Sample records for gait analysis based

  1. Basic gait analysis based on continuous wave radar.

    PubMed

    Zhang, Jun

    2012-09-01

    A gait analysis method based on continuous wave (CW) radar is proposed in this paper. Time-frequency analysis is used to analyze the radar micro-Doppler echo from walking humans, and the relationships between the time-frequency spectrogram and human biological gait are discussed. The methods for extracting the gait parameters from the spectrogram are studied in depth and experiments on more than twenty subjects have been performed to acquire the radar gait data. The gait parameters are calculated and compared. The gait difference between men and women are presented based on the experimental data and extracted features. Gait analysis based on CW radar will provide a new method for clinical diagnosis and therapy. Copyright © 2012 Elsevier B.V. All rights reserved.

  2. GaitaBase: Web-based repository system for gait analysis.

    PubMed

    Tirosh, Oren; Baker, Richard; McGinley, Jenny

    2010-02-01

    The need to share gait analysis data to improve clinical decision support has been recognised since the early 1990s. GaitaBase has been established to provide a web-accessible repository system of gait analysis data to improve the sharing of data across local and international clinical and research community. It is used by several clinical and research groups across the world providing cross-group access permissions to retrieve and analyse the data. The system is useful for bench-marking and quality assurance, clinical consultation, and collaborative research. It has the capacity to increase the population sample size and improve the quality of 'normative' gait data. In addition the accumulated stored data may facilitate clinicians in comparing their own gait data with others, and give a valuable insight into how effective specific interventions have been for others. 2009 Elsevier Ltd. All rights reserved.

  3. Gait Analysis Using Wearable Sensors

    PubMed Central

    Tao, Weijun; Liu, Tao; Zheng, Rencheng; Feng, Hutian

    2012-01-01

    Gait analysis using wearable sensors is an inexpensive, convenient, and efficient manner of providing useful information for multiple health-related applications. As a clinical tool applied in the rehabilitation and diagnosis of medical conditions and sport activities, gait analysis using wearable sensors shows great prospects. The current paper reviews available wearable sensors and ambulatory gait analysis methods based on the various wearable sensors. After an introduction of the gait phases, the principles and features of wearable sensors used in gait analysis are provided. The gait analysis methods based on wearable sensors is divided into gait kinematics, gait kinetics, and electromyography. Studies on the current methods are reviewed, and applications in sports, rehabilitation, and clinical diagnosis are summarized separately. With the development of sensor technology and the analysis method, gait analysis using wearable sensors is expected to play an increasingly important role in clinical applications. PMID:22438763

  4. Underwater gait analysis in Parkinson's disease.

    PubMed

    Volpe, Daniele; Pavan, Davide; Morris, Meg; Guiotto, Annamaria; Iansek, Robert; Fortuna, Sofia; Frazzitta, Giuseppe; Sawacha, Zimi

    2017-02-01

    Although hydrotherapy is one of the physical therapies adopted to optimize gait rehabilitation in people with Parkinson disease, the quantitative measurement of gait-related outcomes has not been provided yet. This work aims to document the gait improvements in a group of parkinsonians after a hydrotherapy program through 2D and 3D underwater and on land gait analysis. Thirty-four parkinsonians and twenty-two controls were enrolled, divided into two different cohorts. In the first one, 2 groups of patients underwent underwater or land based walking training; controls underwent underwater walking training. Hence pre-treatment 2D underwater and on land gait analysis were performed, together with post-treatment on land gait analysis. Considering that current literature documented a reduced movement amplitude in parkinsonians across all lower limb joints in all movement planes, 3D underwater and on land gait analysis were performed on a second cohort of subjects (10 parkinsonians and 10 controls) who underwent underwater gait training. Baseline land 2D and 3D gait analysis in parkinsonians showed shorter stride length and slower speed than controls, in agreement with previous findings. Comparison between underwater and on land gait analysis showed reduction in stride length, cadence and speed on both parkinsonians and controls. Although patients who underwent underwater treatment exhibited significant changes on spatiotemporal parameters and sagittal plane lower limb kinematics, 3D gait analysis documented a significant (p<0.05) improvement in all movement planes. These data deserve attention for research directions promoting the optimal recovery and maintenance of walking ability. Crown Copyright © 2016. Published by Elsevier B.V. All rights reserved.

  5. Vision-based gait impairment analysis for aided diagnosis.

    PubMed

    Ortells, Javier; Herrero-Ezquerro, María Trinidad; Mollineda, Ramón A

    2018-02-12

    Gait is a firsthand reflection of health condition. This belief has inspired recent research efforts to automate the analysis of pathological gait, in order to assist physicians in decision-making. However, most of these efforts rely on gait descriptions which are difficult to understand by humans, or on sensing technologies hardly available in ambulatory services. This paper proposes a number of semantic and normalized gait features computed from a single video acquired by a low-cost sensor. Far from being conventional spatio-temporal descriptors, features are aimed at quantifying gait impairment, such as gait asymmetry from several perspectives or falling risk. They were designed to be invariant to frame rate and image size, allowing cross-platform comparisons. Experiments were formulated in terms of two databases. A well-known general-purpose gait dataset is used to establish normal references for features, while a new database, introduced in this work, provides samples under eight different walking styles: one normal and seven impaired patterns. A number of statistical studies were carried out to prove the sensitivity of features at measuring the expected pathologies, providing enough evidence about their accuracy. Graphical Abstract Graphical abstract reflecting main contributions of the manuscript: at the top, a robust, semantic and easy-to-interpret feature set to describe impaired gait patterns; at the bottom, a new dataset consisting of video-recordings of a number of volunteers simulating different patterns of pathological gait, where features were statistically assessed.

  6. Evidence of end-effector based gait machines in gait rehabilitation after CNS lesion.

    PubMed

    Hesse, S; Schattat, N; Mehrholz, J; Werner, C

    2013-01-01

    A task-specific repetitive approach in gait rehabilitation after CNS lesion is well accepted nowadays. To ease the therapists' and patients' physical effort, the past two decades have seen the introduction of gait machines to intensify the amount of gait practice. Two principles have emerged, an exoskeleton- and an endeffector-based approach. Both systems share the harness and the body weight support. With the end-effector-based devices, the patients' feet are positioned on two foot plates, whose movements simulate stance and swing phase. This article provides an overview on the end-effector based machine's effectiveness regarding the restoration of gait. For the electromechanical gait trainer GT I, a meta analysis identified nine controlled trials (RCT) in stroke subjects (n = 568) and were analyzed to detect differences between end-effector-based locomotion + physiotherapy and physiotherapy alone. Patients practising with the machine effected in a superior gait ability (210 out of 319 patients, 65.8% vs. 96 out of 249 patients, 38.6%, respectively, Z = 2.29, p = 0.020), due to a larger training intensity. Only single RCTs have been reported for other devices and etiologies. The introduction of end-effector based gait machines has opened a new succesful chapter in gait rehabilitation after CNS lesion.

  7. Gait recognition based on Gabor wavelets and modified gait energy image for human identification

    NASA Astrophysics Data System (ADS)

    Huang, Deng-Yuan; Lin, Ta-Wei; Hu, Wu-Chih; Cheng, Chih-Hsiang

    2013-10-01

    This paper proposes a method for recognizing human identity using gait features based on Gabor wavelets and modified gait energy images (GEIs). Identity recognition by gait generally involves gait representation, extraction, and classification. In this work, a modified GEI convolved with an ensemble of Gabor wavelets is proposed as a gait feature. Principal component analysis is then used to project the Gabor-wavelet-based gait features into a lower-dimension feature space for subsequent classification. Finally, support vector machine classifiers based on a radial basis function kernel are trained and utilized to recognize human identity. The major contributions of this paper are as follows: (1) the consideration of the shadow effect to yield a more complete segmentation of gait silhouettes; (2) the utilization of motion estimation to track people when walkers overlap; and (3) the derivation of modified GEIs to extract more useful gait information. Extensive performance evaluation shows a great improvement of recognition accuracy due to the use of shadow removal, motion estimation, and gait representation using the modified GEIs and Gabor wavelets.

  8. Quantification and recognition of parkinsonian gait from monocular video imaging using kernel-based principal component analysis

    PubMed Central

    2011-01-01

    Background The computer-aided identification of specific gait patterns is an important issue in the assessment of Parkinson's disease (PD). In this study, a computer vision-based gait analysis approach is developed to assist the clinical assessments of PD with kernel-based principal component analysis (KPCA). Method Twelve PD patients and twelve healthy adults with no neurological history or motor disorders within the past six months were recruited and separated according to their "Non-PD", "Drug-On", and "Drug-Off" states. The participants were asked to wear light-colored clothing and perform three walking trials through a corridor decorated with a navy curtain at their natural pace. The participants' gait performance during the steady-state walking period was captured by a digital camera for gait analysis. The collected walking image frames were then transformed into binary silhouettes for noise reduction and compression. Using the developed KPCA-based method, the features within the binary silhouettes can be extracted to quantitatively determine the gait cycle time, stride length, walking velocity, and cadence. Results and Discussion The KPCA-based method uses a feature-extraction approach, which was verified to be more effective than traditional image area and principal component analysis (PCA) approaches in classifying "Non-PD" controls and "Drug-Off/On" PD patients. Encouragingly, this method has a high accuracy rate, 80.51%, for recognizing different gaits. Quantitative gait parameters are obtained, and the power spectrums of the patients' gaits are analyzed. We show that that the slow and irregular actions of PD patients during walking tend to transfer some of the power from the main lobe frequency to a lower frequency band. Our results indicate the feasibility of using gait performance to evaluate the motor function of patients with PD. Conclusion This KPCA-based method requires only a digital camera and a decorated corridor setup. The ease of use and

  9. A New Classification of Diabetic Gait Pattern Based on Cluster Analysis of Biomechanical Data

    PubMed Central

    Sawacha, Zimi; Guarneri, Gabriella; Avogaro, Angelo; Cobelli, Claudio

    2010-01-01

    Background The diabetic foot, one of the most serious complications of diabetes mellitus and a major risk factor for plantar ulceration, is determined mainly by peripheral neuropathy. Neuropathic patients exhibit decreased stability while standing as well as during dynamic conditions. A new methodology for diabetic gait pattern classification based on cluster analysis has been proposed that aims to identify groups of subjects with similar patterns of gait and verify if three-dimensional gait data are able to distinguish diabetic gait patterns from one of the control subjects. Method The gait of 20 nondiabetic individuals and 46 diabetes patients with and without peripheral neuropathy was analyzed [mean age 59.0 (2.9) and 61.1(4.4) years, mean body mass index (BMI) 24.0 (2.8), and 26.3 (2.0)]. K-means cluster analysis was applied to classify the subjects' gait patterns through the analysis of their ground reaction forces, joints and segments (trunk, hip, knee, ankle) angles, and moments. Results Cluster analysis classification led to definition of four well-separated clusters: one aggregating just neuropathic subjects, one aggregating both neuropathics and non-neuropathics, one including only diabetes patients, and one including either controls or diabetic and neuropathic subjects. Conclusions Cluster analysis was useful in grouping subjects with similar gait patterns and provided evidence that there were subgroups that might otherwise not be observed if a group ensemble was presented for any specific variable. In particular, we observed the presence of neuropathic subjects with a gait similar to the controls and diabetes patients with a long disease duration with a gait as altered as the neuropathic one. PMID:20920432

  10. Two-dimensional PCA-based human gait identification

    NASA Astrophysics Data System (ADS)

    Chen, Jinyan; Wu, Rongteng

    2012-11-01

    It is very necessary to recognize person through visual surveillance automatically for public security reason. Human gait based identification focus on recognizing human by his walking video automatically using computer vision and image processing approaches. As a potential biometric measure, human gait identification has attracted more and more researchers. Current human gait identification methods can be divided into two categories: model-based methods and motion-based methods. In this paper a two-Dimensional Principal Component Analysis and temporal-space analysis based human gait identification method is proposed. Using background estimation and image subtraction we can get a binary images sequence from the surveillance video. By comparing the difference of two adjacent images in the gait images sequence, we can get a difference binary images sequence. Every binary difference image indicates the body moving mode during a person walking. We use the following steps to extract the temporal-space features from the difference binary images sequence: Projecting one difference image to Y axis or X axis we can get two vectors. Project every difference image in the difference binary images sequence to Y axis or X axis difference binary images sequence we can get two matrixes. These two matrixes indicate the styles of one walking. Then Two-Dimensional Principal Component Analysis(2DPCA) is used to transform these two matrixes to two vectors while at the same time keep the maximum separability. Finally the similarity of two human gait images is calculated by the Euclidean distance of the two vectors. The performance of our methods is illustrated using the CASIA Gait Database.

  11. Reliability and validity of gait analysis by android-based smartphone.

    PubMed

    Nishiguchi, Shu; Yamada, Minoru; Nagai, Koutatsu; Mori, Shuhei; Kajiwara, Yuu; Sonoda, Takuya; Yoshimura, Kazuya; Yoshitomi, Hiroyuki; Ito, Hiromu; Okamoto, Kazuya; Ito, Tatsuaki; Muto, Shinyo; Ishihara, Tatsuya; Aoyama, Tomoki

    2012-05-01

    Smartphones are very common devices in daily life that have a built-in tri-axial accelerometer. Similar to previously developed accelerometers, smartphones can be used to assess gait patterns. However, few gait analyses have been performed using smartphones, and their reliability and validity have not been evaluated yet. The purpose of this study was to evaluate the reliability and validity of a smartphone accelerometer. Thirty healthy young adults participated in this study. They walked 20 m at their preferred speeds, and their trunk accelerations were measured using a smartphone and a tri-axial accelerometer that was secured over the L3 spinous process. We developed a gait analysis application and installed it in the smartphone to measure the acceleration. After signal processing, we calculated the gait parameters of each measurement terminal: peak frequency (PF), root mean square (RMS), autocorrelation peak (AC), and coefficient of variance (CV) of the acceleration peak intervals. Remarkable consistency was observed in the test-retest reliability of all the gait parameter results obtained by the smartphone (p<0.001). All the gait parameter results obtained by the smartphone showed statistically significant and considerable correlations with the same parameter results obtained by the tri-axial accelerometer (PF r=0.99, RMS r=0.89, AC r=0.85, CV r=0.82; p<0.01). Our study indicates that the smartphone with gait analysis application used in this study has the capacity to quantify gait parameters with a degree of accuracy that is comparable to that of the tri-axial accelerometer.

  12. Inertial Sensor-Based Gait Recognition: A Review

    PubMed Central

    Sprager, Sebastijan; Juric, Matjaz B.

    2015-01-01

    With the recent development of microelectromechanical systems (MEMS), inertial sensors have become widely used in the research of wearable gait analysis due to several factors, such as being easy-to-use and low-cost. Considering the fact that each individual has a unique way of walking, inertial sensors can be applied to the problem of gait recognition where assessed gait can be interpreted as a biometric trait. Thus, inertial sensor-based gait recognition has a great potential to play an important role in many security-related applications. Since inertial sensors are included in smart devices that are nowadays present at every step, inertial sensor-based gait recognition has become very attractive and emerging field of research that has provided many interesting discoveries recently. This paper provides a thorough and systematic review of current state-of-the-art in this field of research. Review procedure has revealed that the latest advanced inertial sensor-based gait recognition approaches are able to sufficiently recognise the users when relying on inertial data obtained during gait by single commercially available smart device in controlled circumstances, including fixed placement and small variations in gait. Furthermore, these approaches have also revealed considerable breakthrough by realistic use in uncontrolled circumstances, showing great potential for their further development and wide applicability. PMID:26340634

  13. Balzac and human gait analysis.

    PubMed

    Collado-Vázquez, S; Carrillo, J M

    2015-05-01

    People have been interested in movement analysis in general, and gait analysis in particular, since ancient times. Aristotle, Hippocrates, Galen, Leonardo da Vinci and Honoré de Balzac all used observation to analyse the gait of human beings. The purpose of this study is to compare Honoré de Balzac's writings with a scientific analysis of human gait. Honoré de Balzac's Theory of walking and other works by that author referring to gait. Honoré de Balzac had an interest in gait analysis, as demonstrated by his descriptions of characters which often include references to their way of walking. He also wrote a treatise entitled Theory of walking (Théorie de la demarche) in which he employed his keen observation skills to define gait using a literary style. He stated that the walking process is divided into phases and listed the factors that influence gait, such as personality, mood, height, weight, profession and social class, and also provided a description of the correct way of walking. Balzac considered gait analysis to be very important and this is reflected in both his character descriptions and Theory of walking, his analytical observation of gait. In our own technology-dominated times, this serves as a reminder of the importance of observation. Copyright © 2011 Sociedad Española de Neurología. Published by Elsevier España, S.L.U. All rights reserved.

  14. Class Energy Image Analysis for Video Sensor-Based Gait Recognition: A Review

    PubMed Central

    Lv, Zhuowen; Xing, Xianglei; Wang, Kejun; Guan, Donghai

    2015-01-01

    Gait is a unique perceptible biometric feature at larger distances, and the gait representation approach plays a key role in a video sensor-based gait recognition system. Class Energy Image is one of the most important gait representation methods based on appearance, which has received lots of attentions. In this paper, we reviewed the expressions and meanings of various Class Energy Image approaches, and analyzed the information in the Class Energy Images. Furthermore, the effectiveness and robustness of these approaches were compared on the benchmark gait databases. We outlined the research challenges and provided promising future directions for the field. To the best of our knowledge, this is the first review that focuses on Class Energy Image. It can provide a useful reference in the literature of video sensor-based gait representation approach. PMID:25574935

  15. Three Dimensional Gait Analysis Using Wearable Acceleration and Gyro Sensors Based on Quaternion Calculations

    PubMed Central

    Tadano, Shigeru; Takeda, Ryo; Miyagawa, Hiroaki

    2013-01-01

    This paper proposes a method for three dimensional gait analysis using wearable sensors and quaternion calculations. Seven sensor units consisting of a tri-axial acceleration and gyro sensors, were fixed to the lower limbs. The acceleration and angular velocity data of each sensor unit were measured during level walking. The initial orientations of the sensor units were estimated using acceleration data during upright standing position and the angular displacements were estimated afterwards using angular velocity data during gait. Here, an algorithm based on quaternion calculation was implemented for orientation estimation of the sensor units. The orientations of the sensor units were converted to the orientations of the body segments by a rotation matrix obtained from a calibration trial. Body segment orientations were then used for constructing a three dimensional wire frame animation of the volunteers during the gait. Gait analysis was conducted on five volunteers, and results were compared with those from a camera-based motion analysis system. Comparisons were made for the joint trajectory in the horizontal and sagittal plane. The average RMSE and correlation coefficient (CC) were 10.14 deg and 0.98, 7.88 deg and 0.97, 9.75 deg and 0.78 for the hip, knee and ankle flexion angles, respectively. PMID:23877128

  16. Accelerometry-based gait analysis, an additional objective approach to screen subjects at risk for falling.

    PubMed

    Senden, R; Savelberg, H H C M; Grimm, B; Heyligers, I C; Meijer, K

    2012-06-01

    This study investigated whether the Tinetti scale, as a subjective measure for fall risk, is associated with objectively measured gait characteristics. It is studied whether gait parameters are different for groups that are stratified for fall risk using the Tinetti scale. Moreover, the discriminative power of gait parameters to classify elderly according to the Tinetti scale is investigated. Gait of 50 elderly with a Tinneti>24 and 50 elderly with a Tinetti≤24 was analyzed using acceleration-based gait analysis. Validated algorithms were used to derive spatio-temporal gait parameters, harmonic ratio, inter-stride amplitude variability and root mean square (RMS) from the accelerometer data. Clear differences in gait were found between the groups. All gait parameters correlated with the Tinetti scale (r-range: 0.20-0.73). Only walking speed, step length and RMS showed moderate to strong correlations and high discriminative power to classify elderly according to the Tinetti scale. It is concluded that subtle gait changes that have previously been related to fall risk are not captured by the subjective assessment. It is therefore worthwhile to include objective gait assessment in fall risk screening. Copyright © 2012 Elsevier B.V. All rights reserved.

  17. Terminology and forensic gait analysis.

    PubMed

    Birch, Ivan; Vernon, Wesley; Walker, Jeremy; Young, Maria

    2015-07-01

    The use of appropriate terminology is a fundamental aspect of forensic gait analysis. The language used in forensic gait analysis is an amalgam of that used in clinical practice, podiatric biomechanics and the wider field of biomechanics. The result can often be a lack of consistency in the language used, the definitions used and the clarity of the message given. Examples include the use of 'gait' and 'walking' as synonymous terms, confusion between 'step' and 'stride', the mixing of anatomical, positional and pathological descriptors, and inability to describe appropriately movements of major body segments such as the torso. The purpose of this paper is to share the well-established definitions of the fundamental parameters of gait, common to all professions, and advocate their use in forensic gait analysis to establish commonality. The paper provides guidance on the selection and use of appropriate terminology in the description of gait in the forensic context. This paper considers the established definitions of the terms commonly used, identifies those terms which have the potential to confuse readers, and suggests a framework of terminology which should be utilised in forensic gait analysis. Copyright © 2015 Forensic Science Society. Published by Elsevier Ireland Ltd. All rights reserved.

  18. Gait-force model and inertial measurement unit-based measurements: A new approach for gait analysis and balance monitoring.

    PubMed

    Li, Xinan; Xu, Hongyuan; Cheung, Jeffrey T

    2016-12-01

    This work describes a new approach for gait analysis and balance measurement. It uses an inertial measurement unit (IMU) that can either be embedded inside a dynamically unstable platform for balance measurement or mounted on the lower back of a human participant for gait analysis. The acceleration data along three Cartesian coordinates is analyzed by the gait-force model to extract bio-mechanics information in both the dynamic state as in the gait analyzer and the steady state as in the balance scale. For the gait analyzer, the simple, noninvasive and versatile approach makes it appealing to a broad range of applications in clinical diagnosis, rehabilitation monitoring, athletic training, sport-apparel design, and many other areas. For the balance scale, it provides a portable platform to measure the postural deviation and the balance index under visual or vestibular sensory input conditions. Despite its simple construction and operation, excellent agreement has been demonstrated between its performance and the high-cost commercial balance unit over a wide dynamic range. The portable balance scale is an ideal tool for routine monitoring of balance index, fall-risk assessment, and other balance-related health issues for both clinical and household use.

  19. On Gait Analysis Estimation Errors Using Force Sensors on a Smart Rollator

    PubMed Central

    Ballesteros, Joaquin; Urdiales, Cristina; Martinez, Antonio B.; van Dieën, Jaap H.

    2016-01-01

    Gait analysis can provide valuable information on a person’s condition and rehabilitation progress. Gait is typically captured using external equipment and/or wearable sensors. These tests are largely constrained to specific controlled environments. In addition, gait analysis often requires experts for calibration, operation and/or to place sensors on volunteers. Alternatively, mobility support devices like rollators can be equipped with onboard sensors to monitor gait parameters, while users perform their Activities of Daily Living. Gait analysis in rollators may use odometry and force sensors in the handlebars. However, force based estimation of gait parameters is less accurate than traditional methods, especially when rollators are not properly used. This paper presents an evaluation of force based gait analysis using a smart rollator on different groups of users to determine when this methodology is applicable. In a second stage, the rollator is used in combination with two lab-based gait analysis systems to assess the rollator estimation error. Our results show that: (i) there is an inverse relation between the variance in the force difference between handlebars and support on the handlebars—related to the user condition—and the estimation error; and (ii) this error is lower than 10% when the variation in the force difference is above 7 N. This lower limit was exceeded by the 95.83% of our challenged volunteers. In conclusion, rollators are useful for gait characterization as long as users really need the device for ambulation. PMID:27834911

  20. On Gait Analysis Estimation Errors Using Force Sensors on a Smart Rollator.

    PubMed

    Ballesteros, Joaquin; Urdiales, Cristina; Martinez, Antonio B; van Dieën, Jaap H

    2016-11-10

    Gait analysis can provide valuable information on a person's condition and rehabilitation progress. Gait is typically captured using external equipment and/or wearable sensors. These tests are largely constrained to specific controlled environments. In addition, gait analysis often requires experts for calibration, operation and/or to place sensors on volunteers. Alternatively, mobility support devices like rollators can be equipped with onboard sensors to monitor gait parameters, while users perform their Activities of Daily Living. Gait analysis in rollators may use odometry and force sensors in the handlebars. However, force based estimation of gait parameters is less accurate than traditional methods, especially when rollators are not properly used. This paper presents an evaluation of force based gait analysis using a smart rollator on different groups of users to determine when this methodology is applicable. In a second stage, the rollator is used in combination with two lab-based gait analysis systems to assess the rollator estimation error. Our results show that: (i) there is an inverse relation between the variance in the force difference between handlebars and support on the handlebars-related to the user condition-and the estimation error; and (ii) this error is lower than 10% when the variation in the force difference is above 7 N. This lower limit was exceeded by the 95.83% of our challenged volunteers. In conclusion, rollators are useful for gait characterization as long as users really need the device for ambulation.

  1. MEMS-based sensing and algorithm development for fall detection and gait analysis

    NASA Astrophysics Data System (ADS)

    Gupta, Piyush; Ramirez, Gabriel; Lie, Donald Y. C.; Dallas, Tim; Banister, Ron E.; Dentino, Andrew

    2010-02-01

    Falls by the elderly are highly detrimental to health, frequently resulting in injury, high medical costs, and even death. Using a MEMS-based sensing system, algorithms are being developed for detecting falls and monitoring the gait of elderly and disabled persons. In this study, wireless sensors utilize Zigbee protocols were incorporated into planar shoe insoles and a waist mounted device. The insole contains four sensors to measure pressure applied by the foot. A MEMS based tri-axial accelerometer is embedded in the insert and a second one is utilized by the waist mounted device. The primary fall detection algorithm is derived from the waist accelerometer. The differential acceleration is calculated from samples received in 1.5s time intervals. This differential acceleration provides the quantification via an energy index. From this index one may ascertain different gait and identify fall events. Once a pre-determined index threshold is exceeded, the algorithm will classify an event as a fall or a stumble. The secondary algorithm is derived from frequency analysis techniques. The analysis consists of wavelet transforms conducted on the waist accelerometer data. The insole pressure data is then used to underline discrepancies in the transforms, providing more accurate data for classifying gait and/or detecting falls. The range of the transform amplitude in the fourth iteration of a Daubechies-6 transform was found sufficient to detect and classify fall events.

  2. Gait Characteristic Analysis and Identification Based on the iPhone's Accelerometer and Gyrometer

    PubMed Central

    Sun, Bing; Wang, Yang; Banda, Jacob

    2014-01-01

    Gait identification is a valuable approach to identify humans at a distance. In this paper, gait characteristics are analyzed based on an iPhone's accelerometer and gyrometer, and a new approach is proposed for gait identification. Specifically, gait datasets are collected by the triaxial accelerometer and gyrometer embedded in an iPhone. Then, the datasets are processed to extract gait characteristic parameters which include gait frequency, symmetry coefficient, dynamic range and similarity coefficient of characteristic curves. Finally, a weighted voting scheme dependent upon the gait characteristic parameters is proposed for gait identification. Four experiments are implemented to validate the proposed scheme. The attitude and acceleration solutions are verified by simulation. Then the gait characteristics are analyzed by comparing two sets of actual data, and the performance of the weighted voting identification scheme is verified by 40 datasets of 10 subjects. PMID:25222034

  3. A mechanical energy analysis of gait initiation

    NASA Technical Reports Server (NTRS)

    Miller, C. A.; Verstraete, M. C.

    1999-01-01

    The analysis of gait initiation (the transient state between standing and walking) is an important diagnostic tool to study pathologic gait and to evaluate prosthetic devices. While past studies have quantified mechanical energy of the body during steady-state gait, to date no one has computed the mechanical energy of the body during gait initiation. In this study, gait initiation in seven normal male subjects was studied using a mechanical energy analysis to compute total body energy. The data showed three separate states: quiet standing, gait initiation, and steady-state gait. During gait initiation, the trends in the energy data for the individual segments were similar to those seen during steady-state gait (and in Winter DA, Quanbury AO, Reimer GD. Analysis of instantaneous energy of normal gait. J Biochem 1976;9:253-257), but diminished in amplitude. However, these amplitudes increased to those seen in steady-state during the gait initiation event (GIE), with the greatest increase occurring in the second step due to the push-off of the foundation leg. The baseline level of mechanical energy was due to the potential energy of the individual segments, while the cyclic nature of the data was indicative of the kinetic energy of the particular leg in swing phase during that step. The data presented showed differences in energy trends during gait initiation from those of steady state, thereby demonstrating the importance of this event in the study of locomotion.

  4. Estimation of Temporal Gait Parameters Using a Wearable Microphone-Sensor-Based System

    PubMed Central

    Wang, Cheng; Wang, Xiangdong; Long, Zhou; Yuan, Jing; Qian, Yueliang; Li, Jintao

    2016-01-01

    Most existing wearable gait analysis methods focus on the analysis of data obtained from inertial sensors. This paper proposes a novel, low-cost, wireless and wearable gait analysis system which uses microphone sensors to collect footstep sound signals during walking. This is the first time a microphone sensor is used as a wearable gait analysis device as far as we know. Based on this system, a gait analysis algorithm for estimating the temporal parameters of gait is presented. The algorithm fully uses the fusion of two feet footstep sound signals and includes three stages: footstep detection, heel-strike event and toe-on event detection, and calculation of gait temporal parameters. Experimental results show that with a total of 240 data sequences and 1732 steps collected using three different gait data collection strategies from 15 healthy subjects, the proposed system achieves an average 0.955 F1-measure for footstep detection, an average 94.52% accuracy rate for heel-strike detection and 94.25% accuracy rate for toe-on detection. Using these detection results, nine temporal related gait parameters are calculated and these parameters are consistent with their corresponding normal gait temporal parameters and labeled data calculation results. The results verify the effectiveness of our proposed system and algorithm for temporal gait parameter estimation. PMID:27999321

  5. Marginal Fisher analysis and its variants for human gait recognition and content- based image retrieval.

    PubMed

    Xu, Dong; Yan, Shuicheng; Tao, Dacheng; Lin, Stephen; Zhang, Hong-Jiang

    2007-11-01

    Dimensionality reduction algorithms, which aim to select a small set of efficient and discriminant features, have attracted great attention for human gait recognition and content-based image retrieval (CBIR). In this paper, we present extensions of our recently proposed marginal Fisher analysis (MFA) to address these problems. For human gait recognition, we first present a direct application of MFA, then inspired by recent advances in matrix and tensor-based dimensionality reduction algorithms, we present matrix-based MFA for directly handling 2-D input in the form of gray-level averaged images. For CBIR, we deal with the relevance feedback problem by extending MFA to marginal biased analysis, in which within-class compactness is characterized only by the distances between each positive sample and its neighboring positive samples. In addition, we present a new technique to acquire a direct optimal solution for MFA without resorting to objective function modification as done in many previous algorithms. We conduct comprehensive experiments on the USF HumanID gait database and the Corel image retrieval database. Experimental results demonstrate that MFA and its extensions outperform related algorithms in both applications.

  6. Gait analysis in children with cerebral palsy.

    PubMed

    Armand, Stéphane; Decoulon, Geraldo; Bonnefoy-Mazure, Alice

    2016-12-01

    Cerebral palsy (CP) children present complex and heterogeneous motor disorders that cause gait deviations.Clinical gait analysis (CGA) is needed to identify, understand and support the management of gait deviations in CP. CGA assesses a large amount of quantitative data concerning patients' gait characteristics, such as video, kinematics, kinetics, electromyography and plantar pressure data.Common gait deviations in CP can be grouped into the gait patterns of spastic hemiplegia (drop foot, equinus with different knee positions) and spastic diplegia (true equinus, jump, apparent equinus and crouch) to facilitate communication. However, gait deviations in CP tend to be a continuum of deviations rather than well delineated groups. To interpret CGA, it is necessary to link gait deviations to clinical impairments and to distinguish primary gait deviations from compensatory strategies.CGA does not tell us how to treat a CP patient, but can provide objective identification of gait deviations and further the understanding of gait deviations. Numerous treatment options are available to manage gait deviations in CP. Generally, treatments strive to limit secondary deformations, re-establish the lever arm function and preserve muscle strength.Additional roles of CGA are to better understand the effects of treatments on gait deviations. Cite this article: Armand S, Decoulon G, Bonnefoy-Mazure A. Gait analysis in children with cerebral palsy. EFORT Open Rev 2016;1:448-460. DOI: 10.1302/2058-5241.1.000052.

  7. Off-the-shelf mobile handset environments for deploying accelerometer based gait and activity analysis algorithms.

    PubMed

    Hynes, Martin; Wang, Han; Kilmartin, Liam

    2009-01-01

    Over the last decade, there has been substantial research interest in the application of accelerometry data for many forms of automated gait and activity analysis algorithms. This paper introduces a summary of new "of-the-shelf" mobile phone handset platforms containing embedded accelerometers which support the development of custom software to implement real time analysis of the accelerometer data. An overview of the main software programming environments which support the development of such software, including Java ME based JSR 256 API, C++ based Motion Sensor API and the Python based "aXYZ" module, is provided. Finally, a sample application is introduced and its performance evaluated in order to illustrate how a standard mobile phone can be used to detect gait activity using such a non-intrusive and easily accepted sensing platform.

  8. Guidelines for Assessment of Gait and Reference Values for Spatiotemporal Gait Parameters in Older Adults: The Biomathics and Canadian Gait Consortiums Initiative

    PubMed Central

    Beauchet, Olivier; Allali, Gilles; Sekhon, Harmehr; Verghese, Joe; Guilain, Sylvie; Steinmetz, Jean-Paul; Kressig, Reto W.; Barden, John M.; Szturm, Tony; Launay, Cyrille P.; Grenier, Sébastien; Bherer, Louis; Liu-Ambrose, Teresa; Chester, Vicky L.; Callisaya, Michele L.; Srikanth, Velandai; Léonard, Guillaume; De Cock, Anne-Marie; Sawa, Ryuichi; Duque, Gustavo; Camicioli, Richard; Helbostad, Jorunn L.

    2017-01-01

    Background: Gait disorders, a highly prevalent condition in older adults, are associated with several adverse health consequences. Gait analysis allows qualitative and quantitative assessments of gait that improves the understanding of mechanisms of gait disorders and the choice of interventions. This manuscript aims (1) to give consensus guidance for clinical and spatiotemporal gait analysis based on the recorded footfalls in older adults aged 65 years and over, and (2) to provide reference values for spatiotemporal gait parameters based on the recorded footfalls in healthy older adults free of cognitive impairment and multi-morbidities. Methods: International experts working in a network of two different consortiums (i.e., Biomathics and Canadian Gait Consortium) participated in this initiative. First, they identified items of standardized information following the usual procedure of formulation of consensus findings. Second, they merged databases including spatiotemporal gait assessments with GAITRite® system and clinical information from the “Gait, cOgnitiOn & Decline” (GOOD) initiative and the Generation 100 (Gen 100) study. Only healthy—free of cognitive impairment and multi-morbidities (i.e., ≤ 3 therapeutics taken daily)—participants aged 65 and older were selected. Age, sex, body mass index, mean values, and coefficients of variation (CoV) of gait parameters were used for the analyses. Results: Standardized systematic assessment of three categories of items, which were demographics and clinical information, and gait characteristics (clinical and spatiotemporal gait analysis based on the recorded footfalls), were selected for the proposed guidelines. Two complementary sets of items were distinguished: a minimal data set and a full data set. In addition, a total of 954 participants (mean age 72.8 ± 4.8 years, 45.8% women) were recruited to establish the reference values. Performance of spatiotemporal gait parameters based on the recorded

  9. Research on gait-based human identification

    NASA Astrophysics Data System (ADS)

    Li, Youguo

    Gait recognition refers to automatic identification of individual based on his/her style of walking. This paper proposes a gait recognition method based on Continuous Hidden Markov Model with Mixture of Gaussians(G-CHMM). First, we initialize a Gaussian mix model for training image sequence with K-means algorithm, then train the HMM parameters using a Baum-Welch algorithm. These gait feature sequences can be trained and obtain a Continuous HMM for every person, therefore, the 7 key frames and the obtained HMM can represent each person's gait sequence. Finally, the recognition is achieved by Front algorithm. The experiments made on CASIA gait databases obtain comparatively high correction identification ratio and comparatively strong robustness for variety of bodily angle.

  10. A systematic review of gait analysis methods based on inertial sensors and adaptive algorithms.

    PubMed

    Caldas, Rafael; Mundt, Marion; Potthast, Wolfgang; Buarque de Lima Neto, Fernando; Markert, Bernd

    2017-09-01

    The conventional methods to assess human gait are either expensive or complex to be applied regularly in clinical practice. To reduce the cost and simplify the evaluation, inertial sensors and adaptive algorithms have been utilized, respectively. This paper aims to summarize studies that applied adaptive also called artificial intelligence (AI) algorithms to gait analysis based on inertial sensor data, verifying if they can support the clinical evaluation. Articles were identified through searches of the main databases, which were encompassed from 1968 to October 2016. We have identified 22 studies that met the inclusion criteria. The included papers were analyzed due to their data acquisition and processing methods with specific questionnaires. Concerning the data acquisition, the mean score is 6.1±1.62, what implies that 13 of 22 papers failed to report relevant outcomes. The quality assessment of AI algorithms presents an above-average rating (8.2±1.84). Therefore, AI algorithms seem to be able to support gait analysis based on inertial sensor data. Further research, however, is necessary to enhance and standardize the application in patients, since most of the studies used distinct methods to evaluate healthy subjects. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. An Ambulatory System for Gait Monitoring Based on Wireless Sensorized Insoles

    PubMed Central

    González, Iván; Fontecha, Jesús; Hervás, Ramón; Bravo, José

    2015-01-01

    A new gait phase detection system for continuous monitoring based on wireless sensorized insoles is presented. The system can be used in gait analysis mobile applications, and it is designed for real-time demarcation of gait phases. The system employs pressure sensors to assess the force exerted by each foot during walking. A fuzzy rule-based inference algorithm is implemented on a smartphone and used to detect each of the gait phases based on the sensor signals. Additionally, to provide a solution that is insensitive to perturbations caused by non-walking activities, a probabilistic classifier is employed to discriminate walking forward from other low-level activities, such as turning, walking backwards, lateral walking, etc. The combination of these two algorithms constitutes the first approach towards a continuous gait assessment system, by means of the avoidance of non-walking influences. PMID:26184199

  12. An Ambulatory System for Gait Monitoring Based on Wireless Sensorized Insoles.

    PubMed

    González, Iván; Fontecha, Jesús; Hervás, Ramón; Bravo, José

    2015-07-09

    A new gait phase detection system for continuous monitoring based on wireless sensorized insoles is presented. The system can be used in gait analysis mobile applications, and it is designed for real-time demarcation of gait phases. The system employs pressure sensors to assess the force exerted by each foot during walking. A fuzzy rule-based inference algorithm is implemented on a smartphone and used to detect each of the gait phases based on the sensor signals. Additionally, to provide a solution that is insensitive to perturbations caused by non-walking activities, a probabilistic classifier is employed to discriminate walking forward from other low-level activities, such as turning, walking backwards, lateral walking, etc. The combination of these two algorithms constitutes the first approach towards a continuous gait assessment system, by means of the avoidance of non-walking influences.

  13. Reliability of videotaped observational gait analysis in patients with orthopedic impairments

    PubMed Central

    Brunnekreef, Jaap J; van Uden, Caro JT; van Moorsel, Steven; Kooloos, Jan GM

    2005-01-01

    Background In clinical practice, visual gait observation is often used to determine gait disorders and to evaluate treatment. Several reliability studies on observational gait analysis have been described in the literature and generally showed moderate reliability. However, patients with orthopedic disorders have received little attention. The objective of this study is to determine the reliability levels of visual observation of gait in patients with orthopedic disorders. Methods The gait of thirty patients referred to a physical therapist for gait treatment was videotaped. Ten raters, 4 experienced, 4 inexperienced and 2 experts, individually evaluated these videotaped gait patterns of the patients twice, by using a structured gait analysis form. Reliability levels were established by calculating the Intraclass Correlation Coefficient (ICC), using a two-way random design and based on absolute agreement. Results The inter-rater reliability among experienced raters (ICC = 0.42; 95%CI: 0.38–0.46) was comparable to that of the inexperienced raters (ICC = 0.40; 95%CI: 0.36–0.44). The expert raters reached a higher inter-rater reliability level (ICC = 0.54; 95%CI: 0.48–0.60). The average intra-rater reliability of the experienced raters was 0.63 (ICCs ranging from 0.57 to 0.70). The inexperienced raters reached an average intra-rater reliability of 0.57 (ICCs ranging from 0.52 to 0.62). The two expert raters attained ICC values of 0.70 and 0.74 respectively. Conclusion Structured visual gait observation by use of a gait analysis form as described in this study was found to be moderately reliable. Clinical experience appears to increase the reliability of visual gait analysis. PMID:15774012

  14. Variations in Kinematics during Clinical Gait Analysis in Stroke Patients

    PubMed Central

    Boudarham, Julien; Roche, Nicolas; Pradon, Didier; Bonnyaud, Céline; Bensmail, Djamel; Zory, Raphael

    2013-01-01

    In addition to changes in spatio-temporal and kinematic parameters, patients with stroke exhibit fear of falling as well as fatigability during gait. These changes could compromise interpretation of data from gait analysis. The aim of this study was to determine if the gait of hemiplegic patients changes significantly over successive gait trials. Forty two stroke patients and twenty healthy subjects performed 9 gait trials during a gait analysis session. The mean and variability of spatio-temporal and kinematic joint parameters were analyzed during 3 groups of consecutive gait trials (1–3, 4–6 and 7–9). Principal component analysis was used to reduce the number of variables from the joint kinematic waveforms and to identify the parts of the gait cycle which changed during the gait analysis session. The results showed that i) spontaneous gait velocity and the other spatio-temporal parameters significantly increased, and ii) gait variability decreased, over the last 6 gait trials compared to the first 3, for hemiplegic patients but not healthy subjects. Principal component analysis revealed changes in the sagittal waveforms of the hip, knee and ankle for hemiplegic patients after the first 3 gait trials. These results suggest that at the beginning of the gait analysis session, stroke patients exhibited phase of adaptation,characterized by a “cautious gait” but no fatigue was observed. PMID:23799100

  15. Optics in gait analysis and anthropometry

    NASA Astrophysics Data System (ADS)

    Silva Moreno, Alejandra Alicia

    2013-11-01

    Since antiquity, human gait has been studied to understand human movement, the kind of gait, in some cases, can cause musculoskeletal disorders or other health problems; in addition, also from antiquity, anthropometry has been important for the design of human items such as workspaces, tools, garments, among others. Nowadays, thanks to the development of optics and electronics, more accurate studies of gait and anthropometry can be developed. This work will describe the most important parameters for gait analysis, anthropometry and the optical systems used.

