Sample records for gain-of-function mutational activation

  1. An update on gain-of-function mutations in primary immunodeficiency diseases.

    PubMed

    Jhamnani, Rekha D; Rosenzweig, Sergio D

    2017-12-01

    Most primary immunodeficiencies described since 1952 were associated with loss-of-function defects. With the advent and popularization of unbiased next-generation sequencing diagnostic approaches followed by functional validation techniques, many gain-of-function mutations leading to immunodeficiency have also been identified. This review highlights the updates on pathophysiology mechanisms and new therapeutic approaches involving primary immunodeficiencies because of gain-of-function mutations. The more recent developments related to gain-of-function primary immunodeficiencies mostly involving increased infection susceptibility but also immune dysregulation and autoimmunity, were reviewed. Updates regarding pathophysiology mechanisms, different mutation types, clinical features, laboratory markers, current and potential new treatments on patients with caspase recruitment domain family member 11, signal transducer and activator of transcription 1, signal transducer and activator of transcription 3, phosphatidylinositol-4,5-biphosphate 3-kinase catalytic 110, phosphatidylinositol-4,5-biphosphate 3-kinase regulatory subunit 1, chemokine C-X-C motif receptor 4, sterile α motif domain containing 9-like, and nuclear factor κ-B subunit 2 gain-of-function mutations are reviewed for each disease. With the identification of gain-of-function mutations as a cause of immunodeficiency, new genetic pathophysiology mechanisms unveiled and new-targeted therapeutic approaches can be explored as potential rescue treatments for these diseases.

  2. Phosphorylation of Mutationally Introduced Tyrosine in the Activation Loop of HER2 Confers Gain-of-Function Activity

    PubMed Central

    Hu, Zexi; Wan, Xiaobo; Hao, Rui; Zhang, Heng; Li, Li; Li, Lin; Xie, Qiang; Wang, Peng; Gao, Yibo; Chen, She; Wei, Min; Luan, Zhidong; Zhang, Aiqun; Huang, Niu; Chen, Liang

    2015-01-01

    Amplification, overexpression, and somatic mutation of the HER2 gene have been reported to play a critical role in tumorigenesis of various cancers. The HER2 H878Y mutation was recently reported in 11% of hepatocellular carcinoma (HCC) patients. However, its functional impact on the HER2 protein and its role in tumorigenesis has not been determined. Here, we show that HER2 H878Y is a gain-of-function mutation. Y878 represents a phosphorylation site, and phospho-Y878 interacts with R898 residue to stabilize the active conformation of HER2, thereby enhancing its kinase activity. H878Y mutant is transforming and the transformed cells are sensitive to HER2 kinase inhibitors. Thus, our study reveals the following novel mechanism underlying the tumorigenic function of the HER2 H878Y mutation: the introduction of a tyrosine residue into the kinase activation loop via mutagenesis modulates the conformation of the kinase, thereby enhancing its activity. PMID:25853726

  3. Characterization of phospholipase C gamma enzymes with gain-of-function mutations.

    PubMed

    Everett, Katy L; Bunney, Tom D; Yoon, Youngdae; Rodrigues-Lima, Fernando; Harris, Richard; Driscoll, Paul C; Abe, Koichiro; Fuchs, Helmut; de Angelis, Martin Hrabé; Yu, Philipp; Cho, Wohnwa; Katan, Matilda

    2009-08-21

    Phospholipase C gamma isozymes (PLC gamma 1 and PLC gamma 2) have a crucial role in the regulation of a variety of cellular functions. Both enzymes have also been implicated in signaling events underlying aberrant cellular responses. Using N-ethyl-N-nitrosourea (ENU) mutagenesis, we have recently identified single point mutations in murine PLC gamma 2 that lead to spontaneous inflammation and autoimmunity. Here we describe further, mechanistic characterization of two gain-of-function mutations, D993G and Y495C, designated as ALI5 and ALI14. The residue Asp-993, mutated in ALI5, is a conserved residue in the catalytic domain of PLC enzymes. Analysis of PLC gamma 1 and PLC gamma 2 with point mutations of this residue showed that removal of the negative charge enhanced PLC activity in response to EGF stimulation or activation by Rac. Measurements of PLC activity in vitro and analysis of membrane binding have suggested that ALI5-type mutations facilitate membrane interactions without compromising substrate binding and hydrolysis. The residue mutated in ALI14 (Tyr-495) is within the spPH domain. Replacement of this residue had no effect on folding of the domain and enhanced Rac activation of PLC gamma 2 without increasing Rac binding. Importantly, the activation of the ALI14-PLC gamma 2 and corresponding PLC gamma 1 variants was enhanced in response to EGF stimulation and bypassed the requirement for phosphorylation of critical tyrosine residues. ALI5- and ALI14-type mutations affected basal activity only slightly; however, their combination resulted in a constitutively active PLC. Based on these data, we suggest that each mutation could compromise auto-inhibition in the inactive PLC, facilitating the activation process; in addition, ALI5-type mutations could enhance membrane interaction in the activated state.

  4. Early-onset lymphoproliferation and autoimmunity caused by germline STAT3 gain-of-function mutations

    PubMed Central

    Vogel, Tiphanie P.; Forbes, Lisa; Ma, Chi A.; Stray-Pedersen, Asbjørg; Niemela, Julie E.; Lyons, Jonathan J.; Engelhardt, Karin R.; Zhang, Yu; Topcagic, Nermina; Roberson, Elisha D. O.; Matthews, Helen; Verbsky, James W.; Dasu, Trivikram; Vargas-Hernandez, Alexander; Varghese, Nidhy; McClain, Kenneth L.; Karam, Lina B.; Nahmod, Karen; Makedonas, George; Mace, Emily M.; Sorte, Hanne S.; Perminow, Gøri; Rao, V. Koneti; O’Connell, Michael P.; Price, Susan; Su, Helen C.; Butrick, Morgan; McElwee, Joshua; Hughes, Jason D.; Willet, Joseph; Swan, David; Xu, Yaobo; Santibanez-Koref, Mauro; Slowik, Voytek; Dinwiddie, Darrell L.; Ciaccio, Christina E.; Saunders, Carol J.; Septer, Seth; Kingsmore, Stephen F.; White, Andrew J.; Cant, Andrew J.; Hambleton, Sophie

    2015-01-01

    Germline loss-of-function mutations in the transcription factor signal transducer and activator of transcription 3 (STAT3) cause immunodeficiency, whereas somatic gain-of-function mutations in STAT3 are associated with large granular lymphocytic leukemic, myelodysplastic syndrome, and aplastic anemia. Recently, germline mutations in STAT3 have also been associated with autoimmune disease. Here, we report on 13 individuals from 10 families with lymphoproliferation and early-onset solid-organ autoimmunity associated with 9 different germline heterozygous mutations in STAT3. Patients exhibited a variety of clinical features, with most having lymphadenopathy, autoimmune cytopenias, multiorgan autoimmunity (lung, gastrointestinal, hepatic, and/or endocrine dysfunction), infections, and short stature. Functional analyses demonstrate that these mutations confer a gain-of-function in STAT3 leading to secondary defects in STAT5 and STAT1 phosphorylation and the regulatory T-cell compartment. Treatment targeting a cytokine pathway that signals through STAT3 led to clinical improvement in 1 patient, suggesting a potential therapeutic option for such patients. These results suggest that there is a broad range of autoimmunity caused by germline STAT3 gain-of-function mutations, and that hematologic autoimmunity is a major component of this newly described disorder. Some patients for this study were enrolled in a trial registered at www.clinicaltrials.gov as #NCT00001350. PMID:25359994

  5. Novel signal transducer and activator of transcription 1 mutation disrupts small ubiquitin-related modifier conjugation causing gain of function.

    PubMed

    Sampaio, Elizabeth P; Ding, Li; Rose, Stacey R; Cruz, Phillip; Hsu, Amy P; Kashyap, Anuj; Rosen, Lindsey B; Smelkinson, Margery; Tavella, Tatyana A; Ferre, Elise M N; Wierman, Meredith K; Zerbe, Christa S; Lionakis, Michail S; Holland, Steven M

    2018-05-01

    Sumoylation is a posttranslational reversible modification of cellular proteins through the conjugation of small ubiquitin-related modifier (SUMO) and comprises an important regulator of protein function. We sought to characterize the molecular mechanism of a novel mutation at the SUMO motif on signal transducer and activator of transcription 1 (STAT1). STAT1 sequencing and functional characterization were performed in transfection experiments by using immunoblotting and immunoprecipitation in STAT1-deficient cell lines. Transcriptional response and target gene activation were also investigated in PBMCs. We identified a novel STAT1 mutation (c.2114A>T, p.E705V) within the SUMO motif ( 702 IKTE 705 ) in a patient with disseminated Rhodococcus species infection, Norwegian scabies, chronic mucocutaneous candidiasis, hypothyroidism, and esophageal squamous cell carcinoma. The mutation is located in the tail segment and is predicted to disrupt STAT1 sumoylation. Immunoprecipitation experiments performed in transfected cells confirmed absent STAT1 sumoylation for E705V, whereas it was present in wild-type (WT) STAT1 cells, as well as the loss-of-function mutants L706S and Y701C. Furthermore, stimulation with IFN-γ led to enhanced STAT1 phosphorylation, enhanced transcriptional activity, and target gene expression in the E705V-transfected compared with WT-transfected cells. Computer modeling of WT and mutant STAT1 molecules showed variations in the accessibility of the phosphorylation site Y701, which corresponded to the loss-of-function and gain-of-function variants. This is the first report of a mutation in the STAT1 sumoylation motif associated with clinical disease. These data reinforce sumoylation as a key posttranslational regulatory modification of STAT1 and identify a novel mechanism for gain-of-function STAT1 disease in human subjects. Copyright © 2017 American Academy of Allergy, Asthma & Immunology. All rights reserved.

  6. Gain-of-function mutations in interleukin-7 receptor-α (IL7R) in childhood acute lymphoblastic leukemias

    PubMed Central

    Shochat, Chen; Tal, Noa; Bandapalli, Obul R.; Palmi, Chiara; Ganmore, Ithamar; te Kronnie, Geertruy; Cario, Gunnar; Cazzaniga, Giovanni; Kulozik, Andreas E.; Stanulla, Martin; Schrappe, Martin; Biondi, Andrea; Basso, Giuseppe; Bercovich, Dani; Muckenthaler, Martina U.

    2011-01-01

    Interleukin-7 receptor α (IL7R) is required for normal lymphoid development. Loss-of-function mutations in this gene cause autosomal recessive severe combined immune deficiency. Here, we describe somatic gain-of-function mutations in IL7R in pediatric B and T acute lymphoblastic leukemias. The mutations cause either a serine-to-cysteine substitution at amino acid 185 in the extracellular domain (4 patients) or in-frame insertions and deletions in the transmembrane domain (35 patients). In B cell precursor leukemias, the mutations were associated with the aberrant expression of cytokine receptor-like factor 2 (CRLF2), and the mutant IL-7R proteins formed a functional receptor with CRLF2 for thymic stromal lymphopoietin (TSLP). Biochemical and functional assays reveal that these IL7R mutations are activating mutations conferring cytokine-independent growth of progenitor lymphoid cells. A cysteine, included in all but three of the mutated IL-7R alleles, is essential for the constitutive activation of the receptor. This is the first demonstration of gain-of-function mutations of IL7R. Our current and recent observations of mutations in IL7R and CRLF2, respectively suggest that the addition of cysteine to the juxtamembranous domains is a general mechanism for mutational activation of type I cytokine receptors in leukemia. PMID:21536738

  7. Gain-of-function STAT1 mutations impair STAT3 activity in patients with chronic mucocutaneous candidiasis (CMC).

    PubMed

    Zheng, Jie; van de Veerdonk, Frank L; Crossland, Katherine L; Smeekens, Sanne P; Chan, Chun M; Al Shehri, Tariq; Abinun, Mario; Gennery, Andrew R; Mann, Jelena; Lendrem, Dennis W; Netea, Mihai G; Rowan, Andrew D; Lilic, Desa

    2015-10-01

    Signal transducer and activator of transcription 3 (STAT3) triggered production of Th-17 cytokines mediates protective immunity against fungi. Mutations affecting the STAT3/interleukin 17 (IL-17) pathway cause selective susceptibility to fungal (Candida) infections, a hallmark of chronic mucocutaneous candidiasis (CMC). In patients with autosomal dominant CMC, we and others previously reported defective Th17 responses and underlying gain-of-function (GOF) STAT1 mutations, but how this affects STAT3 function leading to decreased IL-17 is unclear. We also assessed how GOF-STAT1 mutations affect STAT3 activation, DNA binding, gene expression, cytokine production, and epigenetic modifications. We excluded impaired STAT3 phosphorylation, nuclear translocation, and sequestration of STAT3 into STAT1/STAT3 heterodimers and confirm significantly reduced transcription of STAT3-inducible genes (RORC/IL-17/IL-22/IL-10/c-Fos/SOCS3/c-Myc) as likely underlying mechanism. STAT binding to the high affinity sis-inducible element was intact but binding to an endogenous STAT3 DNA target was impaired. Reduced STAT3-dependent gene transcription was reversed by inhibiting STAT1 activation with fludarabine or enhancing histone, but not STAT1 or STAT3 acetylation with histone deacetylase (HDAC) inhibitors trichostatin A or ITF2357. Silencing HDAC1, HDAC2, and HDAC3 indicated a role for HDAC1 and 2. Reduced STAT3-dependent gene transcription underlies low Th-17 responses in GOF-STAT1 CMC, which can be reversed by inhibiting acetylation, offering novel targets for future therapies. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Gain-of-function mutations in the gene encoding the tyrosine phosphatase SHP2 induce hydrocephalus in a catalytically dependent manner.

    PubMed

    Zheng, Hong; Yu, Wen-Mei; Waclaw, Ronald R; Kontaridis, Maria I; Neel, Benjamin G; Qu, Cheng-Kui

    2018-03-20

    Catalytically activating mutations in Ptpn11 , which encodes the protein tyrosine phosphatase SHP2, cause 50% of Noonan syndrome (NS) cases, whereas inactivating mutations in Ptpn11 are responsible for nearly all cases of the similar, but distinct, developmental disorder Noonan syndrome with multiple lentigines (NSML; formerly called LEOPARD syndrome). However, both types of disease mutations are gain-of-function mutations because they cause SHP2 to constitutively adopt an open conformation. We found that the catalytic activity of SHP2 was required for the pathogenic effects of gain-of-function, disease-associated mutations on the development of hydrocephalus in the mouse. Targeted pan-neuronal knockin of a Ptpn11 allele encoding the active SHP2 E76K mutant resulted in hydrocephalus due to aberrant development of ependymal cells and their cilia. These pathogenic effects of the E76K mutation were suppressed by the additional mutation C459S, which abolished the catalytic activity of SHP2. Moreover, ependymal cells in NSML mice bearing the inactive SHP2 mutant Y279C were also unaffected. Mechanistically, the SHP2 E76K mutant induced developmental defects in ependymal cells by enhancing dephosphorylation and inhibition of the transcription activator STAT3. Whereas STAT3 activity was reduced in Ptpn11 E76K/+ cells, the activities of the kinases ERK and AKT were enhanced, and neural cell-specific Stat3 knockout mice also manifested developmental defects in ependymal cells and cilia. These genetic and biochemical data demonstrate a catalytic-dependent role of SHP2 gain-of-function disease mutants in the pathogenesis of hydrocephalus. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  9. A phosphatase-independent gain-of-function mutation in PTEN triggers aberrant cell growth in astrocytes through an autocrine IGF-1 loop.

    PubMed

    Fernández, S; Genis, L; Torres-Alemán, I

    2014-08-07

    Loss-of-function mutations in the phosphatase PTEN (phosphatase and tensin homolog deleted on chromosome10) contribute to aberrant cell growth in part through upregulation of the mitogenic IGF-1/PI3K/Akt pathway. In turn, this pathway exerts a homeostatic feedback over PTEN. Using mutagenesis analysis to explore a possible impact of this mutual control on astrocyte growth, we found that truncation of the C-terminal region of PTEN (Δ51) associates with a marked increase in NFκB activity, a transcription factor overactivated in astrocyte tumors. Whereas mutations of PTEN are considered to lead to a loss-of-function, PTENΔ51, a truncation that comprises a region frequently mutated in human gliomas, displayed a neomorphic (gain-of-function) activity that was independent of its phosphatase activity. This gain-of-function of PTENΔ51 includes stimulation of IGF-1 synthesis through protein kinase A activation of the IGF-1 promoter. Increased IGF-1 originates an autocrine loop that activates Akt and NFκB. Constitutive activation of NFκB in PTENΔ51-expressing astrocytes leads to aberrant cell growth; astrocytes expressing this mutant PTEN generate colonies in vitro and tumors in vivo. Mutations converting a tumor suppressor such as PTEN into a tumor promoter through a gain-of-function involving IGF-1 production may further our understanding of the role played by this growth factor in glioma growth and help us define druggable targets for personalized therapy.

  10. Gain-of-function human STAT1 mutations impair IL-17 immunity and underlie chronic mucocutaneous candidiasis.

    PubMed

    Liu, Luyan; Okada, Satoshi; Kong, Xiao-Fei; Kreins, Alexandra Y; Cypowyj, Sophie; Abhyankar, Avinash; Toubiana, Julie; Itan, Yuval; Audry, Magali; Nitschke, Patrick; Masson, Cécile; Toth, Beata; Flatot, Jérome; Migaud, Mélanie; Chrabieh, Maya; Kochetkov, Tatiana; Bolze, Alexandre; Borghesi, Alessandro; Toulon, Antoine; Hiller, Julia; Eyerich, Stefanie; Eyerich, Kilian; Gulácsy, Vera; Chernyshova, Ludmyla; Chernyshov, Viktor; Bondarenko, Anastasia; Grimaldo, Rosa María Cortés; Blancas-Galicia, Lizbeth; Beas, Ileana Maria Madrigal; Roesler, Joachim; Magdorf, Klaus; Engelhard, Dan; Thumerelle, Caroline; Burgel, Pierre-Régis; Hoernes, Miriam; Drexel, Barbara; Seger, Reinhard; Kusuma, Theresia; Jansson, Annette F; Sawalle-Belohradsky, Julie; Belohradsky, Bernd; Jouanguy, Emmanuelle; Bustamante, Jacinta; Bué, Mélanie; Karin, Nathan; Wildbaum, Gizi; Bodemer, Christine; Lortholary, Olivier; Fischer, Alain; Blanche, Stéphane; Al-Muhsen, Saleh; Reichenbach, Janine; Kobayashi, Masao; Rosales, Francisco Espinosa; Lozano, Carlos Torres; Kilic, Sara Sebnem; Oleastro, Matias; Etzioni, Amos; Traidl-Hoffmann, Claudia; Renner, Ellen D; Abel, Laurent; Picard, Capucine; Maródi, László; Boisson-Dupuis, Stéphanie; Puel, Anne; Casanova, Jean-Laurent

    2011-08-01

    Chronic mucocutaneous candidiasis disease (CMCD) may be caused by autosomal dominant (AD) IL-17F deficiency or autosomal recessive (AR) IL-17RA deficiency. Here, using whole-exome sequencing, we identified heterozygous germline mutations in STAT1 in 47 patients from 20 kindreds with AD CMCD. Previously described heterozygous STAT1 mutant alleles are loss-of-function and cause AD predisposition to mycobacterial disease caused by impaired STAT1-dependent cellular responses to IFN-γ. Other loss-of-function STAT1 alleles cause AR predisposition to intracellular bacterial and viral diseases, caused by impaired STAT1-dependent responses to IFN-α/β, IFN-γ, IFN-λ, and IL-27. In contrast, the 12 AD CMCD-inducing STAT1 mutant alleles described here are gain-of-function and increase STAT1-dependent cellular responses to these cytokines, and to cytokines that predominantly activate STAT3, such as IL-6 and IL-21. All of these mutations affect the coiled-coil domain and impair the nuclear dephosphorylation of activated STAT1, accounting for their gain-of-function and dominance. Stronger cellular responses to the STAT1-dependent IL-17 inhibitors IFN-α/β, IFN-γ, and IL-27, and stronger STAT1 activation in response to the STAT3-dependent IL-17 inducers IL-6 and IL-21, hinder the development of T cells producing IL-17A, IL-17F, and IL-22. Gain-of-function STAT1 alleles therefore cause AD CMCD by impairing IL-17 immunity.

  11. Molecular Basis of Gain-of-Function LEOPARD Syndrome-Associated SHP2 Mutations

    PubMed Central

    2015-01-01

    The Src homology 2 (SH2) domain-containing protein tyrosine phosphatase 2 (SHP2) is a critical signal transducer downstream of growth factors that promotes the activation of the RAS-ERK1/2 cascade. In its basal state, SHP2 exists in an autoinhibited closed conformation because of an intramolecular interaction between its N-SH2 and protein tyrosine phosphatase (PTP) domains. Binding to pTyr ligands present on growth factor receptors and adaptor proteins with its N-SH2 domain localizes SHP2 to its substrates and frees the active site from allosteric inhibition. Germline mutations in SHP2 are known to cause both Noonan syndrome (NS) and LEOPARD syndrome (LS), two clinically similar autosomal dominant developmental disorders. NS-associated SHP2 mutants display elevated phosphatase activity, while LS-associated SHP2 mutants exhibit reduced catalytic activity. A conundrum in how clinically similar diseases result from mutations to SHP2 that have opposite effects on this enzyme’s catalytic functionality exists. Here we report a comprehensive investigation of the kinetic, structural, dynamic, and biochemical signaling properties of the wild type as well as all reported LS-associated SHP2 mutants. The results reveal that LS-causing mutations not only affect SHP2 phosphatase activity but also induce a weakening of the intramolecular interaction between the N-SH2 and PTP domains, leading to mutants that are more readily activated by competing pTyr ligands. Our data also indicate that the residual phosphatase activity associated with the LS SHP2 mutant is required for enhanced ERK1/2 activation. Consequently, catalytically impaired SHP2 mutants could display gain-of-function properties because of their ability to localize to the vicinity of substrates for longer periods of time, thereby affording the opportunity for prolonged substrate turnover and sustained RAS-ERK1/2 activation. PMID:24935154

  12. A case of gain-of-function mutation in calcium-sensing receptor: supplemental hydration is required for renal protection.

    PubMed

    Suzuki, M; Aso, T; Sato, T; Michimata, M; Kazama, I; Saiki, H; Hatano, R; Ejima, Y; Miyama, N; Sato, A; Matsubara, M

    2005-06-01

    The calcium-sensing receptor (CaSR) regulates the extracellular calcium level, mainly by controlling parathyroid hormon secretion and renal calcium reabsorption. In gain-of-function CaSR mutations, the genetic abnormalities increase CaSR activity leading to the development of such clinical manifestations as hypercalciuric hypocalcemia and hypoparathyroidism. We report a Japanese case of CaSR gain-of-function mutation and represent a therapeutic intervention based on the functional characteristics of CaSR in renal tubule. DNA sequence analysis revealed a heterozygous G to T mutation identified in a 12-year-old Japanese girl presenting with sporadic onset of hypercalciuric hypocalcemia and hypoparathyroidism. The mutation is located in the N-terminal extracellular domain of the CaSR gene, one of the most important parts for the three-dimensional construction of the receptor, resulting in the substitution of phenylalanine for cysteine at amino acid 131 (C131F) in exon 3. Based on the diagnosis of the gain-of-function mutation in the CaSR, oral hydrochlorothiazide administration and supplemental hydration were started in addition to calcium supplementation. The combination therapy of thiazide and supplemental hydration markedly reduced both renal calcium excretion and urinary calcium concentration from 0.4-0.7 to less than 0.1 mg/mg (urinary calcium/creatinine ratio) and from 10-15 to 3-5 mg/dl (urinary calcium concentration), respectively. This therapy stopped the progression of renal calcification during the follow-up period. Supplemental hydration should be considered essential for the following reasons: (1) calcium supplementation activates the CaSR in the kidney and suppresses renal urinary concentrating ability, (2) the thiazide has a diuretic effect, (3) as calcium supplementation increases renal calcium excretion, the supplemental hydration decreases urinary calcium concentration by increasing urinary volume, thereby diminishing the risk of intratubular

  13. Gain-of-function human STAT1 mutations impair IL-17 immunity and underlie chronic mucocutaneous candidiasis

    PubMed Central

    Liu, Luyan; Okada, Satoshi; Kong, Xiao-Fei; Kreins, Alexandra Y.; Cypowyj, Sophie; Abhyankar, Avinash; Toubiana, Julie; Itan, Yuval; Audry, Magali; Nitschke, Patrick; Masson, Cécile; Toth, Beata; Flatot, Jérome; Migaud, Mélanie; Chrabieh, Maya; Kochetkov, Tatiana; Bolze, Alexandre; Borghesi, Alessandro; Toulon, Antoine; Hiller, Julia; Eyerich, Stefanie; Eyerich, Kilian; Gulácsy, Vera; Chernyshova, Ludmyla; Chernyshov, Viktor; Bondarenko, Anastasia; María Cortés Grimaldo, Rosa; Blancas-Galicia, Lizbeth; Madrigal Beas, Ileana Maria; Roesler, Joachim; Magdorf, Klaus; Engelhard, Dan; Thumerelle, Caroline; Burgel, Pierre-Régis; Hoernes, Miriam; Drexel, Barbara; Seger, Reinhard; Kusuma, Theresia; Jansson, Annette F.; Sawalle-Belohradsky, Julie; Belohradsky, Bernd; Jouanguy, Emmanuelle; Bustamante, Jacinta; Bué, Mélanie; Karin, Nathan; Wildbaum, Gizi; Bodemer, Christine; Lortholary, Olivier; Fischer, Alain; Blanche, Stéphane; Al-Muhsen, Saleh; Reichenbach, Janine; Kobayashi, Masao; Rosales, Francisco Espinosa; Lozano, Carlos Torres; Kilic, Sara Sebnem; Oleastro, Matias; Etzioni, Amos; Traidl-Hoffmann, Claudia; Renner, Ellen D.; Abel, Laurent; Picard, Capucine; Maródi, László; Boisson-Dupuis, Stéphanie

    2011-01-01

    Chronic mucocutaneous candidiasis disease (CMCD) may be caused by autosomal dominant (AD) IL-17F deficiency or autosomal recessive (AR) IL-17RA deficiency. Here, using whole-exome sequencing, we identified heterozygous germline mutations in STAT1 in 47 patients from 20 kindreds with AD CMCD. Previously described heterozygous STAT1 mutant alleles are loss-of-function and cause AD predisposition to mycobacterial disease caused by impaired STAT1-dependent cellular responses to IFN-γ. Other loss-of-function STAT1 alleles cause AR predisposition to intracellular bacterial and viral diseases, caused by impaired STAT1-dependent responses to IFN-α/β, IFN-γ, IFN-λ, and IL-27. In contrast, the 12 AD CMCD-inducing STAT1 mutant alleles described here are gain-of-function and increase STAT1-dependent cellular responses to these cytokines, and to cytokines that predominantly activate STAT3, such as IL-6 and IL-21. All of these mutations affect the coiled-coil domain and impair the nuclear dephosphorylation of activated STAT1, accounting for their gain-of-function and dominance. Stronger cellular responses to the STAT1-dependent IL-17 inhibitors IFN-α/β, IFN-γ, and IL-27, and stronger STAT1 activation in response to the STAT3-dependent IL-17 inducers IL-6 and IL-21, hinder the development of T cells producing IL-17A, IL-17F, and IL-22. Gain-of-function STAT1 alleles therefore cause AD CMCD by impairing IL-17 immunity. PMID:21727188

  14. p53 mutations promote proteasomal activity.

    PubMed

    Oren, Moshe; Kotler, Eran

    2016-07-27

    p53 mutations occur very frequently in human cancer. Besides abrogating the tumour suppressive functions of wild-type p53, many of those mutations also acquire oncogenic gain-of-function activities. Augmentation of proteasome activity is now reported as a common gain-of-function mechanism shared by different p53 mutants, which promotes cancer resistance to proteasome inhibitors.

  15. Recurrent gain-of-function USP8 mutations in Cushing's disease

    PubMed Central

    Ma, Zeng-Yi; Song, Zhi-Jian; Chen, Jian-Hua; Wang, Yong-Fei; Li, Shi-Qi; Zhou, Liang-Fu; Mao, Ying; Li, Yi-Ming; Hu, Rong-Gui; Zhang, Zhao-Yun; Ye, Hong-Ying; Shen, Ming; Shou, Xue-Fei; Li, Zhi-Qiang; Peng, Hong; Wang, Qing-Zhong; Zhou, Dai-Zhan; Qin, Xiao-Lan; Ji, Jue; Zheng, Jie; Chen, Hong; Wang, Yin; Geng, Dao-Ying; Tang, Wei-Jun; Fu, Chao-Wei; Shi, Zhi-Feng; Zhang, Yi-Chao; Ye, Zhao; He, Wen-Qiang; Zhang, Qi-Lin; Tang, Qi-Sheng; Xie, Rong; Shen, Jia-Wei; Wen, Zu-Jia; Zhou, Juan; Wang, Tao; Huang, Shan; Qiu, Hui-Jia; Qiao, Ni-Dan; Zhang, Yi; Pan, Li; Bao, Wei-Min; Liu, Ying-Chao; Huang, Chuan-Xin; Shi, Yong-Yong; Zhao, Yao

    2015-01-01

    Cushing's disease, also known as adrenocorticotropic hormone (ACTH)-secreting pituitary adenomas (PAs) that cause excess cortisol production, accounts for up to 85% of corticotrophin-dependent Cushing's syndrome cases. However, the genetic alterations in this disease are unclear. Here, we performed whole-exome sequencing of DNA derived from 12 ACTH-secreting PAs and matched blood samples, which revealed three types of somatic mutations in a candidate gene, USP8 (encoding ubiquitin-specific protease 8), exclusively in exon 14 in 8 of 12 ACTH-secreting PAs. We further evaluated somatic USP8 mutations in additional 258 PAs by Sanger sequencing. Targeted sequencing further identified a total of 17 types of USP8 variants in 67 of 108 ACTH-secreting PAs (62.04%). However, none of these mutations was detected in other types of PAs (n = 150). These mutations aggregate within the 14-3-3 binding motif of USP8 and disrupt the interaction between USP8 and 14-3-3 protein, resulting in an elevated capacity to protect EGFR from lysosomal degradation. Accordingly, PAs with mutated USP8 display a higher incidence of EGFR expression, elevated EGFR protein abundance and mRNA expression levels of POMC, which encodes the precursor of ACTH. PAs with mutated USP8 are significantly smaller in size and have higher ACTH production than wild-type PAs. In surgically resected primary USP8-mutated tumor cells, USP8 knockdown or blocking EGFR effectively attenuates ACTH secretion. Taken together, somatic gain-of-function USP8 mutations are common and contribute to ACTH overproduction in Cushing's disease. Inhibition of USP8 or EGFR is promising for treating USP8-mutated corticotrophin adenoma. Our study highlights the potentially functional mutated gene in Cushing's disease and provides insights into the therapeutics of this disease. PMID:25675982

  16. Mutations in repeating structural motifs of tropomyosin cause gain of function in skeletal muscle myopathy patients

    PubMed Central

    Marston, Steven; Memo, Massimiliano; Messer, Andrew; Papadaki, Maria; Nowak, Kristen; McNamara, Elyshia; Ong, Royston; El-Mezgueldi, Mohammed; Li, Xiaochuan; Lehman, William

    2013-01-01

    The congenital myopathies include a wide spectrum of clinically, histologically and genetically variable neuromuscular disorders many of which are caused by mutations in genes for sarcomeric proteins. Some congenital myopathy patients have a hypercontractile phenotype. Recent functional studies demonstrated that ACTA1 K326N and TPM2 ΔK7 mutations were associated with hypercontractility that could be explained by increased myofibrillar Ca2+ sensitivity. A recent structure of the complex of actin and tropomyosin in the relaxed state showed that both these mutations are located in the actin–tropomyosin interface. Tropomyosin is an elongated molecule with a 7-fold repeated motif of around 40 amino acids corresponding to the 7 actin monomers it interacts with. Actin binds to tropomyosin electrostatically at two points, through Asp25 and through a cluster of amino acids that includes Lys326, mutated in the gain-of-function mutation. Asp25 interacts with tropomyosin K6, next to K7 that was mutated in the other gain-of-function mutation. We identified four tropomyosin motifs interacting with Asp25 (K6-K7, K48-K49, R90-R91 and R167-K168) and three E-E/D-K/R motifs interacting with Lys326 (E139, E181 and E218), and we predicted that the known skeletal myopathy mutations ΔK7, ΔK49, R91G, ΔE139, K168E and E181K would cause a gain of function. Tests by an in vitro motility assay confirmed that these mutations increased Ca2+ sensitivity, while mutations not in these motifs (R167H, R244G) decreased Ca2+ sensitivity. The work reported here explains the molecular mechanism for 6 out of 49 known disease-causing mutations in the TPM2 and TPM3 genes, derived from structural data of the actin–tropomyosin interface. PMID:23886664

  17. Gain-of-function mutations in SCN11A cause familial episodic pain.

    PubMed

    Zhang, Xiang Yang; Wen, Jingmin; Yang, Wei; Wang, Cheng; Gao, Luna; Zheng, Liang Hong; Wang, Tao; Ran, Kaikai; Li, Yulei; Li, Xiangyang; Xu, Ming; Luo, Junyu; Feng, Shenglei; Ma, Xixiang; Ma, Hongying; Chai, Zuying; Zhou, Zhuan; Yao, Jing; Zhang, Xue; Liu, Jing Yu

    2013-11-07

    Many ion channel genes have been associated with human genetic pain disorders. Here we report two large Chinese families with autosomal-dominant episodic pain. We performed a genome-wide linkage scan with microsatellite markers after excluding mutations in three known genes (SCN9A, SCN10A, and TRPA1) that cause similar pain syndrome to our findings, and we mapped the genetic locus to a 7.81 Mb region on chromosome 3p22.3-p21.32. By using whole-exome sequencing followed by conventional Sanger sequencing, we identified two missense mutations in the gene encoding voltage-gated sodium channel Nav1.9 (SCN11A): c.673C>T (p.Arg225Cys) and c.2423C>G (p.Ala808Gly) (one in each family). Each mutation showed a perfect cosegregation with the pain phenotype in the corresponding family, and neither of them was detected in 1,021 normal individuals. Both missense mutations were predicted to change a highly conserved amino acid residue of the human Nav1.9 channel. We expressed the two SCN11A mutants in mouse dorsal root ganglion (DRG) neurons and showed that both mutations enhanced the channel's electrical activities and induced hyperexcitablity of DRG neurons. Taken together, our results suggest that gain-of-function mutations in SCN11A can be causative of an autosomal-dominant episodic pain disorder. Copyright © 2013 The American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.

  18. Gain-of-Function Mutations in SCN11A Cause Familial Episodic Pain

    PubMed Central

    Zhang, Xiang Yang; Wen, Jingmin; Yang, Wei; Wang, Cheng; Gao, Luna; Zheng, Liang Hong; Wang, Tao; Ran, Kaikai; Li, Yulei; Li, Xiangyang; Xu, Ming; Luo, Junyu; Feng, Shenglei; Ma, Xixiang; Ma, Hongying; Chai, Zuying; Zhou, Zhuan; Yao, Jing; Zhang, Xue; Liu, Jing Yu

    2013-01-01

    Many ion channel genes have been associated with human genetic pain disorders. Here we report two large Chinese families with autosomal-dominant episodic pain. We performed a genome-wide linkage scan with microsatellite markers after excluding mutations in three known genes (SCN9A, SCN10A, and TRPA1) that cause similar pain syndrome to our findings, and we mapped the genetic locus to a 7.81 Mb region on chromosome 3p22.3–p21.32. By using whole-exome sequencing followed by conventional Sanger sequencing, we identified two missense mutations in the gene encoding voltage-gated sodium channel Nav1.9 (SCN11A): c.673C>T (p.Arg225Cys) and c.2423C>G (p.Ala808Gly) (one in each family). Each mutation showed a perfect cosegregation with the pain phenotype in the corresponding family, and neither of them was detected in 1,021 normal individuals. Both missense mutations were predicted to change a highly conserved amino acid residue of the human Nav1.9 channel. We expressed the two SCN11A mutants in mouse dorsal root ganglion (DRG) neurons and showed that both mutations enhanced the channel’s electrical activities and induced hyperexcitablity of DRG neurons. Taken together, our results suggest that gain-of-function mutations in SCN11A can be causative of an autosomal-dominant episodic pain disorder. PMID:24207120

  19. Gain-of-function KCNJ6 Mutation in a Severe Hyperkinetic Movement Disorder Phenotype.

    PubMed

    Horvath, Gabriella A; Zhao, Yulin; Tarailo-Graovac, Maja; Boelman, Cyrus; Gill, Harinder; Shyr, Casper; Lee, James; Blydt-Hansen, Ingrid; Drögemöller, Britt I; Moreland, Jacqueline; Ross, Colin J; Wasserman, Wyeth W; Masotti, Andrea; Slesinger, Paul A; van Karnebeek, Clara D M

    2018-05-29

    Here, we describe a fourth case of a human with a de novo KCNJ6 (GIRK2) mutation, who presented with clinical findings of severe hyperkinetic movement disorder and developmental delay, similar to the Keppen-Lubinsky syndrome but without lipodystrophy. Whole-exome sequencing of the patient's DNA revealed a heterozygous de novo variant in the KCNJ6 (c.512T>G, p.Leu171Arg). We conducted in vitro functional studies to determine if this Leu-to-Arg mutation alters the function of GIRK2 channels. Heterologous expression of the mutant GIRK2 channel alone produced an aberrant basal inward current that lacked G protein activation, lost K + selectivity and gained Ca 2+ permeability. Notably, the inward current was inhibited by the Na + channel blocker QX-314, similar to the previously reported weaver mutation in murine GIRK2. Expression of a tandem dimer containing GIRK1 and GIRK2(p.Leu171Arg) did not lead to any currents, suggesting heterotetramers are not functional. In neurons expressing p.Leu171Arg GIRK2 channels, these changes in channel properties would be expected to generate a sustained depolarization, instead of the normal G protein-gated inhibitory response, which could be mitigated by expression of other GIRK subunits. The identification of the p.Leu171Arg GIRK2 mutation potentially expands the Keppen-Lubinsky syndrome phenotype to include severe dystonia and ballismus. Our study suggests screening for dominant KCNJ6 mutations in the evaluation of patients with severe movement disorders, which could provide evidence to support a causal role of KCNJ6 in neurological channelopathies. Copyright © 2018. Published by Elsevier Ltd.

  20. Normal hematopoiesis and lack of β-catenin activation in osteoblasts of patients and mice harboring Lrp5 gain-of-function mutations.

    PubMed

    Galán-Díez, Marta; Isa, Adiba; Ponzetti, Marco; Nielsen, Morten Frost; Kassem, Moustapha; Kousteni, Stavroula

    2016-03-01

    Osteoblasts are emerging regulators of myeloid malignancies since genetic alterations in them, such as constitutive activation of β-catenin, instigate their appearance. The LDL receptor-related protein 5 (LRP5), initially proposed to be a co-receptor for Wnt proteins, in fact favors bone formation by suppressing gut-serotonin synthesis. This function of Lrp5 occurring in the gut is independent of β-catenin activation in osteoblasts. However, it is unknown whether Lrp5 can act directly in osteoblast to influence other functions that require β-catenin signaling, particularly, the deregulation of hematopoiesis and leukemogenic properties of β-catenin activation in osteoblasts, that lead to development of acute myeloid leukemia (AML). Using mice with gain-of-function (GOF) Lrp5 alleles (Lrp5(A214V)) that recapitulate the human high bone mass (HBM) phenotype, as well as patients with the T253I HBM Lrp5 mutation, we show here that Lrp5 GOF mutations in both humans and mice do not activate β-catenin signaling in osteoblasts. Consistent with a lack of β-catenin activation in their osteoblasts, Lrp5(A214V) mice have normal trilinear hematopoiesis. In contrast to leukemic mice with constitutive activation of β-catenin in osteoblasts (Ctnnb1(CAosb)), accumulation of early myeloid progenitors, a characteristic of AML, myeloid-blasts in blood, and segmented neutrophils or dysplastic megakaryocytes in the bone marrow, are not observed in Lrp5(A214V) mice. Likewise, peripheral blood count analysis in HBM patients showed normal hematopoiesis, normal percentage of myeloid cells, and lack of anemia. We conclude that Lrp5 GOF mutations do not activate β-catenin signaling in osteoblasts. As a result, myeloid lineage differentiation is normal in HBM patients and mice. This article is part of a Special Issue entitled: Tumor Microenvironment Regulation of Cancer Cell Survival, Metastasis, Inflammation, and Immune Surveillance edited by Peter Ruvolo and Gregg L. Semenza. Published

  1. FOXC2 disease-mutations identified in lymphedema-distichiasis patients cause both loss and gain of protein function

    PubMed Central

    Tavian, Daniela; Missaglia, Sara; Maltese, Paolo E.; Michelini, Sandro; Fiorentino, Alessandro; Ricci, Maurizio; Serrani, Roberta; Walter, Michael A.; Bertelli, Matteo

    2016-01-01

    Dominant mutations in the FOXC2 gene cause a form of lymphedema primarily of the limbs that usually develops at or after puberty. In 90-95% of patients, lymphedema is accompanied by distichiasis. FOXC2 is a member of the forkhead/winged-helix family of transcription factors and plays essential roles in different developmental pathways and physiological processes. We previously described six unrelated families with primary lymphedema-distichiasis in which patients showed different FOXC2 mutations located outside of the forkhead domain. Of those, four were missense mutations, one a frameshift mutation, and the last a stop mutation. To assess their pathogenic potential, we have now examined the subcellular localization and the transactivation activity of the mutated FOXC2 proteins. All six FOXC2 mutant proteins were able to localize into the nucleus; however, the frameshift truncated protein appeared to be sequestered into nuclear aggregates. A reduction in the ability to activate FOXC1/FOXC2 response elements was detected in 50% of mutations, while the remaining ones caused an increase of protein transactivation activity. Our data reveal that either a complete loss or a significant gain of FOXC2 function can cause a perturbation of lymphatic vessel formation leading to lymphedema. PMID:27276711

  2. Gain-of-Function Mutations in RIT1 Cause Noonan Syndrome, a RAS/MAPK Pathway Syndrome

    PubMed Central

    Aoki, Yoko; Niihori, Tetsuya; Banjo, Toshihiro; Okamoto, Nobuhiko; Mizuno, Seiji; Kurosawa, Kenji; Ogata, Tsutomu; Takada, Fumio; Yano, Michihiro; Ando, Toru; Hoshika, Tadataka; Barnett, Christopher; Ohashi, Hirofumi; Kawame, Hiroshi; Hasegawa, Tomonobu; Okutani, Takahiro; Nagashima, Tatsuo; Hasegawa, Satoshi; Funayama, Ryo; Nagashima, Takeshi; Nakayama, Keiko; Inoue, Shin-ichi; Watanabe, Yusuke; Ogura, Toshihiko; Matsubara, Yoichi

    2013-01-01

    RAS GTPases mediate a wide variety of cellular functions, including cell proliferation, survival, and differentiation. Recent studies have revealed that germline mutations and mosaicism for classical RAS mutations, including those in HRAS, KRAS, and NRAS, cause a wide spectrum of genetic disorders. These include Noonan syndrome and related disorders (RAS/mitogen-activated protein kinase [RAS/MAPK] pathway syndromes, or RASopathies), nevus sebaceous, and Schimmelpenning syndrome. In the present study, we identified a total of nine missense, nonsynonymous mutations in RIT1, encoding a member of the RAS subfamily, in 17 of 180 individuals (9%) with Noonan syndrome or a related condition but with no detectable mutations in known Noonan-related genes. Clinical manifestations in the RIT1-mutation-positive individuals are consistent with those of Noonan syndrome, which is characterized by distinctive facial features, short stature, and congenital heart defects. Seventy percent of mutation-positive individuals presented with hypertrophic cardiomyopathy; this frequency is high relative to the overall 20% incidence in individuals with Noonan syndrome. Luciferase assays in NIH 3T3 cells showed that five RIT1 alterations identified in children with Noonan syndrome enhanced ELK1 transactivation. The introduction of mRNAs of mutant RIT1 into 1-cell-stage zebrafish embryos was found to result in a significant increase of embryos with craniofacial abnormalities, incomplete looping, a hypoplastic chamber in the heart, and an elongated yolk sac. These results demonstrate that gain-of-function mutations in RIT1 cause Noonan syndrome and show a similar biological effect to mutations in other RASopathy-related genes. PMID:23791108

  3. Cancer-associated ASXL1 mutations may act as gain-of-function mutations of the ASXL1–BAP1 complex

    PubMed Central

    Balasubramani, Anand; Larjo, Antti; Bassein, Jed A.; Chang, Xing; Hastie, Ryan B.; Togher, Susan M.; Lähdesmäki, Harri; Rao, Anjana

    2015-01-01

    ASXL1 is the obligate regulatory subunit of a deubiquitinase complex whose catalytic subunit is BAP1. Heterozygous mutations of ASXL1 that result in premature truncations are frequent in myeloid leukemias and Bohring–Opitz syndrome. Here we demonstrate that ASXL1 truncations confer enhanced activity on the ASXL1–BAP1 complex. Stable expression of truncated, hyperactive ASXL1–BAP1 complexes in a haematopoietic precursor cell line results in global erasure of H2AK119Ub, striking depletion of H3K27me3, selective upregulation of a subset of genes whose promoters are marked by both H2AK119Ub and H3K4me3, and spontaneous differentiation to the mast cell lineage. These outcomes require the catalytic activity of BAP1, indicating that they are downstream consequences of H2AK119Ub erasure. In bone marrow precursors, expression of truncated ASXL1–BAP1 complex cooperates with TET2 loss-of-function to increase differentiation to the myeloid lineage in vivo. Our data raise the possibility that ASXL1 truncation mutations confer gain-of-function on the ASXL–BAP1 complex. PMID:26095772

  4. Somatic gain-of-function mutations in PIK3CA in patients with macrodactyly.

    PubMed

    Rios, Jonathan J; Paria, Nandina; Burns, Dennis K; Israel, Bonnie A; Cornelia, Reuel; Wise, Carol A; Ezaki, Marybeth

    2013-02-01

    Macrodactyly is a discrete congenital anomaly consisting of enlargement of all tissues localized to the terminal portions of a limb, typically within a 'nerve territory'. The classic terminology for this condition is 'lipofibromatous hamartoma of nerve' or Type I macrodactyly. The peripheral nerve, itself, is enlarged both in circumference and in length. It is not related to neurofibromatosis (NF1), nor is it associated with vascular malformations, such as in the recently reported CLOVES syndrome. The specific nerve pathophysiology in this form of macrodactyly has not been well described and a genetic etiology for this specific form of enlargement is unknown. To identify the genetic cause of macrodactyly, we used whole-exome sequencing to identify somatic mutations present in the affected nerve of a single patient. We confirmed a novel mutation in PIK3CA (R115P) present in the patient's affected nerve tissue but not in blood DNA. Sequencing PIK3CA exons identified gain-of-function mutations (E542K, H1047L or H1047R) in the affected tissue of five additional unrelated patients; mutations were absent in blood DNA available from three patients. Immunocytochemistry confirmed AKT activation in cultured cells from the nerve of a macrodactyly patient. Additionally, we found that the most abnormal structure within the involved nerve in a macrodactylous digit is the perineurium, with additional secondary effects on the axon number and size. Thus, isolated congenital macrodactyly is caused by somatic activation of the PI3K/AKT cell-signaling pathway and is genetically and biochemically related to other overgrowth syndromes.

  5. Gain-of-function mutations in RIT1 cause Noonan syndrome, a RAS/MAPK pathway syndrome.

    PubMed

    Aoki, Yoko; Niihori, Tetsuya; Banjo, Toshihiro; Okamoto, Nobuhiko; Mizuno, Seiji; Kurosawa, Kenji; Ogata, Tsutomu; Takada, Fumio; Yano, Michihiro; Ando, Toru; Hoshika, Tadataka; Barnett, Christopher; Ohashi, Hirofumi; Kawame, Hiroshi; Hasegawa, Tomonobu; Okutani, Takahiro; Nagashima, Tatsuo; Hasegawa, Satoshi; Funayama, Ryo; Nagashima, Takeshi; Nakayama, Keiko; Inoue, Shin-Ichi; Watanabe, Yusuke; Ogura, Toshihiko; Matsubara, Yoichi

    2013-07-11

    RAS GTPases mediate a wide variety of cellular functions, including cell proliferation, survival, and differentiation. Recent studies have revealed that germline mutations and mosaicism for classical RAS mutations, including those in HRAS, KRAS, and NRAS, cause a wide spectrum of genetic disorders. These include Noonan syndrome and related disorders (RAS/mitogen-activated protein kinase [RAS/MAPK] pathway syndromes, or RASopathies), nevus sebaceous, and Schimmelpenning syndrome. In the present study, we identified a total of nine missense, nonsynonymous mutations in RIT1, encoding a member of the RAS subfamily, in 17 of 180 individuals (9%) with Noonan syndrome or a related condition but with no detectable mutations in known Noonan-related genes. Clinical manifestations in the RIT1-mutation-positive individuals are consistent with those of Noonan syndrome, which is characterized by distinctive facial features, short stature, and congenital heart defects. Seventy percent of mutation-positive individuals presented with hypertrophic cardiomyopathy; this frequency is high relative to the overall 20% incidence in individuals with Noonan syndrome. Luciferase assays in NIH 3T3 cells showed that five RIT1 alterations identified in children with Noonan syndrome enhanced ELK1 transactivation. The introduction of mRNAs of mutant RIT1 into 1-cell-stage zebrafish embryos was found to result in a significant increase of embryos with craniofacial abnormalities, incomplete looping, a hypoplastic chamber in the heart, and an elongated yolk sac. These results demonstrate that gain-of-function mutations in RIT1 cause Noonan syndrome and show a similar biological effect to mutations in other RASopathy-related genes. Copyright © 2013 The American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.

  6. Gain of Function Mutations of PIK3CD as a Cause of Primary Sclerosing Cholangitis.

    PubMed

    Hartman, Heather N; Niemela, Julie; Hintermeyer, Mary K; Garofalo, Mary; Stoddard, Jennifer; Verbsky, James W; Rosenzweig, Sergio D; Routes, John M

    2015-01-01

    Gain of function (GOF) mutation in the p110δ catalytic subunit of the phosphatidylinositol-3-OH kinase (PIK3CD) is the cause of a primary immunodeficiency (PID) characterized by recurrent sinopulmonary infections and lymphoproliferation. We describe a family of two adults and three children with GOF mutation in PIK3CD, all with recurrent sinopulmonary infections and varied infectious and non-infectious complications. The two adults have Primary Sclerosing Cholangitis (PSC) without evidence of Cryptosporidium parvum infection and have required liver transplantation. PSC is a novel phenotype of GOF mutation in PIK3CD.

  7. Somatic gain-of-function mutations in PIK3CA in patients with macrodactyly

    PubMed Central

    Rios, Jonathan J.; Paria, Nandina; Burns, Dennis K.; Israel, Bonnie A.; Cornelia, Reuel; Wise, Carol A.; Ezaki, Marybeth

    2013-01-01

    Macrodactyly is a discrete congenital anomaly consisting of enlargement of all tissues localized to the terminal portions of a limb, typically within a ‘nerve territory’. The classic terminology for this condition is ‘lipofibromatous hamartoma of nerve’ or Type I macrodactyly. The peripheral nerve, itself, is enlarged both in circumference and in length. It is not related to neurofibromatosis (NF1), nor is it associated with vascular malformations, such as in the recently reported CLOVES syndrome. The specific nerve pathophysiology in this form of macrodactyly has not been well described and a genetic etiology for this specific form of enlargement is unknown. To identify the genetic cause of macrodactyly, we used whole-exome sequencing to identify somatic mutations present in the affected nerve of a single patient. We confirmed a novel mutation in PIK3CA (R115P) present in the patient's affected nerve tissue but not in blood DNA. Sequencing PIK3CA exons identified gain-of-function mutations (E542K, H1047L or H1047R) in the affected tissue of five additional unrelated patients; mutations were absent in blood DNA available from three patients. Immunocytochemistry confirmed AKT activation in cultured cells from the nerve of a macrodactyly patient. Additionally, we found that the most abnormal structure within the involved nerve in a macrodactylous digit is the perineurium, with additional secondary effects on the axon number and size. Thus, isolated congenital macrodactyly is caused by somatic activation of the PI3K/AKT cell-signaling pathway and is genetically and biochemically related to other overgrowth syndromes. PMID:23100325

  8. Gain-of-Function R225W Mutation in Human AMPKγ3 Causing Increased Glycogen and Decreased Triglyceride in Skeletal Muscle

    PubMed Central

    Ahituv, Nadav; Chaudhry, Shehla N.; Schackwitz, Wendy S.; Dent, Robert; Pennacchio, Len A.

    2007-01-01

    Background AMP-activated protein kinase (AMPK) is a heterotrimeric enzyme that is evolutionarily conserved from yeast to mammals and functions to maintain cellular and whole body energy homeostasis. Studies in experimental animals demonstrate that activation of AMPK in skeletal muscle protects against insulin resistance, type 2 diabetes and obesity. The regulatory γ3 subunit of AMPK is expressed exclusively in skeletal muscle; however, its importance in controlling overall AMPK activity is unknown. While evidence is emerging that gamma subunit mutations interfere specifically with AMP activation, there remains some controversy regarding the impact of gamma subunit mutations [1]–[3]. Here we report the first gain-of-function mutation in the muscle-specific regulatory γ3 subunit in humans. Methods and Findings We sequenced the exons and splice junctions of the AMPK γ3 gene (PRKAG3) in 761 obese and 759 lean individuals, identifying 87 sequence variants including a novel R225W mutation in subjects from two unrelated families. The γ3 R225W mutation is homologous in location to the γ2R302Q mutation in patients with Wolf-Parkinson-White syndrome and to the γ3R225Q mutation originally linked to an increase in muscle glycogen content in purebred Hampshire Rendement Napole (RN-) pigs. We demonstrate in differentiated muscle satellite cells obtained from the vastus lateralis of R225W carriers that the mutation is associated with an approximate doubling of both basal and AMP-activated AMPK activities. Moreover, subjects bearing the R225W mutation exhibit a ∼90% increase of skeletal muscle glycogen content and a ∼30% decrease in intramuscular triglyceride (IMTG). Conclusions We have identified for the first time a mutation in the skeletal muscle-specific regulatory γ3 subunit of AMPK in humans. The γ3R225W mutation has significant functional effects as demonstrated by increases in basal and AMP-activated AMPK activities, increased muscle glycogen and decreased

  9. Recurrent gain-of-function mutation in PRKG1 causes thoracic aortic aneurysms and acute aortic dissections.

    PubMed

    Guo, Dong-chuan; Regalado, Ellen; Casteel, Darren E; Santos-Cortez, Regie L; Gong, Limin; Kim, Jeong Joo; Dyack, Sarah; Horne, S Gabrielle; Chang, Guijuan; Jondeau, Guillaume; Boileau, Catherine; Coselli, Joseph S; Li, Zhenyu; Leal, Suzanne M; Shendure, Jay; Rieder, Mark J; Bamshad, Michael J; Nickerson, Deborah A; Kim, Choel; Milewicz, Dianna M

    2013-08-08

    Gene mutations that lead to decreased contraction of vascular smooth-muscle cells (SMCs) can cause inherited thoracic aortic aneurysms and dissections. Exome sequencing of distant relatives affected by thoracic aortic disease and subsequent Sanger sequencing of additional probands with familial thoracic aortic disease identified the same rare variant, PRKG1 c.530G>A (p.Arg177Gln), in four families. This mutation segregated with aortic disease in these families with a combined two-point LOD score of 7.88. The majority of affected individuals presented with acute aortic dissections (63%) at relatively young ages (mean 31 years, range 17-51 years). PRKG1 encodes type I cGMP-dependent protein kinase (PKG-1), which is activated upon binding of cGMP and controls SMC relaxation. Although the p.Arg177Gln alteration disrupts binding to the high-affinity cGMP binding site within the regulatory domain, the altered PKG-1 is constitutively active even in the absence of cGMP. The increased PKG-1 activity leads to decreased phosphorylation of the myosin regulatory light chain in fibroblasts and is predicted to cause decreased contraction of vascular SMCs. Thus, identification of a gain-of-function mutation in PRKG1 as a cause of thoracic aortic disease provides further evidence that proper SMC contractile function is critical for maintaining the integrity of the thoracic aorta throughout a lifetime. Copyright © 2013 The American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.

  10. Gain of function AMP-activated protein kinase γ3 mutation (AMPKγ3R200Q) in pig muscle increases glycogen storage regardless of AMPK activation.

    PubMed

    Scheffler, Tracy L; Park, Sungkwon; Roach, Peter J; Gerrard, David E

    2016-06-01

    Chronic activation of AMP-activated protein kinase (AMPK) increases glycogen content in skeletal muscle. Previously, we demonstrated that a mutation in the ryanodine receptor (RyR1(R615C)) blunts AMPK phosphorylation in longissimus muscle of pigs with a gain of function mutation in the AMPKγ3 subunit (AMPKγ3(R200Q)); this may decrease the glycogen storage capacity of AMPKγ3(R200Q) + RyR1(R615C) muscle. Therefore, our aim in this study was to utilize our pig model to understand how AMPKγ3(R200Q) and AMPK activation contribute to glycogen storage and metabolism in muscle. We selected and bred pigs in order to generate offspring with naturally occurring AMPKγ3(R200Q), RyR1(R615C), and AMPKγ3(R200Q) + RyR1(R615C) mutations, and also retained wild-type littermates (control). We assessed glycogen content and parameters of glycogen metabolism in longissimus muscle. Regardless of RyR1(R615C), AMPKγ3(R200Q) increased the glycogen content by approximately 70%. Activity of glycogen synthase (GS) without the allosteric activator glucose 6-phosphate (G6P) was decreased in AMPKγ3(R200Q) relative to all other genotypes, whereas both AMPKγ3(R200Q) and AMPKγ3(R200Q) + RyR1(R615C) muscle exhibited increased GS activity with G6P. Increased activity of GS with G6P was not associated with increased abundance of GS or hexokinase 2. However, AMPKγ3(R200Q) enhanced UDP-glucose pyrophosphorylase 2 (UGP2) expression approximately threefold. Although UGP2 is not generally considered a rate-limiting enzyme for glycogen synthesis, our model suggests that UGP2 plays an important role in increasing flux to glycogen synthase. Moreover, we have shown that the capacity for glycogen storage is more closely related to the AMPKγ3(R200Q) mutation than activity. © 2016 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of the American Physiological Society and The Physiological Society.

  11. The STAT3 HIES mutation is a gain-of-function mutation that activates genes via AGG-element carrying promoters.

    PubMed

    Xu, Li; Ji, Jin-Jun; Le, Wangping; Xu, Yan S; Dou, Dandan; Pan, Jieli; Jiao, Yifeng; Zhong, Tianfei; Wu, Dehong; Wang, Yumei; Wen, Chengping; Xie, Guan-Qun; Yao, Feng; Zhao, Heng; Fan, Yong-Sheng; Chin, Y Eugene

    2015-10-15

    Cytokine or growth factor activated STAT3 undergoes multiple post-translational modifications, dimerization and translocation into nuclei, where it binds to serum-inducible element (SIE, 'TTC(N3)GAA')-bearing promoters to activate transcription. The STAT3 DNA binding domain (DBD, 320-494) mutation in hyper immunoglobulin E syndrome (HIES), called the HIES mutation (R382Q, R382W or V463Δ), which elevates IgE synthesis, inhibits SIE binding activity and sensitizes genes such as TNF-α for expression. However, the mechanism by which the HIES mutation sensitizes STAT3 in gene induction remains elusive. Here, we report that STAT3 binds directly to the AGG-element with the consensus sequence 'AGG(N3)AGG'. Surprisingly, the helical N-terminal region (1-355), rather than the canonical STAT3 DBD, is responsible for AGG-element binding. The HIES mutation markedly enhances STAT3 AGG-element binding and AGG-promoter activation activity. Thus, STAT3 is a dual specificity transcription factor that promotes gene expression not only via SIE- but also AGG-promoter activity. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  12. Severe Early-Onset Combined Immunodeficiency due to Heterozygous Gain-of-Function Mutations in STAT1.

    PubMed

    Baris, Safa; Alroqi, Fayhan; Kiykim, Ayca; Karakoc-Aydiner, Elif; Ogulur, Ismail; Ozen, Ahmet; Charbonnier, Louis-Marie; Bakır, Mustafa; Boztug, Kaan; Chatila, Talal A; Barlan, Isil B

    2016-10-01

    Loss and gain-of-function (GOF) mutations in human signal transducer and activator of transcription 1 (STAT1) lead to distinct phenotypes. Although recurrent infections are common to both types of STAT1 mutations, GOF mutations are distinguished by chronic mucocutaneous candidiasis and autoimmunity. However, the clinical spectra of STAT1 GOF mutations continue to expand. We here describe two patients with STAT1 GOF mutations presenting early in life with combined immunodeficiency (CID). Clinical data and laboratory findings including immunophenotyping, level of interferon (IFN)-γ/IL-17(+) T cells, interferon-induced STAT1 phosphorylation, and JAK inhibitor assays were evaluated. Sequencing of STAT1 gene was performed by Sanger sequencer. Patient 1 (P1) had persistent oral candidiasis and cytomegalovirus (CMV) infection since 2 months of age and later developed cavitary lung lesions due to Mycobacterium tuberculosis. Patient 2 (P2) presented with oral candidiasis and recurrent pneumonia at 4 months of age and subsequently developed CMV pneumonitis. Both patients suffered heterozygous missense mutations in STAT1, leading to deleterious amino acid substitutions in the DNA binding domain (P1: c.1154C > T; p.T385M; P2. c.971G > T; p.C324F). Circulating CD4(+) T cells of both patients exhibited increased interferon-γ and decreased IL-17 expression as compared to controls. They also exhibited increased IFN-β and -γ-induced STAT1 phosphorylation that was reversed upon treatment with the JAK kinase inhibitor ruxolitinib. STAT1 GOF mutations may present early in life with CID, consistent with the clinical heterogeneity of the disease. JAK kinase inhibitors may potentially be useful in some patients as adjunct therapy pending definitive treatment with bone marrow transplantation.

  13. Cantu syndrome-associated SUR2 (ABCC9) mutations in distinct structural domains result in KATP channel gain-of-function by differential mechanisms.

    PubMed

    McClenaghan, Conor; Hanson, Alex; Sala-Rabanal, Monica; Roessler, Helen I; Josifova, Dragana; Grange, Dorothy K; van Haaften, Gijs; Nichols, Colin G

    2018-02-09

    The complex disorder Cantu syndrome (CS) arises from gain-of-function mutations in either KCNJ8 or ABCC9 , the genes encoding the Kir6.1 and SUR2 subunits of ATP-sensitive potassium (K ATP ) channels, respectively. Recent reports indicate that such mutations can increase channel activity by multiple molecular mechanisms. In this study, we determined the mechanism by which K ATP function is altered by several substitutions in distinct structural domains of SUR2: D207E in the intracellular L0-linker and Y985S, G989E, M1060I, and R1154Q/R1154W in TMD2. We engineered substitutions at their equivalent positions in rat SUR2A (D207E, Y981S, G985E, M1056I, and R1150Q/R1150W) and investigated functional consequences using macroscopic rubidium ( 86 Rb + ) efflux assays and patch-clamp electrophysiology. Our results indicate that D207E increases K ATP channel activity by increasing intrinsic stability of the open state, whereas the cluster of Y981S/G985E/M1056I substitutions, as well as R1150Q/R1150W, augmented Mg-nucleotide activation. We also tested the responses of these channel variants to inhibition by the sulfonylurea drug glibenclamide, a potential pharmacotherapy for CS. None of the D207E, Y981S, G985E, or M1056I substitutions had a significant effect on glibenclamide sensitivity. However, Gln and Trp substitution at Arg-1150 significantly decreased glibenclamide potency. In summary, these results provide additional confirmation that mutations in CS-associated SUR2 mutations result in K ATP gain-of-function. They help link CS genotypes to phenotypes and shed light on the underlying molecular mechanisms, including consequences for inhibitory drug sensitivity, insights that may inform the development of therapeutic approaches to manage CS. © 2018 by The American Society for Biochemistry and Molecular Biology, Inc.

  14. Gain-of-function mutation in FGFR3 in mice leads to decreased bone mass by affecting both osteoblastogenesis and osteoclastogenesis

    PubMed Central

    Su, Nan; Sun, Qidi; Li, Can; Lu, Xiumin; Qi, Huabing; Chen, Siyu; Yang, Jing; Du, Xiaolan; Zhao, Ling; He, Qifen; Jin, Min; Shen, Yue; Chen, Di; Chen, Lin

    2010-01-01

    Achondroplasia (ACH) is a short-limbed dwarfism resulting from gain-of-function mutations in fibroblast growth factor receptor 3 (FGFR3). Previous studies have shown that ACH patients have impaired chondrogenesis, but the effects of FGFR3 on bone formation and bone remodeling at adult stages of ACH have not been fully investigated. Using micro-computed tomography and histomorphometric analyses, we found that 2-month-old Fgfr3G369C/+ mice (mouse model mimicking human ACH) showed decreased bone mass due to reduced trabecular bone volume and bone mineral density, defect in bone mineralization and increased osteoclast numbers and activity. Compared with primary cultures of bone marrow stromal cells (BMSCs) from wild-type mice, Fgfr3G369C/+ cultures showed decreased cell proliferation, increased osteogenic differentiation including up-regulation of alkaline phosphatase activity and expressions of osteoblast marker genes, and reduced bone matrix mineralization. Furthermore, our studies also suggest that decreased cell proliferation and enhanced osteogenic differentiation observed in Fgfr3G369C/+ BMSCs are caused by up-regulation of p38 phosphorylation and that enhanced Erk1/2 activity is responsible for the impaired bone matrix mineralization. In addition, in vitro osteoclast formation and bone resorption assays demonstrated that osteoclast numbers and bone resorption area were increased in cultured bone marrow cells derived from Fgfr3G369C/+ mice. These findings demonstrate that gain-of-function mutation in FGFR3 leads to decreased bone mass by regulating both osteoblast and osteoclast activities. Our studies provide new insight into the mechanism underlying the development of ACH. PMID:20053668

  15. Early-onset epileptic encephalopathy caused by gain-of-function mutations in the voltage sensor of Kv7.2 and Kv7.3 potassium channel subunits.

    PubMed

    Miceli, Francesco; Soldovieri, Maria Virginia; Ambrosino, Paolo; De Maria, Michela; Migliore, Michele; Migliore, Rosanna; Taglialatela, Maurizio

    2015-03-04

    Mutations in Kv7.2 (KCNQ2) and Kv7.3 (KCNQ3) genes, encoding for voltage-gated K(+) channel subunits underlying the neuronal M-current, have been associated with a wide spectrum of early-onset epileptic disorders ranging from benign familial neonatal seizures to severe epileptic encephalopathies. The aim of the present work has been to investigate the molecular mechanisms of channel dysfunction caused by voltage-sensing domain mutations in Kv7.2 (R144Q, R201C, and R201H) or Kv7.3 (R230C) recently found in patients with epileptic encephalopathies and/or intellectual disability. Electrophysiological studies in mammalian cells transfected with human Kv7.2 and/or Kv7.3 cDNAs revealed that each of these four mutations stabilized the activated state of the channel, thereby producing gain-of-function effects, which are opposite to the loss-of-function effects produced by previously found mutations. Multistate structural modeling revealed that the R201 residue in Kv7.2, corresponding to R230 in Kv7.3, stabilized the resting and nearby voltage-sensing domain states by forming an intricate network of electrostatic interactions with neighboring negatively charged residues, a result also confirmed by disulfide trapping experiments. Using a realistic model of a feedforward inhibitory microcircuit in the hippocampal CA1 region, an increased excitability of pyramidal neurons was found upon incorporation of the experimentally defined parameters for mutant M-current, suggesting that changes in network interactions rather than in intrinsic cell properties may be responsible for the neuronal hyperexcitability by these gain-of-function mutations. Together, the present results suggest that gain-of-function mutations in Kv7.2/3 currents may cause human epilepsy with a severe clinical course, thus revealing a previously unexplored level of complexity in disease pathogenetic mechanisms. Copyright © 2015 the authors 0270-6474/15/353782-12$15.00/0.

  16. Gain-of-function SOS1 mutations cause a distinctive form of noonansyndrome

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tartaglia, Marco; Pennacchio, Len A.; Zhao, Chen

    2006-09-01

    Noonan syndrome (NS) is a developmental disordercharacterized by short stature, facial dysmorphia, congenital heartdefects and skeletal anomalies1. Increased RAS-mitogenactivated proteinkinase (MAPK) signaling due to PTPN11 and KRAS mutations cause 50 percentof NS2-6. Here, we report that 22 of 129 NS patients without PTPN11 orKRAS mutation (17 percent) have missense mutations in SOS1, which encodesa RAS-specific guanine nucleotide exchange factor (GEF). SOS1 mutationscluster at residues implicated in the maintenance of SOS1 in itsautoinhibited form and ectopic expression of two NS-associated mutantsinduced enhanced RAS activation. The phenotype associated with SOS1defects is distinctive, although within NS spectrum, with a highprevalence of ectodermal abnormalitiesmore » but generally normal developmentand linear growth. Our findings implicate for the first timegain-of-function mutations in a RAS GEF in inherited disease and define anew mechanism by which upregulation of the RAS pathway can profoundlychange human development.« less

  17. New and recurrent gain-of-function STAT1 mutations in patients with chronic mucocutaneous candidiasis from Eastern and Central Europe

    PubMed Central

    Soltész, Beáta; Tóth, Beáta; Shabashova, Nadejda; Bondarenko, Anastasia; Okada, Satoshi; Cypowyj, Sophie; Abhyankar, Avinash; Csorba, Gabriella; Taskó, Szilvia; Sarkadi, Adrien Katalin; Méhes, Leonóra; Rozsíval, Pavel; Neumann, David; Chernyshova, Liudmyla; Tulassay, Zsolt; Puel, Anne; Casanova, Jean-Laurent; Sediva, Anna; Litzman, Jiri; Maródi, László

    2013-01-01

    Background Chronic mucocutaneous candidiasis disease (CMCD) may result from various inborn errors of interleukin (IL)-17-mediated immunity. Twelve of the 13 causal mutations described to date affect the coiled-coil domain (CCD) of STAT1. Several mutations, including R274W in particular, are recurrent, but the underlying mechanism is unclear. Objective To investigate and describe nine patients with CMCD in Eastern and Central Europe, to assess the biochemical impact of STAT1 mutations, to determine cytokines in supernatants of Candida-exposed blood cells, to determine IL-17-producing T cell subsets and to determine STAT1 haplotypes in a family with the c.820C>T (R274W) mutation. Results The novel c.537C>A (N179K) STAT1 mutation was gain-of-function (GOF) for γ-activated factor (GAF)-dependent cellular responses. In a Russian patient, the cause of CMCD was the newly identified c.854 A>G (Q285R) STAT1 mutation, which was also GOF for GAF-dependent responses. The c.1154C>T (T385M) mutation affecting the DNA-binding domain (DBD) resulted in a gain of STAT1 phosphorylation in a Ukrainian patient. Impaired Candida-induced IL-17A and IL-22 secretion by leucocytes and lower levels of intracellular IL-17 and IL-22 production by T cells were found in several patients. Haplotype studies indicated that the c.820C>T (R274W) mutation was recurrent due to a hotspot rather than a founder effect. Severe clinical phenotypes, including intracranial aneurysm, are presented. Conclusions The c.537C>A and c.854A>G mutations affecting the CCD and the c.1154C>T mutation affecting the DBD of STAT1 are GOF. The c.820C>T mutation of STAT1 in patients with CMCD is recurrent due to a hotspot. Patients carrying GOF mutations of STAT1 may develop multiple intracranial aneurysms by hitherto unknown mechanisms. PMID:23709754

  18. New and recurrent gain-of-function STAT1 mutations in patients with chronic mucocutaneous candidiasis from Eastern and Central Europe.

    PubMed

    Soltész, Beáta; Tóth, Beáta; Shabashova, Nadejda; Bondarenko, Anastasia; Okada, Satoshi; Cypowyj, Sophie; Abhyankar, Avinash; Csorba, Gabriella; Taskó, Szilvia; Sarkadi, Adrien Katalin; Méhes, Leonóra; Rozsíval, Pavel; Neumann, David; Chernyshova, Liudmyla; Tulassay, Zsolt; Puel, Anne; Casanova, Jean-Laurent; Sediva, Anna; Litzman, Jiri; Maródi, László

    2013-09-01

    Chronic mucocutaneous candidiasis disease (CMCD) may result from various inborn errors of interleukin (IL)-17-mediated immunity. Twelve of the 13 causal mutations described to date affect the coiled-coil domain (CCD) of STAT1. Several mutations, including R274W in particular, are recurrent, but the underlying mechanism is unclear. To investigate and describe nine patients with CMCD in Eastern and Central Europe, to assess the biochemical impact of STAT1 mutations, to determine cytokines in supernatants of Candida-exposed blood cells, to determine IL-17-producing T cell subsets and to determine STAT1 haplotypes in a family with the c.820C>T (R274W) mutation. The novel c.537C>A (N179K) STAT1 mutation was gain-of-function (GOF) for γ-activated factor (GAF)-dependent cellular responses. In a Russian patient, the cause of CMCD was the newly identified c.854 A>G (Q285R) STAT1 mutation, which was also GOF for GAF-dependent responses. The c.1154C>T (T385M) mutation affecting the DNA-binding domain (DBD) resulted in a gain of STAT1 phosphorylation in a Ukrainian patient. Impaired Candida-induced IL-17A and IL-22 secretion by leucocytes and lower levels of intracellular IL-17 and IL-22 production by T cells were found in several patients. Haplotype studies indicated that the c.820C>T (R274W) mutation was recurrent due to a hotspot rather than a founder effect. Severe clinical phenotypes, including intracranial aneurysm, are presented. The c.537C>A and c.854A>G mutations affecting the CCD and the c.1154C>T mutation affecting the DBD of STAT1 are GOF. The c.820C>T mutation of STAT1 in patients with CMCD is recurrent due to a hotspot. Patients carrying GOF mutations of STAT1 may develop multiple intracranial aneurysms by hitherto unknown mechanisms.

  19. Disseminated Tuberculosis and Chronic Mucocutaneous Candidiasis in a Patient with a Gain-of-Function Mutation in Signal Transduction and Activator of Transcription 1.

    PubMed

    Pedraza-Sánchez, Sigifredo; Lezana-Fernández, Jose Luis; Gonzalez, Yolanda; Martínez-Robles, Luis; Ventura-Ayala, María Laura; Sadowinski-Pine, Stanislaw; Nava-Frías, Margarita; Moreno-Espinosa, Sarbelio; Casanova, Jean-Laurent; Puel, Anne; Boisson-Dupuis, Stephanie; Torres, Martha

    2017-01-01

    In humans, recessive loss-of-function mutations in STAT1 are associated with mycobacterial and viral infections, whereas gain-of-function (GOF) mutations in STAT1 are associated with a type of primary immunodeficiency related mainly, but not exclusively, to chronic mucocutaneous candidiasis (CMC). We studied and established a molecular diagnosis in a pediatric patient with mycobacterial infections, associated with CMC. The patient, daughter of a non-consanguineous mestizo Mexican family, had axillary adenitis secondary to BCG vaccination and was cured with resection of the abscess at 1-year old. At the age of 4 years, she had a supraclavicular abscess with acid-fast-staining bacilli identified in the soft tissue and bone, with clinical signs of disseminated infection and a positive Gene-X-pert test, which responded to anti-mycobacterial drugs. Laboratory tests of the IL-12/interferon gamma (IFN-γ) circuit showed a higher production of IL-12p70 in the whole blood from the patient compared to healthy controls, when stimulated with BCG and BCG + IFN-γ. The whole blood of the patient produced 35% less IFN-γ compared to controls assessed by ELISA and flow cytometry, but IL-17 producing T cells from patient were almost absent in PBMC stimulated with PMA plus ionomycin. Signal transduction and activator of transcription 1 (STAT1) was hyperphosphorylated at tyrosine 701 in response to IFN-γ and -α, as demonstrated by flow cytometry and Western blotting in fresh blood mononuclear cells and in Epstein-Barr virus lymphoblastoid cell lines (EBV-LCLs); phosphorylation of STAT1 in EBV-LCLs from the patient was resistant to inhibition by staurosporine but sensitive to ruxolitinib, a Jak phosphorylation inhibitor. Genomic DNA sequencing showed a de novo mutation in STAT1 in cells from the patient, absent in her parents and brother; a known T385M missense mutation in the DNA-binding domain of the transcription factor was identified, and it is a GOF mutation. Therefore

  20. Disseminated Tuberculosis and Chronic Mucocutaneous Candidiasis in a Patient with a Gain-of-Function Mutation in Signal Transduction and Activator of Transcription 1

    PubMed Central

    Pedraza-Sánchez, Sigifredo; Lezana-Fernández, Jose Luis; Gonzalez, Yolanda; Martínez-Robles, Luis; Ventura-Ayala, María Laura; Sadowinski-Pine, Stanislaw; Nava-Frías, Margarita; Moreno-Espinosa, Sarbelio; Casanova, Jean-Laurent; Puel, Anne; Boisson-Dupuis, Stephanie; Torres, Martha

    2017-01-01

    In humans, recessive loss-of-function mutations in STAT1 are associated with mycobacterial and viral infections, whereas gain-of-function (GOF) mutations in STAT1 are associated with a type of primary immunodeficiency related mainly, but not exclusively, to chronic mucocutaneous candidiasis (CMC). We studied and established a molecular diagnosis in a pediatric patient with mycobacterial infections, associated with CMC. The patient, daughter of a non-consanguineous mestizo Mexican family, had axillary adenitis secondary to BCG vaccination and was cured with resection of the abscess at 1-year old. At the age of 4 years, she had a supraclavicular abscess with acid-fast-staining bacilli identified in the soft tissue and bone, with clinical signs of disseminated infection and a positive Gene-X-pert test, which responded to anti-mycobacterial drugs. Laboratory tests of the IL-12/interferon gamma (IFN-γ) circuit showed a higher production of IL-12p70 in the whole blood from the patient compared to healthy controls, when stimulated with BCG and BCG + IFN-γ. The whole blood of the patient produced 35% less IFN-γ compared to controls assessed by ELISA and flow cytometry, but IL-17 producing T cells from patient were almost absent in PBMC stimulated with PMA plus ionomycin. Signal transduction and activator of transcription 1 (STAT1) was hyperphosphorylated at tyrosine 701 in response to IFN-γ and -α, as demonstrated by flow cytometry and Western blotting in fresh blood mononuclear cells and in Epstein-Barr virus lymphoblastoid cell lines (EBV-LCLs); phosphorylation of STAT1 in EBV-LCLs from the patient was resistant to inhibition by staurosporine but sensitive to ruxolitinib, a Jak phosphorylation inhibitor. Genomic DNA sequencing showed a de novo mutation in STAT1 in cells from the patient, absent in her parents and brother; a known T385M missense mutation in the DNA-binding domain of the transcription factor was identified, and it is a GOF mutation. Therefore

  1. ALS mutations in FUS cause neuronal dysfunction and death in Caenorhabditis elegans by a dominant gain-of-function mechanism

    PubMed Central

    Murakami, Tetsuro; Yang, Seung-Pil; Xie, Lin; Kawano, Taizo; Fu, Donald; Mukai, Asuka; Bohm, Christopher; Chen, Fusheng; Robertson, Janice; Suzuki, Hiroshi; Tartaglia, Gian Gaetano; Vendruscolo, Michele; Kaminski Schierle, Gabriele S.; Chan, Fiona T.S.; Moloney, Aileen; Crowther, Damian; Kaminski, Clemens F.; Zhen, Mei; St George-Hyslop, Peter

    2012-01-01

    It is unclear whether mutations in fused in sarcoma (FUS) cause familial amyotrophic lateral sclerosis via a loss-of-function effect due to titrating FUS from the nucleus or a gain-of-function effect from cytoplasmic overabundance. To investigate this question, we generated a series of independent Caenorhabditis elegans lines expressing mutant or wild-type (WT) human FUS. We show that mutant FUS, but not WT-FUS, causes cytoplasmic mislocalization associated with progressive motor dysfunction and reduced lifespan. The severity of the mutant phenotype in C. elegans was directly correlated with the severity of the illness caused by the same mutation in humans, arguing that this model closely replicates key features of the human illness. Importantly, the mutant phenotype could not be rescued by overexpression of WT-FUS, even though WT-FUS had physiological intracellular localization, and was not recruited to the cytoplasmic mutant FUS aggregates. Our data suggest that FUS mutants cause neuronal dysfunction by a dominant gain-of-function effect related either to neurotoxic aggregates of mutant FUS in the cytoplasm or to dysfunction in its RNA-binding functions. PMID:21949354

  2. ALS mutations in FUS cause neuronal dysfunction and death in Caenorhabditis elegans by a dominant gain-of-function mechanism.

    PubMed

    Murakami, Tetsuro; Yang, Seung-Pil; Xie, Lin; Kawano, Taizo; Fu, Donald; Mukai, Asuka; Bohm, Christopher; Chen, Fusheng; Robertson, Janice; Suzuki, Hiroshi; Tartaglia, Gian Gaetano; Vendruscolo, Michele; Kaminski Schierle, Gabriele S; Chan, Fiona T S; Moloney, Aileen; Crowther, Damian; Kaminski, Clemens F; Zhen, Mei; St George-Hyslop, Peter

    2012-01-01

    It is unclear whether mutations in fused in sarcoma (FUS) cause familial amyotrophic lateral sclerosis via a loss-of-function effect due to titrating FUS from the nucleus or a gain-of-function effect from cytoplasmic overabundance. To investigate this question, we generated a series of independent Caenorhabditis elegans lines expressing mutant or wild-type (WT) human FUS. We show that mutant FUS, but not WT-FUS, causes cytoplasmic mislocalization associated with progressive motor dysfunction and reduced lifespan. The severity of the mutant phenotype in C. elegans was directly correlated with the severity of the illness caused by the same mutation in humans, arguing that this model closely replicates key features of the human illness. Importantly, the mutant phenotype could not be rescued by overexpression of WT-FUS, even though WT-FUS had physiological intracellular localization, and was not recruited to the cytoplasmic mutant FUS aggregates. Our data suggest that FUS mutants cause neuronal dysfunction by a dominant gain-of-function effect related either to neurotoxic aggregates of mutant FUS in the cytoplasm or to dysfunction in its RNA-binding functions.

  3. Gain-of-Function Mutation W493R in the Epithelial Sodium Channel Allosterically Reconfigures Intersubunit Coupling*♦

    PubMed Central

    Shobair, Mahmoud; Dagliyan, Onur; Kota, Pradeep; Dang, Yan L.; He, Hong; Stutts, M. Jackson; Dokholyan, Nikolay V.

    2016-01-01

    Sodium absorption in epithelial cells is rate-limited by the epithelial sodium channel (ENaC) activity in lung, kidney, and the distal colon. Pathophysiological conditions, such as cystic fibrosis and Liddle syndrome, result from water-electrolyte imbalance partly due to malfunction of ENaC regulation. Because the quaternary structure of ENaC is yet undetermined, the bases of pathologically linked mutations in ENaC subunits α, β, and γ are largely unknown. Here, we present a structural model of heterotetrameric ENaC α1βα2γ that is consistent with previous cross-linking results and site-directed mutagenesis experiments. By using this model, we show that the disease-causing mutation αW493R rewires structural dynamics of the intersubunit interfaces α1β and α2γ. Changes in dynamics can allosterically propagate to the channel gate. We demonstrate that cleavage of the γ-subunit, which is critical for full channel activation, does not mediate activation of ENaC by αW493R. Our molecular dynamics simulations led us to identify a channel-activating electrostatic interaction between α2Arg-493 and γGlu-348 at the α2γ interface. By neutralizing a sodium-binding acidic patch at the α1β interface, we reduced ENaC activation of αW493R by more than 2-fold. By combining homology modeling, molecular dynamics, cysteine cross-linking, and voltage clamp experiments, we propose a dynamics-driven model for the gain-of-function in ENaC by αW493R. Our integrated computational and experimental approach advances our understanding of structure, dynamics, and function of ENaC in its disease-causing state. PMID:26668308

  4. Exploring the effect of D61G mutation on SHP2 cause gain of function activity by a molecular dynamics study.

    PubMed

    Li, Hong-Lian; Ma, Ying; Zheng, Chang-Jie; Jin, Wen-Yan; Liu, Wen-Shan; Wang, Run-Ling

    2017-11-24

    Noonan syndrome (NS) is a common autosomal dominant congenital disorder which could cause the congenital cardiopathy and cancer predisposition. Previous studies reported that the knock-in mouse models of the mutant D61G of SHP2 exhibited the major features of NS, which demonstrated that the mutation D61G of SHP2 could cause NS. To explore the effect of D61G mutation on SHP2 and explain the high activity of the mutant, molecular dynamic simulations were performed on wild type (WT) of SHP2 and the mutated SHP2-D61G, respectively. The principal component analysis and dynamic cross-correlation mapping, associated with secondary structure, showed that the D61G mutation affected the motions of two regions (residues Asn 58-Thr 59 and Val 460-His 462) in SHP2 from β to turn. Moreover, the residue interaction networks analysis, the hydrogen bond occupancy analysis and the binding free energies were calculated to gain detailed insight into the influence of the mutant D61G on the two regions, revealing that the major differences between SHP2-WT and SHP2-D61G were the different interactions between Gly 61 and Gly 462, Gly 61 and Ala 461, Gln 506 and Ile 463, Gly 61 and Asn 58, Ile 463 and Thr 466, Gly 462 and Cys 459. Consequently, our findings here may provide knowledge to understand the increased activity of SHP2 caused by the mutant D61G.

  5. Central nervous system hyperexcitability associated with glutamate dehydrogenase gain of function mutations.

    PubMed

    Raizen, David M; Brooks-Kayal, Amy; Steinkrauss, Linda; Tennekoon, Gihan I; Stanley, Charles A; Kelly, Andrea

    2005-03-01

    To describe seizure phenotypes associated with the hyperinsulinism/hyperammonemia syndrome (HI/HA), which is caused by gain of function mutations in the enzyme glutamate dehydrogenase (GDH). A retrospective review of records of 14 patients with HI/HA. Nine patients had seizures as the first symptom of HI/HA, and six had seizures in the absence of hypoglycemia. No electroencephalogram (EEG) background abnormalities were identified. In four patients, EEG recordings during seizures in the setting of normal blood glucose contained generalized epileptiform discharges. EEGs of three of these patients showed 0.5- to 2-second generalized irregular spike-and-wave discharge at 3 to 6 Hz corresponding to eye blinks, eye rolling, or staring. The EEG of the fourth patient consisted of 20 seconds of generalized regular spike-and-wave discharge at 3 Hz in the clinical context of staring and unresponsiveness. In two patients, seizure control worsened with carbamezapine or oxcarbezapine treatment. In patients with HI/HA, generalized seizures are common and can occur in the absence of hypoglycemia. The drugs carbamazepine and oxcarbazepine should be used with caution for treatment. Pathogenesis of epilepsy in these patients may be related to effects of GDH mutations in the brain, perhaps in combination with effects of recurrent hypoglycemia and chronic hyperammonemia.

  6. Gain-of-function mutations in the phosphatidylserine synthase 1 (PTDSS1) gene cause Lenz-Majewski syndrome.

    PubMed

    Sousa, Sérgio B; Jenkins, Dagan; Chanudet, Estelle; Tasseva, Guergana; Ishida, Miho; Anderson, Glenn; Docker, James; Ryten, Mina; Sa, Joaquim; Saraiva, Jorge M; Barnicoat, Angela; Scott, Richard; Calder, Alistair; Wattanasirichaigoon, Duangrurdee; Chrzanowska, Krystyna; Simandlová, Martina; Van Maldergem, Lionel; Stanier, Philip; Beales, Philip L; Vance, Jean E; Moore, Gudrun E

    2014-01-01

    Lenz-Majewski syndrome (LMS) is a syndrome of intellectual disability and multiple congenital anomalies that features generalized craniotubular hyperostosis. By using whole-exome sequencing and selecting variants consistent with the predicted dominant de novo etiology of LMS, we identified causative heterozygous missense mutations in PTDSS1, which encodes phosphatidylserine synthase 1 (PSS1). PSS1 is one of two enzymes involved in the production of phosphatidylserine. Phosphatidylserine synthesis was increased in intact fibroblasts from affected individuals, and end-product inhibition of PSS1 by phosphatidylserine was markedly reduced. Therefore, these mutations cause a gain-of-function effect associated with regulatory dysfunction of PSS1. We have identified LMS as the first human disease, to our knowledge, caused by disrupted phosphatidylserine metabolism. Our results point to an unexplored link between phosphatidylserine synthesis and bone metabolism.

  7. Noonan syndrome gain-of-function mutations in NRAS cause zebrafish gastrulation defects

    PubMed Central

    Runtuwene, Vincent; van Eekelen, Mark; Overvoorde, John; Rehmann, Holger; Yntema, Helger G.; Nillesen, Willy M.; van Haeringen, Arie; van der Burgt, Ineke; Burgering, Boudewijn; den Hertog, Jeroen

    2011-01-01

    SUMMARY Noonan syndrome is a relatively common developmental disorder that is characterized by reduced growth, wide-set eyes and congenital heart defects. Noonan syndrome is associated with dysregulation of the Ras–mitogen-activated-protein-kinase (MAPK) signaling pathway. Recently, two mutations in NRAS were reported to be associated with Noonan syndrome, T50I and G60E. Here, we report a mutation in NRAS, resulting in an I24N amino acid substitution, that we identified in an individual bearing typical Noonan syndrome features. The I24N mutation activates N-Ras, resulting in enhanced downstream signaling. Expression of N-Ras-I24N, N-Ras-G60E or the strongly activating mutant N-Ras-G12V, which we included as a positive control, results in developmental defects in zebrafish embryos, demonstrating that these activating N-Ras mutants are sufficient to induce developmental disorders. The defects in zebrafish embryos are reminiscent of symptoms in individuals with Noonan syndrome and phenocopy the defects that other Noonan-syndrome-associated genes induce in zebrafish embryos. MEK inhibition completely rescued the activated N-Ras-induced phenotypes, demonstrating that these defects are mediated exclusively by Ras-MAPK signaling. In conclusion, mutations in NRAS from individuals with Noonan syndrome activated N-Ras signaling and induced developmental defects in zebrafish embryos, indicating that activating mutations in NRAS cause Noonan syndrome. PMID:21263000

  8. Gain-of-function mutations of fem-3, a sex-determination gene in Caenorhabditis elegans

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barton, M.K.; Schedl, T.B.; Kimble, J.

    1987-01-01

    The authors have isolated nine gain-of-function (gf) alleles of the sex-determination gene fem-3 as suppressors of feminizing mutations in fem-1 and fem-2. The wild type fem-3 gene is needed for spermatogenesis in XX self-fertilizing hermaphrodites and for male development in both soma and germ line of XO animals. Loss-of-function alleles of fem-3 transform XX and XO animals into females (spermless hermaphrodites). In contrast, fem-3 (gf) alleles masculinize only one tissue, the hermaphrodite germ line. Thus, XX fem-3 (gf) mutant animals have a normal hermaphrodite soma, but the germ line produces a vast excess of sperm and no oocytes. All ninemore » fem-3 (gf) alleles are temperature sensitive. The temperature-sensitive period is from late L4 to early adult, a period just preceding the first signs of oogenesis. The finding of gain-of-function alleles which confer a phenotype opposite to that of loss-of-function alleles supports the idea that fem-3 plays a critical role in germ-line sex determination. Furthermore, the germ-line specificity of the fem-3 (gf) mutant phenotype and the late temperature-sensitive period suggest that, in the wild-type XX hermaphrodite, fem-3 is negatively regulated so that the hermaphrodite stops making sperm and starts making oocytes. Temperature shift experiments also show that, in the germ line, sexual commitment appears to be a continuing process. Spermatogenesis can resume even after oogenesis has begun, and oogenesis can be initiated much later than normal.« less

  9. Gain-of-function profilin 1 mutations linked to familial amyotrophic lateral sclerosis cause seed-dependent intracellular TDP-43 aggregation.

    PubMed

    Tanaka, Yoshinori; Nonaka, Takashi; Suzuki, Genjiro; Kametani, Fuyuki; Hasegawa, Masato

    2016-04-01

    Profilin 1 (PFN1) is an actin monomer-binding protein essential for regulating cytoskeletal dynamics in all cell types. Recently, mutations in the PFN1 gene have been identified as a cause of familial amyotrophic lateral sclerosis (ALS). The co-aggregation of PFN1 bearing mutations that cause ALS with TDP-43 (a key molecule in both sporadic and some familial forms of ALS), together with the classical TDP-43 pathology detected in post-mortem tissues of patients with autosomal dominant PFN1 mutation, imply that gain-of-toxic-function of PFN1 mutants is associated with the onset of ALS. However, it remains unknown how PFN1 mutants cause ALS. We found mutant PFN1 that causes ALS formed cytoplasmic aggregates positive for ubiquitin and p62, and these aggregates sequestered endogenous TDP-43. In cells harboring PFN1 aggregates, formation of aggresome-like structures was inhibited in the presence of proteasome inhibitor, and conversion of LC3-I to LC3-II was suppressed in the presence of lysosome inhibitor. Further, insoluble TDP-43 was increased in both cases. Co-expression of ALS-linked mutant PFN1 and TDP-43 increased insoluble and phosphorylated TDP-43 levels. The C-terminal region of TDP-43, essential for aggregation of TDP-43, was also indispensable for the interaction with PFN1. Interestingly, insoluble fractions prepared from cells expressing ALS-linked mutant PFN1 functioned as a seed to induce accumulation and phosphorylation of TDP-43, indicating that TDP-43 accumulated in the presence of the PFN1 mutants is converted to prion-like species. These findings provide new insight into the mechanisms of neurodegeneration in ALS, suggesting that gain-of-toxic-function PFN1 gene mutation leads to conformational change of TDP-43. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  10. Gain-of-function mutations of Ptpn11 (Shp2) cause aberrant mitosis and increase susceptibility to DNA damage-induced malignancies

    PubMed Central

    Liu, Xia; Zheng, Hong; Li, Xiaobo; Wang, Siying; Meyerson, Howard J.; Yang, Wentian; Neel, Benjamin G.; Qu, Cheng-Kui

    2016-01-01

    Gain-of-function (GOF) mutations of protein tyrosine phosphatase nonreceptor type 11 Ptpn11 (Shp2), a protein tyrosine phosphatase implicated in multiple cell signaling pathways, are associated with childhood leukemias and solid tumors. The underlying mechanisms are not fully understood. Here, we report that Ptpn11 GOF mutations disturb mitosis and cytokinesis, causing chromosomal instability and greatly increased susceptibility to DNA damage-induced malignancies. We find that Shp2 is distributed to the kinetochore, centrosome, spindle midzone, and midbody, all of which are known to play critical roles in chromosome segregation and cytokinesis. Mouse embryonic fibroblasts with Ptpn11 GOF mutations show a compromised mitotic checkpoint. Centrosome amplification and aberrant mitosis with misaligned or lagging chromosomes are significantly increased in Ptpn11-mutated mouse and patient cells. Abnormal cytokinesis is also markedly increased in these cells. Further mechanistic analyses reveal that GOF mutant Shp2 hyperactivates the Polo-like kinase 1 (Plk1) kinase by enhancing c-Src kinase-mediated tyrosine phosphorylation of Plk1. This study provides novel insights into the tumorigenesis associated with Ptpn11 GOF mutations and cautions that DNA-damaging treatments in Noonan syndrome patients with germ-line Ptpn11 GOF mutations could increase the risk of therapy-induced malignancies. PMID:26755576

  11. The genetic background of generalized pustular psoriasis: IL36RN mutations and CARD14 gain-of-function variants.

    PubMed

    Sugiura, Kazumitsu

    2014-06-01

    Generalized pustular psoriasis (GPP) is often present in patients with existing or prior psoriasis vulgaris (PV; "GPP with PV"). However, cases of GPP have been known to arise without a history of PV ("GPP alone"). There has long been debate over whether GPP alone and GPP with PV are distinct subtypes that are etiologically different from each other. We recently reported that the majority of GPP alone cases is caused by recessive mutations of IL36RN. In contrast, only a few exceptional cases of GPP with PV were found to have recessive IL36RN mutations. Very recently, we also reported that CARD14 p.Asp176His, a gain-of-function variant, is a predisposing factor for GPP with PV; in contrast, the variant is not associated with GPP alone in the Japanese population. These results suggest that GPP alone is genetically different from GPP with PV. IL36RN mutations are also found in some patients with severe acute generalized exanthematous pustulosis, palmar-plantar pustulosis, and acrodermatitis continua of hallopeau. CARD14 mutations and variants are causal or disease susceptibility factors of PV, GPP, or pityriasis rubra pilaris, depending on the mutation or variant position of CARD14. It is clinically important to analyze IL36RN mutations in patients with sterile pustulosis. For example, identifying recessive IL36RN mutations leads to early diagnosis of GPP, even at the first episode of pustulosis. In addition, individuals with IL36RN mutations are very susceptible to GPP or GPP-related generalized pustulosis induced by drugs (e.g., amoxicillin), infections, pregnancy, or menstruation. Copyright © 2014 Japanese Society for Investigative Dermatology. Published by Elsevier Ireland Ltd. All rights reserved.

  12. Gain and loss of function of ALS-related mutations of TARDBP (TDP-43) cause motor deficits in vivo.

    PubMed

    Kabashi, Edor; Lin, Li; Tradewell, Miranda L; Dion, Patrick A; Bercier, Valérie; Bourgouin, Patrick; Rochefort, Daniel; Bel Hadj, Samar; Durham, Heather D; Vande Velde, Christine; Rouleau, Guy A; Drapeau, Pierre

    2010-02-15

    TDP-43 has been found in inclusion bodies of multiple neurological disorders, including amyotrophic lateral sclerosis, frontotemporal dementia, Parkinson's disease and Alzheimer's disease. Mutations in the TDP-43 encoding gene, TARDBP, have been subsequently reported in sporadic and familial ALS patients. In order to investigate the pathogenic nature of these mutants, the effects of three consistently reported TARDBP mutations (A315T, G348C and A382T) were tested in cell lines, primary cultured motor neurons and living zebrafish embryos. Each of the three mutants and wild-type (WT) human TDP-43 localized to nuclei when expressed in COS1 and Neuro2A cells by transient transfection. However, when expressed in motor neurons from dissociated spinal cord cultures these mutant TARDBP alleles, but less so for WT TARDBP, were neurotoxic, concomitant with perinuclear localization and aggregation of TDP-43. Finally, overexpression of mutant, but less so of WT, human TARDBP caused a motor phenotype in zebrafish (Danio rerio) embryos consisting of shorter motor neuronal axons, premature and excessive branching as well as swimming deficits. Interestingly, knock-down of zebrafisfh tardbp led to a similar phenotype, which was rescued by co-expressing WT but not mutant human TARDBP. Together these approaches showed that TARDBP mutations cause motor neuron defects and toxicity, suggesting that both a toxic gain of function as well as a novel loss of function may be involved in the molecular mechanism by which mutant TDP-43 contributes to disease pathogenesis.

  13. Network Analysis of Protein Adaptation: Modeling the Functional Impact of Multiple Mutations

    PubMed Central

    Beleva Guthrie, Violeta; Masica, David L; Fraser, Andrew; Federico, Joseph; Fan, Yunfan; Camps, Manel; Karchin, Rachel

    2018-01-01

    Abstract The evolution of new biochemical activities frequently involves complex dependencies between mutations and rapid evolutionary radiation. Mutation co-occurrence and covariation have previously been used to identify compensating mutations that are the result of physical contacts and preserve protein function and fold. Here, we model pairwise functional dependencies and higher order interactions that enable evolution of new protein functions. We use a network model to find complex dependencies between mutations resulting from evolutionary trade-offs and pleiotropic effects. We present a method to construct these networks and to identify functionally interacting mutations in both extant and reconstructed ancestral sequences (Network Analysis of Protein Adaptation). The time ordering of mutations can be incorporated into the networks through phylogenetic reconstruction. We apply NAPA to three distantly homologous β-lactamase protein clusters (TEM, CTX-M-3, and OXA-51), each of which has experienced recent evolutionary radiation under substantially different selective pressures. By analyzing the network properties of each protein cluster, we identify key adaptive mutations, positive pairwise interactions, different adaptive solutions to the same selective pressure, and complex evolutionary trajectories likely to increase protein fitness. We also present evidence that incorporating information from phylogenetic reconstruction and ancestral sequence inference can reduce the number of spurious links in the network, whereas preserving overall network community structure. The analysis does not require structural or biochemical data. In contrast to function-preserving mutation dependencies, which are frequently from structural contacts, gain-of-function mutation dependencies are most commonly between residues distal in protein structure. PMID:29522102

  14. KCNT1 gain-of-function in two epilepsy phenotypes is reversed by quinidine

    PubMed Central

    Milligan, Carol J.; Li, Melody; Gazina, Elena V.; Heron, Sarah E.; Nair, Umesh; Trager, Chantel; Reid, Christopher A.; Venkat, Anu; Younkin, Donald P.; Dlugos, Dennis J.; Petrovski, Slavé; Goldstein, David B.; Dibbens, Leanne M.; Scheffer, Ingrid E.; Berkovic, Samuel F; Petrou, Steven

    2014-01-01

    Objective Mutations in KCNT1 have been implicated in autosomal dominant nocturnal frontal lobe epilepsy (ADNFLE) and epilepsy of infancy with migrating focal seizures (EIMFS). More recently, a whole exome sequencing study of epileptic encephalopathies identified an additional de novo mutation in one proband with EIMFS. We aim to investigate the electrophysiological and pharmacological characteristics of hKCNT1 mutations and examine developmental expression levels. Methods Here we use a Xenopus laevis oocyte based automated two-electrode voltage-clamp assay. The effects of quinidine (100 and 300 µM) are also tested. Using quantitative RT-PCR, the relative levels of mouse brain mKcnt1 mRNA expression are determined. Results We demonstrate that KCNT1 mutations implicated in epilepsy cause a marked increase in function. Importantly, there was a significant group difference in gain-of-function between mutations associated with ADNFLE and EIMFS. Finally, exposure to quinidine significantly reduces this gain-of-function for all mutations studied. Interpretation These results establish direction for a targeted therapy and potentially exemplify a translational paradigm for in vitro studies informing novel therapies in a neuropsychiatric disease. PMID:24591078

  15. An activating NLRC4 inflammasome mutation causes autoinflammation with recurrent macrophage activation syndrome

    PubMed Central

    Canna, Scott W.; de Jesus, Adriana Almeida; Gouni, Sushanth; Brooks, Stephen R.; Marrero, Bernadette; Liu, Yin; DiMattia, Michael A.; Zaal, Kristien J.M.; Montealegre Sanchez, Gina A.; Kim, Hanna; Chapelle, Dawn; Plass, Nicole; Huang, Yan; Villarino, Alejandro V.; Biancotto, Angelique; Fleisher, Thomas A.; Duncan, Joseph A.; O’Shea, John J; Benseler, Susanne; Grom, Alexei; Deng, Zuoming; Laxer, Ronald M; Goldbach-Mansky, Raphaela

    2014-01-01

    Inflammasomes are innate immune sensors that respond to pathogen and damage-associated signals with caspase-1 activation, IL-1β and IL-18 secretion, and macrophage pyroptosis. The discovery that dominant gain-of-function mutations in NLRP3 cause the Cryopyrin Associated Periodic Syndromes (CAPS) and trigger spontaneous inflammasome activation and IL-1β oversecretion, led to successful treatment with IL-1 blocking agents1. Herein, we report a de novo missense mutation, c.1009A>T, p.Thr337Ser, in the nucleotide-binding domain of inflammasome component NLRC4 (IPAF/CARD12) that causes early-onset recurrent fever flares and Macrophage Activation Syndrome (MAS). Functional analyses demonstrated spontaneous inflammasome formation and production of the inflammasome-dependent cytokines IL-1β and IL-18, the latter exceeding levels in CAPS. The NLRC4 mutation caused constitutive caspase-1 cleavage in transduced cells and increased production of IL-18 by both patient and NLRC4 mutant macrophages. Thus, we describe a novel monoallelic inflammasome defect that expands the monogenic autoinflammatory disease spectrum to include MAS and suggests novel targets for therapy. PMID:25217959

  16. Functional Trade-Offs in Promiscuous Enzymes Cannot Be Explained by Intrinsic Mutational Robustness of the Native Activity.

