Sample records for gain saturation measurements

  1. Gain and saturation energy measurements in low pressure longitudinally excited N 2-lasers

    NASA Astrophysics Data System (ADS)

    Ghoreyshi, S.; Rahimian, K.; Hariri, Akbar

    2004-08-01

    A flat-plate Blumlein circuit has been used for operating a low pressure longitudinally excited oscillator-amplifier N 2-laser at 14 kV input voltage (LE-LE type). For investigating the effect of the excitation length on the laser performances, various amplifiers made of glass tubes of different lengths ranging from 15.5 to 35 cm with 4 mm inner bore diameters have been used. The measurements have been carried out for the laser parameters: small signal gain, and saturation energy density; and the laser beam divergence. Details of our measurements are presented. The results of our measurements have also been compared with the reported values of laser parameters in TE-TEA and LE N 2-laser configurations.

  2. Saturation Measurements of a Visible SASE FEL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carr, Roger

    2002-08-14

    VISA (Visible to Infrared SASE Amplifier) is an FEL designed to obtain high gain at a radiation wavelength of 800 nm. Large gain is achieved by driving the FEL with the 71 MeV, high brightness beam of the Accelerator Test Facility (ATF) and using a novel, strong focusing, 4 m long undulator with a gap of 6 mm and a period of 1.8 cm. We report measurements of exponential gain, saturation, and spectra of the FEL radiation intensity.

  3. Mode calculations in unstable resonators with flowing saturable gain. 1:hermite-gaussian expansion.

    PubMed

    Siegman, A E; Sziklas, E A

    1974-12-01

    We present a procedure for calculating the three-dimensional mode pattern, the output beam characteristics, and the power output of an oscillating high-power laser taking into account a nonuniform, transversely flowing, saturable gain medium; index inhomogeneities inside the laser resonator; and arbitrary mirror distortion and misalignment. The laser is divided into a number of axial segments. The saturated gain-and-index variation. across each short segment is lumped into a complex gain profile across the midplane of that segment. The circulating optical wave within the resonator is propagated from midplane to midplane in free-space fashion and is multiplied by the lumped complex gain profile upon passing through each midplane. After each complete round trip of the optical wave inside the resonator, the saturated gain profiles are recalculated based upon the circulating fields in the cavity. The procedure when applied to typical unstable-resonator flowing-gain lasers shows convergence to a single distorted steady-state mode of oscillation. Typical near-field and far-field results are presented. Several empirical rules of thumb for finite truncated Hermite-Gaussian expansions, including an approximate sampling theorem, have been developed as part of the calculations.

  4. Study of the amplified spontaneous emission spectral width and gain coefficient for a KrF laser in unsaturated and saturated conditions

    NASA Astrophysics Data System (ADS)

    Hariri, A.; Sarikhani, S.

    2014-01-01

    On the basis of a model of a geometrically dependent gain coefficient, the amplified spontaneous emission (ASE) spectral width was calculated analytically for the nearly resonant transition of ν ˜ ν0, and also numerically for a wide range of transition frequencies. For this purpose, the intensity rate equation was used under unsaturated and saturated conditions. For verifying the proposed model, reported measurements of the ASE energy versus the excitation length for a KrF laser were used. For the excitation length of l = 84 cm corresponding to single-path propagation, the ASE spectral width for the homogeneously broadened transition was calculated to be 6.28 Å, to be compared with the measured 4.1 Å spectral width reported for a KrF oscillator utilizing a two-mirror resonator. With the gain parameters obtained from the ASE energy measurements, the unsaturated and saturated gain coefficients for l = 84 cm were calculated to be 0.042 cm-1 and 0.014 cm-1, respectively. These values of the gain coefficient are comparable to but slightly lower than the measured gain coefficient for laser systems of 80-100 cm excitation lengths reported from different laboratories.

  5. Gain measurement of a CuBr laser by means of modified amplified spontaneous emission

    NASA Astrophysics Data System (ADS)

    Chan, W. C.; Liu, H. P.; Yen, S. H.; Chen, W. Y.; Lin, Y. H.; Chen, W. C.

    1990-05-01

    A modified amplified spontaneous emission technique has been introduced to measure the radial distributions of the gain and the saturation energy density of the output of a double-discharge pulsed CuBr laser. An asymmetric distribution of the gain was obtained. With the laser tube temperature at 420 °C, the peak value of the gain and the saturation energy density are 70 db/m and 85 μJ/cm3, respectively.

  6. A new adjustable gains for second order sliding mode control of saturated DFIG-based wind turbine

    NASA Astrophysics Data System (ADS)

    Bounadja, E.; Djahbar, A.; Taleb, R.; Boudjema, Z.

    2017-02-01

    The control of Doubly-Fed induction generator (DFIG), used in wind energy conversion, has been given a great deal of interest. Frequently, this control has been dealt with ignoring the magnetic saturation effect in the DFIG model. The aim of the present work is twofold: firstly, the magnetic saturation effect is accounted in the control design model; secondly, a new second order sliding mode control scheme using adjustable-gains (AG-SOSMC) is proposed to control the DFIG via its rotor side converter. This scheme allows the independent control of the generated active and reactive power. Conventionally, the second order sliding mode control (SOSMC) applied to the DFIG, utilize the super-twisting algorithm with fixed gains. In the proposed AG-SOSMC, a simple means by which the controller can adjust its behavior is used. For that, a linear function is used to represent the variation in gain as a function of the absolute value of the discrepancy between the reference rotor current and its measured value. The transient DFIG speed response using the aforementioned characteristic is compared with the one determined by using the conventional SOSMC controller with fixed gains. Simulation results show, accurate dynamic performances, quicker transient response and more accurate control are achieved for different operating conditions.

  7. Improved Drain Current Saturation and Voltage Gain in Graphene-on-Silicon Field Effect Transistors.

    PubMed

    Song, Seung Min; Bong, Jae Hoon; Hwang, Wan Sik; Cho, Byung Jin

    2016-05-04

    Graphene devices for radio frequency (RF) applications are of great interest due to their excellent carrier mobility and saturation velocity. However, the insufficient current saturation in graphene field effect transistors (FETs) is a barrier preventing enhancements of the maximum oscillation frequency and voltage gain, both of which should be improved for RF transistors. Achieving a high output resistance is therefore a crucial step for graphene to be utilized in RF applications. In the present study, we report high output resistances and voltage gains in graphene-on-silicon (GoS) FETs. This is achieved by utilizing bare silicon as a supporting substrate without an insulating layer under the graphene. The GoSFETs exhibit a maximum output resistance of 2.5 MΩ∙μm, maximum intrinsic voltage gain of 28 dB, and maximum voltage gain of 9 dB. This method opens a new route to overcome the limitations of conventional graphene-on-insulator (GoI) FETs and subsequently brings graphene electronics closer to practical usage.

  8. Improved Drain Current Saturation and Voltage Gain in Graphene–on–Silicon Field Effect Transistors

    PubMed Central

    Song, Seung Min; Bong, Jae Hoon; Hwang, Wan Sik; Cho, Byung Jin

    2016-01-01

    Graphene devices for radio frequency (RF) applications are of great interest due to their excellent carrier mobility and saturation velocity. However, the insufficient current saturation in graphene field effect transistors (FETs) is a barrier preventing enhancements of the maximum oscillation frequency and voltage gain, both of which should be improved for RF transistors. Achieving a high output resistance is therefore a crucial step for graphene to be utilized in RF applications. In the present study, we report high output resistances and voltage gains in graphene-on-silicon (GoS) FETs. This is achieved by utilizing bare silicon as a supporting substrate without an insulating layer under the graphene. The GoSFETs exhibit a maximum output resistance of 2.5 MΩ∙μm, maximum intrinsic voltage gain of 28 dB, and maximum voltage gain of 9 dB. This method opens a new route to overcome the limitations of conventional graphene-on-insulator (GoI) FETs and subsequently brings graphene electronics closer to practical usage. PMID:27142861

  9. Effects of nanomaterial saturable absorption on gain-guide soliton in a positive group-dispersion fiber laser: Simulations and experiments

    NASA Astrophysics Data System (ADS)

    Du, Tuanjie; Wan, Xiaojiao; Yang, Runhua; Li, Weiwei; Ruan, Qiujun; Chen, Nan; Luo, Zhengqian

    2018-01-01

    In recent years, several kinds of nanomaterials have been discovered, and successfully used as saturable absorbers (SAs) for passively mode-locked fiber lasers. However, it is found that most of nanomaterials-based SAs cannot stably generate gain-guide solitons in positive group-dispersion fiber lasers, which is urgently expected to fully understand the inherent reasons. In this paper, we numerically and experimentally investigate the effects of nanomaterial saturable absorption (e.g. modulation depth and saturation optical power) on gain-guide soliton in positive group-dispersion Er3+-doped fiber laser (PGD-EDFL). By numerically solving the Ginzburg-Landau equation, the evolutions of both the mode-locked optical spectrum and pulse duration as a function of modulation depth and saturation optical power are analyzed, respectively. In experiment, we firstly prepare five nanomaterial SAs with the similar insertion loss, which have the different modulation depth from 1.80% to 23.36%, and the different saturation optical power from 8.8 to 536 W. We then perform the experimental comparison by incorporating the five SAs in a same PGD-EDFL cavity, respectively. The experimental results are in good agreement with the numerical ones. Our result reveals that: (1) a low modulation depth cannot support the formation of gain-guide soliton, (2) as the modulation depth increases, the spectral bandwidth of gain-guide soliton increases, the pulse duration decreases and the pulse chirp becomes large, (3) the saturation optical power has the weak influences on the gain-guide soliton performances.

  10. Robust control for spacecraft rendezvous system with actuator unsymmetrical saturation: a gain scheduling approach

    NASA Astrophysics Data System (ADS)

    Wang, Qian; Xue, Anke

    2018-06-01

    This paper has proposed a robust control for the spacecraft rendezvous system by considering the parameter uncertainties and actuator unsymmetrical saturation based on the discrete gain scheduling approach. By changing of variables, we transform the actuator unsymmetrical saturation control problem into a symmetrical one. The main advantage of the proposed method is improving the dynamic performance of the closed-loop system with a region of attraction as large as possible. By the Lyapunov approach and the scheduling technology, the existence conditions for the admissible controller are formulated in the form of linear matrix inequalities. The numerical simulation illustrates the effectiveness of the proposed method.

  11. Merged beam laser design for reduction of gain-saturation and two-photon absorption in high power single mode semiconductor lasers.

    PubMed

    Lysevych, M; Tan, H H; Karouta, F; Fu, L; Jagadish, C

    2013-04-08

    In this paper we report a method to overcome the limitations of gain-saturation and two-photon absorption faced by developers of high power single mode InP-based lasers and semiconductor optical amplifiers (SOA) including those based on wide-waveguide or slab-coupled optical waveguide laser (SCOWL) technology. The method is based on Y-coupling design of the laser cavity. The reduction in gain-saturation and two-photon absorption in the merged beam laser structures (MBL) are obtained by reducing the intensity of electromagnetic field in the laser cavity. Standard ridge-waveguide lasers and MBLs were fabricated, tested and compared. Despite a slightly higher threshold current, the reduced gain-saturation in MBLs results in higher output power. The MBLs also produced a single spatial mode, as well as a strongly dominating single spectral mode which is the inherent feature of MBL-type cavity.

  12. Compact gain saturated plasma based X-ray lasers down to 6.9nm

    NASA Astrophysics Data System (ADS)

    Rocca, Jorge; Wang, Y.; Wang, S.; Rockwood, A.; Berrill, M.; Shlyaptsev, V.

    2017-10-01

    Plasma based soft x-ray amplifiers allow many experiments requiring bright, high energy soft x-ray laser pulses to be conducted in compact facilities. We have extended the wavelength of compact gain saturated x-ray lasers to 6.89 nm in a Ni-like Gd plasma generated by a Ti:Sa laser. Gain saturated laser operation was also obtained at 7.36 nm in Ni-like Sm. Isolectronic scaling and optimization of laser pre-pulse duration allowed us to also observe strong lasing at 6.6 nm and 6.1 nm in Ni-like Tb, and amplification at 6.4 nm and 5.89 nm in Ni-like Dy. The results were obtained by transient laser heating of solid targets with traveling wave excitation at progressively increased gracing incidence angles. We show that the optimum pump angle of incidence for collisional Ni-like lasers increases linearly with atomic number from Z =42 to Z =66, reaching 43 degrees for Ni-like Dy, in good agreement with hydrodynamic/atomic physics simulations. These results will enable single-shot nano-scale imaging and other application of sub-7 nm lasers to be performed at compact facilities. Work supported by Grant DE-FG02-4ER15592 of the Department of Energy, Office of Science, and by the National Science Foundation Grant ECCS 1509925.

  13. Statistical properties of radiation power levels from a high-gain free-electron laser at and beyond saturation

    NASA Astrophysics Data System (ADS)

    Schroeder, C. B.; Fawley, W. M.; Esarey, E.

    2003-07-01

    We investigate the statistical properties (e.g., shot-to-shot power fluctuations) of the radiation from a high-gain free-electron laser (FEL) operating in the nonlinear regime. We consider the case of an FEL amplifier reaching saturation whose shot-to-shot fluctuations in input radiation power follow a gamma distribution. We analyze the corresponding output power fluctuations at and beyond saturation, including beam energy spread effects, and find that there are well-characterized values of undulator length for which the fluctuations reach a minimum.

  14. Three-dimensional particle-in-cell simulation on gain saturation effect of microchannel plate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Qiangqiang; Yuan, Zheng; Cao, Zhurong, E-mail: cao33jin@aliyun.com

    We present here the results of the simulation work, using the three-dimensional particle-in-cell method, on the performance of the lead glass microchannel plate under saturated state. We calculated the electron cascade process with different DC bias voltages under both self-consistent condition and non-self-consistent condition. The comparative results have demonstrated that the strong self-consistent field can suppress the cascade process and make the microchannel plate saturated. The simulation results were also compared to the experimental data and good agreement was obtained. The simulation results also show that the electron multiplication process in the channel is accompanied by the buildup process ofmore » positive charges in the channel wall. Though the interactions among the secondary electron cloud in the channel, the positive charges in the channel wall, and the external acceleration field can make the electron-surface collision more frequent, the collision energy will be inevitably reduced, thus the electron gain will also be reduced.« less

  15. Effective Porosity Measurements by Wet- and Dry-type Vacuum Saturations using Process-Programmable Vacuum Saturation System

    NASA Astrophysics Data System (ADS)

    Lee, T. J.; Lee, K. S., , Dr; Lee, S. K.

    2017-12-01

    One of the most important factors in measuring effective porosity by vacuum saturation method is that the air in the pore space can be fully substituted by water during the vacuum saturation process. International Society of Rock Mechanics (ISRM) suggests vacuuming a rock sample submerged in the water, while American Society of Test and Materials (ASTM) vacuuming the sample and water separately and then pour the water to the sample. In this study, we call the former wet-type vacuum saturation (WVS) method and the latter dry-type vacuum saturation (DVS) method, and compare the effective porosity measured by the two different vacuum saturation processes. For that purpose, a vacuum saturation system has been developed, which can support both WVS and DVS by only changing the process by programming. Comparison of effective porosity has been made for a cement mortar and rock samples. As a result, DVS can substitute more void volume to water than WVS, which in turn insists that DVS can provide more exact value of effective porosity than WVS.

  16. Characterization of an 800 nm SASE FEL at Saturation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nuhn, Heinz-Dieter

    2002-11-13

    VISA (Visible to Infrared SASE Amplifier) is an FEL (Free Electron Laser) designed to saturate at a radiation wavelength of 800 nm within a 4-m long, strong focusing undulator. Large gain is achieved by driving the FEL with the 72 MeV, high brightness beam of BNL's Accelerator Test Facility (ATF). We present measurements that demonstrate saturation in addition to the frequency spectrum of the FEL radiation. Energy, gain length and spectral characteristics are compared and shown to agree with simulation and theoretical predictions.

  17. Saturable absorber Q- and gain-switched all-Yb3+ all-fiber laser at 976 and 1064 nm.

    PubMed

    Tsai, Tzong-Yow; Fang, Yen-Cheng; Huang, Huai-Min; Tsao, Hong-Xi; Lin, Shih-Ting

    2010-11-08

    We demonstrate a novel passively pulsed all-Yb3+ all-fiber laser pumped by a continuous-wave 915-nm pump laser diode. The laser was saturable absorber Q-switched at 976 nm and gain-switched at 1064 nm, using the method of mode-field-area mismatch. With a pump power of 
105 mW, the laser iteratively produced a 976-nm pulse with an energy of 2.8 μJ and a duration of 280 ns, followed by a 1064-nm pulse with 1.1 μJ and a 430-ns duration at a repetition rate of 9 kHz. A set of rate equations was established to simulate the self-balancing mechanism and the correlation between the Q- and gain-switched photon numbers and the populations of the gain and absorber fibers.

  18. Correcting reaction rates measured by saturation-transfer magnetic resonance spectroscopy

    NASA Astrophysics Data System (ADS)

    Gabr, Refaat E.; Weiss, Robert G.; Bottomley, Paul A.

    2008-04-01

    Off-resonance or spillover irradiation and incomplete saturation can introduce significant errors in the estimates of chemical rate constants measured by saturation-transfer magnetic resonance spectroscopy (MRS). Existing methods of correction are effective only over a limited parameter range. Here, a general approach of numerically solving the Bloch-McConnell equations to calculate exchange rates, relaxation times and concentrations for the saturation-transfer experiment is investigated, but found to require more measurements and higher signal-to-noise ratios than in vivo studies can practically afford. As an alternative, correction formulae for the reaction rate are provided which account for the expected parameter ranges and limited measurements available in vivo. The correction term is a quadratic function of experimental measurements. In computer simulations, the new formulae showed negligible bias and reduced the maximum error in the rate constants by about 3-fold compared to traditional formulae, and the error scatter by about 4-fold, over a wide range of parameters for conventional saturation transfer employing progressive saturation, and for the four-angle saturation-transfer method applied to the creatine kinase (CK) reaction in the human heart at 1.5 T. In normal in vivo spectra affected by spillover, the correction increases the mean calculated forward CK reaction rate by 6-16% over traditional and prior correction formulae.

  19. Linoleic acid causes greater weight gain than saturated fat without hypothalamic inflammation in the male mouse.

    PubMed

    Mamounis, Kyle J; Yasrebi, Ali; Roepke, Troy A

    2017-02-01

    A significant change in the Western diet, concurrent with the obesity epidemic, was a substitution of saturated fatty acids with polyunsaturated, specifically linoleic acid (LA). Despite increasing investigation on type as well as amount of fat, it is unclear which fatty acids are most obesogenic. The objective of this study was to determine the obesogenic potency of LA vs. saturated fatty acids and the involvement of hypothalamic inflammation. Forty-eight mice were divided into four groups: low-fat or three high-fat diets (HFDs, 45% kcals from fat) with LA comprising 1%, 15% and 22.5% of kilocalories, the balance being saturated fatty acids. Over 12 weeks, bodyweight, body composition, food intake, calorimetry, and glycemia assays were performed. Arcuate nucleus and blood were collected for mRNA and protein analysis. All HFD-fed mice were heavier and less glucose tolerant than control. The diet with 22.5% LA caused greater bodyweight gain, decreased activity, and insulin resistance compared to control and 1% LA. All HFDs elevated leptin and decreased ghrelin in plasma. Neuropeptides gene expression was higher in 22.5% HFD. The inflammatory gene Ikk was suppressed in 1% and 22.5% LA. No consistent pattern of inflammatory gene expression was observed, with suppression and augmentation of genes by one or all of the HFDs relative to control. These data indicate that, in male mice, LA induces obesity and insulin resistance and reduces activity more than saturated fat, supporting the hypothesis that increased LA intake may be a contributor to the obesity epidemic. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Measuring hemoglobin amount and oxygen saturation of skin with advancing age

    NASA Astrophysics Data System (ADS)

    Watanabe, Shumpei; Yamamoto, Satoshi; Yamauchi, Midori; Tsumura, Norimichi; Ogawa-Ochiai, Keiko; Akiba, Tetsuo

    2012-03-01

    We measured the oxygen saturation of skin at various ages using our previously proposed method that can rapidly simulate skin spectral reflectance with high accuracy. Oxygen saturation is commonly measured by a pulse oximeter to evaluate oxygen delivery for monitoring the functions of heart and lungs at a specific time. On the other hand, oxygen saturation of skin is expected to assess peripheral conditions. Our previously proposed method, the optical path-length matrix method (OPLM), is based on a Monte Carlo for multi-layered media (MCML), but can simulate skin spectral reflectance 27,000 times faster than MCML. In this study, we implemented an iterative simulation of OPLM with a nonlinear optimization technique such that this method can also be used for estimating hemoglobin concentration and oxygen saturation from the measured skin spectral reflectance. In the experiments, the skin reflectance spectra of 72 outpatients aged between 20 and 86 years were measured by a spectrophotometer. Three points were measured for each subject: the forearm, the thenar eminence, and the intermediate phalanx. The result showed that the oxygen saturation of skin remained constant at each point as the age varied.

  1. Viscosity of saturated R152a measured with a vibrating wire viscometer

    NASA Astrophysics Data System (ADS)

    van der Gulik, P. S.

    1995-07-01

    Earlier reported values of the viscosity coefficient of the refrigerant R152a (1,1-difluoroethane) have been recalculated with an improved value for the mechanical damping of the vibrating wire viscometer. The measurements were taken along the saturation line both in the saturated liquid and in the saturated vapor every 10 K from 243 up to 393 K by means of a vibrating wire viscometer The damping of the vibration of the wire is a measure for the viscosity provided that the mechanical damping is subtracted. The latter is usually measured in vacuum. It turns out that the damping value measured in this way depends on the vacuum pressure and on the way the wire has been handled before. It appeared that the damping applied previously, measured after 6 days of pumping, is too small, resulting in values of the viscosity coefficient which are too large. The effect on the data for the saturated-liquid viscosity is small, but the new saturated-vapor viscosity data agree much better with the unsaturated-vapor data reported by Takahashi et al.

  2. Maximizing output power of a low-gain laser system.

    PubMed

    Carroll, D L; Sentman, L H

    1993-07-20

    Rigrod theory was used to model outcoupled power from a low-gain laser with good accuracy. For a low-gain overtone cw HF chemical laser, Rigrod theory shows that a higher medium saturation yields a higher overall overtone efficiency, but does not necessarily yield a higher measurable power (power in the bucket). For low-absorption-scattering loss overtone mirrors and a 5% penalty in outcoupled power, the intracavity flux and hence the mirror loading may be reduced by more than a factor of 2 when the gain length is long enough to saturate the medium well. For the University of Illinois at Urbana-Champaign overtone laser that has an extensive database with well-characterized mirrors for which the Rigrod parameters g(0) and I(sat) were firmly established, the accuracy to which the reflectivities of high-reflectivity overtone mirrors can be deduced by using measured mirror transmissivities, measured outcoupled power, and Rigrod theory is approximatly ±0.07%. This method of accurately deducing mirror reflectivities may be applicable to other low-gain laser systems that use high-reflectivity mirrors at different wavelengths. The maximum overtone efficiency is estimated to be approximately 80%-100%.

  3. Investigation of measurement method of saturation magnetization of iron core material using electromagnet

    NASA Astrophysics Data System (ADS)

    Shibataki, Takuya; Takahashi, Yasuhito; Fujiwara, Koji

    2018-04-01

    This paper discusses a measurement method for saturation magnetizations of iron core materials using an electromagnet, which can apply an extremely large magnetic field strength to a specimen. It is said that electrical steel sheets are completely saturated at such a large magnetic field strength over about 100 kA/m. The saturation magnetization can be obtained by assuming that the completely saturated specimen shows a linear change of the flux density with the magnetic field strength because the saturation magnetization is constant. In order to accurately evaluate the flux density in the specimen, an air flux between the specimen and a winding of B-coil for detecting the flux density is compensated by utilizing an ideal condition that the incremental permeability of saturated specimen is equal to the permeability of vacuum. An error of magnetic field strength caused by setting a sensor does not affect the measurement accuracy of saturation magnetization. The error is conveniently cancelled because the saturation magnetization is a function of a ratio of the magnetic field strength to its increment. It may be concluded that the saturation magnetization can be easily measured with high accuracy by using the proposed method.

  4. Experimental verification of gain drop due to general ion recombination for a carbon-ion pencil beam

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tansho, Ryohei, E-mail: r-tansho@nirs.go.jp; Furukawa, Takuji; Hara, Yousuke

    Purpose: Accurate dose measurement in radiotherapy is critically dependent on correction for gain drop, which is the difference of the measured current from the ideal saturation current due to general ion recombination. Although a correction method based on the Boag theory has been employed, the theory assumes that ionized charge density in an ionization chamber (IC) is spatially uniform throughout the irradiation volume. For particle pencil beam scanning, however, the charge density is not uniform, because the fluence distribution of a pencil beam is not uniform. The aim of this study was to verify the effect of the nonuniformity ofmore » ionized charge density on the gain drop due to general ion recombination. Methods: The authors measured the saturation curve, namely, the applied voltage versus measured current, using a large plane-parallel IC and 24-channel parallel-plate IC with concentric electrodes. To verify the effect of the nonuniform ionized charge density on the measured saturation curve, the authors calculated the saturation curve using a method which takes into account the nonuniform ionized charge density and compared it with the measured saturation curves. Results: Measurement values of the different saturation curves in the different channels of the concentric electrodes differed and were consistent with the calculated values. The saturation curves measured by the large plane-parallel IC were also consistent with the calculation results, including the estimation error of beam size and of setup misalignment. Although the impact of the nonuniform ionized charge density on the gain drop was clinically negligible with the conventional beam intensity, it was expected that the impact would increase with higher ionized charge density. Conclusions: For pencil beam scanning, the assumption of the conventional Boag theory is not valid. Furthermore, the nonuniform ionized charge density affects the prediction accuracy of gain drop when the ionized charge

  5. Development of an oxygen saturation measuring system by using near-infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Kono, K.; Nakamachi, E.; Morita, Y.

    2017-08-01

    Recently, the hypoxia imaging has been recognized as the advanced technique to detect cancers because of a strong relationship with the biological characterization of cancer. In previous studies, hypoxia imaging systems for endoscopic diagnosis have been developed. However, these imaging technologies using the visible light can observe only blood vessels in gastric mucous membrane. Therefore, they could not detect scirrhous gastric cancer which accounts for 10% of all gastric cancers and spreads rapidly into submucous membrane. To overcome this problem, we developed a measuring system of blood oxygen saturation in submucous membrane by using near-infrared (NIR) spectroscopy. NIR, which has high permeability for bio-tissues and high absorbency for hemoglobin, can image and observe blood vessels in submucous membrane. NIR system with LED lights and a CCD camera module was developed to image blood vessels. We measured blood oxygen saturation using the optical density ratio (ODR) of two wavelengths, based on Lambert-Beer law. To image blood vessel clearly and measure blood oxygen saturation accurately, we searched two optimum wavelengths by using a multilayer human gastric-like phantom which has same optical properties as human gastric one. By using Monte Carlo simulation of light propagation, we derived the relationship between the ODR and blood oxygen saturation and elucidated the influence of blood vessel depth on measuring blood oxygen saturation. The oxygen saturation measuring methodology was validated with experiments using our NIR system. Finally, it was confirmed that our system can detect oxygen saturation in various depth blood vessels accurately.

  6. Saturation-inversion-recovery: A method for T1 measurement

    NASA Astrophysics Data System (ADS)

    Wang, Hongzhi; Zhao, Ming; Ackerman, Jerome L.; Song, Yiqiao

    2017-01-01

    Spin-lattice relaxation (T1) has always been measured by inversion-recovery (IR), saturation-recovery (SR), or related methods. These existing methods share a common behavior in that the function describing T1 sensitivity is the exponential, e.g., exp(- τ /T1), where τ is the recovery time. In this paper, we describe a saturation-inversion-recovery (SIR) sequence for T1 measurement with considerably sharper T1-dependence than those of the IR and SR sequences, and demonstrate it experimentally. The SIR method could be useful in improving the contrast between regions of differing T1 in T1-weighted MRI.

  7. Calculation of single-pass gain for laser ceramics with losses

    NASA Astrophysics Data System (ADS)

    Vatnik, S. M.

    2018-04-01

    Rate equations describing the single-pass gain in an active medium with losses are analytically solved. The found relations illustrate the dependences of the amplification efficiency of Nd : YAG ceramics on the pump power density and specific losses. It is concluded that specific losses can be estimated from comparative measurements of unsaturated and saturated gains.

  8. Measurement of Antenna Bore-Sight Gain

    NASA Technical Reports Server (NTRS)

    Fortinberry, Jarrod; Shumpert, Thomas

    2016-01-01

    The absolute or free-field gain of a simple antenna can be approximated using standard antenna theory formulae or for a more accurate prediction, numerical methods may be employed to solve for antenna parameters including gain. Both of these methods will result in relatively reasonable estimates but in practice antenna gain is usually verified and documented via measurements and calibration. In this paper, a relatively simple and low-cost, yet effective means of determining the bore-sight free-field gain of a VHF/UHF antenna is proposed by using the Brewster angle relationship.

  9. Cerebral arterial oxygen saturation measurements using a fiber-optic pulse oximeter.

    PubMed

    Phillips, J P; Langford, R M; Chang, S H; Maney, K; Kyriacou, P A; Jones, D P

    2010-10-01

    A pilot investigation was undertaken to assess the performance of a novel fiber-optic cerebral pulse oximetry system. A fiber-optic probe designed to pass through the lumen of a cranial bolt of the type used to make intracranial pressure measurements was used to obtain optical reflectance signals directly from brain tissue. Short-duration measurements were made in six patients undergoing neurosurgery. These were followed by a longer duration measurement in a patient recovering from an intracerebral hematoma. Estimations of cerebral arterial oxygen saturation derived from a frequency domain-based algorithm are compared with simultaneous pulse oximetry (SpO2) and hemoximeter (SaO2) blood samples. The short-duration measurements showed that reliable photoplethysmographic signals could be obtained from the brain tissue. In the long-duration study, the mean (±SD) difference between cerebral oxygen saturation (ScaO2) and finger SpO2 (in saturation units) was -7.47(±3.4)%. The mean (±SD) difference between ScaO2 and blood SaO2 was -7.37(±2.8)%. This pilot study demonstrated that arterial oxygen saturation may be estimated from brain tissue via a fiber-optic pulse oximeter used in conjunction with a cranial bolt. Further studies are needed to confirm the clinical utility of the technique.

  10. Density measurement in air with a saturable absorbing seed gas

    NASA Technical Reports Server (NTRS)

    Baganoff, D.

    1981-01-01

    Resonantly enhanced scattering from the iodine molecule is studied experimentally for the purpose of developing a scheme for the measurement of density in a gas dynamic flow. A study of the spectrum of iodine, the collection of saturation data in iodine, and the development of a mathematical model for correlating saturation effects were pursued for a mixture of 0.3 torr iodine in nitrogen and for mixture pressures up to one atmosphere. For the desired pressure range, saturation effects in iodine were found to be too small to be useful in allowing density measurements to be made. The effects of quenching can be reduced by detuning the exciting laser wavelength from the absorption line center of the iodine line used (resonant Raman scattering). The signal was found to be nearly independent of pressure, for pressures up to one atmosphere, when the excitation beam was detuned 6 GHz from line center for an isolated line in iodine. The signal amplitude was found to be nearly equal to the amplitude for fluorescence at atmospheric pressure, which indicates a density measurement scheme is possible.

  11. High-gain EDFA using ASE suppression: numerical simulation and experimental characterization

    NASA Astrophysics Data System (ADS)

    Woellner, Eudes F.; Fugihara, Meire C.; Vendramin, Marcio; Chitz, Edson; Kalinowski, Hypolito J.; Pontes, Maria J.

    2001-08-01

    A single stage, bi-directionally pumped Erbium Doped Fiber Amplifier is studied, using a scheme that reduces the counter propagating ASE, avoiding self saturation due to ASE. The amplifier is numerically simulated and experimentally characterized. Gain, saturation and polarization dependence measurements are carried to compare with simulated results. Transient response is simulated to verify the amplifier performance in cable television distribution network.

  12. The behavior of gain and saturation characteristics versus temperature in a copper bromide laser

    NASA Astrophysics Data System (ADS)

    Mohammadpour Lima, S.; Behrouzinia, S.; Salem, M. K.; Elahei, M.; Khorasani, K.; Dorranian, D.

    2017-05-01

    A pair of copper bromide lasers in an oscillator-amplifier configuration was used to investigate the temperature dependence of the small-signal gain, saturation intensity, and output power of the laser. The observations were explained in terms of the electron temperature and energy levels of transition. An optimum electrical input power of 1.6 kW and a corresponding operational temperature of 510 °C were determined for the maximum values of these parameters. The balance between the microscopic parameters, such as stimulated emission cross-section, laser upper-level lifetime, and population inversion, which determine the behavior of the amplifying parameters and laser output power with respect to the operational temperature, has been investigated. We used the steady-state rate equation from the Hargrove model to determine the amplifying parameters, instead of the Frantz-Nodvik formula. The power extracted from the amplifier exceeds that achieved with the same device as the oscillator by more than 60%.

  13. The bias in current measures of gestational weight gain

    PubMed Central

    Hutcheon, Jennifer A; Bodnar, Lisa M; Joseph, KS; Abrams, Barbara; Simhan, Hyagriv N; Platt, Robert W

    2014-01-01

    Summary Conventional measures of gestational weight gain (GWG), such as average rate of weight gain, are likely correlated with gestational duration. Such correlation could introduce bias to epidemiologic studies of GWG and adverse perinatal outcomes because many perinatal outcomes are also correlated with gestational duration. This study aimed to quantify the extent to which currently-used GWG measures may bias the apparent relation between maternal weight gain and risk of preterm birth. For each woman in a provincial perinatal database registry (British Columbia, Canada, 2000–2009), a total GWG was simulated such that it was uncorrelated with risk of preterm birth. The simulation was based on serial antenatal GWG measurements from a sample of term pregnancies. Simulated GWGs were classified using 3 approaches: total weight gain (kg), average rate of weight gain (kg/week) or adequacy of gestational weight gain in relation to Institute of Medicine recommendations, and their association with preterm birth ≤ 32 weeks was explored using logistic regression. All measures of GWG induced an apparent association between GWG and preterm birth ≤32 weeks even when, by design, none existed. Odds ratios in the lowest fifths of each GWG measure compared with the middle fifths ranged from 4.4 [95% CI 3.6, 5.4] (total weight gain) to 1.6 [95% CI 1.3, 2.0] (Institute of Medicine adequacy ratio). Conventional measures of GWG introduce serious bias to the study of maternal weight gain and preterm birth. A new measure of GWG that is uncorrelated with gestational duration is needed. PMID:22324496

  14. Reproducibility of retinal vessel oxygen saturation measurements in healthy young subjects.

    PubMed

    Lasta, Michael; Palkovits, Stefan; Boltz, Agnes; Schmidl, Doreen; Kaya, Semira; Cherecheanu, Alina Popa; Garhöfer, Gerhard; Schmetterer, Leopold

    2012-12-01

    An adequate oxygenation and perfusion is essential for the function of the inner retina. Recently, several techniques for the measurement of retinal oxygen saturation became available. We set out to evaluate reproducibility of the measurements using a modified Retinal Vessel Analyzer. A total of 20 healthy female and male subjects aged between 18 and 35 years (22.9 ± 3.9; mean ± SD) were included. The measurement of retinal oxygen saturation with the retinal oximeter employed in this study is based on optical reflectometry using the different absorption characteristics of oxygenated and deoxygenated haemoglobin. The intraclass correlation coefficients and the coefficients of variation (CV) for test-retest, short-term as well as day-to-day measurements were calculated.   The intraclass correlation coefficients were between 0.91 and 0.94 for retinal branch arteries and between 0.84 and 0.88 for retinal branch veins. In retinal arteries, we calculated a test-retest CV of 3.24 ± 3.18% for oxygen saturation measurements. In retinal veins, data were slightly less reproducible with a CV of 4.92 ± 3.57%. Short-term reproducibility of both measurement cycles on each study day was in the same range (CV in retinal arteries: 2.91 ± 2.42% and CV in retinal veins: 4.76 ± 3.14%). The day-to-day coefficient of variation was slightly higher (CV in retinal arteries: 3.97 ± 2.87% and CV in retinal veins: 6.18 ± 3.36%). The reproducibility of haemoglobin oxygen saturation measurements using the retinal oximeter is acceptable. Further studies on the validity of the obtained results are, however, required. © 2012 The Authors. Acta Ophthalmologica © 2012 Acta Ophthalmologica Scandinavica Foundation.

  15. Density measurement in air with saturable absorbing seed gas

    NASA Technical Reports Server (NTRS)

    Baganoff, D.

    1982-01-01

    Approaches which have the potential to make density measurements in a compressible flow, where one or more laser beams are used as probes, were investigated. Saturation in sulfur hexafluoride iodine and a crossed beam technique where one beam acts as a saturating beam and the other is at low intensity and acts as a probe beam are considered. It is shown that a balance between an increase in fluorescence intensity with increasing pressure from line broadening and the normal decrease in intensity with increasing pressure from quenching can be used to develop a linear relation between fluorescence intensity and number density and lead to a new density measurement scheme. The method is used to obtain a density image of the cross section of an iodine seeded underexpanded supersonic jet of nitrogen, by illuminating the cross section by a sheet of laser light.

  16. Effective gain measurements in chromium-doped forsterite

    NASA Technical Reports Server (NTRS)

    Petricevic, V.; Seas, A.; Alfano, R. R.

    1991-01-01

    Effective gain cross section in tetravalent chromium-doped forsterite laser crystal was measured over the 1180-1330 nm spectral range. The experiment was performed using two collinear laser beams in a pump-and-probe arrangement. The peak-gain cross section from this measurement is estimated to be 1.9 x 10 to the -19th sq cm at 1215 nm, which is comparable to the value of about 2 x 10 to the -19th sq cm predicted by fluorescence linewidth and lifetime measurements. These results indicate that excited-state absorption is not a major loss mechanism in tetravalent chromium-doped forsterite.

  17. Direct measurements of fluorine atom concentration, gain length and small signal gain in an hydrogen fluoride overtone laser

    NASA Astrophysics Data System (ADS)

    Wisniewski, Charles F.; Hewett, Kevin B.; Manke, Gerald C., II; Randall Truman, C.; Hager, Gordon D.

    2003-03-01

    Experimental techniques have been developed to directly measure the concentration of fluorine atoms, the gain length and the small signal gain in a hydrogen fluoride 5 cm slit nozzle laser. A gas phase titration technique was utilized to measure the fluorine atom concentration using HCl as the titrant. The gain length was measured using a pitot probe to locate the interface of the primary flow with the high Mach number shroud flows. A tunable diode laser was utilized to perform small signal gain measurements on HF overtone ( ν=2→0) transitions.

  18. ICESAT GLAS Altimetry Measurements: Received Signal Dynamic Range and Saturation Correction

    NASA Technical Reports Server (NTRS)

    Sun, Xiaoli; Abshire, James B.; Borsa, Adrian A.; Fricker, Helen Amanda; Yi, Donghui; Dimarzio, John P.; Paolo, Fernando S.; Brunt, Kelly M.; Harding, David J.; Neumann, Gregory A.

    2017-01-01

    NASAs Ice, Cloud, and land Elevation Satellite (ICESat), which operated between 2003 and 2009, made the first satellite-based global lidar measurement of earths ice sheet elevations, sea-ice thickness, and vegetation canopy structure. The primary instrument on ICESat was the Geoscience Laser Altimeter System (GLAS), which measured the distance from the spacecraft to the earth's surface via the roundtrip travel time of individual laser pulses. GLAS utilized pulsed lasers and a direct detection receiver consisting of a silicon avalanche photodiode and a waveform digitizer. Early in the mission, the peak power of the received signal from snow and ice surfaces was found to span a wider dynamic range than anticipated, often exceeding the linear dynamic range of the GLAS 1064-nm detector assembly. The resulting saturation of the receiver distorted the recorded signal and resulted in range biases as large as approximately 50 cm for ice- and snow-covered surfaces. We developed a correction for this saturation range bias based on laboratory tests using a spare flight detector, and refined the correction by comparing GLAS elevation estimates with those derived from Global Positioning System surveys over the calibration site at the salar de Uyuni, Bolivia. Applying the saturation correction largely eliminated the range bias due to receiver saturation for affected ICESat measurements over Uyuni and significantly reduced the discrepancies at orbit crossovers located on flat regions of the Antarctic ice sheet.

  19. Image-guided optical measurement of blood oxygen saturation within capillary vessels (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Akons, Kfir; Zeidan, Adel; Yeheskely-Hayon, Daniella; Minai, Limor; Yelin, Dvir

    2016-03-01

    Values of blood oxygenation levels are useful for assessing heart and lung conditions, and are frequently monitored during routine patient care. Independent measurement of the oxygen saturation in capillary blood, which is significantly different from that of arterial blood, is important for diagnosing tissue hypoxia and for increasing the accuracy of existing techniques that measure arterial oxygen saturation. Here, we developed a simple, non-invasive technique for measuring the reflected spectra from individual capillary vessels within a human lip, allowing local measurement of the blood oxygen saturation. The optical setup includes a spatially incoherent broadband light that was focused onto a specific vessel below the lip surface. Backscattered light was imaged by a camera for identifying a target vessel and pointing the illumination beam to its cross section. Scattered light from the vessel was then collected by a single-mode fiber and analyzed by a fast spectrometer. Spectra acquired from small capillary vessels within a volunteer lip showed the characteristic oxyhemoglobin absorption bands in real time and with a high signal-to-noise ratio. Measuring capillary oxygen saturation using this technique would potentially be more accurate compared to existing pulse oximetry techniques due to its insensitivity to the patient's skin color, pulse rate, motion, and medical condition. It could be used as a standalone endoscopic technique for measuring tissue hypoxia or in conjunction with conventional pulse oximetry for a more accurate measurement of oxygen transport in the body.

  20. Practical remarks on the heart rate and saturation measurement methodology

    NASA Astrophysics Data System (ADS)

    Kowal, M.; Kubal, S.; Piotrowski, P.; Staniec, K.

    2017-05-01

    A surface reflection-based method for measuring heart rate and saturation has been introduced as one having a significant advantage over legacy methods in that it lends itself for use in special applications such as those where a person’s mobility is of prime importance (e.g. during a miner’s work) and excluding the use of traditional clips. Then, a complete ATmega1281-based microcontroller platform has been described for performing computational tasks of signal processing and wireless transmission. In the next section remarks have been provided regarding the basic signal processing rules beginning with raw voltage samples of converted optical signals, their acquisition, storage and smoothing. This chapter ends with practical remarks demonstrating an exponential dependence between the minimum measurable heart rate and the readout resolution at different sampling frequencies for different cases of averaging depth (in bits). The following section is devoted strictly to the heart rate and hemoglobin oxygenation (saturation) measurement with the use of the presented platform, referenced to measurements obtained with a stationary certified pulsoxymeter.

  1. Validation of the Nonin 8600V Pulse Oximeter for heart rate and oxygen saturation measurements in rats.

    PubMed

    Bernard, Susan L; An, Dowon; Glenny, Robb W

    2004-05-01

    This report validates the use and limitations of the Nonin Pulse Oximeter for measuring heart rate and oxygen saturation in rats. Eight anesthetized Sprague-Dawley rats were intubated and catheterized. Oxygen saturation was directly measured from arterial blood by using a Radiometer OSM3 Hemoximeter adjusted for rat blood as well as indirectly by using the Nonin Pulse Oximeter. Oxygen saturation was changed by varying the level of inhaled oxygen. Heart rate was measured in two ways: 1) by using the signal from the Nonin Pulse Oximeter and 2) by counting the pressure pulses from the transduced blood pressure. There was excellent agreement between heart rate values measured by the Nonin Pulse Oximeter and that measured by counting the pulses from the arterial blood pressure recording. The Nonin Pulse Oximeter underestimated oxygen saturations by about 3% to 5% compared to the Hemoximeter. Overall, the pulse oximeter reflected important trends in oxygen saturations, making it a useful tool for laboratory animal medicine.

  2. Ultrahigh precision nonlinear reflectivity measurement system for saturable absorber mirrors with self-referenced fluence characterization.

    PubMed

    Orsila, Lasse; Härkönen, Antti; Hyyti, Janne; Guina, Mircea; Steinmeyer, Günter

    2014-08-01

    Measurement of nonlinear optical reflectivity of saturable absorber devices is discussed. A setup is described that enables absolute accuracy of reflectivity measurements better than 0.3%. A repeatability within 0.02% is shown for saturable absorbers with few-percent modulation depth. The setup incorporates an in situ knife-edge characterization of beam diameters, making absolute reflectivity estimations and determination of saturation fluences significantly more reliable. Additionally, several measures are discussed to substantially improve the reliability of the reflectivity measurements. At its core, the scheme exploits the limits of state-of-the-art digital lock-in technology but also greatly benefits from a fiber-based master-oscillator power-amplifier source, the use of an integrating sphere, and simultaneous comparison with a linear reflectivity standard.

  3. Adaptive projection intensity adjustment for avoiding saturation in three-dimensional shape measurement

    NASA Astrophysics Data System (ADS)

    Chen, Chao; Gao, Nan; Wang, Xiangjun; Zhang, Zonghua

    2018-03-01

    Phase-based fringe projection methods have been commonly used for three-dimensional (3D) measurements. However, image saturation results in incorrect intensities in captured fringe pattern images, leading to phase and measurement errors. Existing solutions are complex. This paper proposes an adaptive projection intensity adjustment method to avoid image saturation and maintain good fringe modulation in measuring objects with a high range of surface reflectivities. The adapted fringe patterns are created using only one prior step of fringe-pattern projection and image capture. First, a set of phase-shifted fringe patterns with maximum projection intensity value of 255 and a uniform gray level pattern are projected onto the surface of an object. The patterns are reflected from and deformed by the object surface and captured by a digital camera. The best projection intensities corresponding to each saturated-pixel clusters are determined by fitting a polynomial function to transform captured intensities to projected intensities. Subsequently, the adapted fringe patterns are constructed using the best projection intensities at projector pixel coordinate. Finally, the adapted fringe patterns are projected for phase recovery and 3D shape calculation. The experimental results demonstrate that the proposed method achieves high measurement accuracy even for objects with a high range of surface reflectivities.

  4. Quantitative imaging and in situ concentration measurements of quantum dot nanomaterials in variably saturated porous media

    DOE PAGES

    Uyuşur, Burcu; Snee, Preston T.; Li, Chunyan; ...

    2016-01-01

    Knowledge of the fate and transport of nanoparticles in the subsurface environment is limited, as techniques to monitor and visualize the transport and distribution of nanoparticles in porous media and measure their in situ concentrations are lacking. To address these issues, we have developed a light transmission and fluorescence method to visualize and measure in situ concentrations of quantum dot (QD) nanoparticles in variably saturated environments. Calibration cells filled with sand as porous medium and various known water saturation levels and QD concentrations were prepared. By measuring the intensity of the light transmitted through porous media exposed to fluorescent lightmore » and by measuring the hue of the light emitted by the QDs under UV light exposure, we obtained simultaneously in situ measurements of water saturation and QD nanoparticle concentrations with high spatial and temporal resolutions. Water saturation was directly proportional to the light intensity. A linear relationship was observed between hue-intensity ratio values and QD concentrations for constant water saturation levels. Lastly, the advantages and limitations of the light transmission and fluorescence method as well as its implications for visualizing and measuring in situ concentrations of QDs nanoparticles in the subsurface environment are discussed.« less

  5. Centrifugal techniques for measuring saturated hydraulic conductivity

    USGS Publications Warehouse

    Nimmo, John R.; Mello, Karen A.

    1991-01-01

    Centrifugal force is an alternative to large pressure gradients for the measurement of low values of saturated hydraulic conductivity (Ksat). With a head of water above a porous medium in a centrifuge bucket, both constant-head and falling-head measurements are practical at forces up to at least 1800 times normal gravity. Darcy's law applied to the known centrifugal potential leads to simple formulas for Ksat that are analogous to those used in the standard gravity-driven constant- and falling-head methods. Both centrifugal methods were tested on several fine-textured samples of soil and ceramic with Ksat between about 10−10 and 10−9 m/s. The results were compared to falling-head gravity measurements. The comparison shows most measurements agreeing to within 20% for a given sample, much of the variation probably resulting from run-to-run changes in sample structure. The falling-head centrifuge method proved to be especially simple in design and operation and was more accurate than the constant-head method. With modified apparatus, Ksat measurements less than 10−10 m/s should be attainable.

  6. Noise Power Spectrum Measurements in Digital Imaging With Gain Nonuniformity Correction.

    PubMed

    Kim, Dong Sik

    2016-08-01

    The noise power spectrum (NPS) of an image sensor provides the spectral noise properties needed to evaluate sensor performance. Hence, measuring an accurate NPS is important. However, the fixed pattern noise from the sensor's nonuniform gain inflates the NPS, which is measured from images acquired by the sensor. Detrending the low-frequency fixed pattern is traditionally used to accurately measure NPS. However, detrending methods cannot remove high-frequency fixed patterns. In order to efficiently correct the fixed pattern noise, a gain-correction technique based on the gain map can be used. The gain map is generated using the average of uniformly illuminated images without any objects. Increasing the number of images n for averaging can reduce the remaining photon noise in the gain map and yield accurate NPS values. However, for practical finite n , the photon noise also significantly inflates NPS. In this paper, a nonuniform-gain image formation model is proposed and the performance of the gain correction is theoretically analyzed in terms of the signal-to-noise ratio (SNR). It is shown that the SNR is O(√n) . An NPS measurement algorithm based on the gain map is then proposed for any given n . Under a weak nonuniform gain assumption, another measurement algorithm based on the image difference is also proposed. For real radiography image detectors, the proposed algorithms are compared with traditional detrending and subtraction methods, and it is shown that as few as two images ( n=1 ) can provide an accurate NPS because of the compensation constant (1+1/n) .

  7. Calibrated Noise Measurements with Induced Receiver Gain Fluctuations

    NASA Technical Reports Server (NTRS)

    Racette, Paul; Walker, David; Gu, Dazhen; Rajola, Marco; Spevacek, Ashly

    2011-01-01

    The lack of well-developed techniques for modeling changing statistical moments in our observations has stymied the application of stochastic process theory in science and engineering. These limitations were encountered when modeling the performance of radiometer calibration architectures and algorithms in the presence of non stationary receiver fluctuations. Analyses of measured signals have traditionally been limited to a single measurement series. Whereas in a radiometer that samples a set of noise references, the data collection can be treated as an ensemble set of measurements of the receiver state. Noise Assisted Data Analysis is a growing field of study with significant potential for aiding the understanding and modeling of non stationary processes. Typically, NADA entails adding noise to a signal to produce an ensemble set on which statistical analysis is performed. Alternatively as in radiometric measurements, mixing a signal with calibrated noise provides, through the calibration process, the means to detect deviations from the stationary assumption and thereby a measurement tool to characterize the signal's non stationary properties. Data sets comprised of calibrated noise measurements have been limited to those collected with naturally occurring fluctuations in the radiometer receiver. To examine the application of NADA using calibrated noise, a Receiver Gain Modulation Circuit (RGMC) was designed and built to modulate the gain of a radiometer receiver using an external signal. In 2010, an RGMC was installed and operated at the National Institute of Standards and Techniques (NIST) using their Noise Figure Radiometer (NFRad) and national standard noise references. The data collected is the first known set of calibrated noise measurements from a receiver with an externally modulated gain. As an initial step, sinusoidal and step-function signals were used to modulate the receiver gain, to evaluate the circuit characteristics and to study the performance of

  8. Optimization measurement of muscle oxygen saturation under isometric studies using FNIRS

    NASA Astrophysics Data System (ADS)

    Halim, A. A. A.; Laili, M. H.; Salikin, M. S.; Rusop, M.

    2018-05-01

    Development of functional near infrared spectroscopy (fNIRS) technologies has advanced quantification signal using multiple wavelength and detector to investigate hemodynamic response in human muscle. These non-invasive technologies have been widely used to solve the propagation of light inside the tissues including the absorption, scattering coefficient and to quantify the oxygenation level of haemoglobin and myoglobin in human muscle. The goal of this paper is to optimize the measurement of muscle oxygen saturation during isometric exercise using functional near infrared spectroscopy (fNIRS). The experiment was carried out on 15 sedentary healthy male volunteers. All volunteers are required to perform an isometric exercise at three assessment of muscular fatigue's level on flexor digitalis (FDS) muscle in the human forearm using fNIRS. The slopes of the signals have been highlighted to evaluate the muscle oxygen saturation of regional muscle fatigue. As a result, oxygen saturation slope from 10% exercise showed steeper than the first assessment at 30%-50% of fatigues level. The hemodynamic signal response showed significant value (p=0.04) at all three assessment of muscular fatigue's level which produce a p-value (p<0.05) measured by fNIRS. Thus, this highlighted parameter could be used to estimate fatigue's level of human and could open other possibilities to study muscle performance diagnosis.

  9. Saturated fluorescence measurements of the hydroxyl radical in laminar high-pressure flames

    NASA Technical Reports Server (NTRS)

    Carter, Campbell D.; King, Galen B.; Laurendeau, Normand M.

    1990-01-01

    The efficacy of laser saturated fluorescence (LSF) for OH concentration measurements in high pressure flames was studied theoretically and experimentally. Using a numerical model describing the interaction of hydroxyl with nonuniform laser excitation, the effect of pressure on the validity of the balanced cross-rate model was studied along with the sensitivity of the depopulation of the laser-coupled levels to the ratio of rate coefficients describing: (1) electronic quenching to (sup 2) Sigma (+) (v double prime greater than 0), and (2) vibrational relaxation from v double prime greater than 0 to v double prime = 0. At sufficiently high pressures and near-saturated conditions, the total population of the laser-coupled levels reaches an asymptotic value, which is insensitive to the degree of saturation. When the ratio of electronic quenching to vibrational relaxation is small and the rate of coefficients for rotational transfer in the ground and excited electronic states are nearly the same, the balanced cross-rate model remains a good approximation for all pressures. When the above ratio is large, depopulation of the laser-coupled levels becomes significant at high pressures, and thus the balanced cross-rate model no longer holds. Under these conditions, however, knowledge of the depletion of the laser-coupled levels can be used to correct the model. A combustion facility for operation up to 20 atm was developed to allow LSF measurements of OH in high pressure flames. Using this facility, partial saturation in laminar high pressure (less than or equal to 12.3 atm) C2H6/O2/N2 flames was achieved. To evaluate the limits of the balanced cross-rate model, absorption and calibrated LSF measurements at 3.1 and 6.1 atm were compared. The fluorescence voltages were calibrated with absorption measurements in an atmospheric flame and corrected for their finite sensitivity to quenching with: (1) estimated quenching rate coefficients, and (2) an in situ measurement from a

  10. Discrepancies between arterial oxygen saturation and functional oxygen saturation measured with pulse oximetry in very preterm infants.

    PubMed

    Rosychuk, Rhonda J; Hudson-Mason, Ann; Eklund, Dianne; Lacaze-Masmonteil, Thierry

    2012-01-01

    Discrepancies between pulse oximetry saturation (SpO(2)) and arterial saturation (SaO(2)) at low blood oxygenation values have been previously reported with significant variations among instruments and studies. Whether pulse oximeters that attenuate motion artifact are less prone to such discrepancies is not well known. To prospectively assess the agreement of the Masimo V4 pulse oximeter within the critical 85-95% SpO(2) target range. For all consecutive babies with gestational age <33 weeks, postnatal age <7 days, and an umbilical arterial line, SpO(2) was measured continuously and SaO(2) analyzed on an as-needed basis. Bland-Altman techniques provided estimates of the difference (D = SaO(2) - SpO(2)), standard deviation (SD), and 95% limits of agreement (D ± 2*SD). There were 1,032 measurements (114 babies) with SpO(2) between 85 and 95%. The 95% limits of agreement were -2.0 ± 5.8, -2.4 ± 9.2, and -1.9 ± 5.3 in the SpO(2) categories 85-95, 85-89, and 91-95%, respectively. For the SpO(2) categories 85-89% and 91-95%, only 52% (53/101) and 59% (523/886) of SpO(2) values, respectively, corresponded to the analogous SaO(2) categories. In the 85-89% SpO(2) category, SaO(2) was lower than 85% in 39 of the 101 (39%) measurements. SaO(2) was lower on average than SpO(2) with an increased bias at lower saturation. The -2.4 ± 9.2 95% limits of agreement for SaO(2) - SpO(2) in the 85-89% SpO(2) category suggest that SpO(2) and SaO(2) are not interchangeable and intermittent SaO(2) assessments are warranted when the targeted SpO(2) is within this range. Copyright © 2011 S. Karger AG, Basel.

  11. Unveiling saturation effects from nuclear structure function measurements at the EIC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marquet, Cyrille; Moldes, Manoel R.; Zurita, Pia

    Here, we analyze the possibility of extracting a clear signal of non-linear parton saturation effects from future measurements of nuclear structure functions at the Electron–Ion Collider (EIC), in the small-x region. Our approach consists in generating pseudodata for electron-gold collisions, using the running-coupling Balitsky–Kovchegov evolution equation, and in assessing the compatibility of these saturated pseudodata with existing sets of nuclear parton distribution functions (nPDFs), extrapolated if necessary. The level of disagreement between the two is quantified by applying a Bayesian reweighting technique. This allows to infer the parton distributions needed in order to describe the pseudodata, which we find quitemore » different from the actual distributions, especially for sea quarks and gluons. This tension suggests that, should saturation effects impact the future nuclear structure function data as predicted, a successful refitting of the nPDFs may not be achievable, which would unambiguously signal the presence of non-linear effects.« less

  12. Unveiling saturation effects from nuclear structure function measurements at the EIC

    DOE PAGES

    Marquet, Cyrille; Moldes, Manoel R.; Zurita, Pia

    2017-07-21

    Here, we analyze the possibility of extracting a clear signal of non-linear parton saturation effects from future measurements of nuclear structure functions at the Electron–Ion Collider (EIC), in the small-x region. Our approach consists in generating pseudodata for electron-gold collisions, using the running-coupling Balitsky–Kovchegov evolution equation, and in assessing the compatibility of these saturated pseudodata with existing sets of nuclear parton distribution functions (nPDFs), extrapolated if necessary. The level of disagreement between the two is quantified by applying a Bayesian reweighting technique. This allows to infer the parton distributions needed in order to describe the pseudodata, which we find quitemore » different from the actual distributions, especially for sea quarks and gluons. This tension suggests that, should saturation effects impact the future nuclear structure function data as predicted, a successful refitting of the nPDFs may not be achievable, which would unambiguously signal the presence of non-linear effects.« less

  13. An efficient optimization method to improve the measuring accuracy of oxygen saturation by using triangular wave optical signal

    NASA Astrophysics Data System (ADS)

    Li, Gang; Yu, Yue; Zhang, Cui; Lin, Ling

    2017-09-01

    The oxygen saturation is one of the important parameters to evaluate human health. This paper presents an efficient optimization method that can improve the accuracy of oxygen saturation measurement, which employs an optical frequency division triangular wave signal as the excitation signal to obtain dynamic spectrum and calculate oxygen saturation. In comparison to the traditional method measured RMSE (root mean square error) of SpO2 which is 0.1705, this proposed method significantly reduced the measured RMSE which is 0.0965. It is notable that the accuracy of oxygen saturation measurement has been improved significantly. The method can simplify the circuit and bring down the demand of elements. Furthermore, it has a great reference value on improving the signal to noise ratio of other physiological signals.

  14. Local bipolar-transistor gain measurement for VLSI devices

    NASA Astrophysics Data System (ADS)

    Bonnaud, O.; Chante, J. P.

    1981-08-01

    A method is proposed for measuring the gain of a bipolar transistor region as small as possible. The measurement then allows the evaluation particularly of the effect of the emitter-base junction edge and the technology-process influence of VLSI-technology devices. The technique consists in the generation of charge carriers in the transistor base layer by a focused laser beam in order to bias the device in as small a region as possible. To reduce the size of the conducting area, a transversal reverse base current is forced through the base layer resistance in order to pinch in the emitter current in the illuminated region. Transistor gain is deduced from small signal measurements. A model associated with this technique is developed, and this is in agreement with the first experimental results.

  15. Capillary pressure – saturation relationships for gas shales measured using a water activity meter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Donnelly, B.; Perfect, E.; McKay, L. D.

    Hydraulic fracturing of gas shale formations involves pumping a large volume of fracking fluid into a hydrocarbon reservoir to fracture the rock and thus increase its permeability. The majority of the fracking fluid introduced is never recovered and the fate of this lost fluid, often called “leak off,” has become the source of much debate. Information on the capillary pressure – saturation relationship for each wetting phase is needed to simulate leak off using numerical reservoir models. The petroleum industry commonly employs air – water capillary pressure – saturation curves to predict these relationships for mixed wet reservoirs. Traditional methodsmore » of measuring this curve are unsuitable for gas shales due to high capillary pressures associated with the small pores present. Still, a possible alternative method is the water activity meter which is used widely in the soil sciences for such measurements. However, its application to lithified material has been limited. Here, this study utilized a water activity meter to measure air – water capillary pressures (ranging from 1.3 to 219.6 MPa) at several water saturation levels in both the wetting and drying directions. Water contents were measured gravimetrically. Seven types of gas producing shale with different porosities (2.5–13.6%) and total organic carbon contents (0.4–13.5%) were investigated. Nonlinear regression was used to fit the resulting capillary pressure – water saturation data pairs for each shale type to the Brooks and Corey equation. Data for six of the seven shale types investigated were successfully fitted (median R 2 = 0.93), indicating this may be a viable method for parameterizing capillary pressure – saturation relationships for inclusion in numerical reservoir models. As expected, the different shale types had statistically different Brooks and Corey parameters. However, there were no significant differences between the Brooks and Corey parameters for the wetting

  16. Capillary pressure – saturation relationships for gas shales measured using a water activity meter

    DOE PAGES

    Donnelly, B.; Perfect, E.; McKay, L. D.; ...

    2016-05-10

    Hydraulic fracturing of gas shale formations involves pumping a large volume of fracking fluid into a hydrocarbon reservoir to fracture the rock and thus increase its permeability. The majority of the fracking fluid introduced is never recovered and the fate of this lost fluid, often called “leak off,” has become the source of much debate. Information on the capillary pressure – saturation relationship for each wetting phase is needed to simulate leak off using numerical reservoir models. The petroleum industry commonly employs air – water capillary pressure – saturation curves to predict these relationships for mixed wet reservoirs. Traditional methodsmore » of measuring this curve are unsuitable for gas shales due to high capillary pressures associated with the small pores present. Still, a possible alternative method is the water activity meter which is used widely in the soil sciences for such measurements. However, its application to lithified material has been limited. Here, this study utilized a water activity meter to measure air – water capillary pressures (ranging from 1.3 to 219.6 MPa) at several water saturation levels in both the wetting and drying directions. Water contents were measured gravimetrically. Seven types of gas producing shale with different porosities (2.5–13.6%) and total organic carbon contents (0.4–13.5%) were investigated. Nonlinear regression was used to fit the resulting capillary pressure – water saturation data pairs for each shale type to the Brooks and Corey equation. Data for six of the seven shale types investigated were successfully fitted (median R 2 = 0.93), indicating this may be a viable method for parameterizing capillary pressure – saturation relationships for inclusion in numerical reservoir models. As expected, the different shale types had statistically different Brooks and Corey parameters. However, there were no significant differences between the Brooks and Corey parameters for the wetting

  17. Experimental Characterization of Nonlinear Harmonic Radiation from a Visible SASE FEL at Saturation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cornacchia, Massimo

    2002-08-19

    Nonlinear harmonic radiation was observed using the VISA SASE FEL at saturation. The gain lengths, spectra and energies of the three lowest SASE FEL modes were experimentally characterized. Both the measured harmonic gain lengths and center spectral wavelengths are shown to decrease with harmonic number, n, which is consistent with nonlinear harmonic theory. The measured energies for both second and third harmonics are about 1% of the fundamental; the strong second harmonic radiation ({approx} 1 {micro}J) observed is unique for low energy SASE FELs. These experimental results demonstrate for the first time the feasibility of using nonlinear harmonic SASE FELmore » radiation to produce coherent, femtosecond X-rays.« less

  18. Test-retest reliability of retinal oxygen saturation measurement.

    PubMed

    O'Connell, Rachael A; Anderson, Andrew J; Hosking, Sarah L; Batcha, Abrez H; Bui, Bang V

    2014-06-01

    To determine intrasession and intersession repeatability of retinal vessel oxygen saturation from the Oxymap Retinal Oximeter using a whole image-based analysis technique and so determine optimal analysis parameters to reduce variability. Ten fundus oximetry images were acquired through dilated pupils from 18 healthy participants (aged 22 to 38) using the Oxymap Retinal Oximeter T1. A further 10 images were obtained 1 to 2 weeks later from each individual. Analysis was undertaken for subsets of images to determine the number of images needed to return a stable coefficient of variation (CoV). Intrasession and intersession variability were quantified by evaluating the CoV and establishing the 95% limits of agreement using Bland and Altman analysis. Retinal oxygenation was derived from the distribution of oxygenation values from all vessels of a given width in an image or set of images, as described by Paul et al. in 2013. Grouped in 10-μm-wide bins, oxygen saturation varied significantly for both arteries and veins (p < 0.01). Between 110 and 150 μm, arteries had the least variability between individuals, with average CoVs less than 5% whose confidence intervals did not overlap with the greater than 10% average CoVs for veins across the same range. Bland and Altman analysis showed that there was no bias within or between recording sessions and that the 95% limits of agreement were generally lower in arteries. Retinal vessel oxygen saturation measurements show variability within and between clinical sessions when the whole image is used, which we believe more accurately reflects the true variability in Oxymap images than previous studies on select image segments. Averaging data from vessels 100 to 150 μm in width may help to minimize such variability.

  19. Josephson parametric converter saturation and higher order effects

    NASA Astrophysics Data System (ADS)

    Liu, G.; Chien, T.-C.; Cao, X.; Lanes, O.; Alpern, E.; Pekker, D.; Hatridge, M.

    2017-11-01

    Microwave parametric amplifiers based on Josephson junctions have become indispensable components of many quantum information experiments. One key limitation which has not been well predicted by theory is the gain saturation behavior which limits the amplifier's ability to process large amplitude signals. The typical explanation for this behavior in phase-preserving amplifiers based on three-wave mixing, such as the Josephson Parametric Converter, is pump depletion, in which the consumption of pump photons to produce amplification results in a reduction in gain. However, in this work, we present experimental data and theoretical calculations showing that the fourth-order Kerr nonlinearities inherent in Josephson junctions are the dominant factor. The Kerr-based theory has the unusual property of causing saturation to both lower and higher gains, depending on bias conditions. This work presents an efficient methodology for optimizing device performance in the presence of Kerr nonlinearities while retaining device tunability and points to the necessity of controlling higher-order Hamiltonian terms to make further improvements in parametric devices.

  20. Spectral gain profile of a multi-stack terahertz quantum cascade laser

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bachmann, D., E-mail: dominic.bachmann@tuwien.ac.at; Deutsch, C.; Krall, M.

    2014-11-03

    The spectral gain of a multi-stack terahertz quantum cascade laser, composed of three active regions with emission frequencies centered at 2.3, 2.7, and 3.0 THz, is studied as a function of driving current and temperature using terahertz time-domain spectroscopy. The optical gain associated with the particular quantum cascade stacks clamps at different driving currents and saturates to different values. We attribute these observations to varying pumping efficiencies of the respective upper laser states and to frequency dependent optical losses. The multi-stack active region exhibits a spectral gain full width at half-maximum of 1.1 THz. Bandwidth and spectral position of themore » measured gain match with the broadband laser emission. As the laser action ceases with increasing operating temperature, the gain at the dominant lasing frequency of 2.65 THz degrades sharply.« less

  1. 77 FR 3121 - Program Integrity: Gainful Employment-Debt Measures; Correction

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-23

    ...On June 13, 2011, the Secretary of Education (Secretary) published a notice of final regulations in the Federal Register for Program Integrity: Gainful Employment--Debt Measures (Gainful Employment--Debt Measures) (76 FR 34386). In the preamble of the final regulations, we used the wrong data to calculate the percent of total variance in institutions' repayment rates that may be explained by race/ethnicity. Our intent was to use the data that included all minority students per institution. However, we mistakenly used the data for a subset of minority students per institution. We have now recalculated the total variance using the data that includes all minority students. Through this document, we correct, in the preamble of the Gainful Employment--Debt Measures final regulations, the errors resulting from this misapplication. We do not change the regression analysis model itself; we are using the same model with the appropriate data. Through this notice we also correct, in the preamble of the Gainful Employment--Debt Measures final regulations, our description of one component of the regression analysis. The preamble referred to use of an institutional variable measuring acceptance rates. This description was incorrect; in fact we used an institutional variable measuring retention rates. Correcting this language does not change the regression analysis model itself or the variance explained by the model. The text of the final regulations remains unchanged.

  2. Spectrophotometric calibration procedures to enable calibration-free measurements of seawater calcium carbonate saturation states.

    PubMed

    Cuyler, Erin E; Byrne, Robert H

    2018-08-22

    A simple protocol was developed to measure seawater calcium carbonate saturation states (Ω spec ) spectrophotometrically. Saturation states are typically derived from the separate measurement of two other carbon system parameters, with each requiring unique instrumentation and often complex measurement protocols. Using the new protocol, the only required equipment is a thermostatted laboratory spectrophotometer. For each seawater sample, spectrophotometric measurements of pH (visible absorbance) are made in paired optical cells, one with and one without added nitric acid. Ultraviolet absorbance is measured to determine the amount of added acid based on the direct proportionality between nitrate concentration and UV absorbance. Coupled measurements of pH and the alkalinity change that accompanies the nitric acid addition allow calculation of a seawater sample's original carbonate ion concentration and saturation state. These paired absorbance measurements yield Ω spec (and other carbonate system parameters), with each sample requiring about 12 min processing time. Initially, an instrument-specific nitrate molar absorptivity coefficient must be determined (due to small but significant discrepancies in instrumental wavelength calibrations), but thereafter no further calibration is needed. In this work, the 1σ precision of replicate measurements of aragonite saturation state was found to be 0.020, and the average difference between Ω spec and Ω calculated conventionally from measured total alkalinity and pH (Ω calc ) was -0.11% ± 0.96% (a level of accuracy comparable to that obtained from spectrophotometric measurements of carbonate ion concentration). Over the entire range of experimental conditions, 0.97 < Ω < 3.17 (n = 125), all measurements attained the Global Ocean Acidification Observing Network's "weather level" goal for accuracy and 90% attained the more stringent "climate level" goal. When Ω spec was calculated from averages of duplicate

  3. Current saturation and voltage gain in bilayer graphene field effect transistors.

    PubMed

    Szafranek, B N; Fiori, G; Schall, D; Neumaier, D; Kurz, H

    2012-03-14

    The emergence of graphene with its unique electrical properties has triggered hopes in the electronic devices community regarding its exploitation as a channel material in field effect transistors. Graphene is especially promising for devices working at frequencies in the 100 GHz range. So far, graphene field effect transistors (GFETs) have shown cutoff frequencies up to 300 GHz, while exhibiting poor voltage gains, another important figure of merit for analog high frequency applications. In the present work, we show that the voltage gain of GFETs can be improved significantly by using bilayer graphene, where a band gap is introduced through a vertical electric displacement field. At a displacement field of -1.7 V/nm the bilayer GFETs exhibit an intrinsic voltage gain up to 35, a factor of 6 higher than the voltage gain in corresponding monolayer GFETs. The transconductance, which limits the cutoff frequency of a transistor, is not degraded by the displacement field and is similar in both monolayer and bilayer GFETs. Using numerical simulations based on an atomistic p(z) tight-binding Hamiltonian we demonstrate that this approach can be extended to sub-100 nm gate lengths. © 2012 American Chemical Society

  4. Brain oxygen saturation assessment in neonates using T2-prepared blood imaging of oxygen saturation and near-infrared spectroscopy.

    PubMed

    Alderliesten, Thomas; De Vis, Jill B; Lemmers, Petra Ma; Hendrikse, Jeroen; Groenendaal, Floris; van Bel, Frank; Benders, Manon Jnl; Petersen, Esben T

    2017-03-01

    Although near-infrared spectroscopy is increasingly being used to monitor cerebral oxygenation in neonates, it has a limited penetration depth. The T 2 -prepared Blood Imaging of Oxygen Saturation (T 2 -BIOS) magnetic resonance sequence provides an oxygen saturation estimate on a voxel-by-voxel basis, without needing a respiratory calibration experiment. In 15 neonates, oxygen saturation measured by T 2 -prepared blood imaging of oxygen saturation and near-infrared spectroscopy were compared. In addition, these measures were compared to cerebral blood flow and venous oxygen saturation in the sagittal sinus. A strong linear relation was found between the oxygen saturation measured by magnetic resonance imaging and the oxygen saturation measured by near-infrared spectroscopy ( R 2  = 0.64, p < 0.001). Strong linear correlations were found between near-infrared spectroscopy oxygen saturation, and magnetic resonance imaging measures of frontal cerebral blood flow, whole brain cerebral blood flow and venous oxygen saturation in the sagittal sinus ( R 2  = 0.71, 0.50, 0.65; p < 0.01). The oxygen saturation obtained by T 2 -prepared blood imaging of oxygen saturation correlated with venous oxygen saturation in the sagittal sinus ( R 2  = 0.49, p = 0.023), but no significant correlations could be demonstrated with frontal and whole brain cerebral blood flow. These results suggest that measuring oxygen saturation by T 2 -prepared blood imaging of oxygen saturation is feasible, even in neonates. Strong correlations between the various methods work as a cross validation for near-infrared spectroscopy and T 2 -prepared blood imaging of oxygen saturation, confirming the validity of using of these techniques for determining cerebral oxygenation.

  5. The measurement of hemoglobin oxygen saturation using multiwavelength photoacoustic microscopy

    NASA Astrophysics Data System (ADS)

    Deng, Zilin; Yang, Xiaoquan; Yu, Lejun; Gong, Hui

    2010-02-01

    Hemoglobin oxygen saturation (SO2) is one of the most critical functional parameters to the metabolism. In this paper, we mainly introduced some initial results of measuring blood oxygen using multi-wavelength photoacoustic microscopy (PAM). In phantom study, we demonstrate the photoacoustic signal amplitude increases linearly with the concentration of red or blue ink. Then the calculated concentration of red ink in double-ink mixtures with PAM has a 5% difference with the result measured with spectrophotometric analysis. In ex vivo experiment, the measured result exhibt 15% difference between the PAM and spectrophotometric analysis. Experiment results suggest that PAM could be used to determine the SO2 quantitatively.

  6. Pulse oximetry in the pulmonary tissue for the non-invasive measurement of mixed venous oxygen saturation.

    PubMed

    Nitzan, Meir; Nitzan, Itamar

    2013-08-01

    The oxygen saturation of the systemic arterial blood is associated with the adequacy of respiration, and can be measured non-invasively by pulse oximetry in the systemic tissue. The oxygen saturation of the blood in the pulmonary artery, the mixed venous blood, reflects the balance between oxygen supply to the systemic tissues and their oxygen demand. The mixed venous oxygen saturation has also clinical significance because it is used in Fick equation for the quantitative measurement of cardiac output. At present the measurement of the mixed venous oxygen saturation is invasive and requires insertion of a Swan-Ganz catheter into the pulmonary artery. We suggest a noninvasive method for the measurement of the mixed venous oxygen saturation in infants, pulmonary pulse oximetry. The method is similar to the systemic pulse oximetry, which is based on the different light absorption curves of oxygenated and deoxygenated hemoglobin and on the analysis of photoplethysmographic curves in two wavelengths. The proposed pulmonary pulse oximeter includes light-sources of two wavelengths in the infrared, which illuminate the pulmonary tissue through the thoracic wall. Part of the light which is scattered back from the pulmonary tissue and passes through the thoracic wall is detected, and for each wavelength a pulmonary photoplethysmographic curve is obtained. The pulmonary photoplethysmographic curves reflect blood volume increase during systole in the pulmonary arteries in the lung tissue, which contain mixed venous blood. The ratio R of the amplitude-to-baseline ratio for the two wavelengths is related to the mixed venous oxygen saturation through equations derived for the systemic pulse oximetry. The method requires the use of extinction coefficients values for oxygenated and deoxygenated hemoglobin, which can be found in the literature. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Analogue saturation limit of single and double 10 mm microchannel plate photomultiplier tubes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Milnes, J. S., E-mail: james.milnes@photek.co.uk; Conneely, T. M.; Horsfield, C. J.

