonous isolates have the potential to be considered probiotics, which will be studied in future in vivo experiments. This study has demonstrated, for the first time, the normal microbiota in the A. gigas intestine during different life stages and the presence of LAB strains. It also demonstrated LAB antibiotic resistance and antagonistic behaviour against pathogens isolated from the same fish. © 2017 The Society for Applied Microbiology.

  4. Antibiotic-Associated Apoptotic Enterocolitis in the Absence of a Defined Pathogen: The Role of Intestinal Microbiota Depletion*

    PubMed Central

    Wurm, Philipp; Spindelboeck, Walter; Krause, Robert; Plank, Johannes; Fuchs, Gottfried; Bashir, Mina; Petritsch, Wolfgang; Halwachs, Bettina; Langner, Cord; Högenauer, Christoph

    2017-01-01

    Objective: Antibiotic therapy is a major risk factor for the development of diarrhea and colitis with varying severity. Often the origin of antibiotic-associated gastrointestinal deterioration remains elusive and no specific infectious agents could be discerned. Patients: We represent three cases of intractable high-volume diarrhea associated with combined antibiotic and steroid therapy in critically ill patients not fitting into established disease entities. Cases presented with severe apoptotic enterocolitis resembling acute intestinal graft-versus-host-disease. Microbiologic workup precluded known enteropathogens, but microbiota analysis revealed a severely depleted gut microbiota with concomitant opportunistic pathogen overgrowth. Interventions: Fecal microbiota transplantation, performed in one patient, was associated with correction of dysbiosis, rapid clinical improvement, and healing of enterocolitis. Conclusions: Our series represents a severe form of antibiotic-associated colitis in critically ill patients signified by microbiota depletion, and reestablishment of a physiologic gastrointestinal microbiota might be beneficial for this condition. PMID:28333760

  5. The influence of whole grain products and red meat on intestinal microbiota composition in normal weight adults: a randomized crossover intervention trial.

    PubMed

    Foerster, Jana; Maskarinec, Gertraud; Reichardt, Nicole; Tett, Adrian; Narbad, Arjan; Blaut, Michael; Boeing, Heiner

    2014-01-01

    Intestinal microbiota is related to obesity and serum lipid levels, both risk factors for chronic diseases constituting a challenge for public health. We investigated how a diet rich in whole grain (WG) products and red meat (RM) influences microbiota. During a 10-week crossover intervention study, 20 healthy adults consumed two isocaloric diets, one rich in WG products and one high in RM. Repeatedly data on microbiota were assessed by 16S rRNA based denaturing gradient gel electrophoresis (DGGE). A blood sample and anthropometric data were collected. Mixed models and logistic regression were used to investigate effects. Microbiota showed interindividual variability. However, dietary interventions modified microbiota appearance: 8 bands changed in at least 4 participants during the interventions. One of the bands appearing after WG and one increasing after RM remained significant in regression models and were identified as Collinsella aerofaciens and Clostridium sp. The WG intervention lowered obesity parameters, while the RM diet increased serum levels of uric acid and creatinine. The study showed that diet is a component of major relevance regarding its influence on intestinal microbiota and that WG has an important role for health. The results could guide investigations of diet and microbiota in observational prospective cohort studies. Trial registration: ClinicalTrials.gov NCT01449383.

  6. The Influence of Whole Grain Products and Red Meat on Intestinal Microbiota Composition in Normal Weight Adults: A Randomized Crossover Intervention Trial

    PubMed Central

    Foerster, Jana; Maskarinec, Gertraud; Reichardt, Nicole; Tett, Adrian; Narbad, Arjan; Blaut, Michael; Boeing, Heiner

    2014-01-01

    Intestinal microbiota is related to obesity and serum lipid levels, both risk factors for chronic diseases constituting a challenge for public health. We investigated how a diet rich in whole grain (WG) products and red meat (RM) influences microbiota. During a 10-week crossover intervention study, 20 healthy adults consumed two isocaloric diets, one rich in WG products and one high in RM. Repeatedly data on microbiota were assessed by 16S rRNA based denaturing gradient gel electrophoresis (DGGE). A blood sample and anthropometric data were collected. Mixed models and logistic regression were used to investigate effects. Microbiota showed interindividual variability. However, dietary interventions modified microbiota appearance: 8 bands changed in at least 4 participants during the interventions. One of the bands appearing after WG and one increasing after RM remained significant in regression models and were identified as Collinsella aerofaciens and Clostridium sp. The WG intervention lowered obesity parameters, while the RM diet increased serum levels of uric acid and creatinine. The study showed that diet is a component of major relevance regarding its influence on intestinal microbiota and that WG has an important role for health. The results could guide investigations of diet and microbiota in observational prospective cohort studies. Trial registration ClinicalTrials.gov NCT01449383 PMID:25299601

  7. Comparison of gizzard and intestinal microbiota of wild neotropical birds

    PubMed Central

    Shin, Hakdong; Sanz, Virginia; Lentino, Miguel; Martínez, L. Margarita; Contreras, Monica; Michelangeli, Fabian; Domínguez-Bello, María Gloria

    2018-01-01

    Gut bacterial communities have been shown to be influenced by diet, host phylogeny and anatomy, but most of these studies have been done in captive animals. Here we compare the bacterial communities in the digestive tract of wild birds. We characterized the gizzard and intestinal microbiota among 8 wild Neotropical bird species, granivorous or frugivorous species of the orders Columbiformes and Passeriformes. We sequenced the V4 region of the 16S rRNA gene in 94 collected samples from 32 wild birds from 5 localities, and compared bacterial communities by foraging guild, organ, locality and bird taxonomy. 16S rRNA gene-based sequencing data were examined using QIIME with linear discriminant analysis effect size (LEfSe) and metabolic pathways were predicted using PICRUSt algorism. We identified 8 bacterial phyla, dominated by Firmicutes, Actinobacteria and Proteobacteria. Beta diversity analyses indicated significant separation of gut communities by bird orders (Columbiformes vs. Passerifomes) and between bird species (p<0.01). In lower intestine, PICRUSt shows a predominance of carbohydrate metabolism in granivorous birds and xenobiotics biodegradation pathways in frugivorous birds. Gizzard microbiota was significantly richer in granivorous, in relation to frugivorous birds (Chao 1; non-parametric t-test, p<0.05), suggesting a microbial gizzard function, beyond grinding food. The results suggest that the most important factor separating the bacterial community structure was bird taxonomy, followed by foraging guild. However, variation between localities is also likely to be important, but this could not been assessed with our study design. PMID:29579092

  8. Intestinal microbiota composition is altered according to nutritional biorhythms in the leopard coral grouper (Plectropomus leopardus).

    PubMed

    Mekuchi, Miyuki; Asakura, Taiga; Sakata, Kenji; Yamaguchi, Tomofumi; Teruya, Kazuhisa; Kikuchi, Jun

    2018-01-01

    Aquaculture is currently a major source of fish and has the potential to become a major source of protein in the future. These demands require efficient aquaculture. The intestinal microbiota plays an integral role that benefits the host, providing nutrition and modulating the immune system. Although our understanding of microbiota in fish gut has increased, comprehensive studies examining fish microbiota and host metabolism remain limited. Here, we investigated the microbiota and host metabolism in the coral leopard grouper, which is traded in Asian markets as a superior fish and has begun to be produced via aquaculture. We initially examined the structural changes of the gut microbiota using next-generation sequencing and found that the composition of microbiota changed between fasting and feeding conditions. The dominant phyla were Proteobacteria in fasting and Firmicutes in feeding; interchanging the dominant bacteria required 12 hours. Moreover, microbiota diversity was higher under feeding conditions than under fasting conditions. Multivariate analysis revealed that Proteobacteria are the key bacteria in fasting and Firmicutes and Fusobacteria are the key bacteria in feeding. Subsequently, we estimated microbiota functional capacity. Microbiota functional structure was relatively stable throughout the experiment; however, individual function activity changed according to feeding conditions. Taken together, these findings indicate that the gut microbiota could be a key factor to understanding fish feeding conditions and play a role in interactions with host metabolism. In addition, the composition of microbiota in ambient seawater directly affects the fish; therefore, it is important to monitor the microbiota in rearing tanks and seawater circulating systems.

  9. Dysbiosis gut microbiota associated with inflammation and impaired mucosal immune function in intestine of humans with non-alcoholic fatty liver disease

    PubMed Central

    Jiang, Weiwei; Wu, Na; Wang, Xuemei; Chi, Yujing; Zhang, Yuanyuan; Qiu, Xinyun; Hu, Ying; Li, Jing; Liu, Yulan

    2015-01-01

    Non-alcoholic fatty liver disease (NAFLD) has recently been considered to be under the influence of the gut microbiota, which might exert toxic effects on the human host after intestinal absorption and delivery to the liver via the portal vein. In this study, the composition of the gut microbiota in NAFLD patients and healthy subjects was determined via 16S ribosomal RNA Illumina next-generation sequencing. Among those taxa displaying greater than 0.1% average abundance in all samples, five genera, including Alistipes and Prevotella, were significantly more abundant in the gut microbiota of healthy subjects compared to NAFLD patients. Alternatively, Escherichia, Anaerobacter, Lactobacillus and Streptococcus were increased in the gut microbiota of NAFLD patients compared to healthy subjects. In addition, decreased numbers of CD4+ and CD8+ T lymphocytes and increased levels of TNF-α, IL-6 and IFN-γ were detected in the NAFLD group compared to the healthy group. Furthermore, irregularly arranged microvilli and widened tight junctions were observed in the gut mucosa of the NAFLD patients via transmission electron microscopy. We postulate that aside from dysbiosis of the gut microbiota, gut microbiota-mediated inflammation of the intestinal mucosa and the related impairment in mucosal immune function play an important role in the pathogenesis of NAFLD. PMID:25644696

  10. Fecal Microbiota Transplantation: A Review of Emerging Indications Beyond Relapsing Clostridium difficile Toxin Colitis

    PubMed Central

    Lee, Woo Jung; Lattimer, Lakshmi D. N.; Stephen, Sindu; Borum, Marie L.

    2015-01-01

    The symbiotic relationship between gut microbiota and humans has been forged over many millennia. This relationship has evolved to establish an intimate partnership that we are only beginning to understand. Gut microbiota were once considered pathogenic, but the concept of gut microbiota and their influence in human health is undergoing a major paradigm shift, as there is mounting evidence of their impact in the homeostasis of intestinal development, metabolic activities, and the immune system. The disruption of microbiota has been associated with many gastrointestinal and nongastrointestinal diseases, and the reconstitution of balanced microbiota has been postulated as a potential therapeutic strategy. Fecal microbiota transplantation (FMT), a unique method to reestablish a sustained balance in the disrupted microbiota of diseased intestine, has demonstrated great success in the treatment of recurrent Clostridium difficile infection and has gained increasing acceptance in clinical use. The possibility of dysfunctional micro-biota playing a causative role in other gastrointestinal and nongas-trointestinal diseases, therefore, has also been raised, and there are an increasing number of studies supporting this hypothesis. FMT is emerging as a feasible therapeutic option for several diseases; however, its efficacy remains in question, given the lack of clinical trial data. Altering microbiota with FMT holds great promise, but much research is needed to further define FMT’s therapeutic role and optimize the microbiota delivery system. PMID:27099570

  11. Fecal Microbiota Transplantation: A Review of Emerging Indications Beyond Relapsing Clostridium difficile Toxin Colitis.

    PubMed

    Jung Lee, Woo; Lattimer, Lakshmi D N; Stephen, Sindu; Borum, Marie L; Doman, David B

    2015-01-01

    The symbiotic relationship between gut microbiota and humans has been forged over many millennia. This relationship has evolved to establish an intimate partnership that we are only beginning to understand. Gut microbiota were once considered pathogenic, but the concept of gut microbiota and their influence in human health is undergoing a major paradigm shift, as there is mounting evidence of their impact in the homeostasis of intestinal development, metabolic activities, and the immune system. The disruption of microbiota has been associated with many gastrointestinal and nongastrointestinal diseases, and the reconstitution of balanced microbiota has been postulated as a potential therapeutic strategy. Fecal microbiota transplantation (FMT), a unique method to reestablish a sustained balance in the disrupted microbiota of diseased intestine, has demonstrated great success in the treatment of recurrent Clostridium difficile infection and has gained increasing acceptance in clinical use. The possibility of dysfunctional micro-biota playing a causative role in other gastrointestinal and nongas-trointestinal diseases, therefore, has also been raised, and there are an increasing number of studies supporting this hypothesis. FMT is emerging as a feasible therapeutic option for several diseases; however, its efficacy remains in question, given the lack of clinical trial data. Altering microbiota with FMT holds great promise, but much research is needed to further define FMT's therapeutic role and optimize the microbiota delivery system.

  12. Non-Ischemic Heart Failure With Reduced Ejection Fraction Is Associated With Altered Intestinal Microbiota.

    PubMed

    Katsimichas, Themistoklis; Ohtani, Tomohito; Motooka, Daisuke; Tsukamoto, Yasumasa; Kioka, Hidetaka; Nakamoto, Kei; Konishi, Shozo; Chimura, Misato; Sengoku, Kaoruko; Miyawaki, Hiroshi; Sakaguchi, Taiki; Okumura, Ryu; Theofilis, Konstantinos; Iida, Tetsuya; Takeda, Kiyoshi; Nakamura, Shota; Sakata, Yasushi

    2018-05-25

    Research suggests that heart failure with reduced ejection fraction (HFrEF) is a state of systemic inflammation that may be triggered by microbial products passing into the bloodstream through a compromised intestinal barrier. However, whether the intestinal microbiota exhibits dysbiosis in HFrEF patients is largely unknown.Methods and Results:Twenty eight non-ischemic HFrEF patients and 19 healthy controls were assessed by 16S rRNA analysis of bacterial DNA extracted from stool samples. After processing of sequencing data, bacteria were taxonomically classified, diversity indices were used to examine microbial ecology, and relative abundances of common core genera were compared between groups. Furthermore, we predicted gene carriage for bacterial metabolic pathways and inferred microbial interaction networks on multiple taxonomic levels.Bacterial communities of both groups were dominated by the Firmicutes and Bacteroidetes phyla. The most abundant genus in both groups wasBacteroides. Although α diversity did not differ between groups, ordination by β diversity metrics revealed a separation of the groups across components of variation.StreptococcusandVeillonellawere enriched in the common core microbiota of patients, whileSMB53was depleted. Gene families in amino acid, carbohydrate, vitamin, and xenobiotic metabolism showed significant differences between groups. Interaction networks revealed a higher degree of correlations between bacteria in patients. Non-ischemic HFrEF patients exhibited multidimensional differences in intestinal microbial communities compared with healthy subjects.

  13. Therapeutic potential of fecal microbiota transplantation.

    PubMed

    Smits, Loek P; Bouter, Kristien E C; de Vos, Willem M; Borody, Thomas J; Nieuwdorp, Max

    2013-11-01

    There has been growing interest in the use of fecal microbiota for the treatment of patients with chronic gastrointestinal infections and inflammatory bowel diseases. Lately, there has also been interest in its therapeutic potential for cardiometabolic, autoimmune, and other extraintestinal conditions that were not previously considered to be associated with the intestinal microbiota. Although it is not clear if changes in the microbiota cause these conditions, we review the most current and best methods for performing fecal microbiota transplantation and summarize clinical observations that have implicated the intestinal microbiota in various diseases. We also discuss case reports of fecal microbiota transplantations for different disorders, including Clostridium difficile infection, irritable bowel syndrome, inflammatory bowel diseases, insulin resistance, multiple sclerosis, and idiopathic thrombocytopenic purpura. There has been increasing focus on the interaction between the intestinal microbiome, obesity, and cardiometabolic diseases, and we explore these relationships and the potential roles of different microbial strains. We might someday be able to mine for intestinal bacterial strains that can be used in the diagnosis or treatment of these diseases. Copyright © 2013 AGA Institute. Published by Elsevier Inc. All rights reserved.

  14. Interplay of host microbiota, genetic perturbations, and inflammation promotes local development of intestinal neoplasms in mice.

    PubMed

    Bongers, Gerold; Pacer, Michelle E; Geraldino, Thais H; Chen, Lili; He, Zhengxiang; Hashimoto, Daigo; Furtado, Glaucia C; Ochando, Jordi; Kelley, Kevin A; Clemente, Jose C; Merad, Miriam; van Bakel, Harm; Lira, Sergio A

    2014-03-10

    The preferential localization of some neoplasms, such as serrated polyps (SPs), in specific areas of the intestine suggests that nongenetic factors may be important for their development. To test this hypothesis, we took advantage of transgenic mice that expressed HB-EGF throughout the intestine but developed SPs only in the cecum. Here we show that a host-specific microbiome was associated with SPs and that alterations of the microbiota induced by antibiotic treatment or by embryo transfer rederivation markedly inhibited the formation of SPs in the cecum. Mechanistically, development of SPs was associated with a local decrease in epithelial barrier function, bacterial invasion, production of antimicrobials, and increased expression of several inflammatory factors such as IL-17, Cxcl2, Tnf-α, and IL-1. Increased numbers of neutrophils were found within the SPs, and their depletion significantly reduced polyp growth. Together these results indicate that nongenetic factors contribute to the development of SPs and suggest that the development of these intestinal neoplasms in the cecum is driven by the interplay between genetic changes in the host, an inflammatory response, and a host-specific microbiota.

  15. A systematic review of studies on the faecal microbiota in anorexia nervosa: future research may need to include microbiota from the small intestine.

    PubMed

    Schwensen, Hanna Ferløv; Kan, Carol; Treasure, Janet; Høiby, Niels; Sjögren, Magnus

    2018-03-14

    Anorexia nervosa (AN) is a poorly understood and often chronic condition. Deviations in the gut microbiota have been reported to influence the gut-brain axis in other disorders. Therefore, if present in AN, it may impact on symptoms and illness progression. A review of the gut microbiota studies in AN is presented. A literature search on PubMed yielded 27 articles; 14 were selected and based on relevance, 9 articles were included. The findings were interpreted in the larger context of preclinical research and clinical observations. 8 out of 9 included studies analysed microbiota from faeces samples, while the last analysed a protein in plasma produced by the gut. Two studies were longitudinal and included an intervention (i.e., weight restoration), five were cross-sectional, one was a case report, and the last was a case series consisting of three cases. Deviations in abundance, diversity, and microbial composition of the faecal microbiota in AN were found. There are currently only a few studies on the gut microbiota in AN, all done on faeces samples, and not all describe the microbiota at the species level extensively. The Archaeon Methanobrevibacter smithii was increased in participants with a BMI < 25 in one study and specifically in AN patients in three studies. Methanobrevibacter smithii may, if detected, be a benchmark biomarker for future studies. We propose that microbiota samples could also be collected from the small intestine, where a major exchange of nutrients takes place and where the microbiota may have a biological impact on AN.

  16. Intestinal Microbiota at Engraftment Influence Acute Graft-Versus-Host Disease via the Treg/Th17 Balance in Allo-HSCT Recipients.

    PubMed

    Han, Lijie; Jin, Hua; Zhou, Lizhi; Zhang, Xin; Fan, Zhiping; Dai, Min; Lin, Qianyun; Huang, Fen; Xuan, Li; Zhang, Haiyan; Liu, Qifa

    2018-01-01

    Animal models have indicated that intestinal microbiota influence acute graft-versus-host disease (aGVHD) by modulating immune homeostasis. But, in humans, the mechanism by which the microbiota induces aGVHD remains unclear. In this study, we investigated the relationship between the intestinal microbiota and T cell subsets in patients who undergo allogeneic hematopoietic stem cell transplantation (allo-HSCT) to explore the mechanism by which microbiota induced aGVHD. Based on aGVHD, this study was categorized into two groups: grades II-IV aGVHD (aGVHD group, n  = 32) and grade 0-I aGVHD (non-aGVHD group, n  = 49). The intestinal microbiota was detected by 16S rRNA gene sequencing, and the T cell subsets and histone 3 (H3) acetylation in CD4+ T cells in the peripheral blood was assayed by flow cytometry at the time of engraftment. The aGVHD group had greater low microbial diversity than the non-aGVHD group (56.3 versus 24.5%, p  = 0.004). The bacterial community was depleted of Clostridia (e.g., the Lachnospiraceae and Ruminococcaceae families) and enriched for Gammaproteobacteria (e.g., the Enterobacteriaceae family) in the aGVHD group compared with the non-aGVHD group. The relative abundance of Lachnospiraceae and Ruminococcaceae was positively correlated with the Treg/Th17 ratio counts ( r  = 0.469 and 0.419; p  < 0.001 and <0.001, respectively), whereas Enterobacteriaceae was negatively correlated with the Treg/Th17 ratio ( r  = -0.277; p  = 0.012). The level of acetylated H3 in CD4+ T cells was not only correlated with Lachnospiraceae/Ruminococcaceae, but also with the Treg/Th17 ratio ( r  = 0.354; p  = 0.001). In conclusions, our results suggest that decreased Lachnospiraceae and Ruminococcaceae and increased Enterobacteriaceae, correlate with a Treg/Th17 imbalance, which might be through acetylated H3 in CD4+ T cells. These findings suggest that intestinal microbiota might induce aGVHD by influencing the Treg/Th17 balance.

  17. Dietary mung bean protein reduces high-fat diet-induced weight gain by modulating host bile acid metabolism in a gut microbiota-dependent manner.

    PubMed

    Nakatani, Akiho; Li, Xuan; Miyamoto, Junki; Igarashi, Miki; Watanabe, Hitoshi; Sutou, Asuka; Watanabe, Keita; Motoyama, Takayasu; Tachibana, Nobuhiko; Kohno, Mitsutaka; Inoue, Hiroshi; Kimura, Ikuo

    2018-07-02

    The 8-globulin-rich mung bean protein (MPI) suppresses hepatic lipogenesis in rodent models and reduces fasting plasma glucose and insulin levels in obese adults. However, its effects on mitigating high fat diet (HFD)-induced obesity and the mechanism underlying these effects remain to be elucidated. Herein, we examined the metabolic phenotype, intestinal bile acid (BA) pool, and gut microbiota of conventionally raised (CONV-R) male C57BL/6 mice and germ-free (GF) mice that were randomized to receive either regular HFD or HFD containing mung bean protein isolate (MPI) instead of the dairy protein present in regular HFD. MPI intake significantly reduced HFD-induced weight gain and adipose tissue accumulation, and attenuated hepatic steatosis. Enhancement in the secretion of intestinal glucagon-like peptide-1 (GLP-1) and an enlarged cecal and fecal BA pool of dramatically elevated secondary/primary BA ratio were observed in mice that had consumed MPI. These effects were abolished in GF mice, indicating that the effects were dependent upon the presence of the microbiota. As revealed by 16S rRNA gene sequence analysis, MPI intake also elicited dramatic changes in the gut microbiome, such as an expansion of taxa belonging to the phylum Bacteroidetes along with a reduced abundance of the Firmicutes. Copyright © 2018 Elsevier Inc. All rights reserved.

  18. Fecal Microbiota Transplantation, Commensal Escherichia coli and Lactobacillus johnsonii Strains Differentially Restore Intestinal and Systemic Adaptive Immune Cell Populations Following Broad-spectrum Antibiotic Treatment.

    PubMed

    Ekmekciu, Ira; von Klitzing, Eliane; Neumann, Christian; Bacher, Petra; Scheffold, Alexander; Bereswill, Stefan; Heimesaat, Markus M

    2017-01-01

    The essential role of the intestinal microbiota in the well-functioning of host immunity necessitates the investigation of species-specific impacts on this interplay. Aim of this study was to examine the ability of defined Gram-positive and Gram-negative intestinal commensal bacterial species, namely Escherichia coli and Lactobacillus johnsonii , respectively, to restore immune functions in mice that were immunosuppressed by antibiotics-induced microbiota depletion. Conventional mice were subjected to broad-spectrum antibiotic treatment for 8 weeks and perorally reassociated with E. coli , L. johnsonii or with a complex murine microbiota by fecal microbiota transplantation (FMT). Analyses at days (d) 7 and 28 revealed that immune cell populations in the small and large intestines, mesenteric lymph nodes and spleens of mice were decreased after antibiotic treatment but were completely or at least partially restored upon FMT or by recolonization with the respective bacterial species. Remarkably, L. johnsonii recolonization resulted in the highest CD4+ and CD8+ cell numbers in the small intestine and spleen, whereas neither of the commensal species could stably restore those cell populations in the colon until d28. Meanwhile less efficient than FMT, both species increased the frequencies of regulatory T cells and activated dendritic cells and completely restored intestinal memory/effector T cell populations at d28. Furthermore, recolonization with either single species maintained pro- and anti-inflammatory immune functions in parallel. However, FMT could most effectively recover the decreased frequencies of cytokine producing CD4+ lymphocytes in mucosal and systemic compartments. E. coli recolonization increased the production of cytokines such as TNF, IFN-γ, IL-17, and IL-22, particularly in the small intestine. Conversely, only L. johnsonii recolonization maintained colonic IL-10 production. In summary, FMT appears to be most efficient in the restoration of

  19. Fecal Microbiota Transplantation, Commensal Escherichia coli and Lactobacillus johnsonii Strains Differentially Restore Intestinal and Systemic Adaptive Immune Cell Populations Following Broad-spectrum Antibiotic Treatment

    PubMed Central

    Ekmekciu, Ira; von Klitzing, Eliane; Neumann, Christian; Bacher, Petra; Scheffold, Alexander; Bereswill, Stefan; Heimesaat, Markus M.

    2017-01-01

    The essential role of the intestinal microbiota in the well-functioning of host immunity necessitates the investigation of species-specific impacts on this interplay. Aim of this study was to examine the ability of defined Gram-positive and Gram-negative intestinal commensal bacterial species, namely Escherichia coli and Lactobacillus johnsonii, respectively, to restore immune functions in mice that were immunosuppressed by antibiotics-induced microbiota depletion. Conventional mice were subjected to broad-spectrum antibiotic treatment for 8 weeks and perorally reassociated with E. coli, L. johnsonii or with a complex murine microbiota by fecal microbiota transplantation (FMT). Analyses at days (d) 7 and 28 revealed that immune cell populations in the small and large intestines, mesenteric lymph nodes and spleens of mice were decreased after antibiotic treatment but were completely or at least partially restored upon FMT or by recolonization with the respective bacterial species. Remarkably, L. johnsonii recolonization resulted in the highest CD4+ and CD8+ cell numbers in the small intestine and spleen, whereas neither of the commensal species could stably restore those cell populations in the colon until d28. Meanwhile less efficient than FMT, both species increased the frequencies of regulatory T cells and activated dendritic cells and completely restored intestinal memory/effector T cell populations at d28. Furthermore, recolonization with either single species maintained pro- and anti-inflammatory immune functions in parallel. However, FMT could most effectively recover the decreased frequencies of cytokine producing CD4+ lymphocytes in mucosal and systemic compartments. E. coli recolonization increased the production of cytokines such as TNF, IFN-γ, IL-17, and IL-22, particularly in the small intestine. Conversely, only L. johnsonii recolonization maintained colonic IL-10 production. In summary, FMT appears to be most efficient in the restoration of

  20. Effects of flavonoids on intestinal inflammation, barrier integrity and changes in gut microbiota during diet-induced obesity.

    PubMed

    Gil-Cardoso, Katherine; Ginés, Iris; Pinent, Montserrat; Ardévol, Anna; Blay, Mayte; Terra, Ximena

    2016-12-01

    Diet-induced obesity is associated with low-grade inflammation, which, in most cases, leads to the development of metabolic disorders, primarily insulin resistance and type 2 diabetes. Although prior studies have implicated the adipose tissue as being primarily responsible for obesity-associated inflammation, the latest discoveries have correlated impairments in intestinal immune homeostasis and the mucosal barrier with increased activation of the inflammatory pathways and the development of insulin resistance. Therefore, it is essential to define the mechanisms underlying the obesity-associated gut alterations to develop therapies to prevent and treat obesity and its associated diseases. Flavonoids appear to be promising candidates among the natural preventive treatments that have been identified to date. They have been shown to protect against several diseases, including CVD and various cancers. Furthermore, they have clear anti-inflammatory properties, which have primarily been evaluated in non-intestinal models. At present, a growing body of evidence suggests that flavonoids could exert a protective role against obesity-associated pathologies by modulating inflammatory-related cellular events in the intestine and/or the composition of the microbiota populations. The present paper will review the literature to date that has described the protective effects of flavonoids on intestinal inflammation, barrier integrity and gut microbiota in studies conducted using in vivo and in vitro models.

  1. Gut microbiota: puppeteer of the host juvenile growth.

    PubMed

    Schwarzer, Martin

    2018-05-01

    This review focuses on the recent discoveries about the impact of intestinal microbiota on mammalian host juvenile growth. Intestinal microbiota is a powerful modulator of many facets of multicellular host's physiology. Recent results from human field studies and animal research have clearly shown that not only the nutrition, but also the intestinal microbiota impacts host postnatal growth kinetics. Absence of microbiome leads to stunted growth in mammalian gnotobiotic models and changes in the composition of the intestinal microbiota can impact the postnatal growth kinetics both positively and negatively under normal nutritional conditions as well as in undernutrition. Strikingly, specific bacterial strains are able to interact with GH/IGF-1 somatotropic axis activity, thus directly impacting host juvenile development. Intestinal microbiota dictates the pace of host postnatal growth. This newly described role envisages that therapy with specific bacterial strains, together with re-nutritional strategies, might successfully alleviate the long-term sequelae of undernutrition during childhood in humans.

  2. The effects of probiotic, prebiotic and synbiotic diets containing Bacillus coagulans and inulin on rat intestinal microbiota

    PubMed Central

    Abhari, Kh; Shekarforoush, S. S; Sajedianfard, J; Hosseinzadeh, S; Nazifi, S

    2015-01-01

    An in vivo experiment was conducted to study the effects of probiotic Bacillus coagulans spores, with and without prebiotic, inulin, on gastrointestinal (GI) microbiota of healthy rats and its potentiality to survive in the GI tract. Forty-eight male Wistar rats were randomly divided into four groups (n=12) and fed as follows: standard diet (control), standard diet supplied with 5% w/w long chain inulin (prebiotic), standard diet with 109/day spores of B. coagulans by orogastric gavage (probiotic), and standard diet with 5% w/w long chain inulin and 109 spores/day of B. coagulans by orogastric gavage (synbiotic). Rats were fed the diets for 30 days. At day 10, 20 and 30 of experiment, 24 h post administration, four rats from each group were randomly selected and after faecal collection were sacrificed. Small intestine, cecum, and colon were excised from each rat and used for microbial analysis. Administration of synbiotic and probiotic diets led to a significant (P<0.05) increment in lactic acid bacteria (LAB), total aerobic and total anaerobic population compared the prebiotic and control diets. A significant decrease in Enterobacteriaceae counts of various segments of GI tract (except small intestine) in synbiotic, probiotic and prebiotic fed groups were also seen. The obvious decline in spores count through passing GI tract and high surviving spore counts in faecal samples showed that spores are not a normal resident of GI microbiota and affect intestinal microbiota by temporary proliferation. In conclusion, the present study clearly showed probiotic B. coagulans was efficient in beneficially modulating GI microbiota and considering transitional characteristics of B. coagulans, daily consumption of probiotic products is necessary for any long-term effect. PMID:27175187

  3. The effects of probiotic, prebiotic and synbiotic diets containing Bacillus coagulans and inulin on rat intestinal microbiota.

    PubMed

    Abhari, Kh; Shekarforoush, S S; Sajedianfard, J; Hosseinzadeh, S; Nazifi, S

    2015-01-01

    An in vivo experiment was conducted to study the effects of probiotic Bacillus coagulans spores, with and without prebiotic, inulin, on gastrointestinal (GI) microbiota of healthy rats and its potentiality to survive in the GI tract. Forty-eight male Wistar rats were randomly divided into four groups (n=12) and fed as follows: standard diet (control), standard diet supplied with 5% w/w long chain inulin (prebiotic), standard diet with 10(9)/day spores of B. coagulans by orogastric gavage (probiotic), and standard diet with 5% w/w long chain inulin and 10(9) spores/day of B. coagulans by orogastric gavage (synbiotic). Rats were fed the diets for 30 days. At day 10, 20 and 30 of experiment, 24 h post administration, four rats from each group were randomly selected and after faecal collection were sacrificed. Small intestine, cecum, and colon were excised from each rat and used for microbial analysis. Administration of synbiotic and probiotic diets led to a significant (P<0.05) increment in lactic acid bacteria (LAB), total aerobic and total anaerobic population compared the prebiotic and control diets. A significant decrease in Enterobacteriaceae counts of various segments of GI tract (except small intestine) in synbiotic, probiotic and prebiotic fed groups were also seen. The obvious decline in spores count through passing GI tract and high surviving spore counts in faecal samples showed that spores are not a normal resident of GI microbiota and affect intestinal microbiota by temporary proliferation. In conclusion, the present study clearly showed probiotic B. coagulans was efficient in beneficially modulating GI microbiota and considering transitional characteristics of B. coagulans, daily consumption of probiotic products is necessary for any long-term effect.

  4. Feeding bovine milks with low or high IgA levels is associated with altered re-establishment of murine intestinal microbiota after antibiotic treatment

    PubMed Central

    Young, Wayne; Cakebread, Julie A.; Haigh, Brendan J.

    2016-01-01

    Antibiotics are a vital and commonly used therapeutic tool, but their use also results in profound changes in the intestinal microbiota that can, in turn, have significant health consequences. Understanding how the microbiota recovers after antibiotic treatment will help to devise strategies for mitigating the adverse effects of antibiotics. Using a mouse model, we have characterized the changes occurring in the intestinal microbiota immediately after five days exposure to ampicillin, and then at three and fourteen days thereafter. During the fourteen day period of antibiotic recovery, groups of mice were fed either water, cows’ milk containing high levels of IgA, or cows’ milk containing low levels of IgA as their sole source of liquid. Effects on microbiota of feeding milks for 14 days were also assessed in groups of mice that had no ampicillin exposure. Changes in microbiota were measured by high throughput sequencing of the V4 to V6 variable regions of the 16S ribosomal RNA gene. As expected, exposure to ampicillin led to profound changes to the types and abundance of bacteria present, along with a loss of diversity. At 14 days following antibiotic exposure, mice fed water had recovered microbiota compositions similar to that prior to antibiotics. However, feeding High-IgA milk to mice that has been exposed to antibiotics was associated with altered microbiota compositions, including increased relative abundance of Lactobacillus and Barnesiella compared to the start of the study. Mice exposed to antibiotics then fed Low-IgA milk also showed increased Barnesiella at day 14. Mice without antibiotic perturbation, showed no change in their microbiota after 14 days of milk feeding. Overall, these findings add to a knowledge platform for optimizing intestinal function after treatment with antibiotics in the human population. PMID:27703861

  5. Strict vegetarian diet improves the risk factors associated with metabolic diseases by modulating gut microbiota and reducing intestinal inflammation.

    PubMed

    Kim, Min-Soo; Hwang, Seong-Soo; Park, Eun-Jin; Bae, Jin-Woo

    2013-10-01

    Low-grade inflammation of the intestine results in metabolic dysfunction, in which dysbiosis of the gut microbiota is intimately involved. Dietary fibre induces prebiotic effects that may restore imbalances in the gut microbiota; however, no clinical trials have been reported in patients with metabolic diseases. Here, six obese subjects with type 2 diabetes and/or hypertension were assigned to a strict vegetarian diet (SVD) for 1 month, and blood biomarkers of glucose and lipid metabolisms, faecal microbiota using 454-pyrosequencing of 16S ribosomal RNA genes, faecal lipocalin-2 and short-chain fatty acids were monitored. An SVD reduced body weight and the concentrations of triglycerides, total cholesterol, low-density lipoprotein cholesterol and haemoglobin A1c, and improved fasting glucose and postprandial glucose levels. An SVD reduced the Firmicutes-to-Bacteroidetes ratio in the gut microbiota, but did not alter enterotypes. An SVD led to a decrease in the pathobionts such as the Enterobacteriaceae and an increase in commensal microbes such as Bacteroides fragilis and Clostridium species belonging to clusters XIVa and IV, resulting in reduced intestinal lipocalin-2 and short-chain fatty acids levels. This study underscores the benefits of dietary fibre for improving the risk factors of metabolic diseases and shows that increased fibre intake reduces gut inflammation by changing the gut microbiota. © 2013 John Wiley & Sons Ltd and Society for Applied Microbiology.

  6. Investigation of Microbiota Alterations and Intestinal Inflammation Post-Spinal Cord Injury in Rat Model.

    PubMed

    O'Connor, Gregory; Jeffrey, Elisabeth; Madorma, Derik; Marcillo, Alexander; Abreu, Maria T; Deo, Sapna K; Dietrich, W Dalton; Daunert, Sylvia

    2018-06-07

    Although there has been a significant amount of research focused on the pathophysiology of spinal cord injury (SCI), there is limited information on the consequences of SCI on remote organs. SCI can produce significant effects on a variety of organ systems, including the gastrointestinal tract. Patients with SCI often suffer from severe, debilitating bowel dysfunction in addition to their physical disabilities, which is of major concern for these individuals because of the adverse impact on their quality of life. Herein, we report on our investigation into the effects of SCI and subsequent antibiotic treatment on the intestinal tissue and microbiota. For that, we used a thoracic SCI rat model and investigated changes to the microbiota, proinflammatory cytokine levels, and bacterial communication molecule levels post-injury and gentamicin treatment for 7 days. We discovered significant changes, the most interesting being the differences in the gut microbiota beta diversity of 8-week SCI animals compared to control animals at the family, genus, and species level. Specifically, 35 operational taxonomic units were enriched in the SCI animal group and three were identified at species level; Lactobacillus intestinalis, Clostridium disporicum, and Bifidobacterium choerinum. In contrast, Clostridium saccharogumia was identified as depleted in the SCI animal group. Proinflammatory cytokines interleukin (IL)-12, macrophage inflammatory protein-2 (MIP-2), and tumor necrosis factor alpha were found to be significantly elevated in intestinal tissue homogenate 4 weeks post-SCI compared to 8-weeks post-injury. Further, levels of IL-1β, IL-12, and MIP-2 significantly correlated with changes in beta diversity 8-weeks post-SCI. Our data provide a greater understanding of the early effects of SCI on the microbiota and gastrointestinal tract, highlighting the need for further investigation to elucidate the mechanism underlying these effects.

  7. The Development of Microbiota and Metabolome in Small Intestine of Sika Deer (Cervus nippon) from Birth to Weaning

    PubMed Central

    Li, Zhipeng; Wang, Xiaoxu; Zhang, Ting; Si, Huazhe; Nan, Weixiao; Xu, Chao; Guan, Leluo; Wright, André-Denis G.; Li, Guangyu

    2018-01-01

    The dense and diverse community of microorganisms inhabiting the gastrointestinal tract of ruminant animals plays critical roles in the metabolism and absorption of nutrients, and gut associated immune function. Understanding microbial colonization in the small intestine of new born ruminants is a vital first step toward manipulating gut function through interventions during early life to produce long-term positive effects on host productivity and health. Yet the knowledge of microbiota colonization and its induced metabolites of small intestine during early life is still limited. In the present study, we examined the microbiota and metabolome in the jejunum and ileum of neonatal sika deer (Cervus nippon) from birth to weaning at days 1, 42, and 70. The microbial data showed that diversity and richness were increased with age, but a highly individual variation was observed at day 1. Principal coordinate analysis revealed significant differences in microbial community composition across three time points in the jejunum and ileum. The abundance of Halomonas spp., Lactobacillus spp., Escherichia–Shigella, and Bacteroides spp. tended to be decreased, while the proportion of Intestinibacter spp., Cellulosilyticum spp., Turicibacter spp., Clostridium sensu stricto 1 and Romboutsia spp. was significantly increased with age. For metabolome, metabolites separated from each other across the three time points in both jejunum and ileum. Moreover, the amounts of methionine, threonine, and putrescine were increased, while the amounts of myristic acid and pentadecanoic acid were decreased with age, respectively. The present study demonstrated that microbiota colonization and the metabolome becomes more developed in the small intestine with age. This may shed new light on the microbiota-metabolome-immune interaction during development. PMID:29410651

  8. The Development of Microbiota and Metabolome in Small Intestine of Sika Deer (Cervus nippon) from Birth to Weaning.

    PubMed

    Li, Zhipeng; Wang, Xiaoxu; Zhang, Ting; Si, Huazhe; Nan, Weixiao; Xu, Chao; Guan, Leluo; Wright, André-Denis G; Li, Guangyu

    2018-01-01

    The dense and diverse community of microorganisms inhabiting the gastrointestinal tract of ruminant animals plays critical roles in the metabolism and absorption of nutrients, and gut associated immune function. Understanding microbial colonization in the small intestine of new born ruminants is a vital first step toward manipulating gut function through interventions during early life to produce long-term positive effects on host productivity and health. Yet the knowledge of microbiota colonization and its induced metabolites of small intestine during early life is still limited. In the present study, we examined the microbiota and metabolome in the jejunum and ileum of neonatal sika deer ( Cervus nippon ) from birth to weaning at days 1, 42, and 70. The microbial data showed that diversity and richness were increased with age, but a highly individual variation was observed at day 1. Principal coordinate analysis revealed significant differences in microbial community composition across three time points in the jejunum and ileum. The abundance of Halomonas spp., Lactobacillus spp., Escherichia - Shigella , and Bacteroides spp. tended to be decreased, while the proportion of Intestinibacter spp., Cellulosilyticum spp., Turicibacter spp., Clostridium sensu stricto 1 and Romboutsia spp. was significantly increased with age. For metabolome, metabolites separated from each other across the three time points in both jejunum and ileum. Moreover, the amounts of methionine, threonine, and putrescine were increased, while the amounts of myristic acid and pentadecanoic acid were decreased with age, respectively. The present study demonstrated that microbiota colonization and the metabolome becomes more developed in the small intestine with age. This may shed new light on the microbiota-metabolome-immune interaction during development.

  9. Role of intestinal microbiota in the generation of polyphenol derived phenolic acid mediated attenuation of Alzheimer’s disease β-amyloid oligomerization

    PubMed Central

    Wang, Dongjie; Ho, Lap; Faith, Jeremiah; Ono, Kenjiro; Janle, Elsa M.; Lachcik, Pamela J.; Cooper, Bruce R.; Jannasch, Amber H.; D’Arcy, Bruce R.; Williams, Barbara A.; Ferruzzi, Mario G.; Levine, Samara; Zhao, Wei; Dubner, Lauren; Pasinetti, Giulio M.

    2015-01-01

    Scope Grape seed polyphenol extract (GSPE) is receiving increasing attention for its potential preventative and therapeutic roles in Alzheimer’s disease (AD) and other age-related neurodegenerative disorders. The intestinal microbiota is known to actively convert many dietary polyphenols, including GSPE, to phenolic acids. There is limited information on the bioavailability and bioactivity of GSPE-derived phenolic acid in the brain. Methods and Results We orally administered GSPE to rats and investigated the bioavailability of 12 phenolic acids known to be generated by microbiota metabolism of anthocyanidins. GSPE treatment significantly increased the content of 2 of the phenolic acids in the brain: 3-hydroxybenzoic acid (3-HBA) and 3-(3′-hydroxyphenyl) propionic acid (3-HPP), resulting in the brain accumulations of the two phenolic acids at μM concentrations. We also provided evidence that 3-HBA and 3-HPP potently interfere with the assembly of β-amyloid (Aβ) peptides into neurotoxic Aβ aggregates that play key roles in AD pathogenesis. Conclusion Our observation suggests important contribution of the intestinal microbiota to the protective activities of GSPE (as well as other polyphenol preparations) in AD. Outcomes from our studies support future preclinical and clinical investigations exploring the potential contributions of the intestinal microbiota in protecting against the onset/progression of AD and other neurodegenerative conditions. PMID:25689033

  10. Influence of the intestinal microbiota on the immunogenicity of oral rotavirus vaccine given to infants in south India.

    PubMed

    Parker, Edward P K; Praharaj, Ira; Zekavati, Anna; Lazarus, Robin P; Giri, Sidhartha; Operario, Darwin J; Liu, Jie; Houpt, Eric; Iturriza-Gómara, Miren; Kampmann, Beate; John, Jacob; Kang, Gagandeep; Grassly, Nicholas C

    2018-01-04

    Oral rotavirus vaccines have consistently proven to be less immunogenic among infants in developing countries. Discrepancies in the intestinal microbiota, including a greater burden of enteropathogens and an altered commensal community composition, may contribute to this trend by inhibiting the replication of vaccine viruses. To test this possibility, we performed a nested case-control study in Vellore, India, in which we compared the intestinal microbiota of infants who responded serologically or not after two doses of Rotarix delivered at 6 and 10 weeks of age as part of a clinical trial (CTRI/2012/05/002677). The prevalence of 40 bacterial, viral, and eukaryotic pathogen targets was assessed in pre-vaccination stool samples from 325 infants using singleplex real-time PCR on a Taqman array card (TAC). In a subset of 170 infants, we assessed bacterial microbiota composition by sequencing the 16S rRNA gene V4 region. Contrary to expectations, responders were more likely than non-responders to harbor ≥1 bacterial enteropathogen at dose 1 (26% [40/156] vs 13% [21/157] of infants with TAC results who completed the study per protocol; χ 2 , P = .006), although this was not apparent at dose 2 (24% [38/158] vs 23% [36/158]; P = .790). Rotavirus shedding after dose 1 was negatively correlated with the replication of co-administered oral poliovirus vaccine (OPV). We observed no consistent differences in composition or diversity of the 16S bacterial microbiota according to serological response, although rotavirus shedding was associated with slightly more bacterial taxa pre-vaccination. Overall, our findings demonstrate an inhibitory effect of co-administered OPV on the first dose of Rotarix, consistent with previous studies, but in the context of OPV co-administration we did not find a strong association between other components of the intestinal microbiota at the time of vaccination and Rotarix immunogenicity. Copyright © 2017 The Author(s). Published by

  11. Intestinal Microbiota Composition of Interleukin-10 Deficient C57BL/6J Mice and Susceptibility to Helicobacter hepaticus-Induced Colitis

    PubMed Central

    Yang, Ines; Eibach, Daniel; Kops, Friederike; Brenneke, Birgit; Woltemate, Sabrina; Schulze, Jessika; Bleich, André; Gruber, Achim D.; Muthupalani, Sureshkumar; Fox, James G.; Josenhans, Christine; Suerbaum, Sebastian

    2013-01-01

    The mouse pathobiont Helicobacter hepaticus can induce typhlocolitis in interleukin-10-deficient mice, and H. hepaticus infection of immunodeficient mice is widely used as a model to study the role of pathogens and commensal bacteria in the pathogenesis of inflammatory bowel disease. C57BL/6J Il10−/− mice kept under specific pathogen-free conditions in two different facilities (MHH and MIT), displayed strong differences with respect to their susceptibilities to H. hepaticus-induced intestinal pathology. Mice at MIT developed robust typhlocolitis after infection with H. hepaticus, while mice at MHH developed no significant pathology after infection with the same H. hepaticus strain. We hypothesized that the intestinal microbiota might be responsible for these differences and therefore performed high resolution analysis of the intestinal microbiota composition in uninfected mice from the two facilities by deep sequencing of partial 16S rRNA amplicons. The microbiota composition differed markedly between mice from both facilities. Significant differences were also detected between two groups of MHH mice born in different years. Of the 119 operational taxonomic units (OTUs) that occurred in at least half the cecum or colon samples of at least one mouse group, 24 were only found in MIT mice, and another 13 OTUs could only be found in MHH samples. While most of the MHH-specific OTUs could only be identified to class or family level, the MIT-specific set contained OTUs identified to genus or species level, including the opportunistic pathogen, Bilophila wadsworthia. The susceptibility to H. hepaticus-induced colitis differed considerably between Il10−/− mice originating from the two institutions. This was associated with significant differences in microbiota composition, highlighting the importance of characterizing the intestinal microbiome when studying murine models of IBD. PMID:23951007

  12. Exposure to a Social Stressor Alters the Structure of the Intestinal Microbiota: Implications for Stressor-Induced Immunomodulation

    PubMed Central

    Bailey, Michael T.; Dowd, Scot E.; Galley, Jeffrey D.; Hufnagle, Amy R.; Allen, Rebecca G.; Lyte, Mark

    2010-01-01

    The bodies of most animals are populated by highly complex and genetically diverse communities of microorganisms. The majority of these microbes reside within the intestines in largely stable but dynamically interactive climax communities that positively interact with their host. Studies from this laboratory have shown that stressor exposure impacts the stability of the microbiota and leads to bacterial translocation. The biological importance of these alterations, however, is not well understood. To determine whether the microbiome contributes to stressor-induced immunoenhancement, mice were exposed to a social stressor called social disruption (SDR), that increases circulating cytokines and primes the innate immune system for enhanced reactivity. Bacterial populations in the cecum were characterized using bacterial tag-encoded FLX amplicon pyrosequencing. Stressor exposure significantly changed the community structure of the microbiota, particularly when the microbiota were assessed immediately after stressor exposure. Most notably, stressor exposure decreased the relative abundance of bacteria in the genus Bacteroides, while increasing the relative abundance of bacteria in the genus Clostridium. The stressor also increased circulating levels of IL-6 and MCP-1, which were significantly correlated with stressor-induced changes to three bacterial genera (i.e., Coprococcus, Pseudobutyrivibrio, and Dorea). In follow up experiments, mice were treated with an antibiotic cocktail to determine whether reducing the microbiota would abrogate the stressor-induced increases in circulating cytokines. Exposure to SDR failed to increase IL-6 and MCP-1 in the antibiotic treated mice. These data show that exposure to SDR significantly affects bacterial populations in the intestines, and remarkably also suggest that the microbiota are necessary for stressor-induced increases in circulating cytokines. PMID:21040780

  13. Bloom and bust: intestinal microbiota dynamics in response to hospital exposures and Clostridium difficile colonization or infection.