  16. General tensor discriminant analysis and gabor features for gait recognition.

    PubMed

    Tao, Dacheng; Li, Xuelong; Wu, Xindong; Maybank, Stephen J

    2007-10-01

    The traditional image representations are not suited to conventional classification methods, such as the linear discriminant analysis (LDA), because of the under sample problem (USP): the dimensionality of the feature space is much higher than the number of training samples. Motivated by the successes of the two dimensional LDA (2DLDA) for face recognition, we develop a general tensor discriminant analysis (GTDA) as a preprocessing step for LDA. The benefits of GTDA compared with existing preprocessing methods, e.g., principal component analysis (PCA) and 2DLDA, include 1) the USP is reduced in subsequent classification by, for example, LDA; 2) the discriminative information in the training tensors is preserved; and 3) GTDA provides stable recognition rates because the alternating projection optimization algorithm to obtain a solution of GTDA converges, while that of 2DLDA does not. We use human gait recognition to validate the proposed GTDA. The averaged gait images are utilized for gait representation. Given the popularity of Gabor function based image decompositions for image understanding and object recognition, we develop three different Gabor function based image representations: 1) the GaborD representation is the sum of Gabor filter responses over directions, 2) GaborS is the sum of Gabor filter responses over scales, and 3) GaborSD is the sum of Gabor filter responses over scales and directions. The GaborD, GaborS and GaborSD representations are applied to the problem of recognizing people from their averaged gait images.A large number of experiments were carried out to evaluate the effectiveness (recognition rate) of gait recognition based on first obtaining a Gabor, GaborD, GaborS or GaborSD image representation, then using GDTA to extract features and finally using LDA for classification. The proposed methods achieved good performance for gait recognition based on image sequences from the USF HumanID Database. Experimental comparisons are made with nine

  17. 2.5D multi-view gait recognition based on point cloud registration.

    PubMed

    Tang, Jin; Luo, Jian; Tjahjadi, Tardi; Gao, Yan

    2014-03-28

    This paper presents a method for modeling a 2.5-dimensional (2.5D) human body and extracting the gait features for identifying the human subject. To achieve view-invariant gait recognition, a multi-view synthesizing method based on point cloud registration (MVSM) to generate multi-view training galleries is proposed. The concept of a density and curvature-based Color Gait Curvature Image is introduced to map 2.5D data onto a 2D space to enable data dimension reduction by discrete cosine transform and 2D principle component analysis. Gait recognition is achieved via a 2.5D view-invariant gait recognition method based on point cloud registration. Experimental results on the in-house database captured by a Microsoft Kinect camera show a significant performance gain when using MVSM.

  18. 2.5D Multi-View Gait Recognition Based on Point Cloud Registration

    PubMed Central

    Tang, Jin; Luo, Jian; Tjahjadi, Tardi; Gao, Yan

    2014-01-01

    This paper presents a method for modeling a 2.5-dimensional (2.5D) human body and extracting the gait features for identifying the human subject. To achieve view-invariant gait recognition, a multi-view synthesizing method based on point cloud registration (MVSM) to generate multi-view training galleries is proposed. The concept of a density and curvature-based Color Gait Curvature Image is introduced to map 2.5D data onto a 2D space to enable data dimension reduction by discrete cosine transform and 2D principle component analysis. Gait recognition is achieved via a 2.5D view-invariant gait recognition method based on point cloud registration. Experimental results on the in-house database captured by a Microsoft Kinect camera show a significant performance gain when using MVSM. PMID:24686727

  19. Analysis of Big Data in Gait Biomechanics: Current Trends and Future Directions.

    PubMed

    Phinyomark, Angkoon; Petri, Giovanni; Ibáñez-Marcelo, Esther; Osis, Sean T; Ferber, Reed

    2018-01-01

    The increasing amount of data in biomechanics research has greatly increased the importance of developing advanced multivariate analysis and machine learning techniques, which are better able to handle "big data". Consequently, advances in data science methods will expand the knowledge for testing new hypotheses about biomechanical risk factors associated with walking and running gait-related musculoskeletal injury. This paper begins with a brief introduction to an automated three-dimensional (3D) biomechanical gait data collection system: 3D GAIT, followed by how the studies in the field of gait biomechanics fit the quantities in the 5 V's definition of big data: volume, velocity, variety, veracity, and value. Next, we provide a review of recent research and development in multivariate and machine learning methods-based gait analysis that can be applied to big data analytics. These modern biomechanical gait analysis methods include several main modules such as initial input features, dimensionality reduction (feature selection and extraction), and learning algorithms (classification and clustering). Finally, a promising big data exploration tool called "topological data analysis" and directions for future research are outlined and discussed.

  20. Automated Gait Analysis Through Hues and Areas (AGATHA): a method to characterize the spatiotemporal pattern of rat gait

    PubMed Central

    Kloefkorn, Heidi E.; Pettengill, Travis R.; Turner, Sara M. F.; Streeter, Kristi A.; Gonzalez-Rothi, Elisa J.; Fuller, David D.; Allen, Kyle D.

    2016-01-01

    While rodent gait analysis can quantify the behavioral consequences of disease, significant methodological differences exist between analysis platforms and little validation has been performed to understand or mitigate these sources of variance. By providing the algorithms used to quantify gait, open-source gait analysis software can be validated and used to explore methodological differences. Our group is introducing, for the first time, a fully-automated, open-source method for the characterization of rodent spatiotemporal gait patterns, termed Automated Gait Analysis Through Hues and Areas (AGATHA). This study describes how AGATHA identifies gait events, validates AGATHA relative to manual digitization methods, and utilizes AGATHA to detect gait compensations in orthopaedic and spinal cord injury models. To validate AGATHA against manual digitization, results from videos of rodent gait, recorded at 1000 frames per second (fps), were compared. To assess one common source of variance (the effects of video frame rate), these 1000 fps videos were re-sampled to mimic several lower fps and compared again. While spatial variables were indistinguishable between AGATHA and manual digitization, low video frame rates resulted in temporal errors for both methods. At frame rates over 125 fps, AGATHA achieved a comparable accuracy and precision to manual digitization for all gait variables. Moreover, AGATHA detected unique gait changes in each injury model. These data demonstrate AGATHA is an accurate and precise platform for the analysis of rodent spatiotemporal gait patterns. PMID:27554674

  1. Automated Gait Analysis Through Hues and Areas (AGATHA): A Method to Characterize the Spatiotemporal Pattern of Rat Gait.

    PubMed

    Kloefkorn, Heidi E; Pettengill, Travis R; Turner, Sara M F; Streeter, Kristi A; Gonzalez-Rothi, Elisa J; Fuller, David D; Allen, Kyle D

    2017-03-01

    While rodent gait analysis can quantify the behavioral consequences of disease, significant methodological differences exist between analysis platforms and little validation has been performed to understand or mitigate these sources of variance. By providing the algorithms used to quantify gait, open-source gait analysis software can be validated and used to explore methodological differences. Our group is introducing, for the first time, a fully-automated, open-source method for the characterization of rodent spatiotemporal gait patterns, termed Automated Gait Analysis Through Hues and Areas (AGATHA). This study describes how AGATHA identifies gait events, validates AGATHA relative to manual digitization methods, and utilizes AGATHA to detect gait compensations in orthopaedic and spinal cord injury models. To validate AGATHA against manual digitization, results from videos of rodent gait, recorded at 1000 frames per second (fps), were compared. To assess one common source of variance (the effects of video frame rate), these 1000 fps videos were re-sampled to mimic several lower fps and compared again. While spatial variables were indistinguishable between AGATHA and manual digitization, low video frame rates resulted in temporal errors for both methods. At frame rates over 125 fps, AGATHA achieved a comparable accuracy and precision to manual digitization for all gait variables. Moreover, AGATHA detected unique gait changes in each injury model. These data demonstrate AGATHA is an accurate and precise platform for the analysis of rodent spatiotemporal gait patterns.

  2. Reliability of four models for clinical gait analysis.

    PubMed

    Kainz, Hans; Graham, David; Edwards, Julie; Walsh, Henry P J; Maine, Sheanna; Boyd, Roslyn N; Lloyd, David G; Modenese, Luca; Carty, Christopher P

    2017-05-01

    Three-dimensional gait analysis (3DGA) has become a common clinical tool for treatment planning in children with cerebral palsy (CP). Many clinical gait laboratories use the conventional gait analysis model (e.g. Plug-in-Gait model), which uses Direct Kinematics (DK) for joint kinematic calculations, whereas, musculoskeletal models, mainly used for research, use Inverse Kinematics (IK). Musculoskeletal IK models have the advantage of enabling additional analyses which might improve the clinical decision-making in children with CP. Before any new model can be used in a clinical setting, its reliability has to be evaluated and compared to a commonly used clinical gait model (e.g. Plug-in-Gait model) which was the purpose of this study. Two testers performed 3DGA in eleven CP and seven typically developing participants on two occasions. Intra- and inter-tester standard deviations (SD) and standard error of measurement (SEM) were used to compare the reliability of two DK models (Plug-in-Gait and a six degrees-of-freedom model solved using Vicon software) and two IK models (two modifications of 'gait2392' solved using OpenSim). All models showed good reliability (mean SEM of 3.0° over all analysed models and joint angles). Variations in joint kinetics were less in typically developed than in CP participants. The modified 'gait2392' model which included all the joint rotations commonly reported in clinical 3DGA, showed reasonable reliable joint kinematic and kinetic estimates, and allows additional musculoskeletal analysis on surgically adjustable parameters, e.g. muscle-tendon lengths, and, therefore, is a suitable model for clinical gait analysis. Copyright © 2017. Published by Elsevier B.V.

  3. Gait disorders in the elderly and dual task gait analysis: a new approach for identifying motor phenotypes.

    PubMed

    Auvinet, Bernard; Touzard, Claude; Montestruc, François; Delafond, Arnaud; Goeb, Vincent

    2017-01-31

    Gait disorders and gait analysis under single and dual-task conditions are topics of great interest, but very few studies have looked for the relevance of gait analysis under dual-task conditions in elderly people on the basis of a clinical approach. An observational study including 103 patients (mean age 76.3 ± 7.2, women 56%) suffering from gait disorders or memory impairment was conducted. Gait analysis under dual-task conditions was carried out for all patients. Brain MRI was performed in the absence of contra-indications. Three main gait variables were measured: walking speed, stride frequency, and stride regularity. For each gait variable, the dual task cost was computed and a quartile analysis was obtained. Nonparametric tests were used for all the comparisons (Wilcoxon, Kruskal-Wallis, Fisher or Chi 2 tests). Four clinical subgroups were identified: gait instability (45%), recurrent falls (29%), memory impairment (18%), and cautious gait (8%). The biomechanical severity of these subgroups was ordered according to walking speed and stride regularity under both conditions, from least to most serious as follows: memory impairment, gait instability, recurrent falls, cautious gait (p < 0.01 for walking speed, p = 0.05 for stride regularity). According to the established diagnoses of gait disorders, 5 main pathological subgroups were identified (musculoskeletal diseases (n = 11), vestibular diseases (n = 6), mild cognitive impairment (n = 24), central nervous system pathologies, (n = 51), and without diagnosis (n = 8)). The dual task cost for walking speed, stride frequency and stride regularity were different among these subgroups (p < 0.01). The subgroups mild cognitive impairment and central nervous system pathologies both showed together a higher dual task cost for each variable compared to the other subgroups combined (p = 0.01). The quartile analysis of dual task cost for stride frequency and stride regularity

  4. Gait recognition based on integral outline

    NASA Astrophysics Data System (ADS)

    Ming, Guan; Fang, Lv

    2017-02-01

    Biometric identification technology replaces traditional security technology, which has become a trend, and gait recognition also has become a hot spot of research because its feature is difficult to imitate and theft. This paper presents a gait recognition system based on integral outline of human body. The system has three important aspects: the preprocessing of gait image, feature extraction and classification. Finally, using a method of polling to evaluate the performance of the system, and summarizing the problems existing in the gait recognition and the direction of development in the future.

  5. The development and validity of the Salford Gait Tool: an observation-based clinical gait assessment tool.

    PubMed

    Toro, Brigitte; Nester, Christopher J; Farren, Pauline C

    2007-03-01

    To develop the construct, content, and criterion validity of the Salford Gait Tool (SF-GT) and to evaluate agreement between gait observations using the SF-GT and kinematic gait data. Tool development and comparative evaluation. University in the United Kingdom. For designing construct and content validity, convenience samples of 10 children with hemiplegic, diplegic, and quadriplegic cerebral palsy (CP) and 152 physical therapy students and 4 physical therapists were recruited. For developing criterion validity, kinematic gait data of 13 gait clusters containing 56 children with hemiplegic, diplegic, and quadriplegic CP and 11 neurologically intact children was used. For clinical evaluation, a convenience sample of 23 pediatric physical therapists participated. We developed a sagittal plane observational gait assessment tool through a series of design, test, and redesign iterations. The tool's grading system was calibrated using kinematic gait data of 13 gait clusters and was evaluated by comparing the agreement of gait observations using the SF-GT with kinematic gait data. Criterion standard kinematic gait data. There was 58% mean agreement based on grading categories and 80% mean agreement based on degree estimations evaluated with the least significant difference method. The new SF-GT has good concurrent criterion validity.

  6. Comparison of the Classifier Oriented Gait Score and the Gait Profile Score based on imitated gait impairments.

    PubMed

    Christian, Josef; Kröll, Josef; Schwameder, Hermann

    2017-06-01

    Common summary measures of gait quality such as the Gait Profile Score (GPS) are based on the principle of measuring a distance from the mean pattern of a healthy reference group in a gait pattern vector space. The recently introduced Classifier Oriented Gait Score (COGS) is a pathology specific score that measures this distance in a unique direction, which is indicated by a linear classifier. This approach has potentially improved the discriminatory power to detect subtle changes in gait patterns but does not incorporate a profile of interpretable sub-scores like the GPS. The main aims of this study were to extend the COGS by decomposing it into interpretable sub-scores as realized in the GPS and to compare the discriminative power of the GPS and COGS. Two types of gait impairments were imitated to enable a high level of control of the gait patterns. Imitated impairments were realized by restricting knee extension and inducing leg length discrepancy. The results showed increased discriminatory power of the COGS for differentiating diverse levels of impairment. Comparison of the GPS and COGS sub-scores and their ability to indicate changes in specific variables supports the validity of both scores. The COGS is an overall measure of gait quality with increased power to detect subtle changes in gait patterns and might be well suited for tracing the effect of a therapeutic treatment over time. The newly introduced sub-scores improved the interpretability of the COGS, which is helpful for practical applications. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. New Lower-Limb Gait Asymmetry Indices Based on a Depth Camera

    PubMed Central

    Auvinet, Edouard; Multon, Franck; Meunier, Jean

    2015-01-01

    Background: Various asymmetry indices have been proposed to compare the spatiotemporal, kinematic and kinetic parameters of lower limbs during the gait cycle. However, these indices rely on gait measurement systems that are costly and generally require manual examination, calibration procedures and the precise placement of sensors/markers on the body of the patient. Methods: To overcome these issues, this paper proposes a new asymmetry index, which uses an inexpensive, easy-to-use and markerless depth camera (Microsoft Kinect™) output. This asymmetry index directly uses depth images provided by the Kinect™ without requiring joint localization. It is based on the longitudinal spatial difference between lower-limb movements during the gait cycle. To evaluate the relevance of this index, fifteen healthy subjects were tested on a treadmill walking normally and then via an artificially-induced gait asymmetry with a thick sole placed under one shoe. The gait movement was simultaneously recorded using a Kinect™ placed in front of the subject and a motion capture system. Results: The proposed longitudinal index distinguished asymmetrical gait (p < 0.001), while other symmetry indices based on spatiotemporal gait parameters failed using such Kinect™ skeleton measurements. Moreover, the correlation coefficient between this index measured by Kinect™ and the ground truth of this index measured by motion capture is 0.968. Conclusion: This gait asymmetry index measured with a Kinect™ is low cost, easy to use and is a promising development for clinical gait analysis. PMID:25719863

  8. Gait-Event-Based Synchronization Method for Gait Rehabilitation Robots via a Bioinspired Adaptive Oscillator.

    PubMed

    Chen, Gong; Qi, Peng; Guo, Zhao; Yu, Haoyong

    2017-06-01

    In the field of gait rehabilitation robotics, achieving human-robot synchronization is very important. In this paper, a novel human-robot synchronization method using gait event information is proposed. This method includes two steps. First, seven gait events in one gait cycle are detected in real time with a hidden Markov model; second, an adaptive oscillator is utilized to estimate the stride percentage of human gait using any one of the gait events. Synchronous reference trajectories for the robot are then generated with the estimated stride percentage. This method is based on a bioinspired adaptive oscillator, which is a mathematical tool, first proposed to explain the phenomenon of synchronous flashing among fireflies. The proposed synchronization method is implemented in a portable knee-ankle-foot robot and tested in 15 healthy subjects. This method has the advantages of simple structure, flexible selection of gait events, and fast adaptation. Gait event is the only information needed, and hence the performance of synchronization holds when an abnormal gait pattern is involved. The results of the experiments reveal that our approach is efficient in achieving human-robot synchronization and feasible for rehabilitation robotics application.

  9. Gait Analysis by High School Students

    ERIC Educational Resources Information Center

    Heck, Andre; van Dongen, Caroline

    2008-01-01

    Human walking is a complicated motion. Movement scientists have developed various research methods to study gait. This article describes how a high school student collected and analysed high quality gait data in much the same way that movement scientists do, via the recording and measurement of motions with a video analysis tool and via…

  10. Gait Analysis Methods for Rodent Models of Arthritic Disorders: Reviews and Recommendations

    PubMed Central

    Lakes, Emily H.; Allen, Kyle D.

    2016-01-01

    Gait analysis is a useful tool to understand behavioral changes in preclinical arthritis models. While observational scoring and spatiotemporal gait parameters are the most widely performed gait analyses in rodents, commercially available systems can now provide quantitative assessments of spatiotemporal patterns. However, inconsistencies remain between testing platforms, and laboratories often select different gait pattern descriptors to report in the literature. Rodent gait can also be described through kinetic and kinematic analyses, but systems to analyze rodent kinetics and kinematics are typically custom made and often require sensitive, custom equipment. While the use of rodent gait analysis rapidly expands, it is important to remember that, while rodent gait analysis is a relatively modern behavioral assay, the study of quadrupedal gait is not new. Nearly all gait parameters are correlated, and a collection of gait parameters is needed to understand a compensatory gait pattern used by the animal. As such, a change in a single gait parameter is unlikely to tell the full biomechanical story; and to effectively use gait analysis, one must consider how multiple different parameters contribute to an altered gait pattern. The goal of this article is to review rodent gait analysis techniques and provide recommendations on how to use these technologies in rodent arthritis models, including discussions on the strengths and limitations of observational scoring, spatiotemporal, kinetic, and kinematic measures. Recognizing rodent gait analysis is an evolving tool, we also provide technical recommendations we hope will improve the utility of these analyses in the future. PMID:26995111

  11. Change in gait after high tibial osteotomy: A systematic review and meta-analysis.

    PubMed

    Lee, Seung Hoon; Lee, O-Sung; Teo, Seow Hui; Lee, Yong Seuk

    2017-09-01

    We conducted a meta-analysis to analyze how high tibial osteotomy (HTO) changes gait and focused on the following questions: (1) How does HTO change basic gait variables? (2) How does HTO change the gait variables in the knee joint? Twelve articles were included in the final analysis. A total of 383 knees was evaluated. There were 237 open wedge (OW) and 143 closed wedge (CW) HTOs. There were 4 level II studies and 8 level III studies. All studies included gait analysis and compared pre- and postoperative values. One study compared CWHTO and unicompartmental knee arthroplasty (UKA), and another study compared CWHTO and OWHTO. Five studies compared gait variables with those of healthy controls. One study compared operated limb gait variables with those in the non-operated limb. Gait speed, stride length, knee adduction moment, and lateral thrust were major variables assessed in 2 or more studies. Walking speed increased and stride length was increased or similar after HTO compared to the preoperative value in basic gait variables. Knee adduction moment and lateral thrust were decreased after HTO compared to the preoperative knee joint gait variables. Change in co-contraction of the medial side muscle after surgery differed depending on the degree of frontal plane alignment. The relationship between change in knee adduction moment and change in mechanical axis angle was controversial. Based on our systematic review and meta-analysis, walking speed and stride length increased after HTO. Knee adduction moment and lateral thrust decreased after HTO compared to the preoperative values of gait variables in the knee joint. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Accuracy and reliability of observational gait analysis data: judgments of push-off in gait after stroke.

    PubMed

    McGinley, Jennifer L; Goldie, Patricia A; Greenwood, Kenneth M; Olney, Sandra J

    2003-02-01

    Physical therapists routinely observe gait in clinical practice. The purpose of this study was to determine the accuracy and reliability of observational assessments of push-off in gait after stroke. Eighteen physical therapists and 11 subjects with hemiplegia following a stroke participated in the study. Measurements of ankle power generation were obtained from subjects following stroke using a gait analysis system. Concurrent videotaped gait performances were observed by the physical therapists on 2 occasions. Ankle power generation at push-off was scored as either normal or abnormal using two 11-point rating scales. These observational ratings were correlated with the measurements of peak ankle power generation. A high correlation was obtained between the observational ratings and the measurements of ankle power generation (mean Pearson r=.84). Interobserver reliability was moderately high (mean intraclass correlation coefficient [ICC (2,1)]=.76). Intraobserver reliability also was high, with a mean ICC (2,1) of.89 obtained. Physical therapists were able to make accurate and reliable judgments of push-off in videotaped gait of subjects following stroke using observational assessment. Further research is indicated to explore the accuracy and reliability of data obtained with observational gait analysis as it occurs in clinical practice.

  13. Gait Analysis From a Single Ear-Worn Sensor: Reliability and Clinical Evaluation for Orthopaedic Patients.

    PubMed

    Jarchi, Delaram; Lo, Benny; Wong, Charence; Ieong, Edmund; Nathwani, Dinesh; Yang, Guang-Zhong

    2016-08-01

    Objective assessment of detailed gait patterns after orthopaedic surgery is important for post-surgical follow-up and rehabilitation. The purpose of this paper is to assess the use of a single ear-worn sensor for clinical gait analysis. A reliability measure is devised for indicating the confidence level of the estimated gait events, allowing it to be used in free-walking environments and for facilitating clinical assessment of orthopaedic patients after surgery. Patient groups prior to or following anterior cruciate ligament (ACL) reconstruction and knee replacement were recruited to assess the proposed method. The ability of the sensor for detailed longitudinal analysis is demonstrated with a group of patients after lower limb reconstruction by considering parameters such as temporal and force-related gait asymmetry derived from gait events. The results suggest that the ear-worn sensor can be used for objective gait assessments of orthopaedic patients without the requirement and expense of an elaborate laboratory setup for gait analysis. It significantly simplifies the monitoring protocol and opens the possibilities for home-based remote patient assessment.

  14. A Mobile Kalman-Filter Based Solution for the Real-Time Estimation of Spatio-Temporal Gait Parameters.

    PubMed

    Ferrari, Alberto; Ginis, Pieter; Hardegger, Michael; Casamassima, Filippo; Rocchi, Laura; Chiari, Lorenzo

    2016-07-01

    Gait impairments are among the most disabling symptoms in several musculoskeletal and neurological conditions, severely limiting personal autonomy. Wearable gait sensors have been attracting attention as diagnostic tool for gait and are emerging as promising tool for tutoring and guiding gait execution. If their popularity is continuously growing, still there is room for improvement, especially towards more accurate solutions for spatio-temporal gait parameters estimation. We present an implementation of a zero-velocity-update gait analysis system based on a Kalman filter and off-the-shelf shoe-worn inertial sensors. The algorithms for gait events and step length estimation were specifically designed to comply with pathological gait patterns. More so, an Android app was deployed to support fully wearable and stand-alone real-time gait analysis. Twelve healthy subjects were enrolled to preliminarily tune the algorithms; afterwards sixteen persons with Parkinson's disease were enrolled for a validation study. Over the 1314 strides collected on patients at three different speeds, the total root mean square difference on step length estimation between this system and a gold standard was 2.9%. This shows that the proposed method allows for an accurate gait analysis and paves the way to a new generation of mobile devices usable anywhere for monitoring and intervention.

  15. Analysis of foot load during ballet dancers' gait.

    PubMed

    Prochazkova, Marketa; Tepla, Lucie; Svoboda, Zdenek; Janura, Miroslav; Cieslarová, Miloslava

    2014-01-01

    Ballet is an art that puts extreme demands on the dancer's musculoskeletal system and therefore significantly affects motor behavior of the dancers. The aim of our research was to compare plantar pressure distribution during stance phase of gait between a group of professional ballet dancers and non-dancers. Thirteen professional dancers (5 men, 8 women; mean age of 24.1 ± 3.8 years) and 13 nondancers (5 men, 8 women; mean age of 26.1 ± 5.3 years) participated in this study. Foot pressure analysis during gait was collected using a 2 m pressure plate. The participants were instructed to walk across the platform at a self-selected pace barefoot. Three gait cycles were necessary for the data analysis. The results revealed higher (p < 0.05) pressure peaks in medial edge of forefoot during gait for dancers in comparison with nondancers. Furthermore, differences in total foot loading and foot loading duration of rearfoot was higher (p < 0.05) in dancers as well. We can attribute these differences to long-term and intensive dancing exercises that can change the dancer's gait stereotype.

  16. FreeWalker: a smart insole for longitudinal gait analysis.

    PubMed

    Wang, Baitong; Rajput, Kuldeep Singh; Tam, Wing-Kin; Tung, Anthony K H; Yang, Zhi

    2015-08-01

    Gait analysis is an important diagnostic measure to investigate the pattern of walking. Traditional gait analysis is generally carried out in a gait lab, with equipped force and body tracking sensors, which needs a trained medical professional to interpret the results. This procedure is tedious, expensive, and unreliable and makes it difficult to track the progress across multiple visits. In this paper, we present a smart insole called FreeWalker, which provides quantitative gait analysis outside the confinement of traditional lab, at low- cost. The insole consists of eight pressure sensors and two motion tracking sensors, i.e. 3-axis accelerometer and 3-axis gyroscope. This enables measurement of under-foot pressure distribution and motion sequences in real-time. The insole is enabled with onboard SD card as well as wireless data transmission, which help in continuous gait-cycle analysis. The data is then sent to a gateway, for analysis and interpretation of data, using a user interface where gait features are graphically displayed. We also present validation result of a subject's left foot, who was asked to perform a specific task. Experiment results show that we could achieve a data-sampling rate of over 1 KHz, transmitting data up to a distance of 20 meter and maintain a battery life of around 24 hours. Taking advantage of these features, FreeWalker can be used in various applications, like medical diagnosis, rehabilitation, sports and entertainment.

  17. Instrumented gait analysis: a measure of gait improvement by a wheeled walker in hospitalized geriatric patients.

    PubMed

    Schülein, Samuel; Barth, Jens; Rampp, Alexander; Rupprecht, Roland; Eskofier, Björn M; Winkler, Jürgen; Gaßmann, Karl-Günter; Klucken, Jochen

    2017-02-27

    In an increasing aging society, reduced mobility is one of the most important factors limiting activities of daily living and overall quality of life. The ability to walk independently contributes to the mobility, but is increasingly restricted by numerous diseases that impair gait and balance. The aim of this cross-sectional observation study was to examine whether spatio-temporal gait parameters derived from mobile instrumented gait analysis can be used to measure the gait stabilizing effects of a wheeled walker (WW) and whether these gait parameters may serve as surrogate marker in hospitalized patients with multifactorial gait and balance impairment. One hundred six patients (ages 68-95) wearing inertial sensor equipped shoes passed an instrumented walkway with and without gait support from a WW. The walkway assessed the risk of falling associated gait parameters velocity, swing time, stride length, stride time- and double support time variability. Inertial sensor-equipped shoes measured heel strike and toe off angles, and foot clearance. The use of a WW improved the risk of spatio-temporal parameters velocity, swing time, stride length and the sagittal plane associated parameters heel strike and toe off angles in all patients. First-time users (FTUs) showed similar gait parameter improvement patterns as frequent WW users (FUs). However, FUs with higher levels of gait impairment improved more in velocity, stride length and toe off angle compared to the FTUs. The impact of a WW can be quantified objectively by instrumented gait assessment. Thus, objective gait parameters may serve as surrogate markers for the use of walking aids in patients with gait and balance impairments.

  18. Gait analysis in anorexia and bulimia nervosa.

    PubMed

    Cimolin, Veronica; Galli, Manuela; Vismara, Luca; Vimercati, Sara Laura; Precilios, Helmer; Cattani, Laila; Fabris De Souza, Shirley; Petroni, Maria Letizia; Capodaglio, Paolo

    2013-09-13

    Anorexia (AN) and Bulimia Nervosa (BN) are two common eating disorders, which appear to share some reduced motor capacities, such as a reduced balance. The presence and the extent of other motor disorders have not been investigated in a comprehensive way. The aim of this study was to quantify gait pattern in AN and BN individuals in order to ascertain possible differences from the normality range and provide novel data for developing some evidence-based rehabilitation strategies. Nineteen AN patients (age 30.16+9.73) and 20 BN patients (age 26.8+8.41) were assessed with quantitative 3D computerized Gait Analysis. Results were compared with a group of healthy controls (CG; 30.7+5.6). AN and BN patients were characterized by different gait strategies compared to CG. Spatio-temporal parameters indicated shorter step length, with AN showing the shortest values. AN walked slower than BN and CG. As for kinematics, AN and BN showed a nonphysiologic pattern at pelvis and hip level on the sagittal and frontal plane, with BN yielding the most abnormal values. Both AN and BN patients were characterized by high ankle plantar flexion capacity at toe-off when compared to CG. As for ankle kinetics, both AN and BN showed physiologic patterns. Stiffness at hip level was close to CG in both pathologic groups; at the ankle level, stiffness was significantly decreased in both groups, with AN displaying lower values. Both AN and BN were characterized by an altered gait pattern compared to CG. Biomechanical differences were evident mainly at pelvis and hip level. Loss of lean mass may lead to musculoskeletal adaptation, ultimately causing alterations in the gait pattern.

  19. IMU-Based Joint Angle Measurement for Gait Analysis

    PubMed Central

    Seel, Thomas; Raisch, Jorg; Schauer, Thomas

    2014-01-01

    This contribution is concerned with joint angle calculation based on inertial measurement data in the context of human motion analysis. Unlike most robotic devices, the human body lacks even surfaces and right angles. Therefore, we focus on methods that avoid assuming certain orientations in which the sensors are mounted with respect to the body segments. After a review of available methods that may cope with this challenge, we present a set of new methods for: (1) joint axis and position identification; and (2) flexion/extension joint angle measurement. In particular, we propose methods that use only gyroscopes and accelerometers and, therefore, do not rely on a homogeneous magnetic field. We provide results from gait trials of a transfemoral amputee in which we compare the inertial measurement unit (IMU)-based methods to an optical 3D motion capture system. Unlike most authors, we place the optical markers on anatomical landmarks instead of attaching them to the IMUs. Root mean square errors of the knee flexion/extension angles are found to be less than 1° on the prosthesis and about 3° on the human leg. For the plantar/dorsiflexion of the ankle, both deviations are about 1°. PMID:24743160

  20. Inter- and intraobserver repeatability of the Salford Gait Tool: an observation-based clinical gait assessment tool.

    PubMed

    Toro, Brigitte; Nester, Christopher J; Farren, Pauline C

    2007-03-01

    To evaluate the inter- and intraobserver repeatability of the Salford Gait Tool (SF-GT), a new observation-based gait assessment tool for evaluating sagittal plane cerebral palsy (CP) gait. Masked comparative evaluation. University in the United Kingdom. A convenience sample of 23 pediatric physical therapists with varying degrees of clinical experience recruited from the Greater Manchester area. Participants viewed videotapes of the sagittal plane gait of 13 children and used the SF-GT to analyze their 13 different gait styles on 2 occasions. Eleven children had hemiplegic, diplegic, or quadriplegic CP and 2 were neurologically intact. Inter- and intraobserver repeatability of hip, knee, and ankle joint positions at 6 different phases of the gait cycle. The SF-GT demonstrated good interobserver (77%) and intraobserver (75%) repeatability. We have established that the SF-GT is a repeatable clinical assessment tool with which to guide the diagnosis, treatment planning, and evaluation of interventions by pediatric physical therapists of sagittal plane gait deviations in CP.

  1. A Wearable Magneto-Inertial System for Gait Analysis (H-Gait): Validation on Normal Weight and Overweight/Obese Young Healthy Adults

    PubMed Central

    Gastaldi, Laura; Rosso, Valeria; Knaflitz, Marco; Tadano, Shigeru

    2017-01-01

    Background: Wearable magneto-inertial sensors are being increasingly used to obtain human motion measurements out of the lab, although their performance in applications requiring high accuracy, such as gait analysis, are still a subject of debate. The aim of this work was to validate a gait analysis system (H-Gait) based on magneto-inertial sensors, both in normal weight (NW) and overweight/obese (OW) subjects. The validation is performed against a reference multichannel recording system (STEP32), providing direct measurements of gait timings (through foot-switches) and joint angles in the sagittal plane (through electrogoniometers). Methods: Twenty-two young male subjects were recruited for the study (12 NW, 10 OW). After positioning body-fixed sensors of both systems, each subject was asked to walk, at a self-selected speed, over a 14-m straight path for 12 trials. Gait signals were recorded, at the same time, with the two systems. Spatio-temporal parameters, ankle, knee, and hip joint kinematics were extracted analyzing an average of 89 ± 13 gait cycles from each lower limb. Intraclass correlation coefficient and Bland-Altmann plots were used to compare H-Gait and STEP32 measurements. Changes in gait parameters and joint kinematics of OW with respect NW were also evaluated. Results: The two systems were highly consistent for cadence, while a lower agreement was found for the other spatio-temporal parameters. Ankle and knee joint kinematics is overall comparable. Joint ROMs values were slightly lower for H-Gait with respect to STEP32 for the ankle (by 1.9° for NW, and 1.6° for OW) and for the knee (by 4.1° for NW, and 1.8° for OW). More evident differences were found for hip joint, with ROMs values higher for H-Gait (by 6.8° for NW, and 9.5° for OW). NW and OW showed significant differences considering STEP32 (p = 0.0004), but not H-Gait (p = 0.06). In particular, overweight/obese subjects showed a higher cadence (55.0 vs. 52.3 strides/min) and a lower hip

  2. Interpreting sources of variation in clinical gait analysis: A case study.

    PubMed

    King, Stephanie L; Barton, Gabor J; Ranganath, Lakshminarayan R

    2017-02-01

    To illustrate and discuss sources of gait deviations (experimental, genuine and intentional) during a gait analysis and how these deviations inform clinical decision making. A case study of a 24-year old male diagnosed with Alkaptonuria undergoing a routine gait analysis. A 3D motion capture with the Helen-Hayes marker set was used to quantify lower-limb joint kinematics during barefoot walking along a 10m walkway at a self-selected pace. Additional 2D video data were recorded in the sagittal and frontal plane. The patient reported no aches or pains in any joint and described his lifestyle as active. Temporal-spatial parameters were within normal ranges for his age and sex. Three sources of gait deviations were identified; the posteriorly rotated pelvis was due to an experimental error and marker misplacement, the increased rotation of the pelvis in the horizontal plane was genuine and observed in both 3D gait curves and in 2D video analysis, finally the inconsistency in knee flexion/extension combined with a seemingly innocuous interest in the consequences of abnormal gait suggested an intentional gait deviation. Gait analysis is an important analytical tool in the management of a variety of conditions that negatively impact on movement. Experienced gait analysts have the ability to recognise genuine gait adaptations that forms part of the decision-making process for that patient. However, their role also necessitates the ability to identify and correct for experimental errors and critically evaluate when a deviation may not be genuine. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Analysis of gait symmetry during over-ground walking in children with autism spectrum disorder.

    PubMed

    Eggleston, Jeffrey D; Harry, John R; Hickman, Robbin A; Dufek, Janet S

    2017-06-01

    Gait symmetry is utilized as an indicator of neurologic function. Healthy gait often exhibits minimal asymmetries, while pathological gait exhibits exaggerated asymmetries. The purpose of this study was to examine symmetry of mechanical gait parameters during over-ground walking in children with Autism Spectrum Disorder (ASD). Kinematic and kinetic data were obtained from 10 children (aged 5-12 years) with ASD. The Model Statistic procedure (α=0.05) was used to compare gait related parameters between limbs. Analysis revealed children with ASD exhibit significant lower extremity joint position and ground reaction force asymmetries throughout the gait cycle. The observed asymmetries were unique for each subject. These data do not support previous research relative to gait symmetry in children with ASD. Many individuals with ASD do not receive physical therapy interventions, however, precision medicine based interventions emphasizing lower extremity asymmetries may improve gait function and improve performance during activities of daily living. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. When human walking becomes random walking: fractal analysis and modeling of gait rhythm fluctuations

    NASA Astrophysics Data System (ADS)

    Hausdorff, Jeffrey M.; Ashkenazy, Yosef; Peng, Chang-K.; Ivanov, Plamen Ch.; Stanley, H. Eugene; Goldberger, Ary L.

    2001-12-01

    We present a random walk, fractal analysis of the stride-to-stride fluctuations in the human gait rhythm. The gait of healthy young adults is scale-free with long-range correlations extending over hundreds of strides. This fractal scaling changes characteristically with maturation in children and older adults and becomes almost completely uncorrelated with certain neurologic diseases. Stochastic modeling of the gait rhythm dynamics, based on transitions between different “neural centers”, reproduces distinctive statistical properties of the gait pattern. By tuning one model parameter, the hopping (transition) range, the model can describe alterations in gait dynamics from childhood to adulthood - including a decrease in the correlation and volatility exponents with maturation.

  5. Finite element analysis of the femur during stance phase of gait based on musculoskeletal model simulation.

    PubMed

    Seo, Jeong-Woo; Kang, Dong-Won; Kim, Ju-Young; Yang, Seung-Tae; Kim, Dae-Hyeok; Choi, Jin-Seung; Tack, Gye-Rae

    2014-01-01

    In this study, the accuracy of the inputs required for finite element analysis, which is mainly used for the biomechanical analysis of bones, was improved. To ensure a muscle force and joint contact force similar to the actual values, a musculoskeletal model that was based on the actual gait experiment was used. Gait data were obtained from a healthy male adult aged 29 who had no history of musculoskeletal disease and walked normally (171 cm height and 72 kg weight), and were used as inputs for the musculoskeletal model simulation to determine the muscle force and joint contact force. Among the phases of gait, which is the most common activity in daily life, the stance phase is the most affected by the load. The results data were extracted from five events in the stance phase: heel contact (ST1), loading response (ST2), early mid-stance (ST2), late mid-stance (ST4), and terminal stance (ST5). The results were used as the inputs for the finite element model that was formed using 1.5mm intervals computed tomography (CT) images and the maximum Von-Mises stress and the maximum Von-Mises strain of the right femur were examined. The maximum stress and strain were lowest at the ST4. The maximum values for the femur occurred in the medial part and then in the lateral part after the mid-stance. In this study, the results of the musculoskeletal model simulation using the inverse-dynamic analysis were utilized to improve the accuracy of the inputs, which affected the finite element analysis results, and the possibility of the bone-specific analysis according to the lapse of time was examined.

  6. Gait analysis in a mouse model resembling Leigh disease.

    PubMed

    de Haas, Ria; Russel, Frans G; Smeitink, Jan A

    2016-01-01

    Leigh disease (LD) is one of the clinical phenotypes of mitochondrial OXPHOS disorders and also known as sub-acute necrotizing encephalomyelopathy. The disease has an incidence of 1 in 77,000 live births. Symptoms typically begin early in life and prognosis for LD patients is poor. Currently, no clinically effective treatments are available. Suitable animal and cellular models are necessary for the understanding of the neuropathology and the development of successful new therapeutic strategies. In this study we used the Ndufs4 knockout (Ndufs4(-/-)) mouse, a model of mitochondrial complex I deficiency. Ndusf4(-/-) mice exhibit progressive neurodegeneration, which closely resemble the human LD phenotype. When dissecting behavioral abnormalities in animal models it is of great importance to apply translational tools that are clinically relevant. To distinguish gait abnormalities in patients, simple walking tests can be assessed, but in animals this is not easy. This study is the first to demonstrate automated CatWalk gait analysis in the Ndufs4(-/-) mouse model. Marked differences were noted between Ndufs4(-/-) and control mice in dynamic, static, coordination and support parameters. Variation of walking speed was significantly increased in Ndufs4(-/-) mice, suggesting hampered and uncoordinated gait. Furthermore, decreased regularity index, increased base of support and changes in support were noted in the Ndufs4(-/-) mice. Here, we report the ability of the CatWalk system to sensitively assess gait abnormalities in Ndufs4(-/-) mice. This objective gait analysis can be of great value for intervention and drug efficacy studies in animal models for mitochondrial disease. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Effect of rhythmic auditory cueing on gait in cerebral palsy: a systematic review and meta-analysis.

    PubMed

    Ghai, Shashank; Ghai, Ishan; Effenberg, Alfred O

    2018-01-01

    Auditory entrainment can influence gait performance in movement disorders. The entrainment can incite neurophysiological and musculoskeletal changes to enhance motor execution. However, a consensus as to its effects based on gait in people with cerebral palsy is still warranted. A systematic review and meta-analysis were carried out to analyze the effects of rhythmic auditory cueing on spatiotemporal and kinematic parameters of gait in people with cerebral palsy. Systematic identification of published literature was performed adhering to Preferred Reporting Items for Systematic Reviews and Meta-Analyses and American Academy for Cerebral Palsy and Developmental Medicine guidelines, from inception until July 2017, on online databases: Web of Science, PEDro, EBSCO, Medline, Cochrane, Embase and ProQuest. Kinematic and spatiotemporal gait parameters were evaluated in a meta-analysis across studies. Of 547 records, nine studies involving 227 participants (108 children/119 adults) met our inclusion criteria. The qualitative review suggested beneficial effects of rhythmic auditory cueing on gait performance among all included studies. The meta-analysis revealed beneficial effects of rhythmic auditory cueing on gait dynamic index (Hedge's g =0.9), gait velocity (1.1), cadence (0.3), and stride length (0.5). This review for the first time suggests a converging evidence toward application of rhythmic auditory cueing to enhance gait performance and stability in people with cerebral palsy. This article details underlying neurophysiological mechanisms and use of cueing as an efficient home-based intervention. It bridges gaps in the literature, and suggests translational approaches on how rhythmic auditory cueing can be incorporated in rehabilitation approaches to enhance gait performance in people with cerebral palsy.