    PubMed

    Kaltenbach, Miriam; Emond, Stephane; Hollfelder, Florian; Tokuriki, Nobuhiko

    2016-10-01

    The extent to which an emerging new function trades off with the original function is a key characteristic of the dynamics of enzyme evolution. Various cases of laboratory evolution have unveiled a characteristic trend; a large increase in a new, promiscuous activity is often accompanied by only a mild reduction of the native, original activity. A model that associates weak trade-offs with "evolvability" was put forward, which proposed that enzymes possess mutational robustness in the native activity and plasticity in promiscuous activities. This would enable the acquisition of a new function without compromising the original one, reducing the benefit of early gene duplication and therefore the selection pressure thereon. Yet, to date, no experimental study has examined this hypothesis directly. Here, we investigate the causes of weak trade-offs by systematically characterizing adaptive mutations that occurred in two cases of evolutionary transitions in enzyme function: (1) from phosphotriesterase to arylesterase, and (2) from atrazine chlorohydrolase to melamine deaminase. Mutational analyses in various genetic backgrounds revealed that, in contrast to the prevailing model, the native activity is less robust to mutations than the promiscuous activity. For example, in phosphotriesterase, the deleterious effect of individual mutations on the native phosphotriesterase activity is much larger than their positive effect on the promiscuous arylesterase activity. Our observations suggest a revision of the established model: weak trade-offs are not caused by an intrinsic robustness of the native activity and plasticity of the promiscuous activity. We propose that upon strong adaptive pressure for the new activity without selection against the original one, selected mutations will lead to the largest possible increases in the new function, but whether and to what extent they decrease the old function is irrelevant, creating a bias towards initially weak trade-offs and the

  17. Diabetes induced by gain-of-function mutations in the Kir6.1 subunit of the KATP channel.

    PubMed

    Remedi, Maria S; Friedman, Jonathan B; Nichols, Colin G

    2017-01-01

    Gain-of-function (GOF) mutations in the pore-forming (Kir6.2) and regulatory (SUR1) subunits of K ATP channels have been identified as the most common cause of human neonatal diabetes mellitus. The critical effect of these mutations is confirmed in mice expressing Kir6.2-GOF mutations in pancreatic β cells. A second K ATP channel pore-forming subunit, Kir6.1, was originally cloned from the pancreas. Although the prominence of this subunit in the vascular system is well documented, a potential role in pancreatic β cells has not been considered. Here, we show that mice expressing Kir6.1-GOF mutations (Kir6.1[G343D] or Kir6.1[G343D,Q53R]) in pancreatic β cells (under rat-insulin-promoter [Rip] control) develop glucose intolerance and diabetes caused by reduced insulin secretion. We also generated transgenic mice in which a bacterial artificial chromosome (BAC) containing Kir6.1[G343D] is incorporated such that the transgene is only expressed in tissues where Kir6.1 is normally present. Strikingly, BAC-Kir6.1[G343D] mice also show impaired glucose tolerance, as well as reduced glucose- and sulfonylurea-dependent insulin secretion. However, the response to K + depolarization is intact in Kir6.1-GOF mice compared with control islets. The presence of native Kir6.1 transcripts was demonstrated in both human and wild-type mouse islets using quantitative real-time PCR. Together, these results implicate the incorporation of native Kir6.1 subunits into pancreatic K ATP channels and a contributory role for these subunits in the control of insulin secretion. © 2017 Remedi et al.

  18. Mutational Activation of the AmgRS Two-Component System in Aminoglycoside-Resistant Pseudomonas aeruginosa

    PubMed Central

    Lau, Calvin Ho-Fung; Fraud, Sebastien; Jones, Marcus; Peterson, Scott N.; Poole, Keith

    2013-01-01

    The amgRS operon encodes a presumed membrane stress-responsive two-component system linked to intrinsic aminoglycoside resistance in Pseudomonas aeruginosa. Genome sequencing of a lab isolate showing modest pan-aminoglycoside resistance, strain K2979, revealed a number of mutations, including a substitution in amgS that produced an R182C change in the AmgS sensor kinase product of this gene. Introduction of this mutation into an otherwise wild-type strain recapitulated the resistance phenotype, while correcting the mutation in the resistant mutant abrogated the resistant phenotype, confirming that the amgS mutation is responsible for the aminoglycoside resistance of strain K2979. The amgSR182 mutation promoted an AmgR-dependent, 2- to 3-fold increase in expression of the AmgRS target genes htpX and PA5528, mirroring the impact of aminoglycoside exposure of wild-type cells on htpX and PA5528 expression. This suggests that amgSR182 is a gain-of-function mutation that activates AmgS and the AmgRS two-component system in promoting modest resistance to aminoglycosides. Screening of several pan-aminoglycoside-resistant clinical isolates of P. aeruginosa revealed three that showed elevated htpX and PA5528 expression and harbored single amino acid-altering mutations in amgS (V121G or D106N) and no mutations in amgR. Introduction of the amgSV121G mutation into wild-type P. aeruginosa generated a resistance phenotype reminiscent of the amgSR182 mutant and produced a 2- to 3-fold increase in htpX and PA5528 expression, confirming that it, too, is a gain-of-function aminoglycoside resistance-promoting mutation. These results highlight the contribution of amgS mutations and activation of the AmgRS two-component system to acquired aminoglycoside resistance in lab and clinical isolates of P. aeruginosa. PMID:23459488

  19. A gain-of-function mutation of plastidic invertase alters nuclear gene expression with sucrose treatment partially via GENOMES UNCOUPLED1-mediated signaling.

    PubMed

    Maruta, Takanori; Miyazaki, Nozomi; Nosaka, Ryota; Tanaka, Hiroyuki; Padilla-Chacon, Daniel; Otori, Kumi; Kimura, Ayako; Tanabe, Noriaki; Yoshimura, Kazuya; Tamoi, Masahiro; Shigeoka, Shigeru

    2015-05-01

    Plastid gene expression (PGE) is one of the signals that regulate the expression of photosynthesis-associated nuclear genes (PhANGs) via GENOMES UNCOUPLED1 (GUN1)-dependent retrograde signaling. We recently isolated Arabidopsis sugar-inducible cotyledon yellow-192 (sicy-192), a gain-of-function mutant of plastidic invertase, and showed that following the treatment of this mutant with sucrose, the expression of PhANGs as well as PGE decreased, suggesting that the sicy-192 mutation activates a PGE-evoked and GUN1-mediated retrograde pathway. To clarify the relationship between the sicy-192 mutation, PGE, and GUN1-mediated pathway, plastid and nuclear gene expression in a double mutant of sicy-192 and gun1-101, a null mutant of GUN1 was studied. Plastid-encoded RNA polymerase (PEP)-dependent PGE was markedly suppressed in the sicy-192 mutant by the sucrose treatment, but the suppression as well as cotyledon yellow phenotype was not mitigated by GUN1 disruption. Microarray analysis revealed that the altered expression of nuclear genes such as PhANG in the sucrose-treated sicy-192 mutant was largely dependent on GUN1. The present findings demonstrated that the sicy-192 mutation alters nuclear gene expression with sucrose treatment via GUN1, which is possibly followed by inhibiting PEP-dependent PGE, providing a new insight into the role of plastid sugar metabolism in nuclear gene expression. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  20. TRPC6 G757D Loss-of-Function Mutation Associates with FSGS

    PubMed Central

    Riehle, Marc; Büscher, Anja K.; Gohlke, Björn-Oliver; Kaßmann, Mario; Kolatsi-Joannou, Maria; Bräsen, Jan H.; Nagel, Mato; Becker, Jan U.; Winyard, Paul; Hoyer, Peter F.; Preissner, Robert; Krautwurst, Dietmar; Gollasch, Maik

    2016-01-01

    FSGS is a CKD with heavy proteinuria that eventually progresses to ESRD. Hereditary forms of FSGS have been linked to mutations in the transient receptor potential cation channel, subfamily C, member 6 (TRPC6) gene encoding a nonselective cation channel. Most of these TRPC6 mutations cause a gain-of-function phenotype, leading to calcium–triggered podocyte cell death, but the underlying molecular mechanisms are unclear. We studied the molecular effect of disease-related mutations using tridimensional in silico modeling of tetrameric TRPC6. Our results indicated that G757 is localized in a domain forming a TRPC6-TRPC6 interface and predicted that the amino acid exchange G757D causes local steric hindrance and disruption of the channel complex. Notably, functional characterization of model interface domain mutants suggested a loss-of-function phenotype. We then characterized 19 human FSGS–related TRPC6 mutations, the majority of which caused gain-of-function mutations. However, five mutations (N125S, L395A, G757D, L780P, and R895L) caused a loss-of-function phenotype. Coexpression of wild-type TRPC6 and TRPC6 G757D, mimicking heterozygosity observed in patients, revealed a dominant negative effect of TRPC6 G757D. Our comprehensive analysis of human disease–causing TRPC6 mutations reveals loss of TRPC6 function as an additional concept of hereditary FSGS and provides molecular insights into the mechanism responsible for the loss-of-function phenotype of TRPC6 G757D in humans. PMID:26892346

  1. No GIST-type c-kit gain of function mutations in neuroblastic tumours

    PubMed Central

    Korja, M; Finne, J; Salmi, T T; Haapasalo, H; Tanner, M; Isola, J

    2005-01-01

    Aims: Neuroblastic tumours (NTs) have been shown to respond to imatinib treatment in vivo and in vitro, possibly via inactivating the c-kit receptor. The purpose of this study was to identify gastrointestinal stromal tumour (GIST)-type c-kit gene associated mutations in exons 9, 11, 13, and 17 in NTs to recognise a subset of tumours that would probably respond to imatinib treatment. Methods: Expression of the c-kit protein was detected immunohistochemically in a total of 37 archival paraffin wax embedded NTs using polyclonal rabbit antihuman c-kit antibody. After immunohistochemistry, c-kit gene associated chromosomal mutations in all cases of NT were detected with denaturing high performance liquid chromatography (HPLC). Results: Denaturing HLPC analysis did not reveal GIST-type mutations in four immunohistochemically detected c-kit positive or in 33 c-kit negative NTs. Conclusions: c-kit receptor expression and GIST-type c-kit gene mutations are rare events in NTs. Oncogenic activation of c-kit in NTs presumably differs from that of GISTs, which may influence their responsiveness to imatinib treatment. Whether c-kit has an essential role in the pathogenesis of NTs remains to be investigated. PMID:15976348

  2. Overlapping SETBP1 gain-of-function mutations in Schinzel-Giedion syndrome and hematologic malignancies

    PubMed Central

    Steehouwer, Marloes; Gilissen, Christian; Graham, Sarah A.; Hoover-Fong, Julie; Telegrafi, Aida B.; Destree, Anne; Smigiel, Robert; Lambie, Lindsday A.; Kayserili, Hülya; Altunoglu, Umut; Lapi, Elisabetta; Uzielli, Maria Luisa; Aracena, Mariana; Nur, Banu G.; Mihci, Ercan; Moreira, Lilia M. A.; Borges Ferreira, Viviane; Horovitz, Dafne D. G.; da Rocha, Katia M.; Jezela-Stanek, Aleksandra; Brooks, Alice S.; Reutter, Heiko; Cohen, Julie S.; Fatemi, Ali; Smitka, Martin; Grebe, Theresa A.; Di Donato, Nataliya; Deshpande, Charu; Vandersteen, Anthony; Marques Lourenço, Charles; Dufke, Andreas; Rossier, Eva; Andre, Gwenaelle; Baumer, Alessandra; Spencer, Careni; McGaughran, Julie; Franke, Lude; Veltman, Joris A.; De Vries, Bert B. A.; Schinzel, Albert; Fisher, Simon E.; Hoischen, Alexander

    2017-01-01

    Schinzel-Giedion syndrome (SGS) is a rare developmental disorder characterized by multiple malformations, severe neurological alterations and increased risk of malignancy. SGS is caused by de novo germline mutations clustering to a 12bp hotspot in exon 4 of SETBP1. Mutations in this hotspot disrupt a degron, a signal for the regulation of protein degradation, and lead to the accumulation of SETBP1 protein. Overlapping SETBP1 hotspot mutations have been observed recurrently as somatic events in leukemia. We collected clinical information of 47 SGS patients (including 26 novel cases) with germline SETBP1 mutations and of four individuals with a milder phenotype caused by de novo germline mutations adjacent to the SETBP1 hotspot. Different mutations within and around the SETBP1 hotspot have varying effects on SETBP1 stability and protein levels in vitro and in in silico modeling. Substitutions in SETBP1 residue I871 result in a weak increase in protein levels and mutations affecting this residue are significantly more frequent in SGS than in leukemia. On the other hand, substitutions in residue D868 lead to the largest increase in protein levels. Individuals with germline mutations affecting D868 have enhanced cell proliferation in vitro and higher incidence of cancer compared to patients with other germline SETBP1 mutations. Our findings substantiate that, despite their overlap, somatic SETBP1 mutations driving malignancy are more disruptive to the degron than germline SETBP1 mutations causing SGS. Additionally, this suggests that the functional threshold for the development of cancer driven by the disruption of the SETBP1 degron is higher than for the alteration in prenatal development in SGS. Drawing on previous studies of somatic SETBP1 mutations in leukemia, our results reveal a genotype-phenotype correlation in germline SETBP1 mutations spanning a molecular, cellular and clinical phenotype. PMID:28346496

  3. Drosophila Lyra mutations are gain-of-function mutations of senseless

    NASA Technical Reports Server (NTRS)

    Nolo, R.; Abbott, L. A.; Bellen, H. J.

    2001-01-01

    The Lyra mutation was first described by Jerry Coyne in 1935. Lyra causes recessive pupal lethality and adult heterozygous Lyra mutants exhibit a dominant loss of the anterior and posterior wing margins. Unlike many mutations that cause loss of wing tissue (e.g., scalloped, Beadex, cut, and apterous-Xasta), Lyra wing discs do not exhibit increased necrotic or apoptotic cell death, nor do they show altered BrdU incorporation. However, during wing disc eversion, loss of the anterior and posterior wing margins is apparent. We have previously shown that senseless, a gene that is necessary and sufficient for peripheral nervous system (PNS) development, is allelic to Lyra. Here we show by several genetic criteria that Lyra alleles are neomorphic alleles of senseless that cause ectopic expression of SENSELESS in the wing pouch. Similarly, overexpression of SENSELESS in the wing disc causes loss of wing margin tissue, thereby mimicking the Lyra phenotype. Lyra mutants display aberrant expression of DELTA, VESTIGIAL, WINGLESS, and CUT. As in Lyra mutants, overexpression of SENSELESS in some areas of the wing pouch also leads to loss of WINGLESS and CUT. In summary, our data indicate that overexpression of SENSELESS causes a severe reduction in NOTCH signaling that in turn may lead to decreased transcription of several key genes required for wing development, leading to a failure in cell proliferation and loss of wing margin tissue.

  4. An active site mutation increases the polymerase activity of the guinea pig-lethal Marburg virus.

    PubMed

    Koehler, Alexander; Kolesnikova, Larissa; Becker, Stephan

    2016-10-01

    Marburg virus (MARV) causes severe, often fatal, disease in humans and transient illness in rodents. Sequential passaging of MARV in guinea pigs resulted in selection of a lethal virus containing 4 aa changes. A D184N mutation in VP40 (VP40D184N), which leads to a species-specific gain of viral fitness, and three mutations in the active site of viral RNA-dependent RNA polymerase L, which were investigated in the present study for functional significance in human and guinea pig cells. The transcription/replication activity of L mutants was strongly enhanced by a substitution at position 741 (S741C), and inhibited by other substitutions (D758A and A759D) in both species. The polymerase activity of L carrying the S741C substitution was eightfold higher in guinea pig cells than in human cells upon co-expression with VP40D184N, suggesting that the additive effect of the two mutations provides MARV a replicative advantage in the new host.

  5. ALS-associated mutant FUS induces selective motor neuron degeneration through toxic gain of function

    PubMed Central

    Sharma, Aarti; Lyashchenko, Alexander K.; Lu, Lei; Nasrabady, Sara Ebrahimi; Elmaleh, Margot; Mendelsohn, Monica; Nemes, Adriana; Tapia, Juan Carlos; Mentis, George Z.; Shneider, Neil A.

    2016-01-01

    Mutations in FUS cause amyotrophic lateral sclerosis (ALS), including some of the most aggressive, juvenile-onset forms of the disease. FUS loss-of-function and toxic gain-of-function mechanisms have been proposed to explain how mutant FUS leads to motor neuron degeneration, but neither has been firmly established in the pathogenesis of ALS. Here we characterize a series of transgenic FUS mouse lines that manifest progressive, mutant-dependent motor neuron degeneration preceded by early, structural and functional abnormalities at the neuromuscular junction. A novel, conditional FUS knockout mutant reveals that postnatal elimination of FUS has no effect on motor neuron survival or function. Moreover, endogenous FUS does not contribute to the onset of the ALS phenotype induced by mutant FUS. These findings demonstrate that FUS-dependent motor degeneration is not due to loss of FUS function, but to the gain of toxic properties conferred by ALS mutations. PMID:26842965

  6. ALS-associated mutant FUS induces selective motor neuron degeneration through toxic gain of function.

    PubMed

    Sharma, Aarti; Lyashchenko, Alexander K; Lu, Lei; Nasrabady, Sara Ebrahimi; Elmaleh, Margot; Mendelsohn, Monica; Nemes, Adriana; Tapia, Juan Carlos; Mentis, George Z; Shneider, Neil A

    2016-02-04

    Mutations in FUS cause amyotrophic lateral sclerosis (ALS), including some of the most aggressive, juvenile-onset forms of the disease. FUS loss-of-function and toxic gain-of-function mechanisms have been proposed to explain how mutant FUS leads to motor neuron degeneration, but neither has been firmly established in the pathogenesis of ALS. Here we characterize a series of transgenic FUS mouse lines that manifest progressive, mutant-dependent motor neuron degeneration preceded by early, structural and functional abnormalities at the neuromuscular junction. A novel, conditional FUS knockout mutant reveals that postnatal elimination of FUS has no effect on motor neuron survival or function. Moreover, endogenous FUS does not contribute to the onset of the ALS phenotype induced by mutant FUS. These findings demonstrate that FUS-dependent motor degeneration is not due to loss of FUS function, but to the gain of toxic properties conferred by ALS mutations.

  7. Modulation of Gain-of-function α6*-Nicotinic Acetylcholine Receptor by β3 Subunits*

    PubMed Central

    Dash, Bhagirathi; Lukas, Ronald J.

    2012-01-01

    We previously have shown that β3 subunits either eliminate (e.g. for all-human (h) or all-mouse (m) α6β4β3-nAChR) or potentiate (e.g. for hybrid mα6hβ4hβ3- or mα6mβ4hβ3-nAChR containing subunits from different species) function of α6*-nAChR expressed in Xenopus oocytes, and that nAChR hα6 subunit residues Asn-143 and Met-145 in N-terminal domain loop E are important for dominant-negative effects of nAChR hβ3 subunits on hα6*-nAChR function. Here, we tested the hypothesis that these effects of β3 subunits would be preserved even if nAChR α6 subunits harbored gain-of-function, leucine- or valine-to-serine mutations at 9′ or 13′ positions (L9′S or V13′S) in their second transmembrane domains, yielding receptors with heightened functional activity and more amenable to assessment of effects of β3 subunit incorporation. However, coexpression with β3 subunits potentiates rather than suppresses function of all-human, all-mouse, or hybrid α6(L9′S or V13′S)β4*- or α6(N143D+M145V)L9′Sβ2*-nAChR. This contrasts with the lack of consistent function when α6(L9′S or V13′S) and β2 subunits are expressed alone or in the presence of wild-type β3 subunits. These results provide evidence that gain-of-function hα6hβ2*-nAChR (i.e. hα6(N143D+M145V)L9′Shβ2hβ3 nAChR) could be produced in vitro. These studies also indicate that nAChR β3 subunits can be assembly partners in functional α6*-nAChR and that 9′ or 13′ mutations in the nAChR α6 subunit second transmembrane domain can act as gain-of-function and/or reporter mutations. Moreover, our findings suggest that β3 subunit coexpression promotes function of α6*-nAChR. PMID:22315221

  8. Gain-of-Function Alleles in Caenorhabditis elegans Nuclear Hormone Receptor nhr-49 Are Functionally Distinct

    PubMed Central

    Lee, Kayoung; Goh, Grace Ying Shyen; Wong, Marcus Andrew; Klassen, Tara Leah

    2016-01-01

    Nuclear hormone receptors (NHRs) are transcription factors that regulate numerous physiological and developmental processes and represent important drug targets. NHR-49, an ortholog of Hepatocyte Nuclear Factor 4 (HNF4), has emerged as a key regulator of lipid metabolism and life span in the nematode worm Caenorhabditis elegans. However, many aspects of NHR-49 function remain poorly understood, including whether and how it regulates individual sets of target genes and whether its activity is modulated by a ligand. A recent study identified three gain-of-function (gof) missense mutations in nhr-49 (nhr-49(et7), nhr-49(et8), and nhr-49(et13), respectively). These substitutions all affect the ligand-binding domain (LBD), which is critical for ligand binding and protein interactions. Thus, these alleles provide an opportunity to test how three specific residues contribute to NHR-49 dependent gene regulation. We used computational and molecular methods to delineate how these mutations alter NHR-49 activity. We find that despite originating from a screen favoring the activation of specific NHR-49 targets, all three gof alleles cause broad upregulation of NHR-49 regulated genes. Interestingly, nhr-49(et7) and nhr-49(et8) exclusively affect nhr-49 dependent activation, whereas the nhr-49(et13) surprisingly affects both nhr-49 mediated activation and repression, implicating the affected residue as dually important. We also observed phenotypic non-equivalence of these alleles, as they unexpectedly caused a long, short, and normal life span, respectively. Mechanistically, the gof substitutions altered neither protein interactions with the repressive partner NHR-66 and the coactivator MDT-15 nor the subcellular localization or expression of NHR-49. However, in silico structural modeling revealed that NHR-49 likely interacts with small molecule ligands and that the missense mutations might alter ligand binding, providing a possible explanation for increased NHR-49 activity. In

  9. Activating mutations in STIM1 and ORAI1 cause overlapping syndromes of tubular myopathy and congenital miosis

    PubMed Central

    Nesin, Vasyl; Wiley, Graham; Kousi, Maria; Ong, E-Ching; Lehmann, Thomas; Nicholl, David J.; Suri, Mohnish; Shahrizaila, Nortina; Katsanis, Nicholas; Gaffney, Patrick M.; Wierenga, Klaas J.; Tsiokas, Leonidas

    2014-01-01

    Signaling through the store-operated Ca2+ release-activated Ca2+ (CRAC) channel regulates critical cellular functions, including gene expression, cell growth and differentiation, and Ca2+ homeostasis. Loss-of-function mutations in the CRAC channel pore-forming protein ORAI1 or the Ca2+ sensing protein stromal interaction molecule 1 (STIM1) result in severe immune dysfunction and nonprogressive myopathy. Here, we identify gain-of-function mutations in the cytoplasmic domain of STIM1 (p.R304W) associated with thrombocytopenia, bleeding diathesis, miosis, and tubular myopathy in patients with Stormorken syndrome, and in ORAI1 (p.P245L), associated with a Stormorken-like syndrome of congenital miosis and tubular aggregate myopathy but without hematological abnormalities. Heterologous expression of STIM1 p.R304W results in constitutive activation of the CRAC channel in vitro, and spontaneous bleeding accompanied by reduced numbers of thrombocytes in zebrafish embryos, recapitulating key aspects of Stormorken syndrome. p.P245L in ORAI1 does not make a constitutively active CRAC channel, but suppresses the slow Ca2+-dependent inactivation of the CRAC channel, thus also functioning as a gain-of-function mutation. These data expand our understanding of the phenotypic spectrum of dysregulated CRAC channel signaling, advance our knowledge of the molecular function of the CRAC channel, and suggest new therapies aiming at attenuating store-operated Ca2+ entry in the treatment of patients with Stormorken syndrome and related pathologic conditions. PMID:24591628

  10. Identification of novel X-linked gain-of-function RPGR-ORF15 mutation in Italian family with retinitis pigmentosa and pathologic myopia

    PubMed Central

    Parmeggiani, Francesco; Barbaro, Vanessa; De Nadai, Katia; Lavezzo, Enrico; Toppo, Stefano; Chizzolini, Marzio; Palù, Giorgio; Parolin, Cristina; Di Iorio, Enzo

    2016-01-01

    The aim of this study was to describe a new pathogenic variant in the mutational hot spot exon ORF15 of retinitis pigmentosa GTPase regulator (RPGR) gene within an Italian family with X-linked retinitis pigmentosa (RP), detailing its distinctive genotype-phenotype correlation with pathologic myopia (PM). All members of this RP-PM family underwent a complete ophthalmic examination. The entire open reading frames of RPGR and retinitis pigmentosa 2 genes were analyzed by Sanger sequencing. A novel frame-shift mutation in exon ORF15 of RPGR gene (c.2091_2092insA; p.A697fs) was identified as hemizygous variant in the male proband with RP, and as heterozygous variant in the females of this pedigree who invariably exhibited symmetrical PM in both eyes. The c.2091_2092insA mutation coherently co-segregated with the observed phenotypes. These findings expand the spectrum of X-linked RP variants. Interestingly, focusing on Caucasian ethnicity, just three RPGR mutations are hitherto reported in RP-PM families: one of these is located in exon ORF15, but none appears to be characterized by a high penetrance of PM trait as observed in the present, relatively small, pedigree. The geno-phenotypic attributes of this heterozygosity suggest that gain-of-function mechanism could give rise to PM via a degenerative cell-cell remodeling of the retinal structures. PMID:27995965

  11. PTH 1-34 Ameliorates the Osteopenia and Delayed Healing of Stabilized Tibia Fracture in Mice with Achondroplasia Resulting from Gain-Of-Function Mutation of FGFR3

    PubMed Central

    Chen, Hangang; Sun, Xianding; Yin, Liangjun; Chen, Shuai; Zhu, Ying; Huang, Junlan; Jiang, Wanling; Chen, Bo; Zhang, Ruobin; Chen, Lin; Nie, Mao; Xie, Yangli; Deng, Zhongliang

    2017-01-01

    Bone fracture healing is processed through multiple stages including the cartilaginous callus formation and its transition to bony callus. FGFR3 negatively regulates chondrogenesis and enhances osteogenesis during skeleton development. We previously found in mice carrying gain-of-function mutation of FGFR3 that FGFR3 delays the healing of un-stabilized fracture that heals mainly through endochondral ossification. Since fracture is regularly treated in clinics with rigid fixation, and stabilized fracture is healed largely through intramembranous ossification, we asked whether FGFR3, a key regulator of osteogenesis, also affect the regeneration of stabilized fracture. We found that gain-of-function mutation of FGFR3 inhibits the initiation of chondrogenesis and the subsequent bone formation. We further studied whether PTH1-34 can improve the osteopenia and delayed healing of the stabilized tibia fracture in mice with achondroplasia. Fracture healing was evaluated by radiography, micro-CT, biomechanical tests, histology, and real-time polymerase chain reaction (RT-PCR) analysis. We found that PTH 1-34 can alleviate the decreased bone mass and compromised architecture in ACH mice. Histological analysis revealed that administration of PTH1-34 increased the size of both the total callus and cartilaginous callus at 14 days after the surgery in ACH mice. RT-PCR data suggested that systemic PTH1-34 accelerated the initiation of chondrogenesis and chondrocyte maturation (earlier and higher levels of expression of chondrogenesis related markers) and enhanced the osteogenic differentiation in the fracture callus in ACH mice. These results indicate that the PTH1-34 administration resulted in an enhanced callus formation during bone fracture healing in ACH mice, which is at least in part mediated by an increase of cartilaginous callus at early stage and the promotion of bone formation in bony callus. In summary, in this study we revealed that FGFR3 delays the regeneration of

  12. Human SOD1 ALS Mutations in a Drosophila Knock-In Model Cause Severe Phenotypes and Reveal Dosage-Sensitive Gain- and Loss-of-Function Components.

    PubMed

    Şahin, Aslı; Held, Aaron; Bredvik, Kirsten; Major, Paxton; Achilli, Toni-Marie; Kerson, Abigail G; Wharton, Kristi; Stilwell, Geoff; Reenan, Robert

    2017-02-01

    Amyotrophic Lateral Sclerosis (ALS) is the most common adult-onset motor neuron disease and familial forms can be caused by numerous dominant mutations of the copper-zinc superoxide dismutase 1 (SOD1) gene. Substantial efforts have been invested in studying SOD1-ALS transgenic animal models; yet, the molecular mechanisms by which ALS-mutant SOD1 protein acquires toxicity are not well understood. ALS-like phenotypes in animal models are highly dependent on transgene dosage. Thus, issues of whether the ALS-like phenotypes of these models stem from overexpression of mutant alleles or from aspects of the SOD1 mutation itself are not easily deconvolved. To address concerns about levels of mutant SOD1 in disease pathogenesis, we have genetically engineered four human ALS-causing SOD1 point mutations (G37R, H48R, H71Y, and G85R) into the endogenous locus of Drosophila SOD1 (dsod) via ends-out homologous recombination and analyzed the resulting molecular, biochemical, and behavioral phenotypes. Contrary to previous transgenic models, we have recapitulated ALS-like phenotypes without overexpression of the mutant protein. Drosophila carrying homozygous mutations rendering SOD1 protein enzymatically inactive (G85R, H48R, and H71Y) exhibited neurodegeneration, locomotor deficits, and shortened life span. The mutation retaining enzymatic activity (G37R) was phenotypically indistinguishable from controls. While the observed mutant dsod phenotypes were recessive, a gain-of-function component was uncovered through dosage studies and comparisons with age-matched dsod null animals, which failed to show severe locomotor defects or nerve degeneration. We conclude that the Drosophila knock-in model captures important aspects of human SOD1-based ALS and provides a powerful and useful tool for further genetic studies. Copyright © 2017 by the Genetics Society of America.

  13. Gain-of-function somatic mutations contribute to inflammation and blood vessel damage that lead to Alzheimer dementia: a hypothesis.

    PubMed

    Marchesi, Vincent T

    2016-02-01

    Amyloid deposits are a characteristic feature of advanced Alzheimer dementia (AD), but whether they initiate the disease or are a consequence of it remains an unsettled question. To explore an alternative pathogenic mechanism, I propose that the triggering events that begin the pathogenic cascade are not amyloid deposits but damaged blood vessels caused by inflammatory reactions that lead to ischemia, amyloid accumulation, axonal degeneration, synaptic loss, and eventually irreversible neuronal cell death. Inflammation and blood vessel damage are well recognized complications of AD, but what causes them and why the cerebral microvasculature is affected have never been adequately addressed. Because heritable autosomal dominant mutations of NLRP3, APP, TREX1, NOTCH3, and Col4A1 are known to provoke inflammatory reactions and damage the brain in a wide variety of diseases, I propose that one or more low abundant, gain-of-function somatic mutations of the same 5 gene families damage the microvasculature of the brain that leads to dementia. This implies that the pathogenic triggers that lead to AD are derived not from external invaders or amyloid but from oxidative damage of our own genes. © FASEB.

  14. Activating PIK3CD mutations impair human cytotoxic lymphocyte differentiation, function and EBV immunity.

    PubMed

    Edwards, Emily S J; Bier, Julia; Cole, Theresa S; Wong, Melanie; Hsu, Peter; Berglund, Lucinda J; Boztug, Kaan; Lau, Anthony; Gostick, Emma; Price, David A; O'Sullivan, Michael; Meyts, Isabelle; Choo, Sharon; Gray, Paul; Holland, Steven M; Deenick, Elissa K; Uzel, Gulbu; Tangye, Stuart G

    2018-05-22

    Germline gain-of function (GOF) mutations in PIK3CD, encoding the catalytic p110δ subunit of phosphatidylinositol-3 kinase, result in hyperactivation of the PI3K-AKT-mTOR pathway and underlie a novel inborn error of immunity. Affected individuals exhibit perturbed humoral and cellular immunity, manifesting as recurrent infections, autoimmunity, hepatosplenomegaly, uncontrolled EBV and/or CMV infection, and an increased incidence of B-cell lymphoproliferation and/or lymphoma. Mechanisms underlying disease pathogenesis remain unknown. Understanding the cellular and molecular mechanisms underpinning inefficient surveillance of EBV-infected B cells is required to understand disease in individuals with PIK3CD GOF mutations, identify key molecules required for cell mediated immunity against EBV, and develop immunotherapeutic interventions for the treatment of this as well as other EBV-opathies. We studied the consequences of PIK3CD GOF mutations on the generation, differentiation and function of CD8 + T cells and NK cells, which are implicated in host defense against infection with herpesviruses including EBV. PIK3CD GOF total and EBV-specific CD8 + T cells were skewed towards an effector phenotype, with exaggerated expression of markers associated with premature immunosenescence/exhaustion, and increased susceptibility to re-activation induced cell death. These findings were recapitulated in a novel mouse model of PI3K GOF. NK cells in PIK3CD GOF individuals also exhibited perturbed expression of differentiation-associated molecules. Both CD8 + T cells and NK cells had reduced capacity to kill EBV-infected B cells. PIK3CD GOF B cells had increased expression of CD48, PDL-1/2 and CD70. PIK3CD GOF mutations aberrantly induce exhaustion and/or senescence and impair cytotoxicity of CD8+ T and NK cells. These defects may contribute to clinical features of affected individuals, such as impaired immunity to herpesviruses and tumor surveillance. Copyright © 2018. Published by

  15. Disease-Causing Mutations in the G Protein Gαs Subvert the Roles of GDP and GTP.

    PubMed

    Hu, Qi; Shokat, Kevan M

    2018-05-17

    The single most frequent cancer-causing mutation across all heterotrimeric G proteins is R201C in Gαs. The current model explaining the gain-of-function activity of the R201 mutations is through the loss of GTPase activity and resulting inability to switch off to the GDP state. Here, we find that the R201C mutation can bypass the need for GTP binding by directly activating GDP-bound Gαs through stabilization of an intramolecular hydrogen bond network. Having found that a gain-of-function mutation can convert GDP into an activator, we postulated that a reciprocal mutation might disrupt the normal role of GTP. Indeed, we found R228C, a loss-of-function mutation in Gαs that causes pseudohypoparathyroidism type 1a (PHP-Ia), compromised the adenylyl cyclase-activating activity of Gαs bound to a non-hydrolyzable GTP analog. These findings show that disease-causing mutations in Gαs can subvert the canonical roles of GDP and GTP, providing new insights into the regulation mechanism of G proteins. Copyright © 2018 Elsevier Inc. All rights reserved.

  16. A three-dimensional model of mammalian tyrosinase active site accounting for loss of function mutations.

    PubMed

    Schweikardt, Thorsten; Olivares, Concepción; Solano, Francisco; Jaenicke, Elmar; García-Borrón, José Carlos; Decker, Heinz

    2007-10-01

    Tyrosinases are the first and rate-limiting enzymes in the synthesis of melanin pigments responsible for colouring hair, skin and eyes. Mutation of tyrosinases often decreases melanin production resulting in albinism, but the effects are not always understood at the molecular level. Homology modelling of mouse tyrosinase based on recently published crystal structures of non-mammalian tyrosinases provides an active site model accounting for loss-of-function mutations. According to the model, the copper-binding histidines are located in a helix bundle comprising four densely packed helices. A loop containing residues M374, S375 and V377 connects the CuA and CuB centres, with the peptide oxygens of M374 and V377 serving as hydrogen acceptors for the NH-groups of the imidazole rings of the copper-binding His367 and His180. Therefore, this loop is essential for the stability of the active site architecture. A double substitution (374)MS(375) --> (374)GG(375) or a single M374G mutation lead to a local perturbation of the protein matrix at the active site affecting the orientation of the H367 side chain, that may be unable to bind CuB reliably, resulting in loss of activity. The model also accounts for loss of function in two naturally occurring albino mutations, S380P and V393F. The hydroxyl group in S380 contributes to the correct orientation of M374, and the substitution of V393 for a bulkier phenylalanine sterically impedes correct side chain packing at the active site. Therefore, our model explains the mechanistic necessity for conservation of not only active site histidines but also adjacent amino acids in tyrosinase.

  17. Congenital ataxia and hemiplegic migraine with cerebral edema associated with a novel gain of function mutation in the calcium channel CACNA1A.

    PubMed

    García Segarra, Nuria; Gautschi, Ivan; Mittaz-Crettol, Laureane; Kallay Zetchi, Christine; Al-Qusairi, Lama; Van Bemmelen, Miguel Xavier; Maeder, Philippe; Bonafé, Luisa; Schild, Laurent; Roulet-Perez, Eliane

    2014-07-15

    Mutations in the CACNA1A gene, encoding the α1 subunit of the voltage-gated calcium channel Ca(V)2.1 (P/Q-type), have been associated with three neurological phenotypes: familial and sporadic hemiplegic migraine type 1 (FHM1, SHM1), episodic ataxia type 2 (EA2), and spinocerebellar ataxia type 6 (SCA6). We report a child with congenital ataxia, abnormal eye movements and developmental delay who presented severe attacks of hemiplegic migraine triggered by minor head traumas and associated with hemispheric swelling and seizures. Progressive cerebellar atrophy was also observed. Remission of the attacks was obtained with acetazolamide. A de novo 3 bp deletion was found in heterozygosity causing loss of a phenylalanine residue at position 1502, in one of the critical transmembrane domains of the protein contributing to the inner part of the pore. We characterized the electrophysiology of this mutant in a Xenopus oocyte in vitro system and showed that it causes gain of function of the channel. The mutant Ca(V)2.1 activates at lower voltage threshold than the wild type. These findings provide further evidence of this molecular mechanism as causative of FHM1 and expand the phenotypic spectrum of CACNA1A mutations with a child exhibiting severe SHM1 and non-episodic ataxia of congenital onset. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Gain-of-function mutant p53 but not p53 deletion promotes head and neck cancer progression in response to oncogenic K-ras

    PubMed Central

    Acin, Sergio; Li, Zhongyou; Mejia, Olga; Roop, Dennis R; El-Naggar, Adel K; Caulin, Carlos

    2015-01-01

    Mutations in p53 occur in over 50% of the human head and neck squamous cell carcinomas (SCCHN). The majority of these mutations result in the expression of mutant forms of p53, rather than deletions in the p53 gene. Some p53 mutants are associated with poor prognosis in SCCHN patients. However, the molecular mechanisms that determine the poor outcome of cancers carrying p53 mutations are unknown. Here, we generated a mouse model for SCCHN and found that activation of the endogenous p53 gain-of-function mutation p53R172H, but not deletion of p53, cooperates with oncogenic K-ras during SCCHN initiation, accelerates oral tumour growth, and promotes progression to carcinoma. Mechanistically, expression profiling of the tumours that developed in these mice and studies using cell lines derived from these tumours determined that mutant p53 induces the expression of genes involved in mitosis, including cyclin B1 and cyclin A, and accelerates entry in mitosis. Additionally, we discovered that this oncogenic function of mutant p53 was dependent on K-ras because the expression of cyclin B1 and cyclin A decreased, and entry in mitosis was delayed, after suppressing K-ras expression in oral tumour cells that express p53R172H. The presence of double-strand breaks in the tumours suggests that oncogene-dependent DNA damage resulting from K-ras activation promotes the oncogenic function of mutant p53. Accordingly, DNA damage induced by doxorubicin also induced increased expression of cyclin B1 and cyclin A in cells that express p53R172H. These findings represent strong in vivo evidence for an oncogenic function of endogenous p53 gain-of-function mutations in SCCHN and provide a mechanistic explanation for the genetic interaction between oncogenic K-ras and mutant p53. PMID:21952947

  19. A Kv7.2 mutation associated with early onset epileptic encephalopathy with suppression-burst enhances Kv7/M channel activity.

    PubMed

    Devaux, Jérôme; Abidi, Affef; Roubertie, Agathe; Molinari, Florence; Becq, Hélène; Lacoste, Caroline; Villard, Laurent; Milh, Mathieu; Aniksztejn, Laurent

    2016-05-01

    Mutations in the KCNQ2 gene encoding the voltage-gated potassium channel subunit Kv7.2 cause early onset epileptic encephalopathy (EOEE). Most mutations have been shown to induce a loss of function or to affect the subcellular distribution of Kv7 channels in neurons. Herein, we investigated functional consequences and subcellular distribution of the p.V175L mutation of Kv7.2 (Kv7.2(V175L) ) found in a patient presenting EOEE. We observed that the mutation produced a 25-40 mV hyperpolarizing shift of the conductance-voltage relationship of both the homomeric Kv7.2(V175L) and heteromeric Kv7.2(V175L) /Kv7.3 channels compared to wild-type channels and a 10 mV hyperpolarizing shift of Kv7.2(V175L) /Kv7.2/Kv7.3 channels in a 1:1:2 ratio mimicking the patient situation. Mutant channels also displayed faster activation kinetics and an increased current density that was prevented by 1 μm linopirdine. The p.V175L mutation did not affect the protein expression of Kv7 channels and its localization at the axon initial segment. We conclude that p.V175L is a gain of function mutation. This confirms previous observations showing that mutations having opposite consequences on M channels can produce EOEE. These findings alert us that drugs aiming to increase Kv7 channel activity might have adverse effects in EOEE in the case of gain-of-function variants. Wiley Periodicals, Inc. © 2016 International League Against Epilepsy.

  20. Gain-of-function mutations in SMAD4 cause a distinctive repertoire of cardiovascular phenotypes in patients with Myhre syndrome.

    PubMed

    Lin, Angela E; Michot, Caroline; Cormier-Daire, Valerie; L'Ecuyer, Thomas J; Matherne, G Paul; Barnes, Barrett H; Humberson, Jennifer B; Edmondson, Andrew C; Zackai, Elaine; O'Connor, Matthew J; Kaplan, Julie D; Ebeid, Makram R; Krier, Joel; Krieg, Elizabeth; Ghoshhajra, Brian; Lindsay, Mark E

    2016-10-01

    Myhre syndrome is a rare, distinctive syndrome due to specific gain-of-function mutations in SMAD4. The characteristic phenotype includes short stature, dysmorphic facial features, hearing loss, laryngotracheal anomalies, arthropathy, radiographic defects, intellectual disability, and a more recently appreciated spectrum of cardiovascular defects with a striking fibroproliferative response to surgical intervention. We report four newly described patients with typical features of Myhre syndrome who had (i) a mildly narrow descending aorta and restrictive cardiomyopathy; (ii) recurrent pericardial and pleural effusions; (iii) a large persistent ductus arteriosus with juxtaductal aortic coarctation; and (iv) restrictive pericardial disease requiring pericardiectomy. Additional information is provided about a fifth previously reported patient with fatal pericardial disease. A literature review of the cardiovascular features of Myhre syndrome was performed on 54 total patients, all with a SMAD4 mutation. Seventy percent had a cardiovascular abnormality including congenital heart defects (63%), pericardial disease (17%), restrictive cardiomyopathy (9%), and systemic hypertension (15%). Pericarditis and restrictive cardiomyopathy are associated with high mortality (three patients each among 10 deaths); one patient with restrictive cardiomyopathy also had epicarditis. Cardiomyopathy and pericardial abnormalities distinguish Myhre syndrome from other disorders caused by mutations in the TGF-β signaling cascade (Marfan, Loeys-Dietz, or Shprintzen-Goldberg syndromes). We hypothesize that the expanded spectrum of cardiovascular abnormalities relates to the ability of the SMAD4 protein to integrate diverse signaling pathways, including canonical TGF-β, BMP, and Activin signaling. The co-occurrence of congenital and acquired phenotypes demonstrates that the gene product of SMAD4 is required for both developmental and postnatal cardiovascular homeostasis. © 2016 Wiley

  1. Suppression of gain-of-function mutant p53 with metabolic inhibitors reduces tumor growth in vivo

    PubMed Central

    Jung, Chae Lim; Mun, Hyemin; Jo, Se-Young; Oh, Ju-Hee; Lee, ChuHee; Choi, Eun-Kyung; Jang, Se Jin; Suh, Young-Ah

    2016-01-01

    Mutation of p53 occasionally results in a gain of function, which promotes tumor growth. We asked whether destabilizing the gain-of-function protein would kill tumor cells. Downregulation of the gene reduced cell proliferation in p53-mutant cells, but not in p53-null cells, indicating that the former depended on the mutant protein for survival. Moreover, phenformin and 2-deoxyglucose suppressed cell growth and simultaneously destabilized mutant p53. The AMPK pathway, MAPK pathway, chaperone proteins and ubiquitination all contributed to this process. Interestingly, phenformin and 2-deoxyglucose also reduced tumor growth in syngeneic mice harboring the p53 mutation. Thus, destabilizing mutant p53 protein in order to kill cells exhibiting “oncogene addiction” could be a promising strategy for combatting p53 mutant tumors. PMID:27765910

  2. Suppression of gain-of-function mutant p53 with metabolic inhibitors reduces tumor growth in vivo.

    PubMed

    Jung, Chae Lim; Mun, Hyemin; Jo, Se-Young; Oh, Ju-Hee; Lee, ChuHee; Choi, Eun-Kyung; Jang, Se Jin; Suh, Young-Ah

    2016-11-22

    Mutation of p53 occasionally results in a gain of function, which promotes tumor growth. We asked whether destabilizing the gain-of-function protein would kill tumor cells. Downregulation of the gene reduced cell proliferation in p53-mutant cells, but not in p53-null cells, indicating that the former depended on the mutant protein for survival. Moreover, phenformin and 2-deoxyglucose suppressed cell growth and simultaneously destabilized mutant p53. The AMPK pathway, MAPK pathway, chaperone proteins and ubiquitination all contributed to this process. Interestingly, phenformin and 2-deoxyglucose also reduced tumor growth in syngeneic mice harboring the p53 mutation. Thus, destabilizing mutant p53 protein in order to kill cells exhibiting "oncogene addiction" could be a promising strategy for combatting p53 mutant tumors.

  3. Germline NLRP1 Mutations Cause Skin Inflammatory and Cancer Susceptibility Syndromes via Inflammasome Activation.

    PubMed

    Zhong, Franklin L; Mamaï, Ons; Sborgi, Lorenzo; Boussofara, Lobna; Hopkins, Richard; Robinson, Kim; Szeverényi, Ildikó; Takeichi, Takuya; Balaji, Reshmaa; Lau, Aristotle; Tye, Hazel; Roy, Keya; Bonnard, Carine; Ahl, Patricia J; Jones, Leigh Ann; Baker, Paul J; Lacina, Lukas; Otsuka, Atsushi; Fournie, Pierre R; Malecaze, François; Lane, E Birgitte; Akiyama, Masashi; Kabashima, Kenji; Connolly, John E; Masters, Seth L; Soler, Vincent J; Omar, Salma Samir; McGrath, John A; Nedelcu, Roxana; Gribaa, Moez; Denguezli, Mohamed; Saad, Ali; Hiller, Sebastian; Reversade, Bruno

    2016-09-22

    Inflammasome complexes function as key innate immune effectors that trigger inflammation in response to pathogen- and danger-associated signals. Here, we report that germline mutations in the inflammasome sensor NLRP1 cause two overlapping skin disorders: multiple self-healing palmoplantar carcinoma (MSPC) and familial keratosis lichenoides chronica (FKLC). We find that NLRP1 is the most prominent inflammasome sensor in human skin, and all pathogenic NLRP1 mutations are gain-of-function alleles that predispose to inflammasome activation. Mechanistically, NLRP1 mutations lead to increased self-oligomerization by disrupting the PYD and LRR domains, which are essential in maintaining NLRP1 as an inactive monomer. Primary keratinocytes from patients experience spontaneous inflammasome activation and paracrine IL-1 signaling, which is sufficient to cause skin inflammation and epidermal hyperplasia. Our findings establish a group of non-fever inflammasome disorders, uncover an unexpected auto-inhibitory function for the pyrin domain, and provide the first genetic evidence linking NLRP1 to skin inflammatory syndromes and skin cancer predisposition. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Identification and functional analysis of CBLB mutations in type 1 diabetes.

    PubMed

    Yokoi, Norihide; Fujiwara, Yuuka; Wang, He-Yao; Kitao, Mai; Hayashi, Chihiro; Someya, Tomohiro; Kanamori, Masao; Oiso, Yutaka; Tajima, Naoko; Yamada, Yuichiro; Seino, Yutaka; Ikegami, Hiroshi; Seino, Susumu

    2008-03-28

    Casitas B-lineage lymphoma b (Cblb) is a negative regulator of T-cell activation and dysfunction of Cblb in rats and mice results in autoimmunity. In particular, a nonsense mutation in Cblb has been identified in a rat model of autoimmune type 1 diabetes. To clarify the possible involvement of CBLB mutation in type 1 diabetes in humans, we performed mutation screening of CBLB and characterized functional properties of the mutations in Japanese subjects. Six missense mutations (A155V, F328L, N466D, K837R, T882A, and R968L) were identified in one diabetic subject each, excepting N466D. Of these mutations, F328L showed impaired suppression of T-cell activation and was a loss-of-function mutation. These data suggest that the F328L mutation is involved in the development of autoimmune diseases including type 1 diabetes, and also provide insight into the structure-function relationship of CBLB protein.

  5. A Comprehensive Functional Analysis of NTRK1 Missense Mutations Causing Hereditary Sensory and Autonomic Neuropathy Type IV (HSAN IV).

    PubMed

    Shaikh, Samiha S; Chen, Ya-Chun; Halsall, Sally-Anne; Nahorski, Michael S; Omoto, Kiyoyuki; Young, Gareth T; Phelan, Anne; Woods, Christopher Geoffrey

    2017-01-01

    Hereditary sensory and autonomic neuropathy type IV (HSAN IV) is an autosomal recessive disorder characterized by a complete lack of pain perception and anhidrosis. Here, we studied a cohort of seven patients with HSAN IV and describe a comprehensive functional analysis of seven novel NTRK1 missense mutations, c.1550G >A, c.1565G >A, c.1970T >C, c.2096T >C, c.2254T >A, c.2288G >C, and c.2311C >T, corresponding to p.G517E, p.G522E, p.L657P, p.I699T, p.C752S, p.C763S, and p.R771C, all of which were predicted pathogenic by in silico analysis. The results allowed us to assess the pathogenicity of each mutation and to gain novel insights into tropomyosin receptor kinase A (TRKA) downstream signaling. Each mutation was systematically analyzed for TRKA glycosylation states, intracellular and cell membrane expression patterns, nerve growth factor stimulated TRKA autophosphorylation, TRKA-Y496 phosphorylation, PLCγ activity, and neurite outgrowth. We showed a diverse range of functional effects: one mutation appeared fully functional, another had partial activity in all assays, one mutation affected only the PLCγ pathway and four mutations were proved null in all assays. Thus, we conclude that complete abolition of TRKA kinase activity is not the only pathogenic mechanism underlying HSAN IV. By corollary, the assessment of the clinical pathogenicity of HSAN IV mutations is more complex than initially predicted and requires a multifaceted approach. © 2016 WILEY PERIODICALS, INC.

  6. Dominant Drop mutants are gain-of-function alleles of the muscle segment homeobox gene (msh) whose overexpression leads to the arrest of eye development.

    PubMed

    Mozer, B A

    2001-05-15

    Dominant Drop (Dr) mutations are nearly eyeless and have additional recessive phenotypes including lethality and patterning defects in eye and sensory bristles due to cis-regulatory lesions in the cell cycle regulator string (stg). Genetic analysis demonstrates that the dominant small eye phenotype is the result of separate gain-of-function mutations in the closely linked muscle segment homeobox (msh) gene, encoding a homeodomain transcription factor required for patterning of muscle and nervous system. Reversion of the Dr(Mio) allele was coincident with the generation of lethal loss-of-function mutations in msh in cis, suggesting that the dominant eye phenotype is the result of ectopic expression. Molecular genetic analysis revealed that two dominant Dr alleles contain lesions upstream of the msh transcription start site. In the Dr(Mio) mutant, a 3S18 retrotransposon insertion is the target of second-site mutations (P-element insertions or deletions) which suppress the dominant eye phenotype following reversion. The pattern of 3S18 expression and the absence of msh in eye imaginal discs suggest that transcriptional activation of the msh promoter accounts for ectopic expression. Dr dominant mutations arrest eye development by blocking the progression of the morphogenetic furrow leading to photoreceptor cell loss via apoptosis. Gal4-mediated ubiquitous expression of msh in third-instar larvae was sufficient to arrest the morphogenetic furrow in the eye imaginal disc and resulted in lethality prior to eclosion. Dominant mutations in the human msx2 gene, one of the vertebrate homologs of msh, are associated with craniosynostosis, a disease affecting cranial development. The Dr mutations are the first example of gain-of-function mutations in the msh/msx gene family identified in a genetically tractible model organism and may serve as a useful tool to identify additional genes that regulate this class of homeodomain proteins. Copyright 2001 Academic Press.

  7. Structure-functional prediction and analysis of cancer mutation effects in protein kinases.

    PubMed

    Dixit, Anshuman; Verkhivker, Gennady M

    2014-01-01

    A central goal of cancer research is to discover and characterize the functional effects of mutated genes that contribute to tumorigenesis. In this study, we provide a detailed structural classification and analysis of functional dynamics for members of protein kinase families that are known to harbor cancer mutations. We also present a systematic computational analysis that combines sequence and structure-based prediction models to characterize the effect of cancer mutations in protein kinases. We focus on the differential effects of activating point mutations that increase protein kinase activity and kinase-inactivating mutations that decrease activity. Mapping of cancer mutations onto the conformational mobility profiles of known crystal structures demonstrated that activating mutations could reduce a steric barrier for the movement from the basal "low" activity state to the "active" state. According to our analysis, the mechanism of activating mutations reflects a combined effect of partial destabilization of the kinase in its inactive state and a concomitant stabilization of its active-like form, which is likely to drive tumorigenesis at some level. Ultimately, the analysis of the evolutionary and structural features of the major cancer-causing mutational hotspot in kinases can also aid in the correlation of kinase mutation effects with clinical outcomes.

  8. Oncogenically active MYD88 mutations in human lymphoma.

    PubMed

    Ngo, Vu N; Young, Ryan M; Schmitz, Roland; Jhavar, Sameer; Xiao, Wenming; Lim, Kian-Huat; Kohlhammer, Holger; Xu, Weihong; Yang, Yandan; Zhao, Hong; Shaffer, Arthur L; Romesser, Paul; Wright, George; Powell, John; Rosenwald, Andreas; Muller-Hermelink, Hans Konrad; Ott, German; Gascoyne, Randy D; Connors, Joseph M; Rimsza, Lisa M; Campo, Elias; Jaffe, Elaine S; Delabie, Jan; Smeland, Erlend B; Fisher, Richard I; Braziel, Rita M; Tubbs, Raymond R; Cook, J R; Weisenburger, Denny D; Chan, Wing C; Staudt, Louis M

    2011-02-03

    The activated B-cell-like (ABC) subtype of diffuse large B-cell lymphoma (DLBCL) remains the least curable form of this malignancy despite recent advances in therapy. Constitutive nuclear factor (NF)-κB and JAK kinase signalling promotes malignant cell survival in these lymphomas, but the genetic basis for this signalling is incompletely understood. Here we describe the dependence of ABC DLBCLs on MYD88, an adaptor protein that mediates toll and interleukin (IL)-1 receptor signalling, and the discovery of highly recurrent oncogenic mutations affecting MYD88 in ABC DLBCL tumours. RNA interference screening revealed that MYD88 and the associated kinases IRAK1 and IRAK4 are essential for ABC DLBCL survival. High-throughput RNA resequencing uncovered MYD88 mutations in ABC DLBCL lines. Notably, 29% of ABC DLBCL tumours harboured the same amino acid substitution, L265P, in the MYD88 Toll/IL-1 receptor (TIR) domain at an evolutionarily invariant residue in its hydrophobic core. This mutation was rare or absent in other DLBCL subtypes and Burkitt's lymphoma, but was observed in 9% of mucosa-associated lymphoid tissue lymphomas. At a lower frequency, additional mutations were observed in the MYD88 TIR domain, occurring in both the ABC and germinal centre B-cell-like (GCB) DLBCL subtypes. Survival of ABC DLBCL cells bearing the L265P mutation was sustained by the mutant but not the wild-type MYD88 isoform, demonstrating that L265P is a gain-of-function driver mutation. The L265P mutant promoted cell survival by spontaneously assembling a protein complex containing IRAK1 and IRAK4, leading to IRAK4 kinase activity, IRAK1 phosphorylation, NF-κB signalling, JAK kinase activation of STAT3, and secretion of IL-6, IL-10 and interferon-β. Hence, the MYD88 signalling pathway is integral to the pathogenesis of ABC DLBCL, supporting the development of inhibitors of IRAK4 kinase and other components of this pathway for the treatment of tumours bearing oncogenic MYD88 mutations.

  9. Novel activating mutation of human calcium-sensing receptor in a family with autosomal dominant hypocalcaemia.

    PubMed

    Baran, Natalia; ter Braak, Michael; Saffrich, Rainer; Woelfle, Joachim; Schmitz, Udo

    2015-05-15

    Autosomal dominant hypocalcaemia (ADH) is caused by activating mutations in the calcium sensing receptor gene (CaR) and characterised by mostly asymptomatic mild to moderate hypocalcaemia with low, inappropriately serum concentration of PTH. The purpose of the present study was to biochemically and functionally characterise a novel mutation of CaR. A female proband presenting with hypocalcaemia was diagnosed to have "idiopathic hypoparathyroidism" at the age of 10 with a history of muscle pain and cramps. Further examinations demonstrated hypocalcaemia in nine additional family members, affecting three generations. P136L CaR mutation was predicted to cause gain of function of CaR. Affected family members showed relevant hypocalcaemia (mean ± SD; 1.9 ± 0.1 mmol/l). Patient history included mild seizures and recurrent nephrolithiasis. Genetic analysis confirmed that hypocalcaemia cosegregated with a heterozygous mutation at codon 136 (CCC → CTC/Pro → Leu) in exon 3 of CaR confirming the diagnosis of ADH. For in vitro studies P136L mutant CaR was generated by site-directed mutagenesis and examined in transiently transfected HEK293 cells. Extracellular calcium stimulation of transiently transfected HEK293 cells showed significantly increased intracellular Ca(2+) mobilisation and MAPK activity for mutant P136L CaR compared to wild type CaR. The present study gives insight about a novel activating mutation of CaR and confirms that the novel P136L-CaR mutation is responsible for ADH in this family. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  10. Impact of nonsynonymous mutations of factor X on the functions of factor X and anticoagulant activity of edoxaban.

    PubMed

    Noguchi, Kengo; Morishima, Yoshiyuki; Takahashi, Shinichi; Ishihara, Hiroaki; Shibano, Toshiro; Murata, Mitsuru

    2015-03-01

    Edoxaban is an oral direct factor Xa (FXa) inhibitor and its efficacy as an oral anticoagulant is less subject to drug-food and drug-drug interaction than existing vitamin K antagonists. Although this profile of edoxaban suggests it is well suited for clinical use, it is not clear whether genetic variations of factor X influence the activity of edoxaban. Our aim was to investigate a possible impact of single-nucleotide polymorphisms (SNPs) in the factor X gene on the functions of factor X and the activity of edoxaban. Two nonsynonymous SNPs within mature factor X, Ala152Thr and Gly192Arg, were selected as possible candidates that might affect the functions of FXa and the activity of edoxaban. We measured catalytic activities of wild type and mutant FXas in a chromogenic assay using S-2222 and coagulation times including prothrombin time (PT) and activated partial thrombin time (aPTT) of plasma-containing recombinant FXs in the presence and absence of edoxaban. Michaelis-Menten kinetic parameters of FXas, Km and Vmax values, PT and aPTT were not influenced by either mutation indicating these mutations do not affect the FXa catalytic and coagulation activities. The Ki values of edoxaban for the FXas and the concentrations of edoxaban required to double PT and aPTT were not different between wild type and mutated FXas indicating that both mutations have little impact on the activity of edoxaban. In conclusion, these data suggest that edoxaban has little interpatient variability stemming from SNPs in the factor X gene.

  11. Cantú Syndrome Resulting from Activating Mutation in the KCNJ8 Gene

    PubMed Central

    Cooper, Paige E.; Reutter, Heiko; Woelfle, Joachim; Engels, Hartmut; Grange, Dorothy K.; van Haaften, Gijs; van Bon, Bregje W.; Hoischen, Alexander; Nichols, Colin G.

    2014-01-01

    ATP-sensitive potassium (KATP) channels, composed of inward-rectifying potassium channel subunits (Kir6.1 and Kir6.2, encoded by KCNJ8 and KCNJ11, respectively) and regulatory sulfonylurea receptor (SUR1 and SUR2, encoded by ABCC8 and ABCC9, respectively), couple metabolism to excitability in multiple tissues. Mutations in ABCC9 cause Cantú syndrome, a distinct multi-organ disease, potentially via enhanced KATP channel activity. We screened KCNJ8 in an ABCC9 mutation-negative patient who also exhibited clinical hallmarks of Cantú syndrome (hypertrichosis, macrosomia, macrocephaly, coarse facial appearance, cardiomegaly, and skeletal abnormalities). We identified a de novo missense mutation encoding Kir6.1[p.Cys176Ser] in the patient. Kir6.1[p.Cys176Ser] channels exhibited markedly higher activity than wild-type channels, as a result of reduced ATP sensitivity, whether co-expressed with SUR1 or SUR2A subunits. Our results identify a novel causal gene in Cantú syndrome, but also demonstrate that the cardinal features of the disease result from gain of KATP channel function, not from Kir6-independent SUR2 function. PMID:24700710

  12. Cantú syndrome resulting from activating mutation in the KCNJ8 gene.

    PubMed

    Cooper, Paige E; Reutter, Heiko; Woelfle, Joachim; Engels, Hartmut; Grange, Dorothy K; van Haaften, Gijs; van Bon, Bregje W; Hoischen, Alexander; Nichols, Colin G

    2014-07-01

    ATP-sensitive potassium (KATP ) channels, composed of inward-rectifying potassium channel subunits (Kir6.1 and Kir6.2, encoded by KCNJ8 and KCNJ11, respectively) and regulatory sulfonylurea receptor (SUR1 and SUR2, encoded by ABCC8 and ABCC9, respectively), couple metabolism to excitability in multiple tissues. Mutations in ABCC9 cause Cantú syndrome (CS), a distinct multiorgan disease, potentially via enhanced KATP channel activity. We screened KCNJ8 in an ABCC9 mutation-negative patient who also exhibited clinical hallmarks of CS (hypertrichosis, macrosomia, macrocephaly, coarse facial appearance, cardiomegaly, and skeletal abnormalities). We identified a de novo missense mutation encoding Kir6.1[p.Cys176Ser] in the patient. Kir6.1[p.Cys176Ser] channels exhibited markedly higher activity than wild-type channels, as a result of reduced ATP sensitivity, whether coexpressed with SUR1 or SUR2A subunits. Our results identify a novel causal gene in CS, but also demonstrate that the cardinal features of the disease result from gain of KATP channel function, not from a Kir6-independent SUR2 function. © 2014 WILEY PERIODICALS, INC.

  13. PCSK 9 gain-of-function mutations (R496W and D374Y) and clinical cardiovascular characteristics in a cohort of Turkish patients with familial hypercholesterolemia.

    PubMed

    Kaya, Esra; Kayıkçıoğlu, Meral; Tetik Vardarlı, Aslı; Eroğlu, Zuhal; Payzın, Serdar; Can, Levent

    2017-10-01

    The molecular basis of the mutations in the PCSK9 gene that produces familial hypercholesterolemia (FH) in the Turkish population is unknown. This study was conducted to determine the presence of four different PCSK9 gain-of-function (GOF) mutations (F216L, R496W, S127R, and D374Y) in a group of patients with FH. A total of 80 consecutive patients with FH (mean age: 56±11 years; mean maximum LDL cholesterol: 251±76 mg/dL) were included in the study. Patients with FH were diagnosed according to the Dutch Lipid Clinic Network criteria based on serum cholesterol levels, personal and family histories of cardiovascular disease, tendon xanthomas, and genetic analysis. To identify F216L, R496W, S127R, and D374Y mutations of the PCSK9 gene, high-resolution melting analysis was performed on isolated DNAs. Of the 80 patients, there were 11 patients (13.8%) with PCSK9 GOF mutations. Detected mutations were D374Y mutation in four (5.0%) patients and R496W in seven patients (8.7%). Only one patient was homozygous for R496W mutation. The other two GOF mutations (S127R and F216 variants) were not detected. There was no significant difference with regard to demographic characteristics and CV disease risk factors and clinical course of the disease between the PCSK9 mutation-positive and PCSK9 mutation-negative groups. This is the first study from a Turkish FH cohort, revealing a higher frequency (approximately 14%) of two PCSK9 GOF mutations (D374Y and R496W) and a different disease course compared to the world literature.

  14. Structure-Functional Prediction and Analysis of Cancer Mutation Effects in Protein Kinases

    PubMed Central

    Dixit, Anshuman; Verkhivker, Gennady M.

    2014-01-01

    A central goal of cancer research is to discover and characterize the functional effects of mutated genes that contribute to tumorigenesis. In this study, we provide a detailed structural classification and analysis of functional dynamics for members of protein kinase families that are known to harbor cancer mutations. We also present a systematic computational analysis that combines sequence and structure-based prediction models to characterize the effect of cancer mutations in protein kinases. We focus on the differential effects of activating point mutations that increase protein kinase activity and kinase-inactivating mutations that decrease activity. Mapping of cancer mutations onto the conformational mobility profiles of known crystal structures demonstrated that activating mutations could reduce a steric barrier for the movement from the basal “low” activity state to the “active” state. According to our analysis, the mechanism of activating mutations reflects a combined effect of partial destabilization of the kinase in its inactive state and a concomitant stabilization of its active-like form, which is likely to drive tumorigenesis at some level. Ultimately, the analysis of the evolutionary and structural features of the major cancer-causing mutational hotspot in kinases can also aid in the correlation of kinase mutation effects with clinical outcomes. PMID:24817905

  15. Mutations in RIT1 cause Noonan syndrome - additional functional evidence and expanding the clinical phenotype.

    PubMed

    Koenighofer, M; Hung, C Y; McCauley, J L; Dallman, J; Back, E J; Mihalek, I; Gripp, K W; Sol-Church, K; Rusconi, P; Zhang, Z; Shi, G-X; Andres, D A; Bodamer, O A

    2016-03-01

    RASopathies are a clinically heterogeneous group of conditions caused by mutations in 1 of 16 proteins in the RAS-mitogen activated protein kinase (RAS-MAPK) pathway. Recently, mutations in RIT1 were identified as a novel cause for Noonan syndrome. Here we provide additional functional evidence for a causal role of RIT1 mutations and expand the associated phenotypic spectrum. We identified two de novo missense variants p.Met90Ile and p.Ala57Gly. Both variants resulted in increased MEK-ERK signaling compared to wild-type, underscoring gain-of-function as the primary functional mechanism. Introduction of p.Met90Ile and p.Ala57Gly into zebrafish embryos reproduced not only aspects of the human phenotype but also revealed abnormalities of eye development, emphasizing the importance of RIT1 for spatial and temporal organization of the growing organism. In addition, we observed severe lymphedema of the lower extremity and genitalia in one patient. We provide additional evidence for a causal relationship between pathogenic mutations in RIT1, increased RAS-MAPK/MEK-ERK signaling and the clinical phenotype. The mutant RIT1 protein may possess reduced GTPase activity or a diminished ability to interact with cellular GTPase activating proteins; however the precise mechanism remains unknown. The phenotypic spectrum is likely to expand and includes lymphedema of the lower extremities in addition to nuchal hygroma. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  16. Congenital secretory diarrhoea caused by activating germline mutations in GUCY2C

    PubMed Central

    Müller, Thomas; Rasool, Insha; Heinz-Erian, Peter; Mildenberger, Eva; Hülstrunk, Christian; Müller, Andreas; Michaud, Laurent; Koot, Bart G P; Ballauff, Antje; Vodopiutz, Julia; Rosipal, Stefan; Petersen, Britt-Sabina; Franke, Andre; Fuchs, Irene; Witt, Heiko; Zoller, Heinz; Janecke, Andreas R; Visweswariah, Sandhya S

    2016-01-01

    Objective Congenital sodium diarrhoea (CSD) refers to a form of secretory diarrhoea with intrauterine onset and high faecal losses of sodium without congenital malformations. The molecular basis for CSD remains unknown. We clinically characterised a cohort of infants with CSD and set out to identify disease-causing mutations by genome-wide genetic testing. Design We performed whole-exome sequencing and chromosomal microarray analyses in 4 unrelated patients, followed by confirmatory Sanger sequencing of the likely disease-causing mutations in patients and in their family members, followed by functional studies. Results We identified novel de novo missense mutations in GUCY2C, the gene encoding receptor guanylate cyclase C (GC-C) in 4 patients with CSD. One patient developed severe, early-onset IBD and chronic arthritis at 4 years of age. GC-C is an intestinal brush border membrane-bound guanylate cyclase, which functions as receptor for guanylin, uroguanylin and Escherichia coli heat-stable enterotoxin. Mutations in GUCY2C were present in different intracellular domains of GC-C, and were activating mutations that enhanced intracellular cyclic guanosine monophosphate accumulation in a ligand-independent and ligand-stimulated manner, following heterologous expression in HEK293T cells. Conclusions Dominant gain-of-function GUCY2C mutations lead to elevated intracellular cyclic guanosine monophosphate levels and could explain the chronic diarrhoea as a result of decreased intestinal sodium and water absorption and increased chloride secretion. Thus, mutations in GUCY2C indicate a role for this receptor in the pathogenesis of sporadic CSD. PMID:25994218

  17. Unusual cutaneous features associated with a heterozygous gain-of-function mutation in IFIH1: overlap between Aicardi–Goutières and Singleton–Merten syndromes

    PubMed Central

    Bursztejn, A.-C.; Briggs, T.A.; del Toro Duany, Y.; Anderson, B.H.; O’Sullivan, J.; Williams, S.G.; Bodemer, C.; Fraitag, S.; Gebhard, F.; Leheup, B.; Lemelle, I.; Oojageer, A.; Raffo, E.; Schmitt, E.; Rice, G.I.; Hur, S.; Crow, Y.J.

    2016-01-01

    Summary Cutaneous lesions described as chilblain lupus occur in the context of familial chilblain lupus or Aicardi–Goutières syndrome. To date, seven genes related to Aicardi–Goutières syndrome have been described. The most recently described encodes the cytosolic double-stranded RNA receptor IFIH1 (also known as MDA5), a key component of the antiviral type I interferon-mediated innate immune response. Enhanced type I interferon signalling secondary to gain-of-function mutations in IFIH1 can result in a range of neuroinflammatory phenotypes including classical Aicardi–Goutières syndrome. It is of note that none of the patients with a neurological phenotype so far described with mutations in this gene was reported to demonstrate cutaneous involvement. We present a family segregating a heterozygous pathogenic mutation in IFIH1 showing dermatological involvement as a prominent feature, variably associated with neurological disturbance and premature tooth loss. All three affected individuals exhibited increased expression of interferon-stimulated genes in whole blood, and the mutant protein resulted in enhanced interferon signalling in vitro, both in the basal state and following ligand stimulation. Our results further extend the phenotypic spectrum associated with mutations in IFIH1, indicating that the disease can be confined predominantly to the skin, while also highlighting phenotypic overlap with both Aicardi–Goutières syndrome and Singleton–Merten syndrome. PMID:26284909

  18. The Phe932Ile mutation in KCNT1 channels associated with severe epilepsy, delayed myelination and leukoencephalopathy produces a loss-of-function channel phenotype.

    PubMed

    Evely, Katherine M; Pryce, Kerri D; Bhattacharjee, Arin

    2017-05-20

    Sodium-activated potassium (K Na ) channels contribute to firing frequency adaptation and slow after hyperpolarization. The KCNT1 gene (also known as SLACK) encodes a K Na subunit that is expressed throughout the central and peripheral nervous systems. Missense mutations of the SLACK C-terminus have been reported in several patients with rare forms of early onset epilepsy and in some cases severely delayed myelination. To date, such mutations identified in patients with autosomal dominant nocturnal frontal lobe epilepsy (ADNFLE), epilepsy of infancy with migrating focal seizures (EIMFS) and Ohtahara syndrome (OS) have been reported to be gain-of-function mutations (Villa and Combi, 2016). An exome sequencing study identified a p.Phe932Ile KCNT1 mutation as the disease-causing change in a child with severe early infantile epileptic encephalopathy and abnormal myelination (Vanderver et al., 2014). We characterized an analogous mutation in the rat Slack channel and unexpectedly found this mutation to produce a loss-of-function phenotype. In an effort to restore current, we tested the known Slack channel opener loxapine. Loxapine exhibited no effect, indicating that this mutation either caused the channel to be insensitive to this established opener or proper translation and trafficking to the membrane was disrupted. Protein analysis confirmed that while total mutant protein did not differ from wild type, membrane expression of the mutant channel was substantially reduced. Although gain-of-function mutations to the Slack channel are linked to epileptic phenotypes, this is the first reported loss-of-function mutation linked to severe epilepsy and delayed myelination. Copyright © 2017 IBRO. Published by Elsevier Ltd. All rights reserved.

  19. A comprehensive functional analysis of PTEN mutations: implications in tumor- and autism-related syndromes.

    PubMed

    Rodríguez-Escudero, Isabel; Oliver, María D; Andrés-Pons, Amparo; Molina, María; Cid, Víctor J; Pulido, Rafael

    2011-11-01

    The PTEN (phosphatase and tensin homolog) phosphatase is unique in mammals in terms of its tumor suppressor activity, exerted by dephosphorylation of the lipid second messenger PIP(3) (phosphatidylinositol 3,4,5-trisphosphate), which activates the phosphoinositide 3-kinase/Akt/mTOR (mammalian target of rapamycin) oncogenic pathway. Loss-of-function mutations in the PTEN gene are frequent in human cancer and in the germline of patients with PTEN hamartoma tumor-related syndromes (PHTSs). In addition, PTEN is mutated in patients with autism spectrum disorders (ASDs), although no functional information on these mutations is available. Here, we report a comprehensive in vivo functional analysis of human PTEN using a heterologous yeast reconstitution system. Ala-scanning mutagenesis at the catalytic loops of PTEN outlined the critical role of residues within the P-catalytic loop for PIP(3) phosphatase activity in vivo. PTEN mutations that mimic the P-catalytic loop of mammalian PTEN-like proteins (TPTE, TPIP, tensins and auxilins) affected PTEN function variably, whereas tumor- or PHTS-associated mutations targeting the PTEN P-loop produced complete loss of function. Conversely, Ala-substitutions, as well as tumor-related mutations at the WPD- and TI-catalytic loops, displayed partial activity in many cases. Interestingly, a tumor-related D92N mutation was partially active, supporting the notion that the PTEN Asp92 residue might not function as the catalytic general acid. The analysis of a panel of ASD-associated hereditary PTEN mutations revealed that most of them did not substantially abrogate PTEN activity in vivo, whereas most of PHTS-associated mutations did. Our findings reveal distinctive functional patterns among PTEN mutations found in tumors and in the germline of PHTS and ASD patients, which could be relevant for therapy.

  20. Erythrocytosis and Pulmonary Hypertension in a Mouse Model of Human HIF2A Gain of Function Mutation*

    PubMed Central

    Tan, Qiulin; Kerestes, Heddy; Percy, Melanie J.; Pietrofesa, Ralph; Chen, Li; Khurana, Tejvir S.; Christofidou-Solomidou, Melpo; Lappin, Terence R. J.; Lee, Frank S.

    2013-01-01

    The central pathway for oxygen-dependent control of red cell mass is the prolyl hydroxylase domain protein (PHD):hypoxia inducible factor (HIF) pathway. PHD site specifically prolyl hydroxylates the transcription factor HIF-α, thereby targeting the latter for degradation. Under hypoxia, this modification is attenuated, allowing stabilized HIF-α to activate target genes, including that for erythropoietin (EPO). Studies employing genetically modified mice point to Hif-2α, one of two main Hif-α isoforms, as being the critical regulator of Epo in the adult mouse. More recently, erythrocytosis patients with heterozygous point mutations in the HIF2A gene have been identified; whether these mutations were polymorphisms unrelated to the phenotype could not be ruled out. In the present report, we characterize a mouse line bearing a G536W missense mutation in the Hif2a gene that corresponds to the first such human mutation identified (G537W). We obtained mice bearing both heterozygous and homozygous mutations at this locus. We find that these mice display, in a mutation dose-dependent manner, erythrocytosis and pulmonary hypertension with a high degree of penetrance. These findings firmly establish missense mutations in HIF-2α as a cause of erythrocytosis, highlight the importance of this HIF-α isoform in erythropoiesis, and point to physiologic consequences of HIF-2α dysregulation. PMID:23640890

  1. Gain-of-function mutation of a voltage-gated sodium channel NaV1.7 associated with peripheral pain and impaired limb development.

    PubMed

    Tanaka, Brian S; Nguyen, Phuong T; Zhou, Eray Yihui; Yang, Yong; Yarov-Yarovoy, Vladimir; Dib-Hajj, Sulayman D; Waxman, Stephen G

    2017-06-02

    Dominant mutations in voltage-gated sodium channel Na V 1.7 cause inherited erythromelalgia, a debilitating pain disorder characterized by severe burning pain and redness of the distal extremities. Na V 1.7 is preferentially expressed within peripheral sensory and sympathetic neurons. Here, we describe a novel Na V 1.7 mutation in an 11-year-old male with underdevelopment of the limbs, recurrent attacks of burning pain with erythema, and swelling in his feet and hands. Frequency and duration of the episodes gradually increased with age, and relief by cooling became less effective. The patient's sister had short stature and reported similar complaints of erythema and burning pain, but with less intensity. Genetic analysis revealed a novel missense mutation in Na V 1.7 (2567G>C; p.Gly856Arg) in both siblings. The G856R mutation, located within the DII/S4-S5 linker of the channel, substitutes a highly conserved non-polar glycine by a positively charged arginine. Voltage-clamp analysis of G856R currents revealed that the mutation hyperpolarized (-11.2 mV) voltage dependence of activation and slowed deactivation but did not affect fast inactivation, compared with wild-type channels. A mutation of Gly-856 to aspartic acid was previously found in a family with limb pain and limb underdevelopment, and its functional assessment showed hyperpolarized activation, depolarized fast inactivation, and increased ramp current. Structural modeling using the Rosetta computational modeling suite provided structural clues to the divergent effects of the substitution of Gly-856 by arginine and aspartic acid. Although the proexcitatory changes in gating properties of G856R contribute to the pathophysiology of inherited erythromelalgia, the link to limb underdevelopment is not well understood. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  2. ActiveDriverDB: human disease mutations and genome variation in post-translational modification sites of proteins

    PubMed Central

    Krassowski, Michal; Paczkowska, Marta; Cullion, Kim; Huang, Tina; Dzneladze, Irakli; Ouellette, B F Francis; Yamada, Joseph T; Fradet-Turcotte, Amelie

    2018-01-01

    Abstract Interpretation of genetic variation is needed for deciphering genotype-phenotype associations, mechanisms of inherited disease, and cancer driver mutations. Millions of single nucleotide variants (SNVs) in human genomes are known and thousands are associated with disease. An estimated 21% of disease-associated amino acid substitutions corresponding to missense SNVs are located in protein sites of post-translational modifications (PTMs), chemical modifications of amino acids that extend protein function. ActiveDriverDB is a comprehensive human proteo-genomics database that annotates disease mutations and population variants through the lens of PTMs. We integrated >385,000 published PTM sites with ∼3.6 million substitutions from The Cancer Genome Atlas (TCGA), the ClinVar database of disease genes, and human genome sequencing projects. The database includes site-specific interaction networks of proteins, upstream enzymes such as kinases, and drugs targeting these enzymes. We also predicted network-rewiring impact of mutations by analyzing gains and losses of kinase-bound sequence motifs. ActiveDriverDB provides detailed visualization, filtering, browsing and searching options for studying PTM-associated mutations. Users can upload mutation datasets interactively and use our application programming interface in pipelines. Integrative analysis of mutations and PTMs may help decipher molecular mechanisms of phenotypes and disease, as exemplified by case studies of TP53, BRCA2 and VHL. The open-source database is available at https://www.ActiveDriverDB.org. PMID:29126202

  3. A disease-associated mutation in the adhesion GPCR BAI2 (ADGRB2) increases receptor signaling activity.

    PubMed

    Purcell, Ryan H; Toro, Camilo; Gahl, William A; Hall, Randy A

    2017-12-01

    Mutations in G protein-coupled receptors (GPCRs) that increase constitutive signaling activity can cause human disease. A de novo C-terminal mutation (R1465W) in the adhesion GPCR BAI2 (also known as ADGRB2) was identified in a patient suffering from progressive spastic paraparesis and other neurological symptoms. In vitro studies revealed that this mutation strongly increases the constitutive signaling activity of an N-terminally cleaved form of BAI2, which represents the activated form of the receptor. Further studies dissecting the mechanism(s) underling this effect revealed that wild-type BAI2 primarily couples to Gα z , with the R1465W mutation conferring increased coupling to Gα i . The R1465W mutation also increases the total and surface expression of BAI2. The mutation has no effect on receptor binding to β-arrestins, but does perturb binding to the endocytic protein endophilin A1, identified here as a novel interacting partner for BAI2. These studies provide new insights into the signaling capabilities of the adhesion GPCR BAI2/ADGRB2 and shed light on how an apparent gain-of-function mutation to the receptor's C-terminus may lead to human disease. © 2017 Wiley Periodicals, Inc.

  4. Gain-of-function mutations identify amino acids within transmembrane domains of the yeast vacuolar transporter Zrc1 that determine metal specificity

    PubMed Central

    Lin, Huilan; Burton, Damali; Li, Liangtao; Warner, David E.; Phillips, John D.; Ward, Diane McVEY; Kaplan, Jerry

    2015-01-01

    Cation diffusion facilitator transporters are found in all three Kingdoms of life and are involved in transporting transition metals out of the cytosol. The metals they transport include Zn2+, Co2+, Fe2+, Cd2+, Ni2+ and Mn2+; however, no single transporter transports all metals. Previously we showed that a single amino acid mutation in the yeast vacuolar zinc transporter Zrc1 changed its substrate specificity from Zn2+ to Fe2+ and Mn2+ [Lin, Kumanovics, Nelson, Warner, Ward and Kaplan (2008) J. Biol. Chem. 283, 33865–33873]. Mutant Zrc1 that gained iron transport activity could protect cells with a deletion in the vacuolar iron transporter (CCC1) from high iron toxicity. Utilizing suppression of high iron toxicity and PCR mutagenesis of ZRC1, we identified other amino acid substitutions within ZRC1 that changed its metal specificity. All Zrc1 mutants that transported Fe2+ could also transport Mn2+. Some Zrc1 mutants lost the ability to transport Zn2+, but others retained the ability to transport Zn2+. All of the amino acid substitutions that resulted in a gain in Fe2+ transport activity were found in transmembrane domains. In addition to alteration of residues adjacent to the putative metal-binding site in two transmembrane domains, alteration of residues distant from the binding site affected substrate specificity. These results suggest that substrate selection involves co-operativity between transmembrane domains. PMID:19538181

  5. Molecular mechanisms of "off-on switch" of activities of human IDH1 by tumor-associated mutation R132H.

    PubMed

    Yang, Bei; Zhong, Chen; Peng, Yingjie; Lai, Zheng; Ding, Jianping

    2010-11-01

    Human cytosolic NADP-IDH (IDH1) has recently been found to be involved in tumorigenesis. Notably, the tumor-derived IDH1 mutations identified so far mainly occur at Arg132, and mutation R132H is the most prevalent one. This mutation impairs the oxidative IDH activity of the enzyme, but renders a new reduction function of converting α-ketoglutarate (αKG) to 2-hydroxyglutarate. Here, we report the structures of the R132H mutant IDH1 with and without isocitrate (ICT) bound. The structural data together with mutagenesis and biochemical data reveal a previously undefined initial ICT-binding state and demonstrate that IDH activity requires a conformational change to a closed pre-transition state. Arg132 plays multiple functional roles in the catalytic reaction; in particular, the R132H mutation hinders the conformational changes from the initial ICT-binding state to the pre-transition state, leading to the impairment of the IDH activity. Our results describe for the first time that there is an intermediate conformation that corresponds to an initial ICT-binding state and that the R132H mutation can trap the enzyme in this conformation, therefore shedding light on the molecular mechanism of the "off switch" of the potentially tumor-suppressive IDH activity. Furthermore, we proved the necessity of Tyr139 for the gained αKG reduction activity and propose that Tyr139 may play a vital role by compensating the increased negative charge on the C2 atom of αKG during the transfer of a hydride anion from NADPH to αKG, which provides new insights into the mechanism of the "on switch" of the hypothetically oncogenic reduction activity of IDH1 by this mutation.

  6. Hyper-activation of HUSH complex function by Charcot-Marie-Tooth disease mutation in MORC2

    PubMed Central

    Douse, Christopher H.; Roberts, Rhys C.; Dougan, Gordon; Kingston, Robert E.; Modis, Yorgo; Lehner, Paul J.

    2017-01-01

    Dominant mutations in the MORC2 gene have recently been shown to cause axonal Charcot-Marie-Tooth (CMT) disease, but the cellular function of MORC2 is poorly understood. Here, through a genome-wide CRISPR/Cas9-mediated forward genetic screen, we identify MORC2 as an essential gene required for epigenetic silencing by the HUSH complex. HUSH recruits MORC2 to target sites in heterochromatin. We exploit a new method – Differential Viral Accessibility (DIVA) – to show that loss of MORC2 results in chromatin decompaction at these target loci, which is concomitant with a loss of H3K9me3 deposition and transcriptional derepression. The ATPase activity of MORC2 is critical for HUSH-mediated silencing, and the most common mutation affecting the ATPase domain found in CMT patients (R252W) hyper-activates HUSH-mediated repression in neuronal cells. These data define a critical role for MORC2 in epigenetic silencing by the HUSH complex and provide a mechanistic basis underpinning the role of MORC2 mutations in CMT disease. PMID:28581500

  7. High-Throughput Identification of Loss-of-Function Mutations for Anti-Interferon Activity in the Influenza A Virus NS Segment

    PubMed Central

    Wu, Nicholas C.; Young, Arthur P.; Al-Mawsawi, Laith Q.; Olson, C. Anders; Feng, Jun; Qi, Hangfei; Luan, Harding H.; Li, Xinmin; Wu, Ting-Ting

    2014-01-01

    selection, in addition to mutations that experienced positive selection. This study provides a proof of concept by screening for loss-of-function mutations on the influenza A virus NS segment that are involved in its anti-interferon activity. PMID:24965464

  8. Structural, Functional, and Clinical Characterization of a Novel PTPN11 Mutation Cluster Underlying Noonan Syndrome.

    PubMed

    Pannone, Luca; Bocchinfuso, Gianfranco; Flex, Elisabetta; Rossi, Cesare; Baldassarre, Giuseppina; Lissewski, Christina; Pantaleoni, Francesca; Consoli, Federica; Lepri, Francesca; Magliozzi, Monia; Anselmi, Massimiliano; Delle Vigne, Silvia; Sorge, Giovanni; Karaer, Kadri; Cuturilo, Goran; Sartorio, Alessandro; Tinschert, Sigrid; Accadia, Maria; Digilio, Maria C; Zampino, Giuseppe; De Luca, Alessandro; Cavé, Hélène; Zenker, Martin; Gelb, Bruce D; Dallapiccola, Bruno; Stella, Lorenzo; Ferrero, Giovanni B; Martinelli, Simone; Tartaglia, Marco

    2017-04-01

    Germline mutations in PTPN11, the gene encoding the Src-homology 2 (SH2) domain-containing protein tyrosine phosphatase (SHP2), cause Noonan syndrome (NS), a relatively common, clinically variable, multisystem disorder. Here, we report on the identification of five different PTPN11 missense changes affecting residues Leu 261 , Leu 262 , and Arg 265 in 16 unrelated individuals with clinical diagnosis of NS or with features suggestive for this disorder, specifying a novel disease-causing mutation cluster. Expression of the mutant proteins in HEK293T cells documented their activating role on MAPK signaling. Structural data predicted a gain-of-function role of substitutions at residues Leu 262 and Arg 265 exerted by disruption of the N-SH2/PTP autoinhibitory interaction. Molecular dynamics simulations suggested a more complex behavior for changes affecting Leu 261 , with possible impact on SHP2's catalytic activity/selectivity and proper interaction of the PTP domain with the regulatory SH2 domains. Consistent with that, biochemical data indicated that substitutions at codons 262 and 265 increased the catalytic activity of the phosphatase, while those affecting codon 261 were only moderately activating but impacted substrate specificity. Remarkably, these mutations underlie a relatively mild form of NS characterized by low prevalence of cardiac defects, short stature, and cognitive and behavioral issues, as well as less evident typical facial features. © 2017 WILEY PERIODICALS, INC.

  9. Hepatic fibrosis and carcinogenesis in α1-antitrypsin deficiency: a prototype for chronic tissue damage in gain-of-function disorders.

    PubMed

    Perlmutter, David H; Silverman, Gary A

    2011-03-01

    In α1-antitrypsin (AT) deficiency, a point mutation renders a hepatic secretory glycoprotein prone to misfolding and polymerization. The mutant protein accumulates in the endoplasmic reticulum of liver cells and causes hepatic fibrosis and hepatocellular carcinoma by a gain-of-function mechanism. Genetic and/or environmental modifiers determine whether an affected homozygote is susceptible to hepatic fibrosis/carcinoma. Two types of proteostasis mechanisms for such modifiers have been postulated: variation in the function of intracellular degradative mechanisms and/or variation in the signal transduction pathways that are activated to protect the cell from protein mislocalization and/or aggregation. In recent studies we found that carbamazepine, a drug that has been used safely as an anticonvulsant and mood stabilizer, reduces the hepatic load of mutant AT and hepatic fibrosis in a mouse model by enhancing autophagic disposal of this mutant protein. These results provide evidence that pharmacological manipulation of endogenous proteostasis mechanisms is an appealing strategy for chemoprophylaxis in disorders involving gain-of-function mechanisms.

  10. Kinact: a computational approach for predicting activating missense mutations in protein kinases.

    PubMed

    Rodrigues, Carlos H M; Ascher, David B; Pires, Douglas E V

    2018-05-21

    Protein phosphorylation is tightly regulated due to its vital role in many cellular processes. While gain of function mutations leading to constitutive activation of protein kinases are known to be driver events of many cancers, the identification of these mutations has proven challenging. Here we present Kinact, a novel machine learning approach for predicting kinase activating missense mutations using information from sequence and structure. By adapting our graph-based signatures, Kinact represents both structural and sequence information, which are used as evidence to train predictive models. We show the combination of structural and sequence features significantly improved the overall accuracy compared to considering either primary or tertiary structure alone, highlighting their complementarity. Kinact achieved a precision of 87% and 94% and Area Under ROC Curve of 0.89 and 0.92 on 10-fold cross-validation, and on blind tests, respectively, outperforming well established tools (P < 0.01). We further show that Kinact performs equally well on homology models built using templates with sequence identity as low as 33%. Kinact is freely available as a user-friendly web server at http://biosig.unimelb.edu.au/kinact/.

  11. A calcium-sensing receptor mutation causing hypocalcemia disrupts a transmembrane salt bridge to activate β-arrestin-biased signaling.

    PubMed

    Gorvin, Caroline M; Babinsky, Valerie N; Malinauskas, Tomas; Nissen, Peter H; Schou, Anders J; Hanyaloglu, Aylin C; Siebold, Christian; Jones, E Yvonne; Hannan, Fadil M; Thakker, Rajesh V

    2018-02-20

    The calcium-sensing receptor (CaSR) is a G protein-coupled receptor (GPCR) that signals through G q/11 and G i/o to stimulate cytosolic calcium (Ca 2+ i ) and mitogen-activated protein kinase (MAPK) signaling to control extracellular calcium homeostasis. Studies of loss- and gain-of-function CASR mutations, which cause familial hypocalciuric hypercalcemia type 1 (FHH1) and autosomal dominant hypocalcemia type 1 (ADH1), respectively, have revealed that the CaSR signals in a biased manner. Thus, some mutations associated with FHH1 lead to signaling predominantly through the MAPK pathway, whereas mutations associated with ADH1 preferentially enhance Ca 2+ i responses. We report a previously unidentified ADH1-associated R680G CaSR mutation, which led to the identification of a CaSR structural motif that mediates biased signaling. Expressing CaSR R680G in HEK 293 cells showed that this mutation increased MAPK signaling without altering Ca 2+ i responses. Moreover, this gain of function in MAPK activity occurred independently of G q/11 and G i/o and was mediated instead by a noncanonical pathway involving β-arrestin proteins. Homology modeling and mutagenesis studies showed that the R680G CaSR mutation selectively enhanced β-arrestin signaling by disrupting a salt bridge formed between Arg 680 and Glu 767 , which are located in CaSR transmembrane domain 3 and extracellular loop 2, respectively. Thus, our results demonstrate CaSR signaling through β-arrestin and the importance of the Arg 680 -Glu 767 salt bridge in mediating signaling bias. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  12. Mutational Analysis of Escherichia coli MoeA: Two Functional Activities Map to the Active Site Cleft

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nichols,J.; Xiang, S.; Schindelin, H.

    2007-01-01

    The molybdenum cofactor is ubiquitous in nature, and the pathway for Moco biosynthesis is conserved in all three domains of life. Recent work has helped to illuminate one of the most enigmatic steps in Moco biosynthesis, ligation of metal to molybdopterin (the organic component of the cofactor) to form the active cofactor. In Escherichia coli, the MoeA protein mediates ligation of Mo to molybdopterin while the MogA protein enhances this process in an ATP-dependent manner. The X-ray crystal structures for both proteins have been previously described as well as two essential MogA residues, Asp49 and Asp82. Here we describe amore » detailed mutational analysis of the MoeA protein. Variants of conserved residues at the putative active site of MoeA were analyzed for a loss of function in two different, previously described assays, one employing moeA{sup -} crude extracts and the other utilizing a defined system. Oddly, no correlation was observed between the activity in the two assays. In fact, our results showed a general trend toward an inverse relationship between the activity in each assay. Moco binding studies indicated a strong correlation between a variant's ability to bind Moco and its activity in the purified component assay. Crystal structures of the functionally characterized MoeA variants revealed no major structural changes, indicating that the functional differences observed are not due to disruption of the protein structure. On the basis of these results, two different functional areas were assigned to regions at or near the MoeA active site cleft.« less

  13. A gain-of-function mutation in Tnni2 impeded bone development through increasing Hif3a expression in DA2B mice.

    PubMed

    Zhu, Xiaoquan; Wang, Fengchao; Zhao, Yanyang; Yang, Peng; Chen, Jun; Sun, Hanzi; Liu, Lei; Li, Wenjun; Pan, Lin; Guo, Yanru; Kou, Zhaohui; Zhang, Yu; Zhou, Cheng; He, Jiang; Zhang, Xue; Li, Jianxin; Han, Weitian; Li, Jian; Liu, Guanghui; Gao, Shaorong; Yang, Ze

    2014-10-01

    Distal arthrogryposis type 2B (DA2B) is an important genetic disorder in humans. However, the mechanisms governing this disease are not clearly understood. In this study, we generated knock-in mice carrying a DA2B mutation (K175del) in troponin I type 2 (skeletal, fast) (TNNI2), which encodes a fast-twitch skeletal muscle protein. Tnni2K175del mice (referred to as DA2B mice) showed typical DA2B phenotypes, including limb abnormality and small body size. However, the current knowledge concerning TNNI2 could not explain the small body phenotype of DA2B mice. We found that Tnni2 was expressed in the osteoblasts and chondrocytes of long bone growth plates. Expression profile analysis using radii and ulnae demonstrated that Hif3a expression was significantly increased in the Tnni2K175del mice. Chromatin immunoprecipitation assays indicated that both wild-type and mutant tnni2 protein can bind to the Hif3a promoter using mouse primary osteoblasts. Moreover, we showed that the mutant tnni2 protein had a higher capacity to transactivate Hif3a than the wild-type protein. The increased amount of hif3a resulted in impairment of angiogenesis, delay in endochondral ossification, and decrease in chondrocyte differentiation and osteoblast proliferation, suggesting that hif3a counteracted hif1a-induced Vegf expression in DA2B mice. Together, our data indicated that Tnni2K175del mutation led to abnormally increased hif3a and decreased vegf in bone, which explain, at least in part, the small body size of Tnni2K175del mice. Furthermore, our findings revealed a new function of tnni2 in the regulation of bone development, and the study of gain-of-function mutation in Tnni2 in transgenic mice opens a new avenue to understand the pathological mechanism of human DA2B disorder.

  14. Mutations in SLC2A2 Gene Reveal hGLUT2 Function in Pancreatic β Cell Development*

    PubMed Central

    Michau, Aurélien; Guillemain, Ghislaine; Grosfeld, Alexandra; Vuillaumier-Barrot, Sandrine; Grand, Teddy; Keck, Mathilde; L'Hoste, Sébastien; Chateau, Danielle; Serradas, Patricia; Teulon, Jacques; De Lonlay, Pascale; Scharfmann, Raphaël; Brot-Laroche, Edith; Leturque, Armelle; Le Gall, Maude

    2013-01-01

    The structure-function relationships of sugar transporter-receptor hGLUT2 coded by SLC2A2 and their impact on insulin secretion and β cell differentiation were investigated through the detailed characterization of a panel of mutations along the protein. We studied naturally occurring SLC2A2 variants or mutants: two single-nucleotide polymorphisms and four proposed inactivating mutations associated to Fanconi-Bickel syndrome. We also engineered mutations based on sequence alignment and conserved amino acids in selected domains. The single-nucleotide polymorphisms P68L and T110I did not impact on sugar transport as assayed in Xenopus oocytes. All the Fanconi-Bickel syndrome-associated mutations invalidated glucose transport by hGLUT2 either through absence of protein at the plasma membrane (G20D and S242R) or through loss of transport capacity despite membrane targeting (P417L and W444R), pointing out crucial amino acids for hGLUT2 transport function. In contrast, engineered mutants were located at the plasma membrane and able to transport sugar, albeit with modified kinetic parameters. Notably, these mutations resulted in gain of function. G20S and L368P mutations increased insulin secretion in the absence of glucose. In addition, these mutants increased insulin-positive cell differentiation when expressed in cultured rat embryonic pancreas. F295Y mutation induced β cell differentiation even in the absence of glucose, suggesting that mutated GLUT2, as a sugar receptor, triggers a signaling pathway independently of glucose transport and metabolism. Our results describe the first gain of function mutations for hGLUT2, revealing the importance of its receptor versus transporter function in pancreatic β cell development and insulin secretion. PMID:23986439

  15. Functional Relevance of Improbable Antibody Mutations for HIV Broadly Neutralizing Antibody Development.

    PubMed

    Wiehe, Kevin; Bradley, Todd; Meyerhoff, R Ryan; Hart, Connor; Williams, Wilton B; Easterhoff, David; Faison, William J; Kepler, Thomas B; Saunders, Kevin O; Alam, S Munir; Bonsignori, Mattia; Haynes, Barton F

    2018-06-13

    HIV-1 broadly neutralizing antibodies (bnAbs) require high levels of activation-induced cytidine deaminase (AID)-catalyzed somatic mutations for optimal neutralization potency. Probable mutations occur at sites of frequent AID activity, while improbable mutations occur where AID activity is infrequent. One bottleneck for induction of bnAbs is the evolution of viral envelopes (Envs) that can select bnAb B cell receptors (BCR) with improbable mutations. Here we define the probability of bnAb mutations and demonstrate the functional significance of key improbable mutations in three bnAb B cell lineages. We show that bnAbs are enriched for improbable mutations, which implies that their elicitation will be critical for successful vaccine induction of potent bnAb B cell lineages. We discuss a mutation-guided vaccine strategy for identification of Envs that can select B cells with BCRs that have key improbable mutations required for bnAb development. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  16. Disease Mutations in Rab7 Result in Unregulated Nucleotide Exchange and Inappropriate Activation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    B McCray; E Skordalakes; J Taylor

    2011-12-31

    Rab GTPases are molecular switches that orchestrate vesicular trafficking, maturation and fusion by cycling between an active, GTP-bound form, and an inactive, GDP-bound form. The activity cycle is coupled to GTP hydrolysis and is tightly controlled by regulatory proteins. Missense mutations of the GTPase Rab7 cause a dominantly inherited axonal degeneration known as Charcot-Marie-Tooth type 2B through an unknown mechanism. We present the 2.8 A crystal structure of GTP-bound L129F mutant Rab7 which reveals normal conformations of the effector binding regions and catalytic site, but an alteration to the nucleotide binding pocket that is predicted to alter GTP binding. Throughmore » extensive biochemical analysis, we demonstrate that disease-associated mutations in Rab7 do not lead to an intrinsic GTPase defect, but permit unregulated nucleotide exchange leading to both excessive activation and hydrolysis-independent inactivation. Consistent with augmented activity, mutant Rab7 shows significantly enhanced interaction with a subset of effector proteins. In addition, dynamic imaging demonstrates that mutant Rab7 is abnormally retained on target membranes. However, we show that the increased activation of mutant Rab7 is counterbalanced by unregulated, GTP hydrolysis-independent membrane cycling. Notably, disease mutations are able to rescue the membrane cycling of a GTPase-deficient mutant. Thus, we demonstrate that disease mutations uncouple Rab7 from the spatial and temporal control normally imposed by regulatory proteins and cause disease not by a gain of novel toxic function, but by misregulation of native Rab7 activity.« less

  17. Protons stabilize the closed conformation of gain-of-function mutants of the TRPV1 channel.

    PubMed

    Boukalova, Stepana; Teisinger, Jan; Vlachova, Viktorie

    2013-03-01

    The vanilloid transient receptor potential channel TRPV1 is a molecular integrator of noxious stimuli, including capsaicin, heat and protons. Despite clear similarities between the overall architecture of TRPV1 and voltage-dependent potassium (Kv) channels, the extent of conservation in the molecular logic for gating is unknown. In Kv channels, a small contact surface between S1 and the pore-helix is required for channel functioning. To explore the function of S1 in TRPV1, we used tryptophan-scanning mutagenesis and characterized the responses to capsaicin and protons. Wild-type-like currents were generated in 9 out of 17 mutants; three mutants (M445W, A452W, R455W) were non-functional. The conservative mutation R455K in the extracellular extent of S1 slowed down capsaicin-induced activation and prevented normal channel closure. This mutant was neither activated nor potentiated by protons, on the contrary, protons promoted a rapid deactivation of its currents. Similar phenotypes were found in two other gain-of-function mutants and also in the pore-helix mutant T633A, known to uncouple proton activation. We propose that the S1 domain contains a functionally important region that may be specifically involved in TRPV1 channel gating, and thus be important for the energetic coupling between S1-S4 sensor activation and gate opening. Analogous to Kv channels, the S1-pore interface might serve to stabilize conformations associated with TRPV1 channel gating. Copyright © 2012 Elsevier B.V. All rights reserved.