    PubMed

    Vincent, Caroline; Miller, Mark A; Edens, Thaddeus J; Mehrotra, Sudeep; Dewar, Ken; Manges, Amee R

    2016-03-14

    Clostridium difficile infection (CDI) is the leading infectious cause of nosocomial diarrhea. Hospitalized patients are at increased risk of developing CDI because they are exposed to C. difficile spores through contact with the hospital environment and often receive antibiotics and other medications that can disrupt the integrity of the indigenous intestinal microbiota and impair colonization resistance. Using whole metagenome shotgun sequencing, we examined the diversity and composition of the fecal microbiota in a prospective cohort study of 98 hospitalized patients. Four patients had asymptomatic C. difficile colonization, and four patients developed CDI. We observed dramatic shifts in the structure of the gut microbiota during hospitalization. In contrast to CDI cases, asymptomatic patients exhibited elevated relative abundance of potentially protective bacterial taxa in their gut at the onset of C. difficile colonization. Use of laxatives was associated with significant reductions in the relative abundance of Clostridium and Eubacterium; species within these genera have previously been shown to enhance resistance to CDI via the production of secondary bile acids. Cephalosporin and fluoroquinolone exposure decreased the frequency of Clostridiales Family XI Incertae Sedis, a bacterial family that has been previously associated with decreased CDI risk. This study underscores the detrimental impact of antibiotics as well as other medications, particularly laxatives, on the intestinal microbiota and suggests that co-colonization with key bacterial taxa may prevent C. difficile overgrowth or the transition from asymptomatic C. difficile colonization to CDI.

  14. Effect of high-fat diet and growth stage on the diversity and composition of intestinal microbiota in healthy bovine livestock.

    PubMed

    Jiao, Shengyin; Cao, Hui; Dai, Yue; Wu, Junhui; Lv, Jia; Du, Renjia; Han, Bei

    2017-11-01

    This study aimed to investigate the composition of bacteria in the bovine rectum and their functions during growth, in relation to different diets. Fecal samples were collected from 6-, 12-, 18- and 24-month cattle fed high-fat diet, and healthy female parents fed regular diet. Total DNA was amplified (V3-V4 of 16S rRNA) and submitted to barcode-DNA pyrosequencing. Intestinal microbiota profiles and functions were then analyzed. A total of 114 512 operational taxonomic units were detected from the 1 802 243 sequences obtained. In 6-month-old and female parent groups, the top three abundant phyla were Bacteroidetes (37.6%, 32.2%), Firmicutes (34.4%, 48.2%) and Proteobacteria (9.1%, 6.3%); in the 12-, 18- and 24-month groups, they were Proteobacteria (45.5%, 47.1%, 38.8%), Firmicutes (27.4%, 22.2%, 20.1%) and Bacteroidetes (14.9%, 19.4%, 17.7%), respectively. Paludibacter and Desulfopila in abundance showed negative (P < 0.001) and positive (P < 0.05) correlation, respectively, to cattle weight gain through metagenomic functional prediction of methane, cysteine and methionine metabolism. Meanwhile, cofactor/vitamin and amino acid metabolic processes were significantly higher in bacteria from the regular diet group than high-fat diet groups, with markedly lower cellular processes and signaling, and reduced glycan biosynthesis and metabolism (P < 0.01). The 6-month cattle and female parents shared similar intestinal bacteria; the community structure of fecal microbiota was significantly affected by high-fat diet in older cattle. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  15. Gut microbiota-related complications in cirrhosis

    PubMed Central

    Gómez-Hurtado, Isabel; Such, José; Sanz, Yolanda; Francés, Rubén

    2014-01-01

    Gut microbiota plays an important role in cirrhosis. The liver is constantly challenged with commensal bacteria and their products arriving through the portal vein in the so-called gut-liver axis. Bacterial translocation from the intestinal lumen through the intestinal wall and to mesenteric lymph nodes is facilitated by intestinal bacterial overgrowth, impairment in the permeability of the intestinal mucosal barrier, and deficiencies in local host immune defences. Deranged clearance of endogenous bacteria from portal and systemic circulation turns the gut into the major source of bacterial-related complications. Liver function may therefore be affected by alterations in the composition of the intestinal microbiota and a role for commensal flora has been evidenced in the pathogenesis of several complications arising in end-stage liver disease such as hepatic encephalopathy, splanchnic arterial vasodilatation and spontaneous bacterial peritonitis. The use of antibiotics is the main therapeutic pipeline in the management of these bacteria-related complications. However, other strategies aimed at preserving intestinal homeostasis through the use of pre-, pro- or symbiotic formulations are being studied in the last years. In this review, the role of intestinal microbiota in the development of the most frequent complications arising in cirrhosis and the different clinical and experimental studies conducted to prevent or improve these complications by modifying the gut microbiota composition are summarized. PMID:25400446

  16. Gut microbiota role in irritable bowel syndrome: New therapeutic strategies

    PubMed Central

    Distrutti, Eleonora; Monaldi, Lorenzo; Ricci, Patrizia; Fiorucci, Stefano

    2016-01-01

    In the last decade the impressive expansion of our knowledge of the vast microbial community that resides in the human intestine, the gut microbiota, has provided support to the concept that a disturbed intestinal ecology might promote development and maintenance of symptoms in irritable bowel syndrome (IBS). As a correlate, manipulation of gut microbiota represents a new strategy for the treatment of this multifactorial disease. A number of attempts have been made to modulate the gut bacterial composition, following the idea that expansion of bacterial species considered as beneficial (Lactobacilli and Bifidobacteria) associated with the reduction of those considered harmful (Clostridium, Escherichia coli, Salmonella, Shigella and Pseudomonas) should attenuate IBS symptoms. In this conceptual framework, probiotics appear an attractive option in terms of both efficacy and safety, while prebiotics, synbiotics and antibiotics still need confirmation. Fecal transplant is an old treatment translated from the cure of intestinal infective pathologies that has recently gained a new life as therapeutic option for those patients with a disturbed gut ecosystem, but data on IBS are scanty and randomized, placebo-controlled studies are required. PMID:26900286

  17. The Intestinal Microbiota of Tadpoles Differs from Those of Syntopic Aquatic Invertebrates.

    PubMed

    Lyra, Mariana L; Bletz, Molly C; Haddad, Célio F B; Vences, Miguel

    2017-11-20

    Bacterial communities associated to eukaryotes play important roles in the physiology, development, and health of their hosts. Here, we examine the intestinal microbiota in tadpoles and aquatic invertebrates (insects and gastropods) to better understand the degree of specialization in the tadpole microbiotas. Samples were collected at the same time in one pond, and the V4 region of the bacterial 16S rRNA gene was sequenced with Illumina amplicon sequencing. We found that bacterial richness and diversity were highest in two studied snail individuals, intermediate in tadpoles, and lowest in the four groups of aquatic insects. All groups had substantial numbers of exclusive bacterial operational taxonomic units (OTUs) in their guts, but also shared a high proportion of OTUs, probably corresponding to transient environmental bacteria. Significant differences were found for all pairwise comparisons of tadpoles and snails with the major groups of insects, but not among insect groups or between snails and tadpoles. The similarity between tadpoles and snails may be related to similar feeding mode as both snails and tadpoles scratch biofilms and algae from surfaces; however, this requires confirmation due to low sample sizes. Overall, the gut microbiota differences found among syntopic aquatic animals are likely shaped by both food preferences and host identity.

  18. Weight gain by gut microbiota manipulation in productive animals.

    PubMed

    Angelakis, Emmanouil

    2017-05-01

    Antibiotics, prebiotics and probiotics are widely used as growth promoters in agriculture. In the 1940s, use of Streptomyces aureofaciens probiotics resulted in weight gain in animals, which led to the discovery of chlortetracycline. Tetracyclines, macrolides, avoparcin and penicillins have been commonly used in livestock agriculture to promote growth through increased food intake, weight gain, and improved herd health. Prebiotic supplements including oligosaccharides, fructooligosaccharides, and galactosyl-lactose improve the growth performance of animals. Probiotics used in animal feed are mainly bacterial strains of Gram-positive bacteria and have been effectively used for weight gain in chickens, pigs, ruminants and in aquaculture. Antibiotics, prebiotics and probiotics all modify the gut microbiota and the effect of a probiotic species on the digestive flora is probably determined by bacteriocin production. Regulations governing the introduction of novel probiotics and prebiotics vary by geographical region and bias is very common in industry-funded studies. Probiotic and prebiotic foods have been consumed for centuries, either as natural components of food, or as fermented foods and it is possible to cause the same weight gain effects in humans as in animals. This review presents the use of growth promoters in food-producing animals to influence food intake and weight gain. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Intestinal crosstalk between microbiota and serotonin and its impact on gut motility.

    PubMed

    Ge, Xiaolong; Pan, Junhai; Liu, Yichang; Wang, Hongkan; Zhou, Wei; Wang, Xianfa

    2018-05-27

    The gastrointestinal tract harbours a diverse bacterial community that contributes to health and disease. A number of studies have demonstrated that the gut microbiota plays a critical role in the metabolism of serotonin. Microbial-derived metabolites, such as bile acids and short-chain fatty acids, are reported to affect the production of serotonin which, in turn, directly or indirectly regulates gut motility. Enterochromaffin cells are important specialized endocrine cells found in the intestine, which is the major location of serotonin biosynthesis. The relationship between microbiota and gut motility are studied depended on microbial-derived metabolites and serotonin. Both bile acids and short-chain fatty acids can modulate serotonin metabolism in hosts by affecting key intermediates of the serotonin pathway. Thus, gut motility may be regulated through microbial modifications of host serotonin biosynthesis, which continues to be evaluated as a target for functional gastrointestinal disorders. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  20. Cytotoxicity of Nanoparticles Contained in Food on Intestinal Cells and the Gut Microbiota

    PubMed Central

    Fröhlich, Esther E.; Fröhlich, Eleonore

    2016-01-01

    Toxicity of nanoparticles (NPs) upon oral exposure has been studied in animals using physiological changes, behavior, histology, and blood analysis for evaluation. The effects recorded include the combination of the action on cells of the exposed animal and the reaction of the microorganisms that populate the external and internal surfaces of the body. The importance of these microorganisms, collectively termed as microbiota, for the health of the host has been widely recognized. They may also influence toxicity of NPs but these effects are difficult to differentiate from toxicity on cells of the gastrointestinal tract. To estimate the likelihood of preferential damage of the microbiota by NPs the relative sensitivity of enterocytes and bacteria was compared. For this comparison NPs with antimicrobial action present in consumer products were chosen. The comparison of cytotoxicity with Escherichia coli as representative for intestinal bacteria and on gastrointestinal cells revealed that silver NPs damaged bacteria at lower concentrations than enterocytes, while the opposite was true for zinc oxide NPs. These results indicate that silver NPs may cause adverse effects by selectively affecting the gut microbiota. Fecal transplantation from NP-exposed animals to unexposed ones offers the possibility to verify this hypothesis. PMID:27058534

  1. Mother-to-Infant Transmission of Intestinal Bifidobacterial Strains Has an Impact on the Early Development of Vaginally Delivered Infant's Microbiota

    PubMed Central

    Makino, Hiroshi; Kushiro, Akira; Ishikawa, Eiji; Kubota, Hiroyuki; Gawad, Agata; Sakai, Takafumi; Oishi, Kenji; Martin, Rocio; Ben-Amor, Kaouther; Knol, Jan; Tanaka, Ryuichiro

    2013-01-01

    Objectives Bifidobacterium species are one of the major components of the infant's intestine microbiota. Colonization with bifidobacteria in early infancy is suggested to be important for health in later life. However, information remains limited regarding the source of these microbes. Here, we investigated whether specific strains of bifidobacteria in the maternal intestinal flora are transmitted to their infant's intestine. Materials and Methods Fecal samples were collected from healthy 17 mother and infant pairs (Vaginal delivery: 12; Cesarean section delivery: 5). Mother's feces were collected twice before delivery. Infant's feces were collected at 0 (meconium), 3, 7, 30, 90 days after birth. Bifidobacteria isolated from feces were genotyped by multilocus sequencing typing, and the transitions of bifidobacteria counts in infant's feces were analyzed by quantitative real-time PCR. Results Stains belonging to Bifidobacterium adolescentis, Bifidobacterium bifidum, Bifidobacterium catenulatum, Bifidobacterium longum subsp. longum, and Bifidobacterium pseudocatenulatum, were identified to be monophyletic between mother's and infant's intestine. Eleven out of 12 vaginal delivered infants carried at least one monophyletic strain. The bifidobacterial counts of the species to which the monophyletic strains belong, increased predominantly in the infant's intestine within 3 days after birth. Among infants delivered by C-section, monophyletic strains were not observed. Moreover, the bifidobacterial counts were significantly lower than the vaginal delivered infants until 7 days of age. Conclusions Among infants born vaginally, several Bifidobacterium strains transmit from the mother and colonize the infant's intestine shortly after birth. Our data suggest that the mother's intestine is an important source for the vaginal delivered infant's intestinal microbiota. PMID:24244304

  2. Circulating and Tissue-Resident CD4+ T Cells With Reactivity to Intestinal Microbiota Are Abundant in Healthy Individuals and Function Is Altered During Inflammation.

    PubMed

    Hegazy, Ahmed N; West, Nathaniel R; Stubbington, Michael J T; Wendt, Emily; Suijker, Kim I M; Datsi, Angeliki; This, Sebastien; Danne, Camille; Campion, Suzanne; Duncan, Sylvia H; Owens, Benjamin M J; Uhlig, Holm H; McMichael, Andrew; Bergthaler, Andreas; Teichmann, Sarah A; Keshav, Satish; Powrie, Fiona

    2017-11-01

    Interactions between commensal microbes and the immune system are tightly regulated and maintain intestinal homeostasis, but little is known about these interactions in humans. We investigated responses of human CD4 + T cells to the intestinal microbiota. We measured the abundance of T cells in circulation and intestinal tissues that respond to intestinal microbes and determined their clonal diversity. We also assessed their functional phenotypes and effects on intestinal resident cell populations, and studied alterations in microbe-reactive T cells in patients with chronic intestinal inflammation. We collected samples of peripheral blood mononuclear cells and intestinal tissues from healthy individuals (controls, n = 13-30) and patients with inflammatory bowel diseases (n = 119; 59 with ulcerative colitis and 60 with Crohn's disease). We used 2 independent assays (CD154 detection and carboxy-fluorescein succinimidyl ester dilution assays) and 9 intestinal bacterial species (Escherichia coli, Lactobacillus acidophilus, Bifidobacterium animalis subsp lactis, Faecalibacterium prausnitzii, Bacteroides vulgatus, Roseburia intestinalis, Ruminococcus obeum, Salmonella typhimurium, and Clostridium difficile) to quantify, expand, and characterize microbe-reactive CD4 + T cells. We sequenced T-cell receptor Vβ genes in expanded microbe-reactive T-cell lines to determine their clonal diversity. We examined the effects of microbe-reactive CD4 + T cells on intestinal stromal and epithelial cell lines. Cytokines, chemokines, and gene expression patterns were measured by flow cytometry and quantitative polymerase chain reaction. Circulating and gut-resident CD4 + T cells from controls responded to bacteria at frequencies of 40-4000 per million for each bacterial species tested. Microbiota-reactive CD4 + T cells were mainly of a memory phenotype, present in peripheral blood mononuclear cells and intestinal tissue, and had a diverse T-cell receptor Vβ repertoire. These

  3. Novel players in coeliac disease pathogenesis: role of the gut microbiota

    PubMed Central

    Verdu, Elena F.; Galipeau, Heather J.; Jabri, Bana

    2016-01-01

    Several studies point towards alteration in gut microbiota composition and function in coeliac disease, some of which can precede the onset of disease and/or persist when patients are on a gluten-free diet. Evidence also exists that the gut microbiota might promote or reduce coeliac-disease-associated immunopathology. However, additional studies are required in humans and in mice (using gnotobiotic technology) to determine cause–effect relationships and to identify agents for modulating the gut microbiota as a therapeutic or preventative approach for coeliac disease. In this Review, we summarize the current evidence for altered gut microbiota composition in coeliac disease and discuss how the interplay between host genetics, environmental factors and the intestinal microbiota might contribute to its pathogenesis. Moreover, we highlight the importance of utilizing animal models and long-term clinical studies to gain insight into the mechanisms through which host–microbial interactions can influence host responses to gluten. PMID:26055247

  4. The role of diet on gut microbiota composition.

    PubMed

    Bibbò, S; Ianiro, G; Giorgio, V; Scaldaferri, F; Masucci, L; Gasbarrini, A; Cammarota, G

    2016-11-01

    Gut microbiota is characterized by an inter-individual variability due to genetic and environmental factors. Among the environmental ones, dietary habits play a key role in the modulation of gut microbiota composition. There are main differences between the intestinal microbiota of subjects fed with prevalent Western diet and that of subjects with a diet rich in fibers. Specific changes in the composition of gut microbiota have been demonstrated among subjects according to a different dietary intake. A particular diet may promote the growth of specific bacterial strains, driving hosts to a consequent alteration of fermentative metabolism, with a direct effect on intestinal pH, which can be responsible for the development of a pathogenic flora. Moreover, a high-fat diet can promote the development of a pro-inflammatory gut microbiota, with a consequent increase of intestinal permeability and, consequently, of circulating levels of lipopolysaccharides. In this review, we discuss the direct role of the diet in the composition of gut microbiota and about the possible clinical consequences.

  5. Enterohaemorrhagic Escherichia coli gains a competitive advantage by using ethanolamine as a nitrogen source in the bovine intestinal content.

    PubMed

    Bertin, Yolande; Girardeau, J P; Chaucheyras-Durand, F; Lyan, Bernard; Pujos-Guillot, Estelle; Harel, Josée; Martin, Christine

    2011-02-01

    The bovine gastrointestinal tract is the main reservoir for enterohaemorrhagic Escherichia coli (EHEC) responsible for food-borne infections. Characterization of nutrients that promote the carriage of these pathogens by the ruminant would help to develop ecological strategies to reduce their survival in the bovine gastrointestinal tract. In this study, we show for the first time that free ethanolamine (EA) constitutes a nitrogen source for the O157:H7 EHEC strain EDL933 in the bovine intestinal content because of induction of the eut (ethanolamine utilization) gene cluster. In contrast, the eut gene cluster is absent in the genome of most species constituting the mammalian gut microbiota. Furthermore, the eutB gene (encoding a subunit of the enzyme that catalyses the release of ammonia from EA) is poorly expressed in non-pathogenic E. coli. Accordingly, EA is consumed by EHEC but is poorly metabolized by endogenous microbiota of the bovine small intestine, including commensal E. coli. Interestingly, the capacity to utilize EA as a nitrogen source confers a growth advantage to E. coli O157:H7 when the bacteria enter the stationary growth phase. These data demonstrate that EHEC strains take advantage of a nitrogen source that is not consumed by the resident microbiota, and suggest that EA represents an ecological niche favouring EHEC persistence in the bovine intestine.

  6. Carbohydrates and the human gut microbiota.

    PubMed

    Chassard, Christophe; Lacroix, Christophe

    2013-07-01

    Due to its scale and its important role in maintaining health, the gut microbiota can be considered as a 'new organ' inside the human body. Many complex carbohydrates are degraded and fermented by the human gut microbiota in the large intestine to both yield basic energy salvage and impact gut health through produced metabolites. This review will focus on the gut microbes and microbial mechanisms responsible for polysaccharides degradation and fermentation in the large intestine. Gut microbes and bacterial metabolites impact the host at many levels, including modulation of inflammation, and glucose and lipid metabolisms. A complex relationship occurs in the intestine between the human gut microbiota, diet and the host. Research on carbohydrates and gut microbiota composition and functionality is fast developing and will open opportunities for prevention and treatment of obesity, diabetes and other related metabolic disorders through manipulation of the gut ecosystem.

  7. Gastrointestinal Simulation Model TWIN-SHIME Shows Differences between Human Urolithin-Metabotypes in Gut Microbiota Composition, Pomegranate Polyphenol Metabolism, and Transport along the Intestinal Tract.

    PubMed

    García-Villalba, Rocío; Vissenaekens, Hanne; Pitart, Judit; Romo-Vaquero, María; Espín, Juan C; Grootaert, Charlotte; Selma, María V; Raes, Katleen; Smagghe, Guy; Possemiers, Sam; Van Camp, John; Tomas-Barberan, Francisco A

    2017-07-12

    A TWIN-SHIME system was used to compare the metabolism of pomegranate polyphenols by the gut microbiota from two individuals with different urolithin metabotypes. Gut microbiota, ellagitannin metabolism, short-chain fatty acids (SCFA), transport of metabolites, and phase II metabolism using Caco-2 cells were explored. The simulation reproduced the in vivo metabolic profiles for each metabotype. The study shows for the first time that microbial composition, metabolism of ellagitannins, and SCFA differ between metabotypes and along the large intestine. The assay also showed that pomegranate phenolics preserved intestinal cell integrity. Pomegranate polyphenols enhanced urolithin and propionate production, as well as Akkermansia and Gordonibacter prevalence with the highest effect in the descending colon. The system provides an insight into the mechanisms of pomegranate polyphenol gut microbiota metabolism and absorption through intestinal cells. The results obtained by the combined SHIME/Caco-2 cell system are consistent with previous human and animal studies and show that although urolithin metabolites are present along the gastrointestinal tract due to enterohepatic circulation, they are predominantly produced in the distal colon region.

  8. The relation between Blastocystis and the intestinal microbiota in Swedish travellers.

    PubMed

    Forsell, Joakim; Bengtsson-Palme, Johan; Angelin, Martin; Johansson, Anders; Evengård, Birgitta; Granlund, Margareta

    2017-12-11

    Blastocystis sp. is a unicellular eukaryote that is commonly found in the human intestine. Its ability to cause disease is debated and a subject for ongoing research. In this study, faecal samples from 35 Swedish university students were examined through shotgun metagenomics before and after travel to the Indian peninsula or Central Africa. We aimed at assessing the impact of travel on Blastocystis carriage and seek associations between Blastocystis and the bacterial microbiota. We found a prevalence of Blastocystis of 16/35 (46%) before travel and 15/35 (43%) after travel. The two most commonly Blastocystis subtypes (STs) found were ST3 and ST4, accounting for 20 of the 31 samples positive for Blastocystis. No mixed subtype carriage was detected. All ten individuals with a typable ST before and after travel maintained their initial ST. The composition of the gut bacterial community was not significantly different between Blastocystis-carriers and non-carriers. Interestingly, the presence of Blastocystis was accompanied with higher abundances of the bacterial genera Sporolactobacillus and Candidatus Carsonella. Blastocystis carriage was positively associated with high bacterial genus richness, and negatively correlated to the Bacteroides-driven enterotype. These associations were both largely dependent on ST4 - a subtype commonly described from Europe - while the globally prevalent ST3 did not show such significant relationships. The high rate of Blastocystis subtype persistence found during travel indicates that long-term carriage of Blastocystis is common. The associations between Blastocystis and the bacterial microbiota found in this study could imply a link between Blastocystis and a healthy microbiota as well as with diets high in vegetables. Whether the associations between Blastocystis and the microbiota are resulting from the presence of Blastocystis, or are a prerequisite for colonization with Blastocystis, are interesting questions for further studies.

  9. Microbiota Dysbiosis Controls the Neuroinflammatory Response after Stroke.

    PubMed

    Singh, Vikramjeet; Roth, Stefan; Llovera, Gemma; Sadler, Rebecca; Garzetti, Debora; Stecher, Bärbel; Dichgans, Martin; Liesz, Arthur

    2016-07-13

    Acute brain ischemia induces a local neuroinflammatory reaction and alters peripheral immune homeostasis at the same time. Recent evidence has suggested a key role of the gut microbiota in autoimmune diseases by modulating immune homeostasis. Therefore, we investigated the mechanistic link among acute brain ischemia, microbiota alterations, and the immune response after brain injury. Using two distinct models of acute middle cerebral artery occlusion, we show by next-generation sequencing that large stroke lesions cause gut microbiota dysbiosis, which in turn affects stroke outcome via immune-mediated mechanisms. Reduced species diversity and bacterial overgrowth of bacteroidetes were identified as hallmarks of poststroke dysbiosis, which was associated with intestinal barrier dysfunction and reduced intestinal motility as determined by in vivo intestinal bolus tracking. Recolonizing germ-free mice with dysbiotic poststroke microbiota exacerbates lesion volume and functional deficits after experimental stroke compared with the recolonization with a normal control microbiota. In addition, recolonization of mice with a dysbiotic microbiome induces a proinflammatory T-cell polarization in the intestinal immune compartment and in the ischemic brain. Using in vivo cell-tracking studies, we demonstrate the migration of intestinal lymphocytes to the ischemic brain. Therapeutic transplantation of fecal microbiota normalizes brain lesion-induced dysbiosis and improves stroke outcome. These results support a novel mechanism in which the gut microbiome is a target of stroke-induced systemic alterations and an effector with substantial impact on stroke outcome. We have identified a bidirectional communication along the brain-gut microbiota-immune axis and show that the gut microbiota is a central regulator of immune homeostasis. Acute brain lesions induced dysbiosis of the microbiome and, in turn, changes in the gut microbiota affected neuroinflammatory and functional outcome

  10. Weight gain after fecal microbiota transplantation.

    PubMed

    Alang, Neha; Kelly, Colleen R

    2015-01-01

    Fecal microbiota transplantation (FMT) is a promising treatment for recurrent Clostridium difficile infection. We report a case of a woman successfully treated with FMT who developed new-onset obesity after receiving stool from a healthy but overweight donor. This case may stimulate further studies on the mechanisms of the nutritional-neural-microbiota axis and reports of outcomes in patients who have used nonideal donors for FMT.

  11. Edible Safety Assessment of Genetically Modified Rice T1C-1 for Sprague Dawley Rats through Horizontal Gene Transfer, Allergenicity and Intestinal Microbiota.

    PubMed

    Zhao, Kai; Ren, Fangfang; Han, Fangting; Liu, Qiwen; Wu, Guogan; Xu, Yan; Zhang, Jian; Wu, Xiao; Wang, Jinbin; Li, Peng; Shi, Wei; Zhu, Hong; Lv, Jianjun; Zhao, Xiao; Tang, Xueming

    2016-01-01

    In this study, assessment of the safety of transgenic rice T1C-1 expressing Cry1C was carried out by: (1) studying horizontal gene transfer (HGT) in Sprague Dawley rats fed transgenic rice for 90 d; (2) examining the effect of Cry1C protein in vitro on digestibility and allergenicity; and (3) studying the changes of intestinal microbiota in rats fed with transgenic rice T1C-1 in acute and subchronic toxicity tests. Sprague Dawley rats were fed a diet containing either 60% GM Bacillus thuringiensis (Bt) rice T1C-1 expressing Cry1C protein, the parental rice Minghui 63, or a basic diet for 90 d. The GM Bt rice T1C-1 showed no evidence of HGT between rats and transgenic rice. Sequence searching of the Cry1C protein showed no homology with known allergens or toxins. Cry1C protein was rapidly degraded in vitro with simulated gastric and intestinal fluids. The expressed Cry1C protein did not induce high levels of specific IgG and IgE antibodies in rats. The intestinal microbiota of rats fed T1C-1 was also analyzed in acute and subchronic toxicity tests by DGGE. Cluster analysis of DGGE profiles revealed significant individual differences in the rats' intestinal microbiota.

  12. Differential intestinal anti-inflammatory effects of Lactobacillus fermentum and Lactobacillus salivarius in DSS mouse colitis: impact on microRNAs expression and microbiota composition.

    PubMed

    Rodríguez-Nogales, Alba; Algieri, Francesca; Garrido-Mesa, Jose; Vezza, Teresa; Utrilla, M Pilar; Chueca, Natalia; Garcia, Federico; Olivares, Mónica; Rodríguez-Cabezas, M Elena; Gálvez, Julio

    2017-11-01

    To compare the intestinal anti-inflammatory effects of two probiotics Lactobacillus fermentum and Lactobacillus salivarius in mouse colitis, focusing on their impact on selected miRNAs and microbiota composition. Male C57BL/6J mice were randomly assigned to four groups (n = 10): non-colitic, DSS colitic and two colitic groups treated with probiotics (5 × 10 8 CFU/mouse/day). Both probiotics ameliorated macroscopic colonic damage. They improved the colonic expression of markers involved in the immune response, and the expression of miR-155 and miR-223. L. fermentum also restored miR-150 and miR-143 expression, also linked to the preservation of the intestinal barrier function. Besides, these beneficial effects were associated with the amelioration of the microbiota dysbiosis and a recovery of the SCFAs- and lactic acid-producing bacterial populations, although only L. fermentum improved Chao richness, Pielou evenness and Shannon diversity. Moreover, L. fermentum also restored the Treg cell population in MLNs and the Th1/Th2 cytokine balance. Both probiotics exerted intestinal anti-inflammatory effects in DSS-mouse colitis, maybe due to their ability to restore the intestinal microbiota homeostasis and modulate the immune response. L. fermentum showed a greater beneficial effect compared to L. salivarius, which makes it more interesting for future studies. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Gut Microbiota Richness and Composition and Dietary Intake of Overweight Pregnant Women Are Related to Serum Zonulin Concentration, a Marker for Intestinal Permeability.

    PubMed

    Mokkala, Kati; Röytiö, Henna; Munukka, Eveliina; Pietilä, Sami; Ekblad, Ulla; Rönnemaa, Tapani; Eerola, Erkki; Laiho, Asta; Laitinen, Kirsi

    2016-09-01

    Increased intestinal permeability may precede adverse metabolic conditions. The extent to which the composition of the gut microbiota and diet contribute to intestinal permeability during pregnancy is unknown. The aim was to investigate whether the gut microbiota and diet differ according to serum zonulin concentration, a marker of intestinal permeability, in overweight pregnant women. This cross-sectional study included 100 overweight women [mean age: 29 y; median body mass index (in kg/m(2)): 30] in early pregnancy (<17 wk of gestation; median: 13 wk). Serum zonulin (primary outcome) was determined by using ELISA, gut microbiota by 16S ribosomal RNA sequencing, and dietary intake of macro- and micronutrients from 3-d food diaries. The Mann-Whitney U test was used for pairwise comparisons and linear regression and Spearman's nonparametric correlations for relations between serum zonulin and other outcome variables. Women were divided into "low" (<46.4 ng/mL) and "high" (≥46.4 ng/mL) serum zonulin groups on the basis of the median concentration of zonulin (46.4 ng/mL). The richness of the gut microbiota (Chao 1, observed species and phylogenetic diversity) was higher in the low zonulin group than in the high zonulin group (P = 0.01). The abundances of Bacteroidaceae and Veillonellaceae, Bacteroides and Blautia, and Blautia sp. were lower and of Faecalibacterium and Faecalibacterium prausnitzii higher (P < 0.05) in the low zonulin group than in the high zonulin group. Dietary quantitative intakes of n-3 (ω-3) polyunsaturated fatty acids (PUFAs), fiber, and a range of vitamins and minerals were higher (P < 0.05) in women in the low zonulin group than those in the high zonulin group. The richness and composition of the gut microbiota and the intake of n-3 PUFAs, fiber, and a range of vitamins and minerals in overweight pregnant women are associated with serum zonulin concentration. Modification of the gut microbiota and diet may beneficially affect intestinal

  14. Childhood BMI in relation to microbiota in infancy and lifetime antibiotic use.

    PubMed

    Korpela, K; Zijlmans, M A C; Kuitunen, M; Kukkonen, K; Savilahti, E; Salonen, A; de Weerth, C; de Vos, W M

    2017-03-03

    Children with high body mass index (BMI) at preschool age are at risk of developing obesity. Early identification of factors that increase the risk of excessive weight gain could help direct preventive actions. The intestinal microbiota and antibiotic use have been identified as potential modulators of early metabolic programming and weight development. To test if the early microbiota composition is associated with later BMI, and if antibiotic use modifies this association, we analysed the faecal microbiota composition at 3 months and the BMI at 5-6 years in two cohorts of healthy children born vaginally at term in the Netherlands (N = 87) and Finland (N = 75). We obtained lifetime antibiotic use records and measured weight and height of all children. The relative abundance of streptococci was positively and the relative abundance of bifidobacteria negatively associated with the BMI outcome. The association was especially strong among children with a history of antibiotic use. Bacteroides relative abundance was associated with BMI only in the children with minimal lifetime antibiotic exposure. The intestinal microbiota of infants are predictive of later BMI and may serve as an early indicator of obesity risk. Bifidobacteria and streptococci, which are indicators of microbiota maturation in infants, are likely candidates for metabolic programming of infants, and their influence on BMI appears to depend on later antibiotic use.

  15. Tracing of the fecal microbiota of commercial pigs at five growth stages from birth to shipment.

    PubMed

    Han, Geon Goo; Lee, Jun-Yeong; Jin, Gwi-Deuk; Park, Jongbin; Choi, Yo Han; Kang, Sang-Kee; Chae, Byung Jo; Kim, Eun Bae; Choi, Yun-Jaie

    2018-04-16

    The intestinal microbiota affect various physiological traits of host animals such as brain development, obesity, age, and the immune system. In the swine industry, understanding the relationship between intestinal microbiota and growth stage is essential because growth stage is directly related to the feeding system of pigs, thus we studied the intestinal microbiota of 32 healthy pigs across five sows at 10, 21, 63, 93, and 147 d of ages. The intestinal microbiota were altered with growth of pigs and were separated into three distinct clusters. The relative abundance of several phyla and genera were significantly different between growth stages. We observed co-occurrence pattern of the intestinal microbiota at each growth stage. In addition, we predicted the functions of the intestinal microbiota and confirmed that several KEGG pathways were significantly different between growth stages. We also explored the relationship between the intestinal microbiota and innate factors such as the maternal effect and gender. When pigs were young, innate factors affected on construction of intestinal microbiota, however this tendency was disappeared with growth. Our findings broaden the understanding of microbial ecology, and the results will be used as a reference for investigating host-microbe interactions in the swine industry.

  16. Dihydrodaidzein-producing Clostridium-like intestinal bacterium, strain TM-40, affects in vitro metabolism of daidzein by fecal microbiota of human male equol producer and non-producers.

    PubMed

    Tamura, Motoi; Hori, Sachiko; Nakagawa, Hiroyuki

    2011-01-01

    Much attention has been focused on the biological effects of equol, a metabolite of daidzein produced by intestinal microbiota. However, little is known about the role of isoflavone metabolizing bacteria in the intestinal microbiota. Recently, we isolated a dihydrodaidzein (DHD)-producing Clostridium-like bacterium, strain TM-40, from human feces. We investigated the effects of strain TM-40 on in vitro daidzein metabolism by human fecal microbiota from a male equol producer and two male equol non-producers. In the fecal suspension from the male equol non-producer and DHD producer, DHD was detected in the in vitro fecal incubation of daidzein after addition of TM-40. The DHD concentration increased as the concentration of strain TM-40 increased. In the fecal suspension from the equol producer, the fecal equol production was increased by the addition of strain TM-40. The occupation ratios of Bifidobacterium and Lactobacillales were higher in the equol non-producers than in the equol producer. Adding isoflavone-metabolizing bacteria to the fecal microbiota should facilitate the estimation of the metabolism of isoflavonoids by fecal microbiota. Studies on the interactions among equol-producing microbiota and DHD-producing bacteria might lead to clarification of some of the mechanisms regulating the production of equol by fecal microbiota.

  17. Dihydrodaidzein-producing Clostridium-like intestinal bacterium, strain TM-40, affects in vitro metabolism of daidzein by fecal microbiota of human male equol producer and non-producers

    PubMed Central

    TAMURA, Motoi; HORI, Sachiko; NAKAGAWA, Hiroyuki

    2011-01-01

    Much attention has been focused on the biological effects of equol, a metabolite of daidzein produced by intestinal microbiota. However, little is known about the role of isoflavone metabolizing bacteria in the intestinal microbiota. Recently, we isolated a dihydrodaidzein (DHD)-producing Clostridium-like bacterium, strain TM-40, from human feces. We investigated the effects of strain TM-40 on in vitro daidzein metabolism by human fecal microbiota from a male equol producer and two male equol non-producers. In the fecal suspension from the male equol non-producer and DHD producer, DHD was detected in the in vitro fecal incubation of daidzein after addition of TM-40. The DHD concentration increased as the concentration of strain TM-40 increased. In the fecal suspension from the equol producer, the fecal equol production was increased by the addition of strain TM-40. The occupation ratios of Bifidobacterium and Lactobacillales were higher in the equol non-producers than in the equol producer. Adding isoflavone-metabolizing bacteria to the fecal microbiota should facilitate the estimation of the metabolism of isoflavonoids by fecal microbiota. Studies on the interactions among equol-producing microbiota and DHD-producing bacteria might lead to clarification of some of the mechanisms regulating the production of equol by fecal microbiota. PMID:25045313

  18. Faecal microbiota transplant - prospects and safety.

    PubMed

    Bartnicka, Anna; Szachta, Patrycja; Gałecka, Mirosława

    2015-01-01

    The intestinal microbiota, either directly or indirectly, plays an important role in maintaining the homeostasis of the body. The intestine microorganisms are significant due to the role they play in stimulating the development of the immune system, protecting against pathogens, and also managing metabolic and nutrient processing. The effectiveness of probiotics and prebiotics in various gastrointestinal diseases has been repeatedly confirmed. However, increasing interest in faecal transplantation has also been observed. Its efficacy in the treatment of pseudomembranous colitis has been repeatedly demonstrated. More often this method is discussed regarding the possibility of using it in other diseases linked with dysbiosis. Faecal microbiota transplantation, because of its rapid efficacy, minimal risk and adverse effects, relatively low cost, and the ability to re-establish the correct intestinal microbiota profile, could be an alternative treatment method in several other diseases. This paper will introduce the latest therapeutic aspects of microbiota transplantation, including its implications in the treatment of gastrointestinal diseases.

  19. Weight Gain After Fecal Microbiota Transplantation

    PubMed Central

    Alang, Neha; Kelly, Colleen R.

    2015-01-01

    Fecal microbiota transplantation (FMT) is a promising treatment for recurrent Clostridium difficile infection. We report a case of a woman successfully treated with FMT who developed new-onset obesity after receiving stool from a healthy but overweight donor. This case may stimulate further studies on the mechanisms of the nutritional-neural-microbiota axis and reports of outcomes in patients who have used nonideal donors for FMT. PMID:26034755

  20. Intestinal microbiota and innate immunity-related gene alteration in cirrhotic rats with liver transplantation.

    PubMed

    Xie, Y R; Liu, S L; Liu, X; Luo, Z B; Zhu, B; Li, Z F; Li, L J; He, Y; Jiang, L; Li, H; Ruan, B

    2011-12-01

    The present study investigated the alteration of intestinal microbiota, innate immunity-related genes, and bacterial translocation in rats with cirrhosis and liver transplantation. Specific pathogen-free Sprague-Dawley rats were randomized into 4 groups: (1) normal controls (N); (2) liver cirrhosis (LC); (3) normal control groups with liver transplantation (LTN); and (4) liver cirrhosis with liver transplantation (LTC). We examined plasma endotoxin, bacterial tacslocation, denaturing gradient gel electrophoresis (DGGE) profile of intestinal mucosa-associated bacteria, abundance of key bacterial populations, and expression of innate immunity-related gene. The LTC and LC group, showed higher endotoxin levels (1.08±0.73 EU/mL and 0.74±0.70 EU/mL, respectively) than the N group (0.27±0.13 EU/mL; P<.05). the incidence of bacterial translocation (BT) to liver and mesenteric lymph nodes (MLN), and the number of total bacteria were increased significantly in the LTC and LC groups compared with the N group (P<.05). The counts of Lactobacilli and Bacteroides were lower, whereas Enterobacteria were higher in the LC than the N group (P<.05). Mucins (MUC2, MUC3) and Toll-like receptors (TLR2, TLR4) messenger RNA (mRNA) expression were significantly higher in the LC and LTC groups than the N group (P<.05). The marked difference between the groups in the overall structure of the bacterial community was also generated by DGGE profiles. Liver cirrhosis disturbs intestinal microbiota and innate immunity-related genes, which contributes to endotoxemia and bacterial translocation. These had not completely recovered in cirrhotic rats until 1 month after orthotopic liver transplantation. Copyright © 2011 Elsevier Inc. All rights reserved.

  1. Nutrition, oxidative stress and intestinal dysbiosis: Influence of diet on gut microbiota in inflammatory bowel diseases.

    PubMed

    Tomasello, Giovanni; Mazzola, Margherita; Leone, Angelo; Sinagra, Emanuele; Zummo, Giovanni; Farina, Felicia; Damiani, Provvidenza; Cappello, Francesco; Gerges Geagea, Alice; Jurjus, Abdo; Bou Assi, Tarek; Messina, Massimiliano; Carini, Francesco

    2016-12-01

    Microbiota refers to the population of microorganisms (bacteria, viruses and fungi) that inhabit the entire gastrointestinal tract, more particularly the colon whose role is to maintain the integrity of the intestinal mucosa and control the proliferation of pathogenic bacteria. Alteration in the composition of the gut microbiota is called dysbiosis. Dysbiosis redisposes to inflammatory bowel diseases such as ulcerative colitis, Crohn disease and indeterminate colitis. The purpose of this literature review is to elucidate the influence of diet on the composition of the gastrointestinal microbiota in the healthy gut and the role of diet in the development of dysbiosis. The "Western diet", in particular a low - fiber high fat/high carbohydrate diet is one factor that can lead to severe dysbiosis. In contrast, "mediterranean" and vegetarian diets that includes abundant fruits, vegetables, olive oil and oily fish are known for their anti-inflammatory effects and could prevent dysbiosis and subsequent inflammatory bowel disease.

  2. Cross-regulatory circuit between AHR and microbiota.

    PubMed

    Ji, Jian; Qu, Hao

    2018-01-29

    The gut microbes have a close symbiotic relationship with their host. Interactions between host and the microbiota affect the nutritional, immunological, and physiological status of the host. The aryl hydrocarbon receptor (AHR) is a ligand activated transcription factor that mediates the toxicity of xenobiotics. Recently, the relationship between the gut microbiota and AHR has attracted the attention of many researchers. The AHR influences the intestinal microbiota population and mediates host-microbe homeostasis. Interestingly, the gut microbiota also produces ligands of AHR from bacterial metabolism and thereby activates the AHR signaling pathway. This review presents current knowledge of the cross-regulatory circuit between the AHR and intestinal microbiota. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  3. Maternal omega-3 fatty acids regulate offspring obesity through persistent modulation of gut microbiota.

    PubMed

    Robertson, Ruairi C; Kaliannan, Kanakaraju; Strain, Conall R; Ross, R Paul; Stanton, Catherine; Kang, Jing X

    2018-05-24

    The early-life gut microbiota plays a critical role in host metabolism in later life. However, little is known about how the fatty acid profile of the maternal diet during gestation and lactation influences the development of the offspring gut microbiota and subsequent metabolic health outcomes. Here, using a unique transgenic model, we report that maternal endogenous n-3 polyunsaturated fatty acid (PUFA) production during gestation or lactation significantly reduces weight gain and markers of metabolic disruption in male murine offspring fed a high-fat diet. However, maternal fatty acid status appeared to have no significant effect on weight gain in female offspring. The metabolic phenotypes in male offspring appeared to be mediated by comprehensive restructuring of gut microbiota composition. Reduced maternal n-3 PUFA exposure led to significantly depleted Epsilonproteobacteria, Bacteroides, and Akkermansia and higher relative abundance of Clostridia. Interestingly, offspring metabolism and microbiota composition were more profoundly influenced by the maternal fatty acid profile during lactation than in utero. Furthermore, the maternal fatty acid profile appeared to have a long-lasting effect on offspring microbiota composition and function that persisted into adulthood after life-long high-fat diet feeding. Our data provide novel evidence that weight gain and metabolic dysfunction in adulthood is mediated by maternal fatty acid status through long-lasting restructuring of the gut microbiota. These results have important implications for understanding the interaction between modern Western diets, metabolic health, and the intestinal microbiome.

  4. Policing of gut microbiota by the adaptive immune system.

    PubMed

    Dollé, Laurent; Tran, Hao Q; Etienne-Mesmin, Lucie; Chassaing, Benoit

    2016-02-12

    The intestinal microbiota is a large and diverse microbial community that inhabits the intestine, containing about 100 trillion bacteria of 500-1000 distinct species that, collectively, provide benefits to the host. The human gut microbiota composition is determined by a myriad of factors, among them genetic and environmental, including diet and medication. The microbiota contributes to nutrient absorption and maturation of the immune system. As reciprocity, the host immune system plays a central role in shaping the composition and localization of the intestinal microbiota. Secretory immunoglobulins A (sIgAs), component of the adaptive immune system, are important player in the protection of epithelium, and are known to have an important impact on the regulation of microbiota composition. A recent study published in Immunity by Fransen and colleagues aimed to mechanistically decipher the interrelationship between sIgA and microbiota diversity/composition. This commentary will discuss these important new findings, as well as how future therapies can ultimately benefit from such discovery.

  5. Impact of Enterobius vermicularis infection and mebendazole treatment on intestinal microbiota and host immune response.

    PubMed

    Yang, Chin-An; Liang, Chao; Lin, Chia-Li; Hsiao, Chiung-Tzu; Peng, Ching-Tien; Lin, Hung-Chih; Chang, Jan-Gowth

    2017-09-01

    Previous studies on the association of enterobiasis and chronic inflammatory diseases have revealed contradictory results. The interaction of Enterobius vermicularis infection in particular with gut microbiota and induced immune responses has never been thoroughly examined. In order to answer the question of whether exposure to pinworm and mebendazole can shift the intestinal microbial composition and immune responses, we recruited 109 (30 pinworm-negative, 79 pinworm-infected) first and fourth grade primary school children in Taichung, Taiwan, for a gut microbiome study and an intestinal cytokine and SIgA analysis. In the pinworm-infected individuals, fecal samples were collected again at 2 weeks after administration of 100 mg mebendazole. Gut microbiota diversity increased after Enterobius infection, and it peaked after administration of mebendazole. At the phylum level, pinworm infection and mebendazole deworming were associated with a decreased relative abundance of Fusobacteria and an increased proportion of Actinobacteria. At the genus level, the relative abundance of the probiotic Bifidobacterium increased after enterobiasis and mebendazole treatment. The intestinal SIgA level was found to be lower in the pinworm-infected group, and was elevated in half of the mebendazole-treated group. A higher proportion of pre-treatment Salmonella spp. was associated with a non-increase in SIgA after mebendazole deworming treatment. Childhood exposure to pinworm plus mebendazole is associated with increased bacterial diversity, an increased abundance of Actinobacteria including the probiotic Bifidobacterium, and a decreased proportion of Fusobacteria. The gut SIgA level was lower in the pinworm-infected group, and was increased in half of the individuals after mebendazole deworming treatment.

  6. Dysbiosis of the gut microbiota in disease

    PubMed Central

    Carding, Simon; Verbeke, Kristin; Vipond, Daniel T.; Corfe, Bernard M.; Owen, Lauren J.