  8. A Grassmann graph embedding framework for gait analysis

    NASA Astrophysics Data System (ADS)

    Connie, Tee; Goh, Michael Kah Ong; Teoh, Andrew Beng Jin

    2014-12-01

    Gait recognition is important in a wide range of monitoring and surveillance applications. Gait information has often been used as evidence when other biometrics is indiscernible in the surveillance footage. Building on recent advances of the subspace-based approaches, we consider the problem of gait recognition on the Grassmann manifold. We show that by embedding the manifold into reproducing kernel Hilbert space and applying the mechanics of graph embedding on such manifold, significant performance improvement can be obtained. In this work, the gait recognition problem is studied in a unified way applicable for both supervised and unsupervised configurations. Sparse representation is further incorporated in the learning mechanism to adaptively harness the local structure of the data. Experiments demonstrate that the proposed method can tolerate variations in appearance for gait identification effectively.

  9. The complex genetics of gait speed: genome-wide meta-analysis approach

    PubMed Central

    Lunetta, Kathryn L.; Smith, Jennifer A.; Eicher, John D.; Vered, Rotem; Deelen, Joris; Arnold, Alice M.; Buchman, Aron S.; Tanaka, Toshiko; Faul, Jessica D.; Nethander, Maria; Fornage, Myriam; Adams, Hieab H.; Matteini, Amy M.; Callisaya, Michele L.; Smith, Albert V.; Yu, Lei; De Jager, Philip L.; Evans, Denis A.; Gudnason, Vilmundur; Hofman, Albert; Pattie, Alison; Corley, Janie; Launer, Lenore J.; Knopman, Davis S.; Parimi, Neeta; Turner, Stephen T.; Bandinelli, Stefania; Beekman, Marian; Gutman, Danielle; Sharvit, Lital; Mooijaart, Simon P.; Liewald, David C.; Houwing-Duistermaat, Jeanine J.; Ohlsson, Claes; Moed, Matthijs; Verlinden, Vincent J.; Mellström, Dan; van der Geest, Jos N.; Karlsson, Magnus; Hernandez, Dena; McWhirter, Rebekah; Liu, Yongmei; Thomson, Russell; Tranah, Gregory J.; Uitterlinden, Andre G.; Weir, David R.; Zhao, Wei; Starr, John M.; Johnson, Andrew D.; Ikram, M. Arfan; Bennett, David A.; Cummings, Steven R.; Deary, Ian J.; Harris, Tamara B.; Kardia, Sharon L. R.; Mosley, Thomas H.; Srikanth, Velandai K.; Windham, Beverly G.; Newman, Ann B.; Walston, Jeremy D.; Davies, Gail; Evans, Daniel S.; Slagboom, Eline P.; Ferrucci, Luigi; Kiel, Douglas P.; Murabito, Joanne M.; Atzmon, Gil

    2017-01-01

    Emerging evidence suggests that the basis for variation in late-life mobility is attributable, in part, to genetic factors, which may become increasingly important with age. Our objective was to systematically assess the contribution of genetic variation to gait speed in older individuals. We conducted a meta-analysis of gait speed GWASs in 31,478 older adults from 17 cohorts of the CHARGE consortium, and validated our results in 2,588 older adults from 4 independent studies. We followed our initial discoveries with network and eQTL analysis of candidate signals in tissues. The meta-analysis resulted in a list of 536 suggestive genome wide significant SNPs in or near 69 genes. Further interrogation with Pathway Analysis placed gait speed as a polygenic complex trait in five major networks. Subsequent eQTL analysis revealed several SNPs significantly associated with the expression of PRSS16, WDSUB1 and PTPRT, which in addition to the meta-analysis and pathway suggested that genetic effects on gait speed may occur through synaptic function and neuronal development pathways. No genome-wide significant signals for gait speed were identified from this moderately large sample of older adults, suggesting that more refined physical function phenotypes will be needed to identify the genetic basis of gait speed in aging. PMID:28077804

  10. Wearable Device-Based Gait Recognition Using Angle Embedded Gait Dynamic Images and a Convolutional Neural Network.

    PubMed

    Zhao, Yongjia; Zhou, Suiping

    2017-02-28

    The widespread installation of inertial sensors in smartphones and other wearable devices provides a valuable opportunity to identify people by analyzing their gait patterns, for either cooperative or non-cooperative circumstances. However, it is still a challenging task to reliably extract discriminative features for gait recognition with noisy and complex data sequences collected from casually worn wearable devices like smartphones. To cope with this problem, we propose a novel image-based gait recognition approach using the Convolutional Neural Network (CNN) without the need to manually extract discriminative features. The CNN's input image, which is encoded straightforwardly from the inertial sensor data sequences, is called Angle Embedded Gait Dynamic Image (AE-GDI). AE-GDI is a new two-dimensional representation of gait dynamics, which is invariant to rotation and translation. The performance of the proposed approach in gait authentication and gait labeling is evaluated using two datasets: (1) the McGill University dataset, which is collected under realistic conditions; and (2) the Osaka University dataset with the largest number of subjects. Experimental results show that the proposed approach achieves competitive recognition accuracy over existing approaches and provides an effective parametric solution for identification among a large number of subjects by gait patterns.

  11. Wearable Device-Based Gait Recognition Using Angle Embedded Gait Dynamic Images and a Convolutional Neural Network

    PubMed Central

    Zhao, Yongjia; Zhou, Suiping

    2017-01-01

    The widespread installation of inertial sensors in smartphones and other wearable devices provides a valuable opportunity to identify people by analyzing their gait patterns, for either cooperative or non-cooperative circumstances. However, it is still a challenging task to reliably extract discriminative features for gait recognition with noisy and complex data sequences collected from casually worn wearable devices like smartphones. To cope with this problem, we propose a novel image-based gait recognition approach using the Convolutional Neural Network (CNN) without the need to manually extract discriminative features. The CNN’s input image, which is encoded straightforwardly from the inertial sensor data sequences, is called Angle Embedded Gait Dynamic Image (AE-GDI). AE-GDI is a new two-dimensional representation of gait dynamics, which is invariant to rotation and translation. The performance of the proposed approach in gait authentication and gait labeling is evaluated using two datasets: (1) the McGill University dataset, which is collected under realistic conditions; and (2) the Osaka University dataset with the largest number of subjects. Experimental results show that the proposed approach achieves competitive recognition accuracy over existing approaches and provides an effective parametric solution for identification among a large number of subjects by gait patterns. PMID:28264503

  12. Joint kinematic calculation based on clinical direct kinematic versus inverse kinematic gait models.

    PubMed

    Kainz, H; Modenese, L; Lloyd, D G; Maine, S; Walsh, H P J; Carty, C P

    2016-06-14

    Most clinical gait laboratories use the conventional gait analysis model. This model uses a computational method called Direct Kinematics (DK) to calculate joint kinematics. In contrast, musculoskeletal modelling approaches use Inverse Kinematics (IK) to obtain joint angles. IK allows additional analysis (e.g. muscle-tendon length estimates), which may provide valuable information for clinical decision-making in people with movement disorders. The twofold aims of the current study were: (1) to compare joint kinematics obtained by a clinical DK model (Vicon Plug-in-Gait) with those produced by a widely used IK model (available with the OpenSim distribution), and (2) to evaluate the difference in joint kinematics that can be solely attributed to the different computational methods (DK versus IK), anatomical models and marker sets by using MRI based models. Eight children with cerebral palsy were recruited and presented for gait and MRI data collection sessions. Differences in joint kinematics up to 13° were found between the Plug-in-Gait and the gait 2392 OpenSim model. The majority of these differences (94.4%) were attributed to differences in the anatomical models, which included different anatomical segment frames and joint constraints. Different computational methods (DK versus IK) were responsible for only 2.7% of the differences. We recommend using the same anatomical model for kinematic and musculoskeletal analysis to ensure consistency between the obtained joint angles and musculoskeletal estimates. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. A non linear analysis of human gait time series based on multifractal analysis and cross correlations

    NASA Astrophysics Data System (ADS)

    Muñoz-Diosdado, A.

    2005-01-01

    We analyzed databases with gait time series of adults and persons with Parkinson, Huntington and amyotrophic lateral sclerosis (ALS) diseases. We obtained the staircase graphs of accumulated events that can be bounded by a straight line whose slope can be used to distinguish between gait time series from healthy and ill persons. The global Hurst exponent of these series do not show tendencies, we intend that this is because some gait time series have monofractal behavior and others have multifractal behavior so they cannot be characterized with a single Hurst exponent. We calculated the multifractal spectra, obtained the spectra width and found that the spectra of the healthy young persons are almost monofractal. The spectra of ill persons are wider than the spectra of healthy persons. In opposition to the interbeat time series where the pathology implies loss of multifractality, in the gait time series the multifractal behavior emerges with the pathology. Data were collected from healthy and ill subjects as they walked in a roughly circular path and they have sensors in both feet, so we have one time series for the left foot and other for the right foot. First, we analyzed these time series separately, and then we compared both results, with direct comparison and with a cross correlation analysis. We tried to find differences in both time series that can be used as indicators of equilibrium problems.

  14. Gait Analysis Methods for Rodent Models of Osteoarthritis

    PubMed Central

    Jacobs, Brittany Y.; Kloefkorn, Heidi E.; Allen, Kyle D.

    2014-01-01

    Patients with osteoarthritis (OA) primarily seek treatment due to pain and disability, yet the primary endpoints for rodent OA models tend to be histological measures of joint destruction. The discrepancy between clinical and preclinical evaluations is problematic, given that radiographic evidence of OA in humans does not always correlate to the severity of patient-reported symptoms. Recent advances in behavioral analyses have provided new methods to evaluate disease sequelae in rodents. Of particular relevance to rodent OA models are methods to assess rodent gait. While obvious differences exist between quadrupedal and bipedal gait sequences, the gait abnormalities seen in humans and in rodent OA models reflect similar compensatory behaviors that protect an injured limb from loading. The purpose of this review is to describe these compensations and current methods used to assess rodent gait characteristics, while detailing important considerations for the selection of gait analysis methods in rodent OA models. PMID:25160712

  15. Wearable sensors objectively measure gait parameters in Parkinson’s disease

    PubMed Central

    Marxreiter, Franz; Gossler, Julia; Kohl, Zacharias; Reinfelder, Samuel; Gassner, Heiko; Aminian, Kamiar; Eskofier, Bjoern M.; Winkler, Jürgen; Klucken, Jochen

    2017-01-01

    Distinct gait characteristics like short steps and shuffling gait are prototypical signs commonly observed in Parkinson’s disease. Routinely assessed by observation through clinicians, gait is rated as part of categorical clinical scores. There is an increasing need to provide quantitative measurements of gait, e.g. to provide detailed information about disease progression. Recently, we developed a wearable sensor-based gait analysis system as diagnostic tool that objectively assesses gait parameter in Parkinson’s disease without the need of having a specialized gait laboratory. This system consists of inertial sensor units attached laterally to both shoes. The computed target of measures are spatiotemporal gait parameters including stride length and time, stance phase time, heel-strike and toe-off angle, toe clearance, and inter-stride variation from gait sequences. To translate this prototype into medical care, we conducted a cross-sectional study including 190 Parkinson’s disease patients and 101 age-matched controls and measured gait characteristics during a 4x10 meter walk at the subjects’ preferred speed. To determine intraindividual changes in gait, we monitored the gait characteristics of 63 patients longitudinally. Cross-sectional analysis revealed distinct spatiotemporal gait parameter differences reflecting typical Parkinson’s disease gait characteristics including short steps, shuffling gait, and postural instability specific for different disease stages and levels of motor impairment. The longitudinal analysis revealed that gait parameters were sensitive to changes by mirroring the progressive nature of Parkinson’s disease and corresponded to physician ratings. Taken together, we successfully show that wearable sensor-based gait analysis reaches clinical applicability providing a high biomechanical resolution for gait impairment in Parkinson’s disease. These data demonstrate the feasibility and applicability of objective wearable sensor-based

  16. Visual analysis of the effects of load carriage on gait

    NASA Astrophysics Data System (ADS)

    Wittman, Michael G.; Ward, James M.; Flynn, Patrick J.

    2005-03-01

    As early as the 1970's it was determined that gait, or the "manner of walking" is an identifying feature of a human being. Since then, extensive research has been done in the field of computer vision to determine how accurately a subject can be identified by gait characteristics. This has necessarily led to the study of how various data collection conditions, such as terrain type, varying camera angles, or a carried briefcase, may affect the identifying features of gait. However, little or no research has been done to question whether such conditions may be inferred from gait analysis. For example, is it possible to determine characteristics of the walking surface simply by looking at statistics derived from the subject's gait? The question to be addressed is whether significant concealed weight distributed on the subject's torso can be discovered through analysis of his gait. Individual trends in subjects in response to increasing concealed weight will be explored, with the objective of finding universal trends that would have obvious security purposes.

  17. Multi-complexity ensemble measures for gait time series analysis: application to diagnostics, monitoring and biometrics.

    PubMed

    Gavrishchaka, Valeriy; Senyukova, Olga; Davis, Kristina

    2015-01-01

    Previously, we have proposed to use complementary complexity measures discovered by boosting-like ensemble learning for the enhancement of quantitative indicators dealing with necessarily short physiological time series. We have confirmed robustness of such multi-complexity measures for heart rate variability analysis with the emphasis on detection of emerging and intermittent cardiac abnormalities. Recently, we presented preliminary results suggesting that such ensemble-based approach could be also effective in discovering universal meta-indicators for early detection and convenient monitoring of neurological abnormalities using gait time series. Here, we argue and demonstrate that these multi-complexity ensemble measures for gait time series analysis could have significantly wider application scope ranging from diagnostics and early detection of physiological regime change to gait-based biometrics applications.

  18. Interrater reliability of videotaped observational gait-analysis assessments.

    PubMed

    Eastlack, M E; Arvidson, J; Snyder-Mackler, L; Danoff, J V; McGarvey, C L

    1991-06-01

    The purpose of this study was to determine the interrater reliability of videotaped observational gait-analysis (VOGA) assessments. Fifty-four licensed physical therapists with varying amounts of clinical experience served as raters. Three patients with rheumatoid arthritis who demonstrated an abnormal gait pattern served as subjects for the videotape. The raters analyzed each patient's most severely involved knee during the four subphases of stance for the kinematic variables of knee flexion and genu valgum. Raters were asked to determine whether these variables were inadequate, normal, or excessive. The temporospatial variables analyzed throughout the entire gait cycle were cadence, step length, stride length, stance time, and step width. Generalized kappa coefficients ranged from .11 to .52. Intraclass correlation coefficients (2,1) and (3,1) were slightly higher. Our results indicate that physical therapists' VOGA assessments are only slightly to moderately reliable and that improved interrater reliability of the assessments of physical therapists utilizing this technique is needed. Our data suggest that there is a need for greater standardization of gait-analysis training.

  19. Assessment of stability during gait in patients with spinal deformity-A preliminary analysis using the dynamic stability margin.

    PubMed

    Simon, Anne-Laure; Lugade, Vipul; Bernhardt, Kathie; Larson, A Noelle; Kaufman, Kenton

    2017-06-01

    Daily living activities are dynamic, requiring spinal motion through space. Current assessment of spinal deformities is based on static measurements from full-spine standing radiographs. Tools to assess dynamic stability during gait might be useful to enhance the standard evaluation. The aim of this study was to evaluate gait dynamic imbalance in patients with spinal deformity using the dynamic stability margin (DSM). Twelve normal subjects and 17 patients with spinal deformity were prospectively recruited. A kinematic 3D gait analysis was performed for the control group (CG) and the spinal deformity group (SDG). The DSM (distance between the extrapolated center of mass and the base of support) and time-distance parameters were calculated for the right and left side during gait. The relationship between DSM and step length was assessed using three variables: gait stability, symmetry, and consistency. Variables' accuracy was validated by a discriminant analysis. Patients with spinal deformity exhibited gait instability according to the DSM (0.25m versus 0.31m) with decreased velocity (1.1ms -1 versus 1.3ms -1 ) and decreased step length (0.32m versus 0.38m). According to the discriminant analysis, gait stability was the more accurate variable (area under the curve AUC=0.98) followed by gait symmetry and consistency. However, gait consistency showed 100% of specificity, sensitivity, and accuracy of precision. The DSM showed that patients with spinal malalignment exhibit decreased gait stability, symmetry, and consistency besides gait time-distance parameter changes. Additional work is required to determine how to apply the DSM for preoperative and postoperative spinal deformity management. Copyright © 2017. Published by Elsevier B.V.

  20. Benchmarking Foot Trajectory Estimation Methods for Mobile Gait Analysis

    PubMed Central

    Ollenschläger, Malte; Roth, Nils; Klucken, Jochen

    2017-01-01

    Mobile gait analysis systems based on inertial sensing on the shoe are applied in a wide range of applications. Especially for medical applications, they can give new insights into motor impairment in, e.g., neurodegenerative disease and help objectify patient assessment. One key component in these systems is the reconstruction of the foot trajectories from inertial data. In literature, various methods for this task have been proposed. However, performance is evaluated on a variety of datasets due to the lack of large, generally accepted benchmark datasets. This hinders a fair comparison of methods. In this work, we implement three orientation estimation and three double integration schemes for use in a foot trajectory estimation pipeline. All methods are drawn from literature and evaluated against a marker-based motion capture reference. We provide a fair comparison on the same dataset consisting of 735 strides from 16 healthy subjects. As a result, the implemented methods are ranked and we identify the most suitable processing pipeline for foot trajectory estimation in the context of mobile gait analysis. PMID:28832511

  1. Gait analysis in demented subjects: Interests and perspectives

    PubMed Central

    Beauchet, Olivier; Allali, Gilles; Berrut, Gilles; Hommet, Caroline; Dubost, Véronique; Assal, Frédéric

    2008-01-01

    Gait disorders are more prevalent in dementia than in normal aging and are related to the severity of cognitive decline. Dementia-related gait changes (DRGC) mainly include decrease in walking speed provoked by a decrease in stride length and an increase in support phase. More recently, dual-task related changes in gait were found in Alzheimer’s disease (AD) and non-Alzheimer dementia, even at an early stage. An increase in stride-to-stride variability while usual walking and dual-tasking has been shown to be more specific and sensitive than any change in mean value in subjects with dementia. Those data show that DRGC are not only associated to motor disorders but also to problem with central processing of information and highlight that dysfunction of temporal and frontal lobe may in part explain gait impairment among demented subjects. Gait assessment, and more particularly dual-task analysis, is therefore crucial in early diagnosis of dementia and/or related syndromes in the elderly. Moreover, dual-task disturbances could be a specific marker of falling at a pre-dementia stage. PMID:18728766

  2. Gait and Cognition in Parkinson's Disease: Cognitive Impairment Is Inadequately Reflected by Gait Performance during Dual Task.

    PubMed

    Gaßner, Heiko; Marxreiter, Franz; Steib, Simon; Kohl, Zacharias; Schlachetzki, Johannes C M; Adler, Werner; Eskofier, Bjoern M; Pfeifer, Klaus; Winkler, Jürgen; Klucken, Jochen

    2017-01-01

    Cognitive and gait deficits are common symptoms in Parkinson's disease (PD). Motor-cognitive dual tasks (DTs) are used to explore the interplay between gait and cognition. However, it is unclear if DT gait performance is indicative for cognitive impairment. Therefore, the aim of this study was to investigate if cognitive deficits are reflected by DT costs of spatiotemporal gait parameters. Cognitive function, single task (ST) and DT gait performance were investigated in 67 PD patients. Cognition was assessed by the Montreal Cognitive Assessment (MoCA) followed by a standardized, sensor-based gait test and the identical gait test while subtracting serial 3's. Cognitive impairment was defined by a MoCA score <26. DT costs in gait parameters [(DT - ST)/ST × 100] were calculated as a measure of DT effect on gait. Correlation analysis was used to evaluate the association between MoCA performance and gait parameters. In a linear regression model, DT gait costs and clinical confounders (age, gender, disease duration, motor impairment, medication, and depression) were correlated to cognitive performance. In a subgroup analysis, we compared matched groups of cognitively impaired and unimpaired PD patients regarding differences in ST, DT, and DT gait costs. Correlation analysis revealed weak correlations between MoCA score and DT costs of gait parameters ( r / r Sp  ≤ 0.3). DT costs of stride length, swing time variability, and maximum toe clearance (| r / r Sp | > 0.2) were included in a regression analysis. The parameters only explain 8% of the cognitive variance. In combination with clinical confounders, regression analysis showed that these gait parameters explained 30% of MoCA performance. Group comparison revealed strong DT effects within both groups (large effect sizes), but significant between-group effects in DT gait costs were not observed. These findings suggest that DT gait performance is not indicative for cognitive impairment in PD. DT

  3. Gait Speed Predicts Incident Disability: A Pooled Analysis

    PubMed Central

    Patel, Kushang V.; Rosano, Caterina; Rubin, Susan M.; Satterfield, Suzanne; Harris, Tamara; Ensrud, Kristine; Orwoll, Eric; Lee, Christine G.; Chandler, Julie M.; Newman, Anne B.; Cauley, Jane A.; Guralnik, Jack M.; Ferrucci, Luigi; Studenski, Stephanie A.

    2016-01-01

    Background. Functional independence with aging is an important goal for individuals and society. Simple prognostic indicators can inform health promotion and care planning, but evidence is limited by heterogeneity in measures of function. Methods. We performed a pooled analysis of data from seven studies of 27,220 community-dwelling older adults aged 65 or older with baseline gait speed, followed for disability and mortality. Outcomes were incident inability or dependence on another person in bathing or dressing; and difficulty walking ¼ – ½ mile or climbing 10 steps within 3 years. Results. Participants with faster baseline gait had lower rates of incident disability. In subgroups (defined by 0.2 m/s-wide intervals from <0.4 to ≥1.4 m/s) with increasingly greater gait speed, 3-year rates of bathing or dressing dependence trended from 10% to 1% in men, and from 15% to 1% in women, while mobility difficulty trended from 47% to 4% in men and 40% to 6% in women. The age-adjusted relative risk ratio per 0.1 m/s greater speed for bathing or dressing dependence in men was 0.68 (0.57–0.81) and in women: 0.74 (0.66–0.82); for mobility difficulty, men: 0.75 (0.68–0.82), women: 0.73 (0.67–0.80). Results were similar for combined disability and mortality. Effects were largely consistent across subgroups based on age, gender, race, body mass index, prior hospitalization, and selected chronic conditions. In the presence of multiple other risk factors for disability, gait speed significantly increased the area under the receiver operator characteristic curve. Conclusion. In older adults, gait speed predicts 3 year incidence of bathing or dressing dependence, mobility difficulty, and a composite outcome of disability and mortality. PMID:26297942

  4. Tools for observational gait analysis in patients with stroke: a systematic review.

    PubMed

    Ferrarello, Francesco; Bianchi, Valeria Anna Maria; Baccini, Marco; Rubbieri, Gaia; Mossello, Enrico; Cavallini, Maria Chiara; Marchionni, Niccolò; Di Bari, Mauro

    2013-12-01

    Stroke severely affects walking ability, and assessment of gait kinematics is important in defining diagnosis, planning treatment, and evaluating interventions in stroke rehabilitation. Although observational gait analysis is the most common approach to evaluate gait kinematics, tools useful for this purpose have received little attention in the scientific literature and have not been thoroughly reviewed. The aims of this systematic review were to identify tools proposed to conduct observational gait analysis in adults with a stroke, to summarize evidence concerning their quality, and to assess their implementation in rehabilitation research and clinical practice. An extensive search was performed of original articles reporting on visual/observational tools developed to investigate gait kinematics in adults with a stroke. Two reviewers independently selected studies, extracted data, assessed quality of the included studies, and scored the metric properties and clinical utility of each tool. Rigor in reporting metric properties and dissemination of the tools also was evaluated. Five tools were identified, not all of which had been tested adequately for their metric properties. Evaluation of content validity was partially satisfactory. Reliability was poorly investigated in all but one tool. Concurrent validity and sensitivity to change were shown for 3 and 2 tools, respectively. Overall, adequate levels of quality were rarely reached. The dissemination of the tools was poor. Based on critical appraisal, the Gait Assessment and Intervention Tool shows a good level of quality, and its use in stroke rehabilitation is recommended. Rigorous studies are needed for the other tools in order to establish their usefulness.

  5. Systematic review of quantitative clinical gait analysis in patients with dementia.

    PubMed

    van Iersel, M B; Hoefsloot, W; Munneke, M; Bloem, B R; Olde Rikkert, M G M

    2004-02-01

    Diminished mobility often accompanies dementia and has a great impact on independence and quality of life. New treatment strategies for dementia are emerging, but the effects on gait remains to be studied objectively. In this review we address the general effects of dementia on gait as revealed by quantitative gait analysis. A systematic literature search with the (MESH) terms: 'dementia' and 'gait disorders' in Medline, CC, Psychlit and CinaHL between 1980-2002. Main inclusion criteria: controlled studies; patients with dementia; quantitative gait data. Seven publications met the inclusion criteria. All compared gait in Alzheimer's Disease (AD) with healthy elderly controls; one also assessed gait in Vascular Dementia (VaD). The methodology used was inconsistent and often had many shortcomings. However, there were several consistent findings: walking velocity decreased in dementia compared to healthy controls and decreased further with progressing severity of dementia. VaD was associated with a significant decrease in walking velocity compared to AD subjects. Dementia was associated with a shortened step length, an increased double support time and step to step variability. Gait in dementia is hardly analyzed in a well-designed manner. Despite this, the literature suggests that quantitative gait analysis can be sufficiently reliable and responsive to measure decline in walking velocity between subjects with and without dementia. More research is required to assess, both on an individual and a group level, how the minimal clinically relevant changes in gait in elderly demented patients should be defined and what would be the most responsive method to measure these changes.

  6. Gait Strategy in Patients with Ehlers-Danlos Syndrome Hypermobility Type: A Kinematic and Kinetic Evaluation Using 3D Gait Analysis

    ERIC Educational Resources Information Center

    Galli, Manuela; Cimolin, Veronica; Rigoldi, Chiara; Castori, Marco; Celletti, Claudia; Albertini, Giorgio; Camerota, Filippo

    2011-01-01

    The aim of this study was to quantify the gait patterns of adults with joint hypermobility syndrome/Ehlers-Danlos syndrome (JHS/EDS-HT) hypermobility type, using Gait Analysis. We quantified the gait strategy in 12 JHS/EDS-HT adults individuals (age: 43.08 + 6.78 years) compared to 20 healthy controls (age: 37.23 plus or minus 8.91 years), in…

  7. Evaluation of the performance of accelerometer-based gait event detection algorithms in different real-world scenarios using the MAREA gait database.

    PubMed

    Khandelwal, Siddhartha; Wickström, Nicholas

    2017-01-01

    Numerous gait event detection (GED) algorithms have been developed using accelerometers as they allow the possibility of long-term gait analysis in everyday life. However, almost all such existing algorithms have been developed and assessed using data collected in controlled indoor experiments with pre-defined paths and walking speeds. On the contrary, human gait is quite dynamic in the real-world, often involving varying gait speeds, changing surfaces and varying surface inclinations. Though portable wearable systems can be used to conduct experiments directly in the real-world, there is a lack of publicly available gait datasets or studies evaluating the performance of existing GED algorithms in various real-world settings. This paper presents a new gait database called MAREA (n=20 healthy subjects) that consists of walking and running in indoor and outdoor environments with accelerometers positioned on waist, wrist and both ankles. The study also evaluates the performance of six state-of-the-art accelerometer-based GED algorithms in different real-world scenarios, using the MAREA gait database. The results reveal that the performance of these algorithms is inconsistent and varies with changing environments and gait speeds. All algorithms demonstrated good performance for the scenario of steady walking in a controlled indoor environment with a combined median F1score of 0.98 for Heel-Strikes and 0.94 for Toe-Offs. However, they exhibited significantly decreased performance when evaluated in other lesser controlled scenarios such as walking and running in an outdoor street, with a combined median F1score of 0.82 for Heel-Strikes and 0.53 for Toe-Offs. Moreover, all GED algorithms displayed better performance for detecting Heel-Strikes as compared to Toe-Offs, when evaluated in different scenarios. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Gait Analysis Methods: An Overview of Wearable and Non-Wearable Systems, Highlighting Clinical Applications

    PubMed Central

    Muro-de-la-Herran, Alvaro; Garcia-Zapirain, Begonya; Mendez-Zorrilla, Amaia

    2014-01-01

    This article presents a review of the methods used in recognition and analysis of the human gait from three different approaches: image processing, floor sensors and sensors placed on the body. Progress in new technologies has led the development of a series of devices and techniques which allow for objective evaluation, making measurements more efficient and effective and providing specialists with reliable information. Firstly, an introduction of the key gait parameters and semi-subjective methods is presented. Secondly, technologies and studies on the different objective methods are reviewed. Finally, based on the latest research, the characteristics of each method are discussed. 40% of the reviewed articles published in late 2012 and 2013 were related to non-wearable systems, 37.5% presented inertial sensor-based systems, and the remaining 22.5% corresponded to other wearable systems. An increasing number of research works demonstrate that various parameters such as precision, conformability, usability or transportability have indicated that the portable systems based on body sensors are promising methods for gait analysis. PMID:24556672

  9. Estimation of spatial-temporal gait parameters using a low-cost ultrasonic motion analysis system.

    PubMed

    Qi, Yongbin; Soh, Cheong Boon; Gunawan, Erry; Low, Kay-Soon; Thomas, Rijil

    2014-08-20

    In this paper, a low-cost motion analysis system using a wireless ultrasonic sensor network is proposed and investigated. A methodology has been developed to extract spatial-temporal gait parameters including stride length, stride duration, stride velocity, stride cadence, and stride symmetry from 3D foot displacements estimated by the combination of spherical positioning technique and unscented Kalman filter. The performance of this system is validated against a camera-based system in the laboratory with 10 healthy volunteers. Numerical results show the feasibility of the proposed system with average error of 2.7% for all the estimated gait parameters. The influence of walking speed on the measurement accuracy of proposed system is also evaluated. Statistical analysis demonstrates its capability of being used as a gait assessment tool for some medical applications.

  10. Gait Analysis of Symptomatic Flatfoot in Children: An Observational Study.

    PubMed

    Kim, Ha Yong; Shin, Hyuck Soo; Ko, Jun Hyuck; Cha, Yong Han; Ahn, Jae Hoon; Hwang, Jae Yeon

    2017-09-01

    Flatfoot deformity is a lever arm disease that incurs kinetic inefficiency during gait. The purpose of this study was to measure the degree of kinetic inefficiency by comparing the gait analysis data of a flatfoot group with a normal control group. The patient group consisted of 26 children (21 males and 5 females) with symptomatic flatfoot. They were examined with gait analysis between May 2005 and February 2014. Exclusion criteria were patients with secondary flatfoot caused by neuromuscular disorders, tarsal coalition, vertical talus, or others. Patients' mean age was 9.5 years (range, 7 to 13 years). The gait analysis data of the study group and the normal control group were compared. The mean vertical ground reaction force (GRF) in the push-off phase was 0.99 for the patient group and 1.15 for the control group ( p < 0.05). The mean ankle moment in the sagittal plane during the push-off phase was 0.89 for the patient group and 1.27 for the control group ( p < 0.05). The mean ankle power in the sagittal plane during the push-off phase was 1.38 for the patient group and 2.52 for the control group ( p < 0.05). The aforementioned results show that patients with pes planovalgus had a reduction of moment, power, and GRF in the push-off phase during gait. Symptomatic flatfeet had a moment inefficiency of 30% and power inefficiency of 45% during gait compared to feet with preserved medial longitudinal arches.

  11. Good agreement between smart device and inertial sensor-based gait parameters during a 6-min walk.

    PubMed

    Proessl, F; Swanson, C W; Rudroff, T; Fling, B W; Tracy, B L

    2018-05-28

    Traditional laboratory-based kinetic and kinematic gait analyses are expensive, time-intensive, and impractical for clinical settings. Inertial sensors have gained popularity in gait analysis research and more recently smart devices have been employed to provide quantification of gait. However, no study to date has investigated the agreement between smart device and inertial sensor-based gait parameters during prolonged walking. Compare spatiotemporal gait metrics measured with a smart device versus previously validated inertial sensors. Twenty neurologically healthy young adults (7 women; age: 25.0 ± 3.7 years; BMI: 23.4 ± 2.9 kg/m 2 ) performed a 6-min walk test (6MWT) wearing inertial sensors and smart devices to record stride duration, stride length, cadence, and gait speed. Pearson correlations were used to assess associations between spatiotemporal measures from the two devices and agreement between the two methods was assessed with Bland-Altman plots and limits of agreement. All spatiotemporal gait metrics (stride duration, cadence, stride length and gait speed) showed strong (r>0.9) associations and good agreement between the two devices. Smart devices are capable of accurately reflecting many of the spatiotemporal gait metrics of inertial sensors. As the smart devices also accurately reflected individual leg output, future studies may apply this analytical strategy to clinical populations, to identify hallmarks of disability status and disease progression in a more ecologically valid environment. Copyright © 2018. Published by Elsevier B.V.

  12. Toward a low-cost gait analysis system for clinical and free-living assessment.

    PubMed

    Ladha, Cassim; Del Din, Silvia; Nazarpour, Kianoush; Hickey, Aodhan; Morris, Rosie; Catt, Michael; Rochester, Lynn; Godfrey, Alan

    2016-08-01

    Gait is an important clinical assessment tool since changes in gait may reflect changes in general health. Measurement of gait is a complex process which has been restricted to bespoke clinical facilities until recently. The use of inexpensive wearable technologies is an attractive alternative and offers the potential to assess gait in any environment. In this paper we present the development of a low cost analysis gait system built using entirely open source components. The system is used to capture spatio-temporal gait characteristics derived from an existing conceptual model, sensitive to ageing and neurodegenerative pathology (e.g. Parkinson's disease). We demonstrate the system is suitable for use in a clinical unit and will lead to pragmatic use in a free-living (home) environment. The system consists of a wearable (tri-axial accelerometer and gyroscope) with a Raspberry Pi module for data storage and analysis. This forms ongoing work to develop gait as a low cost diagnostic in modern healthcare.

  13. Laboratory review: the role of gait analysis in seniors' mobility and fall prevention.

    PubMed

    Bridenbaugh, Stephanie A; Kressig, Reto W

    2011-01-01

    Walking is a complex motor task generally performed automatically by healthy adults. Yet, by the elderly, walking is often no longer performed automatically. Older adults require more attention for motor control while walking than younger adults. Falls, often with serious consequences, can be the result. Gait impairments are one of the biggest risk factors for falls. Several studies have identified changes in certain gait parameters as independent predictors of fall risk. Such gait changes are often too discrete to be detected by clinical observation alone. At the Basel Mobility Center, we employ the GAITRite electronic walkway system for spatial-temporal gait analysis. Although we have a large range of indications for gait analyses and several areas of clinical research, our focus is on the association between gait and cognition. Gait analysis with walking as a single-task condition alone is often insufficient to reveal underlying gait disorders present during normal, everyday activities. We use a dual-task paradigm, walking while simultaneously performing a second cognitive task, to assess the effects of divided attention on motor performance and gait control. Objective quantification of such clinically relevant gait changes is necessary to determine fall risk. Early detection of gait disorders and fall risk permits early intervention and, in the best-case scenario, fall prevention. We and others have shown that rhythmic movement training such as Jaques-Dalcroze eurhythmics, tai chi and social dancing can improve gait regularity and automaticity, thus increasing gait safety and reducing fall risk. Copyright © 2010 S. Karger AG, Basel.

  14. Gait outcome following outpatient physiotherapy based on the Bobath concept in people post stroke.

    PubMed

    Lennon, Sheila; Ashburn, Ann; Baxter, David

    The purpose of this study was to characterize the gait cycle of patients with hemiplegia before and after a period of outpatient physiotherapy based on the Bobath concept. Nine patients, at least 6 weeks post stroke and recently discharged from a stroke unit, were measured before and after a period of outpatient physiotherapy (mean duration = 17.4 weeks). Therapy was documented using a treatment checklist for each patient. The primary outcome measures were a number of gait variables related to the therapists' treatment hypothesis, recorded during the gait cycle using the CODA motion analysis system. Other secondary outcome measures were the Motor Assessment Scale, Modified Ashworth Scale, subtests of the Sodring Motor Evaluation Scale, the Step test, a 10-m walk test, the Barthel Index and the London Handicap Score. Recovery of more normal gait patterns in the gait cycle (using motion analysis) did not occur. Significant changes in temporal parameters (loading response, single support time) for both legs, in one kinematic (dorsiflexion during stance) and one kinetic variable on the unaffected side (hip flexor moment), and most of the clinical measures of impairment, activity and participation (with the exception of the Modified Ashworth Scale and the 10-m walk) were noted. Study findings did not support the hypothesis that the Bobath approach restored more normal movement patterns to the gait cycle. Further research is required to investigate the treatment techniques that are effective at improving walking ability in people after stroke.

  15. Predictive value of clinical scoring and simplified gait analysis for acetabulum fractures.

    PubMed

    Braun, Benedikt J; Wrona, Julian; Veith, Nils T; Rollman, Mika; Orth, Marcel; Herath, Steven C; Holstein, Jörg H; Pohlemann, Tim

    2016-12-01

    Fractures of the acetabulum show a high, long-term complication rate. The aim of the present study was to determine the predictive value of clinical scoring and standardized, simplified gait analysis on the outcome after these fractures. Forty-one patients with acetabular fractures treated between 2008 and 2013 and available, standardized video recorded aftercare were identified from a prospective database. A visual gait score was used to determine the patients walking abilities 6-m postoperatively. Clinical (Merle d'Aubigne and Postel score, visual analogue scale pain, EQ5d) and radiological scoring (Kellgren-Lawrence score, postoperative computed tomography, and Matta classification) were used to perform correlation and multivariate regression analysis. The average patient age was 48 y (range, 15-82 y), six female patients were included in the study. Mean follow-up was 1.6 y (range, 1-2 y). Moderate correlation between the gait score and outcome (versus EQ5d: r s  = 0.477; versus Merle d'Aubigne: r s  = 0.444; versus Kellgren-Lawrence: r s  = -0.533), as well as high correlation between the Merle d'Aubigne score and outcome were seen (versus EQ5d: r s  = 0.575; versus Merle d'Aubigne: r s  = 0.776; versus Kellgren-Lawrence: r s  = -0.419). Using a multivariate regression model, the 6 m gait score (B = -0.299; P < 0.05) and early osteoarthritis development (B = 1.026; P < 0.05) were determined as predictors of final osteoarthritis. A good fit of the regression model was seen (R 2  = 904). Easy and available clinical scoring (gait score/Merle d'Aubigne) can predict short-term radiological and functional outcome after acetabular fractures with sufficient accuracy. Decisions on further treatment and interventions could be based on simplified gait analysis. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Technology-Based Feedback and Its Efficacy in Improving Gait Parameters in Patients with Abnormal Gait: A Systematic Review.

    PubMed

    Chamorro-Moriana, Gema; Moreno, Antonio José; Sevillano, José Luis

    2018-01-06

    This systematic review synthesized and analyzed clinical findings related to the effectiveness of innovative technological feedback for tackling functional gait recovery. An electronic search of PUBMED, PEDro, WOS, CINAHL, and DIALNET was conducted from January 2011 to December 2016. The main inclusion criteria were: patients with modified or abnormal gait; application of technology-based feedback to deal with functional recovery of gait; any comparison between different kinds of feedback applied by means of technology, or any comparison between technological and non-technological feedback; and randomized controlled trials. Twenty papers were included. The populations were neurological patients (75%), orthopedic and healthy subjects. All participants were adults, bar one. Four studies used exoskeletons, 6 load platforms and 5 pressure sensors. The breakdown of the type of feedback used was as follows: 60% visual, 40% acoustic and 15% haptic. 55% used terminal feedback versus 65% simultaneous feedback. Prescriptive feedback was used in 60% of cases, while 50% used descriptive feedback. 62.5% and 58.33% of the trials showed a significant effect in improving step length and speed, respectively. Efficacy in improving other gait parameters such as balance or range of movement is observed in more than 75% of the studies with significant outcomes. Treatments based on feedback using innovative technology in patients with abnormal gait are mostly effective in improving gait parameters and therefore useful for the functional recovery of patients. The most frequently highlighted types of feedback were immediate visual feedback followed by terminal and immediate acoustic feedback.