    Photek are a well-established supplier of microchannel plate (MCP) photomultiplier tubes (PMTs) to the inertial confinement fusion community. The analogue signals produced at the major inertial confinement fusion facilities cover many orders of magnitude, therefore understanding the upper saturation limit of MCP-PMTs to large low rate signals takes on a high importance. Here we present a study of a single and a double MCP-PMT with 10 mm diameter active area. The saturation was studied for a range of optical pulse widths from 4 ns to 100 ns and at a range of electron gain values: 10{sup 3} to 10{sup 4}more » for the single and 10{sup 4} to 10{sup 6} for the double. We have shown that the saturation level of ∼1.2 nC depends only on the integrated charge of the pulse and is independent of pulse width and gain over this range, but that the level of charge available in deep saturation is proportional to the operating gain.« less

  8. Validation of NIRS in measuring tissue hemoglobin concentration and oxygen saturation on ex vivo and isolated limb models

    NASA Astrophysics Data System (ADS)

    Xu, Xiaorong; Zhu, Wen; Padival, Vikram; Xia, Mengna; Cheng, Xuefeng; Bush, Robin; Christenson, Linda; Chan, Tim; Doherty, Tim; Iatridis, Angelo

    2003-07-01

    Photonify"s tissue spectrometer uses Near-Infrared Spectroscopy for real-time, noninvasive measurement of hemoglobin concentration and oxygen saturation [SO2] of biological tissues. The technology was validated by a series of ex vivo and animal studies. In the ex vivo experiment, a close loop blood circulation system was built, precisely controlling the oxygen saturation and the hemoglobin concentration of a liquid phantom. Photonify"s tissue spectrometer was placed on the surface of the liquid phantom for real time measurement and compared with a gas analyzer, considered the gold standard to measure oxygen saturation and hemoglobin concentration. In the animal experiment, the right hind limb of each dog accepted onto the study was surgically removed. The limb was kept viable by connecting the femoral vein and artery to a blood-primed extracorporeal circuit. Different concentrations of hemoglobin were obtained by adding designated amount of saline solution into the perfusion circuit. Photonify"s tissue spectrometers measured oxygen saturation and hemoglobin concentration at various locations on the limb and compared with gas analyzer results. The test results demonstrated that Photonify"s tissue spectrometers were able to detect the relative changes in tissue oxygen saturation and hemoglobin concentration with a high linear correlation compared to the gas analyzer

  9. Flow velocity measurements with stimulated Rayleigh-Brillouin-gain spectroscopy

    NASA Technical Reports Server (NTRS)

    Herring, G. C.; Moosmueller, H.; Lee, S. A.; She, C. Y.

    1983-01-01

    Using stimulated Rayleigh-Brillouin-gain spectroscopy, velocity measurements in an atmospheric-pressure subsonic nitrogen flow with 10 percent uncertainty have been conducted. It is shown that the accuracy of the velocity measurements increases with gas pressure, making this spectroscopic technique ideal for measuring velocity and other parameters of high-pressure (greater than 1-atm) atomic or molecular flows.

  10. Fractional-order active fault-tolerant force-position controller design for the legged robots using saturated actuator with unknown bias and gain degradation

    NASA Astrophysics Data System (ADS)

    Farid, Yousef; Majd, Vahid Johari; Ehsani-Seresht, Abbas

    2018-05-01

    In this paper, a novel fault accommodation strategy is proposed for the legged robots subject to the actuator faults including actuation bias and effective gain degradation as well as the actuator saturation. First, the combined dynamics of two coupled subsystems consisting of the dynamics of the legs subsystem and the body subsystem are developed. Then, the interaction of the robot with the environment is formulated as the contact force optimization problem with equality and inequality constraints. The desired force is obtained by a dynamic model. A robust super twisting fault estimator is proposed to precisely estimate the defective torque amplitude of the faulty actuator in finite time. Defining a novel fractional sliding surface, a fractional nonsingular terminal sliding mode control law is developed. Moreover, by introducing a suitable auxiliary system and using its state vector in the designed controller, the proposed fault-tolerant control (FTC) scheme guarantees the finite-time stability of the closed-loop control system. The robustness and finite-time convergence of the proposed control law is established using the Lyapunov stability theory. Finally, numerical simulations are performed on a quadruped robot to demonstrate the stable walking of the robot with and without actuator faults, and actuator saturation constraints, and the results are compared to results with an integer order fault-tolerant controller.

  11. Beam based measurement of beam position monitor electrode gains

    NASA Astrophysics Data System (ADS)

    Rubin, D. L.; Billing, M.; Meller, R.; Palmer, M.; Rendina, M.; Rider, N.; Sagan, D.; Shanks, J.; Strohman, C.

    2010-09-01

    Low emittance tuning at the Cornell Electron Storage Ring (CESR) test accelerator depends on precision measurement of vertical dispersion and transverse coupling. The CESR beam position monitors (BPMs) consist of four button electrodes, instrumented with electronics that allow acquisition of turn-by-turn data. The response to the beam will vary among the four electrodes due to differences in electronic gain and/or misalignment. This variation in the response of the BPM electrodes will couple real horizontal offset to apparent vertical position, and introduce spurious measurements of coupling and vertical dispersion. To alleviate this systematic effect, a beam based technique to measure the relative response of the four electrodes has been developed. With typical CESR parameters, simulations show that turn-by-turn BPM data can be used to determine electrode gains to within ˜0.1%.

  12. Fast gain recovery rates with strong wavelength dependence in a non-linear SOA.

    PubMed

    Cleary, Ciaran S; Power, Mark J; Schneider, Simon; Webb, Roderick P; Manning, Robert J

    2010-12-06

    We report remarkably fast and strongly wavelength-dependent gain recovery in a single SOA without the aid of an offset filter. Full gain recovery times as short as 9 ps were observed in pump-probe measurements when pumping to the blue wavelength side of a continuous wave probe, in contrast to times of 25 to 30 ps when pumping to the red wavelength side. Experimental and numerical analysis indicate that the long effective length and high gain led to deep saturation of the second half of the SOA by the probe. The consequent absorption of blue-shifted pump pulses in this region resulted in device dynamics analogous to those of the Turbo-Switch.

  13. A technique for measuring oxygen saturation in biological tissues based on diffuse optical spectroscopy

    NASA Astrophysics Data System (ADS)

    Kleshnin, Mikhail; Orlova, Anna; Kirillin, Mikhail; Golubiatnikov, German; Turchin, Ilya

    2017-07-01

    A new approach to optical measuring blood oxygen saturation was developed and implemented. This technique is based on an original three-stage algorithm for reconstructing the relative concentration of biological chromophores (hemoglobin, water, lipids) from the measured spectra of diffusely scattered light at different distances from the probing radiation source. The numerical experiments and approbation of the proposed technique on a biological phantom have shown the high reconstruction accuracy and the possibility of correct calculation of hemoglobin oxygenation in the presence of additive noise and calibration errors. The obtained results of animal studies have agreed with the previously published results of other research groups and demonstrated the possibility to apply the developed technique to monitor oxygen saturation in tumor tissue.

  14. Gain measurements of the Ca-Xe charge exchange system. [for UV lasers

    NASA Technical Reports Server (NTRS)

    Michels, C. J.; Chubb, D. L.

    1978-01-01

    Charge-exchange-pumped Ca(+) was studied for possible positive laser gain at 370.6 and 315.9 nm using an Xe MPD arc as the Xe(+) source. The present paper describes the MPD arc, the calcium injection system, the diagnostics for gain, and spontaneous emission measurements and results. No positive gain measurements were observed. A small Xe-Ca charge exchange cross section compared to He-metal laser systems charge exchange cross sections is the most probable reason why the result was negative.

  15. New porcine test-model reveals remarkable differences between algorithms for spectrophotometrical haemoglobin saturation measurements with VLS.

    PubMed

    Gade, John; Greisen, Gorm

    2016-09-01

    The study created an 'ex vivo' model to test different algorithms for measurements of mucosal haemoglobin saturation with visible light spectrophotometry (VLS). The model allowed comparison between algorithms, but it also allowed comparison with co-oximetry using a 'gold standard' method. This has not been described before. Seven pigs were used. They were perfused with cold Haemaxel, and thus killed, chilled and becoming bloodless. The bronchial artery was perfused with cold blood with known saturation and spectrophotometrical measurements were made through a bronchoscope. Based on 42 spectrophotometrical measurements of porcine bronchial mucosa saturation with fully oxygenated blood and 21 with de-oxygenated blood, six algorithms were applied to the raw-spectra of the measurements and compared with co-oxymetry. The difference from co-oxymetry in the oxygenated and de-oxygenated state ranged from  -32.8 to  +29.9 percentage points and from  -5.0 to  +9.2 percentage points, respectively. the algorithms showed remarkable in-between differences when tested on raw-spectra from an 'ex vivo' model. All algorithms had bias, more marked at high oxygenation than low oxygenation. Three algorithms were dis-recommended.

  16. Spectrophotometric Measurements of the Carbonate Ion Concentration: Aragonite Saturation States in the Mediterranean Sea and Atlantic Ocean.

    PubMed

    Fajar, Noelia M; García-Ibáñez, Maribel I; SanLeón-Bartolomé, Henar; Álvarez, Marta; Pérez, Fiz F

    2015-10-06

    Measurements of ocean pH, alkalinity, and carbonate ion concentrations ([CO3(2-)]) during three cruises in the Atlantic Ocean and one in the Mediterranean Sea were used to assess the reliability of the recent spectrophotometric [CO3(2-)] methodology and to determine aragonite saturation states. Measurements of [CO3(2-)] along the Atlantic Ocean showed high consistency with the [CO3(2-)] values calculated from pH and alkalinity, with negligible biases (0.4 ± 3.4 μmol·kg(-1)). In the warm, salty, high alkalinity and high pH Mediterranean waters, the spectrophotometric [CO3(2-)] methodology underestimates the measured [CO3(2-)] (4.0 ± 5.0 μmol·kg(-1)), with anomalies positively correlated to salinity. These waters also exhibited high in situ [CO3(2-)] compared to the expected aragonite saturation. The very high buffering capacity allows the Mediterranean Sea waters to remain over the saturation level of aragonite for long periods of time. Conversely, the relatively thick layer of undersaturated waters between 500 and 1000 m depths in the Tropical Atlantic is expected to progress to even more negative undersaturation values. Moreover, the northern North Atlantic presents [CO3(2-)] slightly above the level of aragonite saturation, and the expected anthropogenic acidification could result in reductions of the aragonite saturation levels during future decades, acting as a stressor for the large population of cold-water-coral communities.

  17. All-fiber wavelength-tunable picosecond nonlinear reflectivity measurement setup for characterization of semiconductor saturable absorber mirrors

    NASA Astrophysics Data System (ADS)

    Viskontas, K.; Rusteika, N.

    2016-09-01

    Semiconductor saturable absorber mirror (SESAM) is the key component for many passively mode-locked ultrafast laser sources. Particular set of nonlinear parameters is required to achieve self-starting mode-locking or avoid undesirable q-switch mode-locking for the ultra-short pulse laser. In this paper, we introduce a novel all-fiber wavelength-tunable picosecond pulse duration setup for the measurement of nonlinear properties of saturable absorber mirrors at around 1 μm center wavelength. The main advantage of an all-fiber configuration is the simplicity of measuring the fiber-integrated or fiber-pigtailed saturable absorbers. A tunable picosecond fiber laser enables to investigate the nonlinear parameters at different wavelengths in ultrafast regime. To verify the capability of the setup, nonlinear parameters for different SESAMs with low and high modulation depth were measured. In the operating wavelength range 1020-1074 nm, <1% absolute nonlinear reflectivity accuracy was demonstrated. Achieved fluence range was from 100 nJ/cm2 to 2 mJ/cm2 with corresponding intensity from 10 kW/cm2 to 300 MW/cm2.

  18. INITIAL GAIN MEASUREMENTS OF A 800 NM SASE FEL, VISA.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    FRIGOLA,P.; MUROKH,A.; ET AL

    2000-08-13

    The VISA (Visible to Infrared SASE Amplifier) FEL is designed to obtain high gain at a radiation wavelength of 800nm. The FEL uses the high brightness electron beam of the Accelerator Test Facility (ATF), with energy of 72MeV. VISA uses a novel, 4 m long, strong focusing undulator with a gap of 6mm and a period of 1.8cm. To obtain large gain the beam and undulator axis have to be aligned to better than 50{micro}m. Results from initial measurements on the alignment, gain, and spectrum will be presented and compared to theoretical calculations and simulations.

  19. Comparison of oxygen saturation values and measurement times by pulse oximetry in various parts of the body.

    PubMed

    Yönt, Gülendam Hakverdioğlu; Korhan, Esra Akin; Khorshid, Leyla

    2011-11-01

    The aim of this study, which included 40 patients, was to compare the values pulse oximetry and the measurement times in various regions of the body. Data were analyzed using intraclass correlation coefficient test and paired-sample test. The confidence power value was found to be .81 for the comparison of oxygen saturation values by arterial blood gas analysis and measurement by the forehead probe. It was found that the time for oxygen saturation measurement using the forehead probe was shorter than those using the finger and toe probes. Copyright © 2011 Elsevier Inc. All rights reserved.

  20. Using passive capillary lysimeter water flux measurements to improve flow predictions in variably saturated soils.

    USDA-ARS?s Scientific Manuscript database

    Passive capillary lysimeters (PCLs) are uniquely suited for measuring water fluxes in variably-saturated soils. The objective of this work was to compare PCL flux measurements with simulated fluxes obtained with a calibrated unsaturated flow model. The Richards equation-based model was calibrated us...

  1. Chirped pulse Raman amplification in warm plasma: towards controlling saturation

    PubMed Central

    Yang, X.; Vieux, G.; Brunetti, E.; Ersfeld, B.; Farmer, J. P.; Hur, M. S.; Issac, R. C.; Raj, G.; Wiggins, S. M.; Welsh, G. H.; Yoffe, S. R.; Jaroszynski, D. A.

    2015-01-01

    Stimulated Raman backscattering in plasma is potentially an efficient method of amplifying laser pulses to reach exawatt powers because plasma is fully broken down and withstands extremely high electric fields. Plasma also has unique nonlinear optical properties that allow simultaneous compression of optical pulses to ultra-short durations. However, current measured efficiencies are limited to several percent. Here we investigate Raman amplification of short duration seed pulses with different chirp rates using a chirped pump pulse in a preformed plasma waveguide. We identify electron trapping and wavebreaking as the main saturation mechanisms, which lead to spectral broadening and gain saturation when the seed reaches several millijoules for durations of 10’s – 100’s fs for 250 ps, 800 nm chirped pump pulses. We show that this prevents access to the nonlinear regime and limits the efficiency, and interpret the experimental results using slowly-varying-amplitude, current-averaged particle-in-cell simulations. We also propose methods for achieving higher efficiencies. PMID:26290153

  2. Determination of water saturation using gas phase partitioning tracers and time-lapse electrical conductivity measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, Timothy C.; Oostrom, Martinus; Truex, Michael J.

    2013-05-21

    Water saturation is an important indicator of contaminant distribution and plays a governing role in contaminant transport within the vadose zone. Understanding the water saturation distribution is critical for both remediation and contaminant flux monitoring in unsaturated environments. In this work we propose and demonstrate a method of remotely determining water saturation levels using gas phase partitioning tracers and time-lapse bulk electrical conductivity measurements. The theoretical development includes the partitioning chemistry for the tracers we demonstrate (ammonia and carbon dioxide), as well as a review of the petrophysical relationship governing how these tracers influence bulk conductivity. We also investigate methodsmore » of utilizing secondary information provided by electrical conductivity breakthrough magnitudes induced by the tracers. We test the method on clean, well characterized, intermediate-scale sand columns under controlled conditions. Results demonstrate the capability to predict partitioning coefficients and accurately monitor gas breakthrough curves along the length of the column according to the corresponding electrical conductivity response, leading to accurate water saturation estimates. This work is motivated by the need to develop effective characterization and monitoring techniques for contaminated deep vadose zone environments, and provides a proof-of-concept toward uniquely characterizing and monitoring water saturation levels at the field scale and in three-dimensions using electrical resistivity tomography.« less

  3. Laser-saturated fluorescence measurements in laminar sooting diffusion flames

    NASA Technical Reports Server (NTRS)

    Wey, Changlie

    1993-01-01

    The hydroxyl radical is known to be one of the most important intermediate species in the combustion processes. The hydroxyl radical has also been considered a dominant oxidizer of soot particles in flames. In this investigation the hydroxyl concentration profiles in sooting diffusion flames were measured by the laser-saturated fluorescence (LSF) method. The temperature distributions in the flames were measured by the two-line LSF technique and by thermocouple. In the sooting region the OH fluorescence was too weak to make accurate temperature measurements. The hydroxyl fluorescence profiles for all four flames presented herein show that the OH fluorescence intensities peaked near the flame front. The OH fluorescence intensity dropped sharply toward the dark region of the flame and continued declining to the sooting region. The OH fluorescence profiles also indicate that the OH fluorescence decreased with increasing height in the flames for all flames investigated. Varying the oxidizer composition resulted in a corresponding variation in the maximum OH concentration and the flame temperature. Furthermore, it appears that the maximum OH concentration for each flame increased with increasing flame temperature.

  4. Sideband instability analysis based on a one-dimensional high-gain free electron laser model

    DOE PAGES

    Tsai, Cheng-Ying; Wu, Juhao; Yang, Chuan; ...

    2017-12-18

    When an untapered high-gain free electron laser (FEL) reaches saturation, the exponential growth ceases and the radiation power starts to oscillate about an equilibrium. The FEL radiation power or efficiency can be increased by undulator tapering. For a high-gain tapered FEL, although the power is enhanced after the first saturation, it is known that there is a so-called second saturation where the FEL power growth stops even with a tapered undulator system. The sideband instability is one of the primary reasons leading to this second saturation. In this paper, we provide a quantitative analysis on how the gradient of undulatormore » tapering can mitigate the sideband growth. The study is carried out semianalytically and compared with one-dimensional numerical simulations. The physical parameters are taken from Linac Coherent Light Source-like electron bunch and undulator systems. The sideband field gain and the evolution of the radiation spectra for different gradients of undulator tapering are examined. It is found that a strong undulator tapering (~10 % ) provides effective suppression of the sideband instability in the postsaturation regime.« less

  5. Sideband instability analysis based on a one-dimensional high-gain free electron laser model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsai, Cheng-Ying; Wu, Juhao; Yang, Chuan

    When an untapered high-gain free electron laser (FEL) reaches saturation, the exponential growth ceases and the radiation power starts to oscillate about an equilibrium. The FEL radiation power or efficiency can be increased by undulator tapering. For a high-gain tapered FEL, although the power is enhanced after the first saturation, it is known that there is a so-called second saturation where the FEL power growth stops even with a tapered undulator system. The sideband instability is one of the primary reasons leading to this second saturation. In this paper, we provide a quantitative analysis on how the gradient of undulatormore » tapering can mitigate the sideband growth. The study is carried out semianalytically and compared with one-dimensional numerical simulations. The physical parameters are taken from Linac Coherent Light Source-like electron bunch and undulator systems. The sideband field gain and the evolution of the radiation spectra for different gradients of undulator tapering are examined. It is found that a strong undulator tapering (~10 % ) provides effective suppression of the sideband instability in the postsaturation regime.« less

  6. Sideband instability analysis based on a one-dimensional high-gain free electron laser model

    NASA Astrophysics Data System (ADS)

    Tsai, Cheng-Ying; Wu, Juhao; Yang, Chuan; Yoon, Moohyun; Zhou, Guanqun

    2017-12-01

    When an untapered high-gain free electron laser (FEL) reaches saturation, the exponential growth ceases and the radiation power starts to oscillate about an equilibrium. The FEL radiation power or efficiency can be increased by undulator tapering. For a high-gain tapered FEL, although the power is enhanced after the first saturation, it is known that there is a so-called second saturation where the FEL power growth stops even with a tapered undulator system. The sideband instability is one of the primary reasons leading to this second saturation. In this paper, we provide a quantitative analysis on how the gradient of undulator tapering can mitigate the sideband growth. The study is carried out semianalytically and compared with one-dimensional numerical simulations. The physical parameters are taken from Linac Coherent Light Source-like electron bunch and undulator systems. The sideband field gain and the evolution of the radiation spectra for different gradients of undulator tapering are examined. It is found that a strong undulator tapering (˜10 %) provides effective suppression of the sideband instability in the postsaturation regime.

  7. HyspIRI High-Temperature Saturation Study

    NASA Technical Reports Server (NTRS)

    Realmuto, V.; Hook, S.; Foote, M.; Csiszar, I.; Dennison, P.; Giglio, L.; Ramsey, M.; Vaughan, R.G.; Wooster, M.; Wright, R.

    2011-01-01

    As part of the precursor activities for the HyspIRI mission, a small team was assembled to determine the optimum saturation level for the mid-infrared (4-?m) channel, which is dedicated to the measurement of hot targets. Examples of hot targets include wildland fires and active lava flows. This determination took into account both the temperature expected for the natural phenomena and the expected performance of the mid-infrared channel as well as its overlap with the other channels in the thermal infrared (7.5-12 ?m) designed to measure the temperature of lower temperature targets. Based on this work, the hot target saturation group recommends a saturation temperature of 1200 K for the mid-infrared channel. The saturation temperature of 1200 K represents a good compromise between the prevention of saturation and sensitivity to ambient temperature.

  8. Non-contact measurement of oxygen saturation with an RGB camera

    PubMed Central

    Guazzi, Alessandro R.; Villarroel, Mauricio; Jorge, João; Daly, Jonathan; Frise, Matthew C.; Robbins, Peter A.; Tarassenko, Lionel

    2015-01-01

    A novel method (Sophia) is presented to track oxygen saturation changes in a controlled environment using an RGB camera placed approximately 1.5 m away from the subject. The method is evaluated on five healthy volunteers (Fitzpatrick skin phenotypes II, III, and IV) whose oxygen saturations were varied between 80% and 100% in a purpose-built chamber over 40 minutes each. The method carefully selects regions of interest (ROI) in the camera image by calculating signal-to-noise ratios for each ROI. This allows it to track changes in oxygen saturation accurately with respect to a conventional pulse oximeter (median coefficient of determination, 0.85). PMID:26417504

  9. Measuring Learning Gain: Comparing Anatomy Drawing Screencasts and Paper-Based Resources

    ERIC Educational Resources Information Center

    Pickering, James D.

    2017-01-01

    The use of technology-enhanced learning (TEL) resources is now a common tool across a variety of healthcare programs. Despite this popular approach to curriculum delivery there remains a paucity in empirical evidence that quantifies the change in learning gain. The aim of the study was to measure the changes in learning gain observed with anatomy…

  10. Measurements of Capillary Pressure-Saturation Relationships for Silica Sands Using Light Transmission Visualization and a Rapid Pseudo Static Methods

    EPA Science Inventory

    Measurement of water saturation in porous media is essential for many types of studies including subsurface water flow, subsurface colloids transport and contaminant remediation to name a few. Water saturation (S) in porous media is dependent on the capillary pressure (Pc) which,...

  11. Estimation of gas hydrate saturation using isotropic and anisotropic models at the location selected after measurement of seismic quality factor

    NASA Astrophysics Data System (ADS)

    Mundhra, A.; Sain, K.; Shankar, U.

    2012-12-01

    The Indian National Gas Hydrate Program Expedition (NGHP) 01 discovered gas hydrate in unconsolidated sediments at several drilling sites along the continental margins of Krishna-Godavari Basin, India. Presence of gas hydrate reduces the attenuation of travelling seismic waves which can be measured by estimation of seismic quality factor (Dasgupta and Clark, 1998). Here, we use log spectral ratio method (Sain et al, 2009) to compute quality factor at three locations, among which two have strong and one has no bottom simulating reflector (BSR), along seismic cross-line near one of the drilling site. Interval quality factor for three submarine sedimentary layers bounded by seafloor, BSR, one reflector above and another reflector below the BSR has been measured. To compute quality factor, unprocessed pre-stack seismic data has been used to avoid any influence of processing sequence. We have estimated that interval quality factor lies within 200-220 in the interval having BSR while it varies within 90-100 in other intervals. Thereby, high interval quality factor ascertains that observed BSR is due to presence of gas hydrates. We have performed rock physics modelling by using isotropic and anisotropic models, to quantitatively estimate gas hydrate saturation at one of the location where an interval has high quality factor. Abruptly high measured resistivity and high P-wave velocity in the interval, leads to towering hydrate saturation (Archie,1942 and Helegrud et al, 1999) in comparison to lower gas hydrate saturations estimated by pressure core and chlorinity measurements. Overestimation of saturation is attributed to presence of near vertical fractures that are identified from logging-while-drilling resistivity images. We have carried out anisotropic modeling (Kennedy and Herrick, 2004 and Lee,2009) by incorporating fracture volume and fracture porosity to estimate hydrate saturation and have observed that modeled gas hydrate saturations agree with the lower gas

  12. Sub-10 nm Gate Length Graphene Transistors: Operating at Terahertz Frequencies with Current Saturation

    PubMed Central

    Zheng, Jiaxin; Wang, Lu; Quhe, Ruge; Liu, Qihang; Li, Hong; Yu, Dapeng; Mei, Wai-Ning; Shi, Junjie; Gao, Zhengxiang; Lu, Jing

    2013-01-01

    Radio-frequency application of graphene transistors is attracting much recent attention due to the high carrier mobility of graphene. The measured intrinsic cut-off frequency (fT) of graphene transistor generally increases with the reduced gate length (Lgate) till Lgate = 40 nm, and the maximum measured fT has reached 300 GHz. Using ab initio quantum transport simulation, we reveal for the first time that fT of a graphene transistor still increases with the reduced Lgate when Lgate scales down to a few nm and reaches astonishing a few tens of THz. We observe a clear drain current saturation when a band gap is opened in graphene, with the maximum intrinsic voltage gain increased by a factor of 20. Our simulation strongly suggests it is possible to design a graphene transistor with an extraordinary high fT and drain current saturation by continuously shortening Lgate and opening a band gap. PMID:23419782

  13. The Choroidal Eye Oximeter - An instrument for measuring oxygen saturation of choroidal blood in vivo

    NASA Technical Reports Server (NTRS)

    Laing, R. A.; Danisch, L. A.; Young, L. R.

    1975-01-01

    The Choroidal Eye Oximeter is an electro-optical instrument that noninvasively measures the oxygen saturation of choroidal blood in the back of the human eye by a spectrophotometric method. Since choroidal blood is characteristic of blood which is supplied to the brain, the Choroidal Eye Oximeter can be used to monitor the amount of oxygen which is supplied to the brain under varying external conditions. The instrument consists of two basic systems: the optical system and the electronic system. The optical system produces a suitable bi-chromatic beam of light, reflects this beam from the fundus of the subject's eye, and onto a low-noise photodetector. The electronic system amplifies the weak composite signal from the photodetector, computes the average oxygen saturation from the area of the fundus that was sampled, and displays the value of the computed oxygen saturation on a panel meter.

  14. Streaming Potential In Rocks Saturated With Water And Oil

    NASA Astrophysics Data System (ADS)

    Tarvin, J. A.; Caston, A.

    2011-12-01

    Fluids flowing through porous media generate electrical currents. These currents cause electric potentials, called "streaming potentials." Streaming potential amplitude depends on the applied pressure gradient, on rock and fluid properties, and on the interaction between rock and fluid. Streaming potential has been measured for rocks saturated with water (1) and with water-gas mixtures. (2) Few measurements (3) have been reported for rocks saturated with water-oil mixtures. We measured streaming potential for sandstone and limestone saturated with a mixture of brine and laboratory oil. Cylindrical samples were initially saturated with brine and submerged in oil. Saturation was changed by pumping oil from one end of a sample to the other and then through the sample in the opposite direction. Saturation was estimated from sample resistivity. The final saturation of each sample was determined by heating the sample in a closed container and measuring the pressure. Measurements were made by modulating the pressure difference (of oil) between the ends of a sample at multiple frequencies below 20 Hz. The observed streaming potential is a weak function of the saturation. Since sample conductivity decreases with increasing oil saturation, the electro-kinetic coupling coefficient (Pride's L (4)) decreases with increasing oil saturation. (1) David B. Pengra and Po-zen Wong, Colloids and Surfaces, vol., p. 159 283-292 (1999). (2) Eve S. Sprunt, Tony B. Mercer, and Nizar F. Djabbarah, Geophysics, vol. 59, p. 707-711 (1994). (3) Vinogradov, J., Jackson, M.D., Geophysical Res. L., Vol. 38, Article L01301 (2011). (4) Steve Pride, Phys. Rev. B, vol. 50, pp. 15678-15696 (1994).

  15. DSN 70-meter antenna X- and S-band calibration. Part 1: Gain measurements

    NASA Technical Reports Server (NTRS)

    Richter, P. H.; Slobin, S. D.

    1989-01-01

    Aperture efficiency measurements made during 1988 on the three 70-m stations (DSS-14, DSS-43, and DSS-63) at X-band (8420 MHz) and S-band (2295 MHz) have been analyzed and reduced to yield best estimates of antenna gain versus elevation. The analysis has been carried out by fitting the gain data to a theoretical expression based on the Ruze formula. Newly derived flux density and source-size correction factors for the natural radio calibration sources used in the measurements have been used in the reduction of the data. Peak gains measured at the three stations were 74.18 (plus or minus 0.10) dBi at X-band, and 63.34 (plus or minus 0.03) dBi at S-band, with corresponding peak aperture efficiencies of 0.687 (plus or minus 0.015) and 0.762 (plus or minus 0.006), respectively. The values quoted assume no atmosphere is present, and the estimated absolute accuracy of the gain measurements is approximately plus or minus 0.2 dB at X-band and plus or minus 0.1 dB at S-band (1-sigma values).

  16. Modeling lateral geniculate nucleus response with contrast gain control. Part 2: Analysis

    PubMed Central

    Cope, Davis; Blakeslee, Barbara; McCourt, Mark E.

    2014-01-01

    Cope, Blakeslee and McCourt (2013) proposed a class of models for LGN ON-cell behavior consisting of a linear response with divisive normalization by local stimulus contrast. Here we analyze a specific model with the linear response defined by a difference-of-Gaussians filter and a circular Gaussian for the gain pool weighting function. For sinusoidal grating stimuli, the parameter region for band-pass behavior of the linear response is determined, the gain control response is shown to act as a switch (changing from “off” to “on” with increasing spatial frequency), and it is shown that large gain pools stabilize the optimal spatial frequency of the total nonlinear response at a fixed value independent of contrast and stimulus magnitude. Under- and super-saturation as well as contrast saturation occur as typical effects of stimulus magnitude. For circular spot stimuli, it is shown that large gain pools stabilize the spot size that yields the maximum response. PMID:24562034

  17. Saturation capability of short phase modulated pulses facilitates the measurement of longitudinal relaxation times of quadrupolar nuclei.

    PubMed

    Makrinich, Maria; Gupta, Rupal; Polenova, Tatyana; Goldbourt, Amir

    The ability of various pulse types, which are commonly applied for distance measurements, to saturate or invert quadrupolar spin polarization has been compared by observing their effect on magnetization recovery curves under magic-angle spinning. A selective central transition inversion pulse yields a bi-exponential recovery for a diamagnetic sample with a spin-3/2, consistent with the existence of two processes: the fluctuations of the electric field gradients with identical single (W 1 ) and double (W 2 ) quantum quadrupolar-driven relaxation rates, and spin exchange between the central transition of one spin and satellite transitions of a dipolar-coupled similar spin. Using a phase modulated pulse, developed for distance measurements in quadrupolar spins (Nimerovsky et al., JMR 244, 2014, 107-113) and suggested for achieving the complete saturation of all quadrupolar spin energy levels, a mono-exponential relaxation model fits the data, compatible with elimination of the spin exchange processes. Other pulses such as an adiabatic pulse lasting one-third of a rotor period, and a two-rotor-period long continuous-wave pulse, both used for distance measurements under special experimental conditions, yield good fits to bi-exponential functions with varying coefficients and time constants due to variations in initial conditions. Those values are a measure of the extent of saturation obtained from these pulses. An empirical fit of the recovery curves to a stretched exponential function can provide general recovery times. A stretching parameter very close to unity, as obtained for a phase modulated pulse but not for other cases, suggests that in this case recovery times and longitudinal relaxation times are similar. The results are experimentally demonstrated for compounds containing 11 B (spin-3/2) and 51 V (spin-7/2). We propose that accurate spin lattice relaxation rates can be measured by a short phase modulated pulse (<1-2ms), similarly to the "true T 1 " measured

  18. 34 CFR 462.43 - How is educational gain measured?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...(b), with the student's educational functioning level as measured by the post-test described in § 462... reading score on the pre-test with the reading score on the post-test. (2) A student is considered to have made an educational gain when the student's post-test indicates that the student has completed one or...

  19. 34 CFR 462.43 - How is educational gain measured?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...(b), with the student's educational functioning level as measured by the post-test described in § 462... reading score on the pre-test with the reading score on the post-test. (2) A student is considered to have made an educational gain when the student's post-test indicates that the student has completed one or...

  20. 34 CFR 462.43 - How is educational gain measured?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...(b), with the student's educational functioning level as measured by the post-test described in § 462... reading score on the pre-test with the reading score on the post-test. (2) A student is considered to have made an educational gain when the student's post-test indicates that the student has completed one or...

  1. 34 CFR 462.43 - How is educational gain measured?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...(b), with the student's educational functioning level as measured by the post-test described in § 462... reading score on the pre-test with the reading score on the post-test. (2) A student is considered to have made an educational gain when the student's post-test indicates that the student has completed one or...

  2. 34 CFR 462.43 - How is educational gain measured?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...(b), with the student's educational functioning level as measured by the post-test described in § 462... reading score on the pre-test with the reading score on the post-test. (2) A student is considered to have made an educational gain when the student's post-test indicates that the student has completed one or...

  3. The two-phase flow IPTT method for measurement of nonwetting-wetting liquid interfacial areas at higher nonwetting saturations in natural porous media

    PubMed Central

    Zhong, Hua; Ouni, Asma El; Lin, Dan; Wang, Bingguo; Brusseau, Mark L

    2017-01-01

    Interfacial areas between nonwetting-wetting (NW-W) liquids in natural porous media were measured using a modified version of the interfacial partitioning tracer test (IPTT) method that employed simultaneous two-phase flow conditions, which allowed measurement at NW saturations higher than trapped residual saturation. Measurements were conducted over a range of saturations for a well-sorted quartz sand under three wetting scenarios of primary drainage (PD), secondary imbibition (SI), and secondary drainage (SD). Limited sets of experiments were also conducted for a model glass-bead medium and for a soil. The measured interfacial areas were compared to interfacial areas measured using the standard IPTT method for liquid-liquid systems, which employs residual NW saturations. In addition, the theoretical maximum interfacial areas estimated from the measured data are compared to specific solid surface areas measured with the N2/BET method and estimated based on geometrical calculations for smooth spheres. Interfacial areas increase linearly with decreasing water saturation over the range of saturations employed. The maximum interfacial areas determined for the glass beads, which have no surface roughness, are 32±4 and 36±5 cm−1 for PD and SI cycles, respectively. The values are similar to the geometric specific solid surface area (31±2 cm−1) and the N2/BET solid surface area (28±2 cm−1). The maximum interfacial areas are 274±38, 235±27, and 581±160 cm−1 for the sand for PD, SI, and SD cycles, respectively, and ~7625 cm−1 for the soil for PD and SI. The maximum interfacial areas for the sand and soil are significantly larger than the estimated smooth-sphere specific solid surface areas (107±8 cm−1 and 152±8 cm−1, respectively), but much smaller than the N2/BET solid surface area (1387±92 cm−1 and 55224 cm−1, respectively). The NW-W interfacial areas measured with the two-phase flow method compare well to values measured using the standard

  4. Code Saturation Versus Meaning Saturation: How Many Interviews Are Enough?

    PubMed

    Hennink, Monique M; Kaiser, Bonnie N; Marconi, Vincent C

    2017-03-01

    Saturation is a core guiding principle to determine sample sizes in qualitative research, yet little methodological research exists on parameters that influence saturation. Our study compared two approaches to assessing saturation: code saturation and meaning saturation. We examined sample sizes needed to reach saturation in each approach, what saturation meant, and how to assess saturation. Examining 25 in-depth interviews, we found that code saturation was reached at nine interviews, whereby the range of thematic issues was identified. However, 16 to 24 interviews were needed to reach meaning saturation where we developed a richly textured understanding of issues. Thus, code saturation may indicate when researchers have "heard it all," but meaning saturation is needed to "understand it all." We used our results to develop parameters that influence saturation, which may be used to estimate sample sizes for qualitative research proposals or to document in publications the grounds on which saturation was achieved.

  5. Gain dynamics of clad-pumped Yb-fiber amplifier and intensity noise control.

    PubMed

    Zhao, Jian; Guiraud, Germain; Floissat, Florian; Gouhier, Benoit; Rota-Rodrigo, Sergio; Traynor, Nicholas; Santarelli, Giorgio

    2017-01-09

    Gain dynamics study provides an attractive method to understand the intensity noise behavior in fiber amplifiers. Here, the gain dynamics of a medium power (5 W) clad-pumped Yb-fiber amplifier is experimentally evaluated by measuring the frequency domain transfer functions for the input seed and pump lasers from 10 Hz to 1 MHz. We study gain dynamic behavior of the fiber amplifier in the presence of significant residual pump power (compared to the seed power), showing that the seed transfer function is strongly saturated at low Fourier frequencies while the pump power modulation transfer function is nearly unaffected. The characterization of relative intensity noise (RIN) of the fiber amplifier is well explained by the gain dynamics analysis. Finally, a 600 kHz bandwidth feedback loop using an acoustic-optical modulator (AOM) controlling the seed intensity is successfully demonstrated to suppress the broadband laser intensity noise. A maximum noise reduction of about 30 dB is achieved leading to a RIN of -152 dBc/Hz (~1 kHz-10 MHz) at 2.5 W output power.

  6. Using grey intensity adjustment strategy to enhance the measurement accuracy of digital image correlation considering the effect of intensity saturation

    NASA Astrophysics Data System (ADS)

    Li, Bang-Jian; Wang, Quan-Bao; Duan, Deng-Ping; Chen, Ji-An

    2018-05-01

    Intensity saturation can cause decorrelation phenomenon and decrease the measurement accuracy in digital image correlation (DIC). In the paper, the grey intensity adjustment strategy is proposed to improve the measurement accuracy of DIC considering the effect of intensity saturation. First, the grey intensity adjustment strategy is described in detail, which can recover the truncated grey intensities of the saturated pixels and reduce the decorrelation phenomenon. The simulated speckle patterns are then employed to demonstrate the efficacy of the proposed strategy, which indicates that the displacement accuracy can be improved by about 40% by the proposed strategy. Finally, the true experimental image is used to show the feasibility of the proposed strategy, which indicates that the displacement accuracy can be increased by about 10% by the proposed strategy.

  7. Rapid measurement of field-saturated hydraulic conductivity for areal characterization

    USGS Publications Warehouse

    Nimmo, J.R.; Schmidt, K.M.; Perkins, K.S.; Stock, J.D.

    2009-01-01

    To provide an improved methodology for characterizing the field-saturated hydraulic conductivity (Kfs) over broad areas with extreme spatial variability and ordinary limitations of time and resources, we developed and tested a simplified apparatus and procedure, correcting mathematically for the major deficiencies of the simplified implementation. The methodology includes use of a portable, falling-head, small-diameter (???20 cm) single-ring infiltrometer and an analytical formula for Kfs that compensates both for nonconstant falling head and for the subsurface radial spreading that unavoidably occurs with small ring size. We applied this method to alluvial fan deposits varying in degree of pedogenic maturity in the arid Mojave National Preserve, California. The measurements are consistent with a more rigorous and time-consuming Kfs measurement method, produce the expected systematic trends in Kfs when compared among soils of contrasting degrees of pedogenic development, and relate in expected ways to results of widely accepted methods. ?? Soil Science Society of America. All rights reserved.

  8. Gain dynamics in a soft X-ray laser ampli er perturbed by a strong injected X-ray eld

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Yong; Wang, Shoujun; Oliva, E

    2014-01-01

    Seeding soft X-ray plasma ampli ers with high harmonics has been demonstrated to generate high-brightness soft X-ray laser pulses with full spatial and temporal coherence. The interaction between the injected coherent eld and the swept-gain medium has been modelled. However, no exper- iment has been conducted to probe the gain dynamics when perturbed by a strong external seed eld. Here, we report the rst X-ray pump X-ray probe measurement of the nonlinear response of a plasma ampli er perturbed by a strong soft X-ray ultra-short pulse. We injected a sequence of two time-delayed high-harmonic pulses (l518.9 nm) into a collisionallymore » excited nickel-like molybdenum plasma to measure with femto-second resolution the gain depletion induced by the saturated ampli cation of the high-harmonic pump and its subsequent recovery. The measured fast gain recovery in 1.5 1.75 ps con rms the possibility to generate ultra-intense, fully phase-coherent soft X-ray lasers by chirped pulse ampli cation in plasma ampli ers.« less

  9. Effect of sensor location on regional cerebral oxygen saturation measured by INVOS 5100 in on-pump cardiac surgery.

    PubMed

    Cho, Ah-Reum; Kwon, Jae-Young; Kim, Choongrak; Hong, Jung-Min; Kang, Christine

    2017-04-01

    Near-infrared spectroscopy sensors often cannot be attached at the commercially recommended locations because combined use of neurological monitoring systems is common during on-pump cardiac surgery. The primary purpose of this study was to compare the incidence of regional cerebral oxygen desaturation and regional cerebral oxygen saturation values detected using near-infrared spectroscopy between the upper and lower forehead during on-pump cardiac surgery. A prospective observational study was conducted with 25 adult patients scheduled for elective on-pump cardiac surgery. Regional cerebral oxygen saturations at the left upper and lower forehead and other clinical measurements were monitored intraoperatively. McNemar's test was used to analyze differences in the incidence of cerebral regional oxygen desaturation between the left upper and lower forehead. Two-way repeated measures ANOVA with post hoc Bonferroni correction was used to compare the regional cerebral oxygen saturation at each time point. There was a significantly higher incidence of regional cerebral oxygen desaturation at the upper than lower forehead only at 1 h after initiation of aortic cross-clamping. There were significant differences between the left upper and lower regional cerebral oxygen saturation values throughout the observation period. Regional cerebral oxygen saturation was significantly lower at the upper than lower forehead during on-pump cardiac surgery. However, disagreements in detection of cerebral regional oxygen desaturation were only significant at 1 h after initiation of aortic cross-clamping. WHO-ICTRP, Clinical Research Information Service (CRiS). ID: KCT0000971. URL: https://cris.nih.go.kr/cris/search/search_result_st01_en.jsp?seq=3678&type=my .

  10. Saturable nonlinear dielectric waveguide with applications to broad-area semiconductor lasers.

    PubMed

    Mehuys, D; Mittelstein, M; Salzman, J; Yariv, A

    1987-11-01

    Self-focusing in a passive dielectric waveguide with a saturable nonlinearity is studied. The eigensolutions constitute a good approximation to the lateral modes of broad-area semiconductor lasers under low-duty-cycle pulsed conditions. The laser modes are predicted to consist of adjacent filaments coupled in phase, leading to a single-lobed far field, and to be stable with increased current injection above saturation intensity. The ultimate filament spacing is inversely proportional to the threshold gain, and thus wider filaments are expected in low-threshold broad-area lasers.

  11. Robust Landing Using Time-to-Collision Measurement with Actuator Saturation

    NASA Technical Reports Server (NTRS)

    Kuwata, Yoshiaki; Matthies, Larry

    2009-01-01

    This paper considers a landing problem for an MAV that uses only a monocular camera for guidance. Although this sensor cannot measure the absolute distance to the target, by using optical flow algorithms, time-to-collision to the target is obtained. Existing work has applied a simple proportional feedback control to simple dynamics and demonstrated its potential. However, due to the singularity in the time-to-collision measurement around the target, this feedback could require an infinite control action. This paper extends the approach into nonlinear dynamics. In particular, we explicitly consider the saturation of the actuator and include the effect of the aerial drag. It is shown that the convergence to the target is guaranteed from a set of initial conditions, and the boundaries of such initial conditions in the state space are numerically obtained. The paper then introduces parametric uncertainties in the vehicle model and in the time-to-collision measurements. Using an argument similar to the nominal case, the robust convergence to the target is proven, but the region of attraction is shown to shrink due to the existence of uncertainties. The numerical simulation validates these theoretical results.

  12. Response of Partially Saturated Non-cohesive Soils

    NASA Astrophysics Data System (ADS)

    Świdziński, Waldemar; Mierczyński, Jacek; Mikos, Agata

    2017-12-01

    This paper analyses and discusses experimental results of undrained triaxial tests. The tests were performed on non-cohesive partially saturated soil samples subjected to monotonic and cyclic loading. The tests were aimed at determining the influence of saturation degree on soil's undrained response (shear strength, excess pore pressure generation). The saturation of samples was monitored by checking Skempton's parameter B. Additionally, seismic P-wave velocity measurements were carried out on samples characterized by various degrees of saturation. The tests clearly showed that liquefaction may also take place in non-cohesive soils that are not fully saturated and that the liquefaction potential of such soils strongly depends on the B parameter.

  13. Saturated high-fat feeding independent of obesity alters hypothalamus-pituitary-adrenal axis function but not anxiety-like behaviour.

    PubMed

    Hryhorczuk, Cecile; Décarie-Spain, Léa; Sharma, Sandeep; Daneault, Caroline; Rosiers, Christine Des; Alquier, Thierry; Fulton, Stephanie

    2017-09-01

    Overconsumption of dietary fat can elicit impairments in emotional processes and the response to stress. While excess dietary lipids have been shown to alter hypothalamus-pituitary-adrenal (HPA) axis function and promote anxiety-like behaviour, it is not known if such changes rely on elevated body weight and if these effects are specific to the type of dietary fat. The objective of this study was to investigate the effect of a saturated and a monounsaturated high-fat diet (HFD) on HPA axis function and anxiety-like behaviour in rats. Biochemical, metabolic and behavioural responses were evaluated following eight weeks on one of three diets: (1) a monounsaturated HFD (50%kcal olive oil), (2) a saturated HFD (50%kcal palm oil), or (3) a control low-fat diet. Weight gain was similar across the three diets while visceral fat mass was elevated by the two HFDs. The saturated HFD had specific actions to increase peak plasma levels of corticosterone and tumour-necrosis-factor-alpha and suppress mRNA expression of glucocorticoid and mineralocorticoid receptors, corticotropin-releasing hormone and 11β-hydroxysteroid dehydrogenase-1 in the paraventricular nucleus of the hypothalamus. Both HFDs enhanced the corticosterone-suppressing response to dexamethasone administration without affecting the physiological response to a restraint stress and failed to increase anxiety-like behaviour as measured in the elevated-plus maze and open field tests. These findings demonstrate that prolonged intake of saturated fat, without added weight gain, increases CORT and modulates central HPA feedback processes. That saturated HFD failed to affect anxiety-like behaviour can suggest that the anxiogenic effects of prolonged high-fat feeding may rely on more pronounced metabolic dysfunction. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Gain degradation and efficiencies of spiral electron multipliers

    NASA Technical Reports Server (NTRS)

    Judge, R. J. R.; Palmer, D. A.

    1973-01-01

    The characteristics of spiral electron multipliers as functions of accumulated counts were investigated. The mean gain of the multipliers showed a steady decline from about 100 million when new, to about one million after 100 billion events when biased in a saturation mode. For prolonged use in a space environment, improved life expectancy might be obtained with a varying bias voltage adjusted to maintain the gain comfortably above a given discrimination level. Pulse-height distributions at various stages of the lifetime and variations of efficiency with energy of detected electrons are presented.

  15. Temperature Measurement by a Nanoscale Electron Probe Using Energy Gain and Loss Spectroscopy

    NASA Astrophysics Data System (ADS)

    Idrobo, Juan Carlos; Lupini, Andrew R.; Feng, Tianli; Unocic, Raymond R.; Walden, Franklin S.; Gardiner, Daniel S.; Lovejoy, Tracy C.; Dellby, Niklas; Pantelides, Sokrates T.; Krivanek, Ondrej L.

    2018-03-01

    Heat dissipation in integrated nanoscale devices is a major issue that requires the development of nanoscale temperature probes. Here, we report the implementation of a method that combines electron energy gain and loss spectroscopy to provide a direct measurement of the local temperature in the nanoenvironment. Loss and gain peaks corresponding to an optical-phonon mode in boron nitride were measured from room temperature to ˜1600 K . Both loss and gain peaks exhibit a shift towards lower energies as the sample is heated up. First-principles calculations of the temperature-induced phonon frequency shifts provide insights into the origin of this effect and confirm the experimental data. The experiments and theory presented here open the doors to the study of anharmonic effects in materials by directly probing phonons in the electron microscope.

  16. Raman gain and nonlinear optical absorption measurements in a low-loss silicon waveguide

    NASA Astrophysics Data System (ADS)

    Rong, Haisheng; Liu, Ansheng; Nicolaescu, Remus; Paniccia, Mario; Cohen, Oded; Hak, Dani

    2004-09-01

    We fabricated a low-loss (˜0.22dB/cm) rib waveguide (WG) in silicon-on-insulator with a small effective core area of ˜1.57μm2 and measured the stimulated Raman scattering gain in the WG. We obtained 2.3dB Raman gain in a 4.8-cm-long S-shaped WG using a 1455nm pump laser with a cw power of 0.9W measured before the WG. In addition, we observed nonlinear dependence of Raman gain and optical propagation loss as a function of the pump power. Our study shows that this mainly is due to two-photon absorption (TPA) induced free carrier absorption in the silicon WG. We experimentally determined the TPA induced free carrier lifetime of 25ns, which agrees well with our modeling.

  17. Wavelength-versatile graphene-gold film saturable absorber mirror for ultra-broadband mode-locking of bulk lasers.

    PubMed

    Ma, Jie; Xie, Guoqiang; Lv, Peng; Gao, Wenlan; Yuan, Peng; Qian, Liejia; Griebner, Uwe; Petrov, Valentin; Yu, Haohai; Zhang, Huaijin; Wang, Jiyang

    2014-05-23

    An ultra-broadband graphene-gold film saturable absorber mirror (GG-SAM) with a spectral coverage exceeding 1300 nm is experimentally demonstrated for mode-locking of bulk solid-state lasers. Owing to the p-type doping effect caused by graphene-gold film interaction, the graphene on gold-film substrate shows a remarkably lower light absorption relative to pristine graphene, which is very helpful to achieve continuous-wave mode-locking in low-gain bulk lasers. Using the GG-SAM sample, stable mode-locking is realized in a Yb:YCOB bulk laser near 1 μm, a Tm:CLNGG bulk laser near 2 μm and a Cr:ZnSe bulk laser near 2.4 μm. The saturable absorption is characterised at an intermediate wavelength of 1.56 μm by pump-probe measurements. The as-fabricated GG-SAM with ultra-broad bandwidth, ultrafast recovery time, low absorption, and low cost has great potential as a universal saturable absorber mirror for mode-locking of various bulk lasers with unprecedented spectral coverage.

  18. Wavelength-Versatile Graphene-Gold Film Saturable Absorber Mirror for Ultra-Broadband Mode-Locking of Bulk Lasers

    PubMed Central

    Ma, Jie; Xie, Guoqiang; Lv, Peng; Gao, Wenlan; Yuan, Peng; Qian, Liejia; Griebner, Uwe; Petrov, Valentin; Yu, Haohai; Zhang, Huaijin; Wang, Jiyang

    2014-01-01

    An ultra-broadband graphene-gold film saturable absorber mirror (GG-SAM) with a spectral coverage exceeding 1300 nm is experimentally demonstrated for mode-locking of bulk solid-state lasers. Owing to the p-type doping effect caused by graphene-gold film interaction, the graphene on gold-film substrate shows a remarkably lower light absorption relative to pristine graphene, which is very helpful to achieve continuous-wave mode-locking in low-gain bulk lasers. Using the GG-SAM sample, stable mode-locking is realized in a Yb:YCOB bulk laser near 1 μm, a Tm:CLNGG bulk laser near 2 μm and a Cr:ZnSe bulk laser near 2.4 μm. The saturable absorption is characterised at an intermediate wavelength of 1.56 μm by pump-probe measurements. The as-fabricated GG-SAM with ultra-broad bandwidth, ultrafast recovery time, low absorption, and low cost has great potential as a universal saturable absorber mirror for mode-locking of various bulk lasers with unprecedented spectral coverage. PMID:24853072

  19. Large-Velocity Saturation in Thin-Film Black Phosphorus Transistors.

    PubMed

    Chen, Xiaolong; Chen, Chen; Levi, Adi; Houben, Lothar; Deng, Bingchen; Yuan, Shaofan; Ma, Chao; Watanabe, Kenji; Taniguchi, Takashi; Naveh, Doron; Du, Xu; Xia, Fengnian

    2018-05-22

    A high saturation velocity semiconductor is appealing for applications in electronics and optoelectronics. Thin-film black phosphorus (BP), an emerging layered semiconductor, shows a high carrier mobility and strong mid-infrared photoresponse at room temperature. Here, we report the observation of high intrinsic saturation velocity in 7 to 11 nm thick BP for both electrons and holes as a function of charge-carrier density, temperature, and crystalline direction. We distinguish a drift velocity transition point due to the competition between the electron-impurity and electron-phonon scatterings. We further achieve a room-temperature saturation velocity of 1.2 (1.0) × 10 7 cm s -1 for hole (electron) carriers at a critical electric field of 14 (13) kV cm -1 , indicating an intrinsic current-gain cutoff frequency ∼20 GHz·μm for radio frequency applications. Moreover, the current density is as high as 580 μA μm -1 at a low electric field of 10 kV cm -1 . Our studies demonstrate that thin-film BP outperforms silicon in terms of saturation velocity and critical field, revealing its great potential in radio-frequency electronics, high-speed mid-infrared photodetectors, and optical modulators.

  20. Retinal vessel oxygen saturation in a healthy young Chinese population.

    PubMed

    Yang, Wei; Fu, Yue; Dong, Yanmin; Lin, Leilei; Huang, Xia; Li, Yujie; Lin, Xiaofeng; Gao, Qianying

    2016-06-01

    To measure retinal vessel oxygen saturation in a healthy young Chinese population and to determine the effects of multiple factors (gender, age, dioptre, vessel diameter and ocular perfusion pressure - OPP) on retinal oxygen saturation. A total of 126 healthy Chinese individuals aged from 19 to 30 were included in this study. A retinal oximeter (Oxymap T1) was used to measure retinal vessel oxygen saturation by retinal imaging at two different wavelengths. The mean retinal vessel oxygen saturation (Sat_O2 ) of arterioles, venules and arteriovenous (AV) difference overall and in four separate quadrants were measured. Intra-ocular pressure, blood pressure, finger pulse oximetry value, vessel diameter and dioptre were also measured. The correlations between OPP and dioptre, OPP and vessel diameter, and dioptre and vessel diameter were analysed. And the effects of multiple factors on the retinal oxygen saturation were analysed. The mean oxygen saturation was 93.2 ± 6.3% in the retinal arterioles, 60.4 ± 5.3% in venules and 32.9 ± 6.4% in AV difference. The temporal quadrants had lower measurements of arteriolar and venular oxygen saturation and AV difference compared with nasal quadrants (p < 0.001). The oxygen saturation of the arterioles, venules and AV difference were unaffected by any unique factor. Arteriolar and venular retinal oxygen saturation correlated negatively with the product of dioptre and OPP. Arteriolar retinal oxygen saturation correlated positively with the product of dioptre and vessel diameter. This study provided a normal reference of Sat_O2 in healthy young Chinese individuals. It was a reflection of the normal state of retinal oxygen metabolism affected by several factors. © 2016 Acta Ophthalmologica Scandinavica Foundation. Published by John Wiley & Sons Ltd.

  1. Ultra-high gain diffusion-driven organic transistor

    PubMed Central

    Torricelli, Fabrizio; Colalongo, Luigi; Raiteri, Daniele; Kovács-Vajna, Zsolt Miklós; Cantatore, Eugenio

    2016-01-01

    Emerging large-area technologies based on organic transistors are enabling the fabrication of low-cost flexible circuits, smart sensors and biomedical devices. High-gain transistors are essential for the development of large-scale circuit integration, high-sensitivity sensors and signal amplification in sensing systems. Unfortunately, organic field-effect transistors show limited gain, usually of the order of tens, because of the large contact resistance and channel-length modulation. Here we show a new organic field-effect transistor architecture with a gain larger than 700. This is the highest gain ever reported for organic field-effect transistors. In the proposed organic field-effect transistor, the charge injection and extraction at the metal–semiconductor contacts are driven by the charge diffusion. The ideal conditions of ohmic contacts with negligible contact resistance and flat current saturation are demonstrated. The approach is general and can be extended to any thin-film technology opening unprecedented opportunities for the development of high-performance flexible electronics. PMID:26829567

  2. Ultra-high gain diffusion-driven organic transistor.

    PubMed

    Torricelli, Fabrizio; Colalongo, Luigi; Raiteri, Daniele; Kovács-Vajna, Zsolt Miklós; Cantatore, Eugenio

    2016-02-01

    Emerging large-area technologies based on organic transistors are enabling the fabrication of low-cost flexible circuits, smart sensors and biomedical devices. High-gain transistors are essential for the development of large-scale circuit integration, high-sensitivity sensors and signal amplification in sensing systems. Unfortunately, organic field-effect transistors show limited gain, usually of the order of tens, because of the large contact resistance and channel-length modulation. Here we show a new organic field-effect transistor architecture with a gain larger than 700. This is the highest gain ever reported for organic field-effect transistors. In the proposed organic field-effect transistor, the charge injection and extraction at the metal-semiconductor contacts are driven by the charge diffusion. The ideal conditions of ohmic contacts with negligible contact resistance and flat current saturation are demonstrated. The approach is general and can be extended to any thin-film technology opening unprecedented opportunities for the development of high-performance flexible electronics.

  3. Ultra-high gain diffusion-driven organic transistor

    NASA Astrophysics Data System (ADS)

    Torricelli, Fabrizio; Colalongo, Luigi; Raiteri, Daniele; Kovács-Vajna, Zsolt Miklós; Cantatore, Eugenio

    2016-02-01

    Emerging large-area technologies based on organic transistors are enabling the fabrication of low-cost flexible circuits, smart sensors and biomedical devices. High-gain transistors are essential for the development of large-scale circuit integration, high-sensitivity sensors and signal amplification in sensing systems. Unfortunately, organic field-effect transistors show limited gain, usually of the order of tens, because of the large contact resistance and channel-length modulation. Here we show a new organic field-effect transistor architecture with a gain larger than 700. This is the highest gain ever reported for organic field-effect transistors. In the proposed organic field-effect transistor, the charge injection and extraction at the metal-semiconductor contacts are driven by the charge diffusion. The ideal conditions of ohmic contacts with negligible contact resistance and flat current saturation are demonstrated. The approach is general and can be extended to any thin-film technology opening unprecedented opportunities for the development of high-performance flexible electronics.

  4. Measuring learning gain: Comparing anatomy drawing screencasts and paper-based resources.

    PubMed

    Pickering, James D

    2017-07-01

    The use of technology-enhanced learning (TEL) resources is now a common tool across a variety of healthcare programs. Despite this popular approach to curriculum delivery there remains a paucity in empirical evidence that quantifies the change in learning gain. The aim of the study was to measure the changes in learning gain observed with anatomy drawing screencasts in comparison to a traditional paper-based resource. Learning gain is a widely used term to describe the tangible changes in learning outcomes that have been achieved after a specific intervention. In regard to this study, a cohort of Year 2 medical students voluntarily participated and were randomly assigned to either a screencast or textbook group to compare changes in learning gain across resource type. Using a pre-test/post-test protocol, and a range of statistical analyses, the learning gain was calculated at three test points: immediate post-test, 1-week post-test and 4-week post-test. Results at all test points revealed a significant increase in learning gain and large effect sizes for the screencast group compared to the textbook group. Possible reasons behind the difference in learning gain are explored by comparing the instructional design of both resources. Strengths and weaknesses of the study design are also considered. This work adds to the growing area of research that supports the effective design of TEL resources which are complimentary to the cognitive theory of multimedia learning to achieve both an effective and efficient learning resource for anatomical education. Anat Sci Educ 10: 307-316. © 2016 American Association of Anatomists. © 2016 American Association of Anatomists.

  5. 78 FR 74125 - Agency Information Collection Activities; Comment Request; Measuring Educational Gain in the...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-10

    ...; Comment Request; Measuring Educational Gain in the National Reporting System for Adult Education AGENCY... respondents, including through the use of information technology. Please note that written comments received... Educational Gain in the National Reporting System for Adult Education. OMB Control Number: 1830-0567. Type of...

  6. Electronic refractive index changes and measurement of saturation intensity in Cr3+-doped YAG crystal

    NASA Astrophysics Data System (ADS)

    Kesavulu, C. R.; Moncorgé, R.; Fromager, M.; Ait-Ameur, K.; Catunda, T.

    2018-04-01

    The electronic refractive index variation is associated with the difference in the polarizabilities (Δαp) of the Cr3+ ion in its ground and excited states. In order to further address the physical origin of Δαp in a Cr3+-doped YAG crystal, time-resolved Z-scan measurements were performed and analyzed at λ = 457 nm by using a chopped Ar+ ion laser. It is found a nonlinear refractive index with the real and imaginary parts n2‧ = 2.2 × 10-8 cm2/W and n2‧‧ = 2.8 × 10-10 cm2/W, respectively. The real part is associated with a polarizability difference Δαp = 2.2 × 10-25 cm3. The imaginary part indicates that excited state absorption (ESA) occurs and that Cr:YAG behaves as a saturable absorber. The transient response of the Z-scan signal decreases with the laser intensity as τ-1 = τo-1(1+I/Is), where τo is the excited state lifetime and Is the saturation intensity. By measuring this transient response at different laser intensities, it was possible to confirm the τo value which can be derived from fluorescence measurements and to determine a Is value of 8.3 kW/cm2.

  7. Experimental characterization of the saturating, near infrared, self-amplified spontaneous emission free electron laser: Analysis of radiation properties and electron beam dynamics

    NASA Astrophysics Data System (ADS)

    Murokh, Alex

    2002-01-01

    In this work, the main results of the VISA experiment (Visible to Infrared SASE Amplifier) are presented and analyzed. The purpose of the experiment was to build a state-of-the-art single pass self-amplified spontaneous emission (SASE) free electron laser (FEL) based on a high brightness electron beam, and characterize its operation, including saturation, in the near infrared spectral region. This experiment was hosted by Accelerator Test Facility (ATF) at Brookhaven National Laboratory, which is a users facility that provides high brightness relativistic electron beams generated with the photoinjector. During the experiment, SASE FEL performance was studied in two regimes: a long bunch, lower gain operation; and a short bunch high gain regime. The transition between the two conditions was possible due to a novel bunch compression mechanism, which was discovered in the course of the experiment. This compression allowed the variation of peak current in the electron beam before it was launched into the 4-m VISA undulator. In the long bunch regime, a SASE FEL power gain length of 29 cm was obtained, and the generated radiation spectral and statistical properties were characterized. In the short bunch regime, a power gain length of under 18 cm was achieved at 842 nm, which is at least a factor of two shorter than ever previously achieved in this spectral range. Further, FEL saturation was obtained before the undulator exit. The FEL system's performance was measured along the length of the VISA undulator, and in the final state. Statistical, spectral and angular properties of the short bunch SASE radiation have been measured in the exponential gain regime, and at saturation. One of the most important aspects of the data analysis presented in this thesis was the development and use of start-to-end numerical simulations of the experiment. The dynamics of the ATF electron beam was modeled starting from the photocathode, through acceleration, transport, and inside the VISA

  8. Landsliding in partially saturated materials

    USGS Publications Warehouse

    Godt, J.W.; Baum, R.L.; Lu, N.

    2009-01-01

    [1] Rainfall-induced landslides are pervasive in hillslope environments around the world and among the most costly and deadly natural hazards. However, capturing their occurrence with scientific instrumentation in a natural setting is extremely rare. The prevailing thinking on landslide initiation, particularly for those landslides that occur under intense precipitation, is that the failure surface is saturated and has positive pore-water pressures acting on it. Most analytic methods used for landslide hazard assessment are based on the above perception and assume that the failure surface is located beneath a water table. By monitoring the pore water and soil suction response to rainfall, we observed shallow landslide occurrence under partially saturated conditions for the first time in a natural setting. We show that the partially saturated shallow landslide at this site is predictable using measured soil suction and water content and a novel unified effective stress concept for partially saturated earth materials. Copyright 2009 by the American Geophysical Union.

  9. Measuring lateral saturated soil hydraulic conductivity at different spatial scales

    NASA Astrophysics Data System (ADS)

    Di Prima, Simone; Marrosu, Roberto; Pirastru, Mario; Niedda, Marcello

    2017-04-01

    Among the soil hydraulic properties, saturated soil hydraulic conductivity, Ks, is particularly important since it controls many hydrological processes. Knowledge of this soil property allows estimation of dynamic indicators of the soil's ability to transmit water down to the root zone. Such dynamic indicators are valuable tools to quantify land degradation and developing 'best management' land use practice (Castellini et al., 2016; Iovino et al., 2016). In hillslopes, lateral saturated soil hydraulic conductivity, Ks,l, is a key factor since it controls subsurface flow. However, Ks,l data collected by point-scale measurements, including infiltrations tests, could be unusable for interpreting field hydrological processes and particularly subsurface flow in hillslopes. Therefore, they are generally not representative of subsurface processes at hillslope-scale due mainly to soil heterogeneities and the unknown total extent and connectivity of macropore network in the porous medium. On the other hand, large scale Ks,l measurements, which allow to average soil heterogeneities, are difficult and costly, thus remain rare. Reliable Ks,l values should be measured on a soil volume similar to the representative elementary volume (REV) in order to incorporate the natural heterogeneity of the soil. However, the REV may be considered site-specific since it is expected to increase for soils with macropores (Brooks et al., 2004). In this study, laboratory and in-situ Ks,l values are compared in order to detect the dependency Ks,l from the spatial scale of investigation. The research was carried out at a hillslope located in the Baratz Lake watershed, in northwest Sardinia, Italy, characterized by degraded vegetation (grassland established after fire or clearing of the maquis). The experimental area is about 60 m long, with an extent of approximately 2000 m2, and a mean slope of 30%. The soil depth is about 35 to 45 cm. The parent material is a very dense grayish, altered

  10. Measurement of electrical impedance of a Berea sandstone core during the displacement of saturated brine by oil and CO2 injections

    NASA Astrophysics Data System (ADS)

    Liu, Yu; Xue, Ziqiu; Park, Hyuck; Kiyama, Tamotsu; Zhang, Yi; Nishizawa, Osamu; Chae, Kwang-seok

    2015-12-01

    Complex electrical impedance measurements were performed on a brine-saturated Berea sandstone core while oil and CO2 were injected at different pressures and temperatures. The saturations of brine, oil, and CO2 in the core were simultaneously estimated using an X-ray computed tomography scanner. The formation factor of this Berea core and the resistivity indexes versus the brine saturations were calculated using Archie's law. The experimental results found different flow patterns of oil under different pressures and temperatures. Fingers were observed for the first experiment at 10 MPa and 40 °C. The fingers were restrained as the viscosity ratio of oil and water changed in the second (10 MPa and 25 °C) and third (5 MPa and 25 °C) experiments. The resistivity index showed an exponential increase with a decrease in brine saturation. The saturation exponent varied from 1.4 to 4.0 at different pressure and temperature conditions. During the oil injection procedure, the electrical impedance increased with oil saturation and was significantly affected by different oil distributions; therefore, the impedance varied whether the finger was remarkable or not, even if the oil saturation remained constant. During the CO2 injection steps, the impedance showed almost no change with CO2 saturation because the brine in the pores became immobile after the oil injection.

  11. Evaluation of detector readout gain mode and bowtie filters for cone-beam CT imaging of the head

    NASA Astrophysics Data System (ADS)

    Xu, Jennifer; Sisniega, Alejandro; Zbijewski, Wojciech; Dang, Hao; Webster Stayman, J.; Wang, Xiaohui; Foos, David H.; Aygun, Nafi; Koliatsos, Vassillis E.; Siewerdsen, Jeffrey H.

    2016-08-01

    The effects of detector readout gain mode and bowtie filters on cone-beam CT (CBCT) image quality and dose were characterized for a new CBCT system developed for point-of-care imaging of the head, with potential application to diagnosis of traumatic brain injury, intracranial hemorrhage (ICH), and stroke. A detector performance model was extended to include the effects of detector readout gain on electronic digitization noise. The noise performance for high-gain (HG), low-gain (LG), and dual-gain (DG) detector readout was evaluated, and the benefit associated with HG mode in regions free from detector saturation was quantified. Such benefit could be realized (without detector saturation) either via DG mode or by incorporation of a bowtie filter. Therefore, three bowtie filters were investigated that varied in thickness and curvature. A polyenergetic gain correction method was developed to equalize the detector response between the flood-field and projection data in the presence of a bowtie. The effect of bowtie filters on dose, scatter-to-primary ratio, contrast, and noise was quantified in phantom studies, and results were compared to a high-speed Monte Carlo (MC) simulation to characterize x-ray scatter and dose distributions in the head. Imaging in DG mode improved the contrast-to-noise ratio (CNR) by ~15% compared to LG mode at a dose (D 0, measured at the center of a 16 cm CTDI phantom) of 19 mGy. MC dose calculations agreed with CTDI measurements and showed that bowtie filters reduce peripheral dose by as much as 50% at the same central dose. Bowtie filters were found to increase the CNR per unit square-root dose near the center of the image by ~5-20% depending on bowtie thickness, but reduced CNR in the periphery by ~10-40%. Images acquired at equal CTDIw with and without a bowtie demonstrated a 24% increase in CNR at the center of an anthropomorphic head phantom. Combining a thick bowtie filter with a short arc (180°  +  fan angle) scan centered

  12. Evaluation of detector readout gain mode and bowtie filters for cone-beam CT imaging of the head.

    PubMed

    Xu, Jennifer; Sisniega, Alejandro; Zbijewski, Wojciech; Dang, Hao; Stayman, J Webster; Wang, Xiaohui; Foos, David H; Aygun, Nafi; Koliatsos, Vassillis E; Siewerdsen, Jeffrey H

    2016-08-21

    The effects of detector readout gain mode and bowtie filters on cone-beam CT (CBCT) image quality and dose were characterized for a new CBCT system developed for point-of-care imaging of the head, with potential application to diagnosis of traumatic brain injury, intracranial hemorrhage (ICH), and stroke. A detector performance model was extended to include the effects of detector readout gain on electronic digitization noise. The noise performance for high-gain (HG), low-gain (LG), and dual-gain (DG) detector readout was evaluated, and the benefit associated with HG mode in regions free from detector saturation was quantified. Such benefit could be realized (without detector saturation) either via DG mode or by incorporation of a bowtie filter. Therefore, three bowtie filters were investigated that varied in thickness and curvature. A polyenergetic gain correction method was developed to equalize the detector response between the flood-field and projection data in the presence of a bowtie. The effect of bowtie filters on dose, scatter-to-primary ratio, contrast, and noise was quantified in phantom studies, and results were compared to a high-speed Monte Carlo (MC) simulation to characterize x-ray scatter and dose distributions in the head. Imaging in DG mode improved the contrast-to-noise ratio (CNR) by ~15% compared to LG mode at a dose (D 0, measured at the center of a 16 cm CTDI phantom) of 19 mGy. MC dose calculations agreed with CTDI measurements and showed that bowtie filters reduce peripheral dose by as much as 50% at the same central dose. Bowtie filters were found to increase the CNR per unit square-root dose near the center of the image by ~5-20% depending on bowtie thickness, but reduced CNR in the periphery by ~10-40%. Images acquired at equal CTDIw with and without a bowtie demonstrated a 24% increase in CNR at the center of an anthropomorphic head phantom. Combining a thick bowtie filter with a short arc (180°  +  fan angle) scan centered

  13. Saturated fat (image)

    MedlinePlus

    ... saturated fats. Vegetable sources of saturated fat include coconut and palm oils. When looking at a food ... saturated fats. Vegetable sources of saturated fat include coconut and palm oils. When looking at a food ...

  14. A 16.9 dBm InP DHBT W-band power amplifier with more than 20 dB gain

    NASA Astrophysics Data System (ADS)

    Hongfei, Yao; Yuxiong, Cao; Danyu, Wu; Xiaoxi, Ning; Yongbo, Su; Zhi, Jin

    2013-07-01

    A two-stage MMIC power amplifier has been realized by use of a 1-μm InP double heterojunction bipolar transistor (DHBT). The cascode structure, low-loss matching networks, and low-parasite cell units enhance the power gain. The optimum load impedance is determined from load-pull simulation. A coplanar waveguide transmission line is adopted for its ease of fabrication. The chip size is 1.5 × 1.7 mm2 with the emitter area of 16 × 1 μm × 15 μm in the output stage. Measurements show that small signal gain is more than 20 dB over 75.5-84.5 GHz and the saturated power is 16.9 dBm @ 79 GHz with gain of 15.2 dB. The high power gain makes it very suitable for medium power amplification.

  15. Rapid weight gain during infancy and early childhood is related to higher anthropometric measurements in preadolescence.

    PubMed

    Nanri, H; Shirasawa, T; Ochiai, H; Nomoto, S; Hoshino, H; Kokaze, A

    2017-05-01

    This study examined the relationship between rapid weight gain during infancy and/or early childhood and anthropometric measurements [body mass index (BMI), percent body fat (%BF), waist circumference (WC) and waist-to-height ratio (WHtR)] in preadolescence by sex. Subjects were fourth-grade school children (aged 9 to 10 years) from elementary schools in Ina-town, Japan, in 2010. Measurements of height, weight, %BF and WC were conducted for each subject. We obtained data on height and weight of subjects at birth, age 1.5 years and age 3 years from the Maternal and Child Health handbook. Rapid weight gain was defined as a change in weight-for-age standard deviation score greater than 0.67 from birth to age 1.5 years (infancy) or from age 1.5 to 3 years (early childhood). All anthropometric variables (BMI, %BF, WC and WHtR) at age 9 to 10 years were significantly higher in the rapid weight gain during both infancy and early childhood period group than in the no rapid weight gain group, regardless of sex. When compared with the no rapid weight gain group, rapid weight gain during early childhood period had significantly higher BMI and WC in boys and BMI, %BF and WC in girls. Compared with the no rapid weight gain group, the rapid weight gain during infancy group had a significantly higher WC in boys and significantly higher BMI and WC in girls. Rapid weight gain during both infancy and early childhood was related to higher anthropometric measurements, including WHtR, among Japanese preadolescents, regardless of sex. This study suggests that rapid weight gain during infancy and early childhood may be a risk factor for general/abdominal obesity later in life. © 2017 The Authors. Child: Care, Health and Development Published by John Wiley & Sons Ltd.

  16. Measurement of gas diffusion coefficient in liquid-saturated porous media using magnetic resonance imaging

    NASA Astrophysics Data System (ADS)

    Song, Yongchen; Hao, Min; Zhao, Yuechao; Zhang, Liang

    2014-12-01

    In this study, the dual-chamber pressure decay method and magnetic resonance imaging (MRI) were used to dynamically visualize the gas diffusion process in liquid-saturated porous media, and the relationship of concentration-distance for gas diffusing into liquid-saturated porous media at different times were obtained by MR images quantitative analysis. A non-iterative finite volume method was successfully applied to calculate the local gas diffusion coefficient in liquid-saturated porous media. The results agreed very well with the conventional pressure decay method, thus it demonstrates that the method was feasible of determining the local diffusion coefficient of gas in liquid-saturated porous media at different times during diffusion process.

  17. Combined optical gain and degradation measurements in DCM2 doped Tris-(8-hydroxyquinoline)aluminum thin-films

    NASA Astrophysics Data System (ADS)

    Čehovski, Marko; Döring, Sebastian; Rabe, Torsten; Caspary, Reinhard; Kowalsky, Wolfgang

    2016-04-01

    Organic laser sources offer the opportunity to integrate flexible and widely tunable lasers in polymer waveguide circuits, e.g. for Lab-on-Foil applications. Therefore, it is necessary to understand gain and degradation processes for long-term operation. In this paper we address the challenge of life-time (degradation) measurements of photoluminescence (PL) and optical gain in thin-film lasers. The well known guest-host system of aluminum-chelate Alq3 (Tris-(8-hydroxyquinoline)aluminum) as host material and the laser dye DCM2 (4-(Dicyanomethylene)-2- methyl-6-julolidyl-9-enyl-4H-pyran) as guest material is employed as laser active material. Sample layers have been built up by co-evaporation in an ultrahigh (UHV) vacuum chamber. 200nm thick films of Alq3:DCM2 with different doping concentrations have been processed onto glass and thermally oxidized silicon substrates. The gain measurements have been performed by the variable stripe length (VSL) method. This measurement technique allows to determine the thin-film waveguide gain and loss, respectively. For the measurements the samples were excited with UV irradiation (ƛ = 355nm) under nitrogen atmosphere by a passively Q-switched laser source. PL degradation measurements with regard to the optical gain have been done at laser threshold (approximately 3 μJ/cm2), five times above laser threshold and 10 times above laser threshold. A t50-PL lifetime of > 107 pulses could be measured at a maximum excitation energy density of 32 μJ/cm2. This allows for a detailed analysis of the gain degradation mechanism and therefore of the stimulated cross section. Depending on the DCM2 doping concentration C the stimulated cross section was reduced by 35 %. Nevertheless, the results emphasizes the necessity of the investigation of degradation processes in organic laser sources for long-term applications.