    2015-01-01

    There is growing evidence that dysbiosis of the gut microbiota is associated with the pathogenesis of both intestinal and extra-intestinal disorders. Intestinal disorders include inflammatory bowel disease, irritable bowel syndrome (IBS), and coeliac disease, while extra-intestinal disorders include allergy, asthma, metabolic syndrome, cardiovascular disease, and obesity. In many of these conditions, the mechanisms leading to disease development involves the pivotal mutualistic relationship between the colonic microbiota, their metabolic products, and the host immune system. The establishment of a ‘healthy’ relationship early in life appears to be critical to maintaining intestinal homeostasis. Whilst we do not yet have a clear understanding of what constitutes a ‘healthy’ colonic microbiota, a picture is emerging from many recent studies identifying particular bacterial species associated with a healthy microbiota. In particular, the bacterial species residing within the mucus layer of the colon, either through direct contact with host cells, or through indirect communication via bacterial metabolites, may influence whether host cellular homeostasis is maintained or whether inflammatory mechanisms are triggered. In addition to inflammation, there is some evidence that perturbations in the gut microbiota is involved with the development of colorectal cancer. In this case, dysbiosis may not be the most important factor, rather the products of interaction between diet and the microbiome. High-protein diets are thought to result in the production of carcinogenic metabolites from the colonic microbiota that may result in the induction of neoplasia in the colonic epithelium. Ever more sensitive metabolomics methodologies reveal a suite of small molecules produced in the microbiome which mimic or act as neurosignallers or neurotransmitters. Coupled with evidence that probiotic interventions may alter psychological endpoints in both humans and in rodent models

  7. Role of Microbiota in Sexually Dimorphic Immunity.

    PubMed

    Elderman, Marlies; de Vos, Paul; Faas, Marijke

    2018-01-01

    Sex differences in peripheral immune responses are well recognized. This is associated with sex differences in many immunological diseases. As the intestinal microbiota is known to influence the immune system, such sex differences in immune responses may be a consequence of sex-specific microbiota. Therefore, this mini-review discusses sex differences in intestinal microbiota and the possible role of microbiota in shaping sexually dimorphic immunity. Sex differences in microbiota composition are clearly found in mice studies and also in human studies. However, the lack of standardization in human studies may mask the sexual dimorphism in microbiota composition in human studies, since many factors such as age, genetic background, BMI, diet, and sex hormones appear to interfere with the sexual dimorphism in microbiota composition. Only a few mice studies found that differences in gut microbiota composition are causative for some aspects of sexually dimorphic immunity. Therefore, future studies should focus on a causal relationship between sexually dimorphic immunity and microbiota, considering the abovementioned interfering confounding factors. This would benefit the development of more sex-specific effective treatment options for immunological diseases.

  8. Effects of Gliadin consumption on the Intestinal Microbiota and Metabolic Homeostasis in Mice Fed a High-fat Diet

    PubMed Central

    Zhang, Li; Andersen, Daniel; Roager, Henrik Munch; Bahl, Martin Iain; Hansen, Camilla Hartmann Friis; Danneskiold-Samsøe, Niels Banhos; Kristiansen, Karsten; Radulescu, Ilinca Daria; Sina, Christian; Frandsen, Henrik Lauritz; Hansen, Axel Kornerup; Brix, Susanne; Hellgren, Lars I.; Licht, Tine Rask

    2017-01-01

    Dietary gluten causes severe disorders like celiac disease in gluten-intolerant humans. However, currently understanding of its impact in tolerant individuals is limited. Our objective was to test whether gliadin, one of the detrimental parts of gluten, would impact the metabolic effects of an obesogenic diet. Mice were fed either a defined high-fat diet (HFD) containing 4% gliadin (n = 20), or a gliadin-free, isocaloric HFD (n = 20) for 23 weeks. Combined analysis of several parameters including insulin resistance, histology of liver and adipose tissue, intestinal microbiota in three gut compartments, gut barrier function, gene expression, urinary metabolites and immune profiles in intestinal, lymphoid, liver and adipose tissues was performed. Mice fed the gliadin-containing HFD displayed higher glycated hemoglobin and higher insulin resistance as evaluated by the homeostasis model assessment, more hepatic lipid accumulation and smaller adipocytes than mice fed the gliadin-free HFD. This was accompanied by alterations in the composition and activity of the gut microbiota, gut barrier function, urine metabolome, and immune phenotypes within liver and adipose tissue. Our results reveal that gliadin disturbs the intestinal environment and affects metabolic homeostasis in obese mice, suggesting a detrimental effect of gluten intake in gluten-tolerant subjects consuming a high-fat diet. PMID:28300220

  9. Transplantation of human microbiota into conventional mice durably reshapes the gut microbiota.

    PubMed

    Wrzosek, Laura; Ciocan, Dragos; Borentain, Patrick; Spatz, Madeleine; Puchois, Virginie; Hugot, Cindy; Ferrere, Gladys; Mayeur, Camille; Perlemuter, Gabriel; Cassard, Anne-Marie

    2018-05-01

    Human microbiota-associated (HMA) mice are an important model to study the relationship between liver diseases and intestinal microbiota. We describe a new method to humanize conventional mice based on bowel cleansing with polyethylene glycol followed by fecal microbiota transplantation (FMT) from a human donor. Four successive bowel cleansings were sufficient to empty the intestine and decrease the microbiota by 90%. We then compared four different strategies based on the frequency of FMT over four weeks: (1) twice a week; (2) once a week; (3) two FMTs; (4) one FMT. We were able to transfer human bacteria to mice, irrespective of the strategy used. We detected human bacteria after four weeks, even if only one FMT was performed, but there was a shift of the microbiota over time. FMT twice a week for four weeks was too frequent and perturbed the stability of the newly formed ecosystem. FMT once a week appears to be the best compromise as it allowed engraftment of Faecalibacterium, and a higher diversity of bacteria belonging to the Bacteroidales order. Our easy to establish HMA mouse model could be used as an alternative to classical HMA mice to study the relationship between the liver and the microbiota.

  10. Lactobacillus rhamnosus GG Affects Microbiota and Suppresses Autophagy in the Intestines of Pigs Challenged with Salmonella Infantis

    PubMed Central

    Zhang, Wei; Zhu, Yao-Hong; Yang, Gui-Yan; Liu, Xiao; Xia, Bing; Hu, Xiong; Su, Jin-Hui; Wang, Jiu-Feng

    2018-01-01

    Salmonella enterica serovar Infantis (S. Infantis) is a common source of foodborne gastroenteritis worldwide. Here, Lactobacillus rhamnosus GG (LGG) was administrated to weaned piglets for 1 week before S. Infantis challenge. S. Infantis caused decreased ileal mucosal microbiota diversity, a dramatic Lactobacillus amylovorus bloom, and decreased abundance of Arsenicicoccus, Janibacter, Kocuria, Nocardioides, Devosia, Paracoccus, Psychrobacter, and Weissella. The beneficial effect of LGG correlated with the moderate expansion of L. amylovorus, L. agilis, and several members of the phyla Proteobacteria, Firmicutes, and Bacteroidetes. S. Infantis translocation to the liver was decreased in the LGG-pretreated piglets. An in vitro model of LGG and S. Infantis co-incubation (involving the porcine intestinal epithelial cell line IPEC-J2) was established, and nalidixic acid was used to kill the extracellular S. Infantis. LGG suppressed the initial S. Infantis invasion in the IPEC-J2 cells and deceased the rate of cell death. LGG inhibited S. Infantis-induced autophagy and promoted epidermal growth factor receptor (EGFR) and Akt phosphorylation in both the ileum and IPEC-J2 cells. Our findings suggest that LGG inhibited S. Infantis-induced autophagy by promoting EGFR-mediated activation of the negative mediator Akt, which, in turn, suppressed intestinal epithelial cell death and thus restricted systemic S. Infantis infection. LGG can restore the gut microbiota balance and preserve the autophagy-related intestinal epithelial barrier, thereby controlling infections. PMID:29403451

  11. Oral administration of liquid iron preparation containing excess iron induces intestine and liver injury, impairs intestinal barrier function and alters the gut microbiota in rats.

    PubMed

    Fang, Shenglin; Zhuo, Zhao; Yu, Xiaonan; Wang, Haichao; Feng, Jie

    2018-05-01

    The aim of this study was to determine the toxicological effects of excess iron in a liquid iron preparation (especially on intestinal barrier function) and the possible etiology of side effects or diseases caused by the excess iron. In study 1, forty male Sprague-Dawley rats (4-5 wk old) were subjected to oral gavage with 1 ml vehicle (0.01 mol/L HCl) or 1 ml liquid iron preparation containing 8 mg, 16 mg or 24 mg of iron for 30 d. Iron status, oxidative stress, histology (H&E staining), ultrastructure (electron microscopy) and apoptosis (TUNEL assay) in the intestines and liver were assessed. The cecal microbiota was evaluated by 16S rRNA sequencing. In study 2, twenty rats with the same profile as above were subjected to oral gavage with 1 ml vehicle or 24 mg Fe for 30 d. The intestinal barrier function was determined by in vivo studies and an Ussing chamber assay; tight junction proteins and serum pro-inflammatory cytokines were observed by enzyme-linked immunosorbent assay. In study 1, the intestinal mucosa and liver showed apparent oxidative stress. In addition, iron concentration-dependent ultrastructural alterations to duodenal enterocytes and hepatocytes and histological damage to the colonic mucosa were detected. Notably, apoptosis was increased in duodenal enterocytes and hepatocytes. Impaired intestinal barrier function and lower expression of intestinal tight junction proteins were observed, and the phenotype was more severe in the colon than in the duodenum. A trend toward higher expression of serum pro-inflammatory cytokines might indicate systemic inflammation. Furthermore, the caecal microbiota showed a significant change, with increased Defluviitaleaceae, Ruminococcaceae, and Coprococcus and reduced Lachnospiraceae and Allobaculum, which could mediate the detrimental effects of excess iron on gut health. We concluded that excessive iron exposure from liquid iron preparation induces oxidative stress and histopathological alterations

  12. Rifaximin Exerts Beneficial Effects Independent of its Ability to Alter Microbiota Composition.

    PubMed

    Kang, Dae J; Kakiyama, Genta; Betrapally, Naga S; Herzog, Jeremy; Nittono, Hiroshi; Hylemon, Phillip B; Zhou, Huiping; Carroll, Ian; Yang, Jing; Gillevet, Patrick M; Jiao, Chunhua; Takei, Hajime; Pandak, William M; Iida, Takashi; Heuman, Douglas M; Fan, Sili; Fiehn, Oliver; Kurosawa, Takao; Sikaroodi, Masoumeh; Sartor, R B; Bajaj, Jasmohan S

    2016-08-25

    Rifaximin has clinical benefits in minimal hepatic encephalopathy (MHE) but the mechanism of action is unclear. The antibiotic-dependent and -independent effects of rifaximin need to be elucidated in the setting of MHE-associated microbiota. To assess the action of rifaximin on intestinal barrier, inflammatory milieu and ammonia generation independent of microbiota using rifaximin. Four germ-free (GF) mice groups were used (1) GF, (2) GF+rifaximin, (3) Humanized with stools from an MHE patient, and (4) Humanized+rifaximin. Mice were followed for 30 days while rifaximin was administered in chow at 100 mg/kg from days 16-30. We tested for ammonia generation (small-intestinal glutaminase, serum ammonia, and cecal glutamine/amino-acid moieties), systemic inflammation (serum IL-1β, IL-6), intestinal barrier (FITC-dextran, large-/small-intestinal expression of IL-1β, IL-6, MCP-1, e-cadherin and zonulin) along with microbiota composition (colonic and fecal multi-tagged sequencing) and function (endotoxemia, fecal bile acid deconjugation and de-hydroxylation). All mice survived until day 30. In the GF setting, rifaximin decreased intestinal ammonia generation (lower serum ammonia, increased small-intestinal glutaminase, and cecal glutamine content) without changing inflammation or intestinal barrier function. Humanized microbiota increased systemic/intestinal inflammation and endotoxemia without hyperammonemia. Rifaximin therapy significantly ameliorated these inflammatory cytokines. Rifaximin also favorably impacted microbiota function (reduced endotoxin and decreased deconjugation and formation of potentially toxic secondary bile acids), but not microbial composition in humanized mice. Rifaximin beneficially alters intestinal ammonia generation by regulating intestinal glutaminase expression independent of gut microbiota. MHE-associated fecal colonization results in intestinal and systemic inflammation in GF mice, which is also ameliorated with rifaximin.

  13. Association between Yogurt Consumption and Intestinal Microbiota in Healthy Young Adults Differs by Host Gender

    PubMed Central

    Suzuki, Yoshio; Ikeda, Keiichi; Sakuma, Kazuhiko; Kawai, Sachio; Sawaki, Keisuke; Asahara, Takashi; Takahashi, Takuya; Tsuji, Hirokazu; Nomoto, Koji; Nagpal, Ravinder; Wang, Chongxin; Nagata, Satoru; Yamashiro, Yuichiro

    2017-01-01

    Human intestinal microbiota are influenced by various factors viz. diet, environment, age, gender, geographical, and socioeconomic situation, etc. among which diet has the most profound impact. However, studies investigating this impact have mostly included subjects from diverse geographic/socioeconomic backgrounds and hence the precise effects of dietary factors on gut microbiota composition remain largely confounded. Herein, with an aim to evaluate the association between dietary habits, specifically yogurt consumption, and the gut microbiota in healthy young adults sharing similar age, lifestyle routine, geographical setting, etc., we conducted a cross-sectional study wherein 293 collegiate freshmen answered a questionnaire about their frequency of yogurt consumption over the last 2 months and provided stool specimens for microbiota analysis. Fecal microbiota were analyzed by highly sensitive reverse-transcription-quantitative-PCR assays targeting bacterial 16S rRNA molecules. Fecal organic acids were measured by HPLC. Overall, the gut microbiota were predominated (97.1 ± 8.6%) by Clostridium coccoides group, Clostridium leptum subgroup, Bacteroides fragilis group, Bifidobacterium and Atopobium cluster. Interestingly, after adjusting the data for yogurt consumption, females were found to have higher total bacterial (P = 0.013) and Bifidobacterium (P = 0.046) count and fecal pH (P = 0.007) and lower fecal concentration of total organic acids (P = 0.030), succinic acid (P = 0.007) and formic acid (P = 0.046) as compared to males. Altogether, yogurt consumption showed positive linear association with Lactobacillus and Lactobacillus gasseri subgroup in both male and female subjects; however, several gender-specific disparities were also detected in this yogurt-microbiota association. Yogurt consumption demonstrated a negative association with L. sakei subgroup, Enterobacteriaceae and Staphylococcus in males but shared a positive association with L. casei subgroup

  14. Probiotics normalize the gut-brain-microbiota axis in immunodeficient mice

    PubMed Central

    Smith, Carli J.; Emge, Jacob R.; Berzins, Katrina; Lung, Lydia; Khamishon, Rebecca; Shah, Paarth; Rodrigues, David M.; Sousa, Andrew J.; Reardon, Colin; Sherman, Philip M.; Barrett, Kim E.

    2014-01-01

    The gut-brain-microbiota axis is increasingly recognized as an important regulator of intestinal physiology. Exposure to psychological stress causes activation of the hypothalamic-pituitary-adrenal (HPA) axis and causes altered intestinal barrier function, intestinal dysbiosis, and behavioral changes. The primary aim of this study was to determine whether the effects of psychological stress on intestinal physiology and behavior, including anxiety and memory, are mediated by the adaptive immune system. Furthermore, we wanted to determine whether treatment with probiotics would normalize these effects. Here we demonstrate that B and T cell-deficient Rag1−/− mice displayed altered baseline behaviors, including memory and anxiety, accompanied by an overactive HPA axis, increased intestinal secretory state, dysbiosis, and decreased hippocampal c-Fos expression. Both local (intestinal physiology and microbiota) and central (behavioral and hippocampal c-Fos) changes were normalized by pretreatment with probiotics, indicating an overall benefit on health conferred by changes in the microbiota, independent of lymphocytes. Taken together, these findings indicate a role for adaptive immune cells in maintaining normal intestinal and brain health in mice and show that probiotics can overcome this immune-mediated deficit in the gut-brain-microbiota axis. PMID:25190473

  15. Probiotics normalize the gut-brain-microbiota axis in immunodeficient mice.

    PubMed

    Smith, Carli J; Emge, Jacob R; Berzins, Katrina; Lung, Lydia; Khamishon, Rebecca; Shah, Paarth; Rodrigues, David M; Sousa, Andrew J; Reardon, Colin; Sherman, Philip M; Barrett, Kim E; Gareau, Mélanie G

    2014-10-15

    The gut-brain-microbiota axis is increasingly recognized as an important regulator of intestinal physiology. Exposure to psychological stress causes activation of the hypothalamic-pituitary-adrenal (HPA) axis and causes altered intestinal barrier function, intestinal dysbiosis, and behavioral changes. The primary aim of this study was to determine whether the effects of psychological stress on intestinal physiology and behavior, including anxiety and memory, are mediated by the adaptive immune system. Furthermore, we wanted to determine whether treatment with probiotics would normalize these effects. Here we demonstrate that B and T cell-deficient Rag1(-/-) mice displayed altered baseline behaviors, including memory and anxiety, accompanied by an overactive HPA axis, increased intestinal secretory state, dysbiosis, and decreased hippocampal c-Fos expression. Both local (intestinal physiology and microbiota) and central (behavioral and hippocampal c-Fos) changes were normalized by pretreatment with probiotics, indicating an overall benefit on health conferred by changes in the microbiota, independent of lymphocytes. Taken together, these findings indicate a role for adaptive immune cells in maintaining normal intestinal and brain health in mice and show that probiotics can overcome this immune-mediated deficit in the gut-brain-microbiota axis. Copyright © 2014 the American Physiological Society.

  16. Interplay among gut microbiota, intestinal mucosal barrier and enteric neuro-immune system: a common path to neurodegenerative diseases?

    PubMed

    Pellegrini, Carolina; Antonioli, Luca; Colucci, Rocchina; Blandizzi, Corrado; Fornai, Matteo

    2018-05-24

    Neurological diseases, such as Parkinson's disease, Alzheimer's disease, amyotrophic lateral sclerosis (ALS) and multiple sclerosis, are often associated with functional gastrointestinal disorders. These gastrointestinal disturbances may occur at all stages of the neurodegenerative diseases, to such an extent that they are now considered an integral part of their clinical picture. Several lines of evidence support the contention that, in central neurodegenerative diseases, changes in gut microbiota and enteric neuro-immune system alterations could contribute to gastrointesinal dysfunctions as well as initiation and upward spreading of the neurologic disorder. The present review has been intended to provide a comprehensive overview of the available knowledge on the role played by enteric microbiota, mucosal immune system and enteric nervous system, considered as an integrated network, in the pathophysiology of the main neurological diseases known to be associated with intestinal disturbances. In addition, based on current human and pre-clinical evidence, our intent was to critically discuss whether changes in the dynamic interplay between gut microbiota, intestinal epithelial barrier and enteric neuro-immune system are a consequence of the central neurodegeneration or might represent the starting point of the neurodegenerative process. Special attention has been paid also to discuss whether alterations of the enteric bacterial-neuro-immune network could represent a common path driving the onset of the main neurodegenerative diseases, even though each disease displays its own distinct clinical features.

  17. Intestinal microbial and metabolic alterations following successful fecal microbiota transplant for D-lactic acidosis.

    PubMed

    Bulik-Sullivan, Emily C; Roy, Sayanty; Elliott, Ryan J; Kassam, Zain; Lichtman, Steven N; Carroll, Ian M; Gulati, Ajay S

    2018-06-12

    Fecal microbiota transplantation (FMT) involves the transfer of stool from a healthy individual into the intestinal tract of a diseased recipient. Although used primarily for recurrent Clostridium difficile infection, FMT is increasingly being attempted as an experimental therapy for other illnesses, including metabolic disorders. D-lactic acidosis (D-LA) is a metabolic disorder that may occur in individuals with short bowel syndrome when lactate-producing bacteria in the colon overproduce D-lactate. This results in elevated systemic levels of D-lactate, metabolic acidosis, and encephalopathy. In this study, we report the successful use of FMT for the treatment of recurrent D-LA in a child who was unresponsive to conventional therapies. Importantly, we also present profiles of the enteric microbiota, as well as fecal D-/L-lactic acid metabolites, before and longitudinally after FMT. These data provide valuable insight into the putative mechanisms of D-LA pathogenesis and its treatment.

  18. Systematic Review of the Relation Between Intestinal Microbiota and Toll-Like Receptors in the Metabolic Syndrome: What Do We Know So Far?

    PubMed

    Portela-Cidade, José Pedro; Borges-Canha, Marta; Leite-Moreira, Adelino Ferreira; Pimentel-Nunes, Pedro

    2015-01-01

    Metabolic syndrome is an emerging problem in developed countries and presents itself as a potential threat worldwide. The role of diabetes, dyslipidaemia and hepatic steatosis as pivotal components of the metabolic syndrome is well known. However, their common persistent chronic inflammation and its potential cause still elude. This systematic review aims to present evidence of the mechanisms that link the intestinal microbioma, innate immunity and metabolic syndrome. A comprehensive research was made using PubMed database and 35 articles were selected. We found that metabolic syndrome is associated to increased levels of innate immunity receptors, namely, Toll-like receptors, both in intestine and systemically and its polymorphisms may change the risk of metabolic syndrome development. Microbioma dysbiosis is also present in metabolic syndrome, with lower prevalence of Bacteroidetes and increased prevalence of Firmicutes populations. The data suggest that the link between intestinal microbiota and Toll-like receptors can negatively endanger the metabolic homeostasis. Current evidence suggests that innate immunity and intestinal microbiota may be the hidden link in the metabolic syndrome development mechanisms. In the near future, this can be the key in the development of new prophylactic and therapeutic strategies to treat metabolic syndrome patients.

  19. Nutrition meets the microbiome: micronutrients and the microbiota.

    PubMed

    Biesalski, Hans K

    2016-05-01

    There is increasing evidence that food is an important factor that influences and shapes the composition and configuration of the gut microbiota. Most studies have focused on macronutrients (fat, carbohydrate, protein) in particular and their effects on the gut microbiota. Although the microbiota can synthesize different water-soluble vitamins, the effects of vitamins synthesized within the microbiota on systemic vitamin status are unclear. Few studies exist on the shuttling of vitamins between the microbiota and intestine and the impact of luminal vitamins on the microbiota. Studying the interactions between vitamins and the microbiota may help to understand the effects of vitamins on the barrier function and immune system of the intestinal tract. Furthermore, understanding the impact of malnutrition, particularly low micronutrient supply, on microbiota development, composition, and metabolism may help in implementing new strategies to overcome the deleterious effects of malnutrition on child development. This article reviews data on the synthesis of different micronutrients and their effects on the human microbiota, and further discusses the consequences of malnutrition on microbiota composition. © 2016 New York Academy of Sciences.

  20. Farnesoid X Receptor Signaling Shapes the Gut Microbiota and Controls Hepatic Lipid Metabolism.

    PubMed

    Zhang, Limin; Xie, Cen; Nichols, Robert G; Chan, Siu H J; Jiang, Changtao; Hao, Ruixin; Smith, Philip B; Cai, Jingwei; Simons, Margaret N; Hatzakis, Emmanuel; Maranas, Costas D; Gonzalez, Frank J; Patterson, Andrew D

    2016-01-01

    The gut microbiota modulates obesity and associated metabolic phenotypes in part through intestinal farnesoid X receptor (FXR) signaling. Glycine-β-muricholic acid (Gly-MCA), an intestinal FXR antagonist, has been reported to prevent or reverse high-fat diet (HFD)-induced and genetic obesity, insulin resistance, and fatty liver; however, the mechanism by which these phenotypes are improved is not fully understood. The current study investigated the influence of FXR activity on the gut microbiota community structure and function and its impact on hepatic lipid metabolism. Predictions about the metabolic contribution of the gut microbiota to the host were made using 16S rRNA-based PICRUSt ( p hylogenetic i nvestigation of c ommunities by r econstruction of u nobserved st ates), then validated using 1 H nuclear magnetic resonance-based metabolomics, and results were summarized by using genome-scale metabolic models. Oral Gly-MCA administration altered the gut microbial community structure, notably reducing the ratio of Firmicutes to Bacteroidetes and its PICRUSt-predicted metabolic function, including reduced production of short-chain fatty acids (substrates for hepatic gluconeogenesis and de novo lipogenesis) in the ceca of HFD-fed mice. Metabolic improvement was intestinal FXR dependent, as revealed by the lack of changes in HFD-fed intestine-specific Fxr -null ( Fxr ΔIE ) mice treated with Gly-MCA. Integrative analyses based on genome-scale metabolic models demonstrated an important link between Lactobacillus and Clostridia bile salt hydrolase activity and bacterial fermentation. Hepatic metabolite levels after Gly-MCA treatment correlated with altered levels of gut bacterial species. In conclusion, modulation of the gut microbiota by inhibition of intestinal FXR signaling alters host liver lipid metabolism and improves obesity-related metabolic dysfunction. IMPORTANCE The farnesoid X receptor (FXR) plays an important role in mediating the dialog between the host

  1. Farnesoid X Receptor Signaling Shapes the Gut Microbiota and Controls Hepatic Lipid Metabolism

    PubMed Central

    Zhang, Limin; Xie, Cen; Nichols, Robert G.; Chan, Siu H. J.; Jiang, Changtao; Hao, Ruixin; Smith, Philip B.; Cai, Jingwei; Simons, Margaret N.; Hatzakis, Emmanuel; Maranas, Costas D.; Gonzalez, Frank J.

    2016-01-01

    ABSTRACT The gut microbiota modulates obesity and associated metabolic phenotypes in part through intestinal farnesoid X receptor (FXR) signaling. Glycine-β-muricholic acid (Gly-MCA), an intestinal FXR antagonist, has been reported to prevent or reverse high-fat diet (HFD)-induced and genetic obesity, insulin resistance, and fatty liver; however, the mechanism by which these phenotypes are improved is not fully understood. The current study investigated the influence of FXR activity on the gut microbiota community structure and function and its impact on hepatic lipid metabolism. Predictions about the metabolic contribution of the gut microbiota to the host were made using 16S rRNA-based PICRUSt (phylogenetic investigation of communities by reconstruction of unobserved states), then validated using 1H nuclear magnetic resonance-based metabolomics, and results were summarized by using genome-scale metabolic models. Oral Gly-MCA administration altered the gut microbial community structure, notably reducing the ratio of Firmicutes to Bacteroidetes and its PICRUSt-predicted metabolic function, including reduced production of short-chain fatty acids (substrates for hepatic gluconeogenesis and de novo lipogenesis) in the ceca of HFD-fed mice. Metabolic improvement was intestinal FXR dependent, as revealed by the lack of changes in HFD-fed intestine-specific Fxr-null (FxrΔIE) mice treated with Gly-MCA. Integrative analyses based on genome-scale metabolic models demonstrated an important link between Lactobacillus and Clostridia bile salt hydrolase activity and bacterial fermentation. Hepatic metabolite levels after Gly-MCA treatment correlated with altered levels of gut bacterial species. In conclusion, modulation of the gut microbiota by inhibition of intestinal FXR signaling alters host liver lipid metabolism and improves obesity-related metabolic dysfunction. IMPORTANCE The farnesoid X receptor (FXR) plays an important role in mediating the dialog between the host

  2. Antimicrobial Use, Human Gut Microbiota and Clostridium difficile Colonization and Infection

    PubMed Central

    Vincent, Caroline; Manges, Amee R.

    2015-01-01

    Clostridium difficile infection (CDI) is the most important cause of nosocomial diarrhea. Broad-spectrum antimicrobials have profound detrimental effects on the structure and diversity of the indigenous intestinal microbiota. These alterations often impair colonization resistance, allowing the establishment and proliferation of C. difficile in the gut. Studies involving animal models have begun to decipher the precise mechanisms by which the intestinal microbiota mediates colonization resistance against C. difficile and numerous investigations have described gut microbiota alterations associated with C. difficile colonization or infection in human subjects. Fecal microbiota transplantation (FMT) is a highly effective approach for the treatment of recurrent CDI that allows the restoration of a healthy intestinal ecosystem via infusion of fecal material from a healthy donor. The recovery of the intestinal microbiota after FMT has been examined in a few reports and work is being done to develop custom bacterial community preparations that could be used as a replacement for fecal material. PMID:27025623

  3. 16S rDNA analysis of the effect of fecal microbiota transplantation on pulmonary and intestinal flora.

    PubMed

    Liu, Tianhao; Yang, Zhongshan; Zhang, Xiaomei; Han, Niping; Yuan, Jiali; Cheng, Yu

    2017-12-01

    This study aims to explore the effect of FMT on regulations of dysbacteriosis of pulmonary and intestinal flora in rats with 16S rDNA sequencing technology. A total of 27 SPF rats (3-4 weeks old) were randomly divided into three groups: normal control group (K), model control group (MX), and fecal microbiota transplantation group (FMT); each group contained nine rats. The OTU values of the pulmonary and intestinal flora of the MX group decreased significantly compared with the normal control group. After FMT, the OTU value of pulmonary flora increased, while the value of OTU in intestinal flora declined. At the phylum level, FMT down-regulated Proteobacteria , Firmicutes , and Bacteroidetes in the pulmonary flora. At the genus level, FMT down-regulated Pseudomonas , Sphingobium , Lactobacillus , Rhizobium , and Acinetobacter , thus maintaining the balance of the pulmonary flora. Moreover, FMT could change the structure and diversity of the pulmonary and intestinal flora by positively regulating the pulmonary flora and negatively regulating intestinal flora. This study may provide a scientific basis for FMT treatment of respiratory diseases.

  4. Effects of dietary Bacillus amyloliquefaciens supplementation on growth performance, intestinal morphology, inflammatory response, and microbiota of intra-uterine growth retarded weanling piglets.

    PubMed

    Li, Yue; Zhang, Hao; Su, Weipeng; Ying, Zhixiong; Chen, Yueping; Zhang, Lili; Lu, Zhaoxin; Wang, Tian

    2018-01-01

    The focus of recent research has been directed toward the probiotic potential of Bacillus amyloliquefaciens (BA) on the gut health of animals. However, little is known about BA's effects on piglets with intra-uterine growth retardation (IUGR). Therefore, this study investigated the effects of BA supplementation on the growth performance, intestinal morphology, inflammatory response, and microbiota of IUGR piglets. Eighteen litters of newborn piglets were selected at birth, with one normal birth weight (NBW) and two IUGR piglets in each litter (i.e., 18 NBW and 36 IUGR piglets in total). At weaning, the NBW piglet and one of the IUGR piglets were assigned to groups fed a control diet (i.e., the NBW-CON and IUGR-CON groups). The other IUGR piglet was assigned to a group fed the control diet supplemented with 2.0 g BA per kg of diet (i.e., IUGR-BA group). The piglets were thus distributed across three groups for a four-week period. IUGR reduced the growth performance of the IUGR-CON piglets compared with the NBW-CON piglets. It was also associated with decreased villus sizes, increased apoptosis rates, reduced goblet cell numbers, and an imbalance between pro- and anti-inflammatory cytokines in the small intestine. Supplementation with BA improved the average daily weight gain and the feed efficiency of the IUGR-BA group compared with the IUGR-CON group ( P  < 0.05). The IUGR-BA group exhibited increases in the ratio of jejunal villus height to crypt depth, in ileal villus height, and in ileal goblet cell density. They also exhibited decreases in the numbers of jejunal and ileal apoptotic cells and ileal proliferative cells ( P  < 0.05). Supplementation with BA increased interleukin 10 content, but it decreased tumor necrosis factor alpha level in the small intestines of the IUGR-BA piglets ( P  < 0.05). Furthermore, compared with the IUGR-CON piglets, the IUGR-BA piglets had less Escherichia coli in their jejunal digesta, but more Lactobacillus and

  5. Impact of Enterobius vermicularis infection and mebendazole treatment on intestinal microbiota and host immune response

    PubMed Central

    Yang, Chin-An; Liang, Chao; Lin, Chia-Li; Hsiao, Chiung-Tzu; Peng, Ching-Tien

    2017-01-01

    Background Previous studies on the association of enterobiasis and chronic inflammatory diseases have revealed contradictory results. The interaction of Enterobius vermicularis infection in particular with gut microbiota and induced immune responses has never been thoroughly examined. Methodology/Findings In order to answer the question of whether exposure to pinworm and mebendazole can shift the intestinal microbial composition and immune responses, we recruited 109 (30 pinworm-negative, 79 pinworm-infected) first and fourth grade primary school children in Taichung, Taiwan, for a gut microbiome study and an intestinal cytokine and SIgA analysis. In the pinworm-infected individuals, fecal samples were collected again at 2 weeks after administration of 100 mg mebendazole. Gut microbiota diversity increased after Enterobius infection, and it peaked after administration of mebendazole. At the phylum level, pinworm infection and mebendazole deworming were associated with a decreased relative abundance of Fusobacteria and an increased proportion of Actinobacteria. At the genus level, the relative abundance of the probiotic Bifidobacterium increased after enterobiasis and mebendazole treatment. The intestinal SIgA level was found to be lower in the pinworm-infected group, and was elevated in half of the mebendazole-treated group. A higher proportion of pre-treatment Salmonella spp. was associated with a non-increase in SIgA after mebendazole deworming treatment. Conclusions/Significance Childhood exposure to pinworm plus mebendazole is associated with increased bacterial diversity, an increased abundance of Actinobacteria including the probiotic Bifidobacterium, and a decreased proportion of Fusobacteria. The gut SIgA level was lower in the pinworm-infected group, and was increased in half of the individuals after mebendazole deworming treatment. PMID:28945752

  6. Critical role of microbiota within cecal crypts on the regenerative capacity of the intestinal epithelium following surgical stress.

    PubMed

    Zaborin, Alexander; Krezalek, Monika; Hyoju, Sanjiv; Defazio, Jennifer R; Setia, Namrata; Belogortseva, Natalia; Bindokas, Vytautas P; Guo, Qiti; Zaborina, Olga; Alverdy, John C

    2017-02-01

    Cecal crypts represent a unique niche that are normally occupied by the commensal microbiota. Due to their density and close proximity to stem cells, microbiota within cecal crypts may modulate epithelial regeneration. Here we demonstrate that surgical stress, a process that invariably involves a short period of starvation, antibiotic exposure, and tissue injury, results in cecal crypt evacuation of their microbiota. Crypts devoid of their microbiota display pathophysiological features characterized by abnormal stem cell activation as judged by leucine-rich repeat-containing G protein-coupled receptor 5 (Lgr5) staining, expansion of the proliferative zone toward the tips of the crypts, and an increase in apoptosis. In addition, crypts devoid of their microbiota display loss of their regenerative capacity as assessed by their ability to form organoids ex vivo. When a four-member human pathogen community isolated from the stool of a critically ill patient is introduced into the cecum of mice with empty crypts, crypts become occupied by the pathogens and further disruption of crypt homeostasis is observed. Fecal microbiota transplantation restores the cecal crypts' microbiota, normalizes homeostasis within crypts, and reestablishes crypt regenerative capacity. Taken together, these findings define an emerging role for the microbiota within cecal crypts to maintain epithelial cell homeostasis in a manner that may enhance recovery in response to the physiological stress imposed by the process of surgery. This study provides novel insight into the process by which surgical injury places the intestinal epithelium at risk for colonization by pathogenic microbes and impairment of its regenerative capacity via loss of its microbiota. We show that fecal transplant restores crypt homeostasis in association with repopulation of the microbiota within cecal crypts. Copyright © 2017 the American Physiological Society.

  7. Intestinal REG3 Lectins Protect Against Alcoholic Steatohepatitis by Reducing Mucosa-Associated Microbiota and Preventing Bacterial Translocation

    PubMed Central

    Wang, Lirui; Fouts, Derrick E.; Stärkel, Peter; Hartmann, Phillipp; Chen, Peng; Llorente, Cristina; DePew, Jessica; Moncera, Kelvin; Ho, Samuel B.; Brenner, David A.; Hooper, Lora V.; Schnabl, Bernd

    2016-01-01

    Summary Approximately half of all deaths from liver cirrhosis, the 10th leading cause of mortality in the United States, are related to alcohol use. Chronic alcohol consumption is accompanied by intestinal dysbiosis and bacterial overgrowth, yet little is known about the factors that alter the microbial composition or their contribution to liver disease. We previously associated chronic alcohol consumption with lower intestinal levels of the antimicrobial-regenerating islet-derived (REG)-3 lectins. Here, we demonstrate that intestinal deficiency in REG3B or REG3G increases numbers of mucosa-associated bacteria and enhances bacterial translocation to the mesenteric lymph nodes and liver, promoting the progression of ethanol-induced fatty liver disease toward steatohepatitis. Overexpression of Reg3g in intestinal epithelial cells restricts bacterial colonization of mucosal surfaces, reduces bacterial translocation, and protects mice from alcohol-induced steatohepatitis. Thus, alcohol appears to impair control of the mucosa-associated microbiota, and subsequent breach of the mucosal barrier facilitates progression of alcoholic liver disease. PMID:26867181

  8. Impact of intrapartum antimicrobial prophylaxis upon the intestinal microbiota and the prevalence of antibiotic resistance genes in vaginally delivered full-term neonates.

    PubMed

    Nogacka, Alicja; Salazar, Nuria; Suárez, Marta; Milani, Christian; Arboleya, Silvia; Solís, Gonzalo; Fernández, Nuria; Alaez, Lidia; Hernández-Barranco, Ana M; de Los Reyes-Gavilán, Clara G; Ventura, Marco; Gueimonde, Miguel

    2017-08-08

    Disturbances in the early establishment of the intestinal microbiota may produce important implications for the infant's health and for the risk of disease later on. Different perinatal conditions may be affecting the development of the gut microbiota. Some of them, such as delivery mode or feeding habits, have been extensively assessed whereas others remain to be studied, being critical to identify their impact on the microbiota and, if any, to minimize it. Antibiotics are among the drugs most frequently used in early life, the use of intrapartum antimicrobial prophylaxis (IAP), present in over 30% of deliveries, being the most frequent source of exposure. However, our knowledge on the effects of IAP on the microbiota establishment is still limited. The aim of the present work was to evaluate the impact of IAP investigating a cohort of 40 full-term vaginally delivered infants born after an uncomplicated pregnancy, 18 of which were born from mothers receiving IAP. Fecal samples were collected at 2, 10, 30, and 90 days of age. We analyzed the composition of the fecal microbiota during the first 3 months of life by 16S rRNA gene sequencing and quantified fecal short chain fatty acids by gas chromatography. The presence of genes for resistance to antibiotics was determined by PCR in the samples from 1-month-old infants. Our results showed an altered pattern of intestinal microbiota establishment in IAP infants during the first weeks of life, with lower relative proportions of Actinobacteria and Bacteroidetes and increased of Preoteobacteria and Firmicutes. A delay in the increase on the levels of acetate was observed in IAP infants. The analyses of specific antibiotic resistance genes showed a higher occurrence of some β-lactamase coding genes in infants whose mothers received IAP. Our results indicate an effect of IAP on the establishing early microbiota during the first months of life, which represent a key moment for the development of the microbiota

  9. Molecular diversity of the faecal microbiota of Toy Poodles in Japan.

    PubMed

    Omatsu, Tsutomu; Omura, Miki; Katayama, Yukie; Kimura, Toru; Okumura, Maho; Okumura, Atsushi; Murata, Yoshiteru; Mizutani, Tetsuya

    2018-05-18

    The intestinal microbiota was revealed with the recent advances in molecular techniques, such as high-throughput sequencing analysis. As a result, the microbial changes are thought to influence the health of humans and animals and such changes are affected by several factors including diet, genetics, age, sex, and diseases. Similar studies are being conducted in dogs, and the knowledge of intestinal microbiota in dogs is expanding. Nonetheless, basic information on intestinal microbiota in dogs is less than that of humans. Our aim was to study toy poodles (n=21), a popular companion dog, in terms of basic characteristics of the faecal microbiota by 16S rRNA gene barcoding analysis. In the faecal microbiota, Firmicutes, Bacteroidetes, Proteobacteria, and Fusobacteria were the dominant phyla (over 93.4% of faecal microbiota) regardless of the attributes of the dogs. In family level, Enterobacteriaceae, Bacteroidaceae, and Lachnospiraceae were most prevalent. In case of a dog with protein-losing enteropathy, the diversity of faecal microbiota was different between before and after treatment. This study provides basic information for studying on faecal microbiota in toy poodles.

  10. Dietary supplementation with flaxseed meal and oat hulls modulates intestinal histomorphometric characteristics, digesta- and mucosa-associated microbiota in pigs.

    PubMed

    Ndou, S P; Tun, H M; Kiarie, E; Walsh, M C; Khafipour, E; Nyachoti, C M

    2018-04-12

    The establishment of a healthy gastrointestinal milieu may not only offer an opportunity to reduce swine production costs but could also open the way for a lifetime of human health improvement. This study investigates the effects of feeding soluble fibre from flaxseed meal-containing diet (FM) and insoluble fibre from oat hulls-containing diet (OH) on histomorphological characteristics, digesta- and mucosa-associated microbiota and their associations with metabolites in pig intestines. In comparison with the control (CON) and OH diets, the consumption of FM increased (P < 0.001) the jejunal villi height (VH) and the ratio of VH to crypt depths. The PERMANOVA analyses showed distinct (P < 0.05) microbial communities in ileal digesta and mucosa, and caecal mucosa in CON and FM-diets fed pigs compared to the OH diet-fed pigs. The predicted functional metagenomes indicated that amino acids and butanoate metabolism, lysine degradation, bile acids biosynthesis, and apoptosis were selectively enhanced at more than 2.2 log-folds in intestinal microbiota of pigs fed the FM diet. Taken together, flaxseed meal and oat hulls supplementation in growing pigs' diets altered the gastrointestinal development, as well as the composition and function of microbial communities, depending on the intestinal segment and physicochemical property of the dietary fibre source.

  11. Western diet induces a shift in microbiota composition enhancing susceptibility to Adherent-Invasive E. coli infection and intestinal inflammation.

    PubMed

    Agus, Allison; Denizot, Jérémy; Thévenot, Jonathan; Martinez-Medina, Margarita; Massier, Sébastien; Sauvanet, Pierre; Bernalier-Donadille, Annick; Denis, Sylvain; Hofman, Paul; Bonnet, Richard; Billard, Elisabeth; Barnich, Nicolas

    2016-01-08

    Recent advances have shown that the abnormal inflammatory response observed in CD involves an interplay among intestinal microbiota, host genetics and environmental factors. The escalating consumption of fat and sugar in Western countries parallels an increased incidence of CD during the latter 20(th) century. The impact of a HF/HS diet in mice was evaluated for the gut micro-inflammation, intestinal microbiota composition, function and selection of an E. coli population. The HF/HS diet created a specific inflammatory environment in the gut, correlated with intestinal mucosa dysbiosis characterized by an overgrowth of pro-inflammatory Proteobacteria such as E. coli, a decrease in protective bacteria, and a significantly decreased of SCFA concentrations. The expression of GPR43, a SCFA receptor was reduced in mice treated with a HF/HS diet and reduced in CD patients compared with controls. Interestingly, mice treated with an agonist of GPR43 were protected against DSS-induced colitis. Finally, the transplantation of feces from HF/HS treated mice to GF mice increased susceptibility to AIEC infection. Together, our results demonstrate that a Western diet could aggravate the inflammatory process and that the activation of the GPR43 receptor pathway could be used as a new strategy to treat CD patients.

  12. Western diet induces a shift in microbiota composition enhancing susceptibility to Adherent-Invasive E. coli infection and intestinal inflammation.

    PubMed Central

    Agus, Allison; Denizot, Jérémy; Thévenot, Jonathan; Martinez-Medina, Margarita; Massier, Sébastien; Sauvanet, Pierre; Bernalier-Donadille, Annick; Denis, Sylvain; Hofman, Paul; Bonnet, Richard; Billard, Elisabeth; Barnich, Nicolas

    2016-01-01

    Recent advances have shown that the abnormal inflammatory response observed in CD involves an interplay among intestinal microbiota, host genetics and environmental factors. The escalating consumption of fat and sugar in Western countries parallels an increased incidence of CD during the latter 20th century. The impact of a HF/HS diet in mice was evaluated for the gut micro-inflammation, intestinal microbiota composition, function and selection of an E. coli population. The HF/HS diet created a specific inflammatory environment in the gut, correlated with intestinal mucosa dysbiosis characterized by an overgrowth of pro-inflammatory Proteobacteria such as E. coli, a decrease in protective bacteria, and a significantly decreased of SCFA concentrations. The expression of GPR43, a SCFA receptor was reduced in mice treated with a HF/HS diet and reduced in CD patients compared with controls. Interestingly, mice treated with an agonist of GPR43 were protected against DSS-induced colitis. Finally, the transplantation of feces from HF/HS treated mice to GF mice increased susceptibility to AIEC infection. Together, our results demonstrate that a Western diet could aggravate the inflammatory process and that the activation of the GPR43 receptor pathway could be used as a new strategy to treat CD patients. PMID:26742586

  13. Pre-pregnancy weight, gestational weight gain, and the gut microbiota of mothers and their infants.

    PubMed

    Stanislawski, Maggie A; Dabelea, Dana; Wagner, Brandie D; Sontag, Marci K; Lozupone, Catherine A; Eggesbø, Merete

    2017-09-04

    Recent evidence supports that the maternal gut microbiota impacts the initial infant gut microbiota. Since the gut microbiota may play a causal role in the development of obesity, it is important to understand how pre-pregnancy weight and gestational weight gain (GWG) impact the gut microbiota of mothers at the time of delivery and their infants in early life. In this study, we performed 16S rRNA gene sequencing on gut microbiota samples from 169 women 4 days after delivery and from the 844 samples of their infants at six timepoints during the first 2 years of life. We categorized the women (1) according to pre-pregnancy body mass index into overweight/obese (OW/OB, BMI ≥ 25) or non-overweight/obese (BMI < 25) and (2) into excessive and non-excessive GWG in the subset of mothers of full-term singleton infants (N = 116). We compared alpha diversity and taxonomic composition of the maternal and infant samples by exposure groups. We also compared taxonomic similarity between maternal and infant gut microbiota. Maternal OW/OB was associated with lower maternal alpha diversity. Maternal pre-pregnancy OW/OB and excessive GWG were associated with taxonomic differences in the maternal gut microbiota, including taxa from the highly heritable family Christensenellaceae, the genera Lachnospira, Parabacteroides, Bifidobacterium, and Blautia. These maternal characteristics were not associated with overall differences in the infant gut microbiota over the first 2 years of life. However, the presence of specific OTUs in maternal gut microbiota at the time of delivery did significantly increase the odds of presence in the infant gut at age 4-10 days for many taxa, and these included some lean-associated taxa. Our results show differences in maternal gut microbiota composition at the time of delivery by pre-pregnancy weight and GWG, but these changes were only associated with limited compositional differences in the early life gut microbiota of their infants. Further

  14. Gut microbiota and obesity.

    PubMed

    Gérard, Philippe

    2016-01-01

    The human intestine harbors a complex bacterial community called the gut microbiota. This microbiota is specific to each individual despite the existence of several bacterial species shared by the majority of adults. The influence of the gut microbiota in human health and disease has been revealed in the recent years. Particularly, the use of germ-free animals and microbiota transplant showed that the gut microbiota may play a causal role in the development of obesity and associated metabolic disorders, and lead to identification of several mechanisms. In humans, differences in microbiota composition, functional genes and metabolic activities are observed between obese and lean individuals suggesting a contribution of the gut microbiota to these phenotypes. Finally, the evidence linking gut bacteria to host metabolism could allow the development of new therapeutic strategies based on gut microbiota modulation to treat or prevent obesity.