  17. Accelerometric gait analysis for use in hospital outpatients.

    PubMed

    Auvinet, B; Chaleil, D; Barrey, E

    1999-01-01

    To provide clinicians with a quantitative human gait analysis tool suitable for routine use. We evaluated the reproducibility, sensitivity, and specificity of gait analysis based on measurements of acceleration at a point near the center of gravity of the body. Two accelerometers held over the middle of the low back by a semi-elastic belt were used to record craniocaudal and side-to-side accelerations at a frequency of 50 Hz. Subjects were asked to walk at their normal speed to the end of a straight 40 meter-long hospital corridor and back. A 20-second period of stabilized walking was used to calculate cycle frequency, stride symmetry, and stride regularity. Symmetry and regularity were each derived from an auto-correlation coefficient; to convert their distribution from nonnormal to normal, Fisher's Z transformation was applied to the auto-coefficients for these two variables. Intraobserver reproducibility was evaluated by asking the same observer to test 16 controls on three separate occasions at two-day intervals and interobserver reproducibility by asking four different observers to each test four controls (Latin square). Specificity and sensitivity were determined by testing 139 controls and 63 patients. The 139 controls (70 women and 69 men) were divided into five age groups (third through seventh decades of life). The 63 patients had a noninflammatory musculoskeletal condition predominating on one side. ROC curves were used to determine the best cutoffs for separating normal from abnormal values. Neither intra- nor interobserver variability was significant (P > 0.05). Cycle frequency was significantly higher in female than in male controls (1.05 +/- 0.06 versus 0.98 +/- 0.05 cycles/s; P < 0.001). Neither symmetry nor regularity were influenced by gender in the controls; both variables were also unaffected by age, although nonsignificant decreases were found in the 61 to 70-year age group, which included only nine subjects. In the ROC curve analysis, the area

  18. Comparison of Gait Aspects According to FES Stimulation Position Applied to Stroke Patients

    PubMed Central

    Mun, Byeong-mu; Kim, Tae-ho; Lee, Jin-hwan; Lim, Jin-youg; Seo, Dong-kwon; Lee, Dong-jin

    2014-01-01

    [Purpose] This study sought to identify the gait aspects according to the FES stimulation position in stroke patients during gait training. [Subjects and Methods] To perform gait analysis, ten stroke patients were grouped based on 4 types of gait conditions: gait without FES stimulation (non-FES), gait with FES stimulation on the tibialis anterior (Ta), gait with FES stimulation on the tibialis anterior and quadriceps (TaQ), and gait with FES stimulation on the tibialis anterior and gluteus medius (TaGm). [Results] Based on repeated measures analysis of variance of measurements of gait aspects comprised of gait speed, gait cycle, and step length according to the FES stimulation position, the FES stimulation significantly affected gait aspects. [Conclusion] In conclusion, stimulating the tibialis anterior and quadriceps and stimulating the tibialis anterior and gluteus medius are much more effective than stimulating only the tibialis anterior during gait training in stroke patients using FES. PMID:24764634

  19. Model Predictive Control-based gait pattern generation for wearable exoskeletons.

    PubMed

    Wang, Letian; van Asseldonk, Edwin H F; van der Kooij, Herman

    2011-01-01

    This paper introduces a new method for controlling wearable exoskeletons that do not need predefined joint trajectories. Instead, it only needs basic gait descriptors such as step length, swing duration, and walking speed. End point Model Predictive Control (MPC) is used to generate the online joint trajectories based on these gait parameters. Real-time ability and control performance of the method during the swing phase of gait cycle is studied in this paper. Experiments are performed by helping a human subject swing his leg with different patterns in the LOPES gait trainer. Results show that the method is able to assist subjects to make steps with different step length and step duration without predefined joint trajectories and is fast enough for real-time implementation. Future study of the method will focus on controlling the exoskeletons in the entire gait cycle. © 2011 IEEE

  20. Assessment of biofeedback rehabilitation in post-stroke patients combining fMRI and gait analysis: a case study

    PubMed Central

    2014-01-01

    Background The ability to walk independently is a primary goal for rehabilitation after stroke. Gait analysis provides a great amount of valuable information, while functional magnetic resonance imaging (fMRI) offers a powerful approach to define networks involved in motor control. The present study reports a new methodology based on both fMRI and gait analysis outcomes in order to investigate the ability of fMRI to reflect the phases of motor learning before/after electromyographic biofeedback treatment: the preliminary fMRI results of a post stroke subject’s brain activation, during passive and active ankle dorsal/plantarflexion, before and after biofeedback (BFB) rehabilitation are reported and their correlation with gait analysis data investigated. Methods A control subject and a post-stroke patient with chronic hemiparesis were studied. Functional magnetic resonance images were acquired during a block-design protocol on both subjects while performing passive and active ankle dorsal/plantarflexion. fMRI and gait analysis were assessed on the patient before and after electromyographic biofeedback rehabilitation treatment during gait activities. Lower limb three-dimensional kinematics, kinetics and surface electromyography were evaluated. Correlation between fMRI and gait analysis categorical variables was assessed: agreement/disagreement was assigned to each variable if the value was in/outside the normative range (gait analysis), or for presence of normal/diffuse/no activation of motor area (fMRI). Results Altered fMRI activity was found on the post-stroke patient before biofeedback rehabilitation with respect to the control one. Meanwhile the patient showed a diffuse, but more limited brain activation after treatment (less voxels). The post-stroke gait data showed a trend towards the normal range: speed, stride length, ankle power, and ankle positive work increased. Preliminary correlation analysis revealed that consistent changes were observed both for the

  1. Approach for gait analysis in persons with limb loss including residuum and prosthesis socket dynamics.

    PubMed

    LaPrè, A K; Price, M A; Wedge, R D; Umberger, B R; Sup, Frank C

    2018-04-01

    Musculoskeletal modeling and marker-based motion capture techniques are commonly used to quantify the motions of body segments, and the forces acting on them during human gait. However, when these techniques are applied to analyze the gait of people with lower limb loss, the clinically relevant interaction between the residual limb and prosthesis socket is typically overlooked. It is known that there is considerable motion and loading at the residuum-socket interface, yet traditional gait analysis techniques do not account for these factors due to the inability to place tracking markers on the residual limb inside of the socket. In the present work, we used a global optimization technique and anatomical constraints to estimate the motion and loading at the residuum-socket interface as part of standard gait analysis procedures. We systematically evaluated a range of parameters related to the residuum-socket interface, such as the number of degrees of freedom, and determined the configuration that yields the best compromise between faithfully tracking experimental marker positions while yielding anatomically realistic residuum-socket kinematics and loads that agree with data from the literature. Application of the present model to gait analysis for people with lower limb loss will deepen our understanding of the biomechanics of walking with a prosthesis, which should facilitate the development of enhanced rehabilitation protocols and improved assistive devices. Copyright © 2017 John Wiley & Sons, Ltd.

  2. Video gait analysis for ambulatory children with cerebral palsy: Why, when, where and how!

    PubMed

    Harvey, Adrienne; Gorter, Jan Willem

    2011-03-01

    This paper outlines the application of video gait analysis (VGA) for children with cerebral palsy (CP) when full instrumented three dimensional gait analysis (3DGA) is either not indicated or not available. Gait analysis is an important part of the assessment of ambulant children with CP for diagnosing gait deviations and for evaluating change. Many regard 3DGA as the most informative method of assessing gait, however, it is not always accessible, practical, or feasible and the detail obtained is not always indicated. VGA in conjunction with other carefully selected outcome measures can provide a comprehensive gait assessment in situations where 3DGA is not available or not indicated. Indications for VGA use include: documenting change in gait pattern over time, frequent monitoring in the rehabilitation phase following treatments and interventions (including surgery, spasticity management, serial casting and intensive therapy), monitoring orthotic changes, and for very young children and those with behavioural/cognitive issues that preclude them from cooperating with a 3DGA. Simple and inexpensive VGA systems can be set up in most settings. In an effort to make the process more objective and reliable a number of observational gait scales have been developed. Of these the Edinburgh Gait Score (EGS) has the strongest psychometric properties and is the most comprehensive by including both the coronal and the sagittal planes. While 3DGA remains an important part of complex clinical decision-making, there is also an increasingly important role for VGA. Guidelines need to be developed for its use within the field of gait analysis. Crown Copyright © 2010. Published by Elsevier B.V. All rights reserved.

  3. Neurotomy of the rectus femoris nerve: Short-term effectiveness for spastic stiff knee gait: Clinical assessment and quantitative gait analysis.

    PubMed

    Gross, R; Robertson, J; Leboeuf, F; Hamel, O; Brochard, S; Perrouin-Verbe, B

    2017-02-01

    Stiff knee gait is a troublesome gait disturbance related to spastic paresis, frequently associated with overactivity of the rectus femoris muscle in the swing phase of gait. The aim of this study was to assess the short-term effects of rectus femoris neurotomy for the treatment of spastic stiff-knee gait in patients with hemiparesis. An Intervention study (before-after trial) with an observational design was carried out in a university hospital. Seven ambulatory patients with hemiparesis of spinal or cerebral origin and spastic stiff-knee gait, which had previously been improved by botulinum toxin injections, were proposed a selective neurotomy of the rectus femoris muscle. A functional evaluation (Functional Ambulation Classification and maximal walking distance), clinical evaluation (spasticity - Ashworth scale and Duncan-Ely test, muscle strength - Medical Research Council scale), and quantitative gait analysis (spatiotemporal parameters, stiff knee gait-related kinematic and kinetic parameters, and dynamic electromyography of rectus femoris) were performed as outcome measures, before and 3 months after rectus femoris neurotomy. Compared with preoperative values, there was a significant increase in maximal walking distance, gait speed, and stride length at 3 months. All kinematic parameters improved, and the average early swing phase knee extension moment decreased. The duration of the rectus femoris burst decreased post-op. This study is the first to show that rectus femoris neurotomy helps to normalise muscle activity during gait, and results in improvements in kinetic, kinematic, and functional parameters in patients with spastic stiff knee gait. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Extraction of human gait signatures: an inverse kinematic approach using Groebner basis theory applied to gait cycle analysis

    NASA Astrophysics Data System (ADS)

    Barki, Anum; Kendricks, Kimberly; Tuttle, Ronald F.; Bunker, David J.; Borel, Christoph C.

    2013-05-01

    This research highlights the results obtained from applying the method of inverse kinematics, using Groebner basis theory, to the human gait cycle to extract and identify lower extremity gait signatures. The increased threat from suicide bombers and the force protection issues of today have motivated a team at Air Force Institute of Technology (AFIT) to research pattern recognition in the human gait cycle. The purpose of this research is to identify gait signatures of human subjects and distinguish between subjects carrying a load to those subjects without a load. These signatures were investigated via a model of the lower extremities based on motion capture observations, in particular, foot placement and the joint angles for subjects affected by carrying extra load on the body. The human gait cycle was captured and analyzed using a developed toolkit consisting of an inverse kinematic motion model of the lower extremity and a graphical user interface. Hip, knee, and ankle angles were analyzed to identify gait angle variance and range of motion. Female subjects exhibited the most knee angle variance and produced a proportional correlation between knee flexion and load carriage.

  5. Flexible Piezoelectric Sensor-Based Gait Recognition.

    PubMed

    Cha, Youngsu; Kim, Hojoon; Kim, Doik

    2018-02-05

    Most motion recognition research has required tight-fitting suits for precise sensing. However, tight-suit systems have difficulty adapting to real applications, because people normally wear loose clothes. In this paper, we propose a gait recognition system with flexible piezoelectric sensors in loose clothing. The gait recognition system does not directly sense lower-body angles. It does, however, detect the transition between standing and walking. Specifically, we use the signals from the flexible sensors attached to the knee and hip parts on loose pants. We detect the periodic motion component using the discrete time Fourier series from the signal during walking. We adapt the gait detection method to a real-time patient motion and posture monitoring system. In the monitoring system, the gait recognition operates well. Finally, we test the gait recognition system with 10 subjects, for which the proposed system successfully detects walking with a success rate over 93 %.

  6. Technology-Based Feedback and Its Efficacy in Improving Gait Parameters in Patients with Abnormal Gait: A Systematic Review

    PubMed Central

    Chamorro-Moriana, Gema; Moreno, Antonio José

    2018-01-01

    This systematic review synthesized and analyzed clinical findings related to the effectiveness of innovative technological feedback for tackling functional gait recovery. An electronic search of PUBMED, PEDro, WOS, CINAHL, and DIALNET was conducted from January 2011 to December 2016. The main inclusion criteria were: patients with modified or abnormal gait; application of technology-based feedback to deal with functional recovery of gait; any comparison between different kinds of feedback applied by means of technology, or any comparison between technological and non-technological feedback; and randomized controlled trials. Twenty papers were included. The populations were neurological patients (75%), orthopedic and healthy subjects. All participants were adults, bar one. Four studies used exoskeletons, 6 load platforms and 5 pressure sensors. The breakdown of the type of feedback used was as follows: 60% visual, 40% acoustic and 15% haptic. 55% used terminal feedback versus 65% simultaneous feedback. Prescriptive feedback was used in 60% of cases, while 50% used descriptive feedback. 62.5% and 58.33% of the trials showed a significant effect in improving step length and speed, respectively. Efficacy in improving other gait parameters such as balance or range of movement is observed in more than 75% of the studies with significant outcomes. Conclusion: Treatments based on feedback using innovative technology in patients with abnormal gait are mostly effective in improving gait parameters and therefore useful for the functional recovery of patients. The most frequently highlighted types of feedback were immediate visual feedback followed by terminal and immediate acoustic feedback. PMID:29316645

  7. Poor Gait Performance and Prediction of Dementia: Results From a Meta-Analysis.

    PubMed

    Beauchet, Olivier; Annweiler, Cédric; Callisaya, Michele L; De Cock, Anne-Marie; Helbostad, Jorunn L; Kressig, Reto W; Srikanth, Velandai; Steinmetz, Jean-Paul; Blumen, Helena M; Verghese, Joe; Allali, Gilles

    2016-06-01

    Poor gait performance predicts risk of developing dementia. No structured critical evaluation has been conducted to study this association yet. The aim of this meta-analysis was to systematically examine the association of poor gait performance with incidence of dementia. An English and French Medline search was conducted in June 2015, with no limit of date, using the medical subject headings terms "Gait" OR "Gait Disorders, Neurologic" OR "Gait Apraxia" OR "Gait Ataxia" AND "Dementia" OR "Frontotemporal Dementia" OR "Dementia, Multi-Infarct" OR "Dementia, Vascular" OR "Alzheimer Disease" OR "Lewy Body Disease" OR "Frontotemporal Dementia With Motor Neuron Disease" (Supplementary Concept). Poor gait performance was defined by standardized tests of walking, and dementia was diagnosed according to international consensus criteria. Four etiologies of dementia were identified: any dementia, Alzheimer disease (AD), vascular dementia (VaD), and non-AD (ie, pooling VaD, mixed dementias, and other dementias). Fixed effects meta-analyses were performed on the estimates in order to generate summary values. Of the 796 identified abstracts, 12 (1.5%) were included in this systematic review and meta-analysis. Poor gait performance predicted dementia [pooled hazard ratio (HR) combined with relative risk and odds ratio = 1.53 with P < .001 for any dementia, pooled HR = 1.79 with P < .001 for VaD, HR = 1.89 with P value < .001 for non-AD]. Findings were weaker for predicting AD (HR = 1.03 with P value = .004). This meta-analysis provides evidence that poor gait performance predicts dementia. This association depends on the type of dementia; poor gait performance is a stronger predictor of non-AD dementias than AD. Copyright © 2016 AMDA – The Society for Post-Acute and Long-Term Care Medicine. Published by Elsevier Inc. All rights reserved.

  8. Sex modifies the relationship between age and gait: a population-based study of older adults.

    PubMed

    Callisaya, Michele L; Blizzard, Leigh; Schmidt, Michael D; McGinley, Jennifer L; Srikanth, Velandai K

    2008-02-01

    Adequate mobility is essential to maintain an independent and active lifestyle. The aim of this cross-sectional study is to examine the associations of age with temporal and spatial gait variables in a population-based sample of older people, and whether these associations are modified by sex. Men and women aged 60-86 years were randomly selected from the Southern Tasmanian electoral roll (n = 223). Gait speed, step length, cadence, step width, and double-support phase were recorded with a GAITRite walkway. Regression analysis was used to model the relationship between age, sex, and gait variables. For men, after adjusting for height and weight, age was linearly associated with all gait variables (p <.05) except cadence (p =.11). For women, all variables demonstrated a curvilinear association, with age-related change in these variables commencing during the 7th decade. Significant interactions were found between age and sex for speed (p =.04), cadence (p =.01), and double-support phase (p =.03). Associations were observed between age and a broad range of temporal and spatial gait variables in this study. These associations differed by sex, suggesting that the aging process may affect gait in men and women differently. These results provide a basis for further research into sex differences and mechanisms underlying gait changes with advancing age.

  9. A model of free-living gait: A factor analysis in Parkinson's disease.

    PubMed

    Morris, Rosie; Hickey, Aodhán; Del Din, Silvia; Godfrey, Alan; Lord, Sue; Rochester, Lynn

    2017-02-01

    Gait is a marker of global health, cognition and falls risk. Gait is complex, comprised of multiple characteristics sensitive to survival, age and pathology. Due to covariance amongst characteristics, conceptual gait models have been established to reduce redundancy and aid interpretation. Previous models have been derived from laboratory gait assessments which are costly in equipment and time. Body-worn monitors (BWM) allow for free-living, low-cost and continuous gait measurement and produce similar covariant gait characteristics. A BWM gait model from both controlled and free-living measurement has not yet been established, limiting utility. 103 control and 67 PD participants completed a controlled laboratory assessment; walking for two minutes around a circuit wearing a BWM. 89 control and 58 PD participants were assessed in free-living, completing normal activities for 7 days wearing a BWM. Fourteen gait characteristics were derived from the BWM, selected according to a previous model. Principle component analysis derived factor loadings of gait characteristics. Four gait domains were derived for both groups and conditions; pace, rhythm, variability and asymmetry. Domains totalled 84.84% and 88.43% of variance for controlled and 90.00% and 93.03% of variance in free-living environments for control and PD participants respectively. Gait characteristic loading was unambiguous for all characteristics apart from gait variability which demonstrated cross-loading for both groups and environments. The model was highly congruent with the original model. The conceptual gait models remained stable using a BWM in controlled and free-living environments. The model became more discrete supporting utility of the gait model for free-living gait. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Spatial parameters of walking gait and footedness.

    PubMed

    Zverev, Y P

    2006-01-01

    The present study was undertaken to assess whether footedness has effects on selected spatial and angular parameters of able-bodied gait by evaluating footprints of young adults. A total of 112 males and 93 females were selected from among students and staff members of the University of Malawi using a simple random sampling method. Footedness of subjects was assessed by the Waterloo Footedness Questionnaire Revised. Gait at natural speed was recorded using the footprint method. The following spatial parameters of gait were derived from the inked footprint sequences of subjects: step and stride lengths, gait angle and base of gait. The anthropometric measurements taken were weight, height, leg and foot length, foot breadth, shoulder width, and hip and waist circumferences. The prevalence of right-, left- and mix-footedness in the whole sample of young Malawian adults was 81%, 8.3% and 10.7%, respectively. One-way analysis of variance did not reveal a statistically significant difference between footedness categories in the mean values of anthropometric measurements (p > 0.05 for all variables). Gender differences in step and stride length values were not statistically significant. Correction of these variables for stature did not change the trend. Males had significantly broader steps than females. Normalized values of base of gait had similar gender difference. The group means of step length and normalized step length of the right and left feet were similar, for males and females. There was a significant side difference in the gait angle in both gender groups of volunteers with higher mean values on the left side compared to the right one (t = 2.64, p < 0.05 for males, and t = 2.78, p < 0.05 for females). One-way analysis of variance did not demonstrate significant difference between footedness categories in the mean values of step length, gait angle, bilateral differences in step length and gait angle, stride length, gait base and normalized gait variables of male

  11. Kinematic gait patterns in healthy runners: A hierarchical cluster analysis.

    PubMed

    Phinyomark, Angkoon; Osis, Sean; Hettinga, Blayne A; Ferber, Reed

    2015-11-05

    Previous studies have demonstrated distinct clusters of gait patterns in both healthy and pathological groups, suggesting that different movement strategies may be represented. However, these studies have used discrete time point variables and usually focused on only one specific joint and plane of motion. Therefore, the first purpose of this study was to determine if running gait patterns for healthy subjects could be classified into homogeneous subgroups using three-dimensional kinematic data from the ankle, knee, and hip joints. The second purpose was to identify differences in joint kinematics between these groups. The third purpose was to investigate the practical implications of clustering healthy subjects by comparing these kinematics with runners experiencing patellofemoral pain (PFP). A principal component analysis (PCA) was used to reduce the dimensionality of the entire gait waveform data and then a hierarchical cluster analysis (HCA) determined group sets of similar gait patterns and homogeneous clusters. The results show two distinct running gait patterns were found with the main between-group differences occurring in frontal and sagittal plane knee angles (P<0.001), independent of age, height, weight, and running speed. When these two groups were compared to PFP runners, one cluster exhibited greater while the other exhibited reduced peak knee abduction angles (P<0.05). The variability observed in running patterns across this sample could be the result of different gait strategies. These results suggest care must be taken when selecting samples of subjects in order to investigate the pathomechanics of injured runners. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Statically vs dynamically balanced gait: Analysis of a robotic exoskeleton compared with a human.

    PubMed

    Barbareschi, Giulia; Richards, Rosie; Thornton, Matt; Carlson, Tom; Holloway, Catherine

    2015-01-01

    In recent years exoskeletons able to replicate human gait have begun to attract growing popularity for both assistive and rehabilitative purposes. Although wearable robots often need the use of external support in order to maintain stability, the REX exoskeleton by REX Bionics is able to self-balance through the whole cycle. However this statically balanced gait presents important differences with the dynamically balanced gait of human subjects. This paper will examine kinematic and kinetic differences between the gait analysis performed on a subject wearing the REX exoskeleton and human gait analysis data as presented in literature. We will also provide an insight on the impact that these differences can have for both rehabilitative and assistive applications.

  13. Capability of 2 gait measures for detecting response to gait training in stroke survivors: Gait Assessment and Intervention Tool and the Tinetti Gait Scale.

    PubMed

    Zimbelman, Janice; Daly, Janis J; Roenigk, Kristen L; Butler, Kristi; Burdsall, Richard; Holcomb, John P

    2012-01-01

    To characterize the performance of 2 observational gait measures, the Tinetti Gait Scale (TGS) and the Gait Assessment and Intervention Tool (G.A.I.T.), in identifying improvement in gait in response to gait training. In secondary analysis from a larger study of multimodal gait training for stroke survivors, we measured gait at pre-, mid-, and posttreatment according to G.A.I.T. and TGS, assessing their capability to capture recovery of coordinated gait components. Large medical center. Cohort of stroke survivors (N=44) greater than 6 months after stroke. All subjects received 48 sessions of a multimodal gait-training protocol. Treatment consisted of 1.5 hours per session, 4 sessions per week for 12 weeks, receiving these 3 treatment aspects: (1) coordination exercise, (2) body weight-supported treadmill training, and (3) overground gait training, with 46% of subjects receiving functional electrical stimulation. All subjects were evaluated with the G.A.I.T. and TGS before and after completing the 48-session intervention. An additional evaluation was performed at midtreatment (after session 24). For the total subject sample, there were significant pre-/post-, pre-/mid-, and mid-/posttreatment gains for both the G.A.I.T. and the TGS. According to the G.A.I.T., 40 subjects (91%) showed improved scores, 2 (4%) no change, and 2 (4%) a worsening score. According to the TGS, only 26 subjects (59%) showed improved scores, 16 (36%) no change, and 1 (2%) a worsening score. For 1 treatment group of chronic stroke survivors, the TGS failed to identify a significant treatment response to gait training, whereas the G.A.I.T. measure was successful. The G.A.I.T. is more sensitive than the TGS for individual patients and group treatment response in identifying recovery of volitional control of gait components in response to gait training. Copyright © 2012 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  14. A gait stability investigation into FES-assisted paraplegic walking based on the walker tipping index.

    PubMed

    Ming, Dong; Bai, Yanru; Liu, Xiuyun; Qi, Hongzhi; Cheng, Longlong; Wan, Baikun; Hu, Yong; Wong, Yatwa; Luk, Keith D K; Leong, John C Y

    2009-12-01

    The gait outcome measures used in clinical trials of paraplegic locomotor training determine the effectiveness of improved walking function assisted by the functional electrical stimulation (FES) system. Focused on kinematic, kinetic or physiological changes of paraplegic patients, traditional methods cannot quantify the walking stability or identify the unstable factors of gait in real time. Up until now, the published studies on dynamic gait stability for the effective use of FES have been limited. In this paper, the walker tipping index (WTI) was used to analyze and process gait stability in FES-assisted paraplegic walking. The main instrument was a specialized walker dynamometer system based on a multi-channel strain-gauge bridge network fixed on the frame of the walker. This system collected force information for the handle reaction vector between the patient's upper extremities and the walker during the walking process; the information was then converted into walker tipping index data, which is an evaluation indicator of the patient's walking stability. To demonstrate the potential usefulness of WTI in gait analysis, a preliminary clinical trial was conducted with seven paraplegic patients who were undergoing FES-assisted walking training and seven normal control subjects. The gait stability levels were quantified for these patients under different stimulation patterns and controls under normal walking with knee-immobilization through WTI analysis. The results showed that the walking stability in the FES-assisted paraplegic group was worse than that in the control subject group, with the primary concern being in the anterior-posterior plane. This new technique is practical for distinguishing useful gait information from the viewpoint of stability, and may be further applied in FES-assisted paraplegic walking rehabilitation.

  15. A gait stability investigation into FES-assisted paraplegic walking based on the walker tipping index

    NASA Astrophysics Data System (ADS)

    Ming, Dong; Bai, Yanru; Liu, Xiuyun; Qi, Hongzhi; Cheng, Longlong; Wan, Baikun; Hu, Yong; Wong, Yatwa; Luk, Keith D. K.; Leong, John C. Y.

    2009-12-01

    The gait outcome measures used in clinical trials of paraplegic locomotor training determine the effectiveness of improved walking function assisted by the functional electrical stimulation (FES) system. Focused on kinematic, kinetic or physiological changes of paraplegic patients, traditional methods cannot quantify the walking stability or identify the unstable factors of gait in real time. Up until now, the published studies on dynamic gait stability for the effective use of FES have been limited. In this paper, the walker tipping index (WTI) was used to analyze and process gait stability in FES-assisted paraplegic walking. The main instrument was a specialized walker dynamometer system based on a multi-channel strain-gauge bridge network fixed on the frame of the walker. This system collected force information for the handle reaction vector between the patient's upper extremities and the walker during the walking process; the information was then converted into walker tipping index data, which is an evaluation indicator of the patient's walking stability. To demonstrate the potential usefulness of WTI in gait analysis, a preliminary clinical trial was conducted with seven paraplegic patients who were undergoing FES-assisted walking training and seven normal control subjects. The gait stability levels were quantified for these patients under different stimulation patterns and controls under normal walking with knee-immobilization through WTI analysis. The results showed that the walking stability in the FES-assisted paraplegic group was worse than that in the control subject group, with the primary concern being in the anterior-posterior plane. This new technique is practical for distinguishing useful gait information from the viewpoint of stability, and may be further applied in FES-assisted paraplegic walking rehabilitation.

  16. Gait Recognition Using Wearable Motion Recording Sensors

    NASA Astrophysics Data System (ADS)

    Gafurov, Davrondzhon; Snekkenes, Einar

    2009-12-01

    This paper presents an alternative approach, where gait is collected by the sensors attached to the person's body. Such wearable sensors record motion (e.g. acceleration) of the body parts during walking. The recorded motion signals are then investigated for person recognition purposes. We analyzed acceleration signals from the foot, hip, pocket and arm. Applying various methods, the best EER obtained for foot-, pocket-, arm- and hip- based user authentication were 5%, 7%, 10% and 13%, respectively. Furthermore, we present the results of our analysis on security assessment of gait. Studying gait-based user authentication (in case of hip motion) under three attack scenarios, we revealed that a minimal effort mimicking does not help to improve the acceptance chances of impostors. However, impostors who know their closest person in the database or the genders of the users can be a threat to gait-based authentication. We also provide some new insights toward the uniqueness of gait in case of foot motion. In particular, we revealed the following: a sideway motion of the foot provides the most discrimination, compared to an up-down or forward-backward directions; and different segments of the gait cycle provide different level of discrimination.

  17. Gait pattern in myotonic dystrophy (Steinert disease): a kinematic, kinetic and EMG evaluation using 3D gait analysis.

    PubMed

    Galli, Manuela; Cimolin, Veronica; Crugnola, Veronica; Priano, Lorenzo; Menegoni, Francesco; Trotti, Claudio; Milano, Eva; Mauro, Alessandro

    2012-03-15

    We investigated the gait pattern of 10 patients with myotonic dystrophy (Steinert disease; 4 females, 6 males; age: 41.5+7.6 years), compared to 20 healthy controls, through manual muscle test and gait analysis, in terms of kinematic, kinetic and EMG data. In most of patients (80%) distal muscle groups were weaker than proximal ones. Weakness at lower limbs was in general moderate to severe and MRC values evidenced a significant correlation between tibialis anterior and gastrocnemius medialis (R=0.91). An overall observation of gait pattern in patients when compared to controls showed that most spatio-temporal parameters (velocity, step length and cadence) were significantly different. As concerns kinematics, patients' pelvic tilt was globally in a higher position than control group, with reduced hip extension ability in stance phase and limited range of motion; 60% of the limbs revealed knee hyperextension during midstance and ankle joints showed a quite physiological position at initial contact and higher dorsiflexion during stance phase if compared to healthy individuals. Kinetic plots evidenced higher hip power during loading response and lower ankle power generation in terminal stance. The main EMG abnormalities were seen in tibialis anterior and gastrocnemius medialis muscles. In this study gait analysis gives objective and quantitative information about the gait pattern and the deviations due to the muscular situation of these patients; these results are important from a clinical point of view and suggest that rehabilitation programs for them should take these findings into account. Copyright © 2011 Elsevier B.V. All rights reserved.

  18. Effectiveness of Circuit-Based Exercises on Gait Speed, Balance, and Functional Mobility in People Affected by Stroke: A Meta-Analysis.

    PubMed

    Bonini-Rocha, Ana Clara; de Andrade, Anderson Lúcio Souza; Moraes, André Marques; Gomide Matheus, Liana Barbaresco; Diniz, Leonardo Rios; Martins, Wagner Rodrigues

    2018-04-01

    Several interventions have been proposed to rehabilitate patients with neurologic dysfunctions due to stroke. However, the effectiveness of circuit-based exercises according to its actual definition, ie, an overall program to improve strength, stamina, balance or functioning, was not provided. To examine the effectiveness of circuit-based exercise in the treatment of people affected by stroke. A search through PubMed, Embase, Cochrane Library, and Physiotherapy Evidence Database databases was performed to identify controlled clinical trials without language or date restriction. The overall mean difference with 95% confidence interval was calculated for all outcomes. Two independent reviewers assessed the risk of bias. Eleven studies met the inclusion criteria, and 8 presented suitable data to perform a meta-analysis. Quantitative analysis showed that circuit-based exercise was more effective than conventional intervention on gait speed (mean difference of 0.11 m/s) and circuit-based exercise was not significantly more effective than conventional intervention on balance and functional mobility. Our results demonstrated that circuit-based exercise presents better effects on gait when compared with conventional intervention and that its effects on balance and functional mobility were not better than conventional interventions. I. Copyright © 2018 American Academy of Physical Medicine and Rehabilitation. Published by Elsevier Inc. All rights reserved.

  19. Gait analysis in children with haemophilia: first Italian experience at the Turin Haemophilia Centre.

    PubMed

    Forneris, E; Andreacchio, A; Pollio, B; Mannucci, C; Franchini, M; Mengoli, C; Pagliarino, M; Messina, M

    2016-05-01

    To investigate the functional status in haemophilia patients referred to an Italian paediatric haemophilia centre using gait analysis, verifying any differences between mild, moderate or severe haemophilia at a functional level. Forty-two patients (age 4-18) presenting to the Turin Paediatric Haemophilia Centre who could walk independently were included. Therapy included prophylaxis (n = 21), on-demand (n = 17) or immune tolerance induction + inhibitor (n = 4). Patients performed a test of gait analysis. Temporal, spatial and kinematic parameters were calculated for patient subgroups by disease severity and background treatment, and compared with normal values. Moderate (35.7%) or severe (64.3%) haemophilia patients showed obvious variations from normal across a variety of temporal and spatial gait analysis parameters, including step speed and length, double support, swing phase, load asymmetry, stance phase, swing phase and speed. Kinematic parameters were characterized by frequent foot external rotation with deficient plantar flexion during the stance phase, retropelvic tilt, impaired power generation distally and reduced ground reaction forces. Both Gait Deviation Index and Gait Profile Score values for severe haemophilia patients indicated abnormal gait parameters, which were worst in patients with a history of past or current use of inhibitors and those receiving on-demand therapy. Functional evaluation identified changes in gait pattern in patients with severe and moderate haemophilia, compared with normal values. Gait analysis may be a useful tool to facilitate early diagnosis of joint damage, prevent haemophilic arthropathy, design a personalized rehabilitative treatment and monitor functional status over time. © 2016 John Wiley & Sons Ltd.

  20. Prediction of future falls in a community dwelling older adult population using instrumented balance and gait analysis.

    PubMed

    Bauer, C M; Gröger, I; Rupprecht, R; Marcar, V L; Gaßmann, K G

    2016-04-01

    The role of instrumented balance and gait assessment when screening for prospective fallers is currently a topic of controversial discussion. This study analyzed the association between variables derived from static posturography, instrumented gait analysis and clinical assessments with the occurrence of prospective falls in a sample of community dwelling older people. In this study 84 older people were analyzed. Based on a prospective occurrence of falls, participants were categorized into fallers and non-fallers. Variables derived from clinical assessments, static posturography and instrumented gait analysis were evaluated with respect to the association with the occurrence of prospective falls using a forward stepwise, binary, logistic regression procedure. Fallers displayed a significantly shorter single support time during walking while counting backwards, increased mediolateral to anteroposterior sway amplitude ratio, increased fast mediolateral oscillations and a larger coefficient (Coeff) of sway direction during various static posturography tests. Previous falls were insignificantly associated with the occurrence of prospective falls. Variables derived from posturography and instrumented gait analysis showed significant associations with the occurrence of prospective falls in a sample of community dwelling older adults.

  1. Upper limb movement analysis during gait in multiple sclerosis patients.

    PubMed

    Elsworth-Edelsten, Charlotte; Bonnefoy-Mazure, Alice; Laidet, Magali; Armand, Stephane; Assal, Frederic; Lalive, Patrice; Allali, Gilles

    2017-08-01

    Gait disorders in multiple sclerosis (MS) are well studied; however, no previous study has described upper limb movements during gait. However, upper limb movements have an important role during locomotion and can be altered in MS patients due to direct MS lesions or mechanisms of compensation. The aim of this study was to describe the arm movements during gait in a population of MS patients with low disability compared with a healthy control group. In this observational study we analyzed the arm movements during gait in 52 outpatients (mean age: 39.7±9.6years, female: 40%) with relapsing-remitting MS with low disability (mean EDSS: 2±1) and 25 healthy age-matched controls using a 3-dimension gait analysis. MS patients walked slower, with increased mean elbow flexion and decreased amplitude of elbow flexion (ROM) compared to the control group, whereas shoulder and hand movements were similar to controls. These differences were not explained by age or disability. Upper limb alterations in movement during gait in MS patients with low disability can be characterized by an increase in mean elbow flexion and a decrease in amplitude (ROM) for elbow flexion/extension. This upper limb movement pattern should be considered as a new component of gait disorders in MS and may reflect subtle motor deficits or the use of compensatory mechanisms. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Gait Event Detection in Real-World Environment for Long-Term Applications: Incorporating Domain Knowledge Into Time-Frequency Analysis.

    PubMed

    Khandelwal, Siddhartha; Wickstrom, Nicholas

    2016-12-01

    Detecting gait events is the key to many gait analysis applications that would benefit from continuous monitoring or long-term analysis. Most gait event detection algorithms using wearable sensors that offer a potential for use in daily living have been developed from data collected in controlled indoor experiments. However, for real-word applications, it is essential that the analysis is carried out in humans' natural environment; that involves different gait speeds, changing walking terrains, varying surface inclinations and regular turns among other factors. Existing domain knowledge in the form of principles or underlying fundamental gait relationships can be utilized to drive and support the data analysis in order to develop robust algorithms that can tackle real-world challenges in gait analysis. This paper presents a novel approach that exhibits how domain knowledge about human gait can be incorporated into time-frequency analysis to detect gait events from long-term accelerometer signals. The accuracy and robustness of the proposed algorithm are validated by experiments done in indoor and outdoor environments with approximately 93 600 gait events in total. The proposed algorithm exhibits consistently high performance scores across all datasets in both, indoor and outdoor environments.

  3. Quantitative gait analysis in parkin disease: Possible role of dystonia.

    PubMed

    Castagna, Anna; Frittoli, Serena; Ferrarin, Maurizio; Del Sorbo, Francesca; Romito, Luigi M; Elia, Antonio E; Albanese, Alberto

    2016-11-01

    Parkin disease (PARK2, OMIM 602544) is an autosomal-recessive early-onset parkinsonism characterized by an early occurrence of lower limb dystonia. The aim of this study was to analyze spatiotemporal, kinematic, and kinetic gait parameters in patients with parkin disease in the OFF and ON conditions compared to healthy age-matched controls. Fifteen patients with parkin disease and 15 healthy age-matched controls were studied in a gait analysis laboratory with an integrated optoelectronic system. Spatiotemporal, kinematic, and kinetic gait parameters at a self-selected speed were recorded in the OFF and ON conditions. A jerk index was computed to quantify the possible reduction of smoothness of joint movements. Compared to controls, parkin patients had, either in the OFF or in the ON conditions, significant reduction of walking velocity, increased step width, and decreased percentage of double support. Kinematic analysis in both conditions showed: increased ankle dorsiflexion and knee flexion at the initial contact; maximal flexion and increased range of motion in mid stance; increased hip flexion and max extension in stance at pelvis; and increased mean tilt antiversion. Kinetics showed increased hip and knee power generation in stance in either condition. The jerk index was increased at all joints both in OFF and ON. There were no correlations between individual gait parameters and clinical ratings. Parkin patients have an abnormal gait pattern that does not vary between the OFF and the ON conditions. Variations recorded with instrumented analysis are more evident for kinematic than kinetic parameters at lower limbs. Severity of dystonia does not correlate with any individual kinematic parameter. © 2016 International Parkinson and Movement Disorder Society. © 2016 International Parkinson and Movement Disorder Society.

  4. Identity Recognition Algorithm Using Improved Gabor Feature Selection of Gait Energy Image

    NASA Astrophysics Data System (ADS)

    Chao, LIANG; Ling-yao, JIA; Dong-cheng, SHI

    2017-01-01

    This paper describes an effective gait recognition approach based on Gabor features of gait energy image. In this paper, the kernel Fisher analysis combined with kernel matrix is proposed to select dominant features. The nearest neighbor classifier based on whitened cosine distance is used to discriminate different gait patterns. The approach proposed is tested on the CASIA and USF gait databases. The results show that our approach outperforms other state of gait recognition approaches in terms of recognition accuracy and robustness.

  5. Kinetic and kinematic follow‐up gait analysis in Doberman Pinschers with cervical spondylomyelopathy treated medically and surgically

    PubMed Central

    Smith, Rebecca L.; da Costa, Ronaldo C.

    2018-01-01

    Background The efficacy of treatment of dogs with cervical spondylomyelopathy (CSM) is commonly based on the owner's and clinician's perception of the gait, which is highly subjective and suffers from observer bias. Hypothesis/Objectives To compare selected kinetic and kinematic parameters before and after treatments and to correlate the findings of gait analysis to clinical outcome. Animals Eight Doberman Pinschers with CSM confirmed by magnetic resonsance imaging. Methods Patients were prospectively studied and treated with either medical management (n = 5) or surgery (n = 3). Force plate analysis and 3‐D kinematic motion capture were performed at initial presentation and approximately 8 weeks later. Force plate parameters evaluated included peak vertical force (PVF). Kinematic parameters measured included number of pelvic limb strides, stifle flexion and extension, maximum and minimum thoracic limb distance, truncal sway, and thoracic limb stride duration. Results Kinematic analysis showed that deviation of the spine to the right (truncal sway) was significantly smaller (P < .001) and the degree of right stifle flexion was significantly larger (P = .029) after treatment. Force plate analysis indicated that PVF was significantly different after treatment (P = .049) and the difference of the PVF also was significantly larger (P = .027). However, no correlation was found with either method of gait analysis and clinical recovery. Conclusions and Clinical Importance Kinetic and kinematic gait analysis were able to detect differences in dogs with CSM before and after treatment. A correlation of gait analysis to clinical improvement could not be determined. PMID:29572944

  6. Modification of hemiplegic compensatory gait pattern by symmetry-based motion controller of HAL.

    PubMed

    Kawamoto, Hiroaki; Kadone, Hideki; Sakurai, Takeru; Sankai, Yoshiyuki

    2015-01-01

    As one of several characteristics of hemiplegic patients after stroke, compensatory gait caused by affected limb is often seen. The purpose of this research is to apply a symmetry-based controller of a wearable type lower limb robot, Hybrid Assistive Limb (HAL) to hemiplegic patients with compensatory gait, and to investigate improvement of gait symmetry. The controller is designed respectively for swing phase and support phase according to characteristics of hemiplegic gait pattern. The controller during swing phase stores the motion of the unaffected limb and then provides motion support on the affected limb during the subsequent swing using the stored pattern to realize symmetric gait based on spontaneous limb swing. Moreover, the controller during support phase provides motion to extend hip and knee joints to support wearer's body. Clinical tests were conducted in order to assess the modification of gait symmetry. Our case study involved participation of one chronic stroke patient who performs abnormally-compensatory gait for both of the affected and unaffected limbs. As a result, the patient's gait symmetry was improved by providing motion support during the swing phase on the affected side and motion constraint during the support phase on the unaffected side. The study showed promising basis for the effectiveness of the controller for the future clinical study.

  7. Climbing favours the tripod gait over alternative faster insect gaits

    NASA Astrophysics Data System (ADS)

    Ramdya, Pavan; Thandiackal, Robin; Cherney, Raphael; Asselborn, Thibault; Benton, Richard; Ijspeert, Auke Jan; Floreano, Dario

    2017-02-01

    To escape danger or catch prey, running vertebrates rely on dynamic gaits with minimal ground contact. By contrast, most insects use a tripod gait that maintains at least three legs on the ground at any given time. One prevailing hypothesis for this difference in fast locomotor strategies is that tripod locomotion allows insects to rapidly navigate three-dimensional terrain. To test this, we computationally discovered fast locomotor gaits for a model based on Drosophila melanogaster. Indeed, the tripod gait emerges to the exclusion of many other possible gaits when optimizing fast upward climbing with leg adhesion. By contrast, novel two-legged bipod gaits are fastest on flat terrain without adhesion in the model and in a hexapod robot. Intriguingly, when adhesive leg structures in real Drosophila are covered, animals exhibit atypical bipod-like leg coordination. We propose that the requirement to climb vertical terrain may drive the prevalence of the tripod gait over faster alternative gaits with minimal ground contact.