  18. New High Gain Target Design for a Laser Fusion Power Plant

    DTIC Science & Technology

    2000-06-07

    target with a minimum energy gain, about 100. Demonstration of ignition or low gain is only important for fusion energy if it leads into a target concept...nonlinear saturation of these instabilities. Our approach is to try to avoid them. 4. A Development Path to Fusion Energy The laser and target concept...on the exact date required to develop fusion energy , it would be worthwhile for a power plant development program to provide enough time and funds

  19. Measurement of basic characteristics and gain uniformity of a triple GEM detector

    NASA Astrophysics Data System (ADS)

    Patra, Rajendra Nath; Singaraju, Rama N.; Biswas, Saikat; Ahammed, Zubayer; Nayak, Tapan K.; Viyogi, Yogendra P.

    2017-08-01

    Large area Gas Electron Multiplier (GEM) detectors have been the preferred choice for tracking devices in major nuclear and particle physics experiments. Uniformity over surface of the detector in terms of gain, energy resolution and efficiency is crucial for the optimum performance of these detectors. In the present work, detailed performance study of a 10×10 cm2 triple GEM detector operated using Ar and CO2 gas mixtures in proportions of 70:30 and 90:10, has been made by making a voltage scan of the efficiency with 106Ru-Rh β-source and cosmic rays. The gain and energy resolution of the detector were studied using the X-ray spectrum of 55Fe source. The uniformity of the detector has been investigated by dividing the detector in 7×7 zones and measuring the gain and energy resolution at the centre of each zone. The variations of the gain and energy resolution have been found to be 8.8% and 6.7%, respectively. These studies are essential to characterise GEM detectors before their final use in the experiments.

  20. Retinal oxygen saturation before and after glaucoma surgery.

    PubMed

    Nitta, Eri; Hirooka, Kazuyuki; Shimazaki, Takeru; Sato, Shino; Ukegawa, Kaori; Nakano, Yuki; Tsujikawa, Akitaka

    2017-08-01

    This study compared retinal vessel oxygen saturation before and after glaucoma surgery. Retinal oxygen saturation in glaucoma patients was measured using a non-invasive spectrophotometric retinal oximeter. Adequate image quality was found in 49 of the 108 consecutive glaucoma patients recruited, with 30 undergoing trabeculectomy, 11 EX-PRESS and eight trabeculotomy. Retinal oxygen saturation measurements in the retinal arterioles and venules were performed at 1 day prior to and at approximately 10 days after surgery. Statistical analysis was performed using a Student's t-test. After glaucoma surgery, intraocular pressure (IOP) decreased from 19.8 ± 7.7 mmHg to 9.0 ± 5.7 mmHg (p < 0.001). Although oxygen saturation in retinal arterioles remained unchanged before and after surgery (104.7 ± 10.6% before and 105.4 ± 9.3% after surgery, p = 0.58), the oxygen saturation in the venules increased from 54.9 ± 7.4% to 57.4 ± 5.7% (p = 0.01). Intraocular pressure (IOP) decreases caused by glaucoma surgery had an effect on the retinal venous oxygen saturation. © 2016 Acta Ophthalmologica Scandinavica Foundation. Published by John Wiley & Sons Ltd.

  1. Simultaneous measurement of macro- and microvascular blood flow and oxygen saturation for quantification of muscle oxygen consumption.

    PubMed

    Englund, Erin K; Rodgers, Zachary B; Langham, Michael C; Mohler, Emile R; Floyd, Thomas F; Wehrli, Felix W

    2018-02-01

    To investigate the relationship between blood flow and oxygen consumption in skeletal muscle, a technique called "Velocity and Perfusion, Intravascular Venous Oxygen saturation and T2*" (vPIVOT) is presented. vPIVOT allows the quantification of feeding artery blood flow velocity, perfusion, draining vein oxygen saturation, and muscle T2*, all at 4-s temporal resolution. Together, the measurement of blood flow and oxygen extraction can yield muscle oxygen consumption ( V˙O2) via the Fick principle. In five subjects, vPIVOT-derived results were compared with those obtained from stand-alone sequences during separate ischemia-reperfusion paradigms to investigate the presence of measurement bias. Subsequently, in 10 subjects, vPIVOT was applied to assess muscle hemodynamics and V˙O2 following a bout of dynamic plantar flexion contractions. From the ischemia-reperfusion paradigm, no significant differences were observed between data from vPIVOT and comparison sequences. After exercise, the macrovascular flow response reached a maximum 8 ± 3 s after relaxation; however, perfusion in the gastrocnemius muscle continued to rise for 101 ± 53 s. Peak V˙O2 calculated based on mass-normalized arterial blood flow or perfusion was 15.2 ± 6.7 mL O 2 /min/100 g or 6.0 ± 1.9 mL O 2 /min/100 g, respectively. vPIVOT is a new method to measure blood flow and oxygen saturation, and therefore to quantify muscle oxygen consumption. Magn Reson Med 79:846-855, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  2. A validation method for near-infrared spectroscopy based tissue oximeters for cerebral and somatic tissue oxygen saturation measurements.

    PubMed

    Benni, Paul B; MacLeod, David; Ikeda, Keita; Lin, Hung-Mo

    2018-04-01

    We describe the validation methodology for the NIRS based FORE-SIGHT ELITE ® (CAS Medical Systems, Inc., Branford, CT, USA) tissue oximeter for cerebral and somatic tissue oxygen saturation (StO 2 ) measurements for adult subjects submitted to the United States Food and Drug Administration (FDA) to obtain clearance for clinical use. This validation methodology evolved from a history of NIRS validations in the literature and FDA recommended use of Deming regression and bootstrapping statistical validation methods. For cerebral validation, forehead cerebral StO 2 measurements were compared to a weighted 70:30 reference (REF CX B ) of co-oximeter internal jugular venous and arterial blood saturation of healthy adult subjects during a controlled hypoxia sequence, with a sensor placed on the forehead. For somatic validation, somatic StO 2 measurements were compared to a weighted 70:30 reference (REF CX S ) of co-oximetry central venous and arterial saturation values following a similar protocol, with sensors place on the flank, quadriceps muscle, and calf muscle. With informed consent, 25 subjects successfully completed the cerebral validation study. The bias and precision (1 SD) of cerebral StO 2 compared to REF CX B was -0.14 ± 3.07%. With informed consent, 24 subjects successfully completed the somatic validation study. The bias and precision of somatic StO 2 compared to REF CX S was 0.04 ± 4.22% from the average of flank, quadriceps, and calf StO 2 measurements to best represent the global whole body REF CX S . The NIRS validation methods presented potentially provide a reliable means to test NIRS monitors and qualify them for clinical use.

  3. Density dependence of the saturated velocity in graphene

    NASA Astrophysics Data System (ADS)

    Ferry, D. K.

    2016-11-01

    The saturated velocity of a semiconductor is an important measure in bench-marking performance for either logic or microwave applications. Graphene has been of interest for such applications due to its apparently high value of the saturated velocity. Recent experiments have suggested that this value is very density dependent and can even exceed the band limiting Fermi velocity. Some of these measurements have also suggested that the scattering is dominated by the low energy surface polar mode of the SiO2 substrate. Here, we show that the saturated velocity of graphene on SiO2 is relatively independent of the density and that the scattering is dominated by the high energy surface polar mode of the substrate.

  4. 34 CFR 462.4 - What are the transition rules for using tests to measure educational gain for the National...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... measure educational gain for the National Reporting System for Adult Education (NRS)? 462.4 Section 462.4... ADULT EDUCATION, DEPARTMENT OF EDUCATION MEASURING EDUCATIONAL GAIN IN THE NATIONAL REPORTING SYSTEM FOR... gain for the National Reporting System for Adult Education (NRS)? A State or a local eligible provider...

  5. Contrast gain control in first- and second-order motion perception.

    PubMed

    Lu, Z L; Sperling, G

    1996-12-01

    A novel pedestal-plus-test paradigm is used to determine the nonlinear gain-control properties of the first-order (luminance) and the second-order (texture-contrast) motion systems, that is, how these systems' responses to motion stimuli are reduced by pedestals and other masking stimuli. Motion-direction thresholds were measured for test stimuli consisting of drifting luminance and texture-contrast-modulation stimuli superimposed on pedestals of various amplitudes. (A pedestal is a static sine-wave grating of the same type and same spatial frequency as the moving test grating.) It was found that first-order motion-direction thresholds are unaffected by small pedestals, but at pedestal contrasts above 1-2% (5-10 x pedestal threshold), motion thresholds increase proportionally to pedestal amplitude (a Weber law). For first-order stimuli, pedestal masking is specific to the spatial frequency of the test. On the other hand, motion-direction thresholds for texture-contrast stimuli are independent of pedestal amplitude (no gain control whatever) throughout the accessible pedestal amplitude range (from 0 to 40%). However, when baseline carrier contrast increases (with constant pedestal modulation amplitude), motion thresholds increase, showing that gain control in second-order motion is determined not by the modulator (as in first-order motion) but by the carrier. Note that baseline contrast of the carrier is inherently independent of spatial frequency of the modulator. The drastically different gain-control properties of the two motion systems and prior observations of motion masking and motion saturation are all encompassed in a functional theory. The stimulus inputs to both first- and second-order motion process are normalized by feedforward, shunting gain control. The different properties arise because the modulator is used to control the first-order gain and the carrier is used to control the second-order gain.

  6. Gain weighted eigenspace assignment

    NASA Technical Reports Server (NTRS)

    Davidson, John B.; Andrisani, Dominick, II

    1994-01-01

    This report presents the development of the gain weighted eigenspace assignment methodology. This provides a designer with a systematic methodology for trading off eigenvector placement versus gain magnitudes, while still maintaining desired closed-loop eigenvalue locations. This is accomplished by forming a cost function composed of a scalar measure of error between desired and achievable eigenvectors and a scalar measure of gain magnitude, determining analytical expressions for the gradients, and solving for the optimal solution by numerical iteration. For this development the scalar measure of gain magnitude is chosen to be a weighted sum of the squares of all the individual elements of the feedback gain matrix. An example is presented to demonstrate the method. In this example, solutions yielding achievable eigenvectors close to the desired eigenvectors are obtained with significant reductions in gain magnitude compared to a solution obtained using a previously developed eigenspace (eigenstructure) assignment method.

  7. Noninvasively measuring oxygen saturation of human finger-joint vessels by multi-transducer functional photoacoustic tomography

    NASA Astrophysics Data System (ADS)

    Deng, Zijian; Li, Changhui

    2016-06-01

    Imaging small blood vessels and measuring their functional information in finger joint are still challenges for clinical imaging modalities. In this study, we developed a multi-transducer functional photoacoustic tomography (PAT) system and successfully imaged human finger-joint vessels from ˜1 mm to <0.2 mm in diameter. In addition, the oxygen saturation (SO2) values of these vessels were also measured. Our results demonstrate that PAT can provide both anatomical and functional information of individual finger-joint vessels with different sizes, which might help the study of finger-joint diseases, such as rheumatoid arthritis.

  8. Dual-wavelength photothermal optical coherence tomography for blood oxygen saturation measurement

    NASA Astrophysics Data System (ADS)

    Yin, Biwei; Kuranov, Roman V.; McElroy, Austin B.; Milner, Thomas E.

    2013-03-01

    We report design and demonstration of a dual wavelength photothermal (DWP) optical coherence tomography (OCT) system for imaging of a phantom microvessel and measurement of hemoglobin oxygen saturation (SO2) level. The DWP-OCT system contains a swept-source (SS) two-beam phase-sensitive (PhS) OCT system (1060 nm) and two intensity modulated photothermal excitation lasers (770 nm and 800 nm). The PhS-OCT probe beam (1060 nm) and photothermal excitation beams are combined into one single-mode optical fiber. A galvanometer based two-dimensional achromatic scanning system is designed to provide 14 μm lateral resolution for the PhS-OCT probe beam (1060 nm) and 13 μm lateral resolution for photothermal excitation beams. DWP-OCT system's sensitivity is 102 dB, axial resolution is 13 μm in tissue and uses a real-time digital dispersion compensation algorithm. Noise floor for optical pathlength measurements is 300 pm in the signal frequency range (380-400 Hz) of photothermal modulation frequencies. Blood SO2 level is calculated from measured optical pathlength (op) signal in a 300 μm diameter microvessel phantom introduced by the two photothermal excitation beams. En-face and B-scan images of a phantom microvessel are recorded, and six blood samples' SO2 levels are measured using DWP-OCT and compared with values provided by a commercial blood oximeter. A mathematical model indicates thermal diffusion introduces a systematic artifact that over-estimates SO2 values and is consistent with measured data.

  9. Intensity fluctuations in bimodal micropillar lasers enhanced by quantum-dot gain competition

    NASA Astrophysics Data System (ADS)

    Leymann, H. A. M.; Hopfmann, C.; Albert, F.; Foerster, A.; Khanbekyan, M.; Schneider, C.; Höfling, S.; Forchel, A.; Kamp, M.; Wiersig, J.; Reitzenstein, S.

    2013-05-01

    We investigate correlations between orthogonally polarized cavity modes of a bimodal micropillar laser with a single layer of self-assembled quantum dots in the active region. While one emission mode of the microlaser demonstrates a characteristic S-shaped input-output curve, the output intensity of the second mode saturates and even decreases with increasing injection current above threshold. Measuring the photon autocorrelation function g(2)(τ) of the light emission confirms the onset of lasing in the first mode with g(2)(0) approaching unity above threshold. In contrast, strong photon bunching associated with superthermal values of g(2)(0) is detected for the other mode for currents above threshold. This behavior is attributed to gain competition of the two modes induced by the common gain material, which is confirmed by photon cross-correlation measurements revealing a clear anticorrelation between emission events of the two modes. The experimental studies are in qualitative agreement with theoretical studies based on a microscopic semiconductor theory, which we extend to the case of two modes interacting with the common gain medium. Moreover, we treat the problem by a phenomenological birth-death model extended to two interacting modes, which reveals that the photon probability distribution of each mode has a double-peak structure, indicating switching behavior of the modes for pump rates around threshold.

  10. Ultrafast Saturation of Electronic-Resonance-Enhanced Coherent Anti-Stokes Raman Scattering and Comparison for Pulse Durations in the Nanosecond to Femtosecond Regime

    DTIC Science & Technology

    2016-02-05

    electronic-resonance-enhanced CARS (ERE- CARS ) configuration is calculated. We demonstrate that while underdamping condition is a suffi- cient condition for...saturation of ERE- CARS with the long-pulse excitations, a transient-gain must be achieved to saturate ERE- CARS signal for ultrafast probe regime. We...ultrafast ERE- CARS . From a simplified analytical solution and a detailed numerical calculation based on density-matrix equations, the saturation threshold

  11. Impact of Reservoir Fluid Saturation on Seismic Parameters: Endrod Gas Field, Hungary

    NASA Astrophysics Data System (ADS)

    El Sayed, Abdel Moktader A.; El Sayed, Nahla A.

    2017-12-01

    Outlining the reservoir fluid types and saturation is the main object of the present research work. 37 core samples were collected from three different gas bearing zones in the Endrod gas field in Hungary. These samples are belonging to the Miocene and the Upper - Lower Pliocene. These samples were prepared and laboratory measurements were conducted. Compression and shear wave velocity were measured using the Sonic Viewer-170-OYO. The sonic velocities were measured at the frequencies of 63 and 33 kHz for compressional and shear wave respectively. All samples were subjected to complete petrophysical investigations. Sonic velocities and mechanical parameters such as young’s modulus, rigidity, and bulk modulus were measured when samples were saturated by 100%-75%-0% brine water. Several plots have been performed to show the relationship between seismic parameters and saturation percentages. Robust relationships were obtained, showing the impact of fluid saturation on seismic parameters. Seismic velocity, Poisson’s ratio, bulk modulus and rigidity prove to be applicable during hydrocarbon exploration or production stages. Relationships among the measured seismic parameters in gas/water fully and partially saturated samples are useful to outline the fluid type and saturation percentage especially in gas/water transitional zones.

  12. High-Gain AlxGa1-xAs/GaAs Transistors For Neural Networks

    NASA Technical Reports Server (NTRS)

    Kim, Jae-Hoon; Lin, Steven H.

    1991-01-01

    High-gain AlxGa1-xAs/GaAs npn double heterojunction bipolar transistors developed for use as phototransistors in optoelectronic integrated circuits, especially in artificial neural networks. Transistors perform both photodetection and saturating-amplification functions of neurons. Good candidates for such application because structurally compatible with laser diodes and light-emitting diodes, detect light, and provide high current gain needed to compensate for losses in holographic optical elements.

  13. PRO-QUEST: a rapid assessment method based on progressive saturation for quantifying exchange rates using saturation times in CEST.

    PubMed

    Demetriou, Eleni; Tachrount, Mohamed; Zaiss, Moritz; Shmueli, Karin; Golay, Xavier

    2018-03-05

    To develop a new MRI technique to rapidly measure exchange rates in CEST MRI. A novel pulse sequence for measuring chemical exchange rates through a progressive saturation recovery process, called PRO-QUEST (progressive saturation for quantifying exchange rates using saturation times), has been developed. Using this method, the water magnetization is sampled under non-steady-state conditions, and off-resonance saturation is interleaved with the acquisition of images obtained through a Look-Locker type of acquisition. A complete theoretical framework has been set up, and simple equations to obtain the exchange rates have been derived. A reduction of scan time from 58 to 16 minutes has been obtained using PRO-QUEST versus the standard QUEST. Maps of both T 1 of water and B 1 can simply be obtained by repetition of the sequence without off-resonance saturation pulses. Simulations and calculated exchange rates from experimental data using amino acids such as glutamate, glutamine, taurine, and alanine were compared and found to be in good agreement. The PRO-QUEST sequence was also applied on healthy and infarcted rats after 24 hours, and revealed that imaging specificity to ischemic acidification during stroke was substantially increased relative to standard amide proton transfer-weighted imaging. Because of the reduced scan time and insensitivity to nonchemical exchange factors such as direct water saturation, PRO-QUEST can serve as an excellent alternative for researchers and clinicians interested to map pH changes in vivo. © 2018 International Society for Magnetic Resonance in Medicine.

  14. Performance bounds for nonlinear systems with a nonlinear ℒ2-gain property

    NASA Astrophysics Data System (ADS)

    Zhang, Huan; Dower, Peter M.

    2012-09-01

    Nonlinear ℒ2-gain is a finite gain concept that generalises the notion of conventional (linear) finite ℒ2-gain to admit the application of ℒ2-gain analysis tools of a broader class of nonlinear systems. The computation of tight comparison function bounds for this nonlinear ℒ2-gain property is important in applications such as small gain design. This article presents an approximation framework for these comparison function bounds through the formulation and solution of an optimal control problem. Key to the solution of this problem is the lifting of an ℒ2-norm input constraint, which is facilitated via the introduction of an energy saturation operator. This admits the solution of the optimal control problem of interest via dynamic programming and associated numerical methods, leading to the computation of the proposed bounds. Two examples are presented to demonstrate this approach.

  15. Using Noble Gas Tracers to Estimate CO2 Saturation in the Field: Results from the 2014 CO2CRC Otway Repeat Residual Saturation Test

    NASA Astrophysics Data System (ADS)

    LaForce, T.; Ennis-King, J.; Boreham, C.; Serno, S.; Cook, P. J.; Freifeld, B. M.; Gilfillan, S.; Jarrett, A.; Johnson, G.; Myers, M.; Paterson, L.

    2015-12-01

    Residual trapping efficiency is a critical parameter in the design of secure subsurface CO2 storage. Residual saturation is also a key parameter in oil and gas production when a field is under consideration for enhanced oil recovery. Tracers are an important tool that can be used to estimate saturation in field tests. A series of measurements of CO2 saturation in an aquifer were undertaken as part of the Otway stage 2B extension field project in Dec. 2014. These tests were a repeat of similar tests in the same well in 2011 with improvements to the data collection and handling method. Two single-well tracer tests using noble gas tracers were conducted. In the first test krypton and xenon are injected into the water-saturated formation to establish dispersivity of the tracers in single-phase flow. Near-residual CO2 saturation is then established near the well. In the second test krypton and xenon are injected with CO2-saturated water to measure the final CO2 saturation. The recovery rate of the tracers is similar to predicted rates using recently published partitioning coefficients. Due to technical difficulties, there was mobile CO2 in the reservoir throughout the second tracer test in 2014. As a consequence, it is necessary to use a variation of the previous simulation procedure to interpret the second tracer test. One-dimensional, radial simulations are used to estimate average saturation of CO2 near the well. Estimates of final average CO2 saturation are computed using two relative permeability models, thermal and isothermal simulations, and three sets of coefficients for the partitioning of the tracers between phases. Four of the partitioning coefficients used were not previously available in the literature. The noble gas tracer field test and analysis of the 2011 and 2014 data both give an average CO2 saturation that is consistent with other field measurements. This study has demonstrated the repeatability of the methodology for noble gas tracer tests in the

  16. Absolute measurement of cerebral optical coefficients, hemoglobin concentration and oxygen saturation in old and young adults with near-infrared spectroscopy

    USDA-ARS?s Scientific Manuscript database

    We present near-infrared spectroscopy measurement of absolute cerebral hemoglobin concentration and saturation in a large sample of 36 healthy elderly (mean age, 85 ± 6 years) and 19 young adults (mean age, 28 ± 4 years). Non-invasive measurements were obtained on the forehead using a commercially a...

  17. Noninvasive measurement of internal jugular venous oxygen saturation by photoacoustic imaging

    NASA Astrophysics Data System (ADS)

    Garcia-Uribe, Alejandro; Erpelding, Todd N.; Ke, Haixin; Reddy, Kavya; Sharma, Anshuman; Wang, Lihong V.

    2014-03-01

    The metabolic rate and oxygen consumption of the brain is reflected in jugular venous oxygen saturation. In many clinical conditions, such as head trauma, stroke, and low cardiac output states, the brain is at risk for hypoxic-ischemic injury. The current gold standard for monitoring brain oxygenation is invasive and requires jugular vein catheterization under fluoroscopic guidance; and therefore it is rarely used. Photo-acoustic tomography in combination with ultrasound can be used to estimate oxygen saturation of the internal jugular vein in real-time. This noninvasive method will enable earlier detection and prevention of impending hypoxic brain injury. A wavelength-tunable dye laser pumped by a Nd:YAG laser delivers light through an optical fiber bundle, and a modified commercial ultrasound imaging system (Philips iU22) detects both the pulse-echo ultrasound (US) and photoacoustic (PA) signals. A custom-built multichannel data acquisition system renders co-registered ultrasound and photoacoustic images at 5 frames per second. After the jugular vein was localized in healthy volunteers, dualwavelength PA images were used to calculate the blood hemoglobin oxygen saturation from the internal jugular vein in vivo. The preliminary results raise confidence that this emerging technology can be used clinically as an accurate, noninvasive indicator of cerebral oxygenation.

  18. Hysteresis of Colloid Retention and Release in Saturated Porous Media During Transients in Solution Chemistry

    USDA-ARS?s Scientific Manuscript database

    Saturated packed column and micromodel transport studies wereconducted to gain insightonmechanismsof colloid retention and release under unfavorable attachment conditions. The initial deposition of colloids in porous media was found to be a strongly coupled process that depended on solution chemistr...

  19. The saturable absorption and reverse saturable absorption properties of Cu doped zinc oxide thin films

    NASA Astrophysics Data System (ADS)

    Yao, Cheng-Bao; Wen, Xin; Li, Qiang-Hua; Yan, Xiao-Yan; Li, Jin; Zhang, Ke-Xin; Sun, Wen-Jun; Bai, Li-Na; Yang, Shou-Bin

    2017-03-01

    We present the structure and nonlinear absorption (NLA) properties of Cu-doped ZnO (CZO) films prepared by magnetron sputtering. The films were characterized using X-ray diffraction (XRD) and scanning electron microscopy (SEM), respectively. The results show that the CZO films can maintain a wurtzite structure. Furthermore, the open-aperture (OA) Z-scan measurements of the film were carried out by nanosecond laser pulse. A transition from saturable absorption (SA) to reverse saturable absorption (RSA) was observed as the excitation intensity increasing. With good excellent nonlinear optical coefficient, the samples were expected to be the potential applications in optical devices.

  20. Oxygen Saturation in Dental Pulp of Permanent Teeth: Difference between Children/Adolescents and Adults.

    PubMed

    Stella, João Paulo Fragomeni; Barletta, Fernando Branco; Giovanella, Larissa Bergesch; Grazziotin-Soares, Renata; Tovo, Maximiano Ferreira; Felippe, Wilson Tadeu; Estrela, Carlos

    2015-09-01

    The objective of this study was to use pulse oximetry to measure oxygen saturation in permanent maxillary central incisors with normal pulp in 2 different age groups: children/adolescents and adults. Blood oxygen saturation levels were measured using a pulse oximeter in 110 maxillary central incisors of 57 individuals, in 1 of 2 possible age bands, as follows: 28 children/adolescents (7-13 years old) and 29 adults (22-36 years old). The following factors were also analyzed: (1) heart rate (beats/min); (2) oxygen saturation rate measured at the patient's index finger, also using a pulse oximeter; (3) tooth crown dimensions; and (4) the time taken by the oximeter to provide a reading. The mean oxygen saturation level in normal central incisors was higher among children/adolescents (84.35%) than adults (77.88%, P = .003). Oxygen saturation rates measured at the patients' fingers were not correlated with saturation obtained at the teeth (r = 0.10). There was no correlation between oxygen saturation readings and tooth dimensions (buccal surface area), heart rate, or oximeter reading time (P > .05). Oxygen saturation values measured in maxillary central incisors using a pulse oximeter revealed differences between children/adolescents and adults, showing that children/adolescents have higher oxygen saturation levels. There was no correlation between oxygen saturation levels in patients' fingers and values from their teeth or between oxygen saturation readings from central incisors and tooth dimensions (buccal surface), heart rate, or oximeter reading time. Copyright © 2015 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  1. Self-stabilizing optical clock pulse-train generator using SOA and saturable absorber for asynchronous optical packet processing.

    PubMed

    Nakahara, Tatsushi; Takahashi, Ryo

    2013-05-06

    We propose a novel, self-stabilizing optical clock pulse-train generator for processing preamble-free, asynchronous optical packets with variable lengths. The generator is based on an optical loop that includes a semiconductor optical amplifier (SOA) and a high-extinction spin-polarized saturable absorber (SA), with the loop being self-stabilized by balancing out the gain and absorption provided by the SOA and SA, respectively. The optical pulse train is generated by tapping out a small portion of a circulating seed pulse. The convergence of the generated pulse energy is enabled by the loop round-trip gain function that has a negative slope due to gain saturation in the SOA. The amplified spontaneous emission (ASE) of the SOA is effectively suppressed by the SA, and a backward optical pulse launched into the SOA enables overcoming the carrier-recovery speed mismatch between the SOA and SA. Without external control for the loop gain, a stable optical pulse train consisting of more than 50 pulses with low jitter is generated from a single 10-ps seed optical pulse even with a variation of 10 dB in the seed pulse intensity.

  2. Method of determining interwell oil field fluid saturation distribution

    DOEpatents

    Donaldson, Erle C.; Sutterfield, F. Dexter

    1981-01-01

    A method of determining the oil and brine saturation distribution in an oil field by taking electrical current and potential measurements among a plurality of open-hole wells geometrically distributed throughout the oil field. Poisson's equation is utilized to develop fluid saturation distributions from the electrical current and potential measurement. Both signal generating equipment and chemical means are used to develop current flow among the several open-hole wells.

  3. 34 CFR 462.4 - What are the transition rules for using tests to measure educational gain for the National...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... measure educational gain for the National Reporting System for Adult Education (NRS)? 462.4 Section 462.4... ADULT EDUCATION, DEPARTMENT OF EDUCATION MEASURING EDUCATIONAL GAIN IN THE NATIONAL REPORTING SYSTEM FOR ADULT EDUCATION General § 462.4 What are the transition rules for using tests to measure educational...

  4. 34 CFR 462.4 - What are the transition rules for using tests to measure educational gain for the National...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... measure educational gain for the National Reporting System for Adult Education (NRS)? 462.4 Section 462.4... ADULT EDUCATION, DEPARTMENT OF EDUCATION MEASURING EDUCATIONAL GAIN IN THE NATIONAL REPORTING SYSTEM FOR ADULT EDUCATION General § 462.4 What are the transition rules for using tests to measure educational...

  5. 34 CFR 462.4 - What are the transition rules for using tests to measure educational gain for the National...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... measure educational gain for the National Reporting System for Adult Education (NRS)? 462.4 Section 462.4... ADULT EDUCATION, DEPARTMENT OF EDUCATION MEASURING EDUCATIONAL GAIN IN THE NATIONAL REPORTING SYSTEM FOR ADULT EDUCATION General § 462.4 What are the transition rules for using tests to measure educational...

  6. 34 CFR 462.4 - What are the transition rules for using tests to measure educational gain for the National...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... measure educational gain for the National Reporting System for Adult Education (NRS)? 462.4 Section 462.4... ADULT EDUCATION, DEPARTMENT OF EDUCATION MEASURING EDUCATIONAL GAIN IN THE NATIONAL REPORTING SYSTEM FOR ADULT EDUCATION General § 462.4 What are the transition rules for using tests to measure educational...

  7. Saturated linkage map construction in Rubus idaeus using genotyping by sequencing and genome-independent imputation

    USDA-ARS?s Scientific Manuscript database

    Rapid development of highly saturated genetic maps aids molecular breeding, which can accelerate gain per breeding cycle in woody perennial plants such as Rubus idaeus (red raspberry). Recently, robust genotyping methods based on high-throughput sequencing were developed, which provide high marker d...

  8. Estimation of CO2 saturation during both CO2 drainage and imbibition processes based on both seismic velocity and electrical resistivity measurements

    NASA Astrophysics Data System (ADS)

    Kim, Jongwook; Nam, Myung Jin; Matsuoka, Toshifumi

    2013-10-01

    In order to monitor injected carbon dioxide (CO2), simultaneous measurements of seismic velocity and electrical resistivity are employed during the drainage (CO2 injection) and imbibition (water injection) processes of a Berea sandstone. Supercritical CO2 (10 MPa at 40 ºC) was injected into a water-saturated Berea sandstone in the drainage stage and monitored via simultaneous measurements. After the injection of supercritical CO2, fresh distilled water was injected into the CO2-injected sandstone during the imbibition stage. Electrical resistivity and P-wave velocity measurements acquired during the drainage and imbibition stages were employed to evaluate CO2 saturations (SCO2) based on the resistivity index and the Gassmann fluid-substitution equations, respectively. Comparing estimated values for SCO2 saturation against those from volume-derived SCO2, based on analysis on injected and drained fluid volumes in the drainage process, we conclude that Gassmann-Brie and resistivity index are suitable for the evaluation based on P-wave velocity and electrical resistivity, respectively. Rt-based estimation properly tracks the variation in SCO2 even when SCO2 is large (>0.15), while Vp-based estimation is sensitive to the variation in SCO2 when SCO2 is small (<0.1). Employing the Gassmann-Brie and resistivity index, estimation of variation in SCO2 based on the simultaneous measurements provides the upper and lower bounds of SCO2 even when SCO2 is large (>0.1), while properly estimating SCO2 when SCO2 is small (<0.1). Monitoring the CO2 imbibition process confirms residual CO2 saturation within the sample.

  9. Retinal oxygen saturation evaluation by multi-spectral fundus imaging

    NASA Astrophysics Data System (ADS)

    Khoobehi, Bahram; Ning, Jinfeng; Puissegur, Elise; Bordeaux, Kimberly; Balasubramanian, Madhusudhanan; Beach, James

    2007-03-01

    Purpose: To develop a multi-spectral method to measure oxygen saturation of the retina in the human eye. Methods: Five Cynomolgus monkeys with normal eyes were anesthetized with intramuscular ketamine/xylazine and intravenous pentobarbital. Multi-spectral fundus imaging was performed in five monkeys with a commercial fundus camera equipped with a liquid crystal tuned filter in the illumination light path and a 16-bit digital camera. Recording parameters were controlled with software written specifically for the application. Seven images at successively longer oxygen-sensing wavelengths were recorded within 4 seconds. Individual images for each wavelength were captured in less than 100 msec of flash illumination. Slightly misaligned images of separate wavelengths due to slight eye motion were registered and corrected by translational and rotational image registration prior to analysis. Numerical values of relative oxygen saturation of retinal arteries and veins and the underlying tissue in between the artery/vein pairs were evaluated by an algorithm previously described, but which is now corrected for blood volume from averaged pixels (n > 1000). Color saturation maps were constructed by applying the algorithm at each image pixel using a Matlab script. Results: Both the numerical values of relative oxygen saturation and the saturation maps correspond to the physiological condition, that is, in a normal retina, the artery is more saturated than the tissue and the tissue is more saturated than the vein. With the multi-spectral fundus camera and proper registration of the multi-wavelength images, we were able to determine oxygen saturation in the primate retinal structures on a tolerable time scale which is applicable to human subjects. Conclusions: Seven wavelength multi-spectral imagery can be used to measure oxygen saturation in retinal artery, vein, and tissue (microcirculation). This technique is safe and can be used to monitor oxygen uptake in humans. This work

  10. Influence of Water Saturation on Thermal Conductivity in Sandstones

    NASA Astrophysics Data System (ADS)

    Fehr, A.; Jorand, R.; Koch, A.; Clauser, C.

    2009-04-01

    Information on thermal conductivity of rocks and soils is essential in applied geothermal and hydrocarbon maturation research. In this study, we investigate the dependence of thermal conductivity on the degree of water saturation. Measurements were made on five sandstones from different outcrops in Germany. In a first step, we characterized the samples with respect to mineralogical composition, porosity, and microstructure by nuclear magnetic resonance (NMR) and mercury injection. We measured thermal conductivity with an optical scanner at different levels of water saturation. Finally we present a simple and easy model for the correlation of thermal conductivity and water saturation. Thermal conductivity decreases in the course of the drying of the rock. This behaviour is not linear and depends on the microstructure of the studied rock. We studied different mixing models for three phases: mineral skeleton, water and air. For argillaceous sandstones a modified arithmetic model works best which considers the irreducible water volume and different pore sizes. For pure quartz sandstones without clay minerals, we use the same model for low water saturations, but for high water saturations a modified geometric model. A clayey sandstone rich in feldspath shows a different behaviour which cannot be explained by simple models. A better understanding will require measurements on additional samples which will help to improve the derived correlations and substantiate our findings.

  11. Dependence of Thermal Conductivity on Water Saturation of Sandstones

    NASA Astrophysics Data System (ADS)

    Fehr, A.; Jorand, R.; Koch, A.; Clauser, C.

    2008-12-01

    Information on thermal conductivity of rocks and soils is essential in applied geothermal and hydrocarbon maturation research. In this study, we investigate the dependence of thermal conductivity on the degree of water saturation. Measurements were made on five sandstones from different outcrops in Germany. In a first step, we characterized the samples with respect to mineralogical composition, porosity, and microstructure by nuclear magnetic resonance (NMR) and mercury injection. We measured thermal conductivity with an optical scanner at different levels of water saturation. Finally we present a simple and easy model for the correlation of thermal conductivity and water saturation. Thermal conductivity decreases in the course of the drying of the rock. This behaviour is not linear and depends on the microstructure of the studied rock. We studied different mixing models for three phases: mineral skeleton, water and air. For argillaceous sandstones a modified arithmetic model works best which considers the irreducible water volume and different pore sizes. For pure quartz sandstones without clay minerals, we use the same model for low water saturations, but for high water saturations a modified geometric model. A clayey sandstone rich in feldspath shows a different behaviour which cannot be explained by simple models. A better understanding will require measurements on additional samples which will help to improve the derived correlations and substantiate our findings.

  12. Blood oxygen saturation of frozen tissue determined by hyper spectral imaging

    NASA Astrophysics Data System (ADS)

    Braaf, Boy; Nadort, Annemarie; Faber, Dirk; ter Wee, Rene; van Leeuwen, Ton; Aalders, Maurice

    2008-02-01

    A method is proposed for determining blood oxygen saturation in frozen tissue. The method is based on a spectral camera system equipped with an Acoustic-Optical-Tuneable-Filter. The HSI-setup is validated by measuring series of unfrozen and frozen samples of a hemoglobin-solution, a hemoglobin-intralipid mixture and whole blood with varying oxygen saturation. The theoretically predicted linear relation between oxygen saturation and absorbance was observed in both the frozen sample series and the unfrozen series. In a final proof of principal, frozen myocardial tissue was measured. Higher saturation values were recorded for ventricle and atria tissue compared to the septum and connective tissue. These results are not validated by measurements with another method. The formation of methemoglobin during freezing and the presence of myoglobin in the tissue turned out to be possible sources of error.

  13. Control of Uncertain Systems under Constraints: Switching Horizon Predictive Control of Persistently Disturbed Input-Saturated Plants

    DTIC Science & Technology

    2006-12-01

    on at any time from a family of candidate feedback-gains so as to control a discrete- time input-saturated LTI system possibly subject to persistent... times robustness Mosca, E. (2006) Control of Uncertain Systems under Constraints: Switching Horizon Predictive Control of Persistently Disturbed...feedback controls u = f(x̂) (3) so as to ensure, under suitable conditions, stability in the noiseless case as well as finite l∞-induced gain of the

  14. Dietary fat and weight gain among women in the Nurses' Health Study.

    PubMed

    Field, Alison E; Willett, Walter C; Lissner, Lauren; Colditz, Graham A

    2007-04-01

    To assess the association of dietary fat and weight gain among adult women and to investigate whether offspring of overweight parents have a greater predisposition to weight gain due to intake of dietary fat. This was an 8-year follow-up of 41,518 women in the Nurses' Health Study (NHS), a population-based, prospective cohort. The women were 41 to 68 years of age, free of cardiovascular disease, cancer, and diabetes in 1986 when "baseline" weight and diet were assessed. Eight years later (1994), changes in weight and dietary intake were assessed. Linear regression models were used to relate change in weight to fat intake and change in fat intake, using the percentage of energy from carbohydrate as the comparison, adjusted for age, BMI in 1986, leisure time physical activity, time spent sitting, percent of calories from protein, and change in percentage of calories from protein. Overall, there was a weak positive association between total fat intake (beta=0.11) and weight gain. Increases in monosaturated and polyunsaturated fat were not associated with weight gain, but increases in animal fat, saturated fat, and trans fat had a positive association with weight change. There was not strong evidence of effect modification by parental weight status (p=0.7 to 0.8 for percentage of calories from total fat, animal fat, and vegetable fat); however, the associations were stronger among the overweight compared with leaner women (p<0.05 for percentage of calories from each type of fat). Among overweight women, for every one percentage increase in percentage of calories from trans fat, women gained an additional 2.3 lb (95% confidence interval, 1.80 to 2.86). Our results show that, overall, percent of calories from fat has only a weak positive association with weight gain; however, percentage of calories from animal, saturated, and trans fat has stronger associations. There was no clear evidence that the diet-weight gain association was stronger among offspring of overweight

  15. Gains in flexibility related to measures of muscular performance: impact of flexibility on muscular performance.

    PubMed

    Ferreira, Gustavo Nunes Tasca; Teixeira-Salmela, Luci Fuscaldi; Guimarães, Cristiano Queiroz

    2007-07-01

    Studies that investigated possible correlations between flexibility and muscular performance are scarce in the literature. Therefore, the purpose of this study was to investigate the impact of a program of static stretching on the flexibility of the hamstrings and on muscular performance of the knee flexors and extensors. Pre-post experimental design. University laboratory. Thirty subjects aged 22.8 +/- 4.9 years with bilaterally shortened hamstrings. Using a protocol that has been previously described, the intervention consisted of 30 sessions of static stretching, performed bilaterally five times a week for 6 weeks. Measures of knee range of motion and isokinetic muscular performance (peak torque, angle of peak torque, and work) of knee flexors and extensors at speeds of 60 and 300 degrees/s. After intervention, significant gains in measures of flexibility (P < 0.0001) were observed, with an average gain of the knee-extension angle of 12.6 degrees, ranging from -1.2 to 30.7 degrees. In addition, we found significant increases in the following parameters of muscular performance: angle of peak torque of hamstrings at 60 and 300 degrees/s (P < 0.0001 and 0.018) and for work at 60 and 300 degrees/s for knee flexors (P = 0.012 and 0.005) and for knee extensors (P < 0.0001). The intervention resulted in gains in measures of flexibility, and these gains had a positive impact on some parameters of muscular performance.

  16. Hemoglobin spectra affect measurement of tissue oxygen saturation

    NASA Astrophysics Data System (ADS)

    Ostojic, Daniel; Kleiser, Stefan; Nasseri, Nassim; Isler, Helene; Scholkmann, Felix; Karen, Tanja; Wolf, Martin

    2018-02-01

    Tissue oxygen saturation (StO2) is a valuable clinical parameter e.g. for intensive care applications or monitoring during surgery. Studies showed that near-infrared spectroscopy (NIRS) based tissue oximeters of different brands give systematically different readings of StO2. Usually these readings are linearly correlated and therefore StO2 readings from one instrument can easily be converted to those of another instrument. However, it is interesting to understand why there is this difference. One reason may be that different brands employ different spectra of hemoglobin. The aim here was to investigate how these different absorption spectra of hemoglobin affect the StO2 readings. Therefore, we performed changes in StO2 in a phantom experiment with real human hemoglobin at three different concentrations (26.5, 45 and 70 μM): desaturation by yeast consuming the oxygen and re-saturation by bubbling oxygen gas. The partial pressure of O2 in the liquid changed from at least 10 kPa to 0 kPa and ISS OxiplexTS, a frequency-domain NIRS instrument, was used to monitor changes of StO2. When we employed two different absorption spectra for hemoglobin, StO2 values were comparable in the normal physiological range. However, particularly at high and low StO2 values, a difference of >6% between these two spectra were noticed. Such a difference of >6% is substantial and relevant for medical applications. This may partly explain why different brands of NIRS instruments provide different StO2 readings. The hemoglobin spectra are therefore a factor to be considered for future developments and applications of NIRS oximeters.

  17. Determination of the conversion gain and the accuracy of its measurement for detector elements and arrays

    NASA Astrophysics Data System (ADS)

    Beecken, B. P.; Fossum, E. R.

    1996-07-01

    Standard statistical theory is used to calculate how the accuracy of a conversion-gain measurement depends on the number of samples. During the development of a theoretical basis for this calculation, a model is developed that predicts how the noise levels from different elements of an ideal detector array are distributed. The model can also be used to determine what dependence the accuracy of measured noise has on the size of the sample. These features have been confirmed by experiment, thus enhancing the credibility of the method for calculating the uncertainty of a measured conversion gain. detector-array uniformity, charge coupled device, active pixel sensor.

  18. Optical gain measurements in porous silicon planar waveguides codoped by erbium and ytterbium ions at 1.53 μm

    NASA Astrophysics Data System (ADS)

    Najar, Adel; Charrier, Joël; Lorrain, Nathalie; Haji, Lazhar; Oueslati, Mehrezi

    2007-09-01

    The on-off optical gain measurements as a function of the pump power were performed on porous silicon planar waveguides codoped by erbium and ytterbium ions. These measurements were obtained for different ratios of Yb concentration to Er concentration. The highest value of the gain was reached when the Yb concentration is three times higher than that of Er at a moderate 980nm pump power value equal to 70mW. Optical losses measurements have been performed on these waveguides and were equal to 2.1dB/cm and an internal gain of about 6.4dB/cm was obtained.

  19. Measuring Financial Gains from Genetically Superior Trees

    Treesearch

    George Dutrow; Clark Row

    1976-01-01

    Planting genetically superior loblolly pines will probably yield high profits.Forest economists have made computer simulations that predict financial gains expected from a tree improvement program under actual field conditions.

  20. A Functional Model for the Integration of Gains and Losses under Risk: Implications for the Measurement of Subjective Value

    ERIC Educational Resources Information Center

    Viegas, Ricardo G.; Oliveira, Armando M.; Garriga-Trillo, Ana; Grieco, Alba

    2012-01-01

    In order to be treated quantitatively, subjective gains and losses (utilities/disutilities) must be psychologically measured. If legitimate comparisons are sought between them, measurement must be at least interval level, with a common unit. If comparisons of absolute magnitudes across gains and losses are further sought, as in standard…

  1. Annual measurements of gain and loss in aboveground carbon density

    NASA Astrophysics Data System (ADS)

    Baccini, A.; Walker, W. S.; Carvalho, L.; Farina, M.; Sulla-menashe, D. J.; Houghton, R. A.

    2017-12-01

    Tropical forests hold large stores of carbon, but their net carbon balance is uncertain. Land use and land-cover change (LULCC) are believed to release between 0.81 and 1.14 PgC yr-1, while intact native forests are thought to be a net carbon sink of approximately the same magnitude. Reducing the uncertainty of these estimates is not only fundamental to the advancement of carbon cycle science but is also of increasing relevance to national and international policies designed to reduce emissions from deforestation and forest degradation (e.g., REDD+). Contemporary approaches to estimating the net carbon balance of tropical forests rely on changes in forest area between two periods, typically derived from satellite data, together with information on average biomass density. These approaches tend to capture losses in biomass due to deforestation (i.e., wholesale stand removals) but are limited in their sensitivity to forest degradation (e.g., selective logging or single-tree removals), which can account for additional biomass losses on the order of 47-75% of deforestation. Furthermore, while satellite-based estimates of forest area loss have been used successfully to estimate associated carbon losses, few such analyses have endeavored to determine the rate of carbon sequestration in growing forests. Here we use 12 years (2003-2014) of pantropical satellite data to quantify net annual changes in the aboveground carbon density of woody vegetation (MgC ha-1yr-1), providing direct, measurement-based evidence that the world's tropical forests are a net carbon source of 425.2 ± 92.0 Tg C yr-1. This net release of carbon consists of losses of 861.7 ± 80.2 Tg C yr-1 and gains of -436.5 ± 31.0 Tg C yr-1 . Gains result from forest growth; losses result from reductions in forest area due to deforestation and from reductions in biomass density within standing forests (degradation), with the latter accounting for 68.9% of overall losses. Our findings advance previous research

  2. Microscopic analysis of saturable absorbers: Semiconductor saturable absorber mirrors versus graphene

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hader, J.; Moloney, J. V.; College of Optical Sciences, University of Arizona, Tucson, Arizona 85721

    2016-02-07

    Fully microscopic many-body calculations are used to study the influence of strong sub-picosecond pulses on the carrier distributions and corresponding optical response in saturable absorbers used for mode-locking—semiconductor (quantum well) saturable absorber mirrors (SESAMs) and single layer graphene based saturable absorber mirrors (GSAMs). Unlike in GSAMs, the saturation fluence and recovery time in SESAMs show a strong spectral dependence. While the saturation fluence in the SESAM is minimal at the excitonic bandgap, the optimal recovery time and least pulse distortion due to group delay dispersion are found for excitation higher in the first subband. For excitation near the SESAM bandgap,more » the saturation fluence is about one tenth of that in the GSAM. At energies above the bandgap, the fluences in both systems become similar. A strong dependence of the saturation fluence on the pulse width in both systems is caused by carrier relaxation during the pulse. The recovery time in graphene is found to be about two to four times faster than that in the SESAMs. The occurrence of negative differential transmission in graphene is shown to be caused by dopant related carriers. In SESAMs, a negative differential transmission is found when exciting below the excitonic resonance where excitation induced dephasing leads to an enhancement of the absorption. Comparisons of the simulation data to the experiment show a very good quantitative agreement.« less

  3. Technical considerations in continuous jugular venous oxygen saturation measurement.

    PubMed

    Dearden, N M; Midgley, S

    1993-01-01

    Fibreoptic reflection oximetry allows continuous in-vivo estimation of jugular venous oxygen saturation. In combination with pulse oximetry the oxygen extraction ratio SaO2-SjO2/SaO2 can be derived enabling identification of states of global luxury perfusion, normal coupling of global cerebral blood flow with global cerebral metabolism, global cerebral hypoperfusion and global cerebral ischemia. Several technical difficulties may arise affecting the accuracy of SjO2 recordings which must be recognised by the clinician before medical intervention is contemplated.

  4. Saturation meter

    DOEpatents

    Gregurech, S.

    1984-08-01

    A saturation meter for use in a pressurized water reactor plant comprising a differential pressure transducer having a first and second pressure sensing means and an alarm. The alarm is connected to the transducer and is preset to activate at a level of saturation prior to the formation of a steam void in the reactor vessel.

  5. Measurements of Integration Gain for the Cospas-Sarsat System from Geosynchronous Satellites

    NASA Technical Reports Server (NTRS)

    Klein-Lebbink, Elizabeth; Christo, James; Peters, Robert; Nguyen, Xuan

    2015-01-01

    The GOES-R satellite is the first satellite to use a standard straight bent pipe transponder with no on-board re-modulation to support Search and Rescue (SAR) operations. Here, we report on the link measurements with a high fidelity satellite transponder simulator made up of satellite EDU (Engineering Design Units) components using an uplink from a beacon simulator and received by a GEOLUT (GEOsynchronous satellite Local User Terminal). We also report on the first ever measurements showing the performance gain obtained by the signal integration performed by the GEOLUT. In addition, a simulator made of commercially available off-the-shelf components assembled to develop the test plan was found to perform very close to the high fidelity simulator. In this paper, we describe what message integration is, how it is implemented in the particular satellite receiving station model used for this tests, and show the measured improvement in message decoding due to this integration process. These are the first tests to quantify the integration gain and are the first tests on the new SARSAT standard for the bent pipe (no onboard re-modulation) repeater used in GOES-R. An inexpensive satellite simulator to run test scripts built from off the shelf components was also found to have the same performance as a high fidelity simulator using actual satellite EDUs.

  6. Measuring Conceptual Gains and Benefits of Student Problem Designs

    NASA Astrophysics Data System (ADS)

    Mandell, Eric; Snyder, Rachel; Oswald, Wayne

    2011-10-01

    Writing assignments can be an effective way of getting students to practice higher-order learning skills in physics. One example of such an assignment is that of problem design. One version of the problem design assignment asks the student to evaluate the material from a chapter, after all instruction and other activities are complete. The student is to decide what concepts and ideas are most central, or critical in the chapter, and construct a problem that he or she feels best encompasses the major themes. Here, we use two concept surveys (FCI and EMCS) to measure conceptual gains for students completing the problem design assignment and present the preliminary results, comparing across several categories including gender, age, degree program, and class standing.

  7. Measuring Student Learning in Social Statistics: A Pretest-Posttest Study of Knowledge Gain

    ERIC Educational Resources Information Center

    Delucchi, Michael

    2014-01-01

    This study used a pretest-posttest design to measure student learning in undergraduate statistics. Data were derived from 185 students enrolled in six different sections of a social statistics course taught over a seven-year period by the same sociology instructor. The pretest-posttest instrument reveals statistically significant gains in…

  8. In-circuit-measurement of parasitic elements in high gain high bandwidth low noise transimpedance amplifiers.

    PubMed

    Cochems, P; Kirk, A; Zimmermann, S

    2014-12-01

    Parasitic elements play an important role in the development of every high performance circuit. In the case of high gain, high bandwidth transimpedance amplifiers, the most important parasitic elements are parasitic capacitances at the input and in the feedback path, which significantly influence the stability, the frequency response, and the noise of the amplifier. As these parasitic capacitances range from a few picofarads down to only a few femtofarads, it is nearly impossible to measure them accurately using traditional LCR meters. Unfortunately, they also cannot be easily determined from the transfer function of the transimpedance amplifier, as it contains several overlapping effects and its measurement is only possible when the circuit is already stable. Therefore, we developed an in-circuit measurement method utilizing minimal modifications to the input stage in order to measure its parasitic capacitances directly and with unconditional stability. Furthermore, using the data acquired with this measurement technique, we both proposed a model for the complicated frequency response of high value thick film resistors as they are used in high gain transimpedance amplifiers and optimized our transimpedance amplifier design.

  9. Resolved discrepancies between visible spontaneous Raman cross-section and direct near-infrared Raman gain measurements in TeO2-based glasses.

    PubMed

    Rivero, Clara; Stegeman, Robert; Couzi, Michel; Talaga, David; Cardinal, Thierry; Richardson, Kathleen; Stegeman, George

    2005-06-13

    Disagreements on the Raman gain response of different tellurite-based glasses, measured at different wavelengths, have been recently reported in the literature. In order to resolve this controversy, a multi-wavelength Raman cross-section experiment was conducted on two different TeO2-based glass samples. The estimated Raman gain response of the material shows good agreement with the directly-measured Raman gain data at 1064 nm, after correction for the dispersion and wavelength-dependence of the Raman gain process.

  10. Dual-wavelength, mode-locked erbium-doped fiber laser employing a graphene/polymethyl-methacrylate saturable absorber.

    PubMed

    Lau, K Y; Abu Bakar, M H; Muhammad, F D; Latif, A A; Omar, M F; Yusoff, Z; Mahdi, M A

    2018-05-14

    Mode-locked fiber laser incorporating a saturable absorber is an attractive configuration due to its stability and simple structure. In this work, we demonstrate a dual-wavelength passively mode-locked erbium-doped fiber laser employing a graphene/polymethyl-methacrylate saturable absorber. A laser resonator is developed based on dual cavity architecture with unidirectional signal oscillation, which is connected by a fiber branch sharing a common gain medium and saturable absorber. Dual wavelength mode-locked fiber lasers are observed at approximately 1530 and 1560 nm with 22.6 mW pump power threshold. Soliton pulse circulates in the laser cavity with pulse duration of 900 and 940 fs at shorter and longer wavelengths, respectively. This work presents a viable option in developing a low threshold mode-locked laser source with closely spaced dual wavelength femtosecond pulses in the C-band wavelength region.

  11. A bootstrapped, low-noise, and high-gain photodetector for shot noise measurement

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Haijun; Yang, Wenhai; Li, Zhixiu

    2014-01-15

    We presented a low-noise, high-gain photodetector based on the bootstrap structure and the L-C (inductance and capacitance) combination. Electronic characteristics of the photodetector, including electronic noise, gain and frequency response, and dynamic range, were verified through a single-frequency Nd:YVO{sub 4} laser at 1064 nm with coherent output. The measured shot noise of 50 μW laser was 13 dB above the electronic noise at the analysis frequency of 2 MHz, and 10 dB at 3 MHz. And a maximum clearance of 28 dB at 2 MHz was achieved when 1.52 mW laser was illuminated. In addition, the photodetector showed excellent linearitiesmore » for both DC and AC amplifications in the laser power range between 12.5 μW and 1.52 mW.« less

  12. Terahertz Optical Gain Based on Intersubband Transitions in Optically-Pumped Semiconductor Quantum Wells: Coherent Pumped-Probe Interactions

    NASA Technical Reports Server (NTRS)

    Liu, Ansheng; Ning, Cun-Zheng

    1999-01-01

    Terahertz optical gain due to intersubband transitions in optically-pumped semiconductor quantum wells (QW's) is calculated nonperturbatively. We solve the pump- field-induced nonequilibrium distribution function for each subband of the QW system from a set of rate equations that include both intrasubband and intersubband relaxation processes. The gain arising from population inversion and stimulated Raman processes is calculated in a unified manner. We show that the coherent pump and signal wave interactions contribute significantly to the THz gain. Because of the optical Stark effect and pump-induced population redistribution, optical gain saturation at larger pump intensities is predicted.

  13. Measurement and evaluation of the relationships between capillary pressure, relative permeability, and saturation for surrogate fluids for laboratory study of geological carbon sequestration

    NASA Astrophysics Data System (ADS)

    Mori, H.; Trevisan, L.; Sakaki, T.; Cihan, A.; Smits, K. M.; Illangasekare, T. H.

    2013-12-01

    Multiphase flow models can be used to improve our understanding of the complex behavior of supercritical CO2 (scCO2) in deep saline aquifers to make predictions for the stable storage strategies. These models rely on constitutive relationships such as capillary pressure (Pc) - saturation (Sw) and relative permeability (kr) - saturation (Sw) as input parameters. However, for practical application of these models, such relationships for scCO2 and brine system are not readily available for geological formations. This is due to the complicated and expensive traditional methods often used to obtain these relationships in the laboratory through high pressure and/or high-temperature controls. A method that has the potential to overcome the difficulty in conducting such experiments is to replicate scCO2 and brine with surrogate fluids that capture the density and viscosity effects to obtain the constitutive relationships under ambient conditions. This study presents an investigation conducted to evaluate this method. An assessment of the method allows us to evaluate the prediction accuracy of multiphase models using the constitutive relationships developed from this approach. With this as a goal, the study reports multiple laboratory column experiments conducted to measure these relationships. The obtained relationships were then used in the multiphase flow simulator TOUGH2 T2VOC to explore capillary trapping mechanisms of scCO2. A comparison of the model simulation to experimental observation was used to assess the accuracy of the measured constitutive relationships. Experimental data confirmed, as expected, that the scaling method cannot be used to obtain the residual and irreducible saturations. The results also showed that the van Genuchten - Mualem model was not able to match the independently measured kr data obtained from column experiments. Simulated results of fluid saturations were compared with saturation measurements obtained using x-ray attenuations. This

  14. Dimer with gain and loss: Integrability and {P}{T}-symmetry restoration

    NASA Astrophysics Data System (ADS)

    Barashenkov, I. V.; Pelinovsky, D. E.; Dubard, P.

    2015-08-01

    A {P}{T}-symmetric nonlinear Schrödinger dimer is a two-site discrete nonlinear Schrödinger equation with one site losing and the other one gaining energy at the same rate. In this paper, two four-parameter families of cubic {P}{T}-symmetric dimers are constructed as gain-loss extensions of their conservative, Hamiltonian, counterparts. We prove that all these damped-driven equations define completely integrable Hamiltonian systems. The second aim of our study is to identify nonlinearities that give rise to the spontaneous {P}{T}-symmetry restoration. When the symmetry of the underlying linear dimer is broken and an unstable small perturbation starts to grow, the nonlinear coupling of the required type will divert an increasingly large percentage of energy from the gaining to the losing site. As a result, the exponential growth will be saturated and all trajectories remain trapped in a finite part of the phase space regardless of the value of the gain-loss coefficient.

  15. Lipid order, saturation and surface property relationships: a study of human meibum saturation.

    PubMed

    Mudgil, Poonam; Borchman, Douglas; Yappert, Marta C; Duran, Diana; Cox, Gregory W; Smith, Ryan J; Bhola, Rahul; Dennis, Gary R; Whitehall, John S

    2013-11-01

    Tear film stability decreases with age however the cause(s) of the instability are speculative. Perhaps the more saturated meibum from infants may contribute to tear film stability. The meibum lipid phase transition temperature and lipid hydrocarbon chain order at physiological temperature (33 °C) decrease with increasing age. It is reasonable that stronger lipid-lipid interactions could stabilize the tear film since these interactions must be broken for tear break up to occur. In this study, meibum from a pool of adult donors was saturated catalytically. The influence of saturation on meibum hydrocarbon chain order was determined by infrared spectroscopy. Meibum is in an anhydrous state in the meibomian glands and on the surface of the eyelid. The influence of saturation on the surface properties of meibum was determined using Langmuir trough technology. Saturation of native human meibum did not change the minimum or maximum values of hydrocarbon chain order so at temperatures far above or below the phase transition of human meibum, saturation does not play a role in ordering or disordering the lipid hydrocarbon chains. Saturation did increase the phase transition temperature in human meibum by over 20 °C, a relatively high amount. Surface pressure-area studies showing the late take off and higher maximum surface pressure of saturated meibum compared to native meibum suggest that the saturated meibum film is quite molecularly ordered (stiff molecular arrangement) and elastic (molecules are able to rearrange during compression and expansion) compared with native meibum films which are more fluid agreeing with the infrared spectroscopic results of this study. In saturated meibum, the formation of compacted ordered islands of lipids above the surfactant layer would be expected to decrease the rate of evaporation compared to fluid and more loosely packed native meibum. Higher surface pressure observed with films of saturated meibum compared to native meibum

  16. [Design of a pulse oximeter used to low perfusion and low oxygen saturation].

    PubMed

    Tan, Shuangping; Ai, Zhiguang; Yang, Yuxing; Xie, Qingguo

    2013-05-01

    This paper presents a new pulse oximeter used to low perfusion at 0.125% and wide oxygen saturation range from 35% to 100%. In order to acquire the best PPG signals, the variable gain amplifier(VGA) is adopted in hardware. The self-developed auto-correlation modeling method is adopted in software and it can extract pulse wave from low perfusion signals and remove motion artifacts partly.

  17. Amplified spontaneous emission in N2 lasers: Saturation and bandwidth study

    NASA Astrophysics Data System (ADS)

    Hariri, A.; Sarikhani, S.

    2014-05-01

    A complete ASE analysis in a 3-level laser system based on the model of the geometrically dependent gain coefficient (GDGC) is presented. For the study, the photon density/intensity rate equation in the saturated and unsaturated conditions, along with reported experimental measurements on the ASE output energy and spectral bandwidth for N2-lasers were utilized. It was found that the GDGC model is able to explain the ASE output energy behavior and gain profiles correctly. In addition, the model was used to predict the spontaneous emission bandwidth Δν0 and consequently the stimulated emission cross-section for the C→B transition of nitrogen molecule at 337.1 nm. In this work, for example, Δν0 was found to be 766 GHz (2.9 Å) which is consistent with the earliest experimental observation on the ASE bandwidth reduction in a N2-laser as reported to be ~3. This is the first theoretical result that explains the spontaneous emission bandwidth which is different from the commonly used value of ~1 Å obtained from measurements of N2-lasers output spectra. The method was also applied for a filament N2 laser for the C→B transition produced in atmosphere, and a good consistency between the laboratory and filament lasers was obtained. Details of the calculations for this study are presented. The results obtained from 3-level systems confirm further the potential of applying the GDGC model for the ASE study in different laser systems and is unifying lasers of the same active medium.

  18. Trivariate characteristics of intensity fluctuations for heavily saturated optical systems.

    PubMed

    Das, Biman; Drake, Eli; Jack, John

    2004-02-01

    Trivariate cumulants of intensity fluctuations have been computed starting from a trivariate intensity probability distribution function, which rests on the assumption that the variation of intensity has a maximum entropy distribution with the constraint that the total intensity is constant. The assumption holds for optical systems such as a thin, long, mirrorless gas laser amplifier where under heavy gain saturation the total output approaches a constant intensity, although intensity of any mode fluctuates rapidly over the average intensity. The relations between trivariate cumulants and central moments that were needed for the computation of trivariate cumulants were derived. The results of the computation show that the cumulants have characteristic values that depend on the number of interacting modes in the system. The cumulant values approach zero when the number of modes is infinite, as expected. The results will be useful for comparison with the experimental triavariate statistics of heavily saturated optical systems such as the output from a thin, long, bidirectional gas laser amplifier.

  19. CORE SATURATION BLOCKING OSCILLATOR

    DOEpatents

    Spinrad, R.J.

    1961-10-17

    A blocking oscillator which relies on core saturation regulation to control the output pulse width is described. In this arrangement an external magnetic loop is provided in which a saturable portion forms the core of a feedback transformer used with the thermionic or semi-conductor active element. A first stationary magnetic loop establishes a level of flux through the saturation portion of the loop. A second adjustable magnet moves the flux level to select a saturation point giving the desired output pulse width. (AEC)

  20. Association of gestational weight gain expectations with advice on actual weight gain

    USDA-ARS?s Scientific Manuscript database

    To examine pregnant women's gestational weight gain expectations/advice from various sources (i.e., self, family/friends, physician) and the impact of these sources of expectations/advice on actual measured gestational weight gain. Pregnant women (n=230, 87.4% Caucasian, second pregnancy) in a cohor...

  1. In-vivo quantitative measurement of tissue oxygen saturation of human webbing using a transmission type continuous-wave near-infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Aizimu, Tuerxun; Adachi, Makoto; Nakano, Kazuya; Ohnishi, Takashi; Nakaguchi, Toshiya; Takahashi, Nozomi; Nakada, Taka-aki; Oda, Shigeto; Haneishi, Hideaki

    2018-02-01

    Near-infrared spectroscopy (NIRS) is a noninvasive method for monitoring tissue oxygen saturation (StO2). Many commercial NIRS devices are presently available. However, the precision of those devices is relatively poor because they are using the reflectance-model with which it is difficult to obtain the blood volume and other unchanged components of the tissue. Human webbing is a thin part of the hand and suitable to measure spectral transmittance. In this paper, we present a method for measuring StO2 of human webbing from a transmissive continuous-wave nearinfrared spectroscopy (CW-NIRS) data. The method is based on the modified Beer-Lambert law (MBL) and it consists of two steps. In the first step, we give a pressure to the upstream region of the measurement point to perturb the concentration of deoxy- and oxy-hemoglobin as remaining the other components and measure the spectral signals. From the measured data, spectral absorbance due to the components other than hemoglobin is calculated. In the second step, spectral measurement is performed at arbitrary time instance and the spectral absorbance obtained in the step 1 is subtracted from the measured absorbance. The tissue oxygen saturation (StO2) is estimated from the remained data. The method was evaluated on an arterial occlusion test (AOT) and a venous occlusion test (VOT). In the evaluation experiment, we confirmed that reasonable values of StO2 were obtained by the proposed method.

  2. Contrast gain control: a bilinear model for chromatic selectivity.

    PubMed

    Singer, B; D'Zmura, M

    1995-04-01

    We report the results of psychophysical experiments on color contrast induction. In earlier work [Vision Res. 34, 3111 (1994)], we showed that modulating the spatial contrast of an annulus in time induces an apparent modulation of the contrast of a central disk, at isoluminance. Here we vary the chromatic properties of disk and annulus systematically in a study of the interactions among the luminance and the color-opponent channels. Results show that induced contrast depends linearly on both disk and annulus contrast, at low and moderate contrast levels. This dependence leads us to propose a bilinear model for color contrast gain control. The model predicts the magnitude and the chromatic properties of induced contrast. In agreement with experimental results, the model displays chromatic selectivity in contrast gain control and a negligible effect of contrast modulation at isoluminance on the appearance of achromatic contrast. We show that the bilinear model for chromatic selectivity may be realized as a feed-forward multiplicative gain control. Data collected at high contrast levels are fit by embellishing the model with saturating nonlinearities in the contrast gain control of each color channel.

  3. Measurement of field-saturated hydraulic conductivity on fractured rock outcrops near Altamura (Southern Italy) with an adjustable large ring infiltrometer

    USGS Publications Warehouse

    Caputo, Maria C.; de Carlo, L.; Masciopinto, C.; Nimmo, J.R.

    2010-01-01

    Up to now, field studies set up to measure field-saturated hydraulic conductivity to evaluate contamination risks, have employed small cylinders that may not be representative of the scale of measurements in heterogeneous media. In this study, a large adjustable ring infiltrometer was designed to be installed on-site directly on rock to measure its field-saturated hydraulic conductivity. The proposed device is inexpensive and simple to implement, yet also very versatile, due to its large adjustable diameter that can be fixed on-site. It thus allows an improved representation of the natural system's heterogeneity, while also taking into consideration irregularities in the soil/rock surface. The new apparatus was tested on an outcrop of karstic fractured limestone overlying the deep Murge aquifer in the South of Italy, which has recently been affected by untreated sludge disposal, derived from municipal and industrial wastewater treatment plants. The quasi-steady vertical flow into the unsaturated fractures was investigated by measuring water levels during infiltrometer tests. Simultaneously, subsurface electrical resistivity measurements were used to visualize the infiltration of water in the subsoil, due to unsaturated water flow in the fractures. The proposed experimental apparatus works well on rock outcrops, and allows the repetition of infiltration tests at many locations in order to reduce model uncertainties in heterogeneous media. ?? 2009 Springer-Verlag.

  4. Dietary fat saturation and endurance exercise alter lipolytic sensitivity of adipocytes isolated from Yucatan miniature swine.

    PubMed

    Meservey, C M; Carey, G B

    1994-12-01

    This study examined the effects of dietary fat saturation and endurance exercise on lipolytic sensitivity of adipocytes isolated from Yucatan miniature swine. Twenty-four female swine had free access to a high fat diet with a polyunsaturated to saturated fat ratio (P:S) of 0.3 or 1.0, and were treadmill-exercised or remained sedentary. After 3 months, biopsies were taken, adipocytes were isolated and lipolytic activity was determined. Adipocytes were incubated with adenosine deaminase followed by epinephrine, isoproterenol, or epinephrine plus phenylisopropyladenosine, and glycerol release was measured. Backfat thickness was measured by ultrasonography. Our findings revealed that 1) adipocytes from 1.0 P:S diet-fed swine released 30% more glycerol than adipocytes from 0.3 P:S diet-fed swine when stimulated by 1 micromol/L isoproterenol; 2) adipocytes from exercised swine released 45% more glycerol than adipocytes from sedentary swine when stimulated by 1 micromol/L epinephrine; 3) body weight of exercised swine was significantly lower than sedentary swine; and 4) backfat thickness was less in exercised swine than in sedentary swine (2.39 vs. 2.95 cm, P = 0.002). We conclude that ad libitum consumption of diet with a P:S of 1.0, combined with endurance exercise, increases lipolytic sensitivity, lowers body weight gain, and reduces fat accumulation in female Yucatan miniature swine.

  5. Ventilatory Cycle Measurements and Loop Gain in Central Apnea in Mining Drivers Exposed to Intermittent Altitude

    PubMed Central

    Rey de Castro, Jorge; Liendo, Alicia; Ortiz, Oswaldo; Rosales-Mayor, Edmundo; Liendo, César

    2017-01-01

    Study Objectives: By measuring the apnea length, ventilatory phase, respiratory cycle length, and loop gain, we can further characterize the central apneas of high altitude (CAHA). Methods: Sixty-three drivers of all-terrain vehicles, working in a Peruvian mine located at 2,020 meters above sea level (MASL), were evaluated. A respiratory polygraph was performed in the first night they slept at high altitude. None of the subjects were exposed to oxygen during the test or acetazolamide in the preceding days of the test. Results: Sixty-three respiratory polygraphs were performed, and 59 were considered for analysis. Forty-six (78%) were normal, 6 (10%) had OSA, and 7 (12%) had CAHA. Key data from subjects include: residing altitude: 341 ± 828 MASL, Lake Louise scoring: 0.4 ± 0.8, Epworth score: 3.4 ± 2.7, apneahypopnea index: 35.7 ± 19.3, CA index: 13.4 ± 14.2, CA length: 14.4 ± 3.6 sec, ventilatory length: 13.5 ± 2.9 sec, cycle length: 26.5 ± 4.0 sec, ventilatory length/CA length ratio 0.9 ± 0.3 and circulatory delay 13.3 ± 2.9 sec. Duty ratio media [ventilatory duration/cycle duration] was 0.522 ± 0 0.128 [0.308–0.700] and loop gain was calculated from the duty ratio utilizing this formula: LG = 2π / [(2πDR-sin(2πDR)]. All subjects have a high loop gain media 2.415 ± 1.761 [1.175–6.260]. Multiple correlations were established with loop gain values, but the only significant correlation detected was between central apnea index and loop gain. Conclusions: Twelve percent of the studied population had CAHA. Measurements of respiratory cycle in workers with CAHA are more similar to idiopathic central apneas rather than Hunter-Cheyne-Stokes respiration. Also, there was a high degree of correlation between severity of central apnea and the degree of loop gain. The abnormal breathing patterns in those subjects could affect the sleep quality and potentially increase the risk for work accidents. Citation: Rey de Castro J, Liendo A, Ortiz O, Rosales-Mayor E

  6. Cerebral saturation in cardiac arrest patients measured with near-infrared technology during pre-hospital advanced life support. Results from Copernicus I cohort study.

    PubMed

    Genbrugge, Cornelia; De Deyne, Cathy; Eertmans, Ward; Anseeuw, Kurt; Voet, Dirk; Mertens, Ilse; Sabbe, Marc; Stroobants, Jan; Bruckers, Liesbeth; Mesotten, Dieter; Jans, Frank; Boer, Willem; Dens, Jo

    2018-03-23

    To date, monitoring options during pre-hospital advanced life support (ALS) are limited. Regional cerebral saturation (rSO 2 ) may provide more information concerning the brain during ALS. We hypothesized that an increase in rSO 2 during ALS in out-of hospital cardiac arrest (OHCA) patients is associated with return of spontaneous circulation (ROSC). A prospective, non-randomized multicenter study was conducted in the pre-hospital setting of six hospitals in Belgium. Cerebral saturation was measured during pre-hospital ALS by a medical emergency team in OHCA patients. Cerebral saturation was continuously measured until ALS efforts were terminated or until the patient with sustained ROSC (>20 min) arrived at the emergency department. To take the longitudinal nature of the data into account, a linear mixed model was used. The correlation between the repeated measures of a patient was handled by means of ​a random intercept and a random slope. Our primary analysis tested the association of rSO 2 with ROSC. Of the 329 patients 110 (33%) achieved ROSC. First measured rSO 2 was 30% ± 18 in the ROSC group and 24% ± 15 in the no-ROSC group (p = .004; mean ± SD). Higher mean rSO 2 values were observed in the ROSC group compared to the no-ROSC group (41% ± 13 versus 33% ± 13 respectively; p < 0.001). The median increase in rSO 2, measured from start until two minutes before ROSC, was higher in the ROSC group (ROSC group 17% (IQR 6-29)) than in the no-ROSC group (8% (IQR 2-13); p < 0.001). An increase in rSO 2 above 15% was associated with ROSC (OR 4.5; 95%CI 2.747-7.415; p < 0.001). Regional cerebral saturation measurements can be used during pre-hospital ALS as an additional marker to predict ROSC. An increase of at least 15% in rSO 2 during ALS is associated with a higher probability of ROSC. Copyright © 2018 Elsevier B.V. All rights reserved.

  7. Effect of nonlinearity saturation on hot-image formation in cascaded saturable nonlinear medium slabs

    NASA Astrophysics Data System (ADS)

    Wang, Youwen; Dai, Zhiping; Ling, Xiaohui; Chen, Liezun; Lu, Shizhuan; You, Kaiming

    2016-11-01

    In high-power laser system such as Petawatt lasers, the laser beam can be intense enough to result in saturation of nonlinear refraction index of medium. Based on the standard linearization method of small-scale self-focusing and the split-step Fourier numerical calculation method, we present analytical and simulative investigations on the hot-image formation in cascaded saturable nonlinear medium slabs, to disclose the effect of nonlinearity saturation on the distribution and intensity of hot images. The analytical and simulative results are found in good agreement. It is shown that, saturable nonlinearity does not change the distribution of hot images, while may greatly affect the intensity of hot images, i.e., for a given saturation light intensity, with the intensity of the incident laser beam, the intensity of hot images firstly increases monotonously and eventually reaches a saturation; for the incident laser beam of a given intensity, with the saturation light intensity lowering, the intensity of hot images decreases rapidly, even resulting in a few hot images too weak to be visible.

  8. The viscosity of the refrigerant 1,1-difluoroethane along the saturation line

    NASA Astrophysics Data System (ADS)

    van der Gulik, P. S.

    1993-07-01

    The viscosity coefficient of the refrigerant R152a (1,1-difluoroethane) has been measured along the saturation line both in the saturated liquid and in the saturated vapor. The data have been obtained every 10 K from 243 up to 393 K by means of a vibrating-wire viscometer using the free damped oscillation method. The density along the saturation line was calculated from the equation of state given by Tamatsu et al. with application of the saturated vapor-pressure correlation given by Higashi et al. An interesting result is that in the neighborhood of the critical point, the kinematic viscosity of the saturated liquid seems to coincide with that of the saturated vapor. The results for the saturated liquid are in satisfying agreement with those of Kumagai and Takahashi and of Phillips and Murphy. A comparison of the saturatedvaport data with the unsaturated-vapor data of Takahashi et al. shows some discrepancies.

  9. Feasibility of hydroxyl concentration measurements by laser-saturated fluorescence in high-pressure flames

    NASA Technical Reports Server (NTRS)

    Carter, Campbell D.; King, Galen B.; Laurendeau, Normand M.; Salmon, J. Thaddeus

    1987-01-01

    The effect of pressure on the laser-saturated fluorescence method for measuring OH concentration in high-pressure flames is studied using calculations for the burned-gas region of a stoichiometric H2-O2 flame at 2000 K. A numerical model of the excitation dynamics of OH is developed to explore the validity of the balanced cross-rate model at higher pressures. It is shown that depopulation of the laser-coupled levels is sensitive to collisions which depopulate v-double-prime (VDP) = 0 and to rate coefficients for rotational transfer in the ground state which are smaller than those in the excited state. In particular, it is shown that the depopulation of VDP = 0, and hence the laser-coupled levels, depends on the probability of electronic quenching to vibrational levels for which VDP is greater than 0 and vibrational relaxation to VDP = 0.

  10. Assessment of contrast gain signature in inferred magnocellular and parvocellular pathways in patients with glaucoma

    PubMed Central

    Sun, Hao; Swanson, William H.; Arvidson, Brian; Dul, Mitchell W.