  15. The culturable intestinal microbiota of triploid and diploid juvenile Atlantic salmon (Salmo salar) - a comparison of composition and drug resistance

    PubMed Central

    2011-01-01

    Background With the increased use of ploidy manipulation in aquaculture and fisheries management this investigation aimed to determine whether triploidy influences culturable intestinal microbiota composition and bacterial drug resistance in Atlantic salmon (Salmo salar). The results could provide answers to some of the physiological differences observed between triploid and diploid fish, especially in terms of fish health. Results No ploidy effect was observed in the bacterial species isolated, however, triploids were found to contain a significant increase in total gut microbiota levels, with increases in Pseudomonas spp., Pectobacterium carotovorum, Psychrobacter spp., Bacillus spp., and Vibrio spp., (12, 42, 9, 10, and 11% more bacteria in triploids than diploids, respectively), whereas a decrease in Carnobacterium spp., within triploids compared to diploids was close to significant (8% more bacteria in diploids). With the exception of gentamicin, where no bacterial resistance was observed, bacterial isolates originating from triploid hosts displayed increased resistance to antibacterials, three of which were significant (tetracycline, trimethoprim, and sulphonamide). Conclusion Results indicate that triploidy influences both the community and drug resistance of culturable intestinal microbiota in juvenile salmon. These results demonstrate differences that are likely to contribute to the health of triploid fish and have important ramifications on the use of antibacterial drugs within aquaculture. PMID:22094054

  16. Gut Microbiota in Cardiovascular Health and Disease.

    PubMed

    Tang, W H Wilson; Kitai, Takeshi; Hazen, Stanley L

    2017-03-31

    Significant interest in recent years has focused on gut microbiota-host interaction because accumulating evidence has revealed that intestinal microbiota play an important role in human health and disease, including cardiovascular diseases. Changes in the composition of gut microbiota associated with disease, referred to as dysbiosis, have been linked to pathologies such as atherosclerosis, hypertension, heart failure, chronic kidney disease, obesity, and type 2 diabetes mellitus. In addition to alterations in gut microbiota composition, the metabolic potential of gut microbiota has been identified as a contributing factor in the development of diseases. Recent studies revealed that gut microbiota can elicit a variety of effects on the host. Indeed, the gut microbiome functions like an endocrine organ, generating bioactive metabolites, that can impact host physiology. Microbiota interact with the host through many pathways, including the trimethylamine/trimethylamine N -oxide pathway, short-chain fatty acids pathway, and primary and secondary bile acids pathways. In addition to these metabolism-dependent pathways, metabolism-independent processes are suggested to also potentially contribute to cardiovascular disease pathogenesis. For example, heart failure-associated splanchnic circulation congestion, bowel wall edema, and impaired intestinal barrier function are thought to result in bacterial translocation, the presence of bacterial products in the systemic circulation and heightened inflammatory state. These are thought to also contribute to further progression of heart failure and atherosclerosis. The purpose of the current review is to highlight the complex interplay between microbiota, their metabolites, and the development and progression of cardiovascular diseases. We will also discuss the roles of gut microbiota in normal physiology and the potential of modulating intestinal microbial inhabitants as novel therapeutic targets. © 2017 American Heart

  17. Gut Microbiota in Cardiovascular Health and Disease

    PubMed Central

    Tang, W.H. Wilson; Kitai, Takeshi; Hazen, Stanley L

    2017-01-01

    Significant interest in recent years has focused on gut microbiota-host interaction because accumulating evidence has revealed that intestinal microbiota play an important role in human health and disease, including cardiovascular diseases. Changes in the composition of gut microbiota associated with disease, referred to as dysbiosis, have been linked to pathologies such as atherosclerosis, hypertension, heart failure, chronic kidney disease, obesity and type 2 diabetes mellitus. In addition to alterations in gut microbiota composition, the metabolic potential of gut microbiota has been identified as a contributing factor in the development of diseases. Recent studies revealed that gut microbiota can elicit a variety of effects on the host. Indeed, the gut microbiome functions like an endocrine organ, generating bioactive metabolites, that can impact host physiology. Microbiota interact with the host through a number of pathways, including the trimethylamine (TMA)/ trimethylamine N-oxide (TMAO) pathway, short-chain fatty acids pathway, and primary and secondary bile acids pathways. In addition to these “metabolism dependent” pathways, metabolism independent processes are suggested to also potentially contribute to CVD pathogenesis. For example, heart failure associated splanchnic circulation congestion, bowel wall edema and impaired intestinal barrier function are thought to result in bacterial translocation, the presence of bacterial products in the systemic circulation and heightened inflammatory state. These are believed to also contribute to further progression of heart failure and atherosclerosis. The purpose of the current review is to highlight the complex interplay between microbiota, their metabolites and the development and progression of cardiovascular diseases. We will also discuss the roles of gut microbiota in normal physiology and the potential of modulating intestinal microbial inhabitants as novel therapeutic targets. PMID:28360349

  18. Fecal Microbiota in Pediatric Inflammatory Bowel Disease and Its Relation to Inflammation.

    PubMed

    Kolho, Kaija-Leena; Korpela, Katri; Jaakkola, Tytti; Pichai, Madharasi V A; Zoetendal, Erwin G; Salonen, Anne; de Vos, Willem M

    2015-06-01

    Inflammatory bowel disease (IBD) is considered to result from interplay between host and intestinal microbiota. While IBD in adults has shown to be associated with marked changes in the intestinal microbiota, there are only a few studies in children, and particularly studies focusing on therapeutic responses are lacking. Hence, this prospective study addressed the intestinal microbiota in pediatric IBD especially related to the level of inflammation. In total, 68 pediatric patients with IBD and 26 controls provided stool and blood samples in a tertiary care hospital and 32 received anti-tumor necrosis factor-α (anti-TNF-α). Blood inflammatory markers and fecal calprotectin levels were determined. The intestinal microbiota was characterized by phylogenetic microarray and qPCR analysis. The microbiota varied along a gradient of increasing intestinal inflammation (indicated by calprotectin levels), which was associated with reduced microbial richness, abundance of butyrate producers, and relative abundance of Gram-positive bacteria (especially Clostridium clusters IV and XIVa). A significant association between microbiota composition and inflammation was indicated by a set of bacterial groups predicting the calprotectin levels (area under curve (AUC) of 0.85). During the induction of anti-TNF-α, the microbial diversity and similarity to the microbiota of controls increased in the responder group by week 6, but not in the non-responders (P<0.01; response related to calprotectin levels). The abundance of six groups of bacteria including those related to Eubacterium rectale and Bifidobacterium spp. predicted the response to anti-TNF-α medication. Intestinal microbiota represents a potential biomarker for correlating the level of inflammation and therapeutic responses to be further validated.

  19. Can microbiota transplantation abrogate murine colonization resistance against Campylobacter jejuni?

    PubMed

    Heimesaat, M M; Plickert, R; Fischer, A; Göbel, U B; Bereswill, S

    2013-03-01

    Enterocolitis caused by Campylobacter jejuni represents an important socioeconomic burden worldwide. The host-specific intestinal microbiota is essential for maintaining colonization resistance (CR) against C. jejuni in conventional mice. Notably, CR is abrogated by shifts of the intestinal microbiota towards overgrowth with commensal E. coli during acute ileitis. Thus, we investigated whether oral transplantation (TX) of ileal microbiota derived from C. jejuni susceptible mice with acute ileitis overcomes CR of healthy conventional animals. Four days following ileitis microbiota TX or ileitis induction and right before C. jejuni infection, mice displayed comparable loads of main intestinal bacterial groups as shown by culture. Eight days following ileitis induction, but not ileal microbiota TX, however, C. jejuni could readily colonize the gastrointestinal tract of conventional mice and also translocate to extra-intestinal tissue sites such as mesenteric lymph nodes, spleen, liver, and blood within 4 days following oral infection. Of note, C. jejuni did not further deteriorate histopathology following ileitis induction. Lack of C. jejuni colonization in TX mice was accompanied by a decrease of commensal E. coli loads in the feces 4 days following C. jejuni infection. In summary, oral ileal microbiota TX from susceptible donors is not sufficient to abrogate murine CR against C. jejuni.

  20. Use of bacteriocin-producing, probiotic strain Enterococcus faecium AL41 to control intestinal microbiota in farm ostriches.

    PubMed

    Lauková, A; Kandričáková, A; Ščerbová, J

    2015-06-01

    Probiotic enterococci can produce bacteriocins. Enterococcus faecium AL41 is an Enterocin M-producing, probiotic strain which has previously shown beneficial effect in broiler chickens. In this study, it was used to control intestinal microbiota in farm ostriches in a 42-day experiment with an experimental group (EG, 40 ostriches) and a control group (CG, 46). In addition to feed mixture, the ostriches in EG received Ent. faecium AL41 (10(9) CFU ml(-1); by rifampicin-marked variant) 400 μl per animal per day in their drinking water for 21 days. Sampling was carried out at the start of the experiment (at day 0/1), at day 21 (after 21 days of AL41 application) and at day 42 (21 days after AL41 cessation). Faeces (mixture, n = 6) were treated using the standard microbiological dilution method and cultivated on selective media (ISO). The highest count of AL41 was found at day 42. Its identity was confirmed with PCR and Maldi-Tof. The ostriches were free of Salmonella and Campylobacter cells. At day 21, antimicrobial effect was demonstrated by significant reduction in coagulase-positive and negative staphylococci in EG compared to CG (P < 0·001) and coliforms, Enterobacteria and Pseudomonas-like bacteria (P < 0·001). We conclude that AL41 can be used to control intestinal microbiota in farm ostriches. Significance and impact of the study: Ostriches are excellent for high intensity farming in a wide range of climates, requiring only limited space and giving high yields per hectare. They are reared mainly for their meat. Although adult birds possess quite good immunity, young birds can be threatened by spoilage bacteria, especially when they are transferred from the nests to the farm area. Based on our previous results related to the beneficial effect of bacteriocin-producing, probiotic strain Enterococcus faecium AL41 in poultry or rabbits, we decided to test its ability to control intestinal microbiota in farming ostriches which has never been tested previously.

  1. Assessing the Intestinal Microbiota in the SHINE Trial

    PubMed Central

    Gough, Ethan K.; Prendergast, Andrew J.; Mutasa, Kuda E.; Stoltzfus, Rebecca J.; Manges, Amee R.

    2015-01-01

    Advances in DNA sequencing technology now allow us to explore the dynamics and functions of the microbes that inhabit the human body, the microbiota. Recent studies involving experimental animal models suggest a role of the gut microbiota in growth. However, the specific changes in the human gut microbiota that contribute to growth remain unclear, and studies investigating the gut microbiota as a determinant of environmental enteric dysfunction (EED) and child stunting are lacking. In this article, we review the evidence for a link between the developing infant gut microbiota, infant feeding, EED, and stunting, and discuss the potential causal pathways relating these variables. We outline the analytic approaches we will use to investigate these relationships, by capitalizing on the longitudinal design and randomized interventions of the Sanitation Hygiene Infant Nutrition Efficacy trial in Zimbabwe. PMID:26602302

  2. Mice harboring pathobiont-free microbiota do not develop intestinal inflammation that normally results from an innate immune deficiency

    PubMed Central

    Gewirtz, Andrew T.

    2018-01-01

    Background Inability to maintain a stable and beneficial microbiota is associated with chronic gut inflammation, which classically manifests as colitis but may more commonly exist as low-grade inflammation that promotes metabolic syndrome. Alterations in microbiota, and associated inflammation, can originate from dysfunction in host proteins that manage the microbiota, such as the flagellin receptor TLR5. That the complete absence of a microbiota (i.e. germfree conditions) eliminates all evidence of inflammation in TLR5-deficient mice demonstrates that this model of gut inflammation is microbiota-dependent. We hypothesize that such microbiota dependency reflects an inability to manage pathobionts, such as Adherent-Invasive E. coli (AIEC). Herein, we examined the extent to which microbiota mismanagement and associated inflammation in TLR5-deficient mice would manifest in a limited and pathobiont-free microbiota. For this purpose, WT and TLR5-deficient mice were generated and maintained with the 8-member consortium of bacteria referred to as “Altered Schaedler Flora” (ASF). Such ASF animals were subsequently inoculated with AIEC reference strain LF82. Feces were assayed for bacterial loads, fecal lipopolysaccharide and flagellin loads, fecal inflammatory marker lipocalin-2 and microbiota composition. Results Relative to similarly maintained WT mice, mice lacking TLR5 (T5KO) did not display low-grade intestinal inflammation nor metabolic syndrome under ASF conditions. Concomitantly, the ASF microbial community was similar between WT and T5KO mice, while inoculation with AIEC strain LF82 resulted in alteration of the ASF community in T5KO mice compared to WT control animals. AIEC LF82 inoculation in ASF T5KO mice resulted in microbiota components having elevated levels of bioactive lipopolysaccharide and flagellin, a modest level of low-grade inflammation and increased adiposity. Conclusions In a limited-complexity pathobiont-free microbiota, loss of the flagellin

  3. The intestinal microbiota composition and weight development in children: the KOALA Birth Cohort Study.

    PubMed

    Scheepers, L E J M; Penders, J; Mbakwa, C A; Thijs, C; Mommers, M; Arts, I C W

    2015-01-01

    To investigate whether the intestinal microbiota composition in early infancy is associated with subsequent weight development in children. Analyses were conducted within the KOALA Birth Cohort Study (n = 2834). This cohort originates from two recruitments groups: pregnant women with a conventional lifestyle (no selection based on lifestyle) and pregnant women recruited through alternative channels (organic shops, anthroposophic clinicians/midwives, Steiner schools and relevant magazines). From 909 one-month-old infants, fecal samples were collected and analyzed by quantitative PCR targeting bifidobacteria, Bacteroides fragilis group, Clostridium difficile, Escherichia coli, Lactobacilli and total bacteria counts. Between the ages of 1 and 10 years, parent-reported weight and height was collected at 7 time points. Age- and gender-standardized body mass index (BMI) z-scores were calculated. Data were analyzed using generalized estimating equation. Colonization with B. fragilis group was borderline significantly associated with a higher BMI z-score of 0.15 (95% confidence interval (CI): -0.02 to 0.31), in the conventional subcohort. After stratification for fiber intake (P(forinteraction) = 0.003), colonization with B. fragilis group was associated with a 0.34 higher BMI z-score among children with a low-fiber intake in this subcohort (95% CI: 0.17-0.53). Higher counts among colonized children were positively associated with BMI z-score only in children within the conventional subcohort and a high-fiber diet (BMI z-score 0.08; 95% CI: 0.01-0.14), but inversely associated in children with a low-fiber diet (BMI z-score -0.05; 95% CI: -0.10 to 0.00), and in children recruited through alternative channels (BMI z-score -0.10; 95% CI: -0.17 to -0.03). The other bacteria were not associated with BMI z-scores, regardless of subcohort. Using a targeted approach, we conclude that the intestinal microbiota, particularly the B. fragilis group, is associated with childhood weight

  4. Dysbiosis of the gut microbiota in disease.

    PubMed

    Carding, Simon; Verbeke, Kristin; Vipond, Daniel T; Corfe, Bernard M; Owen, Lauren J

    2015-01-01

    There is growing evidence that dysbiosis of the gut microbiota is associated with the pathogenesis of both intestinal and extra-intestinal disorders. Intestinal disorders include inflammatory bowel disease, irritable bowel syndrome (IBS), and coeliac disease, while extra-intestinal disorders include allergy, asthma, metabolic syndrome, cardiovascular disease, and obesity.

  5. Dietary administration of the probiotic SpPdp11: Effects on the intestinal microbiota and immune-related gene expression of farmed Solea senegalensis treated with oxytetracycline.

    PubMed

    Tapia-Paniagua, S T; Vidal, S; Lobo, C; García de la Banda, I; Esteban, M A; Balebona, M C; Moriñigo, M A

    2015-10-01

    Few antimicrobials are currently authorised in the aquaculture industry to treat infectious diseases. Among them, oxytetracycline (OTC) is one of the first-choice drugs for nearly all bacterial diseases. The objective of this study was to evaluate the effect of the dietary administration of OTC both alone and jointly with the probiotic Shewanella putrefaciens Pdp11 (SpPdp11) on the intestinal microbiota and hepatic expression of genes related to immunity in Senegalese sole (Solea senegalensis) juveniles. The results demonstrated that the richness and diversity of the intestinal microbiota of fish treated with OTC decreased compared with those of the control group but that these effects were lessened by the simultaneous administration of SpPdp11. In addition, specimens that received OTC and SpPdp11 jointly showed a decreased intensity of the Denaturing Gradient Gel Electrophoresis (DGGE) bands related to Vibrio genus and the presence of DGGE bands related to Lactobacillus and Shewanella genera. The relationship among the intestinal microbiota of fish fed with control and OTC diets and the expression of the NADPH oxidase and CASPASE-6 genes was demonstrated by a Principal Components Analysis (PCA) carried out in this study. In contrast, a close relationship between the transcription of genes, such as NKEF, IGF-β, HSP70 and GP96, and the DGGE bands of fish treated jointly with OTC and SpPdp11 was observed in the PCA study. In summary, the results obtained in this study demonstrate that the administration of OTC results in the up-regulation of genes related to apoptosis but that the joint administration of OTC and S. putrefaciens Pdp11 increases the transcription of genes related to antiapoptotic effects and oxidative stress regulation. Further, a clear relationship between these changes and those detected in the intestinal microbiota is established. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Reframing the Teenage Wasteland: Adolescent Microbiota-Gut-Brain Axis.

    PubMed

    McVey Neufeld, Karen-Anne; Luczynski, Pauline; Dinan, Timothy G; Cryan, John F

    2016-04-01

    Human adolescence is arguably one of the most challenging periods of development. The young adult is exposed to a variety of stressors and environmental stimuli on a backdrop of significant physiological change and development, which is especially apparent in the brain. It is therefore unsurprising that many psychiatric disorders are first observable during this time. The human intestine is inhabited by trillions of microorganisms, and evidence from both preclinical and clinical research focusing on the established microbiota-gut-brain axis suggests that the etiology and pathophysiology of psychiatric disorders may be influenced by intestinal dysbiosis. Provocatively, many if not all of the challenges faced by the developing teen have a documented impact on these intestinal commensal microbiota. In this review, we briefly summarize what is known about the developing adolescent brain and intestinal microbiota, discuss recent research investigating the microbiota-gut-brain axis during puberty, and propose that pre- and probiotics may prove useful in both the prevention and treatment of psychiatric disorders specifically benefitting the young adult. © The Author(s) 2016.

  7. Reframing the Teenage Wasteland: Adolescent Microbiota-Gut-Brain Axis

    PubMed Central

    McVey Neufeld, Karen-Anne; Luczynski, Pauline; Dinan, Timothy G.

    2016-01-01

    Human adolescence is arguably one of the most challenging periods of development. The young adult is exposed to a variety of stressors and environmental stimuli on a backdrop of significant physiological change and development, which is especially apparent in the brain. It is therefore unsurprising that many psychiatric disorders are first observable during this time. The human intestine is inhabited by trillions of microorganisms, and evidence from both preclinical and clinical research focusing on the established microbiota-gut-brain axis suggests that the etiology and pathophysiology of psychiatric disorders may be influenced by intestinal dysbiosis. Provocatively, many if not all of the challenges faced by the developing teen have a documented impact on these intestinal commensal microbiota. In this review, we briefly summarize what is known about the developing adolescent brain and intestinal microbiota, discuss recent research investigating the microbiota-gut-brain axis during puberty, and propose that pre- and probiotics may prove useful in both the prevention and treatment of psychiatric disorders specifically benefitting the young adult. PMID:27254413

  8. Dietary fat and gut microbiota: mechanisms involved in obesity control.

    PubMed

    Coelho, Olívia Gonçalves Leão; Cândido, Flávia Galvão; Alfenas, Rita de Cássia Gonçalves

    2018-05-31

    Obesity is a serious global health problem that is directly related to various morbidities manifestation. Intestinal dysbiosis has been implicated on obesity pathogenesis. Diet composition can alter gut microbiota, regardless of energy intake. Dietary fatty acids quality may affect gut microbiota composition, which in turn may affect host metabolic health. The mechanisms by which the different type of FFA modulate gut microbiota is yet poor elucidate and there is a lack of studies regard to this. Fatty acids may act in cell membrane, interfere with energy production, inhibit enzymatic activities, impair nutrient absorption and generate toxic compounds to cells, leading to growth inhibition or even bacterial death. The beneficial effect of the consumption of n-3 polyunsaturated fatty acids (PUFA) and conjugated linoleic acid (CLA) on microbiota, unlike n-6 PUFA and saturated fatty acids has been suggested. n-3 PUFA consumption promotes desirable changes on obese intestinal microbiota making it similar to that of normal weight individuals. More studies are needed to better understand the effect of CLA on microbiota and host health. Long term human controlled clinical trials must be conducted to allow us to understand the complex interaction between dietary fat, intestinal microbiota and obesity.

  9. Feed supplemented with 3 different antibiotics improved food intake and decreased the activation of the humoral immune response in healthy weaned pigs but had differing effects on intestinal microbiota.

    PubMed

    Bosi, P; Merialdi, G; Scandurra, S; Messori, S; Bardasi, L; Nisi, I; Russo, D; Casini, L; Trevisi, P

    2011-12-01

    The aim of this study was to determine the effects of 3 antibiotics used for pulmonary pathologies added in the feed of weaned pigs on growth performance, commensal microbiota, and immune response. At weaning, a total of 72 pigs were randomly assigned by BW and litter to 1 of the following diets: control (typical weaning diet), control + 400 mg of tilmicosin/kg, control + 600 mg of amoxicillin/kg, and control + 300 mg of doxycycline/kg. Individually penned pigs were slaughtered after 3 wk (12 pigs/treatment) or 4 wk (6 pigs/treatment). During the fourth week, all pigs received the control diet to test the residual effect of the antimicrobial supplementation. The antibiotic supplementation increased growth and feed intake during the first week (P < 0.01) and over the first 3 wk combined (P < 0.05). Gain-to-feed ratio tended to improve during the first week (P = 0.076) by the antibiotics compared with the control. Among the antibiotic treatments, no difference was observed in ADG and feed intake, which were also unchanged by the diet in the fourth week. The fecal enterobacteria counts were increased by amoxicillin on d 14 and 21 (P < 0.05 and 0.01, respectively) and were decreased by tilmicosin (P < 0.001) compared with the control. Amoxicillin decreased lactic acid bacteria (P < 0.01) counts compared with the control. The antibiotic supplementation tended to decrease total bacteria variability in the jejunum (Shannon index, P = 0.091) compared with the control. The antibiotic treatment decreased the mean total serum IgM concentration (P = 0.016) after 3 wk and did not change the mucosal histomorphometry of the small intestine. For tilmicosin, the observed positive action on piglet performance and feed intake can originate by the decreased costs of immune activation determined by the action on intestinal microbiota. For amoxicillin and doxycycline, the observation on intestinal and fecal microbiota seems to be not sufficient to explain their growth-promoting effect.

  10. Phylogenetic analysis of faecal microbiota from captive cheetahs reveals underrepresentation of Bacteroidetes and Bifidobacteriaceae

    PubMed Central

    2014-01-01

    Background Imbalanced feeding regimes may initiate gastrointestinal and metabolic diseases in endangered felids kept in captivity such as cheetahs. Given the crucial role of the host’s intestinal microbiota in feed fermentation and health maintenance, a better understanding of the cheetah’s intestinal ecosystem is essential for improvement of current feeding strategies. We determined the phylogenetic diversity of the faecal microbiota of the only two cheetahs housed in an EAZA associated zoo in Flanders, Belgium, to gain first insights in the relative distribution, identity and potential role of the major community members. Results Taxonomic analysis of 16S rRNA gene clone libraries (702 clones) revealed a microbiota dominated by Firmicutes (94.7%), followed by a minority of Actinobacteria (4.3%), Proteobacteria (0.4%) and Fusobacteria (0.6%). In the Firmicutes, the majority of the phylotypes within the Clostridiales were assigned to Clostridium clusters XIVa (43%), XI (38%) and I (13%). Members of the Bacteroidetes phylum and Bifidobacteriaceae, two groups that can positively contribute in maintaining intestinal homeostasis, were absent in the clone libraries and detected in only marginal to low levels in real-time PCR analyses. Conclusions This marked underrepresentation is in contrast to data previously reported in domestic cats where Bacteroidetes and Bifidobacteriaceae are common residents of the faecal microbiota. Next to methodological differences, these findings may also reflect the apparent differences in dietary habits of both felid species. Thus, our results question the role of the domestic cat as the best available model for nutritional intervention studies in endangered exotic felids. PMID:24548488

  11. Phylogenetic analysis of faecal microbiota from captive cheetahs reveals underrepresentation of Bacteroidetes and Bifidobacteriaceae.

    PubMed

    Becker, Anne A M J; Hesta, Myriam; Hollants, Joke; Janssens, Geert P J; Huys, Geert

    2014-02-18

    Imbalanced feeding regimes may initiate gastrointestinal and metabolic diseases in endangered felids kept in captivity such as cheetahs. Given the crucial role of the host's intestinal microbiota in feed fermentation and health maintenance, a better understanding of the cheetah's intestinal ecosystem is essential for improvement of current feeding strategies. We determined the phylogenetic diversity of the faecal microbiota of the only two cheetahs housed in an EAZA associated zoo in Flanders, Belgium, to gain first insights in the relative distribution, identity and potential role of the major community members. Taxonomic analysis of 16S rRNA gene clone libraries (702 clones) revealed a microbiota dominated by Firmicutes (94.7%), followed by a minority of Actinobacteria (4.3%), Proteobacteria (0.4%) and Fusobacteria (0.6%). In the Firmicutes, the majority of the phylotypes within the Clostridiales were assigned to Clostridium clusters XIVa (43%), XI (38%) and I (13%). Members of the Bacteroidetes phylum and Bifidobacteriaceae, two groups that can positively contribute in maintaining intestinal homeostasis, were absent in the clone libraries and detected in only marginal to low levels in real-time PCR analyses. This marked underrepresentation is in contrast to data previously reported in domestic cats where Bacteroidetes and Bifidobacteriaceae are common residents of the faecal microbiota. Next to methodological differences, these findings may also reflect the apparent differences in dietary habits of both felid species. Thus, our results question the role of the domestic cat as the best available model for nutritional intervention studies in endangered exotic felids.

  12. Effects of ionised or chelated water-soluble mineral mixture supplementation on growth performance, nutrient digestibility, blood characteristics, meat quality and intestinal microbiota in broilers.

    PubMed

    Upadhaya, S D; Lee, B R; Kim, I H

    2016-04-01

    An experiment was conducted to study the effects of dietary supplementation of water-soluble ionised or chelated mineral mixture on growth performance, nutrient digestibility, blood characteristics, relative organ weight, meat quality and excreta microflora in broilers. A total of 408 Arbor Acres broilers (17 birds in 8 replicate pens) were randomly allocated into one of the following three treatments: (1) Control/basal diet (CON), (2) T1 (basal diet + 0.5% ionised mineral mixture solution, pH 3.0) and (3) T2 (basal diet + 0.5% chelated mineral mixture solution, pH 3.0). The body weight gain was greater and feed conversion ratio was lower in broilers supplemented with ionised or chelated mineral liquid complex compared to CON during the grower and overall phase of the experiment. No significant effect in the concentration of Ca and P in the blood was observed in birds supplemented with ionised or chelated mineral mixture solution. No adverse effects were observed in organ weight and meat quality with ionised or chelated mineral mixture supplementation. Regarding intestinal microbiota counts there was a reduction of Escherichia coli counts in the small intestine in ionised mineral supplemented birds. In the large intestine, E. coli as well as Salmonella populations were reduced in ionised mineral supplemented birds. In conclusion, ionised or chelated minerals have partial positive effects in improving growth performance and reducing pathogenic bacteria load in the gastro-intestinal tract.

  13. Prebiotics Reduce Body Fat and Alter Intestinal Microbiota in Children Who Are Overweight or With Obesity.

    PubMed

    Nicolucci, Alissa C; Hume, Megan P; Martínez, Inés; Mayengbam, Shyamchand; Walter, Jens; Reimer, Raylene A

    2017-09-01

    It might be possible to manipulate the intestinal microbiota with prebiotics or other agents to prevent or treat obesity. However, little is known about the ability of prebiotics to specifically modify gut microbiota in children with overweight/obesity or reduce body weight. We performed a randomized controlled trial to study the effects of prebiotics on body composition, markers of inflammation, bile acids in fecal samples, and composition of the intestinal microbiota in children with overweight or obesity. We performed a single-center, double-blind, placebo-controlled trial of 2 separate cohorts (March 2014 and August 2014) at the University of Calgary in Canada. Participants included children, 7-12 years old, with overweight or obesity (>85th percentile of body mass index) but otherwise healthy. Participants were randomly assigned to groups given either oligofructose-enriched inulin (OI; 8 g/day; n=22) or maltodextrin placebo (isocaloric dose, controls; n=20) once daily for 16 weeks. Fat mass and lean mass were measured using dual-energy-x-ray absorptiometry. Height, weight, and waist circumference were measured at baseline and every 4 weeks thereafter. Blood samples were collected at baseline and 16 weeks, and analyzed for lipids, cytokines, lipopolysaccharide, and insulin. Fecal samples were collected at baseline and 16 weeks; bile acids were profiled using high-performance liquid chromatography and the composition of the microbiota was analyzed by 16S rRNA sequencing and quantitative polymerase chain reaction. The primary outcome was change in percent body fat from baseline to 16 weeks. After 16 weeks, children who consumed OI had significant decreases in body weight z-score (decrease of 3.1%), percent body fat (decrease of 2.4%), and percent trunk fat (decrease of 3.8%) compared with children given placebo (increase of 0.5%, increase of 0.05%, and decrease of 0.3%, respectively). Children who consumed OI also had a significant reduction in level of

  14. Avian Influenza Virus Subtype H9N2 Affects Intestinal Microbiota, Barrier Structure Injury, and Inflammatory Intestinal Disease in the Chicken Ileum.

    PubMed

    Li, Hongxin; Liu, Xiaolin; Chen, Feiyang; Zuo, Kejing; Wu, Che; Yan, Yiming; Chen, Weiguo; Lin, Wencheng; Xie, Qingmei

    2018-05-18

    Avian influenza virus subtype H9N2 (H9N2 AIV) has caused significant losses to the poultry industry due to the high mortality associated with secondary infections attributable to E. coli . This study tries to address the underlying secondary mechanisms after H9N2 AIV infection. Initially, nine day-old specific pathogen-free chickens were assigned to control (uninfected) and H9N2-infected groups, respectively. Using Illumina sequencing, histological examination, and quantitative real-time PCR, it was found that H9N2 AIV caused intestinal microbiota disorder, injury, and inflammatory damage to the intestinal mucosa. Notably, the genera Escherichia , especially E. coli , significantly increased ( p < 0.01) at five days post-infection (dpi), while Lactobacillus , Enterococcus , and other probiotic organisms were significantly reduced ( p < 0.01). Simultaneously, the mRNA expression of tight junction proteins ( ZO-1 , claudin 3, and occludin), TFF2, and Muc2 were significantly reduced ( p < 0.01), indicating the destruction of the intestinal epithelial cell tight junctions and the damage of mucin layer construction. Moreover, the mRNA expression of proinflammatory cytokines IFN-γ, IL-22, IFN-α, and IL-17A in intestinal epithelial cells were significantly upregulated, resulting in the inflammatory response and intestinal injury. Our findings may provide a theoretical basis for observed gastroenteritis-like symptoms such as diarrhea and secondary E. coli infection following H9N2 AIV infection.

  15. Molecular Tools for Investigating the Gut Microbiota

    NASA Astrophysics Data System (ADS)

    Lay, Christophe

    The “microbial world within us” (Zoetendal et al., 2006) is populated by a complex society of indigenous microorganisms that feature different “ethnic” populations. Those microbial cells thriving within us are estimated to outnumber human body cells by a factor of ten to one. Insights into the relation between the intestinal microbial community and its host have been gained through gnotobiology. Indeed, the influence of the gut microbiota upon human development, physiology, immunity, and nutrition has been inferred by comparing gnotoxenic and axenic murine models (Hooper et al., 1998, 2002, 2003; Hooper and Gordon, 2001).

  16. The effects of Lactobacillus acidophilus as feed supplement on skin mucosal immune parameters, intestinal microbiota, stress resistance and growth performance of black swordtail (Xiphophorus helleri).

    PubMed

    Hoseinifar, Seyed Hossein; Roosta, Zahra; Hajimoradloo, Abdolmajid; Vakili, Farzaneh

    2015-02-01

    The present study evaluates the effects of different levels of dietary Lactobacillus acidophilus as feed supplement on intestinal microbiota, skin mucus immune parameters and salinity stress resistance as well as growth performance of black swordtail (Xiphophorus helleri). One-thousand and eight hundred healthy black swordtail larvae (0.03 ± 0.001 g) were randomly distributed in 12 tanks (100 L) at a density of 150 fish per aquaria and fed different levels of dietary L. acidophilus (0, 1.5 × 10(8), 3 × 10(8) and 6 × 10(8) CFU g(-1)) for 10 weeks. At the end of trial, there were significant differences among antibacterial activity of skin mucus in probiotic fed fish and control group (P < 0.05). Furthermore, the skin mucus protein level and alkaline phosphatase activity in control group were significantly lower than those of L. acidophilus fed fish (P < 0.05). Microbiological assessments revealed that feeding with probiotic supplemented diet remarkably increased total autochthonous bacteria and autochthonous lactic acid bacteria levels (P < 0.05). The results showed that dietary administration of L. acidophilus significantly elevated black swordtail resistance against salinity stress (i.e survival %) (P < 0.05). Also, dietary administration of different levels of L. acidophilus improved weight gain, SGR, FCR compared to fish fed unsupplemented diet (P < 0.05). These results demonstrate beneficial effects of dietary L. acidophilus on mucosal immune parameters, intestinal microbiota, stress resistance and growth parameters of black swordtail and the appropriate inclusion is 6 × 10(8) CFU g(-1). Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. A gut reaction: the combined influence of exercise and diet on gastrointestinal microbiota in rats.

    PubMed

    Batacan, R B; Fenning, A S; Dalbo, V J; Scanlan, A T; Duncan, M J; Moore, R J; Stanley, D

    2017-06-01

    Intestinal microbiota modulates the development of clinical conditions, including metabolic syndrome and obesity. Many of these conditions are influenced by nutritional and exercise behaviours. This study aimed to investigate the ability of exercise to re-shape the intestinal microbiota and the influence of the diet on the process. A rat model was used to examine the intestinal microbiota responses to four activity conditions, including: high-intensity interval training (HIIT), light-intensity training (LIT), sedentary and normal control, each containing two nutritional conditions: high-fat high-fructose diet (HF) and standard chow (SC) diet. No significant differences in microbiota were apparent between activity conditions in rats fed a HF diet but changes in the presence/absence of phylotypes were observed in the LIT and HIIT groups. In rats fed SC, significant differences in intestinal microbiota were evident between exercised and nonexercised rats. Both LIT and HIIT induced significant differences in intestinal microbiota in SC-fed rats compared to their respective SC-fed controls. Characterization of the exercise-induced bacterial phylotypes indicated an increase in bacteria likely capable of degrading resistant polysaccharides and an increase in short chain fatty acid producers. While a significant effect of exercise on microbiota composition occurred in SC-fed rats, the HF-fed rats microbiota showed little response. These data suggest that a HF diet prevented microbiota differentiation in response to exercise. The importance of diet-exercise interaction is extended to the level of intestinal bacteria and gut health. © 2017 The Society for Applied Microbiology.

  18. Saccharomyces boulardii CNCM I-745 supports regeneration of the intestinal microbiota after diarrheic dysbiosis - a review.

    PubMed

    Moré, Margret I; Swidsinski, Alexander

    2015-01-01

    The probiotic medicinal yeast Saccharomyces cerevisiae HANSEN CBS 5926 (Saccharomyces boulardii CNCM I-745) is used for the prevention and treatment of diarrhea. Its action is based on multiple mechanisms, including immunological effects, pathogen-binding and antitoxinic effects, as well as effects on digestive enzymes. Correlated with these effects, but also due to its inherent properties, S. boulardii is able to create a favorable growth environment for the beneficial intestinal microbiota, while constituting extra protection to the host mucus layer and mucosa. This review focuses on the positive influence of S. boulardii on the composition of the intestinal microbiota. In a dysbiosis, as during diarrhea, the main microbial population (especially Lachnospiraceae, Ruminococcaceae, Bacteroidaceae, and Prevotellaceae) is known to collapse by at least one order of magnitude. This gap generally leads to transient increases in pioneer-type bacteria (Enterobacteriaceae, Bifidobacteriaceae, and Clostridiaceae). Several human studies as well as animal models demonstrate that treatment with S. boulardii in dysbiosis leads to the faster reestablishment of a healthy microbiome. The most relevant effects of S. boulardii on the fecal composition include an increase of short chain fatty acid-producing bacteria (along with a rise in short chain fatty acids), especially of Lachnospiraceae and Ruminococcaceae, as well as an increase in Bacteroidaceae and Prevotellaceae. At the same time, there is a suppression of pioneer bacteria. The previously observed preventive action of S. boulardii, eg, during antibiotic therapy or regarding traveler's diarrhea, can be explained by several mechanisms, including a stabilizing effect on the healthy microbiota as well as possibly on the mucus layer. Several different dysbiotic situations could profit from the effects of S. boulardii CNCM I-745. Its additional potential lies in a general stabilization of the gut flora for at-risk populations

  19. Flavanol-Enriched Cocoa Powder Alters the Intestinal Microbiota, Tissue and Fluid Metabolite Profiles, and Intestinal Gene Expression in Pigs.

    PubMed

    Jang, Saebyeol; Sun, Jianghao; Chen, Pei; Lakshman, Sukla; Molokin, Aleksey; Harnly, James M; Vinyard, Bryan T; Urban, Joseph F; Davis, Cindy D; Solano-Aguilar, Gloria

    2016-04-01

    Consumption of cocoa-derived polyphenols has been associated with several health benefits; however, their effects on the intestinal microbiome and related features of host intestinal health are not adequately understood. The objective of this study was to determine the effects of eating flavanol-enriched cocoa powder on the composition of the gut microbiota, tissue metabolite profiles, and intestinal immune status. Male pigs (5 mo old, 28 kg mean body weight) were supplemented with 0, 2.5, 10, or 20 g flavanol-enriched cocoa powder/d for 27 d. Metabolites in serum, urine, the proximal colon contents, liver, and adipose tissue; bacterial abundance in the intestinal contents and feces; and intestinal tissue gene expression of inflammatory markers and Toll-like receptors (TLRs) were then determined. O-methyl-epicatechin-glucuronide conjugates dose-dependently increased (P< 0.01) in the urine (35- to 204-fold), serum (6- to 186-fold), and adipose tissue (34- to 1144-fold) of pigs fed cocoa powder. The concentration of 3-hydroxyphenylpropionic acid isomers in urine decreased as the dose of cocoa powder fed to pigs increased (75-85%,P< 0.05). Compared with the unsupplemented pigs, the abundance ofLactobacillusspecies was greater in the feces (7-fold,P= 0.005) and that ofBifidobacteriumspecies was greater in the proximal colon contents (9-fold,P= 0.01) in pigs fed only 20 or 10 g cocoa powder/d, respectively. Moreover, consumption of cocoa powder reducedTLR9gene expression in ileal Peyer's patches (67-80%,P< 0.05) and mesenteric lymph nodes (43-71%,P< 0.05) of pigs fed 2.5-20 g cocoa powder/d compared with pigs not supplemented with cocoa powder. This study demonstrates that consumption of cocoa powder by pigs can contribute to gut health by enhancing the abundance ofLactobacillusandBifidobacteriumspecies and modulating markers of localized intestinal immunity. © 2016 American Society for Nutrition.

  20. Effects of dietary polyphenol-rich plant products from grape or hop on pro-inflammatory gene expression in the intestine, nutrient digestibility and faecal microbiota of weaned pigs.

    PubMed

    Fiesel, Anja; Gessner, Denise K; Most, Erika; Eder, Klaus

    2014-09-04

    Feeding polyphenol-rich plant products has been shown to increase the gain:feed ratio in growing pigs. The reason for this finding has not yet been elucidated. In order to find the reasons for an increase of the gain:feed ratio, this study investigated the effect of two polyphenol-rich dietary supplements, grape seed and grape marc meal extract (GSGME) or spent hops (SH), on gut morphology, apparent digestibility of nutrients, microbial composition in faeces and the expression of pro-inflammatory genes in the intestine of pigs. Pigs fed GSGME or SH showed an improved gain:feed ratio in comparison to the control group (P < 0.10 for GSGME, P < 0.05 for SH). Villus height:crypt depth ratio in duodenum and jejunum as well as apparent total tract digestibility of nutrients were unchanged in the groups receiving GSGME or SH in comparison to the control group. However, the groups receiving GSGME or SH revealed an increased faecal pH value, lower levels of volatile fatty acids and lower counts of Streptococcus spp. and Clostridium Cluster XIVa in the faecal microbiota (P < 0.05). Moreover, both treatment groups had a lower expression of various pro-inflammatory genes in duodenum, ileum and colon than the control group (P < 0.05). The present study suggests that dietary plant products rich in polyphenols are able to improve the gain:feed ratio in growing pigs. It is assumed that an alteration in the microbial composition and anti-inflammatory effects of the polyphenol-rich plant products in the intestine might contribute to this effect.

  1. Alterations to metabolically active bacteria in the mucosa of the small intestine predict anti-obesity and anti-diabetic activities of grape seed extract in mice.

    PubMed

    Griffin, Laura E; Witrick, Katherine A; Klotz, Courtney; Dorenkott, Melanie R; Goodrich, Katheryn M; Fundaro, Gabrielle; McMillan, Ryan P; Hulver, Matthew W; Ponder, Monica A; Neilson, Andrew P

    2017-10-18

    Epidemiological and clinical studies suggest that grapes and grape-derived products may reduce the risk for chronic disease. Grape seed extract specifically has been gaining interest due to its reported ability to prevent weight gain, moderate hyperglycemia, and reduce inflammation. The purpose of this study was to examine the long-term effects of two doses of grape seed extract (10 and 100 mg kg -1 body wt per d in mice) on markers of metabolic syndrome in the context of a moderately high-fat diet. After 12 weeks, the lower dose of grape seed extract was more effective at inhibiting fat gain and improving glucose tolerance and insulin sensitivity. Neither the high fat diet nor grape seed extract altered skeletal muscle substrate metabolism. Most interestingly, when examining the profile of metabolically active microbiota in the mucosa of the small intestine, cecum, and colonic tissue, grape seed extract seemed to have the most dramatic effect on small intestinal tissue, where the population of Firmicutes was lower compared to control groups. This effect was not observed in the cecal or colonic tissues, suggesting that the main alterations to gut microbiota due to flavan-3-ol supplementation occur in the small intestine, which has not been reported previously. These findings suggest that grape seed extract can prevent early changes in glucose tolerance and alter small intestinal gut microbiota, prior to the onset of skeletal muscle metabolic derangements, when grape seed extract is consumed at a low dose in the context of a moderately high fat diet.

  2. Gut Microbiota Signatures Predict Host and Microbiota Responses to Dietary Interventions in Obese Individuals

    PubMed Central

    Korpela, Katri; Flint, Harry J.; Johnstone, Alexandra M.; Lappi, Jenni; Poutanen, Kaisa; Dewulf, Evelyne; Delzenne, Nathalie; de Vos, Willem M.; Salonen, Anne

    2014-01-01

    Background Interactions between the diet and intestinal microbiota play a role in health and disease, including obesity and related metabolic complications. There is great interest to use dietary means to manipulate the microbiota to promote health. Currently, the impact of dietary change on the microbiota and the host metabolism is poorly predictable and highly individual. We propose that the responsiveness of the gut microbiota may depend on its composition, and associate with metabolic changes in the host. Methodology Our study involved three independent cohorts of obese adults (n = 78) from Belgium, Finland, and Britain, participating in different dietary interventions aiming to improve metabolic health. We used a phylogenetic microarray for comprehensive fecal microbiota analysis at baseline and after the intervention. Blood cholesterol, insulin and inflammation markers were analyzed as indicators of host response. The data were divided into four training set – test set pairs; each intervention acted both as a part of a training set and as an independent test set. We used linear models to predict the responsiveness of the microbiota and the host, and logistic regression to predict responder vs. non-responder status, or increase vs. decrease of the health parameters. Principal Findings Our models, based on the abundance of several, mainly Firmicute species at baseline, predicted the responsiveness of the microbiota (AUC  =  0.77–1; predicted vs. observed correlation  =  0.67–0.88). Many of the predictive taxa showed a non-linear relationship with the responsiveness. The microbiota response associated with the change in serum cholesterol levels with an AUC of 0.96, highlighting the involvement of the intestinal microbiota in metabolic health. Conclusion This proof-of-principle study introduces the first potential microbial biomarkers for dietary responsiveness in obese individuals with impaired metabolic health, and reveals the potential of

  3. Effects of phenyllactic acid on growth performance, intestinal microbiota, relative organ weight, blood characteristics, and meat quality of broiler chicks.

    PubMed

    Wang, J P; Lee, J H; Yoo, J S; Cho, J H; Kim, H J; Kim, I H

    2010-07-01

    This study was conducted to determine the effects of dietary supplementation with phenyllactic acid (PLA) on growth performance, intestinal microbiota, relative organ weight, blood characteristics, and meat quality in broilers. A total of 500 male broilers (BW = 46.3 g) were randomly allotted into 1 of the following 5 dietary treatments: 1) basal diet (CON), 2) basal diet + 44 mg/kg of avilamycin (ANT), 3) basal diet + 0.2% PLA (PLA0.2), 4) basal diet + 0.4% PLA (PLA0.4), 5) basal diet + 0.2% PLA + 44 mg/kg of avilamycin (PA). Chicks fed PLA had lower feed intake (FI) from d 0 to 7 (P < 0.05) than those fed CON and ANT. From d 21 to 35, BW gain was greater in ANT, PLA0.4, and PA diets than CON and PLA0.2 diets (P < 0.05), whereas the FI was lowest in the PLA0.4 diet. Feed efficiency was depressed (P < 0.05) by the antibiotics and PLA supplementation during d 0 to 7, whereas it was improved (P < 0.05) in the PLA and ANT diets during d 21 to 35, with the best value in PLA0.4.The population of Escherichia coli in the large intestine was lower in the ANT, PLA0.4, and PA groups than the CON and PLA0.2 groups (P < 0.05). The relative weights of gizzard, liver, spleen, bursa of Fabricius, breast, and abdominal fat were unaffected by any of the dietary supplementations. Treatment of PLA led to an increase (P < 0.05) in the concentrations of white blood cells and lymphocyte percentage. The yellowness of breast muscle decreased by ANT, PLA0.4, and PA treatment. In conclusion, PLA can improve growth performance when it is supplemented in finisher diet (d 21 to 35), whereas it can depress BW gain and FI in earlier days (d 0 to 7). In addition, PLA can also decrease the number of E. coli in the large intestine and improve the number of immune-related blood cells.

  4. [Host-microbiota crosstalk and cardiovascular diseases].

    PubMed

    Amar, Jacques

    2018-06-13

    When analyzing the microbiota-host crosstalk, we have to consider three participants in this dialogue: the gut microbiota, the intestinal barrier and bacterial translocation. Experimental data demonstrate that host microbiota crosstalk plays a causal on the regulation of blood pressure, glucose metabolism and the development of atherosclerosis. Host microbiota crosstalk is associated in humans with main cardiovascular risk factors notably hypertension and type 2 diabetes. Host microbiota crosstalk is associated in humans with the onset of cardiovascular diseases. The Mediterranean diet has proven as proven to be an effective strategy in improving cardiovascular prognosis and in changing gut microbiota. Copyright © 2018. Published by Elsevier Masson SAS.

  5. Gut Microbiota-Immune System Crosstalk and Pancreatic Disorders

    PubMed Central

    Saviano, A.; Newton, E. E.; Serricchio, M. L.; Dal Lago, A. A.

    2018-01-01

    Gut microbiota is key to the development and modulation of the mucosal immune system. It plays a central role in several physiological functions, in the modulation of inflammatory signaling and in the protection against infections. In healthy states, there is a perfect balance between commensal and pathogens, and microbiota and the immune system interact to maintain gut homeostasis. The alteration of such balance, called dysbiosis, determines an intestinal bacterial overgrowth which leads to the disruption of the intestinal barrier with systemic translocation of pathogens. The pancreas does not possess its own microbiota, and it is believed that inflammatory and neoplastic processes affecting the gland may be linked to intestinal dysbiosis. Increasing research evidence testifies a correlation between intestinal dysbiosis and various pancreatic disorders, but it remains unclear whether dysbiosis is the cause or an effect. The analysis of specific alterations in the microbiome profile may permit to develop novel tools for the early detection of several pancreatic disorders, utilizing samples, such as blood, saliva, and stools. Future studies will have to elucidate the mechanisms by which gut microbiota is modulated and how it tunes the immune system, in order to be able to develop innovative treatment strategies for pancreatic disorders. PMID:29563853

  6. Gut Immune Maturation Depends on Colonization with a Host-Specific Microbiota

    PubMed Central

    Chung, Hachung; Pamp, Sünje J.; Hill, Jonathan A.; Surana, Neeraj K.; Edelman, Sanna M.; Troy, Erin B.; Reading, Nicola C.; Villablanca, Eduardo J.; Wang, Sen; Mora, Jorge R.; Umesaki, Yoshinori; Mathis, Diane; Benoist, Christophe; Relman, David A.; Kasper, Dennis L.