  18. A 3-Year-Old Girl with Recurrent Infections and Autoimmunity due to a STAT1 Gain-of-Function Mutation: The Expanding Clinical Presentation of Primary Immunodeficiencies.

    PubMed

    Aldave Becerra, Juan Carlos; Cachay Rojas, Enrique

    2017-01-01

    We report a 3-year-old Peruvian girl, born to non-consanguineous parents. At the age of 8 months, she had a severe pneumonia complicated with empyema that required thoracic drainage and mechanical ventilation. Although no microorganisms were isolated, the patient recovered with broad-spectrum antibiotics. Since that date, she has presented multiple episodes of pneumonia and recurrent episodes of bronchospasm. At 1 year 5 months of age, the patient began with recurrent episodes of oropharyngeal, vaginal, and skin candidiasis, which improved transiently after using oral azole drugs. At 2.5 years of age, she was admitted with lupus-like syndrome, including serositis, hemolytic anemia, thrombocytopenia, and positive antinuclear (1:80) and dsDNA (1:10) autoantibodies. Available immunologic testing was not contributory. Imaging studies revealed bilateral ethmoidal sinusitis and mild hepatomegaly. Bone marrow analysis did not showed evidence of leukemia or myelodysplasia, while renal biopsy concluded mild mesangial proliferation. Genetic studies revealed a pathogenic heterozygous signal transducer and activator of transcription 1 gain-of-function mutation (WT/P293L). The clinical status and lung function of the patient has worsened progressively. She has not achieved an optimal response to therapy, including high-dose intravenous immunoglobulin, GM-CSF, prophylactic antibiotics and antifungal drugs, so we plan to perform hematopoietic stem cell transplantation.

  19. Remote intracranial recurrence of IDH mutant gliomas is associated with TP53 mutations and an 8q gain

    PubMed Central

    Nakae, Shunsuke; Kato, Takema; Murayama, Kazuhiro; Sasaki, Hikaru; Abe, Masato; Kumon, Masanobu; Kumai, Tadashi; Yamashiro, Kei; Inamasu, Joji; Hasegawa, Mitsuhiro; Kurahashi, Hiroki; Hirose, Yuichi

    2017-01-01

    Most IDH mutant gliomas harbor either 1p/19q co-deletions or TP53 mutation; 1p/19q co-deleted tumors have significantly better prognoses than tumors harboring TP53 mutations. To investigate the clinical factors that contribute to differences in tumor progression of IDH mutant gliomas, we classified recurrent tumor patterns based on MRI and correlated these patterns with their genomic characterization. Accordingly, in IDH mutant gliomas (N = 66), 1p/19 co-deleted gliomas only recurred locally, whereas TP53 mutant gliomas recurred both locally and in remote intracranial regions. In addition, diffuse tensor imaging suggested that remote intracranial recurrence in the astrocytomas, IDH-mutant with TP53 mutations may occur along major fiber bundles. Remotely recurrent tumors resulted in a higher mortality and significantly harbored an 8q gain; astrocytomas with an 8q gain resulted in significantly shorter overall survival than those without an 8q gain. OncoScan® arrays and next-generation sequencing revealed specific 8q regions (i.e., between 8q22 and 8q24) show a high copy number. In conclusion, only tumors with TP53 mutations showed patterns of remote recurrence in IDH mutant gliomas. Furthermore, an 8q gain was significantly associated with remote intracranial recurrence and can be considered a poor prognostic factor in astrocytomas, IDH-mutant. PMID:29156679

  20. Desensitization Contributes to the Synaptic Response of Gain-of-Function Mutants of the Muscle Nicotinic Receptor

    PubMed Central

    Elenes, Sergio; Ni, Ying; Cymes, Gisela D.; Grosman, Claudio

    2006-01-01

    Although the muscle nicotinic receptor (AChR) desensitizes almost completely in the steady presence of high concentrations of acetylcholine (ACh), it is well established that AChRs do not accumulate in desensitized states under normal physiological conditions of neurotransmitter release and clearance. Quantitative considerations in the framework of plausible kinetic schemes, however, lead us to predict that mutations that speed up channel opening, slow down channel closure, and/or slow down the dissociation of neurotransmitter (i.e., gain-of-function mutations) increase the extent to which AChRs desensitize upon ACh removal. In this paper, we confirm this prediction by applying high-frequency trains of brief (∼1 ms) ACh pulses to outside-out membrane patches expressing either lab-engineered or naturally occurring (disease-causing) gain-of-function mutants. Entry into desensitization was evident in our experiments as a frequency-dependent depression in the peak value of succesive macroscopic current responses, in a manner that is remarkably consistent with the theoretical expectation. We conclude that the comparatively small depression of the macroscopic currents observed upon repetitive stimulation of the wild-type AChR is due, not to desensitization being exceedingly slow but, rather, to the particular balance between gating, entry into desensitization, and ACh dissociation rate constants. Disruption of this fine balance by, for example, mutations can lead to enhanced desensitization even if the kinetics of entry into, and recovery from, desensitization themselves are not affected. It follows that accounting for the (usually overlooked) desensitization phenomenon is essential for the correct interpretation of mutagenesis-driven structure–function relationships and for the understanding of pathological synaptic transmission at the vertebrate neuromuscular junction. PMID:17074980

  1. EPO Receptor Gain-of-Function Causes Hereditary Polycythemia, Alters CD34+ Cell Differentiation and Increases Circulating Endothelial Precursors

    PubMed Central

    Perrotta, Silverio; Cucciolla, Valeria; Ferraro, Marcella; Ronzoni, Luisa; Tramontano, Annunziata; Rossi, Francesca; Scudieri, Anna Chiara; Borriello, Adriana; Roberti, Domenico; Nobili, Bruno; Cappellini, Maria Domenica; Oliva, Adriana; Amendola, Giovanni; Migliaccio, Anna Rita; Mancuso, Patrizia; Martin-Padura, Ines; Bertolini, Francesco; Yoon, Donghoon; Prchal, Josef T.; Della Ragione, Fulvio

    2010-01-01

    Background Gain-of-function of erythropoietin receptor (EPOR) mutations represent the major cause of primary hereditary polycythemia. EPOR is also found in non-erythroid tissues, although its physiological role is still undefined. Methodology/Principal Findings We describe a family with polycythemia due to a heterozygous mutation of the EPOR gene that causes a G→T change at nucleotide 1251 of exon 8. The novel EPOR G1251T mutation results in the replacement of a glutamate residue by a stop codon at amino acid 393. Differently from polycythemia vera, EPOR G1251T CD34+ cells proliferate and differentiate towards the erythroid phenotype in the presence of minimal amounts of EPO. Moreover, the affected individuals show a 20-fold increase of circulating endothelial precursors. The analysis of erythroid precursor membranes demonstrates a heretofore undescribed accumulation of the truncated EPOR, probably due to the absence of residues involved in the EPO-dependent receptor internalization and degradation. Mutated receptor expression in EPOR-negative cells results in EPOR and Stat5 phosphorylation. Moreover, patient erythroid precursors present an increased activation of EPOR and its effectors, including Stat5 and Erk1/2 pathway. Conclusions/Significance Our data provide an unanticipated mechanism for autosomal dominant inherited polycythemia due to a heterozygous EPOR mutation and suggest a regulatory role of EPO/EPOR pathway in human circulating endothelial precursors homeostasis. PMID:20700488

  2. Activating PIK3CA mutations coexist with BRAF or NRAS mutations in a limited fraction of melanomas.

    PubMed

    Manca, Antonella; Lissia, Amelia; Capone, Mariaelena; Ascierto, Paolo A; Botti, Gerardo; Caracò, Corrado; Stanganelli, Ignazio; Colombino, Maria; Sini, MariaCristina; Cossu, Antonio; Palmieri, Giuseppe

    2015-01-28

    Activated PI3K-AKT pathway may contribute to decrease sensitivity to inhibitors of key pathogenetic effectors (mutated BRAF, active NRAS or MEK) in melanoma. Functional alterations are deeply involved in PI3K-AKT activation, with a minimal role reported for mutations in PIK3CA, the catalytic subunit of the PI3K gene. We here assessed the prevalence of the coexistence of BRAF/NRAS and PIK3CA mutations in a series of melanoma samples. A total of 245 tumor specimens (212 primary melanomas and 33 melanoma cell lines) was screened for mutations in BRAF, NRAS, and PIK3CA genes by automated direct sequencing. Overall, 110 (44.9%) samples carried mutations in BRAF, 26 (10.6%) in NRAS, and 24 (9.8%) in PIK3CA. All identified PIK3CA mutations have been reported to induce PI3K activation; those detected in cultured melanomas were investigated for their interference with the antiproliferative activity of the BRAF-mutant inhibitor vemurafenib. A reduced suppression in cell growth was observed in treated cells carrying both BRAF and PIK3CA mutations as compared with those presenting a mutated BRAF only. Among the analysed melanomas, 12/245 (4.9%) samples presented the coexistence of PIK3CA and BRAF/NRAS mutations. Our study further suggests that PIK3CA mutations account for a small fraction of PI3K pathway activation and have a limited impact in interfering with the BRAF/NRAS-driven growth in melanoma.

  3. Loss-of-function and gain-of-function phenotypes of stomatocytosis mutant RhAG F65S

    PubMed Central

    Stewart, Andrew K.; Shmukler, Boris E.; Vandorpe, David H.; Rivera, Alicia; Heneghan, John F.; Li, Xiaojin; Hsu, Ann; Karpatkin, Margaret; O'Neill, Allison F.; Bauer, Daniel E.; Heeney, Matthew M.; John, Kathryn; Kuypers, Frans A.; Gallagher, Patrick G.; Lux, Samuel E.; Brugnara, Carlo; Westhoff, Connie M.

    2011-01-01

    Four patients with overhydrated cation leak stomatocytosis (OHSt) exhibited the heterozygous RhAG missense mutation F65S. OHSt erythrocytes were osmotically fragile, with elevated Na and decreased K contents and increased cation channel-like activity. Xenopus oocytes expressing wild-type RhAG and RhAG F65S exhibited increased ouabain and bumetanide-resistant uptake of Li+ and 86Rb+, with secondarily increased 86Rb+ influx sensitive to ouabain and to bumetanide. Increased RhAG-associated 14C-methylammonium (MA) influx was severely reduced in RhAG F65S-expressing oocytes. RhAG-associated influxes of Li+, 86Rb+, and 14C-MA were pharmacologically distinct, and Li+ uptakes associated with RhAG and RhAG F65S were differentially inhibited by NH4+ and Gd3+. RhAG-expressing oocytes were acidified and depolarized by 5 mM bath NH3/NH4+, but alkalinized and depolarized by subsequent bath exposure to 5 mM methylammonium chloride (MA/MA+). RhAG F65S-expressing oocytes exhibited near-wild-type responses to NH4Cl, but MA/MA+ elicited attenuated alkalinization and strong hyperpolarization. Expression of RhAG or RhAG F65S increased steady-state cation currents unaltered by bath Li+ substitution or bath addition of 5 mM NH4Cl or MA/MA+. These oocyte studies suggest that 1) RhAG expression increases oocyte transport of NH3/NH4+ and MA/MA+; 2) RhAG F65S exhibits gain-of-function phenotypes of increased cation conductance/permeability, and loss-of-function phenotypes of decreased and modified MA/MA+ transport, and decreased NH3/NH4+-associated depolarization; and 3) RhAG transports NH3/NH4+ and MA/MA+ by distinct mechanisms, and/or the substrates elicit distinct cellular responses. Thus, RhAG F65S is a loss-of-function mutation for amine transport. The altered oocyte intracellular pH, membrane potential, and currents associated with RhAG or RhAG F65S expression may reflect distinct transport mechanisms. PMID:21849667

  4. Loss-of-function mutations in SCN4A cause severe foetal hypokinesia or 'classical' congenital myopathy.

    PubMed

    Zaharieva, Irina T; Thor, Michael G; Oates, Emily C; van Karnebeek, Clara; Hendson, Glenda; Blom, Eveline; Witting, Nanna; Rasmussen, Magnhild; Gabbett, Michael T; Ravenscroft, Gianina; Sframeli, Maria; Suetterlin, Karen; Sarkozy, Anna; D'Argenzio, Luigi; Hartley, Louise; Matthews, Emma; Pitt, Matthew; Vissing, John; Ballegaard, Martin; Krarup, Christian; Slørdahl, Andreas; Halvorsen, Hanne; Ye, Xin Cynthia; Zhang, Lin-Hua; Løkken, Nicoline; Werlauff, Ulla; Abdelsayed, Mena; Davis, Mark R; Feng, Lucy; Phadke, Rahul; Sewry, Caroline A; Morgan, Jennifer E; Laing, Nigel G; Vallance, Hilary; Ruben, Peter; Hanna, Michael G; Lewis, Suzanne; Kamsteeg, Erik-Jan; Männikkö, Roope; Muntoni, Francesco

    2016-03-01

    Congenital myopathies are a clinically and genetically heterogeneous group of muscle disorders characterized by congenital or early-onset hypotonia and muscle weakness, and specific pathological features on muscle biopsy. The phenotype ranges from foetal akinesia resulting in in utero or neonatal mortality, to milder disorders that are not life-limiting. Over the past decade, more than 20 new congenital myopathy genes have been identified. Most encode proteins involved in muscle contraction; however, mutations in ion channel-encoding genes are increasingly being recognized as a cause of this group of disorders. SCN4A encodes the α-subunit of the skeletal muscle voltage-gated sodium channel (Nav1.4). This channel is essential for the generation and propagation of the muscle action potential crucial to muscle contraction. Dominant SCN4A gain-of-function mutations are a well-established cause of myotonia and periodic paralysis. Using whole exome sequencing, we identified homozygous or compound heterozygous SCN4A mutations in a cohort of 11 individuals from six unrelated kindreds with congenital myopathy. Affected members developed in utero- or neonatal-onset muscle weakness of variable severity. In seven cases, severe muscle weakness resulted in death during the third trimester or shortly after birth. The remaining four cases had marked congenital or neonatal-onset hypotonia and weakness associated with mild-to-moderate facial and neck weakness, significant neonatal-onset respiratory and swallowing difficulties and childhood-onset spinal deformities. All four surviving cohort members experienced clinical improvement in the first decade of life. Muscle biopsies showed myopathic features including fibre size variability, presence of fibrofatty tissue of varying severity, without specific structural abnormalities. Electrophysiology suggested a myopathic process, without myotonia. In vitro functional assessment in HEK293 cells of the impact of the identified SCN4A

  5. A Dual Phenotype of Periventricular Nodular Heterotopia and Frontometaphyseal Dysplasia in One Patient Caused by a Single FLNA Mutation Leading to Two Functionally Different Aberrant Transcripts

    PubMed Central

    Zenker, Martin; Rauch, Anita; Winterpacht, Andreas; Tagariello, Andreas; Kraus, Cornelia; Rupprecht, Thomas; Sticht, Heinrich; Reis, André

    2004-01-01

    Two disorders, periventricular nodular heterotopia (PVNH) and a group of skeletal dysplasias belonging to the oto-palato-digital (OPD) spectrum, are caused by FLNA mutations. They are considered mutually exclusive because of the different presumed effects of the respective FLNA gene mutations, leading to loss of function (PVNH) and gain of function (OPD), respectively. We describe here the first patient manifesting PVNH in combination with frontometaphyseal dysplasia, a skeletal dysplasia of the OPD-spectrum. A novel de novo mutation, 7315C→A in exon 45 of the FLNA gene, was identified. It leads to two aberrant transcripts, one full-length transcript with the point mutation causing a substitution of a highly conserved leucine residue (L2439M) and a second shortened transcript lacking 21 bp due to the creation of an ectopic splice donor site in exon 45. We propose that the dual phenotype is caused by two functionally different, aberrant filamin A proteins and therefore represents an exceptional model case of allelic gain-of-function and loss-of-function phenotypes due to a single mutational event. PMID:14988809

  6. The human Cx26-D50A and Cx26-A88V mutations causing keratitis-ichthyosis-deafness syndrome display increased hemichannel activity

    PubMed Central

    Mhaske, Pallavi V.; Levit, Noah A.; Li, Leping; Wang, Hong-Zhan; Lee, Jack R.; Shuja, Zunaira; Brink, Peter R.

    2013-01-01

    Mutations in the human gene encoding connexin 26 (Cx26 or GJB2) cause either nonsyndromic deafness or syndromic deafness associated with skin diseases. That distinct clinical disorders can be caused by different mutations within the same gene suggests that different channel activities influence the ear and skin. Here we use three different expression systems to examine the functional characteristics of two Cx26 mutations causing either mild (Cx26-D50A) or lethal (Cx26-A88V) keratitis-ichthyosis-deafness (KID) syndrome. In either cRNA-injected Xenopus oocytes, transfected HeLa cells, or transfected primary human keratinocytes, we show that both Cx26-D50A and Cx26-A88V form active hemichannels that significantly increase membrane current flow compared with wild-type Cx26. This increased membrane current accelerated cell death in low extracellular calcium solutions and was not due to increased mutant protein expression. Elevated mutant hemichannel currents could be blocked by increased extracellular calcium concentration. These results show that these two mutations exhibit a shared gain of functional activity and support the hypothesis that increased hemichannel activity is a common feature of human Cx26 mutations responsible for KID syndrome. PMID:23447037

  7. Dominant gain-of-function mutations in transmembrane domain III of ERS1 and ETR1 suggest a novel role for this domain in regulating the magnitude of ethylene response in Arabidopsis.

    PubMed

    Deslauriers, Stephen D; Alvarez, Ashley A; Lacey, Randy F; Binder, Brad M; Larsen, Paul B

    2015-10-01

    Prior work resulted in identification of an Arabidopsis mutant, eer5-1, with extreme ethylene response in conjunction with failure to induce a subset of ethylene-responsive genes, including AtEBP. EER5, which is a TREX-2 homolog that is part of a nucleoporin complex, functions as part of a cryptic aspect of the ethylene signaling pathway that is required for regulating the magnitude of ethylene response. A suppressor mutagenesis screen was carried out to identify second site mutations that could restore the growth of ethylene-treated eer5-1 to wild-type levels. A dominant gain-of-function mutation in the ethylene receptor ETHYLENE RESPONSE SENSOR 1 (ERS1) was identified, with the ers1-4 mutation being located in transmembrane domain III at a point nearly equivalent to the previously described etr1-2 mutation in the other Arabidopsis subfamily I ethylene receptor, ETHYLENE RESPONSE 1 (ETR1). Although both ers1-4 and etr1-2 partially suppress the ethylene hypersensitivity of eer5-1 and are at least in part REVERSION TO ETHYLENE SENSITIVITY 1 (RTE1)-dependent, ers1-4 was additionally found to restore the expression of AtEBP in ers1-4;eer5-1 etiolated seedlings after ethylene treatment in an EIN3-dependent manner. Our work indicates that ERS1-regulated expression of a subset of ethylene-responsive genes is related to controlling the magnitude of ethylene response, with hyperinduction of these genes correlated with reduced ethylene-dependent growth inhibition. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  8. Functional and clinical characterization of KCNJ2 mutations associated with LQT7 (Andersen syndrome)

    PubMed Central

    Tristani-Firouzi, Martin; Jensen, Judy L.; Donaldson, Matthew R.; Sansone, Valeria; Meola, Giovanni; Hahn, Angelika; Bendahhou, Said; Kwiecinski, Hubert; Fidzianska, Anna; Plaster, Nikki; Fu, Ying-Hui; Ptacek, Louis J.; Tawil, Rabi

    2002-01-01

    Andersen syndrome (AS) is a rare, inherited disorder characterized by periodic paralysis, long QT (LQT) with ventricular arrhythmias, and skeletal developmental abnormalities. We recently established that AS is caused by mutations in KCNJ2, which encodes the inward rectifier K+ channel Kir2.1. In this report, we characterized the functional consequences of three novel and seven previously described KCNJ2 mutations using a two-microelectrode voltage-clamp technique and correlated the findings with the clinical phenotype. All mutations resulted in loss of function and dominant-negative suppression of Kir2.1 channel function. In mutation carriers, the frequency of periodic paralysis was 64% and dysmorphic features 78%. LQT was the primary cardiac manifestation, present in 71% of KCNJ2 mutation carriers, with ventricular arrhythmias present in 64%. While arrhythmias were common, none of our subjects suffered sudden cardiac death. To gain insight into the mechanism of arrhythmia susceptibility, we simulated the effect of reduced Kir2.1 using a ventricular myocyte model. A reduction in Kir2.1 prolonged the terminal phase of the cardiac action potential, and in the setting of reduced extracellular K+, induced Na+/Ca2+ exchanger–dependent delayed afterdepolarizations and spontaneous arrhythmias. These findings suggest that the substrate for arrhythmia susceptibility in AS is distinct from the other forms of inherited LQT syndrome. PMID:12163457

  9. Impacts of Usher syndrome type IB mutations on human myosin VIIa motor function.

    PubMed

    Watanabe, Shinya; Umeki, Nobuhisa; Ikebe, Reiko; Ikebe, Mitsuo

    2008-09-09

    Usher syndrome (USH) is a human hereditary disorder characterized by profound congenital deafness, retinitis pigmentosa, and vestibular dysfunction. Myosin VIIa has been identified as the responsible gene for USH type 1B, and a number of missense mutations have been identified in the affected families. However, the molecular basis of the dysfunction of USH gene, myosin VIIa, in the affected families is unknown to date. Here we clarified the effects of USH1B mutations on human myosin VIIa motor function for the first time. The missense mutations of USH1B significantly inhibited the actin activation of ATPase activity of myosin VIIa. G25R, R212C, A397D, and E450Q mutations abolished the actin-activated ATPase activity completely. P503L mutation increased the basal ATPase activity for 2-3-fold but reduced the actin-activated ATPase activity to 50% of the wild type. While all of the mutations examined, except for R302H, reduced the affinity for actin and the ATP hydrolysis cycling rate, they did not largely decrease the rate of ADP release from actomyosin, suggesting that the mutations reduce the duty ratio of myosin VIIa. Taken together, the results suggest that the mutations responsible for USH1B cause the complete loss of the actin-activated ATPase activity or the reduction of duty ratio of myosin VIIa.

  10. A rare mutation in AgRP, +79G>A, affects promoter activity.

    PubMed

    Sözen, M A; de Jonge, L H M; Greenway, F; Ravussin, E; Smith, S R; Argyropoulos, G

    2007-06-01

    The agouti-related protein is a powerful orexigenic peptide. A rare mutation, +79G>A, was identified in its minimal promoter in two white carriers. Comparison of the 45-year-old male proband, who was also a carrier of the common Ala67Thr polymorphism, with an age- and weight-matching wild-type population showed marginal differences for resting metabolic rate (RMR) and body mass index. The second carrier however was an obese 57-year-old female with reduced RMR. Functional analysis in hypothalamus- and periphery-derived cell lines showed reduced promoter activity for the +79A allele in the adrenocortical cells only, suggesting that it could affect the peripheral expression levels of AgRP. The +79G>A mutation could predispose to body weight gain (as suggested by the phenotype of the second carrier), but it could only affect the proband at an older age as he may be protected by the Ala67Thr polymorphism that is associated with resistance to late-onset fatness.

  11. Mastocytosis: a mutated KIT receptor induced myeloproliferative disorder

    PubMed Central

    Chatterjee, Anindya; Ghosh, Joydeep; Kapur, Reuben

    2015-01-01

    Although more than 90% systemic mastocytosis (SM) patients express gain of function mutations in the KIT receptor, recent next generation sequencing has revealed the presence of several additional genetic and epigenetic mutations in a subset of these patients, which confer poor prognosis and inferior overall survival. A clear understanding of how genetic and epigenetic mutations cooperate in regulating the tremendous heterogeneity observed in these patients will be essential for designing effective treatment strategies for this complex disease. In this review, we describe the clinical heterogeneity observed in patients with mastocytosis, the nature of relatively novel mutations identified in these patients, therapeutic strategies to target molecules downstream from activating KIT receptor and finally we speculate on potential novel strategies to interfere with the function of not only the oncogenic KIT receptor but also epigenetic mutations seen in these patients. PMID:26158763

  12. Mutational Analysis of Rab3 Function for Controlling Active Zone Protein Composition at the Drosophila Neuromuscular Junction

    PubMed Central

    Roche, John P.; Alsharif, Peter; Graf, Ethan R.

    2015-01-01

    At synapses, the release of neurotransmitter is regulated by molecular machinery that aggregates at specialized presynaptic release sites termed active zones. The complement of active zone proteins at each site is a determinant of release efficacy and can be remodeled to alter synapse function. The small GTPase Rab3 was previously identified as playing a novel role that controls the distribution of active zone proteins to individual release sites at the Drosophila neuromuscular junction. Rab3 has been extensively studied for its role in the synaptic vesicle cycle; however, the mechanism by which Rab3 controls active zone development remains unknown. To explore this mechanism, we conducted a mutational analysis to determine the molecular and structural requirements of Rab3 function at Drosophila synapses. We find that GTP-binding is required for Rab3 to traffick to synapses and distribute active zone components across release sites. Conversely, the hydrolytic activity of Rab3 is unnecessary for this function. Through a structure-function analysis we identify specific residues within the effector-binding switch regions that are required for Rab3 function and determine that membrane attachment is essential. Our findings suggest that Rab3 controls the distribution of active zone components via a vesicle docking mechanism that is consistent with standard Rab protein function. PMID:26317909

  13. Origin, functional role, and clinical impact of Fanconi anemia FANCA mutations.

    PubMed

    Castella, Maria; Pujol, Roser; Callén, Elsa; Trujillo, Juan P; Casado, José A; Gille, Hans; Lach, Francis P; Auerbach, Arleen D; Schindler, Detlev; Benítez, Javier; Porto, Beatriz; Ferro, Teresa; Muñoz, Arturo; Sevilla, Julián; Madero, Luis; Cela, Elena; Beléndez, Cristina; de Heredia, Cristina Díaz; Olivé, Teresa; de Toledo, José Sánchez; Badell, Isabel; Torrent, Montserrat; Estella, Jesús; Dasí, Angeles; Rodríguez-Villa, Antonia; Gómez, Pedro; Barbot, José; Tapia, María; Molinés, Antonio; Figuera, Angela; Bueren, Juan A; Surrallés, Jordi

    2011-04-07

    Fanconi anemia is characterized by congenital abnormalities, bone marrow failure, and cancer predisposition. To investigate the origin, functional role, and clinical impact of FANCA mutations, we determined a FANCA mutational spectrum with 130 pathogenic alleles. Some of these mutations were further characterized for their distribution in populations, mode of emergence, or functional consequences at cellular and clinical level. The world most frequent FANCA mutation is not the result of a mutational "hot-spot" but results from worldwide dissemination of an ancestral Indo-European mutation. We provide molecular evidence that total absence of FANCA in humans does not reduce embryonic viability, as the observed frequency of mutation carriers in the Gypsy population equals the expected by Hardy-Weinberg equilibrium. We also prove that long distance Alu-Alu recombination can cause Fanconi anemia by originating large interstitial deletions involving FANCA and 2 adjacent genes. Finally, we show that all missense mutations studied lead to an altered FANCA protein that is unable to relocate to the nucleus and activate the FA/BRCA pathway. This may explain the observed lack of correlation between type of FANCA mutation and cellular phenotype or clinical severity in terms of age of onset of hematologic disease or number of malformations.

  14. Origin, functional role, and clinical impact of Fanconi anemia FANCA mutations

    PubMed Central

    Castella, Maria; Pujol, Roser; Callén, Elsa; Trujillo, Juan P.; Casado, José A.; Gille, Hans; Lach, Francis P.; Auerbach, Arleen D.; Schindler, Detlev; Benítez, Javier; Porto, Beatriz; Ferro, Teresa; Muñoz, Arturo; Sevilla, Julián; Madero, Luis; Cela, Elena; Beléndez, Cristina; de Heredia, Cristina Díaz; Olivé, Teresa; de Toledo, José Sánchez; Badell, Isabel; Torrent, Montserrat; Estella, Jesús; Dasí, Ángeles; Rodríguez-Villa, Antonia; Gómez, Pedro; Barbot, José; Tapia, María; Molinés, Antonio; Figuera, Ángela; Bueren, Juan A.

    2011-01-01

    Fanconi anemia is characterized by congenital abnormalities, bone marrow failure, and cancer predisposition. To investigate the origin, functional role, and clinical impact of FANCA mutations, we determined a FANCA mutational spectrum with 130 pathogenic alleles. Some of these mutations were further characterized for their distribution in populations, mode of emergence, or functional consequences at cellular and clinical level. The world most frequent FANCA mutation is not the result of a mutational “hot-spot” but results from worldwide dissemination of an ancestral Indo-European mutation. We provide molecular evidence that total absence of FANCA in humans does not reduce embryonic viability, as the observed frequency of mutation carriers in the Gypsy population equals the expected by Hardy-Weinberg equilibrium. We also prove that long distance Alu-Alu recombination can cause Fanconi anemia by originating large interstitial deletions involving FANCA and 2 adjacent genes. Finally, we show that all missense mutations studied lead to an altered FANCA protein that is unable to relocate to the nucleus and activate the FA/BRCA pathway. This may explain the observed lack of correlation between type of FANCA mutation and cellular phenotype or clinical severity in terms of age of onset of hematologic disease or number of malformations. PMID:21273304

  15. Activating thyrotropin receptor mutations in histologically heterogeneous hyperfunctioning nodules of multinodular goiter.

    PubMed

    Tonacchera, M; Vitti, P; Agretti, P; Giulianetti, B; Mazzi, B; Cavaliere, R; Ceccarini, G; Fiore, E; Viacava, P; Naccarato, A; Pinchera, A; Chiovato, L

    1998-07-01

    Activating thyrotropin (TSH) receptor mutations have been found in toxic adenomas and in hot nodules contained in toxic multinodular goiter. The typical feature of multinodular goiter is the heterogeneity in morphology and function of different follicles within the same enlarged gland. In this report we describe a patient with a huge multinodular goiter, normal free triiodothyronine (FT3) and free thyroxine (FT4) serum values, and subnormal TSH serum concentration. Thyroid scintiscan showed two hot areas corresponding to the basal and apical nodules of the left lobe. The right lobe was poorly visualized by the radioisotope. The patient underwent thyroidectomy, and histological examination of the tissue was performed. Genomic DNA was extracted from the tissue specimen and direct sequencing of the TSH receptor and Gs alpha genes was done. At histology, one hyperfunctioning nodule had the typical microscopic structure of thyroid adenomas, and the other contained multiple macrofollicular areas not confined by a capsule. In spite of this histological difference, both hyperfunctioning nodules harbored a mutation of the thyrotropin receptor (TSHr) gene: an isoleucine instead of a threonine in position 632 (T632I) in the first nodule and a methionine instead of an isoleucine in position 486 (I486M) in the second nodule. In conclusion, our findings show for the first time that gain-of-function TSHr mutations are not only present in hyperfunctioning thyroid nodules with the histological features of the true thyroid adenomas, but also in hyperfunctioning hyperplastic nodules contained in the same multinodular goiter.

  16. Identification of autism-related MECP2 mutations by whole-exome sequencing and functional validation.

    PubMed

    Wen, Zhu; Cheng, Tian-Lin; Li, Gai-Zhi; Sun, Shi-Bang; Yu, Shun-Ying; Zhang, Yi; Du, Ya-Song; Qiu, Zilong

    2017-01-01

    Methyl-CpG-binding protein-2 (MeCP2) is a critical regulator for neural development. Either loss- or gain-of-function leads to severe neurodevelopmental disorders, such as Rett syndrome (RTT) and autism spectrum disorder (ASD). We set out to screen for MECP2 mutations in patients of ASD and determine whether these autism-related mutations may compromise the proper function of MeCP2. Whole-exome sequencing was performed to screen MECP2 and other ASD candidate genes for 120 patients diagnosed with ASD. The parents of patients who were identified with MECP2 mutation were selected for further Sanger sequencing. Each patient accomplished the case report form including general information and clinical scales applied to assess their clinical features. Mouse cortical neurons and HEK-293 cells were cultured and transfected with MeCP2 wild-type (WT) or mutant to examine the function of autism-associated MeCP2 mutants. HEK-293 cells were used to examine the expression of MeCP2 mutant constructs with Western blot. Mouse cortical neurons were used to analyze neurites and axon outgrowth by immunofluorescence experiments. We identified three missense mutations of MECP2 from three autism patients by whole-exome sequencing: p.P152L (c.455C>T), p.P376S (c.1162C>T), and p.R294X (c.880C>T). Among these mutations, p.P152L and p.R294X were de novo mutations, whereas p.P376S was inherited maternally. The diagnosis of RTT was excluded in all three autism patients. Abnormalities of dendritic and axonal growth were found after autism-related MeCP2 mutants were expressed in mouse cortical neurons; suggesting that autism-related MECP2 mutations impair the proper development of neurons. Our study identified genetic mutations of the MECP2 gene in autism patients, which were previously considered to be associated primarily with RTT. This finding suggests that loss-of-function mutations of MECP2 may also lead to autism spectrum disorders.

  17. Functional Consequences of Seven Novel Mutations in the CYP11B1 Gene: Four Mutations Associated with Nonclassic and Three Mutations Causing Classic 11β-Hydroxylase Deficiency

    PubMed Central

    Parajes, Silvia; Loidi, Lourdes; Reisch, Nicole; Dhir, Vivek; Rose, Ian T.; Hampel, Rainer; Quinkler, Marcus; Conway, Gerard S.; Castro-Feijóo, Lidia; Araujo-Vilar, David; Pombo, Manuel; Dominguez, Fernando; Williams, Emma L.; Cole, Trevor R.; Kirk, Jeremy M.; Kaminsky, Elke; Rumsby, Gill; Arlt, Wiebke; Krone, Nils

    2010-01-01

    Context: Steroid 11β-hydroxylase (CYP11B1) deficiency (11OHD) is the second most common form of congenital adrenal hyperplasia (CAH). Cases of nonclassic 11OHD are rare compared with the incidence of nonclassic 21-hydroxylase deficiency. Objective: The aim of the study was to analyze the functional consequences of seven novel CYP11B1 mutations (p.M88I, p.W116G, p.P159L, p.A165D, p.K254_A259del, p.R366C, p.T401A) found in three patients with classic 11OHD, two patients with nonclassic 11OHD, and three heterozygous carriers for CYP11B1 mutations. Methods: We conducted functional studies employing a COS7 cell in vitro expression system comparing wild-type (WT) and mutant CYP11B1 activity. Mutants were examined in a computational three-dimensional model of the CYP11B1 protein. Results: All mutations (p.W116G, p.A165D, p.K254_A259del) found in patients with classic 11OHD have absent or very little 11β-hydroxylase activity relative to WT. The mutations detected in patients with nonclassic 11OHD showed partial functional impairment, with one patient being homozygous (p.P159L; 25% of WT) and the other patient compound heterozygous for a novel mild p.M88I (40% of WT) and the known severe p.R383Q mutation. The two mutations detected in heterozygous carriers (p.R366C, p.T401A) also reduced CYP11B1 activity by 23 to 37%, respectively. Conclusion: Functional analysis results allow for the classification of novel CYP11B1 mutations as causative for classic and nonclassic 11OHD, respectively. Four partially inactivating mutations are predicted to result in nonclassic 11OHD. These findings double the number of mild CYP11B1 mutations previously described as associated with mild 11OHD. Our data are important to predict phenotypic expression and provide important information for clinical and genetic counseling in 11OHD. PMID:20089618

  18. Loss-of-function mutations in SCN4A cause severe foetal hypokinesia or ‘classical’ congenital myopathy

    PubMed Central

    Zaharieva, Irina T.; Thor, Michael G.; Oates, Emily C.; van Karnebeek, Clara; Hendson, Glenda; Blom, Eveline; Witting, Nanna; Rasmussen, Magnhild; Gabbett, Michael T.; Ravenscroft, Gianina; Sframeli, Maria; Suetterlin, Karen; Sarkozy, Anna; D’Argenzio, Luigi; Hartley, Louise; Matthews, Emma; Pitt, Matthew; Vissing, John; Ballegaard, Martin; Krarup, Christian; Slørdahl, Andreas; Halvorsen, Hanne; Ye, Xin Cynthia; Zhang, Lin-Hua; Løkken, Nicoline; Werlauff, Ulla; Abdelsayed, Mena; Davis, Mark R.; Feng, Lucy; Phadke, Rahul; Sewry, Caroline A.; Morgan, Jennifer E.; Laing, Nigel G.; Vallance, Hilary; Ruben, Peter; Hanna, Michael G.; Lewis, Suzanne; Kamsteeg, Erik-Jan; Männikkö, Roope

    2016-01-01

    Abstract See Cannon (doi: 10.1093/brain/awv400 ) for a scientific commentary on this article. Congenital myopathies are a clinically and genetically heterogeneous group of muscle disorders characterized by congenital or early-onset hypotonia and muscle weakness, and specific pathological features on muscle biopsy. The phenotype ranges from foetal akinesia resulting in in utero or neonatal mortality, to milder disorders that are not life-limiting. Over the past decade, more than 20 new congenital myopathy genes have been identified. Most encode proteins involved in muscle contraction; however, mutations in ion channel-encoding genes are increasingly being recognized as a cause of this group of disorders. SCN4A encodes the α-subunit of the skeletal muscle voltage-gated sodium channel (Na v 1.4). This channel is essential for the generation and propagation of the muscle action potential crucial to muscle contraction. Dominant SCN4A gain-of-function mutations are a well-established cause of myotonia and periodic paralysis. Using whole exome sequencing, we identified homozygous or compound heterozygous SCN4A mutations in a cohort of 11 individuals from six unrelated kindreds with congenital myopathy. Affected members developed in utero - or neonatal-onset muscle weakness of variable severity. In seven cases, severe muscle weakness resulted in death during the third trimester or shortly after birth. The remaining four cases had marked congenital or neonatal-onset hypotonia and weakness associated with mild-to-moderate facial and neck weakness, significant neonatal-onset respiratory and swallowing difficulties and childhood-onset spinal deformities. All four surviving cohort members experienced clinical improvement in the first decade of life. Muscle biopsies showed myopathic features including fibre size variability, presence of fibrofatty tissue of varying severity, without specific structural abnormalities. Electrophysiology suggested a myopathic process, without

  19. The thyrotropin receptor mutation database: update 2003.

    PubMed

    Führer, Dagmar; Lachmund, Peter; Nebel, Istvan-Tibor; Paschke, Ralf

    2003-12-01

    In 1999 we have created a TSHR mutation database compiling TSHR mutations with their basic characteristics and associated clinical conditions (www.uni-leipzig.de/innere/tshr). Since then, more than 2887 users from 36 countries have logged into the TSHR mutation database and have contributed several valuable suggestions for further improvement of the database. We now present an updated and extended version of the TSHR database to which several novel features have been introduced: 1. detailed functional characteristics on all 65 mutations (43 activating and 22 inactivating mutations) reported to date, 2. 40 pedigrees with detailed information on molecular aspects, clinical courses and treatment options in patients with gain-of-function and loss-of-function germline TSHR mutations, 3. a first compilation of site-directed mutagenesis studies, 4. references with Medline links, 5. a user friendly search tool for specific database searches, user-specific database output and 6. an administrator tool for the submission of novel TSHR mutations. The TSHR mutation database is installed as one of the locus specific HUGO mutation databases. It is listed under index TSHR 603372 (http://ariel.ucs.unimelb.edu.au/~cotton/glsdbq.htm) and can be accessed via www.uni-leipzig.de/innere/tshr.

  20. Nuclear expression and gain-of-function β-catenin mutation in glomangiopericytoma (sinonasal-type hemangiopericytoma): insight into pathogenesis and a diagnostic marker.

    PubMed

    Lasota, Jerzy; Felisiak-Golabek, Anna; Aly, F Zahra; Wang, Zeng-Feng; Thompson, Lester D R; Miettinen, Markku

    2015-05-01

    Glomangiopericytoma (sinonasal-type hemangiopericytoma) is a rare mesenchymal neoplasm with myoid phenotype (smooth muscle actin-positive), which distinguishes this tumor from soft tissue hemangiopericytoma/solitary fibrous tumor. Molecular genetic changes underlying the pathogenesis of glomangiopericytoma are not known. In this study, 13 well-characterized glomangiopericytomas were immunohistochemically evaluated for β-catenin expression. All analyzed tumors showed strong expression and nuclear accumulation of β-catenin. Following this observation, β-catenin glycogen serine kinase-3 beta phosphorylation region, encoded by exon 3, was PCR amplified in all cases and evaluated for mutations using Sanger sequencing. Heterozygous mutations were identified in 12 of 13 tumors. All mutations consisted of single-nucleotide substitutions: three in codon 32 (c.94G>C (n=2) and c.95A>T), four in codon 33 (two each c.98C>G and c.98C>T), two in codon 37 (c.109T>G), one in codon 41 (c.121A>G), and two in codon 45 (c.133T>C). At the protein level, these substitutions would lead to p.D32H, p.D32V, p.S33C, p.S33F, p.S37A, p.T41A, and p.S45L mutations, respectively. Previously, similar mutations have been reported in different types of cancers and shown to trigger activation of β-catenin signaling. All analyzed glomangiopericytomas showed prominent nuclear expression of cyclin D1, as previously shown for tumors with nuclear expression of β-catenin as a sign of oncogenic activation. These results demonstrate that mutational activation of β-catenin and associated cyclin D1 overexpression may be central events in the pathogenesis of glomangiopericytoma. In additon, nuclear accumulation of β-catenin is a diagnostic marker for glomangiopericytoma.

  1. Diffuse Staining for Activated NOTCH1 Correlates With NOTCH1 Mutation Status and Is Associated With Worse Outcome in Adenoid Cystic Carcinoma.

    PubMed

    Sajed, Dipti P; Faquin, William C; Carey, Chris; Severson, Eric A; H Afrogheh, Amir; A Johnson, Carl; Blacklow, Stephen C; Chau, Nicole G; Lin, Derrick T; Krane, Jeffrey F; Jo, Vickie Y; Garcia, Joaquín J; Sholl, Lynette M; Aster, Jon C

    2017-11-01

    NOTCH1 is frequently mutated in adenoid cystic carcinoma (ACC). To test the idea that immunohistochemical (IHC) staining can identify ACCs with NOTCH1 mutations, we performed IHC for activated NOTCH1 (NICD1) in 197 cases diagnosed as ACC from 173 patients. NICD1 staining was positive in 194 cases (98%) in 2 major patterns: subset positivity, which correlated with tubular/cribriform histology; and diffuse positivity, which correlated with a solid histology. To determine the relationship between NICD1 staining and NOTCH1 mutational status, targeted exome sequencing data were obtained on 14 diffusely NICD1-positive ACC specimens from 11 patients and 15 subset NICD1-positive ACC specimens from 15 patients. This revealed NOTCH1 gain-of-function mutations in 11 of 14 diffusely NICD1-positive ACC specimens, whereas all subset-positive tumors had wild-type NOTCH1 alleles. Notably, tumors with diffuse NICD1 positivity were associated with significantly worse outcomes (P=0.003). To determine whether NOTCH1 activation is unique among tumors included in the differential diagnosis with ACC, we performed NICD1 IHC on a cohort of diverse salivary gland and head and neck tumors. High fractions of each of these tumor types were positive for NICD1 in a subset of cells, particularly in basaloid squamous cell carcinomas; however, sequencing of basaloid squamous cell carcinomas failed to identify NOTCH1 mutations. These findings indicate that diffuse NICD1 positivity in ACC correlates with solid growth pattern, the presence of NOTCH1 gain-of-function mutations, and unfavorable outcome, and suggest that staining for NICD1 can be helpful in distinguishing ACC with solid growth patterns from other salivary gland and head and neck tumors.

  2. Complement Factor B Mutations in Atypical Hemolytic Uremic Syndrome—Disease-Relevant or Benign?

    PubMed Central

    Marinozzi, Maria Chiara; Vergoz, Laura; Rybkine, Tania; Ngo, Stephanie; Bettoni, Serena; Pashov, Anastas; Cayla, Mathieu; Tabarin, Fanny; Jablonski, Mathieu; Hue, Christophe; Smith, Richard J.; Noris, Marina; Halbwachs-Mecarelli, Lise; Donadelli, Roberta; Fremeaux-Bacchi, Veronique

    2014-01-01

    Atypical hemolytic uremic syndrome (aHUS) is a genetic ultrarare renal disease associated with overactivation of the alternative pathway of complement. Four gain-of-function mutations that form a hyperactive or deregulated C3 convertase have been identified in Factor B (FB) ligand binding sites. Here, we studied the functional consequences of 10 FB genetic changes recently identified from different aHUS cohorts. Using several tests for alternative C3 and C5 convertase formation and regulation, we identified two gain-of-function and potentially disease-relevant mutations that formed either an overactive convertase (M433I) or a convertase resistant to decay by FH (K298Q). One mutation (R178Q) produced a partially cleaved protein with no ligand binding or functional activity. Seven genetic changes led to near-normal or only slightly reduced ligand binding and functional activity compared with the most common polymorphism at position 7, R7. Notably, none of the algorithms used to predict the disease relevance of FB mutations agreed completely with the experimental data, suggesting that in silico approaches should be undertaken with caution. These data, combined with previously published results, suggest that 9 of 15 FB genetic changes identified in patients with aHUS are unrelated to disease pathogenesis. This study highlights that functional assessment of identified nucleotide changes in FB is mandatory to confirm disease association. PMID:24652797

  3. Inherited macular degeneration-associated mutations in CNGB3 increase the ligand sensitivity and spontaneous open probability of cone cyclic nucleotide-gated channels

    PubMed Central

    Meighan, Peter C.; Peng, Changhong; Varnum, Michael D.

    2015-01-01

    Cyclic nucleotide gated (CNG) channels are a critical component of the visual transduction cascade in the vertebrate retina. Mutations in the genes encoding these channels have been associated with a spectrum of inherited retinal disorders. To gain insight into their pathophysiological mechanisms, we have investigated the functional consequences of several CNGB3 mutations, previously associated with macular degeneration (Y469D and L595F) or complete achromatopsia (S156F, P309L, and G558C), by expressing these subunits in combination with wild-type CNGA3 in Xenopus oocytes and characterizing them using patch-clamp recordings in the inside-out configuration. These mutations did not prevent the formation of functional heteromeric channels, as indicated by sensitivity to block by L-cis-diltiazem. With the exception of S156F, each of the mutant channels displayed electrophysiological properties reflecting enhanced channel activity at physiological concentrations of cGMP (i.e., a gain-of-function phenotype). The increased channel activity produced by these mutations resulted from either increased functional expression levels, or increased sensitivity to cyclic nucleotides. Furthermore, L595F increased the spontaneous open probability in the absence of activating ligand, signifying a ligand independent gain-of-function change. In addition to the CNGB3 disease-associate mutations, we characterized the effects of several common CNGB3 and CNGA3 single-nucleotide polymorphisms (SNPs) on heteromeric CNGA3+CNGB3 channel function. Two of the SNPs examined (A3-T153M, and B3-W234C) produced decreased ligand sensitivity for heteromeric CNG channels. These changes may contribute to background disease susceptibility when combined with other genetic or non-genetic factors. Together, these studies help to define the underlying molecular phenotype for mutations relating to CNG channel disease pathogenesis. PMID:26106334

  4. Dissecting enzyme function with microfluidic-based deep mutational scanning.

    PubMed

    Romero, Philip A; Tran, Tuan M; Abate, Adam R

    2015-06-09

    Natural enzymes are incredibly proficient catalysts, but engineering them to have new or improved functions is challenging due to the complexity of how an enzyme's sequence relates to its biochemical properties. Here, we present an ultrahigh-throughput method for mapping enzyme sequence-function relationships that combines droplet microfluidic screening with next-generation DNA sequencing. We apply our method to map the activity of millions of glycosidase sequence variants. Microfluidic-based deep mutational scanning provides a comprehensive and unbiased view of the enzyme function landscape. The mapping displays expected patterns of mutational tolerance and a strong correspondence to sequence variation within the enzyme family, but also reveals previously unreported sites that are crucial for glycosidase function. We modified the screening protocol to include a high-temperature incubation step, and the resulting thermotolerance landscape allowed the discovery of mutations that enhance enzyme thermostability. Droplet microfluidics provides a general platform for enzyme screening that, when combined with DNA-sequencing technologies, enables high-throughput mapping of enzyme sequence space.

  5. Hyperfunctioning thyroid nodules in toxic multinodular goiter share activating thyrotropin receptor mutations with solitary toxic adenoma.

    PubMed

    Tonacchera, M; Chiovato, L; Pinchera, A; Agretti, P; Fiore, E; Cetani, F; Rocchi, R; Viacava, P; Miccoli, P; Vitti, P

    1998-02-01

    Toxic multinodular goiter is a cause of nonautoimmune hyperthyroidism and is believed to differ in its nature and pathogenesis from toxic adenoma. Gain-of-function mutations of the TSH receptor gene have been identified as a cause of toxic adenoma. The pathogenesis at the molecular level of hyperfunctioning nodules in toxic multinodular goiter has yet not been reported. Six patients with a single hot nodule within a multinodular goiter and 11 patients with toxic thyroid adenoma were enrolled in our study. At histology five hyperfunctioning nodules in multinodular goiters showed the features of adenomas, and one was identified as a hyperplastic nodule. The entire exon 10 of the TSH receptor gene was directly sequenced after PCR amplification from genomic DNA obtained from surgical specimens. Functional studies of mutated receptors were performed in COS-7 cells. Five out of 6 (83%) hyperfunctioning nodules within toxic multinodular goiters harbored a TSH receptor mutation. A TSH receptor mutation was also evident in the hyperfunctioning nodule that at histology had the features of noncapsulated hyperplastic nodule. Among toxic adenomas, 8 out of 11 (72%) nodules harbored a TSH receptor mutation. All the mutations were heterozygotic and somatic. Nonfunctioning nodules, whether adenomas or hyperplastic nodules present in association with hyperfunctioning nodules in the same multinodular goiters, had no TSH receptor mutation. All the mutations identified had constitutive activity as assessed by cAMP production after expression in COS-7 cells. Hyperfunctioning thyroid nodules in multinodular goiters recognize the same pathogenetic event (TSH receptor mutation) as toxic adenoma. Other mechanisms are implicated in the growth of nonfunctioning thyroid nodules coexistent in the same gland.

  6. Progressive Multifocal Leukoencephalopathy in Primary Immune Deficiencies: Stat1 Gain of Function and Review of the Literature.

    PubMed

    Zerbe, Christa S; Marciano, Beatriz E; Katial, Rohit K; Santos, Carah B; Adamo, Nick; Hsu, Amy P; Hanks, Mary E; Darnell, Dirk N; Quezado, Martha M; Frein, Cathleen; Barnhart, Lisa A; Anderson, Victoria L; Uzel, Gulbu; Freeman, Alexandra F; Lisco, Andrea; Nath, Avindra; Major, Eugene O; Sampaio, Elizabeth P; Holland, Steven M

    2016-04-15

    Progressive multifocal leukoencephalopathy (PML) is a rare, severe, otherwise fatal viral infection of the white matter of the brain caused by the polyomavirus JC virus, which typically occurs only in immunocompromised patients. One patient with dominant gain-of-function (GOF) mutation in signal transducer and activator of transcription 1 (STAT1) with chronic mucocutaneous candidiasis and PML was reported previously. We aim to identify the molecular defect in 3 patients with PML and to review the literature on PML in primary immune defects (PIDs). STAT1 was sequenced in 3 patients with PML. U3C cell lines were transfected with STAT1 and assays to search for STAT1 phosphorylation, transcriptional response, and target gene expression were performed. We identified 3 new unrelated cases of PML in patients with GOF STAT1 mutations, including the novel STAT1 mutation, L400Q. These STAT1 mutations caused delayed STAT1 dephosphorylation and enhanced interferon-gamma-driven responses. In our review of the literature regarding PML in primary immune deficiencies we found 26 cases, only 54% of which were molecularly characterized, the remainder being syndromically diagnosed only. The occurrence of PML in 4 cases of STAT1 GOF suggests that STAT1 plays a critical role in the control of JC virus in the central nervous system. Published by Oxford University Press for the Infectious Diseases Society of America 2016. This work is written by (a) US Government employee(s) and is in the public domain in the US.

  7. Activating BRAF and PIK3CA mutations cooperate to promote anaplastic thyroid carcinogenesis.

    PubMed

    Charles, Roch-Philippe; Silva, Jillian; Iezza, Gioia; Phillips, Wayne A; McMahon, Martin

    2014-07-01

    Thyroid malignancies are the most common type of endocrine tumors. Of the various histologic subtypes, anaplastic thyroid carcinoma (ATC) represents a subset of all cases but is responsible for a significant proportion of thyroid cancer-related mortality. Indeed, ATC is regarded as one of the more aggressive and hard to treat forms of cancer. To date, there is a paucity of relevant model systems to critically evaluate how the signature genetic abnormalities detected in human ATC contribute to disease pathogenesis. Mutational activation of the BRAF protooncogene is detected in approximately 40% of papillary thyroid carcinoma (PTC) and in 25% of ATC. Moreover, in ATC, mutated BRAF is frequently found in combination with gain-of-function mutations in the p110 catalytic subunit of PI3'-Kinase (PIK3CA) or loss-of-function alterations in either the p53 (TP53) or PTEN tumor suppressors. Using mice with conditional, thyrocyte-specific expression of BRAF(V600E), we previously developed a model of PTC. However, as in humans, BRAF(V600E)-induced mouse PTC is indolent and does not lead to rapid development of end-stage disease. Here, we use mice carrying a conditional allele of PIK3CA to demonstrate that, although mutationally activated PIK3CA(H1047R) is unable to drive transformation on its own, when combined with BRAF(V600E) in thyrocytes, this leads to development of lethal ATC in mice. Combined, these data demonstrate that the BRAF(V600E) cooperates with either PIK3CA(H1074R) or with silencing of the tumor-suppressor PTEN, to promote development of anaplastic thyroid carcinoma. This genetically relevant mouse model of ATC will be an invaluable platform for preclinical testing of pathway-targeted therapies for the prevention and treatment of thyroid carcinoma. ©2014 American Association for Cancer Research.

  8. Loss-of-function CARD8 mutation causes NLRP3 inflammasome activation and Crohn's disease.

    PubMed

    Mao, Liming; Kitani, Atsushi; Similuk, Morgan; Oler, Andrew J; Albenberg, Lindsey; Kelsen, Judith; Aktay, Atiye; Quezado, Martha; Yao, Michael; Montgomery-Recht, Kim; Fuss, Ivan J; Strober, Warren

    2018-05-01

    In these studies, we evaluated the contribution of the NLRP3 inflammasome to Crohn's disease (CD) in a kindred containing individuals having a missense mutation in CARD8, a protein known to inhibit this inflammasome. Whole exome sequencing and PCR studies identified the affected individuals as having a V44I mutation in a single allele of the T60 isoform of CARD8. The serum levels of IL-1β in the affected individuals were increased compared with those in healthy controls, and their peripheral monocytes produced increased amounts of IL-1β when stimulated by NLRP3 activators. Immunoblot studies probing the basis of these findings showed that mutated T60 CARD8 failed to downregulate the NLRP3 inflammasome because it did not bind to NLRP3 and inhibit its oligomerization. In addition, these studies showed that mutated T60 CARD8 exerted a dominant-negative effect by its capacity to bind to and form oligomers with unmutated T60 or T48 CARD8 that impeded their binding to NLRP3. Finally, inflammasome activation studies revealed that intact but not mutated CARD8 prevented NLRP3 deubiquitination and serine dephosphorylation. CD due to a CARD8 mutation was not effectively treated by anti-TNF-α, but did respond to IL-1β inhibitors. Thus, patients with anti-TNF-α-resistant CD may respond to this treatment option.

  9. The Thrombopoietin Receptor: Structural Basis of Traffic and Activation by Ligand, Mutations, Agonists, and Mutated Calreticulin.

    PubMed

    Varghese, Leila N; Defour, Jean-Philippe; Pecquet, Christian; Constantinescu, Stefan N

    2017-01-01

    A well-functioning hematopoietic system requires a certain robustness and flexibility to maintain appropriate quantities of functional mature blood cells, such as red blood cells and platelets. This review focuses on the cytokine receptor that plays a significant role in thrombopoiesis: the receptor for thrombopoietin (TPO-R; also known as MPL). Here, we survey the work to date to understand how this receptor functions at a molecular level throughout its lifecycle, from traffic to the cell surface, dimerization and binding cognate cytokine via its extracellular domain, through to its subsequent activation of associated Janus kinases and initiation of downstream signaling pathways, as well as the regulation of these processes. Atomic level resolution structures of TPO-R have remained elusive. The identification of disease-causing mutations in the receptor has, however, offered some insight into structure and function relationships, as has artificial means of receptor activation, through TPO mimetics, transmembrane-targeting receptor agonists, and engineering in dimerization domains. More recently, a novel activation mechanism was identified whereby mutated forms of calreticulin form complexes with TPO-R via its extracellular N-glycosylated domain. Such complexes traffic pathologically in the cell and persistently activate JAK2, downstream signal transducers and activators of transcription (STATs), and other pathways. This pathologic TPO-R activation is associated with a large fraction of human myeloproliferative neoplasms.

  10. Functional characterization of carboxylesterase gene mutations involved in Aphis gossypii resistance to organophosphate insecticides.

    PubMed

    Gong, Y-H; Ai, G-M; Li, M; Shi, X-Y; Diao, Q-Y; Gao, X-W

    2017-12-01

    Carboxylesterases (CarEs) play an important role in detoxifying insecticides in insects. Over-expression and structural modification of CarEs have been implicated in the development of organophosphate (OP) insecticide resistance in insects. A previous study identified four nonsynonymous mutations (resulting in four amino acid residue substitutions) in the open reading frame of the carboxylesterase gene of resistant cotton aphids compared to the omethoate susceptible strain, which has possibly influenced the development of resistance to omethoate (a systemic OP insecticide). The current study further characterized the function of these mutations, both alone and in combination, in the hydrolysis of OP insecticides. The metabolism results suggest that the combination of four mutations, mainly existing in the laboratory-selected OP-resistant cotton aphid population, increased the OP hydrolase activity (approximately twofold) at the cost of detectable carboxylesterase activity. The functional studies of single or multiple mutations suggest the positive effect of H104R, A128V and T333P on the acquisition of OP hydrolase activity, especially the combination of H104R with A128V or T333P. K484R substitution decreased both the OP hydrolase activity and the CarE activity, indicating that this mutation primarily drives the negative effect on the acquisition of OP hydrolase activity amongst these four mutations in the resistant strain. The modelling and docking results are basically consistent with the metabolic results, which strongly suggest that the structural gene modification is the molecular basis for the OP resistance in this laboratory-selected cotton aphid strain. © 2017 The Royal Entomological Society.

  11. Permanent Neonatal Diabetes Caused by Dominant, Recessive, or Compound Heterozygous SUR1 Mutations with Opposite Functional Effects

    PubMed Central

    Ellard, Sian ; Flanagan, Sarah E. ; Girard, Christophe A. ; Patch, Ann-Marie ; Harries, Lorna W. ; Parrish, Andrew ; Edghill, Emma L. ; Mackay, Deborah J. G. ; Proks, Peter ; Shimomura, Kenju ; Haberland, Holger ; Carson, Dennis J. ; Shield, Julian P. H. ; Hattersley, Andrew T. ; Ashcroft, Frances M. 

    2007-01-01

    Heterozygous activating mutations in the KCNJ11 gene encoding the pore-forming Kir6.2 subunit of the pancreatic beta cell KATP channel are the most common cause of permanent neonatal diabetes (PNDM). Patients with PNDM due to a heterozygous activating mutation in the ABCC8 gene encoding the SUR1 regulatory subunit of the KATP channel have recently been reported. We studied a cohort of 59 patients with permanent diabetes who received a diagnosis before 6 mo of age and who did not have a KCNJ11 mutation. ABCC8 gene mutations were identified in 16 of 59 patients and included 8 patients with heterozygous de novo mutations. A recessive mode of inheritance was observed in eight patients with homozygous, mosaic, or compound heterozygous mutations. Functional studies of selected mutations showed a reduced response to ATP consistent with an activating mutation that results in reduced insulin secretion. A novel mutational mechanism was observed in which a heterozygous activating mutation resulted in PNDM only when a second, loss-of-function mutation was also present. PMID:17668386

  12. Mutation that blocks ATP binding creates a pseudokinase stabilizing the scaffolding function of kinase suppressor of Ras, CRAF and BRAF.

    PubMed

    Hu, Jiancheng; Yu, Haiyang; Kornev, Alexandr P; Zhao, Jianping; Filbert, Erin L; Taylor, Susan S; Shaw, Andrey S

    2011-04-12

    Because mutations in RAS and BRAF represent the most common mutations found in human tumors, identification of inhibitors has been a major goal. Surprisingly, new oncogenic BRAF specific inhibitors inhibit cells transformed with mutated BRAF but paradoxically stimulate the growth of cells transformed with RAS. Here, we show that the mechanism for activation is via drug-induced dimer formation between CRAF and kinase suppressor of Ras (KSR)1. To understand the function of KSR1, we generated a KSR1 mutant that cannot bind ATP but stabilizes the closed, active conformation of KSR1. Molecular modeling suggested that the mutant stabilizes the two hydrophobic spines critical for the closed active conformation. We, therefore, could use the mutant to discriminate between the scaffold versus kinase functions of KSR1. The KSR1 mutant bound constitutively to RAF and mitogen-activated protein kinase kinase (MEK) but could not reconstitute activity suggesting that the catalytic activity of KSR1 is required for its function. Analogous mutations in BRAF and CRAF allowed us to test the generality of the model. The mutation induced changes consistent with the active, closed conformation of both kinases and confirmed that BRAF functions distinctly from CRAF in the MAP kinase pathway. Not only does this work suggest that KSR1 may function as a kinase, we anticipate that the mutation that we generated may be broadly applicable to stabilize the closed conformation of other kinases many of which may also form dimers.

  13. Polycythemia and paraganglioma with a novel somatic HIF2A mutation in a male.

    PubMed

    Toyoda, Hidemi; Hirayama, Jyunya; Sugimoto, Yuka; Uchida, Keiichi; Ohishi, Kohshi; Hirayama, Masahiro; Komada, Yoshihiro

    2014-06-01

    Recently, a new syndrome of paraganglioma, somatostatinoma, and polycythemia has been discovered (known as Pacak-Zhuang syndrome). This new syndrome, with somatic HIF2A gain-of-function mutations, has never been reported in male patients. We describe a male patient with Pacak-Zhuang syndrome who carries a newly discovered HIF2A mutation. Congenital polycythemias have diverse etiologies, including germline mutations in the oxygen-sensing pathway. These include von Hippel-Lindau (Chuvash polycythemia), prolyl hydroxylase domain-containing protein-2, and hypoxia-inducible factor-2α (HIF-2α). Somatic gain-of-function mutations in the gene encoding HIF-2α were reported in patients with paraganglioma and polycythemia and have been found exclusively in female patients. Through sequencing of the HIF2A using DNA from paraganglioma in 15-year-old male patient, we identified a novel mutation of HIF2A: a heterozygous C to A substitution at base 1589 in exon 12 of HIF2A. The mutation was not found in germline DNA from leukocytes. The C1589A mutations resulted in substitution of alanine 530 in the HIF-2α protein with glutamic acid. This mutation is undoubtedly associated with increased HIF-2α activity and increased protein half-life, because it affects the vicinity of the prolyl hydroxylase target residue, proline 531. To our knowledge, this is the first report describing Pacak-Zhuang syndrome with somatic gain-of-function mutation in HIF2A in a male patient. Congenital polycythemia of unknown origin should raise suspicion for the novel disorder Pacak-Zhuang syndrome, even in male patients. Copyright © 2014 by the American Academy of Pediatrics.

  14. Long range dynamic effects of point-mutations trap a response regulator in an active conformation

    PubMed Central

    Bobay, Benjamin G.; Thompson, Richele J.; Hoch, James A.; Cavanagh, John

    2010-01-01

    When a point-mutation in a protein elicits a functional change, it is most common to assign this change to local structural perturbations. Here we show that point-mutations, distant from an essential highly dynamic kinase recognition loop in the response regulator Spo0F, lock this loop in an active conformation. This ‘conformational trapping’ results in functionally hyperactive Spo0F. Consequently, point-mutations are seen to affect functionally critical motions both close to and far from the mutational site. PMID:20828564

  15. Functional Characterization of Adaptive Mutations during the West African Ebola Virus Outbreak.

    PubMed

    Dietzel, Erik; Schudt, Gordian; Krähling, Verena; Matrosovich, Mikhail; Becker, Stephan

    2017-01-15

    The Ebola virus (EBOV) outbreak in West Africa started in December 2013, claimed more than 11,000 lives, threatened to destabilize a whole region, and showed how easily health crises can turn into humanitarian disasters. EBOV genomic sequences of the West African outbreak revealed nonsynonymous mutations, which induced considerable public attention, but their role in virus spread and disease remains obscure. In this study, we investigated the functional significance of three nonsynonymous mutations that emerged early during the West African EBOV outbreak. Almost 90% of more than 1,000 EBOV genomes sequenced during the outbreak carried the signature of three mutations: a D759G substitution in the active center of the L polymerase, an A82V substitution in the receptor binding domain of surface glycoprotein GP, and an R111C substitution in the self-assembly domain of RNA-encapsidating nucleoprotein NP. Using a newly developed virus-like particle system and reverse genetics, we found that the mutations have an impact on the functions of the respective viral proteins and on the growth of recombinant EBOVs. The mutation in L increased viral transcription and replication, whereas the mutation in NP decreased viral transcription and replication. The mutation in the receptor binding domain of the glycoprotein GP improved the efficiency of GP-mediated viral entry into target cells. Recombinant EBOVs with combinations of the three mutations showed a growth advantage over the prototype isolate Makona C7 lacking the mutations. This study showed that virus variants with improved fitness emerged early during the West African EBOV outbreak. The dimension of the Ebola virus outbreak in West Africa was unprecedented. Amino acid substitutions in the viral L polymerase, surface glycoprotein GP, and nucleocapsid protein NP emerged, were fixed early in the outbreak, and were found in almost 90% of the sequences. Here we showed that these mutations affected the functional activity of

  16. Activating cysteinyl leukotriene receptor 2 (CYSLTR2) mutations in blue nevi

    PubMed Central

    Möller, Inga; Murali, Rajmohan; Müller, Hansgeorg; Wiesner, Thomas; Jackett, Louise A; Scholz, Simone L; Cosgarea, Ioana; van de Nes, Johannes AP; Sucker, Antje; Hillen, Uwe; Schilling, Bastian; Paschen, Annette; Kutzner, Heinz; Rütten, Arno; Böckers, Martin; Scolyer, Richard A; Schadendorf, Dirk; Griewank, Klaus G

    2017-01-01

    Blue nevi are common melanocytic tumors arising in the dermal layer of the skin. Similar to uveal melanomas, blue nevi frequently harbor GNAQ and GNA11 mutations. Recently, recurrent CYSLTR2 and PLCB4 mutations were identified in uveal melanomas not harboring GNAQ or GNA11 mutations. All four genes (GNAQ, GNA11, CYSLTR2, and PLCB4) code for proteins involved in the same signaling pathway, which is activated by mutations in these genes. Given the related functional consequences of these mutations and the known genetic similarities between uveal melanoma and blue nevi, we analyzed a cohort of blue nevi to investigate whether CYSLTR2 and PLCB4 mutations occur in tumors lacking GNAQ or GNA11 mutations (as in uveal melanoma). A targeted next-generation sequencing assay covering known activating mutations in GNAQ, GNA11, CYSLTR2, PLCB4, KIT, NRAS, and BRAF was applied to 103 blue nevi. As previously reported, most blue nevi were found to harbor activating mutations in GNAQ (59%, n = 61), followed by less frequent mutations in GNA11 (16%, n = 17). Additionally, one BRAF (1%) and three NRAS (3%) mutations were detected. In three tumors (3%) harboring none of the aforementioned gene alterations, CYSLTR2 mutations were identified. All three CYSLTR2 mutations were the same c.386T > A, L129Q mutation previously identified in uveal melanoma that has been shown to lead to increased receptor activation and signaling. In summary, our study identifies CYSLTR2 L129Q alterations as a previously unrecognized activating mutation in blue nevi, occuring in a mutually exclusive fashion with known GNAQ and GNA11 mutations. Similar to GNAQ and GNA11 mutations, CYSLTR2 mutations, when present, are likely defining pathogenetic events in blue nevi. PMID:27934878

  17. Activating cysteinyl leukotriene receptor 2 (CYSLTR2) mutations in blue nevi.

    PubMed

    Möller, Inga; Murali, Rajmohan; Müller, Hansgeorg; Wiesner, Thomas; Jackett, Louise A; Scholz, Simone L; Cosgarea, Ioana; van de Nes, Johannes Ap; Sucker, Antje; Hillen, Uwe; Schilling, Bastian; Paschen, Annette; Kutzner, Heinz; Rütten, Arno; Böckers, Martin; Scolyer, Richard A; Schadendorf, Dirk; Griewank, Klaus G

    2017-03-01

    Blue nevi are common melanocytic tumors arising in the dermal layer of the skin. Similar to uveal melanomas, blue nevi frequently harbor GNAQ and GNA11 mutations. Recently, recurrent CYSLTR2 and PLCB4 mutations were identified in uveal melanomas not harboring GNAQ or GNA11 mutations. All four genes (GNAQ, GNA11, CYSLTR2, and PLCB4) code for proteins involved in the same signaling pathway, which is activated by mutations in these genes. Given the related functional consequences of these mutations and the known genetic similarities between uveal melanoma and blue nevi, we analyzed a cohort of blue nevi to investigate whether CYSLTR2 and PLCB4 mutations occur in tumors lacking GNAQ or GNA11 mutations (as in uveal melanoma). A targeted next-generation sequencing assay covering known activating mutations in GNAQ, GNA11, CYSLTR2, PLCB4, KIT, NRAS, and BRAF was applied to 103 blue nevi. As previously reported, most blue nevi were found to harbor activating mutations in GNAQ (59%, n=61), followed by less frequent mutations in GNA11 (16%, n=17). Additionally, one BRAF (1%) and three NRAS (3%) mutations were detected. In three tumors (3%) harboring none of the aforementioned gene alterations, CYSLTR2 mutations were identified. All three CYSLTR2 mutations were the same c.386T>A, L129Q mutation previously identified in uveal melanoma that has been shown to lead to increased receptor activation and signaling. In summary, our study identifies CYSLTR2 L129Q alterations as a previously unrecognized activating mutation in blue nevi, occuring in a mutually exclusive fashion with known GNAQ and GNA11 mutations. Similar to GNAQ and GNA11 mutations, CYSLTR2 mutations, when present, are likely defining pathogenetic events in blue nevi.

  18. Gain-of-function Mutations Cluster in Distinct Regions Associated with the Signaling Pathway in the PAS Domain of the Aerotaxis Receptor, Aer

    PubMed Central

    Campbell, Asharie J.; Watts, Kylie J.; Johnson, Mark S.; Taylor, Barry L.

    2010-01-01

    Summary The Aer receptor monitors internal energy (redox) levels in Escherichia coli with an FAD-containing PAS domain. Here, we randomly mutagenized the region encoding residues 14 to 119 of the PAS domain and found 72 aerotaxis-defective mutants, 24 of which were gain-of-function, signal-on mutants. The mutations were mapped onto an Aer homology model based on the structure of the PAS-FAD domain in NifL from Azotobacter vinlandii. Signal-on lesions clustered in the FAD binding pocket, the β-scaffolding and in the N-cap loop. We suggest that the signal-on lesions mimic the “signal-on” state of the PAS domain, and therefore may be markers for the signal-in and signal-out regions of this domain. We propose that the reduction of FAD rearranges the FAD binding pocket in a way that repositions the β-scaffolding and the N-cap loop. The resulting conformational changes are likely to be conveyed directly to the HAMP domain, and on to the kinase control module. In support of this hypothesis, we demonstrated disulfide band formation between cysteines substituted at residues N98C or I114C in the PAS β-scaffold and residue Q248C in the HAMP AS-2 helix. PMID:20545849

  19. Formation of Hirano Bodies Induced by Expression of an Actin Cross-Linking Protein with a Gain-of-Function Mutation

    PubMed Central

    Maselli, Andrew; Furukawa, Ruth; Thomson, Susanne A. M.; Davis, Richard C.; Fechheimer, Marcus

    2003-01-01

    Hirano bodies are paracrystalline actin filament-containing structures reported to be associated with a variety of neurodegenerative diseases. However, the biological function of Hirano bodies remains poorly understood, since nearly all prior studies of these structures were done with postmortem samples of tissue. In the present study, we generated a full-length form of a Dictyostelium 34-kDa actin cross-linking protein with point mutations in the first putative EF hand, termed 34-kDa ΔEF1. The 34-kDa ΔEF1 protein binds calcium normally but has activated actin binding that is unregulated by calcium. The expression of the 34-kDa ΔEF1 protein in Dictyostelium induces the formation of Hirano bodies, as assessed by both fluorescence microscopy and transmission electron microscopy. Dictyostelium cells bearing Hirano bodies grow normally, indicating that Hirano bodies are not associated with cell death and are not deleterious to cell growth. Moreover, the expression of the 34-kDa ΔEF1 protein rescues the phenotypes of cells lacking the 34-kDa protein and cells lacking both the 34-kDa protein and α-actinin. Finally, the expression of the 34-kDa ΔEF1 protein also initiates the formation of Hirano bodies in cultured mouse fibroblasts. These results show that the failure to regulate the activity and/or affinity of an actin cross-linking protein can provide a signal for the formation of Hirano bodies. More generally, the formation of Hirano bodies is a cellular response to or a consequence of aberrant function of the actin cytoskeleton. PMID:12912897

  20. Interspecies Variation in the Functional Consequences of Mutation of Cytochrome c

    PubMed Central

    Josephs, Tracy M.; Hibbs, Moira E.; Ong, Lily; Morison, Ian M.; Ledgerwood, Elizabeth C.

    2015-01-01

    The naturally occurring human cytochrome c variant (G41S) is associated with a mild autosomal dominant thrombocytopenia (Thrombocytopenia Cargeeg) caused by dysregulation of platelet production. The molecular basis of the platelet production defect is unknown. Despite high conservation of cytochrome c between human and mouse (91.4% identity), introducing the G41S mutation into mouse cytochrome c in a knockin mouse (Cycs G41S/G41S) did not recapitulate the low platelet phenotype of Thrombocytopenia Cargeeg. While investigating the cause of this disparity we found a lack of conservation of the functional impact of cytochrome c mutations on caspase activation across species. Mutation of cytochrome c at residue 41 has distinct effects on the ability of cytochrome c to activate caspases depending on the species of both the cytochrome c and its binding partner Apaf-1. In contrast to our previous results showing the G41S mutation increases the ability of human cytochrome c to activate caspases, here we find this activity is decreased in mouse G41S cytochrome c. Additionally unlike wildtype human cytochrome c, G41S cytochrome c is unable to activate caspases in Xenopus embryo extracts. Taken together these results demonstrate a previously unreported species-specific component to the interaction of cytochrome c with Apaf-1. This suggests that the electrostatic interaction between cytochrome c and Apaf-1 is not the sole determinant of binding, with additional factors controlling binding specificity and affinity. These results have important implications for studies of the effects of cytochrome c mutations on the intrinsic apoptosis pathway. PMID:26086723

  1. Gain-of-Function Mutations in ZIC1 Are Associated with Coronal Craniosynostosis and Learning Disability

    PubMed Central

    Twigg, Stephen R.F.; Forecki, Jennifer; Goos, Jacqueline A.C.; Richardson, Ivy C.A.; Hoogeboom, A. Jeannette M.; van den Ouweland, Ans M.W.; Swagemakers, Sigrid M.A.; Lequin, Maarten H.; Van Antwerp, Daniel; McGowan, Simon J.; Westbury, Isabelle; Miller, Kerry A.; Wall, Steven A.; van der Spek, Peter J.; Mathijssen, Irene M.J.; Pauws, Erwin; Merzdorf, Christa S.; Wilkie, Andrew O.M.

    2015-01-01

    Human ZIC1 (zinc finger protein of cerebellum 1), one of five homologs of the Drosophila pair-rule gene odd-paired, encodes a transcription factor previously implicated in vertebrate brain development. Heterozygous deletions of ZIC1 and its nearby paralog ZIC4 on chromosome 3q25.1 are associated with Dandy-Walker malformation of the cerebellum, and loss of the orthologous Zic1 gene in the mouse causes cerebellar hypoplasia and vertebral defects. We describe individuals from five families with heterozygous mutations located in the final (third) exon of ZIC1 (encoding four nonsense and one missense change) who have a distinct phenotype in which severe craniosynostosis, specifically involving the coronal sutures, and variable learning disability are the most characteristic features. The location of the nonsense mutations predicts escape of mutant ZIC1 transcripts from nonsense-mediated decay, which was confirmed in a cell line from an affected individual. Both nonsense and missense mutations are associated with altered and/or enhanced expression of a target gene, engrailed-2, in a Xenopus embryo assay. Analysis of mouse embryos revealed a localized domain of Zic1 expression at embryonic days 11.5–12.5 in a region overlapping the supraorbital regulatory center, which patterns the coronal suture. We conclude that the human mutations uncover a previously unsuspected role for Zic1 in early cranial suture development, potentially by regulating engrailed 1, which was previously shown to be critical for positioning of the murine coronal suture. The diagnosis of a ZIC1 mutation has significant implications for prognosis and we recommend genetic testing when common causes of coronal synostosis have been excluded. PMID:26340333

  2. Functional Analysis of Somatic Mutations in Lung Cancer

    DTIC Science & Technology

    2015-10-01

    antibody cetuximab [11]. Finally, we have developed novel single cell sequencing approaches to uncover EGFR mutational variants in glioblastoma and their...assessed which mutations are epistatic to EGFR or capable of initiating xenograft tumor formation in vivo. Using eVIP, we identified 69% of mutations...analyzed as impactful whereas 31% appear functionally neutral. A subset of the impactful mutations induce xenograft tumor formation in mice and/or

  3. Gaucher disease: Pseudoreversion of a disease mutation`s effects--implications for structure/function and genotype/phenotype correlations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ponce, E.; Mear, J; Grabowski, G.A.

    1994-09-01

    Numerous mutations ({approximately}45) of the acid {beta}-glucosidase gene have been identified in patients with Gaucher disease. Many of these have been characterized by partial sequencing of cDNAs derived by RT-PCR or PCR of genomic DNA. In addition, genotype/phenotype correlations have been based on screening for known mutations. Thus, only a part of the gene is characterized in any population of affected patients. Several Gaucher disease alleles contain multiple, authentic point mutations that raises concern about conclusions based on only partial genetic characterization. Several wild-type cDNAs for acid {beta}-glucosidase have been sequenced. One contained a cloning artifact encoding R495H. We expressedmore » this cDNA and showed that the R495H enzyme had normal kinetic and stability properties. A disease-associated allele encoding R496H has been found by several groups. The close association and similarities of these two substitutions led us to question the disease casuality of the R496H allele. To evaluate this, we created and/or expressed cDNAs encoding R495, R496 (wild-type), (R495H, R496), (R495, R496H) and (R495H, R496H). The (wild-type) and (R495H, R496) enzymes had indistinguishable properties whereas the (R495, R496H) enzyme was essentially inactive. The introduction of both mutations (R495H, R496H) produced an enzyme whose activity was 25 to 50% of the wild-type. These results indicate that a pseudoreversion to a functional enzyme can occur by introducing a functionally neutral mutation together with a severe mutation. These results have major implications to structure/function and genotype/phenotype correlations in this disease.« less

  4. Identification and analysis of mutational hotspots in oncogenes and tumour suppressors.

    PubMed

    Baeissa, Hanadi; Benstead-Hume, Graeme; Richardson, Christopher J; Pearl, Frances M G

    2017-03-28

    The key to interpreting the contribution of a disease-associated mutation in the development and progression of cancer is an understanding of the consequences of that mutation both on the function of the affected protein and on the pathways in which that protein is involved. Protein domains encapsulate function and position-specific domain based analysis of mutations have been shown to help elucidate their phenotypes. In this paper we examine the domain biases in oncogenes and tumour suppressors, and find that their domain compositions substantially differ. Using data from over 30 different cancers from whole-exome sequencing cancer genomic projects we mapped over one million mutations to their respective Pfam domains to identify which domains are enriched in any of three different classes of mutation; missense, indels or truncations. Next, we identified the mutational hotspots within domain families by mapping small mutations to equivalent positions in multiple sequence alignments of protein domainsWe find that gain of function mutations from oncogenes and loss of function mutations from tumour suppressors are normally found in different domain families and when observed in the same domain families, hotspot mutations are located at different positions within the multiple sequence alignment of the domain. By considering hotspots in tumour suppressors and oncogenes independently, we find that there are different specific positions within domain families that are particularly suited to accommodate either a loss or a gain of function mutation. The position is also dependent on the class of mutation.We find rare mutations co-located with well-known functional mutation hotspots, in members of homologous domain superfamilies, and we detect novel mutation hotspots in domain families previously unconnected with cancer. The results of this analysis can be accessed through the MOKCa database (http://strubiol.icr.ac.uk/extra/MOKCa).

  5. Kin-Driver: a database of driver mutations in protein kinases.

    PubMed

    Simonetti, Franco L; Tornador, Cristian; Nabau-Moretó, Nuria; Molina-Vila, Miguel A; Marino-Buslje, Cristina

    2014-01-01

    Somatic mutations in protein kinases (PKs) are frequent driver events in many human tumors, while germ-line mutations are associated with hereditary diseases. Here we present Kin-driver, the first database that compiles driver mutations in PKs with experimental evidence demonstrating their functional role. Kin-driver is a manual expert-curated database that pays special attention to activating mutations (AMs) and can serve as a validation set to develop new generation tools focused on the prediction of gain-of-function driver mutations. It also offers an easy and intuitive environment to facilitate the visualization and analysis of mutations in PKs. Because all mutations are mapped onto a multiple sequence alignment, analogue positions between kinases can be identified and tentative new mutations can be proposed for studying by transferring annotation. Finally, our database can also be of use to clinical and translational laboratories, helping them to identify uncommon AMs that can correlate with response to new antitumor drugs. The website was developed using PHP and JavaScript, which are supported by all major browsers; the database was built using MySQL server. Kin-driver is available at: http://kin-driver.leloir.org.ar/ © The Author(s) 2014. Published by Oxford University Press.

  6. KATP Channel Mutations and Neonatal Diabetes.

    PubMed

    Shimomura, Kenju; Maejima, Yuko

    2017-09-15

    Since the discovery of the K ATP channel in 1983, numerous studies have revealed its physiological functions. The K ATP channel is expressed in various organs, including the pancreas, brain and skeletal muscles. It functions as a "metabolic sensor" that converts the metabolic status to electrical activity. In pancreatic beta-cells, the K ATP channel regulates the secretion of insulin by sensing a change in the blood glucose level and thus maintains glucose homeostasis. In 2004, heterozygous gain-of-function mutations in the KCNJ11 gene, which encodes the Kir6.2 subunit of the K ATP channel, were found to cause neonatal diabetes. In some mutations, diabetes is accompanied by severe neurological symptoms [developmental delay, epilepsy, neonatal diabetes (DEND) syndrome]. This review focuses on mutations of Kir6.2, the pore-forming subunit and sulfonylurea receptor (SUR) 1, the regulatory subunit of the K ATP channel, which cause neonatal diabetes/DEND syndrome and also discusses the findings of the pathological mechanisms that are associated with neonatal diabetes, and its neurological features.

  7. Gain-of-Function Mutations in ZIC1 Are Associated with Coronal Craniosynostosis and Learning Disability.

    PubMed

    Twigg, Stephen R F; Forecki, Jennifer; Goos, Jacqueline A C; Richardson, Ivy C A; Hoogeboom, A Jeannette M; van den Ouweland, Ans M W; Swagemakers, Sigrid M A; Lequin, Maarten H; Van Antwerp, Daniel; McGowan, Simon J; Westbury, Isabelle; Miller, Kerry A; Wall, Steven A; van der Spek, Peter J; Mathijssen, Irene M J; Pauws, Erwin; Merzdorf, Christa S; Wilkie, Andrew O M

    2015-09-03

    Human ZIC1 (zinc finger protein of cerebellum 1), one of five homologs of the Drosophila pair-rule gene odd-paired, encodes a transcription factor previously implicated in vertebrate brain development. Heterozygous deletions of ZIC1 and its nearby paralog ZIC4 on chromosome 3q25.1 are associated with Dandy-Walker malformation of the cerebellum, and loss of the orthologous Zic1 gene in the mouse causes cerebellar hypoplasia and vertebral defects. We describe individuals from five families with heterozygous mutations located in the final (third) exon of ZIC1 (encoding four nonsense and one missense change) who have a distinct phenotype in which severe craniosynostosis, specifically involving the coronal sutures, and variable learning disability are the most characteristic features. The location of the nonsense mutations predicts escape of mutant ZIC1 transcripts from nonsense-mediated decay, which was confirmed in a cell line from an affected individual. Both nonsense and missense mutations are associated with altered and/or enhanced expression of a target gene, engrailed-2, in a Xenopus embryo assay. Analysis of mouse embryos revealed a localized domain of Zic1 expression at embryonic days 11.5-12.5 in a region overlapping the supraorbital regulatory center, which patterns the coronal suture. We conclude that the human mutations uncover a previously unsuspected role for Zic1 in early cranial suture development, potentially by regulating engrailed 1, which was previously shown to be critical for positioning of the murine coronal suture. The diagnosis of a ZIC1 mutation has significant implications for prognosis and we recommend genetic testing when common causes of coronal synostosis have been excluded. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  8. Familial Alzheimer disease-linked mutations specifically disrupt Ca2+ leak function of presenilin 1.

    PubMed

    Nelson, Omar; Tu, Huiping; Lei, Tianhua; Bentahir, Mostafa; de Strooper, Bart; Bezprozvanny, Ilya

    2007-05-01

    Mutations in presenilins are responsible for approximately 40% of all early-onset familial Alzheimer disease (FAD) cases in which a genetic cause has been identified. In addition, a number of mutations in presenilin-1 (PS1) have been suggested to be associated with the occurrence of frontal temporal dementia (FTD). Presenilins are highly conserved transmembrane proteins that support cleavage of the amyloid precursor protein by gamma-secretase. Recently, we discovered that presenilins also function as passive ER Ca(2+) leak channels. Here we used planar lipid bilayer reconstitution assays and Ca(2+) imaging experiments with presenilin-null mouse embryonic fibroblasts to analyze ER Ca(2+) leak function of 6 FAD-linked PS1 mutants and 3 known FTD-associated PS1 mutants. We discovered that L166P, A246E, E273A, G384A, and P436Q FAD mutations in PS1 abolished ER Ca(2+) leak function of PS1. In contrast, A79V FAD mutation or FTD-associated mutations (L113P, G183V, and Rins352) did not appear to affect ER Ca(2+) leak function of PS1 in our experiments. We validated our findings in Ca(2+) imaging experiments with primary fibroblasts obtained from an FAD patient possessing mutant PS1-A246E. Our results indicate that many FAD mutations in presenilins are loss-of-function mutations affecting ER Ca(2+) leak activity. In contrast, none of the FTD-associated mutations affected ER Ca(2+) leak function of PS1, indicating that the observed effects are disease specific. Our observations are consistent with the potential role of disturbed Ca(2+) homeostasis in Alzheimer disease pathogenesis.

  9. Activating HER2 mutations in HER2 gene amplification negative breast cancer

    PubMed Central

    Bose, Ron; Kavuri, Shyam M.; Searleman, Adam C.; Shen, Wei; Shen, Dong; Koboldt, Daniel C.; Monsey, John; Goel, Nicholas; Aronson, Adam B.; Li, Shunqiang; Ma, Cynthia X.; Ding, Li; Mardis, Elaine R.; Ellis, Matthew J.

    2012-01-01

    Data from eight breast cancer genome sequencing projects identified 25 patients with HER2 somatic mutations in cancers lacking HER2 gene amplification. To determine the phenotype of these mutations, we functionally characterized thirteen HER2 mutations using in vitro kinase assays, protein structure analysis, cell culture and xenograft experiments. Seven of these mutations are activating mutations, including G309A, D769H, D769Y, V777L, P780ins, V842I, and R896C. HER2 in-frame deletion 755-759, which is homologous to EGFR exon 19 in-frame deletions, had a neomorphic phenotype with increased phosphorylation of EGFR or HER3. L755S produced lapatinib resistance, but was not an activating mutation in our experimental systems. All of these mutations were sensitive to the irreversible kinase inhibitor, neratinib. These findings demonstrate that HER2 somatic mutation is an alternative mechanism to activate HER2 in breast cancer and they validate HER2 somatic mutations as drug targets for breast cancer treatment. PMID:23220880

  10. Functional analysis of mutations in a severe congenital neutropenia syndrome caused by glucose-6-phosphatase-β deficiency

    PubMed Central

    Lin, Su Ru; Pan, Chi-Jiunn; Mansfield, Brian C.; Chou, Janice Yang

    2016-01-01

    Glucose-6-phosphatase-β (G6Pase-β or G6PC3) deficiency is characterized by neutropenia and dysfunction in both neutrophils and macrophages. G6Pase-β is an enzyme embedded in the endoplasmic reticulum membrane that catalyzes the hydrolysis of glucose-6-phosphate (G6P) to glucose and phosphate. To date, 33 separate G6PC3 mutations have been identified in G6Pase-β-deficient patients but only the p.R253H and p.G260R missense mutations have been characterized functionally for pathogenicity. Here we functionally characterize 16 of the 19 known missense mutations using a sensitive assay, based on a recombinant adenoviral vector-mediated expression system, to demonstrate pathogenicity. Fourteen missense mutations completely abolish G6Pase-β enzymatic activity while the p.S139I and p.R189Q mutations retain 49% and 45%, respectively of wild type G6Pase-β activity. A database of residual enzymatic activity retained by the G6Pase-β mutations will serve as a reference for evaluating genotype-phenotype relationships. PMID:25492228

  11. A gain-of-function mutation in the M-domain of cardiac myosin-binding protein-C increases binding to actin.

    PubMed

    Bezold, Kristina L; Shaffer, Justin F; Khosa, Jaskiran K; Hoye, Elaine R; Harris, Samantha P

    2013-07-26

    The M-domain is the major regulatory subunit of cardiac myosin-binding protein-C (cMyBP-C) that modulates actin and myosin interactions to influence muscle contraction. However, the precise mechanism(s) and the specific residues involved in mediating the functional effects of the M-domain are not fully understood. Positively charged residues adjacent to phosphorylation sites in the M-domain are thought to be critical for effects of cMyBP-C on cross-bridge interactions by mediating electrostatic binding with myosin S2 and/or actin. However, recent structural studies revealed that highly conserved sequences downstream of the phosphorylation sites form a compact tri-helix bundle. Here we used site-directed mutagenesis to probe the functional significance of charged residues adjacent to the phosphorylation sites and conserved residues within the tri-helix bundle. Results confirm that charged residues adjacent to phosphorylation sites and residues within the tri-helix bundle are important for mediating effects of the M-domain on contraction. In addition, four missense variants within the tri-helix bundle that are associated with human hypertrophic cardiomyopathy caused either loss-of-function or gain-of-function effects on force. Importantly, the effects of the gain-of-function variant, L348P, increased the affinity of the M-domain for actin. Together, results demonstrate that functional effects of the M-domain are not due solely to interactions with charged residues near phosphorylatable serines and provide the first demonstration that the tri-helix bundle contributes to the functional effects of the M-domain, most likely by binding to actin.

  12. Thermoregulation of water foraging honeybees--balancing of endothermic activity with radiative heat gain and functional requirements.

    PubMed

    Kovac, Helmut; Stabentheiner, Anton; Schmaranzer, Sigurd

    2010-12-01

    Foraging honeybees are subjected to considerable variations of microclimatic conditions challenging their thermoregulatory ability. Solar heat is a gain in the cold but may be a burden in the heat. We investigated the balancing of endothermic activity with radiative heat gain and physiological functions of water foraging Apis mellifera carnica honeybees in the whole range of ambient temperatures (T(a)) and solar radiation they are likely to be exposed in their natural environment in Middle Europe. The mean thorax temperature (T(th)) during foraging stays was regulated at a constantly high level (37.0-38.5 °C) in a broad range of T(a) (3-30 °C). At warmer conditions (T(a)=30-39 °C) T(th) increased to a maximal level of 45.3 °C. The endothermic temperature excess (difference of T(body)-T(a) of living and dead bees) was used to assess the endogenously generated temperature elevation as a correlate of energy turnover. Up to a T(a) of ∼30 °C bees used solar heat gain for a double purpose: to reduce energetic expenditure and to increase T(th) by about 1-3 °C to improve force production of flight muscles. At higher T(a) they exhibited cooling efforts to get rid of excess heat. A high T(th) also allowed regulation of the head temperature high enough to guarantee proper function of the bees' suction pump even at low T(a). This shortened the foraging stays and this way reduced energetic costs. With decreasing T(a) bees also reduced arrival body weight and crop loading to do both minimize costs and optimize flight performance. Copyright © 2010 Elsevier Ltd. All rights reserved.

  13. [Pain and analgesia : Mutations of voltage-gated sodium channels].

    PubMed

    Eberhardt, M J; Leffler, A

    2017-02-01

    Voltage-gated sodium channels (Navs) are crucial for the generation and propagation of action potentials in all excitable cells, and therefore for the function of sensory neurons as well. Preclinical research over the past 20 years identified three Nav-isoforms in sensory neurons, namely Nav1.7, Nav1.8 and Nav1.9. A specific role for the function of nociceptive neurons was postulated for each. Whereas no selective sodium channel inhibitors have been established in the clinic so far, the relevance of all three isoforms regarding the pain sensitivity in humans is currently undergoing a remarkable verification through the translation of preclinical data into clinically manifest pictures. For the last ten years, Nav1.7 has been the main focus of clinical interest, as a large number of hereditary mutants were identified. The so-called "gain-of-function" mutations of Nav1.7 cause the pain syndromes hereditary erythromelalgia and paroxysmal extreme pain disorder. In addition, several Nav1.7 mutants were shown to be associated with small-fiber neuropathies. On the contrary, "loss-of-function" Nav1.7 mutants lead to a congenital insensitivity to pain. Recently, several gain-of-function mutations in Nav1.8 and Nav1.9 have been identified in patients suffering from painful peripheral neuropathies. However, another gain-of-function Nav1.9 mutation is associated with congenital insensitivity to pain. This review offers an overview of published work on painful Nav mutations with clinical relevance, and proposes possible consequences for the therapy of different pain symptoms resulting from these findings.

  14. Functional properties of LRRK2 mutations in Taiwanese Parkinson disease.

    PubMed

    Chang, Kuo-Hsuan; Chen, Chiung-Mei; Lin, Chih-Hsin; Chang, Wen-Teng; Jiang, Pei-Ru; Hsiao, Ya-Chin; Wu, Yih-Ru; Lee-Chen, Guey-Jen

    2017-03-01

    Leucine-rich repeat kinase 2 (LRRK2) is a large protein encoding multiple functional domains. Mutations within different LRRK2 domains have been considered to be involved in the development of Parkinson disease by different mechanisms. Our previous study found three LRRK2 mutations-p.R767H, p.S885N, and p.R1441H-in Taiwanese patients with Parkinson disease. We evaluated the functional properties of LRRK2 p.R767H, p.S885N, and p.R1441H mutations by overexpressing them in human embryonic kidney 293 and neuroblastoma SK-N-SH cells. The common p.G2019S mutation in the kinase domain was included for comparison. In 293 cells, overexpressed p.R1441H-but not p.R767H, p.S885N, or p.G2019-increased GTP binding affinity to prolong the active state. Overexpressed p.R1441H and p.G2019S generated inclusions in 293 cells. In SK-N-SH cells, the α-synuclein was coexpressed with wild type as well as mutated p.R767H, p.S885N, p.R1441H, and p.G2019 LRRK2 proteins. Part of the perinuclear inclusions formed by p.R1441H and p.G2019S were colocalized with α-synuclein. Additionally, p.S885N and p.R1441H mutations caused reduced interaction between LRRK2 and ARHGEF7, a putative guanine nucleotide exchange factor for LRRK2, whereas this interaction was well preserved in p.R767H and p.G2019S mutations. Our study suggests that p.R1441H protein facilitates the formation of intracellular inclusions, compromises GTP hydrolysis by increasing its affinity for GTP, and reduces its interaction with ARHGEF7. Copyright © 2016. Published by Elsevier B.V.

  15. Activating HER2 mutations in HER2 gene amplification negative breast cancer.

    PubMed

    Bose, Ron; Kavuri, Shyam M; Searleman, Adam C; Shen, Wei; Shen, Dong; Koboldt, Daniel C; Monsey, John; Goel, Nicholas; Aronson, Adam B; Li, Shunqiang; Ma, Cynthia X; Ding, Li; Mardis, Elaine R; Ellis, Matthew J

    2013-02-01

    Data from 8 breast cancer genome-sequencing projects identified 25 patients with HER2 somatic mutations in cancers lacking HER2 gene amplification. To determine the phenotype of these mutations, we functionally characterized 13 HER2 mutations using in vitro kinase assays, protein structure analysis, cell culture, and xenograft experiments. Seven of these mutations are activating mutations, including G309A, D769H, D769Y, V777L, P780ins, V842I, and R896C. HER2 in-frame deletion 755-759, which is homologous to EGF receptor (EGFR) exon 19 in-frame deletions, had a neomorphic phenotype with increased phosphorylation of EGFR or HER3. L755S produced lapatinib resistance, but was not an activating mutation in our experimental systems. All of these mutations were sensitive to the irreversible kinase inhibitor, neratinib. These findings show that HER2 somatic mutation is an alternative mechanism to activate HER2 in breast cancer and they validate HER2 somatic mutations as drug targets for breast cancer treatment. We show that the majority of HER2 somatic mutations in breast cancer patients are activating mutations that likely drive tumorigenesis. Several patients had mutations that are resistant to the reversible HER2 inhibitor lapatinib, but are sensitive to the irreversible HER2 inhibitor, neratinib. Our results suggest that patients with HER2 mutation–positive breast cancers could benefit from existing HER2-targeted drugs.

  16. Suppressor Mutations for Presenilin 1 Familial Alzheimer Disease Mutants Modulate γ-Secretase Activities.

    PubMed

    Futai, Eugene; Osawa, Satoko; Cai, Tetsuo; Fujisawa, Tomoya; Ishiura, Shoichi; Tomita, Taisuke

    2016-01-01

    γ-Secretase is a multisubunit membrane protein complex containing presenilin (PS1) as a catalytic subunit. Familial Alzheimer disease (FAD) mutations within PS1 were analyzed in yeast cells artificially expressing membrane-bound substrate, amyloid precursor protein, or Notch fused to Gal4 transcriptional activator. The FAD mutations, L166P and G384A (Leu-166 to Pro and Gly-384 to Ala substitution, respectively), were loss-of-function in yeast. We identified five amino acid substitutions that suppress the FAD mutations. The cleavage of amyloid precursor protein or Notch was recovered by the secondary mutations. We also found that secondary mutations alone activated the γ-secretase activity. FAD mutants with suppressor mutations, L432M or S438P within TMD9 together with a missense mutation in the second or sixth loops, regained γ-secretase activity when introduced into presenilin null mouse fibroblasts. Notably, the cells with suppressor mutants produced a decreased amount of Aβ42, which is responsible for Alzheimer disease. These results indicate that the yeast system is useful to screen for mutations and chemicals that modulate γ-secretase activity. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  17. A mutation-led search for novel functional domains in MeCP2.

    PubMed

    Guy, Jacky; Alexander-Howden, Beatrice; FitzPatrick, Laura; DeSousa, Dina; Koerner, Martha V; Selfridge, Jim; Bird, Adrian

    2018-04-27

    Most missense mutations causing Rett syndrome affect domains of MeCP2 that have been shown to either bind methylated DNA or interact with a transcriptional co-repressor complex. Several mutations, however, including the C-terminal truncations that account for ∼10% of cases, fall outside these characterised domains. We studied the molecular consequences of four of these "non-canonical" mutations in cultured neurons and mice to see if they reveal additional essential domains without affecting known properties of MeCP2. The results show that the mutations partially or strongly deplete the protein and also in some cases interfere with co-repressor recruitment. These mutations therefore impact the activity of known functional domains and do not invoke new molecular causes of Rett syndrome. The finding that a stable C-terminal truncation does not compromise MeCP2 function raises the possibility that small molecules which stabilise these mutant proteins may be of therapeutic value.