    2010-01-01

    PURPOSE Contrast gain signatures of inferred magnocellular and parvocellular postreceptoral pathways were assessed for patients with glaucoma using a contrast discrimination paradigm developed by Pokorny and Smith. The potential causes for changes in contrast gain signature were investigated using model simulations of ganglion cell contrast responses. METHODS Foveal contrast discrimination thresholds were measured with a pedestal-Δ-pedestal paradigm developed by Pokorny and Smith (1997). Stimuli were 27 msec luminance increments superimposed on 227 msec pulsed Δ-pedestals. Contrast thresholds and contrast gain signatures mediated by the inferred magnocellular (MC) and parvocellular (PC) pathways were assessed using linear fits to contrast discrimination thresholds at either lower or higher Δ-pedestal contrasts, respectively. Twenty-seven patients with glaucoma were tested, as well as 16 age-similar control subjects free of eye disease. RESULTS Contrast sensitivity and contrast gain signature mediated by the inferred MC pathway were lower for the glaucoma group, and reduced contrast gain signature was correlated with reduced contrast sensitivity (r2=45%, p<0.0005). These two parameters mediated by the inferred PC pathway were little affected for the glaucoma group. Model simulations suggest that the reduced contrast sensitivity and contrast gain signature were consistent with the hypothesis that reduced MC ganglion cell dendritic complexity can lead to reduced effective retinal illuminance, and hence increased semi-saturation contrast of the ganglion cell contrast response functions. CONCLUSIONS The contrast sensitivity and contrast gain signature of the inferred MC pathway were reduced in patients with glaucoma. The results were consistent with a model of ganglion cell dysfunction due to reduced synaptic density. PMID:18501947

  11. Multi-spectral imaging of oxygen saturation

    NASA Astrophysics Data System (ADS)

    Savelieva, Tatiana A.; Stratonnikov, Aleksander A.; Loschenov, Victor B.

    2008-06-01

    The system of multi-spectral imaging of oxygen saturation is an instrument that can record both spectral and spatial information about a sample. In this project, the spectral imaging technique is used for monitoring of oxygen saturation of hemoglobin in human tissues. This system can be used for monitoring spatial distribution of oxygen saturation in photodynamic therapy, surgery or sports medicine. Diffuse reflectance spectroscopy in the visible range is an effective and extensively used technique for the non-invasive study and characterization of various biological tissues. In this article, a short review of modeling techniques being currently in use for diffuse reflection from semi-infinite turbid media is presented. A simple and practical model for use with a real-time imaging system is proposed. This model is based on linear approximation of the dependence of the diffuse reflectance coefficient on relation between absorbance and reduced scattering coefficient. This dependence was obtained with the Monte Carlo simulation of photon propagation in turbid media. Spectra of the oxygenated and deoxygenated forms of hemoglobin differ mostly in the red area (520 - 600 nm) and have several characteristic points there. Thus four band-pass filters were used for multi-spectral imaging. After having measured the reflectance, the data obtained are used for fitting the concentration of oxygenated and free hemoglobin, and hemoglobin oxygen saturation.

  12. Experimental investigation of the stimulated Brillouin scattering growth and saturation at 526 and 351 nm for direct drive and shock ignition

    NASA Astrophysics Data System (ADS)

    Depierreux, S.; Loiseau, P.; Michel, D. T.; Tassin, V.; Stenz, C.; Masson-Laborde, P.-E.; Goyon, C.; Yahia, V.; Labaune, C.

    2012-01-01

    We have designed experiments to study the effect of the laser wavelength (0.527 versus 0.351 μm) on the coupling efficiency in plasma conditions relevant to compression and shock ignition (SI) schemes in different intensity regimes. A difficult issue was to produce interaction conditions that are equivalent for the two wavelengths. This was obtained by using plasma preformed from a solid target with a plasma-preforming beam at the same wavelength as the interaction beam. This produced an almost exponential density profile from vacuum to the critical density of the interaction beam in which all interaction mechanisms are taken into account. The growth and saturation of stimulated Brillouin scattering (SBS) have been measured at the two wavelengths, in backward as well as in near-backward directions. We have found that the SBS intensity threshold is ˜1.5 times higher at 3ω than at 2ω in agreement with the Iλ dependence of the SBS gain. The SBS behaviour is very well reproduced by the linear calculations of the postprocessor PIRANAH, giving us confidence that we have a good control of the relevance of the experimental conditions for the study of the laser wavelength effect on laser-plasma coupling. When SBS reaches the saturation regime, same levels of reflectivity are measured at 2 and 3ω. Numerical simulations were performed with the paraxial code HERA to study the contribution of the fluid mechanisms in the saturation of SBS, showing that pump depletion and interplay with filamentation are likely to be the most important processes in SBS saturation for these conditions. This scenario also applies to the SBS of shock ignition high-intensity beams.

  13. Using random forests to explore the effects of site attributes and soil properties on near-saturated and saturated hydraulic conductivity

    NASA Astrophysics Data System (ADS)

    Jorda, Helena; Koestel, John; Jarvis, Nicholas

    2014-05-01

    Knowledge of the near-saturated and saturated hydraulic conductivity of soil is fundamental for understanding important processes like groundwater contamination risks or runoff and soil erosion. Hydraulic conductivities are however difficult and time-consuming to determine by direct measurements, especially at the field scale or larger. So far, pedotransfer functions do not offer an especially reliable alternative since published approaches exhibit poor prediction performances. In our study we aimed at building pedotransfer functions by growing random forests (a statistical learning approach) on 486 datasets from the meta-database on tension-disk infiltrometer measurements collected from peer-reviewed literature and recently presented by Jarvis et al. (2013, Influence of soil, land use and climatic factors on the hydraulic conductivity of soil. Hydrol. Earth Syst. Sci. 17(12), 5185-5195). When some data from a specific source publication were allowed to enter the training set whereas others were used for validation, the results of a 10-fold cross-validation showed reasonable coefficients of determination of 0.53 for hydraulic conductivity at 10 cm tension, K10, and 0.41 for saturated conductivity, Ks. The estimated average annual temperature and precipitation at the site were the most important predictors for K10, while bulk density and estimated average annual temperature were most important for Ks prediction. The soil organic carbon content and the diameter of the disk infiltrometer were also important for the prediction of both K10 and Ks. However, coefficients of determination were around zero when all datasets of a specific source publication were excluded from the training set and exclusively used for validation. This may indicate experimenter bias, or that better predictors have to be found or that a larger dataset has to be used to infer meaningful pedotransfer functions for saturated and near-saturated hydraulic conductivities. More research is in progress

  14. Determination of the STIS CCD Gain

    NASA Astrophysics Data System (ADS)

    Riley, Allyssa; Monroe, TalaWanda; Lockwood, Sean

    2016-09-01

    This report summarizes the analysis and absolute gain results of the STIS Cycle 23 special calibration program 14424 that was designed to measure the gain of amplifiers A, C and D at nominal gain settings of 1 and 4 e-/DN. We used the mean-variance technique and the results indicate a <3.5% change in the gain for amplifier D from when it was originally calculated pre-flight. We compared these values to previous measurements from Cycles 17 through 23. This report outlines the observations, methodology, and results of the mean-variance technique.

  15. Precision saturated absorption spectroscopy of H3+

    NASA Astrophysics Data System (ADS)

    Guan, Yu-Chan; Chang, Yung-Hsiang; Liao, Yi-Chieh; Peng, Jin-Long; Wang, Li-Bang; Shy, Jow-Tsong

    2018-03-01

    In our previous work on the Lamb-dips of the ν2 fundamental band transitions of H3+, the saturated absorption spectrum was obtained by third-derivative spectroscopy using frequency modulation with an optical parametric oscillator (OPO). However, frequency modulation also caused errors in the absolute frequency determination. To solve this problem, we built a tunable offset locking system to lock the pump frequency of the OPO to an iodine-stabilized Nd:YAG laser. With this improvement, we were able to scan the OPO idler frequency precisely and obtain the saturated absorption profile using intensity modulation. Furthermore, ion concentration modulation was employed to subtract the background noise and increase the signal-to-noise ratio. To determine the absolute frequency of the idler wave, the OPO signal frequency was locked to an optical frequency comb. The absolute frequency accuracy of our spectrometer was better than 7 kHz, demonstrated by measuring the wavelength standard transition of methane at 3.39 μm. Finally, we measured 16 transitions of H3+ and our results agree very well with other precision measurements. This work successfully resolved the discrepancies between our previous measurements and other precision measurements.

  16. Low-loss flake-graphene saturable absorber mirror for laser mode-locking at sub-200-fs pulse duration

    NASA Astrophysics Data System (ADS)

    Cunning, B. V.; Brown, C. L.; Kielpinski, D.

    2011-12-01

    Saturable absorbers are a key component for mode-locking femtosecond lasers. Polymer films containing graphene flakes have recently been used in transmission as laser mode-lockers but suffer from high nonsaturable loss, limiting their application in low-gain lasers. Here, we present a saturable absorber mirror based on a film of pure graphene flakes. The device is used to mode lock an erbium-doped fiber laser, generating pulses with state-of-the-art, sub-200-fs duration. The laser characteristic indicates that the film exhibits low nonsaturable loss (13% per pass) and large absorption modulation depth (45% of low-power absorption).

  17. Quantum hacking: Saturation attack on practical continuous-variable quantum key distribution

    NASA Astrophysics Data System (ADS)

    Qin, Hao; Kumar, Rupesh; Alléaume, Romain

    2016-07-01

    We identify and study a security loophole in continuous-variable quantum key distribution (CVQKD) implementations, related to the imperfect linearity of the homodyne detector. By exploiting this loophole, we propose an active side-channel attack on the Gaussian-modulated coherent-state CVQKD protocol combining an intercept-resend attack with an induced saturation of the homodyne detection on the receiver side (Bob). We show that an attacker can bias the excess noise estimation by displacing the quadratures of the coherent states received by Bob. We propose a saturation model that matches experimental measurements on the homodyne detection and use this model to study the impact of the saturation attack on parameter estimation in CVQKD. We demonstrate that this attack can bias the excess noise estimation beyond the null key threshold for any system parameter, thus leading to a full security break. If we consider an additional criterion imposing that the channel transmission estimation should not be affected by the attack, then the saturation attack can only be launched if the attenuation on the quantum channel is sufficient, corresponding to attenuations larger than approximately 6 dB. We moreover discuss the possible countermeasures against the saturation attack and propose a countermeasure based on Gaussian postselection that can be implemented by classical postprocessing and may allow one to distill the secret key when the raw measurement data are partly saturated.

  18. Assessment of contrast gain signature in inferred magnocellular and parvocellular pathways in patients with glaucoma.

    PubMed

    Sun, Hao; Swanson, William H; Arvidson, Brian; Dul, Mitchell W

    2008-11-01

    Contrast gain signatures of inferred magnocellular and parvocellular postreceptoral pathways were assessed for patients with glaucoma using a contrast discrimination paradigm developed by Pokorny and Smith. The potential causes for changes in contrast gain signature were investigated using model simulations of ganglion cell contrast responses. Foveal contrast discrimination thresholds were measured with a pedestal-Delta-pedestal paradigm developed by Pokorny and Smith [Pokorny, J., & Smith, V. C. (1997). Psychophysical signatures associated with magnocellular and parvocellular pathway contrast gain. Journal of the Optical Society of America A, 14(9), 2477-2486]. Stimuli were 27 ms luminance increments superimposed on 227 ms pulsed Delta-pedestals. Contrast thresholds and contrast gain signatures mediated by the inferred magnocellular (MC) and parvocellular (PC) pathways were assessed using linear fits to contrast discrimination thresholds at either lower or higher Delta-pedestal contrasts, respectively. Twenty-seven patients with glaucoma were tested, as well as 16 age-similar control subjects free of eye disease. Contrast sensitivity and contrast gain signature mediated by the inferred MC pathway were lower for the glaucoma group, and reduced contrast gain signature was correlated with reduced contrast sensitivity (r(2)=45%, p<.0005). These two parameters mediated by the inferred PC pathway were little affected for the glaucoma group. Model simulations suggest that the reduced contrast sensitivity and contrast gain signature were consistent with the hypothesis that reduced MC ganglion cell dendritic complexity can lead to reduced effective retinal illuminance, and hence increased semi-saturation contrast of the ganglion cell contrast response functions. The contrast sensitivity and contrast gain signature of the inferred MC pathway were reduced in patients with glaucoma. The results were consistent with a model of ganglion cell dysfunction due to reduced synaptic

  19. Photoacoustic infrared spectroscopy for conducting gas tracer tests and measuring water saturations in landfills.

    PubMed

    Jung, Yoojin; Han, Byunghyun; Mostafid, M Erfan; Chiu, Pei; Yazdani, Ramin; Imhoff, Paul T

    2012-02-01

    Gas tracer tests can be used to determine gas flow patterns within landfills, quantify volatile contaminant residence time, and measure water within refuse. While gas chromatography (GC) has been traditionally used to analyze gas tracers in refuse, photoacoustic spectroscopy (PAS) might allow real-time measurements with reduced personnel costs and greater mobility and ease of use. Laboratory and field experiments were conducted to evaluate the efficacy of PAS for conducting gas tracer tests in landfills. Two tracer gases, difluoromethane (DFM) and sulfur hexafluoride (SF(6)), were measured with a commercial PAS instrument. Relative measurement errors were invariant with tracer concentration but influenced by background gas: errors were 1-3% in landfill gas but 4-5% in air. Two partitioning gas tracer tests were conducted in an aerobic landfill, and limits of detection (LODs) were 3-4 times larger for DFM with PAS versus GC due to temporal changes in background signals. While higher LODs can be compensated by injecting larger tracer mass, changes in background signals increased the uncertainty in measured water saturations by up to 25% over comparable GC methods. PAS has distinct advantages over GC with respect to personnel costs and ease of use, although for field applications GC analyses of select samples are recommended to quantify instrument interferences. Copyright © 2011 Elsevier Ltd. All rights reserved.

  20. Tissue oxygen saturation and finger perfusion index in central hypovolemia: influence of pain.

    PubMed

    Høiseth, Lars Ø; Hisdal, Jonny; Hoff, Ingrid E; Hagen, Ove A; Landsverk, Svein A; Kirkebøen, Knut A

    2015-04-01

    Tissue oxygen saturation and peripheral perfusion index are proposed as early indirect markers of hypovolemia in trauma patients. Hypovolemia is associated with increased sympathetic nervous activity. However, many other stimuli, such as pain, also increase sympathetic activity. Since pain is often present in trauma patients, its effect on the indirect measures of hypovolemia needs to be clarified. The aim of this study was, therefore, to explore the effects of hypovolemia and pain on tissue oxygen saturation (measurement sites: cerebral, deltoid, forearm, and thenar) and finger photoplethysmographic perfusion index. Experimental study. University hospital clinical circulation and research laboratory. Twenty healthy volunteers. Central hypovolemia was induced with lower body negative pressure (-60 mm Hg) and pain by the cold pressor test (ice water exposure). Interventions were performed in a 2×2 fashion with the combination of lower body negative pressure or not (normovolemia), and ice water or not (sham). Each subject was thus exposed to four experimental sequences, each lasting for 8 minutes. Measurements were averaged over 30 seconds. For each person and sequence, the minimal value was analyzed. Tissue oxygenation in all measurement sites and finger perfusion index were reduced during hypovolemia/sham compared with normovolemia/sham. Tissue oxygen saturation (except cerebral) and perfusion index were reduced by pain during normovolemia. There was a larger reduction in tissue oxygenation (all measurement sites) and perfusion index during hypovolemia and pain than during normovolemia and pain. Pain (cold pressor test) reduces tissue oxygen saturation in all measurement sites (except cerebral) and perfusion index. In the presence of pain, tissue oxygen saturation and perfusion index are further reduced by hypovolemia (lower body negative pressure, -60 mm Hg). Thus, pain must be considered when evaluating tissue oxygen saturation and perfusion index as markers of

  1. Some Boussinesq Equations with Saturation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Christou, M. A.

    2010-11-25

    We investigate numerically some Boussinesq type equations with square or cubic and saturated nonlinearity. We examine the propagation, interaction and overtake interaction of soliton solutions. Moreover, we examine the effect of the saturation term on the solution and compare it with the classical case of the square or cubic nonlinearity without saturation. We calculate numerically the phase shift experienced by the solitons upon collision and conclude the impact of saturation.

  2. Development of the Exercise Motives and Gains Inventory

    ERIC Educational Resources Information Center

    Strömmer, Sofia T.; Ingledew, David K.; Markland, David

    2015-01-01

    There are existing measures of exercise motives (what people want from exercise), but corresponding measures of gains (what people get) are needed, because motives and gains could influence each other and together influence other variables. An exercise motives and gains inventory (EMGI) was developed by creating gains scales to complement existing…

  3. Anti-saturation system for surface nuclear magnetic resonance in efficient groundwater detection

    NASA Astrophysics Data System (ADS)

    Lin, Jun; Zhang, Yang; Yang, Yujing; Sun, Yong; Lin, Tingting

    2017-06-01

    Compared to other geophysical techniques, the surface nuclear magnetic resonance (SNMR) method could provide unique insights into the hydrologic properties of groundwater in the subsurface. However, the SNMR signal is in the order of nanovolts (10-9 V), and the complex environmental noise, i.e., the spike and the harmony noise (10-4 V), can reach up to 105 times the signal amplitude. Saturation of the amplifier is therefore a serious problem in current SNMR systems. In this study, we propose an anti-saturation method based on an instantaneous floating-point amplifier. The gain of a programmable amplifier is controlled by the value of the input signal. A regulating speed of 50 kS/s is thus achieved to satisfy the self-adaptive adjustment of the real-time SNMR system, which replaces the original man-made setting gain. A large dynamic range of 192.65 dB with a 24-bit high speed analog-digital converter module is then implemented. Compared to traditional SNMR instruments, whose magnification factor is fixed during the experiment, our system can effectively inhibit the distortion of the SNMR signal in both laboratory and field settings. Furthermore, an improved SNR, which is realized by the real-time SNMR system, enables the accurate inversion of the aquifer. Our study broadens the applicability of SNMR systems to use in and around developed areas.

  4. Relationship between P-wave attenuation and water saturation in an homogeneous unconsolidated and partially saturated porous media : An experimental study

    NASA Astrophysics Data System (ADS)

    Barrière, J.; Sénéchal, P.; Bordes, C.; Perroud, H.

    2010-12-01

    Nowadays, it is well known that hydrogeological properties of the porous media (porosity, fluid saturation and permeability) can influence seismic properties. The major theory which links hydrogeological and seismic parameters is poroelasticity proposed by Biot (1956) for saturated porous media in a wetting phase fluid. However the Biot relaxation process can't explain the level of attenuation of seismic waves generally measured on field from seismic to sonic frequency range in the case of partially saturated media. Laboratory experiments are necessary to better understand the effects of fluids on the attenuation of waves but few ones are done in the low frequency range (1Hz to 10 kHz) where the wavelength is greater than heterogeneities size. We propose an experimental study to determine the attenuation of propagative P-wave in the sonic frequency range on unconsolidated and partially saturated porous media, typical of near surface hydrogeological media. 10 accelerometers (0.0001-17kHz) and 6 capacitance probes (soil moisture sensors) are placed in a container (107 cm x 34 cm x 35cm) full of homogeneous sand (99% silica). An acoustic source (0 - 20 kHz) generate seismic waves which are recorded by the accelerometers during three cycles of imbibition-drainage (corresponding to a water saturation range from 0% to 95%). Values of attenuation (quality factor Q) versus water saturation and frequency are calculated with the well-known spectral ratio method. The spectrum of each recorded P-wave is obtained by a continuous wavelet transform, more adapted than Fourier transform for a non-stationary signal, such as seismic signal, whose frequency content varies with time. The first analyses show a strong dependence of the quality factor with frequency and water saturation, notably at high water saturation (above 60 %) where the attenuation is maximum. Knowing some important parameters of the studied media such as porosity and permeability, we interpret physically our

  5. Representation of potential information gain to measure the price of anarchy on ISR activities

    NASA Astrophysics Data System (ADS)

    Ortiz-Peña, Hector J.; Hirsch, Michael; Karwan, Mark; Nagi, Rakesh; Sudit, Moises

    2013-05-01

    One of the main technical challenges facing intelligence analysts today is effectively determining information gaps from huge amounts of collected data. Moreover, getting the right information to/from the right person (e.g., analyst, warfighter on the edge) at the right time in a distributed environment has been elusive to our military forces. Synchronization of Intelligence, Surveillance, and Reconnaissance (ISR) activities to maximize the efficient utilization of limited resources (both in quantity and capabilities) has become critically important to increase the accuracy and timeliness of overall information gain. Given this reality, we are interested in quantifying the degradation of solution quality (i.e., information gain) as a centralized system synchronizing ISR activities (from information gap identification to information collection and dissemination) moves to a more decentralized framework. This evaluation extends the concept of price of anarchy, a measure of the inefficiency of a system when agents maximize decisions without coordination, by considering different levels of decentralization. Our initial research representing the potential information gain in geospatial and time discretized spaces is presented. This potential information gain map can represent a consolidation of Intelligence Preparation of the Battlefield products as input to automated ISR synchronization tools. Using the coordination of unmanned vehicles (UxVs) as an example, we developed a mathematical programming model for multi-perspective optimization in which each UxV develops its own fight plan to support mission objectives based only on its perspective of the environment (i.e., potential information gain map). Information is only exchanged when UxVs are part of the same communication network.

  6. A pilot study of a new spectrophotometry device to measure tissue oxygen saturation.

    PubMed

    Abel, Gemma; Allen, John; Drinnan, Michael

    2014-09-01

    Tissue oxygen saturation (SO2) measurements have the potential for far wider use than at present but are limited by device availability and portability for many potential applications. A device based on a small, low-cost general-purpose spectrophotometer (the Harrison device) might facilitate wider use. The aim of this study was to compare the Harrison device with a commercial instrument, the LEA O2C.Measurements were carried out on the forearm and finger of 20 healthy volunteers, using a blood pressure cuff on the upper arm to induce different levels of oxygenation. Repeatability of both devices was assessed, and the Bland-Altman method was used to assess agreement between them.The devices showed agreement in overall tracking of changes in SO2. Test-retest agreement for the Harrison device was worse than for O2C, with SD repeatability of 10.6% (forearm) or 18.6% (finger). There was no overall bias between devices, but mean (SD) difference of 1.2 (11.8%) (forearm) or 4.4 (11.5%) (finger) were outside of a clinically acceptable range.Disagreements were attributed to the stability of the Harrison probe and the natural SO2 variations across the skin surface increasing the random error. Therefore, though not equivalent to the LEA O2C, a probe redesign and averaged measurements may help establish the Harrison device as a low cost alternative.

  7. Controls on Highly Siderophile Element Concentrations in Martian Basalt: Sulfide Saturation and Under-Saturation

    NASA Technical Reports Server (NTRS)

    Righter, Kevin

    2009-01-01

    Highly siderophile elements (HSE; Re, Au and the platinum group elements) in shergottites exhibit a wide range from very high, similar to the terrestrial mantle, to very low, similar to sulfide saturated mid ocean ridge basalt (e.g., [1]). This large range has been difficult to explain without good constraints on sulfide saturation or under-saturation [2]. A new model for prediction of sulfide saturation places new constraints on this problem [3]. Shergottite data: For primitive shergottites, pressure and temperature estimates are between 1.2-1.5 GPa, and 1350-1470 C [4]. The range of oxygen fugacities is from FMQ-2 to IW, where the amount of Fe2O3 is low and thus does not have a significant effect on the S saturation values. Finally, the bulk compositions of shergottites have been reported in many recent studies (e.g., [5]). All of this information will be used to test whether shergottites are sulfide saturated [3]. Modeling values and results: The database for HSE partition coefficients has been growing with many new data for silicates and oxides [6-8] to complement a large sulfide database [9- 11]. Combining these data with simple batch melting models allows HSE contents of mantle melts to be estimated for sulfide-bearing vs. sulfide-free mantle. Combining such models with fractional crystallization modeling (e.g., [12]) allows HSE contents of more evolved liquids to be modeled. Most primitive shergottites have high HSE contents (and low S contents) that can be explained by sulfide under-saturated melting of the mantle. An exception is Dhofar 019 which has high S contents and very low HSE contents suggesting sulfide saturation. Most evolved basaltic shergottites have lower S contents than saturation, and intermediate HSE contents that can be explained by olivine, pyroxene, and chromite fractionation. An exception is EET A79001 lithology B, which has very low HSE contents and S contents higher than sulfide saturation values . evidence for sulfide saturation

  8. Effectiveness of Variable-Gain Kalman Filter Based on Angle Error Calculated from Acceleration Signals in Lower Limb Angle Measurement with Inertial Sensors

    PubMed Central

    Watanabe, Takashi

    2013-01-01

    The wearable sensor system developed by our group, which measured lower limb angles using Kalman-filtering-based method, was suggested to be useful in evaluation of gait function for rehabilitation support. However, it was expected to reduce variations of measurement errors. In this paper, a variable-Kalman-gain method based on angle error that was calculated from acceleration signals was proposed to improve measurement accuracy. The proposed method was tested comparing to fixed-gain Kalman filter and a variable-Kalman-gain method that was based on acceleration magnitude used in previous studies. First, in angle measurement in treadmill walking, the proposed method measured lower limb angles with the highest measurement accuracy and improved significantly foot inclination angle measurement, while it improved slightly shank and thigh inclination angles. The variable-gain method based on acceleration magnitude was not effective for our Kalman filter system. Then, in angle measurement of a rigid body model, it was shown that the proposed method had measurement accuracy similar to or higher than results seen in other studies that used markers of camera-based motion measurement system fixing on a rigid plate together with a sensor or on the sensor directly. The proposed method was found to be effective in angle measurement with inertial sensors. PMID:24282442

  9. Absolute measurement of cerebral optical coefficients, hemoglobin concentration and oxygen saturation in old and young adults with near-infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Hallacoglu, Bertan; Sassaroli, Angelo; Wysocki, Michael; Guerrero-Berroa, Elizabeth; Schnaider Beeri, Michal; Haroutunian, Vahram; Shaul, Merav; Rosenberg, Irwin H.; Troen, Aron M.; Fantini, Sergio

    2012-08-01

    We present near-infrared spectroscopy measurement of absolute cerebral hemoglobin concentration and saturation in a large sample of 36 healthy elderly (mean age, 85±6 years) and 19 young adults (mean age, 28±4 years). Non-invasive measurements were obtained on the forehead using a commercially available multi-distance frequency-domain system and analyzed using a diffusion theory model for a semi-infinite, homogeneous medium with semi-infinite boundary conditions. Our study included repeat measurements, taken five months apart, on 16 elderly volunteers that demonstrate intra-subject reproducibility of the absolute measurements with cross-correlation coefficients of 0.9 for absorption coefficient (μa), oxy-hemoglobin concentration ([HbO2]), and total hemoglobin concentration ([HbT]), 0.7 for deoxy-hemoglobin concentration ([Hb]), 0.8 for hemoglobin oxygen saturation (StO2), and 0.7 for reduced scattering coefficient (). We found significant differences between the two age groups. Compared to young subjects, elderly subjects had lower cerebral [HbO2], [Hb], [HbT], and StO2 by 10±4 μM, 4±3 μM, 14±5 μM, and 6%±5%, respectively. Our results demonstrate the reliability and robustness of multi-distance near-infrared spectroscopy measurements based on a homogeneous model in the human forehead on a large sample of human subjects. Absolute, non-invasive optical measurements on the brain, such as those presented here, can significantly advance the development of NIRS technology as a tool for monitoring resting/basal cerebral perfusion, hemodynamics, oxygenation, and metabolism.

  10. Absolute measurement of cerebral optical coefficients, hemoglobin concentration and oxygen saturation in old and young adults with near-infrared spectroscopy.

    PubMed

    Hallacoglu, Bertan; Sassaroli, Angelo; Wysocki, Michael; Guerrero-Berroa, Elizabeth; Schnaider Beeri, Michal; Haroutunian, Vahram; Shaul, Merav; Rosenberg, Irwin H; Troen, Aron M; Fantini, Sergio

    2012-08-01

    We present near-infrared spectroscopy measurement of absolute cerebral hemoglobin concentration and saturation in a large sample of 36 healthy elderly (mean age, 85 ± 6 years) and 19 young adults (mean age, 28 ± 4 years). Non-invasive measurements were obtained on the forehead using a commercially available multi-distance frequency-domain system and analyzed using a diffusion theory model for a semi-infinite, homogeneous medium with semi-infinite boundary conditions. Our study included repeat measurements, taken five months apart, on 16 elderly volunteers that demonstrate intra-subject reproducibility of the absolute measurements with cross-correlation coefficients of 0.9 for absorption coefficient (μa), oxy-hemoglobin concentration ([HbO2]), and total hemoglobin concentration ([HbT]), 0.7 for deoxy-hemoglobin concentration ([Hb]), 0.8 for hemoglobin oxygen saturation (StO2), and 0.7 for reduced scattering coefficient (μ's). We found significant differences between the two age groups. Compared to young subjects, elderly subjects had lower cerebral [HbO2], [Hb], [HbT], and StO2 by 10 ± 4 μM, 4 ± 3 μM, 14 ± 5 μM, and 6%±5%, respectively. Our results demonstrate the reliability and robustness of multi-distance near-infrared spectroscopy measurements based on a homogeneous model in the human forehead on a large sample of human subjects. Absolute, non-invasive optical measurements on the brain, such as those presented here, can significantly advance the development of NIRS technology as a tool for monitoring resting/basal cerebral perfusion, hemodynamics, oxygenation, and metabolism.

  11. Dampened Mesolimbic Dopamine Function and Signaling by Saturated but not Monounsaturated Dietary Lipids.

    PubMed

    Hryhorczuk, Cecile; Florea, Marc; Rodaros, Demetra; Poirier, Isabelle; Daneault, Caroline; Des Rosiers, Christine; Arvanitogiannis, Andreas; Alquier, Thierry; Fulton, Stephanie

    2016-02-01

    Overconsumption of dietary fat is increasingly linked with motivational and emotional impairments. Human and animal studies demonstrate associations between obesity and blunted reward function at the behavioral and neural level, but it is unclear to what degree such changes are a consequence of an obese state and whether they are contingent on dietary lipid class. We sought to determine the impact of prolonged ad libitum intake of diets rich in saturated or monounsaturated fat, separate from metabolic signals associated with increased adiposity, on dopamine (DA)-dependent behaviors and to identify pertinent signaling changes in the nucleus accumbens (NAc). Male rats fed a saturated (palm oil), but not an isocaloric monounsaturated (olive oil), high-fat diet exhibited decreased sensitivity to the rewarding (place preference) and locomotor-sensitizing effects of amphetamine as compared with low-fat diet controls. Blunted amphetamine action by saturated high-fat feeding was entirely independent of caloric intake, weight gain, and plasma levels of leptin, insulin, and glucose and was accompanied by biochemical and behavioral evidence of reduced D1R signaling in the NAc. Saturated high-fat feeding was also tied to protein markers of increased AMPA receptor-mediated plasticity and decreased DA transporter expression in the NAc but not to alterations in DA turnover and biosynthesis. Collectively, the results suggest that intake of saturated lipids can suppress DA signaling apart from increases in body weight and adiposity-related signals known to affect mesolimbic DA function, in part by diminishing D1 receptor signaling, and that equivalent intake of monounsaturated dietary fat protects against such changes.

  12. Simulation of oxygen saturation measurement in a single blood vein.

    PubMed

    Duadi, Hamootal; Nitzan, Meir; Fixler, Dror

    2016-09-15

    The value of oxygen saturation in venous blood, SvO2, has important clinical significance since it is related to the tissue oxygen utilization, which is related to the blood flow to the tissue and to its metabolism rate. However, existing pulse oximetry techniques are not suitable for blood in veins. In the current study we examine the feasibility of difference oximetry to assess SvO2 by using two near-infrared wavelengths and collecting the backscattered light from two photodetectors located at different distances from the light source.

  13. Upscaling soil saturated hydraulic conductivity from pore throat characteristics

    NASA Astrophysics Data System (ADS)

    Ghanbarian, Behzad; Hunt, Allen G.; Skaggs, Todd H.; Jarvis, Nicholas

    2017-06-01

    Upscaling and/or estimating saturated hydraulic conductivity Ksat at the core scale from microscopic/macroscopic soil characteristics has been actively under investigation in the hydrology and soil physics communities for several decades. Numerous models have been developed based on different approaches, such as the bundle of capillary tubes model, pedotransfer functions, etc. In this study, we apply concepts from critical path analysis, an upscaling technique first developed in the physics literature, to estimate saturated hydraulic conductivity at the core scale from microscopic pore throat characteristics reflected in capillary pressure data. With this new model, we find Ksat estimations to be within a factor of 3 of the average measured saturated hydraulic conductivities reported by Rawls et al. (1982) for the eleven USDA soil texture classes.

  14. Study of the variation of thermal conductivity with water saturation using nuclear magnetic resonance

    NASA Astrophysics Data System (ADS)

    Jorand, Rachel; Fehr, Annick; Koch, Andreas; Clauser, Christoph

    2011-08-01

    In this paper, we present a method that allows one to correct thermal conductivity measurements for the effect of water loss when extrapolating laboratory data to in situ conditions. The water loss in shales and unconsolidated rocks is a serious problem that can introduce errors in the characterization of reservoirs. For this study, we measure the thermal conductivity of four sandstones with and without clay minerals according to different water saturation levels using an optical scanner. Thermal conductivity does not decrease linearly with water saturation. At high saturation and very low saturation, thermal conductivity decreases more quickly because of spontaneous liquid displacement and capillarity effects. Apart from these two effects, thermal conductivity decreases quasi-linearly. We also notice that the samples containing clay minerals are not completely drained, and thermal conductivity reaches a minimum value. In order to fit the variation of thermal conductivity with the water saturation as a whole, we used modified models commonly presented in thermal conductivity studies: harmonic and arithmetic mean and geometric models. These models take into account different types of porosity, especially those attributable to the abundance of clay, using measurements obtained from nuclear magnetic resonance (NMR). For argillaceous sandstones, a modified arithmetic-harmonic model fits the data best. For clean quartz sandstones under low water saturation, the closest fit to the data is obtained with the modified arithmetic-harmonic model, while for high water saturation, a modified geometric mean model proves to be the best.

  15. An Environmental Intervention to Prevent Excess Weight Gain in African American Students: A Pilot Study

    PubMed Central

    Newton, Robert L.; Han, Hongmei; Anton, Stephen D.; Martin, Corby K.; Stewart, Tiffany M.; Lewis, Leslie; Champagne, Catherine M.; Sothern, Melinda; Ryan, Donna; Williamson, Donald A.

    2009-01-01

    Purpose Examine the influence of an environmental intervention to prevent excess weight gain in African American children. Design Single-group repeated measures. Setting The intervention was delivered to a school composed of African American children. Subjects Approximately 45% (N = 77) of enrolled second through sixth grade students. Intervention The 18-month intervention was designed to alter the school environment to prevent excess weight gain by making healthier eating choices and physical activity opportunities more available. Measures Body Mass Index Percentile was the primary outcome variable. Body mass index Z-score was also calculated, and percent body fat, using bioelectrical impedance, was also measured. Total caloric intake (kcal), and percent kcal from fat, carbohydrate, and protein were measured by digital photography. Minutes of physical activity and sedentary behavior were self-reported. Analysis Mixed models analysis was used, covarying baseline values. Results Boys maintained while girls increased percent body fat over 18-months (p = .027). All children decreased percent of kcal consumed from total and saturated fat, and increased carbohydrate intake and self-reported physical activity during the intervention (p values < .025). body mass index Z-score, sedentary behavior, and total caloric intake were unchanged. Conclusion The program may have resulted in maintenance of percent body fat in boys. Girl's percent body fat steadily increased, despite similar behavioral changes as boys. School-based interventions targeting African American children should investigate strategies that can be effective across gender. PMID:20465148

  16. Using noble gas tracers to estimate residual CO2 saturation in the field: results from the CO2CRC Otway residual saturation and dissolution test

    NASA Astrophysics Data System (ADS)

    LaForce, T.; Ennis-King, J.; Paterson, L.

    2013-12-01

    Residual CO2 saturation is a critically important parameter in CO2 storage as it can have a large impact on the available secure storage volume and post-injection CO2 migration. A suite of single-well tests to measure residual trapping was conducted at the Otway test site in Victoria, Australia during 2011. One or more of these tests could be conducted at a prospective CO2 storage site before large-scale injection. The test involved injection of 150 tonnes of pure carbon dioxide followed by 454 tonnes of CO2-saturated formation water to drive the carbon dioxide to residual saturation. This work presents a brief overview of the full test sequence, followed by the analysis and interpretation of the tests using noble gas tracers. Prior to CO2 injection krypton (Kr) and xenon (Xe) tracers were injected and back-produced to characterise the aquifer under single-phase conditions. After CO2 had been driven to residual the two tracers were injected and produced again. The noble gases act as non-partitioning aqueous-phase tracers in the undisturbed aquifer and as partitioning tracers in the presence of residual CO2. To estimate residual saturation from the tracer test data a one-dimensional radial model of the near-well region is used. In the model there are only two independent parameters: the apparent dispersivity of each tracer and the residual CO2 saturation. Independent analysis of the Kr and Xe tracer production curves gives the same estimate of residual saturation to within the accuracy of the method. Furthermore the residual from the noble gas tracer tests is consistent with other measurements in the sequence of tests.

  17. Saturation pulse design for quantitative myocardial T1 mapping.

    PubMed

    Chow, Kelvin; Kellman, Peter; Spottiswoode, Bruce S; Nielles-Vallespin, Sonia; Arai, Andrew E; Salerno, Michael; Thompson, Richard B

    2015-10-01

    Quantitative saturation-recovery based T1 mapping sequences are less sensitive to systematic errors than the Modified Look-Locker Inversion recovery (MOLLI) technique but require high performance saturation pulses. We propose to optimize adiabatic and pulse train saturation pulses for quantitative T1 mapping to have <1 % absolute residual longitudinal magnetization (|MZ/M0|) over ranges of B0 and [Formula: see text] (B1 scale factor) inhomogeneity found at 1.5 T and 3 T. Design parameters for an adiabatic BIR4-90 pulse were optimized for improved performance within 1.5 T B0 (±120 Hz) and [Formula: see text] (0.7-1.0) ranges. Flip angles in hard pulse trains of 3-6 pulses were optimized for 1.5 T and 3 T, with consideration of T1 values, field inhomogeneities (B0 = ±240 Hz and [Formula: see text]=0.4-1.2 at 3 T), and maximum achievable B1 field strength. Residual MZ/M0 was simulated and measured experimentally for current standard and optimized saturation pulses in phantoms and in-vivo human studies. T1 maps were acquired at 3 T in human subjects and a swine using a SAturation recovery single-SHot Acquisition (SASHA) technique with a standard 90°-90°-90° and an optimized 6-pulse train. Measured residual MZ/M0 in phantoms had excellent agreement with simulations over a wide range of B0 and [Formula: see text]. The optimized BIR4-90 reduced the maximum residual |MZ/M0| to <1 %, a 5.8× reduction compared to a reference BIR4-90. An optimized 3-pulse train achieved a maximum residual |MZ/M0| <1 % for the 1.5 T optimization range compared to 11.3 % for a standard 90°-90°-90° pulse train, while a 6-pulse train met this target for the wider 3 T ranges of B0 and [Formula: see text]. The 6-pulse train demonstrated more uniform saturation across both the myocardium and entire field of view than other saturation pulses in human studies. T1 maps were more spatially homogeneous with 6-pulse train SASHA than the reference 90°-90°-90° SASHA in both

  18. A test of the 'one-point method' for estimating maximum carboxylation capacity from field-measured, light-saturated photosynthesis

    DOE PAGES

    Martin G. De Kauwe; Serbin, Shawn P.; Lin, Yan -Shih; ...

    2015-12-31

    Here, simulations of photosynthesis by terrestrial biosphere models typically need a specification of the maximum carboxylation rate (V cmax). Estimating this parameter using A–C i curves (net photosynthesis, A, vs intercellular CO 2 concentration, C i) is laborious, which limits availability of V cmax data. However, many multispecies field datasets include net photosynthetic rate at saturating irradiance and at ambient atmospheric CO 2 concentration (A sat) measurements, from which V cmax can be extracted using a ‘one-point method’.

  19. [Regional cerebral oxygen saturation as a marker of hemodynamic state following cardiac surgery].

    PubMed

    García-Hernández, J A; Aldemira-Liz, A; Martínez-López, A I; Cayuela, A; Charlo-Molina, M T; Cano-Franco, J; Loscertales-Abril, M

    2013-10-01

    Regional cerebral oxygen saturation (rSO₂) is a measure of the general state of perfusion and oxygenation. We aim to analyze the relationship between this and various hemodynamic and respiratory parameters. Forty-three patients, operated on between October 2011 and July 2012, were included in this prospective observational descriptive study. The following parameters were measured: mean arterial pressure, both arterial and central venous oxygen saturation and partial pressures of oxygen and carbon dioxide, and lactate levels. From these parameters, the oxygenation index and the oxygen extraction ratio were calculated. These measurements were studied to evaluate whether rSO₂ correlated significantly with the other parameters. The average age and weight of the patients were 27.3 months and 9.2 kg, respectively. The rSO₂ correlated positively with both central venous oxygen saturation (r=0.73, P<.01) and mean arterial pressure (r=0.59, P<.01), and negatively with the oxygen extraction ratio (r=-0.7, P<.01). No correlation was found with the respiratory parameters. Concordance analysis established an acceptable Kappa index (> 0.4) between the rSO₂ and central venous oxygen saturation, and between the rSO₂ and oxygen extraction ratio. Regional cerebral oxygen saturation correlates well with hemodynamic parameters - mean arterial pressure, venous saturation, and the tissue oxygen extraction. However, it does not correlate with respiratory parameters. Copyright © 2012 Asociación Española de Pediatría. Published by Elsevier Espana. All rights reserved.

  20. Intraoperative colon mucosal oxygen saturation during aortic surgery.

    PubMed

    Lee, Eugene S; Bass, Arie; Arko, Frank R; Heikkinen, Maarit; Harris, E John; Zarins, Christopher K; van der Starre, Pieter; Olcott, Cornelius

    2006-11-01

    Colonic ischemia after aortic reconstruction is a devastating complication with high mortality rates. This study evaluates whether Colon Mucosal Oxygen Saturation (CMOS) correlates with colon ischemia during aortic surgery. Aortic reconstruction was performed in 25 patients, using a spectrophotometer probe that was inserted in each patient's rectum before the surgical procedure. Continuous CMOS, buccal mucosal oxygen saturation, systemic mean arterial pressure, heart rate, pulse oximetry, and pivotal intra-operative events were collected. Endovascular aneurysm repair (EVAR) was performed in 20 and open repair in 5 patients with a mean age of 75 +/- 10 (+/-SE) years. CMOS reliably decreased in EVAR from a baseline of 56% +/- 8% to 26 +/- 17% (P < 0.0001) during infrarenal aortic balloon occlusion and femoral arterial sheath placement. CMOS similarly decreased during open repair from 56% +/- 9% to 15 +/- 19% (P < 0.0001) when the infrarenal aorta and iliac arteries were clamped. When aortic circulation was restored in both EVAR and open surgery, CMOS returned to baseline values 56.5 +/- 10% (P = 0.81). Mean recovery time in CMOS after an aortic intervention was 6.4 +/- 3.3 min. Simultaneous buccal mucosal oxygen saturation was stable (82% +/- 6%) during aortic manipulation but would fall significantly during active bleeding. There were no device related CMOS measurement complications. Intra-operative CMOS is a sensitive measure of colon ischemia where intraoperative events correlated well with changes in mucosal oxygen saturation. Transient changes demonstrate no problem. However, persistently low CMOS suggests colon ischemia, thus providing an opportunity to revascularize the inferior mesenteric artery or hypogastric arteries to prevent colon infarction.

  1. Proof of concept non-invasive estimation of peripheral venous oxygen saturation.

    PubMed

    Khan, Musabbir; Pretty, Chris G; Amies, Alexander C; Balmer, Joel; Banna, Houda E; Shaw, Geoffrey M; Geoffrey Chase, J

    2017-05-19

    Pulse oximeters continuously monitor arterial oxygen saturation. Continuous monitoring of venous oxygen saturation (SvO 2 ) would enable real-time assessment of tissue oxygen extraction (O 2 E) and perfusion changes leading to improved diagnosis of clinical conditions, such as sepsis. This study presents the proof of concept of a novel pulse oximeter method that utilises the compliance difference between arteries and veins to induce artificial respiration-like modulations to the peripheral vasculature. These modulations make the venous blood pulsatile, which are then detected by a pulse oximeter sensor. The resulting photoplethysmograph (PPG) signals from the pulse oximeter are processed and analysed to develop a calibration model to estimate regional venous oxygen saturation (SpvO 2 ), in parallel to arterial oxygen saturation estimation (SpaO 2 ). A clinical study with healthy adult volunteers (n = 8) was conducted to assess peripheral SvO 2 using this pulse oximeter method. A range of physiologically realistic SvO 2 values were induced using arm lift and vascular occlusion tests. Gold standard, arterial and venous blood gas measurements were used as reference measurements. Modulation ratios related to arterial and venous systems were determined using a frequency domain analysis of the PPG signals. A strong, linear correlation (r 2  = 0.95) was found between estimated venous modulation ratio (R Ven ) and measured SvO 2 , providing a calibration curve relating measured R Ven to venous oxygen saturation. There is a significant difference in gradient between the SpvO 2 estimation model (SpvO 2  = 111 - 40.6*R) and the empirical SpaO 2 estimation model (SpaO 2  = 110 - 25*R), which yields the expected arterial-venous differences. Median venous and arterial oxygen saturation accuracies of paired measurements between pulse oximeter estimated and gold standard measurements were 0.29 and 0.65%, respectively, showing good accuracy of the pulse oximeter system

  2. Experimental measurements of thermoelectric and electrochemical potentials in sandstones saturated with NaCl electrolyte

    NASA Astrophysics Data System (ADS)

    Leinov, E.; Jackson, M.

    2013-12-01

    Measurements of the self-potential (SP) have been used to characterize subsurface flow in numerous settings, including volcanoes, earthquake zones, and geothermal fields. Thermoelectric (TE) and electrochemical (EC) potentials contribute to the measured SP if gradients in temperature and/or concentration are present, yet few experimental measurements of EC and TE potentials in natural porous media have been reported. Each is the sum of a diffusion and exclusion potential: the former arises when ions of contrasting mobility migrate at different rates down a temperature or concentration gradient; the latter arises when there is a temperature or concentration gradient across an electrically charged porous medium in which co-ions of the same polarity have been excluded from the pore-space. Here we report measurements of the SP arising from temperature or concentration gradients across clean (clay-free) sandstone samples saturated with NaCl electrolyte over the salinity range 5x10-5 to 1M. Electrical potentials are measured using non-polarizing Ag/AgCl electrodes, and temperature or salinity gradients are induced by placing the saturated samples in contact with electrolyte reservoirs of contrasting temperature or concentration. Our experimental methodology accounts for the temperature- and concentration-dependent electrode response. We find that the TE potential responds linearly to the applied temperature difference, allowing a TE potential coupling coefficient to be determined; the value of this decreases as the electrolyte concentration increases, from +0.056mV/K at 10-4 M to -0.126mV/K at 1M. The EC potential increases as the concentration ratio increases, from a minimum of 1.8mV at a salinity ratio of 1.13, to a maximum of 24.8mV at salinity ratio of 102, before decreasing to 19.5mV at salinity ratio of 103. In both cases, at high values of concentration (>0.01M) the measured potential is diffusion dominated, while at lower concentration the exclusion potential is

  3. Maternal nutrition, inadequate gestational weight gain and birth weight: results from a prospective birth cohort.

    PubMed

    Diemert, Anke; Lezius, Susanne; Pagenkemper, Mirja; Hansen, Gudula; Drozdowska, Alina; Hecher, Kurt; Arck, Petra; Zyriax, Birgit C

    2016-08-15

    The aim of our study was to examine maternal weight gain as well as nutrient intake in pregnancy throughout each trimester compared to current recommendations in a low-risk population and its correlation to birth weight. Additionally, we have investigated the association of maternal nutrition with gestational weight gain and birth weight in an economically unrestricted population. Our analysis was carried out in a population-based prospective birth cohort in Hamburg, Germany. 200 pregnant women and 197 infants born at term were included in the analysis. Maternal body weight, weight gain throughout gestation, and birth weight, macro- and micronutrients were assessed based on a 24 h dietary recall in each trimester. Our main outcome measures were weight gain, birth weight, and self-reported dietary intake in each trimester in comparison to current recommendations. One third of the women were characterized by an elevated pre-pregnancy BMI, 60 % did not comply with current weight gain recommendations. Particularly overweight and obese women gained more weight than recommended. In a multivariate analysis birth weight correlated significantly with maternal BMI (p = 0.020), total weight gain (p = 0.020) and gestational week (p < 0.001). Compared to guidelines mean percentage of energy derived from fat (p = 0.002) and protein (p < 0.001) was significantly higher, whereas carbohydrate (p = 0.033) intake was lower. Mean fiber intake was significantly lower (p < 0.001). Saturated fat and sugar contributed largely to energy consumption. Gestational weight gain correlated significantly with energy (p = 0.027), carbohydrates (p = 0.008), monosaccharides and saccharose (p = 0.006) intake. 98 % of the pregnant women were below the iodine recommendation, while none of the women reached the required folate, vitamin D, and iron intake. During gestation appropriate individual advice as to nutrient intake and weight gain seems to be of high

  4. Correlation between capillary oxygen saturation and small intestinal wall thickness in the equine colic patient

    PubMed Central

    Mirle, Elisabeth; Wogatzki, Anna; Kunzmann, Robert; Schoenfelder, Axel M; Litzke, Lutz F

    2017-01-01

    The surgical evaluation of haemorrhagic infarcted intestine and the decision for or against bowel resection require a lot of experience and are subjective. The aim of this prospective, clinical study was to examine the correlation between oxygen saturation and small intestinal wall (IW) thickness, using two objective methods. In 22 colicky horses, the blood flow, oxygen saturation and relative amount of haemoglobin were measured intraoperatively via laser Doppler and white light spectroscopy (O2C, oxygen to see, LEA Medizintechnik) at six measuring points (MPs) in small and large intestines. Furthermore, the IW thickness was measured ultrasonographically. Nine of 22 horses had an increased small IW thickness greater than 4 mm (Freeman 2002, Scharner and others 2002, le Jeune and Whitcomb 2014) at measuring point 1 (MP1) (strangulated segment), four horses had a thickened bowel wall at measuring point 3 (MP3) (poststenotic) and one at measuring point 2 (MP2). The oxygen saturation was 0 at MP1 in six horses, at MP3 in two horses and at MP2 (prestenotic) in one. Oxygen saturation and small IW thickness were independent of each other at MP1 and MP2. At MP3, the two parameters were negatively correlated. In summary, it is not possible to draw conclusions about oxygen saturation based on IW thickness. PMID:28761667

  5. Correlation between capillary oxygen saturation and small intestinal wall thickness in the equine colic patient.

    PubMed

    Mirle, Elisabeth; Wogatzki, Anna; Kunzmann, Robert; Schoenfelder, Axel M; Litzke, Lutz F

    2017-01-01

    The surgical evaluation of haemorrhagic infarcted intestine and the decision for or against bowel resection require a lot of experience and are subjective. The aim of this prospective, clinical study was to examine the correlation between oxygen saturation and small intestinal wall (IW) thickness, using two objective methods. In 22 colicky horses, the blood flow, oxygen saturation and relative amount of haemoglobin were measured intraoperatively via laser Doppler and white light spectroscopy (O2C, oxygen to see, LEA Medizintechnik) at six measuring points (MPs) in small and large intestines. Furthermore, the IW thickness was measured ultrasonographically. Nine of 22 horses had an increased small IW thickness greater than 4 mm (Freeman 2002, Scharner and others 2002, le Jeune and Whitcomb 2014) at measuring point 1 (MP1) (strangulated segment), four horses had a thickened bowel wall at measuring point 3 (MP3) (poststenotic) and one at measuring point 2 (MP2). The oxygen saturation was 0 at MP1 in six horses, at MP3 in two horses and at MP2 (prestenotic) in one. Oxygen saturation and small IW thickness were independent of each other at MP1 and MP2. At MP3, the two parameters were negatively correlated. In summary, it is not possible to draw conclusions about oxygen saturation based on IW thickness.

  6. Measurements of seepage losses and gains, East Maui Irrigation diversion system, Maui, Hawaiʻi

    USGS Publications Warehouse

    Cheng, Chui Ling

    2012-01-01

    The U.S. Geological Survey conducted a field study from March to October 2011 to identify ditch characteristics and quantify seepage losses and gains in the East Maui Irrigation (EMI) diversion system, east Maui, Hawaiʻi. The EMI diversion system begins at Makapipi Stream in the east and ends at Māliko Gulch in the west. It consists of four primary ditches known as the Wailoa, New Hāmākua, Lowrie, and Haʻikū Ditches. Additional ditches that connect to the four primary ditches include the Koʻolau, Spreckels, Kauhikoa, Spreckels at Pāpaʻaʻea, Manuel Luis, and Center Ditches. Ditch characteristics for about 63 miles of the EMI diversion system, excluding abandoned ditches and stream conveyances, were identified. About 46 miles (73 percent) of the surveyed diversion system are tunnels and 17 miles are open ditches—in which 11 miles are unlined, 3.5 miles are lined, and 2.5 miles are partially lined. The Wailoa, Kauhikoa, and Haʻikū Ditches have greater than 96 percent of their total lengths as tunnels, whereas more than half of the Lowrie Ditch and Spreckels Ditch at Pāpaʻaʻea are open ditches. About 70 percent of the total length of lined open ditches in the EMI diversion system is located along the Koʻolau Ditch, whereas about 67 percent of the total length of unlined open ditches in the diversion system is located along the Lowrie Ditch. Less than 4 percent of the EMI diversion system is partially lined open ditches, and about half of the total partially lined open-ditch length is in the Spreckels Ditch. EMI regularly maintains and repairs the diversion system; therefore, ditch characteristics documented in this report are representative of conditions existing during the period of this study. Discharge measurements were made along 26 seepage-run measurement reaches that are a total of about 15 miles in length. The seepage-run measurement reaches represent 23 percent of the total length of ditches in the EMI diversion system. Discharge measurements

  7. All-optical pulse data generation in a semiconductor optical amplifier gain controlled by a reshaped optical clock injection

    NASA Astrophysics Data System (ADS)

    Lin, Gong-Ru; Chang, Yung-Cheng; Yu, Kun-Chieh

    2006-05-01

    Wavelength-maintained all-optical pulse data pattern transformation based on a modified cross-gain-modulation architecture in a strongly gain-depleted semiconductor optical amplifier (SOA) is investigated. Under a backward dark-optical-comb injection with 70% duty-cycle reshaping from the received data clock at 10GHz, the incoming optical data stream is transformed into a pulse data stream with duty cycle, rms timing jitter, and conversion gain of 15%, 4ps, and 3dB, respectively. The high-pass filtering effect of the gain-saturated SOA greatly improves the extinction ratio of data stream by 8dB and reduces its bit error rate to 10-12 at -18dBm.

  8. Applications of Doppler-free saturation spectroscopy for edge physics studies (invited).

    PubMed

    Martin, E H; Zafar, A; Caughman, J B O; Isler, R C; Bell, G L

    2016-11-01

    Doppler-free saturation spectroscopy provides a very powerful method to obtain detailed information about the electronic structure of the atom through measurement of the spectral line profile. This is achieved through a significant decrease in the Doppler broadening and essentially an elimination of the instrument broadening inherent to passive spectroscopic techniques. In this paper we present the technique and associated physics of Doppler-free saturation spectroscopy in addition to how one selects the appropriate transition. Simulations of H δ spectra are presented to illustrate the increased sensitivity to both electric field and electron density measurements.

  9. Photoacoustic infrared spectroscopy for conducting gas tracer tests and measuring water saturations in landfills

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jung, Yoojin; Han, Byunghyun; Mostafid, M. Erfan

    2012-02-15

    Highlights: Black-Right-Pointing-Pointer Photoacoustic infrared spectroscopy tested for measuring tracer gas in landfills. Black-Right-Pointing-Pointer Measurement errors for tracer gases were 1-3% in landfill gas. Black-Right-Pointing-Pointer Background signals from landfill gas result in elevated limits of detection. Black-Right-Pointing-Pointer Technique is much less expensive and easier to use than GC. - Abstract: Gas tracer tests can be used to determine gas flow patterns within landfills, quantify volatile contaminant residence time, and measure water within refuse. While gas chromatography (GC) has been traditionally used to analyze gas tracers in refuse, photoacoustic spectroscopy (PAS) might allow real-time measurements with reduced personnel costs and greater mobilitymore » and ease of use. Laboratory and field experiments were conducted to evaluate the efficacy of PAS for conducting gas tracer tests in landfills. Two tracer gases, difluoromethane (DFM) and sulfur hexafluoride (SF{sub 6}), were measured with a commercial PAS instrument. Relative measurement errors were invariant with tracer concentration but influenced by background gas: errors were 1-3% in landfill gas but 4-5% in air. Two partitioning gas tracer tests were conducted in an aerobic landfill, and limits of detection (LODs) were 3-4 times larger for DFM with PAS versus GC due to temporal changes in background signals. While higher LODs can be compensated by injecting larger tracer mass, changes in background signals increased the uncertainty in measured water saturations by up to 25% over comparable GC methods. PAS has distinct advantages over GC with respect to personnel costs and ease of use, although for field applications GC analyses of select samples are recommended to quantify instrument interferences.« less

  10. On-Wafer Measurement of a Multi-Stage MMIC Amplifier with 10 dB of Gain at 475 GHz

    NASA Technical Reports Server (NTRS)

    Samoska, Lorene A.; Fung, KingMan; Pukala, David M.; Kangaslahti, Pekka P.; Lai, Richard; Ferreira, Linda

    2012-01-01

    JPL has measured and calibrated a WR2.2 waveguide wafer probe from GGB Industries in order to allow for measurement of circuits in the 325-500 GHz range. Circuits were measured, and one of the circuits exhibited 10 dB of gain at 475 GHz. The MMIC circuit was fabricated at Northrop Grumman Corp. (NGC) as part of a NASA Innovative Partnerships Program, using NGC s 35-nm-gatelength InP HEMT process technology. The chip utilizes three stages of HEMT amplifiers, each having two gate fingers of 10 m in width. The circuits use grounded coplanar waveguide topology on a 50- m-thick substrate with through substrate vias. Broadband matching is achieved with coplanar waveguide transmission lines, on-chip capacitors, and open stubs. When tested with wafer probing, the chip exhibited 10 dB of gain at 475 GHz, with over 9 dB of gain from 445-490 GHz. Low-noise amplifiers in the 400-500 GHz range are useful for astrophysics receivers and earth science remote sensing instruments. In particular, molecular lines in the 400-500 GHz range include the CO 4-3 line at 460 GHz, and the CI fine structure line at 492 GHz. Future astrophysics heterodyne instruments could make use of high-gain, low-noise amplifiers such as the one described here. In addition, earth science remote sensing instruments could also make use of low-noise receivers with MMIC amplifier front ends. Present receiver technology typically employs mixers for frequency down-conversion in the 400-500 GHz band. Commercially available mixers have typical conversion loss in the range of 7-10 dB with noise figure of 1,000 K. A low-noise amplifier placed in front of such a mixer would have 10 dB of gain and lower noise figure, particularly if cooled to low temperature. Future work will involve measuring the noise figure of this amplifier.

  11. Compressed liquid densities, saturated liquid densities, and vapor pressures of 1,1-difluoroethane

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Defibaugh, D.R.; Morrison, G.

    1996-05-01

    The compressed liquid densities and vapor pressures of 1,1-difluoroethane (HFC-152a) have been measured, correlated, and compared with other data. The liquid densities were measured with a combined standard uncertainty of {+-}0.05% using a vibrating tube densimeter over a temperature range of 243 K to 371 K and at pressures from near the saturated vapor pressure to 6,500 kPa; thus the data extend nearly to the critical point ({Tc} = 386.41 K and P{sub c} = 4514.7 kPa). The vapor pressures were measured with a combined standard uncertainty of {+-}0.02% using a stainless steel ebulliometer in the temperature range from 280more » K to 335 K. Saturated liquid densities were calculated by extrapolating the compressed liquid isotherms to the saturation pressure.« less

  12. Error Rates in Measuring Teacher and School Performance Based on Student Test Score Gains. NCEE 2010-4004

    ERIC Educational Resources Information Center

    Schochet, Peter Z.; Chiang, Hanley S.

    2010-01-01

    This paper addresses likely error rates for measuring teacher and school performance in the upper elementary grades using value-added models applied to student test score gain data. Using realistic performance measurement system schemes based on hypothesis testing, we develop error rate formulas based on OLS and Empirical Bayes estimators.…

  13. Arterial input function of an optical tracer for dynamic contrast enhanced imaging can be determined from pulse oximetry oxygen saturation measurements

    NASA Astrophysics Data System (ADS)

    Elliott, Jonathan T.; Wright, Eric A.; Tichauer, Kenneth M.; Diop, Mamadou; Morrison, Laura B.; Pogue, Brian W.; Lee, Ting-Yim; St. Lawrence, Keith

    2012-12-01

    In many cases, kinetic modeling requires that the arterial input function (AIF)—the time-dependent arterial concentration of a tracer—be characterized. A straightforward method to measure the AIF of red and near-infrared optical dyes (e.g., indocyanine green) using a pulse oximeter is presented. The method is motivated by the ubiquity of pulse oximeters used in both preclinical and clinical applications, as well as the gap in currently available technologies to measure AIFs in small animals. The method is based on quantifying the interference that is observed in the derived arterial oxygen saturation (SaO2) following a bolus injection of a light-absorbing dye. In other words, the change in SaO2 can be converted into dye concentration knowing the chromophore-specific extinction coefficients, the true arterial oxygen saturation, and total hemoglobin concentration. A simple error analysis was performed to highlight potential limitations of the approach, and a validation of the method was conducted in rabbits by comparing the pulse oximetry method with the AIF acquired using a pulse dye densitometer. Considering that determining the AIF is required for performing quantitative tracer kinetics, this method provides a flexible tool for measuring the arterial dye concentration that could be used in a variety of applications.

  14. Arterial input function of an optical tracer for dynamic contrast enhanced imaging can be determined from pulse oximetry oxygen saturation measurements.

    PubMed

    Elliott, Jonathan T; Wright, Eric A; Tichauer, Kenneth M; Diop, Mamadou; Morrison, Laura B; Pogue, Brian W; Lee, Ting-Yim; St Lawrence, Keith

    2012-12-21

    In many cases, kinetic modeling requires that the arterial input function (AIF)--the time-dependent arterial concentration of a tracer--be characterized. A straightforward method to measure the AIF of red and near-infrared optical dyes (e.g., indocyanine green) using a pulse oximeter is presented. The method is motivated by the ubiquity of pulse oximeters used in both preclinical and clinical applications, as well as the gap in currently available technologies to measure AIFs in small animals. The method is based on quantifying the interference that is observed in the derived arterial oxygen saturation (SaO₂) following a bolus injection of a light-absorbing dye. In other words, the change in SaO₂ can be converted into dye concentration knowing the chromophore-specific extinction coefficients, the true arterial oxygen saturation, and total hemoglobin concentration. A simple error analysis was performed to highlight potential limitations of the approach, and a validation of the method was conducted in rabbits by comparing the pulse oximetry method with the AIF acquired using a pulse dye densitometer. Considering that determining the AIF is required for performing quantitative tracer kinetics, this method provides a flexible tool for measuring the arterial dye concentration that could be used in a variety of applications.

  15. Gain measurements in stimulated rotational Raman scattering in para hydrogen

    NASA Astrophysics Data System (ADS)

    Corat, E. J.; Airoldi, V. J. T.; Scolari, S. L.; Ghizoni, C. C.

    1986-06-01

    The dependence on CO2-laser pump energy of the output Stokes radiation obtained through stimulated rotational Raman scattering in parahydrogen is studied experimentally. The effective plane-wave gain for this process was determined as a function of the scattered wavelength by using a theoretical expression for the scattered pulse energy. Experimental values for the gain follow an inverse-wavelength law and are in close agreement with theory.

  16. Molybdenite saturation in silicic magmas: Occurrence and petrological implications

    USGS Publications Warehouse

    Audetat, A.; Dolejs, D.; Lowenstern, J. B.

    2011-01-01

    We identified molybdenite (MoS2) as an accessory magmatic phase in 13 out of 27 felsic magma systems examined worldwide. The molybdenite occurs as small (<20 ??m) triangular or hexagonal platelets included in quartz phenocrysts. Laser-ablation inductively coupled plasma mass spectrometry analyses of melt inclusions in molybdenite-saturated samples reveal 1-13 ppm Mo in the melt and geochemical signatures that imply a strong link to continental rift basalt-rhyolite associations. In contrast, arc-associated rhyolites are rarely molybdenite-saturated, despite similar Mo concentrations. This systematic dependence on tectonic setting seems to reflect the higher oxidation state of arc magmas compared with within-plate magmas. A thermodynamic model devised to investigate the effects of T, f O2 and f S2 on molybdenite solubility reliably predicts measured Mo concentrations in molybdenite-saturated samples if the magmas are assumed to have been saturated also in pyrrhotite. Whereas pyrrhotite microphenocrysts have been observed in some of these samples, they have not been observed from other molybdenite-bearing magmas. Based on the strong influence of f S2 on molybdenite solubility we calculate that also these latter magmas must have been at (or very close to) pyrrhotite saturation. In this case the Mo concentration of molybdenite-saturated melts can be used to constrain both magmatic f O2 and f S2 if temperature is known independently (e.g. by zircon saturation thermometry). Our model thus permits evaluation of magmatic f S2, which is an important variable but is difficult to estimate otherwise, particularly in slowly cooled rocks. ?? The Author 2011. Published by Oxford University Press. All rights reserved.

  17. Precise measurement of single-mode fiber lengths using a gain-switched distributed feedback laser with delayed optical feedback.

    PubMed

    Wada, Kenji; Matsukura, Satoru; Tanaka, Amaka; Matsuyama, Tetsuya; Horinaka, Hiromichi

    2015-09-07

    A simple method to measure single-mode optical fiber lengths is proposed and demonstrated using a gain-switched 1.55-μm distributed feedback laser without a fast photodetector or an optical interferometer. From the variation in the amplified spontaneous emission noise intensity with respect to the modulation frequency of the gain switching, the optical length of a 1-km single-mode fiber immersed in water is found to be 1471.043915 m ± 33 μm, corresponding to a relative standard deviation of 2.2 × 10(-8). This optical length is an average value over a measurement time of one minute under ordinary laboratory conditions.

  18. Velocity of water flow along saturated loess slopes under erosion effects

    NASA Astrophysics Data System (ADS)

    Huang, Yuhan; Chen, Xiaoyan; Li, Fahu; Zhang, Jing; Lei, Tingwu; Li, Juan; Chen, Ping; Wang, Xuefeng

    2018-06-01

    Rainfall or snow-melted water recharge easily saturates loose top soils with a less permeable underlayer, such as cultivated soil slope and partially thawed top soil layer, and thus, may influence the velocity of water flow. This study suggested a methodology and device system to supply water from the bottom soil layer at the different locations of slopes. Water seeps into and saturates the soil, when the water level is controlled at the same height of the soil surface. The structures and functions of the device, the components, and the operational principles are described in detail. A series of laboratory experiments were conducted under slope gradients of 5°, 10°, 15°, and 20° and flow rates of 2, 4, and 8 L min-1 to measure the water flow velocities over eroding and non-eroded loess soil slopes, under saturated conditions by using electrolyte tracing. Results showed that flow velocities on saturated slopes were 17% to 88% greater than those on non-saturated slopes. Flow velocity increased rapidly under high flow rates and slope gradients. Saturation conditions were suitable in maintaining smooth rill geomorphology and causing fast water flow. The saturated soil slope had a lubricant effect on the soil surface to reduce the frictional force, resulting in high flow velocity. The flow velocities of eroding rills under different slope gradients and flow rates were approximately 14% to 33% lower than those of non-eroded rills on saturated loess slopes. Compared with that on a saturated loess slope, the eroding rill on a non-saturated loess slope can produce headcuts to reduce the flow velocity. This study helps understand the hydrodynamics of soil erosion and sediment transportation of saturated soil slopes.

  19. Saturation current and collection efficiency for ionization chambers in pulsed beams.

    PubMed

    DeBlois, F; Zankowski, C; Podgorsak, E B

    2000-05-01

    Saturation currents and collection efficiencies in ionization chambers exposed to pulsed megavoltage photon and electron beams are determined assuming a linear relationship between 1/I and 1/V in the extreme near-saturation region, with I and V the chamber current and polarizing voltage, respectively. Careful measurements of chamber current against polarizing voltage in the extreme near-saturation region reveal a current rising faster than that predicted by the linear relationship. This excess current combined with conventional "two-voltage" technique for determination of collection efficiency may result in an up to 0.7% overestimate of the saturation current for standard radiation field sizes of 10X10 cm2. The measured excess current is attributed to charge multiplication in the chamber air volume and to radiation-induced conductivity in the stem of the chamber (stem effect). These effects may be accounted for by an exponential term used in conjunction with Boag's equation for collection efficiency in pulsed beams. The semiempirical model follows the experimental data well and accounts for both the charge recombination as well as for the charge multiplication effects and the chamber stem effect.

  20. Ventilatory Cycle Measurements and Loop Gain in Central Apnea in Mining Drivers Exposed to Intermittent Altitude.

    PubMed

    Rey de Castro, Jorge; Liendo, Alicia; Ortiz, Oswaldo; Rosales-Mayor, Edmundo; Liendo, César

    2017-01-15

    By measuring the apnea length, ventilatory phase, respiratory cycle length, and loop gain, we can further characterize the central apneas of high altitude (CAHA). Sixty-three drivers of all-terrain vehicles, working in a Peruvian mine located at 2,020 meters above sea level (MASL), were evaluated. A respiratory polygraph was performed in the first night they slept at high altitude. None of the subjects were exposed to oxygen during the test or acetazolamide in the preceding days of the test. Sixty-three respiratory polygraphs were performed, and 59 were considered for analysis. Forty-six (78%) were normal, 6 (10%) had OSA, and 7 (12%) had CAHA. Key data from subjects include: residing altitude: 341 ± 828 MASL, Lake Louise scoring: 0.4 ± 0.8, Epworth score: 3.4 ± 2.7, apneahypopnea index: 35.7 ± 19.3, CA index: 13.4 ± 14.2, CA length: 14.4 ± 3.6 sec, ventilatory length: 13.5 ± 2.9 sec, cycle length: 26.5 ± 4.0 sec, ventilatory length/CA length ratio 0.9 ± 0.3 and circulatory delay 13.3 ± 2.9 sec. Duty ratio media [ventilatory duration/cycle duration] was 0.522 ± 0 0.128 [0.308-0.700] and loop gain was calculated from the duty ratio utilizing this formula: LG = 2π / [(2πDR-sin(2πDR)]. All subjects have a high loop gain media 2.415 ± 1.761 [1.175-6.260]. Multiple correlations were established with loop gain values, but the only significant correlation detected was between central apnea index and loop gain. Twelve percent of the studied population had CAHA. Measurements of respiratory cycle in workers with CAHA are more similar to idiopathic central apneas rather than Hunter-Cheyne-Stokes respiration. Also, there was a high degree of correlation between severity of central apnea and the degree of loop gain. The abnormal breathing patterns in those subjects could affect the sleep quality and potentially increase the risk for work accidents. © 2017 American Academy of Sleep Medicine

  1. Shear dilatancy and acoustic emission in dry and saturated granular materials

    NASA Astrophysics Data System (ADS)

    Brodsky, E. E.; Siman-Tov, S.

    2017-12-01

    Shearing of granular materials plays a strong role in naturally sheared systems as landslides and faults. Many works on granular flows have concentrated on dry materials, but relatively little work has been done on water saturated sands. Here we experimentally investigate dry versus saturated quartz-rich sand to understand the effect of the fluid medium on the rheology and acoustic waves emission of the sheared sand. The sand was sheared in a rotary shear rheometer under applied constant normal stress boundary at low (100 µm/s) to high (1 m/s) velocities. Mechanical, acoustic data and deformation were continuously recorded and imaged. For dry and water saturated experiments the granular volume remains constant for low shear velocities ( 10-3 m/s) and increases during shearing at higher velocities ( 1 m/s). Continuous imaging of the sheared sand show that the steady state shear band thickness is thicker during the high velocity steps. No significant change observed in the shear band thickness between dry and water saturated experiments. In contrast, the amount of dilation during water saturated experiments is about half the value measured for dry material. The measured decrease cannot be explained by shear band thickness change as such is not exist. However, the reduced dilation is supported by our acoustic measurements. In general, the event rate and acoustic event amplitudes increase with shear velocity. While isolated events are clearly detected during low velocities at higher the events overlap, resulting in a noisy signal. Although detection is better for saturated experiments, during the high velocity steps the acoustic energy measured from the signal is lower compared to that recorded for dry experiments. We suggest that the presence of fluid suppresses grain motion and particles impacts leading to mild increase in the internal pressure and therefore for the reduced dilation. In addition, the viscosity of fluids may influence the internal pressure via

  2. Measuring Longitudinal Gains in Student Learning: A Comparison of Rasch Scoring and Summative Scoring Approaches

    ERIC Educational Resources Information Center

    Zhao, Yue; Huen, Jenny M. Y.; Chan, Y. W.

    2017-01-01

    This study pioneers a Rasch scoring approach and compares it to a conventional summative approach for measuring longitudinal gains in student learning. In this methodological note, our proposed methodology is demonstrated using an example of rating scales in a student survey as part of a higher education outcome assessment. Such assessments have…

  3. Floating-point scaling technique for sources separation automatic gain control

    NASA Astrophysics Data System (ADS)

    Fermas, A.; Belouchrani, A.; Ait-Mohamed, O.

    2012-07-01

    Based on the floating-point representation and taking advantage of scaling factor indetermination in blind source separation (BSS) processing, we propose a scaling technique applied to the separation matrix, to avoid the saturation or the weakness in the recovered source signals. This technique performs an automatic gain control in an on-line BSS environment. We demonstrate the effectiveness of this technique by using the implementation of a division-free BSS algorithm with two inputs, two outputs. The proposed technique is computationally cheaper and efficient for a hardware implementation compared to the Euclidean normalisation.

  4. Pulse oximeter oxygen saturation in prediction of arterial oxygen saturation in liver transplant candidates.

    PubMed

    Ghayumi, Seiyed Mohammad Ali; Khalafi-Nezhad, Abolfazl; Jowkar, Zahra

    2014-04-01

    Liver transplant is the only definitive treatment for many patients with end stage liver disease. Presence and severity of preoperative pulmonary disease directly affect the rate of postoperative complications of the liver transplantation. Arterial blood gas (ABG) measurement, performed in many transplant centers, is considered as a traditional method to diagnose hypoxemia. Because ABG measurement is invasive and painful, pulse oximetry, a bedside, noninvasive and inexpensive technique, has been recommended as an alternative source for the ABG measurement. The aim of this study was to evaluate the efficacy of pulse oximetry as a screening tool in hypoxemia detection in liver transplant candidates and to compare the results with ABGs. Three hundred and ninety transplant candidates (237 males and 153 females) participated in this study. Arterial blood gas oxyhemoglobin saturation (SaO2) was recorded and compared with pulse oximetry oxyhemoglobin saturation (SpO2) results for each participants. The area under the curve (AUC) of receiver operating characteristic (ROC) curves was calculated by means of nonparametric methods to evaluate the efficacy of pulse oximetry to detect hypoxemia. Roc-derived SpO2 threshold of ≤ 94% can predict hypoxemia (PaO2 < 60 mmHg) with a sensitivity of 100% and a specificity of 95%. Furthermore, there are associations between the ROC-derived SpO2 threshold of ≤ 97% and detection of hypoxemia (PaO2 < 70 mmHg) with a sensitivity of 100% and a specificity of 46%. The accuracy of pulse oximetry was not affected by the severity of liver disease in detection of hypoxemia. Provided that SpO2 is equal to or greater than 94%, attained from pulse oximetry can be used as a reliable and accurate substitute for the ABG measurements to evaluate hypoxemia in patients with end stage liver disease.

  5. Regional assessment of N saturation using foliar and root δ15N

    Treesearch

    L.H. Pardo; P.H. Templer; C.L. Goodale; S. Duke; P.M. Groffman; M.B. Adams; P. Boeckx; J. Boggs; J. Campbell; B. Colman; J. Compton; B. Emmett; P. Gundersen; J. Kjonaas; G. Lovett; M. Mack; A. Magill; M. Mbila; M.J. Mitchell; G. McGee; S. McNulty; K. Nadelhoffer; S. Ollinger; D. Ross; H. Rueth; L. Rustad; P. Schaberg; S. Schiff; P. Schleppi; J. Spoelstra; W. Wessel

    2006-01-01

    N saturation induced by atmospheric N deposition can have serious consequences for forest health in many regions. In order to evaluate whether foliar δ15N may be a robust, regional-scale measure of the onset of N saturation in forest ecosystems, we assembled a large dataset on atmospheric N deposition, foliar and root δ

  6. Muscle tissue saturation in humans studied with two non-invasive optical techniques: a comparative study

    NASA Astrophysics Data System (ADS)

    Shaharin, Alfi; Krite Svanberg, Emilie; Ellerström, Ida; Subash, Arman Ahamed; Khoptyar, Dmitry; Andersson-Engels, Stefan; Åkeson, Jonas

    2013-11-01

    Muscle tissue saturation (StO2) has been measured with two non-invasive optical techniques and the results were compared. One of the techniques is widely used in the hospitals - the CW-NIRS technique. The other is the photon timeof- flight spectrometer (pTOFS) developed in the Group of Biophotonics, Lund University, Sweden. The wavelengths used in both the techniques are 730 nm and 810 nm. A campaign was arranged to perform measurements on 21 (17 were taken for comparison) healthy adult volunteers (8 women and 13 men). Oxygen saturations were measured at the right lower arm of each volunteer. To observe the effects of different provocations on the oxygen saturation a blood pressure cuff was attached in the upper right arm. For CW-NIRS, the tissue saturation values were in the range from 70-90%, while for pTOFS the values were in the range from 55-60%.