  8. Climbing favours the tripod gait over alternative faster insect gaits

    PubMed Central

    Ramdya, Pavan; Thandiackal, Robin; Cherney, Raphael; Asselborn, Thibault; Benton, Richard; Ijspeert, Auke Jan; Floreano, Dario

    2017-01-01

    To escape danger or catch prey, running vertebrates rely on dynamic gaits with minimal ground contact. By contrast, most insects use a tripod gait that maintains at least three legs on the ground at any given time. One prevailing hypothesis for this difference in fast locomotor strategies is that tripod locomotion allows insects to rapidly navigate three-dimensional terrain. To test this, we computationally discovered fast locomotor gaits for a model based on Drosophila melanogaster. Indeed, the tripod gait emerges to the exclusion of many other possible gaits when optimizing fast upward climbing with leg adhesion. By contrast, novel two-legged bipod gaits are fastest on flat terrain without adhesion in the model and in a hexapod robot. Intriguingly, when adhesive leg structures in real Drosophila are covered, animals exhibit atypical bipod-like leg coordination. We propose that the requirement to climb vertical terrain may drive the prevalence of the tripod gait over faster alternative gaits with minimal ground contact. PMID:28211509

  9. Fear of falling and gait variability in older adults: a systematic review and meta-analysis.

    PubMed

    Ayoubi, Farah; Launay, Cyrille P; Annweiler, Cédric; Beauchet, Olivier

    2015-01-01

    Fear of falling (FOF) and increased gait variability are both independent markers of gait instability. There is a complex interplay between both entities. The purposes of this study were (1) to perform a qualitative analysis of all published studies on FOF-related changes in gait variability through a systematic review, and (2) to quantitatively synthesize FOF-related changes in gait variability. A systematic Medline literature search was conducted in May 2014 using the Medical Subject Heading (MeSH) terms "Fear" OR "fear of falling" combined with "Accidental Falls" AND "Gait" OR "Gait Apraxia" OR "Gait Ataxia" OR "Gait disorders, Neurologic" OR "Gait assessment" OR "Functional gait assessment" AND "Self efficacy" OR "Self confidence" AND "Aged" OR "Aged, 80 and over." Systematic review and fixed-effects meta-analysis using an inverse-variance method were performed. Of the 2184 selected studies, 10 observational studies (including 5 cross-sectional studies, 4 prospective cohort studies, and 1 case-control study) met the selection criteria. All were of good quality. The number of participants ranged from 52 to 1307 older community-dwellers (26.2%-85.0% women). The meta-analysis was performed on 10 studies with a total of 999 cases and 4502 controls. In one study, the higher limits of the effect size's confidence interval (CI) were lower than zero. In the remaining studies, the higher limits of the CI were positive. The summary random effect size of 0.29 (95% CI 0.13-0.45) was significant albeit of small magnitude, and indicated that gait variability was overall 0.29 SD higher in FOF cases compared with controls. Our findings show that FOF is associated with a statistically significant, albeit of small magnitude, increase in gait variability. Copyright © 2015 AMDA – The Society for Post-Acute and Long-Term Care Medicine. Published by Elsevier Inc. All rights reserved.

  10. Gait Phase Estimation Based on Noncontact Capacitive Sensing and Adaptive Oscillators.

    PubMed

    Zheng, Enhao; Manca, Silvia; Yan, Tingfang; Parri, Andrea; Vitiello, Nicola; Wang, Qining

    2017-10-01

    This paper presents a novel strategy aiming to acquire an accurate and walking-speed-adaptive estimation of the gait phase through noncontact capacitive sensing and adaptive oscillators (AOs). The capacitive sensing system is designed with two sensing cuffs that can measure the leg muscle shape changes during walking. The system can be dressed above the clothes and free human skin from contacting to electrodes. In order to track the capacitance signals, the gait phase estimator is designed based on the AO dynamic system due to its ability of synchronizing with quasi-periodic signals. After the implementation of the whole system, we first evaluated the offline estimation performance by experiments with 12 healthy subjects walking on a treadmill with changing speeds. The strategy achieved an accurate and consistent gait phase estimation with only one channel of capacitance signal. The average root-mean-square errors in one stride were 0.19 rad (3.0% of one gait cycle) for constant walking speeds and 0.31 rad (4.9% of one gait cycle) for speed transitions even after the subjects rewore the sensing cuffs. We then validated our strategy in a real-time gait phase estimation task with three subjects walking with changing speeds. Our study indicates that the strategy based on capacitive sensing and AOs is a promising alternative for the control of exoskeleton/orthosis.

  11. Gait characterization in golden retriever muscular dystrophy dogs using linear discriminant analysis.

    PubMed

    Fraysse, Bodvaël; Barthélémy, Inès; Qannari, El Mostafa; Rouger, Karl; Thorin, Chantal; Blot, Stéphane; Le Guiner, Caroline; Chérel, Yan; Hogrel, Jean-Yves

    2017-04-12

    Accelerometric analysis of gait abnormalities in golden retriever muscular dystrophy (GRMD) dogs is of limited sensitivity, and produces highly complex data. The use of discriminant analysis may enable simpler and more sensitive evaluation of treatment benefits in this important preclinical model. Accelerometry was performed twice monthly between the ages of 2 and 12 months on 8 healthy and 20 GRMD dogs. Seven accelerometric parameters were analysed using linear discriminant analysis (LDA). Manipulation of the dependent and independent variables produced three distinct models. The ability of each model to detect gait alterations and their pattern change with age was tested using a leave-one-out cross-validation approach. Selecting genotype (healthy or GRMD) as the dependent variable resulted in a model (Model 1) allowing a good discrimination between the gait phenotype of GRMD and healthy dogs. However, this model was not sufficiently representative of the disease progression. In Model 2, age in months was added as a supplementary dependent variable (GRMD_2 to GRMD_12 and Healthy_2 to Healthy_9.5), resulting in a high overall misclassification rate (83.2%). To improve accuracy, a third model (Model 3) was created in which age was also included as an explanatory variable. This resulted in an overall misclassification rate lower than 12%. Model 3 was evaluated using blinded data pertaining to 81 healthy and GRMD dogs. In all but one case, the model correctly matched gait phenotype to the actual genotype. Finally, we used Model 3 to reanalyse data from a previous study regarding the effects of immunosuppressive treatments on muscular dystrophy in GRMD dogs. Our model identified significant effect of immunosuppressive treatments on gait quality, corroborating the original findings, with the added advantages of direct statistical analysis with greater sensitivity and more comprehensible data representation. Gait analysis using LDA allows for improved analysis of

  12. Measuring Gait Quality in Parkinson’s Disease through Real-Time Gait Phase Recognition

    PubMed Central

    Mileti, Ilaria; Germanotta, Marco; Di Sipio, Enrica; Imbimbo, Isabella; Pacilli, Alessandra; Erra, Carmen; Petracca, Martina; Del Prete, Zaccaria; Bentivoglio, Anna Rita; Padua, Luca

    2018-01-01

    Monitoring gait quality in daily activities through wearable sensors has the potential to improve medical assessment in Parkinson’s Disease (PD). In this study, four gait partitioning methods, two based on thresholds and two based on a machine learning approach, considering the four-phase model, were compared. The methods were tested on 26 PD patients, both in OFF and ON levodopa conditions, and 11 healthy subjects, during walking tasks. All subjects were equipped with inertial sensors placed on feet. Force resistive sensors were used to assess reference time sequence of gait phases. Goodness Index (G) was evaluated to assess accuracy in gait phases estimation. A novel synthetic index called Gait Phase Quality Index (GPQI) was proposed for gait quality assessment. Results revealed optimum performance (G < 0.25) for three tested methods and good performance (0.25 < G < 0.70) for one threshold method. The GPQI resulted significantly higher in PD patients than in healthy subjects, showing a moderate correlation with clinical scales score. Furthermore, in patients with severe gait impairment, GPQI was found higher in OFF than in ON state. Our results unveil the possibility of monitoring gait quality in PD through real-time gait partitioning based on wearable sensors. PMID:29558410

  13. Automated health alerts from Kinect-based in-home gait measurements.

    PubMed

    Stone, Erik E; Skubic, Marjorie; Back, Jessica

    2014-01-01

    A method for automatically generating alerts to clinicians in response to changes in in-home gait parameters is investigated. Kinect-based gait measurement systems were installed in apartments in a senior living facility. The systems continuously monitored the walking speed, stride time, and stride length of apartment residents. A framework for modeling uncertainty in the residents' gait parameter estimates, which is critical for robust change detection, is developed; along with an algorithm for detecting changes that may be clinically relevant. Three retrospective case studies, of individuals who had their gait monitored for periods ranging from 12 to 29 months, are presented to illustrate use of the alert method. Evidence suggests that clinicians could be alerted to health changes at an early stage, while they are still small and interventions may be most successful. Additional potential uses are also discussed.

  14. Gait phenotypes in paediatric hereditary spastic paraplegia revealed by dynamic time warping analysis and random forests

    PubMed Central

    Martín-Gonzalo, Juan Andrés; Rodríguez-Andonaegui, Irene; López-López, Javier; Pascual-Pascual, Samuel Ignacio

    2018-01-01

    The Hereditary Spastic Paraplegias (HSP) are a group of heterogeneous disorders with a wide spectrum of underlying neural pathology, and hence HSP patients express a variety of gait abnormalities. Classification of these phenotypes may help in monitoring disease progression and personalizing therapies. This is currently managed by measuring values of some kinematic and spatio-temporal parameters at certain moments during the gait cycle, either in the doctor´s surgery room or after very precise measurements produced by instrumental gait analysis (IGA). These methods, however, do not provide information about the whole structure of the gait cycle. Classification of the similarities among time series of IGA measured values of sagittal joint positions throughout the whole gait cycle can be achieved by hierarchical clustering analysis based on multivariate dynamic time warping (DTW). Random forests can estimate which are the most important isolated parameters to predict the classification revealed by DTW, since clinicians need to refer to them in their daily practice. We acquired time series of pelvic, hip, knee, ankle and forefoot sagittal angular positions from 26 HSP and 33 healthy children with an optokinetic IGA system. DTW revealed six gait patterns with different degrees of impairment of walking speed, cadence and gait cycle distribution and related with patient’s age, sex, GMFCS stage, concurrence of polyneuropathy and abnormal visual evoked potentials or corpus callosum. The most important parameters to differentiate patterns were mean pelvic tilt and hip flexion at initial contact. Longer time of support, decreased values of hip extension and increased knee flexion at initial contact can differentiate the mildest, near to normal HSP gait phenotype and the normal healthy one. Increased values of knee flexion at initial contact and delayed peak of knee flexion are important factors to distinguish GMFCS stages I from II-III and concurrence of polyneuropathy

  15. Improved kinect-based spatiotemporal and kinematic treadmill gait assessment.

    PubMed

    Eltoukhy, Moataz; Oh, Jeonghoon; Kuenze, Christopher; Signorile, Joseph

    2017-01-01

    A cost-effective, clinician friendly gait assessment tool that can automatically track patients' anatomical landmarks can provide practitioners with important information that is useful in prescribing rehabilitative and preventive therapies. This study investigated the validity and reliability of the Microsoft Kinect v2 as a potential inexpensive gait analysis tool. Ten healthy subjects walked on a treadmill at 1.3 and 1.6m·s -1 , as spatiotemporal parameters and kinematics were extracted concurrently using the Kinect and three-dimensional motion analysis. Spatiotemporal measures included step length and width, step and stride times, vertical and mediolateral pelvis motion, and foot swing velocity. Kinematic outcomes included hip, knee, and ankle joint angles in the sagittal plane. The absolute agreement and relative consistency between the two systems were assessed using interclass correlations coefficients (ICC2,1), while reproducibility between systems was established using Lin's Concordance Correlation Coefficient (rc). Comparison of ensemble curves and associated 90% confidence intervals (CI90) of the hip, knee, and ankle joint angles were performed to investigate if the Kinect sensor could consistently and accurately assess lower extremity joint motion throughout the gait cycle. Results showed that the Kinect v2 sensor has the potential to be an effective clinical assessment tool for sagittal plane knee and hip joint kinematics, as well as some spatiotemporal temporal variables including pelvis displacement and step characteristics during the gait cycle. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Gait rehabilitation machines based on programmable footplates.

    PubMed

    Schmidt, Henning; Werner, Cordula; Bernhardt, Rolf; Hesse, Stefan; Krüger, Jörg

    2007-02-09

    Gait restoration is an integral part of rehabilitation of brain lesioned patients. Modern concepts favour a task-specific repetitive approach, i.e. who wants to regain walking has to walk, while tone-inhibiting and gait preparatory manoeuvres had dominated therapy before. Following the first mobilization out of the bed, the wheelchair-bound patient should have the possibility to practise complex gait cycles as soon as possible. Steps in this direction were treadmill training with partial body weight support and most recently gait machines enabling the repetitive training of even surface gait and even of stair climbing. With treadmill training harness-secured and partially relieved wheelchair-mobilised patients could practise up to 1000 steps per session for the first time. Controlled trials in stroke and SCI patients, however, failed to show a superior result when compared to walking exercise on the floor. Most likely explanation was the effort for the therapists, e.g. manually setting the paretic limbs during the swing phase resulting in a too little gait intensity. The next steps were gait machines, either consisting of a powered exoskeleton and a treadmill (Lokomat, AutoAmbulator) or an electromechanical solution with the harness secured patient placed on movable foot plates (Gait Trainer GT I). For the latter, a large multi-centre trial with 155 non-ambulatory stroke patients (DEGAS) revealed a superior gait ability and competence in basic activities of living in the experimental group. The HapticWalker continued the end effector concept of movable foot plates, now fully programmable and equipped with 6 DOF force sensors. This device for the first time enables training of arbitrary walking situations, hence not only the simulation of floor walking but also for example of stair climbing and perturbations. Locomotor therapy is a fascinating new tool in rehabilitation, which is in line with modern principles of motor relearning promoting a task-specific repetitive

  17. Gait rehabilitation machines based on programmable footplates

    PubMed Central

    Schmidt, Henning; Werner, Cordula; Bernhardt, Rolf; Hesse, Stefan; Krüger, Jörg

    2007-01-01

    Background Gait restoration is an integral part of rehabilitation of brain lesioned patients. Modern concepts favour a task-specific repetitive approach, i.e. who wants to regain walking has to walk, while tone-inhibiting and gait preparatory manoeuvres had dominated therapy before. Following the first mobilization out of the bed, the wheelchair-bound patient should have the possibility to practise complex gait cycles as soon as possible. Steps in this direction were treadmill training with partial body weight support and most recently gait machines enabling the repetitive training of even surface gait and even of stair climbing. Results With treadmill training harness-secured and partially relieved wheelchair-mobilised patients could practise up to 1000 steps per session for the first time. Controlled trials in stroke and SCI patients, however, failed to show a superior result when compared to walking exercise on the floor. Most likely explanation was the effort for the therapists, e.g. manually setting the paretic limbs during the swing phase resulting in a too little gait intensity. The next steps were gait machines, either consisting of a powered exoskeleton and a treadmill (Lokomat, AutoAmbulator) or an electromechanical solution with the harness secured patient placed on movable foot plates (Gait Trainer GT I). For the latter, a large multi-centre trial with 155 non-ambulatory stroke patients (DEGAS) revealed a superior gait ability and competence in basic activities of living in the experimental group. The HapticWalker continued the end effector concept of movable foot plates, now fully programmable and equipped with 6 DOF force sensors. This device for the first time enables training of arbitrary walking situations, hence not only the simulation of floor walking but also for example of stair climbing and perturbations. Conclusion Locomotor therapy is a fascinating new tool in rehabilitation, which is in line with modern principles of motor relearning

  18. Bipedal gait model for precise gait recognition and optimal triggering in foot drop stimulator: a proof of concept.

    PubMed

    Shaikh, Muhammad Faraz; Salcic, Zoran; Wang, Kevin I-Kai; Hu, Aiguo Patrick

    2018-03-10

    Electrical stimulators are often prescribed to correct foot drop walking. However, commercial foot drop stimulators trigger inappropriately under certain non-gait scenarios. Past researches addressed this limitation by defining stimulation control based on automaton of a gait cycle executed by foot drop of affected limb/foot only. Since gait is a collaborative activity of both feet, this research highlights the role of normal foot for robust gait detection and stimulation triggering. A novel bipedal gait model is proposed where gait cycle is realized as an automaton based on concurrent gait sub-phases (states) from each foot. The input for state transition is fused information from feet-worn pressure and inertial sensors. Thereafter, a bipedal gait model-based stimulation control algorithm is developed. As a feasibility study, bipedal gait model and stimulation control are evaluated in real-time simulation manner on normal and simulated foot drop gait measurements from 16 able-bodied participants with three speed variations, under inappropriate triggering scenarios and with foot drop rehabilitation exercises. Also, the stimulation control employed in commercial foot drop stimulators and single foot gait-based foot drop stimulators are compared alongside. Gait detection accuracy (98.9%) and precise triggering under all investigations prove bipedal gait model reliability. This infers that gait detection leveraging bipedal periodicity is a promising strategy to rectify prevalent stimulation triggering deficiencies in commercial foot drop stimulators. Graphical abstract Bipedal information-based gait recognition and stimulation triggering.

  19. Ambiguity domain-based identification of altered gait pattern in ALS disorder

    NASA Astrophysics Data System (ADS)

    Sugavaneswaran, L.; Umapathy, K.; Krishnan, S.

    2012-08-01

    The onset of a neurological disorder, such as amyotrophic lateral sclerosis (ALS), is so subtle that the symptoms are often overlooked, thereby ruling out the option of early detection of the abnormality. In the case of ALS, over 75% of the affected individuals often experience awkwardness when using their limbs, which alters their gait, i.e. stride and swing intervals. The aim of this work is to suitably represent the non-stationary characteristics of gait (fluctuations in stride and swing intervals) in order to facilitate discrimination between normal and ALS subjects. We define a simple-yet-representative feature vector space by exploiting the ambiguity domain (AD) to achieve efficient classification between healthy and pathological gait stride interval. The stride-to-stride fluctuations and the swing intervals of 16 healthy control and 13 ALS-affected subjects were analyzed. Three features that are representative of the gait signal characteristics were extracted from the AD-space and are fed to linear discriminant analysis and neural network classifiers, respectively. Overall, maximum accuracies of 89.2% (LDA) and 100% (NN) were obtained in classifying the ALS gait.

  20. Effects of Exercise on Falls, Balance, and Gait Ability in Parkinson's Disease: A Meta-analysis.

    PubMed

    Shen, Xia; Wong-Yu, Irene S K; Mak, Margaret K Y

    2016-07-01

    Postural instability and falls are complex and disabling features of Parkinson's disease (PD) and respond poorly to anti-Parkinsonian medication. There is an imperative need to evaluate the effectiveness of exercise interventions in enhancing postural stability and decreasing falls in the PD population. The objectives of our study were to determine the effects of exercise training on the enhancement of balance and gait ability and reduction in falls for people with PD and to investigate potential factors contributing to the training effects on balance and gait ability of people with PD. We included 25 randomized control trials of a moderate methodological quality in our meta-analysis. The trials examined the effects of exercise training on balance and gait ability and falls against no intervention and placebo intervention. The results showed positive effects of exercise intervention on enhancing balance and gait performance (Hedges' g = 0.303 over the short-term in 24 studies and 0.419 over the long-term in 12 studies; P < .05) and reducing the fall rate (rate ratio = 0.485 over the short-term in 4 studies and 0.413 over the long-term in 5 studies; P < .05). The longest follow-up duration was 12 months. There was no evidence that training decreased the number of fallers over the short- or long-term (P > .05). The results of our metaregression and subgroup analysis showed that facility-based training produced greater training effects on improving PD participants' balance and gait ability (P < .05). The findings support the application of exercise training to improve balance and gait ability and prevent falls in people with PD. © The Author(s) 2015.

  1. Self-esteem recognition based on gait pattern using Kinect.

    PubMed

    Sun, Bingli; Zhang, Zhan; Liu, Xingyun; Hu, Bin; Zhu, Tingshao

    2017-10-01

    Self-esteem is an important aspect of individual's mental health. When subjects are not able to complete self-report questionnaire, behavioral assessment will be a good supplement. In this paper, we propose to use gait data collected by Kinect as an indicator to recognize self-esteem. 178 graduate students without disabilities participate in our study. Firstly, all participants complete the 10-item Rosenberg Self-Esteem Scale (RSS) to acquire self-esteem score. After completing the RRS, each participant walks for two minutes naturally on a rectangular red carpet, and the gait data are recorded using Kinect sensor. After data preprocessing, we extract a few behavioral features to train predicting model by machine learning. Based on these features, we build predicting models to recognize self-esteem. For self-esteem prediction, the best correlation coefficient between predicted score and self-report score is 0.45 (p<0.001). We divide the participants according to gender, and for males, the correlation coefficient is 0.43 (p<0.001), for females, it is 0.59 (p<0.001). Using gait data captured by Kinect sensor, we find that the gait pattern could be used to recognize self-esteem with a fairly good criterion validity. The gait predicting model can be taken as a good supplementary method to measure self-esteem. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Validation of the angular measurements of a new inertial-measurement-unit based rehabilitation system: comparison with state-of-the-art gait analysis.

    PubMed

    Leardini, Alberto; Lullini, Giada; Giannini, Sandro; Berti, Lisa; Ortolani, Maurizio; Caravaggi, Paolo

    2014-09-11

    Several rehabilitation systems based on inertial measurement units (IMU) are entering the market for the control of exercises and to measure performance progression, particularly for recovery after lower limb orthopaedic treatments. IMU are easy to wear also by the patient alone, but the extent to which IMU's malpositioning in routine use can affect the accuracy of the measurements is not known. A new such system (Riablo™, CoRehab, Trento, Italy), using audio-visual biofeedback based on videogames, was assessed against state-of-the-art gait analysis as the gold standard. The sensitivity of the system to errors in the IMU's position and orientation was measured in 5 healthy subjects performing two hip joint motion exercises. Root mean square deviation was used to assess differences in the system's kinematic output between the erroneous and correct IMU position and orientation.In order to estimate the system's accuracy, thorax and knee joint motion of 17 healthy subjects were tracked during the execution of standard rehabilitation tasks and compared with the corresponding measurements obtained with an established gait protocol using stereophotogrammetry. A maximum mean error of 3.1 ± 1.8 deg and 1.9 ± 0.8 deg from the angle trajectory with correct IMU position was recorded respectively in the medio-lateral malposition and frontal-plane misalignment tests. Across the standard rehabilitation tasks, the mean distance between the IMU and gait analysis systems was on average smaller than 5°. These findings showed that the tested IMU based system has the necessary accuracy to be safely utilized in rehabilitation programs after orthopaedic treatments of the lower limb.

  3. Gait Speed among Older Participants Enrolled in an Evidence-Based Fall Risk Reduction Program: A Subgroup Analysis.

    PubMed

    Cho, Jinmyoung; Smith, Matthew Lee; Shubert, Tiffany E; Jiang, Luohua; Ahn, SangNam; Ory, Marcia G

    2015-01-01

    Functional decline is a primary risk factor for institutionalization and mortality among older adults. Although community-based fall risk reduction programs have been widely disseminated, little is known about their impact on gait speed, a key indicator of functional performance. Changes in functional performance between baseline and post-intervention were examined by means of timed up and go (TUG), a standardized functional assessment test administered to participants enrolled in A Matter of Balance/Volunteer Lay Leader (AMOB/VLL) model, an evidence-based fall risk reduction program. This study included 71 participants enrolled in an AMOB/VLL program in the Brazos Valley and South Plain regions of Texas. Paired t-tests were employed to assess program effects on gait speed at baseline and post-intervention for all participants and by subgroups of age, sex, living status, delivery sites, and self-rated health. The Bonferroni correction was applied to adjust inflated Type I error rate associated with performing multiple t-tests, for which p-values <0.0042 (i.e., 0.5/12 comparisons) were deemed statistically significant. Overall, gait speed of enrolled participants improved from baseline to post-intervention (t = 3.22, p = 0.002). Significant changes in TUG scores were observed among participants who lived with others (t = 4.45, p < 0.001), rated their health as excellent, very good, or good (t = 3.05, p = 0.003), and attended program workshops at senior centers (t = 3.52, p = 0.003). Findings suggest community-based fall risk reduction programs can improve gait speed for older adults. More translational research is needed to understand factors related to the effectiveness of fall risk reduction programs in various populations and settings.

  4. Kinematic Analysis of a Six-Degrees-of-Freedom Model Based on ISB Recommendation: A Repeatability Analysis and Comparison with Conventional Gait Model.

    PubMed

    Żuk, Magdalena; Pezowicz, Celina

    2015-01-01

    Objective. The purpose of the present work was to assess the validity of a six-degrees-of-freedom gait analysis model based on the ISB recommendation on definitions of joint coordinate systems (ISB 6DOF) through a quantitative comparison with the Helen Hays model (HH) and repeatability assessment. Methods. Four healthy subjects were analysed with both marker sets: an HH marker set and four marker clusters in ISB 6DOF. A navigated pointer was used to indicate the anatomical landmark position in the cluster reference system according to the ISB recommendation. Three gait cycles were selected from the data collected simultaneously for the two marker sets. Results. Two protocols showed good intertrial repeatability, which apart from pelvic rotation did not exceed 2°. The greatest differences between protocols were observed in the transverse plane as well as for knee angles. Knee internal/external rotation revealed the lowest subject-to-subject and interprotocol repeatability and inconsistent patterns for both protocols. Knee range of movement in transverse plane was overestimated for the HH set (the mean is 34°), which could indicate the cross-talk effect. Conclusions. The ISB 6DOF anatomically based protocol enabled full 3D kinematic description of joints according to the current standard with clinically acceptable intertrial repeatability and minimal equipment requirements.

  5. Balance and Gait Impairment: Sensor-Based Assessment for Patients With Peripheral Neuropathy.

    PubMed

    Campbell, Grace; Skubic, Marjorie A

    2018-06-01

    Individuals with peripheral neuropathy (PN) frequently experience balance and gait impairments that can lead to poor physical function, falls, and injury. Nurses are aware that patients with cancer experience balance and gait impairments but are unsure of optimal assessment and management strategies. This article reviews options for balance and gait assessment for patients diagnosed with cancer experiencing PN, describes advantages and limitations of the various options, and highlights innovative, clinically feasible technologies to improve clinical assessment and management. The literature was reviewed to identify and assess the gold standard quantitative measures for assessing balance and gait. Gold standard quantitative measures are burdensome for patients and not often used in clinical practice. Sensor-based technologies improve balance and gait assessment options by calculating precise impairment measures during performance of simple clinical tests at the point of care.

  6. Challenging Gait Conditions Predict 1-Year Decline in Gait Speed in Older Adults With Apparently Normal Gait

    PubMed Central

    Perera, Subashan; VanSwearingen, Jessie M.; Hile, Elizabeth S.; Wert, David M.; Studenski, Stephanie A.

    2011-01-01

    Background Mobility often is tested under a low challenge condition (ie, over a straight, uncluttered path), which often fails to identify early mobility difficulty. Tests of walking during challenging conditions may uncover mobility difficulty that is not identified with usual gait testing. Objective The purpose of this study was to determine whether gait during challenging conditions predicts decline in gait speed over 1 year in older people with apparently normal gait (ie, gait speed of ≥1.0 m/s). Design This was a prospective cohort study. Methods Seventy-one older adults (mean age=75.9 years) with a usual gait speed of ≥1.0 m/s participated. Gait was tested at baseline under 4 challenging conditions: (1) narrow walk (15 cm wide), (2) stepping over obstacles (15.24 cm [6 in] and 30.48 cm [12 in]), (3) simple walking while talking (WWT), and (4) complex WWT. Usual gait speed was recorded over a 4-m course at baseline and 1 year later. A 1-year change in gait speed was calculated, and participants were classified as declined (decreased ≥0.10 m/s, n=18), stable (changed <0.10 m/s, n=43), or improved (increased ≥0.10 m/s, n=10). Analysis of variance was used to compare challenging condition cost (usual − challenging condition gait speed difference) among the 3 groups. Results Participants who declined in the ensuing year had a greater narrow walk and obstacle walk cost than those who were stable or who improved in gait speed (narrow walk cost=0.43 versus 0.33 versus 0.22 m/s and obstacle walk cost=0.35 versus 0.26 versus 0.13 m/s). Simple and complex WWT cost did not differ among the groups. Limitations The participants who declined in gait speed over time walked the fastest, and those who improved walked the slowest at baseline; thus, the potential contribution of regression to the mean to the findings should not be overlooked. Conclusions In older adults with apparently normal gait, the assessment of gait during challenging conditions appears to uncover

  7. Computer aided analysis of gait patterns in patients with acute anterior cruciate ligament injury.

    PubMed

    Christian, Josef; Kröll, Josef; Strutzenberger, Gerda; Alexander, Nathalie; Ofner, Michael; Schwameder, Hermann

    2016-03-01

    Gait analysis is a useful tool to evaluate the functional status of patients with anterior cruciate ligament injury. Pattern recognition methods can be used to automatically assess walking patterns and objectively support clinical decisions. This study aimed to test a pattern recognition system for analyzing kinematic gait patterns of recently anterior cruciate ligament injured patients and for evaluating the effects of a therapeutic treatment. Gait kinematics of seven male patients with an acute unilateral anterior cruciate ligament rupture and seven healthy males were recorded. A support vector machine was trained to distinguish the groups. Principal component analysis and recursive feature elimination were used to extract features from 3D marker trajectories. A Classifier Oriented Gait Score was defined as a measure of gait quality. Visualizations were used to allow functional interpretations of characteristic group differences. The injured group was evaluated by the system after a therapeutic treatment. The results were compared against a clinical rating of the patients' gait. Cross validation yielded 100% accuracy. After the treatment the score improved significantly (P<0.01) as well as the clinical rating (P<0.05). The visualizations revealed characteristic kinematic features, which differentiated between the groups. The results show that gait alterations in the early phase after anterior cruciate ligament injury can be detected automatically. The results of the automatic analysis are comparable with the clinical rating and support the validity of the system. The visualizations allow interpretations on discriminatory features and can facilitate the integration of the results into the diagnostic process. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Classification of Normal and Pathological Gait in Young Children Based on Foot Pressure Data.

    PubMed

    Guo, Guodong; Guffey, Keegan; Chen, Wenbin; Pergami, Paola

    2017-01-01

    Human gait recognition, an active research topic in computer vision, is generally based on data obtained from images/videos. We applied computer vision technology to classify pathology-related changes in gait in young children using a foot-pressure database collected using the GAITRite walkway system. As foot positioning changes with children's development, we also investigated the possibility of age estimation based on this data. Our results demonstrate that the data collected by the GAITRite system can be used for normal/pathological gait classification. Combining age information and normal/pathological gait classification increases the accuracy of the classifier. This novel approach could support the development of an accurate, real-time, and economic measure of gait abnormalities in children, able to provide important feedback to clinicians regarding the effect of rehabilitation interventions, and to support targeted treatment modifications.

  9. IMU-Based Gait Recognition Using Convolutional Neural Networks and Multi-Sensor Fusion.

    PubMed

    Dehzangi, Omid; Taherisadr, Mojtaba; ChangalVala, Raghvendar

    2017-11-27

    The wide spread usage of wearable sensors such as in smart watches has provided continuous access to valuable user generated data such as human motion that could be used to identify an individual based on his/her motion patterns such as, gait. Several methods have been suggested to extract various heuristic and high-level features from gait motion data to identify discriminative gait signatures and distinguish the target individual from others. However, the manual and hand crafted feature extraction is error prone and subjective. Furthermore, the motion data collected from inertial sensors have complex structure and the detachment between manual feature extraction module and the predictive learning models might limit the generalization capabilities. In this paper, we propose a novel approach for human gait identification using time-frequency (TF) expansion of human gait cycles in order to capture joint 2 dimensional (2D) spectral and temporal patterns of gait cycles. Then, we design a deep convolutional neural network (DCNN) learning to extract discriminative features from the 2D expanded gait cycles and jointly optimize the identification model and the spectro-temporal features in a discriminative fashion. We collect raw motion data from five inertial sensors placed at the chest, lower-back, right hand wrist, right knee, and right ankle of each human subject synchronously in order to investigate the impact of sensor location on the gait identification performance. We then present two methods for early (input level) and late (decision score level) multi-sensor fusion to improve the gait identification generalization performance. We specifically propose the minimum error score fusion (MESF) method that discriminatively learns the linear fusion weights of individual DCNN scores at the decision level by minimizing the error rate on the training data in an iterative manner. 10 subjects participated in this study and hence, the problem is a 10-class identification task

  10. Feature selection gait-based gender classification under different circumstances

    NASA Astrophysics Data System (ADS)

    Sabir, Azhin; Al-Jawad, Naseer; Jassim, Sabah

    2014-05-01

    This paper proposes a gender classification based on human gait features and investigates the problem of two variations: clothing (wearing coats) and carrying bag condition as addition to the normal gait sequence. The feature vectors in the proposed system are constructed after applying wavelet transform. Three different sets of feature are proposed in this method. First, Spatio-temporal distance that is dealing with the distance of different parts of the human body (like feet, knees, hand, Human Height and shoulder) during one gait cycle. The second and third feature sets are constructed from approximation and non-approximation coefficient of human body respectively. To extract these two sets of feature we divided the human body into two parts, upper and lower body part, based on the golden ratio proportion. In this paper, we have adopted a statistical method for constructing the feature vector from the above sets. The dimension of the constructed feature vector is reduced based on the Fisher score as a feature selection method to optimize their discriminating significance. Finally k-Nearest Neighbor is applied as a classification method. Experimental results demonstrate that our approach is providing more realistic scenario and relatively better performance compared with the existing approaches.

  11. A Microsoft Kinect-Based Point-of-Care Gait Assessment Framework for Multiple Sclerosis Patients.

    PubMed

    Gholami, Farnood; Trojan, Daria A; Kovecses, Jozsef; Haddad, Wassim M; Gholami, Behnood

    2017-09-01

    Gait impairment is a prevalent and important difficulty for patients with multiple sclerosis (MS), a common neurological disorder. An easy to use tool to objectively evaluate gait in MS patients in a clinical setting can assist clinicians to perform an objective assessment. The overall objective of this study is to develop a framework to quantify gait abnormalities in MS patients using the Microsoft Kinect for the Windows sensor; an inexpensive, easy to use, portable camera. Specifically, we aim to evaluate its feasibility for utilization in a clinical setting, assess its reliability, evaluate the validity of gait indices obtained, and evaluate a novel set of gait indices based on the concept of dynamic time warping. In this study, ten ambulatory MS patients, and ten age and sex-matched normal controls were studied at one session in a clinical setting with gait assessment using a Kinect camera. The expanded disability status scale (EDSS) clinical ambulation score was calculated for the MS subjects, and patients completed the Multiple Sclerosis walking scale (MSWS). Based on this study, we established the potential feasibility of using a Microsoft Kinect camera in a clinical setting. Seven out of the eight gait indices obtained using the proposed method were reliable with intraclass correlation coefficients ranging from 0.61 to 0.99. All eight MS gait indices were significantly different from those of the controls (p-values less than 0.05). Finally, seven out of the eight MS gait indices were correlated with the objective and subjective gait measures (Pearson's correlation coefficients greater than 0.40). This study shows that the Kinect camera is an easy to use tool to assess gait in MS patients in a clinical setting.

  12. Lack of maintenance of gait pattern as measured by instrumental methods suggests psychogenic gait.

    PubMed

    Merello, Marcelo; Ballesteros, Diego; Rossi, Malco; Arena, Julieta; Crespo, Marcos; Cervio, Andres; Cuello Oderiz, Carolina; Rivero, Alberto; Cerquetti, Daniel; Risk, Marcelo; Balej, Jorge

    2012-01-01

    Fluctuation is a common feature of all psychogenic gait disorder (PGD) patterns. Whether this fluctuation involves only the degree of impairment or whether it affects the gait pattern itself remains an interesting question. We hypothesize that, on repeated measurements, both normal and abnormal gait may present quantitative differences while maintaining their basic underlying pattern; conversely, in psychogenic gait, the basic pattern appears not to be preserved. Using an optoelectronic system, data acquired from 19 normal subjects and 66 patients were applied to train a neural network (NN) and subsequently classify gait patterns into four different groups (normal, ataxic, spastic-paraparetic and parkinsonian). Five patients who fulfilled clinical criteria for psychogenic gait and six controls were then prospectively evaluated on two separate occasions, three months apart. Normal controls and ataxic, parkinsonian or spastic patients were correctly identified by the NN, and categorized within the corresponding groups at baseline as well as at a three-month follow-up evaluation. NN analysis showed that after three months, no PGD patient preserved the gait pattern detected at baseline, even though this finding was not clinically apparent. Modification of gait pattern detected by repeated kinematic measurement and NN analysis could suggest the presence of PGD, particularly in difficult-to-diagnose cases.

  13. Real-Time Gait Event Detection Based on Kinematic Data Coupled to a Biomechanical Model.

    PubMed

    Lambrecht, Stefan; Harutyunyan, Anna; Tanghe, Kevin; Afschrift, Maarten; De Schutter, Joris; Jonkers, Ilse

    2017-03-24

    Real-time detection of multiple stance events, more specifically initial contact (IC), foot flat (FF), heel off (HO), and toe off (TO), could greatly benefit neurorobotic (NR) and neuroprosthetic (NP) control. Three real-time threshold-based algorithms have been developed, detecting the aforementioned events based on kinematic data in combination with a biomechanical model. Data from seven subjects walking at three speeds on an instrumented treadmill were used to validate the presented algorithms, accumulating to a total of 558 steps. The reference for the gait events was obtained using marker and force plate data. All algorithms had excellent precision and no false positives were observed. Timing delays of the presented algorithms were similar to current state-of-the-art algorithms for the detection of IC and TO, whereas smaller delays were achieved for the detection of FF. Our results indicate that, based on their high precision and low delays, these algorithms can be used for the control of an NR/NP, with the exception of the HO event. Kinematic data is used in most NR/NP control schemes and is thus available at no additional cost, resulting in a minimal computational burden. The presented methods can also be applied for screening pathological gait or gait analysis in general in/outside of the laboratory.

  14. Enhanced data consistency of a portable gait measurement system.

    PubMed

    Lin, Hsien-I; Chiang, Y P

    2013-11-01

    A gait measurement system is a useful tool for rehabilitation applications. Such a system is used to conduct gait experiments in large workplaces such as laboratories where gait measurement equipment can be permanently installed. However, a gait measurement system should be portable if it is to be used in clinics or community centers for aged people. In a portable gait measurement system, the workspace is limited and landmarks on a subject may not be visible to the cameras during experiments. Thus, we propose a virtual-marker function to obtain positions of unseen landmarks for maintaining data consistency. This work develops a portable clinical gait measurement system consisting of lightweight motion capture devices, force plates, and a walkway assembled from plywood boards. We evaluated the portable clinic gait system with 11 normal subjects in three consecutive days in a limited experimental space. Results of gait analysis based on the verification of within-day and between-day coefficients of multiple correlations show that the proposed portable gait system is reliable.

  15. Enhanced data consistency of a portable gait measurement system

    NASA Astrophysics Data System (ADS)

    Lin, Hsien-I.; Chiang, Y. P.

    2013-11-01

    A gait measurement system is a useful tool for rehabilitation applications. Such a system is used to conduct gait experiments in large workplaces such as laboratories where gait measurement equipment can be permanently installed. However, a gait measurement system should be portable if it is to be used in clinics or community centers for aged people. In a portable gait measurement system, the workspace is limited and landmarks on a subject may not be visible to the cameras during experiments. Thus, we propose a virtual-marker function to obtain positions of unseen landmarks for maintaining data consistency. This work develops a portable clinical gait measurement system consisting of lightweight motion capture devices, force plates, and a walkway assembled from plywood boards. We evaluated the portable clinic gait system with 11 normal subjects in three consecutive days in a limited experimental space. Results of gait analysis based on the verification of within-day and between-day coefficients of multiple correlations show that the proposed portable gait system is reliable.

  16. Feature extraction via KPCA for classification of gait patterns.

    PubMed

    Wu, Jianning; Wang, Jue; Liu, Li

    2007-06-01

    Automated recognition of gait pattern change is important in medical diagnostics as well as in the early identification of at-risk gait in the elderly. We evaluated the use of Kernel-based Principal Component Analysis (KPCA) to extract more gait features (i.e., to obtain more significant amounts of information about human movement) and thus to improve the classification of gait patterns. 3D gait data of 24 young and 24 elderly participants were acquired using an OPTOTRAK 3020 motion analysis system during normal walking, and a total of 36 gait spatio-temporal and kinematic variables were extracted from the recorded data. KPCA was used first for nonlinear feature extraction to then evaluate its effect on a subsequent classification in combination with learning algorithms such as support vector machines (SVMs). Cross-validation test results indicated that the proposed technique could allow spreading the information about the gait's kinematic structure into more nonlinear principal components, thus providing additional discriminatory information for the improvement of gait classification performance. The feature extraction ability of KPCA was affected slightly with different kernel functions as polynomial and radial basis function. The combination of KPCA and SVM could identify young-elderly gait patterns with 91% accuracy, resulting in a markedly improved performance compared to the combination of PCA and SVM. These results suggest that nonlinear feature extraction by KPCA improves the classification of young-elderly gait patterns, and holds considerable potential for future applications in direct dimensionality reduction and interpretation of multiple gait signals.

  17. Three-dimensional kinematic analysis of upper and lower limb motion during gait of post-stroke patients

    PubMed Central

    Carmo, A.A.; Kleiner, A.F.R.; Lobo da Costa, P.H.; Barros, R.M.L.