    2012-01-01

    SUMMARY Gut microbial induction of host immune maturation exemplifies host-microbe mutualism. We colonized germ-free (GF) mice with mouse microbiota (MMb) or human microbiota (HMb) to determine whether small intestinal immune maturation depends on a coevolved host-specific microbiota. Gut bacterial numbers and phylum abundance were similar in MMb and HMb mice, but bacterial species differed, especially the Firmicutes. HMb mouse intestines had low levels of CD4+ and CD8+ T cells, few proliferating T cells, few dendritic cells, and low antimicrobial peptide expression–all characteristics of GF mice. Rat microbiota also failed to fully expand intestinal T cell numbers in mice. Colonizing GF or HMb mice with mouse-segmented filamentous bacteria (SFB) partially restored T cell numbers, suggesting that SFB and other MMb organisms are required for full immune maturation in mice. Importantly, MMb conferred better protection against Salmonella infection than HMb. A host-specific microbiota appears to be critical for a healthy immune system. PMID:22726443

  7. An antibiotic-altered microbiota provides fuel for the enteric foe.

    PubMed

    Stiemsma, Leah T; Turvey, Stuart E; Finlay, Brett B

    2014-01-01

    Antibiotic therapies disrupt the intestinal microbiota and render the host susceptible to enteric infections. A recent report by Ng et al. explores the ability of two intestinal pathogens (Salmonella enterica serovar Typhimurium and Clostridium difficile) to use this disruption to their advantage and consume host carbohydrates that would otherwise be unavailable in the presence of a normal gut microbiota.

  8. Stable engraftment of human microbiota into mice with a single oral gavage following antibiotic conditioning.

    PubMed

    Staley, Christopher; Kaiser, Thomas; Beura, Lalit K; Hamilton, Matthew J; Weingarden, Alexa R; Bobr, Aleh; Kang, Johnthomas; Masopust, David; Sadowsky, Michael J; Khoruts, Alexander

    2017-08-01

    Human microbiota-associated (HMA) animal models relying on germ-free recipient mice are being used to study the relationship between intestinal microbiota and human disease. However, transfer of microbiota into germ-free animals also triggers global developmental changes in the recipient intestine, which can mask disease-specific attributes of the donor material. Therefore, a simple model of replacing microbiota into a developmentally mature intestinal environment remains highly desirable. Here we report on the development of a sequential, three-course antibiotic conditioning regimen that allows sustained engraftment of intestinal microorganisms following a single oral gavage with human donor microbiota. SourceTracker, a Bayesian, OTU-based algorithm, indicated that 59.3 ± 3.0% of the fecal bacterial communities in treated mice were attributable to the donor source. This overall degree of microbiota engraftment was similar in mice conditioned with antibiotics and germ-free mice. Limited surveys of systemic and mucosal immune sites did not show evidence of immune activation following introduction of human microbiota. The antibiotic treatment protocol described here followed by a single gavage of human microbiota may provide a useful, complimentary HMA model to that established in germ-free facilities. The model has the potential for further in-depth translational investigations of microbiota in a variety of human disease states.

  9. Mucosal immunity to pathogenic intestinal bacteria.

    PubMed

    Perez-Lopez, Araceli; Behnsen, Judith; Nuccio, Sean-Paul; Raffatellu, Manuela

    2016-03-01

    The intestinal mucosa is a particularly dynamic environment in which the host constantly interacts with trillions of commensal microorganisms, known as the microbiota, and periodically interacts with pathogens of diverse nature. In this Review, we discuss how mucosal immunity is controlled in response to enteric bacterial pathogens, with a focus on the species that cause morbidity and mortality in humans. We explain how the microbiota can shape the immune response to pathogenic bacteria, and we detail innate and adaptive immune mechanisms that drive protective immunity against these pathogens. The vast diversity of the microbiota, pathogens and immune responses encountered in the intestines precludes discussion of all of the relevant players in this Review. Instead, we aim to provide a representative overview of how the intestinal immune system responds to pathogenic bacteria.

  10. Effects of Arabinoxylan and Resistant Starch on Intestinal Microbiota and Short-Chain Fatty Acids in Subjects with Metabolic Syndrome: A Randomised Crossover Study.

    PubMed

    Hald, Stine; Schioldan, Anne Grethe; Moore, Mary E; Dige, Anders; Lærke, Helle Nygaard; Agnholt, Jørgen; Bach Knudsen, Knud Erik; Hermansen, Kjeld; Marco, Maria L; Gregersen, Søren; Dahlerup, Jens F

    2016-01-01

    Recently, the intestinal microbiota has been emphasised as an important contributor to the development of metabolic syndrome. Dietary fibre may exert beneficial effects through modulation of the intestinal microbiota and metabolic end products. We investigated the effects of a diet enriched with two different dietary fibres, arabinoxylan and resistant starch type 2, on the gut microbiome and faecal short-chain fatty acids. Nineteen adults with metabolic syndrome completed this randomised crossover study with two 4-week interventions of a diet enriched with arabinoxylan and resistant starch and a low-fibre Western-style diet. Faecal samples were collected before and at the end of the interventions for fermentative end-product analysis and 16S ribosomal RNA bacterial gene amplification for identification of bacterial taxa. Faecal carbohydrate residues were used to verify compliance. The diet enriched with arabinoxylan and resistant starch resulted in significant reductions in the total species diversity of the faecal-associated intestinal microbiota but also increased the heterogeneity of bacterial communities both between and within subjects. The proportion of Bifidobacterium was increased by arabinoxylan and resistant starch consumption (P<0.001), whereas the proportions of certain bacterial genera associated with dysbiotic intestinal communities were reduced. Furthermore, the total short-chain fatty acids (P<0.01), acetate (P<0.01) and butyrate concentrations (P<0.01) were higher by the end of the diet enriched with arabinoxylan and resistant starch compared with those resulting from the Western-style diet. The concentrations of isobutyrate (P = 0.05) and isovalerate (P = 0.03) decreased in response to the arabinoxylan and resistant starch enriched diet, indicating reduced protein fermentation. In conclusion, arabinoxylan and resistant starch intake changes the microbiome and short-chain fatty acid compositions, with potential beneficial effects on colonic health

  11. Prebiotics and gut microbiota in chickens.

    PubMed

    Pourabedin, Mohsen; Zhao, Xin

    2015-08-01

    Prebiotics are non-digestible feed ingredients that are metabolized by specific members of intestinal microbiota and provide health benefits for the host. Fermentable oligosaccharides are best known prebiotics that have received increasing attention in poultry production. They act through diverse mechanisms, such as providing nutrients, preventing pathogen adhesion to host cells, interacting with host immune systems and affecting gut morphological structure, all presumably through modulation of intestinal microbiota. Currently, fructooligosaccharides, inulin and mannanoligosaccharides have shown promising results while other prebiotic candidates such as xylooligosaccharides are still at an early development stage. Despite a growing body of evidence reporting health benefits of prebiotics in chickens, very limited studies have been conducted to directly link health improvements to prebiotic-dependent changes in the gut microbiota. This article visits the current knowledge of the chicken gastrointestinal microbiota and reviews most recent publications related to the roles played by prebiotics in modulation of the gut microbiota and immune functions. Progress in this field will help us better understand how the gut microbiota contributes to poultry health and productivity, and support the development of new prebiotic products as an alternative to in-feed antibiotics. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  12. Intestinal microbiota composition modulates choline bioavailability from diet and accumulation of the proatherogenic metabolite trimethylamine-N-oxide.

    PubMed

    Romano, Kymberleigh A; Vivas, Eugenio I; Amador-Noguez, Daniel; Rey, Federico E

    2015-03-17

    Choline is a water-soluble nutrient essential for human life. Gut microbial metabolism of choline results in the production of trimethylamine (TMA), which upon absorption by the host is converted in the liver to trimethylamine-N-oxide (TMAO). Recent studies revealed that TMAO exacerbates atherosclerosis in mice and positively correlates with the severity of this disease in humans. However, which microbes contribute to TMA production in the human gut, the extent to which host factors (e.g., genotype) and diet affect TMA production and colonization of these microbes, and the effects TMA-producing microbes have on the bioavailability of dietary choline remain largely unknown. We screened a collection of 79 sequenced human intestinal isolates encompassing the major phyla found in the human gut and identified nine strains capable of producing TMA from choline in vitro. Gnotobiotic mouse studies showed that TMAO accumulates in the serum of animals colonized with TMA-producing species, but not in the serum of animals colonized with intestinal isolates that do not generate TMA from choline in vitro. Remarkably, low levels of colonization by TMA-producing bacteria significantly reduced choline levels available to the host. This effect was more pronounced as the abundance of TMA-producing bacteria increased. Our findings provide a framework for designing strategies aimed at changing the representation or activity of TMA-producing bacteria in the human gut and suggest that the TMA-producing status of the gut microbiota should be considered when making recommendations about choline intake requirements for humans. Cardiovascular disease (CVD) is the leading cause of death and disability worldwide, and increased trimethylamine N-oxide (TMAO) levels have been causally linked with CVD development. This work identifies members of the human gut microbiota responsible for both the accumulation of trimethylamine (TMA), the precursor of the proatherogenic compound TMAO, and subsequent

  13. Use of a combination of in vitro models to investigate the impact of chlorpyrifos and inulin on the intestinal microbiota and the permeability of the intestinal mucosa.

    PubMed

    Réquilé, Marina; Gonzàlez Alvarez, Dubàn O; Delanaud, Stéphane; Rhazi, Larbi; Bach, Véronique; Depeint, Flore; Khorsi-Cauet, Hafida

    2018-05-28

    Dietary exposure to the organophosphorothionate pesticide chlorpyrifos (CPF) has been linked to dysbiosis of the gut microbiota. We therefore sought to investigate whether (i) CPF's impact extends to the intestinal barrier and (ii) the prebiotic inulin could prevent such an effect. In vitro models mimicking the intestinal environment (the SHIME®) and the intestinal mucosa (Caco-2/TC7 cells) were exposed to CPF. After the SHIME® had been exposed to CPF and/or inulin, we assessed the system's bacterial and metabolic profiles. Extracts from the SHIME®'s colon reactors were then transferred to Caco-2/TC7 cultures, and epithelial barrier integrity and function were assessed. We found that inulin co-treatment partially reversed CPF-induced dysbiosis and increased short-chain fatty acid production in the SHIME®. Furthermore, co-treatment impacted tight junction gene expression and inhibited pro-inflammatory signaling in the Caco-2/TC7 intestinal cell line. Whereas, an isolated in vitro assessment of CPF and inulin effects provides useful information on the mechanism of dysbiosis, combining two in vitro models increases the in vivo relevance.

  14. Anti-Infective Activities of Lactobacillus Strains in the Human Intestinal Microbiota: from Probiotics to Gastrointestinal Anti-Infectious Biotherapeutic Agents

    PubMed Central

    Liévin-Le Moal, Vanessa

    2014-01-01

    SUMMARY A vast and diverse array of microbial species displaying great phylogenic, genomic, and metabolic diversity have colonized the gastrointestinal tract. Resident microbes play a beneficial role by regulating the intestinal immune system, stimulating the maturation of host tissues, and playing a variety of roles in nutrition and in host resistance to gastric and enteric bacterial pathogens. The mechanisms by which the resident microbial species combat gastrointestinal pathogens are complex and include competitive metabolic interactions and the production of antimicrobial molecules. The human intestinal microbiota is a source from which Lactobacillus probiotic strains have often been isolated. Only six probiotic Lactobacillus strains isolated from human intestinal microbiota, i.e., L. rhamnosus GG, L. casei Shirota YIT9029, L. casei DN-114 001, L. johnsonii NCC 533, L. acidophilus LB, and L. reuteri DSM 17938, have been well characterized with regard to their potential antimicrobial effects against the major gastric and enteric bacterial pathogens and rotavirus. In this review, we describe the current knowledge concerning the experimental antibacterial activities, including antibiotic-like and cell-regulating activities, and therapeutic effects demonstrated in well-conducted, placebo-controlled, randomized clinical trials of these probiotic Lactobacillus strains. What is known about the antimicrobial activities supported by the molecules secreted by such probiotic Lactobacillus strains suggests that they constitute a promising new source for the development of innovative anti-infectious agents that act luminally and intracellularly in the gastrointestinal tract. PMID:24696432

  15. Flavanol-Enriched Cocoa Powder Alters the Intestinal Microbiota, Tissue and Fluid Metabolite Profiles, and Intestinal Gene Expression in Pigs1234

    PubMed Central

    Jang, Saebyeol; Sun, Jianghao; Chen, Pei; Lakshman, Sukla; Molokin, Aleksey; Harnly, James M; Vinyard, Bryan T; Urban, Joseph F; Davis, Cindy D; Solano-Aguilar, Gloria

    2016-01-01

    Background: Consumption of cocoa-derived polyphenols has been associated with several health benefits; however, their effects on the intestinal microbiome and related features of host intestinal health are not adequately understood. Objective: The objective of this study was to determine the effects of eating flavanol-enriched cocoa powder on the composition of the gut microbiota, tissue metabolite profiles, and intestinal immune status. Methods: Male pigs (5 mo old, 28 kg mean body weight) were supplemented with 0, 2.5, 10, or 20 g flavanol-enriched cocoa powder/d for 27 d. Metabolites in serum, urine, the proximal colon contents, liver, and adipose tissue; bacterial abundance in the intestinal contents and feces; and intestinal tissue gene expression of inflammatory markers and Toll-like receptors (TLRs) were then determined. Results: O-methyl-epicatechin-glucuronide conjugates dose-dependently increased (P < 0.01) in the urine (35- to 204-fold), serum (6- to 186-fold), and adipose tissue (34- to 1144-fold) of pigs fed cocoa powder. The concentration of 3-hydroxyphenylpropionic acid isomers in urine decreased as the dose of cocoa powder fed to pigs increased (75–85%, P < 0.05). Compared with the unsupplemented pigs, the abundance of Lactobacillus species was greater in the feces (7-fold, P = 0.005) and that of Bifidobacterium species was greater in the proximal colon contents (9-fold, P = 0.01) in pigs fed only 20 or 10 g cocoa powder/d, respectively. Moreover, consumption of cocoa powder reduced TLR9 gene expression in ileal Peyer’s patches (67–80%, P < 0.05) and mesenteric lymph nodes (43–71%, P < 0.05) of pigs fed 2.5–20 g cocoa powder/d compared with pigs not supplemented with cocoa powder. Conclusion: This study demonstrates that consumption of cocoa powder by pigs can contribute to gut health by enhancing the abundance of Lactobacillus and Bifidobacterium species and modulating markers of localized intestinal immunity. PMID:26936136

  16. Microbiota-inducible Innate Immune, Siderophore Binding Protein Lipocalin 2 is Critical for Intestinal Homeostasis.

    PubMed

    Singh, Vishal; Yeoh, Beng San; Chassaing, Benoit; Zhang, Benyue; Saha, Piu; Xiao, Xia; Awasthi, Deepika; Shashidharamurthy, Rangaiah; Dikshit, Madhu; Gewirtz, Andrew; Vijay-Kumar, Matam

    2016-07-01

    Lipocalin 2 (Lcn2) is a multifunctional innate immune protein whose expression closely correlates with extent of intestinal inflammation. However, whether Lcn2 plays a role in the pathogenesis of gut inflammation is unknown. Herein, we investigated the extent to which Lcn2 regulates inflammation and gut bacterial dysbiosis in mouse models of IBD. Lcn2 expression was monitored in murine colitis models and upon microbiota ablation/restoration. WT and Lcn2 knockout ( Lcn2 KO) mice were analyzed for gut bacterial load, composition by 16S rRNA gene pyrosequencing and, their colitogenic potential by co-housing with Il-10 KO mice. Acute (dextran sodium sulfate) and chronic (IL-10R neutralization and T-cell adoptive transfer) colitis was induced in WT and Lcn2 KO mice with or without antibiotics. Lcn2 expression was dramatically induced upon inflammation and was dependent upon presence of a gut microbiota and MyD88 signaling. Use of bone-marrow chimeric mice revealed non-immune cells are the major contributors of circulating Lcn2. Lcn2 KO mice exhibited elevated levels of entA -expressing gut bacteria burden and, moreover, a broadly distinct bacterial community relative to WT littermates. Lcn2 KO mice developed highly colitogenic T-cells and exhibited exacerbated colitis upon exposure to DSS or neutralization of IL-10. Such exacerbated colitis could be prevented by antibiotic treatment. Moreover, exposure to the microbiota of Lcn2 KO mice, via cohousing, resulted in severe colitis in Il-10 KO mice. Lcn2 is a bacterially-induced, MyD88-dependent, protein that play an important role in gut homeostasis and a pivotal role upon challenge. Hence, therapeutic manipulation of Lcn2 levels may provide a strategy to help manage diseases driven by alteration of the gut microbiota.

  17. Chronic Trichuris muris Infection in C57BL/6 Mice Causes Significant Changes in Host Microbiota and Metabolome: Effects Reversed by Pathogen Clearance.

    PubMed

    Houlden, Ashley; Hayes, Kelly S; Bancroft, Allison J; Worthington, John J; Wang, Ping; Grencis, Richard K; Roberts, Ian S

    2015-01-01

    Trichuris species are a globally important and prevalent group of intestinal helminth parasites, in which Trichuris muris (mouse whipworm) is an ideal model for this disease. This paper describes the first ever highly controlled and comprehensive investigation into the effects of T. muris infection on the faecal microbiota of mice and the effects on the microbiota following successful clearance of the infection. Communities were profiled using DGGE, 454 pyrosequencing, and metabolomics. Changes in microbial composition occurred between 14 and 28 days post infection, resulting in significant changes in α and β- diversity. This impact was dominated by a reduction in the diversity and abundance of Bacteroidetes, specifically Prevotella and Parabacteroides. Metabolomic analysis of stool samples of infected mice at day 41 showed significant differences to uninfected controls with a significant increase in the levels of a number of essential amino acids and a reduction in breakdown of dietary plant derived carbohydrates. The significant reduction in weight gain by infected mice probably reflects these metabolic changes and the incomplete digestion of dietary polysaccharides. Following clearance of infection the intestinal microbiota underwent additional changes gradually transitioning by day 91 towards a microbiota of an uninfected animal. These data indicate that the changes in microbiota as a consequence of infection were transitory requiring the presence of the pathogen for maintenance. Interestingly this was not observed for all of the key immune cell populations associated with chronic T. muris infection. This reflects the highly regulated chronic response and potential lasting immunological consequences of dysbiosis in the microbiota. Thus infection of T. muris causes a significant and substantial impact on intestinal microbiota and digestive function of mice with affects in long term immune regulation.

  18. Microbiota abnormalities in inflammatory airway diseases - Potential for therapy.

    PubMed

    Gollwitzer, Eva S; Marsland, Benjamin J

    2014-01-01

    Increasingly the development of novel therapeutic strategies is taking into consideration the contribution of the intestinal microbiota to health and disease. Dysbiosis of the microbial communities colonizing the human intestinal tract has been described for a variety of chronic diseases, such as inflammatory bowel disease, obesity and asthma. In particular, reduction of several so-called probiotic species including Lactobacilli and Bifidobacteria that are generally considered to be beneficial, as well as an outgrowth of potentially pathogenic bacteria is often reported. Thus a tempting therapeutic approach is to shape the constituents of the microbiota in an attempt to restore the microbial balance towards the growth of 'health-promoting' bacterial species. A twist to this scenario is the recent discovery that the respiratory tract also harbors a microbiota under steady-state conditions. Investigators have shown that the microbial composition of the airway flora is different between healthy lungs and those with chronic lung diseases, such as asthma, chronic obstructive pulmonary disease as well as cystic fibrosis. This is an emerging field, and thus far there is very limited data showing a direct contribution of the airway microbiota to the onset and progression of disease. However, should future studies provide such evidence, the airway microbiota might soon join the intestinal microbiota as a target for therapeutic intervention. In this review, we highlight the major advances that have been made describing the microbiota in chronic lung disease and discuss current and future approaches concerning manipulation of the microbiota for the treatment and prevention of disease. © 2013.

  19. Saccharomyces boulardii CNCM I-745 supports regeneration of the intestinal microbiota after diarrheic dysbiosis – a review

    PubMed Central

    Moré, Margret I; Swidsinski, Alexander

    2015-01-01

    The probiotic medicinal yeast Saccharomyces cerevisiae HANSEN CBS 5926 (Saccharomyces boulardii CNCM I-745) is used for the prevention and treatment of diarrhea. Its action is based on multiple mechanisms, including immunological effects, pathogen-binding and antitoxinic effects, as well as effects on digestive enzymes. Correlated with these effects, but also due to its inherent properties, S. boulardii is able to create a favorable growth environment for the beneficial intestinal microbiota, while constituting extra protection to the host mucus layer and mucosa. This review focuses on the positive influence of S. boulardii on the composition of the intestinal microbiota. In a dysbiosis, as during diarrhea, the main microbial population (especially Lachnospiraceae, Ruminococcaceae, Bacteroidaceae, and Prevotellaceae) is known to collapse by at least one order of magnitude. This gap generally leads to transient increases in pioneer-type bacteria (Enterobacteriaceae, Bifidobacteriaceae, and Clostridiaceae). Several human studies as well as animal models demonstrate that treatment with S. boulardii in dysbiosis leads to the faster reestablishment of a healthy microbiome. The most relevant effects of S. boulardii on the fecal composition include an increase of short chain fatty acid-producing bacteria (along with a rise in short chain fatty acids), especially of Lachnospiraceae and Ruminococcaceae, as well as an increase in Bacteroidaceae and Prevotellaceae. At the same time, there is a suppression of pioneer bacteria. The previously observed preventive action of S. boulardii, eg, during antibiotic therapy or regarding traveler’s diarrhea, can be explained by several mechanisms, including a stabilizing effect on the healthy microbiota as well as possibly on the mucus layer. Several different dysbiotic situations could profit from the effects of S. boulardii CNCM I-745. Its additional potential lies in a general stabilization of the gut flora for at-risk populations

  20. Effects of dietary fibre source on microbiota composition in the large intestine of suckling piglets.

    PubMed

    Zhang, Lingli; Mu, Chunlong; He, Xiangyu; Su, Yong; Mao, Shengyong; Zhang, Jing; Smidt, Hauke; Zhu, Weiyun

    2016-07-01

    This study aimed to investigate the effects of dietary fibre sources on the gut microbiota in suckling piglets, and to test the hypothesis that a moderate increase of dietary fibre may affect the gut microbiota during the suckling period. Suckling piglets were fed different fibre-containing diets or a control diet from postnatal day 7 to 22. Digesta samples from cecum, proximal colon and distal colon were used for Pig Intestinal Tract Chip analysis. The data showed that the effects of fibre-containing diet on the gut microbiota differed in the fibre source and gut location. The alfalfa diet increased Clostridium cluster XIVb and Sporobacter termitidis in the cecum compared to the pure cellulose diet. Compared to the control diet, the alfalfa diet also increased Coprococcus eutactus in the distal colon, while the pure cellulose diet decreased Eubacterium pyruvativorans in the cecum. The pure cellulose diet increased Prevotella ruminicola compared to the wheat bran diet. Interestingly, the alfalfa group had the lowest abundance of the potential pathogen Streptococcus suis in the cecum and distal colon. These results indicated that a moderate increase in dietary fibres affected the microbial composition in suckling piglets, and that the alfalfa inclusion produced some beneficial effects on the microbial communities. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  1. Comparison Between the Fecal Bacterial Microbiota of Healthy and Diarrheic Captive Musk Deer

    PubMed Central

    Li, Yimeng; Hu, Xiaolong; Yang, Shuang; Zhou, Juntong; Qi, Lei; Sun, Xiaoning; Fan, Mengyuan; Xu, Shanghua; Cha, Muha; Zhang, Meishan; Lin, Shaobi; Liu, Shuqiang; Hu, Defu

    2018-01-01

    Diarrhea constitutes one of the most common diseases affecting the survival of captive musk deer and is usually caused by an imbalance in intestinal microbiota. Currently, research regarding the structure and function of intestinal microbiota in diarrheic musk deer is lacking. Therefore, in the present study, high-throughput 16S-rRNA gene sequencing was used to analyze the intestinal microbiota in feces of healthy captive musk deer (HMD) (n = 8) and musk deer with mild (MMD) (n = 8), and severe (n = 5) (SMD) diarrhea to compare the difference in intestinal microbiota of musk deer under various physiological conditions. The results showed that the diversity of HMD fecal microbiota was significantly higher than that of the two diarrhea samples. β Diversity results indicated that there were extremely significant differences in bacterial communities between the HMD sample and the MMD and SMD samples. However, no significant difference was found between the two diarrhea samples. LefSe analysis showed that the degree of intestinal physiological dysfunction in musk deer was correlated with the types of major pathogens. The main pathogen in the MMD group is Escherichia–Shigella, whereas Fusobacterium is the main pathogen in the SMD group. PICRUSt functional profile prediction indicated that the intestinal microbiota disorder could also lead to changes in the abundance of genes in metabolic pathways of the immune system. Altogether, this study provides a theoretical basis for the exploration of treatments for diarrhea in captive musk deer, which is of considerable significance to the implementation of the musk deer release into the wild program. PMID:29551996

  2. Effects of a Potential Autochthonous Probiotic Bacillus subtilis 2-1 on the Growth and Intestinal Microbiota of Juvenile Sea Cucumber, Apostichopus japonicus Selenka

    NASA Astrophysics Data System (ADS)

    Zhao, Yancui; Yuan, Lei; Wan, Junli; Sun, Hushan; Wang, Yiyan; Zhang, Qin

    2018-04-01

    The effects of Bacillus subtilis 2-1 from the intestine of healthy sea cucumber on the growth, digestive enzyme activities and intestinal microbiota of juvenile sea cucumber ( Apostichopus japonicus) were determined in the present study. Sea cucumber was fed with Sargassum thunbergii powder supplemented with B. subtilis 2-1 at different concentrations varying among 0 (control), 105, 107, and 109 CFU g-1 for 8 weeks. Results showed that the growth performance and intestinal amylase and trypsin activities were significantly increased by dietary B. subtilis 2-1 at 109 CFU g-1 ( P < 0.05). However, dietary B. subtilis 2-1 had no significant influence on the lipase activity in sea cucumber ( P > 0.05). The polymerase chain reaction denaturing gradient gel electrophoresis and 16S rRNA gene sequencing analysis indicated that dietary B. subtilis 2-1 at 105 and 107 CFU g-1 inhibited most of the Proteobacteria including those in genus Vibrio. Dietary B. subtilis 2-1 at 109 CFU g-1 not only decreased the abundance and species of genus Vibrio, but also increased the intensity of genera Psychrobacter and Bacillus. A specific dosage of dietary B. subtilis 2-1 could increase the growth and modulate the intestinal microbiota of sea cucumber; thus it might be a novel probiotic for keeping the health of sea cucumber.

  3. Liver Ischemic Preconditioning (IPC) Improves Intestinal Microbiota Following Liver Transplantation in Rats through 16s rDNA-Based Analysis of Microbial Structure Shift

    PubMed Central

    Lu, Haifeng; Chen, Xinhua; Jiang, Jianwen; Liu, Hui; He, Yong; Ding, Songming; Hu, Zhenhua; Wang, Weilin; Zheng, Shusen

    2013-01-01

    Background Ischemia-reperfusion (I/R) injury is associated with intestinal microbial dysbiosis. The “gut-liver axis” closely links gut function and liver function in health and disease. Ischemic preconditioning (IPC) has been proven to reduce I/R injury in the surgery. This study aims to explore the effect of IPC on intestinal microbiota and to analyze characteristics of microbial structure shift following liver transplantation (LT). Methods The LT animal models of liver and gut IPC were established. Hepatic graft function was assessed by histology and serum ALT/AST. Intestinal barrier function was evaluated by mucosal ultrastructure, serum endotoxin, bacterial translocation, fecal sIgA content and serum TNF-α. Intestinal bacterial populations were determined by quantitative PCR. Microbial composition was characterized by DGGE and specific bacterial species were determined by sequence analysis. Principal Findings Liver IPC improved hepatic graft function expressed as ameliorated graft structure and reduced ALT/AST levels. After administration of liver IPC, intestinal mucosal ultrastructure improved, serum endotoxin and bacterial translocation mildly decreased, fecal sIgA content increased, and serum TNF-α decreased. Moreover, liver IPC promoted microbial restorations mainly through restoring Bifidobacterium spp., Clostridium clusters XI and Clostridium cluster XIVab on bacterial genus level. DGGE profiles indicated that liver IPC increased microbial diversity and species richness, and cluster analysis demonstrated that microbial structures were similar and clustered together between the NC group and Liver-IPC group. Furthermore, the phylogenetic tree of band sequences showed key bacteria corresponding to 10 key band classes of microbial structure shift induced by liver IPC, most of which were assigned to Bacteroidetes phylum. Conclusion Liver IPC cannot only improve hepatic graft function and intestinal barrier function, but also promote restorations of

  4. Liver ischemic preconditioning (IPC) improves intestinal microbiota following liver transplantation in rats through 16s rDNA-based analysis of microbial structure shift.

    PubMed

    Ren, Zhigang; Cui, Guangying; Lu, Haifeng; Chen, Xinhua; Jiang, Jianwen; Liu, Hui; He, Yong; Ding, Songming; Hu, Zhenhua; Wang, Weilin; Zheng, Shusen

    2013-01-01

    Ischemia-reperfusion (I/R) injury is associated with intestinal microbial dysbiosis. The "gut-liver axis" closely links gut function and liver function in health and disease. Ischemic preconditioning (IPC) has been proven to reduce I/R injury in the surgery. This study aims to explore the effect of IPC on intestinal microbiota and to analyze characteristics of microbial structure shift following liver transplantation (LT). The LT animal models of liver and gut IPC were established. Hepatic graft function was assessed by histology and serum ALT/AST. Intestinal barrier function was evaluated by mucosal ultrastructure, serum endotoxin, bacterial translocation, fecal sIgA content and serum TNF-α. Intestinal bacterial populations were determined by quantitative PCR. Microbial composition was characterized by DGGE and specific bacterial species were determined by sequence analysis. Liver IPC improved hepatic graft function expressed as ameliorated graft structure and reduced ALT/AST levels. After administration of liver IPC, intestinal mucosal ultrastructure improved, serum endotoxin and bacterial translocation mildly decreased, fecal sIgA content increased, and serum TNF-α decreased. Moreover, liver IPC promoted microbial restorations mainly through restoring Bifidobacterium spp., Clostridium clusters XI and Clostridium cluster XIVab on bacterial genus level. DGGE profiles indicated that liver IPC increased microbial diversity and species richness, and cluster analysis demonstrated that microbial structures were similar and clustered together between the NC group and Liver-IPC group. Furthermore, the phylogenetic tree of band sequences showed key bacteria corresponding to 10 key band classes of microbial structure shift induced by liver IPC, most of which were assigned to Bacteroidetes phylum. Liver IPC cannot only improve hepatic graft function and intestinal barrier function, but also promote restorations of intestinal microbiota following LT, which may further

  5. The composition of the gut microbiota throughout life, with an emphasis on early life

    PubMed Central

    Rodríguez, Juan Miguel; Murphy, Kiera; Stanton, Catherine; Ross, R. Paul; Kober, Olivia I.; Juge, Nathalie; Avershina, Ekaterina; Rudi, Knut; Narbad, Arjan; Jenmalm, Maria C.; Marchesi, Julian R.; Collado, Maria Carmen

    2015-01-01

    The intestinal microbiota has become a relevant aspect of human health. Microbial colonization runs in parallel with immune system maturation and plays a role in intestinal physiology and regulation. Increasing evidence on early microbial contact suggest that human intestinal microbiota is seeded before birth. Maternal microbiota forms the first microbial inoculum, and from birth, the microbial diversity increases and converges toward an adult-like microbiota by the end of the first 3–5 years of life. Perinatal factors such as mode of delivery, diet, genetics, and intestinal mucin glycosylation all contribute to influence microbial colonization. Once established, the composition of the gut microbiota is relatively stable throughout adult life, but can be altered as a result of bacterial infections, antibiotic treatment, lifestyle, surgical, and a long-term change in diet. Shifts in this complex microbial system have been reported to increase the risk of disease. Therefore, an adequate establishment of microbiota and its maintenance throughout life would reduce the risk of disease in early and late life. This review discusses recent studies on the early colonization and factors influencing this process which impact on health. PMID:25651996

  6. Daily Changes in Composition and Diversity of the Intestinal Microbiota in Patients with Anorexia Nervosa: A Series of Three Cases.

    PubMed

    Kleiman, Susan C; Glenny, Elaine M; Bulik-Sullivan, Emily C; Huh, Eun Young; Tsilimigras, Matthew C B; Fodor, Anthony A; Bulik, Cynthia M; Carroll, Ian M

    2017-09-01

    Anorexia nervosa, a severe psychiatric illness, is associated with an intestinal microbial dysbiosis. Individual microbial signatures dominate in healthy samples, even over time and under controlled conditions, but whether microbial markers of the disorder overcome inter-individual variation during the acute stage of illness or renourishment is unknown. We characterized daily changes in the intestinal microbiota in three acutely ill patients with anorexia nervosa over the entire course of hospital-based renourishment and found significant, patient-specific changes in microbial composition and diversity. This preliminary case series suggests that even in a state of pathology, individual microbial signatures persist in accounting for the majority of intestinal microbial variation. Copyright © 2017 John Wiley & Sons, Ltd and Eating Disorders Association. Copyright © 2017 John Wiley & Sons, Ltd and Eating Disorders Association.

  7. Association between the gut microbiota and mineral metabolism.

    PubMed

    Skrypnik, Katarzyna; Suliburska, Joanna

    2018-05-01

    The aim of this review is to present the most recent scientific evidence of interactions between the intestinal microbiota and minerals, and the effect of this interaction on the health of the host. The Web of Science database from the years 2013-2017 on this topic was reviewed. Numerous in vitro studies have shown that iron significantly affects the intestinal microbiota. However, Bifidobacteriaceae are capable of binding iron in the large intestine, thereby limiting the formation of free radicals synthesized in the presence of iron, and thus reducing the risk of colorectal cancer. Animal studies have revealed that supplementation with probiotics, prebiotics and synbiotics has a significant effect on bone calcium, phosphate and bone metabolism. The dynamic interaction between microbiota and zinc was shown. Human studies have provided evidence of the influence of probiotic bacteria on parathormone, calcium and phosphate levels and thus on bone resorption. Recent studies have produced new information mainly on the impact of the intestinal bacteria on the metabolism of calcium and iron. From a scientific perspective, the most urgent fields that remain to be investigated are the identification of all human gut microbes and new therapies targeting the interaction between intestinal bacteria and minerals. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  8. Comparison of microbial populations in the small intestine, large intestine and feces of healthy horses using terminal restriction fragment length polymorphism

    PubMed Central

    2013-01-01

    Background The composition of the microbiota of the equine intestinal tract is complex. Determining whether the microbial composition of fecal samples is representative of proximal compartments of the digestive tract could greatly simplify future studies. The objectives of this study were to compare the microbial populations of the duodenum, ileum, cecum, colon and rectum (feces) within and between healthy horses, and to determine whether rectal (fecal) samples are representative of proximal segments of the gastrointestinal tract. Intestinal samples were collected from ten euthanized horses. 16S rRNA gene PCR-based TRFLP was used to investigate microbiota richness in various segments of the gastrointestinal tract, and dice similarity indices were calculated to compare the samples. Results Within horses large variations of microbial populations along the gastrointestinal tract were seen. The microbiota in rectal samples was only partially representative of other intestinal compartments. The highest similarity was obtained when feces were compared to the cecum. Large compartmental variations were also seen when microbial populations were compared between six horses with similar dietary and housing management. Conclusion Rectal samples were not entirely representative of intestinal compartments in the small or large intestine. This should be taken into account when designing studies using fecal sampling to assess other intestinal compartments. Similarity between horses with similar dietary and husbandry management was also limited, suggesting that parts of the intestinal microbiota were unique to each animal in this study. PMID:23497580

  9. Linking microbiota and respiratory disease.

    PubMed

    Hauptmann, Matthias; Schaible, Ulrich E

    2016-11-01

    An increasing body of evidence indicates the relevance of microbiota for pulmonary health and disease. Independent investigations recently demonstrated that the lung harbors a resident microbiota. Therefore, it is intriguing that a lung microbiota can shape pulmonary immunity and epithelial barrier functions. Here, we discuss the ways how the composition of the microbial community in the lung may influence pulmonary health and vice versa, factors that determine community composition. Prominent microbiota at other body sites such as the intestinal one may also contribute to pulmonary health and disease. However, it is difficult to discriminate between influences of lung vs. gut microbiota due to systemic mutuality between both communities. With focuses on asthma and respiratory infections, we discuss how microbiota of lung and gut can determine pulmonary immunity and barrier functions. © 2016 Federation of European Biochemical Societies.

  10. Antibiotic-Induced Changes in the Intestinal Microbiota and Disease

    PubMed Central

    Becattini, Simone; Taur, Ying; Pamer, Eric G.

    2016-01-01

    The gut microbiota is a key player in many physiological and pathological processes occurring in humans. Recent investigations suggest that the efficacy of some clinical approaches depends on the action of commensal bacteria. Antibiotics are invaluable weapons to fight infectious diseases. However, by altering the composition and functions of the microbiota, they can also produce long-lasting deleterious effects for the host. The emergence of multidrug-resistant pathogens raises concerns about the common, and at times inappropriate, use of antimicrobial agents. Here we review the most recently discovered connections between host pathophysiology, microbiota, and antibiotics highlighting technological platforms, mechanistic insights, and clinical strategies to enhance resistance to diseases by preserving the beneficial functions of the microbiota. PMID:27178527

  11. Intestinal microbiota and oral administration of Enterococcus faecium associated with the growth performance of new-born piglets.

    PubMed

    Wang, Y B; Du, W; Fu, A K; Zhang, X P; Huang, Y; Lee, K H; Yu, K; Li, W F; Li, Y L

    2016-09-01

    The oral administration of Enterococcus faecium EF1 to new-born suckling and weaning piglets along with their growth performances and intestinal microbiota was investigated in this study. Twenty-four new-born piglets were initially divided into 2 groups. The probiotics group received 2 ml of 10% sterilised skimmed milk by oral gavage supplemented with 6×10(8) cfu/ml viable E. faecium EF1 at the first, the third and the fifth day after birth, while the control group received 2 ml of 10% sterilised skimmed milk without probiotics at the same time. Results showed that oral administration of E. faecium EF1 was associated with a remarkable increase on the body weight of piglets for both suckling and weaning periods, by 30.73% (P<0.01) and 320.84% (P<0.01), and also decreased the diarrhoea rate, by 43.21% (P<0.05) and 71.42% (P<0.05), respectively. In addition, 454-pyrosequencing analysis revealed that there was no significant difference in the intestinal microbial diversity of the suckling piglets between the two groups; nevertheless, when compared to the control group, the relative abundance of Firmicutes in the probiotics group was substantially augmented, while the relative abundance of Proteobacteria, Bacteroidetes and Fusobacteria diminished. However, results indicated that oral administration of E. faecium EF1 did not have any influence on the relative abundance of Firmicutes in weaning piglets rather than increasing the relative abundance of Bacteroidetes and decreasing the relative abundance of Proteobacteria. Furthermore, at the level of the Firmicutes phylum, the relative abundance of Lactobacillales in the probiotic group increased significantly. These findings suggest that oral administration of E. faecium EF1 to new-born piglets could improve the growth performance and intestinal microbiota of piglets for both suckling and weaning periods.

  12. Interplay between gut microbiota and p66Shc affects obesity-associated insulin resistance.

    PubMed

    Ciciliot, Stefano; Albiero, Mattia; Campanaro, Stefano; Poncina, Nicol; Tedesco, Serena; Scattolini, Valentina; Dalla Costa, Francesca; Cignarella, Andrea; Vettore, Monica; Di Gangi, Iole Maria; Bogialli, Sara; Avogaro, Angelo; Fadini, Gian Paolo

    2018-02-21

    The 66 kDa isoform of the mammalian Shc gene promotes adipogenesis, and p66Shc -/- mice accumulate less body weight than wild-type (WT) mice. As the metabolic consequences of the leaner phenotype of p66Shc -/- mice is debated, we hypothesized that gut microbiota may be involved. We confirmed that p66Shc -/- mice gained less weight than WT mice when on a high-fat diet (HFD), but they were not protected from insulin resistance and glucose intolerance. p66Shc deletion significantly modified the composition of gut microbiota and their modification after an HFD. This was associated with changes in gene expression of Il-1b and regenerating islet-derived protein 3 γ ( Reg3g) in the gut and in systemic trimethylamine N-oxide and branched chain amino acid levels, despite there being no difference in intestinal structure and permeability. Depleting gut microbiota at the end of HFD rendered both strains more glucose tolerant but improved insulin sensitivity only in p66Shc -/- mice. Microbiota-depleted WT mice cohoused with microbiota-competent p66Shc -/- mice became significantly more insulin resistant than WT mice cohoused with WT mice, despite no difference in weight gain. These findings reconcile previous inconsistent observations on the metabolic phenotype of p66Shc -/- mice and illustrate the complex microbiome-host-genotype interplay under metabolic stress.-Ciciliot, S., Albiero, M., Campanaro, S., Poncina, N., Tedesco, S., Scattolini, V., Dalla Costa, F., Cignarella, A., Vettore, M., Di Gangi, I. M., Bogialli, S., Avogaro, A., Fadini, G. P. Interplay between gut microbiota and p66Shc affects obesity-associated insulin resistance.

  13. Autism and our intestinal microbiota.

    PubMed

    Reddy, Bhaskara Lakshmi; Saier, Milton H

    2015-01-01

    Microbial products, released into the bloodstreams of mammals including humans, cross the blood-brain barrier and influence neurodevelopment. They can either promote or alleviate neurological disorders including autism spectrum disorders (ASD). This editorial describes how our microbiota influence our feelings, attitudes and mental states with particular reference to ASD. © 2015 S. Karger AG, Basel.

  14. Antibiotic-Induced Changes in the Intestinal Microbiota and Disease.

    PubMed

    Becattini, Simone; Taur, Ying; Pamer, Eric G

    2016-06-01

    The gut microbiota is a key player in many physiological and pathological processes occurring in humans. Recent investigations suggest that the efficacy of some clinical approaches depends on the action of commensal bacteria. Antibiotics are invaluable weapons to fight infectious diseases. However, by altering the composition and functions of the microbiota, they can also produce long-lasting deleterious effects for the host. The emergence of multidrug-resistant pathogens raises concerns about the common, and at times inappropriate, use of antimicrobial agents. Here we review the most recently discovered connections between host pathophysiology, microbiota, and antibiotics highlighting technological platforms, mechanistic insights, and clinical strategies to enhance resistance to diseases by preserving the beneficial functions of the microbiota. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Characterization of Intestinal Microbiota in Ulcerative Colitis Patients with and without Primary Sclerosing Cholangitis.

    PubMed

    Kevans, D; Tyler, A D; Holm, K; Jørgensen, K K; Vatn, M H; Karlsen, T H; Kaplan, G G; Eksteen, B; Gevers, D; Hov, J R; Silverberg, M S

    2016-03-01

    There is an unexplained association between ulcerative colitis [UC] and primary sclerosing cholangitis [PSC], with the intestinal microbiota implicated as an important factor. The study aim was to compare the structure of the intestinal microbiota of patients with UC with and without PSC. UC patients with PSC [PSC-UC] and without PSC [UC] were identified from biobanks at Oslo University Hospital, Foothills Hospital Calgary and Mount Sinai Hospital Toronto. Microbial DNA was extracted from colonic tissue and sequencing performed of the V4 region of the 16S rRNA gene on Illumina MiSeq. Sequences were assigned to operational taxonomic units [OTUs] using Quantitative Insights Into Microbial Ecology [QIIME]. Microbial alpha diversity, beta diversity, and relative abundance were compared between PSC-UC and UC phenotypes. In all, 31 PSC-UC patients and 56 UC patients were included. Principal coordinate analysis [PCoA] demonstrated that city of sample collection was the strongest determinant of taxonomic profile. In the Oslo cohort, Chao 1 index was modestly decreased in PSC-UC compared with UC [p = 0.04] but did not differ significantly in the Calgary cohort. No clustering by PSC phenotype was observed using beta diversity measures. For multiple microbial genera there were nominally significant differences between UC and PSC-UC, but results were not robust to false-discovery rate correction. No strong PSC-specific microbial associations in UC patients consistent across different cohorts were identified. Recruitment centre had a strong effect on microbial composition. Future studies should include larger cohorts to increase power and the ability to control for confounding factors. Copyright © 2015 European Crohn’s and Colitis Organisation (ECCO). Published by Oxford University Press. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  16. Intestinal microbiome is related to lifetime antibiotic use in Finnish pre-school children.

    PubMed

    Korpela, Katri; Salonen, Anne; Virta, Lauri J; Kekkonen, Riina A; Forslund, Kristoffer; Bork, Peer; de Vos, Willem M

    2016-01-26

    Early-life antibiotic use is associated with increased risk for metabolic and immunological diseases, and mouse studies indicate a causal role of the disrupted microbiome. However, little is known about the impacts of antibiotics on the developing microbiome of children. Here we use phylogenetics, metagenomics and individual antibiotic purchase records to show that macrolide use in 2-7 year-old Finnish children (N=142; sampled at two time points) is associated with a long-lasting shift in microbiota composition and metabolism. The shift includes depletion of Actinobacteria, increase in Bacteroidetes and Proteobacteria, decrease in bile-salt hydrolase and increase in macrolide resistance. Furthermore, macrolide use in early life is associated with increased risk of asthma and predisposes to antibiotic-associated weight gain. Overweight and asthmatic children have distinct microbiota compositions. Penicillins leave a weaker mark on the microbiota than macrolides. Our results support the idea that, without compromising clinical practice, the impact on the intestinal microbiota should be considered when prescribing antibiotics.

  17. Intestinal microbiome is related to lifetime antibiotic use in Finnish pre-school children

    PubMed Central

    Korpela, Katri; Salonen, Anne; Virta, Lauri J.; Kekkonen, Riina A.; Forslund, Kristoffer; Bork, Peer; de Vos, Willem M.

    2016-01-01

    Early-life antibiotic use is associated with increased risk for metabolic and immunological diseases, and mouse studies indicate a causal role of the disrupted microbiome. However, little is known about the impacts of antibiotics on the developing microbiome of children. Here we use phylogenetics, metagenomics and individual antibiotic purchase records to show that macrolide use in 2–7 year-old Finnish children (N=142; sampled at two time points) is associated with a long-lasting shift in microbiota composition and metabolism. The shift includes depletion of Actinobacteria, increase in Bacteroidetes and Proteobacteria, decrease in bile-salt hydrolase and increase in macrolide resistance. Furthermore, macrolide use in early life is associated with increased risk of asthma and predisposes to antibiotic-associated weight gain. Overweight and asthmatic children have distinct microbiota compositions. Penicillins leave a weaker mark on the microbiota than macrolides. Our results support the idea that, without compromising clinical practice, the impact on the intestinal microbiota should be considered when prescribing antibiotics. PMID:26811868

  18. Chronic Trichuris muris Infection in C57BL/6 Mice Causes Significant Changes in Host Microbiota and Metabolome: Effects Reversed by Pathogen Clearance

    PubMed Central

    Houlden, Ashley; Hayes, Kelly S.; Bancroft, Allison J.; Worthington, John J.; Wang, Ping; Grencis, Richard K.; Roberts, Ian S.

    2015-01-01

    Trichuris species are a globally important and prevalent group of intestinal helminth parasites, in which Trichuris muris (mouse whipworm) is an ideal model for this disease. This paper describes the first ever highly controlled and comprehensive investigation into the effects of T. muris infection on the faecal microbiota of mice and the effects on the microbiota following successful clearance of the infection. Communities were profiled using DGGE, 454 pyrosequencing, and metabolomics. Changes in microbial composition occurred between 14 and 28 days post infection, resulting in significant changes in α and β- diversity. This impact was dominated by a reduction in the diversity and abundance of Bacteroidetes, specifically Prevotella and Parabacteroides. Metabolomic analysis of stool samples of infected mice at day 41 showed significant differences to uninfected controls with a significant increase in the levels of a number of essential amino acids and a reduction in breakdown of dietary plant derived carbohydrates. The significant reduction in weight gain by infected mice probably reflects these metabolic changes and the incomplete digestion of dietary polysaccharides. Following clearance of infection the intestinal microbiota underwent additional changes gradually transitioning by day 91 towards a microbiota of an uninfected animal. These data indicate that the changes in microbiota as a consequence of infection were transitory requiring the presence of the pathogen for maintenance. Interestingly this was not observed for all of the key immune cell populations associated with chronic T. muris infection. This reflects the highly regulated chronic response and potential lasting immunological consequences of dysbiosis in the microbiota. Thus infection of T. muris causes a significant and substantial impact on intestinal microbiota and digestive function of mice with affects in long term immune regulation. PMID:25938477

  19. Modulatory Effects of Gut Microbiota on the Central Nervous System: How Gut Could Play a Role in Neuropsychiatric Health and Diseases.