  7. Wave Velocities in Hydrocarbons and Hydrocarbon Saturated - Applications to Eor Monitoring.

    NASA Astrophysics Data System (ADS)

    Wang, Zhijing

    In order to effectively utilize many new seismic technologies and interpret the results, acoustic properties of both reservoir fluids and rocks must be well understood. It is the main purpose of this dissertation to investigate acoustic wave velocities in different hydrocarbons and hydrocarbon saturated rocks under various reservoir conditions. The investigation consists of six laboratory experiments, followed by a series of theoretical and application analyses. All the experiments involve acoustic velocity measurements in hydrocarbons and rocks with different hydrocarbons, using the ultrasonic pulse-transmission methods, at elevated temperatures and pressures. In the experiments, wave velocities are measured versus both temperature and pressure in 50 hydrocarbons. The relations among the acoustic velocity, temperature, pressure, API gravity, and the molecular weight of the hydrocarbons are studied, and empirical equations are established which allow one to calculate the acoustic velocities in hydrocarbons with known API gravities. Wave velocities in hydrocarbon mixtures are related to the composition and the velocities in the components. The experimental results are also analyzed in terms of various existing theories and models of the liquid state. Wave velocities are also measured in various rocks saturated with different hydrocarbons. The compressional wave velocities in rocks saturated with pure hydrocarbons increase with increasing the carbon number of the hydrocarbons. They decrease markedly in all the heavy hydrocarbon saturated rocks as temperature increases. Such velocity decreases set the petrophysical basis for in-situ seismic monitoring thermal enhanced oil recovery processes. The effects of carbon dioxide flooding and different pore fluids on wave velocities in rocks are also investigated. It is highly possible that there exist reflections of seismic waves at the light-heavy oil saturation interfaces in-situ. It is also possible to use seismic methods

  8. Saturated Imaging for Inspecting Transparent Aesthetic Defects in a Polymeric Polarizer with Black and White Stripes.

    PubMed

    Yu, Cilong; Chen, Peibing; Zhong, Xiaopin; Pan, Xizhou; Deng, Yuanlong

    2018-05-07

    Machine vision systems have been widely used in industrial production lines because of their automation and contactless inspection mode. In polymeric polarizers, extremely slight transparent aesthetic defects are difficult to detect and characterize through conventional illumination. To inspect such defects rapidly and accurately, a saturated imaging technique was proposed, which innovatively uses the characteristics of saturated light in imaging by adjusting the light intensity, exposure time, and camera gain. An optical model of defect was established to explain the theory by simulation. Based on the optimum experimental conditions, active two-step scanning was conducted to demonstrate the feasibility of this detection scheme, and the proposed method was found to be efficient for real-time and in situ inspection of defects in polymer films and products.

  9. Charge Gain, Voltage Gain, and Node Capacitance of the SAPHIRA Detector Pixel by Pixel

    NASA Astrophysics Data System (ADS)

    Pastrana, Izabella M.; Hall, Donald N. B.; Baker, Ian M.; Jacobson, Shane M.; Goebel, Sean B.

    2018-01-01

    The University of Hawai`i Institute for Astronomy has partnered with Leonardo (formerly Selex) in the development of HgCdTe linear mode avalanche photodiode (L-APD) SAPHIRA detectors. The SAPHIRA (Selex Avalanche Photodiode High-speed Infra-Red Array) is ideally suited for photon-starved astronomical observations, particularly near infrared (NIR) adaptive optics (AO) wave-front sensing. I have measured the stability, and linearity with current, of a 1.7-um (10% spectral bandpass) infrared light emitting diode (IR LED) used to illuminate the SAPHIRA and have then utilized this source to determine the charge gain (in e-/ADU), voltage gain (in uV/ADU), and node capacitance (in fF) for each pixel of the 320x256@24um SAPHIRA. These have previously only been averages over some sub-array. Determined from the ratio of the temporal averaged signal level to variance under constant 1.7-um LED illumination, I present the charge gain pixel-by-pixel in a 64x64 sub-array at the center of the active area of the SAPHIRA (analyzed separately as four 32x32 sub-arrays) to be about 1.6 e-/ADU (σ=0.5 e-/ADU). Additionally, the standard technique of varying the pixel reset voltage (PRV) in 10 mV increments and recording output frames for the same 64x64 subarray found the voltage gain per pixel to be about 11.7 uV/ADU (σ=0.2 uV/ADU). Finally, node capacitance was found to be approximately 23 fF (σ=6 fF) utilizing the aforementioned charge and voltage gain measurements. I further discuss the linearity measurements of the 1.7-um LED used in the charge gain characterization procedure.

  10. Assessing oxygen saturation in retinal vessels in high myopia patients pre- and post-implantable collamer lens implantation surgery.

    PubMed

    Chen, Pei; Cai, Xiaoxiao; Xu, Lijun; Zhang, Jing; Yang, Ying; Gao, Qianying; Ge, Jian; Yu, Keming; Zhuang, Jing

    2017-09-01

    To determine whether posterior chamber phakic implantable collamer lens (ICL) surgery in high myopia patients impedes oxygen saturation of retinal vessels. Mean oxygen saturation and diameter in retinal blood vessels were measured before and after ICL implantation surgery to correct high myopia refractive errors (i.e. -6.00 to -20.25 dioptres [D]), using an Oxymap T1 retinal oximeter. In 17 eyes of 17 patients, the Oxymap T1 retinal oximeter detected a small but significant decrease in oxygen saturation of retinal venules, 1-week postoperatively (compared to preoperative measurements). Moreover, at 1 week after ICL implantation, the diameter of patient retinal vessels had consistently contracted, compared to preoperative measurements. By 1 month after ICL surgery, however, both the oxygen saturation and retinal vessel diameter had returned to preoperative levels. Otherwise, no statistically significant difference in oxygen saturation and diameter of retinal arterioles was found when comparing their measurements before and 1 week after implantation. Stable levels of oxygen saturation in retinal vessels, as detected by the Oxymap T1 oximeter, show ICL implantation would not leave lasting impact or adverse effects to retina oxygen saturation in high myopia patients. © 2017 Acta Ophthalmologica Scandinavica Foundation. Published by John Wiley & Sons Ltd.

  11. Longitudinal mode selection in a delay-line homogeneously broadened oscillator with a fast saturable amplifier.

    PubMed

    Fleyer, Michael; Horowitz, Moshe

    2017-05-01

    Homogeneously broadened delay-line oscillators such as lasers or optoelectronic oscillators (OEOs) can potentially oscillate in a large number of cavity modes that are supported by their amplifier bandwidth. In a continuous wave operating mode, the oscillating mode is selected between one or few cavity modes that experience the highest small-signal gain. In this manuscript, we show that the oscillation mode of a homogeneously broadened oscillator can be selected from a large number of modes in a frequency region that can be broader than the full width at half maximum of the effective cavity filter. The mode is selected by a short-time injection of an external signal into the oscillator. After the external signal is turned off, the oscillation is maintained in the selected mode even if this mode has a significantly lower small-signal gain than that of other cavity modes. The stability of the oscillation is obtained due to nonlinear saturation effect in the oscillator amplifier. We demonstrate, experimentally and theoretically, mode selection in a long cavity OEO. We could select any desired mode between 400 cavity modes while maintaining ultra-low phase noise in the selected mode and in the non-oscillating modes. No mode-hopping was observed during our maximum measurement duration of about 24 hours.

  12. Applications of Doppler-free saturation spectroscopy for edge physics studies (invited)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martin, E. H., E-mail: martineh@ornl.gov; Caughman, J. B. O.; Isler, R. C.

    Doppler-free saturation spectroscopy provides a very powerful method to obtain detailed information about the electronic structure of the atom through measurement of the spectral line profile. This is achieved through a significant decrease in the Doppler broadening and essentially an elimination of the instrument broadening inherent to passive spectroscopic techniques. In this paper we present the technique and associated physics of Doppler-free saturation spectroscopy in addition to how one selects the appropriate transition. Simulations of H{sub δ} spectra are presented to illustrate the increased sensitivity to both electric field and electron density measurements.

  13. Interpreting HSE Contents of Planetary Basalts: The Importance of Sulfide Saturation and Under-Saturation

    NASA Technical Reports Server (NTRS)

    Righter, K.

    2000-01-01

    Highly siderophile elements provide important constraints on planetary differentiation due to their siderophile behavior. Their interpretation in terms of planetary differentiation models has so far overlooked the importance of sulfide saturation and under-saturation.

  14. Color and emotion: effects of hue, saturation, and brightness.

    PubMed

    Wilms, Lisa; Oberfeld, Daniel

    2017-06-13

    Previous studies on emotional effects of color often failed to control all the three perceptual dimensions of color: hue, saturation, and brightness. Here, we presented a three-dimensional space of chromatic colors by independently varying hue (blue, green, red), saturation (low, medium, high), and brightness (dark, medium, bright) in a factorial design. The 27 chromatic colors, plus 3 brightness-matched achromatic colors, were presented via an LED display. Participants (N = 62) viewed each color for 30 s and then rated their current emotional state (valence and arousal). Skin conductance and heart rate were measured continuously. The emotion ratings showed that saturated and bright colors were associated with higher arousal. The hue also had a significant effect on arousal, which increased from blue and green to red. The ratings of valence were the highest for saturated and bright colors, and also depended on the hue. Several interaction effects of the three color dimensions were observed for both arousal and valence. For instance, the valence ratings were higher for blue than for the remaining hues, but only for highly saturated colors. Saturated and bright colors caused significantly stronger skin conductance responses. Achromatic colors resulted in a short-term deceleration in the heart rate, while chromatic colors caused an acceleration. The results confirm that color stimuli have effects on the emotional state of the observer. These effects are not only determined by the hue of a color, as is often assumed, but by all the three color dimensions as well as their interactions.

  15. Photoacoustic measurements of red blood cell oxygen saturation in blood bags in situ

    NASA Astrophysics Data System (ADS)

    Pinto, Ruben N.; Bagga, Karan; Douplik, Alexandre; Acker, Jason P.; Kolios, Michael C.

    2017-03-01

    Red blood cell (RBC) transfusion is a critical component of the health care services. RBCs are stored in blood bags in hypothermic temperatures for a maximum of 6 weeks post donation. During this in vitro storage period, RBCs have been documented to undergo changes in structure and function due to mechanical and biochemical stress. Currently, there are no assessment methods that monitor the quality of RBCs within blood bags stored for transfusion. Conventional assessment methods require the extraction of samples, consequently voiding the sterility of the blood bags and potentially rendering them unfit for transfusions. It is hypothesized that photoacoustic (PA) technology can provide a rapid and non-invasive indication of RBC quality. In this study, a novel PA setup was developed for the acquisition of oxygen saturation (SO2) of two blood bags in situ. These measurements were taken throughout the lifespan of the blood bags (42 days) and compared against the clinical gold standard method of the blood gas analyzer (BGA). SO2 values of the blood bags increased monotonically throughout the storage period. A strong correlation between PA SO2 and BGA SO2 was found, however, PA values were on average 3.5% lower. Both techniques found the bags to increase by an SO2 of approximately 20%, and measured very similar rates of SO2 change. Future work will be focused on determining the cause of discrepancy between SO2 values acquired from PA versus BGA, as well as establishing links between the measured SO2 increase and other changes in RBC in situ.

  16. Gain determination of optical active doped planar waveguides

    NASA Astrophysics Data System (ADS)

    Šmejcký, J.; Jeřábek, V.; Nekvindová, P.

    2017-12-01

    This paper summarizes the results of the gain transmission characteristics measurement carried out on the new ion exchange Ag+ - Na+ optical Er3+ and Yb3+ doped active planar waveguides realized on a silica based glass substrates. The results were used for optimization of the precursor concentration in the glass substrates. The gain measurements were performed by the time domain method using a pulse generator, as well as broadband measurement method using supercontinuum optical source in the wavelength domain. Both methods were compared and the results were graphically processed. It has been confirmed that pulse method is useful as it provides a very accurate measurement of the gain - pumping power characteristics for one wavelength. In the case of radiation spectral characteristics, our measurement exactly determined the maximum gain wavelength bandwidth of the active waveguide. The spectral characteristics of the pumped and unpumped waveguides were compared. The gain parameters of the reported silica-based glasses can be compared with the phosphate-based parameters, typically used for optical active devices application.

  17. Cerebral oxygen saturation and cardiac output during anaesthesia in sitting position for neurosurgical procedures: a prospective observational study.

    PubMed

    Schramm, P; Tzanova, I; Hagen, F; Berres, M; Closhen, D; Pestel, G; Engelhard, K

    2016-10-01

    Neurosurgical operations in the dorsal cranium often require the patient to be positioned in a sitting position. This can be associated with decreased cardiac output and cerebral hypoperfusion, and possibly, inadequate cerebral oxygenation. In the present study, cerebral oxygen saturation was measured during neurosurgery in the sitting position and correlated with cardiac output. Perioperative cerebral oxygen saturation was measured continuously with two different monitors, INVOS ® and FORE-SIGHT ® . Cardiac output was measured at eight predefined time points using transoesophageal echocardiography. Forty patients were enrolled, but only 35 (20 female) were eventually operated on in the sitting position. At the first time point, the regional cerebral oxygen saturation measured with INVOS ® was 70 (sd 9)%; thereafter, it increased by 0.0187% min -1 (P<0.01). The cerebral tissue oxygen saturation measured with FORE-SIGHT ® started at 68 (sd 13)% and increased by 0.0142% min -1 (P<0.01). The mean arterial blood pressure did not change. Cardiac output was between 6.3 (sd 1.3) and 7.2 (1.8) litre min -1 at the predefined time points. Cardiac output, but not mean arterial blood pressure, showed a positive and significant correlation with cerebral oxygen saturation. During neurosurgery in the sitting position, the cerebral oxygen saturation slowly increases and, therefore, this position seems to be safe with regard to cerebral oxygen saturation. Cerebral oxygen saturation is stable because of constant CO and MAP, while the influence of CO on cerebral oxygen saturation seems to be more relevant. NCT01275898. © The Author 2016. Published by Oxford University Press on behalf of the British Journal of Anaesthesia. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  18. Experimental and numerical study on thermal conductivity of partially saturated unconsolidated sands

    NASA Astrophysics Data System (ADS)

    Lee, Youngmin; Keehm, Youngseuk; Kim, Seong-Kyun; Shin, Sang Ho

    2016-04-01

    A class of problems in heat flow applications requires an understanding of how water saturation affects thermal conductivity in the shallow subsurface. We conducted a series of experiments using a sand box to evaluate thermal conductivity (TC) of partially saturated unconsolidated sands under varying water saturation (Sw). We first saturated sands fully with water and varied water saturation by drainage through the bottom of the sand box. Five water-content sensors were integrated vertically into the sand box to monitor water saturation changes and a needle probe was embedded to measure thermal conductivity of partially saturated sands. The experimental result showed that thermal conductivity decreases from 2.5 W/mK for fully saturated sands to 0.7 W/mK when water saturation is 5%. We found that the decreasing trend is quite non-linear: highly sensitive at very high and low water saturations. However, the boundary effects on the top and the bottom of the sand box seemed to be responsible for this high nonlinearity. We also found that the determination of water saturation is quite important: the saturation by averaging values from all five sensors and that from the sensor at the center position, showed quite different trends in the TC-Sw domain. In parallel, we conducted a pore-scale numerical modeling, which consists of the steady-state two-phase Lattice-Boltzmann simulator and FEM thermal conduction simulator on digital pore geometry of sand aggregation. The simulation results showed a monotonous decreasing trend, and are reasonably well matched with experimental data when using average water saturations. We concluded that thermal conductivity would decrease smoothly as water saturation decreases if we can exclude boundary effects. However, in dynamic conditions, i.e. imbibition or drainage, the thermal conductivity might show hysteresis, which can be investigated with pore-scale numerical modeling with unsteady-state two-phase flow simulators in our future work.

  19. High or low oxygen saturation and severe retinopathy of prematurity: a meta-analysis.

    PubMed

    Chen, Minghua L; Guo, Lei; Smith, Lois E H; Dammann, Christiane E L; Dammann, Olaf

    2010-06-01

    Low oxygen saturation appears to decrease the risk of severe retinopathy of prematurity (ROP) in preterm newborns when administered during the first few weeks after birth. High oxygen saturation seems to reduce the risk at later postmenstrual ages (PMAs). However, previous clinical studies are not conclusive individually. To perform a systematic review and meta-analysis to report the association between severe ROP incidence of premature infants with high or low target oxygen saturation measured by pulse oximetry. Studies were identified through PubMed and Embase literature searches through May 2009 by using the terms "retinopathy of prematurity and oxygen" or "retinopathy of prematurity and oxygen therapy." We selected 10 publications addressing the association between severe ROP and target oxygen saturation measured by pulse oximetry. Using a random-effects model we calculated the summary-effect estimate. We visually inspected funnel plots to examine possible publication bias. Low oxygen saturation (70%-96%) in the first several postnatal weeks was associated with a reduced risk of severe ROP (risk ratio [RR]: 0.48 [95% confidence interval (CI): 0.31-0.75]). High oxygen saturation (94%-99%) at > or = 32 weeks' PMA was associated with a decreased risk for progression to severe ROP (RR: 0.54 [95% CI: 0.35-0.82]). Among preterm infants with a gestational age of < or = 32 weeks, early low and late high oxygen saturation were associated with a reduced risk for severe ROP. We feel that a large randomized clinical trial with long-term developmental follow-up is warranted to confirm this meta-analytic result.

  20. The impact of fluid topology on residual saturations - A pore-network model study

    NASA Astrophysics Data System (ADS)

    Doster, F.; Kallel, W.; van Dijke, R.

    2014-12-01

    In two-phase flow in porous media only fractions of the resident fluid are mobilised during a displacement process and, in general, a significant amount of the resident fluid remains permanently trapped. Depending on the application, entrapment is desirable (geological carbon storage), or it should be obviated (enhanced oil recovery, contaminant remediation). Despite its utmost importance for these applications, predictions of trapped fluid saturations for macroscopic systems, in particular under changing displacement conditions, remain challenging. The models that aim to represent trapping phenomena are typically empirical and require tracking of the history of the state variables. This exacerbates the experimental verification and the design of sophisticated displacement technologies that enhance or impede trapping. Recently, experiments [1] have suggested that a macroscopic normalized Euler number, quantifying the topology of fluid distributions, could serve as a parameter to predict residual saturations based on state variables. In these experiments the entrapment of fluids was visualised through 3D micro CT imaging. However, the experiments are notoriously time consuming and therefore only allow for a sparse sampling of the parameter space. Pore-network models represent porous media through an equivalent network structure of pores and throats. Under quasi-static capillary dominated conditions displacement processes can be modeled through simple invasion percolation rules. Hence, in contrast to experiments, pore-network models are fast and therefore allow full sampling of the parameter space. Here, we use pore-network modeling [2] to critically investigate the knowledge gained through observing and tracking the normalized Euler number. More specifically, we identify conditions under which (a) systems with the same saturations but different normalized Euler numbers lead to different residual saturations and (b) systems with the same saturations and the same

  1. Comparison of Video Head Impulse Test (vHIT) Gains Between Two Commercially Available Devices and by Different Gain Analytical Methods.

    PubMed

    Lee, Sang Hun; Yoo, Myung Hoon; Park, Jun Woo; Kang, Byung Chul; Yang, Chan Joo; Kang, Woo Suk; Ahn, Joong Ho; Chung, Jong Woo; Park, Hong Ju

    2018-06-01

    To evaluate whether video head impulse test (vHIT) gains are dependent on the measuring device and method of analysis. Prospective study. vHIT was performed in 25 healthy subjects using two devices simultaneously. vHIT gains were compared between these instruments and using five different methods of comparing position and velocity gains during head movement intervals. The two devices produced different vHIT gain results with the same method of analysis. There were also significant differences in the vHIT gains measured using different analytical methods. The gain analytic method that compares the areas under the velocity curve (AUC) of the head and eye movements during head movements showed lower vHIT gains than a method that compared the peak velocities of the head and eye movements. The former method produced the vHIT gain with the smallest standard deviation among the five procedures tested in this study. vHIT gains differ in normal subjects depending on the device and method of analysis used, suggesting that it is advisable for each device to have its own normal values. Gain calculations that compare the AUC of the head and eye movements during the head movements show the smallest variance.

  2. Rejection of Erroneous Saturation Data in Optical Pulse Oximetry in Newborn Patients

    NASA Astrophysics Data System (ADS)

    Scalise, L.; Marchionni, Paolo; Carnielli, Virgilio P.

    2011-08-01

    Pulse oximetry (PO) is extensively used in intensive care unit (ICU); this is mainly due to the fact that it is a non-invasive and real-time monitoring method. PO allows to measure arterial oxygen saturation (SaO2) and in particular hemoglobin oxygenation. Optical PO is typically realized by the use of a clip (to be applied on the ear or on the finger top) containing a couple of monochromatic LED sources and a photodiode. The main drawback with the use of PO is the presence of movement artifacts or disturbance due to optical sources and skin, causing erroneous saturation data. The aim of this work is to present the measurement procedure based on a specially developed algorithm able to reject erroneous oxygen saturation data during long lasting monitoring of patients in ICU and to compare measurement data with reference data provided by EGA. We have collected SaO2 data from a standard PO and used an intensive care unit monitor to collect data. This device was connected to our acquisition system and heart rate (HR) and SaO2 data were acquired and processed by our specially developed algorithm and directly reproduced on the PC screen for use by the clinicians. The algorithm here used for the individuation and rejection of erroneous saturation data is based on the assessment of the difference between the Heart Rate (HR) measured by respectively by the ECG and PO. We have used an emogasanalyzer (EGA) for comparison of the measured data. The study was carried out in a neonatal intensive care unit (NICU), using 817 data coming from 24 patients and the observation time was of about 10000 hours. Results show a reduction in the maximum difference between the SaO2 data measured, simultaneously, on the same patient by the EGA and by the proposed method of 14.20% and of the 4.76% in average over the 817 samples. The measurement method proposed is therefore able to individuate and eliminate the erroneous saturation data due to motion artifacts and reported by the pulse oxymeter

  3. Measurements and simulations of the optical gain and anti-reflection coating modal reflectivity in quantum cascade lasers with multiple active region stacks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bidaux, Y., E-mail: yves.bidaux@alpeslasers.ch; Alpes Lasers SA, 1-3 Maximilien-de-Meuron, CH-2000 Neuchatel; Terazzi, R.

    2015-09-07

    We report spectrally resolved gain measurements and simulations for quantum cascade lasers (QCLs) composed of multiple heterogeneous stacks designed for broadband emission in the mid-infrared. The measurement method is first demonstrated on a reference single active region QCL based on a double-phonon resonance design emitting at 7.8 μm. It is then extended to a three-stack active region based on bound-to-continuum designs with a broadband emission range from 7.5 to 10.5 μm. A tight agreement is found with simulations based on a density matrix model. The latter implements exhaustive microscopic scattering and dephasing sources with virtually no fitting parameters. The quantitative agreement ismore » furthermore assessed by measuring gain coefficients obtained by studying the threshold current dependence with the cavity length. These results are particularly relevant to understand fundamental gain mechanisms in complex semiconductor heterostructure QCLs and to move towards efficient gain engineering. Finally, the method is extended to the measurement of the modal reflectivity of an anti-reflection coating deposited on the front facet of the broadband QCL.« less

  4. A weight-gain-for-gestational-age z score chart for the assessment of maternal weight gain in pregnancy.

    PubMed

    Hutcheon, Jennifer A; Platt, Robert W; Abrams, Barbara; Himes, Katherine P; Simhan, Hyagriv N; Bodnar, Lisa M

    2013-05-01

    To establish the unbiased relation between maternal weight gain in pregnancy and perinatal health, a classification for maternal weight gain is needed that is uncorrelated with gestational age. The goal of this study was to create a weight-gain-for-gestational-age percentile and z score chart to describe the mean, SD, and selected percentiles of maternal weight gain throughout pregnancy in a contemporary cohort of US women. The study population was drawn from normal-weight women with uncomplicated, singleton pregnancies who delivered at the Magee-Womens Hospital in Pittsburgh, PA, 1998-2008. Analyses were based on a randomly selected subset of 648 women for whom serial prenatal weight measurements were available through medical chart record abstraction (6727 weight measurements). The pattern of maternal weight gain throughout gestation was estimated by using a random-effects regression model. The estimates were used to create a chart with the smoothed means, percentiles, and SDs of gestational weight gain for each week of pregnancy. This chart allows researchers to express total weight gain as an age-standardized z score, which can be used in epidemiologic analyses to study the association between pregnancy weight gain and adverse or physiologic pregnancy outcomes independent of gestational age.

  5. Saturated fat, carbohydrate, and cardiovascular disease.

    PubMed

    Siri-Tarino, Patty W; Sun, Qi; Hu, Frank B; Krauss, Ronald M

    2010-03-01

    A focus of dietary recommendations for cardiovascular disease (CVD) prevention and treatment has been a reduction in saturated fat intake, primarily as a means of lowering LDL-cholesterol concentrations. However, the evidence that supports a reduction in saturated fat intake must be evaluated in the context of replacement by other macronutrients. Clinical trials that replaced saturated fat with polyunsaturated fat have generally shown a reduction in CVD events, although several studies showed no effects. An independent association of saturated fat intake with CVD risk has not been consistently shown in prospective epidemiologic studies, although some have provided evidence of an increased risk in young individuals and in women. Replacement of saturated fat by polyunsaturated or monounsaturated fat lowers both LDL and HDL cholesterol. However, replacement with a higher carbohydrate intake, particularly refined carbohydrate, can exacerbate the atherogenic dyslipidemia associated with insulin resistance and obesity that includes increased triglycerides, small LDL particles, and reduced HDL cholesterol. In summary, although substitution of dietary polyunsaturated fat for saturated fat has been shown to lower CVD risk, there are few epidemiologic or clinical trial data to support a benefit of replacing saturated fat with carbohydrate. Furthermore, particularly given the differential effects of dietary saturated fats and carbohydrates on concentrations of larger and smaller LDL particles, respectively, dietary efforts to improve the increasing burden of CVD risk associated with atherogenic dyslipidemia should primarily emphasize the limitation of refined carbohydrate intakes and a reduction in excess adiposity.

  6. A high gain wide dynamic range transimpedance amplifier for optical receivers

    NASA Astrophysics Data System (ADS)

    Lianxi, Liu; Jiao, Zou; Yunfei, En; Shubin, Liu; Yue, Niu; Zhangming, Zhu; Yintang, Yang

    2014-01-01

    As the front-end preamplifiers in optical receivers, transimpedance amplifiers (TIAs) are commonly required to have a high gain and low input noise to amplify the weak and susceptible input signal. At the same time, the TIAs should possess a wide dynamic range (DR) to prevent the circuit from becoming saturated by high input currents. Based on the above, this paper presents a CMOS transimpedance amplifier with high gain and a wide DR for 2.5 Gbit/s communications. The TIA proposed consists of a three-stage cascade pull push inverter, an automatic gain control circuit, and a shunt transistor controlled by the resistive divider. The inductive-series peaking technique is used to further extend the bandwidth. The TIA proposed displays a maximum transimpedance gain of 88.3 dBΩ with the -3 dB bandwidth of 1.8 GHz, exhibits an input current dynamic range from 100 nA to 10 mA. The output voltage noise is less than 48.23 nV/√Hz within the -3 dB bandwidth. The circuit is fabricated using an SMIC 0.18 μm 1P6M RFCMOS process and dissipates a dc power of 9.4 mW with 1.8 V supply voltage.

  7. Benefits of Oxygen Saturation Targeting Trials: Oximeter Calibration Software Revision and Infant Saturations.

    PubMed

    Whyte, Robin K; Nelson, Harvey; Roberts, Robin S; Schmidt, Barbara

    2017-03-01

    It has been reported in the 3 Benefits of Oxygen Saturation Targeting (BOOST-II) trials that changes in oximeter calibration software resulted in clearer separation between the oxygen saturations in the two trial target groups. A revised analysis of the published BOOST-II data does not support this conclusion. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Effective Instruction and Assessment Methods That Lead to Gains in Critical Thinking as Measured by the Critical Thinking Assessment Test (CAT)

    ERIC Educational Resources Information Center

    Leming, Katie P.

    2016-01-01

    Previous qualitative research on educational practices designed to improve critical thinking has relied on anecdotal or student self-reports of gains in critical thinking. Unfortunately, student self-report data have been found to be unreliable proxies for measuring critical thinking gains. Therefore, in the current interpretivist study, five…

  9. Relationship Between Optimal Gain and Coherence Zone in Flight Simulation

    NASA Technical Reports Server (NTRS)

    Gracio, Bruno Jorge Correia; Pais, Ana Rita Valente; vanPaassen, M. M.; Mulder, Max; Kely, Lon C.; Houck, Jacob A.

    2011-01-01

    In motion simulation the inertial information generated by the motion platform is most of the times different from the visual information in the simulator displays. This occurs due to the physical limits of the motion platform. However, for small motions that are within the physical limits of the motion platform, one-to-one motion, i.e. visual information equal to inertial information, is possible. It has been shown in previous studies that one-to-one motion is often judged as too strong, causing researchers to lower the inertial amplitude. When trying to measure the optimal inertial gain for a visual amplitude, we found a zone of optimal gains instead of a single value. Such result seems related with the coherence zones that have been measured in flight simulation studies. However, the optimal gain results were never directly related with the coherence zones. In this study we investigated whether the optimal gain measurements are the same as the coherence zone measurements. We also try to infer if the results obtained from the two measurements can be used to differentiate between simulators with different configurations. An experiment was conducted at the NASA Langley Research Center which used both the Cockpit Motion Facility and the Visual Motion Simulator. The results show that the inertial gains obtained with the optimal gain are different than the ones obtained with the coherence zone measurements. The optimal gain is within the coherence zone.The point of mean optimal gain was lower and further away from the one-to-one line than the point of mean coherence. The zone width obtained for the coherence zone measurements was dependent on the visual amplitude and frequency. For the optimal gain, the zone width remained constant when the visual amplitude and frequency were varied. We found no effect of the simulator configuration in both the coherence zone and optimal gain measurements.

  10. Direct laboratory observation of fluid distribution and its influence on acoustic properties of patchy saturated rocks

    NASA Astrophysics Data System (ADS)

    Lebedev, M.; Clennell, B.; Pervukhina, M.; Shulakova, V.; Mueller, T.; Gurevich, B.

    2009-04-01

    Porous rocks in hydrocarbon reservoirs are often saturated with a mixture of two or more fluids. Interpretation of exploration seismograms requires understanding of the relationship between distribution of the fluids patches and acoustic properties of rocks. The sizes of patches as well as their distribution affect significantly the seismic response. If the size of the fluid patch is smaller than the diffusion wavelength then pressure equilibration is achieved and the bulk modulus of the rock saturated with a mixture is defined by the Gassmann equations (Gassmann, 1951) with the saturation-weighted average of the fluid bulk modulus given by Wood's law (Wood, 1955, Mavko et al., 1998). If the fluid patch size is much larger than the diffusion wavelength then there is no pressure communication between different patches. In this case, fluid-flow effects can be neglected and the overall rock may be considered equivalent to an elastic composite material consisting of homogeneous parts whose properties are given by Gassmann theory with Hill's equation for the bulk modulus (Hill, 1963, Mavko et al., 1998). At intermediate values of fluid saturation the velocity-saturation relationship is significantly affected by the fluid patch distribution. In order to get an improved understanding of factors influencing the patch distribution and the resulting seismic wave response we performed simultaneous measurements of P-wave velocities and rock sample CT imaging. The CT imaging allows us to map the fluid distribution inside rock sample during saturation (water imbibition). We compare the experimental results with theoretical predictions. In this paper we will present results of simultaneous measurements of longitudinal wave velocities and imaging mapping of fluid distribution inside rock sample during sample saturation. We will report results of two kinds of experiments: "dynamic" and "quasi static" saturation. In both experiments Casino Cores Otway Basin sandstone, Australia core

  11. New hybrid reflectance optical pulse oximetry sensor for lower oxygen saturation measurement and for broader clinical application

    NASA Astrophysics Data System (ADS)

    Nogawa, Masamichi; Ching, Chong Thong; Ida, Takeyuki; Itakura, Keiko; Takatani, Setsuo

    1997-06-01

    A new reflectance pulse oximeter sensor for lower arterial oxygen saturation (Sa)2) measurement has been designed and evaluated in animals prior to clinical trials. The new sensor incorporates ten light emitting diode chips for each wavelength of 730 and 880 nm mounted symmetrically and at the radial separation distance of 7 mm around a photodiode chip. The separation distance of 7 mm was chosen to maximize the ratio of the pulsatile to the average plethysmographic signal level at each wavelength. The 730 and 880 wavelength combination was determined to obtain a linear relationship between the reflectance ratio of the 730 and 880 nm wavelengths and Sa)2. In addition to these features of the sensor, the Fast Fourier Transform method was employed to compute the pulsatile and average signal level at each wavelength. The performance of the new reflectance pulse oximeter sensor was evaluated in dogs in comparison to the 665/910 nm sensor. As predicted by the theoretical simulation based on a 3D photon diffusion theory, the 730/880 nm sensor demonstrated an excellent linearity over the SaO2 range from 100 to 30 percent. For the SaO2 range between 100 and 70 percent, the 665/910 and 730/880 sensors showed the standard error of around 3.5 percent and 2.1 percent, respectively, in comparison to the blood samples. For the range between 70 and 30 percent, the standard error of the 730/880 nm sensor was only 2.7 percent, while that of the 665/910 nm sensor was 9.5 percent. The 730/880 sensor showed improved accuracy for a wide range of SaO2 particularly over the range between 70 and 30 percent. This new reflectance sensor can provide noninvasive measurement of SaO2 accurately over the wide saturation range from 100 to 30 percent.

  12. Optimization of control gain by operator adjustment

    NASA Technical Reports Server (NTRS)

    Kruse, W.; Rothbauer, G.

    1973-01-01

    An optimal gain was established by measuring errors at 5 discrete control gain settings in an experimental set-up consisting of a 2-dimensional, first-order pursuit tracking task performed by subjects (S's). No significant experience effect on optimum gain setting was found in the first experiment. During the second experiment, in which control gain was continuously adjustable, high experienced S's tended to reach the previously determined optimum gain quite accurately and quickly. Less experienced S's tended to select a marginally optimum gain either below or above the experimentally determined optimum depending on initial control gain setting, although mean settings of both groups were equal. This quick and simple method is recommended for selecting control gains for different control systems and forcing functions.

  13. Indirect flat-panel detector with avalanche gain: Fundamental feasibility investigation for SHARP-AMFPI (scintillator HARP active matrix flat panel imager)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao Wei; Li Dan; Reznik, Alla

    2005-09-15

    An indirect flat-panel imager (FPI) with avalanche gain is being investigated for low-dose x-ray imaging. It is made by optically coupling a structured x-ray scintillator CsI(Tl) to an amorphous selenium (a-Se) avalanche photoconductor called HARP (high-gain avalanche rushing photoconductor). The final electronic image is read out using an active matrix array of thin film transistors (TFT). We call the proposed detector SHARP-AMFPI (scintillator HARP active matrix flat panel imager). The advantage of the SHARP-AMFPI is its programmable gain, which can be turned on during low dose fluoroscopy to overcome electronic noise, and turned off during high dose radiography to avoidmore » pixel saturation. The purpose of this paper is to investigate the important design considerations for SHARP-AMFPI such as avalanche gain, which depends on both the thickness d{sub Se} and the applied electric field E{sub Se} of the HARP layer. To determine the optimal design parameter and operational conditions for HARP, we measured the E{sub Se} dependence of both avalanche gain and optical quantum efficiency of an 8 {mu}m HARP layer. The results were used in a physical model of HARP as well as a linear cascaded model of the FPI to determine the following x-ray imaging properties in both the avalanche and nonavalanche modes as a function of E{sub Se}: (1) total gain (which is the product of avalanche gain and optical quantum efficiency); (2) linearity; (3) dynamic range; (4) gain nonuniformity resulting from thickness nonuniformity; and (5) effects of direct x-ray interaction in HARP. Our results showed that a HARP layer thickness of 8 {mu}m can provide adequate avalanche gain and sufficient dynamic range for x-ray imaging applications to permit quantum limited operation over the range of exposures needed for radiography and fluoroscopy.« less

  14. Self isolating high frequency saturable reactor

    DOEpatents

    Moore, James A.

    1998-06-23

    The present invention discloses a saturable reactor and a method for decoupling the interwinding capacitance from the frequency limitations of the reactor so that the equivalent electrical circuit of the saturable reactor comprises a variable inductor. The saturable reactor comprises a plurality of physically symmetrical magnetic cores with closed loop magnetic paths and a novel method of wiring a control winding and a RF winding. The present invention additionally discloses a matching network and method for matching the impedances of a RF generator to a load. The matching network comprises a matching transformer and a saturable reactor.

  15. Estimation of plasma ion saturation current and reduced tip arcing using Langmuir probe harmonics.

    PubMed

    Boedo, J A; Rudakov, D L

    2017-03-01

    We present a method to calculate the ion saturation current, I sat , for Langmuir probes at high frequency (>100 kHz) using the harmonics technique and we compare that to a direct measurement of I sat . It is noted that the I sat estimation can be made directly by the ratio of harmonic amplitudes, without explicitly calculating T e . We also demonstrate that since the probe tips using the harmonic method are oscillating near the floating potential, drawing little power, this method reduces tip heating and arcing and allows plasma density measurements at a plasma power flux that would cause continuously biased tips to arc. A multi-probe array is used, with two spatially separated tips employing the harmonics technique and measuring the amplitude of at least two harmonics per tip. A third tip, located between the other two, measures the ion saturation current directly. We compare the measured and calculated ion saturation currents for a variety of plasma conditions and demonstrate the validity of the technique and its use in reducing arcs.

  16. Estimation of plasma ion saturation current and reduced tip arcing using Langmuir probe harmonics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boedo, J. A.; Rudakov, D. L.

    Here we present a method to calculate the ion saturation current, I sat, for Langmuir probes at high frequency (>100 kHz) using the harmonics technique and we compare that to a direct measurement of I sat. It is noted that the Isat estimation can be made directly by the ratio of harmonic amplitudes, without explicitly calculating T e. We also demonstrate that since the probe tips using the harmonic method are oscillating near the floating potential, drawing little power, this method reduces tip heating and arcing and allows plasma density measurements at a plasma power flux that would cause continuouslymore » biased tips to arc. A multi-probe array is used, with two spatially separated tips employing the harmonics technique and measuring the amplitude of at least two harmonics per tip. A third tip, located between the other two, measures the ion saturation current directly. We compare the measured and calculated ion saturation currents for a variety of plasma conditions and demonstrate the validity of the technique and it’s use in reducing arcs.« less

  17. Estimation of plasma ion saturation current and reduced tip arcing using Langmuir probe harmonics

    DOE PAGES

    Boedo, J. A.; Rudakov, D. L.

    2017-03-20

    Here we present a method to calculate the ion saturation current, I sat, for Langmuir probes at high frequency (>100 kHz) using the harmonics technique and we compare that to a direct measurement of I sat. It is noted that the Isat estimation can be made directly by the ratio of harmonic amplitudes, without explicitly calculating T e. We also demonstrate that since the probe tips using the harmonic method are oscillating near the floating potential, drawing little power, this method reduces tip heating and arcing and allows plasma density measurements at a plasma power flux that would cause continuouslymore » biased tips to arc. A multi-probe array is used, with two spatially separated tips employing the harmonics technique and measuring the amplitude of at least two harmonics per tip. A third tip, located between the other two, measures the ion saturation current directly. We compare the measured and calculated ion saturation currents for a variety of plasma conditions and demonstrate the validity of the technique and it’s use in reducing arcs.« less

  18. Rejection of false saturation data in optical pulse-oximeter

    NASA Astrophysics Data System (ADS)

    Scalise, Lorenzo; Marchionni, Paolo; Carnielli, Virgilio

    2010-04-01

    Pulse oximetry (PO) is a non-invasive medical device used for monitoring of the arterial oxygen saturation (SaO2) and in particular of haemoglobin oxygenation in blood. Oxygen saturation is commonly used in any setting where the patient blood oxygen saturation is unstable, including Neonatal Intensive Care Unit (NICU). The main factor affecting PO's output data is the presence of voluntary or involuntary motion artifacts or imperfect skin-sensor contact. Various methods have been employed to reject motion artifact but have met with little success. The aim of the present work is to propose a novel measurement procedure for real-time monitoring and validation of the oxygen saturation data as measured in standard pulse oxymeter. The procedure should be able to individuate and reject erroneous saturation data due to incorrect transducer-skin contact or motion artifact. In the case of short sequences of rejected SpO2 data (time duration< 8s), we report on an algorithm able to substitute the sequence of rejected data with the "most-probable" (rescued) SpO2 data. In total we have analyzed 14 patient for a total of 310 hr, 43 min and 15s, equivalent to a total number of samples of 1118595. For our study, we were interested to download heart rate measured with the ECG (HRECG), the heart rate as measured by the pulse oximeter (HRSAT) and the SpO2 value. In order to remove the erroneous SpO2 values reported in the rough data in coincidence of motion artifact (top, right), we have implemented a specific algorithm which provides at the output a new sequence of SpO2 data (validated SpO2 data). With the aim to "rescue" SpO2 value rejected by the previously presented algorithm, we have implemented an algorithm able to provide the "most-probable" SpO2 values in the case of single rejected values or in the case of short sequences of invalidated data (< 8 s). From these data it is possible to observe how in the 6.8% of the observation time the SpO2 data measured by the pulse oximeter

  19. AN EXPERIMENTAL STUDY OF COMPLETE DISSOLUTION OF A NONAQUEOUS PHASE LIQUID IN SATURATED POROUS MEDIA

    EPA Science Inventory

    The attenuation of gamma radiation was utilized to measure changing residual trichloroethylene (TCE) saturation in an otherwise water-saturated porous medium as clean water was flushed through the medium. A front over which dissolution actively occurred was observed. Once develop...

  20. Observation of a new surface mode on a fluid-saturated permeable solid

    NASA Astrophysics Data System (ADS)

    Nagy, Peter B.

    1992-06-01

    Almost ten years ago, S. Feng and D. L. Johnson predicted the presence of a new surface mode on a fluid/fluid-saturated porous solid interface with closed surface pores [J. Acoust. Soc. Am. 74, 906 (1983)]. We found that, due to surface tension, practically closed-pore boundary conditions can prevail at an interface between a nonwetting fluid (e.g., air) and a porous solid saturated with a wetting fluid (e.g., water or alcohol). Surface wave velocity and attenuation measurements were made on alcohol-saturated porous sintered glass at 100 kHz. The experimental results show clear evidence of the new ``slow'' surface mode predicted by Feng and Johnson.

  1. Oscillator Seeding of a High Gain Harmonic Generation FEL in a Radiator-First Configuration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gandhi, P.; Wurtele, J.; Penn, G.

    2012-05-20

    A longitudinally coherent X-ray pulse from a high repetition rate free electron laser (FEL) is desired for a wide variety of experimental applications. However, generating such a pulse with a repetition rate greater than 1 MHz is a significant challenge. The desired high repetition rate sources, primarily high harmonic generation with intense lasers in gases or plasmas, do not exist now, and, for the multi-MHz bunch trains that superconducting accelerators can potentially produce, are likely not feasible with current technology. In this paper, we propose to place an oscillator downstream of a radiator. The oscillator generates radiation that is usedmore » as a seed for a high gain harmonic generation (HGHG) FEL which is upstream of the oscillator. For the first few pulses the oscillator builds up power and, until power is built up, the radiator has no HGHG seed. As power in the oscillator saturates, the HGHG is seeded and power is produced. The dynamics and stability of this radiator-first scheme is explored analytically and numerically. A single-pass map is derived using a semi-analytic model for FEL gain and saturation. Iteration of the map is shown to be in good agreement with simulations. A numerical example is presented for a soft X-ray FEL.« less

  2. Investigation of Primary Dew-Point Saturator Efficiency in Two Different Thermal Environments

    NASA Astrophysics Data System (ADS)

    Zvizdic, D.; Heinonen, M.; Sestan, D.

    2015-08-01

    The aim of this paper is to describe the evaluation process of the performance of the low-range saturator (LRS), when exposed to two different thermal environments. The examined saturator was designed, built, and tested at MIKES (Centre for Metrology and Accreditation, Finland), and then transported to the Laboratory for Process Measurement (LPM) in Croatia, where it was implemented in a new dew-point calibration system. The saturator works on a single-pressure-single-pass generation principle in the dew/frost-point temperature range between and . The purpose of the various tests performed at MIKES was to examine the efficiency and non-ideality of the saturator. As a test bath facility in Croatia differs from the one used in Finland, the same tests were repeated at LPM, and the effects of different thermal conditions on saturator performance were examined. Thermometers, pressure gauges, an air preparation system, and water for filling the saturator at LPM were also different than those used at MIKES. Results obtained by both laboratories indicate that the efficiency of the examined saturator was not affected either by the thermal conditions under which it was tested or by equipment used for the tests. Both laboratories concluded that LRS is efficient enough for a primary realization of the dew/frost-point temperature scale in the range from to , with flow rates between and . It is also shown that a considerable difference of the pre-saturator efficiency, indicated by two laboratories, did not have influence to the overall performance of the saturator. The results of the research are presented in graphical and tabular forms. This paper also gives a brief description of the design and operation principle of the investigated low-range saturator.

  3. Imbibition of hydraulic fracturing fluids into partially saturated shale

    NASA Astrophysics Data System (ADS)

    Birdsell, Daniel T.; Rajaram, Harihar; Lackey, Greg

    2015-08-01

    Recent studies suggest that imbibition of hydraulic fracturing fluids into partially saturated shale is an important mechanism that restricts their migration, thus reducing the risk of groundwater contamination. We present computations of imbibition based on an exact semianalytical solution for spontaneous imbibition. These computations lead to quantitative estimates of an imbibition rate parameter (A) with units of LT-1/2 for shale, which is related to porous medium and fluid properties, and the initial water saturation. Our calculations suggest that significant fractions of injected fluid volumes (15-95%) can be imbibed in shale gas systems, whereas imbibition volumes in shale oil systems is much lower (3-27%). We present a nondimensionalization of A, which provides insights into the critical factors controlling imbibition, and facilitates the estimation of A based on readily measured porous medium and fluid properties. For a given set of medium and fluid properties, A varies by less than factors of ˜1.8 (gas nonwetting phase) and ˜3.4 (oil nonwetting phase) over the range of initial water saturations reported for the Marcellus shale (0.05-0.6). However, for higher initial water saturations, A decreases significantly. The intrinsic permeability of the shale and the viscosity of the fluids are the most important properties controlling the imbibition rate.

  4. On Neglecting Chemical Exchange Effects When Correcting in Vivo 31P MRS Data for Partial Saturation

    NASA Astrophysics Data System (ADS)

    Ouwerkerk, Ronald; Bottomley, Paul A.

    2001-02-01

    Signal acquisition in most MRS experiments requires a correction for partial saturation that is commonly based on a single exponential model for T1 that ignores effects of chemical exchange. We evaluated the errors in 31P MRS measurements introduced by this approximation in two-, three-, and four-site chemical exchange models under a range of flip-angles and pulse sequence repetition times (TR) that provide near-optimum signal-to-noise ratio (SNR). In two-site exchange, such as the creatine-kinase reaction involving phosphocreatine (PCr) and γ-ATP in human skeletal and cardiac muscle, errors in saturation factors were determined for the progressive saturation method and the dual-angle method of measuring T1. The analysis shows that these errors are negligible for the progressive saturation method if the observed T1 is derived from a three-parameter fit of the data. When T1 is measured with the dual-angle method, errors in saturation factors are less than 5% for all conceivable values of the chemical exchange rate and flip-angles that deliver useful SNR per unit time over the range T1/5 ≤ TR ≤ 2T1. Errors are also less than 5% for three- and four-site exchange when TR ≥ T1*/2, the so-called "intrinsic" T1's of the metabolites. The effect of changing metabolite concentrations and chemical exchange rates on observed T1's and saturation corrections was also examined with a three-site chemical exchange model involving ATP, PCr, and inorganic phosphate in skeletal muscle undergoing up to 95% PCr depletion. Although the observed T1's were dependent on metabolite concentrations, errors in saturation corrections for TR = 2 s could be kept within 5% for all exchanging metabolites using a simple interpolation of two dual-angle T1 measurements performed at the start and end of the experiment. Thus, the single-exponential model appears to be reasonably accurate for correcting 31P MRS data for partial saturation in the presence of chemical exchange. Even in systems where

  5. LTP saturation and spatial learning disruption: effects of task variables and saturation levels.

    PubMed

    Barnes, C A; Jung, M W; McNaughton, B L; Korol, D L; Andreasson, K; Worley, P F

    1994-10-01

    The prediction that "saturation" of LTP/LTE at hippocampal synapses should impair spatial learning was reinvestigated in the light of a more specific consideration of the theory of Hebbian associative networks, which predicts a nonlinear relationship between LTP "saturation" and memory impairment. This nonlinearity may explain the variable results of studies that have addressed the effects of LTP "saturation" on behavior. The extent of LTP "saturation" in fascia dentata produced by the standard chronic LTP stimulation protocol was assessed both electrophysiologically and through the use of an anatomical marker (activation of the immediate-early gene zif268). Both methods point to the conclusion that the standard protocols used to induce LTP do not "saturate" the process at any dorsoventral level, and leave the ventral half of the hippocampus virtually unaffected. LTP-inducing, bilateral perforant path stimulation led to a significant deficit in the reversal of a well-learned spatial response on the Barnes circular platform task as reported previously, yet in the same animals produced no deficit in learning the Morris water task (for which previous results have been conflicting). The behavioral deficit was not a consequence of any after-discharge in the hippocampal EEG. In contrast, administration of maximal electroconvulsive shock led to robust zif268 activation throughout the hippocampus, enhancement of synaptic responses, occlusion of LTP produced by discrete high-frequency stimulation, and spatial learning deficits in the water task. These data provide further support for the involvement of LTP-like synaptic enhancement in spatial learning.

  6. A MODIFIED LIGHT TRANSMISSION VISUALIZATION METHOD FOR DNAPL SATURATION MEASUREMENTS IN 2-D MODELS

    EPA Science Inventory

    In this research, a light transmission visualization (LTV) method was used to quantify dense non-aqueous phase liquids (DNAPL) saturation in two-dimensional (2-D), two fluid phase systems. The method is an expansion of earlier LTV methods and takes into account both absorption an...

  7. Continuous-wave to pulse regimes for a family of passively mode-locked lasers with saturable nonlinearity

    NASA Astrophysics Data System (ADS)

    Dikandé, Alain M.; Voma Titafan, J.; Essimbi, B. Z.

    2017-10-01

    The transition dynamics from continuous-wave to pulse regimes of operation for a generic model of passively mode-locked lasers with saturable absorbers, characterized by an active medium with non-Kerr nonlinearity, are investigated analytically and numerically. The system is described by a complex Ginzburg-Landau equation with a general m:n saturable nonlinearity (i.e {I}m/{(1+{{Γ }}I)}n, where I is the field intensity and m and n are two positive numbers), coupled to a two-level gain equation. An analysis of stability of continuous waves, following the modulational instability approach, provides a global picture of the self-starting dynamics in the system. The analysis reveals two distinct routes depending on values of the couple (m, n), and on the dispersion regime: in the normal dispersion regime, when m = 2 and n is arbitrary, the self-starting requires positive values of the fast saturable absorber and nonlinearity coefficients, but negative values of these two parameters for the family with m = 0. However, when the spectral filter is negative, the laser can self-start for certain values of the input field and the nonlinearity saturation coefficient Γ. The present work provides a general map for the self-starting mechanisms of rare-earth doped figure-eight fiber lasers, as well as Kerr-lens mode-locked solid-state lasers.

  8. Approximate reversibility in the context of entropy gain, information gain, and complete positivity

    NASA Astrophysics Data System (ADS)

    Buscemi, Francesco; Das, Siddhartha; Wilde, Mark M.

    2016-06-01

    There are several inequalities in physics which limit how well we can process physical systems to achieve some intended goal, including the second law of thermodynamics, entropy bounds in quantum information theory, and the uncertainty principle of quantum mechanics. Recent results provide physically meaningful enhancements of these limiting statements, determining how well one can attempt to reverse an irreversible process. In this paper, we apply and extend these results to give strong enhancements to several entropy inequalities, having to do with entropy gain, information gain, entropic disturbance, and complete positivity of open quantum systems dynamics. Our first result is a remainder term for the entropy gain of a quantum channel. This result implies that a small increase in entropy under the action of a subunital channel is a witness to the fact that the channel's adjoint can be used as a recovery map to undo the action of the original channel. We apply this result to pure-loss, quantum-limited amplifier, and phase-insensitive quantum Gaussian channels, showing how a quantum-limited amplifier can serve as a recovery from a pure-loss channel and vice versa. Our second result regards the information gain of a quantum measurement, both without and with quantum side information. We find here that a small information gain implies that it is possible to undo the action of the original measurement if it is efficient. The result also has operational ramifications for the information-theoretic tasks known as measurement compression without and with quantum side information. Our third result shows that the loss of Holevo information caused by the action of a noisy channel on an input ensemble of quantum states is small if and only if the noise can be approximately corrected on average. We finally establish that the reduced dynamics of a system-environment interaction are approximately completely positive and trace preserving if and only if the data processing

  9. Increases in weight during chronic stress are partially associated with a switch in food choice towards increased carbohydrate and saturated fat intake.

    PubMed

    Roberts, Clifford J; Campbell, Iain C; Troop, Nick

    2014-01-01

    We examined if stress associated changes in weight and dietary restraint are associated with changes in the composition of foods consumed. Participants were 38 healthy women on a taught postgraduate university course. Data were obtained at the beginning of the semester and 15 weeks later just prior to a written course exam (the stressor). By using a within subject design, we measured the composition of food consumed, body mass index (BMI), levels of dietary restraint and salivary cortisol. In the larger study from which these data were obtained, it was shown that the effect of increased cortisol secretion on weight gain was mediated by a reduction in dietary restraint. The present data show that increased cortisol secretion, reduced dietary restraint and increased caloric intake, account for 73% of the variance in change in BMI. Further regression analysis indicated that the change in dietary restraint mediated the effect of change in cortisol on change in BMI. Final analysis revealed that the effect of these changes in dietary restraint on weight are partially mediated by increased caloric intake from carbohydrate and saturated fat, that is, a change in dietary composition partially accounts for the link between increased cortisol secretion through heightened hypothalamic-pituitary-adrenal activity resulting in weight gain. These data are consistent with a 'comfort food hypothesis', as they suggest that chronic stress can promote reward associated behaviour through reduced dietary restraint and consumption of food containing more carbohydrate and saturated fat. Copyright © 2013 John Wiley & Sons, Ltd and Eating Disorders Association.

  10. Assessment of oxygen saturation in dental pulp of permanent teeth with periodontal disease.

    PubMed

    Giovanella, Larissa Bergesch; Barletta, Fernando Branco; Felippe, Wilson Tadeu; Bruno, Kely Firmino; de Alencar, Ana Helena Gonçalves; Estrela, Carlos

    2014-12-01

    In individuals with periodontal disease, dental pulp status should be determined before a treatment plan is made. Pulse oximeters are promising diagnostic tools to evaluate pulp vascularization. This study used pulse oximetry to determine the level of oxygen saturation in dental pulp of intact permanent teeth with periodontal attachment loss (PAL) and gingival recession (GR) and to evaluate the correlation between periodontal disease and level of oxygen saturation in the pulp. This study included 67 anterior teeth of 35 patients; all teeth showed intact crowns, PAL, a periodontal pocket (PP), and GR. The teeth underwent periodontal examination, cold and electric pulp testing, and pulse oximetry measurements. The Pearson correlation coefficient and a linear regression coefficient were calculated to evaluate the degree of correlation between periodontal disease markers (PAL, PP, and GR) and the level of oxygen saturation in dental pulp. These tests also evaluated possible associations between oxygen saturation and cold and electric pulp testing. PAL, PP, and GR had negative correlations with oxygen saturation in dental pulp. Conversely, no statistically significant association was found between oxygen saturation in dental pulp and the response to electric sensibility testing. Oxygen saturation was lower in the pulp of permanent teeth with PAL, PP, and GR, indicating that periodontal disease correlates with the level of oxygen saturation in the pulp. Copyright © 2014 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  11. Experimental Study of Porosity Changes in Shale Caprocks Exposed to Carbon Dioxide-Saturated Brine II: Insights from Aqueous Geochemistry

    DOE PAGES

    Miller, Quin R. S.; Wang, Xiuyu; Kaszuba, John P.; ...

    2016-07-18

    Laboratory experiments evaluated two shale caprock formations, the Gothic Shale and Marine Tuscaloosa Formation, at conditions relevant to carbon dioxide (CO 2) sequestration. Both rocks were exposed to CO 2-saturated brines at 160°C and 15 MPa for ~45 days. Baseline experiments for both rocks were pressurized with argon to 15 MPa for ~35 days. Varying concentrations of iron, aqueous silica, sulfate, and initial pH decreases coincide with enhanced carbonate and silicate dissolution due to reaction between CO 2-saturated brine and shale. Saturation indices were calculated and activity diagrams were constructed to gain insights into sulfate, silicate, and carbonate mineral stabilities.more » We found that upon exposure to CO 2-saturated brines, the Marine Tuscaloosa Formation appeared to be more reactive than the Gothic Shale. Evolution of aqueous geochemistry in the experiments is consistent with mineral precipitation and dissolution reactions that affect porosity. Finally, this study highlights the importance of tracking fluid chemistry to clarify downhole physicochemical responses to CO 2 injection and subsequent changes in sealing capacity in CO 2 storage and utilization projects.« less

  12. Transparency and Accountability: What if the Federal Gainful Employment-Debt Measures Regulations Applied to Law Schools?

    ERIC Educational Resources Information Center

    Mattox, Kari Ann

    2013-01-01

    The purpose of this analysis is to compare current guidelines of the American Bar Association (ABA) for law schools to those of the U.S. Department of Education's Gainful Employment-Debt Measures regulations in order to assess their transparency and accountability. This analysis is relevant in a time of increasing tuition costs and record…

  13. Oxygen Saturation in Closed-Globe Blunt Ocular Trauma

    PubMed Central

    Long, Chongde; Wen, Xin; Gao, Qianying

    2016-01-01

    Purpose. To evaluate the oxygen saturation in retinal blood vessels in patients after closed-globe blunt ocular trauma. Design. Retrospective observational case series. Methods. Retinal oximetry was performed in both eyes of 29 patients with unilateral closed-globe blunt ocular trauma. Arterial oxygen saturation (SaO2), venous oxygen saturation (SvO2), arteriovenous difference in oxygen saturation (SO2), arteriolar diameter, venular diameter, and arteriovenous difference in diameter were measured. Association parameters including age, finger pulse oximetry, systolic pressure, diastolic pressure, and heart rate were analyzed. Results. The mean SaO2 in traumatic eyes (98.1% ± 6.8%) was not significantly different from SaO2 in unaffected ones (95.3% ± 7.2%) (p = 0.136). Mean SvO2 in traumatic eyes (57.1% ± 10.6%) was significantly lower than in unaffected ones (62.3% ± 8.4%) (p = 0.044). The arteriovenous difference in SO2 in traumatic eyes (41.0% ± 11.2%) was significantly larger than in unaffected ones (33.0% ± 6.9%) (p = 0.002). No significant difference was observed between traumatic eyes and unaffected ones in arteriolar (p = 0.249) and venular diameter (p = 0.972) as well as arteriovenous difference in diameter (p = 0.275). Conclusions. Oxygen consumption is increased in eyes after cgBOT, associated with lower SvO2 and enlarged arteriovenous difference in SO2 but not with changes in diameter of retinal vessels. PMID:27699174

  14. Assessing species saturation: conceptual and methodological challenges.

    PubMed

    Olivares, Ingrid; Karger, Dirk N; Kessler, Michael

    2018-05-07

    Is there a maximum number of species that can coexist? Intuitively, we assume an upper limit to the number of species in a given assemblage, or that a lineage can produce, but defining and testing this limit has proven problematic. Herein, we first outline seven general challenges of studies on species saturation, most of which are independent of the actual method used to assess saturation. Among these are the challenge of defining saturation conceptually and operationally, the importance of setting an appropriate referential system, and the need to discriminate among patterns, processes and mechanisms. Second, we list and discuss the methodological approaches that have been used to study species saturation. These approaches vary in time and spatial scales, and in the variables and assumptions needed to assess saturation. We argue that assessing species saturation is possible, but that many studies conducted to date have conceptual and methodological flaws that prevent us from currently attaining a good idea of the occurrence of species saturation. © 2018 Cambridge Philosophical Society.

  15. Impact of extracranial contamination on regional cerebral oxygen saturation: a comparison of three cerebral oximetry technologies.

    PubMed

    Davie, Sophie N; Grocott, Hilary P

    2012-04-01

    Cerebral oximetry is a noninvasive technology using near-infrared spectroscopy (NIRS) to estimate regional cerebral oxygen saturation. Although NIRS cerebral oximetry is being increasingly used in many clinical settings, interdevice technologic differences suggest potential variation in the ability to accurately acquire brain oxygenation signals. The primary objective of this study was to determine if NIRS-derived regional cerebral oxygen saturation measurements accurately account for oxygen saturation contamination from extracranial tissue. Twelve healthy volunteers had each of three NIRS devices (FORE-SIGHT [CAS Medical Systems Inc; Brandford, CT], INVOS 5100C-PB [Covidien; Boulder, CO], and EQUANOX Classic 7600 [Nonin Medical Inc; Plymouth, MN]) randomly applied to the forehead. After this, a circumferential pneumatic head cuff was positioned such that when inflated, hypoxia-ischemia would be produced in the extracranial scalp tissue beneath the NIRS cerebral oximeters. Comparisons among the three devices were made of the NIRS measurements before and following hypoxia-ischemia produced in the scalp tissue with inflation of the head cuff. The induction of extracranial hypoxia-ischemia resulted in a significant reduction in regional cerebral oxygen saturation measurements in all three NIRS devices studied. At 5 min postinflation of the pneumatic head cuff, the INVOS demonstrated a 16.6 ± 9.6% (mean ± SD) decrease from its baseline (P = 0.0001), the FORE-SIGHT an 11.8 ± 5.3% decrease from its baseline (P < 0.0001), and the EQUANOX a 6.8 ± 6.0% reduction from baseline (P = 0.0025). Extracranial contamination appears to significantly affect NIRS measurements of cerebral oxygen saturation. Although the clinical implications of these apparent inaccuracies require further study, they suggest that the oxygen saturation measurements provided by cerebral oximetry do not solely reflect that of the brain alone.

  16. Simulating soil-water movement through loess-veneered landscapes using nonconsilient saturated hydraulic conductivity measurements

    USGS Publications Warehouse

    Williamson, Tanja N.; Lee, Brad D.; Schoeneberger, Philip J.; McCauley, W. M.; Indorante, Samuel J.; Owens, Phillip R.

    2014-01-01

    Soil Survey Geographic Database (SSURGO) data are available for the entire United States, so are incorporated in many regional and national models of hydrology and environmental management. However, SSURGO does not provide an understanding of spatial variability and only includes saturated hydraulic conductivity (Ksat) values estimated from particle size analysis (PSA). This study showed model sensitivity to the substitution of SSURGO data with locally described soil properties or alternate methods of measuring Ksat. Incorporation of these different soil data sets significantly changed the results of hydrologic modeling as a consequence of the amount of space available to store soil water and how this soil water is moved downslope. Locally described soil profiles indicated a difference in Ksat when measured in the field vs. being estimated from PSA. This, in turn, caused a difference in which soil layers were incorporated in the hydrologic simulations using TOPMODEL, ultimately affecting how soil water storage was simulated. Simulations of free-flowing soil water, the amount of water traveling through pores too large to retain water against gravity, were compared with field observations of water in wells at five slope positions along a catena. Comparison of the simulated data with the observed data showed that the ability to model the range of conditions observed in the field varied as a function of three soil data sets (SSURGO and local field descriptions using PSA-derived Ksat or field-measured Ksat) and that comparison of absolute values of soil water storage are not valid if different characterizations of soil properties are used.

  17. Technical note: Evaluation of a wireless pulse oximeter for measuring arterial oxygen saturation and pulse rate in newborn Holstein Friesian calves.

    PubMed

    Kanz, P; Krieger, S; Drillich, M; Iwersen, M

    2018-07-01

    Pulse oximetry is a well-established technique in human and veterinary medicine. In farm animals, it could also be a useful tool for the detection of critical conditions relating to oxygen supply and the cardiovascular system. Among other uses, an innovative application could be the monitoring of fetuses during birth. This could help in the early identification of critical situations and support farmers and veterinarians in their decision to start obstetric or life-support interventions. Until now, however, its use in ruminant medicine was still limited to experimental applications. The objective of this study was to evaluate the accuracy of the Radius-7 Wearable Pulse CO-Oximeter (Masimo Corporation, Irvine, CA) for monitoring vital parameters in newborn calves. All measurements were conducted on animals in the lying down position. The sensor of the pulse oximeter was placed in the interdigital space of the calves' front legs and fixed with a homemade latex hoof cover. The pulsoximetric measurements of arterial oxygen saturation (SpO 2 ) in 40 newborn calves were compared with the corresponding results (SaO 2 ) from a portable blood gas analyzer (VetScan iStat1, Abaxis Inc., Union City, CA), which served as the reference. For this, an arterial blood sample was taken from the medial intermediate branch of the caudal auricular artery. In addition, the pulse rate was measured in 10 calves aged between 0 and 7 d with the pulse oximeter and simultaneously with a heart rate belt (Polar Equine Belt, Polar Electro Oy, Kempele, Finland) to determine their level of agreement. Spearman correlation coefficient for oxygen saturation was 93.8% for the pulse oximeter and the blood gas analyzer, and 97.7% for the pulse rate measured with the pulse oximeter and the heart rate belt. Bland-Altman plots revealed an overestimation of SaO 2 by 2.95 ± 6.39% and an underestimation of the pulse rate by -0.41 ± 3.18 beats per minute compared with the corresponding reference methods. In

  18. Tropical forests are a net carbon source based on aboveground measurements of gain and loss

    NASA Astrophysics Data System (ADS)

    Baccini, A.; Walker, W.; Carvalho, L.; Farina, M.; Sulla-Menashe, D.; Houghton, R. A.

    2017-10-01

    The carbon balance of tropical ecosystems remains uncertain, with top-down atmospheric studies suggesting an overall sink and bottom-up ecological approaches indicating a modest net source. Here we use 12 years (2003 to 2014) of MODIS pantropical satellite data to quantify net annual changes in the aboveground carbon density of tropical woody live vegetation, providing direct, measurement-based evidence that the world’s tropical forests are a net carbon source of 425.2 ± 92.0 teragrams of carbon per year (Tg C year-1). This net release of carbon consists of losses of 861.7 ± 80.2 Tg C year-1 and gains of 436.5 ± 31.0 Tg C year-1. Gains result from forest growth; losses result from deforestation and from reductions in carbon density within standing forests (degradation or disturbance), with the latter accounting for 68.9% of overall losses.

  19. Elastic Properties of 3D-Printed Rock Models: Dry and Saturated Cracks

    NASA Astrophysics Data System (ADS)

    Huang, L.; Stewart, R.; Dyaur, N.

    2014-12-01

    Many regions of subsurface interest are, or will be, fractured. In addition, these zones many be subject to varying saturations and stresses. New 3D printing techniques using different materials and structures, provide opportunities to understand porous or fractured materials and fluid effects on their elastic properties. We use a 3D printer (Stratasys Dimension SST 768) to print two rock models: a solid octahedral prism and a porous cube with thousands of penny-shaped cracks. The printing material is ABS thermal plastic with a density of 1.04 g/cm3. After printing, we measure the elastic properties of the models, both dry and 100% saturated with water. Both models exhibit VTI (Vertical Transverse Isotropic) symmetry due to laying (about 0.25 mm thick) of the printing process. The prism has a density of 0.96 g/cm3 before saturation and 1.00 g/cm3 after saturation. Its effective porosity is calculated to be 4 %. We use ultrasonic transducers (500 kHz) to measure both P- and shear-wave velocities, and the raw material has a P-wave velocity of 1.89 km/s and a shear-wave velocity of 0.91 km/s. P-wave velocity in the un-saturated prism increases from 1.81 km/s to 1.84 km/s after saturation in the direction parallel to layering and from 1.73 km/s to 1.81 km/s in the direction perpendicular to layering. The fast shear-wave velocity decreases from 0.88 km/s to 0.87 km/s and the slow shear-wave velocity decreases from 0.82 km/s to 0.81 km/s. The cube, printed with penny-shaped cracks, gives a density of 0.79 g/cm3 and a porosity of 24 %. We measure its P-wave velocity as 1.78 km/s and 1.68 km/s in the direction parallel and perpendicular to the layering, respectively. Its fast shear-wave velocity is 0.88 km/s and slow shear-wave velocity is 0.70 km/s. The penny-shaped cracks have significant influence on the elastic properties of the 3D-printed rock models. To better understand and explain the fluid effects on the elastic properties of the models, we apply the extended

  20. [Effect of simulated microgravity on peripheral oxygen saturation in rats].

    PubMed

    Chen, Guangfei; Zhang, Yahui; Yuan, Ming; He, Shilin; Ying, Jun; Li, Chen

    2018-02-01

    To study the effect of microgravity on peripheral oxygen saturation (SpO 2 ) in rats, tail-suspended rats were applied to simulate microgravity environment. SpO 2 and arterial oxygen saturation (SaO 2 ) were measured by pulse oximeter and arterial blood gas analyzer (ABGA) respectively on the 14th day, 21st day and 28th day in tail-suspended group and control group. Paired t -test shows that SpO 2 was significantly lower than SaO 2 in tail-suspended group on the 14th day ( P < 0.05), the 21st day ( P < 0.05) and the 28th day ( P < 0.01). The ANOVA results shows that modeling time had significant effect on SpO 2 value but no effect on SaO 2 value in tail-suspended group. These results indicate that pulse oximeter may be not suitable for oxygen saturation test in microgravity environment.

  1. Power flow control using distributed saturable reactors

    DOEpatents

    Dimitrovski, Aleksandar D.

    2016-02-13

    A magnetic amplifier includes a saturable core having a plurality of legs. Control windings wound around separate legs are spaced apart from each other and connected in series in an anti-symmetric relation. The control windings are configured in such a way that a biasing magnetic flux arising from a control current flowing through one of the plurality of control windings is substantially equal to the biasing magnetic flux flowing into a second of the plurality of control windings. The flow of the control current through each of the plurality of control windings changes the reactance of the saturable core reactor by driving those portions of the saturable core that convey the biasing magnetic flux in the saturable core into saturation. The phasing of the control winding limits a voltage induced in the plurality of control windings caused by a magnetic flux passing around a portion of the saturable core.

  2. The Effect of Saturation on Shear Wave Anisotropy in a Transversely Isotropic Medium

    NASA Astrophysics Data System (ADS)

    Li, W.; Pyrak-Nolte, L. J.

    2010-12-01

    Seismic monitoring of fluid distributions in the subsurface requires an understanding of the effect of fluid saturation on the anisotropic properties of layered media. Austin Chalk is a carbonate rock composed mainly of calcite (99.9%) with fine bedding caused by a weakly-directed fabric. In this paper, we assess the shear-wave anisotropy of Austin Chalk and the effect of saturation on interpreting anisotropy based on shear wave velocity, attenuation and spectral content as a function of saturation. In the laboratory, we performed full shear-waveform measurements on several dry cubic samples of Austin Chalk with dimensions 50mm x 50mm x 50mm. Two shear-wave contact transducers (central Frequency 1 MHz) were use to send and receive signals. Data was collected for three orthogonal orientations of the sample and as a function of shear wave polarization relative to the layers in the sample. For the waves propagated parallel to the layers, both fast and slow shear waves were observed with velocities of 3444 m/s and 3193 m/s, respectively. It was noted that the minimum and maximum shear wave velocities did not occur when the shear wave polarization were perpendicular or parallel to the layering in the sample but occurred at an orientation of ~25 degrees from the normal to the layers. The sample was then vacuum saturated with water for approximately ~15 hours. The same measurements were performed on the saturated sample as those on the dry sample. Both shear wave velocities observed decreased upon water-saturation with corresponding velocities of 3155 m/s and 2939 m/s, respectively. In the dry condition the difference between the fast and slow shear wave velocities was 250 m/s. This difference decreased to 215 m/s after fluid saturation. In both the dry and saturated condition, the shear wave velocity for waves propagated perpendicularly to the layers was independent of polarization and had the same magnitude as that of the slow shear wave. A wavelet analysis was

  3. Acoustic and mechanical response of reservoir rocks under variable saturation and effective pressure.

    PubMed

    Ravazzoli, C L; Santos, J E; Carcione, J M

    2003-04-01

    We investigate the acoustic and mechanical properties of a reservoir sandstone saturated by two immiscible hydrocarbon fluids, under different saturations and pressure conditions. The modeling of static and dynamic deformation processes in porous rocks saturated by immiscible fluids depends on many parameters such as, for instance, porosity, permeability, pore fluid, fluid saturation, fluid pressures, capillary pressure, and effective stress. We use a formulation based on an extension of Biot's theory, which allows us to compute the coefficients of the stress-strain relations and the equations of motion in terms of the properties of the single phases at the in situ conditions. The dry-rock moduli are obtained from laboratory measurements for variable confining pressures. We obtain the bulk compressibilities, the effective pressure, and the ultrasonic phase velocities and quality factors for different saturations and pore-fluid pressures ranging from normal to abnormally high values. The objective is to relate the seismic and ultrasonic velocity and attenuation to the microstructural properties and pressure conditions of the reservoir. The problem has an application in the field of seismic exploration for predicting pore-fluid pressures and saturation regimes.

  4. Laser-saturated fluorescence of nitric oxide and chemiluminescence measurements in premixed ethanol flames

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marques, Carla S.T.; Barreta, Luiz G.; Sbampato, Maria E.

    In this study, nitric oxide laser-saturated fluorescence (LSF) measurements were acquired from premixed ethanol flames at atmospheric pressure in a burner. NO-LSF experimental profiles for fuel-rich premixed ethanol flames ({phi} = 1.34 and {phi} = 1.66) were determined through the excitation/detection scheme of the Q{sub 2}(26.5) rotational line in the A{sup 2}{sigma}{sup +} - X{sup 2}{pi} (0,0) vibronic band and {gamma}(0,1) emission band. A calibration procedure by NO doping into the flame was applied to establish the NO concentration profiles in these flames. Chemiluminescent emission measurements in the (0, 0) vibronic emission bands of the OH{sup *} (A{sup 2}{sigma}{sup +}more » - X{sup 2}{pi}) and CH{sup *}(A{sup 2}{delta} - X{sup 2}{pi}) radicals were also obtained with high spatial and spectral resolution for fuel-rich premixed ethanol flames to correlate them with NO concentrations. Experimental chemiluminescence profiles and the ratios of the integrated areas under emission spectra (A{sub CH*}/A{sub CH*}(max.) and A{sub CH*}/A{sub OH*}) were determined. The relationships between chemiluminescence and NO concentrations were established along the premixed ethanol flames. There was a strong connection between CH{sup *} radical chemiluminescence and NO formation and the prompt-NO was identified as the governing mechanism for NO production. The results suggest the optimum ratio of the chemiluminescence of two radicals (A{sub CH*}/A{sub OH*}) for NO diagnostic purposes. (author)« less

  5. Tunneling contact IGZO TFTs with reduced saturation voltages

    NASA Astrophysics Data System (ADS)

    Wang, Longyan; Sun, Yin; Zhang, Xintong; Zhang, Lining; Zhang, Shengdong; Chan, Mansun

    2017-04-01

    We report a tunneling contact indium-gallium-zinc oxide (IGZO) thin film transistor (TFT) with a graphene interlayer technique in this paper. A Schottky junction is realized between a metal and IGZO with a graphene interlayer, leading to a quantum tunneling of the TFT transport in saturation regions. This tunneling contact enables a significant reduction in the saturation drain voltage Vdsat compared to that of the thermionic emission TFTs, which is usually equal to the gate voltage minus their threshold voltages. Measured temperature independences of the subthreshold swing confirm a transition from the thermionic emission to quantum tunneling transports depending on the gate bias voltages in the proposed device. The tunneling contact TFTs with the graphene interlayer have implications to reduce the power consumptions of certain applications such as the active matrix OLED display.

  6. [The prognostic value of cerebral oxygen saturation measurement for assessing prognosis after cardiopulmonary resuscitation].