  18. Enhanced Functional Activity of the Cannabinoid Type-1 Receptor Mediates Adolescent Behavior.

    PubMed

    Schneider, Miriam; Kasanetz, Fernando; Lynch, Diane L; Friemel, Chris M; Lassalle, Olivier; Hurst, Dow P; Steindel, Frauke; Monory, Krisztina; Schäfer, Carola; Miederer, Isabelle; Leweke, F Markus; Schreckenberger, Mathias; Lutz, Beat; Reggio, Patricia H; Manzoni, Olivier J; Spanagel, Rainer

    2015-10-14

    Adolescence is characterized by drastic behavioral adaptations and comprises a particularly vulnerable period for the emergence of various psychiatric disorders. Growing evidence reveals that the pathophysiology of these disorders might derive from aberrations of normal neurodevelopmental changes in the adolescent brain. Understanding the molecular underpinnings of adolescent behavior is therefore critical for understanding the origin of psychopathology, but the molecular mechanisms that trigger adolescent behavior are unknown. Here, we hypothesize that the cannabinoid type-1 receptor (CB1R) may play a critical role in mediating adolescent behavior because enhanced endocannabinoid (eCB) signaling has been suggested to occur transiently during adolescence. To study enhanced CB1R signaling, we introduced a missense mutation (F238L) into the rat Cnr1 gene that encodes for the CB1R. According to our hypothesis, rats with the F238L mutation (Cnr1(F238L)) should sustain features of adolescent behavior into adulthood. Gain of function of the mutated receptor was demonstrated by in silico modeling and was verified functionally in a series of biochemical and electrophysiological experiments. Mutant rats exhibit an adolescent-like phenotype during adulthood compared with wild-type littermates, with typical high risk/novelty seeking, increased peer interaction, enhanced impulsivity, and augmented reward sensitivity for drug and nondrug reward. Partial inhibition of CB1R activity in Cnr1(F238L) mutant rats normalized behavior and led to a wild-type phenotype. We conclude that the activity state and functionality of the CB1R is critical for mediating adolescent behavior. These findings implicate the eCB system as an important research target for the neuropathology of adolescent-onset mental health disorders. We present the first rodent model with a gain-of-function mutation in the cannabinoid type-1 receptor (CB1R). Adult mutant rats exhibit an adolescent-like phenotype with

  19. MEF2C loss-of-function mutation contributes to congenital heart defects.

    PubMed

    Qiao, Xiao-Hui; Wang, Fei; Zhang, Xian-Ling; Huang, Ri-Tai; Xue, Song; Wang, Juan; Qiu, Xing-Biao; Liu, Xing-Yuan; Yang, Yi-Qing

    2017-01-01

    Congenital heart disease (CHD) is the most common type of developmental abnormality in humans, and is a leading cause for substantially increased morbidity and mortality in affected individuals. Increasing studies demonstrates a pivotal role of genetic defects in the pathogenesis of CHD, and presently mutations in more than 60 genes have been associated with CHD. Nevertheless, CHD is of pronounced genetic heterogeneity, and the genetic basis underpinning CHD in a large proportion of patients remains unclear. In the present study, the whole coding exons and splicing donors/acceptors of the MEF2C gene, which codes for a transcription factor essential for normal cardiovascular development, were sequenced in 200 unrelated patients affected with CHD, and a novel heterozygous missense mutation, p.L38P, was identified in an index patient with patent ductus arteriosus (PDA) and ventricular septal defect (VSD). Genetic scan of the mutation carrier's family members available showed that the mutation was present in all affected family members but absent in unaffected family members. Analysis of the proband's pedigree revealed that the mutation co-segregated with PDA, which was transmitted as an autosomal dominant trait with complete penetrance. The mutation changed the amino acid that was completely conserved evolutionarily, and did not exist in 300 unrelated, ethnically-matched healthy individuals used as controls. Functional deciphers by using a dual-luciferase reporter assay system unveiled that the mutant MEF2C protein had a significantly reduced transcriptional activity. Furthermore, the mutation significantly diminished the synergistic activation between MEF2C and GATA4, another cardiac core transcription factor that has been causally linked to CHD. In conclusion, this is the first report on the association of a MEF2C loss-of-function mutation with an increased vulnerability to CHD in humans, which provides novel insight into the molecular mechanisms underlying CHD

  20. MEF2C loss-of-function mutation contributes to congenital heart defects

    PubMed Central

    Qiao, Xiao-Hui; Wang, Fei; Zhang, Xian-Ling; Huang, Ri-Tai; Xue, Song; Wang, Juan; Qiu, Xing-Biao; Liu, Xing-Yuan; Yang, Yi-Qing

    2017-01-01

    Congenital heart disease (CHD) is the most common type of developmental abnormality in humans, and is a leading cause for substantially increased morbidity and mortality in affected individuals. Increasing studies demonstrates a pivotal role of genetic defects in the pathogenesis of CHD, and presently mutations in more than 60 genes have been associated with CHD. Nevertheless, CHD is of pronounced genetic heterogeneity, and the genetic basis underpinning CHD in a large proportion of patients remains unclear. In the present study, the whole coding exons and splicing donors/acceptors of the MEF2C gene, which codes for a transcription factor essential for normal cardiovascular development, were sequenced in 200 unrelated patients affected with CHD, and a novel heterozygous missense mutation, p.L38P, was identified in an index patient with patent ductus arteriosus (PDA) and ventricular septal defect (VSD). Genetic scan of the mutation carrier's family members available showed that the mutation was present in all affected family members but absent in unaffected family members. Analysis of the proband's pedigree revealed that the mutation co-segregated with PDA, which was transmitted as an autosomal dominant trait with complete penetrance. The mutation changed the amino acid that was completely conserved evolutionarily, and did not exist in 300 unrelated, ethnically-matched healthy individuals used as controls. Functional deciphers by using a dual-luciferase reporter assay system unveiled that the mutant MEF2C protein had a significantly reduced transcriptional activity. Furthermore, the mutation significantly diminished the synergistic activation between MEF2C and GATA4, another cardiac core transcription factor that has been causally linked to CHD. In conclusion, this is the first report on the association of a MEF2C loss-of-function mutation with an increased vulnerability to CHD in humans, which provides novel insight into the molecular mechanisms underlying CHD

  1. Quantitative metabolome analysis profiles activation of glutaminolysis in glioma with IDH1 mutation.

    PubMed

    Ohka, Fumiharu; Ito, Maki; Ranjit, Melissa; Senga, Takeshi; Motomura, Ayako; Motomura, Kazuya; Saito, Kaori; Kato, Keiko; Kato, Yukinari; Wakabayashi, Toshihiko; Soga, Tomoyoshi; Natsume, Atsushi

    2014-06-01

    Isocitrate dehydrogenase 1 (IDH1), which localizes to the cytosol and peroxisomes, catalyzes the oxidative decarboxylation of isocitrate to α-ketoglutarate (α-KG) and in parallel converts NADP(+) to NADPH. IDH1 mutations are frequently detected in grades 2-4 gliomas and in acute myeloid leukemias (AML). Mutations of IDH1 have been identified at codon 132, with arginine being replaced with histidine in most cases. Mutant IDH1 gains novel enzyme activity converting α-KG to D-2-hydroxyglutarate (2-HG) which acts as a competitive inhibitor of α-KG. As a result, the activity of α-KG-dependent enzyme is reduced. Based on these findings, 2-HG has been proposed to be an oncometabolite. In this study, we established HEK293 and U87 cells that stably expressed IDH1-WT and IDH1-R132H and investigated the effect of glutaminase inhibition on cell proliferation with 6-diazo-5-oxo-L-norleucine (DON). We found that cell proliferation was suppressed in IDH1-R132H cells. The addition of α-KG restored cell proliferation. The metabolic features of 33 gliomas with wild type IDH1 (IDH1-WT) and with IDH1-R132H mutation were examined by global metabolome analysis using capillary electrophoresis time-of-flight mass spectrometry (CE-TOFMS). We showed that the 2-HG levels were highly elevated in gliomas with IDH1-R132H mutation. Intriguingly, in gliomas with IDH1-R132H, glutamine and glutamate levels were significantly reduced which implies replenishment of α-KG by glutaminolysis. Based on these results, we concluded that glutaminolysis is activated in gliomas with IDH1-R132H mutation and that development of novel therapeutic approaches targeting activated glutaminolysis is warranted.

  2. Ras mutation cooperates with β-catenin activation to drive bladder tumourigenesis.

    PubMed

    Ahmad, I; Patel, R; Liu, Y; Singh, L B; Taketo, M M; Wu, X-R; Leung, H Y; Sansom, O J

    2011-03-03

    Mutations in the Ras family of proteins (predominantly in H-Ras) occur in approximately 40% of urothelial cell carcinoma (UCC). However, relatively little is known about subsequent mutations/pathway alterations that allow tumour progression. Indeed, expressing mutant H-Ras within the mouse bladder does not lead to tumour formation, unless this is expressed at high levels. The Wnt signalling pathway is deregulated in approximately 25% of UCC, so we examined if this correlated with the activation of MAPK signalling in human UCC and found a significant correlation. To test the functional significance of this association we examined the impact of combining Ras mutation (H-Ras(Q61L) or K-Ras(G12D)) with an activating β-catenin mutation within the mouse bladder using Cre-LoxP technology. Although alone, neither Ras mutation nor β-catenin activation led to UCC (within 12 months), mice carrying both mutations rapidly developed UCC. Mechanistically this was associated with reduced levels of p21 with dependence on the MAPK signalling pathway. Moreover, tumours from these mice were sensitive to MEK inhibition. Importantly, in human UCC there was a negative correlation between levels of p-ERK and p21 suggesting that p21 accumulation may block tumour progression following Ras mutation. Taken together these data definitively show Ras pathway activation strongly cooperates with Wnt signalling to drive UCC in vivo.

  3. Insight on Mutation-Induced Resistance from Molecular Dynamics Simulations of the Native and Mutated CSF-1R and KIT.

    PubMed

    Da Silva Figueiredo Celestino Gomes, Priscila; Chauvot De Beauchêne, Isaure; Panel, Nicolas; Lopez, Sophie; De Sepulveda, Paulo; Geraldo Pascutti, Pedro; Solary, Eric; Tchertanov, Luba

    2016-01-01

    The receptors tyrosine kinases (RTKs) for the colony stimulating factor-1, CSF-1R, and for the stem cell factor, SCFR or KIT, are important mediators of signal transduction. The abnormal function of these receptors, promoted by gain-of-function mutations, leads to their constitutive activation, associated with cancer or other proliferative diseases. A secondary effect of the mutations is the alteration of receptors' sensitivity to tyrosine kinase inhibitors, compromising effectiveness of these molecules in clinical treatment. In particular, the mutation V560G in KIT increases its sensitivity to Imatinib, while the D816V in KIT, and D802V in CSF-1R, triggers resistance to the drug. We analyzed the Imatinib binding affinity to the native and mutated KIT (mutations V560G, S628N and D816V) and CSF-1R (mutation D802V) by using molecular dynamics simulations and energy calculations of Imatinib•target complexes. Further, we evaluated the sensitivity of the studied KIT receptors to Imatinib by measuring the inhibition of KIT phosphorylation. Our study showed that (i) the binding free energy of Imatinib to the targets is highly correlated with their experimentally measured sensitivity; (ii) the electrostatic interactions are a decisive factor affecting the binding energy; (iii) the most deleterious impact to the Imatinib sensitivity is promoted by D802V (CSF-1R) and D816V (KIT) mutations; (iv) the role of the juxtamembrane region, JMR, in the imatinib binding is accessory. These findings contribute to a better description of the mutation-induced effects alternating the targets sensitivity to Imatinib.

  4. A strong loss-of-function mutation in RAN1 results in constitutive activation of the ethylene response pathway as well as a rosette-lethal phenotype

    NASA Technical Reports Server (NTRS)

    Woeste, K. E.; Kieber, J. J.; Evans, M. L. (Principal Investigator)

    2000-01-01

    A recessive mutation was identified that constitutively activated the ethylene response pathway in Arabidopsis and resulted in a rosette-lethal phenotype. Positional cloning of the gene corresponding to this mutation revealed that it was allelic to responsive to antagonist1 (ran1), a mutation that causes seedlings to respond in a positive manner to what is normally a competitive inhibitor of ethylene binding. In contrast to the previously identified ran1-1 and ran1-2 alleles that are morphologically indistinguishable from wild-type plants, this ran1-3 allele results in a rosette-lethal phenotype. The predicted protein encoded by the RAN1 gene is similar to the Wilson and Menkes disease proteins and yeast Ccc2 protein, which are integral membrane cation-transporting P-type ATPases involved in copper trafficking. Genetic epistasis analysis indicated that RAN1 acts upstream of mutations in the ethylene receptor gene family. However, the rosette-lethal phenotype of ran1-3 was not suppressed by ethylene-insensitive mutants, suggesting that this mutation also affects a non-ethylene-dependent pathway regulating cell expansion. The phenotype of ran1-3 mutants is similar to loss-of-function ethylene receptor mutants, suggesting that RAN1 may be required to form functional ethylene receptors. Furthermore, these results suggest that copper is required not only for ethylene binding but also for the signaling function of the ethylene receptors.

  5. Autosomal dominant hypoparathyroidism caused by germline mutation in GNA11: phenotypic and molecular characterization.

    PubMed

    Li, Dong; Opas, Evan E; Tuluc, Florin; Metzger, Daniel L; Hou, Cuiping; Hakonarson, Hakon; Levine, Michael A

    2014-09-01

    Most cases of autosomal dominant hypoparathyroidism (ADH) are caused by gain-of-function mutations in CASR or dominant inhibitor mutations in GCM2 or PTH. Our objectives were to identify the genetic basis for ADH in a multigenerational family and define the underlying disease mechanism. Here we evaluated a multigenerational family with ADH in which affected subjects had normal sequences in these genes and were shorter than unaffected family members. We collected clinical and biochemical data from 6 of 11 affected subjects and performed whole-exome sequence analysis on DNA from two affected sisters and their affected father. Functional studies were performed after expression of wild-type and mutant Gα11 proteins in human embryonic kidney-293-CaR cells that stably express calcium-sensing receptors. Whole-exome-sequencing followed by Sanger sequencing revealed a heterozygous mutation, c.179G>T; p.R60L, in GNA11, which encodes the α-subunit of G11, the principal heterotrimeric G protein that couples calcium-sensing receptors to signal activation in parathyroid cells. Functional studies of Gα11 R60L showed increased accumulation of intracellular concentration of free calcium in response to extracellular concentration of free calcium with a significantly decreased EC50 compared with wild-type Gα11. By contrast, R60L was significantly less effective than the oncogenic Q209L form of Gα11 as an activator of the MAPK pathway. Compared to subjects with CASR mutations, patients with GNA11 mutations lacked hypercalciuria and had normal serum magnesium levels. Our findings indicate that the germline gain-of-function mutation of GNA11 is a cause of ADH and implicate a novel role for GNA11 in skeletal growth.

  6. Autosomal Dominant Hypoparathyroidism Caused by Germline Mutation in GNA11: Phenotypic and Molecular Characterization

    PubMed Central

    Li, Dong; Opas, Evan E.; Tuluc, Florin; Metzger, Daniel L.; Hou, Cuiping; Hakonarson, Hakon

    2014-01-01

    Context: Most cases of autosomal dominant hypoparathyroidism (ADH) are caused by gain-of-function mutations in CASR or dominant inhibitor mutations in GCM2 or PTH. Objective: Our objectives were to identify the genetic basis for ADH in a multigenerational family and define the underlying disease mechanism. Subjects: Here we evaluated a multigenerational family with ADH in which affected subjects had normal sequences in these genes and were shorter than unaffected family members. Methods: We collected clinical and biochemical data from 6 of 11 affected subjects and performed whole-exome sequence analysis on DNA from two affected sisters and their affected father. Functional studies were performed after expression of wild-type and mutant Gα11 proteins in human embryonic kidney-293-CaR cells that stably express calcium-sensing receptors. Results: Whole-exome-sequencing followed by Sanger sequencing revealed a heterozygous mutation, c.179G>T; p.R60L, in GNA11, which encodes the α-subunit of G11, the principal heterotrimeric G protein that couples calcium-sensing receptors to signal activation in parathyroid cells. Functional studies of Gα11 R60L showed increased accumulation of intracellular concentration of free calcium in response to extracellular concentration of free calcium with a significantly decreased EC50 compared with wild-type Gα11. By contrast, R60L was significantly less effective than the oncogenic Q209L form of Gα11 as an activator of the MAPK pathway. Compared to subjects with CASR mutations, patients with GNA11 mutations lacked hypercalciuria and had normal serum magnesium levels. Conclusions: Our findings indicate that the germline gain-of-function mutation of GNA11 is a cause of ADH and implicate a novel role for GNA11 in skeletal growth. PMID:24823460

  7. Activation of multiple signaling pathways causes developmental defects in mice with a Noonan syndrome–associated Sos1 mutation

    PubMed Central

    Chen, Peng-Chieh; Wakimoto, Hiroko; Conner, David; Araki, Toshiyuki; Yuan, Tao; Roberts, Amy; Seidman, Christine E.; Bronson, Roderick; Neel, Benjamin G.; Seidman, Jonathan G.; Kucherlapati, Raju

    2010-01-01

    Noonan syndrome (NS) is an autosomal dominant genetic disorder characterized by short stature, unique facial features, and congenital heart disease. About 10%–15% of individuals with NS have mutations in son of sevenless 1 (SOS1), which encodes a RAS and RAC guanine nucleotide exchange factor (GEF). To understand the role of SOS1 in the pathogenesis of NS, we generated mice with the NS-associated Sos1E846K gain-of-function mutation. Both heterozygous and homozygous mutant mice showed many NS-associated phenotypes, including growth delay, distinctive facial dysmorphia, hematologic abnormalities, and cardiac defects. We found that the Ras/MAPK pathway as well as Rac and Stat3 were activated in the mutant hearts. These data provide in vivo molecular and cellular evidence that Sos1 is a GEF for Rac under physiological conditions and suggest that Rac and Stat3 activation might contribute to NS phenotypes. Furthermore, prenatal administration of a MEK inhibitor ameliorated the embryonic lethality, cardiac defects, and NS features of the homozygous mutant mice, demonstrating that this signaling pathway might represent a promising therapeutic target for NS. PMID:21041952

  8. 20 CFR 416.910 - Meaning of substantial gainful activity.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 20 Employees' Benefits 2 2011-04-01 2011-04-01 false Meaning of substantial gainful activity. 416....910 Meaning of substantial gainful activity. Substantial gainful activity means work that— (a) Involves doing significant and productive physical or mental duties; and (b) Is done (or intended) for pay...

  9. 20 CFR 416.910 - Meaning of substantial gainful activity.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 20 Employees' Benefits 2 2010-04-01 2010-04-01 false Meaning of substantial gainful activity. 416....910 Meaning of substantial gainful activity. Substantial gainful activity means work that— (a) Involves doing significant and productive physical or mental duties; and (b) Is done (or intended) for pay...

  10. Suppression of severe achondroplasia with developmental delay and acanthosis nigricans by the p.Thr651Pro mutation.

    PubMed

    Manickam, Kandamurugu; Donoghue, Daniel J; Meyer, April N; Snyder, Pamela J; Prior, Thomas W

    2014-01-01

    Severe achondroplasia with developmental delay and acanthosis nigricans (SADDAN) is an extremely rare severe skeletal dysplasia characterized by significant developmental delay, brain structural abnormalities, hearing loss, and acanthosis nigricans. The disorder is the result of a single missense mutation at codon 650 (p.Lys650Met) in the fibroblast growth factor receptor 3 gene (FGFR3). We describe a child who initially presented with a mild achondroplasia or hypochondroplasia like phenotype. Molecular analysis of the FGFR3 gene showed the common SADDAN mutation and a second novel mutation at codon 651 (p.Thr651Pro). Both mutations were shown to occur on the same allele (cis) and de novo. Transient transfection studies with FGFR3 double mutant constructs show that the p.Thr651Pro mutation causes a dramatic decrease in constitutive receptor kinase activity than that observed by the p.Lys650Met mutation. Our data suggest that the molecular effect by the p.Thr651Pro is to elicit a conformational change that decreases the FGFR3 tyrosine kinase activity, which is constitutively activated by the SADDAN mutation. Due to the inheritance of both a gain-of-function and a loss-of-function mutation, we conclude that a reduction of constitutive activation caused the milder skeletal phenotype. Although the occurrence of double mutations are expected to be rare, the presence of other FGFR3 modifiers may be responsible for some of the clinically discrepant skeletal dysplasia cases. © 2013 Wiley Periodicals, Inc.

  11. A targeted mutational landscape of angioimmunoblastic T-cell lymphoma

    PubMed Central

    Odejide, Oreofe; Weigert, Oliver; Lane, Andrew A.; Toscano, Dan; Lunning, Matthew A.; Kopp, Nadja; Kim, Sunhee; van Bodegom, Diederik; Bolla, Sudha; Schatz, Jonathan H.; Teruya-Feldstein, Julie; Hochberg, Ephraim; Louissaint, Abner; Dorfman, David; Stevenson, Kristen; Rodig, Scott J.; Piccaluga, Pier Paolo; Jacobsen, Eric; Pileri, Stefano A.; Harris, Nancy L.; Ferrero, Simone; Inghirami, Giorgio; Horwitz, Steven M.

    2014-01-01

    The genetics of angioimmunoblastic T-cell lymphoma (AITL) are very poorly understood. We defined the mutational landscape of AITL across 219 genes in 85 cases from the United States and Europe. We identified ≥2 mutations in 34 genes, nearly all of which were not previously implicated in AITL. These included loss-of-function mutations in TP53 (n = 4), ETV6 (n = 3), CCND3 (n = 2), and EP300 (n = 5), as well as gain-of-function mutations in JAK2 (n = 2) and STAT3 (n = 4). TET2 was mutated in 65 (76%) AITLs, including 43 that harbored 2 or 3 TET2 mutations. DNMT3A mutations occurred in 28 (33%) AITLs; 100% of these also harbored TET2 mutations (P < .0001). Seventeen AITLs harbored IDH2 R172 substitutions, including 15 with TET2 mutations. In summary, AITL is characterized by high frequencies of overlapping mutations in epigenetic modifiers and targetable mutations in a subset of cases. PMID:24345752

  12. Seven functional classes of Barth syndrome mutation.

    PubMed

    Whited, Kevin; Baile, Matthew G; Currier, Pamela; Claypool, Steven M

    2013-02-01

    Patients with Barth syndrome (BTHS), a rare X-linked disease, suffer from skeletal and cardiomyopathy and bouts of cyclic neutropenia. The causative gene encodes tafazzin, a transacylase, which is the major determinant of the final acyl chain composition of the mitochondrial-specific phospholipid, CL. In addition to numerous frame shift and splice-site mutations, 36 missense mutations have been associated with BTHS. Previously, we established a BTHS-mutant panel in the yeast Saccharomyces cerevisiae that successfully models 18/21 conserved pathogenic missense mutations and defined the loss-of-function mechanism associated with a subset of the mutant tafazzins. Here, we report the biochemical and cell biological characterization of the rest of the yeast BTHS-mutant panel and in so doing identify three additional modes of tafazzin dysfunction. The largest group of mutant tafazzins is catalytically null, two mutants encode hypomorphic alleles, and another two mutants are temperature sensitive. Additionally, we have expanded the defects associated with previously characterized matrix-mislocalized-mutant tafazzins to include the rapid degradation of aggregation-prone polypeptides that correctly localize to the mitochondrial IMS. In sum, our in-depth characterization of the yeast BTHS-mutant panel has identified seven functional classes of BTHS mutation.

  13. 20 CFR 404.1510 - Meaning of substantial gainful activity.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 20 Employees' Benefits 2 2011-04-01 2011-04-01 false Meaning of substantial gainful activity. 404... Meaning of substantial gainful activity. Substantial gainful activity means work that— (a) Involves doing significant and productive physical or mental duties; and (b) Is done (or intended) for pay or profit. (See...

  14. 20 CFR 404.1510 - Meaning of substantial gainful activity.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 20 Employees' Benefits 2 2010-04-01 2010-04-01 false Meaning of substantial gainful activity. 404... Meaning of substantial gainful activity. Substantial gainful activity means work that— (a) Involves doing significant and productive physical or mental duties; and (b) Is done (or intended) for pay or profit. (See...

  15. Integrated genomic sequencing reveals mutational landscape of T-cell prolymphocytic leukemia.

    PubMed

    Kiel, Mark J; Velusamy, Thirunavukkarasu; Rolland, Delphine; Sahasrabuddhe, Anagh A; Chung, Fuzon; Bailey, Nathanael G; Schrader, Alexandra; Li, Bo; Li, Jun Z; Ozel, Ayse B; Betz, Bryan L; Miranda, Roberto N; Medeiros, L Jeffrey; Zhao, Lili; Herling, Marco; Lim, Megan S; Elenitoba-Johnson, Kojo S J

    2014-08-28

    The comprehensive genetic alterations underlying the pathogenesis of T-cell prolymphocytic leukemia (T-PLL) are unknown. To address this, we performed whole-genome sequencing (WGS), whole-exome sequencing (WES), high-resolution copy-number analysis, and Sanger resequencing of a large cohort of T-PLL. WGS and WES identified novel mutations in recurrently altered genes not previously implicated in T-PLL including EZH2, FBXW10, and CHEK2. Strikingly, WGS and/or WES showed largely mutually exclusive mutations affecting IL2RG, JAK1, JAK3, or STAT5B in 38 of 50 T-PLL genomes (76.0%). Notably, gain-of-function IL2RG mutations are novel and have not been reported in any form of cancer. Further, high-frequency mutations in STAT5B have not been previously reported in T-PLL. Functionally, IL2RG-JAK1-JAK3-STAT5B mutations led to signal transducer and activator of transcription 5 (STAT5) hyperactivation, transformed Ba/F3 cells resulting in cytokine-independent growth, and/or enhanced colony formation in Jurkat T cells. Importantly, primary T-PLL cells exhibited constitutive activation of STAT5, and targeted pharmacologic inhibition of STAT5 with pimozide induced apoptosis in primary T-PLL cells. These results for the first time provide a portrait of the mutational landscape of T-PLL and implicate deregulation of DNA repair and epigenetic modulators as well as high-frequency mutational activation of the IL2RG-JAK1-JAK3-STAT5B axis in the pathogenesis of T-PLL. These findings offer opportunities for novel targeted therapies in this aggressive leukemia. © 2014 by The American Society of Hematology.

  16. Integrated genomic sequencing reveals mutational landscape of T-cell prolymphocytic leukemia

    PubMed Central

    Kiel, Mark J.; Velusamy, Thirunavukkarasu; Rolland, Delphine; Sahasrabuddhe, Anagh A.; Chung, Fuzon; Bailey, Nathanael G.; Schrader, Alexandra; Li, Bo; Li, Jun Z.; Ozel, Ayse B.; Betz, Bryan L.; Miranda, Roberto N.; Medeiros, L. Jeffrey; Zhao, Lili; Herling, Marco

    2014-01-01

    The comprehensive genetic alterations underlying the pathogenesis of T-cell prolymphocytic leukemia (T-PLL) are unknown. To address this, we performed whole-genome sequencing (WGS), whole-exome sequencing (WES), high-resolution copy-number analysis, and Sanger resequencing of a large cohort of T-PLL. WGS and WES identified novel mutations in recurrently altered genes not previously implicated in T-PLL including EZH2, FBXW10, and CHEK2. Strikingly, WGS and/or WES showed largely mutually exclusive mutations affecting IL2RG, JAK1, JAK3, or STAT5B in 38 of 50 T-PLL genomes (76.0%). Notably, gain-of-function IL2RG mutations are novel and have not been reported in any form of cancer. Further, high-frequency mutations in STAT5B have not been previously reported in T-PLL. Functionally, IL2RG-JAK1-JAK3-STAT5B mutations led to signal transducer and activator of transcription 5 (STAT5) hyperactivation, transformed Ba/F3 cells resulting in cytokine-independent growth, and/or enhanced colony formation in Jurkat T cells. Importantly, primary T-PLL cells exhibited constitutive activation of STAT5, and targeted pharmacologic inhibition of STAT5 with pimozide induced apoptosis in primary T-PLL cells. These results for the first time provide a portrait of the mutational landscape of T-PLL and implicate deregulation of DNA repair and epigenetic modulators as well as high-frequency mutational activation of the IL2RG-JAK1-JAK3-STAT5B axis in the pathogenesis of T-PLL. These findings offer opportunities for novel targeted therapies in this aggressive leukemia. PMID:24825865

  17. Functionomics of NCC mutations in Gitelman syndrome using a novel mammalian cell-based activity assay.

    PubMed

    Valdez-Flores, Marco A; Vargas-Poussou, Rosa; Verkaart, Sjoerd; Tutakhel, Omar A Z; Valdez-Ortiz, Angel; Blanchard, Anne; Treard, Cyrielle; Hoenderop, Joost G J; Bindels, René J M; Jeleń, Sabina

    2016-12-01

    Gitelman syndrome (GS) is an autosomal recessive salt-wasting tubular disorder resulting from loss-of-function mutations in the thiazide-sensitive NaCl cotransporter (NCC). Functional analysis of these mutations has been limited to the use of Xenopus laevis oocytes. The aim of the present study was, therefore, to analyze the functional consequences of NCC mutations in a mammalian cell-based assay, followed by analysis of mutated NCC protein expression as well as glycosylation and phosphorylation profiles using human embryonic kidney (HEK) 293 cells. NCC activity was assessed with a novel assay based on thiazide-sensitive iodide uptake in HEK293 cells expressing wild-type or mutant NCC (N59I, R83W, I360T, C421Y, G463R, G731R, L859P, or R861C). All mutations caused a significantly lower NCC activity. Immunoblot analysis of the HEK293 cells revealed that 1) all NCC mutants have decreased NCC protein expression; 2) mutant N59I, R83W, I360T, C421Y, G463R, and L859P have decreased NCC abundance at the plasma membrane; 3) mutants C421Y and L859P display impaired NCC glycosylation; and 4) mutants N59I, R83W, C421Y, C731R, and L859P show affected NCC phosphorylation. In conclusion, we developed a mammalian cell-based assay in which NCC activity assessment together with a profiling of mutated protein processing aid our understanding of the pathogenic mechanism of the NCC mutations. Copyright © 2016 the American Physiological Society.

  18. 20 CFR 220.141 - Substantial gainful activity, defined.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ...) Substantial work activity. Substantial work activity is work activity that involves doing significant physical... 20 Employees' Benefits 1 2011-04-01 2011-04-01 false Substantial gainful activity, defined. 220... RETIREMENT ACT DETERMINING DISABILITY Substantial Gainful Activity § 220.141 Substantial gainful activity...

  19. 20 CFR 220.141 - Substantial gainful activity, defined.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ...) Substantial work activity. Substantial work activity is work activity that involves doing significant physical... 20 Employees' Benefits 1 2010-04-01 2010-04-01 false Substantial gainful activity, defined. 220... RETIREMENT ACT DETERMINING DISABILITY Substantial Gainful Activity § 220.141 Substantial gainful activity...

  20. The SCN8A encephalopathy mutation p.Ile1327Val displays elevated sensitivity to the anticonvulsant phenytoin.

    PubMed

    Barker, Bryan S; Ottolini, Matteo; Wagnon, Jacy L; Hollander, Rachel M; Meisler, Miriam H; Patel, Manoj K

    2016-09-01

    SCN8A encephalopathy (early infantile epileptic encephalopathy; EIEE13) is caused by gain-of-function mutations resulting in hyperactivity of the voltage-gated sodium channel Nav 1.6. The channel is concentrated at the axon initial segment (AIS) and is involved in establishing neuronal excitability. Clinical features of SCN8A encephalopathy include seizure onset between 0 and 18 months of age, intellectual disability, and developmental delay. Seizures are often refractory to treatment with standard antiepileptic drugs, and sudden unexpected death in epilepsy (SUDEP) has been reported in approximately 10% of patients. In a recent study, high doses of phenytoin were effective in four patients with SCN8A encephalopathy. In view of this observation, we have investigated the relationship between the functional effect of the SCN8A mutation p.Ile1327Val and its response to phenytoin. The mutation was introduced into the Scn8a cDNA by site-directed mutagenesis. Channel activity was characterized in transfected ND7/23 cells. The effects of phenytoin (100 μm) on mutant and wild-type (WT) channels were compared. Channel activation parameters were shifted in a hyperpolarizing direction in the mutant channel, whereas inactivation parameters were shifted in a depolarizing direction, increasing Na channel window current. Macroscopic current decay was slowed in I1327V channels, indicating an impairment in the transition from open state to inactivated state. Channel deactivation was also delayed, allowing more channels to remain in the open state. Phenytoin (100 μm) resulted in hyperpolarized activation and inactivation curves as well as greater tonic block and use-dependent block of I1327V mutant channels relative to WT. SCN8A - I1327V is a gain-of-function mutation with altered features that are predicted to increase neuronal excitability and seizure susceptibility. Phenytoin is an effective inhibitor of the mutant channel and may be of use in treating patients with gain-of-function

  1. The SCN8A encephalopathy mutation p.Ile1327Val displays elevated sensitivity to the anticonvulsant phenytoin

    PubMed Central

    Barker, Bryan S.; Ottolini, Matteo; Wagnon, Jacy L.; Hollander, Rachel; Meisler, Miriam H.; Patel, Manoj K.

    2016-01-01

    Objective SCN8A encephalopathy (EIEE13) is caused by gain-of-function mutations resulting in hyperactivity of the voltage-gated sodium channel Nav1.6. The channel is concentrated at the axon initial segment (AIS) and is involved in establishing neuronal excitability. Clinical features of SCN8A encephalopathy include seizure onset between 0–18 months of age, intellectual disability, and developmental delay. Seizures are often refractory to treatment with standard anti-epileptic drugs, and sudden unexpected death in epilepsy (SUDEP) has been reported in approximately 10% of patients. In a recent study, high doses of phenytoin were effective in four patients with SCN8A encephalopathy. In view of this observation, we have investigated the relationship between the functional effect of the SCN8A mutation p.Ile1327Val and its response to phenytoin. Methods The mutation was introduced into the Scn8a cDNA by site-directed mutagenesis. Channel activity was characterized in transfected ND7/23 cells. The effects of phenytoin (100 μM) on mutant and wild type (WT) channels were compared. Results Channel activation parameters were shifted in a hyperpolarizing direction in the mutant channel, while inactivation parameters were shifted in a depolarizing direction, increasing Na channel window current. Macroscopic current decay was slowed in I1327V channels, indicating an impairment in the transition from open state to inactivated state. Channel deactivation was also delayed, allowing more channels to remain in the open state. Phenytoin (100 μM) resulted in hyperpolarized activation and inactivation curves as well as greater tonic block and use dependent block of I1327V mutant channels relative to WT. Significance SCN8A – I1327V is a gain-of-function mutation with altered features that are predicted to increase neuronal excitability and seizure susceptibility. Phenytoin is an effective inhibitor of the mutant channel and may be of use in treating patients with gain-of-function

  2. Identification of Lethal Mutations in Yeast Threonyl-tRNA Synthetase Revealing Critical Residues in Its Human Homolog*

    PubMed Central

    Ruan, Zhi-Rong; Fang, Zhi-Peng; Ye, Qing; Lei, Hui-Yan; Eriani, Gilbert; Zhou, Xiao-Long; Wang, En-Duo

    2015-01-01

    Aminoacyl-tRNA synthetases (aaRSs) are a group of ancient enzymes catalyzing aminoacylation and editing reactions for protein biosynthesis. Increasing evidence suggests that these critical enzymes are often associated with mammalian disorders. Therefore, complete determination of the enzymes functions is essential for informed diagnosis and treatment. Here, we show that a yeast knock-out strain for the threonyl-tRNA synthetase (ThrRS) gene is an excellent platform for such an investigation. Saccharomyces cerevisiae ThrRS has a unique modular structure containing four structural domains and a eukaryote-specific N-terminal extension. Using randomly mutated libraries of the ThrRS gene (thrS) and a genetic screen, a set of loss-of-function mutants were identified. The mutations affected the synthetic and editing activities and influenced the dimer interface. The results also highlighted the role of the N-terminal extension for enzymatic activity and protein stability. To gain insights into the pathological mechanisms induced by mutated aaRSs, we systematically introduced the loss-of-function mutations into the human cytoplasmic ThrRS gene. All mutations induced similar detrimental effects, showing that the yeast model could be used to study pathology-associated point mutations in mammalian aaRSs. PMID:25416776

  3. Depolarized inactivation overcomes impaired activation to produce DRG neuron hyperexcitability in a Nav1.7 mutation in a patient with distal limb pain.

    PubMed

    Huang, Jianying; Yang, Yang; Dib-Hajj, Sulayman D; van Es, Michael; Zhao, Peng; Salomon, Jody; Drenth, Joost P H; Waxman, Stephen G

    2014-09-10

    Sodium channel Nav1.7, encoded by SCN9A, is expressed in DRG neurons and regulates their excitability. Genetic and functional studies have established a critical contribution of Nav1.7 to human pain disorders. We have now characterized a novel Nav1.7 mutation (R1279P) from a female human subject with distal limb pain, in which depolarized fast inactivation overrides impaired activation to produce hyperexcitability and spontaneous firing in DRG neurons. Whole-cell voltage-clamp recordings in human embryonic kidney (HEK) 293 cells demonstrated that R1279P significantly depolarizes steady-state fast-, slow-, and closed-state inactivation. It accelerates deactivation, decelerates inactivation, and facilitates repriming. The mutation increases ramp currents in response to slow depolarizations. Our voltage-clamp analysis showed that R1279P depolarizes channel activation, a change that was supported by our multistate structural modeling. Because this mutation confers both gain-of-function and loss-of-function attributes on the Nav1.7 channel, we tested the impact of R1279P expression on DRG neuron excitability. Current-clamp studies reveal that R1279P depolarizes resting membrane potential, decreases current threshold, and increases firing frequency of evoked action potentials within small DRG neurons. The populations of spontaneously firing and repetitively firing neurons were increased by expressing R1279P. These observations indicate that the dominant proexcitatory gating changes associated with this mutation, including depolarized steady-state fast-, slow-, and closed-state inactivation, faster repriming, and larger ramp currents, override the depolarizing shift of activation, to produce hyperexcitability and spontaneous firing of nociceptive neurons that underlie pain. Copyright © 2014 the authors 0270-6474/14/3412328-13$15.00/0.

  4. Recurrent chromosomal gains and heterogeneous driver mutations characterise papillary renal cancer evolution

    PubMed Central

    Kovac, Michal; Navas, Carolina; Horswell, Stuart; Salm, Max; Bardella, Chiara; Rowan, Andrew; Stares, Mark; Castro-Giner, Francesc; Fisher, Rosalie; de Bruin, Elza C.; Kovacova, Monika; Gorman, Maggie; Makino, Seiko; Williams, Jennet; Jaeger, Emma; Jones, Angela; Howarth, Kimberley; Larkin, James; Pickering, Lisa; Gore, Martin; Nicol, David L.; Hazell, Steven; Stamp, Gordon; O’Brien, Tim; Challacombe, Ben; Matthews, Nik; Phillimore, Benjamin; Begum, Sharmin; Rabinowitz, Adam; Varela, Ignacio; Chandra, Ashish; Horsfield, Catherine; Polson, Alexander; Tran, Maxine; Bhatt, Rupesh; Terracciano, Luigi; Eppenberger-Castori, Serenella; Protheroe, Andrew; Maher, Eamonn; El Bahrawy, Mona; Fleming, Stewart; Ratcliffe, Peter; Heinimann, Karl; Swanton, Charles; Tomlinson, Ian

    2015-01-01

    Papillary renal cell carcinoma (pRCC) is an important subtype of kidney cancer with a problematic pathological classification and highly variable clinical behaviour. Here we sequence the genomes or exomes of 31 pRCCs, and in four tumours, multi-region sequencing is undertaken. We identify BAP1, SETD2, ARID2 and Nrf2 pathway genes (KEAP1, NHE2L2 and CUL3) as probable drivers, together with at least eight other possible drivers. However, only ~10% of tumours harbour detectable pathogenic changes in any one driver gene, and where present, the mutations are often predicted to be present within cancer sub-clones. We specifically detect parallel evolution of multiple SETD2 mutations within different sub-regions of the same tumour. By contrast, large copy number gains of chromosomes 7, 12, 16 and 17 are usually early, monoclonal changes in pRCC evolution. The predominance of large copy number variants as the major drivers for pRCC highlights an unusual mode of tumorigenesis that may challenge precision medicine approaches. PMID:25790038

  5. Protein Domain-Level Landscape of Cancer-Type-Specific Somatic Mutations

    PubMed Central

    Yang, Fan; Petsalaki, Evangelia; Rolland, Thomas; Hill, David E.; Vidal, Marc; Roth, Frederick P.

    2015-01-01

    Identifying driver mutations and their functional consequences is critical to our understanding of cancer. Towards this goal, and because domains are the functional units of a protein, we explored the protein domain-level landscape of cancer-type-specific somatic mutations. Specifically, we systematically examined tumor genomes from 21 cancer types to identify domains with high mutational density in specific tissues, the positions of mutational hotspots within these domains, and the functional and structural context where possible. While hotspots corresponding to specific gain-of-function mutations are expected for oncoproteins, we found that tumor suppressor proteins also exhibit strong biases toward being mutated in particular domains. Within domains, however, we observed the expected patterns of mutation, with recurrently mutated positions for oncogenes and evenly distributed mutations for tumor suppressors. For example, we identified both known and new endometrial cancer hotspots in the tyrosine kinase domain of the FGFR2 protein, one of which is also a hotspot in breast cancer, and found new two hotspots in the Immunoglobulin I-set domain in colon cancer. Thus, to prioritize cancer mutations for further functional studies aimed at more precise cancer treatments, we have systematically correlated mutations and cancer types at the protein domain level. PMID:25794154

  6. Loss- and Gain-of-Function Mutations in the F1-HAMP Region of the Escherichia coli Aerotaxis Transducer Aer

    PubMed Central

    del Carmen Burón-Barral, Maria; Gosink, Khoosheh K.; Parkinson, John S.

    2006-01-01

    The Escherichia coli Aer protein contains an N-terminal PAS domain that binds flavin adenine dinucleotide (FAD), senses aerotactic stimuli, and communicates with the output signaling domain. To explore the roles of the intervening F1 and HAMP segments in Aer signaling, we isolated plasmid-borne aerotaxis-defective mutations in a host strain lacking all chemoreceptors of the methyl-accepting chemotaxis protein (MCP) family. Under these conditions, Aer alone established the cell's run/tumble swimming pattern and modulated that behavior in response to oxygen gradients. We found two classes of Aer mutants: null and clockwise (CW) biased. Most mutant proteins exhibited the null phenotype: failure to elicit CW flagellar rotation, no aerosensing behavior in MCP-containing hosts, and no apparent FAD-binding ability. However, null mutants had low Aer expression levels caused by rapid degradation of apparently nonnative subunits. Their functional defects probably reflect the absence of a protein product. In contrast, CW-biased mutant proteins exhibited normal expression levels, wild-type FAD binding, and robust aerosensing behavior in MCP-containing hosts. The CW lesions evidently shift unstimulated Aer output to the CW signaling state but do not block the Aer input-output pathway. The distribution and properties of null and CW-biased mutations suggest that the Aer PAS domain may engage in two different interactions with HAMP and the HAMP-proximal signaling domain: one needed for Aer maturation and another for promoting CW output from the Aer signaling domain. Most aerotaxis-defective null mutations in these regions seemed to affect maturation only, indicating that these two interactions involve structurally distinct determinants. PMID:16672601

  7. A Strong Loss-of-Function Mutation in RAN1 Results in Constitutive Activation of the Ethylene Response Pathway as Well as a Rosette-Lethal Phenotype

    PubMed Central

    Woeste, Keith E.; Kieber, Joseph J.

    2000-01-01

    A recessive mutation was identified that constitutively activated the ethylene response pathway in Arabidopsis and resulted in a rosette-lethal phenotype. Positional cloning of the gene corresponding to this mutation revealed that it was allelic to responsive to antagonist1 (ran1), a mutation that causes seedlings to respond in a positive manner to what is normally a competitive inhibitor of ethylene binding. In contrast to the previously identified ran1-1 and ran1-2 alleles that are morphologically indistinguishable from wild-type plants, this ran1-3 allele results in a rosette-lethal phenotype. The predicted protein encoded by the RAN1 gene is similar to the Wilson and Menkes disease proteins and yeast Ccc2 protein, which are integral membrane cation-transporting P-type ATPases involved in copper trafficking. Genetic epistasis analysis indicated that RAN1 acts upstream of mutations in the ethylene receptor gene family. However, the rosette-lethal phenotype of ran1-3 was not suppressed by ethylene-insensitive mutants, suggesting that this mutation also affects a non-ethylene-dependent pathway regulating cell expansion. The phenotype of ran1-3 mutants is similar to loss-of-function ethylene receptor mutants, suggesting that RAN1 may be required to form functional ethylene receptors. Furthermore, these results suggest that copper is required not only for ethylene binding but also for the signaling function of the ethylene receptors. PMID:10715329

  8. Activating thyrotropin receptor mutations are present in nonadenomatous hyperfunctioning nodules of toxic or autonomous multinodular goiter.

    PubMed

    Tonacchera, M; Agretti, P; Chiovato, L; Rosellini, V; Ceccarini, G; Perri, A; Viacava, P; Naccarato, A G; Miccoli, P; Pinchera, A; Vitti, P

    2000-06-01

    Toxic multinodular goiter, a heterogeneous disease producing hyperthyroidism, is frequently found in iodine-deficient areas. The pathogenesis of this common clinical entity is still unclear. The aim of the present study was to search for activating TSH receptor (TSHr) or Gs alpha mutations in areas of toxic or functionally autonomous multinodular goiters that appeared hyperfunctioning at thyroid scintiscan but did not clearly correspond to definite nodules at physical or ultrasonographic examination. Surgical tissue specimens from nine patients were carefully dissected, matching thyroid scintiscan and thyroid ultrasonography, to isolate hyperfunctioning and nonfunctioning areas even if they did not correspond to well-defined nodules. TSHr and Gs alpha mutations were searched for by direct sequencing after PCR amplification of genomic DNA. Only 2 adenomas were identified at microscopic examination, whereas the remaining 18 hyperfunctioning areas corresponded to hyperplastic nodules containing multiple aggregates of micromacrofollicules not surrounded by a capsule. Activating TSHr mutations were detected in 14 of these 20 hyperfunctioning areas, whereas no mutation was identified in nonfunctioning nodules or areas contained in the same gland. No Gs alpha mutation was found. In conclusion, activating TSHr mutations are present in the majority of nonadenomatous hyperfunctioning nodules scattered throughout the gland in patients with toxic or functionally autonomous multinodular goiter.

  9. Gain-of-function mutant of angiotensin II receptor, type 1A, causes hypertension and cardiovascular fibrosis in mice

    PubMed Central

    Billet, Sandrine; Bardin, Sabine; Verp, Sonia; Baudrie, Véronique; Michaud, Annie; Conchon, Sophie; Muffat-Joly, Martine; Escoubet, Brigitte; Souil, Evelyne; Hamard, Ghislaine; Bernstein, Kenneth E.; Gasc, Jean Marie; Elghozi, Jean-Luc; Corvol, Pierre; Clauser, Eric

    2007-01-01

    The role of the renin-angiotensin system has been investigated by overexpression or inactivation of its different genes in animals. However, there is no data concerning the effect of the constitutive activation of any component of the system. A knockin mouse model has been constructed with a gain-of-function mutant of the Ang II receptor, type 1A (AT1A), associating a constitutively activating mutation (N111S) with a C-terminal deletion, which impairs receptor internalization and desensitization. In vivo consequences of this mutant receptor expression in homozygous mice recapitulate its in vitro characteristics: the pressor response is more sensitive to Ang II and longer lasting. These mice present with a moderate (~20 mmHg) and stable increase in BP. They also develop early and progressive renal fibrosis and cardiac fibrosis and diastolic dysfunction. However, there was no overt cardiac hypertrophy. The hormonal parameters (low-renin and inappropriately normal aldosterone productions) mimic those of low-renin human hypertension. This new model reveals that a constitutive activation of AT1A leads to cardiac and renal fibrosis in spite of a modest effect on BP and will be useful for investigating the role of Ang II in target organs in a model similar to some forms of human hypertension. PMID:17607364

  10. Insight on Mutation-Induced Resistance from Molecular Dynamics Simulations of the Native and Mutated CSF-1R and KIT

    PubMed Central

    Da Silva Figueiredo Celestino Gomes, Priscila; Chauvot De Beauchêne, Isaure; Panel, Nicolas; Lopez, Sophie; De Sepulveda, Paulo; Geraldo Pascutti, Pedro; Solary, Eric; Tchertanov, Luba

    2016-01-01

    The receptors tyrosine kinases (RTKs) for the colony stimulating factor-1, CSF-1R, and for the stem cell factor, SCFR or KIT, are important mediators of signal transduction. The abnormal function of these receptors, promoted by gain-of-function mutations, leads to their constitutive activation, associated with cancer or other proliferative diseases. A secondary effect of the mutations is the alteration of receptors’ sensitivity to tyrosine kinase inhibitors, compromising effectiveness of these molecules in clinical treatment. In particular, the mutation V560G in KIT increases its sensitivity to Imatinib, while the D816V in KIT, and D802V in CSF-1R, triggers resistance to the drug. We analyzed the Imatinib binding affinity to the native and mutated KIT (mutations V560G, S628N and D816V) and CSF-1R (mutation D802V) by using molecular dynamics simulations and energy calculations of Imatinib•target complexes. Further, we evaluated the sensitivity of the studied KIT receptors to Imatinib by measuring the inhibition of KIT phosphorylation. Our study showed that (i) the binding free energy of Imatinib to the targets is highly correlated with their experimentally measured sensitivity; (ii) the electrostatic interactions are a decisive factor affecting the binding energy; (iii) the most deleterious impact to the Imatinib sensitivity is promoted by D802V (CSF-1R) and D816V (KIT) mutations; (iv) the role of the juxtamembrane region, JMR, in the imatinib binding is accessory. These findings contribute to a better description of the mutation-induced effects alternating the targets sensitivity to Imatinib. PMID:27467080

  11. Inactive and active states and supramolecular organization of GPCRs: insights from computational modeling

    NASA Astrophysics Data System (ADS)

    Fanelli, Francesca; De Benedetti, Pier G.

    2006-08-01

    Herein we make an overview of the results of our computational experiments aimed at gaining insight into the molecular mechanisms of GPCR functioning either in their normal conditions or when hit by gain-of-function or loss-of-function mutations. Molecular simulations of a number of GPCRs in their wild type and mutated as well as free and ligand-bound forms were instrumental in inferring the structural features, which differentiate the mutation- and ligand-induced active from the inactive states. These features essentially reside in the interaction pattern of the E/DRY arginine and in the degree of solvent exposure of selected cytosolic domains. Indeed, the active states differ from the inactive ones in the weakening of the interactions made by the highly conserved arginine and in the increase in solvent accessibility of the cytosolic interface between helices 3 and 6. Where possible, the structural hallmarks of the active and inactive receptor states are translated into molecular descriptors useful for in silico functional screening of novel receptor mutants or ligands. Computational modeling of the supramolecular organization of GPCRs and their intracellular partners is the current challenge toward a deep understanding of their functioning mechanisms.

  12. Meclozine promotes longitudinal skeletal growth in transgenic mice with achondroplasia carrying a gain-of-function mutation in the FGFR3 gene.

    PubMed

    Matsushita, Masaki; Hasegawa, Satoru; Kitoh, Hiroshi; Mori, Kensaku; Ohkawara, Bisei; Yasoda, Akihiro; Masuda, Akio; Ishiguro, Naoki; Ohno, Kinji

    2015-02-01

    Achondroplasia (ACH) is one of the most common skeletal dysplasias causing short stature owing to a gain-of-function mutation in the FGFR3 gene, which encodes the fibroblast growth factor receptor 3. We found that meclozine, an over-the-counter drug for motion sickness, inhibited elevated FGFR3 signaling in chondrocytic cells. To examine the feasibility of meclozine administration in clinical settings, we investigated the effects of meclozine on ACH model mice carrying the heterozygous Fgfr3(ach) transgene. We quantified the effect of meclozine in bone explant cultures employing limb rudiments isolated from developing embryonic tibiae from Fgfr3(ach) mice. We found that meclozine significantly increased the full-length and cartilaginous primordia of embryonic tibiae isolated from Fgfr3(ach) mice. We next analyzed the skeletal phenotypes of growing Fgfr3(ach) mice and wild-type mice with or without meclozine treatment. In Fgfr3(ach) mice, meclozine significantly increased the body length after 2 weeks of administration. At skeletal maturity, the bone lengths including the cranium, radius, ulna, femur, tibia, and vertebrae were significantly longer in meclozine-treated Fgfr3(ach) mice than in untreated Fgfr3(ach) mice. Interestingly, meclozine also increased bone growth in wild-type mice. The plasma concentration of meclozine during treatment was within the range that has been used in clinical settings for motion sickness. Increased longitudinal bone growth in Fgfr3(ach) mice by oral administration of meclozine in a growth period suggests potential clinical feasibility of meclozine for the improvement of short stature in ACH.

  13. Mitofusin gain and loss of function drive pathogenesis in Drosophila models of CMT2A neuropathy.

    PubMed

    El Fissi, Najla; Rojo, Manuel; Aouane, Aїcha; Karatas, Esra; Poliacikova, Gabriela; David, Claudine; Royet, Julien; Rival, Thomas

    2018-06-13

    Charcot-Marie-Tooth disease type 2A (CMT2A) is caused by dominant alleles of the mitochondrial pro-fusion factor Mitofusin 2 (MFN2). To address the consequences of these mutations on mitofusin activity and neuronal function, we generate Drosophila models expressing in neurons the two most frequent substitutions (R94Q and R364W, the latter never studied before) and two others localizing to similar domains (T105M and L76P). All alleles trigger locomotor deficits associated with mitochondrial depletion at neuromuscular junctions, decreased oxidative metabolism and increased mtDNA mutations, but they differently alter mitochondrial morphology and organization. Substitutions near or within the GTPase domain (R94Q, T105M) result in loss of function and provoke aggregation of unfused mitochondria. In contrast, mutations within helix bundle 1 (R364W, L76P) enhance mitochondrial fusion, as demonstrated by the rescue of mitochondrial alterations and locomotor deficits by over-expression of the fission factor DRP1. In conclusion, we show that both dominant negative and dominant active forms of mitofusin can cause CMT2A-associated defects and propose for the first time that excessive mitochondrial fusion drives CMT2A pathogenesis in a large number of patients. © 2018 The Authors.

  14. Gain determination of optical active doped planar waveguides

    NASA Astrophysics Data System (ADS)

    Šmejcký, J.; Jeřábek, V.; Nekvindová, P.

    2017-12-01

    This paper summarizes the results of the gain transmission characteristics measurement carried out on the new ion exchange Ag+ - Na+ optical Er3+ and Yb3+ doped active planar waveguides realized on a silica based glass substrates. The results were used for optimization of the precursor concentration in the glass substrates. The gain measurements were performed by the time domain method using a pulse generator, as well as broadband measurement method using supercontinuum optical source in the wavelength domain. Both methods were compared and the results were graphically processed. It has been confirmed that pulse method is useful as it provides a very accurate measurement of the gain - pumping power characteristics for one wavelength. In the case of radiation spectral characteristics, our measurement exactly determined the maximum gain wavelength bandwidth of the active waveguide. The spectral characteristics of the pumped and unpumped waveguides were compared. The gain parameters of the reported silica-based glasses can be compared with the phosphate-based parameters, typically used for optical active devices application.

  15. Structural and functional analysis of APOA5 mutations identified in patients with severe hypertriglyceridemia[S

    PubMed Central

    Mendoza-Barberá, Elena; Julve, Josep; Nilsson, Stefan K.; Lookene, Aivar; Martín-Campos, Jesús M.; Roig, Rosa; Lechuga-Sancho, Alfonso M.; Sloan, John H.; Fuentes-Prior, Pablo; Blanco-Vaca, Francisco

    2013-01-01

    During the diagnosis of three unrelated patients with severe hypertriglyceridemia, three APOA5 mutations [p.(Ser232_Leu235)del, p.Leu253Pro, and p.Asp332ValfsX4] were found without evidence of concomitant LPL, APOC2, or GPIHBP1 mutations. The molecular mechanisms by which APOA5 mutations result in severe hypertriglyceridemia remain poorly understood, and the functional impairment/s induced by these specific mutations was not obvious. Therefore, we performed a thorough structural and functional analysis that included follow-up of patients and their closest relatives, measurement of apoA-V serum concentrations, and sequencing of the APOA5 gene in 200 nonhyperlipidemic controls. Further, we cloned, overexpressed, and purified both wild-type and mutant apoA-V variants and characterized their capacity to activate LPL. The interactions of recombinant wild-type and mutated apoA-V variants with liposomes of different composition, heparin, LRP1, sortilin, and SorLA/LR11 were also analyzed. Finally, to explore the possible structural consequences of these mutations, we developed a three-dimensional model of full-length, lipid-free human apoA-V. A complex, wide array of impairments was found in each of the three mutants, suggesting that the specific residues affected are critical structural determinants for apoA-V function in lipoprotein metabolism and, therefore, that these APOA5 mutations are a direct cause of hypertriglyceridemia. PMID:23307945

  16. Functional consequences and rescue potential of pathogenic missense mutations in tripeptidyl peptidase I.

    PubMed

    Walus, Mariusz; Kida, Elizabeth; Golabek, Adam A

    2010-06-01

    There are 35 missense mutations among 68 different mutations in the TPP1 gene, which encodes tripeptidyl peptidase I (TPPI), a lysosomal aminopeptidase associated with classic late-infantile neuronal ceroid lipofuscinosis (CLN2 disease). To elucidate the molecular mechanisms underlying TPPI deficiency in patients carrying missense mutations and to test the amenability of mutant proteins to chemical chaperones and permissive temperature treatment, we introduced individually 14 disease-associated missense mutations into human TPP1 cDNA and analyzed the cell biology of these TPPI variants expressed in Chinese hamster ovary cells. Most TPPI variants displayed obstructed transport to the lysosomes, prolonged half-life of the proenzyme, and residual or no enzymatic activity, indicating folding abnormalities. Protein misfolding was produced by mutations located in both the prosegment (p.Gly77Arg) and throughout the length of the mature enzyme. However, the routes of removal of misfolded proteins by the cells varied, ranging from their efficient degradation by the ubiquitin/proteasome system to abundant secretion. Two TPPI variants demonstrated enhanced processing in response to folding improvement treatment, and the activity of one of them, p.Arg447His, showed a fivefold increase under permissive temperature conditions, which suggests that folding improvement strategies may ameliorate the function of some misfolding TPPI mutant proteins.

  17. Inherited STING-activating mutation underlies a familial inflammatory syndrome with lupus-like manifestations

    PubMed Central

    Jeremiah, Nadia; Neven, Bénédicte; Gentili, Matteo; Callebaut, Isabelle; Maschalidi, Sophia; Stolzenberg, Marie-Claude; Goudin, Nicolas; Frémond, Marie-Louis; Nitschke, Patrick; Molina, Thierry J.; Blanche, Stéphane; Picard, Capucine; Rice, Gillian I.; Crow, Yanick J.; Manel, Nicolas; Fischer, Alain; Bader-Meunier, Brigitte; Rieux-Laucat, Frédéric

    2014-01-01

    Innate immunity to viral infection involves induction of the type I IFN response; however, dysfunctional regulation of this pathway leads to inappropriate inflammation. Here, we evaluated a nonconsanguineous family of mixed European descent, with 4 members affected by systemic inflammatory and autoimmune conditions, including lupus, with variable clinical expression. We identified a germline dominant gain-of-function mutation in TMEM173, which encodes stimulator of type I IFN gene (STING), in the affected individuals. STING is a key signaling molecule in cytosolic DNA-sensing pathways, and STING activation normally requires dimerization, which is induced by 2′3′ cyclic GMP-AMP (cGAMP) produced by the cGAMP synthase in response to cytosolic DNA. Structural modeling supported constitutive activation of the mutant STING protein based on stabilized dimerization. In agreement with the model predictions, we found that the STING mutant spontaneously localizes in the Golgi of patient fibroblasts and is constitutively active in the absence of exogenous 2′3′-cGAMP in vitro. Accordingly, we observed elevated serum IFN activity and a type I IFN signature in peripheral blood from affected family members. These findings highlight the key role of STING in activating both the innate and adaptive immune responses and implicate aberrant STING activation in features of human lupus. PMID:25401470

  18. Disease-Associated Mutations Disrupt Functionally Important Regions of Intrinsic Protein Disorder

    PubMed Central

    Vacic, Vladimir; Markwick, Phineus R. L.; Oldfield, Christopher J.; Zhao, Xiaoyue; Haynes, Chad; Uversky, Vladimir N.; Iakoucheva, Lilia M.

    2012-01-01

    The effects of disease mutations on protein structure and function have been extensively investigated, and many predictors of the functional impact of single amino acid substitutions are publicly available. The majority of these predictors are based on protein structure and evolutionary conservation, following the assumption that disease mutations predominantly affect folded and conserved protein regions. However, the prevalence of the intrinsically disordered proteins (IDPs) and regions (IDRs) in the human proteome together with their lack of fixed structure and low sequence conservation raise a question about the impact of disease mutations in IDRs. Here, we investigate annotated missense disease mutations and show that 21.7% of them are located within such intrinsically disordered regions. We further demonstrate that 20% of disease mutations in IDRs cause local disorder-to-order transitions, which represents a 1.7–2.7 fold increase compared to annotated polymorphisms and neutral evolutionary substitutions, respectively. Secondary structure predictions show elevated rates of transition from helices and strands into loops and vice versa in the disease mutations dataset. Disease disorder-to-order mutations also influence predicted molecular recognition features (MoRFs) more often than the control mutations. The repertoire of disorder-to-order transition mutations is limited, with five most frequent mutations (R→W, R→C, E→K, R→H, R→Q) collectively accounting for 44% of all deleterious disorder-to-order transitions. As a proof of concept, we performed accelerated molecular dynamics simulations on a deleterious disorder-to-order transition mutation of tumor protein p63 and, in agreement with our predictions, observed an increased α-helical propensity of the region harboring the mutation. Our findings highlight the importance of mutations in IDRs and refine the traditional structure-centric view of disease mutations. The results of this study offer a new

  19. Non-hyperfunctioning nodules from multinodular goiters: a minor role in pathogenesis for somatic activating mutations in the TSH-receptor and Gsalpha subunit genes.

    PubMed

    Derrien, C; Sonnet, E; Gicquel, I; Le Gall, J Y; Poirier, J Y; David, V; Maugendre, D

    2001-05-01

    Constitutive activation of the cAMP pathway stimulates thyrocyte proliferation. Gain-of-function mutations in Gsalpha protein have already been identified in thyroid nodules which have lost the ability to trap iodine. In contrast, most of the studies failed to detect somatic activating mutations in the thyrotropin receptor (TSH-R) in non-hyperfunctioning thyroid tumors. The aim of this study was to screen for mutations TSH-R exon 10, encoding the whole intracytoplasmic area involved in signal transduction, and Gsalpha exons 8 and 9, containing the two hot-spot codons 201 and 227, in a subset of non-hyperfunctioning nodules from multinodular goiter. Identified by matching ultrasonography and scintiscan, 22 eufunctioning (normal 99Tc uptake) and 15 nonfunctioning (decreased 99Tc uptake) nodules from 27 non-toxic multinodular goiters were isolated. After DNA extraction, TSH-R exon 10 was analyzed by direct sequencing of the PCR products and Gsalpha exons 8 and 9 by Denaturing Gradient Gel Electrophoresis. No mutation of TSH-R or Gsalpha was detected in the 37 nodules analyzed. This absence of mutation, despite the use of two sensitive screening methods associated with the analysis of the TSH-R whole intracytoplasmic area and Gsalpha two hot-spot codons, suggests that TSH-R and Gsalpha play a minor role in the pathogenesis of non-toxic nodules from multinodular goiters.

  20. Cardiac muscle activation blunted by a mutation to the regulatory component, troponin T.

    PubMed

    Kobayashi, Minae; Debold, Edward P; Turner, Matthew A; Kobayashi, Tomoyoshi

    2013-09-06

    The striated muscle thin filament comprises actin, tropomyosin, and troponin. The Tn complex consists of three subunits, troponin C (TnC), troponin I (TnI), and troponin T (TnT). TnT may serve as a bridge between the Ca(2+) sensor (TnC) and the actin filament. In the short helix preceding the IT-arm region, H1(T2), there are known dilated cardiomyopathy-linked mutations (among them R205L). Thus we hypothesized that there is an element in this short helix that plays an important role in regulating the muscle contraction, especially in Ca(2+) activation. We mutated Arg-205 and several other amino acid residues within and near the H1(T2) helix. Utilizing an alanine replacement method to compare the effects of the mutations, the biochemical and mechanical impact on the actomyosin interaction was assessed by solution ATPase activity assay, an in vitro motility assay, and Ca(2+) binding measurements. Ca(2+) activation was markedly impaired by a point mutation of the highly conserved basic residue R205A, residing in the short helix H1(T2) of cTnT, whereas the mutations to nearby residues exhibited little effect on function. Interestingly, rigor activation was unchanged between the wild type and R205A TnT. In addition to the reduction in Ca(2+) sensitivity observed in Ca(2+) binding to the thin filament, myosin S1-ADP binding to the thin filament was significantly affected by the same mutation, which was also supported by a series of S1 concentration-dependent ATPase assays. These suggest that the R205A mutation alters function through reduction in the nature of cooperative binding of S1.

  1. Loss-of-Function Mutations in APPL1 in Familial Diabetes Mellitus

    PubMed Central

    Prudente, Sabrina; Jungtrakoon, Prapaporn; Marucci, Antonella; Ludovico, Ornella; Buranasupkajorn, Patinut; Mazza, Tommaso; Hastings, Timothy; Milano, Teresa; Morini, Eleonora; Mercuri, Luana; Bailetti, Diego; Mendonca, Christine; Alberico, Federica; Basile, Giorgio; Romani, Marta; Miccinilli, Elide; Pizzuti, Antonio; Carella, Massimo; Barbetti, Fabrizio; Pascarella, Stefano; Marchetti, Piero; Trischitta, Vincenzo; Di Paola, Rosa; Doria, Alessandro

    2015-01-01

    Diabetes mellitus is a highly heterogeneous disorder encompassing several distinct forms with different clinical manifestations including a wide spectrum of age at onset. Despite many advances, the causal genetic defect remains unknown for many subtypes of the disease, including some of those forms with an apparent Mendelian mode of inheritance. Here we report two loss-of-function mutations (c.1655T>A [p.Leu552∗] and c.280G>A [p.Asp94Asn]) in the gene for the Adaptor Protein, Phosphotyrosine Interaction, PH domain, and leucine zipper containing 1 (APPL1) that were identified by means of whole-exome sequencing in two large families with a high prevalence of diabetes not due to mutations in known genes involved in maturity onset diabetes of the young (MODY). APPL1 binds to AKT2, a key molecule in the insulin signaling pathway, thereby enhancing insulin-induced AKT2 activation and downstream signaling leading to insulin action and secretion. Both mutations cause APPL1 loss of function. The p.Leu552∗ alteration totally abolishes APPL1 protein expression in HepG2 transfected cells and the p.Asp94Asn alteration causes significant reduction in the enhancement of the insulin-stimulated AKT2 and GSK3β phosphorylation that is observed after wild-type APPL1 transfection. These findings—linking APPL1 mutations to familial forms of diabetes—reaffirm the critical role of APPL1 in glucose homeostasis. PMID:26073777

  2. Promoter-dependent activity on androgen receptor N-terminal domain mutations in androgen insensitivity syndrome.

    PubMed

    Tadokoro-Cuccaro, Rieko; Davies, John; Mongan, Nigel P; Bunch, Trevor; Brown, Rosalind S; Audi, Laura; Watt, Kate; McEwan, Iain J; Hughes, Ieuan A

    2014-01-01

    Androgen receptor (AR) mutations are associated with androgen insensitivity syndrome (AIS). Missense mutations identified in the AR-N-terminal domain (AR-NTD) are rare, and clinical phenotypes are typically mild. We investigated 7 missense mutations and 2 insertion/deletions located in the AR-NTD. This study aimed to elucidate the pathogenic role of AR-NTD mutants in AIS and to use this knowledge to further define AR-NTD function. AR-NTD mutations (Q120E, A159T, G216R, N235K, G248V, L272F, and P380R) were introduced into AR-expression plasmids. Stably expressing cell lines were established for del57L and ins58L. Transactivation was measured using luciferase reporter constructs under the control of GRE and Pem promoters. Intrinsic fluorescence spectroscopy and partial proteolysis studies were performed for mutations which showed reduced activities by using a purified AR-AF1 protein. Pem-luciferase reporter activation was reduced for A159T, N235K, and G248V but not the GRE-luciferase reporter. Protein structure analysis detected no significant change in the AR-AF1 region for these mutations. Reduced cellular expression and transactivation activity were observed for ins58L. The mutations Q120E, G216R, L272F, P380R, and del57L showed small or no detectable changes in function. Thus, clinical and experimental analyses have identified novel AR-signalling defects associated with mutations in the structurally disordered AR-NTD domain in patients with AIS. © 2014 S. Karger AG, Basel.

  3. Metabolic functions of AMPK: aspects of structure and of natural mutations in the regulatory gamma subunits.

    PubMed

    Moffat, Cynthia; Harper, Mary Ellen

    2010-10-01

    AMP-activated protein kinase, AMPK, is widely accepted as the master regulator of energy levels within the cell. Responding quickly to changing energy demands, AMPK works to restore levels of ATP during times of cellular stress by promoting ATP producing catabolic pathways and inhibiting ATP consuming anabolic ones. As a heterotrimeric protein complex, AMPK's subunits each act in unique and crucial ways to control AMPK function and its localization within the cell. Research in the last decade has identified and begun to characterize the impact of naturally occurring mutations in the gamma regulatory subunits. Mutations in the γ2 subunit have implications for cardiac function and disease, while the R225W mutation in the γ3 subunit have implications for skeletal muscle fuel metabolism and resistance to fatigue. Research focused on structure-function aspects of AMPK regulatory subunits will lead to a better understanding of the roles of AMPK in health and disease.

  4. STRUCTURAL AND FUNCTIONAL CONSEQUENCES OF CIRCULAR PERMUTATION ON THE ACTIVE SITE OF OLD YELLOW ENZYME.

    PubMed

    Daugherty, Ashley B; Horton, John R; Cheng, Xiaodong; Lutz, Stefan

    2015-02-06

    Circular permutation of the NADPH-dependent oxidoreductase Old Yellow Enzyme from Saccharomyces pastorianus (OYE1) can significantly enhance the enzyme's catalytic performance. Termini relocation into four regions of the protein (sectors I-IV) near the active site has proven effective in altering enzyme function. To better understand the structural consequences and rationalize the observed functional gains in these OYE1 variants, we selected representatives from sectors I-III for further characterization by biophysical methods and X-ray crystallography. These investigations not only show trends in enzyme stability and quaternary structure as a function of termini location, but also provide a possible explanation for the catalytic gains in our top-performing OYE variant (new N-terminus at residue 303; sector III). Crystallographic analysis indicates that termini relocation into sector III affects the loop β6 region (amino acid positions: 290-310) of OYE1 which forms a lid over the active site. Peptide backbone cleavage greatly enhances local flexibility, effectively converting the loop into a tether and consequently increasing the environmental exposure of the active site. Interestingly, such active site remodeling does not negatively impact the enzyme's activity and stereoselectivity, nor does it perturb the conformation of other key active site residues with the exception of Y375. These observations were confirmed in truncation experiments, deleting all residues of the loop β6 region in our OYE variant. Intrigued by the finding that circular permutation leaves most of the key catalytic residues unchanged, we also tested OYE permutants for possible additive or synergistic effects of amino acid substitutions. Distinct functional changes in these OYE variants were detected upon mutations at W116, known in native OYE1 to cause inversion of diastereo-selectivity for ( S )-carvone reduction. Our findings demonstrate the contribution of loop β6 toward determining the

  5. TERT promoter mutation in adult granulosa cell tumor of the ovary.

    PubMed

    Pilsworth, Jessica A; Cochrane, Dawn R; Xia, Zhouchunyang; Aubert, Geraldine; Färkkilä, Anniina E M; Horlings, Hugo M; Yanagida, Satoshi; Yang, Winnie; Lim, Jamie L P; Wang, Yi Kan; Bashashati, Ali; Keul, Jacqueline; Wong, Adele; Norris, Kevin; Brucker, Sara Y; Taran, Florin-Andrei; Krämer, Bernhard; Staebler, Annette; Oliva, Esther; Shah, Sohrab P; Kommoss, Stefan; Kommoss, Friedrich; Gilks, C Blake; Baird, Duncan M; Huntsman, David G

    2018-02-15

    The telomerase reverse transcriptase (TERT) gene is highly expressed in stem cells and silenced upon differentiation. Cancer cells can attain immortality by activating TERT to maintain telomere length and telomerase activity, which is a crucial step of tumorigenesis. Two somatic mutations in the TERT promoter (C228T; C250T) have been identified as gain-of-function mutations that promote transcriptional activation of TERT in multiple cancers, such as melanoma and glioblastoma. A recent study investigating TERT promoter mutations in ovarian carcinomas found C228T and C250T mutations in 15.9% of clear cell carcinomas. However, it is unknown whether these mutations are frequent in other ovarian cancer subtypes, in particular, sex cord-stromal tumors including adult granulosa cell tumors. We performed whole-genome sequencing on ten adult granulosa cell tumors with matched normal blood and identified a TERT C228T promoter mutation in 50% of tumors. We found that adult granulosa cell tumors with mutated TERT promoter have increased expression of TERT mRNA and exhibited significantly longer telomeres compared to those with wild-type TERT promoter. Extension cohort analysis using allelic discrimination revealed the TERT C228T mutation in 51 of 229 primary adult granulosa cell tumors (22%), 24 of 58 recurrent adult granulosa cell tumors (41%), and 1 of 22 other sex cord-stromal tumors (5%). There was a significant difference in overall survival between patients with TERT C228T promoter mutation in the primary tumors and those without it (p = 0.00253, log-rank test). In seven adult granulosa cell tumors, we found the TERT C228T mutation present in recurrent tumors and absent in the corresponding primary tumor. Our data suggest that TERT C228T promoter mutations may have an important role in progression of adult granulosa cell tumors.

  6. An improved method on stimulated T-lymphocytes to functionally characterize novel and known LDLR mutations[S

    PubMed Central

    Romano, Maria; Di Taranto, Maria Donata; Mirabelli, Peppino; D'Agostino, Maria Nicoletta; Iannuzzi, Arcangelo; Marotta, Gennaro; Gentile, Marco; Raia, Maddalena; Di Noto, Rosa; Del Vecchio, Luigi; Rubba, Paolo; Fortunato, Giuliana

    2011-01-01

    The main causes of familial hypercholesterolemia (FH) are mutations in LDL receptor (LDLR) gene. Functional studies are necessary to demonstrate the LDLR function impairment caused by mutations and would be useful as a diagnostic tool if they allow discrimination between FH patients and controls. In order to identify the best method to detect LDLR activity, we compared continuous Epstein-Barr virus (EBV)-transformed B-lymphocytes and mitogen stimulated T-lymphocytes. In addition, we characterized both novel and known mutations in the LDLR gene. T-lymphocytes and EBV-transformed B-lymphocytes were obtained from peripheral blood of 24 FH patients and 24 control subjects. Functional assays were performed by incubation with fluorescent LDL followed by flow cytometry analysis. Residual LDLR activity was calculated normalizing fluorescence for the mean fluorescence of controls. With stimulated T-lymphocytes we obtained a better discrimination capacity between controls and FH patients compared with EBV-transformed B-lymphocytes as demonstrated by receiver operating characteristic (ROC) curve analysis (the areas under the curve are 1.000 and 0.984 respectively; P < 0.0001 both). The characterization of LDLR activity through T-lymphocytes is more simple and faster than the use of EBV-transformed B-lymphocytes and allows a complete discrimination between controls and FH patients. Therefore the evaluation of residual LDLR activity could be helpful not only for mutation characterization but also for diagnostic purposes. PMID:21865347

  7. Computationally optimized deimmunization libraries yield highly mutated enzymes with low immunogenicity and enhanced activity.

    PubMed

    Salvat, Regina S; Verma, Deeptak; Parker, Andrew S; Kirsch, Jack R; Brooks, Seth A; Bailey-Kellogg, Chris; Griswold, Karl E

    2017-06-27

    Therapeutic proteins of wide-ranging function hold great promise for treating disease, but immune surveillance of these macromolecules can drive an antidrug immune response that compromises efficacy and even undermines safety. To eliminate widespread T-cell epitopes in any biotherapeutic and thereby mitigate this key source of detrimental immune recognition, we developed a Pareto optimal deimmunization library design algorithm that optimizes protein libraries to account for the simultaneous effects of combinations of mutations on both molecular function and epitope content. Active variants identified by high-throughput screening are thus inherently likely to be deimmunized. Functional screening of an optimized 10-site library (1,536 variants) of P99 β-lactamase (P99βL), a component of ADEPT cancer therapies, revealed that the population possessed high overall fitness, and comprehensive analysis of peptide-MHC II immunoreactivity showed the population possessed lower average immunogenic potential than the wild-type enzyme. Although similar functional screening of an optimized 30-site library (2.15 × 10 9 variants) revealed reduced population-wide fitness, numerous individual variants were found to have activity and stability better than the wild type despite bearing 13 or more deimmunizing mutations per enzyme. The immunogenic potential of one highly active and stable 14-mutation variant was assessed further using ex vivo cellular immunoassays, and the variant was found to silence T-cell activation in seven of the eight blood donors who responded strongly to wild-type P99βL. In summary, our multiobjective library-design process readily identified large and mutually compatible sets of epitope-deleting mutations and produced highly active but aggressively deimmunized constructs in only one round of library screening.

  8. Hierarchical Modeling of Activation Mechanisms in the ABL and EGFR Kinase Domains: Thermodynamic and Mechanistic Catalysts of Kinase Activation by Cancer Mutations

    PubMed Central

    Dixit, Anshuman; Verkhivker, Gennady M.

    2009-01-01

    Structural and functional studies of the ABL and EGFR kinase domains have recently suggested a common mechanism of activation by cancer-causing mutations. However, dynamics and mechanistic aspects of kinase activation by cancer mutations that stimulate conformational transitions and thermodynamic stabilization of the constitutively active kinase form remain elusive. We present a large-scale computational investigation of activation mechanisms in the ABL and EGFR kinase domains by a panel of clinically important cancer mutants ABL-T315I, ABL-L387M, EGFR-T790M, and EGFR-L858R. We have also simulated the activating effect of the gatekeeper mutation on conformational dynamics and allosteric interactions in functional states of the ABL-SH2-SH3 regulatory complexes. A comprehensive analysis was conducted using a hierarchy of computational approaches that included homology modeling, molecular dynamics simulations, protein stability analysis, targeted molecular dynamics, and molecular docking. Collectively, the results of this study have revealed thermodynamic and mechanistic catalysts of kinase activation by major cancer-causing mutations in the ABL and EGFR kinase domains. By using multiple crystallographic states of ABL and EGFR, computer simulations have allowed one to map dynamics of conformational fluctuations and transitions in the normal (wild-type) and oncogenic kinase forms. A proposed multi-stage mechanistic model of activation involves a series of cooperative transitions between different conformational states, including assembly of the hydrophobic spine, the formation of the Src-like intermediate structure, and a cooperative breakage and formation of characteristic salt bridges, which signify transition to the active kinase form. We suggest that molecular mechanisms of activation by cancer mutations could mimic the activation process of the normal kinase, yet exploiting conserved structural catalysts to accelerate a conformational transition and the enhanced

  9. Single-cell codetection of metabolic activity, intracellular functional proteins, and genetic mutations from rare circulating tumor cells.

    PubMed

    Zhang, Yu; Tang, Yin; Sun, Shuai; Wang, Zhihua; Wu, Wenjun; Zhao, Xiaodong; Czajkowsky, Daniel M; Li, Yan; Tian, Jianhui; Xu, Ling; Wei, Wei; Deng, Yuliang; Shi, Qihui

    2015-10-06

    The high glucose uptake and activation of oncogenic signaling pathways in cancer cells has long made these features, together with the mutational spectrum, prime diagnostic targets of circulating tumor cells (CTCs). Further, an ability to characterize these properties at a single cell resolution is widely believed to be essential, as the known extensive heterogeneity in CTCs can obscure important correlations in data obtained from cell population-based methods. However, to date, it has not been possible to quantitatively measure metabolic, proteomic, and genetic data from a single CTC. Here we report a microchip-based approach that allows for the codetection of glucose uptake, intracellular functional proteins, and genetic mutations at the single-cell level from rare tumor cells. The microchip contains thousands of nanoliter grooves (nanowells) that isolate individual CTCs and allow for the assessment of their glucose uptake via imaging of a fluorescent glucose analog, quantification of a panel of intracellular signaling proteins using a miniaturized antibody barcode microarray, and retrieval of the individual cell nuclei for subsequent off-chip genome amplification and sequencing. This approach integrates molecular-scale information on the metabolic, proteomic, and genetic status of single cells and permits the inference of associations between genetic signatures, energy consumption, and phosphoproteins oncogenic signaling activities in CTCs isolated from blood samples of patients. Importantly, this microchip chip-based approach achieves this multidimensional molecular analysis with minimal cell loss (<20%), which is the bottleneck of the rare cell analysis.

  10. Dissecting protein function: an efficient protocol for identifying separation-of-function mutations that encode structurally stable proteins.

    PubMed

    Lubin, Johnathan W; Rao, Timsi; Mandell, Edward K; Wuttke, Deborah S; Lundblad, Victoria

    2013-03-01

    Mutations that confer the loss of a single biochemical property (separation-of-function mutations) can often uncover a previously unknown role for a protein in a particular biological process. However, most mutations are identified based on loss-of-function phenotypes, which cannot differentiate between separation-of-function alleles vs. mutations that encode unstable/unfolded proteins. An alternative approach is to use overexpression dominant-negative (ODN) phenotypes to identify mutant proteins that disrupt function in an otherwise wild-type strain when overexpressed. This is based on the assumption that such mutant proteins retain an overall structure that is comparable to that of the wild-type protein and are able to compete with the endogenous protein (Herskowitz 1987). To test this, the in vivo phenotypes of mutations in the Est3 telomerase subunit from Saccharomyces cerevisiae were compared with the in vitro secondary structure of these mutant proteins as analyzed by circular-dichroism spectroscopy, which demonstrates that ODN is a more sensitive assessment of protein stability than the commonly used method of monitoring protein levels from extracts. Reverse mutagenesis of EST3, which targeted different categories of amino acids, also showed that mutating highly conserved charged residues to the oppositely charged amino acid had an increased likelihood of generating a severely defective est3(-) mutation, which nevertheless encoded a structurally stable protein. These results suggest that charge-swap mutagenesis directed at a limited subset of highly conserved charged residues, combined with ODN screening to eliminate partially unfolded proteins, may provide a widely applicable and efficient strategy for generating separation-of-function mutations.

  11. Activity gains after reconstructions of elbow extension in patients with tetraplegia.

    PubMed

    Wangdell, Johanna; Fridén, Jan

    2012-05-01

    Reconstruction of triceps function in persons with tetraplegia is an established surgical intervention. The purpose of this study was to investigate and evaluate patient perspective of gains in activity and satisfaction after surgical reconstruction of triceps function and subsequent rehabilitation. We studied the effects of surgery and rehabilitation in 14 persons (19 arms) treated with deltoid-to-triceps transfer. We used Canadian Occupational Performance Measurement standards to capture the performance and satisfaction of patient-identified activity goals. Follow-up was performed at 6 and 12 months postoperatively. To make group analyses, we classified activity goals according to the International Classification of Function, Disability, and Health categories of activities and participation, as well as relative to the position of the arm in space. Patients reported improvement in performance after surgery, and satisfaction was rated even higher. Improvement was seen in all types of activities that patients had prioritized. No single goal was rated lower at 12 months' follow-up than before surgery. The most common activity gains were related to "driving a wheelchair" and the ability to "reach out," each of which represented 20% of expressed goals. Although "driving a wheelchair" and "moving the body" (transfers) were common goals, the smallest improvements for both performance and satisfaction after 12 months were seen in these areas. We observed the highest performance improvement in the category of "writing" and the ability to "stretch out the arm when lying down." Improvement in activity continues over the first year after triceps reconstruction. Complex activities continue to improve over a longer period than simpler activities. We saw the highest improvement in activities performed without the aid of gravity and activities highly dependent on coordination. Such actions are difficult to compensate for by technique or skills, and therefore elbow extension is

  12. Enhanced in planta Fitness through Adaptive Mutations in EfpR, a Dual Regulator of Virulence and Metabolic Functions in the Plant Pathogen Ralstonia solanacearum.

    PubMed

    Perrier, Anthony; Peyraud, Rémi; Rengel, David; Barlet, Xavier; Lucasson, Emmanuel; Gouzy, Jérôme; Peeters, Nemo; Genin, Stéphane; Guidot, Alice

    2016-12-01

    Experimental evolution of the plant pathogen Ralstonia solanacearum, where bacteria were maintained on plant lineages for more than 300 generations, revealed that several independent single mutations in the efpR gene from populations propagated on beans were associated with fitness gain on bean. In the present work, novel allelic efpR variants were isolated from populations propagated on other plant species, thus suggesting that mutations in efpR were not solely associated to a fitness gain on bean, but also on additional hosts. A transcriptomic profiling and phenotypic characterization of the efpR deleted mutant showed that EfpR acts as a global catabolic repressor, directly or indirectly down-regulating the expression of multiple metabolic pathways. EfpR also controls virulence traits such as exopolysaccharide production, swimming and twitching motilities and deletion of efpR leads to reduced virulence on tomato plants after soil drenching inoculation. We studied the impact of the single mutations that occurred in efpR during experimental evolution and found that these allelic mutants displayed phenotypic characteristics similar to the deletion mutant, although not behaving as complete loss-of-function mutants. These adaptive mutations therefore strongly affected the function of efpR, leading to an expanded metabolic versatility that should benefit to the evolved clones. Altogether, these results indicated that EfpR is a novel central player of the R. solanacearum virulence regulatory network. Independent mutations therefore appeared during experimental evolution in the evolved clones, on a crucial node of this network, to favor adaptation to host vascular tissues through regulatory and metabolic rewiring.

  13. The association between patient participation and functional gain following inpatient rehabilitation.

    PubMed

    Morghen, Sara; Morandi, Alessandro; Guccione, Andrew A; Bozzini, Michela; Guerini, Fabio; Gatti, Roberto; Del Santo, Francesco; Gentile, Simona; Trabucchi, Marco; Bellelli, Giuseppe

    2017-08-01

    To evaluate patients' participation during physical therapy sessions as assessed with the Pittsburgh rehabilitation participation scale (PRPS) as a possible predictor of functional gain after rehabilitation training. All patients aged 65 years or older consecutively admitted to a Department of Rehabilitation and Aged Care (DRAC) were evaluated on admission regarding their health, nutritional, functional and cognitive status. Functional status was assessed with the functional independence measure (FIM) on admission and at discharge. Participation during rehabilitation sessions was measured with the PRPS. Functional gain was evaluated using the Montebello rehabilitation factor score (MRFS efficacy), and patients stratified in two groups according to their level of functional gain and their sociodemographic, clinical and functional characteristics were compared. Predictors of poor functional gain were evaluated using a multivariable logistic regression model adjusted for confounding factors. A total of 556 subjects were included in this study. Patients with poor functional gain at discharge demonstrated lower participation during physical therapy sessions were significantly older, more cognitively and functionally impaired on admission, more depressed, more comorbid, and more frequently admitted for cardiac disease or immobility syndrome than their counterparts. There was a significant linear association between PRPS scores and MRFS efficacy. In a multivariable logistic regression model, participation was independently associated with functional gain at discharge (odds ratio 1.51, 95 % confidence interval 1.19-1.91). This study showed that participation during physical therapy affects the extent of functional gain at discharge in a large population of older patients with multiple diseases receiving in-hospital rehabilitation.

  14. Gain-of-function mutagenesis approaches in rice for functional genomics and improvement of crop productivity.

    PubMed

    Moin, Mazahar; Bakshi, Achala; Saha, Anusree; Dutta, Mouboni; Kirti, P B

    2017-07-01

    The epitome of any genome research is to identify all the existing genes in a genome and investigate their roles. Various techniques have been applied to unveil the functions either by silencing or over-expressing the genes by targeted expression or random mutagenesis. Rice is the most appropriate model crop for generating a mutant resource for functional genomic studies because of the availability of high-quality genome sequence and relatively smaller genome size. Rice has syntenic relationships with members of other cereals. Hence, characterization of functionally unknown genes in rice will possibly provide key genetic insights and can lead to comparative genomics involving other cereals. The current review attempts to discuss the available gain-of-function mutagenesis techniques for functional genomics, emphasizing the contemporary approach, activation tagging and alterations to this method for the enhancement of yield and productivity of rice. © The Author 2017. Published by Oxford University Press. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  15. Effects of Mutations on Structure-Function Relationships of Matrix Metalloproteinase-1.

    PubMed

    Singh, Warispreet; Fields, Gregg B; Christov, Christo Z; Karabencheva-Christova, Tatyana G

    2016-10-14

    Matrix metalloproteinase-1 (MMP-1) is one of the most widely studied enzymes involved in collagen degradation. Mutations of specific residues in the MMP-1 hemopexin-like (HPX) domain have been shown to modulate activity of the MMP-1 catalytic (CAT) domain. In order to reveal the structural and conformational effects of such mutations, a molecular dynamics (MD) study was performed of in silico mutated residues in the X-ray crystallographic structure of MMP-1 complexed with a collagen-model triple-helical peptide (THP). The results indicate an important role of the mutated residues in MMP-1 interactions with the THP and communication between the CAT and the HPX domains. Each mutation has a distinct impact on the correlated motions in the MMP-1•THP. An increased collagenase activity corresponded to the appearance of a unique anti-correlated motion and decreased correlated motions, while decreased collagenase activity corresponded both to increased and decreased anti-correlated motions.

  16. Discovery and prioritization of somatic mutations in diffuse large B-cell lymphoma (DLBCL) by whole-exome sequencing

    PubMed Central

    Lohr, Jens G.; Stojanov, Petar; Lawrence, Michael S.; Auclair, Daniel; Chapuy, Bjoern; Sougnez, Carrie; Cruz-Gordillo, Peter; Knoechel, Birgit; Asmann, Yan W.; Slager, Susan L.; Novak, Anne J.; Dogan, Ahmet; Ansell, Stephen M.; Zou, Lihua; Gould, Joshua; Saksena, Gordon; Stransky, Nicolas; Rangel-Escareño, Claudia; Fernandez-Lopez, Juan Carlos; Hidalgo-Miranda, Alfredo; Melendez-Zajgla, Jorge; Hernández-Lemus, Enrique; Schwarz-Cruz y Celis, Angela; Imaz-Rosshandler, Ivan; Ojesina, Akinyemi I.; Jung, Joonil; Pedamallu, Chandra S.; Lander, Eric S.; Habermann, Thomas M.; Cerhan, James R.; Shipp, Margaret A.; Getz, Gad; Golub, Todd R.

    2012-01-01

    To gain insight into the genomic basis of diffuse large B-cell lymphoma (DLBCL), we performed massively parallel whole-exome sequencing of 55 primary tumor samples from patients with DLBCL and matched normal tissue. We identified recurrent mutations in genes that are well known to be functionally relevant in DLBCL, including MYD88, CARD11, EZH2, and CREBBP. We also identified somatic mutations in genes for which a functional role in DLBCL has not been previously suspected. These genes include MEF2B, MLL2, BTG1, GNA13, ACTB, P2RY8, PCLO, and TNFRSF14. Further, we show that BCL2 mutations commonly occur in patients with BCL2/IgH rearrangements as a result of somatic hypermutation normally occurring at the IgH locus. The BCL2 point mutations are primarily synonymous, and likely caused by activation-induced cytidine deaminase–mediated somatic hypermutation, as shown by comprehensive analysis of enrichment of mutations in WRCY target motifs. Those nonsynonymous mutations that are observed tend to be found outside of the functionally important BH domains of the protein, suggesting that strong negative selection against BCL2 loss-of-function mutations is at play. Last, by using an algorithm designed to identify likely functionally relevant but infrequent mutations, we identify KRAS, BRAF, and NOTCH1 as likely drivers of DLBCL pathogenesis in some patients. Our data provide an unbiased view of the landscape of mutations in DLBCL, and this in turn may point toward new therapeutic strategies for the disease. PMID:22343534

  17. Mutations Affecting G-Protein Subunit α11 in Hypercalcemia and Hypocalcemia

    PubMed Central

    Babinsky, Valerie N.; Head, Rosie A.; Cranston, Treena; Rust, Nigel; Hobbs, Maurine R.; Heath, Hunter; Thakker, Rajesh V.

    2013-01-01

    BACKGROUND Familial hypocalciuric hypercalcemia is a genetically heterogeneous disorder with three variants: types 1, 2, and 3. Type 1 is due to loss-of-function mutations of the calcium-sensing receptor, a guanine nucleotide–binding protein (G-protein)–coupled receptor that signals through the G-protein subunit α11 (Gα11). Type 3 is associated with adaptor-related protein complex 2, sigma 1 subunit (AP2S1) mutations, which result in altered calcium-sensing receptor endocytosis. We hypothesized that type 2 is due to mutations effecting Gα11 loss of function, since Gα11 is involved in calcium-sensing receptor signaling, and its gene (GNA11) and the type 2 locus are colocalized on chromosome 19p13.3. We also postulated that mutations effecting Gα11 gain of function, like the mutations effecting calcium-sensing receptor gain of function that cause autosomal dominant hypocalcemia type 1, may lead to hypocalcemia. METHODS We performed GNA11 mutational analysis in a kindred with familial hypocalciuric hypercalcemia type 2 and in nine unrelated patients with familial hypocalciuric hypercalcemia who did not have mutations in the gene encoding the calcium-sensing receptor (CASR) or AP2S1. We also performed this analysis in eight unrelated patients with hypocalcemia who did not have CASR mutations. In addition, we studied the effects of GNA11 mutations on Gα11 protein structure and calcium-sensing receptor signaling in human embryonic kidney 293 (HEK293) cells. RESULTS The kindred with familial hypocalciuric hypercalcemia type 2 had an in-frame deletion of a conserved Gα11 isoleucine (Ile200del), and one of the nine unrelated patients with familial hypocalciuric hypercalcemia had a missense GNA11 mutation (Leu135Gln). Missense GNA11 mutations (Arg181Gln and Phe341Leu) were detected in two unrelated patients with hypocalcemia; they were therefore identified as having autosomal dominant hypocalcemia type 2. All four GNA11 mutations predicted disrupted protein

  18. Clustered Mutation Signatures Reveal that Error-Prone DNA Repair Targets Mutations to Active Genes.

    PubMed

    Supek, Fran; Lehner, Ben

    2017-07-27

    Many processes can cause the same nucleotide change in a genome, making the identification of the mechanisms causing mutations a difficult challenge. Here, we show that clustered mutations provide a more precise fingerprint of mutagenic processes. Of nine clustered mutation signatures identified from >1,000 tumor genomes, three relate to variable APOBEC activity and three are associated with tobacco smoking. An additional signature matches the spectrum of translesion DNA polymerase eta (POLH). In lymphoid cells, these mutations target promoters, consistent with AID-initiated somatic hypermutation. In solid tumors, however, they are associated with UV exposure and alcohol consumption and target the H3K36me3 chromatin of active genes in a mismatch repair (MMR)-dependent manner. These regions normally have a low mutation rate because error-free MMR also targets H3K36me3 chromatin. Carcinogens and error-prone repair therefore redistribute mutations to the more important regions of the genome, contributing a substantial mutation load in many tumors, including driver mutations. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Functional analysis of LDLR promoter and 5' UTR mutations in subjects with clinical diagnosis of familial hypercholesterolemia.

    PubMed

    De Castro-Orós, Isabel; Pampín, Sandra; Bolado-Carrancio, Alfonso; De Cubas, Aguirre; Palacios, Lourdes; Plana, Nuria; Puzo, Jose; Martorell, Esperanza; Stef, Marianne; Masana, Luis; Civeira, Fernando; Rodríguez-Rey, Jose Carlos; Pocoví, Miguel

    2011-08-01

    Familial hypercholesterolemia (FH) is a dominant disorder due to mutations in the LDLR gene. Several mutations in the LDLR promoter are associated with FH. Screening of 3,705 Spanish FH patients identified 10 variants in the promoter and 5' UTR. Here, we analyse the functionality of six newly identified LDLR variants. Mutations located in the LDLR promoter regulatory elements R2 and R3 (c.-155_-150delACCCCinsTTCTGCAAACTCCTCCC, c.-136C>G, c.-140C>G, and c.-140C>T) resulted in 6 to 15% residual activity in reporter expression experiments and changes in nuclear protein binding affinity compared to wild type. No reduction was observed when cells were transfected with c.-208T, c.-88A, and c.-36G mutant fragments. Our results indicate that mutations localized in R2 and R3 are associated with hypercholesterolemia, whereas mutations outside the LDLR response elements are not a cause of FH. This data emphasizes the importance of functional analysis of variants in the LDLR promoter to determine their association with the FH phenotype. © 2011 Wiley-Liss, Inc.

  20. Functional consequences of mutations in CDKL5, an X-linked gene involved in infantile spasms and mental retardation.

    PubMed

    Bertani, Ilaria; Rusconi, Laura; Bolognese, Fabrizio; Forlani, Greta; Conca, Barbara; De Monte, Lucia; Badaracco, Gianfranco; Landsberger, Nicoletta; Kilstrup-Nielsen, Charlotte

    2006-10-20

    Mutations in the X-linked cyclin-dependent kinase-like 5 (CDKL5) gene have been identified in patients with Rett syndrome, West syndrome, and X-linked infantile spasms sharing the common features of generally intractable early seizures and mental retardation. Disease-causing mutations are distributed in both the catalytic domain and in the large COOH terminus. In this report, we examine the functional consequences of some Rett mutations of CDKL5 together with some synthetically designed derivatives useful to underline the functional domains of the protein. The mutated CDKL5 derivatives have been subjected to in vitro kinase assays and analyzed for phosphorylation of the TEY (Thr-Glu-Tyr) motif within the activation loop, their subcellular localization, and the capacity of CDKL5 to interact with itself. Whereas wild-type CDKL5 autophosphorylates and mediates the phosphorylation of the methyl-CpG-binding protein 2 (MeCP2) in vitro, Rett-mutated proteins show both impaired and increased catalytic activity suggesting that a tight regulation of CDKL5 is required for correct brain functions. Furthermore, we show that CDKL5 can self-associate and mediate the phosphorylation of its own TEY (Thr-Glu-Tyr) motif. Eventually, we show that the COOH terminus regulates CDKL5 properties; in particular, it negatively influences the catalytic activity and is required for its proper sub-nuclear localization. We propose a model in which CDKL5 phosphorylation is required for its entrance into the nucleus whereas a portion of the COOH-terminal domain is responsible for a stable residency in this cellular compartment probably through protein-protein interactions.

  1. GFP Loss-of-Function Mutations in Arabidopsis thaliana.

    PubMed

    Fu, Jason L; Kanno, Tatsuo; Liang, Shih-Chieh; Matzke, Antonius J M; Matzke, Marjori

    2015-07-06

    Green fluorescent protein (GFP) and related fluorescent proteins are widely used in biological research to monitor gene expression and protein localization in living cells. The GFP chromophore is generated spontaneously in the presence of oxygen by a multi-step reaction involving cyclization of the internal tripeptide Ser65 (or Thr65)-Tyr66-Gly67, which is embedded in the center of an 11-stranded β-barrel structure. Random and site-specific mutagenesis has been used to optimize GFP fluorescence and create derivatives with novel properties. However, loss-of-function mutations that would aid in understanding GFP protein folding and chromophore formation have not been fully cataloged. Here we report a collection of ethyl methansulfonate-induced GFP loss-of-function mutations in the model plant Arabidopsis thaliana. Mutations that alter residues important for chromophore maturation, such as Arg96 and Ser205, greatly reduce or extinguish fluorescence without dramatically altering GFP protein accumulation. By contrast, other loss-of-fluorescence mutations substantially diminish the amount of GFP protein, suggesting that they compromise protein stability. Many mutations in this category generate substitutions of highly conserved glycine residues, including the following: Gly67 in the chromogenic tripeptide; Gly31, Gly33, and Gly35 in the second β-strand; and Gly20, Gly91, and Gly127 in the lids of the β-barrel scaffold. Our genetic analysis supports conclusions from structural and biochemical studies and demonstrates a critical role for multiple, highly conserved glycine residues in GFP protein stability. Copyright © 2015 Fu et al.