    PubMed

    Yarandi, Shadi S; Peterson, Daniel A; Treisman, Glen J; Moran, Timothy H; Pasricha, Pankaj J

    2016-04-30

    Gut microbiome is an integral part of the Gut-Brain axis. It is becoming increasingly recognized that the presence of a healthy and diverse gut microbiota is important to normal cognitive and emotional processing. It was known that altered emotional state and chronic stress can change the composition of gut microbiome, but it is becoming more evident that interaction between gut microbiome and central nervous system is bidirectional. Alteration in the composition of the gut microbiome can potentially lead to increased intestinal permeability and impair the function of the intestinal barrier. Subsequently, neuro-active compounds and metabolites can gain access to the areas within the central nervous system that regulate cognition and emotional responses. Deregulated inflammatory response, promoted by harmful microbiota, can activate the vagal system and impact neuropsychological functions. Some bacteria can produce peptides or short chain fatty acids that can affect gene expression and inflammation within the central nervous system. In this review, we summarize the evidence supporting the role of gut microbiota in modulating neuropsychological functions of the central nervous system and exploring the potential underlying mechanisms.

  20. The effect of a multispecies probiotic on the intestinal microbiota and bowel movements in healthy volunteers taking the antibiotic amoxycillin.

    PubMed

    Koning, Catherina J M; Jonkers, Daisy M A E; Stobberingh, Ellen E; Mulder, Linda; Rombouts, Frans M; Stockbrügger, Reinhold W

    2008-01-01

    One of the side effects of antimicrobial therapy is a disturbance of the intestinal microbiota potentially resulting in antibiotic-associated diarrhea (AAD). In this placebo-controlled double-blind study, the effect of a multispecies probiotic on the composition and metabolic activity of the intestinal microbiota and bowel habits was studied in healthy volunteers taking amoxycillin. Forty-one healthy volunteers were given 500 mg amoxycillin twice daily for 7 days and were randomized to either 5 g of a multispecies probiotic, Ecologic AAD (10(9) cfu/g), or placebo, twice daily for 14 days. Feces and questionnaires were collected on day 0, 7, 14, and 63. Feces was analyzed as to the composition of the intestinal microbiota, and beta-glucosidase activity, endotoxin concentration, Clostridium difficile toxin A, short chain fatty acids (SCFAs), and pH were determined. Bowel movements were scored according to the Bristol stool form scale. Mean number of enterococci increased significantly from log 4.1 at day 0 to log 5.8 (day 7) and log 6.9 (day 14) cfu/g feces (P < 0.05) during probiotic intake. Although no other significant differences were observed between both intervention groups, within each group significant changes were found over time in both microbial composition and metabolic activity. Moreover, bowel movements with a frequency >or=3 per day for at least 2 days and/or a consistency >or=5 for at least 2 days were reported less frequently in the probiotic compared to the placebo group (48%vs 79%, P < 0.05). Apart from an increase in enterococci no significant differences in microbial composition and metabolic activity were observed in the probiotic compared with the placebo group. However, changes over time were present in both groups, which differed significantly between the probiotic and the placebo arm, suggesting that the amoxycillin effect was modulated by probiotic intake. Moreover, the intake of a multispecies probiotic significantly reduced diarrhea

  1. Intestinal Microbiota Ecological Response to Oral Administrations of Hydrogen-Rich Water and Lactulose in Female Piglets Fed a Fusarium Toxin-Contaminated Diet.

    PubMed

    Zheng, Weijiang; Ji, Xu; Zhang, Qing; Yao, Wen

    2018-06-16

    The objective of the current experiment was to explore the intestinal microbiota ecological response to oral administrations of hydrogen-rich water (HRW) and lactulose (LAC) in female piglets fed a Fusarium mycotoxin-contaminated diet. A total of 24 individually-housed female piglets (Landrace × large × white; initial average body weight, 7.25 ± 1.02 kg) were randomly assigned to receive four treatments (six pigs/treatment): uncontaminated basal diet (negative control, NC), mycotoxin-contaminated diet (MC), MC diet + HRW (MC + HRW), and MC diet + LAC (MC + LAC) for 25 days. Hydrogen levels in the mucosa of different intestine segments were measured at the end of the experiment. Fecal scoring and diarrhea rate were recorded every day during the whole period of the experiment. Short-chain fatty acids (SCFAs) profiles in the digesta of the foregut and hindgut samples were assayed. The populations of selected bacteria and denaturing gradient gel electrophoresis (DGGE) profiles of total bacteria and methanogenic Archaea were also evaluated. Results showed that Fusarium mycotoxins not only reduced the hydrogen levels in the caecum but also shifted the SCFAs production, and populations and communities of microbiota. HRW treatment increased the hydrogen levels of the stomach and duodenum. HRW and LAC groups also had higher colon and caecum hydrogen levels than the MC group. Both HRW and LAC protected against the mycotoxin-contaminated diet-induced higher diarrhea rate and lower SCFA production in the digesta of the colon and caecum. In addition, the DGGE profile results indicated that HRW and LAC might shift the pathways of hydrogen-utilization bacteria, and change the diversity of intestine microbiota. Moreover, HRW and LAC administrations reversed the mycotoxin-contaminated diet-induced changing of the populations of Escherichia coli (E. coli) and Bifidobacterium in ileum digesta and hydrogen-utilizing bacteria in colon digesta.

  2. Gut microbiota and metabolic syndrome.

    PubMed

    Festi, Davide; Schiumerini, Ramona; Eusebi, Leonardo Henry; Marasco, Giovanni; Taddia, Martina; Colecchia, Antonio

    2014-11-21

    Gut microbiota exerts a significant role in the pathogenesis of the metabolic syndrome, as confirmed by studies conducted both on humans and animal models. Gut microbial composition and functions are strongly influenced by diet. This complex intestinal "superorganism" seems to affect host metabolic balance modulating energy absorption, gut motility, appetite, glucose and lipid metabolism, as well as hepatic fatty storage. An impairment of the fine balance between gut microbes and host's immune system could culminate in the intestinal translocation of bacterial fragments and the development of "metabolic endotoxemia", leading to systemic inflammation and insulin resistance. Diet induced weight-loss and bariatric surgery promote significant changes of gut microbial composition, that seem to affect the success, or the inefficacy, of treatment strategies. Manipulation of gut microbiota through the administration of prebiotics or probiotics could reduce intestinal low grade inflammation and improve gut barrier integrity, thus, ameliorating metabolic balance and promoting weight loss. However, further evidence is needed to better understand their clinical impact and therapeutic use.

  3. Incorporation of therapeutically modified bacteria into gut microbiota inhibits obesity.

    PubMed

    Chen, Zhongyi; Guo, Lilu; Zhang, Yongqin; Walzem, Rosemary L; Pendergast, Julie S; Printz, Richard L; Morris, Lindsey C; Matafonova, Elena; Stien, Xavier; Kang, Li; Coulon, Denis; McGuinness, Owen P; Niswender, Kevin D; Davies, Sean S

    2014-08-01

    Metabolic disorders, including obesity, diabetes, and cardiovascular disease, are widespread in Westernized nations. Gut microbiota composition is a contributing factor to the susceptibility of an individual to the development of these disorders; therefore, altering a person's microbiota may ameliorate disease. One potential microbiome-altering strategy is the incorporation of modified bacteria that express therapeutic factors into the gut microbiota. For example, N-acylphosphatidylethanolamines (NAPEs) are precursors to the N-acylethanolamide (NAE) family of lipids, which are synthesized in the small intestine in response to feeding and reduce food intake and obesity. Here, we demonstrated that administration of engineered NAPE-expressing E. coli Nissle 1917 bacteria in drinking water for 8 weeks reduced the levels of obesity in mice fed a high-fat diet. Mice that received modified bacteria had dramatically lower food intake, adiposity, insulin resistance, and hepatosteatosis compared with mice receiving standard water or control bacteria. The protective effects conferred by NAPE-expressing bacteria persisted for at least 4 weeks after their removal from the drinking water. Moreover, administration of NAPE-expressing bacteria to TallyHo mice, a polygenic mouse model of obesity, inhibited weight gain. Our results demonstrate that incorporation of appropriately modified bacteria into the gut microbiota has potential as an effective strategy to inhibit the development of metabolic disorders.

  4. What's bugging your teen?-The microbiota and adolescent mental health.

    PubMed

    McVey Neufeld, Karen-Anne; Luczynski, Pauline; Seira Oriach, Clara; Dinan, Timothy G; Cryan, John F

    2016-11-01

    Human adolescence is a time of enormous developmental change, second only to infancy and early childhood in terms of brain shaping and growth. It is also a period in life when the young adult is faced with distinct environmental challenges and stressors. Interestingly, we now know that these external sources of stress all have an impact on the intestinal microbiota. Given that there is now a significant body of knowledge indicating a role for the microbiota-gut-brain axis in development and function of the brain, and potentially the emergence of psychiatric illnesses, we need to draw our attention to the intestinal microbiota in the adolescent. As psychiatric illnesses frequently first manifest during the teenage years it may be that the intestinal bacteria are playing an as yet unidentified role in disease pathogenesis. Identifying a role for the microbiota in psychiatric illnesses opens up an exciting opportunity for therapeutic advances via bacterial manipulation. This could prove to be a beneficial and novel avenue for treatment of mental illnesses in the developing teen. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Establishment of intestinal microbiota with focus on yeasts of unweaned and weaned piglets kept under different farm conditions.

    PubMed

    Urubschurov, Vladimir; Janczyk, Pawel; Souffrant, Wolfgang-Bernhard; Freyer, Gertraude; Zeyner, Annette

    2011-09-01

    This study aimed to characterize the intestinal yeasts in weaning piglets and to establish their possible relationships with main bacterial groups. German Landrace piglets were weaned (WP, n=32) at 28 days of age or kept with the dams until day 39 without creep feed (UP, n=32). The experiment was performed at an experimental and a commercial farm (CF). Faeces were collected from the piglets, sows and pen floors on days 28, 33 and 39 for isolation of DNA and cultivation for enumeration of yeasts, enterobacteria, enterococci and lactobacilli. Fragments of the D1 domain of 26S rRNA gene were amplified and separated by denaturing gradient gel electrophoresis (DGGE). No yeasts could be cultured from water and feed samples. No or only low numbers of yeasts were detected among all UP. In WP at CF, yeasts correlated with lactobacilli (r=0.456; P=0.009) and enterobacteria (r=-0.407; P=0.021). Kazachstania slooffiae dominated among the cultured yeasts. It was the only yeast species detected by PCR-DGGE. Yeasts, especially K. slooffiae, established in the porcine gastrointestinal tract after consumption of grain-based feed and may interrelate with the intestinal microbiota. The study provides data indicating importance of K. slooffiae for the development of balanced porcine gut microbiota. © 2011 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  6. Diet and the Intestinal Microbiome: Associations, Functions, and Implications for Health and Disease

    PubMed Central

    Albenberg, Lindsey G.; Wu, Gary D.

    2014-01-01

    The mutual relationship between the intestinal microbiota and its mammalian host is influenced by diet. Consumption of various nutrients affects the structure of the microbial community and provides substrates for microbial metabolism. The microbiota can produce small molecules that are absorbed by the host and affect many important physiological processes. Age-dependent and societal differences in the intestinal microbiota could result from differences in diet. Examples include differences in the intestinal microbiota of breast- vs formula-fed infants, or differences in microbial richness in individuals consuming an agrarian plant-based vs a Western diet, which is high in meat and fat. We review how diet affects the structure and metabolome of the human intestinal microbiome, and may contribute to health or pathogenesis of disorders such as coronary vascular disease and inflammatory bowel diseases. PMID:24503132

  7. Effects of alfalfa meal on the intestinal microbial diversity and immunity of growing ducks.

    PubMed

    Jiang, J F; Song, X M; Wu, J L; Jiang, Y Q

    2014-12-01

    This study was conducted to investigate the effects of alfalfa meal diets on the intestinal microbial diversity and immunity of growing egg-type ducks. A total of 128 healthy 7-week-old female egg-type Shaoxing ducks were selected and randomly assigned into four dietary treatments: 0%, 3%, 6% and 9% alfalfa meal for 8 weeks. Each treatment consisted of four replicates of eight ducks each. Polymerase chain reaction denaturing gradient gel electrophoresis (PCR-DGGE) was used to characterize the microbiota. The results showed that the DGGE fingerprints of the V6-V8 fragments of the 16S rRNA from the caeca and faeces of ducks fed 3%, 6% and 9% alfalfa meal had significantly higher microbiota species richness than those fed 0% alfalfa meal (p < 0.05). The Shannon-Weiner index of the microbiota from the caeca and faeces of ducks fed 3%, 6% and 9% alfalfa meal was significantly higher than those fed 0% alfalfa meal (p < 0.05). Molecular analysis of the caecal and faecal DNA extracts showed that the alfalfa meal diet promotes the intestinal microbial diversity, as indicated by their higher species richness and Shannon-Weiner index. However, the groups did not significantly differ in terms of average daily gain, feed intake and gain-to-feed ratio (p > 0.05), and the 3-9% alfalfa meal did not affect the growth performance of the growing egg-type ducks. The proliferation of T and B lymphocytes was significantly greater (p < 0.05) in the groups supplemented with 3%, 6% and 9% of alfalfa meal than the unsupplemented control group, and alfalfa meal promoted the lymphocytes proliferation of the growing egg-type ducks. Dietary alfalfa meal supplementation increases intestinal microbial community diversity and improves of the immune response growing egg-type ducks. Journal of Animal Physiology and Animal Nutrition © 2014 Blackwell Verlag GmbH.

  8. [Bacterial Translocation from Intestine: Microbiological, Immunological and Pathophysiological Aspects].

    PubMed

    Podoprigora, G I; Kafarskaya, L I; Bainov, N A; Shkoporov, A N

    2015-01-01

    Bacterial translocation (BT) is both pathology and physiology phenomenon. In healthy newborns it accompanies the process of establishing the autochthonous intestinal microbiota and the host microbiome. In immunodeficiency it can be an aethio-pathogenetic link and a manifestation of infection or septic complications. The host colonization resistance to exogenous microbic colonizers is provided by gastrointestinal microbiota in concert with complex constitutional and adaptive defense mechanisms. BT may be result of barrier dysfunction and self-purification mechanisms involving the host myeloid cell phagocytic system and opsonins. Dynamic cell humoral response to microbial molecular patterns that occurs on the mucous membranes initiates receptorsignalingpathways and cascade ofreactions. Their vector and results are largely determined by cross-reactivity between microbiome and the host genome. Enterocyte barriers interacting with microbiota play leading role in providing adaptive, homeostatic and stress host reactivity. Microcirculatory ischemic tissue alterations and inflammatory reactions increase the intestinal barrier permeability and BT These processes a well as mechanisms for apoptotic cells and bacteria clearance are justified to be of prospective research interest. The inflammatory and related diseases caused by alteration and dysfunction of the intestinal barrier are reasonably considered as diseases of single origin. Maternal microbiota affects theformation of the innate immune system and the microbiota of the newborn, including intestinal commensal translocation during lactation. Deeper understanding of intestinal barrier mechanisms needs complex microbiological, immunological, pathophysiological, etc. investigations using adequate biomodels, including gnotobiotic animals.

  9. Light exposure influences the diurnal oscillation of gut microbiota in mice.

    PubMed

    Wu, Guangyan; Tang, Wenli; He, Yan; Hu, Jingjuan; Gong, Shenhai; He, Zhanke; Wei, Guoquan; Lv, Liyi; Jiang, Yong; Zhou, Hongwei; Chen, Peng

    2018-06-18

    The gut microbiota exhibit diurnal compositional and functional oscillations that influence the host homeostasis. However, the upstream factors that affect the microbial oscillations remain elusive. Here, we focused on the potential impact of light exposure, the main factor that affects the host circadian oscillation, on the diurnal oscillations of intestinal microflora to explore the upstream factor that governs the fluctuations of the gut microbes. The gut microbiota of the mice that were underwent regular light/dark (LD) cycles exhibited a robust rhythm at both compositional and functional level, in all parts of the intestine. Comparably, constant darkness (Dark-Dark, DD) led to the loss of the rhythmic oscillations in almost all parts of the intestine. Additionally, the abundance of Clostridia in DD conditions was dramatically enhanced in the small intestine. Our data indicated light exposure is the upstream factor that governs the regular diurnal fluctuations of gut microbiota in vivo. Copyright © 2018 Elsevier Inc. All rights reserved.

  10. Brain-gut-microbiota axis in Parkinson's disease.

    PubMed

    Mulak, Agata; Bonaz, Bruno

    2015-10-07

    Parkinson's disease (PD) is characterized by alpha-synucleinopathy that affects all levels of the brain-gut axis including the central, autonomic, and enteric nervous systems. Recently, it has been recognized that the brain-gut axis interactions are significantly modulated by the gut microbiota via immunological, neuroendocrine, and direct neural mechanisms. Dysregulation of the brain-gut-microbiota axis in PD may be associated with gastrointestinal manifestations frequently preceding motor symptoms, as well as with the pathogenesis of PD itself, supporting the hypothesis that the pathological process is spread from the gut to the brain. Excessive stimulation of the innate immune system resulting from gut dysbiosis and/or small intestinal bacterial overgrowth and increased intestinal permeability may induce systemic inflammation, while activation of enteric neurons and enteric glial cells may contribute to the initiation of alpha-synuclein misfolding. Additionally, the adaptive immune system may be disturbed by bacterial proteins cross-reacting with human antigens. A better understanding of the brain-gut-microbiota axis interactions should bring a new insight in the pathophysiology of PD and permit an earlier diagnosis with a focus on peripheral biomarkers within the enteric nervous system. Novel therapeutic options aimed at modifying the gut microbiota composition and enhancing the intestinal epithelial barrier integrity in PD patients could influence the initial step of the following cascade of neurodegeneration in PD.

  11. An epithelial armamentarium to sense the microbiota.

    PubMed

    Prescott, David; Lee, Jooeun; Philpott, Dana J

    2013-11-30

    Intestinal epithelial cells were once thought to be inert, non-responsive cells that simply acted as a physical barrier that prevents the contents of the intestinal lumen from accessing the underlying tissue. However, it is now clear that these cells express a full repertoire of Toll- and Nod-like receptors, and that their activation by components of the microbiota is vital for the development of a functional epithelium, maintenance of barrier integrity, and defense against pathogenic organisms. Additionally, mounting evidence suggests that epithelial sensing of bacteria plays a significant role in the management of the numbers and types of microbes present in the gut microbiota via the production of antimicrobial peptides and other microbe-modulatory products. This is a critical process, as it is now becoming apparent that alterations in the composition of the microbiota can predispose an individual to a wide variety of chronic diseases. In this review, we will discuss the bacterial pattern recognition receptors that are known to be expressed by the intestinal epithelium, and how each of them individually contributes to these vital protective functions. Moreover, we will review what is known about the communication between epithelial cells and various classes of underlying leukocytes, and discuss how they interact with the microbiota to form a three-part relationship that maintains homeostasis in the gut. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Controlling the frontier: regulatory T-cells and intestinal homeostasis.

    PubMed

    Bollrath, Julia; Powrie, Fiona M

    2013-11-30

    The intestine represents one of the most challenging sites for the immune system as immune cells must be able to mount an efficient response to invading pathogens while tolerating the large number and diverse array of resident commensal bacteria. Foxp3(+) regulatory T-cells (Tregs) play a non-redundant role at maintaining this balance. At the same time Treg cell differentiation and function can be modulated by the intestinal microbiota. In this review, we will discuss effector mechanisms of Treg cells in the intestine and how these cells can be influenced by the intestinal microbiota. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. Gut Microbiota in a Rat Oral Sensitization Model: Effect of a Cocoa-Enriched Diet.

    PubMed

    Camps-Bossacoma, Mariona; Pérez-Cano, Francisco J; Franch, Àngels; Castell, Margarida

    2017-01-01

    Increasing evidence is emerging suggesting a relation between dietary compounds, microbiota, and the susceptibility to allergic diseases, particularly food allergy. Cocoa, a source of antioxidant polyphenols, has shown effects on gut microbiota and the ability to promote tolerance in an oral sensitization model. Taking these facts into consideration, the aim of the present study was to establish the influence of an oral sensitization model, both alone and together with a cocoa-enriched diet, on gut microbiota. Lewis rats were orally sensitized and fed with either a standard or 10% cocoa diet. Faecal microbiota was analysed through metagenomics study. Intestinal IgA concentration was also determined. Oral sensitization produced few changes in intestinal microbiota, but in those rats fed a cocoa diet significant modifications appeared. Decreased bacteria from the Firmicutes and Proteobacteria phyla and a higher percentage of bacteria belonging to the Tenericutes and Cyanobacteria phyla were observed. In conclusion, a cocoa diet is able to modify the microbiota bacterial pattern in orally sensitized animals. As cocoa inhibits the synthesis of specific antibodies and also intestinal IgA, those changes in microbiota pattern, particularly those of the Proteobacteria phylum, might be partially responsible for the tolerogenic effect of cocoa.

  14. Linking Gut Microbiota and Inflammation to Obesity and Insulin Resistance.

    PubMed

    Saad, M J A; Santos, A; Prada, P O

    2016-07-01

    Obesity and insulin resistance are the major predisposing factors to comorbidities, such as Type 2 diabetes, nonalcoholic fatty liver disease, cardiovascular and neurodegenerative diseases, and several types of cancer. The prevalence of obesity is still increasing worldwide and now affects a large number of individuals. Here, we review the role of the gut microbiota in the pathophysiology of insulin resistance/obesity. The human intestine is colonized by ∼100 trillion bacteria, which constitute the gut microbiota. Studies have shown that lean and overweight rodents and humans may present differences in the composition of their intestinal flora. Over the past 10 years, data from different sources have established a causal link between the intestinal microbiota and obesity/insulin resistance. It is important to emphasize that diet-induced obesity promotes insulin resistance by mechanisms independent and dependent on gut microbiota. In this review, we present several mechanisms that contribute to explaining the link between intestinal flora and insulin resistance/obesity. The LPS from intestinal flora bacteria can induce a chronic subclinical inflammatory process and obesity, leading to insulin resistance through activation of TLR4. The reduction in circulating SCFA may also have an essential role in the installation of reduced insulin sensitivity and obesity. Other mechanisms include effects of bile acids, branched-chain amino acids (BCAA), and some other lesser-known factors. In the near future, this area should open new therapeutic avenues for obesity/insulin resistance and its comorbidities. ©2016 Int. Union Physiol. Sci./Am. Physiol. Soc.

  15. Effects of intestinal colonization by Clostridium difficile and Staphylococcus aureus on microbiota diversity in healthy individuals in China.

    PubMed

    Dong, Danfeng; Ni, Qi; Wang, Chen; Zhang, Lihua; Li, Zhen; Jiang, Cen; EnqiangMao; Peng, Yibing

    2018-05-03

    Intestinal colonization by pathogenic bacteria is a risk factor for infection, and contributes to environmental contamination and disease dissemination. Alteration of gut microbiota also plays a pivotal role in the development of disease. Although Clostridium difficile and Staphylococcus aureus are well-recognized pathogens causing nosocomial and community infections, the intestinal colonization was not fully investigated. Herein, we explored their overall carriage rates in healthy adults from the community, and characterized the gut microbiomes of C. difficile and S. aureus carriers. Fecal samples were collected from 1709 healthy volunteers from communities in Shanghai, China, and tested for the presence of C. difficile, methicillin-sensitive S. aureus (MSSA), and methicillin-resistant S. aureus (MRSA) using culture-based techniques. To explore differences in the gut microbiome, 16S rRNA gene sequencing was conducted using samples from non-carriers (CH), C. difficile carriers (CCD), MRSA carriers (CM), and MSSA carriers (CS). Overall, we detected 12 C. difficile and 60 S. aureus isolates, accounting for 0.70% and 3.51% of total isolates, respectively. Eight isolates were determined to be MRSA, accounting for 13.3% of the S. aureus population. Sequencing data revealed that the microbial diversity and richness were similar among the four groups. However, at the phylum level, carriage of C. difficile or MRSA was associated with a paucity of Bacteroidetes and an overabundance of Proteobacteria compared with non-carriers. At the genus level, the prevalence of the genera Bacteroides, Prevotella, Faecalibacterium, and Roseburia was decreased in C. difficile-positive samples compared with the controls, while the proportion of Clostridium cluster XIVa species was increased. MRSA carriers exhibited a higher proportion of the genera Parasutterella and Klebsiella, but a decreased prevalence of Bacteroides. Compared with MSSA carriers, Klebsiella was the only genus found to

  16. Inflammasomes make the case for littermate-controlled experimental design in studying host-microbiota interactions.

    PubMed

    Mamantopoulos, Michail; Ronchi, Francesca; McCoy, Kathy D; Wullaert, Andy

    2018-04-19

    Several human diseases are thought to evolve due to a combination of host genetic mutations and environmental factors that include alterations in intestinal microbiota composition termed dysbiosis. Although in some cases, host genetics may shape the gut microbiota and enable it to provoke disease, experimentally disentangling cause and consequence in such host-microbe interactions requires strict control over non-genetic confounding factors. Mouse genetic studies previously proposed Nlrp6/ASC inflammasomes as innate immunity regulators of the intestinal ecosystem. In contrast, using littermate-controlled experimental setups, we recently showed that Nlrp6/ASC inflammasomes do not alter the gut microbiota composition. Our analyses indicated that maternal inheritance and long-term separate housing are non-genetic confounders that preclude the use of non-littermate mice when analyzing host genetic effects on intestinal ecology. Here, we summarize and discuss our gut microbiota analyses in inflammasome-deficient mice for illustrating the importance of littermate experimental design in studying host-microbiota interactions.

  17. In vitro extraction and fermentation of polyphenols from grape seeds (Vitis vinifera) by human intestinal microbiota.

    PubMed

    Zhou, Li; Wang, Wei; Huang, Jun; Ding, Yu; Pan, Zhouqiang; Zhao, Ya; Zhang, Renkang; Hu, Bing; Zeng, Xiaoxiong

    2016-04-01

    The effects of several parameters on the extraction yield of total polyphenols from grape seeds by pressurized liquid extraction were investigated. The highest recovery of total polyphenols occurred at 80 °C within 5 min, and a single extraction allowed a recovery of more than 97% of total polyphenols. Following the purification with macroporous resin, the effects of grape polyphenols (>94.8%) on human intestinal microbiota were monitored over 36 h incubation by fluorescence in situ hybridization, and short-chain fatty acids (SCFAs) were measured by HPLC. The result showed that the grape polyphenols promoted the changes in the relevant microbial populations and shifted the profiles of SCFAs. Fermentation of grape polyphenols resulted in a significant increase in the numbers of Bifidobacterium spp. and Lactobacillus-Enterococcus group and inhibition in the growth of the Clostridium histolyticum group and the Bacteroides-Prevotella group, with no significant effect on the population of total bacteria. The findings suggest that grape polyphenols have potential prebiotic effects on modulating the gut microbiota composition and generating SCFAs that contribute to the improvements of host health.

  18. Emerging insights on intestinal dysbiosis during bacterial infections☆

    PubMed Central

    Pham, Tu Anh N; Lawley, Trevor D

    2014-01-01

    Infection of the gastrointestinal tract is commonly linked to pathological imbalances of the resident microbiota, termed dysbiosis. In recent years, advanced high-throughput genomic approaches have allowed us to examine the microbiota in an unprecedented manner, revealing novel biological insights about infection-associated dysbiosis at the community and individual species levels. A dysbiotic microbiota is typically reduced in taxonomic diversity and metabolic function, and can harbour pathobionts that exacerbate intestinal inflammation or manifest systemic disease. Dysbiosis can also promote pathogen genome evolution, while allowing the pathogens to persist at high density and transmit to new hosts. A deeper understanding of bacterial pathogenicity in the context of the intestinal microbiota should unveil new approaches for developing diagnostics and therapies for enteropathogens. PMID:24581695

  19. Distinct signals from the microbiota promote different aspects of zebrafish gut differentiation.

    PubMed

    Bates, Jennifer M; Mittge, Erika; Kuhlman, Julie; Baden, Katrina N; Cheesman, Sarah E; Guillemin, Karen

    2006-09-15

    All animals exist in intimate associations with microorganisms that play important roles in the hosts' normal development and tissue physiology. In vertebrates, the most populous and complex community of microbes resides in the digestive tract. Here, we describe the establishment of the gut microbiota and its role in digestive tract differentiation in the zebrafish model vertebrate, Danio rerio. We find that in the absence of the microbiota, the gut epithelium is arrested in aspects of its differentiation, as revealed by the lack of brush border intestinal alkaline phosphatase activity, the maintenance of immature patterns of glycan expression and a paucity of goblet and enteroendocrine cells. In addition, germ-free intestines fail to take up protein macromolecules in the distal intestine and exhibit faster motility. Reintroduction of a complex microbiota at later stages of development or mono-association of germ-free larvae with individual constituents of the microbiota reverses all of these germ-free phenotypes. Exposure of germ-free zebrafish to heat-killed preparations of the microbiota or bacterial lipopolysaccharide is sufficient to restore alkaline phosphatase activity but not mature patterns of Gal alpha1,3Gal containing glycans, indicating that the host perceives and responds to its associated microbiota by at least two distinct pathways.

  20. Gut Microbiota-brain Axis

    PubMed Central

    Wang, Hong-Xing; Wang, Yu-Ping

    2016-01-01

    Objective: To systematically review the updated information about the gut microbiota-brain axis. Data Sources: All articles about gut microbiota-brain axis published up to July 18, 2016, were identified through a literature search on PubMed, ScienceDirect, and Web of Science, with the keywords of “gut microbiota”, “gut-brain axis”, and “neuroscience”. Study Selection: All relevant articles on gut microbiota and gut-brain axis were included and carefully reviewed, with no limitation of study design. Results: It is well-recognized that gut microbiota affects the brain's physiological, behavioral, and cognitive functions although its precise mechanism has not yet been fully understood. Gut microbiota-brain axis may include gut microbiota and their metabolic products, enteric nervous system, sympathetic and parasympathetic branches within the autonomic nervous system, neural-immune system, neuroendocrine system, and central nervous system. Moreover, there may be five communication routes between gut microbiota and brain, including the gut-brain's neural network, neuroendocrine-hypothalamic-pituitary-adrenal axis, gut immune system, some neurotransmitters and neural regulators synthesized by gut bacteria, and barrier paths including intestinal mucosal barrier and blood-brain barrier. The microbiome is used to define the composition and functional characteristics of gut microbiota, and metagenomics is an appropriate technique to characterize gut microbiota. Conclusions: Gut microbiota-brain axis refers to a bidirectional information network between the gut microbiota and the brain, which may provide a new way to protect the brain in the near future. PMID:27647198

  1. Gut microbiota injury in allogeneic haematopoietic stem cell transplantation.

    PubMed

    Shono, Yusuke; van den Brink, Marcel R M

    2018-05-01

    Allogeneic haematopoietic stem cell transplantation (allo-HSCT) is considered to be the strongest curative immunotherapy for various malignancies (primarily, but not limited to, haematologic malignancies). However, application of allo-HSCT is limited owing to its life-threatening major complications, such as graft-versus-host disease (GVHD), relapse and infections. Recent advances in large-scale DNA sequencing technology have facilitated rapid identification of the microorganisms that make up the microbiota and evaluation of their interactions with host immunity in various diseases, including cancer. This has resulted in renewed interest regarding the role of the intestinal flora in patients with haematopoietic malignancies who have received an allo-HSCT and in whether the microbiota affects clinical outcomes, including GVHD, relapse, infections and transplant-related mortality. In this Review, we discuss the potential role of intestinal microbiota in these major complications after allo-HSCT, summarize clinical trials evaluating the microbiota in patients who have received allo-HSCT and discuss how further studies of the microbiota could inform the development of strategies that improve outcomes of allo-HSCT.

  2. Perinatal Programming of Asthma: The Role of Gut Microbiota

    PubMed Central

    Azad, Meghan B.; Kozyrskyj, Anita L.

    2012-01-01

    Perinatal programming, a dominant theory for the origins of cardiovascular disease, proposes that environmental stimuli influence developmental pathways during critical periods of prenatal and postnatal development, inducing permanent changes in metabolism. In this paper, we present evidence for the perinatal programming of asthma via the intestinal microbiome. While epigenetic mechanisms continue to provide new explanations for the programming hypothesis of asthma development, it is increasingly apparent that the intestinal microbiota plays an independent and potentially interactive role. Commensal gut bacteria are essential to immune system development, and exposures disrupting the infant gut microbiota have been linked to asthma. This paper summarizes the recent findings that implicate caesarean delivery, breastfeeding, perinatal stress, probiotics, and antibiotics as modifiers of infant gut microbiota in the development of asthma. PMID:22110540

  3. Gut Microbiota and Probiotics in Colon Tumorigenesis

    PubMed Central

    Zhu, Yuanmin; Luo, T. Michelle; Jobin, Christian; Young, Howard A.

    2011-01-01

    The human gastrointestinal tract harbors a complex and abundant microbial community reaching as high as 1013–1014 microorganisms in the colon. This endogenous microbiota forms a symbiotic relationship with their eukaryotic host and this close partnership helps maintain homeostasis by performing essential and non-redundant tasks (e.g. nutrition/energy and, immune system balance, pathogen exclusion). Although this relationship is essential and beneficial to the host, various events (e.g. infection, diet, stress, inflammation) may impact microbial composition, leading to the formation of a dysbiotic microbiota, further impacting on health and disease states. For example, Crohn’s disease and ulcerative colitis, collectively termed inflammatory bowel diseases (IBD), have been associated with the establishment of a dysbiotic microbiota. In addition, extra-intestinal disorders such as obesity and metabolic syndrome are also associated with the development of a dysbiotic microbiota. Consequently, there is an increasing interest in harnessing the power of the microbiome and modulating its composition as a means to alleviate intestinal pathologies/disorders and maintain health status. In this review we will discuss the emerging relationship between the microbiota and development of colorectal cancer as well as present evidence that microbial manipulation (probiotic, prebiotic) impacts disease development. PMID:21741763

  4. The gut microbiota and inflammatory noncommunicable diseases: associations and potentials for gut microbiota therapies.

    PubMed

    West, Christina E; Renz, Harald; Jenmalm, Maria C; Kozyrskyj, Anita L; Allen, Katrina J; Vuillermin, Peter; Prescott, Susan L

    2015-01-01

    Rapid environmental transition and modern lifestyles are likely driving changes in the biodiversity of the human gut microbiota. With clear effects on physiologic, immunologic, and metabolic processes in human health, aberrations in the gut microbiome and intestinal homeostasis have the capacity for multisystem effects. Changes in microbial composition are implicated in the increasing propensity for a broad range of inflammatory diseases, such as allergic disease, asthma, inflammatory bowel disease (IBD), obesity, and associated noncommunicable diseases (NCDs). There are also suggestive implications for neurodevelopment and mental health. These diverse multisystem influences have sparked interest in strategies that might favorably modulate the gut microbiota to reduce the risk of many NCDs. For example, specific prebiotics promote favorable intestinal colonization, and their fermented products have anti-inflammatory properties. Specific probiotics also have immunomodulatory and metabolic effects. However, when evaluated in clinical trials, the effects are variable, preliminary, or limited in magnitude. Fecal microbiota transplantation is another emerging therapy that regulates inflammation in experimental models. In human subjects it has been successfully used in cases of Clostridium difficile infection and IBD, although controlled trials are lacking for IBD. Here we discuss relationships between gut colonization and inflammatory NCDs and gut microbiota modulation strategies for their treatment and prevention. Copyright © 2014 American Academy of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.

  5. Could the gut microbiota reconcile the oral bioavailability conundrum of traditional herbs?

    PubMed

    Chen, Feng; Wen, Qi; Jiang, Jun; Li, Hai-Long; Tan, Yin-Feng; Li, Yong-Hui; Zeng, Nian-Kai

    2016-02-17

    A wealth of information is emerging about the impact of gut microbiota on human health and diseases such as cardiovascular diseases, obesity and diabetes. As we learn more, we find out the gut microbiota has the potential as new territory for drug targeting. Some novel therapeutic approaches could be developed through reshaping the commensal microbial structure using combinations of different agents. The gut microbiota also affects drug metabolism, directly and indirectly, particularly towards the orally administered drugs. Herbal products have become the basis of traditional medicines such as traditional Chinese medicine and also been being considered valuable materials in modern drug discovery. Of note, low oral bioavailability but high bioactivity is a conundrum not yet solved for some herbs. Since most of herbal products are orally administered, the herbs' constituents are inevitably exposed to the intestinal microbiota and the interplays between herbal constituents and gut microbiota are expected. Emerging explorations of herb-microbiota interactions have an opportunity to revolutionize the way we view herbal therapeutics. The present review aims to provide information regarding the health promotion and/or disease prevention by the interplay between traditional herbs with low bioavailability and gut microbiota through gut microbiota via two different types of mechanisms: (1) influencing the composition of gut microbiota by herbs and (2) metabolic reactions of herbal constituents by gut microbiota. The major data bases (PubMed and Web of Science) were searched using "gut microbiota", "intestinal microbiota", "gut flora", "intestinal flora", "gut microflora", "intestinal microflora", "herb", "Chinese medicine", "traditional medicine", or "herbal medicine" as keywords to find out studies regarding herb-microbiota interactions. The Chinese Pharmacopoeia (2010 edition, Volume I) was also used to collect the data of commonly used medicinal herbs and their quality

  6. Long-term changes of bacterial and viral compositions in the intestine of a recovered Clostridium difficile patient after fecal microbiota transplantation.

    PubMed

    Broecker, Felix; Klumpp, Jochen; Schuppler, Markus; Russo, Giancarlo; Biedermann, Luc; Hombach, Michael; Rogler, Gerhard; Moelling, Karin

    2016-01-01

    Fecal microbiota transplantation (FMT) is an effective treatment for recurrent Clostridium difficile infections (RCDIs). However, long-term effects on the patients' gut microbiota and the role of viruses remain to be elucidated. Here, we characterized bacterial and viral microbiota in the feces of a cured RCDI patient at various time points until 4.5 yr post-FMT compared with the stool donor. Feces were subjected to DNA sequencing to characterize bacteria and double-stranded DNA (dsDNA) viruses including phages. The patient's microbial communities varied over time and showed little overall similarity to the donor until 7 mo post-FMT, indicating ongoing gut microbiota adaption in this time period. After 4.5 yr, the patient's bacteria attained donor-like compositions at phylum, class, and order levels with similar bacterial diversity. Differences in the bacterial communities between donor and patient after 4.5 yr were seen at lower taxonomic levels. C. difficile remained undetectable throughout the entire timespan. This demonstrated sustainable donor feces engraftment and verified long-term therapeutic success of FMT on the molecular level. Full engraftment apparently required longer than previously acknowledged, suggesting the implementation of year-long patient follow-up periods into clinical practice. The identified dsDNA viruses were mainly Caudovirales phages. Unexpectedly, sequences related to giant algae-infecting Chlorella viruses were also detected. Our findings indicate that intestinal viruses may be implicated in the establishment of gut microbiota. Therefore, virome analyses should be included in gut microbiota studies to determine the roles of phages and other viruses-such as Chlorella viruses-in human health and disease, particularly during RCDI.

  7. Microbiota-Derived Metabolic Factors Reduce Campylobacteriosis in Mice.

    PubMed

    Sun, Xiaolun; Winglee, Kathryn; Gharaibeh, Raad Z; Gauthier, Josee; He, Zhen; Tripathi, Prabhanshu; Avram, Dorina; Bruner, Steven; Fodor, Anthony; Jobin, Christian

    2018-05-01

    Campylobacter jejuni, a prevalent foodborne bacterial pathogen, exploits the host innate response to induce colitis. Little is known about the roles of microbiota in C jejuni-induced intestinal inflammation. We investigated interactions between microbiota and intestinal cells during C jejuni infection of mice. Germ-free C57BL/6 Il10 -/- mice were colonized with conventional microbiota and infected with a single dose of C jejuni (10 9 colony-forming units/mouse) via gavage. Conventional microbiota were cultured under aerobic, microaerobic, or anaerobic conditions and orally transplanted into germ-free Il10 -/- mice. Colon tissues were collected from mice and analyzed by histology, real-time polymerase chain reaction, and immunoblotting. Fecal microbiota and bile acids were analyzed with 16S sequencing and high-performance liquid chromatography with mass spectrometry, respectively. Introduction of conventional microbiota reduced C jejuni-induced colitis in previously germ-free Il10 -/- mice, independent of fecal load of C jejuni, accompanied by reduced activation of mammalian target of rapamycin. Microbiota transplantation and 16S ribosomal DNA sequencing experiments showed that Clostridium XI, Bifidobacterium, and Lactobacillus were enriched in fecal samples from mice colonized with microbiota cultured in anaerobic conditions (which reduce colitis) compared with mice fed microbiota cultured under aerobic conditions (susceptible to colitis). Oral administration to mice of microbiota-derived secondary bile acid sodium deoxycholate, but not ursodeoxycholic acid or lithocholic acid, reduced C jejuni-induced colitis. Depletion of secondary bile acid-producing bacteria with antibiotics that kill anaerobic bacteria (clindamycin) promoted C jejuni-induced colitis in specific pathogen-free Il10 -/- mice compared with the nonspecific antibiotic nalidixic acid; colitis induction by antibiotics was associated with reduced level of luminal deoxycholate. We identified a

  8. Gut Microbiota in a Rat Oral Sensitization Model: Effect of a Cocoa-Enriched Diet

    PubMed Central

    Camps-Bossacoma, Mariona; Pérez-Cano, Francisco J.; Franch, Àngels

    2017-01-01

    Increasing evidence is emerging suggesting a relation between dietary compounds, microbiota, and the susceptibility to allergic diseases, particularly food allergy. Cocoa, a source of antioxidant polyphenols, has shown effects on gut microbiota and the ability to promote tolerance in an oral sensitization model. Taking these facts into consideration, the aim of the present study was to establish the influence of an oral sensitization model, both alone and together with a cocoa-enriched diet, on gut microbiota. Lewis rats were orally sensitized and fed with either a standard or 10% cocoa diet. Faecal microbiota was analysed through metagenomics study. Intestinal IgA concentration was also determined. Oral sensitization produced few changes in intestinal microbiota, but in those rats fed a cocoa diet significant modifications appeared. Decreased bacteria from the Firmicutes and Proteobacteria phyla and a higher percentage of bacteria belonging to the Tenericutes and Cyanobacteria phyla were observed. In conclusion, a cocoa diet is able to modify the microbiota bacterial pattern in orally sensitized animals. As cocoa inhibits the synthesis of specific antibodies and also intestinal IgA, those changes in microbiota pattern, particularly those of the Proteobacteria phylum, might be partially responsible for the tolerogenic effect of cocoa. PMID:28239436

  9. Enteric defensins are essential regulators of intestinal microbial ecology.

    PubMed

    Salzman, Nita H; Hung, Kuiechun; Haribhai, Dipica; Chu, Hiutung; Karlsson-Sjöberg, Jenny; Amir, Elad; Teggatz, Paul; Barman, Melissa; Hayward, Michael; Eastwood, Daniel; Stoel, Maaike; Zhou, Yanjiao; Sodergren, Erica; Weinstock, George M; Bevins, Charles L; Williams, Calvin B; Bos, Nicolaas A

    2010-01-01

    Antimicrobial peptides are important effectors of innate immunity throughout the plant and animal kingdoms. In the mammalian small intestine, Paneth cell alpha-defensins are antimicrobial peptides that contribute to host defense against enteric pathogens. To determine if alpha-defensins also govern intestinal microbial ecology, we analyzed the intestinal microbiota of mice expressing a human alpha-defensin gene (DEFA5) and in mice lacking an enzyme required for the processing of mouse alpha-defensins. In these complementary models, we detected significant alpha-defensin-dependent changes in microbiota composition, but not in total bacterial numbers. Furthermore, DEFA5-expressing mice had striking losses of segmented filamentous bacteria and fewer interleukin 17 (IL-17)-producing lamina propria T cells. Our data ascribe a new homeostatic role to alpha-defensins in regulating the makeup of the commensal microbiota.

  10. Diet and the intestinal microbiome: associations, functions, and implications for health and disease.

    PubMed

    Albenberg, Lindsey G; Wu, Gary D

    2014-05-01

    The mutual relationship between the intestinal microbiota and its mammalian host is influenced by diet. Consumption of various nutrients affects the structure of the microbial community and provides substrates for microbial metabolism. The microbiota can produce small molecules that are absorbed by the host and affect many important physiological processes. Age-dependent and societal differences in the intestinal microbiota could result from differences in diet. Examples include differences in the intestinal microbiota of breastfed vs formula-fed infants or differences in microbial richness in people who consume an agrarian plant-based vs a Western diet, which is high in meat and fat. We review how diet affects the structure and metabolome of the human intestinal microbiome and may contribute to health or the pathogenesis of disorders such as coronary vascular disease and inflammatory bowel disease. Copyright © 2014 AGA Institute. Published by Elsevier Inc. All rights reserved.

  11. Omega-3 fatty acids prevent early-life antibiotic exposure-induced gut microbiota dysbiosis and later-life obesity.

    PubMed

    Kaliannan, K; Wang, B; Li, X-Y; Bhan, A K; Kang, J X

    2016-06-01

    Early-life antibiotic exposure can disrupt the founding intestinal microbial community and lead to obesity later in life. Recent studies show that omega-3 fatty acids can reduce body weight gain and chronic inflammation through modulation of the gut microbiota. We hypothesize that increased tissue levels of omega-3 fatty acids may prevent antibiotic-induced alteration of gut microbiota and obesity later in life. Here, we utilize the fat-1 transgenic mouse model, which can endogenously produce omega-3 fatty acids and thereby eliminates confounding factors of diet, to show that elevated tissue levels of omega-3 fatty acids significantly reduce body weight gain and the severity of insulin resistance, fatty liver and dyslipidemia resulting from early-life exposure to azithromycin. These effects were associated with a reversal of antibiotic-induced dysbiosis of gut microbiota in fat-1 mice. These results demonstrate the beneficial effects of omega-3 fatty acids on antibiotic-induced gut dysbiosis and obesity, and suggest the potential utility of omega-3 supplementation as a safe and effective means for the prevention of obesity in children who are exposed to antibiotics.

  12. Comparison of the intestinal mucosal microbiota in dogs diagnosed with idiopathic inflammatory bowel disease and dogs with food-responsive diarrhea before and after treatment.

    PubMed

    Kalenyak, Katja; Isaiah, Anitha; Heilmann, Romy M; Suchodolski, Jan S; Burgener, Iwan A

    2018-02-01

    We report the first study to evaluate the intestinal mucosal microbiota of dogs with inflammatory bowel disease (IBD) and dogs with food-responsive diarrhea (FRD) before and after treatment. It was hypothesized that differences in the microbial composition exist between both disease groups and within groups pre- vs. post-treatment. Duodenal and colonic biopsies were obtained endoscopically from 24 dogs (15 FRD, 9 IBD) before and after treatment. The intestinal microbiota was evaluated by Illumina sequencing of the bacterial 16S rRNA gene. The global bacterial composition did not differ between IBD and FRD dogs, nor between treatment status. However, several bacterial taxa showed a difference in abundance. Comparing disease groups, an unclassified genus of Neisseriaceae was abundant in the duodenum in the IBD group, whereas Bilophila occurred more frequently in the duodenum and Burkholderia in the colon of FRD dogs. Comparing the microbiota pre- and post-treatment revealed Enterococcus, Corynebacterium and Proteobacteria to be enriched in the duodenum of FRD dogs pre-treatment, while Bacteroides was abundant in the colon post-treatment. In dogs with IBD, Bacteroides also reached significant abundance in the colon post-treatment. In conclusion, some differences in individual bacterial taxa were identified between IBD and FRD dogs and between treatment status. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  13. Gut microbiota and metabolic syndrome

    PubMed Central

    Festi, Davide; Schiumerini, Ramona; Eusebi, Leonardo Henry; Marasco, Giovanni; Taddia, Martina; Colecchia, Antonio

    2014-01-01

    Gut microbiota exerts a significant role in the pathogenesis of the metabolic syndrome, as confirmed by studies conducted both on humans and animal models. Gut microbial composition and functions are strongly influenced by diet. This complex intestinal “superorganism” seems to affect host metabolic balance modulating energy absorption, gut motility, appetite, glucose and lipid metabolism, as well as hepatic fatty storage. An impairment of the fine balance between gut microbes and host’s immune system could culminate in the intestinal translocation of bacterial fragments and the development of “metabolic endotoxemia”, leading to systemic inflammation and insulin resistance. Diet induced weight-loss and bariatric surgery promote significant changes of gut microbial composition, that seem to affect the success, or the inefficacy, of treatment strategies. Manipulation of gut microbiota through the administration of prebiotics or probiotics could reduce intestinal low grade inflammation and improve gut barrier integrity, thus, ameliorating metabolic balance and promoting weight loss. However, further evidence is needed to better understand their clinical impact and therapeutic use. PMID:25473159

  14. Dietary emulsifiers impact the mouse gut microbiota promoting colitis and metabolic syndrome

    PubMed Central

    Chassaing, Benoit; Koren, Omry; Goodrich, Julia; Poole, Angela; Srinivasan, Shanthi; Ley, Ruth E.; Gewirtz, Andrew T.