    PubMed

    Inal, Mehmet Turan; Memiş, Dilek; Yıldırım, Ilker; Uğur, Hüseyin; Erkaymaz, Aysegul; Turan, F Nesrin

    Despite new improvements on cardiopulmonary resuscitation (CPR), brain damage is very often after resuscitation. To assess the prognostic value of cerebral oxygen saturation measurement (rSO 2 ) for assessing prognosis on patients after cardiopulmonary resuscitation. Retrospective analysis. We analyzed 25 post-CPR patients (12 female and 13 male). All the patients were cooled to a target temperature of 33-34°C. The Glascow Coma Scale (GCS), Corneal Reflexes (CR), Pupillary Reflexes (PR), arterial Base Excess (BE) and rSO 2 measurements were taken on admission. The rewarming GCS, CR, PR, BE and rSO 2 measurements were made after the patient's temperature reached 36°C. In survivors, the baseline rSO 2 value was 67.5 (46-70) and the percent difference between baseline and rewarming rSO 2 value was 0.03 (0.014-0.435). In non-survivors, the baseline rSO 2 value was 30 (25-65) and the percent difference between baseline and rewarming rSO 2 value was 0.031 (-0.08 to -20). No statistical difference was detected on percent changes between baseline and rewarming values of rSO 2. Statistically significant difference was detected between baseline and rewarming GCS groups (p=0.004). No statistical difference was detected between GCS, CR, PR, BE and rSO 2 to determine the prognosis. Despite higher values of rSO 2 on survivors than non-survivors, we found no statistically considerable difference between groups on baseline and the rewarming rSO 2 values. Since the measurement is simple, and not affected by hypotension and hypothermia, the rSO 2 may be a useful predictor for determining the prognosis after CPR. Copyright © 2016 Sociedade Brasileira de Anestesiologia. Publicado por Elsevier Editora Ltda. All rights reserved.

  7. Passive flux meter measurement of water and nutrient flux in saturated porous media: bench-scale laboratory tests.

    PubMed

    Cho, Jaehyun; Annable, Michael D; Jawitz, James W; Hatfield, Kirk

    2007-01-01

    The passive nutrient flux meter (PNFM) is introduced for simultaneous measurement of both water and nutrient flux through saturated porous media. The PNFM comprises a porous sorbent pre-equilibrated with a suite of alcohol tracers, which have different partitioning coefficients. Water flux was estimated based on the loss of loaded resident tracers during deployment, while nutrient flux was quantified based on the nutrient solute mass captured on the sorbent. An anionic resin, Lewatit 6328 A, was used as a permeable sorbent and phosphate (PO4(3-)) was the nutrient studied. The phosphate sorption capacity of the resin was measured in batch equilibration tests as 56 mg PO4(3-) g(-1), which was determined to be adequate capacity to retain PO4(3-) loads intercepted over typical PNFM deployment periods in most natural systems. The PNFM design was validated with bench-scale laboratory tests for a range of 9.8 to 28.3 cm d(-1) Darcy velocities and 6 to 43 h deployment durations. Nutrient and water fluxes measured by the PNFM averaged within 6 and 12% of the applied values, respectively, indicating that the PNFM shows promise as a tool for simultaneous measurement of water and nutrient fluxes.

  8. Methane hydrate formation in partially water-saturated Ottawa sand

    USGS Publications Warehouse

    Waite, W.F.; Winters, W.J.; Mason, D.H.

    2004-01-01

    Bulk properties of gas hydrate-bearing sediment strongly depend on whether hydrate forms primarily in the pore fluid, becomes a load-bearing member of the sediment matrix, or cements sediment grains. Our compressional wave speed measurements through partially water-saturated, methane hydrate-bearing Ottawa sands suggest hydrate surrounds and cements sediment grains. The three Ottawa sand packs tested in the Gas Hydrate And Sediment Test Laboratory Instrument (GHASTLI) contain 38(1)% porosity, initially with distilled water saturating 58, 31, and 16% of that pore space, respectively. From the volume of methane gas produced during hydrate dissociation, we calculated the hydrate concentration in the pore space to be 70, 37, and 20% respectively. Based on these hydrate concentrations and our measured compressional wave speeds, we used a rock physics model to differentiate between potential pore-space hydrate distributions. Model results suggest methane hydrate cements unconsolidated sediment when forming in systems containing an abundant gas phase.

  9. Silver Nanoparticle Transport and Interactions in Partially Saturated Sand and Soil

    NASA Astrophysics Data System (ADS)

    Yecheskel, Y.; Dror, I.; Berkowitz, B.

    2016-12-01

    The growing applications of engineered nanoparticles (ENPs), included in numerous products and industrial processes, are expected to spread in the near future on a global level. Along with the properties that make ENPs so appealing, the concern that they may act as a new class of persistent and toxic contaminants also arises. The post-use release of ENPs to the environment is inevitable and soil appears to be one of the largest sinks of these potential contaminants. To date, despite the significant attention that ENP behavior in the environment has received, only a few studies have considered the fate and transport of ENPs in partially saturated systems. In this study, we focus on the transport and fate of silver NPs (Ag-NPs) in partially saturated sand and soil columns. Experimental results reveal significant differences between sand and soil with respect to ENP transport, and emphasize the importance of employing natural porous media in experiments. Breakthrough curves (BTCs), retention profiles, ENP mass balance and modeling were applied to characterize Ag-NP transport and gain insights into the mechanisms of retardation. The effect of initial Ag-NP concentration, Ag-NP size, saturation level, flow rate, and solution chemistry were found to affect Ag-NP transport behavior. Unlike transport of Ag-NP in sand columns, where the BTC pattern resembles that of a conservative tracer, Ag-NP transport in soil columns shows moderate mobility and complex BTC patterns. In general, the BTC shape consists of two steps, which imply two retention mechanisms. The influence of each mechanism is affected by the physicochemical conditions. In all cases, a two kinetic site model was shown to fit the experimental BTC results, with time-dependent and depth-dependent attachment-detachment mechanisms. Overall, Ag-NP mobility decreases with the presence of Ca2+ and Cl- ions, and increases with the presence of humic acid, increased saturation levels, and higher input concentrations of Ag-NPs.

  10. The effects of Patent Blue dye on peripheral and cerebral oxyhaemoglobin saturations.

    PubMed

    Ishiyama, T; Kotoda, M; Asano, N; Ikemoto, K; Mitsui, K; Sato, H; Matsukawa, T; Sessler, D I

    2015-04-01

    We measured the effect of Patent Blue dye on oxyhaemoglobin saturations after injection into breast tissue: 40 women had anaesthesia for breast surgery maintained with sevoflurane or propofol (20 randomly allocated to each). Saturations were recorded with a digital pulse oximeter, in arterial blood samples and with a cerebral tissue oximeter before dye injection and 10, 20, 30, 40, 50, 60, 75, 90, 105 and 120 min afterwards. Patent Blue did not decrease arterial blood oxyhaemoglobin saturation, but it did reduce mean (SD) digital and cerebral oxyhaemoglobin saturations by 1.1 (1.1) % and 6.8 (7.0) %, p < 0.0001 for both. The falsely reduced oximeter readings persisted for at least 2 h. The mean (SD) intra-operative digital pulse oxyhaemoglobin readings were lower with sevoflurane than propofol, 97.8 (1.2) % and 98.8 (1.0) %, respectively, p < 0.0001. © 2014 The Association of Anaesthetists of Great Britain and Ireland.

  11. Effect of commercial airline travel on oxygen saturation in athletes.

    PubMed

    Geertsema, C; Williams, A B; Dzendrowskyj, P; Hanna, C

    2008-11-01

    Aircraft cabins are pressurised to maximum effective altitudes of 2440 metres, resulting in significant decline in oxygen saturation in crew and passengers. This effect has not been studied in athletes. To investigate the degree of decline in oxygen saturation in athletes during long-haul flights. A prospective cross-sectional study. National-level athletes were recruited. Oxygen saturation and heart rate were measured with a pulse oximeter at sea level before departure, at 3 and 7 hours into the flight, and again after arrival at sea level. Aircraft cabin pressure and altitude, cabin fraction of inspired oxygen and true altitude were also recorded. 45 athletes and 18 healthy staff aged between 17 and 70 years were studied on 10 long-haul flights. Oxygen saturation levels declined significantly after 3 hours and 7 hours (3-4%), compared with sea level values. There was an associated drop in cabin pressure and fraction of inspired oxygen, and an increase in cabin altitude. Oxygen saturation declines significantly in athletes during long-haul commercial flights, in response to reduced cabin pressure. This may be relevant for altitude acclimatization planning by athletes, as the time spent on the plane should be considered time already spent at altitude, with associated physiological changes. For flights of 10-13 hours in duration, it will be difficult to arrive on the day of competition to avoid the influence of these changes, as is often suggested by coaches.

  12. All-optical gain-clamped wideband serial EDFA with ring-shaped laser

    NASA Astrophysics Data System (ADS)

    Lu, Yung-Hsin; Chi, Sien

    2004-01-01

    We experimentally investigate the static and dynamic properties of all-optical gain-clamped wideband (1530-1600 nm) serial erbium-doped fiber amplifier with a single ring-shaped laser, which consists of a circulator and a fiber Bragg grating at the output end. The lasing light passing through the second stage is intentionally blocked at the output end by a C/L-band wavelength division multiplexer owning the huge insertion loss, and thus, the copropagating ring-laser light is formed by the first stage. This design can simultaneously clamp the gains of 1547 and 1584 nm probes near 14 dB and shows the same dynamic range of input power up to -4 dBm for conventional band and long-wavelength band. Furthermore, the transient responses of 1551 and 1596 nm surviving channels exhibit small power excursions (<0.54 dB) as the total saturating tone with -2 dBm is modulated on and off at 270 Hz.

  13. Hydrocarbon saturation determination using acoustic velocities obtained through casing

    DOEpatents

    Moos, Daniel

    2010-03-09

    Compressional and shear velocities of earth formations are measured through casing. The determined compressional and shear velocities are used in a two component mixing model to provides improved quantitative values for the solid, the dry frame, and the pore compressibility. These are used in determination of hydrocarbon saturation.

  14. The Observed Properties of Liquid Helium at the Saturated Vapor Pressure

    NASA Astrophysics Data System (ADS)

    Donnelly, Russell J.; Barenghi, Carlo F.

    1998-11-01

    The equilibrium and transport properties of liquid 4He are deduced from experimental observations at the saturated vapor pressure. In each case, the bibliography lists all known measurements. Quantities reported here include density, thermal expansion coefficient, dielectric constant, superfluid and normal fluid densities, first, second, third, and fourth sound velocities, specific heat, enthalpy, entropy, surface tension, ion mobilities, mutual friction, viscosity and kinematic viscosity, dispersion curve, structure factor, thermal conductivity, latent heat, saturated vapor pressure, thermal diffusivity and Prandtl number of helium I, and displacement length and vortex core parameter in helium II.

  15. Watt-level passively Q-switched double-cladding fiber laser based on graphene oxide saturable absorber.

    PubMed

    Yu, Zhenhua; Song, Yanrong; Dong, Xinzheng; Li, Yanlin; Tian, Jinrong; Wang, Yonggang

    2013-10-10

    A watt-level passively Q-switched ytterbium-doped double-cladding fiber laser with a graphene oxide (GO) absorber was demonstrated. The structure of the GO saturable absorber mirror (GO-SAM) was of the sandwich type. A maximum output power of 1.8 W was obtained around a wavelength of 1044 nm. To the best of our knowledge, this is the highest output power in Q-switched fiber lasers based on a GO saturable absorber. The pure GO was protected from the oxygen in the air so that the damage threshold of the GO-SAM was effectively raised. The gain fiber was a D-shaped ytterbium-doped double-cladding fiber. The pulse repetition rates were tuned from 120 to 215 kHz with pump powers from 3.89 to 7.8 W. The maximum pulse energy was 8.37 μJ at a pulse width of 1.7 μs.

  16. Gain-Compensating Circuit For NDE and Ultrasonics

    NASA Technical Reports Server (NTRS)

    Kushnick, Peter W.

    1987-01-01

    High-frequency gain-compensating circuit designed for general use in nondestructive evaluation and ultrasonic measurements. Controls gain of ultrasonic receiver as function of time to aid in measuring attenuation of samples with high losses; for example, human skin and graphite/epoxy composites. Features high signal-to-noise ratio, large signal bandwidth and large dynamic range. Control bandwidth of 5 MHz ensures accuracy of control signal. Currently being used for retrieval of more information from ultrasonic signals sent through composite materials that have high losses, and to measure skin-burn depth in humans.

  17. Observer-based adaptive backstepping control for fractional order systems with input saturation.

    PubMed

    Sheng, Dian; Wei, Yiheng; Cheng, Songsong; Wang, Yong

    2017-07-03

    An observer-based fractional order anti-saturation adaptive backstepping control scheme is proposed for incommensurate fractional order systems with input saturation and partial measurable state in this paper. On the basis of stability analysis, a novel state observer is established first since the only information we could acquire is the system output. In order to compensate the saturation, a series of virtual signals are generated via the construction of fractional order auxiliary system. Afterwards, the controller design is carried out in accordance with the adaptive backstepping control method by introduction of the indirect Lyapunov method. To highlight the effectiveness of the proposed control scheme, simulation examples are demonstrated at last. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  18. Quantitative Laser-Saturated Fluorescence Measurements of Nitric Oxide in a Heptane Spray Flame

    NASA Technical Reports Server (NTRS)

    Cooper, Clayton S.; Laurendeau, Normand M.; Lee, Chi (Technical Monitor)

    1997-01-01

    We report spatially resolved laser-saturated fluorescence measurements of NO concentration in a pre-heated, lean-direct injection (LDI) spray flame at atmospheric pressure. The spray is produced by a hollow-cone, pressure-atomized nozzle supplied with liquid heptane. NO is excited via the Q2(26.5) transition of the gamma(0,0) band. Detection is performed in a 2-nm region centered on the gamma(0,1) band. Because of the relatively close spectral spacing between the excitation (226 nm) and detection wavelengths (236 nm), the gamma(0,1) band of NO cannot be isolated from the spectral wings of the Mie scattering signal produced by the spray. To account for the resulting superposition of the fluorescence and scattering signals, a background subtraction method has been developed that utilizes a nearby non-resonant wavelength. Excitation scans have been performed to locate the optimum off-line wavelength. Detection scans have been performed at problematic locations in the flame to determine possible fluorescence interferences from UHCs and PAHs at both the on-line and off-line excitation wavelengths. Quantitative radial NO profiles are presented and analyzed so as to better understand the operation of lean-direct injectors for gas turbine combustors.

  19. The Intrinsic Variability in the Water Vapor Saturation Ratio due to Turbulence

    NASA Astrophysics Data System (ADS)

    Anderson, J. C.; Cantrell, W. H.; Chandrakar, K. K.; Kostinski, A. B.; Niedermeier, D.; Shaw, R. A.

    2017-12-01

    In the atmosphere, the concentration of water vapor plays an important role in Earth's weather and climate. The mean concentration of water vapor is key to its efficiency as a greenhouse gas; the fluctuations about the mean are important for heat fluxes near the surface of earth. In boundary layer clouds, fluctuations in the water vapor concentration are linked to turbulence. Conditions representative of boundary layer clouds are simulated in Michigan Tech's multiphase, turbulent reaction chamber, the ∏ chamber, where the boundary conditions are controlled and repeatable. Measurements for temperature and water vapor concentration were recorded under forced Rayleigh-Bénard convection. As expected, the distributions for temperature and water vapor concentration broaden as the turbulence becomes more vigorous. From these two measurements the saturation ratio can be calculated. The fluctuations in the water vapor concentration are more important to the variability in the saturation ratio than fluctuations in temperature. In a cloud, these fluctuations in the saturation ratio can result in some cloud droplets experiencing much higher supersaturations. Those "lucky" droplets grow by condensation at a faster rate than other cloud droplets. The difference in the droplet growth rate could contribute to a broadened droplet distribution, which leads to the onset of collision-coalescence. With more intense turbulence these effect will become more pronounced as the fluctuations about the mean saturation ratio become more pronounced.

  20. Time stretch dispersive Fourier transform based single-shot pulse-by-pulse spectrum measurement using a pulse-repetition-frequency-variable gain-switched laser

    NASA Astrophysics Data System (ADS)

    Furukawa, Hideaki; Makino, Takeshi; Wang, Xiaomin; Kobayashi, Tetsuya; Asghari, Mohammad H.; Trinh, Paul; Jalali, Bahram; Man, Wai Sing; Tsang, Kwong Shing; Wada, Naoya

    2018-02-01

    The time stretch dispersive Fourier Transform (TS-DFT) technique based on a fiber chromatic dispersion is a powerful tool for pulse-by-pulse single-shot spectrum measurement for highrepetition rate optical pulses. The distributed feedback laser diode (DFB-LD) with the gain switch operation can flexibly change the pulse repetition frequency (PRF). In this paper, we newly introduce a semiconductor gain-switched DFB-LD operating from 1 MHz up to 1 GHz PRF into the TS-DFT based spectrum measurement system to improve the flexibility and the operability. The pulse width can be below 2 ps with a pulse compression technique. We successfully measure the spectrum of each optical pulse at 1 GHz, 100 MHz, and 10 MHz PRF, and demonstrate the flexibility of the measurement system.

  1. Lung vital capacity and oxygen saturation in adults with cerebral palsy

    PubMed Central

    Lampe, Renée; Blumenstein, Tobias; Turova, Varvara; Alves-Pinto, Ana

    2014-01-01

    Background Individuals with infantile cerebral palsy have multiple disabilities. The most conspicuous syndrome being investigated from many aspects is motor movement disorder with a spastic gait pattern. The lung function of adults with spasticity attracts less attention in the literature. This is surprising because decreased thoracic mobility and longstanding scoliosis should have an impact on lung function. With increasing age and the level of disability, individuals become susceptible to lung infections and reflux illness, and these are accompanied by increased aspiration risk. This study examined, with different methods, to what extent adults with congenital cerebral palsy and acquired spastic paresis – following traumatic brain injury – showed restriction of lung function. It also assessed the contribution of disability level on this restriction. Methods The oxygen saturation of 46 adults with a diagnosis of cerebral palsy was measured with an oximeter. Lung vital capacity was measured with a mobile spirometer and excursion of the thorax was clinically registered. The gross motor function levels and the presence or absence of scoliosis were determined. Results A significantly positive correlation between lung vital capacity and chest expansion was established. Both the lung vital capacity and the thorax excursion decreased with increases in gross motor function level. Oxygen saturation remained within the normal range in all persons, in spite of reduced values of the measured lung parameters. No statistically significant dependency between lung vital capacity and oxygen saturation, and between chest expansion and oxygen saturation was found. The scoliotic deformities of the spine were associated with an additional decrease in the vital capacity, but this did not affect blood oxygen supply. Conclusion Despite the decreased chest expansion and the significantly reduced lung volume in adults with cerebral palsy, sufficient oxygen supply was registered. PMID

  2. Loop gain stabilizing with an all-digital automatic-gain-control method for high-precision fiber-optic gyroscope.

    PubMed

    Zheng, Yue; Zhang, Chunxi; Li, Lijing; Song, Lailiang; Chen, Wen

    2016-06-10

    For a fiber-optic gyroscope (FOG) using electronic dithers to suppress the dead zone, without a fixed loop gain, the deterministic compensation for the dither signals in the control loop of the FOG cannot remain accurate, resulting in the dither residuals in the FOG rotation rate output and the navigation errors in the inertial navigation system. An all-digital automatic-gain-control method for stabilizing the loop gain of the FOG is proposed. By using a perturbation square wave to measure the loop gain of the FOG and adding an automatic gain control loop in the conventional control loop of the FOG, we successfully obtain the actual loop gain and make the loop gain converge to the reference value. The experimental results show that in the case of 20% variation in the loop gain, the dither residuals are successfully eliminated and the standard deviation of the FOG sampling outputs is decreased from 2.00  deg/h to 0.62  deg/h (sampling period 2.5 ms, 10 points smoothing). With this method, the loop gain of the FOG can be stabilized over the operation temperature range and in the long-time application, which provides a solid foundation for the engineering applications of the high-precision FOG.

  3. Swash saturation: an assessment of available models

    NASA Astrophysics Data System (ADS)

    Hughes, Michael G.; Baldock, Tom E.; Aagaard, Troels

    2018-06-01

    An extensive previously published (Hughes et al. Mar Geol 355, 88-97, 2014) field data set representing the full range of micro-tidal beach states (reflective, intermediate and dissipative) is used to investigate swash saturation. Two models that predict the behavior of saturated swash are tested: one driven by standing waves and the other driven by bores. Despite being based on entirely different premises, they predict similar trends in the limiting (saturated) swash height with respect to dependency on frequency and beach gradient. For a given frequency and beach gradient, however, the bore-driven model predicts a larger saturated swash height by a factor 2.5. Both models broadly predict the general behavior of swash saturation evident in the data, but neither model is accurate in detail. While swash saturation in the short-wave frequency band is common on some beach types, it does not always occur across all beach types. Further work is required on wave reflection/breaking and the role of wave-wave and wave-swash interactions to determine limiting swash heights on natural beaches.

  4. Hillslope-scale experiment demonstrates role of convergence during two-step saturation

    USGS Publications Warehouse

    Gevaert, A. I.; Teuling, A. J.; Uijlenhoet, R.; DeLong, Stephen B.; Huxman, T. E.; Pangle, L. A.; Breshears, David D.; Chorover, J.; Pelletier, John D.; Saleska, S. R.; Zeng, X.; Troch, Peter A.

    2014-01-01

    Subsurface flow and storage dynamics at hillslope scale are difficult to ascertain, often in part due to a lack of sufficient high-resolution measurements and an incomplete understanding of boundary conditions, soil properties, and other environmental aspects. A continuous and extreme rainfall experiment on an artificial hillslope at Biosphere 2's Landscape Evolution Observatory (LEO) resulted in saturation excess overland flow and gully erosion in the convergent hillslope area. An array of 496 soil moisture sensors revealed a two-step saturation process. First, the downward movement of the wetting front brought soils to a relatively constant but still unsaturated moisture content. Second, soils were brought to saturated conditions from below in response to rising water tables. Convergent areas responded faster than upslope areas, due to contributions from lateral subsurface flow driven by the topography of the bottom boundary, which is comparable to impermeable bedrock in natural environments. This led to the formation of a groundwater ridge in the convergent area, triggering saturation excess runoff generation. This unique experiment demonstrates, at very high spatial and temporal resolution, the role of convergence on subsurface storage and flow dynamics. The results bring into question the representation of saturation excess overland flow in conceptual rainfall-runoff models and land-surface models, since flow is gravity-driven in many of these models and upper layers cannot become saturated from below. The results also provide a baseline to study the role of the co-evolution of ecological and hydrological processes in determining landscape water dynamics during future experiments in LEO.

  5. Shear weakening for different lithologies observed at different saturation stages

    NASA Astrophysics Data System (ADS)

    Diethart-Jauk, Elisabeth; Gegenhuber, Nina

    2018-01-01

    For this study, samples from different lithologies ("Leitha"-limestone, "Dachstein"-limestone, "Haupt"-dolomite, "Bunt"-sandstone, Grey Berea sandstone, granite, quartzite and basalt) were selected. Samples were dried at 70 °C, respectively 105 °C and were saturated with brine. Mass, porosity, permeability, compressional and shear wave velocity were determined from dry and brine saturated samples at laboratory conditions, based on an individual measurement program. Shear modulus was calculated to find out, if shear weakening exists for the dataset. Shear weakening means that shear modulus of dry samples is higher than of saturated samples, but it is assumed that shear modulus is unaffected by saturation. "Dachstein"-limestone and basalt show shear weakening, quartzite samples show both weakening and hardening. Granite samples are affected by temperature, after drying with 105 °C no change can be observed anymore. "Bunt"-sandstone samples show a change in the shear modulus in a small extent, although they may contain clay minerals. The other lithologies show no effect. Explanations for carbonate samples can be the complicated pore structure, for basalt it could be that weathering creates clay minerals which are known as causes for a change of the shear modulus. Fluid viscosity can also be an important factor.

  6. Quantify fluid saturation in fractures by light transmission technique and its application

    NASA Astrophysics Data System (ADS)

    Ye, S.; Zhang, Y.; Wu, J.

    2016-12-01

    The Dense Non-Aqueous Phase Liquids (DNAPLs) migration in transparent and rough fractures with variable aperture was studied experimentally using a light transmission technique. The migration of trichloroethylene (TCE) in variable-aperture fractures (20 cm wide x 32.5 cm high) showed that a TCE blob moved downward with snap-off events in four packs with apertures from 100 μm to 1000 μm, and that the pattern presented a single and tortuous cluster with many fingers in a pack with two apertures of 100 μm and 500 μm. The variable apertures in the fractures were measured by light transmission. A light intensity-saturation (LIS) model based on light transmission was used to quantify DNAPL saturation in the fracture system. Known volumes of TCE, were added to the chamber and these amounts were compared to the results obtained by LIS model. Strong correlation existed between results obtained based on LIS model and the known volumes of T CE. Sensitivity analysis showed that the aperture was more sensitive than parameter C2 of LIS model. LIS model was also used to measure dyed TCE saturation in air sparging experiment. The results showed that the distribution and amount of TCE significantly influenced the efficient of air sparging. The method developed here give a way to quantify fluid saturation in two-phase system in fractured medium, and provide a non-destructive, non-intrusive tool to investigate changes in DNAPL architecture and flow characteristics in laboratory experiments. Keywords: light transmission, fluid saturation, fracture, variable aperture AcknowledgementsFunding for this research from NSFC Project No. 41472212.

  7. International system of units traceable results of Hg mass concentration at saturation in air from a newly developed measurement procedure.

    PubMed

    Quétel, Christophe R; Zampella, Mariavittoria; Brown, Richard J C; Ent, Hugo; Horvat, Milena; Paredes, Eduardo; Tunc, Murat

    2014-08-05

    Data most commonly used at present to calibrate measurements of mercury vapor concentrations in air come from a relationship known as the "Dumarey equation". It uses a fitting relationship to experimental results obtained nearly 30 years ago. The way these results relate to the international system of units (SI) is not known. This has caused difficulties for the specification and enforcement of limit values for mercury concentrations in air and in emissions to air as part of national or international legislation. Furthermore, there is a significant discrepancy (around 7% at room temperature) between the Dumarey data and data calculated from results of mercury vapor pressure measurements in the presence of only liquid mercury. As an attempt to solve some of these problems, a new measurement procedure is described for SI traceable results of gaseous Hg concentrations at saturation in milliliter samples of air. The aim was to propose a scheme as immune as possible to analytical biases. It was based on isotope dilution (ID) in the liquid phase with the (202)Hg enriched certified reference material ERM-AE640 and measurements of the mercury isotope ratios in ID blends, subsequent to a cold vapor generation step, by inductively coupled plasma mass spectrometry. The process developed involved a combination of interconnected valves and syringes operated by computer controlled pumps and ensured continuity under closed circuit conditions from the air sampling stage onward. Quantitative trapping of the gaseous mercury in the liquid phase was achieved with 11.5 μM KMnO4 in 2% HNO3. Mass concentrations at saturation found from five measurements under room temperature conditions were significantly higher (5.8% on average) than data calculated from the Dumarey equation, but in agreement (-1.2% lower on average) with data based on mercury vapor pressure measurement results. Relative expanded combined uncertainties were estimated following a model based approach. They ranged from 2

  8. How should gestational weight gain be assessed? A comparison of existing methods and a novel method, area under the weight gain curve

    PubMed Central

    Kleinman, Ken P; Oken, Emily; Radesky, Jenny S; Rich-Edwards, Janet W; Peterson, Karen E; Gillman, Matthew W

    2007-01-01

    Background Gestational weight gain is important to assess for epidemiological and public health purposes: it is correlated with infant growth and may be related to maternal outcomes such as reproductive health and chronic disease risk. Methods commonly used to assess weight gain incorporate assumptions that are usually not borne out, such as a linear weight gain, or do not account for differential length of gestation. Methods We introduce a novel method to assess gestational weight gain, the area under the weight gain curve. This is easily interpretable as the additional pound-days carried due to pregnancy and avoids many flaws in alternative assessments. We compare the performance of the simple difference, weekly gain, Institute of Medicine categories and the area under the weight gain curve in predicting birthweight and maternal weight retention at 6, 12, 24 and 36 months post-partum. The analytic sample comprises 2016 participants in Project Viva, an observational prospective cohort study of pregnant women in Massachusetts. Results For birthweight outcomes, none of the weight gain measures is a meaningfully superior predictor. For 6-month postpartum weight retention the simple difference is superior, while for 12-, 24- and 36-month weight retention the area under the weight gain curve is superior. Conclusions These findings are plausible biologically: the same amount of weight gained early vs later in the pregnancy may reflect increased maternal fat stores. The timing of weight gain is reflected best in the area under the weight gain curve. Different methods of measuring gestational weight gain may be appropriate depending on the context. PMID:17715174

  9. Nonlinear saturation of the Weibel instability

    DOE PAGES

    Cagas, P.; Hakim, A.; Scales, W.; ...

    2017-11-21

    The growth and saturation of magnetic fields due to the Weibel instability (WI) have important implications for laboratory and astrophysical plasmas, and this has drawn significant interest recently. Since the WI can generate a large magnetic field from no initial field, the maximum magnitudes achieved can have significant consequences for a number of applications. Hence, an understanding of the detailed dynamics driving the nonlinear saturation of the WI is important. This work considers the nonlinear saturation of the WI when counter-streaming populations of initially unmagnetized electrons are perturbed by a magnetic field oriented perpendicular to the direction of streaming. Previousmore » works have found magnetic trapping to be important and connected electron skin depth spatial scales to the nonlinear saturation of the WI. The results presented in this work are consistent with these findings for a high-temperature case. However, using a high-order continuum kinetic simulation tool, this work demonstrates that when the electron populations are colder, a significant electrostatic potential develops that works with the magnetic field to create potential wells. The electrostatic field develops due to transverse flows induced by the WI and in some cases is strengthened by a secondary instability. This field plays a key role in saturation of the WI for colder populations. In conclusion, the role of the electrostatic potential in Weibel instability saturation has not been studied in detail previously.« less

  10. Nonlinear saturation of the Weibel instability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cagas, P.; Hakim, A.; Scales, W.

    The growth and saturation of magnetic fields due to the Weibel instability (WI) have important implications for laboratory and astrophysical plasmas, and this has drawn significant interest recently. Since the WI can generate a large magnetic field from no initial field, the maximum magnitudes achieved can have significant consequences for a number of applications. Hence, an understanding of the detailed dynamics driving the nonlinear saturation of the WI is important. This work considers the nonlinear saturation of the WI when counter-streaming populations of initially unmagnetized electrons are perturbed by a magnetic field oriented perpendicular to the direction of streaming. Previousmore » works have found magnetic trapping to be important and connected electron skin depth spatial scales to the nonlinear saturation of the WI. The results presented in this work are consistent with these findings for a high-temperature case. However, using a high-order continuum kinetic simulation tool, this work demonstrates that when the electron populations are colder, a significant electrostatic potential develops that works with the magnetic field to create potential wells. The electrostatic field develops due to transverse flows induced by the WI and in some cases is strengthened by a secondary instability. This field plays a key role in saturation of the WI for colder populations. In conclusion, the role of the electrostatic potential in Weibel instability saturation has not been studied in detail previously.« less

  11. Nocturnal oxygen saturation in children with stable cystic fibrosis.

    PubMed

    van der Giessen, Lianne; Bakker, Marije; Joosten, Koen; Hop, Wim; Tiddens, Harm

    2012-11-01

    Hypoxemia during sleep is a common finding in Cystic Fibrosis (CF) patients with more advanced lung disease. Nocturnal hypoxemia is associated with frequent awakenings and poor sleep quality. For children with CF, data of nocturnal oxygen saturation are sparse. To assess the oxygen saturation profile during sleep in 25 clinically stable children with CF lung disease and to correlate these data with spirometry, cough frequency, sleep quality, and CT-scan scores. During two nights cough was recorded with a digital audio recorder in 25 clinically stable CF patients. In addition oxygen saturation was measured. The day following the recording spirometry was carried out. CT scores were obtained from the most recent routine CT scan. Twenty-two patients were included in the study. Mean age (range) was 13 (6-18) years. Spirometry was FVC% 84 (range 52-114), FEV(1) % 77 (range 43-115), and FEF(75) % 50 (range 12-112). The mean SO(2) was 95.6% for the first and 96.2% for the second night. Mean SO(2) between the two nights correlated strongly (r(s) = 0.84, P < 0.001). Positive correlation was observed between mean SO(2) of the two nights (mean × SO(2)) and FVC, FEV(1) and FEF(75). Correlations were found between mean × SO(2) and the total CT score (r(s) = -0.45, P = 0.05) and the bronchiectasis subscore (r(s) = -0.48, P = 0.03). Nocturnal oxygen saturation in children with stable CF is lower than that in healthy children, and is correlated with lung function parameters and CT scores. Monitoring oxygen saturation during one night is sufficient to get a representative recording. Copyright © 2012 Wiley Periodicals, Inc.

  12. Estimation of saturated pixel values in digital color imaging

    PubMed Central

    Zhang, Xuemei; Brainard, David H.

    2007-01-01

    Pixel saturation, where the incident light at a pixel causes one of the color channels of the camera sensor to respond at its maximum value, can produce undesirable artifacts in digital color images. We present a Bayesian algorithm that estimates what the saturated channel's value would have been in the absence of saturation. The algorithm uses the non-saturated responses from the other color channels, together with a multivariate Normal prior that captures the correlation in response across color channels. The appropriate parameters for the prior may be estimated directly from the image data, since most image pixels are not saturated. Given the prior, the responses of the non-saturated channels, and the fact that the true response of the saturated channel is known to be greater than the saturation level, the algorithm returns the optimal expected mean square estimate for the true response. Extensions of the algorithm to the case where more than one channel is saturated are also discussed. Both simulations and examples with real images are presented to show that the algorithm is effective. PMID:15603065

  13. Redesign of a Variable-Gain Output Feedback Longitudinal Controller Flown on the High-Alpha Research Vehicle (HARV)

    NASA Technical Reports Server (NTRS)

    Ostroff, Aaron J.

    1998-01-01

    This paper describes a redesigned longitudinal controller that flew on the High-Alpha Research Vehicle (HARV) during calendar years (CY) 1995 and 1996. Linear models are developed for both the modified controller and a baseline controller that was flown in CY 1994. The modified controller was developed with three gain sets for flight evaluation, and several linear analysis results are shown comparing the gain sets. A Neal-Smith flying qualities analysis shows that performance for the low- and medium-gain sets is near the level 1 boundary, depending upon the bandwidth assumed, whereas the high-gain set indicates a sensitivity problem. A newly developed high-alpha Bode envelope criterion indicates that the control system gains may be slightly high, even for the low-gain set. A large motion-base simulator in the United Kingdom was used to evaluate the various controllers. Desired performance, which appeared to be satisfactory for flight, was generally met with both the low- and medium-gain sets. Both the high-gain set and the baseline controller were very sensitive, and it was easy to generate pilot-induced oscillation (PIO) in some of the target-tracking maneuvers. Flight target-tracking results varied from level 1 to level 3 and from no sensitivity to PIO. These results were related to pilot technique and whether actuator rate saturation was encountered.

  14. Feasibility of absolute cerebral tissue oxygen saturation during cardiopulmonary resuscitation.

    PubMed

    Meex, Ingrid; De Deyne, Cathy; Dens, Jo; Scheyltjens, Simon; Lathouwers, Kevin; Boer, Willem; Vundelinckx, Guy; Heylen, René; Jans, Frank

    2013-03-01

    Current monitoring during cardiopulmonary resuscitation (CPR) is limited to clinical observation of consciousness, breathing pattern and presence of a pulse. At the same time, the adequacy of cerebral oxygenation during CPR is critical for neurological outcome and thus survival. Cerebral oximetry, based on near-infrared spectroscopy (NIRS), provides a measure of brain oxygen saturation. Therefore, we examined the feasibility of using NIRS during CPR. Recent technologies (FORE-SIGHT™ and EQUANOX™) enable the monitoring of absolute cerebral tissue oxygen saturation (SctO2) values without the need for pre-calibration. We tested both FORE-SIGHT™ (five patients) and EQUANOX Advance™ (nine patients) technologies in the in-hospital as well as the out-of-hospital CPR setting. In this observational study, values were not utilized in any treatment protocol or therapeutic decision. An independent t-test was used for statistical analysis. Our data demonstrate the feasibility of both technologies to measure cerebral oxygen saturation during CPR. With the continuous, pulseless near-infrared wave analysis of both FORE-SIGHT™ and EQUANOX™ technology, we obtained SctO2 values in the absence of spontaneous circulation. Both technologies were able to assess the efficacy of CPR efforts: improved resuscitation efforts (improved quality of chest compressions with switch of caregivers) resulted in higher SctO2 values. Until now, the ability of CPR to provide adequate tissue oxygenation was difficult to quantify or to assess clinically due to a lack of specific technology. With both technologies, any change in hemodynamics (for example, ventricular fibrillation) results in a reciprocal change in SctO2. In some patients, a sudden drop in SctO2 was the first warning sign of reoccurring ventricular fibrillation. Both the FORE-SIGHT™ and EQUANOX™ technology allow non-invasive monitoring of the cerebral oxygen saturation during CPR. Moreover, changes in SctO2 values might be

  15. Distributed Saturation

    NASA Technical Reports Server (NTRS)

    Chung, Ming-Ying; Ciardo, Gianfranco; Siminiceanu, Radu I.

    2007-01-01

    The Saturation algorithm for symbolic state-space generation, has been a recent break-through in the exhaustive veri cation of complex systems, in particular globally-asyn- chronous/locally-synchronous systems. The algorithm uses a very compact Multiway Decision Diagram (MDD) encoding for states and the fastest symbolic exploration algo- rithm to date. The distributed version of Saturation uses the overall memory available on a network of workstations (NOW) to efficiently spread the memory load during the highly irregular exploration. A crucial factor in limiting the memory consumption during the symbolic state-space generation is the ability to perform garbage collection to free up the memory occupied by dead nodes. However, garbage collection over a NOW requires a nontrivial communication overhead. In addition, operation cache policies become critical while analyzing large-scale systems using the symbolic approach. In this technical report, we develop a garbage collection scheme and several operation cache policies to help on solving extremely complex systems. Experiments show that our schemes improve the performance of the original distributed implementation, SmArTNow, in terms of time and memory efficiency.

  16. Measurements of the Low Frequency Gain Fluctuations of a 30 GHz High-Electron-Mobility-Transistor Cryogenic Amplifier

    NASA Technical Reports Server (NTRS)

    Jarosik, Norman

    1994-01-01

    Low frequency gain fluctuations of a 30 GHz cryogenic HEMT amplifier have been measured with the input of the amplifier connected to a 15 K load. Effects of fluctuations of other components of the test set-up were eliminated by use of a power-power correlation technique. Strong correlation between output power fluctuations of the amplifier and drain current fluctuations of the transistors comprising the amplifier are observed. The existence of these correlations introduces the possibility of regressing some of the excess noise from the HEMT amplifier's output using the measured drain currents.

  17. All-fiber passively Q-switched thulium-doped fiber laser by using a holmium-doped fiber as saturable absorber

    NASA Astrophysics Data System (ADS)

    Durán Sánchez, M.; Álvarez-Tamayo, R. I.; Posada-Ramírez, B.; Alaniz-Baylón, J.; Bravo-Huerta, E.; Santiago-Hernández, H.; Hernández-Arriaga, M. V.; Bello-Jiménez, Miguel; Ibarra-Escamilla, B.; Kuzin, E. A.

    2018-02-01

    We report a linear cavity all-fiber passive Q-switched thulium-doped fiber laser operating at the 2 μm wavelength range. The laser configuration is based on a thulium-doped fiber used as a gain medium and an unpumped segment of holmium-doped fiber which acts as a fiber saturable absorber. The cavity is formed by a fiber optical loop mirror and the flat end facet of the holmium-doped fiber. The fiber segments as saturable absorber is a 1-m long single mode doubleclad holmium-doped fiber. Q-switched pulses are obtained at the wavelength of 2024.5 nm with a pulse width of 1.1 μs. The pulse repetition rate increases as a linear function of the applied pump power. The maximum pulse repetition rate of 100 kHz was obtained with a pump power of 2.4 W.

  18. Tropical forests are a net carbon source based on aboveground measurements of gain and loss.

    PubMed

    Baccini, A; Walker, W; Carvalho, L; Farina, M; Sulla-Menashe, D; Houghton, R A

    2017-10-13

    The carbon balance of tropical ecosystems remains uncertain, with top-down atmospheric studies suggesting an overall sink and bottom-up ecological approaches indicating a modest net source. Here we use 12 years (2003 to 2014) of MODIS pantropical satellite data to quantify net annual changes in the aboveground carbon density of tropical woody live vegetation, providing direct, measurement-based evidence that the world's tropical forests are a net carbon source of 425.2 ± 92.0 teragrams of carbon per year (Tg C year -1 ). This net release of carbon consists of losses of 861.7 ± 80.2 Tg C year -1 and gains of 436.5 ± 31.0 Tg C year -1 Gains result from forest growth; losses result from deforestation and from reductions in carbon density within standing forests (degradation or disturbance), with the latter accounting for 68.9% of overall losses. Copyright © 2017 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  19. High-cut characteristics of the baroreflex neural arc preserve baroreflex gain against pulsatile pressure.

    PubMed

    Kawada, Toru; Zheng, Can; Yanagiya, Yusuke; Uemura, Kazunori; Miyamoto, Tadayoshi; Inagaki, Masashi; Shishido, Toshiaki; Sugimachi, Masaru; Sunagawa, Kenji

    2002-03-01

    A transfer function from baroreceptor pressure input to sympathetic nerve activity (SNA) shows derivative characteristics in the frequency range below 0.8 Hz in rabbits. These derivative characteristics contribute to a quick and stable arterial pressure (AP) regulation. However, if the derivative characteristics hold up to heart rate frequency, the pulsatile pressure input will yield a markedly augmented SNA signal. Such a signal would saturate the baroreflex signal transduction, thereby disabling the baroreflex regulation of AP. We hypothesized that the transfer gain at heart rate frequency would be much smaller than that predicted from extrapolating the derivative characteristics. In anesthetized rabbits (n = 6), we estimated the neural arc transfer function in the frequency range up to 10 Hz. The transfer gain was lost at a rate of -20 dB/decade when the input frequency exceeded 0.8 Hz. A numerical simulation indicated that the high-cut characteristics above 0.8 Hz were effective to attenuate the pulsatile signal and preserve the open-loop gain when the baroreflex dynamic range was finite.

  20. Comparison of oxygen saturation values obtained from fingers on physically restrained or unrestrained sides of the body.

    PubMed

    Korhan, Esra Akin; Yönt, Gülendam Hakverdioğlu; Khorshid, Leyla

    2011-01-01

    The aim of this study was to compare semiexperimentally the pulse oximetry values obtained from a finger on restrained or unrestrained sides of the body. The pulse oximeter provides a noninvasive measurement of the oxygen saturation of hemoglobin in arterial blood. One of the procedures most frequently applied to patients in intensive care units is the application of physical restraint. Circulation problems are the most important complication in patients who are physically restrained. Evaluation of oxygen saturation from body parts in which circulation is impeded or has deteriorated can cause false results. The research sample consisted of 30 hospitalized patients who participated in the study voluntarily and who were concordant with the inclusion criteria of the study. Patient information and patient follow-up forms were used for data collection. Pulse oximetry values were measured simultaneously using OxiMax Nellcor finger sensors from fingers on the restrained and unrestrained sides of the body. Numeric and percentile distributions were used in evaluating the sociodemographic properties of patients. A significant difference was found between the oxygen saturation values obtained from a finger of an arm that had been physically restrained and a finger of an arm that had not been physically restrained. The mean oxygen saturation value measured from a finger of an arm that had been physically restrained was found to be 93.40 (SD, 2.97), and the mean oxygen saturation value measured from a finger of an arm that had not been physically restrained was found to be 95.53 (SD, 2.38). The results of this study indicate that nurses should use a finger of an arm that is not physically restrained when evaluating oxygen saturation values to evaluate them correctly.

  1. Assessment of Learning Gains in a Flipped Biochemistry Classroom

    ERIC Educational Resources Information Center

    Ojennus, Deanna Dahlke

    2016-01-01

    The flipped classroom has become an increasingly popular pedagogical approach to teaching and learning. In this study, learning gains were assessed in a flipped biochemistry course and compared to gains in a traditional lecture. Although measured learning gains were not significantly different between the two courses, student perception of…

  2. Retinal Vessel Oxygen Saturation during 100% Oxygen Breathing in Healthy Individuals

    PubMed Central

    Olafsdottir, Olof Birna; Eliasdottir, Thorunn Scheving; Kristjansdottir, Jona Valgerdur; Hardarson, Sveinn Hakon; Stefánsson, Einar

    2015-01-01

    Purpose To detect how systemic hyperoxia affects oxygen saturation in retinal arterioles and venules in healthy individuals. Methods Retinal vessel oxygen saturation was measured in 30 healthy individuals with a spectrophotometric retinal oximeter (Oxymap T1). Oximetry was performed during breathing of room air, 100% oxygen (10 minutes, 6L/min) and then again room air (10 minutes recovery). Results Mean oxygen saturation rises modestly in retinal arterioles during 100% oxygen breathing (94.5%±3.8 vs. 92.0%±3.7% at baseline, p<0.0001) and dramatically in retinal venules (76.2%±8.0% vs. 51.3%±5.6%, p<0.0001). The arteriovenous difference decreased during 100% oxygen breathing (18.3%±9.0% vs. 40.7%±5.7%, p<0.0001). The mean diameter of arterioles decreased during 100% oxygen breathing compared to baseline (9.7±1.4 pixels vs. 10.3±1.3 pixels, p<0.0001) and the same applies to the mean venular diameter (11.4±1.2 pixels vs. 13.3±1.5 pixels, p<0.0001). Conclusions Breathing 100% oxygen increases oxygen saturation in retinal arterioles and more so in venules and constricts them compared to baseline levels. The dramatic increase in oxygen saturation in venules reflects oxygen flow from the choroid and the unusual vascular anatomy and oxygen physiology of the eye. PMID:26042732

  3. CO2CRC's Otway Residual Saturation and Dissolution Test: Using Reactive Ester Tracers to Determine Residual CO2 Saturation

    NASA Astrophysics Data System (ADS)

    Myers, M.; Stalker, L.; LaForce, T.; Pejcic, B.; Dyt, C.; Ho, K.; Ennis-King, J.

    2013-12-01

    Residual trapping, that is CO2 held in the rock pore space due to capillarity, is an important storage mechanism in geo-sequestration of over the short to medium term (up to 1000 years). As such residual CO2 saturation is a critical reservoir parameter for assessing the storage capacity and security of carbon capture and storage (CCS). As a component of the CO2CRC's Residual Gas Saturation and Dissolution Test at the CO2CRC Otway Project site in Victoria (Australia), we have recently tested a suite of reactive esters (triacetin, tripropionin and propylene glycol diacetate) in a single well chemical tracer test to determine residual CO2 saturation. The goal of this project was to assess and validate a suite of possible tests that could be implemented to determine residual CO2 saturation. For this test, the chemical tracers were injected with a saturated CO2/water mixture into the formation (that is already at residual CO2 saturation) where they were allowed to 'soak' for approximately 10 days allowing for the partial hydrolysis of the esters to their corresponding carboxylic acids and alcohols. Water containing the tracers was then produced from the well resulting in over 600 tracer samples over a period of 12 hours. A selection of these samples were analysed for tracer content and to establish tracer breakthrough curves. To understand the behaviour of these chemical tracers in the downhole environment containing residually trapped supercritical CO2 and formation water, it is necessary to determine the supercritical CO2/water partition coefficients. We have previously determined these in the laboratory (Myers et al., 2012) and they are used here to model the tracer behaviour and provide an estimate of the residual CO2 saturation. Two different computational simulators were used to analyse the tracer breakthrough profiles. The first is based on simple chromatographic retardation and has been used extensively in single well chemical tracer tests to determine residual

  4. Effect of soil saturation on denitrification in a grassland soil

    NASA Astrophysics Data System (ADS)

    Maritza Cardenas, Laura; Bol, Roland; Lewicka-Szczebak, Dominika; Gregory, Andrew Stuart; Matthews, Graham Peter; Whalley, William Richard; Misselbrook, Thomas Henry; Scholefield, David; Well, Reinhard

    2017-10-01

    Nitrous oxide (N2O) is of major importance as a greenhouse gas and precursor of ozone (O3) destruction in the stratosphere mostly produced in soils. The soil-emitted N2O is generally predominantly derived from denitrification and, to a smaller extent, nitrification, both processes controlled by environmental factors and their interactions, and are influenced by agricultural management. Soil water content expressed as water-filled pore space (WFPS) is a major controlling factor of emissions and its interaction with compaction, has not been studied at the micropore scale. A laboratory incubation was carried out at different saturation levels for a grassland soil and emissions of N2O and N2 were measured as well as the isotopocules of N2O. We found that flux variability was larger in the less saturated soils probably due to nutrient distribution heterogeneity created from soil cracks and consequently nutrient hot spots. The results agreed with denitrification as the main source of fluxes at the highest saturations, but nitrification could have occurred at the lower saturation, even though moisture was still high (71 % WFSP). The isotopocules data indicated isotopic similarities in the wettest treatments vs. the two drier ones. The results agreed with previous findings where it is clear there are two N pools with different dynamics: added N producing intense denitrification vs. soil N resulting in less isotopic fractionation.

  5. Radiation hardness of thin Low Gain Avalanche Detectors

    NASA Astrophysics Data System (ADS)

    Kramberger, G.; Carulla, M.; Cavallaro, E.; Cindro, V.; Flores, D.; Galloway, Z.; Grinstein, S.; Hidalgo, S.; Fadeyev, V.; Lange, J.; Mandić, I.; Medin, G.; Merlos, A.; McKinney-Martinez, F.; Mikuž, M.; Quirion, D.; Pellegrini, G.; Petek, M.; Sadrozinski, H. F.-W.; Seiden, A.; Zavrtanik, M.

    2018-05-01

    Low Gain Avalanche Detectors (LGAD) are based on a n++-p+-p-p++ structure where an appropriate doping of the multiplication layer (p+) leads to high enough electric fields for impact ionization. Gain factors of few tens in charge significantly improve the resolution of timing measurements, particularly for thin detectors, where the timing performance was shown to be limited by Landau fluctuations. The main obstacle for their operation is the decrease of gain with irradiation, attributed to effective acceptor removal in the gain layer. Sets of thin sensors were produced by two different producers on different substrates, with different gain layer doping profiles and thicknesses (45, 50 and 80 μm). Their performance in terms of gain/collected charge and leakage current was compared before and after irradiation with neutrons and pions up to the equivalent fluences of 5 ṡ 1015 cm-2. Transient Current Technique and charge collection measurements with LHC speed electronics were employed to characterize the detectors. The thin LGAD sensors were shown to perform much better than sensors of standard thickness (∼300 μm) and offer larger charge collection with respect to detectors without gain layer for fluences < 2 ṡ 1015 cm-2. Larger initial gain prolongs the beneficial performance of LGADs. Pions were found to be more damaging than neutrons at the same equivalent fluence, while no significant difference was found between different producers. At very high fluences and bias voltages the gain appears due to deep acceptors in the bulk, hence also in thin standard detectors.

  6. Capillary pressure curves for low permeability chalk obtained by NMR imaging of core saturation profiles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Norgaard, J.V.; Olsen, D.; Springer, N.

    1995-12-31

    A new technique for obtaining water-oil capillary pressure curves, based on NMR imaging of the saturation distribution in flooded cores is presented. In this technique, a steady state fluid saturation profile is developed by flooding the core at a constant flow rate. At the steady state situation where the saturation distribution no longer changes, the local pressure difference between the wetting and non-wetting phases represents the capillary pressure. The saturation profile is measured using an NMR technique and for a drainage case, the pressure in the non-wetting phase is calculated numerically. The paper presents the NMR technique and the proceduremore » for calculating the pressure distribution in the sample. Inhomogeneous samples produce irregular saturation profiles, which may be interpreted in terms of variation in permeability, porosity, and capillary pressure. Capillary pressure curves for North Sea chalk obtained by the new technique show good agreement with capillary pressure curves obtained by traditional techniques.« less

  7. Electrical conductivity modeling in fractal non-saturated porous media

    NASA Astrophysics Data System (ADS)

    Wei, W.; Cai, J.; Hu, X.; Han, Q.

    2016-12-01

    The variety of electrical conductivity in non-saturated conditions is important to study electric conduction in natural sedimentary rocks. The electrical conductivity in completely saturated porous media is a porosity-function representing the complex connected behavior of single conducting phases (pore fluid). For partially saturated conditions, the electrical conductivity becomes even more complicated since the connectedness of pore. Archie's second law is an empirical electrical conductivity-porosity and -saturation model that has been used to predict the formation factor of non-saturated porous rock. However, the physical interpretation of its parameters, e.g., the cementation exponent m and the saturation exponent n, remains questionable. On basis of our previous work, we combine the pore-solid fractal (PSF) model to build an electrical conductivity model in non-saturated porous media. Our theoretical porosity- and saturation-dependent models contain endmember properties, such as fluid electrical conductivities, pore fractal dimension and tortuosity fractal dimension (representing the complex degree of electrical flowing path). We find the presented model with non-saturation-dependent electrical conductivity datasets indicate excellent match between theory and experiments. This means the value of pore fractal dimension and tortuosity fractal dimension change from medium to medium and depends not only on geometrical properties of pore structure but also characteristics of electrical current flowing in the non-saturated porous media.

  8. Saturation recovery EPR and ELDOR at W-band for spin labels

    PubMed Central

    Froncisz, Wojciech; Camenisch, Theodore G.; Ratke, Joseph J.; Anderson, James R.; Subczynski, Witold K.; Strangeway, Robert A.; Sidabras, Jason W.; Hyde, James S.

    2008-01-01

    A reference-arm W-band (94 GHz) microwave bridge with two sample-irradiation arms for saturation recovery (SR) EPR and ELDOR experiments is described. Frequencies in each arm are derived from 2 GHz synthesizers that have a common time-base and are translated to 94 GHz in steps of 33 and 59 GHz. Intended applications are to nitroxide radical spin labels and spin probes in the liquid phase. An enabling technology is the use of a W-band loop-gap resonator (LGR) (J.W. Sidabras et al., Rev. Sci. Instrum. 78 (2007) 034701). The high efficiency parameter (8.2 GW−1/2 with sample) permits the saturating pump pulse level to be just 5 mW or less. Applications of SR EPR and ELDOR to the hydrophilic spin labels 3-carbamoyl-2,2,5,5-tetra-methyl-3-pyrroline-1-yloxyl (CTPO) and 2,2,6,6,-tetramethyl-4-piperidone-1-oxyl (TEMPONE) are described in detail. In the SR ELDOR experiment, nitrogen nuclear relaxation as well as Heisenberg exchange transfer saturation from pumped to observed hyperfine transitions. SR ELDOR was found to be an essential method for measurements of saturation transfer rates for small molecules such as TEMPONE. Free induction decay (FID) signals for small nitroxides at W-band are also reported. Results are compared with multifrequency measurements of T1e previously reported for these molecules in the range of 2 to 35 GHz (J.S. Hyde et al., J. Phys. Chem. B 108 (2004) 9524–9529). The values of T1e decrease at 94 GHz relative to values at 35 GHz. PMID:18547848

  9. Evaluation of an interpretive videotape program using electronic feedback to measure audience perceptions and knowledge gained

    NASA Astrophysics Data System (ADS)

    Boyette, Cheryl Tate

    Audience preferences and perceptions influence the effectiveness of interpretive programs. The purpose of this study was to determine the preferences of students (grades 3 & 4) and adults for presenter style and delivery, and video production techniques. Other study objectives were the exploration of relationships between knowledge gained and perceived enjoyment of the video. Similarities and differences between the groups of the study; students, pre-service teachers, members of community improvement organizations, and professional interpreters were examined. This study combined recall evaluation techniques with real-time, moment-to-moment data to evaluate the preferences and perceptions of adult and child audiences All data including moment-to-moment perceptions of enjoyment of the interpretive video "Buckeye the Tree Guy" were collected using an electronic feedback system the Perception Analyzer. The videotape developed with a grant from Texas Forest Service presented information on how, when, where, and why to plant and maintain trees in an urban environment. Knowledge gained was measures using a Solomon 4-group design. Student knowledge gained was increased for the treatment group. Adults and students agreed on presenter delivery but significance was found between the groups on presenter style. Significance for perceived enjoyment was found between the student and adult groups. Overall impression of the presenter was a strong influence on overall enjoyment of the video.

  10. Can LENR Energy Gains Exceed 1000?

    NASA Astrophysics Data System (ADS)

    Nagel, David J.

    2011-03-01

    Energy gain is defined as the energy realized from reactions divided by the energy required to produce those reactions. Low Energy Nuclear Reactions (LENR) have already been measured to significantly exceed the energy gain of 10 projected from ITER,possibly 15 years from now. Electrochemical experiments using the Pd-D system have shown energy gains exceeding 10. Gas phase experiments with the Ni-H system were reported to yield energy gains of over 100. Neither of these reports has been adequately verified or reproduced. However, the question in the title still deserves consideration. If, as thought by many, it is possible to trigger nuclear reactions that yield MeV energies with chemical energies of the order of eV, then the most optimistic expectation is that LENR gains could approach one million. Hence, the very tentative answer to the question above is yes. However, if LENR could be initiated with some energy cost, and then continue to ``burn,'' very high energy gains might be realized. Consider a match and a pile of dry logs. The phenomenon termed ``heat after death'' will be examined to see if it might be the initial evidence for nuclear ``burning.''

  11. Sound pressure gain produced by the human middle ear.

    PubMed

    Kurokawa, H; Goode, R L

    1995-10-01

    The acoustic function of the middle ear is to match sound passing from the low impedance of air to the high impedance of cochlear fluid. Little information is available on the actual middle ear pressure gain in human beings. This article describes experiments on middle ear pressure gain in six fresh human temporal bones. Stapes footplate displacement and phase were measured with a laser Doppler vibrometer before and after removal of the tympanic membrane, malleus, and incus. Acoustic insulation of the round window with clay was performed. Umbo displacement was also measured before tympanic membrane removal to assess baseline tympanic membrane function. The middle ear has its major gain in the lower frequencies, with a peak near 0.9 kHz. The mean gain was 23.0 dB below 1.0 kHz, the resonant frequency of the middle ear; the mean peak gain was 26.6 dB. Above 1.0 kHz, the second pressure gain decreased at a rate of -8.6 dB/octave, with a mean gain of 6.5 dB at 4.0 kHz. Only a small amount of gain was present above 7.0 kHz. Significant individual differences in pressure gain were found between ears that appeared related to variations in tympanic membrane function and not to variations in cochlear impedance.

  12. Effect of Iron Redox Equilibrium on the Foaming Behavior of MgO-Saturated Slags

    NASA Astrophysics Data System (ADS)

    Park, Youngjoo; Min, Dong Joon

    2018-04-01

    In this study, the foaming index of CaO-SiO2-FetO and CaO-SiO2-FetO-Al2O3 slags saturated with MgO was measured to understand the relationship between their foaming behavior and physical properties. The foaming index of MgO-saturated slags increases with the FetO content due to the redox equilibrium of FetO. Experimental results indicated that MgO-saturated slag has relatively high ferric ion concentration, and the foaming index increases due to the effect of ferric ion. Therefore, the foaming behavior of MgO-saturated slag is more reasonably explained by considering the effect of ferric ion on the estimation of slag properties such as viscosity, surface tension, and density. Specifically, the estimation of slag viscosity was additionally verified by NBO/T, and this is experimentally obtained through Raman spectroscopy.

  13. Post-Stall Aerodynamic Modeling and Gain-Scheduled Control Design

    NASA Technical Reports Server (NTRS)

    Wu, Fen; Gopalarathnam, Ashok; Kim, Sungwan

    2005-01-01

    A multidisciplinary research e.ort that combines aerodynamic modeling and gain-scheduled control design for aircraft flight at post-stall conditions is described. The aerodynamic modeling uses a decambering approach for rapid prediction of post-stall aerodynamic characteristics of multiple-wing con.gurations using known section data. The approach is successful in bringing to light multiple solutions at post-stall angles of attack right during the iteration process. The predictions agree fairly well with experimental results from wind tunnel tests. The control research was focused on actuator saturation and .ight transition between low and high angles of attack regions for near- and post-stall aircraft using advanced LPV control techniques. The new control approaches maintain adequate control capability to handle high angle of attack aircraft control with stability and performance guarantee.

  14. Assessment of learning gains in a flipped biochemistry classroom.

    PubMed

    Ojennus, Deanna Dahlke

    2016-01-01

    The flipped classroom has become an increasingly popular pedagogical approach to teaching and learning. In this study, learning gains were assessed in a flipped biochemistry course and compared to gains in a traditional lecture. Although measured learning gains were not significantly different between the two courses, student perception of learning gains did differ and indicates a higher level of satisfaction with the flipped lecture format. © 2015 The International Union of Biochemistry and Molecular Biology.

  15. Simplified correction of B1 inhomogeneity for chemical exchange saturation transfer (CEST) MRI measurement with surface transceiver coil

    NASA Astrophysics Data System (ADS)

    Sun, Phillip Z.; Zhou, Iris Y.; Igarashi, Takahiro; Guo, Yingkun; Xiao, Gang; Wu, Renhua

    2015-03-01

    Chemical exchange saturation transfer (CEST) MRI is sensitive to dilute exchangeable protons and local properties such as pH and temperate, yet its susceptibility to field inhomogeneity limits its in vivo applications. Particularly, CEST measurement varies with RF irradiation power, the dependence of which is complex due to concomitant direct RF saturation (RF spillover) effect. Because the volume transmitters provide relatively homogeneous RF field, they have been conventionally used for CEST imaging despite of their elevated specific absorption rate (SAR) and relatively low sensitivity than surface coils. To address this limitation, we developed an efficient B1 inhomogeneity correction algorithm that enables CEST MRI using surface transceiver coils. This is built on recent work that showed the inverse CEST asymmetry analysis (CESTRind) is not susceptible to confounding RF spillover effect. We here postulated that the linear relationship between RF power level and CESTRind can be extended for correcting B1 inhomogeneity induced CEST MRI artifacts. Briefly, we prepared a tissue-like Creatine gel pH phantom and collected multiparametric MRI including relaxation, field map and CEST MRI under multiple RF power levels, using a conventional surface transceiver coil. The raw CEST images showed substantial heterogeneity due to B1 inhomogeneity, with pH contrast to noise ratio (CNR) being 8.8. In comparison, pH MRI CNR of the fieldinhomogeneity corrected CEST MRI was found to be 17.2, substantially higher than that without correction. To summarize, our study validated an efficient field inhomogeneity correction that enables sensitive CEST MRI with surface transceiver, promising for in vivo translation.

  16. Does the estimation of light attenuation in tissue increase the accuracy of reflectance pulse oximetry at low oxygen saturations in vivo?

    PubMed

    Kisch-Wedel, H; Bernreuter, P; Kemming, G; Albert, M; Zwissler, B

    2009-09-01

    A new technique was validated in vivo in reflectance pulse oximetry for measuring low oxygen saturations. Two pairs of light emitter/detector diodes allow for estimation of light attenuation (LA) in tissue, which is assumed to be responsible for the inaccuracy of pulse oximetry at less than 70 % arterial oxygen saturation. For validation, 17 newborn piglets were desaturated stepwise from 21 % to 1.25 % inspiratory oxygen concentration during general anesthesia, and arterial oxygen saturation was measured with the reflectance pulse oximeter adjusted for LA in tissue, with a standard transmission pulse oximeter and a hemoximeter. LA in tissue could be quantified and was different between snout and foreleg (probability level (p) < 0.05). At arterial oxygen saturations above 70 %, the bias between the methods was at 0 %-1 % and the variability 4 %-5 %. From 2 % to 100 % arterial oxygen saturation, the reflectance pulse oximeter estimated oxyhemoglobin saturation more accurately than a conventional transmission pulse oximeter (p < 0.05). At low oxygen saturations below 70 %, the bias and variability of the reflectance pulse oximeter calibration were closer to the hemoximeter measurements than the transmission pulse oximeter (p < 0.05). The variability of the reflectance pulse oximeter was slightly lower than the traditional oximeter by taking into account the LA in tissue (9 % versus 11 % -15 %, ns), and thus, the quality of the individual calibration lines improved (correlation coefficient, p < 0.05).

  17. Saturation spectroscopy of an optically opaque argon plasma

    NASA Astrophysics Data System (ADS)

    Eshel, Ben; Rice, Christopher A.; Perram, Glen P.

    2018-02-01

    A pure argon (Ar) plasma formed by a capacitively coupled radio-frequency discharge was analyzed using Doppler-free saturation spectroscopy. The expected line shape was a characteristic of sub-Doppler spectra in the presence of velocity-changing collisions, a narrow Lorentzian centered on a Doppler pedestal, but the observed line shapes contain a multi-peak structure, attributed to opacity of the medium. Laser absorption and inter-modulated fluorescence spectroscopy measurements were made to validate opacity as a driving factor of the observed line shapes. Spectral line shapes are further complicated by the spatial dependence of the pump laser, probe laser and of the absorbing medium, as well as the large absorbance of the transition under investigation. A numerical line shape was derived by accounting for the spatial variation of the pump and probe with a saturated line shape obtained from the rate equations for an equivalent two-level system. This simulated line shape shows good qualitative agreement with the trends observed in the data.

  18. Assessment of Pulp Oxygen Saturation Levels by Pulse Oximetry for Pulpal Diseases -A Diagnostic Study.

    PubMed

    Anusha, Bander; Madhusudhana, Koppolu; Chinni, Suneel Kumar; Paramesh, Yelloji

    2017-09-01

    Diagnosis of pulpal inflammation is a key to endodontics. Pulse oximetry is a true vitality testing device which relies on oxygen saturation levels of pulp and helps in diagnosis of different pulpal conditions. The aim of the study was to analyse oxygen saturation levels of different pulpally inflamed teeth by using pulse oximetry. Hundred patients were included in the study and categorized into five groups based on pulpal status of the test tooth by using heat test and cold test. Twenty patients were recruited in each of the experimental groups i.e., Reversible Pulpitis (RP), Irreversible Pulpitis (IP), Pulpal Necrosis (PN), Positive Control (PC, healthy teeth), and Negative Control (NC, endodontically treated teeth). Oxygen saturation levels of all the groups were measured along with each patient index finger oxygen saturation readings. Results were analysed by using ANOVA and Tukey HSD tests. The mean oxygen saturation levels of RP, IP, PN, PC and NC were 85.4%, 81.6%, 70.7%, 94.6% and 0 respectively. There was significant difference in the oxygen saturation levels between all the groups. Pulse oximeter is an effective tool in diagnosing different pulpal pathologies especially PN which was interpreted inaccurately by thermal tests.

  19. An evaluation of bilateral monitoring of cerebral oxygen saturation during pediatric cardiac surgery.

    PubMed

    Kussman, Barry D; Wypij, David; DiNardo, James A; Newburger, Jane; Jonas, Richard A; Bartlett, Jodi; McGrath, Ellen; Laussen, Peter C

    2005-11-01

    Cerebral oximetry is a technique that enables monitoring of regional cerebral oxygenation during cardiac surgery. In this study, we evaluated differences in bi-hemispheric measurement of cerebral oxygen saturation using near-infrared spectroscopy in 62 infants undergoing biventricular repair without aortic arch reconstruction. Left and right regional cerebral oxygen saturation index (rSO2i) were recorded continuously after the induction of anesthesia, and data were analyzed at 12 time points. Baseline rSO2i measurements were left 65 +/- 13 and right 66 +/- 13 (P = 0.17). Mean left and right rSO2i measurements were similar (< or =2 percentage points/absolute scale units) before, during, and after cardiopulmonary bypass, irrespective of the use of deep hypothermic circulatory arrest. Further longitudinal neurological outcome studies are required to determine whether uni- or bi-hemispheric monitoring is required in this patient population.

  20. In vivo detection of hemoglobin oxygen saturation and carboxyhemoglobin saturation with multiwavelength photoacoustic microscopy.

    PubMed

    Chen, Zhongjiang; Yang, Sihua; Xing, Da

    2012-08-15

    A method for noninvasively detecting hemoglobin oxygen saturation (SO2) and carboxyhemoglobin saturation (SCO) in subcutaneous microvasculature with multiwavelength photoacoustic microscopy is presented. Blood samples mixed with different concentrations of carboxyhemoglobin were used to test the feasibility and accuracy of photoacoustic microscopy compared with the blood-gas analyzer. Moreover, fixed-point detection of SO2 and SCO in mouse ear was obtained, and the changes from normoxia to carbon monoxide hypoxia were dynamically monitored in vivo. Experimental results demonstrate that multiwavelength photoacoustic microscopy can detect SO2 and SCO, which has future potential clinical applications.

  1. Discrimination of porosity and fluid saturation using seismic velocity analysis

    DOEpatents

    Berryman, James G.

    2001-01-01

    The method of the invention is employed for determining the state of saturation in a subterranean formation using only seismic velocity measurements (e.g., shear and compressional wave velocity data). Seismic velocity data collected from a region of the formation of like solid material properties can provide relatively accurate partial saturation data derived from a well-defined triangle plotted in a (.rho./.mu., .lambda./.mu.)-plane. When the seismic velocity data are collected over a large region of a formation having both like and unlike materials, the method first distinguishes the like materials by initially plotting the seismic velocity data in a (.rho./.lambda., .mu./.lambda.)-plane to determine regions of the formation having like solid material properties and porosity.

  2. Saturated-unsaturated flow to a well with storage in a compressible unconfined aquifer

    NASA Astrophysics Data System (ADS)

    Mishra, Phoolendra Kumar; Neuman, Shlomo P.

    2011-05-01

    Mishra and Neuman (2010) developed an analytical solution for flow to a partially penetrating well of zero radius in a compressible unconfined aquifer that allows inferring its saturated and unsaturated hydraulic properties from responses recorded in the saturated and/or unsaturated zones. Their solution accounts for horizontal as well as vertical flows in each zone. It represents unsaturated zone constitutive properties in a manner that is at once mathematically tractable and sufficiently flexible to provide much improved fits to standard constitutive models. In this paper we extend the solution of [2010] to the case of a finite diameter pumping well with storage; investigate the effects of storage in the pumping well and delayed piezometer response on drawdowns in the saturated and unsaturated zones as functions of position and time; validate our solution against numerical simulations of drawdown in a synthetic aquifer having unsaturated properties described by the [1980]- [1976] model; use our solution to analyze 11 transducer-measured drawdown records from a seven-day pumping test conducted by University of Waterloo researchers at the Canadian Forces Base Borden in Ontario, Canada; validate our parameter estimates against manually-measured drawdown records in 14 other piezometers at Borden; and compare (a) our estimates of aquifer parameters with those obtained on the basis of all these records by [2008], (b) on the basis of 11 transducer-measured drawdown records by [2007], (c) our estimates of van Genuchten-Mualem parameters with those obtained on the basis of laboratory drainage data from the site by [1992], and (d) our corresponding prediction of how effective saturation varies with elevation above the initial water table under static conditions with a profile based on water contents measured in a neutron access tube at a radial distance of about 5 m from the center of the pumping well. We also use our solution to analyze 11 transducer-measured drawdown

  3. Image dehazing based on non-local saturation

    NASA Astrophysics Data System (ADS)

    Wang, Linlin; Zhang, Qian; Yang, Deyun; Hou, Yingkun; He, Xiaoting

    2018-04-01

    In this paper, a method based on non-local saturation algorithm is proposed to avoid block and halo effect for single image dehazing with dark channel prior. First we convert original image from RGB color space into HSV color space with the idea of non-local method. Image saturation is weighted equally by the size of fixed window according to image resolution. Second we utilize the saturation to estimate the atmospheric light value and transmission rate. Then through the function of saturation and transmission, the haze-free image is obtained based on the atmospheric scattering model. Comparing the results of existing methods, our method can restore image color and enhance contrast. We guarantee the proposed method with quantitative and qualitative evaluation respectively. Experiments show the better visual effect with high efficiency.

  4. High strain rate behavior of saturated and non-saturated sandstone: implications for earthquake mechanisms.

    NASA Astrophysics Data System (ADS)

    Aben, F. M.; Doan, M. L.; Gratier, J. P.; Renard, F.

    2015-12-01

    Damage zones of active faults control their resistance to rupture and transport properties. Hence, knowing the damage's origin is crucial to shed light on the (paleo)seismic behavior of the fault. Coseismic damage in the damage zone occurs by stress-wave loading of a passing earthquake rupture tip, resulting in dynamic (high strain rate) loading and subsequent dynamic fracturing or pulverization. Recently, interest in this type of damage has increased and several experimental studies were performed on dry rock specimens to search for pulverization-controlling parameters. However, the influence of fluids in during dynamic loading needs to be constrained. Hence, we have performed compressional dynamic loading experiments on water saturated and oven dried Vosges sandstone samples using a Split Hopkinson Pressure Bar apparatus. Due to the high porosity in these rocks, close to 20%, the effect of fluids should be clear. Afterwards, microstructural analyses have been applied on thin sections. Water saturated samples reveal dynamic mechanical behavior that follows linear poro-elasticity for undrained conditions: the peak strength of the sample decreases by 30-50% and the accumulated strain increases relative to the dry samples that were tested under similar conditions. The mechanical behavior of partially saturated samples falls in between. Microstructural studies on thin section show that fractures are restricted to some quartz grains while other quartz grains remain intact, similar to co-seismically damaged sandstones observed in the field. Most deformation is accommodated by inter-granular processes, thereby appointing an important role to the cement matrix in between grains. Intra-granular fracture damage is highest for the saturated samples. The presence of pore fluids in the rocks lower the dynamic peak strength, especially since fast dynamic loading does not allow for time-dependent fluid dissipation. Thus, fluid-saturated rocks would show undrained mechanical

  5. Out of the frying pan: dietary saturated fat influences nonalcoholic fatty liver disease.

    PubMed

    Parks, Elizabeth; Yki-Järvinen, Hannele; Hawkins, Meredith

    2017-02-01

    Nonalcoholic fatty liver disease (NAFLD) is characterized by excess accumulation of fat in the liver. In some cases, NAFLD is also accompanied by insulin resistance, resulting in metabolic dysfunction. Dietary fat content probably influences both NAFLD and insulin resistance; however, the immediate effects of fat consumption have not been fully explored. In this issue of the JCI, Hernández et al. evaluated hepatic glucose and lipid metabolism in humans and mice following a single oral dose of saturated fat. This one bolus of fat resulted in a measurable increase in insulin resistance, hepatic triglycerides, and gluconeogenesis. In mice, the saturated fat bolus resulted in the induction of several NAFLD-associated genes. Together, the results of this study indicate that saturated fat intake has immediate effects on metabolic function.

  6. Densities, Viscosities and Derived Thermophysical Properties of Water-Saturated Imidazolium-Based Ionic Liquids.

    PubMed

    Martins, Mónia A R; Neves, Catarina M S S; Kurnia, Kiki A; Carvalho, Pedro J; Rocha, Marisa A A; Santos, Luís M N B F; Pinho, Simão P; Freire, Mara G

    2016-01-15

    In order to evaluate the impact of the alkyl side chain length and symmetry of the cation on the thermophysical properties of water-saturated ionic liquids (ILs), densities and viscosities as a function of temperature were measured at atmospheric pressure and in the (298.15 to 363.15) K temperature range, for systems containing two series of bis(trifluoromethylsulfonyl)imide-based compounds: the symmetric [C n C n im][NTf 2 ] (with n = 1-8 and 10) and asymmetric [C n C 1 im][NTf 2 ] (with n = 2-5, 7, 9 and 11) ILs. For water-saturated ILs, the density decreases with the increase of the alkyl side chain length while the viscosity increases with the size of the aliphatic tails. The saturation water solubility in each IL was further estimated with a reasonable agreement based on the densities of water-saturated ILs, further confirming that for the ILs investigated the volumetric mixing properties of ILs and water follow a near ideal behaviour. The water-saturated symmetric ILs generally present lower densities and viscosities than their asymmetric counterparts. From the experimental data, the isobaric thermal expansion coefficient and energy barrier were also estimated. A close correlation between the difference in the energy barrier values between the water-saturated and pure ILs and the water content in each IL was found, supporting that the decrease in the viscosity of ILs in presence of water is directly related with the decrease of the energy barrier.

  7. The distribution of saturated clusters in wetted granular materials

    NASA Astrophysics Data System (ADS)

    Li, Shuoqi; Hanaor, Dorian; Gan, Yixiang

    2017-06-01

    The hydro-mechanical behaviour of partially saturated granular materials is greatly influenced by the spatial and temporal distribution of liquid within the media. The aim of this paper is to characterise the distribution of saturated clusters in granular materials using an optical imaging method under different water drainage conditions. A saturated cluster is formed when a liquid phase fully occupies the pore space between solid grains in a localized region. The samples considered here were prepared by vibrating mono-sized glass beads to form closely packed assemblies in a rectangular container. A range of drainage conditions were applied to the specimen by tilting the container and employing different flow rates, and the liquid pressure was recorded at different positions in the experimental cell. The formation of saturated clusters during the liquid withdrawal processes is governed by three competing mechanisms arising from viscous, capillary, and gravitational forces. When the flow rate is sufficiently large and the gravity component is sufficiently small, the viscous force tends to destabilize the liquid front leading to the formation of narrow fingers of saturated material. As the water channels along these liquid fingers break, saturated clusters are formed inside the specimen. Subsequently, a spatial and temporal distribution of saturated clusters can be observed. We investigated the resulting saturated cluster distribution as a function of flow rate and gravity to achieve a fundamental understanding of the formation and evolution of such clusters in partially saturated granular materials. This study serves as a bridge between pore-scale behavior and the overall hydro-mechanical characteristics in partially saturated soils.