  2. GFP Loss-of-Function Mutations in Arabidopsis thaliana

    PubMed Central

    Fu, Jason L.; Kanno, Tatsuo; Liang, Shih-Chieh; Matzke, Antonius J. M.; Matzke, Marjori

    2015-01-01

    Green fluorescent protein (GFP) and related fluorescent proteins are widely used in biological research to monitor gene expression and protein localization in living cells. The GFP chromophore is generated spontaneously in the presence of oxygen by a multi-step reaction involving cyclization of the internal tripeptide Ser65 (or Thr65)-Tyr66-Gly67, which is embedded in the center of an 11-stranded β-barrel structure. Random and site-specific mutagenesis has been used to optimize GFP fluorescence and create derivatives with novel properties. However, loss-of-function mutations that would aid in understanding GFP protein folding and chromophore formation have not been fully cataloged. Here we report a collection of ethyl methansulfonate–induced GFP loss-of-function mutations in the model plant Arabidopsis thaliana. Mutations that alter residues important for chromophore maturation, such as Arg96 and Ser205, greatly reduce or extinguish fluorescence without dramatically altering GFP protein accumulation. By contrast, other loss-of-fluorescence mutations substantially diminish the amount of GFP protein, suggesting that they compromise protein stability. Many mutations in this category generate substitutions of highly conserved glycine residues, including the following: Gly67 in the chromogenic tripeptide; Gly31, Gly33, and Gly35 in the second β-strand; and Gly20, Gly91, and Gly127 in the lids of the β-barrel scaffold. Our genetic analysis supports conclusions from structural and biochemical studies and demonstrates a critical role for multiple, highly conserved glycine residues in GFP protein stability. PMID:26153075

  3. Identification of a novel functional JAK1 S646P mutation in acute lymphoblastic leukemia

    PubMed Central

    Hu, Liangding; Ning, Hongmei; Jiang, Min; Wang, Danhong; Liu, Tingting; Zhang, Bin; Chen, Hu

    2017-01-01

    The survival rate of childhood acute lymphoblastic leukemia (ALL) is approaching 90%, while the prognosis of adults remains poor due to the limited therapeutic approaches. In order to identify new targets for ALL, we performed whole-exome sequencing on four adults with B-ALL and discovered a somatic JAK1 S646P mutation. Sanger sequencing of JAK1 was conducted on 53 ALL patients, and two cases exhibited A639G and P960S mutations separately. Functional studies demonstrated that only JAK1 S646P mutation could activate multiple signaling pathways, drive cytokine-independent cell growth, and promote proliferation of malignant cells in nude mice. Moreover, a high sensitivity to the JAK1/2 inhibitor ruxolitinib was observed in S646P mutant model. Exploration in a total of 209 ALL cases showed that JAK1 mutations occur at a frequency of 10.5% in T-ALL (2/19) and 1.6% in B-ALL (3/190). Collectively, our results suggested that JAK1 S646P is an activating mutation in vitro and in vivo. JAK-STAT pathway might represent a promising therapeutic target for ALL. PMID:28410228

  4. Identification of a novel functional JAK1 S646P mutation in acute lymphoblastic leukemia.

    PubMed

    Li, Qian; Li, Botao; Hu, Liangding; Ning, Hongmei; Jiang, Min; Wang, Danhong; Liu, Tingting; Zhang, Bin; Chen, Hu

    2017-05-23

    The survival rate of childhood acute lymphoblastic leukemia (ALL) is approaching 90%, while the prognosis of adults remains poor due to the limited therapeutic approaches. In order to identify new targets for ALL, we performed whole-exome sequencing on four adults with B-ALL and discovered a somatic JAK1 S646P mutation. Sanger sequencing of JAK1 was conducted on 53 ALL patients, and two cases exhibited A639G and P960S mutations separately. Functional studies demonstrated that only JAK1 S646P mutation could activate multiple signaling pathways, drive cytokine-independent cell growth, and promote proliferation of malignant cells in nude mice. Moreover, a high sensitivity to the JAK1/2 inhibitor ruxolitinib was observed in S646P mutant model. Exploration in a total of 209 ALL cases showed that JAK1 mutations occur at a frequency of 10.5% in T-ALL (2/19) and 1.6% in B-ALL (3/190). Collectively, our results suggested that JAK1 S646P is an activating mutation in vitro and in vivo. JAK-STAT pathway might represent a promising therapeutic target for ALL.

  5. Autosomal-dominant chronic mucocutaneous candidiasis with STAT1-mutation can be complicated with chronic active hepatitis and hypothyroidism.

    PubMed

    Hori, Tomohiro; Ohnishi, Hidenori; Teramoto, Takahide; Tsubouchi, Kohji; Naiki, Takafumi; Hirose, Yoshinobu; Ohara, Osamu; Seishima, Mariko; Kaneko, Hideo; Fukao, Toshiyuki; Kondo, Naomi

    2012-12-01

    To describe a case of autosomal-dominant (AD)-chronic mucocutaneous candidiasis (CMC) with a signal transducer and activator of transcription (STAT) 1 gene mutation, and some of the important complications of this disease such as chronic hepatitis. We present a 23-year-old woman with CMC, chronic active hepatitis, and hypothyroidism. Her father also had CMC. We performed several immunological analyses of blood and liver samples, and searched for gene mutations for CMC in the patient and her father. We identified the heterozygous substitution c.821 G > A (p.Arg274Gln) in the STAT1 gene of both the patient and her father. The level of β-glucan induced interferon (IFN)-γ in her blood cells was significantly low. Immunoblot analysis detected serum anti-interleukin (IL)-17 F autoantibody. She was found to have increased (low-titer) antibodies related to her hypothyroidism and hepatitis. Her serum IL-18 levels fluctuated with her AST and ALT levels. Liver biopsy revealed CD68-positive cell infiltration and IL-18 expression in the sinusoidal regions. These results suggest that the chronic active hepatitis in this patient may be exacerbated by the excessive IL-18 accumulation caused by recurrent mucocutaneous fungal infection, and decreased IFN-γ production. AD-CMC is known to be caused by a gain-of-function mutation of the STAT1 gene. Chronic active hepatitis is a rare complication of AD-CMC, with currently unknown pathogenesis. It seems that the clinical phenotype in this patient is modified by autoimmune mechanisms and cytokine dysregulation. AD-CMC can be complicated by various immune disorders including autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy.

  6. Nav1.7-A1632G Mutation from a Family with Inherited Erythromelalgia: Enhanced Firing of Dorsal Root Ganglia Neurons Evoked by Thermal Stimuli.

    PubMed

    Yang, Yang; Huang, Jianying; Mis, Malgorzata A; Estacion, Mark; Macala, Lawrence; Shah, Palak; Schulman, Betsy R; Horton, Daniel B; Dib-Hajj, Sulayman D; Waxman, Stephen G

    2016-07-13

    Voltage-gated sodium channel Nav1.7 is a central player in human pain. Mutations in Nav1.7 produce several pain syndromes, including inherited erythromelalgia (IEM), a disorder in which gain-of-function mutations render dorsal root ganglia (DRG) neurons hyperexcitable. Although patients with IEM suffer from episodes of intense burning pain triggered by warmth, the effects of increased temperature on DRG neurons expressing mutant Nav1.7 channels have not been well documented. Here, using structural modeling, voltage-clamp, current-clamp, and multielectrode array recordings, we have studied a newly identified Nav1.7 mutation, Ala1632Gly, from a multigeneration family with IEM. Structural modeling suggests that Ala1632 is a molecular hinge and that the Ala1632Gly mutation may affect channel gating. Voltage-clamp recordings revealed that the Nav1.7-A1632G mutation hyperpolarizes activation and depolarizes fast-inactivation, both gain-of-function attributes at the channel level. Whole-cell current-clamp recordings demonstrated increased spontaneous firing, lower current threshold, and enhanced evoked firing in rat DRG neurons expressing Nav1.7-A1632G mutant channels. Multielectrode array recordings further revealed that intact rat DRG neurons expressing Nav1.7-A1632G mutant channels are more active than those expressing Nav1.7 WT channels. We also showed that physiologically relevant thermal stimuli markedly increase the mean firing frequencies and the number of active rat DRG neurons expressing Nav1.7-A1632G mutant channels, whereas the same thermal stimuli only increase these parameters slightly in rat DRG neurons expressing Nav1.7 WT channels. The response of DRG neurons expressing Nav1.7-A1632G mutant channels upon increase in temperature suggests a cellular basis for warmth-triggered pain in IEM. Inherited erythromelalgia (IEM), a severe pain syndrome characterized by episodes of intense burning pain triggered by warmth, is caused by mutations in sodium channel Nav

  7. Efficient fractal-based mutation in evolutionary algorithms from iterated function systems

    NASA Astrophysics Data System (ADS)

    Salcedo-Sanz, S.; Aybar-Ruíz, A.; Camacho-Gómez, C.; Pereira, E.

    2018-03-01

    In this paper we present a new mutation procedure for Evolutionary Programming (EP) approaches, based on Iterated Function Systems (IFSs). The new mutation procedure proposed consists of considering a set of IFS which are able to generate fractal structures in a two-dimensional phase space, and use them to modify a current individual of the EP algorithm, instead of using random numbers from different probability density functions. We test this new proposal in a set of benchmark functions for continuous optimization problems. In this case, we compare the proposed mutation against classical Evolutionary Programming approaches, with mutations based on Gaussian, Cauchy and chaotic maps. We also include a discussion on the IFS-based mutation in a real application of Tuned Mass Dumper (TMD) location and optimization for vibration cancellation in buildings. In both practical cases, the proposed EP with the IFS-based mutation obtained extremely competitive results compared to alternative classical mutation operators.

  8. HRAS mutations in Costello syndrome: detection of constitutional activating mutations in codon 12 and 13 and loss of wild-type allele in malignancy.

    PubMed

    Estep, Anne L; Tidyman, William E; Teitell, Michael A; Cotter, Philip D; Rauen, Katherine A

    2006-01-01

    Costello syndrome (CS) is a complex developmental disorder involving characteristic craniofacial features, failure to thrive, developmental delay, cardiac and skeletal anomalies, and a predisposition to develop neoplasia. Based on similarities with other cancer syndromes, we previously hypothesized that CS is likely due to activation of signal transduction through the Ras/MAPK pathway [Tartaglia et al., 2003]. In this study, the HRAS coding region was sequenced for mutations in a large, well-characterized cohort of 36 CS patients. Heterogeneous missense point mutations predicting an amino acid substitution were identified in 33/36 (92%) patients. The majority (91%) had a 34G --> A transition in codon 12. Less frequent mutations included 35G --> C (codon 12) and 37G --> T (codon 13). Parental samples did not have an HRAS mutation supporting the hypothesis of de novo heterogeneous mutations. There is phenotypic variability among patients with a 34G --> A transition. The most consistent features included characteristic facies and skin, failure to thrive, developmental delay, musculoskeletal abnormalities, visual impairment, cardiac abnormalities, and generalized hyperpigmentation. The two patients with 35G --> C had cardiac arrhythmias whereas one patient with a 37G --> T transversion had an enlarged aortic root. Of the patients with a clinical diagnosis of CS, neoplasia was the most consistent phenotypic feature for predicating an HRAS mutation. To gain an understanding of the relationship between constitutional HRAS mutations and malignancy, HRAS was sequenced in an advanced biphasic rhabdomyosarcoma/fibrosarcoma from an individual with a 34G --> A mutation. Loss of the wild-type HRAS allele was observed, suggesting tumorigenesis in CS patients is accompanied by additional somatic changes affecting HRAS. Finally, due to phenotypic overlap between CS and cardio-facio-cutaneous (CFC) syndromes, the HRAS coding region was sequenced in a well-characterized CFC cohort

  9. Recurrent TERT promoter mutations identified in a large-scale study of multiple tumor types are associated with increased TERT expression and telomerase activation

    PubMed Central

    Huang, Dong-Sheng; Wang, Zhaohui; He, Xu-Jun; Diplas, Bill H.; Yang, Rui; Killela, Patrick J.; Liang, Junbo; Meng, Qun; Ye, Zai-Yuan; Wang, Wei; Jiang, Xiao-Ting; Xu, Li; He, Xiang-Lei; Zhao, Zhong-Sheng; Xu, Wen-Juan; Wang, Hui-Ju; Ma, Ying-Yu; Xia, Ying-Jie; Li, Li; Zhang, Ru-Xuan; Jin, Tao; Zhao, Zhong-Kuo; Xu, Ji; Yu, Sheng; Wu, Fang; Wang, Si-Zhen; Jiao, Yu-Chen; Yan, Hai; Tao, Hou-Quan

    2015-01-01

    Background Several somatic mutation hotspots were recently identified in the TERT promoter region in human cancers. Large scale studies of these mutations in multiple tumor types are limited, in particular in Asian populations. This study aimed to: analyze TERT promoter mutations in multiple tumor types in a large Chinese patient cohort, investigate novel tumor types and assess the functional significance of the mutations. Methods TERT promoter mutation status was assessed by Sanger sequencing for 13 different tumor types and 799 tumor tissues from Chinese cancer patients. Thymic epithelial tumors, gastrointestinal leiomyoma, and gastric schwannoma were included, for which the TERT promoter has not been previously sequenced. Functional studies included TERT expression by RT-qPCR, telomerase activity by the TRAP assay, and promoter activity by the luciferase reporter assay. Results TERT promoter mutations were highly frequent in glioblastoma (83.9%), urothelial carcinoma (64.5%), oligodendroglioma (70.0%), medulloblastoma (33.3%), and hepatocellular carcinoma (31.4%). C228T and C250T were the most common mutations. In urothelial carcinoma, several novel rare mutations were identified. TERT promoter mutations were absent in GIST, thymic epithelial tumors, gastrointestinal leiomyoma, gastric schwannoma, cholangiocarcinoma, gastric and pancreatic cancer. TERT promoter mutations highly correlated with upregulated TERT mRNA expression and telomerase activity in adult gliomas. These mutations differentially enhanced the transcriptional activity of the TERT core promoter. Conclusions TERT promoter mutations are frequent in multiple tumor types and have similar distributions in Chinese cancer patients. The functional significance of these mutations reflect the importance to telomere maintenance and hence tumorigenesis, making them potential therapeutic targets. PMID:25843513

  10. JAK and MPL mutations in myeloid malignancies.

    PubMed

    Tefferi, Ayalew

    2008-03-01

    The Janus family of non-receptor tyrosine kinases (JAK1, JAK2, JAK3 and tyrosine kinase 2) transduces signals downstream of type I and II cytokine receptors via signal transducers and activators of transcription (STATs). JAK3 is important in lymphoid and JAK2 in myeloid cell proliferation and differentiation. The thrombopoietin receptor MPL is one of several JAK2 cognate receptors and is essential for myelopoiesis in general and megakaryopoiesis in particular. Germline loss-of-function (LOF) JAK3 and MPL mutations cause severe combined immunodeficiency and congenital amegakaryocytic thrombocytopenia, respectively. Germline gain-of-function (GOF) MPL mutation (MPLS505N) causes familial thrombocytosis. Somatic JAK3 (e.g. JAK3A572V, JAK3V722I, JAK3P132T) and fusion JAK2 (e.g. ETV6-JAK2, PCM1-JAK2, BCR-JAK2) mutations have respectively been described in acute megakaryocytic leukemia and acute leukemia/chronic myeloid malignancies. However, current attention is focused on JAK2 (e.g. JAK2V617F, JAK2 exon 12 mutations) and MPL (e.g. MPLW515L/K/S, MPLS505N) mutations associated with myeloproliferative neoplasms (MPNs). A JAK2 mutation, primarily JAK2V617F, is invariably associated with polycythemia vera (PV). The latter mutation also occurs in the majority of patients with essential thrombocythemia (ET) or primary myelofibrosis (PMF). MPL mutational frequency in MPNs is substantially less (<10%). In general, despite a certain degree of genotype - phenotype correlations, the prognostic relevance of harbouring one of these mutations, or their allele burden when present, remains dubious. Regardless, based on the logical assumption that amplified JAK-STAT signalling is central to the pathogenesis of PV, ET and PMF, several anti-JAK2 tyrosine kinase inhibitors have been developed and are currently being tested in humans with these disorders.

  11. Recurrent and functional regulatory mutations in breast cancer.

    PubMed

    Rheinbay, Esther; Parasuraman, Prasanna; Grimsby, Jonna; Tiao, Grace; Engreitz, Jesse M; Kim, Jaegil; Lawrence, Michael S; Taylor-Weiner, Amaro; Rodriguez-Cuevas, Sergio; Rosenberg, Mara; Hess, Julian; Stewart, Chip; Maruvka, Yosef E; Stojanov, Petar; Cortes, Maria L; Seepo, Sara; Cibulskis, Carrie; Tracy, Adam; Pugh, Trevor J; Lee, Jesse; Zheng, Zongli; Ellisen, Leif W; Iafrate, A John; Boehm, Jesse S; Gabriel, Stacey B; Meyerson, Matthew; Golub, Todd R; Baselga, Jose; Hidalgo-Miranda, Alfredo; Shioda, Toshi; Bernards, Andre; Lander, Eric S; Getz, Gad

    2017-07-06

    Genomic analysis of tumours has led to the identification of hundreds of cancer genes on the basis of the presence of mutations in protein-coding regions. By contrast, much less is known about cancer-causing mutations in non-coding regions. Here we perform deep sequencing in 360 primary breast cancers and develop computational methods to identify significantly mutated promoters. Clear signals are found in the promoters of three genes. FOXA1, a known driver of hormone-receptor positive breast cancer, harbours a mutational hotspot in its promoter leading to overexpression through increased E2F binding. RMRP and NEAT1, two non-coding RNA genes, carry mutations that affect protein binding to their promoters and alter expression levels. Our study shows that promoter regions harbour recurrent mutations in cancer with functional consequences and that the mutations occur at similar frequencies as in coding regions. Power analyses indicate that more such regions remain to be discovered through deep sequencing of adequately sized cohorts of patients.

  12. Somatic activating mutations in MAP2K1 cause melorheostosis.

    PubMed

    Kang, Heeseog; Jha, Smita; Deng, Zuoming; Fratzl-Zelman, Nadja; Cabral, Wayne A; Ivovic, Aleksandra; Meylan, Françoise; Hanson, Eric P; Lange, Eileen; Katz, James; Roschger, Paul; Klaushofer, Klaus; Cowen, Edward W; Siegel, Richard M; Marini, Joan C; Bhattacharyya, Timothy

    2018-04-11

    Melorheostosis is a sporadic disease of uncertain etiology characterized by asymmetric bone overgrowth and functional impairment. Using whole exome sequencing, we identify somatic mosaic MAP2K1 mutations in affected, but not unaffected, bone of eight unrelated patients with melorheostosis. The activating mutations (Q56P, K57E and K57N) cluster tightly in the MEK1 negative regulatory domain. Affected bone displays a mosaic pattern of increased p-ERK1/2 in osteoblast immunohistochemistry. Osteoblasts cultured from affected bone comprise two populations with distinct p-ERK1/2 levels by flow cytometry, enhanced ERK1/2 activation, and increased cell proliferation. However, these MAP2K1 mutations inhibit BMP2-mediated osteoblast mineralization and differentiation in vitro, underlying the markedly increased osteoid detected in affected bone histology. Mosaicism is also detected in the skin overlying bone lesions in four of five patients tested. Our data show that the MAP2K1 oncogene is important in human bone formation and implicate MEK1 inhibition as a potential treatment avenue for melorheostosis.

  13. Identification and Functional Characterisation of Novel Glucokinase Mutations Causing Maturity-Onset Diabetes of the Young in Slovakia

    PubMed Central

    Valentínová, Lucia; Beer, Nicola L.; Staník, Juraj; Tribble, Nicholas D.; van de Bunt, Martijn; Hučková, Miroslava; Barrett, Amy; Klimeš, Iwar; Gašperíková, Daniela; Gloyn, Anna L.

    2012-01-01

    Heterozygous glucokinase (GCK) mutations cause a subtype of maturity-onset diabetes of the young (GCK-MODY). Over 600 GCK mutations have been reported of which ∼65% are missense. In many cases co-segregation has not been established and despite the importance of functional studies in ascribing pathogenicity for missense variants these have only been performed for <10% of mutations. The aim of this study was to determine the minimum prevalence of GCK-MODY amongst diabetic subjects in Slovakia by sequencing GCK in 100 Slovakian probands with a phenotype consistent with GCK-MODY and to explore the pathogenicity of identified variants through family and functional studies. Twenty-two mutations were identified in 36 families (17 missense) of which 7 (I110N, V200A, N204D, G258R, F419S, c.580-2A>C, c.1113–1114delGC) were novel. Parental DNA was available for 22 probands (covering 14/22 mutations) and co-segregation established in all cases. Bioinformatic analysis predicted all missense mutations to be damaging. Nine (I110N, V200A, N204D, G223S, G258R, F419S, V244G, L315H, I436N) mutations were functionally evaluated. Basic kinetic analysis explained pathogenicity for 7 mutants which showed reduced glucokinase activity with relative activity indices (RAI) between 0.6 to <0.001 compared to wild-type GCK (1.0). For the remaining 2 mutants additional molecular mechanisms were investigated. Differences in glucokinase regulatory protein (GKRP) –mediated-inhibition of GCK were observed for both L315H & I436N when compared to wild type (IC50 14.6±0.1 mM & 20.3±1.6 mM vs.13.3±0.1 mM respectively [p<0.03]). Protein instability as assessed by thermal lability studies demonstrated that both L315H and I436N show marked thermal instability compared to wild-type GCK (RAI at 55°C 8.8±0.8% & 3.1±0.4% vs. 42.5±3.9% respectively [p<0.001]). The minimum prevalence of GCK-MODY amongst Slovakian patients with diabetes was 0.03%. In conclusion, we have identified 22 GCK mutations

  14. Activation of tyrosine kinases by mutation of the gatekeeper threonine

    PubMed Central

    Azam, Mohammad; Seeliger, Markus A; Gray, Nathanael S; Kuriyan, John; Daley, George Q

    2008-01-01

    Protein kinases targeted by small-molecule inhibitors develop resistance through mutation of the ‘gatekeeper’ threonine residue of the active site. Here we show that the gatekeeper mutation in the cellular forms of c-ABL, c-SRC, platelet-derived growth factor receptor-α and -β, and epidermal growth factor receptor activates the kinase and promotes malignant transformation of BaF3 cells. Structural analysis reveals that a network of hydrophobic interactions—the hydrophobic spine—characteristic of the active kinase conformation is stabilized by the gatekeeper substitution. Substitution of glycine for the residues constituting the spine disrupts the hydrophobic connectivity and inactivates the kinase. Furthermore, a small-molecule inhibitor that maximizes complementarity with the dismantled spine (compound 14) inhibits the gatekeeper mutation of BCR-ABL-T315I. These results demonstrate that mutation of the gatekeeper threonine is a common mechanism of activation for tyrosine kinases and provide structural insights to guide the development of next-generation inhibitors. PMID:18794843

  15. A novel NaV1.5 voltage sensor mutation associated with severe atrial and ventricular arrhythmias.

    PubMed

    Wang, Hong-Gang; Zhu, Wandi; Kanter, Ronald J; Silva, Jonathan R; Honeywell, Christina; Gow, Robert M; Pitt, Geoffrey S

    2016-03-01

    Inherited autosomal dominant mutations in cardiac sodium channels (NaV1.5) cause various arrhythmias, such as long QT syndrome and Brugada syndrome. Although dozens of mutations throughout the protein have been reported, there are few reported mutations within a voltage sensor S4 transmembrane segment and few that are homozygous. Here we report analysis of a novel lidocaine-sensitive recessive mutation, p.R1309H, in the NaV1.5 DIII/S4 voltage sensor in a patient with a complex arrhythmia syndrome. We expressed the wild type or mutant NaV1.5 heterologously for analysis with the patch-clamp and voltage clamp fluorometry (VCF) techniques. p.R1309H depolarized the voltage-dependence of activation, hyperpolarized the voltage-dependence of inactivation, and slowed recovery from inactivation, thereby reducing the channel availability at physiologic membrane potentials. Additionally, p.R1309H increased the "late" Na(+) current. The location of the mutation in DIIIS4 prompted testing for a gating pore current. We observed an inward current at hyperpolarizing voltages that likely exacerbates the loss-of-function defects at resting membrane potentials. Lidocaine reduced the gating pore current. The p.R1309H homozygous NaV1.5 mutation conferred both gain-of-function and loss-of-function effects on NaV1.5 channel activity. Reduction of a mutation-induced gating pore current by lidocaine suggested a therapeutic mechanism. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Testing computational prediction of missense mutation phenotypes: Functional characterization of 204 mutations of human cystathionine beta synthase

    PubMed Central

    Wei, Qiong; Wang, Liqun; Wang, Qiang; Kruger, Warren D.; Dunbrack, Roland L.

    2010-01-01

    Predicting the phenotypes of missense mutations uncovered by large-scale sequencing projects is an important goal in computational biology. High-confidence predictions can be an aid in focusing experimental and association studies on those mutations most likely to be associated with causative relationships between mutation and disease. As an aid in developing these methods further, we have derived a set of random mutations of the enzymatic domains of human cystathionine beta synthase. This enzyme is a dimeric protein that catalyzes the condensation of serine and homocysteine to produce cystathionine. Yeast missing this enzyme cannot grow on medium lacking a source of cysteine, while transfection of functional human CBS into yeast strains missing endogenous enzyme can successfully complement for the missing gene. We used PCR mutagenesis with error-prone Taq polymerase to produce 948 colonies, and compared cell growth in the presence or absence of a cysteine source as a measure of CBS function. We were able to infer the phenotypes of 204 single-site mutants, 79 of them deleterious and 125 neutral. This set was used to test the accuracy of six publicly available prediction methods for phenotype prediction of missense mutations: SIFT, PolyPhen, PMut, SNPs3D, PhD-SNP, and nsSNPAnalyzer. The top methods are PolyPhen, SIFT, and nsSNPAnalyzer, which have similar performance. Using kernel discriminant functions, we found that the difference in position-specific scoring matrix values is more predictive than the wild-type PSSM score alone, and that the relative surface area in the biologically relevant complex is more predictive than that of the monomeric proteins. PMID:20455263

  17. The effect of novel mutations on the structure and enzymatic activity of unconventional myosins associated with autosomal dominant non-syndromic hearing loss.

    PubMed

    Kwon, Tae-Jun; Oh, Se-Kyung; Park, Hong-Joon; Sato, Osamu; Venselaar, Hanka; Choi, Soo Young; Kim, SungHee; Lee, Kyu-Yup; Bok, Jinwoong; Lee, Sang-Heun; Vriend, Gert; Ikebe, Mitsuo; Kim, Un-Kyung; Choi, Jae Young

    2014-07-01

    Mutations in five unconventional myosin genes have been associated with genetic hearing loss (HL). These genes encode the motor proteins myosin IA, IIIA, VI, VIIA and XVA. To date, most mutations in myosin genes have been found in the Caucasian population. In addition, only a few functional studies have been performed on the previously reported myosin mutations. We performed screening and functional studies for mutations in the MYO1A and MYO6 genes in Korean cases of autosomal dominant non-syndromic HL. We identified four novel heterozygous mutations in MYO6. Three mutations (p.R825X, p.R991X and Q918fsX941) produce a premature truncation of the myosin VI protein. Another mutation, p.R205Q, was associated with diminished actin-activated ATPase activity and actin gliding velocity of myosin VI in an in vitro analysis. This finding is consistent with the results of protein modelling studies and corroborates the pathogenicity of this mutation in the MYO6 gene. One missense variant, p.R544W, was found in the MYO1A gene, and in silico analysis suggested that this variant has deleterious effects on protein function. This finding is consistent with the results of protein modelling studies and corroborates the pathogenic effect of this mutation in the MYO6 gene.

  18. The effect of novel mutations on the structure and enzymatic activity of unconventional myosins associated with autosomal dominant non-syndromic hearing loss

    PubMed Central

    Kwon, Tae-Jun; Oh, Se-Kyung; Park, Hong-Joon; Sato, Osamu; Venselaar, Hanka; Choi, Soo Young; Kim, SungHee; Lee, Kyu-Yup; Bok, Jinwoong; Lee, Sang-Heun; Vriend, Gert; Ikebe, Mitsuo; Kim, Un-Kyung; Choi, Jae Young

    2014-01-01

    Mutations in five unconventional myosin genes have been associated with genetic hearing loss (HL). These genes encode the motor proteins myosin IA, IIIA, VI, VIIA and XVA. To date, most mutations in myosin genes have been found in the Caucasian population. In addition, only a few functional studies have been performed on the previously reported myosin mutations. We performed screening and functional studies for mutations in the MYO1A and MYO6 genes in Korean cases of autosomal dominant non-syndromic HL. We identified four novel heterozygous mutations in MYO6. Three mutations (p.R825X, p.R991X and Q918fsX941) produce a premature truncation of the myosin VI protein. Another mutation, p.R205Q, was associated with diminished actin-activated ATPase activity and actin gliding velocity of myosin VI in an in vitro analysis. This finding is consistent with the results of protein modelling studies and corroborates the pathogenicity of this mutation in the MYO6 gene. One missense variant, p.R544W, was found in the MYO1A gene, and in silico analysis suggested that this variant has deleterious effects on protein function. This finding is consistent with the results of protein modelling studies and corroborates the pathogenic effect of this mutation in the MYO6 gene. PMID:25080041

  19. Recurrent TERT promoter mutations identified in a large-scale study of multiple tumour types are associated with increased TERT expression and telomerase activation.

    PubMed

    Huang, Dong-Sheng; Wang, Zhaohui; He, Xu-Jun; Diplas, Bill H; Yang, Rui; Killela, Patrick J; Meng, Qun; Ye, Zai-Yuan; Wang, Wei; Jiang, Xiao-Ting; Xu, Li; He, Xiang-Lei; Zhao, Zhong-Sheng; Xu, Wen-Juan; Wang, Hui-Ju; Ma, Ying-Yu; Xia, Ying-Jie; Li, Li; Zhang, Ru-Xuan; Jin, Tao; Zhao, Zhong-Kuo; Xu, Ji; Yu, Sheng; Wu, Fang; Liang, Junbo; Wang, Sizhen; Jiao, Yuchen; Yan, Hai; Tao, Hou-Quan

    2015-05-01

    Several somatic mutation hotspots were recently identified in the telomerase reverse transcriptase (TERT) promoter region in human cancers. Large scale studies of these mutations in multiple tumour types are limited, in particular in Asian populations. This study aimed to: analyse TERT promoter mutations in multiple tumour types in a large Chinese patient cohort, investigate novel tumour types and assess the functional significance of the mutations. TERT promoter mutation status was assessed by Sanger sequencing for 13 different tumour types and 799 tumour tissues from Chinese cancer patients. Thymic epithelial tumours, gastrointestinal leiomyoma, and gastric schwannoma were included, for which the TERT promoter has not been previously sequenced. Functional studies included TERT expression by reverse-transcriptase quantitative polymerase chain reaction (RT-qPCR), telomerase activity by the telomeric repeat amplification protocol (TRAP) assay and promoter activity by the luciferase reporter assay. TERT promoter mutations were highly frequent in glioblastoma (83.9%), urothelial carcinoma (64.5%), oligodendroglioma (70.0%), medulloblastoma (33.3%) and hepatocellular carcinoma (31.4%). C228T and C250T were the most common mutations. In urothelial carcinoma, several novel rare mutations were identified. TERT promoter mutations were absent in gastrointestinal stromal tumour (GIST), thymic epithelial tumours, gastrointestinal leiomyoma, gastric schwannoma, cholangiocarcinoma, gastric and pancreatic cancer. TERT promoter mutations highly correlated with upregulated TERT mRNA expression and telomerase activity in adult gliomas. These mutations differentially enhanced the transcriptional activity of the TERT core promoter. TERT promoter mutations are frequent in multiple tumour types and have similar distributions in Chinese cancer patients. The functional significance of these mutations reflect the importance to telomere maintenance and hence tumourigenesis, making them

  20. Identifying activating mutations in the EGFR gene: prognostic and therapeutic implications in non-small cell lung cancer *

    PubMed Central

    Lopes, Gabriel Lima; Vattimo, Edoardo Filippo de Queiroz; de Castro, Gilberto

    2015-01-01

    Abstract Lung cancer is the leading cause of cancer-related deaths worldwide. Promising new therapies have recently emerged from the development of molecular targeted drugs; particularly promising are those blocking the signal transduction machinery of cancer cells. One of the most widely studied cell signaling pathways is that of EGFR, which leads to uncontrolled cell proliferation, increased cell angiogenesis, and greater cell invasiveness. Activating mutations in the EGFR gene (deletions in exon 19 and mutation L858R in exon 21), first described in 2004, have been detected in approximately 10% of all non-squamous non-small cell lung cancer (NSCLC) patients in Western countries and are the most important predictors of a response to EGFR tyrosine-kinase inhibitors (EGFR-TKIs). Studies of the EGFR-TKIs gefitinib, erlotinib, and afatinib, in comparison with platinum-based regimens, as first-line treatments in chemotherapy-naïve patients have shown that the EGFR-TKIs produce gains in progression-free survival and overall response rates, although only in patients whose tumors harbor activating mutations in the EGFR gene. Clinical trials have also shown EGFR-TKIs to be effective as second- and third-line therapies in advanced NSCLC. Here, we review the main aspects of EGFR pathway activation in NSCLC, underscore the importance of correctly identifying activating mutations in the EGFR gene, and discuss the main outcomes of EGFR-TKI treatment in NSCLC. PMID:26398757

  1. Identifying activating mutations in the EGFR gene: prognostic and therapeutic implications in non-small cell lung cancer.

    PubMed

    Lopes, Gabriel Lima; Vattimo, Edoardo Filippo de Queiroz; Castro Junior, Gilberto de

    2015-01-01

    Lung cancer is the leading cause of cancer-related deaths worldwide. Promising new therapies have recently emerged from the development of molecular targeted drugs; particularly promising are those blocking the signal transduction machinery of cancer cells. One of the most widely studied cell signaling pathways is that of EGFR, which leads to uncontrolled cell proliferation, increased cell angiogenesis, and greater cell invasiveness. Activating mutations in the EGFR gene (deletions in exon 19 and mutation L858R in exon 21), first described in 2004, have been detected in approximately 10% of all non-squamous non-small cell lung cancer (NSCLC) patients in Western countries and are the most important predictors of a response to EGFR tyrosine-kinase inhibitors (EGFR-TKIs). Studies of the EGFR-TKIs gefitinib, erlotinib, and afatinib, in comparison with platinum-based regimens, as first-line treatments in chemotherapy-naïve patients have shown that the EGFR-TKIs produce gains in progression-free survival and overall response rates, although only in patients whose tumors harbor activating mutations in the EGFR gene. Clinical trials have also shown EGFR-TKIs to be effective as second- and third-line therapies in advanced NSCLC. Here, we review the main aspects of EGFR pathway activation in NSCLC, underscore the importance of correctly identifying activating mutations in the EGFR gene, and discuss the main outcomes of EGFR-TKI treatment in NSCLC.

  2. β1-C121W Is Down But Not Out: Epilepsy-Associated Scn1b-C121W Results in a Deleterious Gain-of-Function

    PubMed Central

    Kruger, Larisa C.; O'Malley, Heather A.; Hull, Jacob M.; Kleeman, Amanda; Patino, Gustavo A.

    2016-01-01

    Voltage-gated sodium channel (VGSC) β subunits signal through multiple pathways on multiple time scales. In addition to modulating sodium and potassium currents, β subunits play nonconducting roles as cell adhesion molecules, which allow them to function in cell–cell communication, neuronal migration, neurite outgrowth, neuronal pathfinding, and axonal fasciculation. Mutations in SCN1B, encoding VGSC β1 and β1B, are associated with epilepsy. Autosomal-dominant SCN1B-C121W, the first epilepsy-associated VGSC mutation identified, results in genetic epilepsy with febrile seizures plus (GEFS+). This mutation has been shown to disrupt both the sodium-current-modulatory and cell-adhesive functions of β1 subunits expressed in heterologous systems. The goal of this study was to compare mice heterozygous for Scn1b-C121W (Scn1b+/W) with mice heterozygous for the Scn1b-null allele (Scn1b+/−) to determine whether the C121W mutation results in loss-of-function in vivo. We found that Scn1b+/W mice were more susceptible than Scn1b+/− and Scn1b+/+ mice to hyperthermia-induced convulsions, a model of pediatric febrile seizures. β1-C121W subunits are expressed at the neuronal cell surface in vivo. However, despite this, β1-C121W polypeptides are incompletely glycosylated and do not associate with VGSC α subunits in the brain. β1-C121W subcellular localization is restricted to neuronal cell bodies and is not detected at axon initial segments in the cortex or cerebellum or at optic nerve nodes of Ranvier of Scn1bW/W mice. These data, together with our previous results showing that β1-C121W cannot participate in trans-homophilic cell adhesion, lead to the hypothesis that SCN1B-C121W confers a deleterious gain-of-function in human GEFS+ patients. SIGNIFICANCE STATEMENT The mechanisms underlying genetic epilepsy syndromes are poorly understood. Closing this gap in knowledge is essential to the development of new medicines to treat epilepsy. We have used mouse models to

  3. Proteome-wide search for functional motifs altered in tumors: Prediction of nuclear export signals inactivated by cancer-related mutations

    PubMed Central

    Prieto, Gorka; Fullaondo, Asier; Rodríguez, Jose A.

    2016-01-01

    Large-scale sequencing projects are uncovering a growing number of missense mutations in human tumors. Understanding the phenotypic consequences of these alterations represents a formidable challenge. In silico prediction of functionally relevant amino acid motifs disrupted by cancer mutations could provide insight into the potential impact of a mutation, and guide functional tests. We have previously described Wregex, a tool for the identification of potential functional motifs, such as nuclear export signals (NESs), in proteins. Here, we present an improved version that allows motif prediction to be combined with data from large repositories, such as the Catalogue of Somatic Mutations in Cancer (COSMIC), and to be applied to a whole proteome scale. As an example, we have searched the human proteome for candidate NES motifs that could be altered by cancer-related mutations included in the COSMIC database. A subset of the candidate NESs identified was experimentally tested using an in vivo nuclear export assay. A significant proportion of the selected motifs exhibited nuclear export activity, which was abrogated by the COSMIC mutations. In addition, our search identified a cancer mutation that inactivates the NES of the human deubiquitinase USP21, and leads to the aberrant accumulation of this protein in the nucleus. PMID:27174732

  4. Functional analysis of a missense mutation in the serine protease inhibitor SPINT2 associated with congenital sodium diarrhea.

    PubMed

    Faller, Nicolas; Gautschi, Ivan; Schild, Laurent

    2014-01-01

    Membrane-bound serine proteases play important roles in different biological processes. Their regulation by endogenous inhibitors is poorly understood. A Y163C mutation in the SPINT2 gene encoding the serine protease inhibitor Hepatocyte Growth Factor Inhibitor HAI-2 is associated with a congenital sodium diarrhea. The functional consequences of this mutation on HAI-2 activity and its physiological targets are unknown. We established a cellular assay in Xenopus laevis oocytes to study functional interactions between HAI-2 and candidate membrane-bound serine proteases expressed in the gastro-intestinal tract. We found that the wild-type form of HAI-2 is a potent inhibitor of nine gastro-intestinal serine proteases. The Y163C mutation in the second Kunitz domain of HAI-2 resulted in a complete loss of inhibitory activity on two intestinal proteases, prostasin and tmprss13. The effect of the mutation of the homologous Y68C in the first Kunitz domain of HAI-2 is consistent with a differential contribution of the two Kunitz domains of HAI-2 in the inhibition of serine proteases. By contrast to the Tyr to Cys, the Tyr to Ser substitution did not change the inhibitory potency of HAI-2, indicating that the thiol-group of the cysteine rather than the Tyr deletion is responsible for the HAI-2 loss of function. Our functional assay allowed us to identify membrane-bound serine proteases as cellular target for inhibition by HAI-2 wild type and mutants, and to better define the role of the Tyr in the second Kunitz domain in the inhibitory activity of HAI-2.

  5. FGFR3 mutation causes abnormal membranous ossification in achondroplasia.

    PubMed

    Di Rocco, Federico; Biosse Duplan, Martin; Heuzé, Yann; Kaci, Nabil; Komla-Ebri, Davide; Munnich, Arnold; Mugniery, Emilie; Benoist-Lasselin, Catherine; Legeai-Mallet, Laurence

    2014-06-01

    FGFR3 gain-of-function mutations lead to both chondrodysplasias and craniosynostoses. Achondroplasia (ACH), the most frequent dwarfism, is due to an FGFR3-activating mutation which results in impaired endochondral ossification. The effects of the mutation on membranous ossification are unknown. Fgfr3(Y367C/+) mice mimicking ACH and craniofacial analysis of patients with ACH and FGFR3-related craniosynostoses provide an opportunity to address this issue. Studying the calvaria and skull base, we observed abnormal cartilage and premature fusion of the synchondroses leading to modifications of foramen magnum shape and size in Fgfr3(Y367C/+) mice, ACH and FGFR3-related craniosynostoses patients. Partial premature fusion of the coronal sutures and non-ossified gaps in frontal bones were also present in Fgfr3(Y367C/+) mice and ACH patients. Our data provide strong support that not only endochondral ossification but also membranous ossification is severely affected in ACH. Demonstration of the impact of FGFR3 mutations on craniofacial development should initiate novel pharmacological and surgical therapeutic approaches.

  6. Genetic screens for mutations affecting development of Xenopus tropicalis.

    PubMed

    Goda, Tadahiro; Abu-Daya, Anita; Carruthers, Samantha; Clark, Matthew D; Stemple, Derek L; Zimmerman, Lyle B

    2006-06-01

    We present here the results of forward and reverse genetic screens for chemically-induced mutations in Xenopus tropicalis. In our forward genetic screen, we have uncovered 77 candidate phenotypes in diverse organogenesis and differentiation processes. Using a gynogenetic screen design, which minimizes time and husbandry space expenditures, we find that if a phenotype is detected in the gynogenetic F2 of a given F1 female twice, it is highly likely to be a heritable abnormality (29/29 cases). We have also demonstrated the feasibility of reverse genetic approaches for obtaining carriers of mutations in specific genes, and have directly determined an induced mutation rate by sequencing specific exons from a mutagenized population. The Xenopus system, with its well-understood embryology, fate map, and gain-of-function approaches, can now be coupled with efficient loss-of-function genetic strategies for vertebrate functional genomics and developmental genetics.

  7. Executive function skills and academic achievement gains in prekindergarten: Contributions of learning-related behaviors.

    PubMed

    Nesbitt, Kimberly Turner; Farran, Dale Clark; Fuhs, Mary Wagner

    2015-07-01

    Although research suggests associations between children's executive function skills and their academic achievement, the specific mechanisms that may help explain these associations in early childhood are unclear. This study examined whether children's (N = 1,103; M age = 54.5 months) executive function skills at the beginning of prekindergarten (pre-K) predict their learning-related behaviors in the classroom and whether these behaviors then mediate associations between children's executive function skills and their pre-K literacy, language, and mathematic gains. Learning-related behaviors were quantified in terms of (a) higher levels of involvement in learning opportunities; (b) greater frequency of participation in activities that require sequential steps; (c) more participation in social-learning interactions; and (d) less instances of being unoccupied, disruptive, or in time out. Results indicated that children's learning-related behaviors mediated associations between executive function skills and literacy and mathematics gains through children's level of involvement, sequential learning behaviors, and disengagement from the classroom. The implications of the findings for early childhood education are discussed. (c) 2015 APA, all rights reserved).

  8. Change in active transportation and weight gain in pregnancy.

    PubMed

    Skreden, Marianne; Øverby, Nina C; Sagedal, Linda R; Vistad, Ingvild; Torstveit, Monica K; Lohne-Seiler, Hilde; Bere, Elling

    2016-01-27

    Pregnancy is characterised by large weight gain over a short period, and often a notable change in mode of transportation. This makes pregnancy suitable for examining the plausible, but in the scientific literature still unclear, association between active transportation and weight gain. We hypothesize that women continuing an active mode of transportation to work or school from pre- to early pregnancy will have a lower gestational weight gain (GWG) than those who change to a less active mode of transportation. We analysed prospective data from the Norwegian Fit for Delivery (NFFD) trial. Between September 2009 and February 2013 606 women were consecutively enrolled in median gestational week 16 (range; 8-20). Of 219 women who used an active mode of transportation (biking, walking, public transportation) pre-pregnancy, 66 (30%) converted to a less active mode in early pregnancy ("active-less active" group), and 153 (70%) continued with active transportation ("active-active" group). Pre-pregnancy weight was self-reported. Weight at gestational (GA) weeks 16, 30, 36, and at term delivery was objectively measured. Weight gain was compared between the two groups. Linear mixed effects analysis of the repeated weight measures was performed including the group*time interaction. A significant overall group effect was observed for the four time points together ("active-active" group: 77.3 kg vs. "active-less active" group: 78.8 kg, p = 0.008). The interaction term group*time was significant indicating different weight gain throughout pregnancy for the two groups; the mean differences between the groups were 0.7 kg at week 16, 1.4 kg at week 30, 2.1 kg at week 36, and 2.2 kg at term delivery, respectively. The findings indicate that active transportation is one possible approach to prevent excessive weight gain in pregnancy.

  9. Functional studies of RYR1 mutations in the skeletal muscle ryanodine receptor using human RYR1 complementary DNA.

    PubMed

    Sato, Keisaku; Pollock, Neil; Stowell, Kathryn M

    2010-06-01

    Malignant hyperthermia is associated with mutations within the gene encoding the skeletal muscle ryanodine receptor, the calcium channel that releases Ca from sarcoplasmic reticulum stores triggering muscle contraction, and other metabolic activities. More than 200 variants have been identified in the ryanodine receptor, but only some of these have been shown to functionally affect the calcium channel. To implement genetic testing for malignant hyperthermia, variants must be shown to alter the function of the channel. A number of different ex vivo methods can be used to demonstrate functionality, as long as cells from human patients can be obtained and cultured from at least two unrelated families. Because malignant hyperthermia is an uncommon disorder and many variants seem to be private, including the newly identified H4833Y mutation, these approaches are limited. The authors cloned the human skeletal muscle ryanodine receptor complementary DNA and expressed both normal and mutated forms in HEK-293 cells and carried out functional analysis using ryanodine binding assays in the presence of a specific agonist, 4-chloro-m-cresol, and the antagonist Mg. Transiently expressed human ryanodine receptor proteins colocalized with an endoplasmic reticulum marker in HEK-293 cells. Ryanodine binding assays confirmed that mutations causing malignant hyperthermia resulted in a hypersensitive channel, while those causing central core disease resulted in a hyposensitive channel. The functional assays validate recombinant human skeletal muscle ryanodine receptor for analysis of variants and add an additional mutation (H4833Y) to the repertoire of mutations that can be used for the genetic diagnosis of malignant hyperthermia.

  10. Structural and functional analysis of rare missense mutations in human chorionic gonadotrophin β-subunit

    PubMed Central

    Nagirnaja, Liina; Venclovas, Česlovas; Rull, Kristiina; Jonas, Kim C.; Peltoketo, Hellevi; Christiansen, Ole B.; Kairys, Visvaldas; Kivi, Gaily; Steffensen, Rudi; Huhtaniemi, Ilpo T.; Laan, Maris

    2012-01-01

    Heterodimeric hCG is one of the key hormones determining early pregnancy success. We have previously identified rare missense mutations in hCGβ genes with potential pathophysiological importance. The present study assessed the impact of these mutations on the structure and function of hCG by applying a combination of in silico (sequence and structure analysis, molecular dynamics) and in vitro (co-immunoprecipitation, immuno- and bioassays) approaches. The carrier status of each mutation was determined for 1086 North-Europeans [655 patients with recurrent miscarriage (RM)/431 healthy controls from Estonia, Finland and Denmark] using PCR-restriction fragment length polymorphism. The mutation CGB5 p.Val56Leu (rs72556325) was identified in a single heterozygous RM patient and caused a structural hindrance in the formation of the hCGα/β dimer. Although the amount of the mutant hCGβ assembled into secreted intact hCG was only 10% compared with the wild-type, a stronger signaling response was triggered upon binding to its receptor, thus compensating the effect of poor dimerization. The mutation CGB8 p.Pro73Arg (rs72556345) was found in five heterozygotes (three RM cases and two control individuals) and was inherited by two of seven studied live born children. The mutation caused ∼50% of secreted β-subunits to acquire an alternative conformation, but did not affect its biological activity. For the CGB8 p.Arg8Trp (rs72556341) substitution, the applied in vitro methods revealed no alterations in the assembly of intact hCG as also supported by an in silico analysis. In summary, the accumulated data indicate that only mutations with neutral or mild functional consequences might be tolerated in the major hCGβ genes CGB5 and CGB8. PMID:22554618

  11. Loss-of-function mutations in APOC3, triglycerides, and coronary disease.

    PubMed

    Crosby, Jacy; Peloso, Gina M; Auer, Paul L; Crosslin, David R; Stitziel, Nathan O; Lange, Leslie A; Lu, Yingchang; Tang, Zheng-zheng; Zhang, He; Hindy, George; Masca, Nicholas; Stirrups, Kathleen; Kanoni, Stavroula; Do, Ron; Jun, Goo; Hu, Youna; Kang, Hyun Min; Xue, Chenyi; Goel, Anuj; Farrall, Martin; Duga, Stefano; Merlini, Pier Angelica; Asselta, Rosanna; Girelli, Domenico; Olivieri, Oliviero; Martinelli, Nicola; Yin, Wu; Reilly, Dermot; Speliotes, Elizabeth; Fox, Caroline S; Hveem, Kristian; Holmen, Oddgeir L; Nikpay, Majid; Farlow, Deborah N; Assimes, Themistocles L; Franceschini, Nora; Robinson, Jennifer; North, Kari E; Martin, Lisa W; DePristo, Mark; Gupta, Namrata; Escher, Stefan A; Jansson, Jan-Håkan; Van Zuydam, Natalie; Palmer, Colin N A; Wareham, Nicholas; Koch, Werner; Meitinger, Thomas; Peters, Annette; Lieb, Wolfgang; Erbel, Raimund; Konig, Inke R; Kruppa, Jochen; Degenhardt, Franziska; Gottesman, Omri; Bottinger, Erwin P; O'Donnell, Christopher J; Psaty, Bruce M; Ballantyne, Christie M; Abecasis, Goncalo; Ordovas, Jose M; Melander, Olle; Watkins, Hugh; Orho-Melander, Marju; Ardissino, Diego; Loos, Ruth J F; McPherson, Ruth; Willer, Cristen J; Erdmann, Jeanette; Hall, Alistair S; Samani, Nilesh J; Deloukas, Panos; Schunkert, Heribert; Wilson, James G; Kooperberg, Charles; Rich, Stephen S; Tracy, Russell P; Lin, Dan-Yu; Altshuler, David; Gabriel, Stacey; Nickerson, Deborah A; Jarvik, Gail P; Cupples, L Adrienne; Reiner, Alex P; Boerwinkle, Eric; Kathiresan, Sekar

    2014-07-03

    Plasma triglyceride levels are heritable and are correlated with the risk of coronary heart disease. Sequencing of the protein-coding regions of the human genome (the exome) has the potential to identify rare mutations that have a large effect on phenotype. We sequenced the protein-coding regions of 18,666 genes in each of 3734 participants of European or African ancestry in the Exome Sequencing Project. We conducted tests to determine whether rare mutations in coding sequence, individually or in aggregate within a gene, were associated with plasma triglyceride levels. For mutations associated with triglyceride levels, we subsequently evaluated their association with the risk of coronary heart disease in 110,970 persons. An aggregate of rare mutations in the gene encoding apolipoprotein C3 (APOC3) was associated with lower plasma triglyceride levels. Among the four mutations that drove this result, three were loss-of-function mutations: a nonsense mutation (R19X) and two splice-site mutations (IVS2+1G→A and IVS3+1G→T). The fourth was a missense mutation (A43T). Approximately 1 in 150 persons in the study was a heterozygous carrier of at least one of these four mutations. Triglyceride levels in the carriers were 39% lower than levels in noncarriers (P<1×10(-20)), and circulating levels of APOC3 in carriers were 46% lower than levels in noncarriers (P=8×10(-10)). The risk of coronary heart disease among 498 carriers of any rare APOC3 mutation was 40% lower than the risk among 110,472 noncarriers (odds ratio, 0.60; 95% confidence interval, 0.47 to 0.75; P=4×10(-6)). Rare mutations that disrupt APOC3 function were associated with lower levels of plasma triglycerides and APOC3. Carriers of these mutations were found to have a reduced risk of coronary heart disease. (Funded by the National Heart, Lung, and Blood Institute and others.).

  12. Loss-of-Function Mutations in APOC3, Triglycerides, and Coronary Disease

    PubMed Central

    2014-01-01

    Background Plasma triglyceride levels are heritable and are correlated with the risk of coronary heart disease. Sequencing of the protein-coding regions of the human genome (the exome) has the potential to identify rare mutations that have a large effect on phenotype. Methods We sequenced the protein-coding regions of 18,666 genes in each of 3734 participants of European or African ancestry in the Exome Sequencing Project. We conducted tests to determine whether rare mutations in coding sequence, individually or in aggregate within a gene, were associated with plasma triglyceride levels. For mutations associated with triglyceride levels, we subsequently evaluated their association with the risk of coronary heart disease in 110,970 persons. Results An aggregate of rare mutations in the gene encoding apolipoprotein C3 (APOC3) was associated with lower plasma triglyceride levels. Among the four mutations that drove this result, three were loss-of-function mutations: a nonsense mutation (R19X) and two splice-site mutations (IVS2+1G→A and IVS3+1G→T). The fourth was a missense mutation (A43T). Approximately 1 in 150 persons in the study was a heterozygous carrier of at least one of these four mutations. Triglyceride levels in the carriers were 39% lower than levels in noncarriers (P<1×10−20), and circulating levels of APOC3 in carriers were 46% lower than levels in noncarriers (P = 8×10−10). The risk of coronary heart disease among 498 carriers of any rare APOC3 mutation was 40% lower than the risk among 110,472 noncarriers (odds ratio, 0.60; 95% confidence interval, 0.47 to 0.75; P = 4×10−6). Conclusions Rare mutations that disrupt APOC3 function were associated with lower levels of plasma triglycerides and APOC3. Carriers of these mutations were found to have a reduced risk of coronary heart disease. (Funded by the National Heart, Lung, and Blood Institute and others.) PMID:24941081

  13. Myosin Transducer Mutations Differentially Affect Motor Function, Myofibril Structure, and the Performance of Skeletal and Cardiac Muscles

    PubMed Central

    Cammarato, Anthony; Dambacher, Corey M.; Knowles, Aileen F.; Kronert, William A.; Bodmer, Rolf

    2008-01-01

    Striated muscle myosin is a multidomain ATP-dependent molecular motor. Alterations to various domains affect the chemomechanical properties of the motor, and they are associated with skeletal and cardiac myopathies. The myosin transducer domain is located near the nucleotide-binding site. Here, we helped define the role of the transducer by using an integrative approach to study how Drosophila melanogaster transducer mutations D45 and Mhc5 affect myosin function and skeletal and cardiac muscle structure and performance. We found D45 (A261T) myosin has depressed ATPase activity and in vitro actin motility, whereas Mhc5 (G200D) myosin has these properties enhanced. Depressed D45 myosin activity protects against age-associated dysfunction in metabolically demanding skeletal muscles. In contrast, enhanced Mhc5 myosin function allows normal skeletal myofibril assembly, but it induces degradation of the myofibrillar apparatus, probably as a result of contractile disinhibition. Analysis of beating hearts demonstrates depressed motor function evokes a dilatory response, similar to that seen with vertebrate dilated cardiomyopathy myosin mutations, and it disrupts contractile rhythmicity. Enhanced myosin performance generates a phenotype apparently analogous to that of human restrictive cardiomyopathy, possibly indicating myosin-based origins for the disease. The D45 and Mhc5 mutations illustrate the transducer's role in influencing the chemomechanical properties of myosin and produce unique pathologies in distinct muscles. Our data suggest Drosophila is a valuable system for identifying and modeling mutations analogous to those associated with specific human muscle disorders. PMID:18045988

  14. Mutations that Allow SIR2 Orthologs to Function in a NAD+-Depleted Environment.

    PubMed

    Ondracek, Caitlin R; Frappier, Vincent; Ringel, Alison E; Wolberger, Cynthia; Guarente, Leonard

    2017-03-07

    Sirtuin enzymes depend on NAD + to catalyze protein deacetylation. Therefore, the lowering of NAD + during aging leads to decreased sirtuin activity and may speed up aging processes in laboratory animals and humans. In this study, we used a genetic screen to identify two mutations in the catalytic domain of yeast Sir2 that allow the enzyme to function in an NAD + -depleted environment. These mutant enzymes give rise to a significant increase of yeast replicative lifespan and increase deacetylation by the Sir2 ortholog, SIRT1, in mammalian cells. Our data suggest that these mutations increase the stability of the conserved catalytic sirtuin domain, thereby increasing the catalytic efficiency of the mutant enzymes. Our approach to identifying sirtuin mutants that permit function in NAD + -limited environments may inform the design of small molecules that can maintain sirtuin activity in aging organisms. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  15. In vivo and in vitro functional characterization of Andersen's syndrome mutations.

    PubMed

    Bendahhou, Saïd; Fournier, Emmanuel; Sternberg, Damien; Bassez, Guillaume; Furby, Alain; Sereni, Carole; Donaldson, Matthew R; Larroque, Marie-Madeleine; Fontaine, Bertrand; Barhanin, Jacques

    2005-06-15

    The inward rectifier K(+) channel Kir2.1 carries all Andersen's syndrome mutations identified to date. Patients exhibit symptoms of periodic paralysis, cardiac dysrhythmia and multiple dysmorphic features. Here, we report the clinical manifestations found in three families with Andersen's syndrome. Molecular genetics analysis identified two novel missense mutations in the KCNJ2 gene leading to amino acid changes C154F and T309I of the Kir2.1 open reading frame. Patch clamp experiments showed that the two mutations produced a loss of channel function. When co-expressed with Kir2.1 wild-type (WT) channels, both mutations exerted a dominant-negative effect leading to a loss of the inward rectifying K(+) current. Confocal microscopy imaging in HEK293 cells is consistent with a co-assembly of the EGFP-fused mutant proteins with WT channels and proper traffick to the plasma membrane to produce silent channels alone or as hetero-tetramers with WT. Functional expression in C2C12 muscle cell line of newly as well as previously reported Andersen's syndrome mutations confirmed that these mutations act through a dominant-negative effect by altering channel gating or trafficking. Finally, in vivo electromyographic evaluation showed a decrease in muscle excitability in Andersen's syndrome patients. We hypothesize that Andersen's syndrome-associated mutations and hypokalaemic periodic paralysis-associated calcium channel mutations may lead to muscle membrane hypoexcitability via a common mechanism.

  16. In vivo and in vitro functional characterization of Andersen's syndrome mutations

    PubMed Central

    Bendahhou, Saïd; Fournier, Emmanuel; Sternberg, Damien; Bassez, Guillaume; Furby, Alain; Sereni, Carole; Donaldson, Matthew R; Larroque, Marie-Madeleine; Fontaine, Bertrand; Barhanin, Jacques

    2005-01-01

    The inward rectifier K+ channel Kir2.1 carries all Andersen's syndrome mutations identified to date. Patients exhibit symptoms of periodic paralysis, cardiac dysrhythmia and multiple dysmorphic features. Here, we report the clinical manifestations found in three families with Andersen's syndrome. Molecular genetics analysis identified two novel missense mutations in the KCNJ2 gene leading to amino acid changes C154F and T309I of the Kir2.1 open reading frame. Patch clamp experiments showed that the two mutations produced a loss of channel function. When co-expressed with Kir2.1 wild-type (WT) channels, both mutations exerted a dominant-negative effect leading to a loss of the inward rectifying K+ current. Confocal microscopy imaging in HEK293 cells is consistent with a co-assembly of the EGFP-fused mutant proteins with WT channels and proper traffick to the plasma membrane to produce silent channels alone or as hetero-tetramers with WT. Functional expression in C2C12 muscle cell line of newly as well as previously reported Andersen's syndrome mutations confirmed that these mutations act through a dominant-negative effect by altering channel gating or trafficking. Finally, in vivo electromyographic evaluation showed a decrease in muscle excitability in Andersen's syndrome patients. We hypothesize that Andersen's syndrome-associated mutations and hypokalaemic periodic paralysis-associated calcium channel mutations may lead to muscle membrane hypoexcitability via a common mechanism. PMID:15831539

  17. Characterization and Use of Temperature-Sensitive Mutations of BRCA1 for the Study of BRCA1 Function

    DTIC Science & Technology

    2005-01-01

    Transcriptional activation by BRCA1. Nature 1996; 382:678-9. tion activation by BRCA1. The mutation would cause a marked 10. Hayes F, Cayanan C, Barilla D...cells was even higher than the Rev Mol Cell Biol 2002; 3:41-9. 20. Hayes F, Cayanan C, Barilla D, Monteiro AN. Functional assay for BRCAI

  18. Transmembrane S1 mutations in CNGA3 from achromatopsia 2 patients cause loss of function and impaired cellular trafficking of the cone CNG channel.

    PubMed

    Patel, Kirti A; Bartoli, Kristen M; Fandino, Richard A; Ngatchou, Anita N; Woch, Gustaw; Carey, Jannette; Tanaka, Jacqueline C

    2005-07-01

    Achromatopsia 2, an inherited retinal disorder resulting in attenuation or loss of cone function, is caused by mutations in the alpha subunit of the cone cyclic nucleotide-gated (CNG) channel gene CNGA3. Examination of mutations that cluster in the first transmembrane segment of the protein may provide insight into its role in CNG channel structure, function, biogenesis, and pathophysiology. The human CNGA3 gene was tagged at the C terminus with green fluorescent protein. Four mutations, Y181C, N182Y, L186F, and C191Y, were expressed in human embryonic kidney cells. Protein expression was evaluated with immunoblot analysis and cellular localization was determined by immunocytochemistry. Channel function was evaluated by patch-clamp electrophysiology. All the mutations result in loss of channel function, as determined by the failure of cGMP to activate wild-type currents in excised patches. Full-length mutant proteins were synthesized but retained in the endoplasmic reticulum. Glycerol treatment did not rescue channel function nor did coexpression with CNGB3, a subunit of native hetero-tetrameric cone channels. A control mutant, C191S, exhibited cGMP current activation with significantly reduced cooperativity, suggesting that mutations in the first transmembrane domain alter in inter- or intrasubunit communication. The results implicate the first transmembrane segment in both maturation and function of CNG channels. The defects are not reversed with glycerol, a chemical chaperone that rescues channel function in some channelopathies. Molecular analysis of achromatopsia 2 mutations may be useful in evaluating potential therapeutic approaches for treatment of this channelopathy.

  19. Mutation-Independent Activation of the Anaplastic Lymphoma Kinase in Neuroblastoma.

    PubMed

    Regairaz, Marie; Munier, Fabienne; Sartelet, Hervé; Castaing, Marine; Marty, Virginie; Renauleaud, Céline; Doux, Camille; Delbé, Jean; Courty, José; Fabre, Monique; Ohta, Shigeru; Vielh, Philippe; Michiels, Stefan; Valteau-Couanet, Dominique; Vassal, Gilles

    2016-02-01

    Activating mutations of anaplastic lymphoma kinase (ALK) have been identified as important players in neuroblastoma development. Our goal was to evaluate the significance of overall ALK activation in neuroblastoma. Expression of phosphorylated ALK, ALK, and its putative ligands, pleiotrophin and midkine, was screened in 289 neuroblastomas and 56 paired normal tissues. ALK was expressed in 99% of tumors and phosphorylated in 48% of cases. Pleiotrophin and midkine were expressed in 58% and 79% of tumors, respectively. ALK activation was significantly higher in tumors than in paired normal tissues, together with ALK and midkine expression. ALK activation was largely independent of mutations and correlated with midkine expression in tumors. ALK activation in tumors was associated with favorable features, including a younger age at diagnosis, hyperdiploidy, and detection by mass screening. Antitumor activity of the ALK inhibitor TAE684 was evaluated in wild-type or mutated ALK neuroblastoma cell lines and xenografts. TAE684 was cytotoxic in vitro in all cell lines, especially those harboring an ALK mutation. TAE684 efficiently inhibited ALK phosphorylation in vivo in both F1174I and R1275Q xenografts but demonstrated antitumor activity only against the R1275Q xenograft. In conclusion, ALK activation occurs frequently during neuroblastoma oncogenesis, mainly through mutation-independent mechanisms. However, ALK activation is not associated with a poor outcome and is not always a driver of cell proliferation and/or survival in neuroblastoma. Copyright © 2016 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  20. Mutational Analysis of the Adaptor Protein 2 Sigma Subunit (AP2S1) Gene: Search for Autosomal Dominant Hypocalcemia Type 3 (ADH3)

    PubMed Central

    Rogers, Angela; Nesbit, M. Andrew; Hannan, Fadil M.; Howles, Sarah A.; Gorvin, Caroline M.; Cranston, Treena; Allgrove, Jeremy; Bevan, John S.; Bano, Gul; Brain, Caroline; Datta, Vipan; Grossman, Ashley B.; Hodgson, Shirley V.; Izatt, Louise; Millar-Jones, Lynne; Pearce, Simon H.; Robertson, Lisa; Selby, Peter L.; Shine, Brian; Snape, Katie; Warner, Justin

    2014-01-01

    Context: Autosomal dominant hypocalcemia (ADH) types 1 and 2 are due to calcium-sensing receptor (CASR) and G-protein subunit-α11 (GNA11) gain-of-function mutations, respectively, whereas CASR and GNA11 loss-of-function mutations result in familial hypocalciuric hypercalcemia (FHH) types 1 and 2, respectively. Loss-of-function mutations of adaptor protein-2 sigma subunit (AP2σ 2), encoded by AP2S1, cause FHH3, and we therefore sought for gain-of-function AP2S1 mutations that may cause an additional form of ADH, which we designated ADH3. Objective: The objective of the study was to investigate the hypothesis that gain-of-function AP2S1 mutations may cause ADH3. Design: The sample size required for the detection of at least one mutation with a greater than 95% likelihood was determined by binomial probability analysis. Nineteen patients (including six familial cases) with hypocalcemia in association with low or normal serum PTH concentrations, consistent with ADH, but who did not have CASR or GNA11 mutations, were ascertained. Leukocyte DNA was used for sequence and copy number variation analysis of AP2S1. Results: Binomial probability analysis, using the assumption that AP2S1 mutations would occur in hypocalcemic patients at a prevalence of 20%, which is observed in FHH patients without CASR or GNA11 mutations, indicated that the likelihood of detecting at least one AP2S1 mutation was greater than 95% and greater than 98% in sample sizes of 14 and 19 hypocalcemic patients, respectively. AP2S1 mutations and copy number variations were not detected in the 19 hypocalcemic patients. Conclusion: The absence of AP2S1 abnormalities in hypocalcemic patients, suggests that ADH3 may not occur or otherwise represents a rare hypocalcemic disorder. PMID:24708097

  1. Recessive NRL mutations in patients with clumped pigmentary retinal degeneration and relative preservation of blue cone function.

    PubMed

    Nishiguchi, Koji M; Friedman, James S; Sandberg, Michael A; Swaroop, Anand; Berson, Eliot L; Dryja, Thaddeus P

    2004-12-21

    Mice lacking the transcription factor Nrl have no rod photoreceptors and an increased number of short-wavelength-sensitive cones. Missense mutations in NRL are associated with autosomal dominant retinitis pigmentosa; however, the phenotype associated with the loss of NRL function in humans has not been reported. We identified two siblings who carried two allelic mutations: a predicted null allele (L75fs) and a missense mutation (L160P) altering a highly conserved residue in the domain involved in DNA-binding-site recognition. In vitro luciferase reporter assays demonstrated that the NRL-L160P mutant had severely reduced transcriptional activity compared with the WT NRL protein, consistent with a severe loss of function. The affected patients had night blindness since early childhood, consistent with a severe reduction in rod function. Color vision was normal, suggesting the presence of all cone color types; nevertheless, a comparison of central visual fields evaluated with white-on-white and blue-on-yellow light stimuli was consistent with a relatively enhanced function of short-wavelength-sensitive cones in the macula. The fundi had signs of retinal degeneration (such as vascular attenuation) and clusters of large, clumped, pigment deposits in the peripheral fundus at the level of the retinal pigment epithelium (clumped pigmentary retinal degeneration). Our report presents an unusual clinical phenotype in humans with loss-of-function mutations in NRL.

  2. Additive loss-of-function proteasome subunit mutations in CANDLE/PRAAS patients promote type I IFN production

    PubMed Central

    Brehm, Anja; Liu, Yin; Sheikh, Afzal; Marrero, Bernadette; Omoyinmi, Ebun; Zhou, Qing; Montealegre, Gina; Biancotto, Angelique; Reinhardt, Adam; Almeida de Jesus, Adriana; Pelletier, Martin; Tsai, Wanxia L.; Remmers, Elaine F.; Kardava, Lela; Hill, Suvimol; Kim, Hanna; Lachmann, Helen J.; Megarbane, Andre; Chae, Jae Jin; Brady, Jilian; Castillo, Rhina D.; Brown, Diane; Casano, Angel Vera; Gao, Ling; Chapelle, Dawn; Huang, Yan; Stone, Deborah; Chen, Yongqing; Sotzny, Franziska; Lee, Chyi-Chia Richard; Kastner, Daniel L.; Torrelo, Antonio; Zlotogorski, Abraham; Moir, Susan; Gadina, Massimo; McCoy, Phil; Wesley, Robert; Rother, Kristina; Hildebrand, Peter W.; Brogan, Paul; Krüger, Elke; Aksentijevich, Ivona; Goldbach-Mansky, Raphaela

    2015-01-01

    Autosomal recessive mutations in proteasome subunit β 8 (PSMB8), which encodes the inducible proteasome subunit β5i, cause the immune-dysregulatory disease chronic atypical neutrophilic dermatosis with lipodystrophy and elevated temperature (CANDLE), which is classified as a proteasome-associated autoinflammatory syndrome (PRAAS). Here, we identified 8 mutations in 4 proteasome genes, PSMA3 (encodes α7), PSMB4 (encodes β7), PSMB9 (encodes β1i), and proteasome maturation protein (POMP), that have not been previously associated with disease and 1 mutation in PSMB8 that has not been previously reported. One patient was compound heterozygous for PSMB4 mutations, 6 patients from 4 families were heterozygous for a missense mutation in 1 inducible proteasome subunit and a mutation in a constitutive proteasome subunit, and 1 patient was heterozygous for a POMP mutation, thus establishing a digenic and autosomal dominant inheritance pattern of PRAAS. Function evaluation revealed that these mutations variably affect transcription, protein expression, protein folding, proteasome assembly, and, ultimately, proteasome activity. Moreover, defects in proteasome formation and function were recapitulated by siRNA-mediated knockdown of the respective subunits in primary fibroblasts from healthy individuals. Patient-isolated hematopoietic and nonhematopoietic cells exhibited a strong IFN gene-expression signature, irrespective of genotype. Additionally, chemical proteasome inhibition or progressive depletion of proteasome subunit gene transcription with siRNA induced transcription of type I IFN genes in healthy control cells. Our results provide further insight into CANDLE genetics and link global proteasome dysfunction to increased type I IFN production. PMID:26524591

  3. Effects of mutations on active site conformation and dynamics of RNA-dependent RNA polymerase from Coxsackievirus B3.

    PubMed

    Shen, Hujun; Deng, Mingsen; Zhang, Yachao

    2017-10-01

    Recent crystal structures of RNA-dependent RNA polymerase (3D pol ) from Coxsackievirus B3 (CVB3) revealed that a tyrosine mutation at Phe364 (F364Y) resulted in structures with open active site whereas a hydrophobic mutation at Phe364 (F364A) led to conformations with closed active site. Besides, the crystal structures showed that the F364W mutation had no preference between the open and closed active sites, similar to wild-type. In this paper, we present a molecular dynamics (MD) study on CVB3 3D pol in order to address some important questions raised by experiments. First, MD simulations of F364Y and F364A were carried out to explore how these mutations at Phe364 influence active site dynamics and conformations. Second, MD simulations of wild-type and mutants were performed to discover the connection between active site dynamics and polymerase function. MD simulations reveal that the effect of mutations on active site dynamics is associated with the interaction between the structural motifs A and D in CVB3 3D pol . Interestingly, we discover that the active site state is influenced by the formation of a hydrogen bond between backbone atoms of Ala231 (in motif A) and Ala358 (in motif D), which has never been revealed before. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Neurodevelopmental disease-associated de novo mutations and rare sequence variants affect TRIO GDP/GTP exchange factor activity.

    PubMed

    Katrancha, Sara M; Wu, Yi; Zhu, Minsheng; Eipper, Betty A; Koleske, Anthony J; Mains, Richard E

    2017-12-01

    Bipolar disorder, schizophrenia, autism and intellectual disability are complex neurodevelopmental disorders, debilitating millions of people. Therapeutic progress is limited by poor understanding of underlying molecular pathways. Using a targeted search, we identified an enrichment of de novo mutations in the gene encoding the 330-kDa triple functional domain (TRIO) protein associated with neurodevelopmental disorders. By generating multiple TRIO antibodies, we show that the smaller TRIO9 isoform is the major brain protein product, and its levels decrease after birth. TRIO9 contains two guanine nucleotide exchange factor (GEF) domains with distinct specificities: GEF1 activates both Rac1 and RhoG; GEF2 activates RhoA. To understand the impact of disease-associated de novo mutations and other rare sequence variants on TRIO function, we utilized two FRET-based biosensors: a Rac1 biosensor to study mutations in TRIO (T)GEF1, and a RhoA biosensor to study mutations in TGEF2. We discovered that one autism-associated de novo mutation in TGEF1 (K1431M), at the TGEF1/Rac1 interface, markedly decreased its overall activity toward Rac1. A schizophrenia-associated rare sequence variant in TGEF1 (F1538Intron) was substantially less active, normalized to protein level and expressed poorly. Overall, mutations in TGEF1 decreased GEF1 activity toward Rac1. One bipolar disorder-associated rare variant (M2145T) in TGEF2 impaired inhibition by the TGEF2 pleckstrin-homology domain, resulting in dramatically increased TGEF2 activity. Overall, genetic damage to both TGEF domains altered TRIO catalytic activity, decreasing TGEF1 activity and increasing TGEF2 activity. Importantly, both GEF changes are expected to decrease neurite outgrowth, perhaps consistent with their association with neurodevelopmental disorders. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  5. Functional impact of HIV coreceptor-binding site mutations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Biscone, Mark J.; Miamidian, John L.; Muchiri, John M.

    2006-07-20

    The bridging sheet region of the gp120 subunit of the HIV-1 Env protein interacts with the major virus coreceptors, CCR5 and CXCR4. We examined the impact of mutations in and adjacent to the bridging sheet region of an X4 tropic HIV-1 on membrane fusion and entry inhibitor susceptibility. When the V3-loop of this Env was changed so that CCR5 was used, the effects of these same mutations on CCR5 use were assayed as well. We found that coreceptor-binding site mutations had greater effects on CXCR4-mediated fusion and infection than when CCR5 was used as a coreceptor, perhaps related to differencesmore » in coreceptor affinity. The mutations also reduced use of the alternative coreceptors CCR3 and CCR8 to varying degrees, indicating that the bridging sheet region is important for the efficient utilization of both major and minor HIV coreceptors. As seen before with a primary R5 virus strain, bridging sheet mutations increased susceptibility to the CCR5 inhibitor TAK-779, which correlated with CCR5 binding efficiency. Bridging sheet mutations also conferred increased susceptibility to the CXCR4 ligand AMD-3100 in the context of the X4 tropic Env. However, these mutations had little effect on the rate of membrane fusion and little effect on susceptibility to enfuvirtide, a membrane fusion inhibitor whose activity is dependent in part on the rate of Env-mediated membrane fusion. Thus, mutations that reduce coreceptor binding and enhance susceptibility to coreceptor inhibitors can affect fusion and enfuvirtide susceptibility in an Env context-dependent manner.« less

  6. Congenital Heart Disease–Causing Gata4 Mutation Displays Functional Deficits In Vivo

    PubMed Central

    Misra, Chaitali; Sachan, Nita; McNally, Caryn Rothrock; Koenig, Sara N.; Nichols, Haley A.; Guggilam, Anuradha; Lucchesi, Pamela A.; Pu, William T.; Srivastava, Deepak; Garg, Vidu

    2012-01-01

    Defects of atrial and ventricular septation are the most frequent form of congenital heart disease, accounting for almost 50% of all cases. We previously reported that a heterozygous G296S missense mutation of GATA4 caused atrial and ventricular septal defects and pulmonary valve stenosis in humans. GATA4 encodes a cardiac transcription factor, and when deleted in mice it results in cardiac bifida and lethality by embryonic day (E)9.5. In vitro, the mutant GATA4 protein has a reduced DNA binding affinity and transcriptional activity and abolishes a physical interaction with TBX5, a transcription factor critical for normal heart formation. To characterize the mutation in vivo, we generated mice harboring the same mutation, Gata4 G295S. Mice homozygous for the Gata4 G295S mutant allele have normal ventral body patterning and heart looping, but have a thin ventricular myocardium, single ventricular chamber, and lethality by E11.5. While heterozygous Gata4 G295S mutant mice are viable, a subset of these mice have semilunar valve stenosis and small defects of the atrial septum. Gene expression studies of homozygous mutant mice suggest the G295S protein can sufficiently activate downstream targets of Gata4 in the endoderm but not in the developing heart. Cardiomyocyte proliferation deficits and decreased cardiac expression of CCND2, a member of the cyclin family and a direct target of Gata4, were found in embryos both homozygous and heterozygous for the Gata4 G295S allele. To further define functions of the Gata4 G295S mutation in vivo, compound mutant mice were generated in which specific cell lineages harbored both the Gata4 G295S mutant and Gata4 null alleles. Examination of these mice demonstrated that the Gata4 G295S protein has functional deficits in early myocardial development. In summary, the Gata4 G295S mutation functions as a hypomorph in vivo and leads to defects in cardiomyocyte proliferation during embryogenesis, which may contribute to the development of

  7. Genetic and Structure-Function Studies of Missense Mutations in Human Endothelial Lipase

    PubMed Central

    Razzaghi, Hamid; Tempczyk-Russell, Anna; Haubold, Kurt; Santorico, Stephanie A.; Shokati, Touraj; Christians, Uwe; Churchill, Mair E. A.

    2013-01-01

    Endothelial lipase (EL) plays a pivotal role in HDL metabolism. We sought to characterize EL and its interaction with HDL as well as its natural variants genetically, functionally and structurally. We screened our biethnic population sample (n = 802) for selected missense mutations (n = 5) and identified T111I as the only common variant. Multiple linear regression analyses in Hispanic subjects revealed an unexpected association between T111I and elevated LDL-C (p-value = 0.012) and total cholesterol (p-value = 0.004). We examined lipase activity of selected missense mutants (n = 10) and found different impacts on EL function, ranging from normal to complete loss of activity. EL-HDL lipidomic analyses indicated that EL has a defined remodeling of HDL without exhaustion of the substrate and a distinct and preference for several fatty acids that are lipid mediators and known for their potent pro- and anti-inflammatory properties. Structural studies using homology modeling revealed a novel α/β motif in the C-domain, unique to EL. The EL dimer was found to have the flexibility to expand and to bind various sizes of HDL particles. The likely impact of the all known missense mutations (n = 18) on the structure of EL was examined using molecular modeling and the impact they may have on EL lipase activity using a novel structure-function slope based on their structural free energy differences. The results of this multidisciplinary approach delineated the impact of EL and its variants on HDL. Moreover, the results suggested EL to have the capacity to modulate vascular health through its role in fatty acid-based signaling pathways. PMID:23536757

  8. A novel loss-of-function mutation in OTX2 in a patient with anophthalmia and isolated growth hormone deficiency.

    PubMed

    Ashkenazi-Hoffnung, Liat; Lebenthal, Yael; Wyatt, Alexander W; Ragge, Nicola K; Dateki, Sumito; Fukami, Maki; Ogata, Tsutomu; Phillip, Moshe; Gat-Yablonski, Galia

    2010-06-01

    Heterozygous mutations of the gene encoding transcription factor OTX2 were recently shown to be responsible for ocular as well as pituitary abnormalities. Here, we describe a patient with unilateral anophthalmia and short stature. Endocrine evaluation of the hypothalamic-pituitary axis revealed isolated growth hormone deficiency (IGHD) with small anterior pituitary gland, invisible stalk, ectopic posterior lobe, and right anophthalmia on brain magnetic resonance imaging. DNA was analyzed for mutations in the HESX1, SOX2, and OTX2 genes. Molecular analysis yielded a novel heterozygous OTX2 mutation (c.270A>T, p.R90S) within the homeodomain. Functional analysis revealed that the mutation inhibited both the DNA binding and transactivation activities of the protein. This novel loss-of-function mutation is associated with anophthalmia and IGHD in a patient of Sephardic Jewish descent. We recommend that patients with GH deficiency and ocular malformation in whom genetic analysis for classic transcription factor genes (PROP1, POU1F1, HESX1, and LHX4) failed to identify alterations should be checked for the presence of mutations in the OTX2 gene.

  9. Microbial Disease Spectrum Linked to a Novel IL-12Rβ1 N-Terminal Signal Peptide Stop-Gain Homozygous Mutation with Paradoxical Receptor Cell-Surface Expression

    PubMed Central

    Louvain de Souza, Thais; de Souza Campos Fernandes, Regina C.; Azevedo da Silva, Juliana; Gomes Alves Júnior, Vladimir; Gomes Coelho, Adelia; Souza Faria, Afonso C.; Moreira Salomão Simão, Nabia M.; Souto Filho, João T.; Deswarte, Caroline; Boisson-Dupuis, Stéphanie; Torgerson, Dara; Casanova, Jean-Laurent; Bustamante, Jacinta; Medina-Acosta, Enrique

    2017-01-01

    Patients with Mendelian Susceptibility to Mycobacterial Diseases (MSMD) exhibit variable vulnerability to infections by mycobacteria and other intramacrophagic bacteria (e.g., Salmonella and Klebsiella) and fungi (e.g., Histoplasma, Candida, Paracoccidioides, Coccidioides, and Cryptococcus). The hallmark of MSMD is the inherited impaired production of interferon gamma (IFN-γ) or the lack of response to it. Mutations in the interleukin (IL)-12 receptor subunit beta 1 (IL12RB1) gene accounts for 38% of cases of MSMD. Most IL12RB1 pathogenic allele mutations, including ten known stop-gain variants, cause IL-12Rβ1 complete deficiency (immunodeficiency-30, IMD30) by knocking out receptor cell-surface expression. IL12RB1 loss-of-function genotypes impair both IL-12 and IL-23 responses. Here, we assess the health effects of a rare, novel IL12RB1 stop-gain homozygous genotype with paradoxical IL-12Rβ1 cell-surface expression. We appraise four MSMD children from three unrelated Brazilian kindreds by clinical consultation, medical records, and genetic and immunologic studies. The clinical spectrum narrowed down to Bacillus Calmette-Guerin (BCG) vaccine-related suppurative adenitis in all patients with one death, and recrudescence in two, histoplasmosis, and recurrence in one patient, extraintestinal salmonellosis in one child, and cutaneous vasculitis in another. In three patients, we established the homozygous Trp7Ter predicted loss-of-function inherited genotype and inferred it from the heterozygote parents of the fourth case. The Trp7Ter mutation maps to the predicted IL-12Rβ1 N-terminal signal peptide sequence. BCG- or phytohemagglutinin-blasts from the three patients have reduced cell-surface expression of IL-12Rβ1 with impaired production of IFN-γ and IL-17A. Screening of 227 unrelated healthy subjects from the same geographic region revealed one heterozygous genotype (allele frequency 0.0022) vs. one in over 841,883 public genome/exomes. We also show that the

  10. Preselection of EGFR mutations in non-small-cell lung cancer patients by immunohistochemistry: comparison with DNA-sequencing, EGFR wild-type expression, gene copy number gain and clinicopathological data.

    PubMed

    Gaber, Rania; Watermann, Iris; Kugler, Christian; Vollmer, Ekkehard; Perner, Sven; Reck, Martin; Goldmann, Torsten

    2017-01-01

    Targeting epidermal growth factor receptor (EGFR) in patients with non-small-cell lung cancer (NSCLC) having EGFR mutations is associated with an improved overall survival. The aim of this study is to verify, if EGFR mutations detected by immunohistochemistry (IHC) is a convincing way to preselect patients for DNA-sequencing and to figure out, the statistical association between EGFR mutation, wild-type EGFR overexpression, gene copy number gain, which are the main factors inducing EGFR tumorigenic activity and the clinicopathological data. Two hundred sixteen tumor tissue samples of primarily chemotherapeutic naïve NSCLC patients were analyzed for EGFR mutations E746-A750del and L858R and correlated with DNA-sequencing. Two hundred six of which were assessed by IHC, using 6B6 and 43B2 specific antibodies followed by DNA-sequencing of positive cases and 10 already genotyped tumor tissues were also included to investigate debugging accuracy of IHC. In addition, EGFR wild-type overexpression was IHC evaluated and EGFR gene copy number determination was performed by fluorescence in situ hybridization (FISH). Forty-one÷206 (19.9%) cases were positive for mutated EGFR by IHC. Eight of them had EGFR mutations of exons 18-21 by DNA-sequencing. Hit rate of 10 already genotyped NSCLC mutated cases was 90% by IHC. Positive association was found between EGFR mutations determined by IHC and both EGFR overexpression and increased gene copy number (p=0.002 and p<0.001, respectively). Additionally, positive association was detected between EGFR mutations, high tumor grade and clinical stage (p<0.001). IHC staining with mutation specific antibodies was demonstrated as a possible useful screening test to preselect patients for DNA-sequencing.

  11. Loss-of-function thrombospondin-1 mutations in familial pulmonary hypertension

    PubMed Central

    Stearman, Robert S.; Bull, Todd M.; Calabrese, David W.; Tripp-Addison, Megan L.; Wick, Marilee J.; Broeckel, Ulrich; Robbins, Ivan M.; Wheeler, Lisa A.; Cogan, Joy D.; Loyd, James E.

    2012-01-01

    Most patients with familial pulmonary arterial hypertension (FPAH) carry mutations in the bone morphogenic protein receptor 2 gene (BMPR2). Yet carriers have only a 20% risk of disease, suggesting that other factors influence penetrance. Thrombospondin-1 (TSP1) regulates activation of TGF-β and inhibits endothelial and smooth muscle cell proliferation, pathways coincidentally altered in pulmonary arterial hypertension (PAH). To determine whether a subset of FPAH patients also have mutations in the TSP1 gene (THBS1) we resequenced the type I repeats of THBS1 encoding the TGF-β regulation and cell growth inhibition domains in 60 FPAH probands, 70 nonfamilial PAH subjects, and in large control groups. We identified THBS1 mutations in three families: a novel missense mutation in two (Asp362Asn), and an intronic mutation in a third (IVS8+255 G/A). Neither mutation was detected in population controls. Mutant 362Asn TSP1 had less than half of the ability of wild-type TSP1 to activate TGF-β. Mutant 362Asn TSP1 also lost the ability to inhibit growth of pulmonary arterial smooth muscle cells and was over threefold less effective at inhibiting endothelial cell growth. The IVS8+255 G/A mutation decreased and/or eliminated local binding of the transcription factors SP1 and MAZ but did not affect RNA splicing. These novel mutations implicate THBS1 as a modifier gene in FPAH. These THBS1 mutations have implications in the genetic evaluation of FPAH patients. However, since FPAH is rare, these data are most relevant as evidence for the importance of TSP1 in pulmonary vascular homeostasis. Further examination of THBS1 in the pathogenesis of PAH is warranted. PMID:22198906

  12. Gain-of-function mutations in beet DODA2 identify key residues for betalain pigment evolution.

    PubMed

    Bean, Alexander; Sunnadeniya, Rasika; Akhavan, Neda; Campbell, Annabelle; Brown, Matthew; Lloyd, Alan

    2018-05-13

    The key enzymatic step in betalain biosynthesis involves conversion of l-3,4-dihydroxyphenylalanine (l-DOPA) to betalamic acid. One class of enzymes capable of this is 3,4-dihydroxyphenylalanine 4,5-dioxygenase (DODA). In betalain-producing species, multiple paralogs of this gene are maintained. This study demonstrates which paralogs function in the betalain pathway and determines the residue changes required to evolve a betalain-nonfunctional DODA into a betalain-functional DODA. Functionalities of two pairs of DODAs were tested by expression in beets, Arabidopsis and yeast, and gene silencing was performed by virus-induced gene silencing. Site-directed mutagenesis identified amino acid residues essential for betalamic acid production. Beta vulgaris and Mirabilis jalapa both possess a DODA1 lineage that functions in the betalain pathway and at least one other lineage, DODA2, that does not. Site-directed mutagenesis resulted in betalain biosynthesis by a previously nonfunctional DODA, revealing key residues required for evolution of the betalain pathway. Divergent functionality of DODA paralogs, one clade involved in betalain biosynthesis but others not, is present in various Caryophyllales species. A minimum of seven amino acid residue changes conferred betalain enzymatic activity to a betalain-nonfunctional DODA paralog, providing insight into the evolution of the betalain pigment pathway in plants. © 2018 The Authors. New Phytologist © 2018 New Phytologist Trust.

  13. A Novel FOXE1 Mutation (R73S) in Bamforth–Lazarus Syndrome Causing Increased Thyroidal Gene Expression

    PubMed Central

    Carré, Aurore; Hamza, Rasha T.; Kariyawasam, Dulanjalee; Guillot, Loïc; Teissier, Raphaël; Tron, Elodie; Castanet, Mireille; Dupuy, Corinne; El Kholy, Mohamed; Polak, Michel

    2014-01-01

    Background: Homozygous loss-of-function mutations in the FOXE1 gene have been reported in several patients with partial or complete Bamforth–Lazarus syndrome: congenital hypothyroidism (CH) with thyroid dysgenesis (usually athyreosis), cleft palate, spiky hair, with or without choanal atresia, and bifid epiglottis. Here, our objective was to evaluate potential functional consequences of a FOXE1 mutation in a patient with a similar clinical phenotype. Methods: FOXE1 was sequenced in eight patients with thyroid dysgenesis and cleft palate. Transient transfection was performed in HEK293 cells using the thyroglobulin (TG) and thyroid peroxidase (TPO) promoters in luciferase reporter plasmids to assess the functional impact of the FOXE1 mutations. Primary human thyrocytes transfected with wild type and mutant FOXE1 served to assess the impact of the mutation on endogenous TG and TPO expression. Results: We identified and characterized the function of a new homozygous FOXE1 missense mutation (p.R73S) in a boy with a typical phenotype (athyreosis, cleft palate, and partial choanal atresia). This new mutation located within the forkhead domain was inherited from the heterozygous healthy consanguineous parents. In vitro functional studies in HEK293 cells showed that this mutant gene enhanced the activity of the TG and TPO gene promoters (1.5-fold and 1.7-fold respectively vs. wild type FOXE1; p<0.05), unlike the five mutations previously reported in Bamforth–Lazarus syndrome. The gain-of-function effect of the FOXE1-p.R73S mutant gene was confirmed by an increase in endogenous TG production in primary human thyrocytes. Conclusion: We identified a new homozygous FOXE1 mutation responsible for enhanced expression of the TG and TPO genes in a boy whose phenotype is similar to that reported previously in patients with loss-of-function FOXE1 mutations. This finding further delineates the role for FOXE1 in both thyroid and palate development, and shows that enhanced gene

  14. Neurodegenerative disease mutations in TREM2 reveal a functional surface and distinct loss-of-function mechanisms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kober, Daniel L.; Alexander-Brett, Jennifer M.; Karch, Celeste M.

    Genetic variations in the myeloid immune receptor TREM2 are linked to several neurodegenerative diseases. To determine how TREM2 variants contribute to these diseases, we performed structural and functional studies of wild-type and variant proteins. Our 3.1 Å TREM2 crystal structure revealed that mutations found in Nasu-Hakola disease are buried whereas Alzheimer’s disease risk variants are found on the surface, suggesting that these mutations have distinct effects on TREM2 function. Biophysical and cellular methods indicate that Nasu-Hakola mutations impact protein stability and decrease folded TREM2 surface expression, whereas Alzheimer’s risk variants impact binding to a TREM2 ligand. Additionally, the Alzheimer’s riskmore » variants appear to epitope map a functional surface on TREM2 that is unique within the larger TREM family. These findings provide a guide to structural and functional differences among genetic variants of TREM2, indicating that therapies targeting the TREM2 pathway should be tailored to these genetic and functional differences with patient-specific medicine approaches for neurodegenerative disorders.« less

  15. Mutation of NLRC4 causes a syndrome of enterocolitis and autoinflammation

    PubMed Central

    Nelson-Williams, Carol; Stiegler, Amy L; Loring, Erin; Choi, Murim; Overton, John; Meffre, Eric; Khokha, Mustafa K; Huttner, Anita J; West, Brian; Podoltsev, Nikolai A; Boggon, Titus J; Kazmierczak, Barbara I; Lifton, Richard P

    2014-01-01

    Upon detection of pathogen-associated molecular patterns, innate immune receptors initiate inflammatory responses. These receptors include cytoplasmic NOD-like receptors (NLRs), whose stimulation recruits and proteolytically activates caspase-1 within the inflammasome, a multi-protein complex. Caspase-1 mediates the production of interleukin-1 family cytokines (IL1FCs), leading to fever, and inflammatory cell death (pyroptosis)1,2. Mutations that constitutively activate these pathways underlie several autoinflammatory diseases with diverse clinical features3. We describe a family with a previously unreported syndrome featuring neonatal-onset enterocolitis, periodic fever, and fatal/near-fatal episodes of autoinflammation caused by a de novo gain-of-function mutation (p.V341A) in the HD1 domain of NLRC4 that co-segregates with disease. Mutant NLRC4 causes constitutive Interleukin-1 family cytokine production and macrophage cell death. Infected patient macrophages are polarized toward pyroptosis and exhibit abnormal staining for inflammasome components. These findings describe and reveal the cause of a life-threatening but treatable autoinflammatory disease that underscores the divergent roles of the NLRC4 inflammasome. PMID:25217960

  16. Functional analysis of mutations in SLC7A9, and genotype-phenotype correlation in non-Type I cystinuria.

    PubMed

    Font, M A; Feliubadaló, L; Estivill, X; Nunes, V; Golomb, E; Kreiss, Y; Pras, E; Bisceglia, L; d'Adamo, A P; Zelante, L; Gasparini, P; Bassi, M T; George , A L; Manzoni, M; Riboni, M; Ballabio, A; Borsani, G; Reig, N; Fernández, E; Zorzano, A; Bertran, J; Palacín, M

    2001-02-15

    Cystinuria (OMIM 220100) is a common recessive disorder of renal reabsorption of cystine and dibasic amino acids that results in nephrolithiasis of cystine. Mutations in SLC3A1, which encodes rBAT, cause Type I cystinuria, and mutations in SLC7A9, which encodes a putative subunit of rBAT (b(o,+)AT), cause non-Type I cystinuria. Here we describe the genomic structure of SLC7A9 (13 exons) and 28 new mutations in this gene that, together with the seven previously reported, explain 79% of the alleles in 61 non-Type I cystinuria patients. These data demonstrate that SLC7A9 is the main non-Type I cystinuria gene. Mutations G105R, V170M, A182T and R333W are the most frequent SLC7A9 missense mutations found. Among heterozygotes carrying these mutations, A182T heterozygotes showed the lowest urinary excretion values of cystine and dibasic amino acids. Functional analysis of mutation A182T after co-expression with rBAT in HeLa cells revealed significant residual transport activity. In contrast, mutations G105R, V170M and R333W are associated to a complete or almost complete loss of transport activity, leading to a more severe urinary phenotype in heterozygotes. SLC7A9 mutations located in the putative transmembrane domains of b(o,+)AT and affecting conserved amino acid residues with a small side chain generate a severe phenotype, while mutations in non-conserved residues give rise to a mild phenotype. These data provide the first genotype-phenotype correlation in non-Type I cystinuria, and show that a mild urinary phenotype in heterozygotes may associate with mutations with significant residual transport activity.

  17. MLH1 mutations differentially affect meiotic functions in Saccharomyces cerevisiae.

    PubMed Central

    Hoffmann, Eva R; Shcherbakova, Polina V; Kunkel, Thomas A; Borts, Rhona H

    2003-01-01

    To test whether missense mutations in the cancer susceptibility gene MLH1 adversely affect meiosis, we examined 14 yeast MLH1 mutations for effects on meiotic DNA transactions and gamete viability in the yeast Saccharomyces cerevisiae. Mutations analogous to those associated with hereditary nonpolyposis colorectal cancer (HNPCC) or those that reduce Mlh1p interactions with ATP or DNA all impair replicative mismatch repair as measured by increased mutation rates. However, their effects on meiotic heteroduplex repair, crossing over, chromosome segregation, and gametogenesis vary from complete loss of meiotic functions to no meiotic defect, and mutants defective in one meiotic process are not necessarily defective in others. DNA binding and ATP binding but not ATP hydrolysis are required for meiotic crossing over. The results reveal clear separation of different Mlh1p functions in mitosis and meiosis, and they suggest that some, but not all, MLH1 mutations may be a source of human infertility. PMID:12618391

  18. Dt2 Is a Gain-of-Function MADS-Domain Factor Gene That Specifies Semideterminacy in Soybean[C][W

    PubMed Central

    Ping, Jieqing; Liu, Yunfeng; Sun, Lianjun; Zhao, Meixia; Li, Yinghui; She, Maoyun; Sui, Yi; Lin, Feng; Liu, Xiaodong; Tang, Zongxiang; Nguyen, Hanh; Tian, Zhixi; Qiu, Lijuan; Nelson, Randall L.; Clemente, Thomas E.; Specht, James E.; Ma, Jianxin

    2014-01-01

    Similar to Arabidopsis thaliana, the wild soybeans (Glycine soja) and many cultivars exhibit indeterminate stem growth specified by the shoot identity gene Dt1, the functional counterpart of Arabidopsis TERMINAL FLOWER1 (TFL1). Mutations in TFL1 and Dt1 both result in the shoot apical meristem (SAM) switching from vegetative to reproductive state to initiate terminal flowering and thus produce determinate stems. A second soybean gene (Dt2) regulating stem growth was identified, which, in the presence of Dt1, produces semideterminate plants with terminal racemes similar to those observed in determinate plants. Here, we report positional cloning and characterization of Dt2, a dominant MADS domain factor gene classified into the APETALA1/SQUAMOSA (AP1/SQUA) subfamily that includes floral meristem (FM) identity genes AP1, FUL, and CAL in Arabidopsis. Unlike AP1, whose expression is limited to FMs in which the expression of TFL1 is repressed, Dt2 appears to repress the expression of Dt1 in the SAMs to promote early conversion of the SAMs into reproductive inflorescences. Given that Dt2 is not the gene most closely related to AP1 and that semideterminacy is rarely seen in wild soybeans, Dt2 appears to be a recent gain-of-function mutation, which has modified the genetic pathways determining the stem growth habit in soybean. PMID:25005919

  19. XPD Helicase Structures And Activities: Insights Into the Cancer And Aging Phenotypes From XPD Mutations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fan, L.; Fuss, J.O.; Cheng, Q.J.

    2009-05-18

    Mutations in XPD helicase, required for nucleotide excision repair (NER) as part of the transcription/repair complex TFIIH, cause three distinct phenotypes: cancer-prone xeroderma pigmentosum (XP), or aging disorders Cockayne syndrome (CS), and trichothiodystrophy (TTD). To clarify molecular differences underlying these diseases, we determined crystal structures of the XPD catalytic core from Sulfolobus acidocaldarius and measured mutant enzyme activities. Substrate-binding grooves separate adjacent Rad51/RecA-like helicase domains (HD1, HD2) and an arch formed by 4FeS and Arch domains. XP mutations map along the HD1 ATP-binding edge and HD2 DNA-binding channel and impair helicase activity essential for NER. XP/CS mutations both impair helicasemore » activity and likely affect HD2 functional movement. TTD mutants lose or retain helicase activity but map to sites in all four domains expected to cause framework defects impacting TFIIH integrity. These results provide a foundation for understanding disease consequences of mutations in XPD and related 4Fe-4S helicases including FancJ.« less

  20. XPD Helicase Structures and Activities: Insights into the Cancer and Aging Phenotypes from XPD Mutations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tainer, John; Fan, Li; Fuss, Jill O.

    2008-06-02

    Mutations in XPD helicase, required for nucleotide excision repair (NER) as part of the transcription/repair complex TFIIH, cause three distinct phenotypes: cancer-prone xeroderma pigmentosum (XP), or aging disorders Cockayne syndrome (CS), and trichothiodystrophy (TTD). To clarify molecular differences underlying these diseases, we determined crystal structures of the XPD catalytic core from Sulfolobus acidocaldarius and measured mutant enzyme activities. Substrate-binding grooves separate adjacent Rad51/RecA-like helicase domains (HD1, HD2) and an arch formed by 4FeS and Arch domains. XP mutations map along the HD1 ATP-binding edge and HD2 DNA-binding channel and impair helicase activity essential for NER. XP/CS mutations both impair helicasemore » activity and likely affect HD2 functional movement. TTD mutants lose or retain helicase activity but map to sites in all four domains expected to cause framework defects impacting TFIIH integrity. These results provide a foundation for understanding disease consequences of mutations in XPD and related 4Fe-4S helicases including FancJ.« less

  1. The FTD-like syndrome causing TREM2 T66M mutation impairs microglia function, brain perfusion, and glucose metabolism.

    PubMed

    Kleinberger, Gernot; Brendel, Matthias; Mracsko, Eva; Wefers, Benedikt; Groeneweg, Linda; Xiang, Xianyuan; Focke, Carola; Deußing, Maximilian; Suárez-Calvet, Marc; Mazaheri, Fargol; Parhizkar, Samira; Pettkus, Nadine; Wurst, Wolfgang; Feederle, Regina; Bartenstein, Peter; Mueggler, Thomas; Arzberger, Thomas; Knuesel, Irene; Rominger, Axel; Haass, Christian

    2017-07-03

    Genetic variants in the triggering receptor expressed on myeloid cells 2 (TREM2) increase the risk for several neurodegenerative diseases including Alzheimer's disease and frontotemporal dementia (FTD). Homozygous TREM2 missense mutations, such as p.T66M, lead to the FTD-like syndrome, but how they cause pathology is unknown. Using CRISPR/Cas9 genome editing, we generated a knock-in mouse model for the disease-associated Trem2 p.T66M mutation. Consistent with a loss-of-function mutation, we observe an intracellular accumulation of immature mutant Trem2 and reduced generation of soluble Trem2 similar to patients with the homozygous p.T66M mutation. Trem2 p.T66M knock-in mice show delayed resolution of inflammation upon in vivo lipopolysaccharide stimulation and cultured macrophages display significantly reduced phagocytic activity. Immunohistochemistry together with in vivo TSPO small animal positron emission tomography (μPET) demonstrates an age-dependent reduction in microglial activity. Surprisingly, perfusion magnetic resonance imaging and FDG-μPET imaging reveal a significant reduction in cerebral blood flow and brain glucose metabolism. Thus, we demonstrate that a TREM2 loss-of-function mutation causes brain-wide metabolic alterations pointing toward a possible function of microglia in regulating brain glucose metabolism. © 2017 The Authors.