    2012-01-01

    The aim of this study was to analyze the alterations of arm and leg movements of patients during stroke gait. Joint angles of upper and lower limbs and spatiotemporal variables were evaluated in two groups: hemiparetic group (HG, 14 hemiparetic men, 53 ± 10 years) and control group (CG, 7 able-bodied men, 50 ± 4 years). The statistical analysis was based on the following comparisons (P ≤ 0.05): 1) right versus left sides of CG; 2) affected (AF) versus unaffected (UF) sides of HG; 3) CG versus both the affected and unaffected sides of HG, and 4) an intracycle comparison of the kinematic continuous angular variables between HG and CG. This study showed that the affected upper limb motion in stroke gait was characterized by a decreased range of motion of the glenohumeral (HG: 6.3 ± 4.5, CG: 20.1 ± 8.2) and elbow joints (AF: 8.4 ± 4.4, UF: 15.6 ± 7.6) on the sagittal plane and elbow joint flexion throughout the cycle (AF: 68.2 ± 0.4, CG: 46.8 ± 2.7). The glenohumeral joint presented a higher abduction angle (AF: 14.2 ± 1.6, CG: 11.5 ± 4.0) and a lower external rotation throughout the cycle (AF: 4.6 ± 1.2, CG: 22.0 ± 3.0). The lower limbs showed typical alterations of the stroke gait patterns. Thus, the changes in upper and lower limb motion of stroke gait were identified. The description of upper limb motion in stroke gait is new and complements gait analysis. PMID:22473324

  18. Meaningful improvement in gait speed in hip fracture recovery.

    PubMed

    Alley, Dawn E; Hicks, Gregory E; Shardell, Michelle; Hawkes, William; Miller, Ram; Craik, Rebecca L; Mangione, Kathleen K; Orwig, Denise; Hochberg, Marc; Resnick, Barbara; Magaziner, Jay

    2011-09-01

    To estimate meaningful improvements in gait speed observed during recovery from hip fracture and to evaluate the sensitivity and specificity of gait speed changes in detecting change in self-reported mobility. Secondary longitudinal data analysis from two randomized controlled trials Twelve hospitals in the Baltimore, Maryland, area. Two hundred seventeen women admitted with hip fracture. Usual gait speed and self-reported mobility (ability to walk 1 block and climb 1 flight of stairs) measured 2 and 12 months after fracture. Effect size-based estimates of meaningful differences were 0.03 for small differences and 0.09 for substantial differences. Depending on the anchor (stairs vs walking) and method (mean difference vs regression), anchor-based estimates ranged from 0.10 to 0.17 m/s for small meaningful improvements and 0.17 to 0.26 m/s for substantial meaningful improvement. Optimal gait speed cutpoints yielded low sensitivity (0.39-0.62) and specificity (0.57-0.76) for improvements in self-reported mobility. Results from this sample of women recovering from hip fracture provide only limited support for the 0.10-m/s cut point for substantial meaningful change previously identified in community-dwelling older adults experiencing declines in walking abilities. Anchor-based estimates and cut points derived from receiver operating characteristic curve analysis suggest that greater improvements in gait speed may be required for substantial perceived mobility improvement in female hip fracture patients. Furthermore, gait speed change performed poorly in discriminating change in self-reported mobility. Estimates of meaningful change in gait speed may differ based on the direction of change (improvement vs decline) or between patient populations. © 2011, Copyright the Authors. Journal compilation © 2011, The American Geriatrics Society.

  19. Meaningful Improvement in Gait Speed in Hip Fracture Recovery

    PubMed Central

    Alley, Dawn E.; Hicks, Gregory E.; Shardell, Michelle; Hawkes, William; Miller, Ram; Craik, Rebecca L.; Mangione, Kathleen K.; Orwig, Denise; Hochberg, Marc; Resnick, Barbara; Magaziner, Jay

    2011-01-01

    OBJECTIVES To estimate meaningful improvements in gait speed observed during recovery from hip fracture and to evaluate the sensitivity and specificity of gait speed changes in detecting change in self-reported mobility. DESIGN Secondary longitudinal data analysis from two randomized controlled trials SETTING Twelve hospitals in the Baltimore, Maryland, area. PARTICIPANTS Two hundred seventeen women admitted with hip fracture. MEASUREMENTS Usual gait speed and self-reported mobility (ability to walk 1 block and climb 1 flight of stairs) measured 2 and 12 months after fracture. RESULTS Effect size–based estimates of meaningful differences were 0.03 for small differences and 0.09 for substantial differences. Depending on the anchor (stairs vs walking) and method (mean difference vs regression), anchor-based estimates ranged from 0.10 to 0.17 m/s for small meaningful improvements and 0.17 to 0.26 m/s for substantial meaningful improvement. Optimal gait speed cut-points yielded low sensitivity (0.39–0.62) and specificity (0.57–0.76) for improvements in self-reported mobility. CONCLUSION Results from this sample of women recovering from hip fracture provide only limited support for the 0.10-m/s cut point for substantial meaningful change previously identified in community-dwelling older adults experiencing declines in walking abilities. Anchor-based estimates and cut points derived from receiver operating characteristic curve analysis suggest that greater improvements in gait speed may be required for substantial perceived mobility improvement in female hip fracture patients. Furthermore, gait speed change performed poorly in discriminating change in self-reported mobility. Estimates of meaningful change in gait speed may differ based on the direction of change (improvement vs decline) or between patient populations. PMID:21883109

  20. Newly Identified Gait Patterns in Patients With Multiple Sclerosis May Be Related to Push-off Quality.

    PubMed

    Kempen, Jiska C E; Doorenbosch, Caroline A M; Knol, Dirk L; de Groot, Vincent; Beckerman, Heleen

    2016-11-01

    Limited walking ability is an important problem for patients with multiple sclerosis. A better understanding of how gait impairments lead to limited walking ability may help to develop more targeted interventions. Although gait classifications are available in cerebral palsy and stroke, relevant knowledge in MS is scarce. The aims of this study were: (1) to identify distinctive gait patterns in patients with MS based on a combined evaluation of kinematics, gait features, and muscle activity during walking and (2) to determine the clinical relevance of these gait patterns. This was a cross-sectional study of 81 patients with MS of mild-to-moderate severity (Expanded Disability Status Scale [EDSS] median score=3.0, range=1.0-7.0) and an age range of 28 to 69 years. The patients participated in 2-dimensional video gait analysis, with concurrent measurement of surface electromyography and ground reaction forces. A score chart of 73 gait items was used to rate each gait analysis. A single rater performed the scoring. Latent class analysis was used to identify gait classes. Analysis of the 73 gait variables revealed that 9 variables could distinguish 3 clinically meaningful gait classes. The 9 variables were: (1) heel-rise in terminal stance, (2) push-off, (3) clearance in initial swing, (4) plantar-flexion position in mid-swing, (5) pelvic rotation, (6) arm-trunk movement, (7) activity of the gastrocnemius muscle in pre-swing, (8) M-wave, and (9) propulsive force. The EDSS score and gait speed worsened in ascending classes. Most participants had mild-to-moderate limitations in walking ability based on their EDSS scores, and the number of walkers who were severely limited was small. Based on a small set of 9 variables measured with 2-dimensional clinical gait analysis, patients with MS could be divided into 3 different gait classes. The gait variables are suggestive of insufficient ankle push-off. © 2016 American Physical Therapy Association.

  1. An Ambulatory Method of Identifying Anterior Cruciate Ligament Reconstructed Gait Patterns

    PubMed Central

    Patterson, Matthew R.; Delahunt, Eamonn; Sweeney, Kevin T.; Caulfield, Brian

    2014-01-01

    The use of inertial sensors to characterize pathological gait has traditionally been based on the calculation of temporal and spatial gait variables from inertial sensor data. This approach has proved successful in the identification of gait deviations in populations where substantial differences from normal gait patterns exist; such as in Parkinsonian gait. However, it is not currently clear if this approach could identify more subtle gait deviations, such as those associated with musculoskeletal injury. This study investigates whether additional analysis of inertial sensor data, based on quantification of gyroscope features of interest, would provide further discriminant capability in this regard. The tested cohort consisted of a group of anterior cruciate ligament reconstructed (ACL-R) females and a group of non-injured female controls, each performed ten walking trials. Gait performance was measured simultaneously using inertial sensors and an optoelectronic marker based system. The ACL-R group displayed kinematic and kinetic deviations from the control group, but no temporal or spatial deviations. This study demonstrates that quantification of gyroscope features can successfully identify changes associated with ACL-R gait, which was not possible using spatial or temporal variables. This finding may also have a role in other clinical applications where small gait deviations exist. PMID:24451464

  2. Gait analysis in patients with chronic obstructive pulmonary disease: a systematic review.

    PubMed

    Zago, Matteo; Sforza, Chiarella; Bonardi, Daniela Rita; Guffanti, Enrico Eugenio; Galli, Manuela

    2018-03-01

    Gait instability is a major fall-risk factor in patients with chronic obstructive pulmonary disease (COPD). Clinical gait analysis is a reliable tool to predict fall onsets. However, controversy still exists on gait impairments associated with COPD. Thus, the aims of this review were to evaluate the current understanding of spatiotemporal, kinematic and kinetic gait features in patients with COPD. In line with PRISMA guidelines, a systematic literature search was performed throughout Web of Science, PubMed Medline, Scopus, PEDro and Scielo databases. We considered observational cross-sectional studies evaluating gait features in patients with COPD as their primary outcome. Risk of bias and applicability of these papers were assessed according to the QUADAS-2 tool. Seven articles, cross-sectional studies published from 2011 to 2017, met the inclusion criteria. Sample size of patients with COPD ranged 14-196 (mean age range: 64-75 years). The main reported gait abnormalities were reduced step length and cadence, and altered variability of spatiotemporal parameters. Only subtle biomechanical changes were reported at the ankle level. A convincing mechanistic link between such gait impairments and falls in patients with COPD is still lacking. The paucity of studies, small sample sizes, gender and disease status pooling were the main risk of biases affecting the results uncertainty. Two research directions emerged: stricter cohorts characterization in terms of COPD phenotype and longitudinal studies. Quantitative assessment of gait would identify abnormalities and sensorimotor postural deficiencies that in turn may lead to better falling prevention strategies in COPD. Copyright © 2018 Elsevier B.V. All rights reserved.

  3. Gait profile score and movement analysis profile in patients with Parkinson's disease during concurrent cognitive load

    PubMed Central

    Speciali, Danielli S.; Oliveira, Elaine M.; Cardoso, Jefferson R.; Correa, João C. F.; Baker, Richard; Lucareli, Paulo R. G.

    2014-01-01

    Background: Gait disorders are common in individuals with Parkinson's Disease (PD) and the concurrent performance of motor and cognitive tasks can have marked effects on gait. The Gait Profile Score (GPS) and the Movement Analysis Profile (MAP) were developed in order to summarize the data of kinematics and facilitate understanding of the results of gait analysis. Objective: To investigate the effectiveness of the GPS and MAP in the quantification of changes in gait during a concurrent cognitive load while walking in adults with and without PD. Method: Fourteen patients with idiopathic PD and nine healthy subjects participated in the study. All subjects performed single and dual walking tasks. The GPS/MAP was computed from three-dimensional gait analysis data. Results: Differences were found between tasks for GPS (P<0.05) and Gait Variable Score (GVS) (pelvic rotation, knee flexion-extension and ankle dorsiflexion-plantarflexion) (P<0.05) in the PD group. An interaction between task and group was observed for GPS (P<0.01) for the right side (Cohen's ¯d=0.99), left side (Cohen's ¯d=0.91), and overall (Cohen's ¯d=0.88). No interaction was observed only for hip internal-external rotation and foot internal-external progression GVS variables in the PD group. Conclusions: The results showed gait impairment during the dual task and suggest that GPS/MAP may be used to evaluate the effects of concurrent cognitive load while walking in patients with PD. PMID:25054382

  4. The gait disorder in downbeat nystagmus syndrome.

    PubMed

    Schniepp, Roman; Wuehr, Max; Huth, Sabrina; Pradhan, Cauchy; Schlick, Cornelia; Brandt, Thomas; Jahn, Klaus

    2014-01-01

    Downbeat nystagmus (DBN) is a common form of acquired fixation nystagmus with key symptoms of oscillopsia and gait disturbance. Gait disturbance could be a result of impaired visual feedback due to the involuntary ocular oscillations. Alternatively, a malfunction of cerebellar locomotor control might be involved, since DBN is considered a vestibulocerebellar disorder. Investigation of walking in 50 DBN patients (age 72 ± 11 years, 23 females) and 50 healthy controls (HS) (age 70 ± 11 years, 23 females) using a pressure sensitive carpet (GAITRite). The patient cohort comprised subjects with only ocular motor signs (DBN) and subjects with an additional limb ataxia (DBNCA). Gait investigation comprised different walking speeds and walking with eyes closed. In DBN, gait velocity was reduced (p<0.001) with a reduced stride length (p<0.001), increased base of support (p<0.050), and increased double support (p<0.001). Walking with eyes closed led to significant gait changes in both HS and DBN. These changes were more pronounced in DBN patients (p<0.001). Speed-dependency of gait variability revealed significant differences between the subgroups of DBN and DBNCA (p<0.050). (I) Impaired visual control caused by involuntary ocular oscillations cannot sufficiently explain the gait disorder. (II) The gait of patients with DBN is impaired in a speed dependent manner. (III) Analysis of gait variability allows distinguishing DBN from DBNCA: Patients with pure DBN show a speed dependency of gait variability similar to that of patients with afferent vestibular deficits. In DBNCA, gait variability resembles the pattern found in cerebellar ataxia.

  5. Gait patterns in hemiplegic patients with equinus foot deformity.

    PubMed

    Manca, M; Ferraresi, G; Cosma, M; Cavazzuti, L; Morelli, M; Benedetti, M G

    2014-01-01

    Equinus deformity of the foot is a common feature of hemiplegia, which impairs the gait pattern of patients. The aim of the present study was to explore the role of ankle-foot deformity in gait impairment. A hierarchical cluster analysis was used to classify the gait patterns of 49 chronic hemiplegic patients with equinus deformity of the foot, based on temporal-distance parameters and joint kinematic measures obtained by an innovative protocol for motion assessment in the sagittal, frontal, and transverse planes, synthesized by parametrical analysis. Cluster analysis identified five subgroups of patients with homogenous levels of dysfunction during gait. Specific joint kinematic abnormalities were found, according to the speed of progression in each cluster. Patients with faster walking were those with less ankle-foot complex impairment or with reduced range of motion of ankle-foot complex, that is with a stiff ankle-foot complex. Slow walking was typical of patients with ankle-foot complex instability (i.e., larger motion in all the planes), severe equinus and hip internal rotation pattern, and patients with hip external rotation pattern. Clustering of gait patterns in these patients is helpful for a better understanding of dysfunction during gait and delivering more targeted treatment.

  6. Estimates of circulation and gait change based on a three-dimensional kinematic analysis of flight in cockatiels (Nymphicus hollandicus) and ringed turtle-doves (Streptopelia risoria).

    PubMed

    Hedrick, Tyson L; Tobalske, Bret W; Biewener, Andrew A

    2002-05-01

    Birds and bats are known to employ two different gaits in flapping flight, a vortex-ring gait in slow flight and a continuous-vortex gait in fast flight. We studied the use of these gaits over a wide range of speeds (1-17 ms(-1)) and transitions between gaits in cockatiels (Nymphicus hollandicus) and ringed turtle-doves (Streptopelia risoria) trained to fly in a recently built, variable-speed wind tunnel. Gait use was investigated via a combination of three-dimensional kinematics and quasi-steady aerodynamic modeling of bound circulation on the distal and proximal portions of the wing. Estimates of lift from our circulation model were sufficient to support body weight at all but the slowest speeds (1 and 3 ms(-1)). From comparisons of aerodynamic impulse derived from our circulation analysis with the impulse estimated from whole-body acceleration, it appeared that our quasi-steady aerodynamic analysis was most accurate at intermediate speeds (5-11 ms(-1)). Despite differences in wing shape and wing loading, both species shifted from a vortex-ring to a continuous-vortex gait at 7 ms(-1). We found that the shift from a vortex-ring to a continuous-vortex gait (i) was associated with a phase delay in the peak angle of attack of the proximal wing section from downstroke into upstroke and (ii) depended on sufficient forward velocity to provide airflow over the wing during the upstroke similar to that during the downstroke. Our kinematic estimates indicated significant variation in the magnitude of circulation over the course the wingbeat cycle when either species used a continuous-vortex gait. This variation was great enough to suggest that both species shifted to a ladder-wake gait as they approached the maximum flight speed (cockatiels 15 ms(-1), doves 17 ms(-1)) that they would sustain in the wind tunnel. This shift in flight gait appeared to reflect the need to minimize drag and produce forward thrust in order to fly at high speed. The ladder-wake gait was also

  7. Assessment of gait in subcortical vascular encephalopathy by computerized analysis: a cross-sectional and longitudinal study.

    PubMed

    Bäzner, H; Oster, M; Daffertshofer, M; Hennerici, M

    2000-11-01

    In subcortical vascular encephalopathy (SVE) gait disturbance is a common and early clinical sign which might be used to monitor disease progression. In the absence of reliable scales and with regard to the equivocal results of highly complex gait imaging devices we assessed the natural course of SVE in a prospective study, using a new straight forward technique to quantify and compare sequential gait studies. We report the results of 300 computerized gait analyses in 119 patients with SVE and 63 age-matched controls. Thirty-nine SVE patients were re-evaluated to monitor the natural course of the disease and to study the correlation of gait disturbances with MRI changes and neuropsychological findings. The system consists of a set of shoes containing 16 load sensors and a measuring-unit reading each sensor at 20-ms intervals. By off-line analysis we graded each recording on a Gait Disorder Score (GDS) with six variables indicating gait steadiness: step frequency, length of gait lines (which represent the movement of the centre of gravity during heel to toe movement), length of single support lines, variability of single and of double support lines, and double support time. In cross-sectional analysis, patients with SVE showed cadence (steps/min) to be reduced at 87.3 +/- 19.5 (96.4 +/- 7.8 in controls, P < 0.05). Length of gait lines was significantly less: 0.70 +/- 0.13 vs. 0.80 +/- 0.05 in controls, with length of single support gait lines reduced at 0.42 +/- 0.14 in SVE (0.58 +/- 0.06 in controls, P < 0.05). Variability of both single support lines (5.69 +/- 1.90%; 4.24 +/- 1.07% in controls, P < 0.05) and double support lines was elevated (3.59 +/- 1.62% vs. 2.54 +/- 0.59%), while duration of double support phases was increased (0.19 +/- 0.10 s vs. 0.13 +/- 0.02 s in controls, P < 0.05). The progressive character of the disease was demonstrated by increasing GDS values in 39 SVE patients with a frontal gait disorder who were re-investigated after a mean

  8. [Exoskeleton robot system based on real-time gait analysis for walking assist].

    PubMed

    Xie, Zheng; Wang, Mingjiang; Huang, Wulong; Yong, Shanshan; Wang, Xin'an

    2017-04-01

    This paper presents a wearable exoskeleton robot system to realize walking assist function, which oriented toward the patients or the elderly with the mild impairment of leg movement function, due to illness or natural aging. It reduces the loads of hip, knee, ankle and leg muscles during walking by way of weight support. In consideration of the characteristics of the psychological demands and the disease, unlike the weight loss system in the fixed or followed rehabilitation robot, the structure of the proposed exoskeleton robot is artistic, lightweight and portable. The exoskeleton system analyzes the user's gait real-timely by the plantar pressure sensors to divide gait phases, and present different control strategies for each gait phase. The pressure sensors in the seat of the exoskeleton system provide real-time monitoring of the support efforts. And the drive control uses proportion-integral-derivative (PID) control technology for torque control. The total weight of the robot system is about 12.5 kg. The average of the auxiliary support is about 10 kg during standing, and it is about 3 kg during walking. The system showed, in the experiments, a certain effect of weight support, and reduction of the pressure on the lower limbs to walk and stand.

  9. The effect of frame rate on the ability of experienced gait analysts to identify characteristics of gait from closed circuit television footage.

    PubMed

    Birch, Ivan; Vernon, Wesley; Burrow, Gordon; Walker, Jeremy

    2014-03-01

    Forensic gait analysis is increasingly being used as part of criminal investigations. A major issue is the quality of the closed circuit television (CCTV) footage used, particularly the frame rate which can vary from 25 frames per second to one frame every 4s. To date, no study has investigated the effect of frame rate on forensic gait analysis. A single subject was fitted with an ankle foot orthosis and recorded walking at 25 frames per second. 3D motion data were also collected, providing an absolute assessment of the gait characteristics. The CCTV footage was then edited to produce a set of eight additional pieces of footage, at various frame rates. Practitioners with knowledge of forensic gait analysis were recruited and instructed to record their observations regarding the characteristics of the subject's gait from the footage. They were sequentially sent web links to the nine pieces of footage, lowest frame rate first, and a simple observation recording form, over a period of 8 months. A sample-based Pearson product-moment correlation analysis of the results demonstrated a significant positive relationship between frame rate and scores (r=0.868, p=0.002). The results of this study show that frame rate affects the ability of experienced practitioners to identify characteristics of gait captured on CCTV footage. Every effort should therefore be made to ensure that CCTV footage likely to be used in criminal proceedings is captured at as high a frame rate as possible. © 2013.

  10. Agreement between the spatio-temporal gait parameters from treadmill-based photoelectric cell and the instrumented treadmill system in healthy young adults and stroke patients.

    PubMed

    Lee, Myungmo; Song, Changho; Lee, Kyoungjin; Shin, Doochul; Shin, Seungho

    2014-07-14

    Treadmill gait analysis was more advantageous than over-ground walking because it allowed continuous measurements of the gait parameters. The purpose of this study was to investigate the concurrent validity and the test-retest reliability of the OPTOGait photoelectric cell system against the treadmill-based gait analysis system by assessing spatio-temporal gait parameters. Twenty-six stroke patients and 18 healthy adults were asked to walk on the treadmill at their preferred speed. The concurrent validity was assessed by comparing data obtained from the 2 systems, and the test-retest reliability was determined by comparing data obtained from the 1st and the 2nd session of the OPTOGait system. The concurrent validity, identified by the intra-class correlation coefficients (ICC [2, 1]), coefficients of variation (CVME), and 95% limits of agreement (LOA) for the spatial-temporal gait parameters, were excellent but the temporal parameters expressed as a percentage of the gait cycle were poor. The test-retest reliability of the OPTOGait System, identified by ICC (3, 1), CVME, 95% LOA, standard error of measurement (SEM), and minimum detectable change (MDC95%) for the spatio-temporal gait parameters, was high. These findings indicated that the treadmill-based OPTOGait System had strong concurrent validity and test-retest reliability. This portable system could be useful for clinical assessments.

  11. Three-dimensional gait analysis of obese adults.

    PubMed

    Lai, Peggy P K; Leung, Aaron K L; Li, Agnes N M; Zhang, M

    2008-01-01

    Obesity has been clinically associated with musculoskeletal disorders. However, the findings were mainly focused on the analysis in the sagittal plane. The objectives of this study were to investigate the three-dimensional gait characteristics of Chinese obese adults and to compare the results with normal subjects. Fourteen obese subjects, mean age 35.4 (8.8)years, eight females and six males, with body mass index 33.06 (4.2)kg/m(2) and 14 non-obese subjects, mean age 27.6 (8.6)years, eight females and six males, with body mass index 21.33 (1.5)kg/m(2) participated in this study. All subjects did not have current or past neurological or cardiovascular illness, orthopaedic abnormality, or pain which might affect gait. The kinematics and kinetics data of all subjects were recorded during their self-selected walking speed with a three-dimensional motion analysis system. The obese group walked slower and had a shorter stride length. They also spent more time on stance phase and double support in walking. Greater hip adduction was shown in the obese group during terminal stance and pre-swing. The maximum knee adduction angles of the obese group in both stance and swing phases were significantly higher. The ankle eversion angle of the obese group was significantly higher from mid stance to pre-swing. There were reduction of peak ankle plantar flexor moment, and increase of ankle inversion moment. There were some significant differences in temporal-spatial, joint motion and joint moment data between the obese and the non-obese participants. The obese individuals might adjust their gait characteristics in response to their heavy bodies to reduce the moment about the knee and the energy expenditure per unit time.

  12. Artificial Walking Technologies to Improve Gait in Cerebral Palsy: Multichannel Neuromuscular Stimulation.

    PubMed

    Rose, Jessica; Cahill-Rowley, Katelyn; Butler, Erin E

    2017-11-01

    Cerebral palsy (CP) is the most common childhood motor disability and often results in debilitating walking abnormalities, such as flexed-knee and stiff-knee gait. Current medical and surgical treatments are only partially effective in improving gait abnormalities and may cause significant muscle weakness. However, emerging artificial walking technologies, such as step-initiated, multichannel neuromuscular electrical stimulation (NMES), can substantially improve gait patterns and promote muscle strength in children with spastic CP. NMES may also be applied to specific lumbar-sacral sensory roots to reduce spasticity. Development of tablet computer-based multichannel NMES can leverage lightweight, wearable wireless stimulators, advanced control design, and surface electrodes to activate lower-limb muscles. Musculoskeletal models have been used to characterize muscle contributions to unimpaired gait and identify high muscle demands, which can help guide multichannel NMES-assisted gait protocols. In addition, patient-specific NMES-assisted gait protocols based on 3D gait analysis can facilitate the appropriate activation of lower-limb muscles to achieve a more functional gait: stance-phase hip and knee extension and swing-phase sequence of hip and knee flexion followed by rapid knee extension. NMES-assisted gait treatment can be conducted as either clinic-based or home-based programs. Rigorous testing of multichannel NMES-assisted gait training protocols will determine optimal treatment dosage for future clinical trials. Evidence-based outcome evaluation using 3D kinematics or temporal-spatial gait parameters will help determine immediate neuroprosthetic effects and longer term neurotherapeutic effects of step-initiated, multichannel NMES-assisted gait in children with spastic CP. Multichannel NMES is a promising assistive technology to help children with spastic CP achieve a more upright, functional gait. © 2017 International Center for Artificial Organs and

  13. The Gait Disorder in Downbeat Nystagmus Syndrome

    PubMed Central

    Schniepp, Roman; Wuehr, Max; Huth, Sabrina; Pradhan, Cauchy; Schlick, Cornelia; Brandt, Thomas; Jahn, Klaus

    2014-01-01

    Background Downbeat nystagmus (DBN) is a common form of acquired fixation nystagmus with key symptoms of oscillopsia and gait disturbance. Gait disturbance could be a result of impaired visual feedback due to the involuntary ocular oscillations. Alternatively, a malfunction of cerebellar locomotor control might be involved, since DBN is considered a vestibulocerebellar disorder. Methods Investigation of walking in 50 DBN patients (age 72±11 years, 23 females) and 50 healthy controls (HS) (age 70±11 years, 23 females) using a pressure sensitive carpet (GAITRite). The patient cohort comprised subjects with only ocular motor signs (DBN) and subjects with an additional limb ataxia (DBNCA). Gait investigation comprised different walking speeds and walking with eyes closed. Results In DBN, gait velocity was reduced (p<0.001) with a reduced stride length (p<0.001), increased base of support (p<0.050), and increased double support (p<0.001). Walking with eyes closed led to significant gait changes in both HS and DBN. These changes were more pronounced in DBN patients (p<0.001). Speed-dependency of gait variability revealed significant differences between the subgroups of DBN and DBNCA (p<0.050). Conclusions (I) Impaired visual control caused by involuntary ocular oscillations cannot sufficiently explain the gait disorder. (II) The gait of patients with DBN is impaired in a speed dependent manner. (III) Analysis of gait variability allows distinguishing DBN from DBNCA: Patients with pure DBN show a speed dependency of gait variability similar to that of patients with afferent vestibular deficits. In DBNCA, gait variability resembles the pattern found in cerebellar ataxia. PMID:25140517

  14. Towards Real-Time Detection of Gait Events on Different Terrains Using Time-Frequency Analysis and Peak Heuristics Algorithm.

    PubMed

    Zhou, Hui; Ji, Ning; Samuel, Oluwarotimi Williams; Cao, Yafei; Zhao, Zheyi; Chen, Shixiong; Li, Guanglin

    2016-10-01

    Real-time detection of gait events can be applied as a reliable input to control drop foot correction devices and lower-limb prostheses. Among the different sensors used to acquire the signals associated with walking for gait event detection, the accelerometer is considered as a preferable sensor due to its convenience of use, small size, low cost, reliability, and low power consumption. Based on the acceleration signals, different algorithms have been proposed to detect toe off (TO) and heel strike (HS) gait events in previous studies. While these algorithms could achieve a relatively reasonable performance in gait event detection, they suffer from limitations such as poor real-time performance and are less reliable in the cases of up stair and down stair terrains. In this study, a new algorithm is proposed to detect the gait events on three walking terrains in real-time based on the analysis of acceleration jerk signals with a time-frequency method to obtain gait parameters, and then the determination of the peaks of jerk signals using peak heuristics. The performance of the newly proposed algorithm was evaluated with eight healthy subjects when they were walking on level ground, up stairs, and down stairs. Our experimental results showed that the mean F1 scores of the proposed algorithm were above 0.98 for HS event detection and 0.95 for TO event detection on the three terrains. This indicates that the current algorithm would be robust and accurate for gait event detection on different terrains. Findings from the current study suggest that the proposed method may be a preferable option in some applications such as drop foot correction devices and leg prostheses.

  15. Towards Real-Time Detection of Gait Events on Different Terrains Using Time-Frequency Analysis and Peak Heuristics Algorithm

    PubMed Central

    Zhou, Hui; Ji, Ning; Samuel, Oluwarotimi Williams; Cao, Yafei; Zhao, Zheyi; Chen, Shixiong; Li, Guanglin

    2016-01-01

    Real-time detection of gait events can be applied as a reliable input to control drop foot correction devices and lower-limb prostheses. Among the different sensors used to acquire the signals associated with walking for gait event detection, the accelerometer is considered as a preferable sensor due to its convenience of use, small size, low cost, reliability, and low power consumption. Based on the acceleration signals, different algorithms have been proposed to detect toe off (TO) and heel strike (HS) gait events in previous studies. While these algorithms could achieve a relatively reasonable performance in gait event detection, they suffer from limitations such as poor real-time performance and are less reliable in the cases of up stair and down stair terrains. In this study, a new algorithm is proposed to detect the gait events on three walking terrains in real-time based on the analysis of acceleration jerk signals with a time-frequency method to obtain gait parameters, and then the determination of the peaks of jerk signals using peak heuristics. The performance of the newly proposed algorithm was evaluated with eight healthy subjects when they were walking on level ground, up stairs, and down stairs. Our experimental results showed that the mean F1 scores of the proposed algorithm were above 0.98 for HS event detection and 0.95 for TO event detection on the three terrains. This indicates that the current algorithm would be robust and accurate for gait event detection on different terrains. Findings from the current study suggest that the proposed method may be a preferable option in some applications such as drop foot correction devices and leg prostheses. PMID:27706086

  16. Effect of rhythmic auditory cueing on parkinsonian gait: A systematic review and meta-analysis.

    PubMed

    Ghai, Shashank; Ghai, Ishan; Schmitz, Gerd; Effenberg, Alfred O

    2018-01-11

    The use of rhythmic auditory cueing to enhance gait performance in parkinsonian patients' is an emerging area of interest. Different theories and underlying neurophysiological mechanisms have been suggested for ascertaining the enhancement in motor performance. However, a consensus as to its effects based on characteristics of effective stimuli, and training dosage is still not reached. A systematic review and meta-analysis was carried out to analyze the effects of different auditory feedbacks on gait and postural performance in patients affected by Parkinson's disease. Systematic identification of published literature was performed adhering to PRISMA guidelines, from inception until May 2017, on online databases; Web of science, PEDro, EBSCO, MEDLINE, Cochrane, EMBASE and PROQUEST. Of 4204 records, 50 studies, involving 1892 participants met our inclusion criteria. The analysis revealed an overall positive effect on gait velocity, stride length, and a negative effect on cadence with application of auditory cueing. Neurophysiological mechanisms, training dosage, effects of higher information processing constraints, and use of cueing as an adjunct with medications are thoroughly discussed. This present review bridges the gaps in literature by suggesting application of rhythmic auditory cueing in conventional rehabilitation approaches to enhance motor performance and quality of life in the parkinsonian community.

  17. Application of neural based estimation algorithm for gait phases of above knee prosthesis.

    PubMed

    Tileylioğlu, E; Yilmaz, A

    2015-01-01

    In this study, two gait phase estimation methods which utilize a rule based quantization and an artificial neural network model respectively are developed and applied for the microcontroller based semi-active knee prosthesis in order to respond user demands and adapt environmental conditions. In this context, an experimental environment in which gait data collected synchronously from both inertial and image based measurement systems has been set up. The inertial measurement system that incorporates MEM accelerometers and gyroscopes is used to perform direct motion measurement through the microcontroller, while the image based measurement system is employed for producing the verification data and assessing the success of the prosthesis. Embedded algorithms dynamically normalize the input data prior to gait phase estimation. The real time analyses of two methods revealed that embedded ANN based approach performs slightly better in comparison with the rule based algorithm and has advantage of being easily-scalable, thus able to accommodate additional input parameters considering the microcontroller constraints.

  18. Energy Expenditure of Trotting Gait Under Different Gait Parameters

    NASA Astrophysics Data System (ADS)

    Chen, Xian-Bao; Gao, Feng

    2017-07-01

    Robots driven by batteries are clean, quiet, and can work indoors or in space. However, the battery endurance is a great problem. A new gait parameter design energy saving strategy to extend the working hours of the quadruped robot is proposed. A dynamic model of the robot is established to estimate and analyze the energy expenditures during trotting. Given a trotting speed, optimal stride frequency and stride length can minimize the energy expenditure. However, the relationship between the speed and the optimal gait parameters is nonlinear, which is difficult for practical application. Therefore, a simplified gait parameter design method for energy saving is proposed. A critical trotting speed of the quadruped robot is found and can be used to decide the gait parameters. When the robot is travelling lower than this speed, it is better to keep a constant stride length and change the cycle period. When the robot is travelling higher than this speed, it is better to keep a constant cycle period and change the stride length. Simulations and experiments on the quadruped robot show that by using the proposed gait parameter design approach, the energy expenditure can be reduced by about 54% compared with the 100 mm stride length under 500 mm/s speed. In general, an energy expenditure model based on the gait parameter of the quadruped robot is built and the trotting gait parameters design approach for energy saving is proposed.

  19. Mobile gait analysis via eSHOEs instrumented shoe insoles: a pilot study for validation against the gold standard GAITRite®.

    PubMed

    Jagos, Harald; Pils, Katharina; Haller, Michael; Wassermann, Claudia; Chhatwal, Christa; Rafolt, Dietmar; Rattay, Frank

    2017-07-01

    Clinical gait analysis contributes massively to rehabilitation support and improvement of in-patient care. The research project eSHOE aspires to be a useful addition to the rich variety of gait analysis systems. It was designed to fill the gap of affordable, reasonably accurate and highly mobile measurement devices. With the overall goal of enabling individual home-based monitoring and training for people suffering from chronic diseases, affecting the locomotor system. Motion and pressure sensors gather movement data directly on the (users) feet, store them locally and/or transmit them wirelessly to a PC. A combination of pattern recognition and feature extraction algorithms translates the motion data into standard gait parameters. Accuracy of eSHOE were evaluated against the reference system GAITRite in a clinical pilot study. Eleven hip fracture patients (78.4 ± 7.7 years) and twelve healthy subjects (40.8 ± 9.1 years) were included in these trials. All subjects performed three measurements at a comfortable walking speed over 8 m, including the 6-m long GAITRite mat. Six standard gait parameters were extracted from a total of 347 gait cycles. Agreement was analysed via scatterplots, histograms and Bland-Altman plots. In the patient group, the average differences between eSHOE and GAITRite range from -0.046 to 0.045 s and in the healthy group from -0.029 to 0.029 s. Therefore, it can be concluded that eSHOE delivers adequately accurate results. Especially with the prospect as an at home supplement or follow-up to clinical gait analysis and compared to other state of the art wearable motion analysis systems.

  20. Evaluation of joint findings with gait analysis in children with hemophilia.

    PubMed

    Cayir, Atilla; Yavuzer, Gunes; Sayli, Revide Tülin; Gurcay, Eda; Culha, Vildan; Bozkurt, Murat

    2014-01-01

    Hemophilic arthropathy due to recurrent joint bleeding leads to physical, psychological and socioeconomic problems in children with hemophilia and reduces their quality of life. The purpose of this study was to evaluate joint damage through various parameters and to determine functional deterioration in the musculoskeletal system during walking using kinetic and kinematic gait analysis. Physical examination and kinetic and kinematic gait analysis findings of 19 hemophilic patients aged 7-20 years were compared with those of age, sex and leg length matched controls. Stride time was longer in the hemophilia group (p=0.001) compared to the age matched healthy control group, while hip, knee and ankle joint rotation angles were more limited (p=0.001, p=0.035 and p=0.001, respectively). In the hemophilia group, the extensor moment of the knee joint in the stance phase was less than that in the control group (p=0.001). Stride time was longer in the severe hemophilia group compared to the mild-moderate hemophilia and control groups (p=0.011 and p=0.001, respectively). Rotation angle of the ankle was wider in the control group compared to the other two groups (p=0.001 for both). Rotation angle of the ankle joint was narrower in the severe hemophilia group compared to the others (p=0.001 for each). Extensor moment of the knee joint was greater in the control group compared to the other two groups (p=0.003 and p=0.001, respectively). Walking velocity was higher in the control group compared to the severe hemophilia group. Kinetic and kinematic gait analysis has the sensitivity to detect minimal changes in biomechanical parameters. Gait analysis can be used as a reliable method to detect early joint damage.

  1. Symmetry in locomotor central pattern generators and animal gaits

    NASA Astrophysics Data System (ADS)

    Golubitsky, Martin; Stewart, Ian; Buono, Pietro-Luciano; Collins, J. J.

    1999-10-01

    Animal locomotion is controlled, in part, by a central pattern generator (CPG), which is an intraspinal network of neurons capable of generating a rhythmic output. The spatio-temporal symmetries of the quadrupedal gaits walk, trot and pace lead to plausible assumptions about the symmetries of locomotor CPGs. These assumptions imply that the CPG of a quadruped should consist of eight nominally identical subcircuits, arranged in an essentially unique matter. Here we apply analogous arguments to myriapod CPGs. Analyses based on symmetry applied to these networks lead to testable predictions, including a distinction between primary and secondary gaits, the existence of a new primary gait called `jump', and the occurrence of half-integer wave numbers in myriapod gaits. For bipeds, our analysis also predicts two gaits with the out-of-phase symmetry of the walk and two gaits with the in-phase symmetry of the hop. We present data that support each of these predictions. This work suggests that symmetry can be used to infer a plausible class of CPG network architectures from observed patterns of animal gaits.

  2. Turtle mimetic soft robot with two swimming gaits.

    PubMed

    Song, Sung-Hyuk; Kim, Min-Soo; Rodrigue, Hugo; Lee, Jang-Yeob; Shim, Jae-Eul; Kim, Min-Cheol; Chu, Won-Shik; Ahn, Sung-Hoon

    2016-05-04

    This paper presents a biomimetic turtle flipper actuator consisting of a shape memory alloy composite structure for implementation in a turtle-inspired autonomous underwater vehicle. Based on the analysis of the Chelonia mydas, the flipper actuator was divided into three segments containing a scaffold structure fabricated using a 3D printer. According to the filament stacking sequence of the scaffold structure in the actuator, different actuating motions can be realized and three different types of scaffold structures were proposed to replicate the motion of the different segments of the flipper of the Chelonia mydas. This flipper actuator can mimic the continuous deformation of the forelimb of Chelonia mydas which could not be realized in previous motor based robot. This actuator can also produce two distinct motions that correspond to the two different swimming gaits of the Chelonia mydas, which are the routine and vigorous swimming gaits, by changing the applied current sequence of the SMA wires embedded in the flipper actuator. The generated thrust and the swimming efficiency in each swimming gait of the flipper actuator were measured and the results show that the vigorous gait has a higher thrust but a relatively lower swimming efficiency than the routine gait. The flipper actuator was implemented in a biomimetic turtle robot, and its average swimming speed in the routine and vigorous gaits were measured with the vigorous gait being capable of reaching a maximum speed of 11.5 mm s(-1).

  3. The development of a tool for assessing the quality of closed circuit camera footage for use in forensic gait analysis.

    PubMed

    Birch, Ivan; Vernon, Wesley; Walker, Jeremy; Saxelby, Jai

    2013-10-01

    Gait analysis from closed circuit camera footage is now commonly used as evidence in criminal trials. The biomechanical analysis of human gait is a well established science in both clinical and laboratory settings. However, closed circuit camera footage is rarely of the quality of that taken in the more controlled clinical and laboratory environments. The less than ideal quality of much of this footage for use in gait analysis is associated with a range of issues, the combination of which can often render the footage unsuitable for use in gait analysis. The aim of this piece of work was to develop a tool for assessing the suitability of closed circuit camera footage for the purpose of forensic gait analysis. A Delphi technique was employed with a small sample of expert forensic gait analysis practitioners, to identify key quality elements of CCTV footage used in legal proceedings. Five elements of the footage were identified and then subdivided into 15 contributing sub-elements, each of which was scored using a 5-point Likert scale. A Microsoft Excel worksheet was developed to calculate automatically an overall score from the fifteen sub-element scores. Five expert witnesses experienced in using CCTV footage for gait analysis then trialled the prototype tool on current case footage. A repeatability study was also undertaken using standardized CCTV footage. The results showed the tool to be a simple and repeatable means of assessing the suitability of closed circuit camera footage for use in forensic gait analysis. The inappropriate use of poor quality footage could lead to challenges to the practice of forensic gait analysis. All parties involved in criminal proceedings must therefore understand the fitness for purpose of any footage used. The development of this tool could offer a method of achieving this goal, and help to assure the continued role of forensic gait analysis as an aid to the identification process. Copyright © 2013 Elsevier Ltd and Faculty of

  4. Objective assessment of motor fatigue in multiple sclerosis using kinematic gait analysis: a pilot study

    PubMed Central

    2011-01-01

    Background Fatigue is a frequent and serious symptom in patients with Multiple Sclerosis (MS). However, to date there are only few methods for the objective assessment of fatigue. The aim of this study was to develop a method for the objective assessment of motor fatigue using kinematic gait analysis based on treadmill walking and an infrared-guided system. Patients and methods Fourteen patients with clinically definite MS participated in this study. Fatigue was defined according to the Fatigue Scale for Motor and Cognition (FSMC). Patients underwent a physical exertion test involving walking at their pre-determined patient-specific preferred walking speed until they reached complete exhaustion. Gait was recorded using a video camera, a three line-scanning camera system with 11 infrared sensors. Step length, width and height, maximum circumduction with the right and left leg, maximum knee flexion angle of the right and left leg, and trunk sway were measured and compared using paired t-tests (α = 0.005). In addition, variability in these parameters during one-minute intervals was examined. The fatigue index was defined as the number of significant mean and SD changes from the beginning to the end of the exertion test relative to the total number of gait kinematic parameters. Results Clearly, for some patients the mean gait parameters were more affected than the variability of their movements while other patients had smaller differences in mean gait parameters with greater increases in variability. Finally, for other patients gait changes with physical exertion manifested both in changes in mean gait parameters and in altered variability. The variability and fatigue indices correlated significantly with the motoric but not with the cognitive dimension of the FSMC score (R = -0.602 and R = -0.592, respectively; P < 0.026). Conclusions Changes in gait patterns following a physical exertion test in patients with MS suffering from motor fatigue can be measured

  5. Pathological gait in children with Legg-Calvé-Perthes disease and proposal for gait modification to decrease the hip joint loading.