    2015-01-01

    Summary The intestinal tract is inhabited by a large diverse community of microbes collectively referred to as gut microbiota. While gut microbiota provide important benefits to its host, especially in metabolism and immune development, disturbance of the microbiota-host relationship is associated with numerous chronic inflammatory diseases, including inflammatory bowel disease (IBD) and the group of obesity-associated diseases collectively referred to as metabolic syndrome. A primary means by which the intestine is protected from its microbiota is via multilayered mucus structures that cover the intestinal surface thus allowing the vast majority of gut bacteria to be kept at a safe distance from epithelial cells that line the intestine 1. Thus, agents that disrupt mucus-bacterial interactions might have the potential to promote diseases associated with gut inflammation. Consequently, it has been hypothesized that emulsifiers, detergent-like molecules that are a ubiquitous component of processed foods and that can increase bacterial translocation across epithelia in vitro 2, might be promoting the post-mid 20th century increase in IBD 3. Herein, we observed that, in mice, relatively low concentrations of two commonly used emulsifiers, namely carboxymethylcellulose and polysorbate-80, induced low-grade inflammation and obesity/metabolic syndrome in WT hosts and promoted robust colitis in mice predisposed to this disorder. Emulsifier-induced metabolic syndrome was associated with microbiota encroachment, altered species composition, and increased pro-inflammatory potential. Use of germ-free mice and fecal transplants indicated that such changes in microbiota were necessary and sufficient for both low-grade inflammation and metabolic syndrome. These results support the emerging concept that perturbed host-microbiota interactions resulting in low-grade inflammation can promote adiposity and its associated metabolic effects. Moreover, they suggest that broad use of

  15. Dietary emulsifiers impact the mouse gut microbiota promoting colitis and metabolic syndrome.

    PubMed

    Chassaing, Benoit; Koren, Omry; Goodrich, Julia K; Poole, Angela C; Srinivasan, Shanthi; Ley, Ruth E; Gewirtz, Andrew T

    2015-03-05

    The intestinal tract is inhabited by a large and diverse community of microbes collectively referred to as the gut microbiota. While the gut microbiota provides important benefits to its host, especially in metabolism and immune development, disturbance of the microbiota-host relationship is associated with numerous chronic inflammatory diseases, including inflammatory bowel disease and the group of obesity-associated diseases collectively referred to as metabolic syndrome. A primary means by which the intestine is protected from its microbiota is via multi-layered mucus structures that cover the intestinal surface, thereby allowing the vast majority of gut bacteria to be kept at a safe distance from epithelial cells that line the intestine. Thus, agents that disrupt mucus-bacterial interactions might have the potential to promote diseases associated with gut inflammation. Consequently, it has been hypothesized that emulsifiers, detergent-like molecules that are a ubiquitous component of processed foods and that can increase bacterial translocation across epithelia in vitro, might be promoting the increase in inflammatory bowel disease observed since the mid-twentieth century. Here we report that, in mice, relatively low concentrations of two commonly used emulsifiers, namely carboxymethylcellulose and polysorbate-80, induced low-grade inflammation and obesity/metabolic syndrome in wild-type hosts and promoted robust colitis in mice predisposed to this disorder. Emulsifier-induced metabolic syndrome was associated with microbiota encroachment, altered species composition and increased pro-inflammatory potential. Use of germ-free mice and faecal transplants indicated that such changes in microbiota were necessary and sufficient for both low-grade inflammation and metabolic syndrome. These results support the emerging concept that perturbed host-microbiota interactions resulting in low-grade inflammation can promote adiposity and its associated metabolic effects

  16. Fecal Microbiota Transplantation in Inflammatory Bowel Disease.

    PubMed

    Reinisch, Walter

    2017-01-01

    The etiology of inflammatory bowel disease (IBD) is unknown, but it is thought to arise from an aberrant immune response to a change in colonic environment in a genetically susceptible individual. The intestinal microbiota are located at the complex interface of the epithelial barrier and are sensitive to changes in environmental factors, such as diets, drugs or smoking and signals derived from the intestinal immune system and the gut-brain axis. In patients with IBD, an imbalance in the structural and/or functional configuration of the intestinal microbiota leading to the disruption of the host-microorganism homeostasis (dysbiosis) has been reproducibly reported. As animal models of IBD require gut bacteria to induce inflammation, it is hypothesized that the dysbiosis observed in patients is not only a surrogate of changes at the intestinal barrier but also a potential cause or at least enhancer of the mucosal inflammatory process. That burgeoning notion has stimulated thoughts to modify the intestinal microbiota and rekindled interest in previous work on the efficacy of antibiotics in patients with IBD. The feasibility and tremendous success of fecal microbiota transplantation (FMT) to treat antibiotic resistant Clostridium difficile has finally paved the way to embark into the unchartered territory of IBD using FMT. Different routes and number of administrations, choices of donors, disease status and permitted therapies might have contributed to mixed results, particularly from the so far published randomized controlled trials. However, microbiome analysis suggests that a durable transplantation of donor bacteria to the host appears feasible and might be associated with a higher likelihood of response. On the other hand, this raises the concern of transplanting not only anti-inflammatory active bacteria and their products, but also not-yet-known dispositions for other diseases including cancer. Attempts are being made to better characterize those components of

  17. In vitro fermentation of lupin seeds (Lupinus albus) and broad beans (Vicia faba): dynamic modulation of the intestinal microbiota and metabolomic output.

    PubMed

    Gullón, Patricia; Gullón, Beatriz; Tavaria, Freni; Vasconcelos, Marta; Gomes, Ana Maria

    2015-10-01

    Broad beans (Vicia faba) and lupin seeds (Lupinus albus) are legumes rich in a wide range of compounds, which may represent a useful dietary approach for modulating the human gut microbiome. In this work, after in vitro digestion, legume samples were used as carbon sources in anaerobic batch cultures to evaluate their impact on the intestinal microbiota composition and on their metabolic products. The fermentations were monitored by a decrease in pH, generation of short chain fatty acids (SCFA) and lactate and the changes in the dynamic bacterial populations by fluorescence in situ hybridization (FISH). The total SCFA at the end of fermentation was 81.52 mM for lupin seeds and 78.41 mM for broad beans accompanied by a decrease of the pH for both legumes. The microbial groups that increased significantly (P < 0.05) were Bifidobacterium spp., Lactobacillus-Enterococcus, Atopobium, Bacteroides-Pretovella, Clostridium coccoides-Eubacterium rectale, Faecalibacterium prausnitzii and Roseburia intestinalis. This impact on the intestinal microbiota suggests that lupin seeds and broad beans may be used in the development of novel functional foods, which can be included in dietary strategies for human health promotion.

  18. Microbiota-Liver Axis in Hepatic Disease

    PubMed Central

    Chassaing, Benoit; Etienne-Mesmin, Lucie; Gewirtz, Andrew T.

    2014-01-01

    Accumulating evidence indicates that the gut microbiota, long appreciated to be a key determinant of intestinal inflammation, is also playing a key role in chronic inflammatory disease of the liver. Such studies have yielded a general central hypothesis whereby microbiota products activate the innate immune system to drive pro-inflammatory gene expression thus promoting chronic inflammatory disease of the liver. This article reviews the background supporting this hypothesis, outlines how it can potentially explain classic and newly emerging epidemiological chronic inflammatory liver disease, and discusses potential therapeutic means to manipulate the microbiota so as to prevent and/or treat liver disease. PMID:23703735

  19. Bacterial communities in the small intestine respond differently to those in the caecum and colon in mice fed low- and high-fat diets

    PubMed Central

    Campbell, Sara; Moreau, Michael; Patel, Falshruti; Brooks, Andrew I.; Zhou, Yin Xiu; Häggblom, Max M.; Storch, Judith

    2017-01-01

    Bacterial communities in the mouse caecum and faeces are known to be altered by changes in dietary fat. The microbiota of the mouse small intestine, by contrast, has not been extensively profiled and it is unclear whether small intestinal bacterial communities shift with dietary fat levels. We compared the microbiota in the small intestine, caecum and colon in mice fed a low-fat (LF) or high-fat (HF) diet using 16S rRNA gene sequencing. The relative abundance of major phyla in the small intestine, Bacteriodetes, Firmicutes and Proteobacteria, was similar to that in the caecum and colon; the relative abundance of Verrucomicrobia was significantly reduced in the small intestine compared to the large intestine. Several genera were uniquely detected in the small intestine and included the aerotolerant anaerobe, Lactobacillus spp. The most abundant genera in the small intestine were accounted for by anaerobic bacteria and were identical to those identified in the large intestine. An HF diet was associated with significant weight gain and adiposity and with changes in the bacterial communities throughout the intestine, with changes in the small intestine differing from those in the caecum and colon. Prominent Gram-negative bacteria including genera of the phylum Bacteroidetes and a genus of Proteobacteria significantly changed in the large intestine. The mechanistic links between these changes and the development of obesity, perhaps involving metabolic endotoxemia, remain to be determined. PMID:28742010

  20. Incorporation of therapeutically modified bacteria into gut microbiota inhibits obesity

    PubMed Central

    Chen, Zhongyi; Guo, Lilu; Zhang, Yongqin; L. Walzem, Rosemary; Pendergast, Julie S.; Printz, Richard L.; Morris, Lindsey C.; Matafonova, Elena; Stien, Xavier; Kang, Li; Coulon, Denis; McGuinness, Owen P.; Niswender, Kevin D.; Davies, Sean S.

    2014-01-01

    Metabolic disorders, including obesity, diabetes, and cardiovascular disease, are widespread in Westernized nations. Gut microbiota composition is a contributing factor to the susceptibility of an individual to the development of these disorders; therefore, altering a person’s microbiota may ameliorate disease. One potential microbiome-altering strategy is the incorporation of modified bacteria that express therapeutic factors into the gut microbiota. For example, N-acylphosphatidylethanolamines (NAPEs) are precursors to the N-acylethanolamide (NAE) family of lipids, which are synthesized in the small intestine in response to feeding and reduce food intake and obesity. Here, we demonstrated that administration of engineered NAPE-expressing E. coli Nissle 1917 bacteria in drinking water for 8 weeks reduced the levels of obesity in mice fed a high-fat diet. Mice that received modified bacteria had dramatically lower food intake, adiposity, insulin resistance, and hepatosteatosis compared with mice receiving standard water or control bacteria. The protective effects conferred by NAPE-expressing bacteria persisted for at least 4 weeks after their removal from the drinking water. Moreover, administration of NAPE-expressing bacteria to TallyHo mice, a polygenic mouse model of obesity, inhibited weight gain. Our results demonstrate that incorporation of appropriately modified bacteria into the gut microbiota has potential as an effective strategy to inhibit the development of metabolic disorders. PMID:24960158

  1. CARD9 impacts colitis by altering gut microbiota metabolism of tryptophan into aryl hydrocarbon receptor ligands.

    PubMed

    Lamas, Bruno; Richard, Mathias L; Leducq, Valentin; Pham, Hang-Phuong; Michel, Marie-Laure; Da Costa, Gregory; Bridonneau, Chantal; Jegou, Sarah; Hoffmann, Thomas W; Natividad, Jane M; Brot, Loic; Taleb, Soraya; Couturier-Maillard, Aurélie; Nion-Larmurier, Isabelle; Merabtene, Fatiha; Seksik, Philippe; Bourrier, Anne; Cosnes, Jacques; Ryffel, Bernhard; Beaugerie, Laurent; Launay, Jean-Marie; Langella, Philippe; Xavier, Ramnik J; Sokol, Harry

    2016-06-01

    Complex interactions between the host and the gut microbiota govern intestinal homeostasis but remain poorly understood. Here we reveal a relationship between gut microbiota and caspase recruitment domain family member 9 (CARD9), a susceptibility gene for inflammatory bowel disease (IBD) that functions in the immune response against microorganisms. CARD9 promotes recovery from colitis by promoting interleukin (IL)-22 production, and Card9(-/-) mice are more susceptible to colitis. The microbiota is altered in Card9(-/-) mice, and transfer of the microbiota from Card9(-/-) to wild-type, germ-free recipients increases their susceptibility to colitis. The microbiota from Card9(-/-) mice fails to metabolize tryptophan into metabolites that act as aryl hydrocarbon receptor (AHR) ligands. Intestinal inflammation is attenuated after inoculation of mice with three Lactobacillus strains capable of metabolizing tryptophan or by treatment with an AHR agonist. Reduced production of AHR ligands is also observed in the microbiota from individuals with IBD, particularly in those with CARD9 risk alleles associated with IBD. Our findings reveal that host genes affect the composition and function of the gut microbiota, altering the production of microbial metabolites and intestinal inflammation.

  2. Gut Microbiota and Lifestyle Interventions in NAFLD

    PubMed Central

    Houghton, David; Stewart, Christopher J.; Day, Christopher P.; Trenell, Michael

    2016-01-01

    The human digestive system harbors a diverse and complex community of microorganisms that work in a symbiotic fashion with the host, contributing to metabolism, immune response and intestinal architecture. However, disruption of a stable and diverse community, termed “dysbiosis”, has been shown to have a profound impact upon health and disease. Emerging data demonstrate dysbiosis of the gut microbiota to be linked with non-alcoholic fatty liver disease (NAFLD). Although the exact mechanism(s) remain unknown, inflammation, damage to the intestinal membrane, and translocation of bacteria have all been suggested. Lifestyle intervention is undoubtedly effective at improving NAFLD, however, not all patients respond to these in the same manner. Furthermore, studies investigating the effects of lifestyle interventions on the gut microbiota in NAFLD patients are lacking. A deeper understanding of how different aspects of lifestyle (diet/nutrition/exercise) affect the host–microbiome interaction may allow for a more tailored approach to lifestyle intervention. With gut microbiota representing a key element of personalized medicine and nutrition, we review the effects of lifestyle interventions (diet and physical activity/exercise) on gut microbiota and how this impacts upon NAFLD prognosis. PMID:27023533

  3. Childhood malnutrition and the intestinal microbiome.

    PubMed

    Kane, Anne V; Dinh, Duy M; Ward, Honorine D

    2015-01-01

    Malnutrition contributes to almost half of all deaths in children under the age of 5 y, particularly those who live in resource-constrained areas. Those who survive frequently suffer from long-term sequelae including growth failure and neurodevelopmental impairment. Malnutrition is part of a vicious cycle of impaired immunity, recurrent infections, and worsening malnutrition. Recently, alterations in the gut microbiome have also been strongly implicated in childhood malnutrition. It has been suggested that malnutrition may delay the normal development of the gut microbiota in early childhood or force it toward an altered composition that lacks the required functions for healthy growth and/or increases the risk for intestinal inflammation. This review addresses our current understanding of the beneficial contributions of gut microbiota to human nutrition (and conversely the potential role of changes in that community to malnutrition), the process of acquiring an intestinal microbiome, potential influences of malnutrition on the developing microbiota, and the evidence directly linking alterations in the intestinal microbiome to childhood malnutrition. We review recent studies on the association between alterations in the intestinal microbiome and early childhood malnutrition and discuss them in the context of implications for intervention or prevention of the devastation caused by malnutrition.

  4. Microbiota of the chicken gastrointestinal tract: influence on health, productivity and disease.

    PubMed

    Stanley, Dragana; Hughes, Robert J; Moore, Robert J

    2014-05-01

    Recent advances in the technology available for culture-independent methods for identification and enumeration of environmental bacteria have invigorated interest in the study of the role of chicken intestinal microbiota in health and productivity. Chickens harbour unique and diverse bacterial communities that include human and animal pathogens. Increasing public concern about the use of antibiotics in the poultry industry has influenced the ways in which poultry producers are working towards improving birds' intestinal health. Effective means of antibiotic-independent pathogen control through competitive exclusion and promotion of good protective microbiota are being actively investigated. With the realisation that just about any change in environment influences the highly responsive microbial communities and with the abandonment of the notion that we can isolate and investigate a single species of interest outside of the community, came a flood of studies that have attempted to profile the intestinal microbiota of chickens under numerous conditions. This review aims to address the main issues in investigating chicken microbiota and to summarise the data acquired to date.

  5. A high-resolution map of the gut microbiota in Atlantic salmon (Salmo salar): A basis for comparative gut microbial research.

    PubMed

    Gajardo, Karina; Rodiles, Ana; Kortner, Trond M; Krogdahl, Åshild; Bakke, Anne Marie; Merrifield, Daniel L; Sørum, Henning

    2016-08-03

    Gut health challenges, possibly related to alterations in gut microbiota, caused by plant ingredients in the diets, cause losses in Atlantic salmon production. To investigate the role of the microbiota for gut function and health, detailed characterization of the gut microbiota is needed. We present the first in-depth characterization of salmon gut microbiota based on high-throughput sequencing of the 16S rRNA gene's V1-V2 region. Samples were taken from five intestinal compartments: digesta from proximal, mid and distal intestine and of mucosa from mid and distal intestine of 67.3 g salmon kept in seawater (12-14 °C) and fed a commercial diet for 4 weeks. Microbial richness and diversity differed significantly and were higher in the digesta than the mucosa. In mucosa, Proteobacteria dominated the microbiota (90%), whereas in digesta both Proteobacteria (47%) and Firmicutes (38%) showed high abundance. Future studies of diet and environmental impacts on gut microbiota should therefore differentiate between effects on mucosa and digesta in the proximal, mid and the distal intestine. A core microbiota, represented by 22 OTUs, was found in 80% of the samples. The gut microbiota of Atlantic salmon showed similarities with that of mammals.

  6. Interleukin-15 promotes intestinal dysbiosis with butyrate deficiency associated with increased susceptibility to colitis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meisel, Marlies; Mayassi, Toufic; Fehlner-Peach, Hannah

    2016-09-20

    Dysbiosis resulting in gut-microbiome alterations with reduced butyrate production are thought to disrupt intestinal immune homeostasis and promote complex immune disorders. However, whether and how dysbiosis develops before the onset of overt pathology remains poorly defined. Interleukin 15 (IL-15) is upregulated in distressed tissue and its overexpression is thought to predispose susceptible individuals to and play a role in the pathogenesis of celiac disease and inflammatory bowel disease (IBD). While the immunological roles of IL-15 have been largely studied, its potential impact on the microbiota remains unexplored. Analysis of 16S rRNA-based inventories of bacterial communities in mice overexpressing IL-15 inmore » the intestinal epithelium (v-IL-15tg mice) shows distinct changes in the composition of the intestinal bacteria. While some alterations are specific to individual intestinal compartments, others are found across the ileum, cecum, and feces. In particular, IL-15 overexpression restructures the composition of the microbiota with a decrease in butyrate producing bacteria that is associated with a reduction in luminal butyrate levels across all intestinal compartments. Fecal microbiota transplant experiments of wild-type and v-IL-15tg microbiota into germ-free mice further indicate that diminishing butyrate concentration observed in the intestinal lumen of v-IL-15tg mice is the result of intrinsic alterations in the microbiota induced by IL-15. This reconfiguration of the microbiota is associated with increased susceptibility to dextran sodium sulfate induced colitis. Altogether, this study reveals that IL-15 impacts butyrate-producing bacteria and lowers butyrate levels in the absence of overt pathology, which represent events that precede and promote intestinal inflammatory diseases.« less

  7. High-affinity monoclonal IgA regulates gut microbiota and prevents colitis in mice.

    PubMed

    Okai, Shinsaku; Usui, Fumihito; Yokota, Shuhei; Hori-I, Yusaku; Hasegawa, Makoto; Nakamura, Toshinobu; Kurosawa, Manabu; Okada, Seiji; Yamamoto, Kazuya; Nishiyama, Eri; Mori, Hiroshi; Yamada, Takuji; Kurokawa, Ken; Matsumoto, Satoshi; Nanno, Masanobu; Naito, Tomoaki; Watanabe, Yohei; Kato, Tamotsu; Miyauchi, Eiji; Ohno, Hiroshi; Shinkura, Reiko

    2016-07-04

    Immunoglobulin A (IgA) is the main antibody isotype secreted into the intestinal lumen. IgA plays a critical role in the defence against pathogens and in the maintenance of intestinal homeostasis. However, how secreted IgA regulates gut microbiota is not completely understood. In this study, we isolated monoclonal IgA antibodies from the small intestine of healthy mouse. As a candidate for an efficient gut microbiota modulator, we selected a W27 IgA, which binds to multiple bacteria, but not beneficial ones such as Lactobacillus casei. W27 could suppress the cell growth of Escherichia coli but not L. casei in vitro, indicating an ability to improve the intestinal environment. Indeed W27 oral treatment could modulate gut microbiota composition and have a therapeutic effect on both lymphoproliferative disease and colitis models in mice. Thus, W27 IgA oral treatment is a potential remedy for inflammatory bowel disease, acting through restoration of host-microbial symbiosis.

  8. The Impact of the Milk Glycobiome on the Neonate Gut Microbiota

    PubMed Central

    Pacheco, Alline R.; Barile, Daniela; Underwood, Mark A.; Mills, David A.

    2015-01-01

    Human milk is a complete source of nourishment for the infant. Exclusive breastfeeding not only sustains the infant’s development but also guides the proliferation of a protective intestinal microbiota. Among the many components of milk that modulate the infant gut microbiota, the milk glycans, which comprise free oligosaccharides, glycoproteins, and glycolipids, are increasingly recognized as drivers of microbiota development and overall gut health. These glycans may display pleiotropic functions, conferring protection against infectious diseases and also acting as prebiotics, selecting for the growth of beneficial intestinal bacteria. The prebiotic effect of milk glycans has direct application to prevention of diseases such as necrotizing enterocolitis, a common and devastating disease of preterm infants. In this article, we review the impact of the human (and bovine) milk glycome on gut health through establishment of a milk-oriented microbiota in the neonate. PMID:25387230

  9. Interplay between intestinal alkaline phosphatase, diet, gut microbes and immunity.

    PubMed

    Estaki, Mehrbod; DeCoffe, Daniella; Gibson, Deanna L

    2014-11-14

    Intestinal alkaline phosphatase (IAP) plays an essential role in intestinal homeostasis and health through interactions with the resident microbiota, diet and the gut. IAP's role in the intestine is to dephosphorylate toxic microbial ligands such as lipopolysaccharides, unmethylated cytosine-guanosine dinucleotides and flagellin as well as extracellular nucleotides such as uridine diphosphate. IAP's ability to detoxify these ligands is essential in protecting the host from sepsis during acute inflammation and chronic inflammatory conditions such as inflammatory bowel disease. Also important in these complications is IAP's ability to regulate the microbial ecosystem by forming a complex relationship between microbiota, diet and the intestinal mucosal surface. Evidence reveals that diet alters IAP expression and activity and this in turn can influence the gut microbiota and homeostasis. IAP's ability to maintain a healthy gastrointestinal tract has accelerated research on its potential use as a therapeutic agent against a multitude of diseases. Exogenous IAP has been shown to have beneficial effects when administered during ulcerative colitis, coronary bypass surgery and sepsis. There are currently a handful of human clinical trials underway investigating the effects of exogenous IAP during sepsis, rheumatoid arthritis and heart surgery. In light of these findings IAP has been marked as a novel agent to help treat a variety of other inflammatory and infectious diseases. The purpose of this review is to highlight the essential characteristics of IAP in protection and maintenance of intestinal homeostasis while addressing the intricate interplay between IAP, diet, microbiota and the intestinal epithelium.

  10. Establishment of intestinal microbiota during early life: a longitudinal, explorative study of a large cohort of Danish infants.

    PubMed

    Bergström, Anders; Skov, Thomas Hjort; Bahl, Martin Iain; Roager, Henrik Munch; Christensen, Line Brinch; Ejlerskov, Katrine Tschentscher; Mølgaard, Christian; Michaelsen, Kim F; Licht, Tine Rask

    2014-05-01

    Fecal samples were obtained from a cohort of 330 healthy Danish infants at 9, 18, and 36 months after birth, enabling characterization of interbacterial relationships by use of quantitative PCR targeting 31 selected bacterial 16S rRNA gene targets representing different phylogenetic levels. Nutritional parameters and measures of growth and body composition were determined and investigated in relation to the observed development in microbiota composition. We found that significant changes in the gut microbiota occurred, particularly from age 9 to 18 months, when cessation of breastfeeding and introduction of a complementary feeding induce replacement of a microbiota characterized by lactobacilli, bifidobacteria, and Enterobacteriaceae with a microbiota dominated by Clostridium spp. and Bacteroides spp. Classification of samples by a proxy enterotype based on the relative levels of Bacteroides spp. and Prevotella spp. showed that enterotype establishment occurs between 9 and 36 months. Thirty percent of the individuals shifted enterotype between 18 and 36 months. The composition of the microbiota was most pronouncedly influenced by the time of cessation of breastfeeding. From 9 to 18 months, a positive correlation was observed between the increase in body mass index and the increase of the short-chain-fatty-acid-producing clostridia, the Clostridum leptum group, and Eubacterium hallii. Considering previously established positive associations between rapid infant weight gain, early breastfeeding discontinuation, and later-life obesity, the corresponding microbial findings seen here warrant attention.

  11. The DPP-4 inhibitor vildagliptin impacts the gut microbiota and prevents disruption of intestinal homeostasis induced by a Western diet in mice.

    PubMed

    Olivares, Marta; Neyrinck, Audrey M; Pötgens, Sarah A; Beaumont, Martin; Salazar, Nuria; Cani, Patrice D; Bindels, Laure B; Delzenne, Nathalie M

    2018-05-25

    Dipeptidyl peptidase 4 (DPP-4) inhibitors are agents designed to increase the half-life of incretins. Although they are administered orally, little is known about their effects on the gut microbiota and functions, despite the fact that some bacteria present in the gut microbiota exhibit DPP-4-like activity. Our objective was to study the impact of the DPP-4 inhibitor vildagliptin on gut functions and the intestinal ecosystem in a murine model of obesity induced by a Western diet (WD). Twenty seven male C57BL/6J mice were randomised to receive a control diet, a WD (45% kJ from fat and 17% kJ from sucrose) or a WD + vildagliptin (0.6 mg/ml in drinking water) for 8 weeks. Vildagliptin significantly reduced DPP-4 activity in the caecal content and faeces. Vildagliptin impacted on the composition of the gut microbiota and its metabolic activity. It mainly decreased Oscillibacter spp. (a direct effect independent of DPP-4 activity was shown on cultured O. valericigenes), increased Lactobacillus spp. and propionate, and reduced the ligands of Toll-like receptors 2 and 4. Vildagliptin protected against the reductions in crypt depth and ileal expression of antimicrobial peptides induced by the WD. In the liver, the expression of immune cell populations (Cd3g and Cd11c [also known as Itgax]) and cytokines was decreased in the WD + vildagliptin-fed mice compared with the WD-fed group. Ex vivo exposure of precision-cut liver slices to vildagliptin showed that this response was not related to a direct effect of the drug on the liver tissue. Our study is the first to consider the DPP-4-like activity of the gut microbiota as a target of DPP-4 inhibition. We propose that vildagliptin exerts beneficial effects at the intestinal level in association with modulation of gut microbiota, with consequences for hepatic immunity. If relevant in humans, this could open new therapeutic uses of DPP-4 inhibition to tackle gut dysfunctions in different pathophysiological contexts. The

  12. Mongolians core gut microbiota and its correlation with seasonal dietary changes.

    PubMed

    Zhang, Jiachao; Guo, Zhuang; Lim, Angela An Qi; Zheng, Yi; Koh, Eileen Y; Ho, Danliang; Qiao, Jianmin; Huo, Dongxue; Hou, Qiangchuan; Huang, Weiqiang; Wang, Lifeng; Javzandulam, Chimedsuren; Narangerel, Choijilsuren; Jirimutu; Menghebilige; Lee, Yuan-Kun; Zhang, Heping

    2014-05-16

    Historically, the Mongol Empire ranks among the world's largest contiguous empires, and the Mongolians developed their unique lifestyle and diet over thousands of years. In this study, the intestinal microbiota of Mongolians residing in Ulan Bator, TUW province and the Khentii pasturing area were studied using 454 pyrosequencing and q-PCR technology. We explored the impacts of lifestyle and seasonal dietary changes on the Mongolians' gut microbes. At the phylum level, the Mongolians's gut populations were marked by a dominance of Bacteroidetes (55.56%) and a low Firmicutes to Bacteroidetes ratio (0.71). Analysis based on the operational taxonomic unit (OTU) level revealed that the Mongolian core intestinal microbiota comprised the genera Prevotella, Bacteroides, Faecalibacterium, Ruminococcus, Subdoligranulum and Coprococcus. Urbanisation and life-style may have modified the compositions of the gut microbiota of Mongolians from Ulan Bator, TUW and Khentii. Based on a food frequency questionnaire, we found that the dietary structure was diverse and stable throughout the year in Ulan Bator and TUW, but was simple and varied during the year in Khentii. Accordingly, seasonal effects on intestinal microbiota were more distinct in Khentii residents than in TUW or Ulan Bator residents.

  13. Mongolians core gut microbiota and its correlation with seasonal dietary changes

    PubMed Central

    Zhang, Jiachao; Guo, Zhuang; Lim, Angela An Qi; Zheng, Yi; Koh, Eileen Y.; Ho, Danliang; Qiao, Jianmin; Huo, Dongxue; Hou, Qiangchuan; Huang, Weiqiang; Wang, Lifeng; Javzandulam, Chimedsuren; Narangerel, Choijilsuren; Jirimutu; Menghebilige; Lee, Yuan-Kun; Zhang, Heping

    2014-01-01

    Historically, the Mongol Empire ranks among the world's largest contiguous empires, and the Mongolians developed their unique lifestyle and diet over thousands of years. In this study, the intestinal microbiota of Mongolians residing in Ulan Bator, TUW province and the Khentii pasturing area were studied using 454 pyrosequencing and q-PCR technology. We explored the impacts of lifestyle and seasonal dietary changes on the Mongolians' gut microbes. At the phylum level, the Mongolians's gut populations were marked by a dominance of Bacteroidetes (55.56%) and a low Firmicutes to Bacteroidetes ratio (0.71). Analysis based on the operational taxonomic unit (OTU) level revealed that the Mongolian core intestinal microbiota comprised the genera Prevotella, Bacteroides, Faecalibacterium, Ruminococcus, Subdoligranulum and Coprococcus. Urbanisation and life-style may have modified the compositions of the gut microbiota of Mongolians from Ulan Bator, TUW and Khentii. Based on a food frequency questionnaire, we found that the dietary structure was diverse and stable throughout the year in Ulan Bator and TUW, but was simple and varied during the year in Khentii. Accordingly, seasonal effects on intestinal microbiota were more distinct in Khentii residents than in TUW or Ulan Bator residents. PMID:24833488

  14. Gut Microbiota and Autism: Key Concepts and Findings

    ERIC Educational Resources Information Center

    Ding, Helen T.; Taur, Ying; Walkup, John T.

    2017-01-01

    There is an emerging body of evidence linking the intestinal microbiota with autism spectrum disorders (ASD). Studies have demonstrated differences in the composition of gut bacteria between children with ASD and controls. Certain intestinal bacteria have been observed in abundance and may be involved in the pathogenesis of ASD; including members…

  15. Effect of yogurt containing deep sea water on health-related serum parameters and intestinal microbiota in mice.

    PubMed

    Kang, Sun Moon; Jhoo, Jin Woo; Pak, Jae In; Kwon, Ill Kyoung; Lee, Sung Ki; Kim, Gur Yoo

    2015-09-01

    Deep sea water (DSW) has health benefits and is widely used as food supplement; however, its effect in fermented products has not been explored. Here, we investigated the effect of DSW-containing yogurt on health-related serum parameters and intestinal microbiota in mice. Animals were assigned to 3 feeding groups, which received water (control), normal yogurt (N-yogurt), or DSW-containing yogurt (DSW-yogurt) with a basal diet. Mice were killed at wk 4 or 8 of feeding and analyzed for serum parameters and microbial population in the small intestine. Both yogurt groups demonstrated increased populations of intestinal lactic acid bacteria compared with the control group. The activity of serum aspartate aminotransferase and alanine aminotransferase was markedly decreased in the DSW-yogurt and N-yogurt groups, and triglyceride level tended to be lower in the DSW-yogurt group compared with that in the control mice. Furthermore, the DSW-yogurt group showed a more significant decrease in the ratio of total cholesterol to high-density lipoprotein-cholesterol than did the N-yogurt group. These findings suggest that DSW supplementation of yogurt can increase its beneficial effects on lipid metabolism. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  16. Fuzhuan tea consumption imparts hepatoprotective effects and alters intestinal microbiota in high saturated fat diet-fed rats.

    PubMed

    Foster, Michelle T; Gentile, Christopher L; Cox-York, Kimberly; Wei, Yuren; Wang, Dong; Estrada, Andrea L; Reese, Lauren; Miller, Tirrel; Pagliassotti, Michael J; Weir, Tiffany L

    2016-05-01

    Nonalcoholic fatty liver disease is an obesity-related disorder characterized by lipid infiltration of the liver. Management is limited to lifestyle modifications, highlighting the need for alternative therapeutic options. The objective of this study was to examine if fermented Fuzhuan tea prevents metabolic impairments associated with development of hepatic steatosis. Rats consumed control (CON) or high saturated fat (SAT) diets with or without Fuzhuan tea for 8 weeks. Outcomes included enzymatic and gene expression measures of metabolic dysregulation in liver and adipose tissue. Pyrosequencing was used to assess intestinal microbiota adaptations. Fuzhuan tea prevented diet-induced inflammation in the liver. Liver triglycerides of ∼18 mg/g were observed in SAT-fed animals, but remained similar to CON diet levels (∼12 mg/g) when supplemented with Fuzhuan tea. In adipose tissue, tea treatment prevented SAT-induced inflammation and reduced plasma leptin approximately twofold. Fuzhuan tea also altered intestinal function and was associated with a threefold increase in two Lactobacillus spp. These data suggest that Fuzhuan tea protects against liver and adipose tissue stress induced by a high SAT diet and positively influences intestinal function. Further investigation of the molecular targets of Fuzhuan tea is warranted. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Mycotoxin: Its Impact on Gut Health and Microbiota

    PubMed Central

    Liew, Winnie-Pui-Pui; Mohd-Redzwan, Sabran

    2018-01-01

    The secondary metabolites produced by fungi known as mycotoxins, are capable of causing mycotoxicosis (diseases and death) in human and animals. Contamination of feedstuffs as well as food commodities by fungi occurs frequently in a natural manner and is accompanied by the presence of mycotoxins. The occurrence of mycotoxins' contamination is further stimulated by the on-going global warming as reflected in some findings. This review comprehensively discussed the role of mycotoxins (trichothecenes, zearalenone, fumonisins, ochratoxins, and aflatoxins) toward gut health and gut microbiota. Certainly, mycotoxins cause perturbation in the gut, particularly in the intestinal epithelial. Recent insights have generated an entirely new perspective where there is a bi-directional relationship exists between mycotoxins and gut microbiota, thus suggesting that our gut microbiota might be involved in the development of mycotoxicosis. The bacteria–xenobiotic interplay for the host is highlighted in this review article. It is now well established that a healthy gut microbiota is largely responsible for the overall health of the host. Findings revealed that the gut microbiota is capable of eliminating mycotoxin from the host naturally, provided that the host is healthy with a balance gut microbiota. Moreover, mycotoxins have been demonstrated for modulation of gut microbiota composition, and such alteration in gut microbiota can be observed up to species level in some of the studies. Most, if not all, of the reported effects of mycotoxins, are negative in terms of intestinal health, where beneficial bacteria are eliminated accompanied by an increase of the gut pathogen. The interactions between gut microbiota and mycotoxins have a significant role in the development of mycotoxicosis, particularly hepatocellular carcinoma. Such knowledge potentially drives the development of novel and innovative strategies for the prevention and therapy of mycotoxin contamination and

  18. [Research advances in the relationship between childhood malnutrition and gut microbiota].

    PubMed

    Wang, Hui-Hui; Wen, Fei-Qiu; Wei, Ju-Rong

    2016-11-01

    Childhood malnutrition is an important disease threatening healthy growth of children worldwide. Gut microbiota has close links to food digestion, absorption and intestinal function. Current research considers that alterations in gut microbiota have been strongly implicated in childhood malnutrition. This review article addresses the latest understanding and evidence of interrelationship between gut microbiota and individual nutrition status, the changes of gut microbiota in different types of malnutrition, and the attribution of gut microbiota in the treatment and prognosis of malnutrition. It provides in depth understanding of childhood malnutrition from the perspective of microbiome.

  19. Release of small phenolic compounds from brewer's spent grain and its lignin fractions by human intestinal microbiota in vitro.

    PubMed

    Aura, Anna-Marja; Niemi, Piritta; Mattila, Ismo; Niemelä, Klaus; Smeds, Annika; Tamminen, Tarja; Faulds, Craig; Buchert, Johanna; Poutanen, Kaisa

    2013-10-09

    Brewer's spent grain (BSG), the major side-stream from brewing, is rich in protein, lignin, and nonstarch polysaccharides. Lignin is a polyphenolic macromolecule considered resilient toward breakdown and utilization by colon microbiota, although some indications of release of small phenolic components from lignin in animals have been shown. The aim of this study was to investigate if the human intestinal microbiota can release lignans and small phenolic compounds from whole BSG, a lignin-enriched insoluble fraction from BSG and a deferuloylated fraction, in a metabolic in vitro colon model. The formation of short-chain fatty acid (SCFA) was also investigated. More lignin-related monomers and dilignols were detected from the lignin-enriched fraction than from BSG or deferuloylated BSG. SCFA formation was not suppressed by any of the fractions. It was shown that small lignin-like compounds were released from these samples in the in vitro colon model, originating most likely from lignin.

  20. Understanding Luminal Microorganisms and their Potential Effectiveness in Treating Intestinal Inflammation

    PubMed Central

    Ince, M. Nedim; Blazar, Bruce R.; Edmond, Michael B.; Tricot, Guido; Wannemuehler, Michael J.

    2015-01-01

    The human intestine contains 1014 bacteria, which outnumber the mammalian cells 10-fold. Certain other commensal or infectious agents, like helminthic parasites become members of this microbial ecosystem, especially in populations living under less hygienic conditions. Intestinal microbes, also called the microbiome or microbiota, shape the host immune reactivity to self and nonself throughout life. Changes in microbiome composition may impair the maturation of immune regulatory pathways and predispose the host to develop various forms of inflammatory disorders, like Crohn's disease or ulcerative colitis. The microbiome is also critical to successful transplantation of organs or grafts. After allogeneic hematopoietic stem cell transplantation (HSCT), when the new donor cells, such as T lymphocytes learn to discriminate “the new-self from nonself” in the transplant recipient, they need healthy microbiota-derived signals to preserve the immune homeostasis. Restoring microbiota via intestinal delivery of bacterial strains, helminths, fecal microbiota transplantation or stool substitutes have the potential to improve and correct aberrant immune reactivity in various disorders. PMID:26457381

  1. Human Gut Microbiota: Toward an Ecology of Disease

    PubMed Central

    Selber-Hnatiw, Susannah; Rukundo, Belise; Ahmadi, Masoumeh; Akoubi, Hayfa; Al-Bizri, Hend; Aliu, Adelekan F.; Ambeaghen, Tanyi U.; Avetisyan, Lilit; Bahar, Irmak; Baird, Alexandra; Begum, Fatema; Ben Soussan, Hélène; Blondeau-Éthier, Virginie; Bordaries, Roxane; Bramwell, Helene; Briggs, Alicia; Bui, Richard; Carnevale, Matthew; Chancharoen, Marisa; Chevassus, Talia; Choi, Jin H.; Coulombe, Karyne; Couvrette, Florence; D'Abreau, Samantha; Davies, Meghan; Desbiens, Marie-Pier; Di Maulo, Tamara; Di Paolo, Sean-Anthony; Do Ponte, Sabrina; dos Santos Ribeiro, Priscyla; Dubuc-Kanary, Laure-Anne; Duncan, Paola K.; Dupuis, Frédérique; El-Nounou, Sara; Eyangos, Christina N.; Ferguson, Natasha K.; Flores-Chinchilla, Nancy R.; Fotakis, Tanya; Gado Oumarou H D, Mariam; Georgiev, Metodi; Ghiassy, Seyedehnazanin; Glibetic, Natalija; Grégoire Bouchard, Julien; Hassan, Tazkia; Huseen, Iman; Ibuna Quilatan, Marlon-Francis; Iozzo, Tania; Islam, Safina; Jaunky, Dilan B.; Jeyasegaram, Aniththa; Johnston, Marc-André; Kahler, Matthew R.; Kaler, Kiranpreet; Kamani, Cedric; Karimian Rad, Hessam; Konidis, Elisavet; Konieczny, Filip; Kurianowicz, Sandra; Lamothe, Philippe; Legros, Karina; Leroux, Sebastien; Li, Jun; Lozano Rodriguez, Monica E.; Luponio-Yoffe, Sean; Maalouf, Yara; Mantha, Jessica; McCormick, Melissa; Mondragon, Pamela; Narayana, Thivaedee; Neretin, Elizaveta; Nguyen, Thi T. T.; Niu, Ian; Nkemazem, Romeo B.; O'Donovan, Martin; Oueis, Matthew; Paquette, Stevens; Patel, Nehal; Pecsi, Emily; Peters, Jackie; Pettorelli, Annie; Poirier, Cassandra; Pompa, Victoria R.; Rajen, Harshvardhan; Ralph, Reginald-Olivier; Rosales-Vasquez, Josué; Rubinshtein, Daria; Sakr, Surya; Sebai, Mohammad S.; Serravalle, Lisa; Sidibe, Fily; Sinnathurai, Ahnjana; Soho, Dominique; Sundarakrishnan, Adithi; Svistkova, Veronika; Ugbeye, Tsolaye E.; Vasconcelos, Megan S.; Vincelli, Michael; Voitovich, Olga; Vrabel, Pamela; Wang, Lu; Wasfi, Maryse; Zha, Cong Y.; Gamberi, Chiara

    2017-01-01

    Composed of trillions of individual microbes, the human gut microbiota has adapted to the uniquely diverse environments found in the human intestine. Quickly responding to the variances in the ingested food, the microbiota interacts with the host via reciprocal biochemical signaling to coordinate the exchange of nutrients and proper immune function. Host and microbiota function as a unit which guards its balance against invasion by potential pathogens and which undergoes natural selection. Disturbance of the microbiota composition, or dysbiosis, is often associated with human disease, indicating that, while there seems to be no unique optimal composition of the gut microbiota, a balanced community is crucial for human health. Emerging knowledge of the ecology of the microbiota-host synergy will have an impact on how we implement antibiotic treatment in therapeutics and prophylaxis and how we will consider alternative strategies of global remodeling of the microbiota such as fecal transplants. Here we examine the microbiota-human host relationship from the perspective of the microbial community dynamics. PMID:28769880

  2. Characterization of Microbiota in Children with Chronic Functional Constipation.

    PubMed

    de Meij, Tim G J; de Groot, Evelien F J; Eck, Anat; Budding, Andries E; Kneepkens, C M Frank; Benninga, Marc A; van Bodegraven, Adriaan A; Savelkoul, Paul H M

    2016-01-01

    Disruption of the intestinal microbiota is considered an etiological factor in pediatric functional constipation. Scientifically based selection of potential beneficial probiotic strains in functional constipation therapy is not feasible due to insufficient knowledge of microbiota composition in affected subjects. The aim of this study was to describe microbial composition and diversity in children with functional constipation, compared to healthy controls. Fecal samples from 76 children diagnosed with functional constipation according to the Rome III criteria (median age 8.0 years; range 4.2-17.8) were analyzed by IS-pro, a PCR-based microbiota profiling method. Outcome was compared with intestinal microbiota profiles of 61 healthy children (median 8.6 years; range 4.1-17.9). Microbiota dissimilarity was depicted by principal coordinate analysis (PCoA), diversity was calculated by Shannon diversity index. To determine the most discriminative species, cross validated logistic ridge regression was performed. Applying total microbiota profiles (all phyla together) or per phylum analysis, no disease-specific separation was observed by PCoA and by calculation of diversity indices. By ridge regression, however, functional constipation and controls could be discriminated with 82% accuracy. Most discriminative species were Bacteroides fragilis, Bacteroides ovatus, Bifidobacterium longum, Parabacteroides species (increased in functional constipation) and Alistipes finegoldii (decreased in functional constipation). None of the commonly used unsupervised statistical methods allowed for microbiota-based discrimination of children with functional constipation and controls. By ridge regression, however, both groups could be discriminated with 82% accuracy. Optimization of microbiota-based interventions in constipated children warrants further characterization of microbial signatures linked to clinical subgroups of functional constipation.

  3. Alcohol-associated intestinal dysbiosis impairs pulmonary host defense against Klebsiella pneumoniae.

    PubMed

    Samuelson, Derrick R; Shellito, Judd E; Maffei, Vincent J; Tague, Eric D; Campagna, Shawn R; Blanchard, Eugene E; Luo, Meng; Taylor, Christopher M; Ronis, Martin J J; Molina, Patricia E; Welsh, David A

    2017-06-01

    Chronic alcohol consumption perturbs the normal intestinal microbial communities (dysbiosis). To investigate the relationship between alcohol-mediated dysbiosis and pulmonary host defense we developed a fecal adoptive transfer model, which allows us to investigate the impact of alcohol-induced gut dysbiosis on host immune response to an infectious challenge at a distal organ, independent of prevailing alcohol use. Male C57BL/6 mice were treated with a cocktail of antibiotics (ampicillin, gentamicin, neomycin, vancomycin, and metronidazole) via daily gavage for two weeks. A separate group of animals was fed a chronic alcohol (or isocaloric dextrose pair-fed controls) liquid diet for 10 days. Microbiota-depleted mice were recolonized with intestinal microbiota from alcohol-fed or pair-fed (control) animals. Following recolonization groups of mice were sacrificed prior to and 48 hrs. post respiratory infection with Klebsiella pneumoniae. Klebsiella lung burden, lung immunology and inflammation, as well as intestinal immunology, inflammation, and barrier damage were examined. Results showed that alcohol-associated susceptibility to K. pneumoniae is, in part, mediated by gut dysbiosis, as alcohol-naïve animals recolonized with a microbiota isolated from alcohol-fed mice had an increased respiratory burden of K. pneumoniae compared to mice recolonized with a control microbiota. The increased susceptibility in alcohol-dysbiosis recolonized animals was associated with an increase in pulmonary inflammatory cytokines, and a decrease in the number of CD4+ and CD8+ T-cells in the lung following Klebsiella infection but an increase in T-cell counts in the intestinal tract following Klebsiella infection, suggesting intestinal T-cell sequestration as a factor in impaired lung host defense. Mice recolonized with an alcohol-dysbiotic microbiota also had increased intestinal damage as measured by increased levels of serum intestinal fatty acid binding protein. Collectively, these

  4. Alcohol-associated intestinal dysbiosis impairs pulmonary host defense against Klebsiella pneumoniae

    PubMed Central

    Campagna, Shawn R.; Blanchard, Eugene E.; Ronis, Martin J. J.