  2. Computational design of thermostabilizing point mutations for G protein-coupled receptors

    PubMed Central

    Popov, Petr; Peng, Yao; Shen, Ling; Stevens, Raymond C; Cherezov, Vadim; Liu, Zhi-Jie

    2018-01-01

    Engineering of GPCR constructs with improved thermostability is a key for successful structural and biochemical studies of this transmembrane protein family, targeted by 40% of all therapeutic drugs. Here we introduce a comprehensive computational approach to effective prediction of stabilizing mutations in GPCRs, named CompoMug, which employs sequence-based analysis, structural information, and a derived machine learning predictor. Tested experimentally on the serotonin 5-HT2C receptor target, CompoMug predictions resulted in 10 new stabilizing mutations, with an apparent thermostability gain ~8.8°C for the best single mutation and ~13°C for a triple mutant. Binding of antagonists confers further stabilization for the triple mutant receptor, with total gains of ~21°C as compared to wild type apo 5-HT2C. The predicted mutations enabled crystallization and structure determination for the 5-HT2C receptor complexes in inactive and active-like states. While CompoMug already shows high 25% hit rate and utility in GPCR structural studies, further improvements are expected with accumulation of structural and mutation data. PMID:29927385

  3. Functional modules, mutational load and human genetic disease

    PubMed Central

    Zaghloul, Norann A.; Katsanis, Nicholas

    2013-01-01

    The ability to generate a massive amount of sequencing and genotyping data is transforming the study of human genetic disorders. Driven by such innovation, it is likely that whole exome and whole-genome resequencing will replace regionally focused approaches for gene discovery and clinical testing in the next few years. However, this opportunity brings a significant interpretative challenge to assigning function and phenotypic variance to common and rare alleles. Understanding the effect of individual mutations in the context of the remaining genomic variation represents a major challenge to our interpretation of disease. Here, we discuss the challenges of assigning mutation functionality and, drawing from the examples of ciliopathies as well as cohesinopathies and channelopathies, discuss possibilities for the functional modularization of the human genome. Functional modularization in addition to the development of physiologically-relevant assays to test allele functionality will accelerate our understanding of disease architecture and enable the use of genome-wide sequence data for disease diagnosis and phenotypic prediction in individuals. PMID:20226561

  4. Motor planning under temporal uncertainty is suboptimal when the gain function is asymmetric

    PubMed Central

    Ota, Keiji; Shinya, Masahiro; Kudo, Kazutoshi

    2015-01-01

    For optimal action planning, the gain/loss associated with actions and the variability in motor output should both be considered. A number of studies make conflicting claims about the optimality of human action planning but cannot be reconciled due to their use of different movements and gain/loss functions. The disagreement is possibly because of differences in the experimental design and differences in the energetic cost of participant motor effort. We used a coincident timing task, which requires decision making with constant energetic cost, to test the optimality of participant's timing strategies under four configurations of the gain function. We compared participant strategies to an optimal timing strategy calculated from a Bayesian model that maximizes the expected gain. We found suboptimal timing strategies under two configurations of the gain function characterized by asymmetry, in which higher gain is associated with higher risk of zero gain. Participants showed a risk-seeking strategy by responding closer than optimal to the time of onset/offset of zero gain. Meanwhile, there was good agreement of the model with actual performance under two configurations of the gain function characterized by symmetry. Our findings show that human ability to make decisions that must reflect uncertainty in one's own motor output has limits that depend on the configuration of the gain function. PMID:26236227

  5. A KCNQ1 mutation causes age-dependant bradycardia and persistent atrial fibrillation.

    PubMed

    Ki, Chang-Seok; Jung, Chae Lim; Kim, Hyun-ji; Baek, Kwan-Hyuck; Park, Seung Jung; On, Young Keun; Kim, Ki-Suk; Noh, Su Jin; Youm, Jae Boum; Kim, June Soo; Cho, Hana

    2014-03-01

    Atrial fibrillation (AF) is the most common arrhythmia. Gain-of-function mutations in KCNQ1, the pore-forming α-subunit of the slow delayed rectifier K current (IKs) channel, have been associated with AF. The purpose of this study was functional assessment of a mutation in KCNQ1 identified in a family with persistent AF and sinus bradycardia. We investigated whether this KCNQ1 missense mutation could form the genetic basis for AF and bradycardia simultaneously in this family. Sanger sequencing in a family with hereditary persistent AF identified a novel KCNQ1 variant (V241F) in a highly conserved region of S4 domain. The proband and her son developed bradycardia and persistent AF in an age-dependent fashion. The other son was a mutation carrier but he showed sinus bradycardia and not AF. Whole-cell patch clamp electrophysiology showed that V241F mutation in KCNQ1 shifted the activation curve to the left and dramatically slowed deactivation, leading to a constitutively open-like phenotype. Computer modeling showed that V241F would slow pacemaker activity. Also, simulations of atrial excitation predicted that V241F results in extreme shortening of action potential duration, possibly resulting in AF. Our study indicates that V241F might cause sinus bradycardia by increasing IKs. Additionally, V241F likely shortens atrial refractoriness to promote a substrate for reentry. KCNQ1 mutations have previously been described in AF, yet this is the first time a mutation in KCNQ1 is associated with age-dependent bradycardia and persistent AF. This finding further supports the hypothesis that sinus node dysfunction contributes to the development of AF.

  6. 20 CFR 404.1572 - What we mean by substantial gainful activity.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... work activity that involves doing significant physical or mental activities. Your work may be... 20 Employees' Benefits 2 2011-04-01 2011-04-01 false What we mean by substantial gainful activity... Activity § 404.1572 What we mean by substantial gainful activity. Substantial gainful activity is work...

  7. 20 CFR 416.972 - What we mean by substantial gainful activity.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... work activity that involves doing significant physical or mental activities. Your work may be... 20 Employees' Benefits 2 2011-04-01 2011-04-01 false What we mean by substantial gainful activity... Activity § 416.972 What we mean by substantial gainful activity. Substantial gainful activity is work...

  8. 20 CFR 416.972 - What we mean by substantial gainful activity.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... work activity that involves doing significant physical or mental activities. Your work may be... 20 Employees' Benefits 2 2010-04-01 2010-04-01 false What we mean by substantial gainful activity... Activity § 416.972 What we mean by substantial gainful activity. Substantial gainful activity is work...

  9. 20 CFR 404.1572 - What we mean by substantial gainful activity.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... work activity that involves doing significant physical or mental activities. Your work may be... 20 Employees' Benefits 2 2010-04-01 2010-04-01 false What we mean by substantial gainful activity... Activity § 404.1572 What we mean by substantial gainful activity. Substantial gainful activity is work...

  10. CNS germinomas are characterized by global demethylation, chromosomal instability and mutational activation of the Kit-, Ras/Raf/Erk- and Akt-pathways

    PubMed Central

    Schulte, Simone Laura; Waha, Andreas; Steiger, Barbara; Denkhaus, Dorota; Dörner, Evelyn; Calaminus, Gabriele; Leuschner, Ivo; Pietsch, Torsten

    2016-01-01

    CNS germinomas represent a unique germ cell tumor entity characterized by undifferentiated tumor cells and a high response rate to current treatment protocols. Limited information is available on their underlying genomic, epigenetic and biological alterations. We performed a genome-wide analysis of genomic copy number alterations in 49 CNS germinomas by molecular inversion profiling. In addition, CpG dinucleotide methylation was studied by immunohistochemistry for methylated cytosine residues. Mutational analysis was performed by resequencing of candidate genes including KIT and RAS family members. Ras/Erk and Akt pathway activation was analyzed by immunostaining with antibodies against phospho-Erk, phosho-Akt, phospho-mTOR and phospho-S6. All germinomas coexpressed Oct4 and Kit but showed an extensive global DNA demethylation compared to other tumors and normal tissues. Molecular inversion profiling showed predominant genomic instability in all tumors with a high frequency of regional gains and losses including high level gene amplifications. Activating mutations of KIT exons 11, 13, and 17 as well as a case with genomic KIT amplification and activating mutations or amplifications of RAS gene family members including KRAS, NRAS and RRAS2 indicated mutational activation of crucial signaling pathways. Co-activation of Ras/Erk and Akt pathways was present in 83% of germinomas. These data suggest that CNS germinoma cells display a demethylated nuclear DNA similar to primordial germ cells in early development. This finding has a striking coincidence with extensive genomic instability. In addition, mutational activation of Kit-, Ras/Raf/Erk- and Akt- pathways indicate the biological importance of these pathways and their components as potential targets for therapy. PMID:27391150

  11. MPL515 mutations in myeloproliferative and other myeloid disorders: a study of 1182 patients.

    PubMed

    Pardanani, Animesh D; Levine, Ross L; Lasho, Terra; Pikman, Yana; Mesa, Ruben A; Wadleigh, Martha; Steensma, David P; Elliott, Michelle A; Wolanskyj, Alexandra P; Hogan, William J; McClure, Rebecca F; Litzow, Mark R; Gilliland, D Gary; Tefferi, Ayalew

    2006-11-15

    Recently, a gain-of-function MPL mutation, MPLW515L, was described in patients with JAK2V617F-negative myelofibrosis with myeloid metaplasia (MMM). To gain more information on mutational frequency, disease specificity, and clinical correlates, genomic DNA from 1182 patients with myeloproliferative and other myeloid disorders and 64 healthy controls was screened for MPL515 mutations, regardless of JAK2V617F mutational status: 290 with MMM, 242 with polycythemia vera, 318 with essential thrombocythemia (ET), 88 with myelodysplastic syndrome, 118 with chronic myelomonocytic leukemia, and 126 with acute myeloid leukemia (AML). MPL515 mutations, either MPLW515L (n = 17) or a previously undescribed MPLW515K (n = 5), were detected in 20 patients. The diagnosis of patients with mutant MPL alleles at the time of molecular testing was de novo MMM in 12 patients, ET in 4, post-ET MMM in 1, and MMM in blast crisis in 3. Six patients carried the MPLW515L and JAK2V617F alleles concurrently. We conclude that MPLW515L or MPLW515K mutations are present in patients with MMM or ET at a frequency of approximately 5% and 1%, respectively, but are not observed in patients with polycythemia vera (PV) or other myeloid disorders. Furthermore, MPL mutations may occur concurrently with the JAK2V617F mutation, suggesting that these alleles may have functional complementation in myeloproliferative disease.

  12. Relationship between JAK2V617F mutation, allele burden and coagulation function in Ph-negative myeloproliferative neoplasms.

    PubMed

    Hu, Linhui; Pu, Lianfang; Ding, Yangyang; Li, Manman; Cabanero, Michael; Xie, Jingxin; Zhou, Dejun; Yang, Dongdong; Zhang, Cui; Wang, Huiping; Zhai, Zhimin; Ru, Xiang; Li, Jingrong; Xiong, Shudao

    2017-07-01

    Our aim was to explore the relationship between JAK2V617F mutation allele burden and hematological parameters especially in coagulation function in Chinese population. This study included 133 Ph-negative myeloproliferative neoplasms (MPNs) patients between 2013 and 2016. All the clinical and experimental data of patients were collected at the time of the diagnosis without any prior treatment, including blood parameters, coagulation function, splenomegaly, vascular events and chromosome karyotype. PCR and qPCR were used to detect JAK2V617F mutation and JAK2V617F mutation allele burden. In polycythemia vera patients, a positive correlation between the allele burden of JAK2V617F mutation and PLT counts was found; in essential thrombocythemia (ET) patients, WBC counts, RBC counts, HB, and HCT were higher in mutated patients than in wild-type patients. Furthermore, PT-INR was higher in ET and PMF mutated patients. In addition, a positive correlation between the allele burden of JAK2V617F mutation and activated partial thromboplastin time (APTT) was observed in JAK2V617F mutated ET patients. Higher hematologic parameters including counts of WBC, RBC, and PLT are closely associated with JAK2V617F mutation and its burden in Ph-negative MPNs; importantly, PT-INR, APTT are also related to JAK2V617F mutation and allele burden. Thus, our data indicate that JAK2V617F mutation allele burden might not only represent the burden of MPN but also alter the coagulation function.

  13. Germline stem cell competition, mutation hot spots, genetic disorders and older dads

    PubMed Central

    Arnheim, Norman; Calabrese, Peter

    2016-01-01

    Some de novo human mutations arise at frequencies far exceeding the genome average mutation rate. Examples are the common mutations at one or a few sites in the genes causing achondroplasia, Noonan syndrome, multiple endocrine neoplasia 2B and Apert syndrome. These mutations are recurrent, provide a gain of function, are paternally derived and are more likely transmitted as the father ages. Recent experiments tested whether the high mutation frequencies are due to an elevated mutation rate per cell division, as expected, or an advantage of the mutant spermatogonial stem cells over wild-type stem cells. The evidence, which includes the surprising discovery of testis mutation clusters, rejects the former model but not the latter. We propose how the mutations might alter spermatogonial stem cell function and discuss how germline selection contributes to the paternal age effect, the human mutational load and adaptive evolution. PMID:27070266

  14. Characteristics of Patients With Satisfactory Functional Gain Following Total Joint Arthroplasty in a Postacute Rehabilitation Setting.

    PubMed

    Hershkovitz, Avital; Vesilkov, Marina; Beloosesky, Yichayaou; Brill, Shai

    2017-01-10

    Total joint arthroplasty (TJA) is an effective and successful treatment of osteoarthritis of the hip and knee as quantified by several measures, such as pain relief, improved walking, improved self-care, functions, and increased quality of life. Data are lacking as to the definition of a satisfactory functional gain in a postacute setting and identifying the characteristics of older patients with TJA who may achieve that gain. Our aim was to characterize patients who may achieve a satisfactory functional gain in a postacute rehabilitation setting following TJA. This was a retrospective study of 180 patients with TJA admitted during 2010-2013. The main outcome measures were the Functional Independence Measure (FIM), the Montebello Rehabilitation Factor Score (MRFS) on the motor FIM, and the Timed Get Up and Go Test. Satisfactory functional gain was defined as an mFIM MRFS score above median score. Comparisons of clinical and demographic characteristics between patients who achieved a satisfactory functional gain versus those who did not were performed by the Mann-Whitney U test and the χ test. The proportion of patients who achieved a satisfactory functional gain was similar in the total knee arthroplasty and total hip arthroplasty (THA) groups. The most significant characteristic of patients who achieved a satisfactory functional gain was their admission functional ability. Age negatively impacted the ability to achieve a satisfactory functional gain in patients with THA. Functional level on admission is the best predictive factor for a better rehabilitation outcome for patients with TJA. Age negatively affects functional gain in patients with THA.

  15. Late-onset Stargardt disease is associated with missense mutations that map outside known functional regions of ABCR (ABCA4).

    PubMed

    Yatsenko, A N; Shroyer, N F; Lewis, R A; Lupski, J R

    2001-04-01

    Based on recent studies of the photoreceptor-specific ABC transporter gene ABCR (ABCA4) in Stargardt disease (STGD1) and other retinal dystrophies, we and others have developed a model in which the severity of retinal disease correlates inversely with residual ABCR activity. This model predicts that patients with late-onset STGDI may retain partial ABCR activity attributable to mild missense alleles. To test this hypothesis, we used late-onset STGDI patients (onset: > or =35 years) to provide an in vivo functional analysis of various combinations of mutant alleles. We sequenced directly the entire coding region of ABCR and detected mutations in 33/50 (66%) disease chromosomes, but surprisingly, 11/33 (33%) were truncating alleles. Importantly, all 22 missense mutations were located outside the known functional domains of ABCR (ATP-binding or transmembrane), whereas in our general cohort of STGDI subjects, alterations occurred with equal frequency across the entire protein. We suggest that these missense mutations in regions of unknown function are milder alleles and more susceptible to modifier effects. Thus, we have corroborated a prediction from the model of ABCR pathogenicity that (1) one mutant ABCR allele is always missense in late-onset STGD1 patients, and (2) the age-of-onset is correlated with the amount of ABCR activity of this allele. In addition, we report three new pseudodominant families that now comprise eight of 178 outbred STGD1 families and suggest a carrier frequency of STGD1-associated ABCR mutations of about 4.5% (approximately 1/22).

  16. Mechanistic insight into the functional transition of the enzyme guanylate kinase induced by a single mutation

    PubMed Central

    Zhang, Yuebin; Niu, Huiyan; Li, Yan; Chu, Huiying; Shen, Hujun; Zhang, Dinglin; Li, Guohui

    2015-01-01

    Dramatic functional changes of enzyme usually require scores of alterations in amino acid sequence. However, in the case of guanylate kinase (GK), the functional novelty is induced by a single (S→P) mutation, leading to the functional transition of the enzyme from a phosphoryl transfer kinase into a phosphorprotein interaction domain. Here, by using molecular dynamic (MD) and metadynamics simulations, we provide a comprehensive description of the conformational transitions of the enzyme after mutating serine to proline. Our results suggest that the serine plays a crucial role in maintaining the closed conformation of wild-type GK and the GMP recognition. On the contrary, the S→P mutant exhibits a stable open conformation and loses the ability of ligand binding, which explains its functional transition from the GK enzyme to the GK domain. Furthermore, the free energy profiles (FEPs) obtained by metadymanics clearly demonstrate that the open-closed conformational transition in WT GK is positive correlated with the process of GMP binding, indicating the GMP-induced closing motion of GK enzyme, which is not observed in the mutant. In addition, the FEPs show that the S→P mutation can also leads to the mis-recognition of GMP, explaining the vanishing of catalytic activity of the mutant. PMID:25672880

  17. Mechanistic insight into the functional transition of the enzyme guanylate kinase induced by a single mutation.

    PubMed

    Zhang, Yuebin; Niu, Huiyan; Li, Yan; Chu, Huiying; Shen, Hujun; Zhang, Dinglin; Li, Guohui

    2015-02-12

    Dramatic functional changes of enzyme usually require scores of alterations in amino acid sequence. However, in the case of guanylate kinase (GK), the functional novelty is induced by a single (S→P) mutation, leading to the functional transition of the enzyme from a phosphoryl transfer kinase into a phosphorprotein interaction domain. Here, by using molecular dynamic (MD) and metadynamics simulations, we provide a comprehensive description of the conformational transitions of the enzyme after mutating serine to proline. Our results suggest that the serine plays a crucial role in maintaining the closed conformation of wild-type GK and the GMP recognition. On the contrary, the S→P mutant exhibits a stable open conformation and loses the ability of ligand binding, which explains its functional transition from the GK enzyme to the GK domain. Furthermore, the free energy profiles (FEPs) obtained by metadymanics clearly demonstrate that the open-closed conformational transition in WT GK is positive correlated with the process of GMP binding, indicating the GMP-induced closing motion of GK enzyme, which is not observed in the mutant. In addition, the FEPs show that the S→P mutation can also leads to the mis-recognition of GMP, explaining the vanishing of catalytic activity of the mutant.

  18. HER2 activating mutations are targets for colorectal cancer treatment.

    PubMed

    Kavuri, Shyam M; Jain, Naveen; Galimi, Francesco; Cottino, Francesca; Leto, Simonetta M; Migliardi, Giorgia; Searleman, Adam C; Shen, Wei; Monsey, John; Trusolino, Livio; Jacobs, Samuel A; Bertotti, Andrea; Bose, Ron

    2015-08-01

    The Cancer Genome Atlas project identified HER2 somatic mutations and gene amplification in 7% of patients with colorectal cancer. Introduction of the HER2 mutations S310F, L755S, V777L, V842I, and L866M into colon epithelial cells increased signaling pathways and anchorage-independent cell growth, indicating that they are activating mutations. Introduction of these HER2 activating mutations into colorectal cancer cell lines produced resistance to cetuximab and panitumumab by sustaining MAPK phosphorylation. HER2 mutants are potently inhibited by low nanomolar doses of the irreversible tyrosine kinase inhibitors neratinib and afatinib. HER2 gene sequencing of 48 cetuximab-resistant, quadruple (KRAS, NRAS, BRAF, and PIK3CA) wild-type (WT) colorectal cancer patient-derived xenografts (PDX) identified 4 PDXs with HER2 mutations. HER2-targeted therapies were tested on two PDXs. Treatment with a single HER2-targeted drug (trastuzumab, neratinib, or lapatinib) delayed tumor growth, but dual HER2-targeted therapy with trastuzumab plus tyrosine kinase inhibitors produced regression of these HER2-mutated PDXs. HER2 activating mutations cause EGFR antibody resistance in colorectal cell lines, and PDXs with HER2 mutations show durable tumor regression when treated with dual HER2-targeted therapy. These data provide a strong preclinical rationale for clinical trials targeting HER2 activating mutations in metastatic colorectal cancer. ©2015 American Association for Cancer Research.

  19. Identification of eight novel coagulation factor XIII subunit A mutations: implied consequences for structure and function

    PubMed Central

    Ivaskevicius, Vytautas; Biswas, Arijit; Bevans, Carville; Schroeder, Verena; Kohler, Hans Peter; Rott, Hannelore; Halimeh, Susan; Petrides, Petro E.; Lenk, Harald; Krause, Manuele; Miterski, Bruno; Harbrecht, Ursula; Oldenburg, Johannes

    2010-01-01

    Background Severe hereditary coagulation factor XIII deficiency is a rare homozygous bleeding disorder affecting one person in every two million individuals. In contrast, heterozygous factor XIII deficiency is more common, but usually not associated with severe hemorrhage such as intracranial bleeding or hemarthrosis. In most cases, the disease is caused by F13A gene mutations. Causative mutations associated with the F13B gene are rarer. Design and Methods We analyzed ten index patients and three relatives for factor XIII activity using a photometric assay and sequenced their F13A and F13B genes. Additionally, structural analysis of the wild-type protein structure from a previously reported X-ray crystallographic model identified potential structural and functional effects of the missense mutations. Results All individuals except one were heterozygous for factor XIIIA mutations (average factor XIII activity 51%), while the remaining homozygous individual was found to have severe factor XIII deficiency (<5% of normal factor XIII activity). Eight of the 12 heterozygous patients exhibited a bleeding tendency upon provocation. Conclusions The identified missense (Pro289Arg, Arg611His, Asp668Gly) and nonsense (Gly390X, Trp664X) mutations are causative for factor XIII deficiency. A Gly592Ser variant identified in three unrelated index patients, as well as in 200 healthy controls (minor allele frequency 0.005), and two further Tyr167Cys and Arg540Gln variants, represent possible candidates for rare F13A gene polymorphisms since they apparently do not have a significant influence on the structure of the factor XIIIA protein. Future in vitro expression studies of the factor XIII mutations are required to confirm their pathological mechanisms. PMID:20179087

  20. Identification of eight novel coagulation factor XIII subunit A mutations: implied consequences for structure and function.

    PubMed

    Ivaskevicius, Vytautas; Biswas, Arijit; Bevans, Carville; Schroeder, Verena; Kohler, Hans Peter; Rott, Hannelore; Halimeh, Susan; Petrides, Petro E; Lenk, Harald; Krause, Manuele; Miterski, Bruno; Harbrecht, Ursula; Oldenburg, Johannes

    2010-06-01

    Severe hereditary coagulation factor XIII deficiency is a rare homozygous bleeding disorder affecting one person in every two million individuals. In contrast, heterozygous factor XIII deficiency is more common, but usually not associated with severe hemorrhage such as intracranial bleeding or hemarthrosis. In most cases, the disease is caused by F13A gene mutations. Causative mutations associated with the F13B gene are rarer. We analyzed ten index patients and three relatives for factor XIII activity using a photometric assay and sequenced their F13A and F13B genes. Additionally, structural analysis of the wild-type protein structure from a previously reported X-ray crystallographic model identified potential structural and functional effects of the missense mutations. All individuals except one were heterozygous for factor XIIIA mutations (average factor XIII activity 51%), while the remaining homozygous individual was found to have severe factor XIII deficiency (<5% of normal factor XIII activity). Eight of the 12 heterozygous patients exhibited a bleeding tendency upon provocation. The identified missense (Pro289Arg, Arg611His, Asp668Gly) and nonsense (Gly390X, Trp664X) mutations are causative for factor XIII deficiency. A Gly592Ser variant identified in three unrelated index patients, as well as in 200 healthy controls (minor allele frequency 0.005), and two further Tyr167Cys and Arg540Gln variants, represent possible candidates for rare F13A gene polymorphisms since they apparently do not have a significant influence on the structure of the factor XIIIA protein. Future in vitro expression studies of the factor XIII mutations are required to confirm their pathological mechanisms.

  1. Germline activating MTOR mutation arising through gonadal mosaicism in two brothers with megalencephaly and neurodevelopmental abnormalities.

    PubMed

    Mroske, Cameron; Rasmussen, Kristen; Shinde, Deepali N; Huether, Robert; Powis, Zoe; Lu, Hsiao-Mei; Baxter, Ruth M; McPherson, Elizabeth; Tang, Sha

    2015-11-05

    In humans, Mammalian Target of Rapamycin (MTOR) encodes a 300 kDa serine/ threonine protein kinase that is ubiquitously expressed, particularly at high levels in brain. MTOR functions as an integrator of multiple cellular processes, and in so doing either directly or indirectly regulates the phosphorylation of at least 800 proteins. While somatic MTOR mutations have been recognized in tumors for many years, and more recently in hemimegalencephaly, germline MTOR mutations have rarely been described. We report the successful application of family-trio Diagnostic Exome Sequencing (DES) to identify the underlying molecular etiology in two brothers with multiple neurological and developmental lesions, and for whom previous testing was non-diagnostic. The affected brothers, who were 6 and 23 years of age at the time of DES, presented symptoms including but not limited to mild Autism Spectrum Disorder (ASD), megalencephaly, gross motor skill delay, cryptorchidism and bilateral iris coloboma. Importantly, we determined that each affected brother harbored the MTOR missense alteration p.E1799K (c.5395G>A). This exact variant has been previously identified in multiple independent human somatic cancer samples and has been shown to result in increased MTOR activation. Further, recent independent reports describe two unrelated families in whom p.E1799K co-segregated with megalencephaly and intellectual disability (ID); in both cases, p.E1799K was shown to have originated due to germline mosaicism. In the case of the family reported herein, the absence of p.E1799K in genomic DNA extracted from the blood of either parent suggests that this alteration most likely arose due to gonadal mosaicism. Further, the p.E1799K variant exerts its effect by a gain-of-function (GOF), autosomal dominant mechanism. Herein, we describe the use of DES to uncover an activating MTOR missense alteration of gonadal mosaic origin that is likely to be the causative mutation in two brothers who present

  2. Evaluating the impact of missenses mutations in CYP2D6*7 and CYP2D6*14A: does it compromise tamoxifen metabolism?

    PubMed

    Borba, Maria Acsm; Melo-Neto, Renato P; Leitão, Glauber M; Castelletti, Carlos Hm; Lima-Filho, José L; Martins, Danyelly Bg

    2016-04-01

    CYP2D6 is a high polymorphic enzyme from P450, responsible for metabolizing almost 25% of drugs. The distribution of different mutations among CYP2D6 alleles has been associated with poor, intermediate, extensive and ultra-metabolizers. To evaluate how missenses mutations in CYP2D6*7 and CYP2D6*14A poor metabolizer alleles affect CYP2D6 stability and function. CYPalleles database was used to collect polymorphisms data present in 105 alleles. We selected only poor metabolizers alleles that presented exclusively missenses mutations. They were analyzed through seven algorithms to predict the impact on CYP2D6 structure and function. H324P, the unique mutation in CYP2D6*7, has high impact in enzyme function due to its occurrence between two alpha-helixes involved in active site dynamics. G169R, a mutation that occurs only in CYP2D6*14A, leads to the gain of solvent accessibility and severe protein destabilization. Our in silico analysis showed that missenses mutations in CYP2D6*7 and CYP2D6*14A cause CYP2D6 dysfunction.

  3. Identification of significantly mutated regions across cancer types highlights a rich landscape of functional molecular alterations

    PubMed Central

    Araya, Carlos L.; Cenik, Can; Reuter, Jason A.; Kiss, Gert; Pande, Vijay S.; Snyder, Michael P.; Greenleaf, William J.

    2015-01-01

    Cancer sequencing studies have primarily identified cancer-driver genes by the accumulation of protein-altering mutations. An improved method would be annotation-independent, sensitive to unknown distributions of functions within proteins, and inclusive of non-coding drivers. We employed density-based clustering methods in 21 tumor types to detect variably-sized significantly mutated regions (SMRs). SMRs reveal recurrent alterations across a spectrum of coding and non-coding elements, including transcription factor binding sites and untranslated regions mutated in up to ∼15% of specific tumor types. SMRs reveal spatial clustering of mutations at molecular domains and interfaces, often with associated changes in signaling. Mutation frequencies in SMRs demonstrate that distinct protein regions are differentially mutated among tumor types, as exemplified by a linker region of PIK3CA in which biophysical simulations suggest mutations affect regulatory interactions. The functional diversity of SMRs underscores both the varied mechanisms of oncogenic misregulation and the advantage of functionally-agnostic driver identification. PMID:26691984

  4. A tale of two subunits: how the neomorphic R132H IDH1 mutation enhances production of αHG.

    PubMed

    Pietrak, Beth; Zhao, Huizhen; Qi, Hongwei; Quinn, Chad; Gao, Enoch; Boyer, Joseph G; Concha, Nestor; Brown, Kristin; Duraiswami, Chaya; Wooster, Richard; Sweitzer, Sharon; Schwartz, Benjamin

    2011-05-31

    Heterozygously expressed single-point mutations in isocitrate dehydrogenase 1 and 2 (IDH1 and IDH2, respectively) render these dimeric enzymes capable of producing the novel metabolite α-hydroxyglutarate (αHG). Accumulation of αHG is used as a biomarker for a number of cancer types, helping to identify tumors with similar IDH mutations. With IDH1, it has been shown that one role of the mutation is to increase the rate of conversion from αKG to αHG. To improve our understanding of the function of this mutation, we have detailed the kinetics of the normal (isocitrate to αKG) and neomorphic (αKG to αHG) reactions, as well as the coupled conversion of isocitrate to αHG. We find that the mutant IDH1 is very efficient in this coupled reaction, with the ability to form αHG from isocitrate and NADP(+). The wild type/wild type IDH1 is also able to catalyze this conversion, though it is much more sensitive to concentrations of isocitrate. This difference in behavior can be attributed to the competitive binding between isocitrate and αKG, which is made more favorable for αKG by the neomorphic mutation at arginine 132. Thus, each partial reaction in the heterodimer is functionally isolated from the other. To test whether there is a cooperative effect resulting from the two subunits being in a dimer, we selectively inactivated each subunit with a secondary mutation in the NADP/H binding site. We observed that the remaining, active subunit was unaffected in its associated activity, reinforcing the notion of each subunit being functionally independent. This was further demonstrated using a monomeric form of IDH from Azotobacter vinelandii, which can be shown to gain the same neomorphic reaction when a homologous mutation is introduced into that protein.

  5. The P20R mutation of αB-crystallin diminishes its anti-apoptotic activity in human lens epithelial cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu, Peiran; Li, Weiwei; Ni, Mengxia

    αB-crystallin acts as an anti-apoptosis protein in human lens epithelial (HLE) cells. We recently identified a missense mutation in αB-crystallin that changes proline 20 to an arginine (P20R) in a Chinese family with autosomal dominant congenital posterior polar cataract. The impact of the P20R mutation on the anti-apoptosis function remains unclear. To explore the anti-apoptotic activity of αB-crystallin wild type (αB-wt) and its P20R mutant under oxidative stress, HLE cells were transfected with αB-wt and αB-P20R constructs and expression was measured by western blotting. Flow cytometry and terminal deoxynucleotidyl transferase (TdT)-mediated dUTP digoxigenin nick end-labelling (TUNEL) staining were performed tomore » investigate apoptosis. We found that αB-wt performed a dominant role in inhibiting stress-induced apoptosis, but this function was impeded in cells expressing αB-P20R. The P20R mutant of αB-crystallin exhibits diminished anti-apoptotic activity compared with the native protein. - Highlights: • We identified a novel mutation (P20R) in αB-crystallin. • The mutation decreased anti-apoptotic activity in αB-crystallin, which compared with the native protein. • We speculate that the mutation may influence phosphorylation, especially Ser19.« less

  6. A Presenilin-1 Mutation Identified in Familial Alzheimer Disease with Cotton Wool Plaques Causes a Nearly Complete Loss of γ-Secretase Activity*

    PubMed Central

    Heilig, Elizabeth A.; Xia, Weiming; Shen, Jie; Kelleher, Raymond J.

    2010-01-01

    Mutations in presenilin-1 and presenilin-2 (PS1 and PS2) are the most common cause of familial Alzheimer disease. PS1 and PS2 are the presumptive catalytic components of the multisubunit γ-secretase complex, which proteolyzes a number of type I transmembrane proteins, including the amyloid precursor protein (APP) and Notch. APP processing by γ-secretase produces β-amyloid peptides (Aβ40 and Aβ42) that accumulate in the Alzheimer disease brain. Here we identify a pathogenic L435F mutation in PS1 in two affected siblings with early-onset familial Alzheimer disease characterized by deposition of cerebral cotton wool plaques. The L435F mutation resides in a conserved C-terminal PAL sequence implicated in active site conformation and catalytic activity. The impact of PS1 mutations in and around the PAL motif on γ-secretase activity was assessed by expression of mutant PS1 in mouse embryo fibroblasts lacking endogenous PS1 and PS2. Surprisingly, the L435F mutation caused a nearly complete loss of γ-secretase activity, including >90% reductions in the generation of Aβ40, Aβ42, and the APP and Notch intracellular domains. Two nonpathogenic PS1 mutations, P433L and L435R, caused essentially complete loss of γ-secretase activity, whereas two previously identified pathogenic PS1 mutations, P436Q and P436S, caused partial loss of function with substantial reductions in production of Aβ40, Aβ42, and the APP and Notch intracellular domains. These results argue against overproduction of Aβ42 as an essential property of presenilin proteins bearing pathogenic mutations. Rather, our findings provide support for the hypothesis that pathogenic mutations cause a general loss of presenilin function. PMID:20460383

  7. Genetic interaction analysis of point mutations enables interrogation of gene function at a residue-level resolution

    PubMed Central

    Braberg, Hannes; Moehle, Erica A.; Shales, Michael; Guthrie, Christine; Krogan, Nevan J.

    2014-01-01

    We have achieved a residue-level resolution of genetic interaction mapping – a technique that measures how the function of one gene is affected by the alteration of a second gene – by analyzing point mutations. Here, we describe how to interpret point mutant genetic interactions, and outline key applications for the approach, including interrogation of protein interaction interfaces and active sites, and examination of post-translational modifications. Genetic interaction analysis has proven effective for characterizing cellular processes; however, to date, systematic high-throughput genetic interaction screens have relied on gene deletions or knockdowns, which limits the resolution of gene function analysis and poses problems for multifunctional genes. Our point mutant approach addresses these issues, and further provides a tool for in vivo structure-function analysis that complements traditional biophysical methods. We also discuss the potential for genetic interaction mapping of point mutations in human cells and its application to personalized medicine. PMID:24842270

  8. Functional and splicing defect analysis of 23 ACVRL1 mutations in a cohort of patients affected by Hereditary Hemorrhagic Telangiectasia

    PubMed Central

    Alaa el Din, Ferdos; Patri, Sylvie; Thoreau, Vincent; Rodriguez-Ballesteros, Montserrat; Hamade, Eva; Bailly, Sabine; Gilbert-Dussardier, Brigitte; Abou Merhi, Raghida; Kitzis, Alain

    2015-01-01

    Hereditary Hemorrhagic Telangiectasia syndrome (HHT) or Rendu-Osler-Weber (ROW) syndrome is an autosomal dominant vascular disorder. Two most common forms of HHT, HHT1 and HHT2, have been linked to mutations in the endoglin (ENG) and activin receptor-like kinase 1 (ACVRL1or ALK1) genes respectively. This work was designed to examine the pathogenicity of 23 nucleotide variations in ACVRL1 gene detected in more than 400 patients. Among them, 14 missense mutations and one intronic variant were novels, and 8 missense mutations were previously identified with questionable implication in HHT2. The functionality of missense mutations was analyzed in response to BMP9 (specific ligand of ALK1), the maturation of the protein products and their localization were analyzed by western blot and fluorescence microscopy. The splicing impairment of the intronic and of two missense mutations was examined by minigene assay. Functional analysis showed that 18 out of 22 missense mutations were defective. Splicing analysis revealed that one missense mutation (c.733A>G, p.Ile245Val) affects the splicing of the harboring exon 6. Similarly, the intronic mutation outside the consensus splicing sites (c.1048+5G>A in intron 7) was seen pathogenic by splicing study. Both mutations induce a frame shift creating a premature stop codon likely resulting in mRNA degradation by NMD surveillance mechanism. Our results confirm the haploinsufficiency model proposed for HHT2. The affected allele of ACVRL1 induces mRNA degradation or the synthesis of a protein lacking the receptor activity. Furthermore, our data demonstrate that functional and splicing analyses together, represent two robust diagnostic tools to be used by geneticists confronted with novel or conflicted ACVRL1 mutations. PMID:26176610

  9. Functional correction of dystrophin actin binding domain mutations by genome editing

    PubMed Central

    Kyrychenko, Viktoriia; Kyrychenko, Sergii; Tiburcy, Malte; Shelton, John M.; Long, Chengzu; Schneider, Jay W.; Zimmermann, Wolfram-Hubertus; Bassel-Duby, Rhonda

    2017-01-01

    Dystrophin maintains the integrity of striated muscles by linking the actin cytoskeleton with the cell membrane. Duchenne muscular dystrophy (DMD) is caused by mutations in the dystrophin gene (DMD) that result in progressive, debilitating muscle weakness, cardiomyopathy, and a shortened lifespan. Mutations of dystrophin that disrupt the amino-terminal actin-binding domain 1 (ABD-1), encoded by exons 2–8, represent the second-most common cause of DMD. In the present study, we compared three different strategies for CRISPR/Cas9 genome editing to correct mutations in the ABD-1 region of the DMD gene by deleting exons 3–9, 6–9, or 7–11 in human induced pluripotent stem cells (iPSCs) and by assessing the function of iPSC-derived cardiomyocytes. All three exon deletion strategies enabled the expression of truncated dystrophin protein and restoration of cardiomyocyte contractility and calcium transients to varying degrees. We show that deletion of exons 3–9 by genomic editing provides an especially effective means of correcting disease-causing ABD-1 mutations. These findings represent an important step toward eventual correction of common DMD mutations and provide a means of rapidly assessing the expression and function of internally truncated forms of dystrophin-lacking portions of ABD-1. PMID:28931764

  10. The archetypal R90C CADASIL-NOTCH3 mutation retains NOTCH3 function in vivo.

    PubMed

    Monet, Marie; Domenga, Valérie; Lemaire, Barbara; Souilhol, Céline; Langa, Francina; Babinet, Charles; Gridley, Thomas; Tournier-Lasserve, Elisabeth; Cohen-Tannoudji, Michel; Joutel, Anne

    2007-04-15

    Cerebral Autosomal Dominant Arteriopathy with Subcortical infarcts and Leukoencephalopathy (CADASIL) is the most prominent known cause of inherited stroke and vascular dementia in human adult. The disease gene, NOTCH3, encodes a transmembrane receptor primarily expressed in arterial smooth muscle cells (SMC). Pathogenic mutations lead to an odd number of cysteine residues within the NOTCH3 extracellular domain (NOTCH3(ECD)), and are associated with progressive accumulation of NOTCH3(ECD) at the SMC plasma membrane. The murine homolog, Notch3, is dispensable for viability but required post-natally for the elaboration and maintenance of arteries. How CADASIL-associated mutations impact NOTCH3 function remains a fundamental, yet unresolved issue. Particularly, whether NOTCH3(ECD) accumulation may titrate the ligand and inhibit the normal pathway is unknown. Herein, using genetic analyses in the mouse, we assessed the functional significance of an archetypal CADASIL-associated mutation (R90C), in vivo, in brain arteries. We show that transgenic mouse lines expressing either the wild-type human NOTCH3 or the mutant R90C human NOTCH3, at comparable and physiological levels, can rescue the arterial defects of Notch3-/- mice to similar degrees. In vivo assessment of NOTCH3/RBP-Jk activity provides evidence that the mutant NOTCH3 protein exhibits normal level of activity in brain arteries. Remarkably, the mutant NOTCH3 protein remains functional and does not exhibit dominant negative interfering activity, even when NOTCH3(ECD) accumulates. Collectively, these data suggest a model that invokes novel pathogenic roles for the mutant NOTCH3 protein rather than compromised NOTCH3 function as the primary determinant of the CADASIL arteriopathy.

  11. The PINK1 p.I368N mutation affects protein stability and ubiquitin kinase activity.

    PubMed

    Ando, Maya; Fiesel, Fabienne C; Hudec, Roman; Caulfield, Thomas R; Ogaki, Kotaro; Górka-Skoczylas, Paulina; Koziorowski, Dariusz; Friedman, Andrzej; Chen, Li; Dawson, Valina L; Dawson, Ted M; Bu, Guojun; Ross, Owen A; Wszolek, Zbigniew K; Springer, Wolfdieter

    2017-04-24

    Mutations in PINK1 and PARKIN are the most common causes of recessive early-onset Parkinson's disease (EOPD). Together, the mitochondrial ubiquitin (Ub) kinase PINK1 and the cytosolic E3 Ub ligase PARKIN direct a complex regulated, sequential mitochondrial quality control. Thereby, damaged mitochondria are identified and targeted to degradation in order to prevent their accumulation and eventually cell death. Homozygous or compound heterozygous loss of either gene function disrupts this protective pathway, though at different steps and by distinct mechanisms. While structure and function of PARKIN variants have been well studied, PINK1 mutations remain poorly characterized, in particular under endogenous conditions. A better understanding of the exact molecular pathogenic mechanisms underlying the pathogenicity is crucial for rational drug design in the future. Here, we characterized the pathogenicity of the PINK1 p.I368N mutation on the clinical and genetic as well as on the structural and functional level in patients' fibroblasts and in cell-based, biochemical assays. Under endogenous conditions, PINK1 p.I368N is expressed, imported, and N-terminally processed in healthy mitochondria similar to PINK1 wild type (WT). Upon mitochondrial damage, however, full-length PINK1 p.I368N is not sufficiently stabilized on the outer mitochondrial membrane (OMM) resulting in loss of mitochondrial quality control. We found that binding of PINK1 p.I368N to the co-chaperone complex HSP90/CDC37 is reduced and stress-induced interaction with TOM40 of the mitochondrial protein import machinery is abolished. Analysis of a structural PINK1 p.I368N model additionally suggested impairments of Ub kinase activity as the ATP-binding pocket was found deformed and the substrate Ub was slightly misaligned within the active site of the kinase. Functional assays confirmed the lack of Ub kinase activity. Here we demonstrated that mutant PINK1 p.I368N can not be stabilized on the OMM upon

  12. Cardiac myosin missense mutations cause dilated cardiomyopathy in mouse models and depress molecular motor function.

    PubMed

    Schmitt, Joachim P; Debold, Edward P; Ahmad, Ferhaan; Armstrong, Amy; Frederico, Andrea; Conner, David A; Mende, Ulrike; Lohse, Martin J; Warshaw, David; Seidman, Christine E; Seidman, J G

    2006-09-26

    Dilated cardiomyopathy (DCM) leads to heart failure, a leading cause of death in industrialized nations. Approximately 30% of DCM cases are genetic in origin, with some resulting from point mutations in cardiac myosin, the molecular motor of the heart. The effects of these mutations on myosin's molecular mechanics have not been determined. We have engineered two murine models characterizing the physiological, cellular, and molecular effects of DCM-causing missense mutations (S532P and F764L) in the alpha-cardiac myosin heavy chain and compared them with WT mice. Mutant mice developed morphological and functional characteristics of DCM consistent with the human phenotypes. Contractile function of isolated myocytes was depressed and preceded left ventricular dilation and reduced fractional shortening. In an in vitro motility assay, both mutant cardiac myosins exhibited a reduced ability to translocate actin (V(actin)) but had similar force-generating capacities. Actin-activated ATPase activities were also reduced. Single-molecule laser trap experiments revealed that the lower V(actin) in the S532P mutant was due to a reduced ability of the motor to generate a step displacement and an alteration of the kinetics of its chemomechanical cycle. These results suggest that the depressed molecular function in cardiac myosin may initiate the events that cause the heart to remodel and become pathologically dilated.

  13. Functional and Genomic Features of Human Genes Mutated in Neuropsychiatric Disorders.

    PubMed

    Forero, Diego A; Prada, Carlos F; Perry, George

    2016-01-01

    In recent years, a large number of studies around the world have led to the identification of causal genes for hereditary types of common and rare neurological and psychiatric disorders. To explore the functional and genomic features of known human genes mutated in neuropsychiatric disorders. A systematic search was used to develop a comprehensive catalog of genes mutated in neuropsychiatric disorders (NPD). Functional enrichment and protein-protein interaction analyses were carried out. A false discovery rate approach was used for correction for multiple testing. We found several functional categories that are enriched among NPD genes, such as gene ontologies, protein domains, tissue expression, signaling pathways and regulation by brain-expressed miRNAs and transcription factors. Sixty six of those NPD genes are known to be druggable. Several topographic parameters of protein-protein interaction networks and the degree of conservation between orthologous genes were identified as significant among NPD genes. These results represent one of the first analyses of enrichment of functional categories of genes known to harbor mutations for NPD. These findings could be useful for a future creation of computational tools for prioritization of novel candidate genes for NPD.

  14. Functional and Genomic Features of Human Genes Mutated in Neuropsychiatric Disorders

    PubMed Central

    Forero, Diego A.; Prada, Carlos F.; Perry, George

    2016-01-01

    Background: In recent years, a large number of studies around the world have led to the identification of causal genes for hereditary types of common and rare neurological and psychiatric disorders. Objective: To explore the functional and genomic features of known human genes mutated in neuropsychiatric disorders. Methods: A systematic search was used to develop a comprehensive catalog of genes mutated in neuropsychiatric disorders (NPD). Functional enrichment and protein-protein interaction analyses were carried out. A false discovery rate approach was used for correction for multiple testing. Results: We found several functional categories that are enriched among NPD genes, such as gene ontologies, protein domains, tissue expression, signaling pathways and regulation by brain-expressed miRNAs and transcription factors. Sixty six of those NPD genes are known to be druggable. Several topographic parameters of protein-protein interaction networks and the degree of conservation between orthologous genes were identified as significant among NPD genes. Conclusion: These results represent one of the first analyses of enrichment of functional categories of genes known to harbor mutations for NPD. These findings could be useful for a future creation of computational tools for prioritization of novel candidate genes for NPD. PMID:27990183

  15. Functional characterization of mutations in the myosin Vb gene associated with microvillus inclusion disease

    PubMed Central

    Szperl, Agata M.; Golachowska, Magdalena R.; Bruinenberg, Marcel; Prekeris, Rytis; Thunnissen, Andy-Mark W. H.; Karrenbeld, Arend; Dijkstra, Gerard; Hoekstra, Dick; Mercer, David; Ksiazyk, Janusz; Wijmenga, Cisca; Wapenaar, Martin C.; Rings, Edmond H. H. M.; van IJzendoorn, Sven C. D.

    2010-01-01

    Objectives Microvillus inclusion disease (MVID) is a rare autosomal recessive enteropathy characterized by intractable diarrhea and malabsorption. Recently, various MYO5B gene mutations have been identified in MVID patients. Interestingly, several MVID patients showed only a MYO5B mutation in one allele (heterozygous) or no mutations in the MYO5B gene, illustrating the need to further functionally characterize the cell biological effects of the MYO5B mutations. Methods The genomic DNA of nine patients diagnosed with microvillus inclusion disease was screened for MYO5B mutations, and qPCR and immunohistochemistry on the material of two patients was performed to investigate resultant cellular consequences. Results We demonstrate for the first time that MYO5B mutations can be correlated with altered myosin Vb mRNA expression and with an aberrant subcellular distribution of the myosin Vb protein. Moreover, we demonstrate that the typical and myosin Vb–controlled accumulation of rab11a-and FIP5-positive recycling endosomes in the apical cytoplasm of the cells is abolished in MVID enterocytes, which is indicative for altered myosin Vb function. Also, we report 8 novel MYO5B mutations in 9 MVID patients of various etnic backgrounds, including compound heterozygous mutations. Conclusions Our functional analysis indicate that MYO5B mutations can be correlated with an aberrant subcellular distribution of the myosin Vb protein and apical recycling endosomes which, together with the additional compound heterozygous mutations, significantly strengthen the link between MYO5B and MVID. PMID:21206382

  16. Functional modules, mutational load and human genetic disease.

    PubMed

    Zaghloul, Norann A; Katsanis, Nicholas

    2010-04-01

    The ability to generate a massive amount of sequencing and genotyping data is transforming the study of human genetic disorders. Driven by such innovation, it is likely that whole exome and whole-genome resequencing will replace regionally focused approaches for gene discovery and clinical testing in the next few years. However, this opportunity brings a significant interpretative challenge to assigning function and phenotypic variance to common and rare alleles. Understanding the effect of individual mutations in the context of the remaining genomic variation represents a major challenge to our interpretation of disease. Here, we discuss the challenges of assigning mutation functionality and, drawing from the examples of ciliopathies as well as cohesinopathies and channelopathies, discuss possibilities for the functional modularization of the human genome. Functional modularization in addition to the development of physiologically relevant assays to test allele functionality will accelerate our understanding of disease architecture and enable the use of genome-wide sequence data for disease diagnosis and phenotypic prediction in individuals. Copyright 2010 Elsevier Ltd. All rights reserved.

  17. Low Frequency Stimulation Decreases Seizure Activity in a Mutation Model of Epilepsy

    PubMed Central

    Kile, Kara Buehrer; Tian, Nan; Durand, Dominique M.

    2013-01-01

    Summary Purpose To investigate brain electrical activity in Q54 mice that display spontaneous seizures because of a gain-of-function mutation of the Scn2a sodium channel gene, and to evaluate the efficacy of low frequency deep brain stimulation (DBS) for seizure frequency reduction. Methods EEG, EMG, and hippocampal deep electrodes were implanted into Q54 mice expressing an epileptic phenotype (n = 6). Chronic six channel recordings (wideband, 0.1–300 Hz) were stored 24 hours a day for more than 12 days. Low Frequency stimulation (LFS) (3Hz, square wave, biphasic, 100μs, 400μA) was applied to the ventral hippocampal commisure (VHC) in alternating five minute cycles (on or off) 24 hours a day for a period of four days. Results LFS (3Hz) resulted in a significant reduction in seizure frequency and duration (21% and 35%, p<0.05), when applied to the VHC of epileptic Q54 mice (n = 6). Seizure frequency was not directly affected by stimulation state (“on” versus “off”). Conclusion LFS applied at a frequency of 3Hz significantly reduced seizure frequency and duration in the Q54 model. Furthermore, the reduction of seizure frequency and duration by LFS was not immediate but had a delayed and lasting effect, supporting complex, indirect mechanisms of action. PMID:20659150

  18. ESR1 mutations as a mechanism for acquired endocrine resistance in breast cancer

    PubMed Central

    Jeselsohn, Rinath; Buchwalter, Gilles; De Angelis, Carmine; Brown, Myles; Schiff, Rachel

    2016-01-01

    Most breast cancers are estrogen receptor α (ER)-positive (+) and are treated with endocrine therapies targeting ER activity. Despite efforts, the mechanisms of the frequent clinical resistance to these therapies remain largely unknown. Several recent parallel studies unveiled gain-of-function recurrent ESR1 mutations in up to 20% of patients with metastatic ER+ disease who all received endocrine therapies, which for more cases included an aromatase inhibitor. These mutations, clustered in a hotspot within the ligand-binding domain (LBD), lead to ligand independent ER activity and tumor growth, partial resistance to tamoxifen and fulvestrant, and potentially increased metastatic capacity. Together, these findings suggest that the ESR1 LBD mutations account for acquired endocrine resistance in a substantial fraction of patients with metastatic disease. The absence of detectable ESR1 mutations in treatment-naïve disease and the correlation with the number of endocrine treatments indicate a clonal expansion of rare mutant clones, selected under the pressure of treatment. New technologies to detect low/ultra rare ESR1 mutations together with tissue and liquid biopsies are required to fully expose their clinical relevance in prognosis and treatment. Pre-clinical and clinical development of rationale-based novel therapeutic strategies to inhibit these mutants has the potential to substantially improve treatment outcomes. PMID:26122181

  19. Passenger mutations and aberrant gene expression in congenic tissue plasminogen activator-deficient mouse strains.

    PubMed

    Szabo, R; Samson, A L; Lawrence, D A; Medcalf, R L; Bugge, T H

    2016-08-01

    Essentials C57BL/6J-tissue plasminogen activator (tPA)-deficient mice are widely used to study tPA function. Congenic C57BL/6J-tPA-deficient mice harbor large 129-derived chromosomal segments. The 129-derived chromosomal segments contain gene mutations that may confound data interpretation. Passenger mutation-free isogenic tPA-deficient mice were generated for study of tPA function. Background The ability to generate defined null mutations in mice revolutionized the analysis of gene function in mammals. However, gene-deficient mice generated by using 129-derived embryonic stem cells may carry large segments of 129 DNA, even when extensively backcrossed to reference strains, such as C57BL/6J, and this may confound interpretation of experiments performed in these mice. Tissue plasminogen activator (tPA), encoded by the PLAT gene, is a fibrinolytic serine protease that is widely expressed in the brain. A number of neurological abnormalities have been reported in tPA-deficient mice. Objectives To study genetic contamination of tPA-deficient mice. Materials and methods Whole genome expression array analysis, RNAseq expression profiling, low- and high-density single nucleotide polymorphism (SNP) analysis, bioinformatics and genome editing were used to analyze gene expression in tPA-deficient mouse brains. Results and conclusions Genes differentially expressed in the brain of Plat(-/-) mice from two independent colonies highly backcrossed onto the C57BL/6J strain clustered near Plat on chromosome 8. SNP analysis attributed this anomaly to about 20 Mbp of DNA flanking Plat being of 129 origin in both strains. Bioinformatic analysis of these 129-derived chromosomal segments identified a significant number of mutations in genes co-segregating with the targeted Plat allele, including several potential null mutations. Using zinc finger nuclease technology, we generated novel 'passenger mutation'-free isogenic C57BL/6J-Plat(-/-) and FVB/NJ-Plat(-/-) mouse strains by introducing

  20. Elucidating the impact of neurofibromatosis-1 germline mutations on neurofibromin function and dopamine-based learning.

    PubMed

    Anastasaki, Corina; Woo, Albert S; Messiaen, Ludwine M; Gutmann, David H

    2015-06-15

    Neurofibromatosis type 1 (NF1) is a common autosomal dominant neurologic condition characterized by significant clinical heterogeneity, ranging from malignant cancers to cognitive deficits. Recent studies have begun to reveal rare genotype-phenotype correlations, suggesting that the specific germline NF1 gene mutation may be one factor underlying disease heterogeneity. The purpose of this study was to define the impact of the germline NF1 gene mutation on brain neurofibromin function relevant to learning. Herein, we employ human NF1-patient primary skin fibroblasts, induced pluripotent stem cells and derivative neural progenitor cells (NPCs) to demonstrate that NF1 germline mutations have dramatic effects on neurofibromin expression. Moreover, while all NF1-patient NPCs exhibit increased RAS activation and reduced cyclic AMP generation, there was a neurofibromin dose-dependent reduction in dopamine (DA) levels. Additionally, we leveraged two complementary Nf1 genetically-engineered mouse strains in which hippocampal-based learning and memory is DA-dependent to establish that neuronal DA levels and signaling as well as mouse spatial learning are controlled in an Nf1 gene dose-dependent manner. Collectively, this is the first demonstration that different germline NF1 gene mutations differentially dictate neurofibromin function in the brain. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  1. Activating ESR1 Mutations Differentially Affect the Efficacy of ER Antagonists.

    PubMed

    Toy, Weiyi; Weir, Hazel; Razavi, Pedram; Lawson, Mandy; Goeppert, Anne U; Mazzola, Anne Marie; Smith, Aaron; Wilson, Joanne; Morrow, Christopher; Wong, Wai Lin; De Stanchina, Elisa; Carlson, Kathryn E; Martin, Teresa S; Uddin, Sharmeen; Li, Zhiqiang; Fanning, Sean; Katzenellenbogen, John A; Greene, Geoffrey; Baselga, José; Chandarlapaty, Sarat

    2017-03-01

    Recent studies have identified somatic ESR1 mutations in patients with metastatic breast cancer and found some of them to promote estrogen-independent activation of the receptor. The degree to which all recurrent mutants can drive estrogen-independent activities and reduced sensitivity to ER antagonists like fulvestrant is not established. In this report, we characterize the spectrum of ESR1 mutations from more than 900 patients. ESR1 mutations were detected in 10%, with D538G being the most frequent (36%), followed by Y537S (14%). Several novel, activating mutations were also detected (e.g., L469V, V422del, and Y537D). Although many mutations lead to constitutive activity and reduced sensitivity to ER antagonists, only select mutants such as Y537S caused a magnitude of change associated with fulvestrant resistance in vivo Correspondingly, tumors driven by Y537S, but not D5358G, E380Q, or S463P, were less effectively inhibited by fulvestrant than more potent and bioavailable antagonists, including AZD9496. These data point to a need for antagonists with optimal pharmacokinetic properties to realize clinical efficacy against certain ESR1 mutants. Significance: A diversity of activating ESR1 mutations exist, only some of which confer resistance to existing ER antagonists that might be overcome by next-generation inhibitors such as AZD9496. Cancer Discov; 7(3); 277-87. ©2016 AACR. This article is highlighted in the In This Issue feature, p. 235 . ©2016 American Association for Cancer Research.

  2. Hotspot Mutations in KIT Receptor Differentially Modulate Its Allosterically Coupled Conformational Dynamics: Impact on Activation and Drug Sensitivity

    PubMed Central

    Chauvot de Beauchêne, Isaure; Allain, Ariane; Panel, Nicolas; Laine, Elodie; Trouvé, Alain; Dubreuil, Patrice; Tchertanov, Luba

    2014-01-01

    Receptor tyrosine kinase KIT controls many signal transduction pathways and represents a typical allosterically regulated protein. The mutation-induced deregulation of KIT activity impairs cellular physiological functions and causes serious human diseases. The impact of hotspots mutations (D816H/Y/N/V and V560G/D) localized in crucial regulatory segments, the juxtamembrane region (JMR) and the activation (A-) loop, on KIT internal dynamics was systematically studied by molecular dynamics simulations. The mutational outcomes predicted in silico were correlated with in vitro and in vivo activation rates and drug sensitivities of KIT mutants. The allosteric regulation of KIT in the native and mutated forms is described in terms of communication between the two remote segments, JMR and A-loop. A strong correlation between the communication profile and the structural and dynamical features of KIT in the native and mutated forms was established. Our results provide new insight on the determinants of receptor KIT constitutive activation by mutations and resistance of KIT mutants to inhibitors. Depiction of an intra-molecular component of the communication network constitutes a first step towards an integrated description of vast communication pathways established by KIT in physiopathological contexts. PMID:25079768

  3. Altered cellular localization and hemichannel activities of KID syndrome associated connexin26 I30N and D50Y mutations.

    PubMed

    Aypek, Hande; Bay, Veysel; Meşe, Gülistan

    2016-02-02

    Gap junctions facilitate exchange of small molecules between adjacent cells, serving a crucial function for the maintenance of cellular homeostasis. Mutations in connexins, the basic unit of gap junctions, are associated with several human hereditary disorders. For example, mutations in connexin26 (Cx26) cause both non-syndromic deafness and syndromic deafness associated with skin abnormalities such as keratitis-ichthyosis-deafness (KID) syndrome. These mutations can alter the formation and function of gap junction channels through different mechanisms, and in turn interfere with various cellular processes leading to distinct disorders. The KID associated Cx26 mutations were mostly shown to result in elevated hemichannel activities. However, the effects of these aberrant hemichannels on cellular processes are recently being deciphered. Here, we assessed the effect of two Cx26 mutations associated with KID syndrome, Cx26I30N and D50Y, on protein biosynthesis and channel function in N2A and HeLa cells. Immunostaining experiments showed that Cx26I30N and D50Y failed to form gap junction plaques at cell-cell contact sites. Further, these mutations resulted in the retention of Cx26 protein in the Golgi apparatus. Examination of hemichannel function by fluorescent dye uptake assays revealed that cells with Cx26I30N and D50Y mutations had increased dye uptake compared to Cx26WT (wild-type) containing cells, indicating abnormal hemichannel activities. Cells with mutant proteins had elevated intracellular calcium levels compared to Cx26WT transfected cells, which were abolished by a hemichannel blocker, carbenoxolone (CBX), as measured by Fluo-3 AM loading and flow cytometry. Here, we demonstrated that Cx26I30N and D50Y mutations resulted in the formation of aberrant hemichannels that might result in elevated intracellular calcium levels, a process which may contribute to the hyperproliferative epidermal phenotypes of KID syndrome.

  4. MYD88 L265P mutation in Waldenstrom macroglobulinemia.

    PubMed

    Poulain, Stéphanie; Roumier, Christophe; Decambron, Audrey; Renneville, Aline; Herbaux, Charles; Bertrand, Elisabeth; Tricot, Sabine; Daudignon, Agnès; Galiègue-Zouitina, Sylvie; Soenen, Valerie; Theisen, Olivier; Grardel, Nathalie; Nibourel, Olivier; Roche-Lestienne, Catherine; Quesnel, Bruno; Duthilleul, Patrick; Preudhomme, Claude; Leleu, Xavier

    2013-05-30

    Mutation of the MYD88 gene has recently been identified in activated B-cell-like diffuse cell lymphoma and enhanced Janus kinase/signal transducer and activator of transcription (JAK-STAT) and nuclear factor κB (NF-κB) signaling pathways. A whole exome-sequencing study of Waldenstrom macroglobulinemia (WM) suggested a high frequency of MYD88 L265P mutation in WM. The genetic background is not fully deciphered in WM, although the role of NF-κB and JAK-STAT has been demonstrated. We analyzed MYD88 mutation in exon 5 and characterized the clinical significance of this genetic alteration in 67 WM patients. Clinical features; immunophenotypic markers; and conventional cytogenetic, fluorescence in situ hybridization, and single nucleotide polymorphism array data were analyzed. MYD88 L265P mutation was acquired in 79% of patients. Overall, we have identified alteration of the MYD88 locus in 91% of WM patients, including 12% with gain on chromosome 3 at the 3p22 locus that included the MYD88 gene. Patients with absence of MYD88 mutation were WM characterized with a female predominance, a splenomegaly, gain of chromosome 3, and CD27 expression. Importantly, inhibition of MYD88 signaling induced cytotoxicity and inhibited cell growth of cell lines issued from patients with WM. In conclusion, these results confirm a high frequency of MYD88 L265P mutation in WM. The discovery of MYD88 L265P mutation may contribute to a better understanding of the physiopathogeny of WM.

  5. Identification and functional analysis of a novel mutation in the SOX10 gene associated with Waardenburg syndrome type IV.

    PubMed

    Wang, Hong-Han; Chen, Hong-Sheng; Li, Hai-Bo; Zhang, Hua; Mei, Ling-Yun; He, Chu-Feng; Wang, Xing-Wei; Men, Mei-Chao; Jiang, Lu; Liao, Xin-Bin; Wu, Hong; Feng, Yong

    2014-03-15

    Waardenburg syndrome type IV (WS4) is a rare genetic disorder, characterized by auditory-pigmentary abnormalities and Hirschsprung disease. Mutations of the EDNRB gene, EDN3 gene, or SOX10 gene are responsible for WS4. In the present study, we reported a case of a Chinese patient with clinical features of WS4. In addition, the three genes mentioned above were sequenced in order to identify whether mutations are responsible for the case. We revealed a novel nonsense mutation, c.1063C>T (p.Q355*), in the last coding exon of SOX10. The same mutation was not found in three unaffected family members or 100 unrelated controls. Then, the function and mechanism of the mutation were investigated in vitro. We found both wild-type (WT) and mutant SOX10 p.Q355* were detected at the expected size and their expression levels are equivalent. The mutant protein also localized in the nucleus and retained the DNA-binding activity as WT counterpart; however, it lost its transactivation capability on the MITF promoter and acted as a dominant-negative repressor impairing function of the WT SOX10. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Information sensitivity functions to assess parameter information gain and identifiability of dynamical systems.

    PubMed

    Pant, Sanjay

    2018-05-01

    A new class of functions, called the 'information sensitivity functions' (ISFs), which quantify the information gain about the parameters through the measurements/observables of a dynamical system are presented. These functions can be easily computed through classical sensitivity functions alone and are based on Bayesian and information-theoretic approaches. While marginal information gain is quantified by decrease in differential entropy, correlations between arbitrary sets of parameters are assessed through mutual information. For individual parameters, these information gains are also presented as marginal posterior variances, and, to assess the effect of correlations, as conditional variances when other parameters are given. The easy to interpret ISFs can be used to (a) identify time intervals or regions in dynamical system behaviour where information about the parameters is concentrated; (b) assess the effect of measurement noise on the information gain for the parameters; (c) assess whether sufficient information in an experimental protocol (input, measurements and their frequency) is available to identify the parameters; (d) assess correlation in the posterior distribution of the parameters to identify the sets of parameters that are likely to be indistinguishable; and (e) assess identifiability problems for particular sets of parameters. © 2018 The Authors.

  7. Genetic diagnosis of familial hypercholesterolaemia: the importance of functional analysis of potential splice-site mutations.

    PubMed

    Bourbon, M; Duarte, M A; Alves, A C; Medeiros, A M; Marques, L; Soutar, A K

    2009-05-01

    Familial hypercholesterolemia (FH) results from defective low-density lipoprotein receptor (LDLR) activity, mainly due to LDLR gene defects. Of the many different LDLR mutations found in patients with FH, about 6% of single base substitutions are located near or within introns, and are predicted to result in exon skipping, retention of an intron, or activation of cryptic sites during mRNA splicing. This paper reports on the Portuguese FH Study, which found 10 such mutations, 6 of them novel. For the mutations that have not been described before or those whose effect on function have not been analysed, their effect on splicing was investigated, using reverse transcriptase PCR analysis of LDLR mRNA from freshly isolated blood mononuclear cells. Two of these variants (c.313+6 T-->C, c.2389G-->T (p.V776L)) caused exon skipping, and one caused retention of an intron (c.1359-5C-->G), whereas two others (c.2140+5 G-->A and c.1061-8T-->C) had no apparent effect. Any effect of c.1185G-->C (p.V374V) on splicing could not be determined because it was on an allele with a promoter mutation (-42C-->G) that was probably not transcribed. Variants in four patients lost to follow-up could not be tested experimentally, but they almost certainly affect splicing because they disrupt the invariant AG or GT in acceptor (c.818-2A-->G) or donor (c.1060+1G-->A, c.1845+1delG and c.2547+1G-->A) spice sites. These findings emphasise that care must be taken before reporting the presence or absence of a splice-site mutation in the LDLR gene for diagnostic purposes. The study also shows that relatively simple, quick and inexpensive RNA assays can evaluate putative splicing mutations that are not always predictable by available software, thereby reducing genetic misdiagnosis of patients with FH.

  8. Intraspecific Polymorphism, Interspecific Divergence, and the Origins of Function-Altering Mutations in Deer Mouse Hemoglobin

    PubMed Central

    Natarajan, Chandrasekhar; Hoffmann, Federico G.; Lanier, Hayley C.; Wolf, Cole J.; Cheviron, Zachary A.; Spangler, Matthew L.; Weber, Roy E.; Fago, Angela; Storz, Jay F.

    2015-01-01

    Major challenges for illuminating the genetic basis of phenotypic evolution are to identify causative mutations, to quantify their functional effects, to trace their origins as new or preexisting variants, and to assess the manner in which segregating variation is transduced into species differences. Here, we report an experimental analysis of genetic variation in hemoglobin (Hb) function within and among species of Peromyscus mice that are native to different elevations. A multilocus survey of sequence variation in the duplicated HBA and HBB genes in Peromyscus maniculatus revealed that function-altering amino acid variants are widely shared among geographically disparate populations from different elevations, and numerous amino acid polymorphisms are also shared with closely related species. Variation in Hb-O2 affinity within and among populations of P. maniculatus is attributable to numerous amino acid mutations that have individually small effects. One especially surprising feature of the Hb polymorphism in P. maniculatus is that an appreciable fraction of functional standing variation in the two transcriptionally active HBA paralogs is attributable to recurrent gene conversion from a tandemly linked HBA pseudogene. Moreover, transpecific polymorphism in the duplicated HBA genes is not solely attributable to incomplete lineage sorting or introgressive hybridization; instead, it is mainly attributable to recurrent interparalog gene conversion that has occurred independently in different species. Partly as a result of concerted evolution between tandemly duplicated globin genes, the same amino acid changes that contribute to variation in Hb function within P. maniculatus also contribute to divergence in Hb function among different species of Peromyscus. In the case of function-altering Hb mutations in Peromyscus, there is no qualitative or quantitative distinction between segregating variants within species and fixed differences between species. PMID:25556236

  9. Somatic Mutations in NEK9 Cause Nevus Comedonicus

    PubMed Central

    Levinsohn, Jonathan L.; Sugarman, Jeffrey L.; McNiff, Jennifer M.; Antaya, Richard J.; Choate, Keith A.

    2016-01-01

    Acne vulgaris (AV) affects most adolescents, and of those affected, moderate to severe disease occurs in 20%. Comedones, follicular plugs consisting of desquamated keratinocytes and sebum, are central to its pathogenesis. Despite high heritability in first-degree relatives, AV genetic determinants remain incompletely understood. We therefore employed whole-exome sequencing (WES) in nevus comedonicus (NC), a rare disorder that features comedones and inflammatory acne cysts in localized, linear configurations. WES identified somatic NEK9 mutations, each affecting highly conserved residues within its kinase or RCC1 domains, in affected tissue of three out of three NC-affected subjects. All mutations are gain of function, resulting in increased phosphorylation at Thr210, a hallmark of NEK9 kinase activation. We found that comedo formation in NC is marked by loss of follicular differentiation markers, expansion of keratin-15-positive cells from localization within the bulge to the entire sub-bulge follicle and cyst, and ectopic expression of keratin 10, a marker of interfollicular differentiation not present in normal follicles. These findings suggest that NEK9 mutations in NC disrupt normal follicular differentiation and identify NEK9 as a potential regulator of follicular homeostasis. PMID:27153399

  10. Functional Analyses of a Novel CITED2 Nonsynonymous Mutation in Chinese Tibetan Patients with Congenital Heart Disease.

    PubMed

    Liu, Shiming; Su, Zhaobing; Tan, Sainan; Ni, Bin; Pan, Hong; Liu, Beihong; Wang, Jing; Xiao, Jianmin; Chen, Qiuhong

    2017-08-01

    CITED2 gene is an important cardiac transcription factor that plays a fundamental role in the formation and development of embryonic cardiovascular. Previous studies have showed that knock-out of CITED2 in mice might result in various cardiac malformations. However, the mechanisms of CITED2 mutation on congenital heart disease (CHD) in Chinese Tibetan population are still poorly understood. In the present study, 187 unrelated Tibetan patients with CHD and 200 unrelated Tibetan healthy controls were screened for variants in the CITED2 gene; we subsequently identified one potential disease-causing mutation p.G143A in a 6-year-old girl with PDA and functional analyses of the mutation were carried out. Our study showed that the novel mutation of CITED2 significantly enhanced the expression activity of vascular endothelial growth factor (VEGF) under the role of co-receptor hypoxia inducible factor 1-aipha (HIF-1A), which is closely related with embryonic cardiac development. As a result, CITED2 gene mutation may play a significant role in the development of pediatric congenital heart disease.

  11. Non-ventricular, Clinical, and Functional Features of the RyR2(R420Q) Mutation Causing Catecholaminergic Polymorphic Ventricular Tachycardia.

    PubMed

    Domingo, Diana; Neco, Patricia; Fernández-Pons, Elena; Zissimopoulos, Spyros; Molina, Pilar; Olagüe, José; Suárez-Mier, M Paz; Lai, F Anthony; Gómez, Ana M; Zorio, Esther

    2015-05-01

    Catecholaminergic polymorphic ventricular tachycardia is a malignant disease, due to mutations in proteins controlling Ca(2+) homeostasis. While the phenotype is characterized by polymorphic ventricular arrhythmias under stress, supraventricular arrhythmias may occur and are not fully characterized. Twenty-five relatives from a Spanish family with several sudden deaths were evaluated with electrocardiogram, exercise testing, and optional epinephrine challenge. Selective RyR2 sequencing in an affected individual and cascade screening in the rest of the family was offered. The RyR2(R420Q) mutation was generated in HEK-293 cells using site-directed mutagenesis to conduct in vitro functional studies. The exercise testing unmasked catecholaminergic polymorphic ventricular tachycardia in 8 relatives (sensitivity = 89%; positive predictive value = 100%; negative predictive value = 93%), all of them carrying the heterozygous RyR2(R420Q) mutation, which was also present in the proband and a young girl without exercise testing, a 91% penetrance at the end of the follow-up. Remarkably, sinus bradycardia, atrial and junctional arrhythmias, and/or giant post-effort U-waves were identified in patients. Upon permeabilization and in intact cells, the RyR2(R420Q) expressing cells showed a smaller peak of Ca(2+) release than RyR2 wild-type cells. However, at physiologic intracellular Ca(2+) concentration, equivalent to the diastolic cytosolic concentration, the RyR2(R420Q) released more Ca(2+) and oscillated faster than RyR2 wild-type cells. The missense RyR2(R420Q) mutation was identified in the N-terminus of the RyR2 gene in this highly symptomatic family. Remarkably, this mutation is associated with sinus bradycardia, atrial and junctional arrhythmias, and giant U-waves. Collectively, functional heterologous expression studies suggest that the RyR2(R420Q) behaves as an aberrant channel, as a loss- or gain-of-function mutation depending on cytosolic intracellular Ca(2

  12. Gain-of-Function Mutants of the Cytokinin Receptors AHK2 and AHK3 Regulate Plant Organ Size, Flowering Time and Plant Longevity1

    PubMed Central

    Bartrina, Isabel; Novák, Ondřej

    2017-01-01

    The phytohormone cytokinin is a regulator of numerous processes in plants. In Arabidopsis (Arabidopsis thaliana), the cytokinin signal is perceived by three membrane-located receptors named ARABIDOPSIS HISTIDINE KINASE2 (AHK2), AHK3, and AHK4/CRE1. How the signal is transmitted across the membrane is an entirely unknown process. The three receptors have been shown to operate mostly in a redundant fashion, and very few specific roles have been attributed to single receptors. Using a forward genetic approach, we isolated constitutively active gain-of-function variants of the AHK2 and AHK3 genes, named repressor of cytokinin deficiency2 (rock2) and rock3, respectively. It is hypothesized that the structural changes caused by these mutations in the sensory and adjacent transmembrane domains emulate the structural changes caused by cytokinin binding, resulting in domain motion propagating the signal across the membrane. Detailed analysis of lines carrying rock2 and rock3 alleles revealed how plants respond to locally enhanced cytokinin signaling. Early flowering time, a prolonged reproductive growth phase, and, thereby, increased seed yield suggest that cytokinin regulates various aspects of reproductive growth. In particular, it counteracts the global proliferative arrest, a correlative inhibition of maternal growth by seeds, an as yet unknown activity of the hormone. PMID:28096190

  13. Assessment of the potential pathogenicity of missense mutations identified in the GTPase-activating protein (GAP)-related domain of the neurofibromatosis type-1 (NF1) gene.

    PubMed

    Thomas, Laura; Richards, Mark; Mort, Matthew; Dunlop, Elaine; Cooper, David N; Upadhyaya, Meena

    2012-12-01

    Neurofibromatosis type-1 (NF1) is caused by constitutional mutations of the NF1 tumor-suppressor gene. Although ∼85% of inherited NF1 microlesions constitute truncating mutations, the remaining ∼15% are missense mutations whose pathological relevance is often unclear. The GTPase-activating protein-related domain (GRD) of the NF1-encoded protein, neurofibromin, serves to define its major function as a negative regulator of the Ras-MAPK (mitogen-activated protein kinase) signaling pathway. We have established a functional assay to assess the potential pathogenicity of 15 constitutional nonsynonymous NF1 missense mutations (11 novel and 4 previously reported but not functionally characterized) identified in the NF1-GRD (p.R1204G, p.R1204W, p.R1276Q, p.L1301R, p.I1307V, p.T1324N, p.E1327G, p.Q1336R, p.E1356G, p.R1391G, p.V1398D, p.K1409E, p.P1412R, p.K1436Q, p.S1463F). Individual mutations were introduced into an NF1-GRD expression vector and activated Ras was assayed by an enzyme-linked immunosorbent assay (ELISA). Ten NF1-GRD variants were deemed to be potentially pathogenic by virtue of significantly elevated levels of activated GTP-bound Ras in comparison to wild-type NF1 protein. The remaining five NF1-GRD variants were deemed less likely to be of pathological significance as they exhibited similar levels of activated Ras to the wild-type protein. These conclusions received broad support from both bioinformatic analysis and molecular modeling and serve to improve our understanding of NF1-GRD structure and function. © 2012 Wiley Periodicals, Inc.

  14. Inorganic polyphosphate in the yeast Saccharomyces cerevisiae with a mutation disturbing the function of vacuolar ATPase.

    PubMed

    Tomaschevsky, A A; Ryasanova, L P; Kulakovskaya, T V; Kulaev, I S

    2010-08-01

    A mutation in the vma2 gene disturbing V-ATPase function in the yeast Saccharomyces cerevisiae results in a five- and threefold decrease in inorganic polyphosphate content in the stationary and active phases of growth on glucose, respectively. The average polyphosphate chain length in the mutant cells is decreased. The mutation does not prevent polyphosphate utilization during cultivation in a phosphate-deficient medium and recovery of its level on reinoculation in complete medium after phosphate deficiency. The content of short chain acid-soluble polyphosphates is recovered first. It is supposed that these polyphosphates are less dependent on the electrochemical gradient on the vacuolar membrane.

  15. PDE3A mutations cause autosomal dominant hypertension with brachydactyly.

    PubMed

    Maass, Philipp G; Aydin, Atakan; Luft, Friedrich C; Schächterle, Carolin; Weise, Anja; Stricker, Sigmar; Lindschau, Carsten; Vaegler, Martin; Qadri, Fatimunnisa; Toka, Hakan R; Schulz, Herbert; Krawitz, Peter M; Parkhomchuk, Dmitri; Hecht, Jochen; Hollfinger, Irene; Wefeld-Neuenfeld, Yvette; Bartels-Klein, Eireen; Mühl, Astrid; Kann, Martin; Schuster, Herbert; Chitayat, David; Bialer, Martin G; Wienker, Thomas F; Ott, Jürg; Rittscher, Katharina; Liehr, Thomas; Jordan, Jens; Plessis, Ghislaine; Tank, Jens; Mai, Knut; Naraghi, Ramin; Hodge, Russell; Hopp, Maxwell; Hattenbach, Lars O; Busjahn, Andreas; Rauch, Anita; Vandeput, Fabrice; Gong, Maolian; Rüschendorf, Franz; Hübner, Norbert; Haller, Hermann; Mundlos, Stefan; Bilginturan, Nihat; Movsesian, Matthew A; Klussmann, Enno; Toka, Okan; Bähring, Sylvia

    2015-06-01

    Cardiovascular disease is the most common cause of death worldwide, and hypertension is the major risk factor. Mendelian hypertension elucidates mechanisms of blood pressure regulation. Here we report six missense mutations in PDE3A (encoding phosphodiesterase 3A) in six unrelated families with mendelian hypertension and brachydactyly type E (HTNB). The syndrome features brachydactyly type E (BDE), severe salt-independent but age-dependent hypertension, an increased fibroblast growth rate, neurovascular contact at the rostral-ventrolateral medulla, altered baroreflex blood pressure regulation and death from stroke before age 50 years when untreated. In vitro analyses of mesenchymal stem cell-derived vascular smooth muscle cells (VSMCs) and chondrocytes provided insights into molecular pathogenesis. The mutations increased protein kinase A-mediated PDE3A phosphorylation and resulted in gain of function, with increased cAMP-hydrolytic activity and enhanced cell proliferation. Levels of phosphorylated VASP were diminished, and PTHrP levels were dysregulated. We suggest that the identified PDE3A mutations cause the syndrome. VSMC-expressed PDE3A deserves scrutiny as a therapeutic target for the treatment of hypertension.

  16. Activated Alk triggers prolonged neurogenesis and Ret upregulation providing a therapeutic target in ALK-mutated neuroblastoma

    PubMed Central

    Cazes, Alex; Lopez-Delisle, Lucille; Tsarovina, Konstantina; Pierre-Eugène, Cécile; De Preter, Katleen; Peuchmaur, Michel; Nicolas, André; Provost, Claire; Louis-Brennetot, Caroline; Daveau, Romain; Kumps, Candy; Cascone, Ilaria; Schleiermacher, Gudrun; Prignon, Aurélie; Speleman, Frank; Rohrer, Hermann; Delattre, Olivier; Janoueix-Lerosey, Isabelle

    2014-01-01

    Activating mutations of the ALK (Anaplastic lymphoma Kinase) gene have been identified in sporadic and familial cases of neuroblastoma, a cancer of early childhood arising from the sympathetic nervous system (SNS). To decipher ALK function in neuroblastoma predisposition and oncogenesis, we have characterized knock-in (KI) mice bearing the two most frequent mutations observed in neuroblastoma patients. A dramatic enlargement of sympathetic ganglia is observed in AlkF1178L mice from embryonic to adult stages associated with an increased proliferation of sympathetic neuroblasts from E14.5 to birth. In a MYCN transgenic context, the F1178L mutation displays a higher oncogenic potential than the R1279Q mutation as evident from a shorter latency of tumor onset. We show that tumors expressing the R1279Q mutation are sensitive to ALK inhibition upon crizotinib treatment. Furthermore, our data provide evidence that activated ALK triggers RET upregulation in mouse sympathetic ganglia at birth as well as in murine and human neuroblastoma. Using vandetanib, we show that RET inhibition strongly impairs tumor growth in vivo in both MYCN/KI AlkR1279Q and MYCN/KI AlkF1178L mice. Altogether, our findings demonstrate the critical role of activated ALK in SNS development and pathogenesis and identify RET as a therapeutic target in ALK mutated neuroblastoma. PMID:24811913

  17. HER2 activating mutations are targets for colorectal cancer treatment

    PubMed Central

    Kavuri, Shyam M.; Jain, Naveen; Galimi, Francesco; Cottino, Francesca; Leto, Simonetta M.; Migliardi, Giorgia; Searleman, Adam C.; Shen, Wei; Monsey, John; Trusolino, Livio; Jacobs, Samuel A.; Bertotti, Andrea; Bose, Ron

    2015-01-01

    The Cancer Genome Atlas project identified HER2 somatic mutations and gene amplification in 7% of colorectal cancer patients. Introduction of the HER2 mutations, S310F, L755S, V777L, V842I, and L866M, into colon epithelial cells increased signaling pathways and anchorage-independent cell growth, indicating that they are activating mutations. Introduction of these HER2 activating mutations into colorectal cancer cell lines produced resistance to cetuximab and panitumumab by sustaining MAPK phosphorylation. HER2 mutations are potently inhibited by low nanomolar doses of the irreversible tyrosine kinase inhibitors, neratinib and afatinib. HER2 gene sequencing of 48 cetuximab resistant, quadruple (KRAS, NRAS, BRAF, and PIK3CA) WT colorectal cancer patient-derived xenografts (PDX’s) identified 4 PDX’s with HER2 mutations. HER2 targeted therapies were tested on two PDX’s. Treatment with a single HER2 targeted drug (trastuzumab, neratinib, or lapatinib) delayed tumor growth, but dual HER2 targeted therapy with trastuzumab plus tyrosine kinase inhibitors produced regression of these HER2 mutated PDX’s. PMID:26243863

  18. Ensemble-Based Computational Approach Discriminates Functional Activity of p53 Cancer and Rescue Mutants

    PubMed Central

    Demir, Özlem; Baronio, Roberta; Salehi, Faezeh; Wassman, Christopher D.; Hall, Linda; Hatfield, G. Wesley; Chamberlin, Richard; Kaiser, Peter; Lathrop, Richard H.; Amaro, Rommie E.

    2011-01-01

    The tumor suppressor protein p53 can lose its function upon single-point missense mutations in the core DNA-binding domain (“cancer mutants”). Activity can be restored by second-site suppressor mutations (“rescue mutants”). This paper relates the functional activity of p53 cancer and rescue mutants to their overall molecular dynamics (MD), without focusing on local structural details. A novel global measure of protein flexibility for the p53 core DNA-binding domain, the number of clusters at a certain RMSD cutoff, was computed by clustering over 0.7 µs of explicitly solvated all-atom MD simulations. For wild-type p53 and a sample of p53 cancer or rescue mutants, the number of clusters was a good predictor of in vivo p53 functional activity in cell-based assays. This number-of-clusters (NOC) metric was strongly correlated (r2 = 0.77) with reported values of experimentally measured ΔΔG protein thermodynamic stability. Interpreting the number of clusters as a measure of protein flexibility: (i) p53 cancer mutants were more flexible than wild-type protein, (ii) second-site rescue mutations decreased the flexibility of cancer mutants, and (iii) negative controls of non-rescue second-site mutants did not. This new method reflects the overall stability of the p53 core domain and can discriminate which second-site mutations restore activity to p53 cancer mutants. PMID:22028641

  19. Novel NEK8 Mutations Cause Severe Syndromic Renal Cystic Dysplasia through YAP Dysregulation

    PubMed Central

    Grampa, Valentina; Odye, Gweltas; Thomas, Sophie; Elkhartoufi, Nadia; Filhol, Emilie; Niel, Olivier; Silbermann, Flora; Lebreton, Corinne; Collardeau-Frachon, Sophie; Rouvet, Isabelle; Alessandri, Jean-Luc; Devisme, Louise; Dieux-Coeslier, Anne; Cordier, Marie-Pierre; Capri, Yline; Khung-Savatovsky, Suonavy; Sigaudy, Sabine; Salomon, Rémi; Antignac, Corinne; Gubler, Marie-Claire; Benmerah, Alexandre; Terzi, Fabiola; Attié-Bitach, Tania; Jeanpierre, Cécile; Saunier, Sophie

    2016-01-01

    Ciliopathies are a group of genetic multi-systemic disorders related to dysfunction of the primary cilium, a sensory organelle present at the cell surface that regulates key signaling pathways during development and tissue homeostasis. In order to identify novel genes whose mutations would cause severe developmental ciliopathies, >500 patients/fetuses were analyzed by a targeted high throughput sequencing approach allowing exome sequencing of >1200 ciliary genes. NEK8/NPHP9 mutations were identified in five cases with severe overlapping phenotypes including renal cystic dysplasia/hypodysplasia, situs inversus, cardiopathy with hypertrophic septum and bile duct paucity. These cases highlight a genotype-phenotype correlation, with missense and nonsense mutations associated with hypodysplasia and enlarged cystic organs, respectively. Functional analyses of NEK8 mutations in patient fibroblasts and mIMCD3 cells showed that these mutations differentially affect ciliogenesis, proliferation/apoptosis/DNA damage response, as well as epithelial morphogenesis. Notably, missense mutations exacerbated some of the defects due to NEK8 loss of function, highlighting their likely gain-of-function effect. We also showed that NEK8 missense and loss-of-function mutations differentially affect the regulation of the main Hippo signaling effector, YAP, as well as the expression of its target genes in patient fibroblasts and renal cells. YAP imbalance was also observed in enlarged spheroids of Nek8-invalidated renal epithelial cells grown in 3D culture, as well as in cystic kidneys of Jck mice. Moreover, co-injection of nek8 MO with WT or mutated NEK8-GFP RNA in zebrafish embryos led to shortened dorsally curved body axis, similar to embryos injected with human YAP RNA. Finally, treatment with Verteporfin, an inhibitor of YAP transcriptional activity, partially rescued the 3D spheroid defects of Nek8-invalidated cells and the abnormalities of NEK8-overexpressing zebrafish embryos

  20. A protein functional leap: how a single mutation reverses the function of the transcription regulator TetR.

    PubMed

    Resch, Marcus; Striegl, Harald; Henssler, Eva Maria; Sevvana, Madhumati; Egerer-Sieber, Claudia; Schiltz, Emile; Hillen, Wolfgang; Muller, Yves A

    2008-08-01

    Today's proteome is the result of innumerous gene duplication, mutagenesis, drift and selection processes. Whereas random mutagenesis introduces predominantly only gradual changes in protein function, a case can be made that an abrupt switch in function caused by single amino acid substitutions will not only considerably further evolution but might constitute a prerequisite for the appearance of novel functionalities for which no promiscuous protein intermediates can be envisaged. Recently, tetracycline repressor (TetR) variants were identified in which binding of tetracycline triggers the repressor to associate with and not to dissociate from the operator DNA as in wild-type TetR. We investigated the origin of this activity reversal by limited proteolysis, CD spectroscopy and X-ray crystallography. We show that the TetR mutant Leu17Gly switches its function via a disorder-order mechanism that differs completely from the allosteric mechanism of wild-type TetR. Our study emphasizes how single point mutations can engender unexpected leaps in protein function thus enabling the appearance of new functionalities in proteins without the need for promiscuous intermediates.

  1. A strong loss-of-function mutation in RAN1 results in constitution activation of the ethylene response pathway as well as a rosette-lethal phenotype

    Treesearch

    Keith Woeste; Joseph J. Kieber

    2000-01-01

    A recessive mutation was identified that constitutively activated the ethylene response pathway in Arabidopsis and resuited in a rosette-lethal phenotype. Positional cloning of the gene corresponding to this mutation revealed that it was allelic to responsive to antagonist1 (ran1), a mutation that causes seedlings to respond in a positive manner to what is normally a...

  2. Active microwave negative-index metamaterial transmission line with gain.

    PubMed

    Jiang, Tao; Chang, Kihun; Si, Li-Ming; Ran, Lixin; Xin, Hao

    2011-11-11

    We studied the active metamaterial transmission line at microwave frequency. The active composite right-handed or left-handed transmission line was designed to incorporate a germanium tunnel diode with a negative differential resistance property as the gain device at the unit cell level. Measurements of the fabricated planar transmission line structures with one-, two-, and three-unit cells showed that the addition of the dc pumped tunnel diodes not only provided gain but also maintained the left handedness of the transmission line metamaterial. Simulation results agree well with experimental observation. This work demonstrated that negative index material can be obtained with a net gain when an external source is incorporated.

  3. Amino acid mutations in the caldesmon COOH-terminal functional domain increase force generation in bladder smooth muscle

    PubMed Central

    Deng, Maoxian; Boopathi, Ettickan; Hypolite, Joseph A.; Raabe, Tobias; Chang, Shaohua; Zderic, Stephen; Wein, Alan J.

    2013-01-01

    Caldesmon (CaD), a component of smooth muscle thin filaments, binds actin, tropomyosin, calmodulin, and myosin and inhibits actin-activated ATP hydrolysis by smooth muscle myosin. Internal deletions of the chicken CaD functional domain that spans from amino acids (aa) 718 to 731, which corresponds to aa 512–530 including the adjacent aa sequence in mouse CaD, lead to diminished CaD-induced inhibition of actin-activated ATP hydrolysis by myosin. Transgenic mice with mutations of five aa residues (Lys523 to Gln, Val524 to Leu, Ser526 to Thr, Pro527 to Cys, and Lys529 to Ser), which encompass the ATPase inhibitory determinants located in exon 12, were generated by homologous recombination. Homozygous (−/−) animals did not develop, but heterozygous (+/−) mice carrying the expected mutations in the CaD ATPase inhibitory domain (CaD mutant) matured and reproduced normally. The peak force produced in response to KCl and electrical field stimulation by the detrusor smooth muscle from the CaD mutant was high compared with that of the wild type. CaD mutant mice revealed nonvoiding contractions during bladder filling on awake cystometry, suggesting that the CaD ATPase inhibitory domain suppresses force generation during the filling phase and this suppression is partially released by mutations in 50% of CaD in heterozygous. Our data show for the first time a functional phenotype, at the intact smooth muscle tissue and in vivo organ levels, following mutation of a functional domain at the COOH-terminal region of CaD. PMID:23986516

  4. Charcot Marie Tooth 2B Peripheral Sensory Neuropathy: How Rab7 Mutations Impact NGF Signaling?

    PubMed

    Liu, Harry; Wu, Chengbiao

    2017-02-04

    Charcot-Marie-Tooth 2B peripheral sensory neuropathy (CMT2B) is a debilitating autosomal dominant hereditary sensory neuropathy. Patients with this disease lose pain sensation and frequently need amputation. Axonal dysfunction and degeneration of peripheral sensory neurons is a major clinical manifestation of CMT2B. However, the cellular and molecular pathogenic mechanisms remain undefined. CMT2B is caused by missense point mutations (L129F, K157N, N161T/I, V162M) in Rab7 GTPase. Strong evidence suggests that the Rab7 mutation(s) enhances the cellular levels of activated Rab7 proteins, thus resulting in increased lysosomal activity and autophagy. As a consequence, trafficking and signaling of neurotrophic factors such as nerve growth factor (NGF) in the long axons of peripheral sensory neurons are particularly vulnerable to premature degradation. A "gain of toxicity" model has, thus, been proposed based on these observations. However, studies of fly photo-sensory neurons indicate that the Rab7 mutation(s) causes a "loss of function", resulting in haploinsufficiency. In the review, we summarize experimental evidence for both hypotheses. We argue that better models (rodent animals and human neurons) of CMT2B are needed to precisely define the disease mechanisms.

  5. Subclinical nonautoimmune hyperthyroidism in a family segregates with a thyrotropin receptor mutation with weakly increased constitutive activity.

    PubMed

    Nishihara, Eijun; Chen, Chun-Rong; Higashiyama, Takuya; Mizutori-Sasai, Yumiko; Ito, Mitsuru; Kubota, Sumihisa; Amino, Nobuyuki; Miyauchi, Akira; Rapoport, Basil

    2010-11-01

    Subclinical hyperthyroidism is usually associated with Graves' disease or toxic nodular goiter. Here we report a family with hereditary subclinical hyperthyroidism caused by a constitutively activating germline mutation of the thyrotropin receptor (TSHR) gene. The proband was a 64-year-old Japanese woman who presented with a thyroid nodule and was found to be euthyroid with a suppressed serum TSH. The nodule was not hot. Although antibodies to thyroid peroxidase and thyroglobulin antibodies were present, TSHR antibodies were not detected by TSH-binding inhibition or by bioassay. Two of her middle-aged sons, but not her daughter, also had subclinical hyperthyroidism without TSHR antibodies. Without therapy, the clinical condition of the affected individuals remained unchanged over 3 years without development of overt hyperthyroidism. A novel heterozygous TSHR point mutation causing a glutamic acid to lysine substitution at codon 575 (E575K) in the second extracellular loop was detected in the three family members with subclinical hyperthyroidism, but was absent in her one daughter with normal thyroid function. In vitro functional studies of the E575K TSHR mutation demonstrated a weak, but significant, increase in constitutive activation of the cAMP pathway. Although hereditary nonautoimmune overt hyperthyroidism is very rare, TSHR activating mutations as a cause of subclinical hyperthyroidism may be more common and should be considered in the differential diagnosis, especially if familial.

  6. Subclinical Nonautoimmune Hyperthyroidism in a Family Segregates with a Thyrotropin Receptor Mutation with Weakly Increased Constitutive Activity

    PubMed Central

    Chen, Chun-Rong; Higashiyama, Takuya; Mizutori-Sasai, Yumiko; Ito, Mitsuru; Kubota, Sumihisa; Amino, Nobuyuki; Miyauchi, Akira; Rapoport, Basil

    2010-01-01

    Background Subclinical hyperthyroidism is usually associated with Graves' disease or toxic nodular goiter. Here we report a family with hereditary subclinical hyperthyroidism caused by a constitutively activating germline mutation of the thyrotropin receptor (TSHR) gene. Methods The proband was a 64-year-old Japanese woman who presented with a thyroid nodule and was found to be euthyroid with a suppressed serum TSH. The nodule was not hot. Although antibodies to thyroid peroxidase and thyroglobulin antibodies were present, TSHR antibodies were not detected by TSH-binding inhibition or by bioassay. Two of her middle-aged sons, but not her daughter, also had subclinical hyperthyroidism without TSHR antibodies. Without therapy, the clinical condition of the affected individuals remained unchanged over 3 years without development of overt hyperthyroidism. Results A novel heterozygous TSHR point mutation causing a glutamic acid to lysine substitution at codon 575 (E575K) in the second extracellular loop was detected in the three family members with subclinical hyperthyroidism, but was absent in her one daughter with normal thyroid function. In vitro functional studies of the E575K TSHR mutation demonstrated a weak, but significant, increase in constitutive activation of the cAMP pathway. Conclusion Although hereditary nonautoimmune overt hyperthyroidism is very rare, TSHR activating mutations as a cause of subclinical hyperthyroidism may be more common and should be considered in the differential diagnosis, especially if familial. PMID:20929407

  7. Effect of point mutations on Herbaspirillum seropedicae NifA activity.

    PubMed

    Aquino, B; Stefanello, A A; Oliveira, M A S; Pedrosa, F O; Souza, E M; Monteiro, R A; Chubatsu, L S

    2015-08-01

    NifA is the transcriptional activator of the nif genes in Proteobacteria. It is usually regulated by nitrogen and oxygen, allowing biological nitrogen fixation to occur under appropriate conditions. NifA proteins have a typical three-domain structure, including a regulatory N-terminal GAF domain, which is involved in control by fixed nitrogen and not strictly required for activity, a catalytic AAA+ central domain, which catalyzes open complex formation, and a C-terminal domain involved in DNA-binding. In Herbaspirillum seropedicae, a β-proteobacterium capable of colonizing Graminae of agricultural importance, NifA regulation by ammonium involves its N-terminal GAF domain and the signal transduction protein GlnK. When the GAF domain is removed, the protein can still activate nif genes transcription; however, ammonium regulation is lost. In this work, we generated eight constructs resulting in point mutations in H. seropedicae NifA and analyzed their effect on nifH transcription in Escherichia coli and H. seropedicae. Mutations K22V, T160E, M161V, L172R, and A215D resulted in inactive proteins. Mutations Q216I and S220I produced partially active proteins with activity control similar to wild-type NifA. However, mutation G25E, located in the GAF domain, resulted in an active protein that did not require GlnK for activity and was partially sensitive to ammonium. This suggested that G25E may affect the negative interaction between the N-terminal GAF domain and the catalytic central domain under high ammonium concentrations, thus rendering the protein constitutively active, or that G25E could lead to a conformational change comparable with that when GlnK interacts with the GAF domain.

  8. Effect of point mutations on Herbaspirillum seropedicae NifA activity

    PubMed Central

    Aquino, B.; Stefanello, A.A.; Oliveira, M.A.S.; Pedrosa, F.O.; Souza, E.M.; Monteiro, R.A.; Chubatsu, L.S.

    2015-01-01

    NifA is the transcriptional activator of the nif genes in Proteobacteria. It is usually regulated by nitrogen and oxygen, allowing biological nitrogen fixation to occur under appropriate conditions. NifA proteins have a typical three-domain structure, including a regulatory N-terminal GAF domain, which is involved in control by fixed nitrogen and not strictly required for activity, a catalytic AAA+ central domain, which catalyzes open complex formation, and a C-terminal domain involved in DNA-binding. In Herbaspirillum seropedicae, a β-proteobacterium capable of colonizing Graminae of agricultural importance, NifA regulation by ammonium involves its N-terminal GAF domain and the signal transduction protein GlnK. When the GAF domain is removed, the protein can still activate nif genes transcription; however, ammonium regulation is lost. In this work, we generated eight constructs resulting in point mutations in H. seropedicae NifA and analyzed their effect on nifH transcription in Escherichia coli and H. seropedicae. Mutations K22V, T160E, M161V, L172R, and A215D resulted in inactive proteins. Mutations Q216I and S220I produced partially active proteins with activity control similar to wild-type NifA. However, mutation G25E, located in the GAF domain, resulted in an active protein that did not require GlnK for activity and was partially sensitive to ammonium. This suggested that G25E may affect the negative interaction between the N-terminal GAF domain and the catalytic central domain under high ammonium concentrations, thus rendering the protein constitutively active, or that G25E could lead to a conformational change comparable with that when GlnK interacts with the GAF domain. PMID:26176311

  9. In silico analysis of a novel MKRN3 missense mutation in familial central precocious puberty.

    PubMed

    Neocleous, Vassos; Shammas, Christos; Phelan, Marie M; Nicolaou, Stella; Phylactou, Leonidas A; Skordis, Nicos

    2016-01-01

    The onset of puberty is influenced by the interplay of stimulating and restraining factors, many of which have a genetic origin. Premature activation of the GnRH secretion in central precocious puberty (CPP) may arise either from gain-of-function mutations of the KISS1 and KISS1R genes or from loss-of-function manner mutations of the MKRN3 gene leading to MKRN3 deficiency. To explore the genetic causes responsible for CPP and the potential role of the RING finger protein 3 (MKRN3) gene. We investigated potential sequence variations in the intronless MKRN3 gene by Sanger sequencing of the entire 507 amino acid coding region of exon 1 in a family with two affected girls presented with CPP at the age of 6 and 5·7 years, respectively. A novel heterozygous g.Gly312Asp missense mutation in the MKRN3 gene was identified in these siblings. The imprinted MKRN3 missense mutation was also identified as expected in the unaffected father and followed as expected an imprinted mode of inheritance. In silico analysis of the altered missense variant using the computational algorithms Polyphen2, SIFT and Mutation Taster predicted a damage and pathogenic alteration causing CPP. The pathogenicity of the alteration at the protein level via an in silico structural model is also explored. A novel mutation in the MKRN3 gene in two sisters with CPP was identified, supporting the fundamental role of this gene in the suppression of the hypothalamic GnRH neurons. © 2015 John Wiley & Sons Ltd.

  10. Active medium gain study of electric-discharge oxygen-iodine laser

    NASA Astrophysics Data System (ADS)

    Kolobyanin, Yuriy; Adamenkov, Yuriy; Vyskubenko, Boris; Goryachev, Leonid; Ilyin, Sergey; Kalashnik, Anatoliy; Rakhimova, Tatiana; Rogozhnikov, Georgiy

    2007-05-01

    The paper reports on experimental studies of the active medium gain in supersonic electric-discharge oxygen-iodine laser (DOIL) based on traveling mw discharge. The measurements have included: absolute concentration, yield, and energy efficiency of production of SO in pure oxygen and oxygen-helium mixes at an oxygen partial pressure 3 to 15 Torr. For the gas flow to get rid of atomic oxygen, both heterogeneous mercury oxide coatings of the tube walls and homogeneous additives to the work mix, such as nitrogen oxide, have been used. The active medium of DOIL was formed using a nozzle array of the type of ejector sized as 10*50 mm2. The singlet oxygen-helium mix was supplied through three rows of sonic cylindrical nozzles, while the iodine-carrier gas mix - through two rows of supersonic conical nozzles with a half-opening angle of 10°(arc). The gas-phase iodine was produced in a quartz cell filled with iodine crystals. Room-temperature iodine vapors were picked up with a carrier gas (nitrogen or helium) and thus delivered into the nozzle array. The active medium was investigated by the high-resolution laser diode spectroscopy approach that used the laser type Vortex 6025 purchased from New Focus, Inc. The laser medium gain factor was determined by the intra-cavity approach having a sensitivity about 1*10 -6 cm -1. The static temperature of the medium was determined from the measurements of gain half-width. The gain of the active medium of electric-discharge OIL has been investigated. The DOIL in use was operating on a mix composed as O II:He=1:1 at a total pressure of 6 Torr and flowrate - about 1 mmol/s. With helium as an iodine carrier gas at a flowrate ~3 mmol/s, we have recorded a positive gain in the DOIL medium.

  11. FGFR2c-mediated ERK-MAPK activity regulates coronal suture development

    PubMed Central

    Pfaff, Miles J.; Xue, Ke; Li, Li; Horowitz, Mark C.; Steinbacher, Derek M.; Eswarakumar, Jacob V.P.