    PubMed

    Svehlík, Martin; Kraus, Tanja; Steinwender, Gerhard; Zwick, Ernst B; Linhart, Wolfgang E

    2012-06-01

    Legg-Calvé-Perthes disease (LCP) severely limits the range of hip motion and hinders a normal gait. Loading of the hip joint is a major consideration in LCP treatment. The aim of this study was to evaluate gait patterns in LCP and identify gait modifications to decrease the load on the affected hip. Forty children with unilateral LCP were divided into three groups based on the time base integral of the hip abductor moments during single stance on the affected side acquired during instrumented 3D gait analysis. X-rays of the affected hip were classified according to Herring and Catterall. Children in the "unloading" group spontaneously adopted a Duchenne-like gait with pelvis elevation, hip abduction and external rotation during single support phase. The "normal-loading" group showed pelvis elevation with a neutral hip position in the frontal plane. In the "overloading" group the pelvis dropped to the swinging limb at the beginning of stance accompanied by prolonged hip adduction. The time base integral of the hip abductor moments during single stance correlated positively with the X-ray classifications of Herring and Catterall, hip abduction angle and age. Older children preferred to walk in hip adduction during single stance, had more impaired hips and tended to overload them. The hip overloading pattern should be avoided in children with LCP. Gait training to unload the hip might become an integral component of conservative treatment in children with LCP.

  6. Analysis of gait in rats with olivocerebellar lesions and ability of the nicotinic acetylcholine receptor agonist varenicline to attenuate impairments.

    PubMed

    Lambert, C S; Philpot, R M; Engberg, M E; Johns, B E; Wecker, L

    2015-09-15

    Studies have demonstrated that administration of the neuronal nicotinic receptor agonist varenicline to rats with olivocerebellar lesions attenuates balance deficits on a rotorod and balance beam, but the effects of this drug on gait deficits have not been investigated. To accomplish this, male Sprague-Dawley rats were trained to walk on a motorized treadmill at 25 and 35 cm/s and baseline performance determined; both temporal and spatial gait parameters were analyzed. A principal component analysis (PCA) was used to identify the key components of gait, and the cumulative gait index (CGI) was calculated, representing deviations from prototypical gait patterns. Subsequently, animals either remained as non-lesioned controls or received injections of 3-acetylpyridine (3-AP)/nicotinamide to destroy the climbing fibers innervating Purkinje cells. The gait of the non-lesioned group was assessed weekly to monitor changes in the normal population, while the gait of the lesioned group was assessed 1 week following 3-AP administration, and weekly following the daily administration of saline or varenicline (0.3, 1.0, or 3.0mg free base/kg) for 2 weeks. Non-lesioned animals exhibited a 60-70% increased CGI over time due to increases in temporal gait measures, whereas lesioned animals exhibited a nearly 3-fold increased CGI as a consequence of increases in spatial measures. Following 2 weeks of treatment with the highest dose of varenicline (3.0mg free base/kg), the swing duration of lesioned animals normalized, and stride duration, stride length and step angle in this population did not differ from the non-lesioned population. Thus, varenicline enabled animals to compensate for their impairments and rectify the timing of the gait cycle. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Assessing interactions among multiple physiological systems during walking outside a laboratory: An Android based gait monitor

    PubMed Central

    Sejdić, E.; Millecamps, A.; Teoli, J.; Rothfuss, M. A.; Franconi, N. G.; Perera, S.; Jones, A. K.; Brach, J. S.; Mickle, M. H.

    2015-01-01

    Gait function is traditionally assessed using well-lit, unobstructed walkways with minimal distractions. In patients with subclinical physiological abnormalities, these conditions may not provide enough stress on their ability to adapt to walking. The introduction of challenging walking conditions in gait can induce responses in physiological systems in addition to the locomotor system. There is a need for a device that is capable of monitoring multiple physiological systems in various walking conditions. To address this need, an Android-based gait-monitoring device was developed that enabled the recording of a patient's physiological systems during walking. The gait-monitoring device was tested during self-regulated overground walking sessions of fifteen healthy subjects that included 6 females and 9 males aged 18 to 35 years. The gait-monitoring device measures the patient's stride interval, acceleration, electrocardiogram, skin conductance and respiratory rate. The data is stored on an Android phone and is analyzed offline through the extraction of features in the time, frequency and time-frequency domains. The analysis of the data depicted multisystem physiological interactions during overground walking in healthy subjects. These interactions included locomotion-electrodermal, locomotion-respiratory and cardiolocomotion couplings. The current results depicting strong interactions between the locomotion system and the other considered systems (i.e., electrodermal, respiratory and cardivascular systems) warrant further investigation into multisystem interactions during walking, particularly in challenging walking conditions with older adults. PMID:26390946

  8. Reliability of segmental accelerations measured using a new wireless gait analysis system.

    PubMed

    Kavanagh, Justin J; Morrison, Steven; James, Daniel A; Barrett, Rod

    2006-01-01

    The purpose of this study was to determine the inter- and intra-examiner reliability, and stride-to-stride reliability, of an accelerometer-based gait analysis system which measured 3D accelerations of the upper and lower body during self-selected slow, preferred and fast walking speeds. Eight subjects attended two testing sessions in which accelerometers were attached to the head, neck, lower trunk, and right shank. In the initial testing session, two different examiners attached the accelerometers and performed the same testing procedures. A single examiner repeated the procedure in a subsequent testing session. All data were collected using a new wireless gait analysis system, which features near real-time data transmission via a Bluetooth network. Reliability for each testing condition (4 locations, 3 directions, 3 speeds) was quantified using a waveform similarity statistic known as the coefficient of multiple determination (CMD). CMD's ranged from 0.60 to 0.98 across all test conditions and were not significantly different for inter-examiner (0.86), intra-examiner (0.87), and stride-to-stride reliability (0.86). The highest repeatability for the effect of location, direction and walking speed were for the shank segment (0.94), the vertical direction (0.91) and the fast walking speed (0.91), respectively. Overall, these results indicate that a high degree of waveform repeatability was obtained using a new gait system under test-retest conditions involving single and dual examiners. Furthermore, differences in acceleration waveform repeatability associated with the reapplication of accelerometers were small in relation to normal motor variability.

  9. Analysis of spastic gait in cervical myelopathy: Linking compression ratio to spatiotemporal and pedobarographic parameters.

    PubMed

    Nagai, Taro; Takahashi, Yasuhito; Endo, Kenji; Ikegami, Ryo; Ueno, Ryuichi; Yamamoto, Kengo

    2018-01-01

    Gait dysfunction associated with spasticity and hyperreflexia is a primary symptom in patients with compression of cervical spinal cord. The objective of this study was to link maximum compression ratio (CR) to spatiotemporal/pedobarographic parameters. Quantitative gait analysis was performed by using a pedobarograph in 75 elderly males with a wide range of cervical compression severity. CR values were characterized on T1-weighted magnetic resonance imaging (MRI). Statistical significances in gait analysis parameters (speed, cadence, stride length, step with, and toe-out angle) were evaluated among different CR groups by the non-parametric Kruskal-Wallis test followed by the Mann-Whitney U test using Bonferroni correction. The Spearman test was performed to verify correlations between CR and gait parameters. The Kruskal-Wallis test revealed significant decline in gait speed and stride length and significant increase in toe-out angle with progression of cervical compression myelopathy. The post-hoc Mann-Whitney U test showed significant differences in these parameters between the control group (0.45Gait speed, stride length, and toe-out angle can serve as useful indexes for evaluating progressive gait abnormality in cervical myelopathy. Our findings suggest that CR≤0.25 is associated with significantly poorer gait performance. Nevertheless, future prospective studies are needed to determine a potential benefit from decompressive surgery in such severe compression patients. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. A PDF-based classification of gait cadence patterns in patients with amyotrophic lateral sclerosis.

    PubMed

    Wu, Yunfeng; Ng, Sin Chun

    2010-01-01

    Amyotrophic lateral sclerosis (ALS) is a type of neurological disease due to the degeneration of motor neurons. During the course of such a progressive disease, it would be difficult for ALS patients to regulate normal locomotion, so that the gait stability becomes perturbed. This paper presents a pilot statistical study on the gait cadence (or stride interval) in ALS, based on the statistical analysis method. The probability density functions (PDFs) of stride interval were first estimated with the nonparametric Parzen-window method. We computed the mean of the left-foot stride interval and the modified Kullback-Leibler divergence (MKLD) from the PDFs estimated. The analysis results suggested that both of these two statistical parameters were significantly altered in ALS, and the least-squares support vector machine (LS-SVM) may effectively distinguish the stride patterns between the ALS patients and healthy controls, with an accurate rate of 82.8% and an area of 0.87 under the receiver operating characteristic curve.

  11. Multilayer Joint Gait-Pose Manifolds for Human Gait Motion Modeling.

    PubMed

    Ding, Meng; Fan, Guolian

    2015-11-01

    We present new multilayer joint gait-pose manifolds (multilayer JGPMs) for complex human gait motion modeling, where three latent variables are defined jointly in a low-dimensional manifold to represent a variety of body configurations. Specifically, the pose variable (along the pose manifold) denotes a specific stage in a walking cycle; the gait variable (along the gait manifold) represents different walking styles; and the linear scale variable characterizes the maximum stride in a walking cycle. We discuss two kinds of topological priors for coupling the pose and gait manifolds, i.e., cylindrical and toroidal, to examine their effectiveness and suitability for motion modeling. We resort to a topologically-constrained Gaussian process (GP) latent variable model to learn the multilayer JGPMs where two new techniques are introduced to facilitate model learning under limited training data. First is training data diversification that creates a set of simulated motion data with different strides. Second is the topology-aware local learning to speed up model learning by taking advantage of the local topological structure. The experimental results on the Carnegie Mellon University motion capture data demonstrate the advantages of our proposed multilayer models over several existing GP-based motion models in terms of the overall performance of human gait motion modeling.

  12. Validation of enhanced kinect sensor based motion capturing for gait assessment

    PubMed Central

    Müller, Björn; Ilg, Winfried; Giese, Martin A.

    2017-01-01

    Optical motion capturing systems are expensive and require substantial dedicated space to be set up. On the other hand, they provide unsurpassed accuracy and reliability. In many situations however flexibility is required and the motion capturing system can only temporarily be placed. The Microsoft Kinect v2 sensor is comparatively cheap and with respect to gait analysis promising results have been published. We here present a motion capturing system that is easy to set up, flexible with respect to the sensor locations and delivers high accuracy in gait parameters comparable to a gold standard motion capturing system (VICON). Further, we demonstrate that sensor setups which track the person only from one-side are less accurate and should be replaced by two-sided setups. With respect to commonly analyzed gait parameters, especially step width, our system shows higher agreement with the VICON system than previous reports. PMID:28410413

  13. Force Plate Gait Analysis in Doberman Pinschers with and without Cervical Spondylomyelopathy

    PubMed Central

    Foss, K.; da Costa, R.C.; Rajala-Shultz, P.J.; Allen, M.J.

    2014-01-01

    Background The most accepted means of evaluating the response of a patient with cervical spondylomyelopathy (CSM) to treatment is subjective and based on the owner and clinician's perception of the gait. Objective To establish and compare kinetic parameters based on force plate gait analysis between normal and CSM-affected Dobermans. Animals Nineteen Doberman Pinschers: 10 clinically normal and 9 with CSM. Methods Force plate analysis was prospectively performed in all dogs. At least 4 runs of ipsilateral limbs were collected from each dog. Eight force platform parameters were evaluated, including peak vertical force (PVF) and peak vertical impulse (PVI), peak mediolateral force (PMLF) and peak mediolateral impulse, peak braking force and peak braking impulse, and peak propulsive force (PPF) and peak propulsive impulse. In addition, the coefficient of variation (CV) for each limb was calculated for each parameter. Data analysis was performed by a repeated measures approach. Results PMLF (P = .0062), PVI (P = .0225), and PPF (P = .0408) were found to be lower in CSM-affected dogs compared with normal dogs. Analysis by CV as the outcome indicated more variability in PVF in CSM-affected dogs (P = 0.0045). The largest difference in the CV of PVF was seen in the thoracic limbs of affected dogs when compared with the thoracic limbs of normal dogs (P = 0.0019). Conclusions and Clinical Importance The CV of PVF in all 4 limbs, especially the thoracic limbs, distinguished clinically normal Dobermans from those with CSM. Other kinetic parameters less reliably distinguished CSM-affected from clinically normal Dobermans. PMID:23278957

  14. Ankle joint function during walking in tophaceous gout: A biomechanical gait analysis study.

    PubMed

    Carroll, Matthew; Boocock, Mark; Dalbeth, Nicola; Stewart, Sarah; Frampton, Christopher; Rome, Keith

    2018-04-17

    The foot and ankle are frequently affected in tophaceous gout, yet kinematic and kinetic changes in this region during gait are unknown. The aim of the study was to evaluate ankle biomechanical characteristics in people with tophaceous gout using three-dimensional gait analysis. Twenty-four participants with tophaceous gout were compared with 24 age-and sex-matched control participants. A 9-camera motion analysis system and two floor-mounted force plates were used to calculate kinematic and kinetic parameters. Peak ankle joint angular velocity was significantly decreased in participants with gout (P < 0.01). No differences were found for ankle ROM in either the sagittal (P = 0.43) or frontal planes (P = 0.08). No differences were observed between groups for peak ankle joint power (P = 0.41), peak ankle joint force (P = 0.25), peak ankle joint moment (P = 0.16), timing for peak ankle joint force (P = 0.81), or timing for peak ankle joint moment (P = 0.16). Three dimensional gait analysis demonstrated that ankle joint function does not change in people with gout. People with gout demonstrated a reduced peak ankle joint angular velocity which may reflect gait-limiting factors and adaptations from the high levels of foot pain, impairment and disability experienced by this population. Copyright © 2018 Elsevier B.V. All rights reserved.

  15. Factors associated with lower gait speed among the elderly living in a developing country: a cross-sectional population-based study.

    PubMed

    Busch, Telma de Almeida; Duarte, Yeda Aparecida; Pires Nunes, Daniella; Lebrão, Maria Lucia; Satya Naslavsky, Michel; dos Santos Rodrigues, Anelise; Amaro, Edson

    2015-04-01

    Among community-dwelling older adults, mean values for gait speed vary substantially depending not only on the population studied, but also on the methodology used. Despite the large number of studies published in developed countries, there are few population-based studies in developing countries with socioeconomic inequality and different health conditions, and this is the first study with a representative sample of population. To explore this, the association of lower gait speed with sociodemographic, anthropometric factors, mental status and physical health was incorporated participants' weight (main weight) in the analysis of population of community-dwelling older adults living in a developing country. This was a cross-sectional population based on a sample of 1112 older adults aged 60 years and over from Health, Wellbeing and Aging Study cohort 2010. Usual gait speed (s) to walk 3 meters was stratified by sex and height into quartiles. Multiple regression analysis was performed to investigate the independent effect of each factor associated with a slower usual gait speed. The average walking speed of the elderly was 0.81 m/s-0.78 m/s among women and 0.86 m/s among men. In the final model, the factors associated with lower gait speed were age (OR = 3.56), literacy (OR = 3.20), difficulty in one or more IADL (OR = 2.74), presence of cardiovascular disease (OR = 2.15) and sedentarism. When we consider the 50% slower, we can add the variables handgrip strength, and the presence of COPD. Gait speed is a clinical marker and an important measure of functional capacity among the elderly. Our findings suggest that lower walking speed is associated with age, education, but especially with modifiable factors such as impairment of IADL, physical inactivity and cardiovascular disease. These results reinforce how important it is for the elderly to remain active and healthy.

  16. Optimality Principles for Model-Based Prediction of Human Gait

    PubMed Central

    Ackermann, Marko; van den Bogert, Antonie J.

    2010-01-01

    Although humans have a large repertoire of potential movements, gait patterns tend to be stereotypical and appear to be selected according to optimality principles such as minimal energy. When applied to dynamic musculoskeletal models such optimality principles might be used to predict how a patient’s gait adapts to mechanical interventions such as prosthetic devices or surgery. In this paper we study the effects of different performance criteria on predicted gait patterns using a 2D musculoskeletal model. The associated optimal control problem for a family of different cost functions was solved utilizing the direct collocation method. It was found that fatigue-like cost functions produced realistic gait, with stance phase knee flexion, as opposed to energy-related cost functions which avoided knee flexion during the stance phase. We conclude that fatigue minimization may be one of the primary optimality principles governing human gait. PMID:20074736

  17. The interest of gait markers in the identification of subgroups among fibromyalgia patients.

    PubMed

    Auvinet, Bernard; Chaleil, Denis; Cabane, Jean; Dumolard, Anne; Hatron, Pierre; Juvin, Robert; Lanteri-Minet, Michel; Mainguy, Yves; Negre-Pages, Laurence; Pillard, Fabien; Riviere, Daniel; Maugars, Yves-Michel

    2011-11-11

    Fibromyalgia (FM) is a heterogeneous syndrome and its classification into subgroups calls for broad-based discussion. FM subgrouping, which aims to adapt treatment according to different subgroups, relies in part, on psychological and cognitive dysfunctions. Since motor control of gait is closely related to cognitive function, we hypothesized that gait markers could be of interest in the identification of FM patients' subgroups. This controlled study aimed at characterizing gait disorders in FM, and subgrouping FM patients according to gait markers such as stride frequency (SF), stride regularity (SR), and cranio-caudal power (CCP) which measures kinesia. A multicentre, observational open trial enrolled patients with primary FM (44.1 ± 8.1 y), and matched controls (44.1 ± 7.3 y). Outcome measurements and gait analyses were available for 52 pairs. A 3-step statistical analysis was carried out. A preliminary single blind analysis using k-means cluster was performed as an initial validation of gait markers. Then in order to quantify FM patients according to psychometric and gait variables an open descriptive analysis comparing patients and controls were made, and correlations between gait variables and main outcomes were calculated. Finally using cluster analysis, we described subgroups for each gait variable and looked for significant differences in self-reported assessments. SF was the most discriminating gait variable (73% of patients and controls). SF, SR, and CCP were different between patients and controls. There was a non-significant association between SF, FIQ and physical components from Short-Form 36 (p = 0.06). SR was correlated to FIQ (p = 0.01) and catastrophizing (p = 0.05) while CCP was correlated to pain (p = 0.01). The SF cluster identified 3 subgroups with a particular one characterized by normal SF, low pain, high activity and hyperkinesia. The SR cluster identified 2 distinct subgroups: the one with a reduced SR was distinguished by high FIQ

  18. The interest of gait markers in the identification of subgroups among fibromyalgia patients

    PubMed Central

    2011-01-01

    Background Fibromyalgia (FM) is a heterogeneous syndrome and its classification into subgroups calls for broad-based discussion. FM subgrouping, which aims to adapt treatment according to different subgroups, relies in part, on psychological and cognitive dysfunctions. Since motor control of gait is closely related to cognitive function, we hypothesized that gait markers could be of interest in the identification of FM patients' subgroups. This controlled study aimed at characterizing gait disorders in FM, and subgrouping FM patients according to gait markers such as stride frequency (SF), stride regularity (SR), and cranio-caudal power (CCP) which measures kinesia. Methods A multicentre, observational open trial enrolled patients with primary FM (44.1 ± 8.1 y), and matched controls (44.1 ± 7.3 y). Outcome measurements and gait analyses were available for 52 pairs. A 3-step statistical analysis was carried out. A preliminary single blind analysis using k-means cluster was performed as an initial validation of gait markers. Then in order to quantify FM patients according to psychometric and gait variables an open descriptive analysis comparing patients and controls were made, and correlations between gait variables and main outcomes were calculated. Finally using cluster analysis, we described subgroups for each gait variable and looked for significant differences in self-reported assessments. Results SF was the most discriminating gait variable (73% of patients and controls). SF, SR, and CCP were different between patients and controls. There was a non-significant association between SF, FIQ and physical components from Short-Form 36 (p = 0.06). SR was correlated to FIQ (p = 0.01) and catastrophizing (p = 0.05) while CCP was correlated to pain (p = 0.01). The SF cluster identified 3 subgroups with a particular one characterized by normal SF, low pain, high activity and hyperkinesia. The SR cluster identified 2 distinct subgroups: the one with a reduced SR was

  19. Design and Validation of a Radio-Frequency Identification-Based Device for Routinely Assessing Gait Speed in a Geriatrics Clinic.

    PubMed

    Barry, Lisa C; Hatchman, Laura; Fan, Zhaoyan; Guralnik, Jack M; Gao, Robert X; Kuchel, George A

    2018-05-01

    To evaluate the feasibility, acceptability, and validity of a radio-frequency identification (RFID)-based system to measure gait speed in a clinical setting as a first step to using unobtrusive gait speed assessment in routine clinical care. Feasibility study comparing gait speed assessed using an RFID-based system with gait speed assessed using handheld stopwatch, the criterion standard. Outpatient geriatrics clinic at a Connecticut-based academic medical center. Clinic attendees who could walk independently with or without an assistive device (N=50) and healthcare providers (N=9). Gait speed was measured in twice using 2 methods each time before participants entered an examination room. Participants walked at their usual pace while gait speed was recorded simultaneously using the RFID-based system and a handheld stopwatch operated by a trained study investigator. After 2 trials, participants completed a brief survey regarding their experience. At the end of the study period, clinic healthcare providers completed a separate survey. Test-retest reliability of the RFID-based system was high (intraclass correlation coefficient = 0.953). The mean difference ± standard deviation in gait speed between the RFID-based system and the stopwatch was -0.003±0.035 m/s (p=.53) and did not differ significantly according to age, sex, or use of an assistive walking aid. Acceptability of the device was high, and 8 of 9 providers indicated that measuring gait speed using the RFID-based system should be a part of routine clinical care. RFID technology may offer a practical means of overcoming barriers to routine measurement of gait speed in real-world outpatient clinical settings. © 2018, Copyright the Authors Journal compilation © 2018, The American Geriatrics Society.

  20. Towards autonomous locomotion: CPG-based control of smooth 3D slithering gait transition of a snake-like robot.

    PubMed

    Bing, Zhenshan; Cheng, Long; Chen, Guang; Röhrbein, Florian; Huang, Kai; Knoll, Alois

    2017-04-04

    Snake-like robots with 3D locomotion ability have significant advantages of adaptive travelling in diverse complex terrain over traditional legged or wheeled mobile robots. Despite numerous developed gaits, these snake-like robots suffer from unsmooth gait transitions by changing the locomotion speed, direction, and body shape, which would potentially cause undesired movement and abnormal torque. Hence, there exists a knowledge gap for snake-like robots to achieve autonomous locomotion. To address this problem, this paper presents the smooth slithering gait transition control based on a lightweight central pattern generator (CPG) model for snake-like robots. First, based on the convergence behavior of the gradient system, a lightweight CPG model with fast computing time was designed and compared with other widely adopted CPG models. Then, by reshaping the body into a more stable geometry, the slithering gait was modified, and studied based on the proposed CPG model, including the gait transition of locomotion speed, moving direction, and body shape. In contrast to sinusoid-based method, extensive simulations and prototype experiments finally demonstrated that smooth slithering gait transition can be effectively achieved using the proposed CPG-based control method without generating undesired locomotion and abnormal torque.

  1. A Machine Learning Approach to Automated Gait Analysis for the Noldus Catwalk System.

    PubMed

    Frohlich, Holger; Claes, Kasper; De Wolf, Catherine; Van Damme, Xavier; Michel, Anne

    2018-05-01

    Gait analysis of animal disease models can provide valuable insights into in vivo compound effects and thus help in preclinical drug development. The purpose of this paper is to establish a computational gait analysis approach for the Noldus Catwalk system, in which footprints are automatically captured and stored. We present a - to our knowledge - first machine learning based approach for the Catwalk system, which comprises a step decomposition, definition and extraction of meaningful features, multivariate step sequence alignment, feature selection, and training of different classifiers (gradient boosting machine, random forest, and elastic net). Using animal-wise leave-one-out cross validation we demonstrate that with our method we can reliable separate movement patterns of a putative Parkinson's disease animal model and several control groups. Furthermore, we show that we can predict the time point after and the type of different brain lesions and can even forecast the brain region, where the intervention was applied. We provide an in-depth analysis of the features involved into our classifiers via statistical techniques for model interpretation. A machine learning method for automated analysis of data from the Noldus Catwalk system was established. Our works shows the ability of machine learning to discriminate pharmacologically relevant animal groups based on their walking behavior in a multivariate manner. Further interesting aspects of the approach include the ability to learn from past experiments, improve with more data arriving and to make predictions for single animals in future studies.

  2. A time-frequency classifier for human gait recognition

    NASA Astrophysics Data System (ADS)

    Mobasseri, Bijan G.; Amin, Moeness G.

    2009-05-01

    Radar has established itself as an effective all-weather, day or night sensor. Radar signals can penetrate walls and provide information on moving targets. Recently, radar has been used as an effective biometric sensor for classification of gait. The return from a coherent radar system contains a frequency offset in the carrier frequency, known as the Doppler Effect. The movements of arms and legs give rise to micro Doppler which can be clearly detailed in the time-frequency domain using traditional or modern time-frequency signal representation. In this paper we propose a gait classifier based on subspace learning using principal components analysis(PCA). The training set consists of feature vectors defined as either time or frequency snapshots taken from the spectrogram of radar backscatter. We show that gait signature is captured effectively in feature vectors. Feature vectors are then used in training a minimum distance classifier based on Mahalanobis distance metric. Results show that gait classification with high accuracy and short observation window is achievable using the proposed classifier.

  3. A novel tool for continuous fracture aftercare - Clinical feasibility and first results of a new telemetric gait analysis insole.

    PubMed

    Braun, Benedikt J; Bushuven, Eva; Hell, Rebecca; Veith, Nils T; Buschbaum, Jan; Holstein, Joerg H; Pohlemann, Tim

    2016-02-01

    Weight bearing after lower extremity fractures still remains a highly controversial issue. Even in ankle fractures, the most common lower extremity injury no standard aftercare protocol has been established. Average non weight bearing times range from 0 to 7 weeks, with standardised, radiological healing controls at fixed time intervals. Recent literature calls for patient-adapted aftercare protocols based on individual fracture and load scenarios. We show the clinical feasibility and first results of a new, insole embedded gait analysis tool for continuous monitoring of gait, load and activity. Ten patients were monitored with a new, independent gait analysis insole for up to 3 months postoperatively. Strict 20 kg partial weight bearing was ordered for 6 weeks. Overall activity, load spectrum, ground reaction forces, clinical scoring and general health data were recorded and correlated. Statistical analysis with power analysis, t-test and Spearman correlation was performed. Only one patient completely adhered to the set weight bearing limit. Average time in minutes over the limit was 374 min. Based on the parameters load, activity, gait time over 20 kg weight bearing and maximum ground reaction force high and low performers were defined after 3 weeks. Significant difference in time to painless full weight bearing between high and low performers was shown. Correlation analysis revealed a significant correlation between weight bearing and clinical scoring as well as pain (American Orthopaedic Foot and Ankle Society (AOFAS) Score rs=0.74; Olerud-Molander Score rs=0.93; VAS pain rs=-0.95). Early, continuous gait analysis is able to define aftercare performers with significant differences in time to full painless weight bearing where clinical or radiographic controls could not. Patient compliance to standardised weight bearing limits and protocols is low. Highly individual rehabilitation patterns were seen in all patients. Aftercare protocols should be adjusted to real

  4. Gait disorder rehabilitation using vision and non-vision based sensors: A systematic review

    PubMed Central

    Ali, Asraf; Sundaraj, Kenneth; Ahmad, Badlishah; Ahamed, Nizam; Islam, Anamul

    2012-01-01

    Even though the amount of rehabilitation guidelines has never been greater, uncertainty continues to arise regarding the efficiency and effectiveness of the rehabilitation of gait disorders. This question has been hindered by the lack of information on accurate measurements of gait disorders. Thus, this article reviews the rehabilitation systems for gait disorder using vision and non-vision sensor technologies, as well as the combination of these. All papers published in the English language between 1990 and June, 2012 that had the phrases “gait disorder” “rehabilitation”, “vision sensor”, or “non vision sensor” in the title, abstract, or keywords were identified from the SpringerLink, ELSEVIER, PubMed, and IEEE databases. Some synonyms of these phrases and the logical words “and” “or” and “not” were also used in the article searching procedure. Out of the 91 published articles found, this review identified 84 articles that described the rehabilitation of gait disorders using different types of sensor technologies. This literature set presented strong evidence for the development of rehabilitation systems using a markerless vision-based sensor technology. We therefore believe that the information contained in this review paper will assist the progress of the development of rehabilitation systems for human gait disorders. PMID:22938548

  5. Hardware Development and Locomotion Control Strategy for an Over-Ground Gait Trainer: NaTUre-Gaits.

    PubMed

    Luu, Trieu Phat; Low, Kin Huat; Qu, Xingda; Lim, Hup Boon; Hoon, Kay Hiang

    2014-01-01

    Therapist-assisted body weight supported (TABWS) gait rehabilitation was introduced two decades ago. The benefit of TABWS in functional recovery of walking in spinal cord injury and stroke patients has been demonstrated and reported. However, shortage of therapists, labor-intensiveness, and short duration of training are some limitations of this approach. To overcome these deficiencies, robotic-assisted gait rehabilitation systems have been suggested. These systems have gained attentions from researchers and clinical practitioner in recent years. To achieve the same objective, an over-ground gait rehabilitation system, NaTUre-gaits, was developed at the Nanyang Technological University. The design was based on a clinical approach to provide four main features, which are pelvic motion, body weight support, over-ground walking experience, and lower limb assistance. These features can be achieved by three main modules of NaTUre-gaits: 1) pelvic assistance mechanism, mobile platform, and robotic orthosis. Predefined gait patterns are required for a robotic assisted system to follow. In this paper, the gait pattern planning for NaTUre-gaits was accomplished by an individual-specific gait pattern prediction model. The model generates gait patterns that resemble natural gait patterns of the targeted subjects. The features of NaTUre-gaits have been demonstrated by walking trials with several subjects. The trials have been evaluated by therapists and doctors. The results show that 10-m walking trial with a reduction in manpower. The task-specific repetitive training approach and natural walking gait patterns were also successfully achieved.

  6. Automated quantitative gait analysis during overground locomotion in the rat: its application to spinal cord contusion and transection injuries.

    PubMed

    Hamers, F P; Lankhorst, A J; van Laar, T J; Veldhuis, W B; Gispen, W H

    2001-02-01

    Analysis of locomotion is an important tool in the study of peripheral and central nervous system damage. Most locomotor scoring systems in rodents are based either upon open field locomotion assessment, for example, the BBB score or upon foot print analysis. The former yields a semiquantitative description of locomotion as a whole, whereas the latter generates quantitative data on several selected gait parameters. In this paper, we describe the use of a newly developed gait analysis method that allows easy quantitation of a large number of locomotion parameters during walkway crossing. We were able to extract data on interlimb coordination, swing duration, paw print areas (total over stance, and at 20-msec time resolution), stride length, and base of support: Similar data can not be gathered by any single previously described method. We compare changes in gait parameters induced by two different models of spinal cord injury in rats, transection of the dorsal half of the spinal cord and spinal cord contusion injury induced by the NYU or MASCIS device. Although we applied this method to rats with spinal cord injury, the usefulness of this method is not limited to rats or to the investigation of spinal cord injuries alone.

  7. Wavelet-based characterization of gait signal for neurological abnormalities.

    PubMed

    Baratin, E; Sugavaneswaran, L; Umapathy, K; Ioana, C; Krishnan, S

    2015-02-01

    Studies conducted by the World Health Organization (WHO) indicate that over one billion suffer from neurological disorders worldwide, and lack of efficient diagnosis procedures affects their therapeutic interventions. Characterizing certain pathologies of motor control for facilitating their diagnosis can be useful in quantitatively monitoring disease progression and efficient treatment planning. As a suitable directive, we introduce a wavelet-based scheme for effective characterization of gait associated with certain neurological disorders. In addition, since the data were recorded from a dynamic process, this work also investigates the need for gait signal re-sampling prior to identification of signal markers in the presence of pathologies. To benefit automated discrimination of gait data, certain characteristic features are extracted from the wavelet-transformed signals. The performance of the proposed approach was evaluated using a database consisting of 15 Parkinson's disease (PD), 20 Huntington's disease (HD), 13 Amyotrophic lateral sclerosis (ALS) and 16 healthy control subjects, and an average classification accuracy of 85% is achieved using an unbiased cross-validation strategy. The obtained results demonstrate the potential of the proposed methodology for computer-aided diagnosis and automatic characterization of certain neurological disorders. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Quantifying Variation in Gait Features from Wearable Inertial Sensors Using Mixed Effects Models

    PubMed Central

    Cresswell, Kellen Garrison; Shin, Yongyun; Chen, Shanshan

    2017-01-01

    The emerging technology of wearable inertial sensors has shown its advantages in collecting continuous longitudinal gait data outside laboratories. This freedom also presents challenges in collecting high-fidelity gait data. In the free-living environment, without constant supervision from researchers, sensor-based gait features are susceptible to variation from confounding factors such as gait speed and mounting uncertainty, which are challenging to control or estimate. This paper is one of the first attempts in the field to tackle such challenges using statistical modeling. By accepting the uncertainties and variation associated with wearable sensor-based gait data, we shift our efforts from detecting and correcting those variations to modeling them statistically. From gait data collected on one healthy, non-elderly subject during 48 full-factorial trials, we identified four major sources of variation, and quantified their impact on one gait outcome—range per cycle—using a random effects model and a fixed effects model. The methodology developed in this paper lays the groundwork for a statistical framework to account for sources of variation in wearable gait data, thus facilitating informative statistical inference for free-living gait analysis. PMID:28245602

  9. Effect of normal-walking-pattern-based functional electrical stimulation on gait of the lower extremity in subjects with ischemic stroke: A self controlled study.

    PubMed

    Xu, Benlei; Yan, Tiebin; Yang, Yuanle; Ou, Ruiqing; Huang, Shuping

    2016-01-01

    Functional electrical stimulation is a widely used technique for rehabilitation. To assess the efficacy of walking-pattern-based four-channel functional electric stimulation and its influence on the gait features of stroke patients with hemiplegia. A total of 21 stroke patients with hemiplegia were enrolled into the study. The walking gaits of patients were investigated before, during and after walking-pattern-based FES treatment using the gait analysis system. The changes of gait indexes were comparatively analyzed. After walking-pattern-based FES therapy, the pace, stride rate, gait cycle, and step length of stroke patients with hemiplegia were 50.19 ± 14.45 cm/s, 36.85 ± 5.85 time/min, 1.6643 ± 0.2626 sec, 80.3333 ± 15.1438 cm, respectively. The motion range of hip and knee joint were 47.5238 ± 10.7453, 56.7619 ± 14.5255, respectively. We found these indexes were significantly improved compared with those before FES treatment (P <  0.05). The single swing rate (injured extremity/uninjured extremity) after FES treatment was 1.5589 ± 0.4550. The statistical results showed that the gait cycle, pace, stride rat, and single swing rate (injured extremity/uninjured extremity) were significantly improved after FES treatment (P <  0.05). Our results demonstrate that walking-paradigm based FES we developed is effective for treating stroke patients during rehabilitation.

  10. A Neural Network-Based Gait Phase Classification Method Using Sensors Equipped on Lower Limb Exoskeleton Robots

    PubMed Central

    Jung, Jun-Young; Heo, Wonho; Yang, Hyundae; Park, Hyunsub

    2015-01-01

    An exact classification of different gait phases is essential to enable the control of exoskeleton robots and detect the intentions of users. We propose a gait phase classification method based on neural networks using sensor signals from lower limb exoskeleton robots. In such robots, foot sensors with force sensing registers are commonly used to classify gait phases. We describe classifiers that use the orientation of each lower limb segment and the angular velocities of the joints to output the current gait phase. Experiments to obtain the input signals and desired outputs for the learning and validation process are conducted, and two neural network methods (a multilayer perceptron and nonlinear autoregressive with external inputs (NARX)) are used to develop an optimal classifier. Offline and online evaluations using four criteria are used to compare the performance of the classifiers. The proposed NARX-based method exhibits sufficiently good performance to replace foot sensors as a means of classifying gait phases. PMID:26528986

  11. A Neural Network-Based Gait Phase Classification Method Using Sensors Equipped on Lower Limb Exoskeleton Robots.

    PubMed

    Jung, Jun-Young; Heo, Wonho; Yang, Hyundae; Park, Hyunsub

    2015-10-30

    An exact classification of different gait phases is essential to enable the control of exoskeleton robots and detect the intentions of users. We propose a gait phase classification method based on neural networks using sensor signals from lower limb exoskeleton robots. In such robots, foot sensors with force sensing registers are commonly used to classify gait phases. We describe classifiers that use the orientation of each lower limb segment and the angular velocities of the joints to output the current gait phase. Experiments to obtain the input signals and desired outputs for the learning and validation process are conducted, and two neural network methods (a multilayer perceptron and nonlinear autoregressive with external inputs (NARX)) are used to develop an optimal classifier. Offline and online evaluations using four criteria are used to compare the performance of the classifiers. The proposed NARX-based method exhibits sufficiently good performance to replace foot sensors as a means of classifying gait phases.

  12. Usual gait speed independently predicts mortality in very old people: a population-based study.

    PubMed

    Toots, Annika; Rosendahl, Erik; Lundin-Olsson, Lillemor; Nordström, Peter; Gustafson, Yngve; Littbrand, Håkan

    2013-07-01

    In older people, usual gait speed has been shown to independently predict mortality; however, less is known about whether usual gait speed is as informative in very old populations, in which prevalence of multimorbidity and disability is high. The aim of this study was to investigate if usual gait speed can independently predict all-cause mortality in very old people, and whether the prediction is influenced by dementia disorder, dependency in activities of daily living (ADL), or use of walking aids in the gait speed test. Prospective cohort study. Population-based study in northern Sweden and Finland (the Umeå 85+/GERDA Study). A total of 772 participants with a mean age of 89.6 years, 70% women, 33% with dementia disorders, 54% with ADL dependency, and 39% living in residential care facilities. Usual gait speed assessed over 2.4 meters and mortality followed-up for 5 years. The mean ± SD gait speed was 0.52 ± 0.21 m/s for the 620 (80%) participants able to complete the gait speed test. Cox proportional hazard regression analyses adjusted for potential confounders were performed. Compared with the fastest gait speed group (≥ 0.64 m/s), the hazard ratio for mortality was for the following groups: unable = 2.27 (P < .001), ≤ 0.36 m/s = 1.97 (P = .001), 0.37 to 0.49 m/s = 1.99 (P < .001), 0.50 to 0.63 m/s = 1.11 (P = .604). No interaction effects were found between gait speed and age, sex, dementia disorder, dependency in ADLs, or use of walking aids. Among people aged 85 or older, including people dependent in ADLs and with dementia disorders, usual gait speed was an independent predictor of 5-year all-cause mortality. Inability to complete the gait test or gait speeds slower than 0.5 m/s appears to be associated with higher mortality risk. Gait speed might be a useful clinical indicator of health status among very old people. Copyright © 2013 American Medical Directors Association, Inc. Published by Elsevier Inc. All rights reserved.

  13. Advanced Prosthetic Gait Training Tool

    DTIC Science & Technology

    2014-10-01

    AWARD NUMBER: W81XWH-10-1-0870 TITLE: Advanced Prosthetic Gait Training Tool...October 2014 2. REPORT TYPE Annual Report 3. DATES COVERED 20 Sep 2013 to 19 Sep 2014 4. TITLE AND SUBTITLE Advanced Prosthetic Gait Training...produce a computer-based Advanced Prosthetic Gait Training Tool to aid in the training of clinicians at military treatment facilities providing care

  14. Comparative analysis of human gait while wearing thong-style flip-flops versus sneakers.

    PubMed

    Shroyer, Justin F; Weimar, Wendi H

    2010-01-01

    Flip-flops are becoming a common footwear option. Casual observation has indicated that individuals wear flip-flops beyond their structural limit and have a different gait while wearing flip-flops versus shoes. This alteration in gait may cause the anecdotal foot and lower-limb discomfort associated with wearing flip-flops. To investigate the effect of sneakers versus thong-style flip-flops on gait kinematics and kinetics, 56 individuals (37 women and 19 men) were randomly assigned to a footwear order (flip-flops or sneakers first) and were asked to wear the assigned footwear on the day before and the day of testing. On each testing day, participants were videotaped as they walked at a self-selected pace across a force platform. A 2 (sex) x 2 (footwear) repeated-measures analysis of variance (P = .05) was used for statistical analysis. Significant interaction effects of footwear and sex were found for maximal anterior force, attack angle, and ankle angle during the swing phase. Footwear significantly affected stride length, ankle angle at the beginning of double support and during the swing phase, maximal braking impulse, and stance time. Flip-flops resulted in a shorter stride, a larger ankle angle at the beginning of double support and during the swing phase, a smaller braking impulse, and a shorter stance time compared with sneakers. The effects of footwear on gait kinetics and kinematics is extensive, but there is limited research on the effect of thong-style flip-flops on gait. These results suggest that flip-flops have an effect on several kinetic and kinematic variables compared with sneakers.