    2017-01-01

    Chronic alcohol consumption perturbs the normal intestinal microbial communities (dysbiosis). To investigate the relationship between alcohol-mediated dysbiosis and pulmonary host defense we developed a fecal adoptive transfer model, which allows us to investigate the impact of alcohol-induced gut dysbiosis on host immune response to an infectious challenge at a distal organ, independent of prevailing alcohol use. Male C57BL/6 mice were treated with a cocktail of antibiotics (ampicillin, gentamicin, neomycin, vancomycin, and metronidazole) via daily gavage for two weeks. A separate group of animals was fed a chronic alcohol (or isocaloric dextrose pair-fed controls) liquid diet for 10 days. Microbiota-depleted mice were recolonized with intestinal microbiota from alcohol-fed or pair-fed (control) animals. Following recolonization groups of mice were sacrificed prior to and 48 hrs. post respiratory infection with Klebsiella pneumoniae. Klebsiella lung burden, lung immunology and inflammation, as well as intestinal immunology, inflammation, and barrier damage were examined. Results showed that alcohol-associated susceptibility to K. pneumoniae is, in part, mediated by gut dysbiosis, as alcohol-naïve animals recolonized with a microbiota isolated from alcohol-fed mice had an increased respiratory burden of K. pneumoniae compared to mice recolonized with a control microbiota. The increased susceptibility in alcohol-dysbiosis recolonized animals was associated with an increase in pulmonary inflammatory cytokines, and a decrease in the number of CD4+ and CD8+ T-cells in the lung following Klebsiella infection but an increase in T-cell counts in the intestinal tract following Klebsiella infection, suggesting intestinal T-cell sequestration as a factor in impaired lung host defense. Mice recolonized with an alcohol-dysbiotic microbiota also had increased intestinal damage as measured by increased levels of serum intestinal fatty acid binding protein. Collectively, these

  5. Chronic kidney disease, uremic milieu, and its effects on gut bacterial microbiota dysbiosis.

    PubMed

    Chaves, Lee D; McSkimming, Daniel I; Bryniarski, Mark A; Honan, Amanda M; Abyad, Sham; Thomas, Shruthi A; Wells, Steven; Buck, Michael J; Sun, Yijun; Genco, Robert J; Quigg, Richard J; Yacoub, Rabi

    2018-04-25

    Several lines of evidence suggest that gut bacterial microbiota is altered in patients with chronic kidney disease (CKD), though the mechanism of which this dysbiosis takes place is not well understood. Recent studies delineated changes in gut microbiota in both CKD patients and experimental animal models using microarray chips. We present 16S ribosomal RNA gene sequencing of both stool pellets and small bowel contents of C57Bl/6J mice that underwent a remnant kidney model, and establish that changes in microbiota take place in the early gastrointestinal track. Increased intestinal urea concertation has been hypothesized as a leading contributor for dysbiotic changes in CKD. We show that urea transporters UT-A and UT-B mRNA are both expressed throughout the whole gastrointestinal track. The noted increase in intestinal urea concentration appears to be independent of urea transporters' expression. Urea supplementation in drinking water resulted in alteration in bacterial gut microbiota that is quite different than that seen in CKD. This indicates that increased intestinal urea concentration might not fully explain the CKD associated dysbiosis.

  6. Intestinal alkaline phosphatase: novel functions and protective effects.

    PubMed

    Lallès, Jean-Paul

    2014-02-01

    Important protective roles of intestinal alkaline phosphatase (IAP)--including regulation of intestinal surface pH, absorption of lipids, detoxification of free nucleotides and bacterial lipopolysaccharide, attenuation of intestinal inflammation, and possible modulation of the gut microbiota--have been reviewed recently. IAP is modulated by numerous nutritional factors. The present review highlights new findings on the properties of IAP and extends the list of its protective functions. Critical assessment of data suggests that some IAP properties are a direct result of dephosphorylation of proinflammatory moieties, while others (e.g., gut barrier protection and microbiota shaping) may be secondary to IAP-mediated downregulation of inflammation. IAP and tissue-nonspecific alkaline phosphatase isoforms characterize the small intestine and the colon, respectively. Gastrointestinal administration of exogenous IAP ameliorates gut inflammation and favors gut tissue regeneration, whereas enteral and systemic IAP administration attenuates systemic inflammation only. Finally, the IAP gene family has a strong evolutionary link to food-driven changes in gastrointestinal tract anatomy and microbiota composition. Therefore, stimulation of IAP activity by dietary intervention is a goal for preserving gut homeostasis and health by minimizing low-grade inflammation. © 2013 International Life Sciences Institute.

  7. Compositional dynamics of the human intestinal microbiota with aging: implications for health.

    PubMed

    Lakshminarayanan, B; Stanton, C; O'Toole, P W; Ross, R P

    2014-11-01

    The human gut contains trillions of microbes which form an essential part of the complex ecosystem of the host. This microbiota is relatively stable throughout adult life, but may fluctuate over time with aging and disease. The gut microbiota serves a number of functions including roles in energy provision, nutrition and also in the maintenance of host health such as protection against pathogens. This review summarizes the age-related changes in the microbiota of the gastrointestinal tract (GIT) and the link between the gut microbiota in health and disease. Understanding the composition and function of the gut microbiota along with the changes it undergoes overtime should aid the design of novel therapeutic strategies to counteract such alterations. These strategies include probiotic and prebiotic preparations as well as targeted nutrients, designed to enrich the gut microbiota of the aging population.

  8. Paneth cells, antimicrobial peptides and maintenance of intestinal homeostasis.

    PubMed

    Bevins, Charles L; Salzman, Nita H

    2011-05-01

    Building and maintaining a homeostatic relationship between a host and its colonizing microbiota entails ongoing complex interactions between the host and the microorganisms. The mucosal immune system, including epithelial cells, plays an essential part in negotiating this equilibrium. Paneth cells (specialized cells in the epithelium of the small intestine) are an important source of antimicrobial peptides in the intestine. These cells have become the focus of investigations that explore the mechanisms of host-microorganism homeostasis in the small intestine and its collapse in the processes of infection and chronic inflammation. In this Review, we provide an overview of the intestinal microbiota and describe the cell biology of Paneth cells, emphasizing the composition of their secretions and the roles of these cells in intestinal host defence and homeostasis. We also highlight the implications of Paneth cell dysfunction in susceptibility to chronic inflammatory bowel disease.

  9. Interplay between intestinal alkaline phosphatase, diet, gut microbes and immunity

    PubMed Central

    Estaki, Mehrbod; DeCoffe, Daniella; Gibson, Deanna L

    2014-01-01

    Intestinal alkaline phosphatase (IAP) plays an essential role in intestinal homeostasis and health through interactions with the resident microbiota, diet and the gut. IAP’s role in the intestine is to dephosphorylate toxic microbial ligands such as lipopolysaccharides, unmethylated cytosine-guanosine dinucleotides and flagellin as well as extracellular nucleotides such as uridine diphosphate. IAP’s ability to detoxify these ligands is essential in protecting the host from sepsis during acute inflammation and chronic inflammatory conditions such as inflammatory bowel disease. Also important in these complications is IAP’s ability to regulate the microbial ecosystem by forming a complex relationship between microbiota, diet and the intestinal mucosal surface. Evidence reveals that diet alters IAP expression and activity and this in turn can influence the gut microbiota and homeostasis. IAP’s ability to maintain a healthy gastrointestinal tract has accelerated research on its potential use as a therapeutic agent against a multitude of diseases. Exogenous IAP has been shown to have beneficial effects when administered during ulcerative colitis, coronary bypass surgery and sepsis. There are currently a handful of human clinical trials underway investigating the effects of exogenous IAP during sepsis, rheumatoid arthritis and heart surgery. In light of these findings IAP has been marked as a novel agent to help treat a variety of other inflammatory and infectious diseases. The purpose of this review is to highlight the essential characteristics of IAP in protection and maintenance of intestinal homeostasis while addressing the intricate interplay between IAP, diet, microbiota and the intestinal epithelium. PMID:25400448

  10. Fecal Microbiota Transfer for Multidrug-Resistant Gram-Negatives: A Clinical Success Combined With Microbiological Failure.

    PubMed

    Stalenhoef, Janneke E; Terveer, Elisabeth M; Knetsch, Cornelis W; Van't Hof, Peter J; Vlasveld, Imro N; Keller, Josbert J; Visser, Leo G; Kuijper, Eduard J

    2017-01-01

    Combined fecal microbiota transfer and antibiotic treatment prevented recurrences of urinary tract infections with multidrug-resistant (MDR) Pseudomonas aeruginosa , but it failed to eradicate intestinal colonization with MDR Escherichia coli . Based on microbiota analysis, failure was not associated with distinct diminished microbiota diversity.

  11. A survey on the developmental intestinal microbiota research in China: The history, funding, and frontiers of gut bacteria.

    PubMed

    Chen, Hui Min; Liu, Xiao Wei; Sun, Rui Juan; Fang, Jing Yuan

    2015-08-01

    Up to 100 trillion bacteria are harbored in the human intestine with a mutualistic and interdependent relationship with the host during a long period of co-evolution. The so-called intestinal microbiota (IM) fulfill important metabolic tasks and the impaired stability may lead to IM-related diseases, including inflammatory bowel disease (IBD), colorectal cancer (CRC), metabolic syndrome (MS), liver diseases, and so on. Here, we review the past and development of IM research in China, including the achievements that Chinese researchers have made both in basic and clinical scientific field. Moreover, we evaluate the contributions of the National Natural Science Foundation of China (NSFC), the 973 National Basic Research Program of China (973 Program), the 863 National High Technology Research and Development Program of China (863 Program), and funds from the public health industry in the field of IM research. © 2015 Chinese Medical Association Shanghai Branch, Chinese Society of Gastroenterology, Renji Hospital Affiliated to Shanghai Jiaotong University School of Medicine and Wiley Publishing Asia Pty Ltd.

  12. Irf4-dependent CD103+CD11b+ dendritic cells and the intestinal microbiome regulate monocyte and macrophage activation and intestinal peristalsis in postoperative ileus

    PubMed Central

    Pohl, Judith-Mira; Gutweiler, Sebastian; Thiebes, Stephanie; Volke, Julia K; Klein-Hitpass, Ludger; Zwanziger, Denise; Gunzer, Matthias; Jung, Steffen; Agace, William W; Kurts, Christian

    2017-01-01

    Objective Postoperative ileus (POI), the most frequent complication after intestinal surgery, depends on dendritic cells (DCs) and macrophages. Here, we have investigated the mechanism that activates these cells and the contribution of the intestinal microbiota for POI induction. Design POI was induced by manipulating the intestine of mice, which selectively lack DCs, monocytes or macrophages. The disease severity in the small and large intestine was analysed by determining the distribution of orally applied fluorescein isothiocyanate-dextran and by measuring the excretion time of a retrogradely inserted glass ball. The impact of the microbiota on intestinal peristalsis was evaluated after oral antibiotic treatment. Results We found that Cd11c-Cre+ Irf4flox/flox mice lack CD103+CD11b+ DCs, a DC subset unique to the intestine whose function is poorly understood. Their absence in the intestinal muscularis reduced pathogenic inducible nitric oxide synthase (iNOS) production by monocytes and macrophages and ameliorated POI. Pathogenic iNOS was produced in the jejunum by resident Ly6C– macrophages and infiltrating chemokine receptor 2-dependent Ly6C+ monocytes, but in the colon only by the latter demonstrating differential tolerance mechanisms along the intestinal tract. Consistently, depletion of both cell subsets reduced small intestinal POI, whereas the depletion of Ly6C+ monocytes alone was sufficient to prevent large intestinal POI. The differential role of monocytes and macrophages in small and large intestinal POI suggested a potential role of the intestinal microbiota. Indeed, antibiotic treatment reduced iNOS levels and ameliorated POI. Conclusions Our findings reveal that CD103+CD11b+ DCs and the intestinal microbiome are a prerequisite for the activation of intestinal monocytes and macrophages and for dysregulating intestinal motility in POI. PMID:28615301

  13. The role of gut microbiota in nutritional status.

    PubMed

    O'Connor, Eibhlís M

    2013-09-01

    The objective of this review is to outline the contribution of the gut microbiota to nutritional status and to highlight the mechanisms by which this can occur. Historically, research linking intestinal bacteria with nutritional status focused on the degradation of indigestible food components by bacterial enzymes and metabolites. Of late, emerging evidence suggests an independent role of the gut microbiota in the regulation of glucose and energy homeostasis via complex interactions between microbially derived metabolites and specific target tissue cells. In addition, novel findings highlight specific microbial species involved in the production of a number of micronutrient components, which could potentially improve nutritional status in certain population groups, if available to the host at sufficiently abundant levels. New insights into the role of the gut microbiota and its holistic effects on the host are now emerging. High-throughput technologies allow for a greater insight into the role of the intestinal microbiota and the mechanisms by which it can contribute to overall nutritional status. Further, exploration of this evolving field of research will advance our understanding of how this complex ecosystem could advance the area of personalized nutrition in the future.

  14. Establishment of Intestinal Microbiota during Early Life: a Longitudinal, Explorative Study of a Large Cohort of Danish Infants

    PubMed Central

    Bergström, Anders; Skov, Thomas Hjort; Bahl, Martin Iain; Roager, Henrik Munch; Christensen, Line Brinch; Ejlerskov, Katrine Tschentscher; Mølgaard, Christian; Michaelsen, Kim F.

    2014-01-01

    Fecal samples were obtained from a cohort of 330 healthy Danish infants at 9, 18, and 36 months after birth, enabling characterization of interbacterial relationships by use of quantitative PCR targeting 31 selected bacterial 16S rRNA gene targets representing different phylogenetic levels. Nutritional parameters and measures of growth and body composition were determined and investigated in relation to the observed development in microbiota composition. We found that significant changes in the gut microbiota occurred, particularly from age 9 to 18 months, when cessation of breastfeeding and introduction of a complementary feeding induce replacement of a microbiota characterized by lactobacilli, bifidobacteria, and Enterobacteriaceae with a microbiota dominated by Clostridium spp. and Bacteroides spp. Classification of samples by a proxy enterotype based on the relative levels of Bacteroides spp. and Prevotella spp. showed that enterotype establishment occurs between 9 and 36 months. Thirty percent of the individuals shifted enterotype between 18 and 36 months. The composition of the microbiota was most pronouncedly influenced by the time of cessation of breastfeeding. From 9 to 18 months, a positive correlation was observed between the increase in body mass index and the increase of the short-chain-fatty-acid-producing clostridia, the Clostridum leptum group, and Eubacterium hallii. Considering previously established positive associations between rapid infant weight gain, early breastfeeding discontinuation, and later-life obesity, the corresponding microbial findings seen here warrant attention. PMID:24584251

  15. Interactions between multiple helminths and the gut microbiota in wild rodents.

    PubMed

    Kreisinger, Jakub; Bastien, Géraldine; Hauffe, Heidi C; Marchesi, Julian; Perkins, Sarah E

    2015-08-19

    The gut microbiota is vital to host health and, as such, it is important to elucidate the mechanisms altering its composition and diversity. Intestinal helminths are host immunomodulators and have evolved both temporally and spatially in close association with the gut microbiota, resulting in potential mechanistic interplay. Host-helminth and host-microbiota interactions are comparatively well-examined, unlike microbiota-helminth relationships, which typically focus on experimental infection with a single helminth species in laboratory animals. Here, in addition to a review of the literature on helminth-microbiota interactions, we examined empirically the association between microbiota diversity and composition and natural infection of multiple helminth species in wild mice (Apodemus flavicollis), using 16S rRNA gene catalogues (metataxonomics). In general, helminth presence is linked with high microbiota diversity, which may confer health benefits to the host. Within our wild rodent system variation in the composition and abundance of gut microbial taxa associated with helminths was specific to each helminth species and occurred both up- and downstream of a given helminth's niche (gut position). The most pronounced helminth-microbiota association was between the presence of tapeworms in the small intestine and increased S24-7 (Bacteroidetes) family in the stomach. Helminths clearly have the potential to alter gut homeostasis. Free-living rodents with a diverse helminth community offer a useful model system that enables both correlative (this study) and manipulative inference to elucidate helminth-microbiota interactions.

  16. Capability of the two microorganisms Bifidobacterium breve B632 and Bifidobacterium breve BR03 to colonize the intestinal microbiota of children.

    PubMed

    Mogna, Luca; Del Piano, Mario; Mogna, Giovanni

    2014-01-01

    The total number of bacteria present in the gut microbiota of a newborn is consistently lower than the average found in adults, with the extent of this difference being directly related to body weight and age. It could be assumed that a lower number of viable probiotic cells is necessary to achieve significant gut colonization in infants and children. This study assessed the capability of Bifidobacterium breve B632 (DSM 24706) and Bifidobacterium breve BR03 (DSM 16604), 2 strains able to significantly inhibit some gram-negative bacteria in vitro, to integrate into the intestinal microbiota of children. Ten healthy children aged an average of 5.7±2.6 were given an oily suspension containing B. breve B632 and B. breve BR03 for 21 consecutive days. The daily dose was 100 million live cells of each strain. Fecal specimens were collected and analyzed at the beginning (d0) and at the end of the study (d21). Total fecal bifidobacteria and coliforms have been quantified by microbiological plate counts. A significant increase in total fecal bifidobacteria (from 8.99 to 9.47 log10 CFU/g, P=0.042) and a parallel decrease in total coliforms (from 8.60 to 7.93 log10 CFU/g, P=0.048) was recorded after 21 days of supplementation. An oily suspension has proved an effective way of providing probiotics to children. A lower viable cells concentration was sufficient to mediate this effect in the light of the fact that the intestinal microbiota of children harbors a considerably smaller amount of total bacteria compared with adults. In addition to gut colonization in healthy children, B. breve B632 and B. breve BR03 were able to decrease total fecal coliforms, therefore supporting their potential specific use in colicky infants.

  17. In vitro effects of inulin and soya bean oligosaccharide on skatole production and the intestinal microbiota in broilers.

    PubMed

    Liu, H Y; Hou, R; Yang, G Q; Zhao, F; Dong, W G

    2018-06-01

    The experiment was conducted to investigate the in vitro effects of inulin and soya bean oligosaccharide (SBO) on the metabolism of L-tryptophan (L-try) to skatole production, and the intestinal microbiota in broilers. Treatments were as follows: caecal microbiota control (Cc), Cc + inulin, Cc + SBO, rectal microbiota control (Rc), Rc + inulin and Rc + SBO. Microbial suspensions were anaerobically incubated at 38°C for 24 hr. The results showed that concentrations of skatole and acetic acid were significantly lower in caecal microbiota fermentation broth (MFB) than those in rectal MFB (p < .05). Addition of inulin or SBO significantly decreased the concentrations of indole and skatole and rate of L-try degradation (p < .05). Inulin groups had lower indole than SBO groups (p < .05). PCR-DGGE analysis revealed that addition of inulin or SBO decreased the microbiota richness (p < .05), but no significant differences in Shannon index (p > .05). Four distinct bands were detected in inulin and SBO groups, which were related to two of Bacteroides, one of Firmicutes and Bifidobacteria. Six bands were detected only in control groups, which represented uncultured Rikenellaceae, Roseburia, Escherichia/Shigella dysenteriae, Bacteroides uniformis (T), Parabacteroides distasonis and Enterobacter aerogenes. Populations of Lactobacilli, Bifidobacteria and total bacteria in inulin groups were higher than those in control groups (p < .05). For SBO groups, only population of total bacteria increased (p < .05). However, there were no significant differences in Escherichia coli population among treatments (p > .05). These results suggest that reduced concentrations of skatole and indole in the presence of inulin and SBO may be caused by decrease in L-try degradation rate, which were caused by change in microbial ecosystem and pH value. Uncultured B. uniformis (T) and E. aerogenes may be responsible for degradation of L-try to skatole. © 2017 Blackwell

  18. Impact of gut microbiota on neurological diseases: Diet composition and novel treatments.

    PubMed

    Larroya-García, Ana; Navas-Carrillo, Diana; Orenes-Piñero, Esteban

    2018-06-05

    Gut microbiota has significant effects on the structure and function of the enteric and central nervous system including human behaviour and brain regulation. Herein, we analyze the role of this intestinal ecosystem, the effects of dietary changes and the administration of nutritional supplements, such as probiotics, prebiotics, or fecal transplantation in neuropsychiatric disorders. Numerous factors have been highlighted to influence gut microbiota composition, including genetics, health status, mode of birth delivery and environment. However, diet composition and nutritional status has been repeatedly shown to be one of the most critical modifiable factors of this ecosystem. A comprehensively analysis of the microbiome-intestine-brain axis has been performed, including the impact of intestinal bacteria in alterations in the nervous, immune and endocrine systems and their metabolites. Finally, we discuss the latest literature examining the effects of diet composition, nutritional status and microbiota alterations in several neuropsychiatric disorders, such as autism, anxiety, depression, Alzheimer's disease and anorexia nervosa.

  19. Gut Microbiota and Energy Expenditure in Health and Obesity.

    PubMed

    Bakker, Guido J; Zhao, Jing; Herrema, Hilde; Nieuwdorp, Max

    2015-01-01

    The contribution of intestinal bacterial strains (gut microbiota) to the development of obesity and obesity-related disorders is increasingly recognized as a potential diagnostic and pharmacologic target. Alterations in the intestinal bacterial composition have been associated with presence of chronic low-grade inflammation, a known feature of insulin resistance and type 2 diabetes mellitus. However, causality still needs to be proven. Fecal transplantation studies in germ-free mice have provided crucial insight into the causality of gut microbiota in development of obesity and obesity-related disorders. Moreover, fecal transplantation studies in conjunction with fecal sampling in prospectively followed cohorts will help identify causally involved intestinal bacterial strains in human obesity. Results from these studies will lead to characterization of novel diagnostic markers as well as therapeutic strategies that aim to treat obesity and obesity-related disorders.

  20. Probiotics, gut microbiota, and their influence on host health and disease.

    PubMed

    Sánchez, Borja; Delgado, Susana; Blanco-Míguez, Aitor; Lourenço, Anália; Gueimonde, Miguel; Margolles, Abelardo

    2017-01-01

    The gastrointestinal tract of mammals hosts a high and diverse number of different microorganisms, known as intestinal microbiota. Many probiotics were originally isolated from the gastrointestinal tract, and they were defined by the Food and Agriculture Organization of the United Nations (FAO)/WHO as "live microorganisms which when administered in adequate amounts confer a health benefit on the host." Probiotics exert their beneficial effects on the host through four main mechanisms: interference with potential pathogens, improvement of barrier function, immunomodulation and production of neurotransmitters, and their host targets vary from the resident microbiota to cellular components of the gut-brain axis. However, in spite of the wide array of beneficial mechanisms deployed by probiotic bacteria, relatively few effects have been supported by clinical data. In this regard, different probiotic strains have been effective in antibiotic-associated diarrhea or inflammatory bowel disease for instance. The aim of this review was to compile the molecular mechanisms underlying the beneficial effects of probiotics, mainly through their interaction with the intestinal microbiota and with the intestinal mucosa. The specific benefits discussed in this paper include among others those elicited directly through dietary modulation of the human gut microbiota. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Gut microbiota and host metabolism in liver cirrhosis

    PubMed Central

    Usami, Makoto; Miyoshi, Makoto; Yamashita, Hayato

    2015-01-01

    The gut microbiota has the capacity to produce a diverse range of compounds that play a major role in regulating the activity of distal organs and the liver is strategically positioned downstream of the gut. Gut microbiota linked compounds such as short chain fatty acids, bile acids, choline metabolites, indole derivatives, vitamins, polyamines, lipids, neurotransmitters and neuroactive compounds, and hypothalamic-pituitary-adrenal axis hormones have many biological functions. This review focuses on the gut microbiota and host metabolism in liver cirrhosis. Dysbiosis in liver cirrhosis causes serious complications, such as bacteremia and hepatic encephalopathy, accompanied by small intestinal bacterial overgrowth and increased intestinal permeability. Gut dysbiosis in cirrhosis and intervention with probiotics and synbiotics in a clinical setting is reviewed and evaluated. Recent studies have revealed the relationship between gut microbiota and host metabolism in chronic metabolic liver disease, especially, non-alcoholic fatty liver disease, alcoholic liver disease, and with the gut microbiota metabolic interactions in dysbiosis related metabolic diseases such as diabetes and obesity. Recently, our understanding of the relationship between the gut and liver and how this regulates systemic metabolic changes in liver cirrhosis has increased. The serum lipid levels of phospholipids, free fatty acids, polyunsaturated fatty acids, especially, eicosapentaenoic acid, arachidonic acid, and docosahexaenoic acid have significant correlations with specific fecal flora in liver cirrhosis. Many clinical and experimental reports support the relationship between fatty acid metabolism and gut-microbiota. Various blood metabolome such as cytokines, amino acids, and vitamins are correlated with gut microbiota in probiotics-treated liver cirrhosis patients. The future evaluation of the gut-microbiota-liver metabolic network and the intervention of these relationships using probiotics

  2. Gut microbiota and host metabolism in liver cirrhosis.

    PubMed

    Usami, Makoto; Miyoshi, Makoto; Yamashita, Hayato

    2015-11-07

    The gut microbiota has the capacity to produce a diverse range of compounds that play a major role in regulating the activity of distal organs and the liver is strategically positioned downstream of the gut. Gut microbiota linked compounds such as short chain fatty acids, bile acids, choline metabolites, indole derivatives, vitamins, polyamines, lipids, neurotransmitters and neuroactive compounds, and hypothalamic-pituitary-adrenal axis hormones have many biological functions. This review focuses on the gut microbiota and host metabolism in liver cirrhosis. Dysbiosis in liver cirrhosis causes serious complications, such as bacteremia and hepatic encephalopathy, accompanied by small intestinal bacterial overgrowth and increased intestinal permeability. Gut dysbiosis in cirrhosis and intervention with probiotics and synbiotics in a clinical setting is reviewed and evaluated. Recent studies have revealed the relationship between gut microbiota and host metabolism in chronic metabolic liver disease, especially, non-alcoholic fatty liver disease, alcoholic liver disease, and with the gut microbiota metabolic interactions in dysbiosis related metabolic diseases such as diabetes and obesity. Recently, our understanding of the relationship between the gut and liver and how this regulates systemic metabolic changes in liver cirrhosis has increased. The serum lipid levels of phospholipids, free fatty acids, polyunsaturated fatty acids, especially, eicosapentaenoic acid, arachidonic acid, and docosahexaenoic acid have significant correlations with specific fecal flora in liver cirrhosis. Many clinical and experimental reports support the relationship between fatty acid metabolism and gut-microbiota. Various blood metabolome such as cytokines, amino acids, and vitamins are correlated with gut microbiota in probiotics-treated liver cirrhosis patients. The future evaluation of the gut-microbiota-liver metabolic network and the intervention of these relationships using probiotics

  3. Sodium butyrate improved performance while modulating the cecal microbiota and regulating the expression of intestinal immune-related genes of broiler chickens.

    PubMed

    Bortoluzzi, C; Pedroso, A A; Mallo, J J; Puyalto, M; Kim, W K; Applegate, T J

    2017-09-01

    This study evaluated the effect of sodium butyrate (SB) on performance, expression of immune-related genes in the cecal tonsils, and cecal microbiota of broiler chickens when dietary energy and amino acids concentrations were reduced. Day-old male Ross 708 broiler chicks were fed dietary treatments in a 3 × 2 factorial design (8 pens per treatment) with 3 dietary formulations (control diet; reduction of 2.3% of amino acids and 60 kcal/kg; and reduction of 4.6% of amino acids and 120 kcal/kg) with or without the inclusion of 0.1% of SB. Feed intake (FI), body weight gain (BW gain), and feed conversion ratio (FCR) were recorded until 28 d of age. From 14 to 28 d, there was an interaction of nutrient density by SB (P = 0.003) wherein BW gain of birds fed SB was impaired less by the energy/amino acids reduction than unsupplemented birds. A similar result was obtained from 1 to 28 d (P = 0.004). No interaction (P < 0.05) between nutrient density by SB was observed for FCR. Nutritional density of the diets and SB modified the structure, composition, and predicted function of the cecal microbiota. The nutritionally reduced diet altered the imputed function performed by the microbiota and the SB supplementation reduced these variations, keeping the microbial function similar to that observed in chickens fed a control diet. The frequency of bacterial species presenting the butyryl-CoA: acetate CoA-transferase gene increased in the microbiota of chickens fed a nutritionally reduced diet without SB supplementation, and was not changed by nutrient density of the diet when supplemented with SB (interaction; P = 0.01). SB modulated the expression of immune related genes in the cecal tonsils; wherein SB upregulated the expression of A20 in broilers fed control diets (P < 0.05) and increased IL-6 expression (P < 0.05). These results show that SB had positive effects on the productive performance of broilers fed nutritionally reduced diets, partially by modulating the cecal

  4. An altered gut microbiota in HIV infection: future prospective of FMT therapy.

    PubMed

    Kang, Yongbo; Cai, Yue

    2018-06-07

    Human immunodeficiency virus (HIV) infection progressively destroys CD4+ mononuclear cells leading to profound cellular immune deficiency that manifests as life threatening opportunistic infections and malignancies, i.e., the acquired immune deficiency syndrome (AIDS). Gut microbiota play key roles in the modulation of host metabolism and gene expression, maintenance of epithelial integrity, and mediation of inflammatory and immunity. Hence, the normal intestinal microbiota plays a major role in the maintenance of health and disease prevention. In fact, a large number of studies have shown that the alteration of the gut microbiota contribute to the pathogenesis of several diseases, such as inflammatory bowel diseases, irritable bowel syndrome, metabolic diseases, anorexia nervosa, autoimmune diseases, multiple sclerosis, cancer, neuropsychiatric disorders, and cardiovascular diseases. Recently, accumulating evidences have has shed light on the association of dysbiosis of gut microbiota with HIV infection. Hence, the modification of gut microbiota may be a potential therapeutic tool. Fecal microbiota transplantation (FMT) may be a more straightforward and better therapy for HIV infection by manipulating the human intestinal bacteria. However, the relevant research is very limited, and large amount of scientific research work need to be done in the near further.

  5. Site-specific programming of the host epithelial transcriptome by the gut microbiota.

    PubMed

    Sommer, Felix; Nookaew, Intawat; Sommer, Nina; Fogelstrand, Per; Bäckhed, Fredrik

    2015-03-28

    The intestinal epithelium separates us from the microbiota but also interacts with it and thus affects host immune status and physiology. Previous studies investigated microbiota-induced responses in the gut using intact tissues or unfractionated epithelial cells, thereby limiting conclusions about regional differences in the epithelium. Here, we sought to investigate microbiota-induced transcriptional responses in specific fractions of intestinal epithelial cells. To this end, we used microarray analysis of laser capture microdissection (LCM)-harvested ileal and colonic tip and crypt epithelial fractions from germ-free and conventionally raised mice and from mice during the time course of colonization. We found that about 10% of the host's transcriptome was microbially regulated, mainly including genes annotated with functions in immunity, cell proliferation, and metabolism. The microbial impact on host gene expression was highly site specific, as epithelial responses to the microbiota differed between cell fractions. Specific transcriptional regulators were enriched in each fraction. In general, the gut microbiota induced a more rapid response in the colon than in the ileum. Our study indicates that the microbiota engage different regulatory networks to alter host gene expression in a particular niche. Understanding host-microbiota interactions on a cellular level may facilitate signaling pathways that contribute to health and disease and thus provide new therapeutic strategies.

  6. [Research advances in association between childhood obesity and gut microbiota].

    PubMed

    Gao, Xiao-Lin; Wan, Chao-Min

    2017-03-01

    In recent years, more and more studies have noted the close association between gut microbiota and the development and progression of obesity. Gut microbiota may act on obesity by increasing energy intake, affecting the secretion of intestinal hormones, inducing chronic systemic inflammation, and producing insulin resistance. This article reviews the association between childhood obesity and gut microbiota, as well as possible mechanisms, in an attempt to provide a reference for the etiology, prevention and treatment of childhood obesity.

  7. Supplemental feeding of a gut microbial metabolite of linoleic acid, 10-hydroxy-cis-12-octadecenoic acid, alleviates spontaneous atopic dermatitis and modulates intestinal microbiota in NC/nga mice.

    PubMed

    Kaikiri, Hiroko; Miyamoto, Junki; Kawakami, Takahiro; Park, Si-Bum; Kitamura, Nahoko; Kishino, Shigenobu; Yonejima, Yasunori; Hisa, Keiko; Watanabe, Jun; Ogita, Tasuku; Ogawa, Jun; Tanabe, Soichi; Suzuki, Takuya

    2017-12-01

    The present study investigated the antiallergic and anti-inflammatory effects of 10-hydroxy-cis-12-octadecenoic acid (HYA), a novel gut microbial metabolite of linoleic acid, in NC/Nga mice, a model of atopic dermatitis (AD). Feeding HYA decreased the plasma immunoglobulin E level and skin infiltration of mast cells with a concomitant decrease in dermatitis score. HYA feeding decreased TNF-α and increased claudin-1, a tight junction protein, levels in the mouse skin. Cytokine expression levels in the skin and intestinal Peyer's patches cells suggested that HYA improved the Th1/Th2 balance in mice. Immunoglobulin A concentration in the feces of the HYA-fed mice was approximately four times higher than that in the control mice. Finally, denaturing gradient gel electrophoresis of the PCR-amplified 16 S rRNA gene of fecal microbes indicated the modification of microbiota by HYA. Taken together, the alterations in the intestinal microbiota might be, at least in part, associated with the antiallergic effect of HYA.

  8. Characterization of Microbiota in Children with Chronic Functional Constipation

    PubMed Central

    de Meij, Tim G. J.; de Groot, Evelien F. J.; Eck, Anat; Budding, Andries E.; Kneepkens, C. M. Frank; Benninga, Marc A.; van Bodegraven, Adriaan A.; Savelkoul, Paul H. M.

    2016-01-01

    Objectives Disruption of the intestinal microbiota is considered an etiological factor in pediatric functional constipation. Scientifically based selection of potential beneficial probiotic strains in functional constipation therapy is not feasible due to insufficient knowledge of microbiota composition in affected subjects. The aim of this study was to describe microbial composition and diversity in children with functional constipation, compared to healthy controls. Study Design Fecal samples from 76 children diagnosed with functional constipation according to the Rome III criteria (median age 8.0 years; range 4.2–17.8) were analyzed by IS-pro, a PCR-based microbiota profiling method. Outcome was compared with intestinal microbiota profiles of 61 healthy children (median 8.6 years; range 4.1–17.9). Microbiota dissimilarity was depicted by principal coordinate analysis (PCoA), diversity was calculated by Shannon diversity index. To determine the most discriminative species, cross validated logistic ridge regression was performed. Results Applying total microbiota profiles (all phyla together) or per phylum analysis, no disease-specific separation was observed by PCoA and by calculation of diversity indices. By ridge regression, however, functional constipation and controls could be discriminated with 82% accuracy. Most discriminative species were Bacteroides fragilis, Bacteroides ovatus, Bifidobacterium longum, Parabacteroides species (increased in functional constipation) and Alistipes finegoldii (decreased in functional constipation). Conclusions None of the commonly used unsupervised statistical methods allowed for microbiota-based discrimination of children with functional constipation and controls. By ridge regression, however, both groups could be discriminated with 82% accuracy. Optimization of microbiota-based interventions in constipated children warrants further characterization of microbial signatures linked to clinical subgroups of functional

  9. Effect of dietary starch source and concentration on equine fecal microbiota

    USDA-ARS?s Scientific Manuscript database

    Starch from corn is less susceptible to equine small intestinal digestion than starch from oats, and starch that reaches the hindgut can be utilized by the microbiota. The objective of the current study was to examine the effects of starch source on equine fecal microbiota. Thirty horses were assig...

  10. Loss of Microbiota-Mediated Colonization Resistance to Clostridium difficile Infection With Oral Vancomycin Compared With Metronidazole

    PubMed Central

    Lewis, Brittany B.; Buffie, Charlie G.; Carter, Rebecca A.; Leiner, Ingrid; Toussaint, Nora C.; Miller, Liza C.; Gobourne, Asia; Ling, Lilan; Pamer, Eric G.

    2015-01-01

    Antibiotic administration disrupts the intestinal microbiota, increasing susceptibility to pathogens such as Clostridium difficile. Metronidazole or oral vancomycin can cure C. difficile infection, and administration of these agents to prevent C. difficile infection in high-risk patients, although not sanctioned by Infectious Disease Society of America guidelines, has been considered. The relative impacts of metronidazole and vancomycin on the intestinal microbiota and colonization resistance are unknown. We investigated the effect of brief treatment with metronidazole and/or oral vancomycin on susceptibility to C. difficile, vancomycin-resistant Enterococcus, carbapenem-resistant Klebsiella pneumoniae, and Escherichia coli infection in mice. Although metronidazole resulted in transient loss of colonization resistance, oral vancomycin markedly disrupted the microbiota, leading to prolonged loss of colonization resistance to C. difficile infection and dense colonization by vancomycin-resistant Enterococcus, K. pneumoniae, and E. coli. Our results demonstrate that vancomycin, and to a lesser extent metronidazole, are associated with marked intestinal microbiota destruction and greater risk of colonization by nosocomial pathogens. PMID:25920320

  11. Suppression of inflammation by helminths: a role for the gut microbiota?

    PubMed

    Giacomin, Paul; Croese, John; Krause, Lutz; Loukas, Alex; Cantacessi, Cinzia

    2015-08-19

    Multiple recent investigations have highlighted the promise of helminth-based therapies for the treatment of inflammatory disorders of the intestinal tract of humans, including inflammatory bowel disease and coeliac disease. However, the mechanisms by which helminths regulate immune responses, leading to the amelioration of symptoms of chronic inflammation are unknown. Given the pivotal roles of the intestinal microbiota in the pathogenesis of these disorders, it has been hypothesized that helminth-induced modifications of the gut commensal flora may be responsible for the therapeutic properties of gastrointestinal parasites. In this article, we review recent progress in the elucidation of host-parasite-microbiota interactions in both animal models of chronic inflammation and humans, and provide a working hypothesis of the role of the gut microbiota in helminth-induced suppression of inflammation.

  12. Suppression of inflammation by helminths: a role for the gut microbiota?

    PubMed Central

    Giacomin, Paul; Croese, John; Krause, Lutz; Loukas, Alex; Cantacessi, Cinzia

    2015-01-01

    Multiple recent investigations have highlighted the promise of helminth-based therapies for the treatment of inflammatory disorders of the intestinal tract of humans, including inflammatory bowel disease and coeliac disease. However, the mechanisms by which helminths regulate immune responses, leading to the amelioration of symptoms of chronic inflammation are unknown. Given the pivotal roles of the intestinal microbiota in the pathogenesis of these disorders, it has been hypothesized that helminth-induced modifications of the gut commensal flora may be responsible for the therapeutic properties of gastrointestinal parasites. In this article, we review recent progress in the elucidation of host–parasite–microbiota interactions in both animal models of chronic inflammation and humans, and provide a working hypothesis of the role of the gut microbiota in helminth-induced suppression of inflammation. PMID:26150662

  13. Interactions between multiple helminths and the gut microbiota in wild rodents

    PubMed Central

    Kreisinger, Jakub; Bastien, Géraldine; Hauffe, Heidi C; Marchesi, Julian; Perkins, Sarah E

    2015-01-01

    The gut microbiota is vital to host health and, as such, it is important to elucidate the mechanisms altering its composition and diversity. Intestinal helminths are host immunomodulators and have evolved both temporally and spatially in close association with the gut microbiota, resulting in potential mechanistic interplay. Host–helminth and host–microbiota interactions are comparatively well-examined, unlike microbiota–helminth relationships, which typically focus on experimental infection with a single helminth species in laboratory animals. Here, in addition to a review of the literature on helminth–microbiota interactions, we examined empirically the association between microbiota diversity and composition and natural infection of multiple helminth species in wild mice (Apodemus flavicollis), using 16S rRNA gene catalogues (metataxonomics). In general, helminth presence is linked with high microbiota diversity, which may confer health benefits to the host. Within our wild rodent system variation in the composition and abundance of gut microbial taxa associated with helminths was specific to each helminth species and occurred both up- and downstream of a given helminth's niche (gut position). The most pronounced helminth–microbiota association was between the presence of tapeworms in the small intestine and increased S24–7 (Bacteroidetes) family in the stomach. Helminths clearly have the potential to alter gut homeostasis. Free-living rodents with a diverse helminth community offer a useful model system that enables both correlative (this study) and manipulative inference to elucidate helminth–microbiota interactions. PMID:26150661

  14. The role of the microbiota in shaping infectious immunity

    PubMed Central

    Hand, Timothy W.

    2016-01-01

    Humans are meta-organisms that maintain a diverse population of microorganisms on their barrier surfaces, collectively named the microbiota. Since most pathogens either cross or inhabit barrier surfaces, the microbiota plays a critical and often protective role during infections, both by modulating immune system responses and by mediating colonization resistance. However, the microbiota can also act as a reservoir for opportunistic micro-organisms that can ‘bloom’, significantly complicating diseases of barrier surfaces by contributing to inflammatory immune responses. Here, we review our current understanding of the complex interactions between the host, its microbiota and pathogenic organisms, focusing in particular on the intestinal mucosa. PMID:27616558

  15. The Roles of Inflammation, Nutrient Availability and the Commensal Microbiota in Enteric Pathogen Infection.

    PubMed

    Stecher, Bärbel

    2015-06-01

    The healthy human intestine is colonized by as many as 1014 bacteria belonging to more than 500 different species forming a microbial ecosystem of unsurpassed diversity, termed the microbiota. The microbiota's various bacterial members engage in a physiological network of cooperation and competition within several layers of complexity. Within the last 10 years, technological progress in the field of next-generation sequencing technologies has tremendously advanced our understanding of the wide variety of physiological and pathological processes that are influenced by the commensal microbiota (1, 2). An increasing number of human disease conditions, such as inflammatory bowel diseases (IBD), type 2 diabetes, obesity, allergies and colorectal cancer are linked with altered microbiota composition (3). Moreover, a clearer picture is emerging of the composition of the human microbiota in healthy individuals, its variability over time and between different persons and how the microbiota is shaped by environmental factors (i.e., diet) and the host's genetic background (4). A general feature of a normal, healthy gut microbiota can generate conditions in the gut that disfavor colonization of enteric pathogens. This is termed colonization-resistance (CR). Upon disturbance of the microbiota, CR can be transiently disrupted, and pathogens can gain the opportunity to grow to high levels. This disruption can be caused by exposure to antibiotics (5, 6), changes in diet (7, 8), application of probiotics and drugs (9), and a variety of diseases (3). Breakdown of CR can boost colonization by intrinsic pathogens or increase susceptibility to infections (10). One consequence of pathogen expansion is the triggering of inflammatory host responses and pathogen-mediated disease. Interestingly, human enteric pathogens are part of a small group of bacterial families that belong to the Proteobacteria: the Enterobacteriaceae (E. coli, Yersinia spp., Salmonella spp., Shigella spp.), the

  16. Divergent Relationships between Fecal Microbiota and Metabolome following Distinct Antibiotic-Induced Disruptions.

    PubMed

    Choo, Jocelyn M; Kanno, Tokuwa; Zain, Nur Masirah Mohd; Leong, Lex E X; Abell, Guy C J; Keeble, Julie E; Bruce, Kenneth D; Mason, A James; Rogers, Geraint B

    2017-01-01

    The intestinal microbiome plays an essential role in regulating many aspects of host physiology, and its disruption through antibiotic exposure has been implicated in the development of a range of serious pathologies. The complex metabolic relationships that exist between members of the intestinal microbiota and the potential redundancy in functional pathways mean that an integrative analysis of changes in both structure and function are needed to understand the impact of antibiotic exposure. We used a combination of next-generation sequencing and nuclear magnetic resonance (NMR) metabolomics to characterize the effects of two clinically important antibiotic treatments, ciprofloxacin and vancomycin-imipenem, on the intestinal microbiomes of female C57BL/6 mice. This assessment was performed longitudinally and encompassed both antibiotic challenge and subsequent microbiome reestablishment. Both antibiotic treatments significantly altered the microbiota and metabolite compositions of fecal pellets during challenge and recovery. Spearman's correlation analysis of microbiota and NMR data revealed that, while some metabolites could be correlated with individual operational taxonomic units (OTUs), frequently multiple OTUs were associated with a significant change in a given metabolite. Furthermore, one metabolite, arginine, can be associated with increases/decreases in different sets of OTUs under differing conditions. Taken together, these findings indicate that reliance on shifts in one data set alone will generate an incomplete picture of the functional effect of antibiotic intervention. A full mechanistic understanding will require knowledge of the baseline microbiota composition, combined with both a comparison and an integration of microbiota, metabolomics, and phenotypic data. IMPORTANCE Despite the fundamental importance of antibiotic therapies to human health, their functional impact on the intestinal microbiome and its subsequent ability to recover are poorly

  17. Fructose: A Dietary Sugar in Crosstalk with Microbiota Contributing to the Development and Progression of Non-Alcoholic Liver Disease

    PubMed Central

    Lambertz, Jessica; Weiskirchen, Sabine; Landert, Silvano; Weiskirchen, Ralf

    2017-01-01

    Fructose is one of the key dietary catalysts in the development of non-alcoholic fatty liver disease (NAFLD). NAFLD comprises a complex disease spectrum, including steatosis (fatty liver), non-alcoholic steatohepatitis, hepatocyte injury, inflammation, and fibrosis. It is also the hepatic manifestation of the metabolic syndrome, which covers abdominal obesity, insulin resistance, dyslipidemia, glucose intolerance, or type 2 diabetes mellitus. Commensal bacteria modulate the host immune system, protect against exogenous pathogens, and are gatekeepers in intestinal barrier function and maturation. Dysbalanced intestinal microbiota composition influences a variety of NAFLD-associated clinical conditions. Conversely, nutritional supplementation with probiotics and preobiotics impacting composition of gut microbiota can improve the outcome of NAFLD. In crosstalk with the host immune system, the gut microbiota is able to modulate inflammation, insulin resistance, and intestinal permeability. Moreover, the composition of microbiota of an individual is a kind of fingerprint highly influenced by diet. In addition, not only the microbiota itself but also its metabolites influence the metabolism and host immune system. The gut microbiota can produce vitamins and a variety of nutrients including short-chain fatty acids. Holding a healthy balance of the microbiota is therefore highly important. In the present review, we discuss the impact of long-term intake of fructose on the composition of the intestinal microbiota and its biological consequences in regard to liver homeostasis and disease. In particular, we will refer about fructose-induced alterations of the tight junction proteins affecting the gut permeability, leading to the translocation of bacteria and bacterial endotoxins into the blood circulation. PMID:28970836

  18. Microbiota-specific Th17 Cells: Yin and Yang in Regulation of Inflammatory Bowel Disease.

    PubMed

    Wu, Wei; Chen, Feidi; Liu, Zhanju; Cong, Yingzi

    2016-06-01

    Multiple mechanisms are involved in regulation of host response to microbiota to maintain the intestinal homeostasis. Th17 cells are enriched in the intestinal lamina propria under steady conditions. Many studies have demonstrated that microbiota-reactive Th17 cells in the intestines mediate the pathogenesis of inflammatory bowel diseases. However, clinical trials of anti-interleukin-17A or anti-interleukin-17RA antibodies in patients with Crohn's Disease show no improvement or even exacerbation of disease. Accumulating data has also indicated that Th17 cells may provide a protective effect as well to the intestines from inflammatory insults under homeostasis regulation, even under inflammatory conditions. Thus both proinflammatory and anti-inflammatory functions of intestinal Th17 cells have emerged under various conditions. In this review article, we will summarize recent progresses of Th17 cells in regulation of intestinal homeostasis and in the pathogenesis of inflammatory bowel diseases.

  19. Transmission of the gut microbiota: spreading of health

    PubMed Central

    Browne, Hilary P.; Neville, B. Anne; Forster, Samuel C.; Lawley, Trevor D.

    2018-01-01

    Transmission of commensal intestinal bacteria between humans could promote health by establishing, maintaining and replenishing microbial diversity in the microbiota of an individual. Unlike pathogens, the routes of transmission for commensal bacteria remain unappreciated and poorly understood, despite the likely commonalities between both. Consequently, broad infection control measures that are designed to prevent pathogen transmission and infection, such as oversanitation and the overuse of antibiotics, may inadvertently affect human health by altering normal commensal transmission. In this Review, we discuss the mechanisms and factors that influence host-to-host transmission of the intestinal microbiota and examine how a better understanding of these processes will identify new approaches to nurture and restore transmission routes that are used by beneficial bacteria. PMID:28603278

  20. Intestinal anastomotic injury alters spatially defined microbiome composition and function

    DOE PAGES

    Shogan, Benjamin D.; Smith, Daniel P.; Christley, Scott; ...

    2014-09-15

    When diseased intestine (i.e., from colon cancer, diverticulitis) requires resection, its reconnection (termed anastomosis) can be complicated by non-healing of the newly joined intestine resulting in spillage of intestinal contents into the abdominal cavity (termed anastomotic leakage). Furthermore, while it is suspected that the intestinal microbiota have the capacity to both accelerate and complicate anastomotic healing, the associated genotypes and functions have not been characterized. As a result, using 16S rRNA amplicon sequencing of samples collected on the day of surgery (postoperative day 0 (POD0)) and the 6th day following surgery (postoperative day 0 (POD6)), we analyzed the changes inmore » luminal versus tissue-associated microbiota at anastomotic sites created in the colon of rats. Results indicated that anastomotic injury induced significant changes in the anastomotic tissue-associated microbiota with minimal differences in the luminal microbiota. The most striking difference was a 500-fold and 200-fold increase in the relative abundance of Enterococcus and Escherichia/Shigella, respectively. Functional profiling predicted the predominance of bacterial virulence-associated pathways in post-anastomotic tissues, including production of hemolysin, cytolethal toxins, fimbriae, invasins, cytotoxic necrotizing factors, and coccolysin. Taken together, our results suggest that compositional and functional changes accompany anastomotic tissues and may potentially accelerate or complicate anastomotic healing.« less