    2017-01-01

    Fibroblast growth factor receptor 2 (FGFR2) signaling is critical for proper craniofacial development. A gain-of-function mutation in the 2c splice variant of the receptor’s gene is associated with Crouzon syndrome, which is characterized by craniosynostosis, the premature fusion of one or more of the cranial vault sutures, leading to craniofacial maldevelopment. Insight into the molecular mechanism of craniosynostosis has identified the ERK-MAPK signaling cascade as a critical regulator of suture patency. The aim of this study is to investigate the role of FGFR2c-induced ERK-MAPK activation in the regulation of coronal suture development. Loss-of-function and gain-of-function Fgfr2c mutant mice have overlapping phenotypes, including coronal synostosis and craniofacial dysmorphia. In vivo analysis of coronal sutures in loss-of-function and gain-of-function models demonstrated fundamentally different pathogenesis underlying coronal suture synostosis. Calvarial osteoblasts from gain-of-function mice demonstrated enhanced osteoblastic function and maturation with concomitant increase in ERK-MAPK activation. In vitro inhibition with the ERK protein inhibitor U0126 mitigated ERK protein activation levels with a concomitant reduction in alkaline phosphatase activity. This study identifies FGFR2c-mediated ERK-MAPK signaling as a key mediator of craniofacial growth and coronal suture development. Furthermore, our results solve the apparent paradox between loss-of-function and gain-of-function FGFR2c mutants with respect to coronal suture synostosis. PMID:27034231

  12. FGFR2c-mediated ERK-MAPK activity regulates coronal suture development.

    PubMed

    Pfaff, Miles J; Xue, Ke; Li, Li; Horowitz, Mark C; Steinbacher, Derek M; Eswarakumar, Jacob V P

    2016-07-15

    Fibroblast growth factor receptor 2 (FGFR2) signaling is critical for proper craniofacial development. A gain-of-function mutation in the 2c splice variant of the receptor's gene is associated with Crouzon syndrome, which is characterized by craniosynostosis, the premature fusion of one or more of the cranial vault sutures, leading to craniofacial maldevelopment. Insight into the molecular mechanism of craniosynostosis has identified the ERK-MAPK signaling cascade as a critical regulator of suture patency. The aim of this study is to investigate the role of FGFR2c-induced ERK-MAPK activation in the regulation of coronal suture development. Loss-of-function and gain-of-function Fgfr2c mutant mice have overlapping phenotypes, including coronal synostosis and craniofacial dysmorphia. In vivo analysis of coronal sutures in loss-of-function and gain-of-function models demonstrated fundamentally different pathogenesis underlying coronal suture synostosis. Calvarial osteoblasts from gain-of-function mice demonstrated enhanced osteoblastic function and maturation with concomitant increase in ERK-MAPK activation. In vitro inhibition with the ERK protein inhibitor U0126 mitigated ERK protein activation levels with a concomitant reduction in alkaline phosphatase activity. This study identifies FGFR2c-mediated ERK-MAPK signaling as a key mediator of craniofacial growth and coronal suture development. Furthermore, our results solve the apparent paradox between loss-of-function and gain-of-function FGFR2c mutants with respect to coronal suture synostosis. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. CVID-associated TACI mutations affect autoreactive B cell selection and activation

    PubMed Central

    Romberg, Neil; Chamberlain, Nicolas; Saadoun, David; Gentile, Maurizio; Kinnunen, Tuure; Ng, Yen Shing; Virdee, Manmeet; Menard, Laurence; Cantaert, Tineke; Morbach, Henner; Rachid, Rima; Martinez-Pomar, Natalia; Matamoros, Nuria; Geha, Raif; Grimbacher, Bodo; Cerutti, Andrea; Cunningham-Rundles, Charlotte; Meffre, Eric

    2013-01-01

    Common variable immune deficiency (CVID) is an assorted group of primary diseases that clinically manifest with antibody deficiency, infection susceptibility, and autoimmunity. Heterozygous mutations in the gene encoding the tumor necrosis factor receptor superfamily member TACI are associated with CVID and autoimmune manifestations, whereas two mutated alleles prevent autoimmunity. To assess how the number of TACI mutations affects B cell activation and tolerance checkpoints, we analyzed healthy individuals and CVID patients carrying one or two TACI mutations. We found that TACI interacts with the cleaved, mature forms of TLR7 and TLR9 and plays an important role during B cell activation and the central removal of autoreactive B cells in healthy donors and CVID patients. However, only subjects with a single TACI mutation displayed a breached immune tolerance and secreted antinuclear antibodies (ANAs). These antibodies were associated with the presence of circulating B cell lymphoma 6–expressing T follicular helper (Tfh) cells, likely stimulating autoreactive B cells. Thus, TACI mutations may favor CVID by altering B cell activation with coincident impairment of central B cell tolerance, whereas residual B cell responsiveness in patients with one, but not two, TACI mutations enables autoimmune complications. PMID:24051380

  14. Analysis of TFAP2A mutations in Branchio-Oculo-Facial Syndrome indicates functional complexity within the AP-2α DNA-binding domain

    PubMed Central

    Li, Hong; Sheridan, Ryan; Williams, Trevor

    2013-01-01

    Multiple lines of evidence indicate that the AP-2 transcription factor family has an important regulatory function in human craniofacial development. Notably, mutations in TFAP2A, the gene encoding AP-2α, have been identified in patients with Branchio-Oculo-Facial Syndrome (BOFS). BOFS is an autosomal-dominant trait that commonly presents with facial clefting, eye defects and branchial skin anomalies. Examination of multiple cases has suggested either simple haploinsufficiency or more complex genetic causes for BOFS, especially as the clinical manifestations are variable, with no clear genotype–phenotype correlation. Mutations occur throughout TFAP2A, but mostly within conserved sequences within the DNA contact domain of AP-2α. However, the consequences of the various mutations for AP-2α protein function have not been evaluated. Therefore, it remains unclear if all BOFS mutations result in similar changes to the AP-2α protein or if they each produce specific alterations that underlie the spectrum of phenotypes. Here, we have investigated the molecular consequences of the mutations that localize to the DNA-binding region. We show that although individual mutations have different effects on DNA binding, they all demonstrate significantly reduced transcriptional activities. Moreover, all mutant derivatives have an altered nuclear:cytoplasmic distribution compared with the predominantly nuclear localization of wild-type AP-2α and several can exert a dominant-negative activity on the wild-type AP-2α protein. Overall, our data suggest that the individual TFAP2A BOFS mutations can generate null, hypomorphic or antimorphic alleles and that these differences in activity, combined with a role for AP-2α in epigenetic events, may influence the resultant pathology and the phenotypic variability. PMID:23578821

  15. Corin mutations K317E and S472G from preeclamptic patients alter zymogen activation and cell surface targeting. [Corrected].

    PubMed

    Dong, Ningzheng; Zhou, Tiantian; Zhang, Yue; Liu, Meng; Li, Hui; Huang, Xiaoyi; Liu, Zhenzhen; Wu, Yi; Fukuda, Koichi; Qin, Jun; Wu, Qingyu

    2014-06-20

    Corin is a membrane-bound serine protease that acts as the atrial natriuretic peptide (ANP) convertase in the heart. Recent studies show that corin also activates ANP in the pregnant uterus to promote spiral artery remodeling and prevent pregnancy-induced hypertension. Two CORIN gene mutations, K317E and S472G, were identified in preeclamptic patients and shown to have reduced activity in vitro. In this study, we carried out molecular modeling and biochemical experiments to understand how these mutations impair corin function. By molecular modeling, the mutation K317E was predicted to alter corin LDL receptor-2 module conformation. Western blot analysis of K317E mutant in HEK293 cells showed that the mutation did not block corin expression on the cell surface but inhibited corin zymogen activation. In contrast, the mutation S472G was predicted to abolish a β-sheet critical for corin frizzled-2 module structure. In Western blot analysis and flow cytometry, S472G mutant was not detected on the cell surface in transfected HEK293 cells. By immunostaining, the S472G mutant was found in the ER, indicating that the mutation S472G disrupted the β-sheet, causing corin misfolding and ER retention. Thus, these results show that mutations in the CORIN gene may impair corin function by entirely different mechanisms. Together, our data provide important insights into the molecular basis underlying corin mutations that may contribute to preeclampsia in patients. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  16. Invited Review: The Myosins: Exploration of the Development of Our Current Understanding of These Mutations in the Motor

    PubMed Central

    Moore, Jeffrey R.; Leinwand, Leslie; Warshaw, David M.

    2013-01-01

    Hypertrophic (HCM) and dilated (DCM) cardiomyopathies are inherited diseases with a high incidence of death due to electrical abnormalities or outflow tract obstruction. In many of the families afflicted with either disease, causative mutations have been identified in various sarcomeric proteins. In this review, we focus on mutations in the cardiac muscle molecular motor, myosin and its associated light chains. Despite the >300 identified mutations there is still no clear understanding of how these mutations within the same myosin molecule can lead to the dramatically different clinical phenotypes associated with HCM and DCM. Localizing mutations within myosin’s molecular structure provides insight into the potential consequence of these perturbations to key functional domains of the motor. Review of biochemical and biophysical data that characterize the functional capacities of these mutant myosins suggests that mutant myosins with enhanced contractility lead to HCM while those displaying reduced contractility lead to DCM. With gain and loss of function potentially being the primary consequence of a specific mutation, how these functional changes trigger the hypertrophic response and lead to the distinct HCM and DCM phenotypes will be the future investigative challenge. PMID:22821910

  17. Active metamaterial: Gain and stability, and microfluidic chip for THz cell spectroscopy

    NASA Astrophysics Data System (ADS)

    Tang, Qi

    Metamaterials are artificially designed composite materials which can exhibit unique and unusual properties such as the negative refractive index, negative phase velocity, etc. The concept of metamaterials becomes prevalent in the electromagnetic society since the first experimental implementation in the early 2000s. Many fascinated potential applications, e.g. super lens, invisibility cloaking, and novel antennas that are electrically small, have been proposed based on metamaterials. However, most of the applications still remain in theory and are not suitable for practical applications mainly due to the intrinsic loss and narrow bandwidth (large dispersion) determined by the fundamental physics of metamaterials. In this dissertation, we incorporate active gain devices into conventional passive metamaterials to overcome loss and even provide gain. Two types of active gain negative refractive index metamaterials are proposed, designed and experimentally demonstrated, including an active composite left-/right-handed transmission line and an active volumetric metamaterial. In addition, we investigate the non-Foster circuits for broadband matching of electrically small antennas. A rigorous way of analyzing the stability of non-Foster circuits by normalized determinant function is proposed. We study the practical factors that may affect the stability of non-Foster circuits, including the device parasitics, DC biasing, layouts and load impedance. A stable floating negative capacitor is designed, fabricated and tested. Moreover, it is important to resolve the sign of refractive index for active gain media which can be quite challenging. We investigate the analytical solution of a gain slab system, and apply the Nyquist criterion to analyze the stability of a causal gain medium. We then emphasize that the result of frequency domain simulation has to be treated with care. Lastly, this dissertation discusses another interesting topic about THz spectroscopy of live cells

  18. Functional characterization of c-Mpl ectodomain mutations that underlie congenital amegakaryocytic thrombocytopenia.

    PubMed

    Varghese, Leila N; Zhang, Jian-Guo; Young, Samuel N; Willson, Tracy A; Alexander, Warren S; Nicola, Nicos A; Babon, Jeffrey J; Murphy, James M

    2014-02-01

    Activation of the cell surface receptor, c-Mpl, by the cytokine, thrombopoietin (TPO), underpins megakaryocyte and platelet production in mammals. In humans, mutations in c-Mpl have been identified as the molecular basis of Congenital Amegakaryocytic Thrombocytopenia (CAMT). Here, we show that CAMT-associated mutations in c-Mpl principally lead to defective receptor presentation on the cell surface. In contrast, one CAMT mutant c-Mpl, F104S, was expressed on the cell surface, but showed defective TPO binding and receptor activation. Using mutational analyses, we examined which residues adjacent to F104 within the membrane-distal cytokine receptor homology module (CRM) of c-Mpl comprise the TPO-binding epitope, revealing residues within the predicted Domain 1 E-F and A-B loops and Domain 2 F'-G' loop as key TPO-binding determinants. These studies underscore the importance of the c-Mpl membrane-distal CRM to TPO-binding and suggest that mutations within this CRM that perturb TPO binding could give rise to CAMT.

  19. Activity loss by H46A mutation in Mycobacterium tuberculosis isocitrate lyase is due to decrease in structural plasticity and collective motions of the active site.

    PubMed

    Shukla, Rohit; Shukla, Harish; Tripathi, Timir

    2018-01-01

    Mycobacterium tuberculosis isocitrate lyase (MtbICL) is a crucial enzyme of the glyoxylate cycle and is a validated anti-tuberculosis drug target. Structurally distant, non-active site mutation (H46A) in MtbICL has been found to cause loss of enzyme activity. The aim of the present work was to explore the structural alterations induced by H46A mutation that caused the loss of enzyme activity. The structural and dynamic consequences of H46A mutation were studied using multiple computational methods such as docking, molecular dynamics simulation and residue interaction network analysis (RIN). Principal component analysis and cross correlation analysis revealed the difference in conformational flexibility and collective modes of motions between the wild-type and mutant enzyme, particularly in the active site region. RIN analysis revealed that the active site geometry was disturbed in the mutant enzyme. Thus, the dynamic perturbation of the active site led to enzyme transition from its active form to inactive form upon mutation. The computational analyses elucidated the mutant-specific conformational alterations, differential dominant motions, and anomalous residue level interactions that contributed to the abrogated function of mutant MtbICL. An understanding of interactions of mutant enzymes may help in modifying the existing drugs and designing improved drugs for successful control of tuberculosis. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Analyses of Dynein Heavy Chain Mutations Reveal Complex Interactions Between Dynein Motor Domains and Cellular Dynein Functions

    PubMed Central

    Sivagurunathan, Senthilkumar; Schnittker, Robert R.; Razafsky, David S.; Nandini, Swaran; Plamann, Michael D.; King, Stephen J.

    2012-01-01

    Cytoplasmic dynein transports cargoes for a variety of crucial cellular functions. However, since dynein is essential in most eukaryotic organisms, the in-depth study of the cellular function of dynein via genetic analysis of dynein mutations has not been practical. Here, we identify and characterize 34 different dynein heavy chain mutations using a genetic screen of the ascomycete fungus Neurospora crassa, in which dynein is nonessential. Interestingly, our studies show that these mutations segregate into five different classes based on the in vivo localization of the mutated dynein motors. Furthermore, we have determined that the different classes of dynein mutations alter vesicle trafficking, microtubule organization, and nuclear distribution in distinct ways and require dynactin to different extents. In addition, biochemical analyses of dynein from one mutant strain show a strong correlation between its in vitro biochemical properties and the aberrant intracellular function of that altered dynein. When the mutations were mapped to the published dynein crystal structure, we found that the three-dimensional structural locations of the heavy chain mutations were linked to particular classes of altered dynein functions observed in cells. Together, our data indicate that the five classes of dynein mutations represent the entrapment of dynein at five separate points in the dynein mechanochemical and transport cycles. We have developed N. crassa as a model system where we can dissect the complexities of dynein structure, function, and interaction with other proteins with genetic, biochemical, and cell biological studies. PMID:22649085

  1. Spontaneous physical activity protects against fat mass gain

    PubMed Central

    Teske, Jennifer A.; Billington, Charles J.; Kuskowski, Michael A.; Kotz, Catherine M.

    2011-01-01

    It is unclear whether elevated spontaneous physical activity (SPA, very low-intensity physical activity) positively influences body composition long-term. Objective We determined whether SPA and caloric intake were differentially related to the growth curve trajectories of body weight, FM and FFM between obesity resistant and Sprague-Dawley rats at specific age intervals. Design and Subjects Body composition, SPA and caloric intake were measured in selectively-bred obesity resistant and out-bred Sprague-Dawley rats from 1-18 mo. Data from development throughout maturation were analyzed by longitudinal growth curve modeling to determine the rate and acceleration of body weight, fat mass (FM) and fat-free mass (FFM) gain. Results Obesity resistant rats had a lower rate of FM gain overall, a lower acceleration in body weight early in life, significantly greater SPA and lower cumulative caloric intake. Greater SPA in obesity resistant rats was significantly associated with a lower rate of FM gain overall and lower acceleration in body weight early in life. Obesity resistant rats lost less FFM compared to Sprague-Dawley rats despite that obesity resistant rats had a lower acceleration in FFM gain early in life. Obesity resistant rats gained less FM and more FFM per gram body weight and were less energy efficient than Sprague-Dawley rats. Caloric intake was significantly and positively related to body weight, FM and FFM gain in both groups. Circadian patterns of caloric intake were group and age-dependent. Our data demonstrate that elevated and sustained SPA during development and over the lifespan are related to the reduced the rate of FM gain and may preserve FFM. Conclusion These data support the idea that SPA level is a reproducible marker that reliably predicts propensity for obesity in rats, and that elevated levels of SPA maintained during the lifespan promote a lean phenotype. PMID:21610695

  2. Engineered TAL Effector modulators for the large-scale gain-of-function screening

    PubMed Central

    Zhang, Hanshuo; Li, Juan; Hou, Sha; Wang, Gancheng; Jiang, Mingjun; Sun, Changhong; Hu, Xiongbing; Zhuang, Fengfeng; Dai, Zhifei; Dai, Junbiao; Xi, Jianzhong Jeff

    2014-01-01

    Recent effective use of TAL Effectors (TALEs) has provided an important approach to the design and synthesis of sequence-specific DNA-binding proteins. However, it is still a challenging task to design and manufacture effective TALE modulators because of the limited knowledge of TALE–DNA interactions. Here we synthesized more than 200 TALE modulators and identified two determining factors of transcription activity in vivo: chromatin accessibility and the distance from the transcription start site. The implementation of these modulators in a gain-of-function screen was successfully demonstrated for four cell lines in migration/invasion assays and thus has broad relevance in this field. Furthermore, a novel TALE–TALE modulator was developed to transcriptionally inhibit target genes. Together, these findings underscore the huge potential of these TALE modulators in the study of gene function, reprogramming of cellular behaviors, and even clinical investigation. PMID:24939900

  3. Tyrosine phosphorylation–dependent activation of TRPC6 regulated by PLC-γ1 and nephrin: effect of mutations associated with focal segmental glomerulosclerosis

    PubMed Central

    Kanda, Shoichiro; Harita, Yutaka; Shibagaki, Yoshio; Sekine, Takashi; Igarashi, Takashi; Inoue, Takafumi; Hattori, Seisuke

    2011-01-01

    Transient receptor potential canonicals (TRPCs) play important roles in the regulation of intracellular calcium concentration. Mutations in the TRPC6 gene are found in patients with focal segmental glomerulosclerosis (FSGS), a proteinuric disease characterized by dysregulated function of renal glomerular epithelial cells (podocytes). There is as yet no clear picture for the activation mechanism of TRPC6 at the molecular basis, however, and the association between its channel activity and pathogenesis remains unclear. We demonstrate here that tyrosine phosphorylation of TRPC6 induces a complex formation with phospholipase C (PLC)-γ1, which is prerequisite for TRPC6 surface expression. Furthermore, nephrin, an adhesion protein between the foot processes of podocytes, binds to phosphorylated TRPC6 via its cytoplasmic domain, competitively inhibiting TRPC6–PLC-γ1 complex formation, TRPC6 surface localization, and TRPC6 activation. Importantly, FSGS-associated mutations render the mutated TRPC6s insensitive to nephrin suppression, thereby promoting their surface expression and channel activation. These results delineate the mechanism of TRPC6 activation regulated by tyrosine phosphorylation, and imply the cell type–specific regulation, which correlates the FSGS mutations with deregulated TRPC6 channel activity. PMID:21471003

  4. Enhancing Human Spermine Synthase Activity by Engineered Mutations

    PubMed Central

    Zhang, Zhe; Zheng, Yueli; Petukh, Margo; Pegg, Anthony; Ikeguchi, Yoshihiko; Alexov, Emil

    2013-01-01

    Spermine synthase (SMS) is an enzyme which function is to convert spermidine into spermine. It was shown that gene defects resulting in amino acid changes of the wild type SMS cause Snyder-Robinson syndrome, which is a mild-to-moderate mental disability associated with osteoporosis, facial asymmetry, thin habitus, hypotonia, and a nonspecific movement disorder. These disease-causing missense mutations were demonstrated, both in silico and in vitro, to affect the wild type function of SMS by either destabilizing the SMS dimer/monomer or directly affecting the hydrogen bond network of the active site of SMS. In contrast to these studies, here we report an artificial engineering of a more efficient SMS variant by transferring sequence information from another organism. It is confirmed experimentally that the variant, bearing four amino acid substitutions, is catalytically more active than the wild type. The increased functionality is attributed to enhanced monomer stability, lowering the pKa of proton donor catalytic residue, optimized spatial distribution of the electrostatic potential around the SMS with respect to substrates, and increase of the frequency of mechanical vibration of the clefts presumed to be the gates toward the active sites. The study demonstrates that wild type SMS is not particularly evolutionarily optimized with respect to the reaction spermidine → spermine. Having in mind that currently there are no variations (non-synonymous single nucleotide polymorphism, nsSNP) detected in healthy individuals, it can be speculated that the human SMS function is precisely tuned toward its wild type and any deviation is unwanted and disease-causing. PMID:23468611

  5. Disease-associated mutations identify a novel region in human STING necessary for the control of type I interferon signaling.

    PubMed

    Melki, Isabelle; Rose, Yoann; Uggenti, Carolina; Van Eyck, Lien; Frémond, Marie-Louise; Kitabayashi, Naoki; Rice, Gillian I; Jenkinson, Emma M; Boulai, Anaïs; Jeremiah, Nadia; Gattorno, Marco; Volpi, Sefano; Sacco, Olivero; Terheggen-Lagro, Suzanne W J; Tiddens, Harm A W M; Meyts, Isabelle; Morren, Marie-Anne; De Haes, Petra; Wouters, Carine; Legius, Eric; Corveleyn, Anniek; Rieux-Laucat, Frederic; Bodemer, Christine; Callebaut, Isabelle; Rodero, Mathieu P; Crow, Yanick J

    2017-08-01

    Gain-of-function mutations in transmembrane protein 173 (TMEM173) encoding stimulator of interferon genes (STING) underlie a recently described type I interferonopathy called STING-associated vasculopathy with onset in infancy (SAVI). We sought to define the molecular and cellular pathology relating to 3 individuals variably exhibiting the core features of the SAVI phenotype including systemic inflammation, destructive skin lesions, and interstitial lung disease. Genetic analysis, conformational studies, in vitro assays and ex vivo flow-cytometry were performed. Molecular and in vitro data demonstrate that the pathology in these patients is due to amino acid substitutions at positions 206, 281, and 284 of the human STING protein. These mutations confer cGAMP-independent constitutive activation of type I interferon signaling through TBK1 (TANK-binding kinase), independent from the alternative STING pathway triggered by membrane fusion of enveloped RNA viruses. This constitutive activation was abrogated by ex vivo treatment with the janus kinase 1/2 inhibitor ruxolitinib. Structural analysis indicates that the 3 disease-associated mutations at positions 206, 281, and 284 of the STING protein define a novel cluster of amino acids with functional importance in the regulation of type I interferon signaling. Copyright © 2016 American Academy of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.

  6. Mutations of Vasopressin Receptor 2 Including Novel L312S Have Differential Effects on Trafficking.

    PubMed

    Tiulpakov, Anatoly; White, Carl W; Abhayawardana, Rekhati S; See, Heng B; Chan, Audrey S; Seeber, Ruth M; Heng, Julian I; Dedov, Ivan; Pavlos, Nathan J; Pfleger, Kevin D G

    2016-08-01

    Nephrogenic syndrome of inappropriate antidiuresis (NSIAD) is a genetic disease first described in 2 unrelated male infants with severe symptomatic hyponatremia. Despite undetectable arginine vasopressin levels, patients have inappropriately concentrated urine resulting in hyponatremia, hypoosmolality, and natriuresis. Here, we describe and functionally characterize a novel vasopressin type 2 receptor (V2R) gain-of-function mutation. An L312S substitution in the seventh transmembrane domain was identified in a boy presenting with water-induced hyponatremic seizures at the age of 5.8 years. We show that, compared with wild-type V2R, the L312S mutation results in the constitutive production of cAMP, indicative of the gain-of-function NSIAD profile. Interestingly, like the previously described F229V and I130N NSIAD-causing mutants, this appears to both occur in the absence of notable constitutive β-arrestin2 recruitment and can be reduced by the inverse agonist Tolvaptan. In addition, to understand the effect of various V2R substitutions on the full receptor "life-cycle," we have used and further developed a bioluminescence resonance energy transfer intracellular localization assay using multiple localization markers validated with confocal microscopy. This allowed us to characterize differences in the constitutive and ligand-induced localization and trafficking profiles of the novel L312S mutation as well as for previously described V2R gain-of-function mutants (NSIAD; R137C and R137L), loss-of-function mutants (nephrogenic diabetes insipidus; R137H, R181C, and M311V), and a putative silent V266A V2R polymorphism. In doing so, we describe differences in trafficking between unique V2R substitutions, even at the same amino acid position, therefore highlighting the value of full and thorough characterization of receptor function beyond simple signaling pathway analysis.

  7. Commuting by car: weight gain among physically active adults.

    PubMed

    Sugiyama, Takemi; Ding, Ding; Owen, Neville

    2013-02-01

    Prolonged sitting, including time spent sitting in cars, is detrimentally associated with health outcomes. This study examined whether commuting by car was associated with adults' weight gain over 4 years. Among 822 adult residents of Adelaide, Australia, weight change was ascertained from self-reported weight at baseline (2003-2004) and at follow-up (2007-2008). Using time spent for car commuting and work status at baseline, participants were categorized as non-car commuters, occasional car commuters, and daily car commuters. Multilevel linear regression (conducted in 2012) examined associations of weight change with car-commuting category, adjusting for potential confounding variables, for the whole sample, and among those who were physically inactive or active (≥150 minutes/week) in their leisure time. For the overall sample, adjusted mean weight gain (95% CI) over 4 years was 1.26 (0.64, 1.89) kg for non-car commuters; 1.53 (0.69, 2.37) kg for occasional car commuters; and 2.18 (1.44, 2.92) kg for daily car commuters (p for trend=0.090). Stratified analyses found a stronger association for those with sufficient leisure-time physical activity. For non-car commuters with sufficient leisure-time physical activity, the adjusted mean weight gain was 0.46 (-0.43, 1.35) kg, which was not significantly greater than 0. Over 4 years, those who used cars daily for commuting tended to gain more weight than those who did not commute by car. This relationship was pronounced among those who were physically active during leisure time. Reducing sedentary time may prevent weight gain among physically active adults. Copyright © 2013 American Journal of Preventive Medicine. Published by Elsevier Inc. All rights reserved.

  8. 20 CFR 220.29 - Work that is considered substantial gainful activity.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... Employment § 220.29 Work that is considered substantial gainful activity. Work is considered to be substantial gainful activity if it— (a) Involves doing significant and productive physical or mental duties... activity. 220.29 Section 220.29 Employees' Benefits RAILROAD RETIREMENT BOARD REGULATIONS UNDER THE...

  9. 20 CFR 220.29 - Work that is considered substantial gainful activity.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... Employment § 220.29 Work that is considered substantial gainful activity. Work is considered to be substantial gainful activity if it— (a) Involves doing significant and productive physical or mental duties... activity. 220.29 Section 220.29 Employees' Benefits RAILROAD RETIREMENT BOARD REGULATIONS UNDER THE...

  10. Functional Gain After Inpatient Stroke Rehabilitation: Correlates and Impact on Long-Term Survival.

    PubMed

    Scrutinio, Domenico; Monitillo, Vincenzo; Guida, Pietro; Nardulli, Roberto; Multari, Vincenzo; Monitillo, Francesco; Calabrese, Gianluigi; Fiore, Pietro

    2015-10-01

    Prediction of functional outcome after stroke rehabilitation (SR) is a growing field of interest. The association between SR and survival still remains elusive. We sought to investigate the factors associated with functional outcome after SR and whether the magnitude of functional improvement achieved with rehabilitation is associated with long-term mortality risk. The study population consisted of 722 patients admitted for SR within 90 days of stroke onset, with an admission functional independence measure (FIM) score of <80 points. We used univariable and multivariable linear regression analyses to assess the association between baseline variables and FIM gain and univariable and multivariable Cox analyses to assess the association of FIM gain with long-term mortality. Age (P<0.001), marital status (P=0.003), time from stroke onset to rehabilitation admission (P<0.001), National Institutes of Health Stroke Scale score at rehabilitation admission (P<0.001), and aphasia (P=0.021) were independently associated with FIM gain. The R2 of the model was 0.275. During a median follow-up of 6.17 years, 36.9% of the patients died. At multivariable Cox analysis, age (P<0.0001), coronary heart disease (P=0.018), atrial fibrillation (P=0.042), total cholesterol (P=0.015), and total FIM gain (P<0.0001) were independently associated with mortality. The adjusted hazard ratio for death significantly decreased across tertiles of increasing FIM gain. Several factors are independently associated with functional gain after SR. Our findings strongly suggest that the magnitude of functional improvement is a powerful predictor of long-term mortality in patients admitted for SR. © 2015 American Heart Association, Inc.

  11. A critical functional missense mutation (H173R) in the bovine PROP1 gene significantly affects growth traits in cattle.

    PubMed

    Pan, Chuanying; Wu, Chongyang; Jia, Wenchao; Xu, Yao; Lei, Chuzhao; Hu, Shenrong; Lan, Xianyong; Chen, Hong

    2013-12-01

    The PROP1 protein, encoded by the prophet of Pit-1 (PROP1) gene, exhibits both DNA-binding and transcriptional activation abilities. Its expression leads to the ontogenesis of growth hormone (GH), prolactin (PRL), thyroid-stimulating hormone (TSH), and pituitary hormone. The missense mutation H173R in PROP1 may result in deficiencies of GH, PRL, TSH, and Pit-1, thereby affecting growth traits. The objective of this study was to characterize the H173R mutation within the PROP1 gene and examine its associations with growth traits in cattle. Accordingly, the H173R mutation was genotyped in 1207 cows belonging to five Chinese native breeds. Three genotypes were identified among the specimens, with genotype AA being the major one. Consequently, the "G" allele was the minor allele. Association testing revealed that the H173R mutation was significantly associated with body weight, average daily weight gain and physical parameters in the analyzed breeds. Interestingly, the cows with genotype AG and/or AA had superior growth traits compared with those expressing the GG genotype, in all tested breeds. These findings revealed that the "A" allele had positive effects on growth traits, which was consistent with the increasing binding ability and enhanced activation capacity associated with the bovine isoform PROP1-173H, representing the "A" allele. Therefore, the H173R mutation can be considered as a DNA marker for selecting individuals with superior growth traits, thereby contributing to research on breeding and genetics in the beef industry. © 2013.

  12. A novel mutation in the P2Y12 receptor and a function-reducing polymorphism in protease-activated receptor 1 in a patient with chronic bleeding.

    PubMed

    Patel, Y M; Lordkipanidzé, M; Lowe, G C; Nisar, S P; Garner, K; Stockley, J; Daly, M E; Mitchell, M; Watson, S P; Austin, S K; Mundell, S J

    2014-05-01

    The study of patients with bleeding problems is a powerful approach in determining the function and regulation of important proteins in human platelets. We have identified a patient with a chronic bleeding disorder expressing a homozygous P2RY(12) mutation, predicting an arginine to cysteine (R122C) substitution in the G-protein-coupled P2Y(12) receptor. This mutation is found within the DRY motif, which is a highly conserved region in G-protein-coupled receptors (GPCRs) that is speculated to play a critical role in regulating receptor conformational states. To determine the functional consequences of the R122C substitution for P2Y(12) function. We performed a detailed phenotypic analysis of an index case and affected family members. An analysis of the variant R122C P2Y(12) stably expressed in cells was also performed. ADP-stimulated platelet aggregation was reduced as a result of a significant impairment of P2Y(12) activity in the patient and family members. Cell surface R122C P2Y(12) expression was reduced both in cell lines and in platelets; in cell lines, this was as a consequence of agonist-independent internalization followed by subsequent receptor trafficking to lysosomes. Strikingly, members of this family also showed reduced thrombin-induced platelet activation, owing to an intronic polymorphism in the F2R gene, which encodes protease-activated receptor 1 (PAR-1), that has been shown to be associated with reduced PAR-1 receptor activity. Our study is the first to demonstrate a patient with deficits in two stimulatory GPCR pathways that regulate platelet activity, further indicating that bleeding disorders constitute a complex trait. © 2014 International Society on Thrombosis and Haemostasis.

  13. Differential functional readthrough over homozygous nonsense mutations contributes to the bleeding phenotype in coagulation factor VII deficiency.

    PubMed

    Branchini, A; Ferrarese, M; Lombardi, S; Mari, R; Bernardi, F; Pinotti, M

    2016-10-01

    Essentials Potentially null homozygous Factor(F)7 nonsense mutations are associated to variable bleeding symptoms. Readthrough of p.Ser112X (life-threatening) and p.Cys132X (moderate) stop codons was investigated. Readthrough-mediated insertion of wild-type or tolerated residues produce functional proteins. Functional readthrough over homozygous F7 nonsense mutations contributes to the bleeding phenotype. Background Whereas the rare homozygous nonsense mutations causing factor (F)VII deficiency may predict null conditions that are almost completely incompatible with life, they are associated with appreciable differences in hemorrhagic symptoms. The misrecognition of premature stop codons (readthrough) may account for variable levels of functional full-length proteins. Objectives To experimentally evaluate the basal and drug-induced levels of FVII resulting from the homozygous p.Cys132X and p.Ser112X nonsense mutations that are associated with moderate (132X) or life-threatening (112X) symptoms, and that are predicted to undergo readthrough with (132X) or without (112X) production of wild-type FVII. Methods We transiently expressed recombinant FVII (rFVII) nonsense and missense variants in human embryonic kidney 293 cells, and evaluated secreted FVII protein and functional levels by ELISA, activated FX generation, and coagulation assays. Results The levels of functional FVII produced by p.Cys132X and p.Ser112X mutants (rFVII-132X, 1.1% ± 0.2% of wild-type rFVII; rFVII-112X, 0.5% ± 0.1% of wild-type rFVII) were compatible with the occurrence of spontaneous readthrough, which was magnified by the addition of G418 - up to 12% of the wild-type value for the rFVII-132X nonsense variant. The predicted missense variants arising from readthrough abolished (rFVII-132Trp/Arg) or reduced (rFVII-112Trp/Cys/Arg, 22-45% of wild-type levels) secretion and function. These data suggest that the appreciable rescue of p.Cys132X function was driven by reinsertion of the wild

  14. Clinical and functional characterization of TNNT2 mutations identified in patients with dilated cardiomyopathy

    PubMed Central

    Hershberger, Ray E.; Pinto, Jose Renato; Parks, Sharie B.; Kushner, Jessica D.; Li, Duanxiang; Ludwigsen, Susan; Cowan, Jason; Morales, Ana; Parvatiyar, Michelle S.; Potter, James D.

    2009-01-01

    Background A key issue for cardiovascular genetic medicine is ascertaining if a putative mutation indeed causes dilated cardiomyopathy (DCM). This is critically important as genetic DCM, usually presenting with advanced, life-threatening disease, may be preventable with early intervention in relatives known to carry the mutation. Methods and Results We recently undertook bidirectional resequencing of TNNT2, the cardiac troponin T gene, in 313 probands with DCM. We identified six TNNT2 protein-altering variants in nine probands, all who had early onset, aggressive disease. Additional family members of mutation carriers were then studied when available. Four of the nine probands had DCM without a family history, and five had familial DCM. Only one mutation (Lys210del) could be attributed as definitively causative from prior reports. Four of the five missense mutations were novel (Arg134Gly, Arg151Cys, Arg159Gln, Arg205Trp), and one was previously reported with hypertrophic cardiomyopathy (Glu244Asp). Based on the clinical, pedigree and molecular genetic data these five mutations were considered possibly or likely disease causing. To further clarify their potential pathophysiologic impact, we undertook functional studies of these mutations in cardiac myocytes reconstituted with mutant troponin T proteins. We observed decreased Ca2+ sensitivity of force development, a hallmark of DCM, in support of the conclusion that these mutations are disease-causing. Conclusions We conclude that the combination of clinical, pedigree, molecular genetic and functional data strengthen the interpretation of TNNT2 mutations in DCM. PMID:20031601

  15. Filaggrin loss-of-function mutations are associated with food allergy in childhood and adolescence.

    PubMed

    Venkataraman, Devasmitha; Soto-Ramírez, Nelís; Kurukulaaratchy, Ramesh J; Holloway, John W; Karmaus, Wilfried; Ewart, Susan L; Arshad, S Hasan; Erlewyn-Lajeunesse, Mich

    2014-10-01

    Filaggrin is an epidermal protein that has a role in skin barrier function. Filaggrin loss-of-function (FLG-LOF) mutations are a significant risk factor for eczema and atopy, but their association with food allergy (FA) is less clear. We explored the longitudinal relationship between 3 common FLG-LOF mutations and FA using the Isle of Wight birth cohort. FA diagnosis was based on recognized allergic reactions within 4 hours after exposure to known food allergens. Food allergen sensitization (FAS) was identified by using skin prick tests conducted between 1 and 18 years of age to a range of food allergens. Three FLG mutations were genotyped in 1150 (79%) of 1456 children. The temporal relationships between FA, FAS, and eczema in children with FLG mutations were explored by using path analysis with total, direct, and indirect effect models. There was a significant total effect of FLG-LOF mutations on the risk of FA in later childhood at the ages of 10 (odds ratio, 31.46; 95% CI, 2.86 to >100) and 18 (odds ratio, 4.25; 95% CI, 1.55-11.61) years. Path analysis showed that there was no direct effect of FLG-LOF mutations on FA at any age; however, an indirect effect was found on FA at all ages through eczema and FAS in the earlier years. FLG-LOF mutations are associated with FA in older children through eczema and FAS during early childhood. Our results highlight a biologically plausible pathway, which suggests that skin barrier function is important in the development and persistence of FA. Copyright © 2014 American Academy of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.

  16. Potential late-onset Alzheimer's disease-associated mutations in the ADAM10 gene attenuate {alpha}-secretase activity.

    PubMed

    Kim, Minji; Suh, Jaehong; Romano, Donna; Truong, Mimy H; Mullin, Kristina; Hooli, Basavaraj; Norton, David; Tesco, Giuseppina; Elliott, Kathy; Wagner, Steven L; Moir, Robert D; Becker, K David; Tanzi, Rudolph E

    2009-10-15

    ADAM10, a member of a disintegrin and metalloprotease family, is an alpha-secretase capable of anti-amyloidogenic proteolysis of the amyloid precursor protein. Here, we present evidence for genetic association of ADAM10 with Alzheimer's disease (AD) as well as two rare potentially disease-associated non-synonymous mutations, Q170H and R181G, in the ADAM10 prodomain. These mutations were found in 11 of 16 affected individuals (average onset age 69.5 years) from seven late-onset AD families. Each mutation was also found in one unaffected subject implying incomplete penetrance. Functionally, both mutations significantly attenuated alpha-secretase activity of ADAM10 (>70% decrease), and elevated Abeta levels (1.5-3.5-fold) in cell-based studies. In summary, we provide the first evidence of ADAM10 as a candidate AD susceptibility gene, and report two potentially pathogenic mutations with incomplete penetrance for late-onset familial AD.

  17. Loss-of-Function PCSK9 Mutations Are Not Associated With Alzheimer Disease.

    PubMed

    Paquette, Martine; Saavedra, Yascara Grisel Luna; Poirier, Judes; Théroux, Louise; Dea, Doris; Baass, Alexis; Dufour, Robert

    2018-03-01

    Hypercholesterolemia is a major risk factor for the late-onset form of Alzheimer disease (AD). Loss-of-function (LOF) mutations of PCSK9 and PCSK9 inhibitors lower low-density lipoprotein cholesterol (LDL-C) and have been associated with a reduced risk of cardiovascular disease. The aim of this study was to examine the effect of PCSK9 LOF variants on risk and age of onset of AD. A total of 878 participants (410 controls and 468 AD cases) from the Quebec Founder Population were included in the study. Fifty-four (6.2%) participants carried the R46L mutation, whereas 226 (26.2%) participants carried the InsLEU mutation. There was no protective or no deleterious effect of carrying PCSK9 LOF mutations on AD prevalence nor on age of onset, even when stratified by apolipoprotein E epsilon 4 genotype or by gender. Our data indicate that carrying PCSK9 LOF mutations has a neutral effect on neurocognitive health and the prevalence of AD.

  18. A case of functional growth hormone deficiency and early growth retardation in a child with IFT172 mutations.

    PubMed

    Lucas-Herald, Angela K; Kinning, Esther; Iida, Aritoshi; Wang, Zheng; Miyake, Noriko; Ikegawa, Shiro; McNeilly, Jane; Ahmed, S Faisal

    2015-04-01

    Ciliopathies are a group of rare conditions that present through a wide range of manifestations. Given the relative common occurrence of defects of the GH/IGF-I axis in children with short stature and growth retardation, the association between ciliopathies and these defects needs further attention. Our patient is a boy who was born at term and noted to have early growth retardation and weight gain within the first 18 months of life. Biochemical tests demonstrated low IGF-I but a normal peak GH on stimulation and an adequate increase in IGF-I on administration of recombinant human growth hormone (rhGH). A magnetic resonance imaging scan revealed pituitary hypoplasia and an ectopic posterior pituitary. His growth responded well to rhGH therapy. Subsequently he also developed a retinopathy of his rods and cones, metaphyseal dysplasia, and hypertension with renal failure requiring renal replacement therapy. Whole-exome sequencing demonstrated compound heterozygous mutations of IFT172, thus consistent with a ciliopathy. This is the first reported case of a child with a mutation in IFT172 who presented with growth retardation in early childhood and was initially managed as a case of functional GH deficiency that responded to rhGH therapy. This case highlights the importance of ciliary function in pituitary development and the link between early onset growth failure and ciliopathies.

  19. A Hypertension-Associated tRNAAla Mutation Alters tRNA Metabolism and Mitochondrial Function

    PubMed Central

    Jiang, Pingping; Wang, Meng; Xue, Ling; Xiao, Yun; Yu, Jialing; Wang, Hui; Yao, Juan; Liu, Hao; Peng, Yanyan; Liu, Hanqing; Li, Haiying; Chen, Ye

    2016-01-01

    In this report, we investigated the pathophysiology of a novel hypertension-associated mitochondrial tRNAAla 5655A → G (m.5655A → G) mutation. The destabilization of a highly conserved base pairing (A1-U72) at the aminoacyl acceptor stem by an m.5655A → G mutation altered the tRNAAla function. An in vitro processing analysis showed that the m.5655A → G mutation reduced the efficiency of tRNAAla precursor 5′ end cleavage catalyzed by RNase P. By using cybrids constructed by transferring mitochondria from lymphoblastoid cell lines derived from a Chinese family into mitochondrial DNA (mtDNA)-less (ρo) cells, we showed a 41% reduction in the steady-state level of tRNAAla in mutant cybrids. The mutation caused an improperly aminoacylated tRNAAla, as suggested by aberrantly aminoacylated tRNAAla and slower electrophoretic mobility of mutated tRNA. A failure in tRNAAla metabolism contributed to variable reductions in six mtDNA-encoded polypeptides in mutant cells, ranging from 21% to 37.5%, with an average of a 29.1% reduction, compared to levels of the controls. The impaired translation caused reduced activities of mitochondrial respiration chains. Furthermore, marked decreases in the levels of mitochondrial ATP and membrane potential were observed in mutant cells. These caused increases in the production of reactive oxygen species in the mutant cybrids. The data provide evidence for the association of the tRNAAla 5655A → G mutation with hypertension. PMID:27161322

  20. Molecular genetic and biochemical analyses of FGF23 mutations in familial tumoral calcinosis.

    PubMed

    Garringer, Holly J; Malekpour, Mahdi; Esteghamat, Fatemehsadat; Mortazavi, Seyed M J; Davis, Siobhan I; Farrow, Emily G; Yu, Xijie; Arking, Dan E; Dietz, Harry C; White, Kenneth E

    2008-10-01

    Fibroblast growth factor 23 (FGF23) is a hormone required for normal renal phosphate reabsorption. FGF23 gain-of-function mutations result in autosomal dominant hypophosphatemic rickets (ADHR), and FGF23 loss-of-function mutations cause familial hyperphosphatemic tumoral calcinosis (TC). In this study, we identified a novel recessive FGF23 TC mutation, a lysine (K) substitution for glutamine (Q) (160 C>A) at residue 54 (Q54K). To understand the molecular consequences of all known FGF23-TC mutants (H41Q, S71G, M96T, S129F, and Q54K), these proteins were stably expressed in vitro. Western analyses revealed minimal amounts of secreted intact protein for all mutants, and ELISA analyses demonstrated high levels of secreted COOH-terminal FGF23 fragments but low amounts of intact protein, consistent with TC patients' FGF23 serum profiles. Mutant protein function was tested and showed residual, yet decreased, bioactivity compared with wild-type protein. In examining the role of the FGF23 COOH-terminal tail (residues 180-251) in protein processing and activity, truncated mutants revealed that the majority of the residues downstream from the known FGF23 SPC protease site ((176)RXXR(179)/S(180)) were not required for protein secretion. However, residues adjacent to the RXXR site (between residues 188 and 202) were required for full bioactivity. In summary, we report a novel TC mutation and demonstrate a common defect of reduced FGF23 stability for all known FGF23-TC mutants. Finally, the majority of the COOH-terminal tail of FGF23 is not required for protein secretion but is required for full bioactivity.

  1. Loss-of-function mutations in LEMD3 result in osteopoikilosis, Buschke-Ollendorff syndrome and melorheostosis.

    PubMed

    Hellemans, Jan; Preobrazhenska, Olena; Willaert, Andy; Debeer, Philippe; Verdonk, Peter C M; Costa, Teresa; Janssens, Katrien; Menten, Bjorn; Van Roy, Nadine; Vermeulen, Stefan J T; Savarirayan, Ravi; Van Hul, Wim; Vanhoenacker, Filip; Huylebroeck, Danny; De Paepe, Anne; Naeyaert, Jean-Marie; Vandesompele, Jo; Speleman, Frank; Verschueren, Kristin; Coucke, Paul J; Mortier, Geert R

    2004-11-01

    Osteopoikilosis, Buschke-Ollendorff syndrome (BOS) and melorheostosis are disorders characterized by increased bone density. The occurrence of one or more of these phenotypes in the same individual or family suggests that these entities might be allelic. We collected data from three families in which affected individuals had osteopoikilosis with or without manifestations of BOS or melorheostosis. A genome-wide linkage analysis in these families, followed by the identification of a microdeletion in an unrelated individual with these diseases, allowed us to map the gene that is mutated in osteopoikilosis. All the affected individuals that we investigated were heterozygous with respect to a loss-of-function mutation in LEMD3 (also called MAN1), which encodes an inner nuclear membrane protein. A somatic mutation in the second allele of LEMD3 could not be identified in fibroblasts from affected skin of an individual with BOS and an individual with melorheostosis. XMAN1, the Xenopus laevis ortholog, antagonizes BMP signaling during embryogenesis. In this study, LEMD3 interacted with BMP and activin-TGFbeta receptor-activated Smads and antagonized both signaling pathways in human cells.

  2. ADAM10 Missense Mutations Potentiate β-Amyloid Accumulation by Impairing Prodomain Chaperone Function

    PubMed Central

    Suh, Jaehong; Choi, Se Hoon; Romano, Donna M.; Gannon, Moira A.; Lesinski, Andrea N.; Kim, Doo Yeon; Tanzi, Rudolph E.

    2014-01-01

    SUMMARY The generation of Aβ, the main component of senile plaques in Alzheimer’s disease (AD), is precluded by α-secretase cleavage within the Aβ domain of the amyloid precursor protein (APP). We identified two rare mutations (Q170H and R181G) in the prodomain of the metalloprotease, ADAM10, that co-segregate with late-onset AD (LOAD). Here, we addressed the pathogenicity of these mutations in transgenic mice expressing human ADAM10 in brain. In Tg2576 AD mice, both mutations attenuated α-secretase activity of ADAM10 and shifted APP processing toward β-secretase-mediated cleavage, while enhancing Aβ plaque load and reactive gliosis. We also demonstrated ADAM10 expression potentiates adult hippocampal neurogenesis, which is reduced by the LOAD mutations. Mechanistically, both LOAD mutations impaired the molecular chaperone activity of ADAM10 prodomain. Collectively, these findings suggest that diminished α-secretase activity, owing to LOAD ADAM10 prodomain mutations, leads to AD-related pathology, strongly supporting ADAM10 as a promising therapeutic target for this devastating disease. PMID:24055016

  3. ADAM10 missense mutations potentiate β-amyloid accumulation by impairing prodomain chaperone function.

    PubMed

    Suh, Jaehong; Choi, Se Hoon; Romano, Donna M; Gannon, Moira A; Lesinski, Andrea N; Kim, Doo Yeon; Tanzi, Rudolph E

    2013-10-16

    The generation of Aβ, the main component of senile plaques in Alzheimer's disease (AD), is precluded by α-secretase cleavage within the Aβ domain of the amyloid precursor protein (APP). We identified two rare mutations (Q170H and R181G) in the prodomain of the metalloprotease, ADAM10, that cosegregate with late-onset AD (LOAD). Here, we addressed the pathogenicity of these mutations in transgenic mice expressing human ADAM10 in brain. In Tg2576 AD mice, both mutations attenuated α-secretase activity of ADAM10 and shifted APP processing toward β-secretase-mediated cleavage, while enhancing Aβ plaque load and reactive gliosis. We also demonstrated ADAM10 expression potentiates adult hippocampal neurogenesis, which is reduced by the LOAD mutations. Mechanistically, both LOAD mutations impaired the molecular chaperone activity of ADAM10 prodomain. Collectively, these findings suggest that diminished α-secretase activity, owing to LOAD ADAM10 prodomain mutations, leads to AD-related pathology, strongly supporting ADAM10 as a promising therapeutic target for this devastating disease. Copyright © 2013 Elsevier Inc. All rights reserved.

  4. Familial hypertrophic cardiomyopathy: functional effects of myosin mutation R723G in cardiomyocytes.

    PubMed

    Kraft, Theresia; Witjas-Paalberends, E Rosalie; Boontje, Nicky M; Tripathi, Snigdha; Brandis, Almuth; Montag, Judith; Hodgkinson, Julie L; Francino, Antonio; Navarro-Lopez, Francisco; Brenner, Bernhard; Stienen, Ger J M; van der Velden, Jolanda

    2013-04-01

    Familial Hypertrophic Cardiomyopathy (FHC) is frequently caused by mutations in the β-cardiac myosin heavy chain (β-MyHC). To identify changes in sarcomeric function triggered by such mutations, distinguishing mutation effects from other functional alterations of the myocardium is essential. We previously identified a direct effect of mutation R723G (MyHC723) on myosin function in slow Musculus soleus fibers. Here we investigate contractile features of left ventricular cardiomyocytes of FHC-patients with the same MyHC723-mutation and compare these to the soleus data. In mechanically isolated, triton-permeabilized MyHC723-cardiomyocytes, maximum force was significantly lower but calcium-sensitivity was unchanged compared to donor. Conversely, MyHC723-soleus fibers showed significantly higher maximum force and reduced calcium-sensitivity compared to controls. Protein phosphorylation, a potential myocardium specific modifying mechanism, might account for differences compared to soleus fibers. Analysis revealed reduced phosphorylation of troponin I and T, myosin-binding-protein C, and myosin-light-chain 2 in MyHC723-myocardium compared to donor. Saturation of protein-kinaseA phospho-sites led to comparable, i.e., reduced MyHC723-calcium-sensitivity in cardiomyocytes as in M. soleus fibers, while maximum force remained reduced. Myofibrillar disarray and lower density of myofibrils, however, largely account for reduced maximum force in MyHC723-cardiomyocytes. The changes seen when phosphorylation of sarcomeric proteins in myocardium of affected patients is matched to control tissue suggest that the R723G mutation causes reduced Ca(++)-sensitivity in both cardiomyocytes and M. soleus fibers. In MyHC723-myocardium, however, hypophosphorylation can compensate for the reduced calcium-sensitivity, while maximum force generation, lowered by myofibrillar deficiency and disarray, remains impaired, and may only be compensated by hypertrophy. Copyright © 2013 Elsevier Ltd. All

  5. A novel loss-of-function mutation in GPR54/KISS1R leads to hypogonadotropic hypogonadism in a highly consanguineous family.

    PubMed

    Nimri, Revital; Lebenthal, Yael; Lazar, Liora; Chevrier, Lucie; Phillip, Moshe; Bar, Meytal; Hernandez-Mora, Eva; de Roux, Nicolas; Gat-Yablonski, Galia

    2011-03-01

    The G protein-coupled receptor 54 (GPR54), the kisspeptin receptor, is essential for stimulation of GnRH secretion and induction of puberty. Recently loss-of-function mutations of the GPR54 have been implicated as a cause of isolated idiopathic hypogonadotropic hypogonadism (IHH). The objective of the study was to identify the genetic cause of IHH in a consanguineous pedigree and to characterize the phenotypic features from infancy through early adulthood. In six patients with normosmic IHH belonging to two families of Israeli Muslim-Arab origin highly related to one another, DNA was analyzed for mutations in the GnRHR and GPR54 genes, with functional analysis of the mutation found. The five males underwent comprehensive endocrine evaluation and were under longitudinal follow-up; the one female presented in early adulthood. A new homozygous mutation (c.T815C) in GPR54 leading to a phenylalanine substitution by serine (p.F272S) was detected in all patients. Functional analysis showed an almost complete inhibition of kisspeptin-induced GPR54 signaling and a dramatic decrease of the mutated receptor expression at the cell surface. The males exhibited the same clinical features from infancy to adulthood, characterized by cryptorchidism, a relatively short penis, and no spontaneous pubertal development. The female patient presented at 18 yr with impuberism and primary amenorrhea. Repeated stimulation tests demonstrated complete gonadotropin deficiency throughout follow-up. A novel loss-of-function mutation (p.F272S) in the GPR54 gene is associated with familial normosmic IHH. Underdeveloped external genitalia and impuberism point to the major role of GPR54 in the activation of the gonadotropic axis from intrauterine life to adulthood.

  6. Impact of loss-of-function mutations at the RNF43 locus on colorectal cancer development and progression.

    PubMed

    Eto, Tsugio; Miyake, Keisuke; Nosho, Katsuhiko; Ohmuraya, Masaki; Imamura, Yu; Arima, Kota; Kanno, Shinichi; Fu, Lingfeng; Kiyozumi, Yuki; Izumi, Daisuke; Sugihara, Hidetaka; Hiyoshi, Yukiharu; Miyamoto, Yuji; Sawayama, Hiroshi; Iwatsuki, Masaaki; Baba, Yoshifumi; Yoshida, Naoya; Furukawa, Toru; Araki, Kimi; Baba, Hideo; Ishimoto, Takatsugu

    2018-05-13

    RNF43 mutations are frequently detected in colorectal cancer cells and lead to a loss of function of the ubiquitin E3 ligase. Here, we investigated the clinical significance of RNF43 mutations in a large Japanese cohort and the role of RNF43 at various stages of colorectal cancer development and progression. Mutation analysis of the RNF43 gene locus using pyrosequencing technology detected RNF43 hotspot mutations in 1 (0.88%) of 113 colorectal polyp cases and 30 (6.45%) of 465 colorectal cancer cases. Moreover, patients with colorectal cancer harboring mutated RNF43 experienced a higher recurrence rate than those harboring non-mutated RNF43. In addition, the growth of RNF43 wild-type colorectal cancer cell lines was significantly increased by RNF43 silencing. We generated Rnf43 knock-out mice in a C57BL/6N background using the CRISPR-Cas9 system. Although intestinal organoids from the Rnf43 knock-out mice did not show continuous growth compared with those from the wild-type mice in the absence of R-spondin, an azoxymethane (AOM)/dextran sodium sulfate (DSS) mouse model demonstrated that the tumors were markedly larger in the Rnf43 knock-out mice than in the wild-type mice. These findings provide evidence that Wnt signaling activation by RNF43 mutations during the tumorigenic stage enhances tumor growth and promotes a high recurrence rate in colorectal cancer patients. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  7. Loss-of-function mutations in APOC3 and risk of ischemic vascular disease.

    PubMed

    Jørgensen, Anders Berg; Frikke-Schmidt, Ruth; Nordestgaard, Børge G; Tybjærg-Hansen, Anne

    2014-07-03

    High plasma levels of nonfasting triglycerides are associated with an increased risk of ischemic cardiovascular disease. Whether lifelong low levels of nonfasting triglycerides owing to mutations in the gene encoding apolipoprotein C3 (APOC3) are associated with a reduced risk of ischemic cardiovascular disease in the general population is unknown. Using data from 75,725 participants in two general-population studies, we first tested whether low levels of nonfasting triglycerides were associated with reduced risks of ischemic vascular disease and ischemic heart disease. Second, we tested whether loss-of-function mutations in APOC3, which were associated with reduced levels of nonfasting triglycerides, were also associated with reduced risks of ischemic vascular disease and ischemic heart disease. During follow-up, ischemic vascular disease developed in 10,797 participants, and ischemic heart disease developed in 7557 of these 10,797 participants. Participants with nonfasting triglyceride levels of less than 1.00 mmol per liter (90 mg per deciliter) had a significantly lower incidence of cardiovascular disease than those with levels of 4.00 mmol per liter (350 mg per deciliter) or more (hazard ratio for ischemic vascular disease, 0.43; 95% confidence interval [CI], 0.35 to 0.54; hazard ratio for ischemic heart disease, 0.40; 95% CI, 0.31 to 0.52). Heterozygosity for loss-of-function mutations in APOC3, as compared with no APOC3 mutations, was associated with a mean reduction in nonfasting triglyceride levels of 44% (P<0.001). The cumulative incidences of ischemic vascular disease and ischemic heart disease were reduced in heterozygotes as compared with noncarriers of APOC3 mutations (P=0.009 and P=0.05, respectively), with corresponding risk reductions of 41% (hazard ratio, 0.59; 95% CI, 0.41 to 0.86; P=0.007) and 36% (hazard ratio, 0.64; 95% CI, 0.41 to 0.99; P=0.04). Loss-of-function mutations in APOC3 were associated with low levels of triglycerides and a reduced

  8. Prolonged Stationary-Phase Incubation Selects for lrp Mutations in Escherichia coli K-12

    PubMed Central

    Zinser, Erik R.; Kolter, Roberto

    2000-01-01

    Evolution by natural selection occurs in cultures of Escherichia coli maintained under carbon starvation stress. Mutants of increased fitness express a growth advantage in stationary phase (GASP) phenotype, enabling them to grow and displace the parent as the majority population. The first GASP mutation was identified as a loss-of-function allele of rpoS, encoding the stationary-phase global regulator, ςS (M. M. Zambrano, D. A. Siegele, M. A. Almirón, A. Tormo, and R. Kolter, Science 259:1757–1760, 1993). We now report that a second global regulator, Lrp, can also play a role in stationary-phase competition. We found that a mutant that took over an aged culture of an rpoS strain had acquired a GASP mutation in lrp. This GASP allele, lrp-1141, encodes a mutant protein lacking the critical glycine in the turn of the helix-turn-helix DNA-binding domain. The lrp-1141 allele behaves as a null mutation when in single copy and is dominant negative when overexpressed. Hence, the mutant protein appears to retain stability and the ability to dimerize but lacks DNA-binding activity. We also demonstrated that a lrp null allele generated by a transposon insertion has a fitness gain identical to that of the lrp-1141 allele, verifying that cells lacking Lrp activity have a competitive advantage during prolonged starvation. Finally, we tested by genetic analysis the hypothesis that the lrp-1141 GASP mutation confers a fitness gain by enhancing amino acid catabolism during carbon starvation. We found that while amino acid catabolism may play a role, it is not necessary for the lrp GASP phenotype, and hence the lrp GASP phenotype is due to more global physiological changes. PMID:10894750

  9. Pathogenic LRRK2 mutations, through increased kinase activity, produce enlarged lysosomes with reduced degradative capacity and increase ATP13A2 expression.

    PubMed

    Henry, Anastasia G; Aghamohammadzadeh, Soheil; Samaroo, Harry; Chen, Yi; Mou, Kewa; Needle, Elie; Hirst, Warren D

    2015-11-01

    Lysosomal dysfunction plays a central role in the pathogenesis of several neurodegenerative disorders, including Parkinson's disease (PD). Several genes linked to genetic forms of PD, including leucine-rich repeat kinase 2 (LRRK2), functionally converge on the lysosomal system. While mutations in LRRK2 are commonly associated with autosomal-dominant PD, the physiological and pathological functions of this kinase remain poorly understood. Here, we demonstrate that LRRK2 regulates lysosome size, number and function in astrocytes, which endogenously express high levels of LRRK2. Expression of LRRK2 G2019S, the most common pathological mutation, produces enlarged lysosomes and diminishes the lysosomal capacity of these cells. Enlarged lysosomes appears to be a common phenotype associated with pathogenic LRRK2 mutations, as we also observed this effect in cells expressing other LRRK2 mutations; R1441C or Y1699C. The lysosomal defects associated with these mutations are dependent on both the catalytic activity of the kinase and autophosphorylation of LRRK2 at serine 1292. Further, we demonstrate that blocking LRRK2's kinase activity, with the potent and selective inhibitor PF-06447475, rescues the observed defects in lysosomal morphology and function. The present study also establishes that G2019S mutation leads to a reduction in lysosomal pH and increased expression of the lysosomal ATPase ATP13A2, a gene linked to a parkinsonian syndrome (Kufor-Rakeb syndrome), in brain samples from mouse and human LRRK2 G2019S carriers. Together, these results demonstrate that PD-associated LRRK2 mutations perturb lysosome function in a kinase-dependent manner, highlighting the therapeutic promise of LRRK2 kinase inhibitors in the treatment of PD. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  10. Dominant-negative suppression of big brain ion channel activity by mutation of a conserved glutamate in the first transmembrane domain.

    PubMed

    Yool, Andrea J

    2007-01-01

    The neurogenic protein Drosophila big brain (BIB), which is involved in the process of neuroblast determination, and the water channel aquaporin-1 (AQP1) are among a subset of the major intrinsic protein (MIP) channels that have been found to show gated monovalent cation channel activity. A glutamate residue in the first transmembrane (M1) domain is conserved throughout the MIP family. Mutation of this residue to asparagine in BIB (E71N) knocks out ion channel activity, and when coexpressed with BIB wild-type as shown here generates a dominant-negative effect on ion channel function, measured in the Xenopus oocyte expression system using two-electrode voltage clamp. cRNAs for wild-type and mutant BIB or AQP1 channels were injected individually or as mixtures. The magnitude of the BIB ionic conductance response was greatly reduced by coexpression of the mutant E71N subunit, suggesting a dominant-negative mechanism of action. The analogous mutation in AQP1 (E17N) did not impair ion channel activation by cGMP, but did knock out water channel function, although not via a dominant-negative effect. This contrast in sensitivity between BIB and AQP1 to mutation of the M1 glutamate suggests the possibility of interesting structural differences in the molecular basis of the ion permeation between these two classes of channels. The dominant-negative construct of BIB could be a tool for testing a role for BIB ion channels during nervous system development in Drosophila. The neurogenic protein Drosophila big brain (BIB), which is involved in the process of neuroblast determination, and the water channel aquaporin-1 (AQP1) are among a subset of the major intrinsic protein (MIP) channels that have been found to show gated monovalent cation channel activity. A glutamate residue in the first transmembrane (M1) domain is conserved throughout the MIP family. Mutation of this residue to asparagine in BIB (E71N) knocks out ion channel activity, and when coexpressed with BIB wild

  11. Disruption of Transcriptional Coactivator Sub1 Leads to Genome-Wide Re-distribution of Clustered Mutations Induced by APOBEC in Active Yeast Genes

    PubMed Central

    Dhar, Alok; Polev, Dmitrii E.; Masharsky, Alexey E.; Rogozin, Igor B.; Pavlov, Youri I.

    2015-01-01

    Mutations in genomes of species are frequently distributed non-randomly, resulting in mutation clusters, including recently discovered kataegis in tumors. DNA editing deaminases play the prominent role in the etiology of these mutations. To gain insight into the enigmatic mechanisms of localized hypermutagenesis that lead to cluster formation, we analyzed the mutational single nucleotide variations (SNV) data obtained by whole-genome sequencing of drug-resistant mutants induced in yeast diploids by AID/APOBEC deaminase and base analog 6-HAP. Deaminase from sea lamprey, PmCDA1, induced robust clusters, while 6-HAP induced a few weak ones. We found that PmCDA1, AID, and APOBEC1 deaminases preferentially mutate the beginning of the actively transcribed genes. Inactivation of transcription initiation factor Sub1 strongly reduced deaminase-induced can1 mutation frequency, but, surprisingly, did not decrease the total SNV load in genomes. However, the SNVs in the genomes of the sub1 clones were re-distributed, and the effect of mutation clustering in the regions of transcription initiation was even more pronounced. At the same time, the mutation density in the protein-coding regions was reduced, resulting in the decrease of phenotypically detected mutants. We propose that the induction of clustered mutations by deaminases involves: a) the exposure of ssDNA strands during transcription and loss of protection of ssDNA due to the depletion of ssDNA-binding proteins, such as Sub1, and b) attainment of conditions favorable for APOBEC action in subpopulation of cells, leading to enzymatic deamination within the currently expressed genes. This model is applicable to both the initial and the later stages of oncogenic transformation and explains variations in the distribution of mutations and kataegis events in different tumor cells. PMID:25941824

  12. Simultaneous Mutations in Multi-Viral Proteins Are Required for Soybean mosaic virus to Gain Virulence on Soybean Genotypes Carrying Different R Genes

    PubMed Central

    Chowda-Reddy, R. V.; Sun, Haiyue; Hill, John H.; Poysa, Vaino; Wang, Aiming

    2011-01-01

    Background Genetic resistance is the most effective and sustainable approach to the control of plant pathogens that are a major constraint to agriculture worldwide. In soybean, three dominant R genes, i.e., Rsv1, Rsv3 and Rsv4, have been identified and deployed against Soybean mosaic virus (SMV) with strain-specificities. Molecular identification of virulent determinants of SMV on these resistance genes will provide essential information for the proper utilization of these resistance genes to protect soybean against SMV, and advance knowledge of virus-host interactions in general. Methodology/Principal Findings To study the gain and loss of SMV virulence on all the three resistance loci, SMV strains G7 and two G2 isolates L and LRB were used as parental viruses. SMV chimeras and mutants were created by partial genome swapping and point mutagenesis and then assessed for virulence on soybean cultivars PI96983 (Rsv1), L-29 (Rsv3), V94-5152 (Rsv4) and Williams 82 (rsv). It was found that P3 played an essential role in virulence determination on all three resistance loci and CI was required for virulence on Rsv1- and Rsv3-genotype soybeans. In addition, essential mutations in HC-Pro were also required for the gain of virulence on Rsv1-genotype soybean. To our best knowledge, this is the first report that CI and P3 are involved in virulence on Rsv1- and Rsv3-mediated resistance, respectively. Conclusions/Significance Multiple viral proteins, i.e., HC-Pro, P3 and CI, are involved in virulence on the three resistance loci and simultaneous mutations at essential positions of different viral proteins are required for an avirulent SMV strain to gain virulence on all three resistance loci. The likelihood of such mutations occurring naturally and concurrently on multiple viral proteins is low. Thus, incorporation of all three resistance genes in a soybean cultivar through gene pyramiding may provide durable resistance to SMV. PMID:22140577

  13. JAK2 Exon 12 Mutations in Polycythemia Vera and Idiopathic Erythrocytosis

    PubMed Central

    Scott, Linda M.; Tong, Wei; Levine, Ross L.; Scott, Mike A.; Beer, Philip A.; Stratton, Michael R.; Futreal, P. Andrew; Erber, Wendy N.; McMullin, Mary Frances; Harrison, Claire N.; Warren, Alan J.; Gilliland, D. Gary; Lodish, Harvey F.; Green, Anthony R.

    2010-01-01

    BACKGROUND The V617F mutation, which causes the substitution of phenylalanine for valine at position 617 of the Janus kinase (JAK) 2 gene (JAK2), is often present in patients with polycythemia vera, essential thrombocythemia, and idiopathic myelofibrosis. However, the molecular basis of these myeloproliferative disorders in patients without the V617F mutation is unclear. METHODS We searched for new mutations in members of the JAK and signal transducer and activator of transcription (STAT) gene families in patients with V617F-negative polycythemia vera or idiopathic erythrocytosis. The mutations were characterized biochemically and in a murine model of bone marrow transplantation. RESULTS We identified four somatic gain-of-function mutations affecting JAK2 exon 12 in 10 V617F-negative patients. Those with a JAK2 exon 12 mutation presented with an isolated erythrocytosis and distinctive bone marrow morphology, and several also had reduced serum erythropoietin levels. Erythroid colonies could be grown from their blood samples in the absence of exogenous erythropoietin. All such erythroid colonies were heterozygous for the mutation, whereas colonies homozygous for the mutation occur in most patients with V617F-positive polycythemia vera. BaF3 cells expressing the murine erythropoietin receptor and also carrying exon 12 mutations could proliferate without added interleukin-3. They also exhibited increased phosphorylation of JAK2 and extracellular regulated kinase 1 and 2, as compared with cells transduced by wild-type JAK2 or V617F JAK2. Three of the exon 12 mutations included a substitution of leucine for lysine at position 539 of JAK2. This mutation resulted in a myeloproliferative phenotype, including erythrocytosis, in a murine model of retroviral bone marrow transplantation. CONCLUSIONS JAK2 exon 12 mutations define a distinctive myeloproliferative syndrome that affects patients who currently receive a diagnosis of polycythemia vera or idiopathic erythrocytosis

  14. Potential late-onset Alzheimer's disease-associated mutations in the ADAM10 gene attenuate α-secretase activity

    PubMed Central

    Kim, Minji; Suh, Jaehong; Romano, Donna; Truong, Mimy H.; Mullin, Kristina; Hooli, Basavaraj; Norton, David; Tesco, Giuseppina; Elliott, Kathy; Wagner, Steven L.; Moir, Robert D.; Becker, K. David; Tanzi, Rudolph E.

    2009-01-01

    ADAM10, a member of a disintegrin and metalloprotease family, is an α-secretase capable of anti-amyloidogenic proteolysis of the amyloid precursor protein. Here, we present evidence for genetic association of ADAM10 with Alzheimer's disease (AD) as well as two rare potentially disease-associated non-synonymous mutations, Q170H and R181G, in the ADAM10 prodomain. These mutations were found in 11 of 16 affected individuals (average onset age 69.5 years) from seven late-onset AD families. Each mutation was also found in one unaffected subject implying incomplete penetrance. Functionally, both mutations significantly attenuated α-secretase activity of ADAM10 (>70% decrease), and elevated Aβ levels (1.5–3.5-fold) in cell-based studies. In summary, we provide the first evidence of ADAM10 as a candidate AD susceptibility gene, and report two potentially pathogenic mutations with incomplete penetrance for late-onset familial AD. PMID:19608551

  15. Functional analysis of Waardenburg syndrome-associated PAX3 and SOX10 mutations: report of a dominant-negative SOX10 mutation in Waardenburg syndrome type II.

    PubMed

    Zhang, Hua; Chen, Hongsheng; Luo, Hunjin; An, Jing; Sun, Lin; Mei, Lingyun; He, Chufeng; Jiang, Lu; Jiang, Wen; Xia, Kun; Li, Jia-Da; Feng, Yong

    2012-03-01

    Waardenburg syndrome (WS) is an auditory-pigmentary disorder resulting from melanocyte defects, with varying combinations of sensorineural hearing loss and abnormal pigmentation of the hair, skin, and inner ear. WS is classified into four subtypes (WS1-WS4) based on additional symptoms. PAX3 and SOX10 are two transcription factors that can activate the expression of microphthalmia-associated transcription factor (MITF), a critical transcription factor for melanocyte development. Mutations of PAX3 are associated with WS1 and WS3, while mutations of SOX10 cause WS2 and WS4. Recently, we identified some novel WS-associated mutations in PAX3 and SOX10 in a cohort of Chinese WS patients. Here, we further identified an E248fsX30 SOX10 mutation in a family of WS2. We analyzed the subcellular distribution, expression and in vitro activity of two PAX3 mutations (p.H80D, p.H186fsX5) and four SOX10 mutations (p.E248fsX30, p.G37fsX58, p.G38fsX69 and p.R43X). Except H80D PAX3, which retained partial activity, the other mutants were unable to activate MITF promoter. The H80D PAX3 and E248fsX30 SOX10 were localized in the nucleus as wild type (WT) proteins, whereas the other mutant proteins were distributed in both cytoplasm and nucleus. Furthermore, E248fsX30 SOX10 protein retained the DNA-binding activity and showed dominant-negative effect on WT SOX10. However, E248fsX30 SOX10 protein seems to decay faster than the WT one, which may underlie the mild WS2 phenotype caused by this mutation.

  16. Loss of function mutations in VARS encoding cytoplasmic valyl-tRNA synthetase cause microcephaly, seizures, and progressive cerebral atrophy.

    PubMed

    Stephen, Joshi; Nampoothiri, Sheela; Banerjee, Aditi; Tolman, Nathanial J; Penninger, Josef Martin; Elling, Ullrich; Agu, Chukwuma A; Burke, John D; Devadathan, Kalpana; Kannan, Rajesh; Huang, Yan; Steinbach, Peter J; Martinis, Susan A; Gahl, William A; Malicdan, May Christine V

    2018-04-01

    Progressive microcephaly and neurodegeneration are genetically heterogenous conditions, largely associated with genes that are essential for the survival of neurons. In this study, we interrogate the genetic etiology of two siblings from a non-consanguineous family with severe early onset of neurological manifestations. Whole exome sequencing identified novel compound heterozygous mutations in VARS that segregated with the proband: a missense (c.3192G>A; p.Met1064Ile) and a splice site mutation (c.1577-2A>G). The VARS gene encodes cytoplasmic valyl-tRNA synthetase (ValRS), an enzyme that is essential during eukaryotic translation. cDNA analysis on patient derived fibroblasts revealed that the splice site acceptor variant allele led to nonsense mediated decay, thus resulting in a null allele. Three-dimensional modeling of ValRS predicts that the missense mutation lies in a highly conserved region and could alter side chain packing, thus affecting tRNA binding or destabilizing the interface between the catalytic and tRNA binding domains. Further quantitation of the expression of VARS showed remarkably reduced levels of mRNA and protein in skin derived fibroblasts. Aminoacylation experiments on patient derived cells showed markedly reduced enzyme activity of ValRS suggesting the mutations to be loss of function. Bi-allelic mutations in cytoplasmic amino acyl tRNA synthetases are well-known for their role in neurodegenerative disorders, yet human disorders associated with VARS mutations have not yet been clinically well characterized. Our study describes the phenotype associated with recessive VARS mutations and further functional delineation of the pathogenicity of novel variants identified, which widens the clinical and genetic spectrum of patients with progressive microcephaly.

  17. Priming Hand Motor Training with Repetitive Stimulation of the Fingertips; Performance Gain and Functional Imaging of Training Effects.

    PubMed

    Lotze, Martin; Ladda, Aija Marie; Roschka, Sybille; Platz, Thomas; Dinse, Hubert R

    Application of repetitive electrical stimulation (rES) of the fingers has been shown to improve tactile perception and sensorimotor performance in healthy individuals. To increase motor performance by priming the effects of active motor training (arm ability training; AAT) using rES. We compared the performance gain for the training increase of the averaged AAT tasks of both hands in two groups of strongly right-handed healthy volunteers. Functional Magnetic Resonance Imaging (fMRI) before and after AAT was assessed using three tasks for each hand separately: finger sequence tapping, visually guided grip force modulation, and writing. Performance during fMRI was controlled for preciseness and frequency. A total of 30 participants underwent a two-week unilateral left hand AAT, 15 participants with 20 minutes of rES priming of all fingertips of the trained hand, and 15 participants without rES priming. rES-primed AAT improved the trained left-hand performance across all training tasks on average by 32.9%, non-primed AAT improved by 29.5%. This gain in AAT performance with rES priming was predominantly driven by an increased finger tapping velocity. Functional imaging showed comparable changes for both training groups over time. Across all participants, improved AAT performance was associated with a higher contralateral primary somatosensory cortex (S1) fMRI activation magnitude during the grip force modulation task. This study highlights the importance of S1 for hand motor training gain. In addition, it suggests the usage of rES of the fingertips for priming active hand motor training. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Identification and functional analysis of a novel mutation in the PAX3 gene associated with Waardenburg syndrome type I.

    PubMed

    Niu, Zhijie; Li, Jiada; Tang, Fen; Sun, Jie; Wang, Xueping; Jiang, Lu; Mei, Lingyun; Chen, Hongsheng; Liu, Yalan; Cai, Xinzhang; Feng, Yong; He, Chufeng

    2018-02-05

    Waardenburg syndrome type 1 (WS1) is a rare autosomal dominant genetic disorder of neural crest cells (NCC) characterized by congenital sensorineural hearing loss, dystopia canthorum, and abnormal iris pigmentation. WS1 is due to loss-of-function mutations in paired box gene 3 (PAX3). Here, we identified a novel PAX3 mutation (c.808C>G, p.R270G) in a three-generation Chinese family with WS1, and then analyzed its in vitro activities. The R270G PAX3 retained nuclear distribution and normal DNA-binding ability; however, it failed to activate MITF promoter, suggesting that haploinsufficiency may be the underlying mechanism for the mild WS1 phenotype of the study family. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Nonaminoglycoside compounds induce readthrough of nonsense mutations

    PubMed Central

    Damoiseaux, Robert; Nahas, Shareef; Gao, Kun; Hu, Hailiang; Pollard, Julianne M.; Goldstine, Jimena; Jung, Michael E.; Henning, Susanne M.; Bertoni, Carmen

    2009-01-01

    Large numbers of genetic disorders are caused by nonsense mutations for which compound-induced readthrough of premature termination codons (PTCs) might be exploited as a potential treatment strategy. We have successfully developed a sensitive and quantitative high-throughput screening (HTS) assay, protein transcription/translation (PTT)–enzyme-linked immunosorbent assay (ELISA), for identifying novel PTC-readthrough compounds using ataxia-telangiectasia (A-T) as a genetic disease model. This HTS PTT-ELISA assay is based on a coupled PTT that uses plasmid templates containing prototypic A-T mutated (ATM) mutations for HTS. The assay is luciferase independent. We screened ∼34,000 compounds and identified 12 low-molecular-mass nonaminoglycosides with potential PTC-readthrough activity. From these, two leading compounds consistently induced functional ATM protein in ATM-deficient cells containing disease-causing nonsense mutations, as demonstrated by direct measurement of ATM protein, restored ATM kinase activity, and colony survival assays for cellular radiosensitivity. The two compounds also demonstrated readthrough activity in mdx mouse myotube cells carrying a nonsense mutation and induced significant amounts of dystrophin protein. PMID:19770270

  20. Structure and Functional Characterization of Human Histidine Triad Nucleotide-Binding Protein 1 Mutations Associated with Inherited Axonal Neuropathy with Neuromyotonia.

    PubMed

    Shah, Rachit M; Maize, Kimberly M; West, Harrison T; Strom, Alexander M; Finzel, Barry C; Wagner, Carston R

    2018-05-19

    Inherited peripheral neuropathies are a group of neurodegenerative disorders that clinically affect 1 in 2500 individuals. Recently, genetic mutations in human histidine nucleotide-binding protein 1 (hHint1) have been strongly and most frequently associated with patients suffering from axonal neuropathy with neuromyotonia. However, the correlation between the impact of these mutations on the hHint1 structure, enzymatic activity and in vivo function has remained ambiguous. Here, we provide detailed biochemical characterization of a set of these hHint1 mutations. Our findings indicate that half of the mutations (R37P, G93D and W123*) resulted in a destabilization of the dimeric state and a significant decrease in catalytic activity and HINT1 inhibitor binding affinity. The H112N mutant was found to be dimeric, but devoid of catalytic activity, due to the loss of the catalytically essential histidine; nevertheless, it exhibited high affinity to AMP and a HINT1 inhibitor. In contrast to the active-site mutants, the catalytic activity and dimeric structure of the surface mutants, C84R and G89V, were found to be similar to the wild-type enzyme. Taken together, our results suggest that the pathophysiology of inherited axonal neuropathy with neuromyotonia can be induced by conversion of HINT1 from a homodimer to monomer, by modification of select surface residues or by a significant reduction of the enzyme's catalytic efficiency. Copyright © 2018. Published by Elsevier Ltd.

  1. Identification and Functional Analysis of ZIC3 Mutations in Heterotaxy and Related Congenital Heart Defects

    PubMed Central

    Ware, Stephanie M.; Peng, Jianlan; Zhu, Lirong; Fernbach, Susan; Colicos, Suzanne; Casey, Brett; Towbin, Jeffrey; Belmont, John W.

    2004-01-01

    Mutations in the zinc finger transcription factor ZIC3 cause X-linked heterotaxy and have also been identified in patients with isolated congenital heart disease (CHD). To determine the relative contribution of ZIC3 mutations to both heterotaxy and isolated CHD, we screened the coding region of ZIC3 in 194 unrelated patients, including 61 patients with classic heterotaxy, 93 patients with heart defects characteristic of heterotaxy, and 11 patients with situs inversus totalis. Five novel ZIC3 mutations in three classic heterotaxy kindreds and two sporadic CHD cases were identified. None of these alleles was found in 97 ethnically matched control samples. On the basis of these analyses, we conclude that the phenotypic spectrum of ZIC3 mutations should be expanded to include affected females and CHD not typical for heterotaxy. This screening of a cohort of patients with sporadic heterotaxy indicates that ZIC3 mutations account for ∼1% of affected individuals. Missense and nonsense mutations were found in the highly conserved zinc finger–binding domain and in the N-terminal protein domain. Functional analysis of all currently known ZIC3 point mutations indicates that mutations in the putative zinc finger DNA binding domain and in the N-terminal domain result in loss of reporter gene transactivation. It is surprising that transfection studies demonstrate aberrant cytoplasmic localization resulting from mutations between amino acids 253–323 of the ZIC3 protein, indicating that the pathogenesis of a subset of ZIC3 mutations results at least in part from failure of appropriate nuclear localization. These results further expand the phenotypic and genotypic spectrum of ZIC3 mutations and provide initial mechanistic insight into their functional consequences. PMID:14681828

  2. Ion Channel Genes and Epilepsy: Functional Alteration, Pathogenic Potential, and Mechanism of Epilepsy.

    PubMed

    Wei, Feng; Yan, Li-Min; Su, Tao; He, Na; Lin, Zhi-Jian; Wang, Jie; Shi, Yi-Wu; Yi, Yong-Hong; Liao, Wei-Ping

    2017-08-01

    Ion channels are crucial in the generation and modulation of excitability in the nervous system and have been implicated in human epilepsy. Forty-one epilepsy-associated ion channel genes and their mutations are systematically reviewed. In this paper, we analyzed the genotypes, functional alterations (funotypes), and phenotypes of these mutations. Eleven genes featured loss-of-function mutations and six had gain-of-function mutations. Nine genes displayed diversified funotypes, among which a distinct funotype-phenotype correlation was found in SCN1A. These data suggest that the funotype is an essential consideration in evaluating the pathogenicity of mutations and a distinct funotype or funotype-phenotype correlation helps to define the pathogenic potential of a gene.

  3. ATM function and its relationship with ATM gene mutations in chronic lymphocytic leukemia with the recurrent deletion (11q22.3-23.2).

    PubMed

    Jiang, Y; Chen, H-C; Su, X; Thompson, P A; Liu, X; Do, K-A; Wierda, W; Keating, M J; Plunkett, W

    2016-09-02

    Approximately 10-20% of chronic lymphocytic leukemia (CLL) patients exhibit del(11q22-23) before treatment, this cohort increases to over 40% upon progression following chemoimmunotherapy. The coding sequence of the DNA damage response gene, ataxia-telangiectasia-mutated (ATM), is contained in this deletion. The residual ATM allele is frequently mutated, suggesting a relationship between gene function and clinical response. To investigate this possibility, we sought to develop and validate an assay for the function of ATM protein in these patients. SMC1 (structural maintenance of chromosomes 1) and KAP1 (KRAB-associated protein 1) were found to be unique substrates of ATM kinase by immunoblot detection following ionizing radiation. Using a pool of eight fluorescence in situ hybridization-negative CLL samples as a standard, the phosphorylation of SMC1 and KAP1 from 46 del (11q22-23) samples was analyzed using normal mixture model-based clustering. This identified 13 samples (28%) that were deficient in ATM function. Targeted sequencing of the ATM gene of these samples, with reference to genomic DNA, revealed 12 somatic mutations and 15 germline mutations in these samples. No strong correlation was observed between ATM mutation and function. Therefore, mutation status may not be taken as an indicator of ATM function. Rather, a direct assay of the kinase activity should be used in the development of therapies.

  4. Functional Characterization of MODY2 Mutations Highlights the Importance of the Fine-Tuning of Glucokinase and Its Role in Glucose Sensing

    PubMed Central

    García-Herrero, Carmen-María; Rubio-Cabezas, Oscar; Azriel, Sharona; Gutierrez-Nogués, Angel; Aragonés, Angel; Vincent, Olivier; Campos-Barros, Angel; Argente, Jesús; Navas, María-Angeles

    2012-01-01

    Glucokinase (GK) acts as a glucose sensor in the pancreatic beta-cell and regulates insulin secretion. Heterozygous mutations in the human GK-encoding GCK gene that reduce the activity index increase the glucose-stimulated insulin secretion threshold and cause familial, mild fasting hyperglycaemia, also known as Maturity Onset Diabetes of the Young type 2 (MODY2). Here we describe the biochemical characterization of five missense GK mutations: p.Ile130Thr, p.Asp205His, p.Gly223Ser, p.His416Arg and p.Ala449Thr. The enzymatic analysis of the corresponding bacterially expressed GST-GK mutant proteins show that all of them impair the kinetic characteristics of the enzyme. In keeping with their position within the protein, mutations p.Ile130Thr, p.Asp205His, p.Gly223Ser, and p.His416Arg strongly decrease the activity index of GK, affecting to one or more kinetic parameters. In contrast, the p.Ala449Thr mutation, which is located in the allosteric activator site, does not affect significantly the activity index of GK, but dramatically modifies the main kinetic parameters responsible for the function of this enzyme as a glucose sensor. The reduced Kcat of the mutant (3.21±0.28 s−1 vs 47.86±2.78 s−1) is balanced by an increased glucose affinity (S0.5 = 1.33±0.08 mM vs 7.86±0.09 mM) and loss of cooperativity for this substrate. We further studied the mechanism by which this mutation impaired GK kinetics by measuring the differential effects of several competitive inhibitors and one allosteric activator on the mutant protein. Our results suggest that this mutation alters the equilibrium between the conformational states of glucokinase and highlights the importance of the fine-tuning of GK and its role in glucose sensing. PMID:22291974

  5. Insights into the pathogenesis of dominant retinitis pigmentosa associated with a D477G mutation in RPE65.

    PubMed

    Choi, Elliot H; Suh, Susie; Sander, Christopher L; Hernandez, Christian J Ortiz; Bulman, Elizabeth R; Khadka, Nimesh; Dong, Zhiqian; Shi, Wuxian; Palczewski, Krzysztof; Kiser, Philip D

    2018-04-12

    RPE65 is the essential trans-cis isomerase of the classical retinoid (visual) cycle. Mutations in RPE65 give rise to severe retinal dystrophies, most of which are associated with loss of protein function and recessive inheritance. The only known exception is a c.1430G>A (D477G) mutation that gives rise to dominant retinitis pigmentosa with delayed onset and choroidal and macular involvement. Position 477 is distant from functionally critical regions of RPE65. Hence, the mechanism of D477G pathogenicity remains unclear, although protein misfolding and aggregation mechanisms have been suggested. We characterized a D477G knock-in mouse model which exhibited mild age-dependent changes in retinal structure and function. Immunoblot analysis of protein extracts from the eyes of the knock-in mice demonstrated the presence of ubiquitinated RPE65 and reduced RPE65 expression. We observed an accumulation of retinyl esters in the knock-in mice as well as a delay in rhodopsin regeneration kinetics and diminished electroretinography responses, indicative of RPE65 functional impairment induced by the D477G mutation in vivo. However, a cell line expressing D477G RPE65 revealed protein expression levels, cellular localization, and retinoid isomerase activity comparable to cells expressing wild-type protein. Structural analysis of an RPE65 chimera suggested that the D477G mutation does not perturb protein folding or tertiary structure. Instead, the mutation generates an aggregation-prone surface that could induce cellular toxicity through abnormal complex formation as suggested by crystal packing analysis. These results indicate that a toxic gain-of-function induced by the D477G RPE65 substitution may play a role in the pathogenesis of this form of dominant retinitis pigmentosa.

  6. Maintaining vigorous activity attenuates 7-yr weight gain in 8340 runners.

    PubMed

    Williams, Paul T

    2007-05-01

    Body weight generally increases with aging in Western societies. Although training studies show that exercise produces acute weight loss, it is unclear whether the long-term maintenance of vigorous exercise attenuates the trajectory of age-related weight gain. Specifically, prior studies have not tested whether the maintenance of physical activity, in the absence of any change in activity, prevents weight gain. Prospective study of 6119 male and 2221 female runners whose running distances changed < 5 km x wk(-1) between baseline and follow-up surveys 7 yr later. On average, men who maintained modest (0-23 km x wk(-1)), intermediate (24-47 km x wk(-1)), or prolonged running distances (> or = 48 km x wk(-1)) all gained weight through age 64; however, those who maintained > or = 48 km x wk(-1) had one half the average annual weight gain of those who maintained < 24 km x wk(-1). For example, between the ages of 35 and 44 in men and 30 and 39 yr in women, those who maintained < 24 km x wk(-1) gained, on average, 2.1 and 2.9 kg more per decade than those averaging > 48 km x wk(-1). Age-related weight gain, and its attenuation by maintained exercise, were both greater in younger than in older men. Men's gains in waist circumference with age, and its attenuation by maintaining running, were the same in older and younger men. Regardless of age, women increased their body weight, waist circumference, and hip circumference over time, and these measurements were attenuated in proportion to their maintained running distance. In both sexes, running disproportionately prevented more extreme increases in weight. As they aged, men and women gained less weight in proportion to their levels of sustained vigorous activity. This long-term beneficial effect is in addition to the acute weight loss that occurs with increased activity.

  7. 20 CFR 229.85 - Substantial gainful activity by blind employee or child.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... substantial gainful activity that does not require skills or ability used in his or her previous work. However... in any type of substantial gainful activity which requires skills or abilities comparable to those of...

  8. Whole-exome sequencing identifies novel MPL and JAK2 mutations in triple-negative myeloproliferative neoplasms.

    PubMed

    Milosevic Feenstra, Jelena D; Nivarthi, Harini; Gisslinger, Heinz; Leroy, Emilie; Rumi, Elisa; Chachoua, Ilyas; Bagienski, Klaudia; Kubesova, Blanka; Pietra, Daniela; Gisslinger, Bettina; Milanesi, Chiara; Jäger, Roland; Chen, Doris; Berg, Tiina; Schalling, Martin; Schuster, Michael; Bock, Christoph; Constantinescu, Stefan N; Cazzola, Mario; Kralovics, Robert

    2016-01-21

    Essential thrombocythemia (ET) and primary myelofibrosis (PMF) are chronic diseases characterized by clonal hematopoiesis and hyperproliferation of terminally differentiated myeloid cells. The disease is driven by somatic mutations in exon 9 of CALR or exon 10 of MPL or JAK2-V617F in >90% of the cases, whereas the remaining cases are termed "triple negative." We aimed to identify the disease-causing mutations in the triple-negative cases of ET and PMF by applying whole-exome sequencing (WES) on paired tumor and control samples from 8 patients. We found evidence of clonal hematopoiesis in 5 of 8 studied cases based on clonality analysis and presence of somatic genetic aberrations. WES identified somatic mutations in 3 of 8 cases. We did not detect any novel recurrent somatic mutations. In 3 patients with clonal hematopoiesis analyzed by WES, we identified a somatic MPL-S204P, a germline MPL-V285E mutation, and a germline JAK2-G571S variant. We performed Sanger sequencing of the entire coding region of MPL in 62, and of JAK2 in 49 additional triple-negative cases of ET or PMF. New somatic (T119I, S204F, E230G, Y591D) and 1 germline (R321W) MPL mutation were detected. All of the identified MPL mutations were gain-of-function when analyzed in functional assays. JAK2 variants were identified in 5 of 57 triple-negative cases analyzed by WES and Sanger sequencing combined. We could demonstrate that JAK2-V625F and JAK2-F556V are gain-of-function mutations. Our results suggest that triple-negative cases of ET and PMF do not represent a homogenous disease entity. Cases with polyclonal hematopoiesis might represent hereditary disorders. © 2016 by The American Society of Hematology.

  9. Whole-exome sequencing identifies novel MPL and JAK2 mutations in triple-negative myeloproliferative neoplasms

    PubMed Central

    Milosevic Feenstra, Jelena D.; Nivarthi, Harini; Gisslinger, Heinz; Leroy, Emilie; Rumi, Elisa; Chachoua, Ilyas; Bagienski, Klaudia; Kubesova, Blanka; Pietra, Daniela; Gisslinger, Bettina; Milanesi, Chiara; Jäger, Roland; Chen, Doris; Berg, Tiina; Schalling, Martin; Schuster, Michael; Bock, Christoph; Constantinescu, Stefan N.; Cazzola, Mario

    2016-01-01

    Essential thrombocythemia (ET) and primary myelofibrosis (PMF) are chronic diseases characterized by clonal hematopoiesis and hyperproliferation of terminally differentiated myeloid cells. The disease is driven by somatic mutations in exon 9 of CALR or exon 10 of MPL or JAK2-V617F in >90% of the cases, whereas the remaining cases are termed “triple negative.” We aimed to identify the disease-causing mutations in the triple-negative cases of ET and PMF by applying whole-exome sequencing (WES) on paired tumor and control samples from 8 patients. We found evidence of clonal hematopoiesis in 5 of 8 studied cases based on clonality analysis and presence of somatic genetic aberrations. WES identified somatic mutations in 3 of 8 cases. We did not detect any novel recurrent somatic mutations. In 3 patients with clonal hematopoiesis analyzed by WES, we identified a somatic MPL-S204P, a germline MPL-V285E mutation, and a germline JAK2-G571S variant. We performed Sanger sequencing of the entire coding region of MPL in 62, and of JAK2 in 49 additional triple-negative cases of ET or PMF. New somatic (T119I, S204F, E230G, Y591D) and 1 germline (R321W) MPL mutation were detected. All of the identified MPL mutations were gain-of-function when analyzed in functional assays. JAK2 variants were identified in 5 of 57 triple-negative cases analyzed by WES and Sanger sequencing combined. We could demonstrate that JAK2-V625F and JAK2-F556V are gain-of-function mutations. Our results suggest that triple-negative cases of ET and PMF do not represent a homogenous disease entity. Cases with polyclonal hematopoiesis might represent hereditary disorders. PMID:26423830

  10. Presence of atypical thrombopoietin receptor (MPL) mutations in triple-negative essential thrombocythemia patients.

    PubMed

    Cabagnols, Xénia; Favale, Fabrizia; Pasquier, Florence; Messaoudi, Kahia; Defour, Jean Philippe; Ianotto, Jean Christophe; Marzac, Christophe; Le Couédic, Jean Pierre; Droin, Nathalie; Chachoua, Ilyas; Favier, Remi; Diop, M'boyba Khadija; Ugo, Valérie; Casadevall, Nicole; Debili, Najet; Raslova, Hana; Bellanné-Chantelot, Christine; Constantinescu, Stefan N; Bluteau, Olivier; Plo, Isabelle; Vainchenker, William

    2016-01-21

    Mutations in signaling molecules of the cytokine receptor axis play a central role in myeloproliferative neoplasm (MPN) pathogenesis. Polycythemia vera is mainly related to JAK2 mutations, whereas a wider mutational spectrum is detected in essential thrombocythemia (ET) with mutations in JAK2, the thrombopoietin (TPO) receptor (MPL), and the calreticulin (CALR) genes. Here, we studied the mutational profile of 17 ET patients negative for JAK2V617F, MPLW515K/L, and CALR mutations, using whole-exome sequencing and next-generation sequencing (NGS) targeted on JAK2 and MPL. We found several signaling mutations including JAK2V617F at very low allele frequency, 1 homozygous SH2B3 mutation, 1 MPLS505N, 1 MPLW515R, and 2 MPLS204P mutations. In the remaining patients, 4 presented a clonal and 7 a polyclonal hematopoiesis, suggesting that certain triple-negative ETs are not MPNs. NGS on 26 additional triple-negative ETs detected only 1 MPLY591N mutation. Functional studies on MPLS204P and MPLY591N revealed that they are weak gain-of-function mutants increasing MPL signaling and conferring either TPO hypersensitivity or independence to expressing cells, but with a low efficiency. Further studies should be performed to precisely determine the frequency of MPLS204 and MPLY591 mutants in a bigger cohort of MPN. © 2016 by The American Society of Hematology.

  11. Neonatal Diabetes Caused by Mutations in Sulfonylurea Receptor 1: Interplay between Expression and Mg-Nucleotide Gating Defects of ATP-Sensitive Potassium Channels

    PubMed Central

    Zhou, Qing; Garin, Intza; Castaño, Luis; Argente, Jesús; Muñoz-Calvo, Ma. Teresa; Perez de Nanclares, Guiomar; Shyng, Show-Ling

    2010-01-01

    Context: ATP-sensitive potassium (KATP) channels regulate insulin secretion by coupling glucose metabolism to β-cell membrane potential. Gain-of-function mutations in the sulfonylurea receptor 1 (SUR1) or Kir6.2 channel subunit underlie neonatal diabetes. Objective: The objective of the study was to determine the mechanisms by which two SUR1 mutations, E208K and V324M, associated with transient neonatal diabetes affect KATP channel function. Design: E208K or V324M mutant SUR1 was coexpressed with Kir6.2 in COS cells, and expression and gating properties of the resulting channels were assessed biochemically and electrophysiologically. Results: Both E208K and V324M augment channel response to MgADP stimulation without altering sensitivity to ATP4− or sulfonylureas. Surprisingly, whereas E208K causes only a small increase in MgADP response consistent with the mild transient diabetes phenotype, V324M causes a severe activating gating defect. Unlike E208K, V324M also impairs channel expression at the cell surface, which is expected to dampen its functional impact on β-cells. When either mutation was combined with a mutation in the second nucleotide binding domain of SUR1 previously shown to abolish Mg-nucleotide response, the activating effect of E208K and V324M was also abolished. Moreover, combination of E208K and V324M results in channels with Mg-nucleotide sensitivity greater than that seen in individual mutations alone. Conclusion: The results demonstrate that E208K and V324M, located in distinct domains of SUR1, enhance transduction of Mg-nucleotide stimulation from the SUR1 nucleotide binding folds to Kir6.2. Furthermore, they suggest that diabetes severity is determined by interplay between effects of a mutation on channel expression and channel gating. PMID:20810569

  12. Novel CPVT-Associated Calmodulin Mutation in CALM3 (CALM3-A103V) Activates Arrhythmogenic Ca Waves and Sparks

    PubMed Central

    Gomez-Hurtado, Nieves; Boczek, Nicole J.; Kryshtal, Dmytro O.; Johnson, Christopher N.; Sun, Jennifer; Nitu, Florentin R.; Cornea, Razvan L.; Chazin, Walter J.; Calvert, Melissa L.; Tester, David J.; Ackerman, Michael J.; Knollmann, Bjorn C.

    2016-01-01

    Background Calmodulin (CaM) mutations are associated with severe forms of long QT syndrome (LQTS) and catecholaminergic polymorphic ventricular tachycardia (CPVT). We recently reported that CaM mutations were found in 13% of genotype-negative LQTS patients, but the prevalence of CaM mutations in genotype-negative CPVT patients is unknown. Here, we identify and characterize CaM mutations in 12 patients with genotype-negative but clinically-diagnosed CPVT. Methods and Results Mutational analysis of CALM1, CALM2 and CALM3 coding regions, in vitro measurement of CaM-Ca2+ (Ca) binding affinity, RyR2-CaM binding, Ca handling, L-type Ca current (LTCC) and action potential duration (APD). We identified a novel CaM mutation – A103V – in CALM3 in 1 of 12 patients (8%), a female who experienced episodes of exertion-induced syncope since age 10, had normal QT interval, and displayed ventricular ectopy during stress testing consistent with CPVT. A103V modestly lowered CaM Ca-binding affinity (3-fold reduction vs WT-CaM), but did not alter CaM binding to RyR2. In permeabilized cardiomyocytes, A103V-CaM (100 nM) promoted spontaneous Ca wave and spark activity, a cellular phenotype of RyR2 activation. Even a 1:3 mixture of A103V-CaM:WT-CaM activated Ca waves, demonstrating functional dominance. Compared to LQTS D96V-CaM, A103V-CaM had significantly less effects on LTCC inactivation and APD, and caused delayed after depolarizations (DADs) and triggered beats in intact cardiomyocytes. Conclusions We discovered a novel CPVT mutation in the CALM3 gene that shares functional characteristics with established CPVT-associated mutations in CALM1. A small proportion of A103V-CaM is sufficient to evoke arrhythmogenic Ca disturbances via RyR2 dysregulation, which explains the autosomal dominant inheritance. PMID:27516456

  13. Computational engineering of cellulase Cel9A-68 functional motions through mutations in its linker region.

    PubMed

    Costa, M G S; Silva, Y F; Batista, P R

    2018-03-14

    Microbial cellulosic degradation by cellulases has become a complementary approach for biofuel production. However, its efficiency is hindered by the recalcitrance of cellulose fibres. In this context, computational protein design methods may offer an efficient way to obtain variants with improved enzymatic activity. Cel9A-68 is a cellulase from Thermobifida fusca that is still active at high temperatures. In a previous work, we described a collective bending motion, which governs the overall cellulase dynamics. This movement promotes the approximation of its CBM and CD structural domains (that are connected by a flexible linker). We have identified two residues (G460 and P461) located at the linker that act as a hinge point. Herein, we applied a new level of protein design, focusing on the modulation of this collective motion to obtain cellulase variants with enhanced functional dynamics. We probed whether specific linker mutations would affect Cel9A-68 dynamics through computational simulations. We assumed that P461G and G460+ (with an extra glycine) constructs would present enhanced interdomain motions, while the G460P mutant would be rigid. From our results, the P461G mutation resulted in a broader exploration of the conformational space, as confirmed by clustering and free energy analyses. The WT enzyme was the most rigid system. However, G460P and P460+ explored distinct conformational states described by opposite directions of low-frequency normal modes; they sampled preferentially closed and open conformations, respectively. Overall, we highlight two significant findings: (i) all mutants explored larger conformational spaces than the WT; (ii) the selection of distinct conformational populations was intimately associated with the mutation considered. Thus, the engineering of Cel9A-68 motions through linker mutations may constitute an efficient way to improve cellulase activity, facilitating the disruption of cellulose fibres.