  8. A comparison of oxygen saturation data in inpatients with low oxygen saturation using automated continuous monitoring and intermittent manual data charting.

    PubMed

    Taenzer, Andreas H; Pyke, Joshua; Herrick, Michael D; Dodds, Thomas M; McGrath, Susan P

    2014-02-01

    The manual collection and charting of traditional vital signs data in inpatient populations have been shown to be inaccurate when compared with true physiologic values. This issue has not been examined with respect to oxygen saturation data despite the increased use of this measurement in systems designed to assess the risk of patient deterioration. Of particular note are the lack of available data examining the accuracy of oxygen saturation charting in a particularly vulnerable group of patients who have prolonged oxygen desaturations (mean SpO2 <90% over at least 15 minutes). In addition, no data are currently available that investigate the often suspected "wake up" effect, resulting from a nurse entering a patient's room to obtain vital signs. In this study, we compared oxygen saturation data recorded manually with data collected by an automated continuous monitoring system in 16 inpatients considered to be at high risk for deterioration (average SpO2 values <90% collected by the automated system in a 15-minute interval before a manual charting event). Data were sampled from the automatic collection system from 2 periods: over a 15-minute period that ended 5 minutes before the time of the manual data collection and charting, and over a 5-minute range before and after the time of the manual data collection and charting. Average saturations from prolonged baseline desaturations (15-minute period) were compared with both the manual and automated data sampled at the time of the nurse's visit to analyze for systematic change and to investigate the presence of an arousal effect. The manually charted data were higher than those recorded by the automated system. Manually recorded data were on average 6.5% (confidence interval, 4.0%-9.0%) higher in oxygen saturation. No significant arousal effect resulting from the nurse's visit to the patient's room was detected. In a cohort of patients with prolonged desaturations, manual recordings of SpO2 did not reflect physiologic

  9. Solid state saturable absorbers for Q-switching at 1 and 1.3μm: investigation and modeling

    NASA Astrophysics Data System (ADS)

    Šulc, Jan; Arátor, Pavel; Jelínková, Helena; Nejezchleb, Karel; Škoda, Václav; Kokta, Milan R.

    2008-02-01

    Yttrium and Lutecium garnets (YAG and LuAG) doped by Chromium or Vanadium ions (Cr 4+ or V 3+) were investigated as saturable absorbers potentially useful for passive Q-switching at wavelengths 1 μm and/or 1.3 μm. For comparison also color center saturable absorber LiF:F - II and Cobalt doped spinel (Co:MALO) were studied. Firstly, low power absorption spectra were recorded for all samples. Next, absorbers transmission in dependence on incident energy/power density was measured using the z-scan method. Crystals Cr:YAG, Cr:LuAG, V:YAG, and LiF:F - II were tested at wavelength 1064 nm. Therefore Alexandrite laser pumped Q-switched Nd:YAG laser was used as a radiation source (pulse length 6.9 ns, energy up to 1.5 mJ). Crystals V:YAG, V:LuAG, and Co:MALO were tested at wavelength 1338 nm. So diode pumped Nd:YAG/V:YAG microchip laser was used as a radiation source (pulse length 6.2 ns, energy up to 0.1 mJ). Using measured data fitting, and by their comparison with numerical model of a "thick" saturable absorber transmission for Q-switched Gaussian laser beam, following parameters were estimated: saturable absorber initial transmission T 0, saturation energy density w s, ground state absorption cross-section σ GSA, saturated absorber transmission T s, excited state absorption cross-section σ ESA, ratio γ = σ GSA/σ ESA, and absorbing ions density. For V:YAG crystal, a polarization dependence of T s was also investigated. With the help of rate equation numerical solution, an impact of saturable absorber parameters on generated Q-switched pulse properties was studied in plane wave approximation. Selected saturable absorbers were also investigated as a Q-switch and results were compared with the model.

  10. Effects of a Saturated Fat and High Cholesterol Diet on Memory and Hippocampal Morphology in the Middle-Aged Rat

    PubMed Central

    Granholm, Ann-Charlotte; Bimonte-Nelson, Heather A.; Moore, Alfred B.; Nelson, Matthew E.; Freeman, Linnea R.; Sambamurti, Kumar

    2009-01-01

    Diets rich in cholesterol and/or saturated fats have been shown to be detrimental to cognitive performance. Therefore, we fed a cholesterol (2%) and saturated fat (hydrogenated coconut oil, Sat Fat 10%) diet to 16-month old rats for 8 weeks to explore the effects on the working memory performance of middle-aged rats. Lipid profiles revealed elevated plasma triglycerides, total cholesterol, HDL, and LDL for the Sat-Fat group as compared to an iso-caloric control diet (12% soybean oil). Weight gain and food consumption were similar in both groups. Sat-Fat treated rats committed more working memory errors in the water radial arm maze, especially at higher memory loads. Cholesterol, amyloid-β peptide of 40 (Aβ40) or 42 (Aβ42) residues, and nerve growth factor in cortical regions was unaffected, but hippocampal Map-2 staining was reduced in rats fed a Sat-Fat diet, indicating a loss of dendritic integrity. Map-2 reduction correlated with memory errors. Microglial activation, indicating inflammation and/or gliosis, was also observed in the hippocampus of Sat-Fat fed rats. These data suggest that saturated fat, hydrogenated fat and cholesterol can profoundly impair memory and hippocampal morphology. PMID:18560126

  11. A Temperature-Based Gain Calibration Technique for Precision Radiometry

    NASA Astrophysics Data System (ADS)

    Parashare, Chaitali Ravindra

    Detecting extremely weak signals in radio astronomy demands high sensitivity and stability of the receivers. The gain of a typical radio astronomy receiver is extremely large, and therefore, even very small gain instabilities can dominate the received noise power and degrade the instrument sensitivity. Hence, receiver stabilization is of prime importance. Gain variations occur mainly due to ambient temperature fluctuations. We take a new approach to receiver stabilization, which makes use of active temperature monitoring and corrects for the gain fluctuations in post processing. This approach is purely passive and does not include noise injection or switching for calibration. This system is to be used for the Precision Array for Probing the Epoch of Reionization (PAPER), which is being developed to detect the extremely faint neutral hydrogen (HI) signature of the Epoch of Reionization (EoR). The epoch of reionization refers to the period in the history of the Universe when the first stars and galaxies started to form. When there are N antenna elements in the case of a large scale array, all elements may not be subjected to the same environmental conditions at a given time. Hence, we expect to mitigate the gain variations by monitoring the physical temperature of each element of the array. This stabilization approach will also benefit experiments like EDGES (Experiment to Detect the Global EoR Signature) and DARE (Dark Ages Radio Explorer), which involve a direct measurement of the global 21 cm signal using a single antenna element and hence, require an extremely stable system. This dissertation focuses on the development and evaluation of a calibration technique that compensates for the gain variations caused due to temperature fluctuations of the RF components. It carefully examines the temperature dependence of the components in the receiver chain. The results from the first-order field instrument, called a Gainometer (GoM), highlight the issue with the cable

  12. Comparison of Minimally and More Invasive Methods of Determining Mixed Venous Oxygen Saturation.

    PubMed

    Smit, Marli; Levin, Andrew I; Coetzee, Johan F

    2016-04-01

    To investigate the accuracy of a minimally invasive, 2-step, lookup method for determining mixed venous oxygen saturation compared with conventional techniques. Single-center, prospective, nonrandomized, pilot study. Tertiary care hospital, university setting. Thirteen elective cardiac and vascular surgery patients. All participants received intra-arterial and pulmonary artery catheters. Minimally invasive oxygen consumption and cardiac output were measured using a metabolic module and lithium-calibrated arterial waveform analysis (LiDCO; LiDCO, London), respectively. For the minimally invasive method, Step 1 involved these minimally invasive measurements, and arterial oxygen content was entered into the Fick equation to calculate mixed venous oxygen content. Step 2 used an oxyhemoglobin curve spreadsheet to look up mixed venous oxygen saturation from the calculated mixed venous oxygen content. The conventional "invasive" technique used pulmonary artery intermittent thermodilution cardiac output, direct sampling of mixed venous and arterial blood, and the "reverse-Fick" method of calculating oxygen consumption. LiDCO overestimated thermodilution cardiac output by 26%. Pulmonary artery catheter-derived oxygen consumption underestimated metabolic module measurements by 27%. Mixed venous oxygen saturation differed between techniques; the calculated values underestimated the direct measurements by between 12% to 26.3%, this difference being statistically significant. The magnitude of the differences between the minimally invasive and invasive techniques was too great for the former to act as a surrogate of the latter and could adversely affect clinical decision making. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Gold nanorods saturable absorber for Q-switched Nd:GAGG lasers at 1 μm

    NASA Astrophysics Data System (ADS)

    Feng, Chao; Liu, Mingyi; Li, Yanbin; Gao, Xuejian; Kang, Zhe; Qin, Guanshi; Jia, Zhitai; Tao, Xutang; Song, Teng; Dun, Yangyang; Bai, Fen; Li, Ping; Wang, Qingpu; Fang, Jiaxiong

    2017-03-01

    A gold nanorod saturable absorber has been synthesized by the seed-mediated growth method characterized in detail. The absorption peak wavelength was 1080 nm, and the modulation depth was measured to be 9%. The performance of its Q-switched Nd:GAGG lasers at 1061 and 1106 nm has been systematically investigated, respectively. The corresponding shortest pulsewidths were 250 and 480 ns. Our experiment results proved that the GNR-SA is a promising saturable absorber for nanosecond bulk lasers.

  14. Double-differential recording and AGC using microcontrolled variable gain ASIC.

    PubMed

    Rieger, Robert; Deng, Shin-Liang

    2013-01-01

    Low-power wearable recording of biopotentials requires acquisition front-ends with high common-mode rejection for interference suppression and adjustable gain to provide an optimum signal range to a cascading analogue-to-digital stage. A microcontroller operated double-differential (DD) recording setup and automatic gain control circuit (AGC) are discussed which reject common-mode interference and provide tunable gain, thus compensating for imbalance and variation in electrode interface impedance. Custom-designed variable gain amplifiers (ASIC) are used as part of the recording setup. The circuit gain and balance is set by the timing of microcontroller generated clock signals. Measured results are presented which confirm that improved common-mode rejection is achieved compared to a single differential amplifier in the presence of input network imbalance. Practical measured examples further validate gain control suitable for biopotential recording and power-line rejection for wearable ECG and EMG recording. The prototype front-end consumes 318 μW including amplifiers and microcontroller.

  15. Effects of water saturation on P-wave propagation in fractured coals: An experimental perspective

    NASA Astrophysics Data System (ADS)

    Liu, Jie; Liu, Dameng; Cai, Yidong; Gan, Quan; Yao, Yanbin

    2017-09-01

    Internal structure of coalbed methane (CBM) reservoirs can be evaluated through ultrasonic measurements. The compressional wave that propagates in a fractured coal reservoir may indicate the internal coal structure and fluid characteristics. The P-wave propagation was proposed to study the relations between petrophysical parameters (including water saturation, fractures, porosity and permeability) of coals and the P-wave velocity (Vp), using a KON-NM-4A ultrasonic velocity meter. In this study, the relations between Vps and water saturations were established: Type I is mainly controlled by capillary of developed seepage pores. The controlling factors on Type II and Type III are internal homogeneity of pores/fractures and developed micro-fractures, respectively. Micro-fractures density linearly correlates with the Vp due to the fracture volume and dispersion of P-wave; and micro-fractures of types C and D have a priority in Vp. For dry coals, no clear relation exists between porosity, permeability and the Vp. However, as for water-saturated coals, the correlation coefficients of porosity, permeability and Vp are slightly improved. The Vp of saturated coals could be predicted with the equation of Vp-saturated = 1.4952Vp-dry-26.742 m/s. The relation between petrophysical parameters of coals and Vp under various water saturations can be used to evaluate the internal structure in fractured coals. Therefore, these relations have significant implications for coalbed methane (CBM) exploration.

  16. Scintillation probe with photomultiplier tube saturation indicator

    DOEpatents

    Ruch, Jeffrey F.; Urban, David J.

    1996-01-01

    A photomultiplier tube saturation indicator is formed by supplying a supplemental light source, typically an light emitting diode (LED), adjacent to the photomultiplier tube. A switch allows the light source to be activated. The light is forwarded to the photomultiplier tube by an optical fiber. If the probe is properly light tight, then a meter attached to the indicator will register the light from the LED. If the probe is no longer light tight, and the saturation indicator is saturated, no signal will be registered when the LED is activated.

  17. Dissolved oxygen saturation controls PAH biodegradation in freshwater estuary sediments.

    PubMed

    Boyd, T J; Montgomery, M T; Steele, J K; Pohlman, J W; Reatherford, S R; Spargo, B J; Smith, D C

    2005-02-01

    Polycyclic aromatic hydrocarbons (PAHs) are common contaminants in terrestrial and aquatic environments and can represent a significant constituent of the carbon pool in coastal sediments. We report here the results of an 18-month seasonal study of PAH biodegradation and heterotrophic bacterial production and their controlling biogeochemical factors from 186 sediment samples taken in a tidally influenced freshwater estuary. For each sampling event, measurements were averaged from 25-45 stations covering approximately 250 km(2). There was a clear relationship between bacterial production and ambient temperature, but none between production and bottom water dissolved oxygen (DO) % saturation or PAH concentrations. In contrast with other studies, we found no effect of temperature on the biodegradation of naphthalene, phenanthrene, or fluoranthene. PAH mineralization correlated with bottom water DO saturation above 70% (r(2) > 0.99). These results suggest that the proportional utilization of PAH carbon to natural organic carbon is as much as three orders of magnitude higher during cooler months, when water temperatures are lower and DO % saturation is higher. Infusion of cooler, well-oxygenated water to the water column overlying contaminated sediments during the summer months may stimulate PAH metabolism preferentially over non-PAH organic matter.

  18. Competence with Fractions Predicts Gains in Mathematics Achievement

    PubMed Central

    Bailey, Drew H.; Hoard, Mary K.; Nugent, Lara; Geary, David C.

    2012-01-01

    Competence with fractions predicts later mathematics achievement, but the co-developmental pattern between fractions knowledge and mathematics achievement is not well understood. We assessed this co-development through examination of the cross-lagged relation between a measure of conceptual knowledge of fractions and mathematics achievement in sixth and seventh grade (n = 212). The cross-lagged effects indicated that performance on the sixth grade fractions concepts measure predicted one year gains in mathematics achievement (β = .14, p<.01), controlling for the central executive component of working memory and intelligence, but sixth grade mathematics achievement did not predict gains on the fractions concepts measure (β = .03, p>.50). In a follow-up assessment, we demonstrated that measures of fluency with computational fractions significantly predicted seventh grade mathematics achievement above and beyond the influence of fluency in computational whole number arithmetic, performance on number fluency and number line tasks, and central executive span and intelligence. Results provide empirical support for the hypothesis that competence with fractions underlies, in part, subsequent gains in mathematics achievement. PMID:22832199

  19. Competence with fractions predicts gains in mathematics achievement.

    PubMed

    Bailey, Drew H; Hoard, Mary K; Nugent, Lara; Geary, David C

    2012-11-01

    Competence with fractions predicts later mathematics achievement, but the codevelopmental pattern between fractions knowledge and mathematics achievement is not well understood. We assessed this codevelopment through examination of the cross-lagged relation between a measure of conceptual knowledge of fractions and mathematics achievement in sixth and seventh grades (N=212). The cross-lagged effects indicated that performance on the sixth grade fractions concepts measure predicted 1-year gains in mathematics achievement (ß=.14, p<.01), controlling for the central executive component of working memory and intelligence, but sixth grade mathematics achievement did not predict gains on the fractions concepts measure (ß=.03, p>.50). In a follow-up assessment, we demonstrated that measures of fluency with computational fractions significantly predicted seventh grade mathematics achievement above and beyond the influence of fluency in computational whole number arithmetic, performance on number fluency and number line tasks, central executive span, and intelligence. Results provide empirical support for the hypothesis that competence with fractions underlies, in part, subsequent gains in mathematics achievement. Copyright © 2012 Elsevier Inc. All rights reserved.

  20. Passively mode-locked Yb fiber laser with PbSe colloidal quantum dots as saturable absorber.

    PubMed

    Wei, Kaihua; Fan, Shanhui; Chen, Qingguang; Lai, Xiaomin

    2017-10-16

    A passively mode-locked Yb fiber laser using PbSe colloidal quantum dots (CQDs) as saturable absorber (SA) is experimentally demonstrated. An all-fiber experimental scheme was designed to understand the SA property of PbSe CQDs. The non-saturable loss, modulation depth, and saturable intensity of SA measured were 23%, 7%, and 12 MW/cm 2 , respectively. The PbSe CQDs were sandwiched in a fiber connector, which was further inserted into the Yb fiber laser for mode-locking. As the pump power up to 110 mW, the self-starting mode-locking pulses were observed. Under the pump power of 285 mW, a maximum average laser power with fundamental mode-locking operation was obtained to be 21.3 mW. In this situation, the pulse full width at half maximum (FWHM), pulse repetition rate, and spectral FWHM were measured to be 70 ps, 8.3 MHz, and 4.5 nm, respectively.

  1. Explicit use of the Biot coefficient in predicting shear-wave velocity of water-saturated sediments

    USGS Publications Warehouse

    Lee, M.W.

    2006-01-01

    Predicting the shear-wave (S-wave) velocity is important in seismic modelling, amplitude analysis with offset, and other exploration and engineering applications. Under the low-frequency approximation, the classical Biot-Gassmann theory relates the Biot coefficient to the bulk modulus of water-saturated sediments. If the Biot coefficient under in situ conditions can be estimated, the shear modulus or the S-wave velocity can be calculated. The Biot coefficient derived from the compressional-wave (P-wave) velocity of water-saturated sediments often differs from and is less than that estimated from the S-wave velocity, owing to the interactions between the pore fluid and the grain contacts. By correcting the Biot coefficients derived from P-wave velocities of water-saturated sediments measured at various differential pressures, an accurate method of predicting S-wave velocities is proposed. Numerical results indicate that the predicted S-wave velocities for consolidated and unconsolidated sediments agreewell with measured velocities. ?? 2006 European Association of Geoscientists & Engineers.

  2. Thermal conductivity of water-saturated rocks from the KTB pilot hole at temperatures of 25 to 300°C

    USGS Publications Warehouse

    Pribnow, D.; Williams, C.F.; Sass, J.H.; Keating, R.

    1996-01-01

    The conductivitites of selected gneiss (two) and amphibolite (one) core samples have been measured under conditions of elevated temperature and pressure with a needle-probe. Water-saturated thermal conductivity measurements spanning temperatures from 25 to 300??C and hydrostatic pressures of 0.1 and 34 MPa confirm the general decrease in conductivity with increasing temperature but deviate significantly from results reported from measurements on dry samples over the same temperature range. The thermal conductivity of water-saturated amphibolite decreases with temperature at a rate approximately 40% less than the rate for dry amphibolite, and the conductivity of water-saturated gneiss decreases at a rate approximately 20% less than the rate for dry gneiss. The available evidence points to thermal cracking as the primary cause of the more rapid decrease in dry thermal conductivity with temperature. The effects of thermal cracking were also observed in the water-saturated samples but resulted in a net decrease in room-temperature conductivity of less than 3%. These results highlight the importance of duplicating in-situ conditions when determining thermal conductivity for the deep crust.

  3. Spectral gain measurements of quantum confined emitters, and design and fabrication of intersubband quantum box laser structures

    NASA Astrophysics Data System (ADS)

    Tsvid, Gene

    Semiconductor laser active regions are commonly characterized by photo- and electro-luminescence (PL, EL) and cavity length analysis. However quantitative spectral information is not readily extracted from PL and EL data and comparison of different active region materials can be difficult. More quantifiable spectral information is contained in the optical gain spectra. This work reports on spectral gain studies, using multi-segmented interband devices, of InGaAs quantum well and quantum dot active regions grown by metalorganic chemical vapor deposition (MOCVD). Using the fundamental connection between gain and spontaneous emission spectra, the spontaneous radiative current and spontaneous radiative efficiency is evaluated for these active regions. The spectral gain and spontaneous radiative efficiency measurements of 980 nm emitting InGaAs quantum well (QW) material provides a benchmark comparison to previous results obtained on highly-strained, 1200 nm emitting InGaAs QW material. These studies provide insight into carrier recombination and the role of the current injection efficiency in InGaAs QW lasers. The spectral gain of self-assembled MOCVD grown InGaAs quantum dots (QD) active regions are also investigated, allowing for comparison to InGaAs QW material. The second part of my talk will cover intersubband-transition QW and quantum-box (QB) lasers. Quantum cascade (QC) lasers have emerged as compact and technologically important light sources in the mid-infrared (IR) and far-IR wavelength ranges infringing on the near-IR and terahertz spectral regions respectively. However, the overall power conversion efficiency, so-called wallplug efficiency, of the best QC lasers, emitting around 5 microns, is ˜9% in CW operation and very unlikely to exceed 15%. In order to dramatically improve the wallplug efficiency of mid-IR lasers (i.e., to about 50%), intersubband QB (IQB) lasers have been proposed. The basic idea, the optimal design and the progress towards the

  4. Moderators of the mediated effect of intentions, planning, and saturated-fat intake in obese individuals.

    PubMed

    Soureti, Anastasia; Hurling, Robert; van Mechelen, Willem; Cobain, Mark; ChinAPaw, Mai

    2012-05-01

    The present study aimed to advance our understanding of health-related theory, that is, the alleged intention-behavior gap in an obese population. It examined the mediating effects of planning on the intention-behavior relationship and the moderated mediation effects of age, self-efficacy and intentions within this relationship. The study was conducted over a five-week period. Complete data from 571 obese participants were analyzed. The moderated mediation hypothesis was conducted using multiple-regression analysis. To test our theoretical model, intentions (Week 2), action self-efficacy (Week 2), maintenance self-efficacy (Week 5), planning (Week 5), and saturated-fat intake (Weeks 1 and 5) were measured by self-report. As hypothesized, planning mediated the intention-behavior relationship for perceived (two-item scale) and percentage-saturated-fat intake (measured by a food frequency questionnaire). Age, self-efficacy, and intention acted as moderators in the above mediation analysis. In specific, younger individuals, those with stronger intention, and people with higher levels of maintenance self-efficacy at higher levels of planning showed greater reductions in their perceived saturated-fat intake. For successful behavior change, knowledge of its mediators and moderators is needed. Future interventions targeting planning to change saturated-fat intake should be guided by people's intentions, age, and self-efficacy levels.

  5. Water saturation effects on elastic wave attenuation in porous rocks with aligned fractures

    NASA Astrophysics Data System (ADS)

    Amalokwu, Kelvin; Best, Angus I.; Sothcott, Jeremy; Chapman, Mark; Minshull, Tim; Li, Xiang-Yang

    2014-05-01

    Elastic wave attenuation anisotropy in porous rocks with aligned fractures is of interest to seismic remote sensing of the Earth's structure and to hydrocarbon reservoir characterization in particular. We investigated the effect of partial water saturation on attenuation in fractured rocks in the laboratory by conducting ultrasonic pulse-echo measurements on synthetic, silica-cemented, sandstones with aligned penny-shaped voids (fracture density of 0.0298 ± 0.0077), chosen to simulate the effect of natural fractures in the Earth according to theoretical models. Our results show, for the first time, contrasting variations in the attenuation (Q-1) of P and S waves with water saturation in samples with and without fractures. The observed Qs/Qp ratios are indicative of saturation state and the presence or absence of fractures, offering an important new possibility for remote fluid detection and characterization.

  6. Saturation Dip Measurements of High-J Transitions in the v_1+v_3 Band of C_2H_2: Absolute Frequencies and Self-Broadening

    NASA Astrophysics Data System (ADS)

    Sears, Trevor; Twagirayezu, Sylvestre; Hall, Gregory

    2017-06-01

    Saturation dip spectra of acetylene in the v_1 + v_3 band have been obtained for rotational lines with J = 31-37 inclusive, using a diode laser referenced to a frequency comb. The estimated accuracy and precision of the measurements is better than 10 kHz in 194 THz. Data were obtained as a function of sample pressure to investigate the broadening of the saturation features. The observed line shapes are well modeled by convolution of a fixed Gaussian transit-time and varying Lorentzian lifetime broadening, i.e. a Voigt-type profile. The lines exhibit a significantly larger collisional (lifetime) broadening than has been measured in conventional Doppler and pressure-broadened samples at ambient temperatures. The figure shows the fitted Lorentzian width versus sample pressure for P(31). The slope of this plot gives the pressure broadening coefficient, γ_{self} = 9.35(13) MHz/mbar. For comparison, the coefficient derived from conventional Doppler and pressure broadened spectra for this transition is 2.7 MHz/mbar. The sub-Doppler broadening coefficients are all significantly larger than the conventionally measured ones, due to the increased importance of velocity-changing collisions. The measurements therefore give information on the balance between hard phase- or state-changing and large cross-section velocity-changing collisions. Acknowledgments: Work at Brookhaven National Laboratory was carried out under Contract No. DE-SC0012704 with the U.S. Department of Energy, Office of Science, and supported by its Division of Chemical Sciences, Geosciences and Biosciences within the Office of Basic Energy Sciences. J. Molec. Spectrosc. 209, 216-227 (2001) and J. Quant. Spectrosc. Rad. Transf. 76, 237-267 (2003)

  7. Experimental study and theoretical interpretation of saturation effect on ultrasonic velocity in tight sandstones under different pressure conditions

    NASA Astrophysics Data System (ADS)

    Li, Dongqing; Wei, Jianxin; Di, Bangrang; Ding, Pinbo; Huang, Shiqi; Shuai, Da

    2018-03-01

    Understanding the influence of lithology, porosity, permeability, pore structure, fluid content and fluid distribution on the elastic wave properties of porous rocks is of great significance for seismic exploration. However, unlike conventional sandstones, the petrophysical characteristics of tight sandstones are more complex and less understood. To address this problem, we measured ultrasonic velocity in partially saturated tight sandstones under different effective pressures. A new model is proposed, combining the Mavko-Jizba-Gurevich relations and the White model. The proposed model can satisfactorily simulate and explain the saturation dependence and pressure dependence of velocity in tight sandstones. Under low effective pressure, the relationship of P-wave velocity to saturation is pre-dominantly attributed to local (pore scale) fluid flow and inhomogeneous pore-fluid distribution (large scale). At higher effective pressure, local fluid flow gradually decreases, and P-wave velocity gradually shifts from uniform saturation towards patchy saturation. We also find that shear modulus is more sensitive to saturation at low effective pressures. The new model includes wetting ratio, an adjustable parameter that is closely related to the relationship between shear modulus and saturation.

  8. Transitions of stationary to pulsating solutions in the complex cubic-quintic Ginzburg-Landau equation under the influence of nonlinear gain and higher-order effects

    NASA Astrophysics Data System (ADS)

    Uzunov, Ivan M.; Georgiev, Zhivko D.; Arabadzhiev, Todor N.

    2018-05-01

    In this paper we study the transitions of stationary to pulsating solutions in the complex cubic-quintic Ginzburg-Landau equation (CCQGLE) under the influence of nonlinear gain, its saturation, and higher-order effects: self-steepening, third-order of dispersion, and intrapulse Raman scattering in the anomalous dispersion region. The variation method and the method of moments are applied in order to obtain the dynamic models with finite degrees of freedom for the description of stationary and pulsating solutions. Having applied the first model and its bifurcation analysis we have discovered the existence of families of subcritical Poincaré-Andronov-Hopf bifurcations due to the intrapulse Raman scattering, as well as some small nonlinear gain and the saturation of the nonlinear gain. A phenomenon of nonlinear stability has been studied and it has been shown that long living pulsating solutions with relatively small fluctuations of amplitude and frequencies exist at the bifurcation point. The numerical analysis of the second model has revealed the existence of Poincaré-Andronov-Hopf bifurcations of Raman dissipative soliton under the influence of the self-steepening effect and large nonlinear gain. All our theoretical predictions have been confirmed by the direct numerical solution of the full perturbed CCQGLE. The detailed comparison between the results obtained by both dynamic models and the direct numerical solution of the perturbed CCQGLE has proved the applicability of the proposed models in the investigation of the solutions of the perturbed CCQGLE.

  9. Characterization of vector stimulated Brillouin scattering gain over wide power range

    NASA Astrophysics Data System (ADS)

    Li, Yongqian; An, Qi; Li, Xiaojuan; Zhang, Lixin

    2017-07-01

    The wide range power dependence of vector stimulated Brillouin scattering (SBS) gain is theoretically and experimentally characterized by a mathematical model and measurement system based on the heterodyne pump-Stokes technique. The results show that SBS phase shift is much more tolerant of pump depletion than SBS amplitude gain, hence the performance improvement of the SBS-based distributed sensing system can be achieved by measuring the SBS phase shift spectrum. The discussion about the measured Brillouin spectrum width versus pump power at different Stokes powers reveals that the occurrence of nonnegligible pump depletion imposes a restriction on the determination of pump and Stokes powers in an SBS amplitude gain-based application system. The amplitude gain and phase shift of vector SBS gain increase with the increase of pump power and decrease with the increase of Stokes power, which indicates that the design strategy with smaller Stokes power and higher pump power is reasonable. And the measured center-asymmetry of the SBS phase shift spectrum is mainly caused by the nonlinear refractive index, which puts a limitation on the maximum pump power. The obtained results can provide a useful basis for the optimal design of practical vector SBS gain-based application systems.

  10. Intake of Sweets, Snacks and Soft Drinks Predicts Weight Gain in Obese Pregnant Women: Detailed Analysis of the Results of a Randomised Controlled Trial

    PubMed Central

    Renault, Kristina M.; Carlsen, Emma M.; Nørgaard, Kirsten; Nilas, Lisbeth; Pryds, Ole; Secher, Niels J.; Olsen, Sjurdur F.; Halldorsson, Thorhallur I.

    2015-01-01

    Background Lifestyle interventions targeting obese pregnant women often result in modest reduction in gestational weight gain, pregnancy complications and related risk factors. Examining adherence to the intervention can, however, provide valuable information on the importance of the different factors targeted. Objective To evaluate improvements and relevance of different dietary factors targeted with respect to gestational weight gain in a 3-arm Randomised Controlled Trial (n=342) among obese pregnant women with BMI≥30 kg/m2. Methods Randomisation 1:1:1 to either hypocaloric Mediterranean type of diet and physical activity intervention (D+PA); physical activity intervention alone (PA); or control (C). Diet was assessed at baseline (weeks 11–14) and endpoint (weeks 36–37) using a validated food frequency questionnaire. Results During the intervention women in the D+PA group significantly lowered their intakes of added sugars and saturated fat and increased their protein intake by ~1% of total energy compared to controls. Of these dietary variables only intakes of added sugar appeared to be related to GWG, while no association was observed for saturated fat or protein. Further analyses revealed that foods that contributed to intake of added sugars, including sweets, snacks, cakes, and soft drinks were strongly associated with weight gain, with women consuming sweets ≥2/day having 5.4 kg (95% CI 2.1-8.7) greater weight gain than those with a low (<1wk) intake. The results for soft drinks were more conflicting, as women with high weight gain tended to favour artificially sweetened soft drinks. Conclusion In our sample of obese pregnant women, craving for sweets, snacks, and soft drinks strongly predicts GWG. Emphasis on reducing intakes of these foods may be more relevant for limiting gestational weight gain than encouraging strict compliance to more specific diets. Trial Registration ClinicalTrials.gov NCT01345149 PMID:26192183

  11. Intake of Sweets, Snacks and Soft Drinks Predicts Weight Gain in Obese Pregnant Women: Detailed Analysis of the Results of a Randomised Controlled Trial.

    PubMed

    Renault, Kristina M; Carlsen, Emma M; Nørgaard, Kirsten; Nilas, Lisbeth; Pryds, Ole; Secher, Niels J; Olsen, Sjurdur F; Halldorsson, Thorhallur I

    2015-01-01

    Lifestyle interventions targeting obese pregnant women often result in modest reduction in gestational weight gain, pregnancy complications and related risk factors. Examining adherence to the intervention can, however, provide valuable information on the importance of the different factors targeted. To evaluate improvements and relevance of different dietary factors targeted with respect to gestational weight gain in a 3-arm Randomised Controlled Trial (n=342) among obese pregnant women with BMI≥30 kg/m2. Randomisation 1:1:1 to either hypocaloric Mediterranean type of diet and physical activity intervention (D+PA); physical activity intervention alone (PA); or control (C). Diet was assessed at baseline (weeks 11-14) and endpoint (weeks 36-37) using a validated food frequency questionnaire. During the intervention women in the D+PA group significantly lowered their intakes of added sugars and saturated fat and increased their protein intake by ~1% of total energy compared to controls. Of these dietary variables only intakes of added sugar appeared to be related to GWG, while no association was observed for saturated fat or protein. Further analyses revealed that foods that contributed to intake of added sugars, including sweets, snacks, cakes, and soft drinks were strongly associated with weight gain, with women consuming sweets ≥2/day having 5.4 kg (95% CI 2.1-8.7) greater weight gain than those with a low (<1wk) intake. The results for soft drinks were more conflicting, as women with high weight gain tended to favour artificially sweetened soft drinks. In our sample of obese pregnant women, craving for sweets, snacks, and soft drinks strongly predicts GWG. Emphasis on reducing intakes of these foods may be more relevant for limiting gestational weight gain than encouraging strict compliance to more specific diets. ClinicalTrials.gov NCT01345149.

  12. Direct-conversion flat-panel imager with avalanche gain: Feasibility investigation for HARP-AMFPI

    PubMed Central

    Wronski, M. M.; Rowlands, J. A.

    2008-01-01

    The authors are investigating the concept of a direct-conversion flat-panel imager with avalanche gain for low-dose x-ray imaging. It consists of an amorphous selenium (a-Se) photoconductor partitioned into a thick drift region for x-ray-to-charge conversion and a relatively thin region called high-gain avalanche rushing photoconductor (HARP) in which the charge undergoes avalanche multiplication. An active matrix of thin film transistors is used to read out the electronic image. The authors call the proposed imager HARP active matrix flat panel imager (HARP-AMFPI). The key advantages of HARP-AMFPI are its high spatial resolution, owing to the direct-conversion a-Se layer, and its programmable avalanche gain, which can be enabled during low dose fluoroscopy to overcome electronic noise and disabled during high dose radiography to prevent saturation of the detector elements. This article investigates key design considerations for HARP-AMFPI. The effects of electronic noise on the imaging performance of HARP-AMFPI were modeled theoretically and system parameters were optimized for radiography and fluoroscopy. The following imager properties were determined as a function of avalanche gain: (1) the spatial frequency dependent detective quantum efficiency; (2) fill factor; (3) dynamic range and linearity; and (4) gain nonuniformities resulting from electric field strength nonuniformities. The authors results showed that avalanche gains of 5 and 20 enable x-ray quantum noise limited performance throughout the entire exposure range in radiography and fluoroscopy, respectively. It was shown that HARP-AMFPI can provide the required gain while maintaining a 100% effective fill factor and a piecewise dynamic range over five orders of magnitude (10−7–10−2 R∕frame). The authors have also shown that imaging performance is not significantly affected by the following: electric field strength nonuniformities, avalanche noise for x-ray energies above 1 keV and direct

  13. The influence of systemic hemodynamics and oxygen transport on cerebral oxygen saturation in neonates after the Norwood procedure.

    PubMed

    Li, Jia; Zhang, Gencheng; Holtby, Helen; Guerguerian, Anne-Marie; Cai, Sally; Humpl, Tilman; Caldarone, Christopher A; Redington, Andrew N; Van Arsdell, Glen S

    2008-01-01

    Ischemic brain injury is an important morbidity in neonates after the Norwood procedure. Its relationship to systemic hemodynamic oxygen transport is poorly understood. Sixteen neonates undergoing the Norwood procedure were studied. Continuous cerebral oxygen saturation was measured by near-infrared spectroscopy. Continuous oxygen consumption was measured by respiratory mass spectrometry. Pulmonary and systemic blood flow, systemic vascular resistance, oxygen delivery, and oxygen extraction ratio were derived with measurements of arterial, and superior vena cava and pulmonary venous gases and pressures at 2- to 4-hour intervals during the first 72 hours in the intensive care unit. Mean cerebral oxygen saturation was 66% +/- 12% before the operation, reduced to 51% +/- 13% on arrival in the intensive care unit, and remained low during the first 8 hours; it increased to 56% +/- 9% at 72 hours, still significantly lower than the preoperative level (P < .05). Postoperatively, cerebral oxygen saturation was closely and positively correlated with systemic arterial pressure, arterial oxygen saturation, and arterial oxygen tension and negatively with oxygen extraction ratio (P < .0001 for all). Cerebral oxygen saturation was moderately and positively correlated with systemic blood flow and oxygen delivery (P < .0001 for both). It was weakly and positively correlated with pulmonary blood flow (P = .001) and hemoglobin (P = .02) and negatively correlated with systemic vascular resistance (P = .003). It was not correlated with oxygen consumption (P > .05). Cerebral oxygen saturation decreased significantly in neonates during the early postoperative period after the Norwood procedure and was significantly influenced by systemic hemodynamic and metabolic events. As such, hemodynamic interventions to modify systemic oxygen transport may provide further opportunities to reduce the risk of cerebral ischemia and improve neurodevelopmental outcomes.

  14. Gain and energy storage in holmium YLF

    NASA Technical Reports Server (NTRS)

    Storm, Mark E.; Deyst, John P.

    1991-01-01

    It is demonstrated that Q-switched holmium lasers are capable of high-gain and high-energy operation at 300 K. Small-signal gain coefficients of 0.50 and 0.12/cm have been measured in YLF and YAG, respectively. Small-signal gains of 0.50/cm are comparable to those achievable in Nd:YAG and are not typical of low-gain materials. This large gain in the Ho:YLF material is made possible by operating the amplifier in the ground state depletion mode. The amplifier performance data and associated analysis presented demonstrate that efficient energy storage is possible with very high excited state ion densities of the Ho 5I7 upper laser level. This is an important result since upconversion can limit the 5I7 population. Although upconversion was still present in this experiment, it was possible to achieve efficient energy storage, demonstrating that the problem is manageable even at high excitation densities in YLF.

  15. Behavior of the Enthalpy of Adsorption in Nanoporous Materials Close to Saturation Conditions

    PubMed Central

    2017-01-01

    Many important industrial separation processes based on adsorption operate close to saturation. In this regime, the underlying adsorption processes are mostly driven by entropic forces. At equilibrium, the entropy of adsorption is closely related to the enthalpy of adsorption. Thus, studying the behavior of the enthalpy of adsorption as a function of loading is fundamental to understanding separation processes. Unfortunately, close to saturation, the enthalpy of adsorption is hard to measure experimentally and hard to compute in simulations. In simulations, the enthalpy of adsorption is usually obtained from energy/particle fluctuations in the grand-canonical ensemble, but this methodology is hampered by vanishing insertions/deletions at high loading. To investigate the fundamental behavior of the enthalpy and entropy of adsorption at high loading, we develop a simplistic model of adsorption in a channel and show that at saturation the enthalpy of adsorption diverges to large positive values due to repulsive intermolecular interactions. However, there are many systems that can avoid repulsive intermolecular interactions and hence do not show this drastic increase in enthalpy of adsorption close to saturation. We find that the conventional grand-canonical Monte Carlo method is incapable of determining the enthalpy of adsorption from energy/particle fluctuations at high loading. Here, we show that by using the continuous fractional component Monte Carlo, the enthalpy of adsorption close to saturation conditions can be reliably obtained from the energy/particle fluctuations in the grand-canonical ensemble. The best method to study properties at saturation is the NVT energy (local-) slope methodology. PMID:28521093

  16. Determination of near-saturated hydraulic conductivity by automated minidisk infiltrometer

    NASA Astrophysics Data System (ADS)

    Klipa, Vladimir; Snehota, Michal; Dohnal, Michal; Zumr, David

    2013-04-01

    Numerical models in surface and subsurface hydrology require knowledge of infiltration properties of soils for their routine use in the field of water management, environmental protection or agriculture. A new automated tension infiltration module has been designed at the Faculty of Civil Engineering, Czech Technical University in Prague to facilitate the measurements of near-saturated hydraulic conductivity. In the proposed infiltration module the amount of infiltrated water is registered via changes of buoyant force of stationary float attached to the load cell. Presented setup consists of six mini-disk infiltrometer modules held in the light aluminum frame and two Mariotte's bottles. Three infiltrometer modules connected to each Mariotte's bottle allow performing six simultaneous measurements at two different pressure heads. Infiltration modules are connected to the automatic data logging system and consist of: plastic cover with the integrated load cell and the float, reservoir tube (external diameter of 50 mm), and sintered stainless steel plate (diameter of 44.5 mm). The newly developed device was used for determination of near-saturated hydraulic conductivity of soils in experimental catchments Uhlirska (Jizera Mountains, Northern Bohemia) and Kopaninsky creek (Bohemian-Moravian Highlands). The acquired data show a good agreement with the data obtained from previous measurements.

  17. Graphene Oxide saturable absorber for generating eye-safe Q-switched fiber laser

    NASA Astrophysics Data System (ADS)

    Rosol, A. H. A.; Jusoh, Z.; Rahman, H. A.; Rusdi, M. F. M.; Harun, S. W.; Latiff, A. A.

    2017-06-01

    This paper reports the generation of Q-switched fiber laser using thulium doped fiber (TDF) as a gain medium and graphene oxide (GO) as a saturable absorber (SA). The GO powder is embedded into polyvinyl alcohol (PVA) to form an SA film based on a drop-casting technique. GO-SA film is sandwiched between two fiber connectors and tighten by FC adapter before it is incorporated into an TDF laser cavity for Q-switching pulse generation. At 344 mW pump level, a stable Q-switching regime presence at 1943 nm with a 3-dB spectral bandwidth of 9 nm. The maximum repetition rate, pulse width, and pulse energy are at 25 kHz, 4.2 µs, and 0.68 µJ, respectively. All finding results are comparable with other reported pulse fiber lasers.

  18. Correlation Between Pediatric Open Heart Surgery Outcomes and Arterial-mixed Venous Oxygen Saturation Differences.

    PubMed

    Samadi, Mahmood; Malaki, Majid; Ghaffari, Shamsi; Golshan Khalili, Roza

    2012-01-01

    Low Cardiac Output Syndrome (LCOS) contributes to postoperative morbidity and mortality. This article tries to find a predictive factor to interpret outcome after cardiac operation. In a cross-sectional study, 100 children with congenital heart disease undergoing cardiovascular surgery with cardiopulmonary bypass (CPB) without significant left-to-right shunt were selected. Arterial and central venous oxygen saturation values were measured via blood samples simultaneously obtained in 6-hr intervals for a total of 24-hr during postoperative period at hours 0, 6, 12, 18, and 24. Postoperative ventilation support (intubation period) and cardiovascular support were also obtained from the hospital records. Statistical analysis was later performed comparing the arterial-mixed venous oxygen saturation differences and durations of required ventilatory and cardiovascular support, both for the complicated and non-complicated patient groups. The data was processed with correlation Pearson and Mann-Whitney U tests in SPSS 15 software, P less than 0.05 was significant. Mortality following cardiac operation is 6% and complications may happen in 45% of the cases. The highest Arterial-mixed venous oxygen saturation difference occurred immediately post operation (up to 57%). These measures were high up to 18 hours in complicated and non-complicated groups (36% vs. 31% ; P< 0.05). This factor cannot predict prolongation of intubation period in patients (P > 0.05). Arterial-mixed venous oxygen saturation difference may be high as much as 57% or as low as 23%.These different measures, being higher up to 18 hours in complicated to non-complicated groups after 18 hours, can be related to tissue ischemia during surgery and cannot be discriminative.

  19. Concept for an off-line gain stabilisation method.

    PubMed

    Pommé, S; Sibbens, G

    2004-01-01

    Conceptual ideas are presented for an off-line gain stabilisation method for spectrometry, in particular for alpha-particle spectrometry at low count rate. The method involves list mode storage of individual energy and time stamp data pairs. The 'Stieltjes integral' of measured spectra with respect to a reference spectrum is proposed as an indicator for gain instability. 'Exponentially moving averages' of the latter show the gain shift as a function of time. With this information, the data are relocated stochastically on a point-by-point basis.

  20. Elastic anisotropy of Opalinus Clay under variable saturation and triaxial stress

    NASA Astrophysics Data System (ADS)

    Sarout, Joel; Esteban, Lionel; Delle Piane, Claudio; Maney, Bruce; Dewhurst, David N.

    2014-09-01

    A novel experimental method is introduced to estimate the Thomsen's elastic anisotropy parameters ɛ and δ of a transversely isotropic shale under variable stress and saturation conditions. The method consists in recording P-wave velocities along numerous paths on a cylindrical specimen using miniature ultrasonic transducers. Such an overdetermined set of measurements is specifically designed to reduce the uncertainty associated with the determination of Thomsen's δ parameter compared to the classical method for which a single off-axis measurement is used (usually at 45° to the specimen's axis). This method is applied to a specimen of Opalinus Clay recovered from the Mont-Terri Underground Research Laboratory in Switzerland. The specimen is first saturated with brine at low effective pressure and then subjected to an effective pressure cycle up to 40 MPa, followed by a triaxial loading up to failure. During saturation and deformation, the evolution of P-wave velocities along a maximum of 240 ray paths is monitored and Thomsen's parameters α, ɛ and δ are computed by fitting Thomsen's weak anisotropy model to the data. The values of ɛ and δ obtained at the highest confining pressures reached during the experiment are comparable with those predicted from X-ray diffraction texture analysis and modelling for Opalinus Clay reported in the literature. These models neglect the effect of soft-porosity on elastic properties, but become relevant when soft porosity is closed at high effective pressure.

  1. Saturation of the turbulent dynamo.

    PubMed

    Schober, J; Schleicher, D R G; Federrath, C; Bovino, S; Klessen, R S

    2015-08-01

    The origin of strong magnetic fields in the Universe can be explained by amplifying weak seed fields via turbulent motions on small spatial scales and subsequently transporting the magnetic energy to larger scales. This process is known as the turbulent dynamo and depends on the properties of turbulence, i.e., on the hydrodynamical Reynolds number and the compressibility of the gas, and on the magnetic diffusivity. While we know the growth rate of the magnetic energy in the linear regime, the saturation level, i.e., the ratio of magnetic energy to turbulent kinetic energy that can be reached, is not known from analytical calculations. In this paper we present a scale-dependent saturation model based on an effective turbulent resistivity which is determined by the turnover time scale of turbulent eddies and the magnetic energy density. The magnetic resistivity increases compared to the Spitzer value and the effective scale on which the magnetic energy spectrum is at its maximum moves to larger spatial scales. This process ends when the peak reaches a characteristic wave number k☆ which is determined by the critical magnetic Reynolds number. The saturation level of the dynamo also depends on the type of turbulence and differs for the limits of large and small magnetic Prandtl numbers Pm. With our model we find saturation levels between 43.8% and 1.3% for Pm≫1 and between 2.43% and 0.135% for Pm≪1, where the higher values refer to incompressible turbulence and the lower ones to highly compressible turbulence.

  2. Gain and Polarization Properties of a Large Radio Telescope from Calculation and Measurement: The John A. Galt Telescope

    NASA Astrophysics Data System (ADS)

    Du, X.; Landecker, T. L.; Robishaw, T.; Gray, A. D.; Douglas, K. A.; Wolleben, M.

    2016-11-01

    Measurement of the brightness temperature of extended radio emission demands knowledge of the gain (or aperture efficiency) of the telescope and measurement of the polarized component of the emission requires correction for the conversion of unpolarized emission from sky and ground to apparently polarized signal. Radiation properties of the John A. Galt Telescope at the Dominion Radio Astrophysical Observatory were studied through analysis and measurement in order to provide absolute calibration of a survey of polarized emission from the entire northern sky from 1280 to 1750 MHz, and to understand the polarization performance of the telescope. Electromagnetic simulation packages CST and GRASP-10 were used to compute complete radiation patterns of the telescope in all Stokes parameters, and thereby to establish gain and aperture efficiency. Aperture efficiency was also evaluated using geometrical optics and ray tracing analysis and was measured based on the known flux density of Cyg A. Measured aperture efficiency varied smoothly with frequency between values of 0.49 and 0.54; GRASP-10 yielded values 6.5% higher but with closely similar variation with frequency. Overall error across the frequency band is 3%, but values at any two frequencies are relatively correct to ˜1%. Dominant influences on aperture efficiency are the illumination taper of the feed radiation pattern and the shadowing of the reflector from the feed by the feed-support struts. A model of emission from the ground was developed based on measurements and on empirical data obtained from remote sensing of the Earth from satellite-borne telescopes. This model was convolved with the computed antenna response to estimate conversion of ground emission into spurious polarized signal. The computed spurious signal is comparable to measured values, but is not accurate enough to be used to correct observations. A simpler model, in which the ground is considered as an unpolarized emitter with a brightness

  3. Comparison of heart rate and oxygen saturation measurements from Masimo and Nellcor pulse oximeters in newly born term infants.

    PubMed

    Dawson, J A; Saraswat, A; Simionato, L; Thio, M; Kamlin, C O F; Owen, L S; Schmölzer, G M; Davis, P G

    2013-10-01

    To compare heart rate (HR) measurements from Masimo and Nellcor pulse oximeters (POs) against HR measured via a three lead electrocardiograph (ECG) (HRECG ). We also compared peripheral oxygen saturation (SpO2 ) measurements between Nellcor and Masimo oximeters. Term infants born via elective caesarean section were studied. ECG leads were placed on the infant's chest and abdomen. Masimo and Nellcor PO sensors were randomly allocated to either foot. The monitors were placed on a trolley, and data from each monitor screen captured by a video camera. HR, SpO2 measurements and signal quality were extracted. Bland-Altman analysis was used to determine agreement between HR from the ECG and each oximeter, and between SpO2 from the oximeters. We studied 44 infants of whom 4 were resuscitated. More than 8000 pairs of observations were used for each comparison of HR and SpO2. The mean difference (±2SD) between HRECG and HRN ellcor was -0.8 (±11) beats per minute (bpm); between HRECG and HRM asimo was 0.2 (±9) bpm. The mean (±2SD) difference between SpO2Masimo and SpO2Nellcor was -3 (±15)%. The Nellcor PO measured 20% higher than the Masimo PO at SpO2 <70%. Both oximeters accurately measure HR. There was good agreement between SpO2 measurements when SpO2 ≥70%. At lower SpO2 , agreement was poorer. ©2013 Foundation Acta Paediatrica. Published by John Wiley & Sons Ltd.

  4. Mixed H2/H∞ distributed robust model predictive control for polytopic uncertain systems subject to actuator saturation and missing measurements

    NASA Astrophysics Data System (ADS)

    Song, Yan; Fang, Xiaosheng; Diao, Qingda

    2016-03-01

    In this paper, we discuss the mixed H2/H∞ distributed robust model predictive control problem for polytopic uncertain systems subject to randomly occurring actuator saturation and packet loss. The global system is decomposed into several subsystems, and all the subsystems are connected by a fixed topology network, which is the definition for the packet loss among the subsystems. To better use the successfully transmitted information via Internet, both the phenomena of actuator saturation and packet loss resulting from the limitation of the communication bandwidth are taken into consideration. A novel distributed controller model is established to account for the actuator saturation and packet loss in a unified representation by using two sets of Bernoulli distributed white sequences with known conditional probabilities. With the nonlinear feedback control law represented by the convex hull of a group of linear feedback laws, the distributed controllers for subsystems are obtained by solving an linear matrix inequality (LMI) optimisation problem. Finally, numerical studies demonstrate the effectiveness of the proposed techniques.

  5. Economical analysis of saturation mutagenesis experiments

    PubMed Central

    Acevedo-Rocha, Carlos G.; Reetz, Manfred T.; Nov, Yuval

    2015-01-01

    Saturation mutagenesis is a powerful technique for engineering proteins, metabolic pathways and genomes. In spite of its numerous applications, creating high-quality saturation mutagenesis libraries remains a challenge, as various experimental parameters influence in a complex manner the resulting diversity. We explore from the economical perspective various aspects of saturation mutagenesis library preparation: We introduce a cheaper and faster control for assessing library quality based on liquid media; analyze the role of primer purity and supplier in libraries with and without redundancy; compare library quality, yield, randomization efficiency, and annealing bias using traditional and emergent randomization schemes based on mixtures of mutagenic primers; and establish a methodology for choosing the most cost-effective randomization scheme given the screening costs and other experimental parameters. We show that by carefully considering these parameters, laboratory expenses can be significantly reduced. PMID:26190439

  6. Olfactory receptor neurons use gain control and complementary kinetics to encode intermittent odorant stimuli

    PubMed Central

    Gorur-Shandilya, Srinivas; Demir, Mahmut; Long, Junjiajia; Clark, Damon A; Emonet, Thierry

    2017-01-01

    Insects find food and mates by navigating odorant plumes that can be highly intermittent, with intensities and durations that vary rapidly over orders of magnitude. Much is known about olfactory responses to pulses and steps, but it remains unclear how olfactory receptor neurons (ORNs) detect the intensity and timing of natural stimuli, where the absence of scale in the signal makes detection a formidable olfactory task. By stimulating Drosophila ORNs in vivo with naturalistic and Gaussian stimuli, we show that ORNs adapt to stimulus mean and variance, and that adaptation and saturation contribute to naturalistic sensing. Mean-dependent gain control followed the Weber-Fechner relation and occurred primarily at odor transduction, while variance-dependent gain control occurred at both transduction and spiking. Transduction and spike generation possessed complementary kinetic properties, that together preserved the timing of odorant encounters in ORN spiking, regardless of intensity. Such scale-invariance could be critical during odor plume navigation. DOI: http://dx.doi.org/10.7554/eLife.27670.001 PMID:28653907

  7. Uncertainty quantification of CO₂ saturation estimated from electrical resistance tomography data at the Cranfield site

    DOE PAGES

    Yang, Xianjin; Chen, Xiao; Carrigan, Charles R.; ...

    2014-06-03

    A parametric bootstrap approach is presented for uncertainty quantification (UQ) of CO₂ saturation derived from electrical resistance tomography (ERT) data collected at the Cranfield, Mississippi (USA) carbon sequestration site. There are many sources of uncertainty in ERT-derived CO₂ saturation, but we focus on how the ERT observation errors propagate to the estimated CO₂ saturation in a nonlinear inversion process. Our UQ approach consists of three steps. We first estimated the observational errors from a large number of reciprocal ERT measurements. The second step was to invert the pre-injection baseline data and the resulting resistivity tomograph was used as the priormore » information for nonlinear inversion of time-lapse data. We assigned a 3% random noise to the baseline model. Finally, we used a parametric bootstrap method to obtain bootstrap CO₂ saturation samples by deterministically solving a nonlinear inverse problem many times with resampled data and resampled baseline models. Then the mean and standard deviation of CO₂ saturation were calculated from the bootstrap samples. We found that the maximum standard deviation of CO₂ saturation was around 6% with a corresponding maximum saturation of 30% for a data set collected 100 days after injection began. There was no apparent spatial correlation between the mean and standard deviation of CO₂ saturation but the standard deviation values increased with time as the saturation increased. The uncertainty in CO₂ saturation also depends on the ERT reciprocal error threshold used to identify and remove noisy data and inversion constraints such as temporal roughness. Five hundred realizations requiring 3.5 h on a single 12-core node were needed for the nonlinear Monte Carlo inversion to arrive at stationary variances while the Markov Chain Monte Carlo (MCMC) stochastic inverse approach may expend days for a global search. This indicates that UQ of 2D or 3D ERT inverse problems can be performed

  8. Acoustic Velocity Log Numerical Simulation and Saturation Estimation of Gas Hydrate Reservoir in Shenhu Area, South China Sea

    PubMed Central

    Xiao, Kun; Zou, Changchun; Xiang, Biao; Liu, Jieqiong

    2013-01-01

    Gas hydrate model and free gas model are established, and two-phase theory (TPT) for numerical simulation of elastic wave velocity is adopted to investigate the unconsolidated deep-water sedimentary strata in Shenhu area, South China Sea. The relationships between compression wave (P wave) velocity and gas hydrate saturation, free gas saturation, and sediment porosity at site SH2 are studied, respectively, and gas hydrate saturation of research area is estimated by gas hydrate model. In depth of 50 to 245 m below seafloor (mbsf), as sediment porosity decreases, P wave velocity increases gradually; as gas hydrate saturation increases, P wave velocity increases gradually; as free gas saturation increases, P wave velocity decreases. This rule is almost consistent with the previous research result. In depth of 195 to 220 mbsf, the actual measurement of P wave velocity increases significantly relative to the P wave velocity of saturated water modeling, and this layer is determined to be rich in gas hydrate. The average value of gas hydrate saturation estimated from the TPT model is 23.2%, and the maximum saturation is 31.5%, which is basically in accordance with simplified three-phase equation (STPE), effective medium theory (EMT), resistivity log (Rt), and chloride anomaly method. PMID:23935407

  9. Graphene-clad microfibre saturable absorber for ultrafast fibre lasers.

    PubMed

    Liu, X M; Yang, H R; Cui, Y D; Chen, G W; Yang, Y; Wu, X Q; Yao, X K; Han, D D; Han, X X; Zeng, C; Guo, J; Li, W L; Cheng, G; Tong, L M

    2016-05-16

    Graphene, whose absorbance is approximately independent of wavelength, allows broadband light-matter interactions with ultrafast responses. The interband optical absorption of graphene can be saturated readily under strong excitation, thereby enabling scientists to exploit the photonic properties of graphene to realize ultrafast lasers. The evanescent field interaction scheme of the propagating light with graphene covered on a D-shaped fibre or microfibre has been employed extensively because of the nonblocking configuration. Obviously, most of the fibre surface is unused in these techniques. Here, we exploit a graphene-clad microfibre (GCM) saturable absorber in a mode-locked fibre laser for the generation of ultrafast pulses. The proposed all-surface technique can guarantee a higher efficiency of light-graphene interactions than the aforementioned techniques. Our GCM-based saturable absorber can generate ultrafast optical pulses within 1.5 μm. This saturable absorber is compatible with current fibre lasers and has many merits such as low saturation intensities, ultrafast recovery times, and wide wavelength ranges. The proposed saturable absorber will pave the way for graphene-based wideband photonics.

  10. Biodegradation of crude oil saturated fraction supported on clays.

    PubMed

    Ugochukwu, Uzochukwu C; Jones, Martin D; Head, Ian M; Manning, David A C; Fialips, Claire I

    2014-02-01

    The role of clay minerals in crude oil saturated hydrocarbon removal during biodegradation was investigated in aqueous clay/saturated hydrocarbon microcosm experiments with a hydrocarbon degrading microorganism community. The clay minerals used for this study were montmorillonite, palygorskite, saponite and kaolinite. The clay mineral samples were treated with hydrochloric acid and didecyldimethylammonium bromide to produce acid activated- and organoclays respectively which were used in this study. The production of organoclay was restricted to only montmorillonite and saponite because of their relative high CEC. The study indicated that acid activated clays, organoclays and unmodified kaolinite, were inhibitory to biodegradation of the hydrocarbon saturates. Unmodified saponite was neutral to biodegradation of the hydrocarbon saturates. However, unmodified palygorskite and montmorillonite were stimulatory to biodegradation of the hydrocarbon saturated fraction and appears to do so as a result of the clays' ability to provide high surface area for the accumulation of microbes and nutrients such that the nutrients were within the 'vicinity' of the microbes. Adsorption of the saturated hydrocarbons was not significant during biodegradation.

  11. Graphene-clad microfibre saturable absorber for ultrafast fibre lasers

    PubMed Central

    Liu, X. M.; Yang, H. R.; Cui, Y. D.; Chen, G. W.; Yang, Y.; Wu, X. Q.; Yao, X. K.; Han, D. D.; Han, X. X.; Zeng, C.; Guo, J.; Li, W. L.; Cheng, G.; Tong, L. M.

    2016-01-01

    Graphene, whose absorbance is approximately independent of wavelength, allows broadband light–matter interactions with ultrafast responses. The interband optical absorption of graphene can be saturated readily under strong excitation, thereby enabling scientists to exploit the photonic properties of graphene to realize ultrafast lasers. The evanescent field interaction scheme of the propagating light with graphene covered on a D-shaped fibre or microfibre has been employed extensively because of the nonblocking configuration. Obviously, most of the fibre surface is unused in these techniques. Here, we exploit a graphene-clad microfibre (GCM) saturable absorber in a mode-locked fibre laser for the generation of ultrafast pulses. The proposed all-surface technique can guarantee a higher efficiency of light–graphene interactions than the aforementioned techniques. Our GCM-based saturable absorber can generate ultrafast optical pulses within 1.5 μm. This saturable absorber is compatible with current fibre lasers and has many merits such as low saturation intensities, ultrafast recovery times, and wide wavelength ranges. The proposed saturable absorber will pave the way for graphene-based wideband photonics. PMID:27181419

  12. Effective diffusion coefficients of DNAPL waste components in saturated low permeability soil materials

    NASA Astrophysics Data System (ADS)

    Ayral-Cinar, Derya; Demond, Avery H.

    2017-12-01

    Diffusion is regarded as the dominant transport mechanism into and out of low permeable subsurface lenses and layers in the subsurface. But, some reports of mass storage in such zones are higher than what might be attributable to diffusion, based on estimated diffusion coefficients. Despite the importance of diffusion to efforts to estimate the quantity of residual contamination in the subsurface, relatively few studies present measured diffusion coefficients of organic solutes in saturated low permeability soils. This study reports the diffusion coefficients of a trichloroethylene (TCE), and an anionic surfactant, Aerosol OT (AOT), in water-saturated silt and a silt-montmorillonite (25:75) mixture, obtained using steady-state experiments. The relative diffusivity ranged from 0.11 to 0.17 for all three compounds for the silt and the silt-clay mixture that was allowed to expand. In the case in which the swelling was constrained, the relative diffusivity was about 0.07. In addition, the relative diffusivity of 13C-labeled TCE through a water saturated silt-clay mixture that had contacted a field dense non-aqueous phase liquid (DNAPL) for 18 months was measured and equaled 0.001. These experimental results were compared with the estimates generated using common correlations, and it was found that, in all cases, the measured diffusion coefficients were significantly lower than the estimated. Thus, the discrepancy between mass accumulations observed in the field and the mass storage that can attributable to diffusion may be greater than previously believed.

  13. Effects of skin pigmentation on pulse oximeter accuracy at low saturation.

    PubMed

    Bickler, Philip E; Feiner, John R; Severinghaus, John W

    2005-04-01

    It is uncertain whether skin pigmentation affects pulse oximeter accuracy at low HbO2 saturation. The accuracy of finger pulse oximeters during stable, plateau levels of arterial oxygen saturation (Sao2) between 60 and 100% were evaluated in 11 subjects with darkly pigmented skin and in 10 with light skin pigmentation. Oximeters tested were the Nellcor N-595 with the OxiMax-A probe (Nellcor Inc., Pleasanton, CA), the Novametrix 513 (Novametrix Inc., Wallingford, CT), and the Nonin Onyx (Nonin Inc., Plymouth, MN). Semisupine subjects breathed air-nitrogen-carbon dioxide mixtures through a mouthpiece. A computer used end-tidal oxygen and carbon dioxide concentrations determined by mass spectrometry to estimate breath-by-breath Sao2, from which an operator adjusted inspired gas to rapidly achieve 2- to 3-min stable plateaus of desaturation. Comparisons of oxygen saturation measured by pulse oximetry (Spo2) with Sao2 (by Radiometer OSM3) were used in a multivariate model to determine the interrelation between saturation, skin pigmentation, and oximeter bias (Spo2 - Sao2). At 60-70% Sao2, Spo2 (mean of three oximeters) overestimated Sao2 (bias +/- SD) by 3.56 +/- 2.45% (n = 29) in darkly pigmented subjects, compared with 0.37 +/- 3.20% (n = 58) in lightly pigmented subjects (P < 0.0001). The SD of bias was not greater with dark than light skin. The dark-light skin differences at 60-70% Sao2 were 2.35% (Nonin), 3.38% (Novametrix), and 4.30% (Nellcor). Skin pigment-related differences were significant with Nonin below 70% Sao2, with Novametrix below 90%, and with Nellcor at all ranges. Pigment-related bias increased approximately in proportion to desaturation. The three tested pulse oximeters overestimated arterial oxygen saturation during hypoxia in dark-skinned individuals.

  14. The effect of autoimmune retinopathy on retinal vessel oxygen saturation.

    PubMed

    Waizel, Maria; Türksever, Cengiz; Todorova, Margarita G

    2018-05-22

    To study the retinal vessel oxygen saturation alterations in patients with autoimmune retinopathy (AIR) and patients with autoimmune retinopathy associated with retinitis pigmentosa (AIR-RP) in comparison with healthy controls and patients with isolated retinitis pigmentosa (RP). Prospective, cross-sectional, and non-interventional study. Retinal vessel oximetry (RO) was performed on a total of 139 eyes: six eyes suffering from AIR and four eyes with AIR-RP were compared to 59 healthy control eyes and to 70 eyes with RP. A computer-based program of the retinal vessel analyser unit (IMEDOS Systems UG, Jena, Germany) was used to evaluate retinal vessel oxygen saturation. The mean oxygen saturation in the first and second branch retinal arterioles (A-SO 2 ) and venules (V-SO 2 ) were measured and their difference (A-V SO 2 ) was calculated. In addition, we measured the diameter of the retinal arterioles (D-A) and venules (D-V). Oxygen metabolism is altered in patients with isolated AIR and AIR-RP. Both, AIR and AIR-RP groups, differed from healthy controls showing significantly higher V-SO 2 values and significantly lower A-V SO 2 values (p < 0.025). In addition, the AIR-RP group could be differentiated from eyes suffering from isolated RP by means of significantly higher V-SO 2 values. Comparing retinal vessel diameters, both, the AIR and AIR-RP groups, presented with significant arterial (p = 0.05) and venular (p < 0.03) vessel attenuation than the healthy control group. Based on our results, in analogy to patients suffering from RP, oxygen metabolism seems to be altered in AIR patients.

  15. Vascular responsiveness measured by tissue oxygen saturation reperfusion slope is sensitive to different occlusion durations and training status.

    PubMed

    McLay, Kaitlin M; Gilbertson, James E; Pogliaghi, Silvia; Paterson, Donald H; Murias, Juan M

    2016-10-01

    What is the central question of this study? Is the near-infrared spectroscopy-derived measure of tissue oxygen saturation (StO2) reperfusion slope sensitive to a range of ischaemic conditions, and do differences exist between trained and untrained individuals? What is the main finding and its importance? The StO2 reperfusion rate is sensitive to different occlusion durations, and changes in the reperfusion slope in response to a variety of ischaemic challenges can be used to detect differences between two groups. These data indicate that near-infrared spectroscopy-derived measures of StO2, specifically the reperfusion slope following a vascular occlusion, can be used as a sensitive measure of vascular responsiveness. The reperfusion rate of near-infrared spectroscopy-derived measures of tissue oxygen saturation (StO2) represents vascular responsiveness. This study examined whether the reperfusion slope of StO2 is sensitive to different ischaemic conditions (i.e. a dose-response relationship) and whether differences exist between two groups of different fitness levels. Nine healthy trained (T; age 25 ± 3 years; maximal oxygen uptake 63.4 ± 6.7 ml kg -1  min -1 ) and nine healthy untrained men (UT; age 21 ± 1 years; maximal oxygen uptake 46.6 ± 2.5 ml kg -1  min -1 ) performed a series of vascular occlusion tests of different durations (30 s, 1, 2, 3 and 5 min), each separated by 30 min. The StO2 was measured over the tibialis anterior using near-infrared spectroscopy, with the StO2 reperfusion slope calculated as the upslope during 10 s following cuff release. The reperfusion slope was steeper in T compared with UT at all occlusion durations (P < 0.05). For the T group, the reperfusion slopes for 30 s and 1 min occlusions were less than for all longer durations (P < 0.05). The reperfusion slope following 2 min occlusion was similar to that for 3 min (P > 0.05), but both were less steep than for 5 min of occlusion. In UT, the

  16. Effects of soil water saturation on sampling equilibrium and kinetics of selected polycyclic aromatic hydrocarbons.

    PubMed

    Kim, Pil-Gon; Roh, Ji-Yeon; Hong, Yongseok; Kwon, Jung-Hwan

    2017-10-01

    Passive sampling can be applied for measuring the freely dissolved concentration of hydrophobic organic chemicals (HOCs) in soil pore water. When using passive samplers under field conditions, however, there are factors that might affect passive sampling equilibrium and kinetics, such as soil water saturation. To determine the effects of soil water saturation on passive sampling, the equilibrium and kinetics of passive sampling were evaluated by observing changes in the distribution coefficient between sampler and soil (K sampler/soil ) and the uptake rate constant (k u ) at various soil water saturations. Polydimethylsiloxane (PDMS) passive samplers were deployed into artificial soils spiked with seven selected polycyclic aromatic hydrocarbons (PAHs). In dry soil (0% water saturation), both K sampler/soil and k u values were much lower than those in wet soils likely due to the contribution of adsorption of PAHs onto soil mineral surfaces and the conformational changes in soil organic matter. For high molecular weight PAHs (chrysene, benzo[a]pyrene, and dibenzo[a,h]anthracene), both K sampler/soil and k u values increased with increasing soil water saturation, whereas they decreased with increasing soil water saturation for low molecular weight PAHs (phenanthrene, anthracene, fluoranthene, and pyrene). Changes in the sorption capacity of soil organic matter with soil water content would be the main cause of the changes in passive sampling equilibrium. Henry's law constant could explain the different behaviors in uptake kinetics of the selected PAHs. The results of this study would be helpful when passive samplers are deployed under various soil water saturations. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Time Difference Amplifier with Robust Gain Using Closed-Loop Control

    NASA Astrophysics Data System (ADS)

    Nakura, Toru; Mandai, Shingo; Ikeda, Makoto; Asada, Kunihiro

    This paper presents a Time Difference Amplifier (TDA) that amplifies the input time difference into the output time difference. Cross coupled chains of variable delay cells with the same number of stages are applicable for TDA, and the gain is adjusted via the closed-loop control. The TDA was fabricated using 65nm CMOS and the measurement results show that the time difference gain is 4.78 at a nominal power supply while the designed gain is 4.0. The gain is stable enough to be less than 1.4% gain shift under ±10% power supply voltage fluctuation.

  18. A Framework for Measuring Student Learning Gains and Engagement in an Introductory Computing Course: A Preliminary Report of Findings

    ERIC Educational Resources Information Center

    Lim, Billy; Hosack, Bryan; Vogt, Paul

    2012-01-01

    This paper describes a framework for measuring student learning gains and engagement in a Computer Science 1 (CS 1) / Information Systems 1 (IS 1) course. The framework is designed for a CS1/IS1 course as it has been traditionally taught over the years as well as when it is taught using a new pedagogical approach with Web services. It enables the…

  19. Capillary pressure-saturation relationships for porous granular materials: Pore morphology method vs. pore unit assembly method

    NASA Astrophysics Data System (ADS)

    Sweijen, Thomas; Aslannejad, Hamed; Hassanizadeh, S. Majid

    2017-09-01

    In studies of two-phase flow in complex porous media it is often desirable to have an estimation of the capillary pressure-saturation curve prior to measurements. Therefore, we compare in this research the capability of three pore-scale approaches in reproducing experimentally measured capillary pressure-saturation curves. To do so, we have generated 12 packings of spheres that are representative of four different glass-bead packings and eight different sand packings, for which we have found experimental data on the capillary pressure-saturation curve in the literature. In generating the packings, we matched the particle size distributions and porosity values of the granular materials. We have used three different pore-scale approaches for generating the capillary pressure-saturation curves of each packing: i) the Pore Unit Assembly (PUA) method in combination with the Mayer and Stowe-Princen (MS-P) approximation for estimating the entry pressures of pore throats, ii) the PUA method in combination with the hemisphere approximation, and iii) the Pore Morphology Method (PMM) in combination with the hemisphere approximation. The three approaches were also used to produce capillary pressure-saturation curves for the coating layer of paper, used in inkjet printing. Curves for such layers are extremely difficult to determine experimentally, due to their very small thickness and the presence of extremely small pores (less than one micrometer in size). Results indicate that the PMM and PUA-hemisphere method give similar capillary pressure-saturation curves, because both methods rely on a hemisphere to represent the air-water interface. The ability of the hemisphere approximation and the MS-P approximation to reproduce correct capillary pressure seems to depend on the type of particle size distribution, with the hemisphere approximation working well for narrowly distributed granular materials.

  20. Evaluation of Nd:YAG laser on partial oxygen saturation of pulpal blood in anterior hypersensitive teeth.

    PubMed

    Birang, Reza; Kaviani, Naser; Mohammadpour, Mehdi; Abed, Ahmad Moghareh; Gutknecht, Norbert; Mir, Maziar

    2008-07-01

    Dentine hypersensitivity has of long been known to be a common clinical problem in dental practices. Lasers have recently come to play a prominent role in the treatment of this disorder. They might, however, cause dental pulp damage. This study was conducted to evaluate the effect of Nd:yttrium-aluminum-garnet (YAG) laser on partial oxygen saturation of pulpal blood in sensitive anterior teeth. In this clinical trial, 65 hypersensitive teeth were selected and randomly allocated to two groups. The study group involved Nd:YAG laser treatment, while no treatment was employed for the control group. Using a pulse oximetry system, evaluations were preformed of the partial oxygen saturation in the pulpal blood before, immediately after, 1 week after, and 1 month after the treatment. The results were analyzed using the SPSS software and repeated-measures analysis of variance and paired-samples t tests. The mean partial oxygen saturation of the blood was found to be 85.4% in the study group, which was not significantly different from that of the control group. No significant differences were observed in the control group between the means obtained from pretreatment and post-treatment intervals (P > 0.05). The Post-treatment partial oxygen saturation mean rose to 89.3% (P = 0.001) and remained constant throughout the following week after it. However, no significant differences were found between the pretreatment partial oxygen saturation mean and the same measurement 1 month after treatment (P = 0.702). Nd:YAG laser therapy for dentine desensitization of anterior teeth caused no persistent changes in the partial oxygen saturation of pulpal blood. It may, therefore, be concluded that the diffusion of heat induced by the Nd:YAG laser into the pulp within the limit of the desensitization parameters cause no irreversible damages in the dental pulp.

  1. Estimating the change of porosity in the saturated zone during air sparging.

    PubMed

    Tsai, Yih-jin; Kuo, Yu-chia; Chen, Tsu-chi; Chou, Feng-chih

    2006-01-01

    Air sparging is a remedial method for groundwater. The remedial region is similar to the air flow region in the saturated zone. If soil particles are transported during air sparging, the porosity distributions in the saturated zone change, which may alter the flow path of the air. To understand better the particle movement, this study performed a sandbox test to estimate the soil porosity change during air sparging. A clear fracture was formed and the phenomenon of particle movement was observed when the air injection was started. The moved sand filled the porous around the fracture and the reparked sand filled the fracture, reducing the porosity around the fracture. The results obtained from the photographs of the sandbox, the current measurements and the direct sand sample measurements were close to each other and are credible. Therefore, air injection during air sparging causes sand particle movement of sand, altering the characteristic of the sand matrix and the air distribution.

  2. Quantitative measurement of channel-block hydraulic interactions by experimental saturation of a large, natural, fissured rock mass.

    PubMed

    Guglielmi, Y; Mudry, J

    2001-01-01

    The hydrodynamic behavior of fissured media relies on the relationships between a few very conductive fractures (channels) and the remaining low-conductivity fractures and matrix (blocks). We made a quantitative measurement of those relationships and their effect on water drainage and storage in a 19,000 m3 natural reservoir consisting of karstified limestones. This reservoir was artificially saturated with water by closing a water gate on the main outlet during a varying time (delta t) fixed by the operator. The water gate was completely or partly closed until the water pressure reached a particular specified value. If the water gate was left completely closed long enough, the water pressure was fixed by the elevation of temporary outlets at the site boundaries. The water elevation within the reservoir was monitored by means of pressure cells located on single fractures representative of the bedding plane and the two families of fractures of the massif network. The comparison of pressure variations with the network geometry allows us to identify a typical double permeability characterized by a few very conductive channels along 10 vertical faults. These channels limit blocks consisting of low-conductivity bedding planes and a rather impervious matrix. Depending on the closure interval, delta t, of the water gate, the total volume of water stored in the reservoir can vary from 0.8 m3 (delta t = 5 minutes) to 18.6 m3 (delta t = 2 days). Such a variance of storage versus closure time is explained by the reservoir's double permeability that is characterized by blocks that saturate much more slowly than channels. If plotted versus time, this injected volume fits a power relationship, according to the saturation state of the blocks. In less than 34 minutes, storage is close to zero in the blocks and to 1.6 to 2 m3 in the channels. For closing times shorter than 1 hour, only 1% of the volume that flows in the channels is stored into the blocks. Depending on the water

  3. Microwave gain medium with negative refractive index.

    PubMed

    Ye, Dexin; Chang, Kihun; Ran, Lixin; Xin, Hao

    2014-12-19

    Artificial effective media are attractive because of the fantastic applications they may enable, such as super lensing and electromagnetic invisibility. However, the inevitable loss due to their strongly dispersive nature is one of the fundamental challenges preventing such applications from becoming a reality. In this study, we demonstrate an effective gain medium based on negative resistance, to overcompensate the loss of a conventional passive metamaterial, meanwhile keeping its original negative-index property. Energy conservation-based theory, full-wave simulation and experimental measurement show that a fabricated sample consisting of conventional sub-wavelength building blocks with embedded microwave tunnel diodes exhibits a band-limited Lorentzian dispersion simultaneously with a negative refractive index and a net gain. Our work provides experimental evidence to the assertion that a stable net gain in negative-index gain medium is achievable, proposing a potential solution for the critical challenge current metamateiral technology faces in practical applications.