  14. Pathogenic Parkinson's disease mutations across the functional domains of LRRK2 alter the autophagic/lysosomal response to starvation.

    PubMed

    Manzoni, Claudia; Mamais, Adamantios; Dihanich, Sybille; McGoldrick, Phillip; Devine, Michael J; Zerle, Julia; Kara, Eleanna; Taanman, Jan-Willem; Healy, Daniel G; Marti-Masso, Jose-Felix; Schapira, Anthony H; Plun-Favreau, Helene; Tooze, Sharon; Hardy, John; Bandopadhyay, Rina; Lewis, Patrick A

    2013-11-29

    LRRK2 is one of the most important genetic contributors to Parkinson's disease (PD). Point mutations in this gene cause an autosomal dominant form of PD, but to date no cellular phenotype has been consistently linked with mutations in each of the functional domains (ROC, COR and Kinase) of the protein product of this gene. In this study, primary fibroblasts from individuals carrying pathogenic mutations in the three central domains of LRRK2 were assessed for alterations in the autophagy/lysosomal pathway using a combination of biochemical and cellular approaches. Mutations in all three domains resulted in alterations in markers for autophagy/lysosomal function compared to wild type cells. These data highlight the autophagy and lysosomal pathways as read outs for pathogenic LRRK2 function and as a marker for disease, and provide insight into the mechanisms linking LRRK2 function and mutations. Copyright © 2013 The Authors. Published by Elsevier Inc. All rights reserved.

  15. Distinct Mechanisms of Pathogenic DJ-1 Mutations in Mitochondrial Quality Control

    PubMed Central

    Strobbe, Daniela; Robinson, Alexis A.; Harvey, Kirsten; Rossi, Lara; Ferraina, Caterina; de Biase, Valerio; Rodolfo, Carlo; Harvey, Robert J.; Campanella, Michelangelo

    2018-01-01

    The deglycase and chaperone protein DJ-1 is pivotal for cellular oxidative stress responses and mitochondrial quality control. Mutations in PARK7, encoding DJ-1, are associated with early-onset familial Parkinson’s disease and lead to pathological oxidative stress and/or disrupted protein degradation by the proteasome. The aim of this study was to gain insights into the pathogenic mechanisms of selected DJ-1 missense mutations, by characterizing protein–protein interactions, core parameters of mitochondrial function, quality control regulation via autophagy, and cellular death following dopamine accumulation. We report that the DJ-1M26I mutant influences DJ-1 interactions with SUMO-1, in turn enhancing removal of mitochondria and conferring increased cellular susceptibility to dopamine toxicity. By contrast, the DJ-1D149A mutant does not influence mitophagy, but instead impairs Ca2+ dynamics and free radical homeostasis by disrupting DJ-1 interactions with a mitochondrial accessory protein known as DJ-1-binding protein (DJBP/EFCAB6). Thus, individual DJ-1 mutations have different effects on mitochondrial function and quality control, implying mutation-specific pathomechanisms converging on impaired mitochondrial homeostasis. PMID:29599708

  16. Identification and functional analysis of SOX10 missense mutations in different subtypes of Waardenburg syndrome.

    PubMed

    Chaoui, Asma; Watanabe, Yuli; Touraine, Renaud; Baral, Viviane; Goossens, Michel; Pingault, Veronique; Bondurand, Nadege

    2011-12-01

    Waardenburg syndrome (WS) is a rare disorder characterized by pigmentation defects and sensorineural deafness, classified into four clinical subtypes, WS1-S4. Whereas the absence of additional features characterizes WS2, association with Hirschsprung disease defines WS4. WS is genetically heterogeneous, with six genes already identified, including SOX10. About 50 heterozygous SOX10 mutations have been described in patients presenting with WS2 or WS4, with or without myelination defects of the peripheral and central nervous system (PCWH, Peripheral demyelinating neuropathy-Central dysmyelinating leukodystrophy-Waardenburg syndrome-Hirschsprung disease, or PCW, PCWH without HD). The majority are truncating mutations that most often remove the main functional domains of the protein. Only three missense mutations have been thus far reported. In the present study, novel SOX10 missense mutations were found in 11 patients and were examined for effects on SOX10 characteristics and functions. The mutations were associated with various phenotypes, ranging from WS2 to PCWH. All tested mutations were found to be deleterious. Some mutants presented with partial cytoplasmic redistribution, some lost their DNA-binding and/or transactivation capabilities on various tissue-specific target genes. Intriguingly, several mutants were redistributed in nuclear foci. Whether this phenomenon is a cause or a consequence of mutation-associated pathogenicity remains to be determined, but this observation could help to identify new SOX10 modes of action. © 2011 Wiley-Liss, Inc.

  17. Missense mutations of MLH1 and MSH2 genes detected in patients with gastrointestinal cancer are associated with exonic splicing enhancers and silencers

    PubMed Central

    ZHU, MING; CHEN, HUI-MEI; WANG, YA-PING

    2013-01-01

    The MLH1 and MSH2 genes in DNA mismatch repair are important in the pathogenesis of gastrointestinal cancer. Recent studies of normal and alternative splicing suggest that the deleterious effects of missense mutations may in fact be splicing-related when they are located in exonic splicing enhancers (ESEs) or exonic splicing silencers (ESSs). In this study, we used ESE-finder and FAS-ESS software to analyze the potential ESE/ESS motifs of the 114 missense mutations detected in the two genes in East Asian gastrointestinal cancer patients. In addition, we used the SIFT tool to functionally analyze these mutations. The amount of the ESE losses (68) was 51.1% higher than the ESE gains (45) of all the mutations. However, the amount of the ESS gains (27) was 107.7% higher than the ESS losses (13). In total, 56 (49.1%) mutations possessed a potential exonic splicing regulator (ESR) error. Eighty-one mutations (71.1%) were predicted to be deleterious with a lower tolerance index as detected by the Sorting Intolerant from Tolerant (SIFT) tool. Among these, 38 (33.3%) mutations were predicted to be functionally deleterious and possess one potential ESR error, while 18 (15.8%) mutations were predicted to be functionally deleterious and exhibit two potential ESR errors. These may be more likely to affect exon splicing. Our results indicated that there is a strong correlation between missense mutations in MLH1 and MSH2 genes detected in East Asian gastrointestinal cancer patients and ESR motifs. In order to correctly understand the molecular nature of mutations, splicing patterns should be compared between wild-type and mutant samples. PMID:23760103

  18. Concomitant BCORL1 and BRAF Mutations in Vemurafenib-Resistant Melanoma Cells.

    PubMed

    Mologni, Luca; Costanza, Mariantonia; Sharma, Geeta Geeta; Viltadi, Michela; Massimino, Luca; Citterio, Stefania; Purgante, Stefania; Raman, Hima; Pirola, Alessandra; Zucchetti, Massimo; Piazza, Rocco; Gambacorti-Passerini, Carlo

    2018-05-01

    BRAF is the most frequently mutated gene in melanoma. Constitutive activation of mutant BRAF V600E leads to aberrant Ras-independent MAPK signaling and cell transformation. Inhibition of mutant BRAF is a current frontline therapy for such cases, with improved survival compared with chemotherapy. Unfortunately, reactivation of MAPK signaling by several mechanisms has been shown to cause drug resistance and disease recurrence. In this work, we describe the co-occurrence of an in-frame deletion within an amplified BRAF V600E locus and a missense point mutation of the transcriptional repressor BCORL1 in vemurafenib-resistant A375 melanoma cells. Functional data confirmed that truncated p47BRAF V600E and mutant BCORL1 Q1076H both contribute to resistance. Interestingly, either endogenous BCORL1 silencing or ectopic BCORL1 Q1076H expression mimicked the effects of a CRISPR/Cas9-edited BCORL1 Q1076H locus, suggesting a complex mixture of loss- and gain-of-function effects caused by the mutation. Transcriptomic data confirmed this hypothesis. Finally, we show that the pan-RAF inhibitor sorafenib is not affected by expression of BRAF deletion variant and effectively synergizes with vemurafenib to block resistant cells, suggesting a possible intervention for this class of mutants. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  19. [Nuclease activity of the recombinant plancitoxin-1-like proteins with mutations in the active site from Trichinella spiralis].

    PubMed

    Liao, Chengshui; Wang, Xiaoli; Tian, Wenjing; Zhang, Mengke; Zhang, Chunjie; Li, Yinju; Wu, Tingcai; Cheng, Xiangchao

    2017-08-25

    Although there are 125 predicted DNase Ⅱ-like family genes in the Trichinella spiralis genome, plancitoxin-1-like (Ts-Pt) contains the HKD motif, a typical conserved region of DNase Ⅱ, in N- and C-terminal. It is generally believed that histidine is the active site in DNase Ⅱ. To study the nuclease activity of recombinant Ts-Pt with mutations in the active site from T. spiralis, different fragments of the mutated Ts-Pt genes were cloned using overlap PCR technique and inserted into the expressing vector pET-28a(+), and transformed into Escherichia coli Rosseta (DE3). The fusion proteins were purified by Ni-NTA affinity chromatography and SDS-PAGE. Nuclease activity of the recombinant proteins was detected by agarose gel electrophoresis and nuclease-zymography. The recombinant plasmids harboring the mutated Ts-Pt genes were constructed and expressed as inclusive body in a prokaryotic expression system. After renaturation in vitro, the recombinant proteins had no nuclease activity according to agarose gel electrophoresis. However, the expressed proteins as inclusive body displayed the ability to degrade DNA after renaturation in gel. And the nuclease activity was not affected after subjected to mutation of active site in N- and C-termini of Ts-Pt. These results provide the basis to study the relationship between DNase Ⅱ-like protein family and infection of T. spiralis.

  20. Inherited pain: sodium channel Nav1.7 A1632T mutation causes erythromelalgia due to a shift of fast inactivation.

    PubMed

    Eberhardt, Mirjam; Nakajima, Julika; Klinger, Alexandra B; Neacsu, Cristian; Hühne, Kathrin; O'Reilly, Andrias O; Kist, Andreas M; Lampe, Anne K; Fischer, Kerstin; Gibson, Jane; Nau, Carla; Winterpacht, Andreas; Lampert, Angelika

    2014-01-24

    Inherited erythromelalgia (IEM) causes debilitating episodic neuropathic pain characterized by burning in the extremities. Inherited "paroxysmal extreme pain disorder" (PEPD) differs in its clinical picture and affects proximal body areas like the rectal, ocular, or jaw regions. Both pain syndromes have been linked to mutations in the voltage-gated sodium channel Nav1.7. Electrophysiological characterization shows that IEM-causing mutations generally enhance activation, whereas mutations leading to PEPD alter fast inactivation. Previously, an A1632E mutation of a patient with overlapping symptoms of IEM and PEPD was reported (Estacion, M., Dib-Hajj, S. D., Benke, P. J., Te Morsche, R. H., Eastman, E. M., Macala, L. J., Drenth, J. P., and Waxman, S. G. (2008) NaV1.7 Gain-of-function mutations as a continuum. A1632E displays physiological changes associated with erythromelalgia and paroxysmal extreme pain disorder mutations and produces symptoms of both disorders. J. Neurosci. 28, 11079-11088), displaying a shift of both activation and fast inactivation. Here, we characterize a new mutation of Nav1.7, A1632T, found in a patient suffering from IEM. Although transfection of A1632T in sensory neurons resulted in hyperexcitability and spontaneous firing of dorsal root ganglia (DRG) neurons, whole-cell patch clamp of transfected HEK cells revealed that Nav1.7 activation was unaltered by the A1632T mutation but that steady-state fast inactivation was shifted to more depolarized potentials. This is a characteristic normally attributed to PEPD-causing mutations. In contrast to the IEM/PEPD crossover mutation A1632E, A1632T failed to slow current decay (i.e. open-state inactivation) and did not increase resurgent currents, which have been suggested to contribute to high-frequency firing in physiological and pathological conditions. Reduced fast inactivation without increased resurgent currents induces symptoms of IEM, not PEPD, in the new Nav1.7 mutation, A1632T. Therefore

  1. Functional cooperation between HIF-1α and c-Jun in mediating primary and acquired resistance to gefitinib in NSCLC cells with activating mutation of EGFR.

    PubMed

    Meng, Shuyan; Wang, Guorui; Lu, Yang; Fan, Zhen

    2018-07-01

    Hypoxia-inducible factor 1 (HIF-1) and activator protein 1 (AP-1) are important transcription factors regulating expression of genes involved in cell survival. HIF-1α and c-Jun are key components of HIF-1 and AP-1, respectively, and are regulated by epidermal growth factor receptor (EGFR)-mediated cell signaling and tumor microenvironmental cues. The roles of HIF-1α and c-Jun in development of resistance to EGFR tyrosine kinase inhibitor (TKI) in non-small cell lung cancer (NSCLC) with activating mutation of EGFR have not been explored. In this study, we investigated the roles of HIF-1α and c-Jun in mediating primary and acquired resistance to gefitinib in NSCLC cells with activating mutation of EGFR. Changes in HIF-1α protein and in total and phosphorylated c-Jun levels in relation to changes in total and phosphorylated EGFR levels before and after gefitinib treatment were measured using Western blot analysis in NSCLC cells sensitive or resistant to gefitinib. The impact of overexpression of a constitutively expressed HIF-1α (HIF-1α/ΔODD) or a constitutively active c-Jun upstream regulator (SEK1 S220E/T224D mutant) on cell response to gefitinib was also examined. The effect of pharmacological inhibition of SEK1-JNK-c-Jun pathway on cell response to gefitinib was evaluated. Downregulation of HIF-1α and total and phosphorylated c-Jun levels correlated with cell inhibitory response to gefitinib better than decrease in phosphorylated EGFR did in NSCLC cells with intrinsic or acquired resistance to gefitinib. Overexpression of HIF-1α/ΔODD or SEK1 S220E/T224D mutant conferred resistance to gefitinib. There exists a positive feed-forward regulation loop between HIF-1 and c-Jun. The JNK inhibitor SP600125 sensitized gefitinib-resistant NSCLC cells to gefitinib. HIF-1α and c-Jun functionally cooperate in development of resistance to gefitinib in NSCLC cells. The translational value of inhibiting HIF-1α/c-Jun cooperation in overcoming resistance to EGFR TKI

  2. Variable gain for a wind turbine pitch control

    NASA Technical Reports Server (NTRS)

    Seidel, R. C.; Birchenough, A. G.

    1981-01-01

    The gain variation is made in the software logic of the pitch angle controller. The gain level is changed depending upon the level of power error. The control uses low gain for low pitch activity the majority of the time. If the power exceeds ten percent offset above rated, the gain is increased to a higher gain to more effectively limit power. A variable gain control functioned well in tests on the Mod-0 wind turbine.

  3. Effectiveness of ivacaftor in cystic fibrosis patients with non-G551D gating mutations.

    PubMed

    Guimbellot, Jennifer; Solomon, George M; Baines, Arthur; Heltshe, Sonya L; VanDalfsen, Jill; Joseloff, Elizabeth; Sagel, Scott D; Rowe, Steven M

    2018-04-20

    The cystic fibrosis transmembrane conductance regulator (CFTR) potentiator ivacaftor is approved for patients with CF with gating and residual function CFTR mutations. We report the results of an observational study investigating its effects in CF patients with non-G551D gating mutations. Patients with non-G551D gating mutations were recruited to an open-label study evaluating ivacaftor. Primary outcomes included: lung function, sweat chloride, weight gain, and quality of life scores. Twenty-one subjects were enrolled and completed 6 months follow-up on ivacaftor; mean age was 25.6 years with 52% <18. Baseline ppFEV 1 was 68% and mean sweat chloride 89.6 mEq/L. Participants experienced significant improvements in ppFEV 1 (mean absolute increase of 10.9% 95% CI = [2.6,19.3], p = 0.0134), sweat chloride (-48.6 95% CI = [-67.4,-29.9], p < 0.0001), and weight (5.1 kg, 95% CI = [2.8, 7.3], p = 0.0002). Patients with non-G551D gating mutations experienced improved lung function, nutritional status, and quality of life. This study supports ongoing use of ivacaftor for patients with these mutations. Copyright © 2018. Published by Elsevier B.V.

  4. Structural and Functional Consequences of Circular Permutation on the Active Site of Old Yellow Enzyme

    DOE PAGES

    Daugherty, Ashley B.; Horton, John R.; Cheng, Xiaodong; ...

    2014-12-09

    Circular permutation of the NADPH-dependent oxidoreductase Old Yellow Enzyme from Saccharomyces pastorianus (OYE1) can significantly enhance the enzyme’s catalytic performance. Termini relocation into four regions of the protein (sectors I–IV) near the active site has proven effective in altering enzyme function. To better understand the structural consequences and rationalize the observed functional gains in these OYE1 variants, we selected representatives from sectors I–III for further characterization by biophysical methods and X-ray crystallography. These investigations not only show trends in enzyme stability and quaternary structure as a function of termini location but also provide a possible explanation for the catalytic gainsmore » in our top-performing OYE variant (new N-terminus at residue 303; sector III). Crystallographic analysis indicates that termini relocation into sector III affects the loop β6 region (amino acid positions: 290–310) of OYE1, which forms a lid over the active site. Peptide backbone cleavage greatly enhances local flexibility, effectively converting the loop into a tether and consequently increasing the environmental exposure of the active site. Interestingly, such an active site remodeling does not negatively impact the enzyme’s activity and stereoselectivity; neither does it perturb the conformation of other key active site residues with the exception of Y375. These observations were confirmed in truncation experiments, deleting all residues of the loop β6 region in our OYE variant. Intrigued by the finding that circular permutation leaves most of the key catalytic residues unchanged, we also tested OYE permutants for possible additive or synergistic effects of amino acid substitutions. Distinct functional changes in these OYE variants were detected upon mutations at W116, known in native OYE1 to cause inversion of diastereoselectivity for (S)-carvone reduction. In conclusion, our findings demonstrate the

  5. Keeping mammalian mutation load in check: regulation of the activity of error-prone DNA polymerases by p53 and p21.

    PubMed

    Livneh, Zvi

    2006-09-01

    To overcome DNA lesions that block replication the cell employs translesion DNA synthesis (TLS) polymerases, a group of low fidelity DNA polymerases that have the capacity to bypass a wide range of DNA lesions. This TLS process is also termed error-prone repair, due to its inherent mutagenic nature. We have recently shown that the tumor suppressor p53 and the cell cycle inhibitor p21 are global regulators of TLS. When these proteins are missing or nonfunctional, TLS gets out of control: its extent increases to very high levels, and its fidelity decreases, causing an overall increase in mutation load. This may be explained by the loss of selectivity in the bypass of specific DNA lesions by their cognate specialized polymerases, such that lesion bypass continues to a maximum, regardless of the price paid in increased mutations. The p53 and p21 proteins are also required for efficient UV light-induced monoubiquitination of PCNA, which is consistent with a model in which this modification of PCNA is necessary but not sufficient for the normal activity of TLS. This regulation suggests that TLS evolved in mammals as a system that balances gain in survival with a tolerable mutational cost, and that disturbing this balance causes a potentially harmful increase in mutations, which might play a role in carcinogenesis.

  6. Functional validation of the oncogenic cooperativity and targeting potential of tuberous sclerosis mutation in medulloblastoma using a MYC-amplified model cell line.

    PubMed

    Henderson, Jacob J; Wagner, Jacob P; Hofmann, Nicolle E; Eide, Christopher A; Cho, Yoon-Jae; Druker, Brian J; Davare, Monika A

    2017-10-01

    Medulloblastoma is the most common malignant brain tumor of childhood. To identify targetable vulnerabilities, we employed inhibitor screening that revealed mTOR inhibitor hypersensitivity in the MYC-overexpressing medulloblastoma cell line, D341. Concomitant exome sequencing unveiled an uncharacterized missense mutation, TSC2 A415V , in these cells. We biochemically demonstrate that the TSC2 A415V mutation is functionally deleterious, leading to shortened half-life and proteasome-mediated protein degradation. These data suggest that MYC cooperates with activated kinase pathways, enabling pharmacologic intervention in these treatment refractory tumors. We propose that identification of activated kinase pathways may allow for tailoring targeted therapy to improve survival and treatment-related morbidity in medulloblastoma. © 2017 Wiley Periodicals, Inc.

  7. Mutations in the MicroRNA Complementarity Site of the INCURVATA4 Gene Perturb Meristem Function and Adaxialize Lateral Organs in Arabidopsis1[W

    PubMed Central

    Ochando, Isabel; Jover-Gil, Sara; Ripoll, Juan José; Candela, Héctor; Vera, Antonio; Ponce, María Rosa; Martínez-Laborda, Antonio; Micol, José Luis

    2006-01-01

    Here, we describe how the semidominant, gain-of-function icu4-1 and icu4-2 alleles of the INCURVATA4 (ICU4) gene alter leaf phyllotaxis and cell organization in the root apical meristem, reduce root length, and cause xylem overgrowth in the stem. The ICU4 gene was positionally cloned and found to encode the ATHB15 transcription factor, a class III homeodomain/leucine zipper family member, recently named CORONA. The icu4-1 and icu4-2 alleles bear the same point mutation that affects the microRNA complementarity site of ICU4 and is identical to those of several semidominant alleles of the class III homeodomain/leucine zipper family members PHABULOSA and PHAVOLUTA. The icu4-1 and icu4-2 mutations significantly increase leaf transcript levels of the ICU4 gene. The null hst-1 allele of the HASTY gene, which encodes a nucleocytoplasmic transporter, synergistically interacts with icu4-1, the double mutant displaying partial adaxialization of rosette leaves and carpels. Our results suggest that the ICU4 gene has an adaxializing function and that it is down-regulated by microRNAs that require the HASTY protein for their biogenesis. PMID:16617092

  8. Late-onset manifestation of antenatal Bartter syndrome as a result of residual function of the mutated renal Na+-K+-2Cl- co-transporter.

    PubMed

    Pressler, Carsten A; Heinzinger, Jolanta; Jeck, Nikola; Waldegger, Petra; Pechmann, Ulla; Reinalter, Stephan; Konrad, Martin; Beetz, Rolf; Seyberth, Hannsjörg W; Waldegger, Siegfried

    2006-08-01

    Genetic defects of the Na+-K+-2Cl- (NKCC2) sodium potassium chloride co-transporter result in severe, prenatal-onset renal salt wasting accompanied by polyhydramnios, prematurity, and life-threatening hypovolemia of the neonate (antenatal Bartter syndrome or hyperprostaglandin E syndrome). Herein are described two brothers who presented with hyperuricemia, mild metabolic alkalosis, low serum potassium levels, and bilateral medullary nephrocalcinosis at the ages of 13 and 15 yr. Impaired function of sodium chloride reabsorption along the thick ascending limb of Henle's loop was deduced from a reduced increase in diuresis and urinary chloride excretion upon application of furosemide. Molecular genetic analysis revealed that the brothers were compound heterozygotes for mutations in the SLC12A1 gene coding for the NKCC2 co-transporter. Functional analysis of the mutated rat NKCC2 protein by tracer-flux assays after heterologous expression in Xenopus oocytes revealed significant residual transport activity of the NKCC2 p.F177Y mutant construct in contrast to no activity of the NKCC2-D918fs frameshift mutant construct. However, coexpression of the two mutants was not significantly different from that of NKCC2-F177Y alone or wild type. Membrane expression of NKCC2-F177Y as determined by luminometric surface quantification was not significantly different from wild-type protein, pointing to an intrinsic partial transport defect caused by the p.F177Y mutation. The partial function of NKCC2-F177Y, which is not negatively affected by NKCC2-D918fs, therefore explains a mild and late-onset phenotype and for the first time establishes a mild phenotype-associated SLC12A1 gene mutation.

  9. Genetic and Functional Investigation of Zn2Cys6 Transcription Factors RSE2 and RSE3 in Podospora anserina

    PubMed Central

    Bovier, Elodie; Sellem, Carole H.; Humbert, Adeline

    2014-01-01

    In Podospora anserina, the two zinc cluster proteins RSE2 and RSE3 are essential for the expression of the gene encoding the alternative oxidase (aox) when the mitochondrial electron transport chain is impaired. In parallel, they activated the expression of gluconeogenic genes encoding phosphoenolpyruvate carboxykinase (pck) and fructose-1,6-biphosphatase (fbp). Orthologues of these transcription factors are present in a wide range of filamentous fungi, and no other role than the regulation of these three genes has been evidenced so far. In order to better understand the function and the organization of RSE2 and RSE3, we conducted a saturated genetic screen based on the constitutive expression of the aox gene. We identified 10 independent mutations in 9 positions in rse2 and 11 mutations in 5 positions in rse3. Deletions were generated at some of these positions and the effects analyzed. This analysis suggests the presence of central regulatory domains and a C-terminal activation domain in both proteins. Microarray analysis revealed 598 genes that were differentially expressed in the strains containing gain- or loss-of-function mutations in rse2 or rse3. It showed that in addition to aox, fbp, and pck, RSE2 and RSE3 regulate the expression of genes encoding the alternative NADH dehydrogenase, a Zn2Cys6 transcription factor, a flavohemoglobin, and various hydrolases. As a complement to expression data, a metabolome profiling approach revealed that both an rse2 gain-of-function mutation and growth on antimycin result in similar metabolic alterations in amino acids, fatty acids, and α-ketoglutarate pools. PMID:24186951

  10. HFE gene: Structure, function, mutations, and associated iron abnormalities.

    PubMed

    Barton, James C; Edwards, Corwin Q; Acton, Ronald T

    2015-12-15

    The hemochromatosis gene HFE was discovered in 1996, more than a century after clinical and pathologic manifestations of hemochromatosis were reported. Linked to the major histocompatibility complex (MHC) on chromosome 6p, HFE encodes the MHC class I-like protein HFE that binds beta-2 microglobulin. HFE influences iron absorption by modulating the expression of hepcidin, the main controller of iron metabolism. Common HFE mutations account for ~90% of hemochromatosis phenotypes in whites of western European descent. We review HFE mapping and cloning, structure, promoters and controllers, and coding region mutations, HFE protein structure, cell and tissue expression and function, mouse Hfe knockouts and knockins, and HFE mutations in other mammals with iron overload. We describe the pertinence of HFE and HFE to mechanisms of iron homeostasis, the origin and fixation of HFE polymorphisms in European and other populations, and the genetic and biochemical basis of HFE hemochromatosis and iron overload. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. A Novel Loss-of-Sclerostin Function Mutation in a First Egyptian Family with Sclerosteosis

    PubMed Central

    Fayez, Alaaeldin; Aglan, Mona; Esmaiel, Nora; El Zanaty, Taher; Abdel Kader, Mohamed; El Ruby, Mona

    2015-01-01

    Sclerosteosis is a rare autosomal recessive condition characterized by increased bone density. Mutations in SOST gene coding for sclerostin are linked to sclerosteosis. Two Egyptian brothers with sclerosteosis and their apparently normal consanguineous parents were included in this study. Clinical evaluation and genomic sequencing of the SOST gene were performed followed by in silico analysis of the resulting variation. A novel homozygous frameshift mutation in the SOST gene, characterized as one nucleotide cytosine insertion that led to premature stop codon and loss of functional sclerostin, was identified in the two affected brothers. Their parents were heterozygous for the same mutation. To our knowledge this is the first Egyptian study of sclerosteosis and SOST gene causing mutation. PMID:25984533

  12. Podocyte-Specific VEGF-A Gain of Function Induces Nodular Glomerulosclerosis in eNOS Null Mice

    PubMed Central

    Veron, Delma; Aggarwal, Pardeep K.; Velazquez, Heino; Kashgarian, Michael; Moeckel, Gilbert

    2014-01-01

    VEGF-A and nitric oxide are essential for glomerular filtration barrier homeostasis and are dysregulated in diabetic nephropathy. Here, we examined the effect of excess podocyte VEGF-A on the renal phenotype of endothelial nitric oxide synthase (eNOS) knockout mice. Podocyte-specific VEGF164 gain of function in eNOS−/− mice resulted in nodular glomerulosclerosis, mesangiolysis, microaneurysms, and arteriolar hyalinosis associated with massive proteinuria and renal failure in the absence of diabetic milieu or hypertension. In contrast, podocyte-specific VEGF164 gain of function in wild-type mice resulted in less pronounced albuminuria and increased creatinine clearance. Transmission electron microscopy revealed glomerular basement membrane thickening and podocyte effacement in eNOS−/− mice with podocyte-specific VEGF164 gain of function. Furthermore, glomerular nodules overexpressed collagen IV and laminin extensively. Biotin-switch and proximity ligation assays demonstrated that podocyte-specific VEGF164 gain of function decreased glomerular S-nitrosylation of laminin in eNOS−/− mice. In addition, treatment with VEGF-A decreased S-nitrosylated laminin in cultured podocytes. Collectively, these data indicate that excess glomerular VEGF-A and eNOS deficiency is necessary and sufficient to induce Kimmelstiel-Wilson–like nodular glomerulosclerosis in mice through a process that involves deposition of laminin and collagen IV and de-nitrosylation of laminin. PMID:24578128

  13. Analysis of the Mutations in the Active Site of the RNA-Dependent RNA Polymerase of Human Parainfluenza Virus Type 3 (HPIV3)

    PubMed Central

    Malur, Achut G.; Gupta, Neera K.; De, Bishnu P.; Banerjee, Amiya K.

    2002-01-01

    The large protein (L) of the human parainfluenza virus type 3 (HPIV3) is the functional RNA-dependent RNA polymerase, which possesses highly conserved residues QGDNQ located within motif C of domain III comprising the putative polymerase active site. We have characterized the role of the QGDNQ residues as well as the residues flanking this region in the polymerase activity of the L protein by site-directed mutagenesis and examining the polymerase activity of the wild-type and mutant L proteins by an in vivo minigenome replication assay and an in vitro mRNA transcription assay. All mutations in the QGDNQ residues abolished transcription while mutations in the flanking residues gave rise to variable polymerase activities. These observations support the contention that the QGDNQ sequence is absolutely required for the polymerase activity of the HPIV3 RNA-dependent RNA polymerase. PMID:12064576

  14. Loss-of-function FERMT1 mutations in kindler syndrome implicate a role for fermitin family homolog-1 in integrin activation.

    PubMed

    Lai-Cheong, Joey E; Parsons, Maddy; Tanaka, Akio; Ussar, Siegfried; South, Andrew P; Gomathy, Sethuraman; Mee, John B; Barbaroux, Jean-Baptiste; Techanukul, Tanasit; Almaani, Noor; Clements, Suzanne E; Hart, Ian R; McGrath, John A

    2009-10-01

    Kindler syndrome is an autosomal recessive disorder characterized by skin atrophy and blistering. It results from loss-of-function mutations in the FERMT1 gene encoding the focal adhesion protein, fermitin family homolog-1. How and why deficiency of fermitin family homolog-1 results in skin atrophy and blistering are unclear. In this study, we investigated the epidermal basement membrane and keratinocyte biology abnormalities in Kindler syndrome. We identified altered distribution of several basement membrane proteins, including types IV, VII, and XVII collagens and laminin-332 in Kindler syndrome skin. In addition, reduced immunolabeling intensity of epidermal cell markers such as beta1 and alpha6 integrins and cytokeratin 15 was noted. At the cellular level, there was loss of beta4 integrin immunolocalization and random distribution of laminin-332 in Kindler syndrome keratinocytes. Of note, active beta1 integrin was reduced but overexpression of fermitin family homolog-1 restored integrin activation and partially rescued the Kindler syndrome cellular phenotype. This study provides evidence that fermitin family homolog-1 is implicated in integrin activation and demonstrates that lack of this protein leads to pathological changes beyond focal adhesions, with disruption of several hemidesmosomal components and reduced expression of keratinocyte stem cell markers. These findings collectively provide novel data on the role of fermitin family homolog-1 in skin and further insight into the pathophysiology of Kindler syndrome.

  15. A nonsense loss-of-function mutation in PCSK1 contributes to dominantly inherited human obesity.

    PubMed

    Philippe, J; Stijnen, P; Meyre, D; De Graeve, F; Thuillier, D; Delplanque, J; Gyapay, G; Sand, O; Creemers, J W; Froguel, P; Bonnefond, A

    2015-02-01

    A significant proportion of severe familial forms of obesity remain genetically elusive. Taking advantage of our unique cohort of multigenerational obese families, we aimed to assess the contribution of rare mutations in 29 common obesity-associated genes to familial obesity, and to evaluate in these families the putative presence of nine known monogenic forms of obesity. Through next-generation sequencing, we sequenced the coding regions of 34 genes involved in polygenic and/or monogenic forms of obesity in 201 participants (75 normal weight individuals, 54 overweight individuals and 72 individuals with obesity class I, II or III) from 13 French families. In vitro functional analyses were performed to investigate the mutation PCSK1-p.Arg80* which was identified in a family. A novel heterozygous nonsense variant in PCSK1 (p.Arg80*), encoding a propeptide truncated to less than two exons (out of 14), was found to co-segregate with obesity in a three-generation family. We demonstrated that this mutation inhibits PCSK1 enzyme activity and that this inhibition most likely does not involve a strong physical interaction. Furthermore, both mutations PCSK1-p.Asn180Ser and POMC-p.Phe144Leu, which had previously been reported to be associated with severe obesity, were also identified in this study, but did not co-segregate with obesity. Finally, we did not identify any rare mutations co-segregating with obesity in common obesity susceptibility genes, except for CADM2 and QPCTL, where we found two novel variants (p.Arg81His and p.Leu98Pro, respectively) in three obese individuals. We showed for the first time that a nonsense mutation in PCSK1 was likely to cause dominantly inherited human obesity, due to the inhibiting properties of the propeptide fragment encoded by the null allele. Furthermore, the present family sequencing design challenged the contribution of previously reported mutations to monogenic or at least severe obesity.

  16. 20 CFR 229.85 - Substantial gainful activity by blind employee or child.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... THE RAILROAD RETIREMENT ACT SOCIAL SECURITY OVERALL MINIMUM GUARANTEE Miscellaneous Deductions and... substantial gainful activity that does not require skills or ability used in his or her previous work. However... in any type of substantial gainful activity which requires skills or abilities comparable to those of...

  17. CDKN1C mutation affecting the PCNA-binding domain as a cause of familial Russell Silver syndrome.

    PubMed

    Brioude, F; Oliver-Petit, I; Blaise, A; Praz, F; Rossignol, S; Le Jule, M; Thibaud, N; Faussat, A-M; Tauber, M; Le Bouc, Y; Netchine, I

    2013-12-01

    Russell Silver syndrome (RSS) leads to prenatal and postnatal growth retardation. About 55% of RSS patients present a loss-of-methylation of the paternal ICR1 domain on chromosome 11p15. CDKN1C is a cell proliferation inhibitor encoded by an imprinted gene in the 11p15 ICR2 domain. CDKN1C mutations lead to Beckwith Wiedemann syndrome (BWS, overgrowth syndrome) and in IMAGe syndrome which associates growth retardation and adrenal insufficiency. We searched for CDKN1C mutations in a cohort of clinically diagnosed RSS patients with no molecular anomaly. The coding sequence and intron-exon boundaries of CDKN1C were analysed in 97 RSS patients. The impact of CDKN1C variants on the cell cycle in vitro were determined by flow cytometry. Stability of CDKN1C was studied by western immunoblotting after inhibition of translation with cycloheximide. We identified the novel c.836G>[G;T] (p.Arg279Leu) mutation in a familial case of intrauterine growth retardation (IUGR) with RSS phenotype and no evidence of IMAGe. All the RSS patients inherited this mutation from their mothers (consistent with monoallelic expression from the maternal allele of the gene). A mutation of this amino acid (p.Arg279Pro) has been reported in cases of IMAGe. Functional analysis showed that Arg279Leu (RSS) did not affect the cell cycle, whereas the Arg279Pro mutation (IMAGe) led to a gain of function. Arg279Leu (RSS) led to an increased stability which could explain an increased activity of CDKN1C. CDKN1C mutations cause dominant maternally transmitted RSS, completing the molecular mirror with BWS. CDKN1C should be investigated in cases with family history of RSS.

  18. Mutations and polymorphisms in FSH receptor: functional implications in human reproduction.

    PubMed

    Desai, Swapna S; Roy, Binita Sur; Mahale, Smita D

    2013-12-01

    FSH brings about its physiological actions by activating a specific receptor located on target cells. Normal functioning of the FSH receptor (FSHR) is crucial for follicular development and estradiol production in females and for the regulation of Sertoli cell function and spermatogenesis in males. In the last two decades, the number of inactivating and activating mutations, single nucleotide polymorphisms, and spliced variants of FSHR gene has been identified in selected infertile cases. Information on genotype-phenotype correlation and in vitro functional characterization of the mutants has helped in understanding the possible genetic cause for female infertility in affected individuals. The information is also being used to dissect various extracellular and intracellular events involved in hormone-receptor interaction by studying the differences in the properties of the mutant receptor when compared with WT receptor. Studies on polymorphisms in the FSHR gene have shown variability in clinical outcome among women treated with FSH. These observations are being explored to develop molecular markers to predict the optimum dose of FSH required for controlled ovarian hyperstimulation. Pharmacogenetics is an emerging field in this area that aims at designing individual treatment protocols for reproductive abnormalities based on FSHR gene polymorphisms. The present review discusses the current knowledge of various genetic alterations in FSHR and their impact on receptor function in the female reproductive system.

  19. A Myo6 mutation destroys coordination between the myosin heads, revealing new functions of myosin VI in the stereocilia of mammalian inner ear hair cells.

    PubMed

    Hertzano, Ronna; Shalit, Ella; Rzadzinska, Agnieszka K; Dror, Amiel A; Song, Lin; Ron, Uri; Tan, Joshua T; Shitrit, Alina Starovolsky; Fuchs, Helmut; Hasson, Tama; Ben-Tal, Nir; Sweeney, H Lee; de Angelis, Martin Hrabe; Steel, Karen P; Avraham, Karen B

    2008-10-03

    Myosin VI, found in organisms from Caenorhabditis elegans to humans, is essential for auditory and vestibular function in mammals, since genetic mutations lead to hearing impairment and vestibular dysfunction in both humans and mice. Here, we show that a missense mutation in this molecular motor in an ENU-generated mouse model, Tailchaser, disrupts myosin VI function. Structural changes in the Tailchaser hair bundles include mislocalization of the kinocilia and branching of stereocilia. Transfection of GFP-labeled myosin VI into epithelial cells and delivery of endocytic vesicles to the early endosome revealed that the mutant phenotype displays disrupted motor function. The actin-activated ATPase rates measured for the D179Y mutation are decreased, and indicate loss of coordination of the myosin VI heads or 'gating' in the dimer form. Proper coordination is required for walking processively along, or anchoring to, actin filaments, and is apparently destroyed by the proximity of the mutation to the nucleotide-binding pocket. This loss of myosin VI function may not allow myosin VI to transport its cargoes appropriately at the base and within the stereocilia, or to anchor the membrane of stereocilia to actin filaments via its cargos, both of which lead to structural changes in the stereocilia of myosin VI-impaired hair cells, and ultimately leading to deafness.

  20. MutationAligner: a resource of recurrent mutation hotspots in protein domains in cancer

    PubMed Central

    Gauthier, Nicholas Paul; Reznik, Ed; Gao, Jianjiong; Sumer, Selcuk Onur; Schultz, Nikolaus; Sander, Chris; Miller, Martin L.

    2016-01-01

    The MutationAligner web resource, available at http://www.mutationaligner.org, enables discovery and exploration of somatic mutation hotspots identified in protein domains in currently (mid-2015) more than 5000 cancer patient samples across 22 different tumor types. Using multiple sequence alignments of protein domains in the human genome, we extend the principle of recurrence analysis by aggregating mutations in homologous positions across sets of paralogous genes. Protein domain analysis enhances the statistical power to detect cancer-relevant mutations and links mutations to the specific biological functions encoded in domains. We illustrate how the MutationAligner database and interactive web tool can be used to explore, visualize and analyze mutation hotspots in protein domains across genes and tumor types. We believe that MutationAligner will be an important resource for the cancer research community by providing detailed clues for the functional importance of particular mutations, as well as for the design of functional genomics experiments and for decision support in precision medicine. MutationAligner is slated to be periodically updated to incorporate additional analyses and new data from cancer genomics projects. PMID:26590264

  1. Hierarchical mutational events compensate for glutamate auxotrophy of a Bacillus subtilis gltC mutant.

    PubMed

    Dormeyer, Miriam; Lübke, Anastasia L; Müller, Peter; Lentes, Sabine; Reuß, Daniel R; Thürmer, Andrea; Stülke, Jörg; Daniel, Rolf; Brantl, Sabine; Commichau, Fabian M

    2017-06-01

    Glutamate is the major donor of nitrogen for anabolic reactions. The Gram-positive soil bacterium Bacillus subtilis either utilizes exogenously provided glutamate or synthesizes it using the gltAB-encoded glutamate synthase (GOGAT). In the absence of glutamate, the transcription factor GltC activates expression of the GOGAT genes for glutamate production. Consequently, a gltC mutant strain is auxotrophic for glutamate. Using a genetic selection and screening system, we could isolate and differentiate between gltC suppressor mutants in one step. All mutants had acquired the ability to synthesize glutamate, independent of GltC. We identified (i) gain-of-function mutations in the gltR gene, encoding the transcription factor GltR, (ii) mutations in the promoter of the gltAB operon and (iii) massive amplification of the genomic locus containing the gltAB operon. The mutants belonging to the first two classes constitutively expressed the gltAB genes and produced sufficient glutamate for growth. By contrast, mutants that belong to the third class appeared most frequently and solved glutamate limitation by increasing the copy number of the poorly expressed gltAB genes. Thus, glutamate auxotrophy of a B. subtilis gltC mutant can be relieved in multiple ways. Moreover, recombination-dependent amplification of the gltAB genes is the predominant mutational event indicating a hierarchy of mutations. © 2017 Society for Applied Microbiology and John Wiley & Sons Ltd.

  2. Functional characterization of BTK(C481S) mutation that confers ibrutinib resistance: exploration of alternative kinase inhibitors.

    PubMed

    Cheng, S; Guo, A; Lu, P; Ma, J; Coleman, M; Wang, Y L

    2015-04-01

    The Bruton tyrosine kinase (BTK) inhibitor, ibrutinib, has produced remarkable clinical response in chronic lymphocytic leukemia (CLL) and mantle cell lymphoma. We previously reported the identification of BTK(C481S) mutation in a CLL patient who progressed following 21-month ibrutinib therapy. Initial characterization at structural and biochemical levels revealed that the mutation disrupts the covalent binding of ibrutinib to BTK, reduces its binding affinity and diminishes its ability to inhibit the BTK enzymatic activity. Herein, we further characterized the functional consequences of BTK(C481S) in terms of molecular signaling, gene expression and cellular behavior in the patient, as well as in lymphoma cells transfected with either the wild-type or the mutant BTK constructs. Further, using an in vitro CLL proliferation model, alternative kinase inhibitors that have the potential to overcome ibrutinib resistance were explored.

  3. Loss of function mutations in EPHB4 are responsible for vein of Galen aneurysmal malformation.

    PubMed

    Vivanti, Alexandre; Ozanne, Augustin; Grondin, Cynthia; Saliou, Guillaume; Quevarec, Loic; Maurey, Helène; Aubourg, Patrick; Benachi, Alexandra; Gut, Marta; Gut, Ivo; Martinovic, Jelena; Sénat, Marie Victoire; Tawk, Marcel; Melki, Judith

    2018-04-01

    See Meschia (doi:10.1093/brain/awy066) for a scientific commentary on this article.Vein of Galen aneurysmal malformation is a congenital anomaly of the cerebral vasculature representing 30% of all paediatric vascular malformations. We conducted whole exome sequencing in 19 unrelated patients presenting this malformation and subsequently screened candidate genes in a cohort of 32 additional patients using either targeted exome or Sanger sequencing. In a cohort of 51 patients, we found five affected individuals with heterozygous mutations in EPHB4 including de novo frameshift (p.His191Alafs*32) or inherited deleterious splice or missense mutations predicted to be pathogenic by in silico tools. Knockdown of ephb4 in zebrafish embryos leads to specific anomalies of dorsal cranial vessels including the dorsal longitudinal vein, which is the orthologue of the median prosencephalic vein and the embryonic precursor of the vein of Galen. This model allowed us to investigate EPHB4 loss-of-function mutations in this disease by the ability to rescue the brain vascular defect in knockdown zebrafish co-injected with wild-type, but not truncated EPHB4, mimicking the p.His191Alafs mutation. Our data showed that in both species, loss of function mutations of EPHB4 result in specific and similar brain vascular development anomalies. Recently, EPHB4 germline mutations have been reported in non-immune hydrops fetalis and in cutaneous capillary malformation-arteriovenous malformation. Here, we show that EPHB4 mutations are also responsible for vein of Galen aneurysmal malformation, indicating that heterozygous germline mutations of EPHB4 result in a large clinical spectrum. The identification of EPHB4 pathogenic mutations in patients presenting capillary malformation or vein of Galen aneurysmal malformation should lead to careful follow-up of pregnancy of carriers for early detection of anomaly of the cerebral vasculature in order to propose optimal neonatal care. Endovascular

  4. Concurrent neuromechanical and functional gains following upper-extremity power training post-stroke.

    PubMed

    Patten, Carolynn; Condliffe, Elizabeth G; Dairaghi, Christine A; Lum, Peter S

    2013-01-21

    threshold and burst duration were significantly reduced at fast speeds (≥120º/s) (p's < 0.05) and passive torque was reduced post-washout (p < .05) following HYBRID. Functional and neuromechanical gains were greater following HYBRID vs. FPT. Improved stretch reflex modulation and increased neuromuscular activation indicate potent neural adaptations. Importantly, no deleterious consequences, including exacerbation of spasticity or musculoskeletal complaints, were associated with HYBRID. These results contribute to an evolving body of contemporary evidence regarding the efficacy of high-intensity training in neurorehabilitation and the physiological mechanisms that mediate neural recovery.

  5. Further Insights into the Allan-Herndon-Dudley Syndrome: Clinical and Functional Characterization of a Novel MCT8 Mutation.

    PubMed

    Armour, Christine M; Kersseboom, Simone; Yoon, Grace; Visser, Theo J

    2015-01-01

    Mutations in the thyroid hormone (TH) transporter MCT8 have been identified as the cause for Allan-Herndon-Dudley Syndrome (AHDS), characterized by severe psychomotor retardation and altered TH serum levels. Here we report a novel MCT8 mutation identified in 4 generations of one family, and its functional characterization. Proband and family members were screened for 60 genes involved in X-linked cognitive impairment and the MCT8 mutation was confirmed. Functional consequences of MCT8 mutations were studied by analysis of [125I]TH transport in fibroblasts and transiently transfected JEG3 and COS1 cells, and by subcellular localization of the transporter. The proband and a male cousin demonstrated clinical findings characteristic of AHDS. Serum analysis showed high T3, low rT3, and normal T4 and TSH levels in the proband. A MCT8 mutation (c.869C>T; p.S290F) was identified in the proband, his cousin, and several female carriers. Functional analysis of the S290F mutant showed decreased TH transport, metabolism and protein expression in the three cell types, whereas the S290A mutation had no effect. Interestingly, both uptake and efflux of T3 and T4 was impaired in fibroblasts of the proband, compared to his healthy brother. However, no effect of the S290F mutation was observed on TH efflux from COS1 and JEG3 cells. Immunocytochemistry showed plasma membrane localization of wild-type MCT8 and the S290A and S290F mutants in JEG3 cells. We describe a novel MCT8 mutation (S290F) in 4 generations of a family with Allan-Herndon-Dudley Syndrome. Functional analysis demonstrates loss-of-function of the MCT8 transporter. Furthermore, our results indicate that the function of the S290F mutant is dependent on cell context. Comparison of the S290F and S290A mutants indicates that it is not the loss of Ser but its substitution with Phe, which leads to S290F dysfunction.

  6. Human NR5A1/SF-1 Mutations Show Decreased Activity on BDNF (Brain-Derived Neurotrophic Factor), an Important Regulator of Energy Balance: Testing Impact of Novel SF-1 Mutations Beyond Steroidogenesis

    PubMed Central

    Malikova, Jana; Camats, Núria; Fernández-Cancio, Mónica; Heath, Karen; González, Isabel; Caimarí, María; del Campo, Miguel; Albisu, Marian; Kolouskova, Stanislava; Audí, Laura; Flück, Christa E.

    2014-01-01

    Context Human NR5A1/SF-1 mutations cause 46,XY disorder of sex development (DSD) with broad phenotypic variability, and rarely cause adrenal insufficiency although SF-1 is an important transcription factor for many genes involved in steroidogenesis. In addition, the Sf-1 knockout mouse develops obesity with age. Obesity might be mediated through Sf-1 regulating activity of brain-derived neurotrophic factor (BDNF), an important regulator of energy balance in the ventromedial hypothalamus. Objective To characterize novel SF-1 gene variants in 4 families, clinical, genetic and functional studies were performed with respect to steroidogenesis and energy balance. Patients 5 patients with 46,XY DSD were found to harbor NR5A1/SF-1 mutations including 2 novel variations. One patient harboring a novel mutation also suffered from adrenal insufficiency. Methods SF-1 mutations were studied in cell systems (HEK293, JEG3) for impact on transcription of genes involved in steroidogenesis (CYP11A1, CYP17A1, HSD3B2) and in energy balance (BDNF). BDNF regulation by SF-1 was studied by promoter assays (JEG3). Results Two novel NR5A1/SF-1 mutations (Glu7Stop, His408Profs*159) were confirmed. Glu7Stop is the 4th reported SF-1 mutation causing DSD and adrenal insufficiency. In vitro studies revealed that transcription of the BDNF gene is regulated by SF-1, and that mutant SF-1 decreased BDNF promoter activation (similar to steroid enzyme promoters). However, clinical data from 16 subjects carrying SF-1 mutations showed normal birth weight and BMI. Conclusions Glu7Stop and His408Profs*159 are novel SF-1 mutations identified in patients with 46,XY DSD and adrenal insufficiency (Glu7Stop). In vitro, SF-1 mutations affect not only steroidogenesis but also transcription of BDNF which is involved in energy balance. However, in contrast to mice, consequences on weight were not found in humans with SF-1 mutations. PMID:25122490

  7. Human NR5A1/SF-1 mutations show decreased activity on BDNF (brain-derived neurotrophic factor), an important regulator of energy balance: testing impact of novel SF-1 mutations beyond steroidogenesis.

    PubMed

    Malikova, Jana; Camats, Núria; Fernández-Cancio, Mónica; Heath, Karen; González, Isabel; Caimarí, María; del Campo, Miguel; Albisu, Marian; Kolouskova, Stanislava; Audí, Laura; Flück, Christa E

    2014-01-01

    Human NR5A1/SF-1 mutations cause 46,XY disorder of sex development (DSD) with broad phenotypic variability, and rarely cause adrenal insufficiency although SF-1 is an important transcription factor for many genes involved in steroidogenesis. In addition, the Sf-1 knockout mouse develops obesity with age. Obesity might be mediated through Sf-1 regulating activity of brain-derived neurotrophic factor (BDNF), an important regulator of energy balance in the ventromedial hypothalamus. To characterize novel SF-1 gene variants in 4 families, clinical, genetic and functional studies were performed with respect to steroidogenesis and energy balance. 5 patients with 46,XY DSD were found to harbor NR5A1/SF-1 mutations including 2 novel variations. One patient harboring a novel mutation also suffered from adrenal insufficiency. SF-1 mutations were studied in cell systems (HEK293, JEG3) for impact on transcription of genes involved in steroidogenesis (CYP11A1, CYP17A1, HSD3B2) and in energy balance (BDNF). BDNF regulation by SF-1 was studied by promoter assays (JEG3). Two novel NR5A1/SF-1 mutations (Glu7Stop, His408Profs*159) were confirmed. Glu7Stop is the 4th reported SF-1 mutation causing DSD and adrenal insufficiency. In vitro studies revealed that transcription of the BDNF gene is regulated by SF-1, and that mutant SF-1 decreased BDNF promoter activation (similar to steroid enzyme promoters). However, clinical data from 16 subjects carrying SF-1 mutations showed normal birth weight and BMI. Glu7Stop and His408Profs*159 are novel SF-1 mutations identified in patients with 46,XY DSD and adrenal insufficiency (Glu7Stop). In vitro, SF-1 mutations affect not only steroidogenesis but also transcription of BDNF which is involved in energy balance. However, in contrast to mice, consequences on weight were not found in humans with SF-1 mutations.

  8. Loss-of-function mutations in co-chaperone BAG3 destabilize small HSPs and cause cardiomyopathy

    PubMed Central

    Fang, Xi; Wu, Tongbin; Liu, Canzhao; Veevers, Jennifer; Stroud, Matthew J.; Zhang, Zhiyuan; Ma, Xiaolong; Mu, Yongxin; Lao, Dieu-Hung; Dalton, Nancy D.; Gu, Yusu; Wang, Celine; Wang, Michael; Liang, Yan; Ouyang, Kunfu; Peterson, Kirk L.; Evans, Sylvia M.

    2017-01-01

    Defective protein quality control (PQC) systems are implicated in multiple diseases. Molecular chaperones and co-chaperones play a central role in functioning PQC. Constant mechanical and metabolic stress in cardiomyocytes places great demand on the PQC system. Mutation and downregulation of the co-chaperone protein BCL-2–associated athanogene 3 (BAG3) are associated with cardiac myopathy and heart failure, and a BAG3 E455K mutation leads to dilated cardiomyopathy (DCM). However, the role of BAG3 in the heart and the mechanisms by which the E455K mutation leads to DCM remain obscure. Here, we found that cardiac-specific Bag3-KO and E455K-knockin mice developed DCM. Comparable phenotypes in the 2 mutants demonstrated that the E455K mutation resulted in loss of function. Further experiments revealed that the E455K mutation disrupted the interaction between BAG3 and HSP70. In both mutants, decreased levels of small heat shock proteins (sHSPs) were observed, and a subset of proteins required for cardiomyocyte function was enriched in the insoluble fraction. Together, these observations suggest that interaction between BAG3 and HSP70 is essential for BAG3 to stabilize sHSPs and maintain cardiomyocyte protein homeostasis. Our results provide insight into heart failure caused by defects in BAG3 pathways and suggest that increasing BAG3 protein levels may be of therapeutic benefit in heart failure. PMID:28737513

  9. Loss-of-function mutations in co-chaperone BAG3 destabilize small HSPs and cause cardiomyopathy.

    PubMed

    Fang, Xi; Bogomolovas, Julius; Wu, Tongbin; Zhang, Wei; Liu, Canzhao; Veevers, Jennifer; Stroud, Matthew J; Zhang, Zhiyuan; Ma, Xiaolong; Mu, Yongxin; Lao, Dieu-Hung; Dalton, Nancy D; Gu, Yusu; Wang, Celine; Wang, Michael; Liang, Yan; Lange, Stephan; Ouyang, Kunfu; Peterson, Kirk L; Evans, Sylvia M; Chen, Ju

    2017-08-01

    Defective protein quality control (PQC) systems are implicated in multiple diseases. Molecular chaperones and co-chaperones play a central role in functioning PQC. Constant mechanical and metabolic stress in cardiomyocytes places great demand on the PQC system. Mutation and downregulation of the co-chaperone protein BCL-2-associated athanogene 3 (BAG3) are associated with cardiac myopathy and heart failure, and a BAG3 E455K mutation leads to dilated cardiomyopathy (DCM). However, the role of BAG3 in the heart and the mechanisms by which the E455K mutation leads to DCM remain obscure. Here, we found that cardiac-specific Bag3-KO and E455K-knockin mice developed DCM. Comparable phenotypes in the 2 mutants demonstrated that the E455K mutation resulted in loss of function. Further experiments revealed that the E455K mutation disrupted the interaction between BAG3 and HSP70. In both mutants, decreased levels of small heat shock proteins (sHSPs) were observed, and a subset of proteins required for cardiomyocyte function was enriched in the insoluble fraction. Together, these observations suggest that interaction between BAG3 and HSP70 is essential for BAG3 to stabilize sHSPs and maintain cardiomyocyte protein homeostasis. Our results provide insight into heart failure caused by defects in BAG3 pathways and suggest that increasing BAG3 protein levels may be of therapeutic benefit in heart failure.

  10. Novel mutations in RASGRP2, which encodes CalDAG-GEFI, abrogate Rap1 activation, causing platelet dysfunction

    PubMed Central

    Lozano, María Luisa; Cook, Aaron; Bastida, José María; Paul, David S.; Iruin, Gemma; Cid, Ana Rosa; Adan-Pedroso, Rosa; Ramón González-Porras, José; Hernández-Rivas, Jesús María; Fletcher, Sarah J.; Johnson, Ben; Morgan, Neil; Ferrer-Marin, Francisca; Vicente, Vicente; Sondek, John; Watson, Steve P.; Bergmeier, Wolfgang

    2016-01-01

    In addition to mutations in ITG2B or ITGB3 genes that cause defective αIIbβ3 expression and/or function in Glanzmann’s thrombasthenia patients, platelet dysfunction can be a result of genetic variability in proteins that mediate inside-out activation of αIIbβ3. The RASGRP2 gene is strongly expressed in platelets and neutrophils, where its encoded protein CalDAG-GEFI facilitates the activation of Rap1 and subsequent activation of integrins. We used next-generation sequencing (NGS) and whole-exome sequencing (WES) to identify 2 novel function-disrupting mutations in RASGRP2 that account for bleeding diathesis and platelet dysfunction in 2 unrelated families. By using a panel of 71 genes, we identified a homozygous change (c.1142C>T) in exon 10 of RASGRP2 in a 9-year-old child of Chinese origin (family 1). This variant led to a p.Ser381Phe substitution in the CDC25 catalytic domain of CalDAG-GEFI. In 2 Spanish siblings from family 2, WES identified a nonsense homozygous variation (c.337C>T) (p.Arg113X) in exon 5 of RASGRP2. CalDAG-GEFI expression was markedly reduced in platelets from all patients, and by using a novel in vitro assay, we found that the nucleotide exchange activity was dramatically reduced in CalDAG-GEFI p.Ser381Phe. Platelets from homozygous patients exhibited agonist-specific defects in αIIbβ3 integrin activation and aggregation. In contrast, α- and δ-granule secretion, platelet spreading, and clot retraction were not markedly affected. Integrin activation in the patients’ neutrophils was also impaired. These patients are the first cases of a CalDAG-GEFI deficiency due to homozygous RASGRP2 mutations that are linked to defects in both leukocyte and platelet integrin activation. PMID:27235135

  11. Perturbed length-dependent activation in human hypertrophic cardiomyopathy with missense sarcomeric gene mutations.

    PubMed

    Sequeira, Vasco; Wijnker, Paul J M; Nijenkamp, Louise L A M; Kuster, Diederik W D; Najafi, Aref; Witjas-Paalberends, E Rosalie; Regan, Jessica A; Boontje, Nicky; Ten Cate, Folkert J; Germans, Tjeerd; Carrier, Lucie; Sadayappan, Sakthivel; van Slegtenhorst, Marjon A; Zaremba, Ruud; Foster, D Brian; Murphy, Anne M; Poggesi, Corrado; Dos Remedios, Cris; Stienen, Ger J M; Ho, Carolyn Y; Michels, Michelle; van der Velden, Jolanda

    2013-05-24

    High-myofilament Ca(2+) sensitivity has been proposed as a trigger of disease pathogenesis in familial hypertrophic cardiomyopathy (HCM) on the basis of in vitro and transgenic mice studies. However, myofilament Ca(2+) sensitivity depends on protein phosphorylation and muscle length, and at present, data in humans are scarce. To investigate whether high myofilament Ca(2+) sensitivity and perturbed length-dependent activation are characteristics for human HCM with mutations in thick and thin filament proteins. Cardiac samples from patients with HCM harboring mutations in genes encoding thick (MYH7, MYBPC3) and thin (TNNT2, TNNI3, TPM1) filament proteins were compared with sarcomere mutation-negative HCM and nonfailing donors. Cardiomyocyte force measurements showed higher myofilament Ca(2+) sensitivity in all HCM samples and low phosphorylation of protein kinase A (PKA) targets compared with donors. After exogenous PKA treatment, myofilament Ca(2+) sensitivity was similar (MYBPC3mut, TPM1mut, sarcomere mutation-negative HCM), higher (MYH7mut, TNNT2mut), or even significantly lower (TNNI3mut) compared with donors. Length-dependent activation was significantly smaller in all HCM than in donor samples. PKA treatment increased phosphorylation of PKA-targets in HCM myocardium and normalized length-dependent activation to donor values in sarcomere mutation-negative HCM and HCM with truncating MYBPC3 mutations but not in HCM with missense mutations. Replacement of mutant by wild-type troponin in TNNT2mut and TNNI3mut corrected length-dependent activation to donor values. High-myofilament Ca(2+) sensitivity is a common characteristic of human HCM and partly reflects hypophosphorylation of PKA targets compared with donors. Length-dependent sarcomere activation is perturbed by missense mutations, possibly via posttranslational modifications other than PKA hypophosphorylation or altered protein-protein interactions, and represents a common pathomechanism in HCM.

  12. Beckwith-Wiedemann and IMAGe syndromes: two very different diseases caused by mutations on the same gene.

    PubMed

    Milani, Donatella; Pezzani, Lidia; Tabano, Silvia; Miozzo, Monica

    2014-01-01

    Genomic imprinting is an epigenetically regulated mechanism leading to parental-origin allele-specific expression. Beckwith-Wiedemann syndrome (BWS) is an imprinting disease related to 11p15.5 genetic and epigenetic alterations, among them loss-of-function CDKN1C mutations. Intriguing is that CDKN1C gain-of-function variations were recently found in patients with IMAGe syndrome (intrauterine growth restriction, metaphyseal dysplasia, congenital adrenal hypoplasia, and genital anomalies). BWS and IMAGe share an imprinted mode of inheritance; familial analysis demonstrated the presence of the phenotype exclusively when the mutant CDKN1C allele is inherited from the mother. Interestingly, both IMAGe and BWS are characterized by growth disturbances, although with opposite clinical phenotypes; IMAGe patients display growth restriction whereas BWS patients display overgrowth. CDKN1C codifies for CDKN1C/KIP2, a nuclear protein and potent tight-binding inhibitor of several cyclin/Cdk complexes, playing a role in maintenance of the nonproliferative state of cells. The mirror phenotype of BWS and IMAGe can be, at least in part, explained by the effect of mutations on protein functions. All the IMAGe-associated mutations are clustered in the proliferating cell nuclear antigen-binding domain of CDKN1C and cause a dramatic increase in the stability of the protein, which probably results in a functional gain of growth inhibition properties. In contrast, BWS mutations are not clustered within a single domain, are loss-of-function, and promote cell proliferation. CDKN1C is an example of allelic heterogeneity associated with opposite syndromes.

  13. The Ying and Yang of STAT3 in Human Disease.

    PubMed

    Vogel, Tiphanie P; Milner, Joshua D; Cooper, Megan A

    2015-10-01

    The transcription factor signal transducer and activator of transcription 3 (STAT3) is a critical regulator of multiple, diverse cellular processes. Heterozgyous, germline, loss-of-function mutations in STAT3 lead to the primary immune deficiency Hyper-IgE syndrome. Heterozygous, somatic, gain-of-function mutations in STAT3 have been reported in malignancy. Recently, germline, heterozygous mutations in STAT3 that confer a gain-of-function have been discovered and result in early-onset, multi-organ autoimmunity. This review summarizes what is known about the role of STAT3 in human disease.

  14. Biochemical analysis of active site mutations of human polymerase η.

    PubMed

    Suarez, Samuel C; Beardslee, Renee A; Toffton, Shannon M; McCulloch, Scott D

    2013-01-01

    DNA polymerase η (pol η) plays a critical role in suppressing mutations caused by the bypass of cis-syn cyclobutane pyrimidine dimers (CPD) that escape repair. There is evidence this is also the case for the oxidative lesion 7,8-dihydro-8-oxo-guanine (8-oxoG). Both of these lesions cause moderate to severe blockage of synthesis when encountered by replicative polymerases, while pol η displays little no to pausing during translesion synthesis. However, since lesion bypass does not remove damaged DNA from the genome and can possibly be accompanied by errors in synthesis during bypass, the process is often called 'damage tolerance' to delineate it from classical DNA repair pathways. The fidelity of lesion bypass is therefore of importance when determining how pol η suppresses mutations after DNA damage. As pol η has been implicated in numerous in vivo pathways other than lesion bypass, we wanted to better understand the molecular mechanisms involved in the relatively low-fidelity synthesis displayed by pol η. To that end, we have created a set of mutant pol η proteins each containing a single amino acid substitution in the active site and closely surrounding regions. We determined overall DNA synthesis ability as well as the efficiency and fidelity of bypass of thymine-thymine CPD (T-T CPD) and 8-oxoG containing DNA templates. Our results show that several amino acids are critical for normal polymerase function, with changes in overall activity and fidelity being observed. Of the mutants that retain polymerase activity, we demonstrate that amino acids Q38, Y52, and R61 play key roles in determining polymerase fidelity, with substation of alanine causing both increases and decreases in fidelity. Remarkably, the Q38A mutant displays increased fidelity during synthesis opposite 8-oxoG but decreased fidelity during synthesis opposite a T-T CPD. Copyright © 2013 Elsevier B.V. All rights reserved.

  15. Backbone dynamics and global effects of an activating mutation in minimized Mtu RecA inteins.

    PubMed

    Du, Zhenming; Liu, Yangzhong; Ban, David; Lopez, Maria M; Belfort, Marlene; Wang, Chunyu

    2010-07-23

    Inteins mediate protein splicing, which has found many applications in biotechnology and protein engineering. A single valine-to-leucine mutation (V67L) can globally enhance splicing and related cleavage reactions in minimized Mycobacterium tuberculosis RecA inteins. However, V67L mutation causes little change in crystal structures. To test whether protein dynamics contribute to activity enhancement in the V67L mutation, we have studied the conformations and dynamics of the minimized and engineered intein DeltaDeltaIhh-V67CM and a single V67L mutant, DeltaDeltaIhh-L67CM, by solution NMR. Chemical shift perturbations established that the V67L mutation causes global changes, including changes at the N-terminus and C-terminus of the intein, which are active sites for protein splicing. The single V67L mutation significantly slows hydrogen-exchange rates globally, indicating a shift to more stable conformations and reduction in ensemble distribution. Whereas the V67L mutation causes little change for motions on the picosecond-to-nanosecond timescale, motions on the microsecond-to-millisecond timescale affect a region involving the conserved F-block histidine and C-terminal asparagine, which are residues important for C-terminal cleavage. The V67L mutation is proposed to activate splicing by reducing the ensemble distribution of the intein structure and by modifying the active sites. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  16. Quantification of mutation-derived bias for alternate mating functionalities of the Saccharomyces cerevisiae Ste2p pheromone receptor.

    PubMed

    Choudhary, Pooja; Loewen, Michele C

    2016-01-01

    Although well documented for mammalian G-protein-coupled receptors, alternate functionalities and associated alternate signalling remain to be unequivocally established for the Saccharomyces cerevisiae pheromone Ste2p receptor. Here, evidence supporting alternate functionalities for Ste2p is re-evaluated, extended and quantified. In particular, strong mating and constitutive signalling mutations, focusing on residues S254, P258 and S259 in TM6 of Ste2p, are stacked and investigated in terms of their effects on classical G-protein-mediated signal transduction associated with cell cycle arrest, and alternatively, their impact on downstream mating projection and zygote formation events. In relative dose response experiments, accounting for systemic and observational bias, mutational-derived functional differences were observed, validating the S254L-derived bias for downstream mating responses and highlighting complex relationships between TM6-mutation derived constitutive signalling and ligand-induced functionalities. Mechanistically, localization studies suggest that alterations to receptor trafficking may contribute to mutational bias, in addition to expected receptor conformational stabilization effects. Overall, these results extend previous observations and quantify the contributions of Ste2p variants to mediating cell cycle arrest versus downstream mating functionalities. © Crown copyright 2015.

  17. Activating mutations in RRAS underlie a phenotype within the RASopathy spectrum and contribute to leukaemogenesis

    PubMed Central

    Flex, Elisabetta; Jaiswal, Mamta; Pantaleoni, Francesca; Martinelli, Simone; Strullu, Marion; Fansa, Eyad K.; Caye, Aurélie; De Luca, Alessandro; Lepri, Francesca; Dvorsky, Radovan; Pannone, Luca; Paolacci, Stefano; Zhang, Si-Cai; Fodale, Valentina; Bocchinfuso, Gianfranco; Rossi, Cesare; Burkitt-Wright, Emma M.M.; Farrotti, Andrea; Stellacci, Emilia; Cecchetti, Serena; Ferese, Rosangela; Bottero, Lisabianca; Castro, Silvana; Fenneteau, Odile; Brethon, Benoît; Sanchez, Massimo; Roberts, Amy E.; Yntema, Helger G.; Van Der Burgt, Ineke; Cianci, Paola; Bondeson, Marie-Louise; Cristina Digilio, Maria; Zampino, Giuseppe; Kerr, Bronwyn; Aoki, Yoko; Loh, Mignon L.; Palleschi, Antonio; Di Schiavi, Elia; Carè, Alessandra; Selicorni, Angelo; Dallapiccola, Bruno; Cirstea, Ion C.; Stella, Lorenzo; Zenker, Martin; Gelb, Bruce D.; Cavé, Hélène; Ahmadian, Mohammad R.; Tartaglia, Marco

    2014-01-01

    RASopathies, a family of disorders characterized by cardiac defects, defective growth, facial dysmorphism, variable cognitive deficits and predisposition to certain malignancies, are caused by constitutional dysregulation of RAS signalling predominantly through the RAF/MEK/ERK (MAPK) cascade. We report on two germline mutations (p.Gly39dup and p.Val55Met) in RRAS, a gene encoding a small monomeric GTPase controlling cell adhesion, spreading and migration, underlying a rare (2 subjects among 504 individuals analysed) and variable phenotype with features partially overlapping Noonan syndrome, the most common RASopathy. We also identified somatic RRAS mutations (p.Gly39dup and p.Gln87Leu) in 2 of 110 cases of non-syndromic juvenile myelomonocytic leukaemia, a childhood myeloproliferative/myelodysplastic disease caused by upregulated RAS signalling, defining an atypical form of this haematological disorder rapidly progressing to acute myeloid leukaemia. Two of the three identified mutations affected known oncogenic hotspots of RAS genes and conferred variably enhanced RRAS function and stimulus-dependent MAPK activation. Expression of an RRAS mutant homolog in Caenorhabditis elegans enhanced RAS signalling and engendered protruding vulva, a phenotype previously linked to the RASopathy-causing SHOC2S2G mutant. Overall, these findings provide evidence of a functional link between RRAS and MAPK signalling and reveal an unpredicted role of enhanced RRAS function in human disease. PMID:24705357

  18. Hyperactivation of HUSH complex function by Charcot-Marie-Tooth disease mutation in MORC2.

    PubMed

    Tchasovnikarova, Iva A; Timms, Richard T; Douse, Christopher H; Roberts, Rhys C; Dougan, Gordon; Kingston, Robert E; Modis, Yorgo; Lehner, Paul J

    2017-07-01

    Dominant mutations in the MORC2 gene have recently been shown to cause axonal Charcot-Marie-Tooth (CMT) disease, but the cellular function of MORC2 is poorly understood. Here, through a genome-wide CRISPR-Cas9-mediated forward genetic screen, we identified MORC2 as an essential gene required for epigenetic silencing by the HUSH complex. HUSH recruits MORC2 to target sites in heterochromatin. We exploited a new method, differential viral accessibility (DIVA), to show that loss of MORC2 results in chromatin decompaction at these target loci, which is concomitant with a loss of H3K9me3 deposition and transcriptional derepression. The ATPase activity of MORC2 is critical for HUSH-mediated silencing, and the most common alteration affecting the ATPase domain in CMT patients (p.Arg252Trp) hyperactivates HUSH-mediated repression in neuronal cells. These data define a critical role for MORC2 in epigenetic silencing by the HUSH complex and provide a mechanistic basis underpinning the role of MORC2 mutations in CMT disease.

  19. Germline Gain-of-Function Mutations in AFF4 Cause a Developmental Syndrome Functionally Linking the Super Elongation Complex and Cohesin

    PubMed Central

    Izumi, Kosuke; Nakato, Ryuichiro; Zhang, Zhe; Edmondson, Andrew C.; Noon, Sarah; Dulik, Matthew C.; Rajagopalan, Ramkakrishnan; Venditti, Charles P.; Gripp, Karen; Samanich, Joy; Zackai, Elaine H.; Deardorff, Matthew A.; Clark, Dinah; Allen, Julian L.; Dorsett, Dale; Misulovin, Ziva; Komata, Makiko; Bando, Masashige; Kaur, Maninder; Katou, Yuki; Shirahige, Katsuhiko; Krantz, Ian D.

    2015-01-01

    Transcriptional elongation is critical for gene expression regulation during embryogenesis. The super elongation complex (SEC) governs this process by mobilizing paused RNA polymerase II (RNAP2). Using exome sequencing, we discovered missense mutations in AFF4, a core component of the SEC in three unrelated probands with a novel syndrome that phenotypically overlaps Cornelia de Lange syndrome (CdLS), that we have named CHOPS syndrome (C for Cognitive impairment and Coarse facies, H for Heart defects, O for Obesity, P for Pulmonary involvement and S for Short stature and Skeletal dysplasia). Transcriptome and chromatin immunoprecipitation sequencing (ChIP-seq) analyses demonstrated similar alterations of genome-wide binding of AFF4, cohesin and RNAP2 between CdLS and CHOPS syndrome. Direct molecular interaction between SEC, cohesin and RNAP2 was demonstrated. This data supports a common molecular pathogenesis for CHOPS syndrome and CdLS caused by disturbance of transcriptional elongation due to alterations in genome-wide binding of AFF4 and cohesin. PMID:25730767

  20. Mutational analysis of amino acid residues involved in catalytic activity of a family 18 chitinase from tulip bulbs.

    PubMed

    Suzukawa, Keisuke; Yamagami, Takeshi; Ohnuma, Takayuki; Hirakawa, Hideki; Kuhara, Satoru; Aso, Yoichi; Ishiguro, Masatsune

    2003-02-01

    We expressed chitinase-1 (TBC-1) from tulip bulbs (Tulipa bakeri) in E. coli cells and used site-directed mutagenesis to identify amino acid residues essential for catalytic activity. Mutations at Glu-125 and Trp-251 completely abolished enzyme activity, and activity decreased with mutations at Asp-123 and Trp-172 when glycolchitin was the substrate. Activity changed with the mutations of Trp-251 to one of several amino acids with side-chains of little hydrophobicity, suggesting that hydrophobic interaction of Trp-251 is important for the activity. Molecular dynamics (MD) simulation analysis with hevamine as the model compound showed that the distance between Asp-123 and Glu-125 was extended by mutation of Trp-251. Kinetic studies of Trp-251-mutated chitinases confirmed these various phenomena. The results suggested that Glu-125 and Trp-251 are essential for enzyme activity and that Trp-251 had a direct role in ligand binding.

  1. Screening of mutations affecting protein stability and dynamics of FGFR1-A simulation analysis.

    PubMed

    Doss, C George Priya; Rajith, B; Garwasis, Nimisha; Mathew, Pretty Raju; Raju, Anand Solomon; Apoorva, K; William, Denise; Sadhana, N R; Himani, Tanwar; Dike, I P

    2012-12-01

    Single amino acid substitutions in Fibroblast Growth Factor Receptor 1 ( FGFR1 ) destabilize protein and have been implicated in several genetic disorders like various forms of cancer, Kallamann syndrome, Pfeiffer syndrome, Jackson Weiss syndrome, etc. In order to gain functional insight into mutation caused by amino acid substitution to protein function and expression, special emphasis was laid on molecular dynamics simulation techniques in combination with in silico tools such as SIFT, PolyPhen 2.0, I-Mutant 3.0 and SNAP. It has been estimated that 68% nsSNPs were predicted to be deleterious by I-Mutant, slightly higher than SIFT (37%), PolyPhen 2.0 (61%) and SNAP (58%). From the observed results, P722S mutation was found to be most deleterious by comparing results of all in silico tools. By molecular dynamics approach, we have shown that P722S mutation leads to increase in flexibility, and deviated more from the native structure which was supported by the decrease in the number of hydrogen bonds. In addition, biophysical analysis revealed a clear insight of stability loss due to P722S mutation in FGFR1 protein. Majority of mutations predicted by these in silico tools were in good concordance with the experimental results.

  2. Differential Reprogramming of Isogenic Colorectal Cancer Cells by Distinct Activating KRAS Mutations

    PubMed Central

    2015-01-01

    Oncogenic mutations of Ras at codons 12, 13, or 61, that render the protein constitutively active, are found in ∼16% of all cancer cases. Among the three major Ras isoforms, KRAS is the most frequently mutated isoform in cancer. Each Ras isoform and tumor type displays a distinct pattern of codon-specific mutations. In colon cancer, KRAS is typically mutated at codon 12, but a significant fraction of patients have mutations at codon 13. Clinical data suggest different outcomes and responsiveness to treatment between these two groups. To investigate the differential effects upon cell status associated with KRAS mutations we performed a quantitative analysis of the proteome and phosphoproteome of isogenic SW48 colon cancer cell lines in which one allele of the endogenous gene has been edited to harbor specific KRAS mutations (G12V, G12D, or G13D). Each mutation generates a distinct signature, with the most variability seen between G13D and the codon 12 KRAS mutants. One notable example of specific up-regulation in KRAS codon 12 mutant SW48 cells is provided by the short form of the colon cancer stem cell marker doublecortin-like Kinase 1 (DCLK1) that can be reversed by suppression of KRAS. PMID:25599653

  3. MutationAligner: a resource of recurrent mutation hotspots in protein domains in cancer.

    PubMed

    Gauthier, Nicholas Paul; Reznik, Ed; Gao, Jianjiong; Sumer, Selcuk Onur; Schultz, Nikolaus; Sander, Chris; Miller, Martin L

    2016-01-04

    The MutationAligner web resource, available at http://www.mutationaligner.org, enables discovery and exploration of somatic mutation hotspots identified in protein domains in currently (mid-2015) more than 5000 cancer patient samples across 22 different tumor types. Using multiple sequence alignments of protein domains in the human genome, we extend the principle of recurrence analysis by aggregating mutations in homologous positions across sets of paralogous genes. Protein domain analysis enhances the statistical power to detect cancer-relevant mutations and links mutations to the specific biological functions encoded in domains. We illustrate how the MutationAligner database and interactive web tool can be used to explore, visualize and analyze mutation hotspots in protein domains across genes and tumor types. We believe that MutationAligner will be an important resource for the cancer research community by providing detailed clues for the functional importance of particular mutations, as well as for the design of functional genomics experiments and for decision support in precision medicine. MutationAligner is slated to be periodically updated to incorporate additional analyses and new data from cancer genomics projects. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  4. Mucopolysaccharidosis type I: Identification and characterization of mutations affecting alpha-L-iduronidase activity.

    PubMed

    Lee-Chen, Guey-Jen; Lin, Shuan-Pei; Chen, I-Shen; Chang, Jui-Hung; Yang, Chyau-Wen; Chin, Yi-Wen

    2002-06-01

    Mucopolysaccharidosis type I (MPS I) is caused by a deficiency of the lysosomal enzyme alpha-L-iduronidase (IDUA). MPS I covers a broad spectrum of clinical severity ranging from severe Hurler syndrome through intermediate Hurler/Scheie syndrome to mild Scheie syndrome. Mutation screening was performed in two unrelated Taiwanese MPS I patients. A Hurler/Scheie patient had A79V (C to T transition in codon 79) in exon 2 and R619G (C to G transversion in codon 619) in exon 14. R619G has been shown to cause disease. Expression of A79V in COS-7 cells showed trace amounts of IDUA activity, demonstrating the deleterious nature of the mutation. A79V mutation did not cause a reduction in IDUA mRNA levels. The reduced level of IDUA protein suggests increased degradation of the mutant enzyme. A Hurler patient had 134del12 (in-frame deletion of codons 16-19 in signal peptide) in exon 1 and Q584X (C to T transition in codon 584) in exon 13. Transfection of COS-7 cells with Q584X did not yield active enzyme. Q584X mutation caused an apparent reduction in the IDUA mRNA level and no IDUA protein was detected. Conversely, 134del12 showed 124.6% of normal activity in transfected cells and a 77-kDa precursor protein was observed on Western blot, suggesting biologic activity of precursor IDUA without posttranslational cleavage. These findings provide further evidence of the molecular heterogeneity in mutations in MPS I.

  5. Lifestyle intervention to improve quality of life and prevent weight gain after renal transplantation: Design of the Active Care after Transplantation (ACT) randomized controlled trial.

    PubMed

    Klaassen, Gerald; Zelle, Dorien M; Navis, Gerjan J; Dijkema, Desie; Bemelman, Frederike J; Bakker, Stephan J L; Corpeleijn, Eva

    2017-09-15

    Low physical activity and reduced physical functioning are common after renal transplantation, resulting in a reduced quality of life. Another common post-transplantation complication is poor cardio-metabolic health, which plays a main role in long-term outcomes in renal transplant recipients (RTR). It is increasingly recognized that weight gain in the first year after transplantation, especially an increase in fat mass, is a highly common contributor to cardio-metabolic risk. The aim of this study is to compare the outcomes of usual care to the effects of exercise alone, and exercise combined with dietary counseling, on physical functioning, quality of life and post-transplantation weight gain in RTR. The Active Care after Transplantation study is a multicenter randomized controlled trial with three arms in which RTR from 3 Dutch hospitals are randomized within the first year after transplantation to usual care, to exercise intervention (3 months supervised exercise 2 times per week followed by 12 months active follow-up), or to an exercise + diet intervention, consisting of the exercise training with additional dietary counseling (12 sessions over 15 months by a renal dietician). In total, 219 participants (73 per group) will be recruited. The primary outcome is the subdomain physical functioning of quality of life, (SF-36 PF). Secondary outcomes include other evaluations of quality of life (SF-36, KDQOL-SF, EQ-5D), objective measures of physical functioning (aerobic capacity and muscle strength), level of physical activity, gain in adiposity (body fat percentage by bio-electrical impedance assessment, BMI, waist circumference), and cardiometabolic risk factors (blood pressure, lipids, glucose metabolism). Furthermore, data on renal function, medical history, medication, psychological factors (motivation, kinesiophobia, coping style), nutrition knowledge, nutrition intake, nutrition status, fatigue, work participation, process evaluation and cost

  6. Identification of a recently active Prunus-specific non-autonomous Mutator element with considerable genome shaping force.

    PubMed

    Halász, Júlia; Kodad, Ossama; Hegedűs, Attila

    2014-07-01

    Miniature inverted-repeat transposable elements (MITEs) are known to contribute to the evolution of plants, but only limited information is available for MITEs in the Prunus genome. We identified a MITE that has been named Falling Stones, FaSt. All structural features (349-bp size, 82-bp terminal inverted repeats and 9-bp target site duplications) are consistent with this MITE being a putative member of the Mutator transposase superfamily. FaSt showed a preferential accumulation in the short AT-rich segments of the euchromatin region of the peach genome. DNA sequencing and pollination experiments have been performed to confirm that the nested insertion of FaSt into the S-haplotype-specific F-box gene of apricot resulted in the breakdown of self-incompatibility (SI). A bioinformatics-based survey of the known Rosaceae and other genomes and a newly designed polymerase chain reaction (PCR) assay verified the Prunoideae-specific occurrence of FaSt elements. Phylogenetic analysis suggested a recent activity of FaSt in the Prunus genome. The occurrence of a nested insertion in the apricot genome further supports the recent activity of FaSt in response to abiotic stress conditions. This study reports on a presumably active non-autonomous Mutator element in Prunus that exhibits a major indirect genome shaping force through inducing loss-of-function mutation in the SI locus. © 2014 The Authors The Plant Journal © 2014 John Wiley & Sons Ltd.

  7. The Arrhythmogenic Calmodulin Mutation D129G Dysregulates Cell Growth, Calmodulin-dependent Kinase II Activity, and Cardiac Function in Zebrafish*

    PubMed Central

    Zacharias, Triantafyllos; Kulej, Katarzyna; Wang, Kevin; Torggler, Raffaela; la Cour, Jonas M.

    2016-01-01

    Calmodulin (CaM) is a Ca2+ binding protein modulating multiple targets, several of which are associated with cardiac pathophysiology. Recently, CaM mutations were linked to heart arrhythmia. CaM is crucial for cell growth and viability, yet the effect of the arrhythmogenic CaM mutations on cell viability, as well as heart rhythm, remains unknown, and only a few targets with relevance for heart physiology have been analyzed for their response to mutant CaM. We show that the arrhythmia-associated CaM mutants support growth and viability of DT40 cells in the absence of WT CaM except for the long QT syndrome mutant CaM D129G. Of the six CaM mutants tested (N53I, F89L, D95V, N97S, D129G, and F141L), three showed a decreased activation of Ca2+/CaM-dependent kinase II, most prominently the D129G CaM mutation, which was incapable of stimulating Thr286 autophosphorylation. Furthermore, the CaM D129G mutation led to bradycardia in zebrafish and an arrhythmic phenotype in a subset of the analyzed zebrafish. PMID:27815504

  8. Activation of Antibiotic Production in Bacillus spp. by Cumulative Drug Resistance Mutations

    PubMed Central

    Tojo, Shigeo; Tanaka, Yukinori

    2015-01-01

    Bacillus subtilis strains produce a wide range of antibiotics, including ribosomal and nonribosomal peptide antibiotics, as well as bacilysocin and neotrehalosadiamine. Mutations in B. subtilis strain 168 that conferred resistance to drugs such as streptomycin and rifampin resulted in overproduction of the dipeptide antibiotic bacilysin. Cumulative drug resistance mutations, such as mutations in the mthA and rpsL genes, which confer low- and high-level resistance, respectively, to streptomycin, and mutations in rpoB, which confer resistance to rifampin, resulted in cells that overproduced bacilysin. Transcriptional analysis demonstrated that the enhanced transcription of biosynthesis genes was responsible for the overproduction of bacilysin. This approach was effective also in activating the cryptic genes of Bacillus amyloliquefaciens, leading to actual production of antibiotic(s). PMID:26369962

  9. Integration of somatic mutation, expression and functional data reveals potential driver genes predictive of breast cancer survival.

    PubMed

    Suo, Chen; Hrydziuszko, Olga; Lee, Donghwan; Pramana, Setia; Saputra, Dhany; Joshi, Himanshu; Calza, Stefano; Pawitan, Yudi

    2015-08-15

    Genome and transcriptome analyses can be used to explore cancers comprehensively, and it is increasingly common to have multiple omics data measured from each individual. Furthermore, there are rich functional data such as predicted impact of mutations on protein coding and gene/protein networks. However, integration of the complex information across the different omics and functional data is still challenging. Clinical validation, particularly based on patient outcomes such as survival, is important for assessing the relevance of the integrated information and for comparing different procedures. An analysis pipeline is built for integrating genomic and transcriptomic alterations from whole-exome and RNA sequence data and functional data from protein function prediction and gene interaction networks. The method accumulates evidence for the functional implications of mutated potential driver genes found within and across patients. A driver-gene score (DGscore) is developed to capture the cumulative effect of such genes. To contribute to the score, a gene has to be frequently mutated, with high or moderate mutational impact at protein level, exhibiting an extreme expression and functionally linked to many differentially expressed neighbors in the functional gene network. The pipeline is applied to 60 matched tumor and normal samples of the same patient from The Cancer Genome Atlas breast-cancer project. In clinical validation, patients with high DGscores have worse survival than those with low scores (P = 0.001). Furthermore, the DGscore outperforms the established expression-based signatures MammaPrint and PAM50 in predicting patient survival. In conclusion, integration of mutation, expression and functional data allows identification of clinically relevant potential driver genes in cancer. The documented pipeline including annotated sample scripts can be found in http://fafner.meb.ki.se/biostatwiki/driver-genes/. yudi.pawitan@ki.se Supplementary data are

  10. African American and White women׳s perceptions of weight gain, physical activity, and nutrition during pregnancy.

    PubMed

    Whitaker, Kara M; Wilcox, Sara; Liu, Jihong; Blair, Steven N; Pate, Russell R

    2016-03-01

    To describe African American and White women's perceptions of weight gain, physical activity, and nutrition during pregnancy and to explore differences in perceptions by race. Qualitative interview study. Two Ob/Gyn clinics in South Carolina, USA. Thirty pregnant women (15 African American, 15 White) between 20 and 30 weeks gestation, equally represented across pre-pregnancy BMI categories (10 normal weight, 10 overweight, and 10 obese). White women more frequently described intentions to meet weight gain, physical activity, and dietary guidelines in pregnancy than African American women. African American women were more concerned with inadequate weight gain while White women more commonly expressed concerns about excessive weight gain. More White women discussed the importance of physical activity for weight management. Regardless of race, few women described risks of excessive weight gain or benefits of physical activity as it relates to the baby's health. The primary cited barrier of healthy eating was the high cost of fresh produce. Several knowledge gaps as well as race differences were identified in women's perceptions and intentions toward weight gain, physical activity, and nutrition during pregnancy. Future interventions should seek to educate women about common misperceptions. It may be necessary to culturally tailor gestational weight gain interventions to optimise health outcomes. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Roles of germline JAK2 activation mutation JAK2 V625F in the pathology of myeloproliferative neoplasms.

    PubMed

    Wu, Qing-Yun; Ma, Meng-Meng; Fu, Lin; Zhu, Yuan-Yuan; Liu, Yang; Cao, Jiang; Zhou, Ping; Li, Zhen-Yu; Zeng, Ling-Yu; Li, Feng; Wang, Xiao-Yun; Xu, Kai-Lin

    2018-05-18

    Janus tyrosine kinase 2 (JAK2) mediates downstream signaling of cytokine receptors in all hematological lineages, constitutively active somatic JAK2 mutations play key roles in the pathology of myeloproliferative neoplasms (MPNs). Recently, germline JAK2 mutations are also associated with triple-negative MPNs. A novel germline mutation JAK2 V625F is reported to be involved in a subset of MPNs patients. However, the pathogenesis of this mutation caused MPN is still unclear. In this study, the homology models of JAK2 V625F showed that the newly formed interaction between F625 and Y613 disrupted the JAK2 JH1-JH2 domain interactions was responsible for its activation, when F625 and Y613 interaction was disrupted, its activity significantly decreased. While, when this interaction was repaired whether by forming hydrogen bond or salt bond, it would cause JAK2 activation. Biochemical studies also demonstrated that JAK2 V625F mutation led to JAK2-STAT5 pathway activation and promoted the proliferation of BaF3 cells. Thus, our results herein provide clues to understand the mechanism JAK2 V625F mutation caused MPNs and give information for the development of JAK2 mutation specific inhibitors. Copyright © 2018 Elsevier B.V. All rights reserved.

  12. Homozygous Loss-of-function Mutations in SOHLH1 in Patients With Nonsyndromic Hypergonadotropic Hypogonadism

    PubMed Central

    Bayram, Yavuz; Gulsuner, Suleyman; Guran, Tulay; Abaci, Ayhan; Yesil, Gozde; Gulsuner, Hilal Unal; Atay, Zeynep; Pierce, Sarah B.; Gambin, Tomasz; Lee, Ming; Turan, Serap; Bober, Ece; Atik, Mehmed M.; Walsh, Tom; Karaca, Ender; Pehlivan, Davut; Jhangiani, Shalini N.; Muzny, Donna; Bereket, Abdullah; Buyukgebiz, Atilla; Boerwinkle, Eric; Gibbs, Richard A.

    2015-01-01

    Context: Hypergonadotropic hypogonadism presents in females with delayed or arrested puberty, primary or secondary amenorrhea due to gonadal dysfunction, and is further characterized by elevated gonadotropins and low sex steroids. Chromosomal aberrations and various specific gene defects can lead to hypergonadotropic hypogonadism. Responsible genes include those with roles in gonadal development or maintenance, sex steroid synthesis, or end-organ resistance to gonadotropins. Identification of novel causative genes in this disorder will contribute to our understanding of the regulation of human reproductive function. Objectives: The aim of this study was to identify and report the gene responsible for autosomal-recessive hypergonadotropic hypogonadism in two unrelated families. Design and Participants: Clinical evaluation and whole-exome sequencing were performed in two pairs of sisters with nonsyndromic hypergonadotropic hypogonadism from two unrelated families. Results: Exome sequencing analysis revealed two different truncating mutations in the same gene: SOHLH1 c.705delT (p.Pro235fs*4) and SOHLH1 c.27C>G (p.Tyr9stop). Both mutations were unique to the families and segregation was consistent with Mendelian expectations for an autosomal-recessive mode of inheritance. Conclusions: Sohlh1 was known from previous mouse studies to be a transcriptional regulator that functions in the maintenance and survival of primordial ovarian follicles, but loss-of-function mutations in human females have not been reported. Our results provide evidence that homozygous-truncating mutations in SOHLH1 cause female nonsyndromic hypergonadotropic hypogonadism. PMID:25774885

  13. Changes of CFTR functional measurements and clinical improvements in cystic fibrosis patients with non p.Gly551Asp gating mutations treated with ivacaftor.

    PubMed

    Mesbahi, Myriam; Shteinberg, Michal; Wilschanski, Michael; Hatton, Aurelie; Nguyen-Khoa, Thao; Friedman, Hannah; Cohen, Michael; Escabasse, Virginie; Le Bourgeois, Muriel; Lucidi, Vicenzina; Sermet-Gaudelus, Isabelle; Bassinet, Laurence; Livnat, Galit

    2017-01-01

    Ivacaftor, a CFTR potentiator, has been found to improve CFTR function and clinical outcomes in patients with cystic fibrosis (CF) gating mutations. We investigated the effects of ivacaftor on CFTR functional measurement in CF patients carrying gating mutations other than p.Gly551Asp. Two siblings aged 13 and 12 carrying the p.Ser549Asn mutation, two sisters (45 and 43years old) compound heterozygotes for p.Asp1152His and p.Gly1244Glu, a 37year old man homozygous for the p.Gly1244Glu mutation, and a 7year old girl with p.Arg352Gln and p.Gly1244Glu mutations commenced treatment with ivacaftor. NPD was performed in all the patients and approached normal for four patients who had also clinical improvement (p.Ser549Asn compound heterozygotes, and p.Asp1152His/p.Gly1244Glu siblings). Beta-adrenergic sweat chloride secretion performed in thep.Asp1152His/p.Gly1244Glu patients improved significantly. The p.Gly1244Glu mutation homozygous patient, who had undergone an ileal resection with ileostomy and enterocutaneous fistula, did not respond clinically to ivacaftor and did not modify his sweat test. These results highlight the importance of different CFTR activity measurements to explore CFTR modulator efficacy. Copyright © 2016. Published by Elsevier B.V.

  14. Functional significance of co-occurring mutations in PIK3CA and MAP3K1 in breast cancer.

    PubMed

    Avivar-Valderas, Alvaro; McEwen, Robert; Taheri-Ghahfarokhi, Amir; Carnevalli, Larissa S; Hardaker, Elizabeth L; Maresca, Marcello; Hudson, Kevin; Harrington, Elizabeth A; Cruzalegui, Francisco

    2018-04-20

    The PI3Kα signaling pathway is frequently hyper-activated in breast cancer (BrCa), as a result of mutations/amplifications in oncogenes (e.g. HER2 ), decreased function in tumor suppressors (e.g. PTEN ) or activating mutations in key components of the pathway. In particular, activating mutations of PIK3CA (~45%) are frequently found in luminal A BrCa samples. Genomic studies have uncovered inactivating mutations in MAP3K1 (13-20%) and MAP2K4 (~8%), two upstream kinases of the JNK apoptotic pathway in luminal A BrCa samples. Further, simultaneous mutation of PIK3CA and MAP3K1 are found in ~11% of mutant PIK3CA tumors. How these two alterations may cooperate to elicit tumorigenesis and impact the sensitivity to PI3K and AKT inhibitors is currently unknown. Using CRISPR gene editing we have genetically disrupted MAP3K1 expression in mutant PIK3CA cell lines to specifically create in vitro models reflecting the mutational status of PIK3CA and MAP3K1 in BrCa patients. MAP3K1 deficient cell lines exhibited ~2.4-fold increased proliferation rate and decreased sensitivity to PI3Kα/δ(AZD8835) and AKT (AZD5363) inhibitors (~2.61 and ~5.23-fold IC 50 increases, respectively) compared with parental control cell lines. In addition, mechanistic analysis revealed that MAP3K1 disruption enhances AKT phosphorylation and downstream signaling and reduces sensitivity to AZD5363-mediated pathway inhibition. This appears to be a consequence of deficient MAP3K1-JNK signaling increasing IRS1 stability and therefore promoting IRS1 binding to p85, resulting in enhanced PI3Kα activity. Using 3D-MCF10A-PI3Kα H1047R models, we found that MAP3K1 depletion increased overall acinar volume and counteracted AZD5363-mediated reduction of acinar growth due to enhanced proliferation and reduced apoptosis. Furthermore, in vivo efficacy studies revealed that MAP3K1-deficient MCF7 tumors were less sensitive to AKT inhibitor treatment, compared with parental MCF7 tumors. Our study provides

  15. Comparison of Modules of Wild Type and Mutant Huntingtin and TP53 Protein Interaction Networks: Implications in Biological Processes and Functions

    PubMed Central

    Basu, Mahashweta; Bhattacharyya, Nitai P.; Mohanty, Pradeep K.

    2013-01-01

    Disease-causing mutations usually change the interacting partners of mutant proteins. In this article, we propose that the biological consequences of mutation are directly related to the alteration of corresponding protein protein interaction networks (PPIN). Mutation of Huntingtin (HTT) which causes Huntington's disease (HD) and mutations to TP53 which is associated with different cancers are studied as two example cases. We construct the PPIN of wild type and mutant proteins separately and identify the structural modules of each of the networks. The functional role of these modules are then assessed by Gene Ontology (GO) enrichment analysis for biological processes (BPs). We find that a large number of significantly enriched () GO terms in mutant PPIN were absent in the wild type PPIN indicating the gain of BPs due to mutation. Similarly some of the GO terms enriched in wild type PPIN cease to exist in the modules of mutant PPIN, representing the loss. GO terms common in modules of mutant and wild type networks indicate both loss and gain of BPs. We further assign relevant biological function(s) to each module by classifying the enriched GO terms associated with it. It turns out that most of these biological functions in HTT networks are already known to be altered in HD and those of TP53 networks are altered in cancers. We argue that gain of BPs, and the corresponding biological functions, are due to new interacting partners acquired by mutant proteins. The methodology we adopt here could be applied to genetic diseases where mutations alter the ability of the protein to interact with other proteins. PMID:23741403

  16. 20 CFR 229.85 - Substantial gainful activity by blind employee or child.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 20 Employees' Benefits 1 2012-04-01 2012-04-01 false Substantial gainful activity by blind employee or child. 229.85 Section 229.85 Employees' Benefits RAILROAD RETIREMENT BOARD REGULATIONS UNDER... Reductions § 229.85 Substantial gainful activity by blind employee or child. A blind employee or child who is...

  17. 20 CFR 229.85 - Substantial gainful activity by blind employee or child.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 20 Employees' Benefits 1 2014-04-01 2012-04-01 true Substantial gainful activity by blind employee or child. 229.85 Section 229.85 Employees' Benefits RAILROAD RETIREMENT BOARD REGULATIONS UNDER THE... § 229.85 Substantial gainful activity by blind employee or child. A blind employee or child who is 55...

  18. 20 CFR 229.85 - Substantial gainful activity by blind employee or child.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 20 Employees' Benefits 1 2013-04-01 2012-04-01 true Substantial gainful activity by blind employee or child. 229.85 Section 229.85 Employees' Benefits RAILROAD RETIREMENT BOARD REGULATIONS UNDER THE... § 229.85 Substantial gainful activity by blind employee or child. A blind employee or child who is 55...

  19. Visualizing the origins of selfish de novo mutations in individual seminiferous tubules of human testes

    PubMed Central

    Maher, Geoffrey J.; McGowan, Simon J.; Giannoulatou, Eleni; Verrill, Clare; Goriely, Anne; Wilkie, Andrew O. M.

    2016-01-01

    De novo point mutations arise predominantly in the male germline and increase in frequency with age, but it has not previously been possible to locate specific, identifiable mutations directly within the seminiferous tubules of human testes. Using microdissection of tubules exhibiting altered expression of the spermatogonial markers MAGEA4, FGFR3, and phospho-AKT, whole genome amplification, and DNA sequencing, we establish an in situ strategy for discovery and analysis of pathogenic de novo mutations. In 14 testes from men aged 39–90 y, we identified 11 distinct gain-of-function mutations in five genes (fibroblast growth factor receptors FGFR2 and FGFR3, tyrosine phosphatase PTPN11, and RAS oncogene homologs HRAS and KRAS) from 16 of 22 tubules analyzed; all mutations have known associations with severe diseases, ranging from congenital or perinatal lethal disorders to somatically acquired cancers. These results support proposed selfish selection of spermatogonial mutations affecting growth factor receptor-RAS signaling, highlight its prevalence in older men, and enable direct visualization of the microscopic anatomy of elongated mutant clones. PMID:26858415

  20. Visualizing the origins of selfish de novo mutations in individual seminiferous tubules of human testes.

    PubMed

    Maher, Geoffrey J; McGowan, Simon J; Giannoulatou, Eleni; Verrill, Clare; Goriely, Anne; Wilkie, Andrew O M

    2016-03-01

    De novo point mutations arise predominantly in the male germline and increase in frequency with age, but it has not previously been possible to locate specific, identifiable mutations directly within the seminiferous tubules of human testes. Using microdissection of tubules exhibiting altered expression of the spermatogonial markers MAGEA4, FGFR3, and phospho-AKT, whole genome amplification, and DNA sequencing, we establish an in situ strategy for discovery and analysis of pathogenic de novo mutations. In 14 testes from men aged 39-90 y, we identified 11 distinct gain-of-function mutations in five genes (fibroblast growth factor receptors FGFR2 and FGFR3, tyrosine phosphatase PTPN11, and RAS oncogene homologs HRAS and KRAS) from 16 of 22 tubules analyzed; all mutations have known associations with severe diseases, ranging from congenital or perinatal lethal disorders to somatically acquired cancers. These results support proposed selfish selection of spermatogonial mutations affecting growth factor receptor-RAS signaling, highlight its prevalence in older men, and enable direct visualization of the microscopic anatomy of elongated mutant clones.