  4. Hydrate morphology: Physical properties of sands with patchy hydrate saturation

    USGS Publications Warehouse

    Dai, S.; Santamarina, J.C.; Waite, William F.; Kneafsey, T.J.

    2012-01-01

    The physical properties of gas hydrate-bearing sediments depend on the volume fraction and spatial distribution of the hydrate phase. The host sediment grain size and the state of effective stress determine the hydrate morphology in sediments; this information can be used to significantly constrain estimates of the physical properties of hydrate-bearing sediments, including the coarse-grained sands subjected to high effective stress that are of interest as potential energy resources. Reported data and physical analyses suggest hydrate-bearing sands contain a heterogeneous, patchy hydrate distribution, whereby zones with 100% pore-space hydrate saturation are embedded in hydrate-free sand. Accounting for patchy rather than homogeneous hydrate distribution yields more tightly constrained estimates of physical properties in hydrate-bearing sands and captures observed physical-property dependencies on hydrate saturation. For example, numerical modeling results of sands with patchy saturation agree with experimental observation, showing a transition in stiffness starting near the series bound at low hydrate saturations but moving toward the parallel bound at high hydrate saturations. The hydrate-patch size itself impacts the physical properties of hydrate-bearing sediments; for example, at constant hydrate saturation, we find that conductivity (electrical, hydraulic and thermal) increases as the number of hydrate-saturated patches increases. This increase reflects the larger number of conductive flow paths that exist in specimens with many small hydrate-saturated patches in comparison to specimens in which a few large hydrate saturated patches can block flow over a significant cross-section of the specimen.

  5. Seismic determination of saturation in fractured reservoirs

    USGS Publications Warehouse

    Brown, R.L.; Wiggins, M.L.; Gupta, A.

    2002-01-01

    Detecting the saturation of a fractured reservoir using shear waves is possible when the fractures have a geometry that induces a component of movement perpendicular to the fractures. When such geometry is present, vertically traveling shear waves can be used to examine the saturation of the fractured reservoir. Tilted, corrugated, and saw-tooth fracture models are potential examples.

  6. Optimal gains for a single polar orbiting satellite

    NASA Technical Reports Server (NTRS)

    Banfield, Don; Ingersoll, A. P.; Keppenne, C. L.

    1993-01-01

    Gains are the spatial weighting of an observation in its neighborhood versus the local values of a model prediction. They are the key to data assimilation, as they are the direct measure of how the data are used to guide the model. As derived in the broad context of data assimilation by Kalman and in the context of meteorology, for example, by Rutherford, the optimal gains are functions of the prediction error covariances between the observation and analysis points. Kalman introduced a very powerful technique that allows one to calculate these optimal gains at the time of each observation. Unfortunately, this technique is both computationally expensive and often numerically unstable for dynamical systems of the magnitude of meteorological models, and thus is unsuited for use in PMIRR data assimilation. However, the optimal gains as calculated by a Kalman filter do reach a steady state for regular observing patterns like that of a satellite. In this steady state, the gains are constants in time, and thus could conceivably be computed off-line. These steady-state Kalman gains (i.e., Wiener gains) would yield optimal performance without the computational burden of true Kalman filtering. We proposed to use this type of constant-in-time Wiener gain for the assimilation of data from PMIRR and Mars Observer.

  7. Reduction in saturated fat intake for cardiovascular disease.

    PubMed

    Hooper, Lee; Martin, Nicole; Abdelhamid, Asmaa; Davey Smith, George

    2015-06-10

    Reducing saturated fat reduces serum cholesterol, but effects on other intermediate outcomes may be less clear. Additionally it is unclear whether the energy from saturated fats that are lost in the diet are more helpfully replaced by polyunsaturated fats, monounsaturated fats, carbohydrate or protein. This review is part of a series split from and updating an overarching review. To assess the effect of reducing saturated fat intake and replacing it with carbohydrate (CHO), polyunsaturated (PUFA) or monounsaturated fat (MUFA) and/or protein on mortality and cardiovascular morbidity, using all available randomised clinical trials. We updated our searches of the Cochrane Central Register of Controlled Trials (CENTRAL), MEDLINE (Ovid) and EMBASE (Ovid) on 5 March 2014. We also checked references of included studies and reviews. Trials fulfilled the following criteria: 1) randomised with appropriate control group; 2) intention to reduce saturated fat intake OR intention to alter dietary fats and achieving a reduction in saturated fat; 3) not multifactorial; 4) adult humans with or without cardiovascular disease (but not acutely ill, pregnant or breastfeeding); 5) intervention at least 24 months; 6) mortality or cardiovascular morbidity data available. Two review authors working independently extracted participant numbers experiencing health outcomes in each arm, and we performed random-effects meta-analyses, meta-regression, subgrouping, sensitivity analyses and funnel plots. We include 15 randomised controlled trials (RCTs) (17 comparisons, ˜59,000 participants), which used a variety of interventions from providing all food to advice on how to reduce saturated fat. The included long-term trials suggested that reducing dietary saturated fat reduced the risk of cardiovascular events by 17% (risk ratio (RR) 0.83; 95% confidence interval (CI) 0.72 to 0.96, 13 comparisons, 53,300 participants of whom 8% had a cardiovascular event, I² 65%, GRADE moderate quality of

  8. All-fiber thulium/holmium-doped mode-locked laser by tungsten disulfide saturable absorber

    NASA Astrophysics Data System (ADS)

    Yu, Hao; Zheng, Xin; Yin, Ke; Cheng, Xiang'ai; Jiang, Tian

    2017-01-01

    A passively mode-locked thulium/holmium-doped fiber laser (THDFL) based on tungsten disulfide (WS2) saturable absorber (SA) was demonstrated. The WS2 nanosheets were prepared by liquid phase exfoliation method and the SA was fabricated by depositing the few-layer WS2 nanosheets on the surface of a fiber taper. The modulation depth, saturable intensity, and non-saturable loss of this SA were measured to be 8.2%, 0.82 GW cm-2, and 29.4%, respectively. Based on this SA, a stable mode-locked laser operated at 1.91 µm was achieved with pulse duration of 825 fs and repetition rate of 15.49 MHz, and signal-to-noise ratio (SNR) of 67 dB. Meanwhile, by increasing the pump power and adjusting the position of polarization controller, harmonic mode-locking operations were obtained. These results showed that the WS2 nanosheet-based SA could be served as a desirable candidate for a short-pulse mode locker at 2 µm wavelength.

  9. Effects of initial saturation on properties modification and displacement of tetrachloroethene with aqueous isobutanol.

    PubMed

    Boyd, Glen R; Ocampo-Gómez, Ana M; Li, Minghua; Husserl, Johana

    2006-11-20

    Packed column experiments were conducted to study effects of initial saturation of tetrachloroethene (PCE) in the range of 1.0-14% pore volume (PV) on mobilization and downward migration of the non-aqueous phase liquid (NAPL) product upon contact with aqueous isobutanol ( approximately 10 vol.%). This study focused on the consequences of swelling beyond residual saturation. Columns were packed with mixtures of neat PCE, water and glass beads and waterflooded to establish a desired homogeneous residual saturation, and then flooded with aqueous isobutanol under controlled hydraulic conditions. Results showed a critical saturation of approximately 8% PV for these packed column experimental conditions. At low initial PCE saturations (<8% PV), experimental results showed reduced risk of NAPL-product migration upon contact with aqueous isobutanol. At higher initial PCE saturations (>8% PV), results showed NAPL-product mobilization and downward migration which was attributed to interfacial tension (IFT) reduction, swelling of the NAPL-product, and reduced density modification. Packed column results were compared with good agreement to theoretical predictions of NAPL-product mobilization using the total trapping number, N(T). In addition to the packed column study, preliminary batch experiments were conducted to study the effects of PCE volumetric fraction in the range of 0.5-20% on density, viscosity, and IFT modification as a function of time following contact with aqueous isobutanol ( approximately 10 vol.%). Modified NAPL-product fluid properties approached equilibrium within approximately 2 h of contact for density and viscosity. IFT reduction occurred immediately as expected. Measured fluid properties were compared with good agreement to theoretical equilibrium predictions based on UNIQUAC. Overall, this study demonstrates the importance of initial DNAPL saturation, and the associated risk of downward NAPL-product migration, in applying alcohol flooding for

  10. A sulfide-saturated lunar mantle?

    NASA Astrophysics Data System (ADS)

    Brenan, James M.; Mungall, James E.

    2017-04-01

    Although much work has been done to understand the controls on the sulfur content at sulfide saturation (SCSS) for terrestrial melt compositions, little information exists to evaluate the SCSS for the high FeO compositions typical of lunar magmas, and at the reduced conditions of the Moon's interior. Experiments were done to measure the SCSS for a model low Ti mare basalt with 20 wt% FeO at 1400oC as a function of fO2 and pressure. Synthetic lunar basalt was encapsulated along with stoichiometric FeS in capsules made from Fe-Ir alloy. The fO2 of the experiment can be estimated by the heterogeneous equilibrium: Femetal + 1 /2 O2 = FeOsilicate Variation in the metal composition, by addition of Ir, serves to change the fO2 of the experiment. Capsule compositions spanning the range Fe25Ir75 to Fe96Ir4 (at%) were synthesized by sintering of pressed powders under reducing conditions. Fe100 capsules were fabricated from pure Fe rod. For a melt with 20 wt% FeO, this range in capsule composition spans the fO2 interval of ˜IW-1 (Fe100, Fe96Ir4) to IW+2.2 (Fe25Ir75). Experiments were done over the pressure interval of 0.1 MPa to 2 GPa. Results for experiments involving Fe100capsules indicate that the SCSS decreases from ˜2000 ppm (0.1 MPa) to 700 ppm (2 GPa). Experiments done thus far at 1 GPa, involving the range of capsule compositions indicated, show a marked decrease in SCSS as the Fe content of the capsule increases (fO2 decreases). Complementary to the decrease in SCSS is a drop in the sulfur content of the coexisting sulfide melt, from ˜50 at% at ΔIW = +2.2 to ˜20 at% at ΔIW-1. In fact, both the composition of the sulfide melt and the SCSS are essentially indistinguishable for Fe96Ir4 and Fe100 compositions. Results thus far indicate that at reduced conditions and high pressure, the SCSS for high FeO lunar compositions is low, and overlaps with Apollo 11 melt inclusion data. Importantly, such low SCSS does not require Fe metal saturation, and suggests that some

  11. Radiometric gains of satellite sensors of reflected solar radiation - Results from NASA ER-2 aircraft measurements

    NASA Technical Reports Server (NTRS)

    Abel, Peter; Galimore, Reginald; Cooper, John

    1992-01-01

    A method for using congruent aircraft-satellite observations to calibrate a satellite sensor is presented. A calibrated spectroradiometer at an altitude of 19 km above White Sands, NM, is oriented to view White Sands at the satellite overpass time along the same view vector as the satellite sensor. Collected data are transformed into corresponding estimates of sensor band radiance at the satellite (derived from the aircraft measurements), and average count (from the sensor measurements). These are both averaged across the footprint of the spectroradiometer. Results are presented for the evolution of NOAA-11 Advanced Very High Resolution Radiometer (AVHRR) (Bands 1 and 2) gain between November 1988 and October 1990, and for GOES-6 and GOES-7 VISSR/VAS visible bands during the same period. Estimates of uncertainty in the results are presented, as well as ideas for their reduction in future flights.

  12. From dry to saturated thermal conductivity: mixing-model correction charts and new conversion equations for sedimentary rocks

    NASA Astrophysics Data System (ADS)

    Fuchs, Sven; Schütz, Felina; Förster, Andrea; Förster, Hans-Jürgen

    2013-04-01

    The thermal conductivity (TC) of a rock is, in collaboration with the temperature gradient, the basic parameter to determine the heat flow from the Earth interior. Moreover, it forms the input into models targeted on temperature prognoses for geothermal reservoirs at those depths not yet reached by boreholes. Thus, rock TC is paramount in geothermal exploration and site selection. Most commonly, TC of a rock is determined in the laboratory on samples that are either dry or water-saturated. Because sample saturation is time-consuming, it is desirable, especially if large numbers of samples need to be assessed, to develop an approach that quickly and reliably converts dry-measured bulk TC into the respective saturated value without applying the saturation procedure. Different petrophysical models can be deployed to calculate the matrix TC of a rock from the bulk TC and vice versa, if the effective porosity is known (e.g., from well logging data) and the TC of the saturation fluid (e.g., gas, oil, water) is considered. We have studied for a large suite of different sedimentary rocks the performance of two-component (rock matrix, porosity) models that are widely used in geothermics (arithmetic mean, geometric mean, harmonic mean, Hashin and Shtrikman mean, and effective medium theory mean). The data set consisted of 1147 TC data from three different sedimentary basins (North German Basin, Molasse Basin, Mesozoic platform sediments of the northern Sinai Microplate in Israel). Four lithotypes (sandstone, mudstone, limestone, dolomite) were studied exhibiting bulk TC in the range between 1.0 and 6.5 W/(mK). The quality of fit between measured (laboratory) and calculated bulk TC values was studied separately for the influence of lithotype, saturation fluid (water and isooctane), and rock anisotropy (parallel and perpendicular to bedding). The geometric mean model displays the best correspondence between calculated and measured bulk TC, however, the relation is not

  13. Measuring tissue oxygenation

    NASA Technical Reports Server (NTRS)

    Soyemi, Olusola O. (Inventor); Soller, Babs R. (Inventor); Yang, Ye (Inventor)

    2009-01-01

    Methods and systems for calculating tissue oxygenation, e.g., oxygen saturation, in a target tissue are disclosed. In some embodiments, the methods include: (a) directing incident radiation to a target tissue and determining reflectance spectra of the target tissue by measuring intensities of reflected radiation from the target tissue at a plurality of radiation wavelengths; (b) correcting the measured intensities of the reflectance spectra to reduce contributions thereto from skin and fat layers through which the incident radiation propagates; (c) determining oxygen saturation in the target tissue based on the corrected reflectance spectra; and (d) outputting the determined value of oxygen saturation.

  14. Information gains from cosmic microwave background experiments

    NASA Astrophysics Data System (ADS)

    Seehars, Sebastian; Amara, Adam; Refregier, Alexandre; Paranjape, Aseem; Akeret, Joël

    2014-07-01

    To shed light on the fundamental problems posed by dark energy and dark matter, a large number of experiments have been performed and combined to constrain cosmological models. We propose a novel way of quantifying the information gained by updates on the parameter constraints from a series of experiments which can either complement earlier measurements or replace them. For this purpose, we use the Kullback-Leibler divergence or relative entropy from information theory to measure differences in the posterior distributions in model parameter space from a pair of experiments. We apply this formalism to a historical series of cosmic microwave background experiments ranging from Boomerang to WMAP, SPT, and Planck. Considering different combinations of these experiments, we thus estimate the information gain in units of bits and distinguish contributions from the reduction of statistical errors and the "surprise" corresponding to a significant shift of the parameters' central values. For this experiment series, we find individual relative entropy gains ranging from about 1 to 30 bits. In some cases, e.g. when comparing WMAP and Planck results, we find that the gains are dominated by the surprise rather than by improvements in statistical precision. We discuss how this technique provides a useful tool for both quantifying the constraining power of data from cosmological probes and detecting the tensions between experiments.

  15. Arterial blood oxygen saturation during blood pressure cuff-induced hypoperfusion

    NASA Astrophysics Data System (ADS)

    Kyriacou, P. A.; Shafqat, K.; Pal, S. K.

    2007-10-01

    Pulse oximetry has been one of the most significant technological advances in clinical monitoring in the last two decades. Pulse oximetry is a non-invasive photometric technique that provides information about the arterial blood oxygen saturation (SpO2) and heart rate, and has widespread clinical applications. When peripheral perfusion is poor, as in states of hypovolaemia, hypothermia and vasoconstriction, oxygenation readings become unreliable or cease. The problem arises because conventional pulse oximetry sensors must be attached to the most peripheral parts of the body, such as finger, ear or toe, where pulsatile flow is most easily compromised. Pulse oximeters estimate arterial oxygen saturation by shining light at two different wavelengths, red and infrared, through vascular tissue. In this method the ac pulsatile photoplethysmographic (PPG) signal associated with cardiac contraction is assumed to be attributable solely to the arterial blood component. The amplitudes of the red and infrared ac PPG signals are sensitive to changes in arterial oxygen saturation because of differences in the light absorption of oxygenated and deoxygenated haemoglobin at these two wavelengths. From the ratios of these amplitudes, and the corresponding dc photoplethysmographic components, arterial blood oxygen saturation (SpO2) is estimated. Hence, the technique of pulse oximetry relies on the presence of adequate peripheral arterial pulsations, which are detected as photoplethysmographic (PPG) signals. The aim of this study was to investigate the effect of pressure cuff-induced hypoperfusion on photoplethysmographic signals and arterial blood oxygen saturation using a custom made finger blood oxygen saturation PPG/SpO2 sensor and a commercial finger pulse oximeter. Blood oxygen saturation values from the custom oxygen saturation sensor and a commercial finger oxygen saturation sensor were recorded from 14 healthy volunteers at various induced brachial pressures. Both pulse

  16. Saturation-dependent solute dispersivity in porous media: Pore-scale processes

    NASA Astrophysics Data System (ADS)

    Raoof, A.; Hassanizadeh, S. M.

    2013-04-01

    It is known that in variably saturated porous media, dispersion coefficient depends on Darcy velocity and water saturation. In one-dimensional flow, it is commonly assumed that the dispersion coefficient is a linear function of velocity. The coefficient of proportionality, called the dispersivity, is considered to depend on saturation. However, there is not much known about its dependence on saturation. In this study, we investigate, using a pore network model, how the longitudinal dispersivity varies nonlinearly with saturation. We schematize the porous medium as a network of pore bodies and pore throats with finite volumes. The pore space is modeled using the multidirectional pore-network concept, which allows for a distribution of pore coordination numbers. This topological property together with the distribution of pore sizes are used to mimic the microstructure of real porous media. The dispersivity is calculated by solving the mass balance equations for solute concentration in all network elements and averaging the concentrations over a large number of pores. We have introduced a new formulation of solute transport within pore space, where we account for different compartments of residual water within drained pores. This formulation makes it possible to capture the effect of limited mixing due to partial filling of the pores under variably saturated conditions. We found that dispersivity increases with the decrease in saturation, it reaches a maximum value, and then decreases with further decrease in saturation. To show the capability of our formulation to properly capture the effect of saturation on solute dispersion, we applied it to model the results of a reported experimental study.

  17. Saturated fats: a perspective from lactation and milk composition.

    PubMed

    German, J Bruce; Dillard, Cora J

    2010-10-01

    For recommendations of specific targets for the absolute amount of saturated fat intake, we need to know what dietary intake is most appropriate? Changing agricultural production and processing to lower the relative quantities of macronutrients requires years to accomplish. Changes can have unintended consequences on diets and the health of subsets of the population. Hence, what are the appropriate absolute amounts of saturated fat in our diets? Is the scientific evidence consistent with an optimal intake of zero? If not, is it also possible that a finite intake of saturated fats is beneficial to overall health, at least to a subset of the population? Conclusive evidence from prospective human trials is not available, hence other sources of information must be considered. One approach is to examine the evolution of lactation, and the composition of milks that developed through millennia of natural selective pressure and natural selection processes. Mammalian milks, including human milk, contain 50% of their total fatty acids as saturated fatty acids. The biochemical formation of a single double bond converting a saturated to a monounsaturated fatty acid is a pathway that exists in all eukaryotic organisms and is active within the mammary gland. In the face of selective pressure, mammary lipid synthesis in all mammals continues to release a significant content of saturated fatty acids into milk. Is it possible that evolution of the mammary gland reveals benefits to saturated fatty acids that current recommendations do not consider?

  18. Red cell aspartate aminotransferase saturation with oral pyridoxine intake.

    PubMed

    Oshiro, Marilena; Nonoyama, Kimiyo; Oliveira, Raimundo Antônio Gomes; Barretto, Orlando Cesar de Oliveira

    2005-03-02

    The coenzyme of aspartate aminotransferase is pyridoxal phosphate, generated from fresh vegetables containing pyridoxine. Vitamin B6-responsive sideroblastic anemia, myelofibrosis and Peyronies syndrome respond to high pyridoxine doses. The objective was to investigate the oral pyridoxine oral dose that would lead to maximized pyridoxal phosphate saturation of red cell aspartate aminotransferase. Controlled trial, in Hematology Division of Instituto Adolfo Lutz. Red cell aspartate aminotransferase activity was assayed (before and after) in normal volunteers who were given oral pyridoxine for 15-18 days (30 mg, 100 mg and 200 mg daily). In vitro study of blood from seven normal volunteers was also performed, with before and after assaying of aspartate aminotransferase activity. The in vivo study showed increasing aspartate aminotransferase saturation with increasing pyridoxine doses. 83% saturation was reached with 30 mg daily, 88% with 100 mg, and 93% with 200 mg after 20 days of oral supplementation. The in vitro study did not reach 100% saturation. Neither in vivo nor in vitro study demonstrated thorough aspartate aminotransferase saturation with its coenzyme pyridoxal phosphate in red cells, from increasing pyridoxine supplementation. However, the 200-mg dose could be employed safely in vitamin B6-responsive sideroblastic anemia, myelofibrosis and Peyronies syndrome treatment. Although maximum saturation in circulating red cells is not achieved, erythroblasts and other nucleated and cytoplasmic organelles containing cells certainly will reach thorough saturation, which possibly explains the results obtained in these diseases.

  19. Wideband low-noise variable-gain BiCMOS transimpedance amplifier

    NASA Astrophysics Data System (ADS)

    Meyer, Robert G.; Mack, William D.

    1994-06-01

    A new monolithic variable gain transimpedance amplifier is described. The circuit is realized in BiCMOS technology and has measured gain of 98 kilo ohms, bandwidth of 128 MHz, input noise current spectral density of 1.17 pA/square root of Hz and input signal-current handling capability of 3 mA.

  20. A Novel Field-Circuit FEM Modeling and Channel Gain Estimation for Galvanic Coupling Real IBC Measurements.

    PubMed

    Gao, Yue-Ming; Wu, Zhu-Mei; Pun, Sio-Hang; Mak, Peng-Un; Vai, Mang-I; Du, Min

    2016-04-02

    Existing research on human channel modeling of galvanic coupling intra-body communication (IBC) is primarily focused on the human body itself. Although galvanic coupling IBC is less disturbed by external influences during signal transmission, there are inevitable factors in real measurement scenarios such as the parasitic impedance of electrodes, impedance matching of the transceiver, etc. which might lead to deviations between the human model and the in vivo measurements. This paper proposes a field-circuit finite element method (FEM) model of galvanic coupling IBC in a real measurement environment to estimate the human channel gain. First an anisotropic concentric cylinder model of the electric field intra-body communication for human limbs was developed based on the galvanic method. Then the electric field model was combined with several impedance elements, which were equivalent in terms of parasitic impedance of the electrodes, input and output impedance of the transceiver, establishing a field-circuit FEM model. The results indicated that a circuit module equivalent to external factors can be added to the field-circuit model, which makes this model more complete, and the estimations based on the proposed field-circuit are in better agreement with the corresponding measurement results.

  1. Direct-conversion flat-panel imager with avalanche gain: Feasibility investigation for HARP-AMFPI

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wronski, M. M.; Rowlands, J. A.

    2008-12-15

    The authors are investigating the concept of a direct-conversion flat-panel imager with avalanche gain for low-dose x-ray imaging. It consists of an amorphous selenium (a-Se) photoconductor partitioned into a thick drift region for x-ray-to-charge conversion and a relatively thin region called high-gain avalanche rushing photoconductor (HARP) in which the charge undergoes avalanche multiplication. An active matrix of thin film transistors is used to read out the electronic image. The authors call the proposed imager HARP active matrix flat panel imager (HARP-AMFPI). The key advantages of HARP-AMFPI are its high spatial resolution, owing to the direct-conversion a-Se layer, and its programmablemore » avalanche gain, which can be enabled during low dose fluoroscopy to overcome electronic noise and disabled during high dose radiography to prevent saturation of the detector elements. This article investigates key design considerations for HARP-AMFPI. The effects of electronic noise on the imaging performance of HARP-AMFPI were modeled theoretically and system parameters were optimized for radiography and fluoroscopy. The following imager properties were determined as a function of avalanche gain: (1) the spatial frequency dependent detective quantum efficiency; (2) fill factor; (3) dynamic range and linearity; and (4) gain nonuniformities resulting from electric field strength nonuniformities. The authors results showed that avalanche gains of 5 and 20 enable x-ray quantum noise limited performance throughout the entire exposure range in radiography and fluoroscopy, respectively. It was shown that HARP-AMFPI can provide the required gain while maintaining a 100% effective fill factor and a piecewise dynamic range over five orders of magnitude (10{sup -7}-10{sup -2} R/frame). The authors have also shown that imaging performance is not significantly affected by the following: electric field strength nonuniformities, avalanche noise for x-ray energies above 1 keV and

  2. Structured laser gain-medium by new bonding for power micro-laser

    NASA Astrophysics Data System (ADS)

    Kausas, Arvydas; Zheng, Lihe; Taira, Takunori

    2017-02-01

    In this work, we have compared the Q-switched performance of single rod crystal to a newly developed distributed face cooling structure. This structure was made by surface activated bonding technology and allowed to combine transparent heatsink to a gain crystal at room temperature. The Sapphire and Nd3+:YAG crystal plates were combined in this fashion to produce eight crystal chip which was further used to obtain Q-switch pulses with Cr4+:YAG crystal as saturable absorber. Energy of 9 mJ and pulse duration of 815 ps were achieved. Although the energy obtained with single rod system was 10 mJ, the degradation of the beam prevents such crystal to be used in further applications. This is the first demonstration of distributed face cooling system outperformed conventionally single rod system.

  3. The cost-effectiveness of CT-guided sacroiliac joint injections: a measure of QALY gained.

    PubMed

    Bydon, Mohamad; Macki, Mohamed; De la Garza-Ramos, Rafael; Youssef, Mina; Gokaslan, Ziya L; Meleka, Sherif; Bydon, Ali

    2014-10-01

    The purpose of this study is to estimate the total cost and the quality of life years (QALY) gained for computer tomography (CT)-guided sacroiliac joint (SIJ) injections. The cost per QALY gained for the procedure is the primary end-point of this study. In our 1-year prospective institutional study, we gathered 30 patients undergoing CT-guided SIJ injections for degenerative changes at the SIJ space. Patient-reported outcomes included both the US population-based EQ-5D (EuroQol) index score and the EQ-visual analog scale (VAS). The EQ-5D is based on mobility, self-care, usual activities, pain/discomfort, and anxiety depression. Utility expenditures were based on hospital charges at our institution. All 30 patients had one pre-injection physician visit followed by 43 initial injections (13 bilateral). Each patient underwent one CT scan, and three patients required additional plain films. In the 1 year following the injections, 26 physician visits were documented. Five patients required repeat CT-guided injections. Total 1-year cost for all 30 patients was $34 874·00. Mean decrease in EQ-VAS was 0·60 (P  =  0·187). The mean 1-year gain of 0·58 EQ-5D QALY reached statistical significance (P < 0·001). The cost per QALY gained by CT-guided sacroiliac injections was $2004·29. In one of the first cost analyses of CT-guided sacroiliac injections, we found that the procedure improves pain and activities of daily living. The cost per QALY gained by CT-guided sacroiliac injections falls well below the threshold cost of 1 QALY, suggesting that the procedure is strongly cost-effective.

  4. Electric conductivity for laboratory and field monitoring of induced partial saturation (IPS) in sands

    NASA Astrophysics Data System (ADS)

    Kazemiroodsari, Hadi

    Liquefaction is loss of shear strength in fully saturated loose sands caused by build-up of excess pore water pressure, during moderate to large earthquakes, leading to catastrophic failures of structures. Currently used liquefaction mitigation measures are often costly and cannot be applied at sites with existing structures. An innovative, practical, and cost effective liquefaction mitigation technique titled "Induced Partial Saturation" (IPS) was developed by researchers at Northeastern University. The IPS technique is based on injection of sodium percarbonate solution into fully saturated liquefaction susceptible sand. Sodium percarbonate dissolves in water and breaks down into sodium and carbonate ions and hydrogen peroxide which generates oxygen gas bubbles. Oxygen gas bubbles become trapped in sand pores and therefore decrease the degree of saturation of the sand, increase the compressibility of the soil, thus reduce its potential for liquefaction. The implementation of IPS required the development and validation of a monitoring and evaluation technique that would help ensure that the sands are indeed partially saturated. This dissertation focuses on this aspect of the IPS research. The monitoring system developed was based on using electric conductivity fundamentals and probes to detect the transport of chemical solution, calculate degree of saturation of sand, and determine the final zone of partial saturation created by IPS. To understand the fundamentals of electric conductivity, laboratory bench-top tests were conducted using electric conductivity probes and small specimens of Ottawa sand. Bench-top tests were used to study rate of generation of gas bubbles due to reaction of sodium percarbonate solution in sand, and to confirm a theory based on which degree of saturation were calculated. In addition to bench-top tests, electric conductivity probes were used in a relatively large sand specimen prepared in a specially manufactured glass tank. IPS was

  5. Nurse opinions and pulse oximeter saturation target limits for preterm infants.

    PubMed

    Nghiem, Tuyet-Hang; Hagadorn, James I; Terrin, Norma; Syke, Sally; MacKinnon, Brenda; Cole, Cynthia H

    2008-05-01

    The objectives of this study were to compare pulse oximeter saturation limits targeted by nurses for extremely preterm infants during routine care with nurse opinions regarding appropriate pulse oximeter saturation limits and with policy-specified pulse oximeter saturation limits and to identify factors that influence pulse oximeter saturation limits targeted by nurses. We surveyed nurses in US NICUs with neonatal-perinatal fellowships in 2004. Data collected included pulse oximeter saturation limits targeted by nurses and by NICU policy when present, nurses' opinions about appropriate pulse oximeter saturation limits, and NICU and nurse characteristics. Factors associated with pulse oximeter saturation limits targeted by nurses were identified with hierarchical linear modeling. Among those eligible, 2805 (45%) nurses in 59 (60%) NICUs responded. Forty (68%) of 59 NICUs had a policy that specified a pulse oximeter saturation target range for extremely preterm infants. Among 1957 nurses at NICUs with policies, 540 (28%) accurately identified the upper and lower limits of their NICU's policy and also targeted these values in practice. NICU-specific SDs for individual nurse target limits were less at NICUs with versus without a policy for both upper and lower limits. Hierarchical linear modeling identified presence of pulse oximeter saturation policy, NICU-specific nurse group opinion, and individual nurse opinion as factors significantly associated with individual pulse oximeter saturation target limits. For each percentage point increase in individual opinion upper limit, the individual target upper limit increased by 0.41 percentage point at NICUs with a policy compared with 0.6 percentage point at NICUs with no policy. Presence of policy-specified pulse oximeter saturation limits, nurse group opinion, and individual nurse opinion were independently associated with individual nurse pulse oximeter saturation target limits during routine care of extremely preterm

  6. Effective diffusion coefficients of DNAPL waste components in saturated low permeability soil materials.

    PubMed

    Ayral-Cinar, Derya; Demond, Avery H

    2017-12-01

    Diffusion is regarded as the dominant transport mechanism into and out of low permeable subsurface lenses and layers in the subsurface. But, some reports of mass storage in such zones are higher than what might be attributable to diffusion, based on estimated diffusion coefficients. Despite the importance of diffusion to efforts to estimate the quantity of residual contamination in the subsurface, relatively few studies present measured diffusion coefficients of organic solutes in saturated low permeability soils. This study reports the diffusion coefficients of a trichloroethylene (TCE), and an anionic surfactant, Aerosol OT (AOT), in water-saturated silt and a silt-montmorillonite (25:75) mixture, obtained using steady-state experiments. The relative diffusivity ranged from 0.11 to 0.17 for all three compounds for the silt and the silt-clay mixture that was allowed to expand. In the case in which the swelling was constrained, the relative diffusivity was about 0.07. In addition, the relative diffusivity of 13 C-labeled TCE through a water saturated silt-clay mixture that had contacted a field dense non-aqueous phase liquid (DNAPL) for 18months was measured and equaled 0.001. These experimental results were compared with the estimates generated using common correlations, and it was found that, in all cases, the measured diffusion coefficients were significantly lower than the estimated. Thus, the discrepancy between mass accumulations observed in the field and the mass storage that can attributable to diffusion may be greater than previously believed. Copyright © 2017. Published by Elsevier B.V.

  7. Consistent characterization of semiconductor saturable absorber mirrors with single-pulse and pump-probe spectroscopy.

    PubMed

    Fleischhaker, R; Krauss, N; Schättiger, F; Dekorsy, T

    2013-03-25

    We study the comparability of the two most important measurement methods used for the characterization of semiconductor saturable absorber mirrors (SESAMs). For both methods, single-pulse spectroscopy (SPS) and pump-probe spectroscopy (PPS), we analyze in detail the time-dependent saturation dynamics inside a SESAM. Based on this analysis, we find that fluence-dependent PPS at complete spatial overlap and zero time delay is equivalent to SPS. We confirm our findings experimentally by comparing data from SPS and PPS of two samples. We show how to interpret this data consistently and we give explanations for possible deviations.

  8. Low Gain Avalanche Detectors (LGAD) for particle physics and synchrotron applications

    NASA Astrophysics Data System (ADS)

    Moffat, N.; Bates, R.; Bullough, M.; Flores, L.; Maneuski, D.; Simon, L.; Tartoni, N.; Doherty, F.; Ashby, J.

    2018-03-01

    A new avalanche silicon detector concept is introduced with a low gain in the region of ten, known as a Low Gain Avalanche Detector, LGAD. The detector's characteristics are simulated via a full process simulation to obtain the required doping profiles which demonstrate the desired operational characteristics of high breakdown voltage (500 V) and a gain of 10 at 200 V reverse bias for X-ray detection. The first low gain avalanche detectors fabricated by Micron Semiconductor Ltd are presented. The doping profiles of the multiplication junctions were measured with SIMS and reproduced by simulating the full fabrication process which enabled further development of the manufacturing process. The detectors are 300 μm thick p-type silicon with a resistivity of 8.5 kΩcm, which fully depletes at 116 V. The current characteristics are presented and demonstrate breakdown voltages in excess of 500 V and a current density of 40 to 100 nAcm‑2 before breakdown measured at 20oC. The gain of the LGAD has been measured with a red laser (660 nm) and shown to be between 9 and 12 for an external bias voltage range from 150 V to 300 V.

  9. Transition to Turbulent Dynamo Saturation

    NASA Astrophysics Data System (ADS)

    Seshasayanan, Kannabiran; Gallet, Basile; Alexakis, Alexandros

    2017-11-01

    While the saturated magnetic energy is independent of viscosity in dynamo experiments, it remains viscosity dependent in state-of-the-art 3D direct numerical simulations (DNS). Extrapolating such viscous scaling laws to realistic parameter values leads to an underestimation of the magnetic energy by several orders of magnitude. The origin of this discrepancy is that fully 3D DNS cannot reach low enough values of the magnetic Prandtl number Pm. To bypass this limitation and investigate dynamo saturation at very low Pm, we focus on the vicinity of the dynamo threshold in a rapidly rotating flow: the velocity field then depends on two spatial coordinates only, while the magnetic field consists of a single Fourier mode in the third direction. We perform numerical simulations of the resulting set of reduced equations for Pm down to 2 ×10-5. This parameter regime is currently out of reach to fully 3D DNS. We show that the magnetic energy transitions from a high-Pm viscous scaling regime to a low-Pm turbulent scaling regime, the latter being independent of viscosity. The transition to the turbulent saturation regime occurs at a low value of the magnetic Prandtl number, Pm ≃10-3 , which explains why it has been overlooked by numerical studies so far.

  10. Transition to Turbulent Dynamo Saturation.

    PubMed

    Seshasayanan, Kannabiran; Gallet, Basile; Alexakis, Alexandros

    2017-11-17

    While the saturated magnetic energy is independent of viscosity in dynamo experiments, it remains viscosity dependent in state-of-the-art 3D direct numerical simulations (DNS). Extrapolating such viscous scaling laws to realistic parameter values leads to an underestimation of the magnetic energy by several orders of magnitude. The origin of this discrepancy is that fully 3D DNS cannot reach low enough values of the magnetic Prandtl number Pm. To bypass this limitation and investigate dynamo saturation at very low Pm, we focus on the vicinity of the dynamo threshold in a rapidly rotating flow: the velocity field then depends on two spatial coordinates only, while the magnetic field consists of a single Fourier mode in the third direction. We perform numerical simulations of the resulting set of reduced equations for Pm down to 2×10^{-5}. This parameter regime is currently out of reach to fully 3D DNS. We show that the magnetic energy transitions from a high-Pm viscous scaling regime to a low-Pm turbulent scaling regime, the latter being independent of viscosity. The transition to the turbulent saturation regime occurs at a low value of the magnetic Prandtl number, Pm≃10^{-3}, which explains why it has been overlooked by numerical studies so far.

  11. Damping effects of magnetic fluids of various saturation magnetization (abstract)

    NASA Astrophysics Data System (ADS)

    Chagnon, Mark

    1990-05-01

    Magnetic fluids have been widely accepted for use in loudspeaker voice coil gaps as viscous dampers and liquid coolants. When applied properly to a voice coil in manufacturing of the loudspeaker, dramatic improvement in frequency response and power handling is observed. Over the past decade, a great deal of study has been given to the effects of damping as a function of fluid viscosity. It is known that the apparent viscosity of a magnetic fluid increases as a function of applied magnetic field, and that the viscosity versus field relationship approximate that of the magnetization versus applied field. At applied magnetic field strength sufficient to cause magnetic saturation of the fluid, no further increase in viscosity with increased magnetic field is observed. In order to provide a better understanding of the second order magnetoviscous damping effects in magnetic fluids used in voice coils and to provide a better loudspeaker design criterion using magnetic fluids, we have studied the effect on damping of several magnetic fluids of the same O field viscosity and of varying saturation magnetization. Magnetic fluids with saturation magnetization ranging from 50 to 450 G and 100 cps viscosity at O applied field were injected into the voice coil gap of a standard midrange loudspeaker. The frequency response over the entire dynamic range of the speaker was measured. The changes in frequency response versus fluid magnetization are reported.

  12. Volatility and vapor saturation of pine resins

    Treesearch

    Richard H. Smith

    1963-01-01

    Volatility and vapor saturation were obtained for closed-faced collected resin of 10 pine species and 4 hybrids in California. Volatility ranged from 2 to 32 percent at 25°C., and from 14 to 36 percent at 100°C. Hybrids were usually less volatile than either parent. Vapor saturation ranged widely between species, from 2 to 20 mg. per 150 cc., but only...

  13. Oxygen saturation in optic nerve head structures by hyperspectral image analysis.

    PubMed

    Beach, James; Ning, Jinfeng; Khoobehi, Bahram

    2007-02-01

    A method is presented for the calculation and visualization of percent blood oxygen saturation from specific tissue structures in hyperspectral images of the optic nerve head (ONH). Trans-pupillary images of the primate optic nerve head and overlying retinal blood vessels were obtained with a hyperspectral imaging (HSI) system attached to a fundus camera. Images were recorded during normal blood flow and after partially interrupting flow to the ONH and retinal circulation by elevation of the intraocular pressure (IOP) from 10 mmHg to 55 mmHg in steps. Percent oxygen saturation was calculated from groups of pixels associated with separate tissue structures, using a linear least-squares curve fit of the recorded hemoglobin spectrum to reference spectra obtained from fully oxygenated and deoxygenated red cell suspensions. Color maps of saturation were obtained from a new algorithm that enables comparison of oxygen saturation from large vessels and tissue areas in hyperspectral images. Percent saturation in retinal vessels and from the average over ONH structures (IOP = 10 mmHg) was (mean +/- SE): artery 81.8 +/- 0.4%, vein 42.6 +/- 0.9%, average ONH 68.3 +/- 0.4%. Raising IOP from 10 mmHg to 55 mmHg for 5 min caused blood oxygen saturation to decrease (mean +/- SE): artery 46.1 +/- 6.2%, vein 36.1 +/- 1.6%, average ONH 41.9 +/- 1.6%. The temporal cup showed the highest saturation at low and high IOP (77.3 +/- 1.0% and 60.1 +/- 4.0%) and the least reduction in saturation at high IOP (22.3%) compared with that of the average ONH (38.6%). A linear relationship was found between saturation indices obtained from the algorithm and percent saturation values obtained by spectral curve fits to calibrated red cell samples. Percent oxygen saturation was determined from hyperspectral images of the ONH tissue and retinal vessels overlying the ONH at normal and elevated IOP. Pressure elevation was shown to reduce blood oxygen saturation in vessels and ONH structures, with the

  14. Aspect-dependent soil saturation and insight into debris-flow initiation during extreme rainfall in the Colorado Front Range

    USGS Publications Warehouse

    Ebel, Brian A.; Rengers, Francis K.; Tucker, Gregory E.

    2015-01-01

    Hydrologic processes during extreme rainfall events are poorly characterized because of the rarity of measurements. Improved understanding of hydrologic controls on natural hazards is needed because of the potential for substantial risk during extreme precipitation events. We present field measurements of the degree of soil saturation and estimates of available soil-water storage during the September 2013 Colorado extreme rainfall event at burned (wildfire in 2010) and unburned hillslopes with north- and south-facing slope aspects. Soil saturation was more strongly correlated with slope aspect than with recent fire history; south-facing hillslopes became fully saturated while north-facing hillslopes did not. Our results suggest multiple explanations for why aspect-dependent hydrologic controls favor saturation development on south-facing slopes, causing reductions in effective stress and triggering of slope failures during extreme rainfall. Aspect-dependent hydrologic behavior may result from (1) a larger gravel and stone fraction, and hence lower soil-water storage capacity, on south-facing slopes, and (2) lower weathered-bedrock permeability on south-facing slopes, because of lower tree density and associated deep roots penetrating bedrock as well as less intense weathering, inhibiting soil drainage.

  15. A demonstration experiment for studying the properties of saturated vapor

    NASA Astrophysics Data System (ADS)

    Grebenev, Igor V.; Lebedeva, Olga V.; Polushkina, Svetlana V.

    2017-11-01

    The paper proposes an important demonstration experiment that can be used at secondary schools in physics. The described experiment helps students learn the main concepts of the topic ‘saturated vapor’, namely, evaporation, condensation, dynamic equilibrium, saturation vapor, partial pressure, and the dependence of saturated vapor pressure on temperature.

  16. Derivation of sideband gain ratio for Herschel/HIFI

    NASA Astrophysics Data System (ADS)

    Kester, Do; Higgins, Ronan; Teyssier, David

    2017-03-01

    Context. Heterodyne mixers are commonly used for high-resolution spectroscopy at radio telescopes. When used as a double sideband system, the accurate flux calibration of spectral lines acquired by those detectors is highly dependent on the system gains in the respective mixer sidebands via the so-called sideband gain ratio (SBR). As such, the SBR was one of the main contributors to the calibration uncertainty budget of the Herschel/HIFI instrument. Aims: We want to determine the HIFI instrument sideband gain ratio for all bands on a fine frequency grid and within an accuracy of a few percent. Methods: We introduce a novel technique involving in-orbit HIFI data that is bootstrapped onto standard methods involving laboratory data measurements of the SBR. We deconvolved the astronomical data to provide a proxy of the expected signal at every frequency channel, and extracted the sideband gain ratios from the residuals of that process. Results: We determine the HIFI sideband gain ratio to an accuracy varying between 1 and 4%, with degraded accuracy in higher frequency ranges, and at places where the reliability of the technique is lower. These figures were incorporated into the HIFI data processing pipeline and improved the overall flux uncertainty of the legacy data from this instrument. Conclusions: We demonstrate that a modified sideband deconvolution algorithm, using astronomical data in combination with gas cell measurements, can be used to generate an accurate and fine-granularity picture of the sideband gain ratio behaviour of a heterodyne receiver. Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA.

  17. The triglyceride to high-density lipoprotein-cholesterol ratio in adolescence and subsequent weight gain predict nuclear magnetic resonance-measured lipoprotein subclasses in adulthood.

    PubMed

    Weiss, Ram; Otvos, James D; Sinnreich, Ronit; Miserez, Andre R; Kark, Jeremy D

    2011-01-01

    To assess whether the fasting triglyceride-to-high-density lipoprotein (HDL)-cholesterol (TG/HDL) ratio in adolescence is predictive of a proatherogenic lipid profile in adulthood. A longitudinal follow-up of 770 Israeli adolescents 16 to 17 years of age who participated in the Jerusalem Lipid Research Clinic study and were reevaluated 13 years later. Lipoprotein particle size was assessed at the follow-up with proton nuclear magnetic resonance. The TG/HDL ratio measured in adolescence was strongly associated with low-density lipoprotein, very low-density lipoprotein (VLDL), and HDL mean particle size in young adulthood in both sexes, even after adjustment for baseline body mass index and body mass index change. The TG/HDL ratio measured in adolescence and subsequent weight gain independently predicted atherogenic small low-density lipoprotein and large VLDL particle concentrations (P < .001 in both sexes). Baseline TG/HDL and weight gain interacted to increase large VLDL concentration in men (P < .001). Adolescents with an elevated TG/HDL ratio are prone to express a proatherogenic lipid profile in adulthood. This profile is additionally worsened by weight gain. Copyright © 2011 Mosby, Inc. All rights reserved.

  18. Weight Gain and Its Correlates Among Forensic Inpatients

    PubMed Central

    Hilton, N Zoe; Ham, Elke; Lang, Carol; Harris, Grant T

    2015-01-01

    Objective: We investigated changes in weight, body mass index (BMI), and other indices of the metabolic syndrome in forensic inpatients. Weight gain associated with newer antipsychotics (APs) is well established in the general psychiatric population. Methods: We examined the medical records of 291 men admitted to a forensic hospital at admission and again at discharge or 365 days later if still in hospital. We also recorded diagnosis and smoker status on admission and quantified psychotropic treatment and adherence, physical activity, and daytime occupation during the hospitalization. Results: On admission, 33% were obese and 22% of the 106 patients for whom sufficient data were available met criteria for metabolic syndrome. Among patients staying at least 30 days, 60% were weighed again before discharge but repeated blood pressure and waist circumference measures were uncommon, even among those at greatest risk. The 122 forensic inpatients with sufficient information gained an average of 12% of their body weight and 40% increased by at least 1 BMI category, gaining an average of 3.67 kg per month. Weight gain was associated with duration of time and was not attributable to being underweight on admission, diagnosis of schizophrenia, atypical AP treatment, medication adherence, or having been a smoker. Conclusions: Patients gained weight during forensic hospitalization independent of medication use. We recommend further research using consistent measurement and wider sampling of both metabolic syndrome indicators and its individual and systemic causes in forensic populations. PMID:26174527

  19. Useful optical density range in film dosimetry: limitations due to noise and saturation.

    PubMed

    González-López, Antonio

    2007-08-07

    The optical density (OD) range for the scanners used in film dosimetry is limited due to saturation and noise. As the OD increases, saturation causes the rate of change of the output with respect to the input to become smaller, while at the same time noise remains fairly constant or increases. The combined effect leads to a degradation of the signal-to-noise ratio (SNR) at high optical densities. In this study, the uncertainty in the OD measurement, d(m), is expressed as a function of the optical density d. The functional relationship obtained gives the amplitude w of an interval around d in which d(m) will be found with a given probability p. The relationship w = w(d, p) is later used to determine which OD ranges fulfil a set of requirements on w and p. As an application of the procedure, the noise and saturation characteristics of a commercial film digitizer system are measured. Their contribution to the uncertainties of the dosimetric procedure is reported, and the data are used to provide an optical density range for a given uncertainty and confidence level associated with the digitizer. These data can be further combined with the data from other sources of noise such as film noise in order to estimate the final uncertainty of the dosimetric process.

  20. Saturable inductor and transformer structures for magnetic pulse compression

    DOEpatents

    Birx, Daniel L.; Reginato, Louis L.

    1990-01-01

    Saturable inductor and transformer for magnetic compression of an electronic pulse, using a continuous electrical conductor looped several times around a tightly packed core of saturable inductor material.

  1. Investigations of the internal wave characteristics and saturation degree in the Earth's atmosphere by using radiosonde measurements of wind and temperature and their applications to the RO wave studies

    NASA Astrophysics Data System (ADS)

    Kirillovich, Ivan; Gubenko, Vladimir; Pavelyev, Alexander

    Internal gravity waves (IGWs) affect the structure and circulation of the Earth’s atmosphere by transporting energy and momentum upward from lower atmosphere. Observations of the temperature and wind velocity fluctuations in the middle atmosphere have shown that wave amplitudes grow with increasing altitude, however, no quickly enough in order to correspond to amplitude growth due to exponential decrease of density in the absence of energy dissipation. The theory of saturated IGWs explains such rate of the wave amplitude growth in the following way: any wave amplitude in excess of the threshold value will lead to instability and the production of turbulence that acts to prevent further growth of the wave amplitude. The mechanisms that contribute most to the dissipation and saturation of the dominant IGW motions in the atmosphere are thought to be the dynamical (shear) and convective instability. For high-frequency waves, the threshold amplitude required to achieve shear instability is virtually identical to that required for convective instability. But for low-frequency IGWs, the shear instability threshold falls well below that necessary for convective instability. The knowledge of actual and threshold wave amplitudes is important when the effect of IGWs on the background atmosphere is to be assessed. The internal wave saturation assumption plays the key role for radio occultation (RO) investigations of IGWs in planetary atmospheres [Gubenko et al., 2008, 2011, 2012], therefore a radiosonde study of wave saturation processes in the Earth’s atmosphere is actual task. The results of determination of the actual and threshold amplitudes, saturation degree and other characteristics for identified IGWs in the Earth’s atmosphere found from high-resolution radiosonde measurements SPARC (http://www.sparc.sunysb.edu/) of horizontal wind and temperature are presented. The usefulness of these observations in conjunction with RO studies of IGWs is discussed. The work was

  2. Gain affected by the interior shape of the ear canal.

    PubMed

    Yu, Jen-Fang; Chen, Yen-Sheng; Cheng, Wei-De

    2011-06-01

    This study investigated the correlation of gain distribution and the interior shape of the human external ear canal. Cross-sectional study of gain measurement at the first bend and second bend. Chang Gung Memorial Hospital and Chang Gung University. There were 15 ears in patients aged between 20 and 30 years (8 men/7 women) with normal hearing and middle ears. Stimulus frequencies of 500, 1000, 2000, 3000, and 4000 Hz were based on the standard clinical hearing test. Measurements closer to the tympanic membrane and the positions at the first and second bends were confirmed by using otoscope. Real ear measurement to analyze the canal resonance in human external ears was adopted. This study found that gain at stimulus frequencies of 4000 Hz was affected by the interior shape of the ear canal (P < .005), particularly at the first and second bends, whereas gain was only affected by the length of the ear canal for stimulus frequencies of 2000 Hz (P < .005). This study found that gain was affected not only by the length of the external auditory canal (EAC) but also by the interior shape of the EAC significantly. The findings of this study may have potential clinical applications in canalplasty and congenital aural atresia surgery and may be used to guide surgeries that attempt to reshape the ear canal to achieve more desirable hearing outcomes.

  3. VIIRS day-night band gain and offset determination and performance

    NASA Astrophysics Data System (ADS)

    Geis, J.; Florio, C.; Moyer, D.; Rausch, K.; De Luccia, F. J.

    2012-09-01

    On October 28th, 2011, the Visible-Infrared Imaging Radiometer Suite (VIIRS) was launched on-board the Suomi National Polar-orbiting Partnership (NPP) spacecraft. The instrument has 22 spectral bands: 14 reflective solar bands (RSB), 7 thermal emissive bands (TEB), and a Day Night Band (DNB). The DNB is a panchromatic, solar reflective band that provides visible through near infrared (IR) imagery of earth scenes with radiances spanning 7 orders of magnitude. In order to function over this large dynamic range, the DNB employs a focal plane array (FPA) consisting of three gain stages: the low gain stage (LGS), the medium gain stage (MGS), and the high gain stage (HGS). The final product generated from a DNB raw data record (RDR) is a radiance sensor data record (SDR). Generation of the SDR requires accurate knowledge of the dark offsets and gain coefficients for each DNB stage. These are measured on-orbit and stored in lookup tables (LUT) that are used during ground processing. This paper will discuss the details of the offset and gain measurement, data analysis methodologies, the operational LUT update process, and results to date including a first look at trending of these parameters over the early life of the instrument.

  4. Gas hydrate saturations estimated from fractured reservoir at Site NGHP-01-10, Krishna-Godavari Basin, India

    USGS Publications Warehouse

    Lee, M.W.; Collett, T.S.

    2009-01-01

    During the Indian National Gas Hydrate Program Expedition 01 (NGHP-Ol), one of the richest marine gas hydrate accumulations was discovered at Site NGHP-01-10 in the Krishna-Godavari Basin. The occurrence of concentrated gas hydrate at this site is primarily controlled by the presence of fractures. Assuming the resistivity of gas hydratebearing sediments is isotropic, th?? conventional Archie analysis using the logging while drilling resistivity log yields gas hydrate saturations greater than 50% (as high as ???80%) of the pore space for the depth interval between ???25 and ???160 m below seafloor. On the other hand, gas hydrate saturations estimated from pressure cores from nearby wells were less than ???26% of the pore space. Although intrasite variability may contribute to the difference, the primary cause of the saturation difference is attributed to the anisotropic nature of the reservoir due to gas hydrate in high-angle fractures. Archie's law can be used to estimate gas hydrate saturations in anisotropic reservoir, with additional information such as elastic velocities to constrain Archie cementation parameters m and the saturation exponent n. Theory indicates that m and n depend on the direction of the measurement relative to fracture orientation, as well as depending on gas hydrate saturation. By using higher values of m and n in the resistivity analysis for fractured reservoirs, the difference between saturation estimates is significantly reduced, although a sizable difference remains. To better understand the nature of fractured reservoirs, wireline P and S wave velocities were also incorporated into the analysis.

  5. Evaluation of stress and saturation effects on seismic velocity and electrical resistivity - laboratory testing of rock samples

    NASA Astrophysics Data System (ADS)

    Vilhelm, Jan; Jirků, Jaroslav; Slavík, Lubomír; Bárta, Jaroslav

    2016-04-01

    Repository, located in a deep geological formation, is today considered the most suitable solution for disposal of spent nuclear fuel and high-level waste. The geological formations, in combination with an engineered barrier system, should ensure isolation of the waste from the environment for thousands of years. For long-term monitoring of such underground excavations special monitoring systems are developed. In our research we developed and tested monitoring system based on repeated ultrasonic time of flight measurement and electrical resistivity tomography (ERT). As a test site Bedřichov gallery in the northern Bohemia was selected. This underground gallery in granitic rock was excavated using Tunnel Boring Machine (TBM). The seismic high-frequency measurements are performed by pulse-transmission technique directly on the rock wall using one seismic source and three receivers in the distances of 1, 2 and 3 m. The ERT measurement is performed also on the rock wall using 48 electrodes. The spacing between electrodes is 20 centimeters. An analysis of relation of seismic velocity and electrical resistivity on water saturation and stress state of the granitic rock is necessary for the interpretation of both seismic monitoring and ERT. Laboratory seismic and resistivity measurements were performed. One series of experiments was based on uniaxial loading of dry and saturated granitic samples. The relation between stress state and ultrasonic wave velocities was tested separately for dry and saturated rock samples. Other experiments were focused on the relation between electrical resistivity of the rock sample and its saturation level. Rock samples with different porosities were tested. Acknowledgments: This work was partially supported by the Technology Agency of the Czech Republic, project No. TA 0302408

  6. Cerebral oxygen saturation and peripheral perfusion in the extremely premature infant with intraventricular and/or pulmonary haemorrhage early in life.

    PubMed

    Beausoleil, Thierry P; Janaillac, Marie; Barrington, Keith J; Lapointe, Anie; Dehaes, Mathieu

    2018-04-25

    Extremely preterm infants are at higher risk of pulmonary (PH) and intraventricular (IVH) haemorrhage during the transitioning physiology due to immature cardiovascular system. Monitoring of haemodynamics can detect early abnormal circulation that may lead to these complications. We described time-frequency relationships between near infrared spectroscopy (NIRS) cerebral regional haemoglobin oxygen saturation (CrSO 2 ) and preductal peripheral perfusion index (PI), capillary oxygen saturation (SpO 2 ) and heart rate (HR) in extremely preterm infants in the first 72 h of life. Patients were sub-grouped in infants with PH and/or IVH (N H  = 8) and healthy controls (N C  = 11). Data were decomposed in wavelets allowing the analysis of localized variations of power. This approach allowed to quantify the percentage of time of significant cross-correlation, semblance, gain (transfer function) and coherence between signals. Ultra-low frequencies (<0.28 mHz) were analyzed as slow and prolonged periods of impaired circulation are considered more detrimental than transient fluctuations. Cross-correlation between CrSO 2 and oximetry (PI, SpO 2 and HR) as well as in-phase semblance and gain between CrSO 2 and HR were significantly lower while anti-phase semblance between CrSO 2 and HR was significantly higher in PH-IVH infants compared to controls. These differences may reflect haemodynamic instability associated with cerebrovascular autoregulation and hemorrhagic complications observed during the transitioning physiology.

  7. CCN and IN concentration measurements during the Antarctic Circumnavigation Expedition

    NASA Astrophysics Data System (ADS)

    Stratmann, F.; Henning, S.; Löffler, M.; Welti, A.; Hartmann, M.; Wernli, H.; Baccarini, A.; Schmale, J.

    2017-12-01

    Cloud condensation nuclei (CCN) and ice nuclei (IN) concentrations measured during the Antarctic Circumnavigation Expedition (ACE) within the Study of Preindustrial-like Aerosol-Climate Effects (SPACE) are presented. The measurements give a circumpolar transect through the Sub Antarctic Ocean, where existing measurements are scarce. ACE took place during the austral summer 2016/17 and included exploration of different environments from pristine open Ocean to Antarctic islands and the southernmost ports of the 3 surrounding continents. CCN concentrations are measured over the entire range of expected in-cloud supersaturations from 0.1 to 1% using a CCNc instrument from DMT. IN concentrations are determined from filter samples at water saturated conditions from -5°C to -25°C, covering common temperatures of mixed-phase cloud glaciation. The sensitivity of measured IN and CCN concentrations to meteorological parameters, activity of marine biology and location is assessed to gain insight into potential sources of CCN and IN. Back trajectory modelling is used to allocate regional variations to aerosol sources originating in the marine boundary layer or long-range transport. The gained datasets constrain CCN and IN concentrations in the marine boundary layer along the cruise track. The comprehensive set of parallel measured parameters during ACE allow to evaluate contributions of local ocean-surface sources versus long-range transport to Sub-Antarctic CCN and IN. The measurements can be used as input to climate models, e.g. pristine Sub Antarctic conditions can provide an approximation for a pre-industrial environment.

  8. Retinal oxygen saturation in Chinese adolescents.

    PubMed

    Liu, Xue; Wang, Shuang; Liu, Yi; Liu, Li Juan; Lv, Yan Yun; Tang, Ping; Jonas, Jost B; Xu, Liang

    2017-02-01

    To study the retinal oxygen saturation in normal eyes of Chinese adolescents. Performing retinal oximetry with the Oxymap T1 Retinal Oximeter in healthy children and adolescents (aged 5-18 years old), we measured the arterial (SaO 2 ) and venular (SvO 2 ) oxygen saturation and the arteriovenous difference in oxygen saturation (Sa-vO 2 ). The study included 122 individuals with a mean age of 13.0 ± 2.9 years (range: 5-18 years) and a mean refractive error of -3.25 ± 2.49 dioptres (range:-8.88 to +3.13 dioptres). Mean SaO 2 , SvO 2 and Sa-vO 2 was 85.5 ± 7.1%, 48.2 ± 5.5% and 37.3 ± 6.5%, respectively. Mean SaO 2 was significantly (p < 0.001) the lowest in the inferotemporal quadrant (79.1 ± 9.0%), followed by the superotemporal quadrant (83.4 ± 9.7%), the inferonasal quadrant (90.4 ± 10.6%) and the superonasal quadrant (93.4 ± 10.8%). In a similar manner, the values of the SvO 2 were the lowest (p < 0.001) in the inferotemporal quadrant (42.1 ± 8.3%), followed by the superotemporal quadrant (47.8 ± 7.2%), the inferonasal quadrant (52.3 ± 8.4%) and the superonasal quadrant (55.1 ± 7.6%). Arteriovenous difference in oxygen saturation (Sa-vO 2 ) did not differ significantly (all p > 0.05) between the fundus quadrants. In multiple linear regression analysis, SaO 2 increased (regression coefficient r 2  = 0.28) with older age (standardized regression coefficient β: 0.23; p = 0.01) and more myopic refractive error (β: -0.39; p < 0.001). Higher SvO 2 was significantly correlated with more myopic refractive error (β: -0.46; p < 0.001; r 2  = 0.20), while Sa-vO 2 increased significantly only with older age in the multivariate analysis (β: 0.26; p = 0.01; r 2  = 0.07). Our study provides normative data for Chinese children and adolescents who showed lower values than adults for SaO 2 and SvO 2 . SaO 2 increased with older age and higher myopic refractive error, SvO 2 increased with higher myopic refractive

  9. Associations Between Arterial Oxygen Saturation, Body Size and Limb Measurements Among High-Altitude Andean Children

    PubMed Central

    Pomeroy, Emma; Stock, Jay T; Stanojevic, Sanja; Miranda, J Jaime; Cole, Tim J; Wells, Jonathan CK

    2013-01-01

    Objectives The relative influences of hypoxia and other environmental stressors on growth at altitude remain unclear. Previous work demonstrated an association between peripheral arterial oxygen saturation (SpO2) and anthropometry (especially tibia length) among Tibetan and Han children at altitude. We investigated whether similar associations exist among Andeans, and the patterning of associations between SpO2 and anthropometry. Methods Stature, head-trunk height, total upper and lower limb lengths, zeugopod (ulna and tibia) and autopod (hand and foot) lengths were measured in Peruvian children (0.5–14 years) living at >3000 m altitude. SpO2 was measured by pulse oximetry. Anthropometry was converted to internal z scores. Correlation and multiple regression were used to examine associations between anthropometry z scores and SpO2, altitude, or SpO2 adjusted for altitude since altitude is a major determinant of variation in SpO2. Results SpO2 and altitude show weak, significant correlations with zeugopod length z scores and still weaker significant correlations with total upper and lower limb length z scores. Correlations with z scores for stature, head-trunk height, or autopod lengths are not significant. Adjusted for altitude, there is no significant association between anthropometry and SpO2. Conclusions Associations between SpO2 or altitude and total limb and zeugopod length z scores exist among Andean children. However, the relationships are relatively weak, and while the relationship between anthropometry and altitude may be partly mediated by SpO2, other factors that covary with altitude (e.g., socioeconomic status, health) are likely to influence anthropometry. The results support suggestions that zeugopod lengths are particularly sensitive to environmental stressors. Am. J. Hum. Biol., 25:629–636, 2013. © 2013 Wiley Periodicals, Inc. PMID:23904412

  10. Correlation of a Novel Noninvasive Tissue Oxygen Saturation Monitor to Serum Central Venous Oxygen Saturation in Pediatric Patients with Postoperative Congenital Cyanotic Heart Disease

    PubMed Central

    Yadlapati, Ajay; Grogan, Tristan; Elashoff, David; Kelly, Robert B.

    2013-01-01

    Abstract: Using a novel noninvasive, visible-light optical diffusion oximeter (T-Stat VLS Tissue Oximeter; Spectros Corporation, Portola Valley, CA) to measure the tissue oxygen saturation (StO2) of the buccal mucosa, the correlation between StO2 and central venous oxygen saturation (ScvO2) was examined in children with congenital cyanotic heart disease undergoing a cardiac surgical procedure. Paired StO2 and serum ScvO2 measurements were obtained postoperatively and statistically analyzed for agreement and association. Thirteen children (nine male) participated in the study (age range, 4 days to 18 months). Surgeries included Glenn shunt procedures, Norwood procedures, unifocalization procedures with Blalock-Taussig shunt placement, a Kawashima/Glenn shunt procedure, a Blalock-Taussig shunt placement, and a modified Norwood procedure. A total of 45 paired StO2-ScvO2 measurements was obtained. Linear regression demonstrated a Pearson’s correlation of .58 (95% confidence interval [CI], .35–.75; p < .0001). The regression slope coefficient estimate was .95 (95% CI, .54–1.36) with an interclass correlation coefficient of .48 (95% CI, .22–.68). Below a clinically relevant average ScvO2 value, a receiver operator characteristic analysis yielded an area under the curve of .78. Statistical methods to control for repeatedly measuring the same subjects produced similar results. This study shows a moderate relationship and agreement between StO2 and ScvO2 measurements in pediatric patients with a history of congenital cyanotic heart disease undergoing a cardiac surgical procedure. This real-time monitoring device can act as a valuable adjunct to standard noninvasive monitoring in which serum ScvO2 sampling currently assists in the diagnosis of low cardiac output after pediatric cardiac surgery. PMID:23691783

  11. Saturation of the Hosing Instability in Quasilinear Plasma Accelerators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lehe, R.; Schroeder, C. B.; Vay, J. -L.

    The beam hosing instability is analyzed theoretically for a witness beam in the quasilinear regime of plasma accelerators. In this regime, the hosing instability saturates, even for a monoenergetic bunch, at a level much less than standard scalings predict. Analytic expressions are derived for the saturation distance and amplitude and are in agreement with numerical results. Saturation is due to the natural head-to-tail variations in the focusing force, including the self-consistent transverse beam loading.

  12. Saturation of the Hosing Instability in Quasilinear Plasma Accelerators

    DOE PAGES

    Lehe, R.; Schroeder, C. B.; Vay, J. -L.; ...

    2017-12-13

    The beam hosing instability is analyzed theoretically for a witness beam in the quasilinear regime of plasma accelerators. In this regime, the hosing instability saturates, even for a monoenergetic bunch, at a level much less than standard scalings predict. Analytic expressions are derived for the saturation distance and amplitude and are in agreement with numerical results. Saturation is due to the natural head-to-tail variations in the focusing force, including the self-consistent transverse beam loading.

  13. Particle-sampling statistics in laser anemometers Sample-and-hold systems and saturable systems

    NASA Technical Reports Server (NTRS)

    Edwards, R. V.; Jensen, A. S.

    1983-01-01

    The effect of the data-processing system on the particle statistics obtained with laser anemometry of flows containing suspended particles is examined. Attention is given to the sample and hold processor, a pseudo-analog device which retains the last measurement until a new measurement is made, followed by time-averaging of the data. The second system considered features a dead time, i.e., a saturable system with a significant reset time with storage in a data buffer. It is noted that the saturable system operates independent of the particle arrival rate. The probabilities of a particle arrival in a given time period are calculated for both processing systems. It is shown that the system outputs are dependent on the mean particle flow rate, the flow correlation time, and the flow statistics, indicating that the particle density affects both systems. The results are significant for instances of good correlation between the particle density and velocity, such as occurs near the edge of a jet.

  14. Dynamics of cochlear nonlinearity: Automatic gain control or instantaneous damping?

    PubMed

    Altoè, Alessandro; Charaziak, Karolina K; Shera, Christopher A

    2017-12-01

    Measurements of basilar-membrane (BM) motion show that the compressive nonlinearity of cochlear mechanical responses is not an instantaneous phenomenon. For this reason, the cochlear amplifier has been thought to incorporate an automatic gain control (AGC) mechanism characterized by a finite reaction time. This paper studies the effect of instantaneous nonlinear damping on the responses of oscillatory systems. The principal results are that (i) instantaneous nonlinear damping produces a noninstantaneous gain control that differs markedly from typical AGC strategies; (ii) the kinetics of compressive nonlinearity implied by the finite reaction time of an AGC system appear inconsistent with the nonlinear dynamics measured on the gerbil basilar membrane; and (iii) conversely, those nonlinear dynamics can be reproduced using an harmonic oscillator with instantaneous nonlinear damping. Furthermore, existing cochlear models that include instantaneous gain-control mechanisms capture the principal kinetics of BM nonlinearity. Thus, an AGC system with finite reaction time appears neither necessary nor sufficient to explain nonlinear gain control in the cochlea.

  15. The Intrinsic Variability in the Water Vapor Saturation Ratio Due to Turbulence

    NASA Astrophysics Data System (ADS)

    Anderson, Jesse Charles

    The water vapor concentration plays an important role for many atmospheric processes. The mean concentration is key to understand water vapor's effect on the climate as a greenhouse gas. The fluctuations about the mean are important to understand heat fluxes between Earth's surface and the boundary layer. These fluctuations are linked to turbulence that is present in the boundary layer. Turbulent conditions are simulated in Michigan Tech's multiphase, turbulent reaction chamber, the pi chamber. Measurements for temperature and water vapor concentration were recorded under forced Rayleigh- Benard convection at several turbulent intensities. These were used to calculate the saturation ratio, often referred to as the relative humidity. The fluctuations in the water vapor concentration were found to be the more important than the temperature for the variability of the saturation ratio. The fluctuations in the saturation ratio result in some cloud droplets experiencing a higher supersaturation than other cloud droplets, causing those "lucky" droplets to grow at a faster rate than other droplets. This difference in growth rates could contribute to a broadening of the size distribution of cloud droplets, resulting in the enhancement of collision-coalescence. These fluctuations become more pronounced with more intense turbulence.

  16. Using boosted regression trees to predict the near-saturated hydraulic conductivity of undisturbed soils

    NASA Astrophysics Data System (ADS)

    Koestel, John; Bechtold, Michel; Jorda, Helena; Jarvis, Nicholas

    2015-04-01

    The saturated and near-saturated hydraulic conductivity of soil is of key importance for modelling water and solute fluxes in the vadose zone. Hydraulic conductivity measurements are cumbersome at the Darcy scale and practically impossible at larger scales where water and solute transport models are mostly applied. Hydraulic conductivity must therefore be estimated from proxy variables. Such pedotransfer functions are known to work decently well for e.g. water retention curves but rather poorly for near-saturated and saturated hydraulic conductivities. Recently, Weynants et al. (2009, Revisiting Vereecken pedotransfer functions: Introducing a closed-form hydraulic model. Vadose Zone Journal, 8, 86-95) reported a coefficients of determination of 0.25 (validation with an independent data set) for the saturated hydraulic conductivity from lab-measurements of Belgian soil samples. In our study, we trained boosted regression trees on a global meta-database containing tension-disk infiltrometer data (see Jarvis et al. 2013. Influence of soil, land use and climatic factors on the hydraulic conductivity of soil. Hydrology & Earth System Sciences, 17, 5185-5195) to predict the saturated hydraulic conductivity (Ks) and the conductivity at a tension of 10 cm (K10). We found coefficients of determination of 0.39 and 0.62 under a simple 10-fold cross-validation for Ks and K10. When carrying out the validation folded over the data-sources, i.e. the source publications, we found that the corresponding coefficients of determination reduced to 0.15 and 0.36, respectively. We conclude that the stricter source-wise cross-validation should be applied in future pedotransfer studies to prevent overly optimistic validation results. The boosted regression trees also allowed for an investigation of relevant predictors for estimating the near-saturated hydraulic conductivity. We found that land use and bulk density were most important to predict Ks. We also observed that Ks is large in fine

  17. Effect of body image on pregnancy weight gain.

    PubMed

    Mehta, Ushma J; Siega-Riz, Anna Maria; Herring, Amy H

    2011-04-01

    The majority of women gain more weight during pregnancy than what is recommended. Since gestational weight gain is related to short and long-term maternal health outcomes, it is important to identify women at greater risk of not adhering to guidelines. The objective of this study was to examine the relationship between body image and gestational weight gain. The Body Image Assessment for Obesity tool was used to measure ideal and current body sizes in 1,192 women participating in the Pregnancy, Infection and Nutrition Study. Descriptive and multivariable techniques were used to assess the effects of ideal body size and discrepancy score (current-ideal body sizes), which reflected the level of body dissatisfaction, on gestational weight gain. Women who preferred to be thinner had increased risk of excessive gain if they started the pregnancy at a BMI ≤26 kg/m(2) but a decreased risk if they were overweight or obese. Comparing those who preferred thin body silhouettes to those who preferred average size silhouettes, low income women had increased risk of inadequate weight gain [RR = 1.76 (1.08, 2.88)] while those with lower education were at risk of excessive gain [RR = 1.11 (1.00, 1.22)]. Our results revealed that body image was associated with gestational weight gain but the relationship is complex. Identifying factors that affect whether certain women are at greater risk of gaining outside of guidelines may improve our ability to decrease pregnancy-related health problems.

  18. Driver behavior and accident frequency in school zones: Assessing the impact of sign saturation.

    PubMed

    Strawderman, Lesley; Rahman, Md Mahmudur; Huang, Yunchen; Nandi, Apurba

    2015-09-01

    Based on the models of human information processing, if a driver observes too many of the same signs, he or she may no longer pay attention to those signs. In the case of school zones, this expected effect may lead to non-compliance to posted speeds, negatively impacting safety around nearby schools. This study aims to investigate the effect of the number of nearby school zones on driver behavior (vehicle speed and compliance) and accident frequency. As a measure of the density of school zones, this study introduced and defined a new term sign saturation and presented a methodology to calculate sign saturation for school zones. Results found a significant effect of sign saturation on vehicle speed, compliance, and accident frequency. This study also examined the speeding behavior in school zones for different time of the day and day of the week. Results found that speeding was more prevalent in the early mornings and during the weekends. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Atmospheric CH4 oxidation by Arctic permafrost and mineral cryosols as a function of water saturation and temperature.

    PubMed

    Stackhouse, B; Lau, M C Y; Vishnivetskaya, T; Burton, N; Wang, R; Southworth, A; Whyte, L; Onstott, T C

    2017-01-01

    The response of methanotrophic bacteria capable of oxidizing atmospheric CH 4 to climate warming is poorly understood, especially for those present in Arctic mineral cryosols. The atmospheric CH 4 oxidation rates were measured in microcosms incubated at 4 °C and 10 °C along a 1-m depth profile and over a range of water saturation conditions for mineral cryosols containing type I and type II methanotrophs from Axel Heiberg Island (AHI), Nunavut, Canada. The cryosols exhibited net consumption of ~2 ppmv CH 4 under all conditions, including during anaerobic incubations. Methane oxidation rates increased with temperature and decreased with increasing water saturation and depth, exhibiting the highest rates at 10 °C and 33% saturation at 5 cm depth (260 ± 60 pmol CH 4 gdw -1 d -1 ). Extrapolation of the CH 4 oxidation rates to the field yields net CH 4 uptake fluxes ranging from 11 to 73 μmol CH 4  m -2 d -1 , which are comparable to field measurements. Stable isotope mass balance indicates ~50% of the oxidized CH 4 is incorporated into the biomass regardless of temperature or saturation. Future atmospheric CH 4 uptake rates at AHI with increasing temperatures will be determined by the interplay of increasing CH 4 oxidation rates vs. water saturation and the depth to the water table during summer thaw. © 2016 John Wiley & Sons Ltd.

  20. Saturation measurement accuracy in clinical near-infrared cerebral oximeters with a 3D-printed channel array phantom

    NASA Astrophysics Data System (ADS)

    Afshari, Ali; Ghassemi, Pejhman; Halprin, Molly; Lin, Jonathan; Weininger, Sandy; Gandjbakhche, Amir H.; Wang, Jianting; Pfefer, Joshua

    2018-02-01

    Clinical cerebral oximeters based on near-infrared spectroscopy (NIRS) are a commonly used, non-invasive tool for intraoperative monitoring of hemoglobin saturation. Research to verify performance of cerebral oximeters in human subject trials has shown differences between commercially available devices. Test methods based on tissue-simulating phantoms have been proposed to augment clinical findings. While prior studies have focused on liquid phantoms, this work is aimed at developing methods based on solid polymer phantoms that are stable. Specifically, we have designed and fabricated a neonatal/pediatric head mimicking layered phantoms based on a 3D-printed cerebral matrix incorporating an array of vessel-simulating linear channels. Superficial layers incorporating homogeneous molded polydimethylsiloxane (PDMS) slabs were fabricated to represent CSF, scalp and skull regions. The cerebral matrix was filled with bovine blood desaturated with sodium dithionite to achieve oxygenation levels across the 40-90% range. Measurements were performed with a commercially available cerebral oximeter using two probes with different illumination-collection geometries, as designed for neonatal and pediatric patients. Reference measurements of samples were performed with a CO-oximeter before injection and after extraction. Results from applied cerebral oximeters indicate a strong sensitivity to the thickness of the superficial layer of the phantom. Better correlation with the reference CO-oximeter results were obtained in the superficial layer thickness of 0.8-2.5 mm range. Channel array phantoms with modular superficial layers represent a promising approach for performance testing of NIRS-based cerebral oximeters.