  15. Improved ankle push-off power following cheilectomy for hallux rigidus: a prospective gait analysis study.

    PubMed

    Smith, Sheryl M; Coleman, Scott C; Bacon, Stacy A; Polo, Fabian E; Brodsky, James W

    2012-06-01

    There is limited objective scientific information on the functional effects of cheilectomy. The purpose of this study was to test the hypothesis that cheilectomy for hallux rigidus improves gait by increasing ankle push-off power. Seventeen patients with symptomatic Stage 1 or Stage 2 hallux rigidus were studied. Pre- and postoperative first metatarsophalangeal (MTP) range of motion and AOFAS hallux scores were recorded. A gait analysis was performed within 4 weeks prior to surgery and repeated at a minimum of 1 year after surgery. Gait analysis was done using a three-dimensional motion capture system and a force platform embedded in a 10-m walkway. Gait velocity sagittal plane ankle range of motion and peak sagittal plane ankle push-off power were analyzed. Following cheilectomy, significant increases were noted for first MTP range of motion and AOFAS hallux score. First MTP motion improved an average of 16.7 degrees, from means of 33.9 degrees preoperatively to 50.6 degrees postoperatively (p<0.001). AOFAS hallux score increased from 62 to 81 (p<0.007). As demonstrated through gait anaylsis, a significant increase in postoperative peak sagittal plane ankle push-off power from 1.71±0.92 W/kg to 2.05±0.75 W/kg (p<0.04). In addition to clinically increased range of motion and improved AOFAS Hallux score, first MTP joint cheilectomy produced objective improvement in gait, as measured by increased peak sagittal-plane ankle push-off power.

  16. Modeling and simulation of normal and hemiparetic gait

    NASA Astrophysics Data System (ADS)

    Luengas, Lely A.; Camargo, Esperanza; Sanchez, Giovanni

    2015-09-01

    Gait is the collective term for the two types of bipedal locomotion, walking and running. This paper is focused on walking. The analysis of human gait is of interest to many different disciplines, including biomechanics, human-movement science, rehabilitation and medicine in general. Here we present a new model that is capable of reproducing the properties of walking, normal and pathological. The aim of this paper is to establish the biomechanical principles that underlie human walking by using Lagrange method. The constraint forces of Rayleigh dissipation function, through which to consider the effect on the tissues in the gait, are included. Depending on the value of the factor present in the Rayleigh dissipation function, both normal and pathological gait can be simulated. First of all, we apply it in the normal gait and then in the permanent hemiparetic gait. Anthropometric data of adult person are used by simulation, and it is possible to use anthropometric data for children but is necessary to consider existing table of anthropometric data. Validation of these models includes simulations of passive dynamic gait that walk on level ground. The dynamic walking approach provides a new perspective of gait analysis, focusing on the kinematics and kinetics of gait. There have been studies and simulations to show normal human gait, but few of them have focused on abnormal, especially hemiparetic gait. Quantitative comparisons of the model predictions with gait measurements show that the model can reproduce the significant characteristics of normal gait.

  17. Hardware Development and Locomotion Control Strategy for an Over-Ground Gait Trainer: NaTUre-Gaits

    PubMed Central

    Low, Kin Huat; Qu, Xingda; Lim, Hup Boon; Hoon, Kay Hiang

    2014-01-01

    Therapist-assisted body weight supported (TABWS) gait rehabilitation was introduced two decades ago. The benefit of TABWS in functional recovery of walking in spinal cord injury and stroke patients has been demonstrated and reported. However, shortage of therapists, labor-intensiveness, and short duration of training are some limitations of this approach. To overcome these deficiencies, robotic-assisted gait rehabilitation systems have been suggested. These systems have gained attentions from researchers and clinical practitioner in recent years. To achieve the same objective, an over-ground gait rehabilitation system, NaTUre-gaits, was developed at the Nanyang Technological University. The design was based on a clinical approach to provide four main features, which are pelvic motion, body weight support, over-ground walking experience, and lower limb assistance. These features can be achieved by three main modules of NaTUre-gaits: 1) pelvic assistance mechanism, mobile platform, and robotic orthosis. Predefined gait patterns are required for a robotic assisted system to follow. In this paper, the gait pattern planning for NaTUre-gaits was accomplished by an individual-specific gait pattern prediction model. The model generates gait patterns that resemble natural gait patterns of the targeted subjects. The features of NaTUre-gaits have been demonstrated by walking trials with several subjects. The trials have been evaluated by therapists and doctors. The results show that 10-m walking trial with a reduction in manpower. The task-specific repetitive training approach and natural walking gait patterns were also successfully achieved. PMID:27170876

  18. Automated extraction and validation of children's gait parameters with the Kinect.

    PubMed

    Motiian, Saeid; Pergami, Paola; Guffey, Keegan; Mancinelli, Corrie A; Doretto, Gianfranco

    2015-12-02

    Gait analysis for therapy regimen prescription and monitoring requires patients to physically access clinics with specialized equipment. The timely availability of such infrastructure at the right frequency is especially important for small children. Besides being very costly, this is a challenge for many children living in rural areas. This is why this work develops a low-cost, portable, and automated approach for in-home gait analysis, based on the Microsoft Kinect. A robust and efficient method for extracting gait parameters is introduced, which copes with the high variability of noisy Kinect skeleton tracking data experienced across the population of young children. This is achieved by temporally segmenting the data with an approach based on coupling a probabilistic matching of stride template models, learned offline, with the estimation of their global and local temporal scaling. A preliminary study conducted on healthy children between 2 and 4 years of age is performed to analyze the accuracy, precision, repeatability, and concurrent validity of the proposed method against the GAITRite when measuring several spatial and temporal children's gait parameters. The method has excellent accuracy and good precision, with segmenting temporal sequences of body joint locations into stride and step cycles. Also, the spatial and temporal gait parameters, estimated automatically, exhibit good concurrent validity with those provided by the GAITRite, as well as very good repeatability. In particular, on a range of nine gait parameters, the relative and absolute agreements were found to be good and excellent, and the overall agreements were found to be good and moderate. This work enables and validates the automated use of the Kinect for children's gait analysis in healthy subjects. In particular, the approach makes a step forward towards developing a low-cost, portable, parent-operated in-home tool for clinicians assisting young children.

  19. A biofeedback cycling training to improve locomotion: a case series study based on gait pattern classification of 153 chronic stroke patients.

    PubMed

    Ferrante, Simona; Ambrosini, Emilia; Ravelli, Paola; Guanziroli, Eleonora; Molteni, Franco; Ferrigno, Giancarlo; Pedrocchi, Alessandra

    2011-08-24

    The restoration of walking ability is the main goal of post-stroke lower limb rehabilitation and different studies suggest that pedaling may have a positive effect on locomotion. The aim of this study was to explore the feasibility of a biofeedback pedaling treatment and its effects on cycling and walking ability in chronic stroke patients. A case series study was designed and participants were recruited based on a gait pattern classification of a population of 153 chronic stroke patients. In order to optimize participants selection, a k-means cluster analysis was performed to subgroup homogenous gait patterns in terms of gait speed and symmetry.The training consisted of a 2-week treatment of 6 sessions. A visual biofeedback helped the subjects in maintaining a symmetrical contribution of the two legs during pedaling. Participants were assessed before, after training and at follow-up visits (one week after treatment). Outcome measures were the unbalance during a pedaling test, and the temporal, spatial, and symmetry parameters during gait analysis. Three clusters, mainly differing in terms of gait speed, were identified and participants, representative of each cluster, were selected.An intra-subject statistical analysis (ANOVA) showed that all patients significantly decreased the pedaling unbalance after treatment and maintained significant improvements with respect to baseline at follow-up. The 2-week treatment induced some modifications in the gait pattern of two patients: one, the most impaired, significantly improved mean velocity and increased gait symmetry; the other one reduced significantly the over-compensation of the healthy limb. No benefits were produced in the gait of the last subject who maintained her slow but almost symmetrical pattern. Thus, this study might suggest that the treatment can be beneficial for patients having a very asymmetrical and inefficient gait and for those that overuse the healthy leg. The results demonstrated that the treatment

  20. A biofeedback cycling training to improve locomotion: a case series study based on gait pattern classification of 153 chronic stroke patients

    PubMed Central

    2011-01-01

    Background The restoration of walking ability is the main goal of post-stroke lower limb rehabilitation and different studies suggest that pedaling may have a positive effect on locomotion. The aim of this study was to explore the feasibility of a biofeedback pedaling treatment and its effects on cycling and walking ability in chronic stroke patients. A case series study was designed and participants were recruited based on a gait pattern classification of a population of 153 chronic stroke patients. Methods In order to optimize participants selection, a k-means cluster analysis was performed to subgroup homogenous gait patterns in terms of gait speed and symmetry. The training consisted of a 2-week treatment of 6 sessions. A visual biofeedback helped the subjects in maintaining a symmetrical contribution of the two legs during pedaling. Participants were assessed before, after training and at follow-up visits (one week after treatment). Outcome measures were the unbalance during a pedaling test, and the temporal, spatial, and symmetry parameters during gait analysis. Results and discussion Three clusters, mainly differing in terms of gait speed, were identified and participants, representative of each cluster, were selected. An intra-subject statistical analysis (ANOVA) showed that all patients significantly decreased the pedaling unbalance after treatment and maintained significant improvements with respect to baseline at follow-up. The 2-week treatment induced some modifications in the gait pattern of two patients: one, the most impaired, significantly improved mean velocity and increased gait symmetry; the other one reduced significantly the over-compensation of the healthy limb. No benefits were produced in the gait of the last subject who maintained her slow but almost symmetrical pattern. Thus, this study might suggest that the treatment can be beneficial for patients having a very asymmetrical and inefficient gait and for those that overuse the healthy leg

  1. Kinematic Analysis Quantifies Gait Abnormalities Associated with Lameness in Broiler Chickens and Identifies Evolutionary Gait Differences

    PubMed Central

    Caplen, Gina; Hothersall, Becky; Murrell, Joanna C.; Nicol, Christine J.; Waterman-Pearson, Avril E.; Weeks, Claire A.; Colborne, G. Robert

    2012-01-01

    This is the first time that gait characteristics of broiler (meat) chickens have been compared with their progenitor, jungle fowl, and the first kinematic study to report a link between broiler gait parameters and defined lameness scores. A commercial motion-capturing system recorded three-dimensional temporospatial information during walking. The hypothesis was that the gait characteristics of non-lame broilers (n = 10) would be intermediate to those of lame broilers (n = 12) and jungle fowl (n = 10, tested at two ages: immature and adult). Data analysed using multi-level models, to define an extensive range of baseline gait parameters, revealed inter-group similarities and differences. Natural selection is likely to have made jungle fowl walking gait highly efficient. Modern broiler chickens possess an unbalanced body conformation due to intense genetic selection for additional breast muscle (pectoral hypertrophy) and whole body mass. Together with rapid growth, this promotes compensatory gait adaptations to minimise energy expenditure and triggers high lameness prevalence within commercial flocks; lameness creating further disruption to the gait cycle and being an important welfare issue. Clear differences were observed between the two lines (short stance phase, little double-support, low leg lift, and little back displacement in adult jungle fowl; much double-support, high leg lift, and substantial vertical back movement in sound broilers) presumably related to mass and body conformation. Similarities included stride length and duration. Additional modifications were also identified in lame broilers (short stride length and duration, substantial lateral back movement, reduced velocity) presumably linked to musculo-skeletal abnormalities. Reduced walking velocity suggests an attempt to minimise skeletal stress and/or discomfort, while a shorter stride length and time, together with longer stance and double-support phases, are associated with

  2. Reliability and validity of a smartphone-based assessment of gait parameters across walking speed and smartphone locations: Body, bag, belt, hand, and pocket.

    PubMed

    Silsupadol, Patima; Teja, Kunlanan; Lugade, Vipul

    2017-10-01

    The assessment of spatiotemporal gait parameters is a useful clinical indicator of health status. Unfortunately, most assessment tools require controlled laboratory environments which can be expensive and time consuming. As smartphones with embedded sensors are becoming ubiquitous, this technology can provide a cost-effective, easily deployable method for assessing gait. Therefore, the purpose of this study was to assess the reliability and validity of a smartphone-based accelerometer in quantifying spatiotemporal gait parameters when attached to the body or in a bag, belt, hand, and pocket. Thirty-four healthy adults were asked to walk at self-selected comfortable, slow, and fast speeds over a 10-m walkway while carrying a smartphone. Step length, step time, gait velocity, and cadence were computed from smartphone-based accelerometers and validated with GAITRite. Across all walking speeds, smartphone data had excellent reliability (ICC 2,1 ≥0.90) for the body and belt locations, with bag, hand, and pocket locations having good to excellent reliability (ICC 2,1 ≥0.69). Correlations between the smartphone-based and GAITRite-based systems were very high for the body (r=0.89, 0.98, 0.96, and 0.87 for step length, step time, gait velocity, and cadence, respectively). Similarly, Bland-Altman analysis demonstrated that the bias approached zero, particularly in the body, bag, and belt conditions under comfortable and fast speeds. Thus, smartphone-based assessments of gait are most valid when placed on the body, in a bag, or on a belt. The use of a smartphone to assess gait can provide relevant data to clinicians without encumbering the user and allow for data collection in the free-living environment. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Quantifying gait deviations in individuals with rheumatoid arthritis using the Gait Deviation Index.

    PubMed

    Esbjörnsson, A-C; Rozumalski, A; Iversen, M D; Schwartz, M H; Wretenberg, P; Broström, E W

    2014-01-01

    In this study we evaluated the usability of the Gait Deviation Index (GDI), an index that summarizes the amount of deviation in movement from a standard norm, in adults with rheumatoid arthritis (RA). The aims of the study were to evaluate the ability of the GDI to identify gait deviations, assess inter-trial repeatability, and examine the relationship between the GDI and walking speed, physical disability, and pain. Sixty-three adults with RA and 59 adults with typical gait patterns were included in this retrospective case-control study. Following a three-dimensional gait analysis (3DGA), representative gait cycles were selected and GDI scores calculated. To evaluate the effect of walking speed, GDI scores were calculated using both a free-speed and a speed-matched reference set. Physical disability was assessed using the Health Assessment Questionnaire (HAQ) and subjects rated their pain during walking. Adults with RA had significantly increased gait deviations compared to healthy individuals, as shown by lower GDI scores [87.9 (SD = 8.7) vs. 99.4 (SD = 8.3), p < 0.001]. This difference was also seen when adjusting for walking speed [91.7 (SD = 9.0) vs. 99.9 (SD = 8.6), p < 0.001]. It was estimated that a change of ≥ 5 GDI units was required to account for natural variation in gait. There was no evident relationship between GDI and low/high RA-related physical disability and pain. The GDI seems to useful for identifying and summarizing gait deviations in individuals with RA. Thus, we consider that the GDI provides an overall measure of gait deviation that may reflect lower extremity pathology and may help clinicians to understand the impact of RA on gait dynamics.

  4. Analysis of gait patterns pre- and post- Single Event Multilevel Surgery in children with Cerebral Palsy by means of Offset-Wise Movement Analysis Profile and Linear Fit Method.

    PubMed

    Ancillao, Andrea; van der Krogt, Marjolein M; Buizer, Annemieke I; Witbreuk, Melinda M; Cappa, Paolo; Harlaar, Jaap

    2017-10-01

    Gait analysis is used for the assessment of walking ability of children with cerebral palsy (CP), to inform clinical decision making and to quantify changes after treatment. To simplify gait analysis interpretation and to quantify deviations from normality, some quantitative synthetic descriptors were developed over the years, such as the Movement Analysis Profile (MAP) and the Linear Fit Method (LFM), but their interpretation is not always straightforward. The aims of this work were to: (i) study gait changes, by means of synthetic descriptors, in children with CP that underwent Single Event Multilevel Surgery; (ii) compare the MAP and the LFM on these patients; (iii) design a new index that may overcome the limitations of the previous methods, i.e. the lack of information about the direction of deviation or its source. Gait analysis exams of 10 children with CP, pre- and post-surgery, were collected and MAP and LFM were computed. A new index was designed asa modified version of the MAP by separating out changes in offset (named OC-MAP). MAP documented an improvement in the gait pattern after surgery. The highest effect was observed for the knee flexion/extension angle. However, a worsening was observed as an increase in anterior pelvic tilt. An important source of gait deviation was recognized in the offset between observed tracks and reference. OC-MAP allowed the assessment of the offset component versus the shape component of deviation. LFM provided results similar to OC-MAP offset analysis but could not be considered reliable due to intrinsic limitations. As offset in gait features played an important role in gait deviation, OC-MAP synthetic analysis was proposed as a novel approach to a meaningful parameterisation of global deviations in gait patterns of subjects with CP and gait changes after treatment. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Increased neuromuscular consistency in gait and balance after partnered, dance-based rehabilitation in Parkinson's disease.

    PubMed

    Allen, Jessica L; McKay, J Lucas; Sawers, Andrew; Hackney, Madeleine E; Ting, Lena H

    2017-07-01

    Here we examined changes in muscle coordination associated with improved motor performance after partnered, dance-based rehabilitation in individuals with mild to moderate idiopathic Parkinson's disease. Using motor module (a.k.a. muscle synergy) analysis, we identified changes in the modular control of overground walking and standing reactive balance that accompanied clinically meaningful improvements in behavioral measures of balance, gait, and disease symptoms after 3 wk of daily Adapted Tango classes. In contrast to previous studies that revealed a positive association between motor module number and motor performance, none of the six participants in this pilot study increased motor module number despite improvements in behavioral measures of balance and gait performance. Instead, motor modules were more consistently recruited and distinctly organized immediately after rehabilitation, suggesting more reliable motor output. Furthermore, the pool of motor modules shared between walking and reactive balance increased after rehabilitation, suggesting greater generalizability of motor module function across tasks. Our work is the first to show that motor module distinctness, consistency, and generalizability are more sensitive to improvements in gait and balance function after short-term rehabilitation than motor module number. Moreover, as similar differences in motor module distinctness, consistency, and generalizability have been demonstrated previously in healthy young adults with and without long-term motor training, our work suggests commonalities in the structure of muscle coordination associated with differences in motor performance across the spectrum from motor impairment to expertise. NEW & NOTEWORTHY We demonstrate changes in neuromuscular control of gait and balance in individuals with Parkinson's disease after short-term, dance-based rehabilitation. Our work is the first to show that motor module distinctness, consistency, and generalizability across

  6. Gait in adolescent idiopathic scoliosis: kinematics and electromyographic analysis

    PubMed Central

    Banse, X.; Mousny, M.; Detrembleur, C.

    2009-01-01

    Adolescent idiopathic scoliosis (AIS) is a progressive growth disease that affects spinal anatomy, mobility, and left-right trunk symmetry. Consequently, AIS can modify human locomotion. Very few studies have investigated a simple activity like walking in a cohort of well-defined untreated patients with scoliosis. The first goal of this study is to evaluate the effects of scoliosis and scoliosis severity on kinematic and electromyographic (EMG) gait variables compared to an able-bodied population. The second goal is to look for any asymmetry in these parameters during walking. Thirteen healthy girls and 41 females with untreated AIS, with left thoracolumbar or lumbar primary structural curves were assessed. AIS patients were divided into three clinical subgroups (group 1 < 20°, group 2 between 20 and 40°, and group 3 > 40°). Gait analysis included synchronous bilateral kinematic and EMG measurements. The subjects walked on a treadmill at 4 km/h (comfortable speed). The tridimensional (3D) shoulder, pelvis, and lower limb motions were measured using 22 reflective markers tracked by four infrared cameras. The EMG timing activity was measured using bipolar surface electrodes on quadratus lumborum, erector spinae, gluteus medius, rectus femoris, semitendinosus, tibialis anterior, and gastrocnemius muscles. Statistical comparisons (ANOVA) were performed across groups and sides for kinematic and EMG parameters. The step length was reduced in AIS compared to normal subjects (7% less). Frontal shoulder, pelvis, and hip motion and transversal hip motion were reduced in scoliosis patients (respectively, 21, 27, 28, and 22% less). The EMG recording during walking showed that the quadratus lumborum, erector spinae, gluteus medius, and semitendinosus muscles contracted during a longer part of the stride in scoliotic patients (46% of the stride) compared with normal subjects (35% of the stride). There was no significant difference between scoliosis groups 1, 2, and 3 for

  7. Gait in adolescent idiopathic scoliosis: kinematics and electromyographic analysis.

    PubMed

    Mahaudens, P; Banse, X; Mousny, M; Detrembleur, C

    2009-04-01

    Adolescent idiopathic scoliosis (AIS) is a progressive growth disease that affects spinal anatomy, mobility, and left-right trunk symmetry. Consequently, AIS can modify human locomotion. Very few studies have investigated a simple activity like walking in a cohort of well-defined untreated patients with scoliosis. The first goal of this study is to evaluate the effects of scoliosis and scoliosis severity on kinematic and electromyographic (EMG) gait variables compared to an able-bodied population. The second goal is to look for any asymmetry in these parameters during walking. Thirteen healthy girls and 41 females with untreated AIS, with left thoracolumbar or lumbar primary structural curves were assessed. AIS patients were divided into three clinical subgroups (group 1 < 20 degrees, group 2 between 20 and 40 degrees, and group 3 > 40 degrees). Gait analysis included synchronous bilateral kinematic and EMG measurements. The subjects walked on a treadmill at 4 km/h (comfortable speed). The tridimensional (3D) shoulder, pelvis, and lower limb motions were measured using 22 reflective markers tracked by four infrared cameras. The EMG timing activity was measured using bipolar surface electrodes on quadratus lumborum, erector spinae, gluteus medius, rectus femoris, semitendinosus, tibialis anterior, and gastrocnemius muscles. Statistical comparisons (ANOVA) were performed across groups and sides for kinematic and EMG parameters. The step length was reduced in AIS compared to normal subjects (7% less). Frontal shoulder, pelvis, and hip motion and transversal hip motion were reduced in scoliosis patients (respectively, 21, 27, 28, and 22% less). The EMG recording during walking showed that the quadratus lumborum, erector spinae, gluteus medius, and semitendinosus muscles contracted during a longer part of the stride in scoliotic patients (46% of the stride) compared with normal subjects (35% of the stride). There was no significant difference between scoliosis groups 1

  8. Statistical Parametric Mapping to Identify Differences between Consensus-Based Joint Patterns during Gait in Children with Cerebral Palsy.

    PubMed

    Nieuwenhuys, Angela; Papageorgiou, Eirini; Desloovere, Kaat; Molenaers, Guy; De Laet, Tinne

    2017-01-01

    Experts recently identified 49 joint motion patterns in children with cerebral palsy during a Delphi consensus study. Pattern definitions were therefore the result of subjective expert opinion. The present study aims to provide objective, quantitative data supporting the identification of these consensus-based patterns. To do so, statistical parametric mapping was used to compare the mean kinematic waveforms of 154 trials of typically developing children (n = 56) to the mean kinematic waveforms of 1719 trials of children with cerebral palsy (n = 356), which were classified following the classification rules of the Delphi study. Three hypotheses stated that: (a) joint motion patterns with 'no or minor gait deviations' (n = 11 patterns) do not differ significantly from the gait pattern of typically developing children; (b) all other pathological joint motion patterns (n = 38 patterns) differ from typically developing gait and the locations of difference within the gait cycle, highlighted by statistical parametric mapping, concur with the consensus-based classification rules. (c) all joint motion patterns at the level of each joint (n = 49 patterns) differ from each other during at least one phase of the gait cycle. Results showed that: (a) ten patterns with 'no or minor gait deviations' differed somewhat unexpectedly from typically developing gait, but these differences were generally small (≤3°); (b) all other joint motion patterns (n = 38) differed from typically developing gait and the significant locations within the gait cycle that were indicated by the statistical analyses, coincided well with the classification rules; (c) joint motion patterns at the level of each joint significantly differed from each other, apart from two sagittal plane pelvic patterns. In addition to these results, for several joints, statistical analyses indicated other significant areas during the gait cycle that were not included in the pattern definitions of the consensus study

  9. Changes in frontal plane dynamics and the loading response phase of the gait cycle are characteristic of severe knee osteoarthritis application of a multidimensional analysis technique.

    PubMed

    Astephen, J L; Deluzio, K J

    2005-02-01

    Osteoarthritis of the knee is related to many correlated mechanical factors that can be measured with gait analysis. Gait analysis results in large data sets. The analysis of these data is difficult due to the correlated, multidimensional nature of the measures. A multidimensional model that uses two multivariate statistical techniques, principal component analysis and discriminant analysis, was used to discriminate between the gait patterns of the normal subject group and the osteoarthritis subject group. Nine time varying gait measures and eight discrete measures were included in the analysis. All interrelationships between and within the measures were retained in the analysis. The multidimensional analysis technique successfully separated the gait patterns of normal and knee osteoarthritis subjects with a misclassification error rate of <6%. The most discriminatory feature described a static and dynamic alignment factor. The second most discriminatory feature described a gait pattern change during the loading response phase of the gait cycle. The interrelationships between gait measures and between the time instants of the gait cycle can provide insight into the mechanical mechanisms of pathologies such as knee osteoarthritis. These results suggest that changes in frontal plane loading and alignment and the loading response phase of the gait cycle are characteristic of severe knee osteoarthritis gait patterns. Subsequent investigations earlier in the disease process may suggest the importance of these factors to the progression of knee osteoarthritis.

  10. Accelerometer-based step initiation control for gait-assist neuroprostheses.

    PubMed

    Foglyano, Kevin M; Schnellenberger, John R; Kobetic, Rudi; Lombardo, Lisa; Pinault, Gilles; Selkirk, Stephen; Makowski, Nathaniel S; Triolo, Ronald J

    2016-01-01

    Electrical activation of paralyzed musculature can generate or augment joint movements required for walking after central nervous system trauma. Proper timing of stimulation relative to residual volitional control is critical to usefully affecting ambulation. This study evaluates three-dimensional accelerometers and customized algorithms to detect the intent to step from voluntary movements to trigger stimulation during walking in individuals with significantly different etiologies, mobility limitations, manual dexterities, and walking aids. Three individuals with poststroke hemiplegia or partial spinal cord injury exhibiting varying gait deficits were implanted with multichannel pulse generators to provide joint motions at the hip, knee, and ankle. An accelerometer integrated into the external control unit was used to detect heel strike or walker movement, and wireless accelerometers were used to detect crutch strike. Algorithms were developed for each sensor location to detect intent to step to progress through individualized stimulation patterns. Testing these algorithms produced detection accuracies of at least 90% on both level ground and uneven terrain. All participants use their accelerometer-triggered implanted gait systems in the community; the validation/system testing was completed in the hospital. The results demonstrated that safe, reliable, and convenient accelerometer-based step initiation can be achieved regardless of specific gait deficits, manual dexterities, and walking aids.

  11. Multiscale entropy analysis of human gait dynamics

    NASA Astrophysics Data System (ADS)

    Costa, M.; Peng, C.-K.; L. Goldberger, Ary; Hausdorff, Jeffrey M.

    2003-12-01

    We compare the complexity of human gait time series from healthy subjects under different conditions. Using the recently developed multiscale entropy algorithm, which provides a way to measure complexity over a range of scales, we observe that normal spontaneous walking has the highest complexity when compared to slow and fast walking and also to walking paced by a metronome. These findings have implications for modeling locomotor control and for quantifying gait dynamics in physiologic and pathologic states.

  12. Asymptomatic radiographic hip osteoarthritis is associated with gait differences, especially in women: A population-based study.

    PubMed

    Verlinden, Vincentius J A; de Kruijf, Marjolein; Bierma-Zeinstra, Sita M A; Hofman, Albert; Uitterlinden, André G; Ikram, M Arfan; van Meurs, Joyce B J; van der Geest, Jos N

    2017-05-01

    Hip and knee osteoarthritis (OA) are debilitating diseases that impair gait at severe stages. Although associations between OA and gait are established for normal walking, little is known about its relation with turning and tandem (heel-to-toe) walking. Furthermore, it is unknown how asymptomatic OA associates with gait, and whether associations differ by sex. We investigated how symptomatic and asymptomatic hip and knee OA associate with gait in community-dwelling individuals. In 2706 participants of a population-based cohort study, gait was assessed by electronic walkway and summarised into seven gait domains. Hip and knee radiographs were graded for radiographic OA (ROA) using the Kellgren and Lawrence (K&L) score. Linear regression was used to investigate associations between ROA and gait. Analyses were repeated including only participants with asymptomatic ROA, defined as a K&L-score of 2 without pain. In total, 177 participants (6.5%) had hip ROA and 441 (16.3%) knee ROA. We found no associations of knee ROA with gait. Hip ROA associated with Rhythm, Tandem, and Turning. Furthermore, unilateral hip ROA associated with larger gait asymmetry and gait differences in osteoarthritic and non-osteoarthritic leg, when compared to people without hip ROA. Associations between hip ROA and gait were generally stronger for women than men. Associations for hip ROA remained after restricting to asymptomatic ROA. Hip ROA, but not knee ROA, associates with gait differences in normal walking, turning, and tandem walking in community-dwelling individuals. These associations differ between the sexes, and are already present for asymptomatic ROA. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Detrended Fluctuation Analysis and Adaptive Fractal Analysis of Stride Time Data in Parkinson's Disease: Stitching Together Short Gait Trials

    PubMed Central

    Liebherr, Magnus; Haas, Christian T.

    2014-01-01

    Variability indicates motor control disturbances and is suitable to identify gait pathologies. It can be quantified by linear parameters (amplitude estimators) and more sophisticated nonlinear methods (structural information). Detrended Fluctuation Analysis (DFA) is one method to measure structural information, e.g., from stride time series. Recently, an improved method, Adaptive Fractal Analysis (AFA), has been proposed. This method has not been applied to gait data before. Fractal scaling methods (FS) require long stride-to-stride data to obtain valid results. However, in clinical studies, it is not usual to measure a large number of strides (e.g., strides). Amongst others, clinical gait analysis is limited due to short walkways, thus, FS seem to be inapplicable. The purpose of the present study was to evaluate FS under clinical conditions. Stride time data of five self-paced walking trials ( strides each) of subjects with PD and a healthy control group (CG) was measured. To generate longer time series, stride time sequences were stitched together. The coefficient of variation (CV), fractal scaling exponents (DFA) and (AFA) were calculated. Two surrogate tests were performed: A) the whole time series was randomly shuffled; B) the single trials were randomly shuffled separately and afterwards stitched together. CV did not discriminate between PD and CG. However, significant differences between PD and CG were found concerning and . Surrogate version B yielded a higher mean squared error and empirical quantiles than version A. Hence, we conclude that the stitching procedure creates an artificial structure resulting in an overestimation of true . The method of stitching together sections of gait seems to be appropriate in order to distinguish between PD and CG with FS. It provides an approach to integrate FS as standard in clinical gait analysis and to overcome limitations such as short walkways. PMID:24465708

  14. Comparison of a clinical gait analysis method using videography and temporal-distance measures with 16-mm cinematography.

    PubMed

    Stuberg, W A; Colerick, V L; Blanke, D J; Bruce, W

    1988-08-01

    The purpose of this study was to compare a clinical gait analysis method using videography and temporal-distance measures with 16-mm cinematography in a gait analysis laboratory. Ten children with a diagnosis of cerebral palsy (means age = 8.8 +/- 2.7 years) and 9 healthy children (means age = 8.9 +/- 2.4 years) participated in the study. Stride length, walking velocity, and goniometric measurements of the hip, knee, and ankle were recorded using the two gait analysis methods. A multivariate analysis of variance was used to determine significant differences between the data collected using the two methods. Pearson product-moment correlation coefficients were determined to examine the relationship between the measurements recorded by the two methods. The consistency of performance of the subjects during walking was examined by intraclass correlation coefficients. No significant differences were found between the methods for the variables studied. Pearson product-moment correlation coefficients ranged from .79 to .95, and intraclass coefficients ranged from .89 to .97. The clinical gait analysis method was found to be a valid tool in comparison with 16-mm cinematography for the variables that were studied.

  15. Effects of physiotherapy treatment on knee osteoarthritis gait data using principal component analysis.

    PubMed

    Gaudreault, Nathaly; Mezghani, Neila; Turcot, Katia; Hagemeister, Nicola; Boivin, Karine; de Guise, Jacques A

    2011-03-01

    Interpreting gait data is challenging due to intersubject variability observed in the gait pattern of both normal and pathological populations. The objective of this study was to investigate the impact of using principal component analysis for grouping knee osteoarthritis (OA) patients' gait data in more homogeneous groups when studying the effect of a physiotherapy treatment. Three-dimensional (3D) knee kinematic and kinetic data were recorded during the gait of 29 participants diagnosed with knee OA before and after they received 12 weeks of physiotherapy treatment. Principal component analysis was applied to extract groups of knee flexion/extension, adduction/abduction and internal/external rotation angle and moment data. The treatment's effect on parameters of interest was assessed using paired t-tests performed before and after grouping the knee kinematic data. Increased quadriceps and hamstring strength was observed following treatment (P<0.05). Except for the knee flexion/extension angle, two different groups (G(1) and G(2)) were extracted from the angle and moment data. When pre- and post-treatment analyses were performed considering the groups, participants exhibiting a G(2) knee moment pattern demonstrated a greater first peak flexion moment, lower adduction moment impulse and smaller rotation angle range post-treatment (P<0.05). When pre- and post-treatment comparisons were performed without grouping, the data showed no treatment effect. The results of the present study suggest that the effect of physiotherapy on gait mechanics of knee osteoarthritis patients may be masked or underestimated if kinematic data are not separated into more homogeneous groups when performing pre- and post-treatment comparisons. Copyright © 2010 Elsevier Ltd. All rights reserved.

  16. Gait patterns comparison of children with Duchenne muscular dystrophy to those of control subjects considering the effect of gait velocity.

    PubMed

    Gaudreault, Nathaly; Gravel, Denis; Nadeau, Sylvie; Houde, Sylvie; Gagnon, Denis

    2010-07-01

    3D analysis of the gait of children with Duchenne muscular dystrophy (DMD) was the topic of only a few studies and none of these considered the effect of gait velocity on the gait parameters of children with DMD. Gait parameters of 11 children with DMD were compared to those of 14 control children while considering the effect of gait velocity using 3D biomechanical analysis. Kinematic and kinetic gait parameters were measured using an Optotrak motion analysis system and AMTI force plates embedded in the floor. The data profiles of children with DMD walking at natural gait velocity were compared to those of the control children who walked at both natural and slow gait velocities. When both groups walked at similar velocity, children with DMD had higher cadence and shorter step length. They demonstrated a lower hip extension moment as well as a minimal or absent knee extension moment. At the ankle, a dorsiflexion moment was absent at heel strike due to the anterior location of the center of pressure. The magnitude of the medio-lateral ground reaction force was higher in children with DMD. Despite this increase, the hip abductor moment was lower. Hip power generation was also observed at the mid-stance in DMD children. These results suggest that most of the modifications observed are strategies used by children with DMD to cope with possible muscle weakness in order to provide support, propulsion and balance of the body during gait. Copyright © 2010 Elsevier B.V. All rights reserved.

  17. A mechanized gait trainer for restoration of gait.

    PubMed

    Hesse, S; Uhlenbrock, D

    2000-01-01

    The newly developed gait trainer allows wheel-chair-bound subjects the repetitive practice of a gait-like movement without overstressing therapists. The device simulates the phases of gait, supports the subjects according to their abilities, and controls the center of mass (CoM) in the vertical and horizontal directions. The patterns of sagittal lower limb joint kinematics and of muscle activation for a normal subject were similar when using the mechanized trainer and when walking on a treadmill. A non-ambulatory hemiparetic subject required little help from one therapist on the gait trainer, while two therapists were required to support treadmill walking. Gait movements on the trainer were highly symmetrical, impact free, and less spastic. The vertical displacement of the CoM was bi-phasic instead of mono-phasic during each gait cycle on the new device. Two cases of non-ambulatory patients, who regained their walking ability after 4 weeks of daily training on the gait trainer, are reported.

  18. A Portable Gait Asymmetry Rehabilitation System for Individuals with Stroke Using a Vibrotactile Feedback.

    PubMed

    Afzal, Muhammad Raheel; Oh, Min-Kyun; Lee, Chang-Hee; Park, Young Sook; Yoon, Jungwon

    2015-01-01

    Gait asymmetry caused by hemiparesis results in reduced gait efficiency and reduced activity levels. In this paper, a portable rehabilitation device is proposed that can serve as a tool in diagnosing gait abnormalities in individuals with stroke and has the capability of providing vibration feedback to help compensate for the asymmetric gait. Force-sensitive resistor (FSR) based insoles are used to detect ground contact and estimate stance time. A controller (Arduino) provides different vibration feedback based on the gait phase measurement. It also allows wireless interaction with a personal computer (PC) workstation using the XBee transceiver module, featuring data logging capabilities for subsequent analysis. Walking trials conducted with healthy young subjects allowed us to observe that the system can influence abnormality in the gait. The results of trials showed that a vibration cue based on temporal information was more effective than intensity information. With clinical experiments conducted for individuals with stroke, significant improvement in gait symmetry was observed with minimal disturbance caused to the balance and gait speed as an effect of the biofeedback. Future studies of the long-term rehabilitation effects of the proposed system and further improvements to the system will result in an inexpensive, easy-to-use, and effective rehabilitation device.

  19. A Portable Gait Asymmetry Rehabilitation System for Individuals with Stroke Using a Vibrotactile Feedback

    PubMed Central

    Afzal, Muhammad Raheel; Oh, Min-Kyun; Lee, Chang-Hee; Park, Young Sook; Yoon, Jungwon

    2015-01-01

    Gait asymmetry caused by hemiparesis results in reduced gait efficiency and reduced activity levels. In this paper, a portable rehabilitation device is proposed that can serve as a tool in diagnosing gait abnormalities in individuals with stroke and has the capability of providing vibration feedback to help compensate for the asymmetric gait. Force-sensitive resistor (FSR) based insoles are used to detect ground contact and estimate stance time. A controller (Arduino) provides different vibration feedback based on the gait phase measurement. It also allows wireless interaction with a personal computer (PC) workstation using the XBee transceiver module, featuring data logging capabilities for subsequent analysis. Walking trials conducted with healthy young subjects allowed us to observe that the system can influence abnormality in the gait. The results of trials showed that a vibration cue based on temporal information was more effective than intensity information. With clinical experiments conducted for individuals with stroke, significant improvement in gait symmetry was observed with minimal disturbance caused to the balance and gait speed as an effect of the biofeedback. Future studies of the long-term rehabilitation effects of the proposed system and further improvements to the system will result in an inexpensive, easy-to-use, and effective rehabilitation device. PMID:26161398

  20. Wireless prototype based on pressure and bending sensors for measuring gait [corrected] quality.

    PubMed

    Grenez, Florent; Viqueira Villarejo, María; García Zapirain, Begoña; Méndez Zorrilla, Amaia

    2013-07-29

    This paper presents a technological solution based on sensors controlled remotely in order to monitor, track and evaluate the gait quality in people with or without associated pathology. Special hardware simulating a shoe was developed, which consists of three pressure sensors, two bending sensors, an Arduino mini and a Bluetooth module. The obtained signals are digitally processed, calculating the standard deviation and establishing thresholds obtained empirically. A group of users was chosen with the aim of executing two modalities: natural walking and dragging the left foot. The gait was parameterized with the following variables: as far as pressure sensors are concerned, one pressure sensor under the first metatarsal (right sensor), another one under the fifth metatarsal (left) and a third one under the heel were placed. With respect to bending sensors, one bending sensor was placed for the ankle movement and another one for the foot sole. The obtained results show a rate accuracy oscillating between 85% (right sensor) and 100% (heel and bending sensors). Therefore, the developed prototype is able to differentiate between healthy gait and pathological gait, and it will be used as the base of a more complex and integral technological solution, which is being developed currently.

  1. Gait analysis in hallux valgus.

    PubMed

    Blomgren, M; Turan, I; Agadir, M

    1991-01-01

    The solar pressure zones were analyzed in the feet of 66 patients suffering from hallux valgus, together with 60 normal subjects. The EMED Gait Analysis System was used. In the hallux valgus group, the maximum pressure was found to be increased significantly in the small toe region and more proximally situated, close to the metatarsophalangeal joint. In the normal subjects, the maximum pressure was increased significantly in the first, second, third, and fourth metatarsal and heel regions. In general, the hallux valgus group had smaller contact areas compared to the control group. The increased pressure in the small toe region, together with the smaller contact areas manifested by the hallux valgus group, were interpreted in this work as being the possible causes of the metatarsalgia seen in patients with the deformity.

  2. An IMU-to-Body Alignment Method Applied to Human Gait Analysis

    PubMed Central

    Vargas-Valencia, Laura Susana; Elias, Arlindo; Rocon, Eduardo; Bastos-Filho, Teodiano; Frizera, Anselmo

    2016-01-01

    This paper presents a novel calibration procedure as a simple, yet powerful, method to place and align inertial sensors with body segments. The calibration can be easily replicated without the need of any additional tools. The proposed method is validated in three different applications: a computer mathematical simulation; a simplified joint composed of two semi-spheres interconnected by a universal goniometer; and a real gait test with five able-bodied subjects. Simulation results demonstrate that, after the calibration method is applied, the joint angles are correctly measured independently of previous sensor placement on the joint, thus validating the proposed procedure. In the cases of a simplified joint and a real gait test with human volunteers, the method also performs correctly, although secondary plane errors appear when compared with the simulation results. We believe that such errors are caused by limitations of the current inertial measurement unit (IMU) technology and fusion algorithms. In conclusion, the presented calibration procedure is an interesting option to solve the alignment problem when using IMUs for gait analysis. PMID:27973406

  3. An IMU-to-Body Alignment Method Applied to Human Gait Analysis.

    PubMed

    Vargas-Valencia, Laura Susana; Elias, Arlindo; Rocon, Eduardo; Bastos-Filho, Teodiano; Frizera, Anselmo

    2016-12-10

    This paper presents a novel calibration procedure as a simple, yet powerful, method to place and align inertial sensors with body segments. The calibration can be easily replicated without the need of any additional tools. The proposed method is validated in three different applications: a computer mathematical simulation; a simplified joint composed of two semi-spheres interconnected by a universal goniometer; and a real gait test with five able-bodied subjects. Simulation results demonstrate that, after the calibration method is applied, the joint angles are correctly measured independently of previous sensor placement on the joint, thus validating the proposed procedure. In the cases of a simplified joint and a real gait test with human volunteers, the method also performs correctly, although secondary plane errors appear when compared with the simulation results. We believe that such errors are caused by limitations of the current inertial measurement unit (IMU) technology and fusion algorithms. In conclusion, the presented calibration procedure is an interesting option to solve the alignment problem when using IMUs for gait analysis.

  4. Can biomechanical variables predict improvement in crouch gait?

    PubMed Central

    Hicks, Jennifer L.; Delp, Scott L.; Schwartz, Michael H.

    2011-01-01

    Many patients respond positively to treatments for crouch gait, yet surgical outcomes are inconsistent and unpredictable. In this study, we developed a multivariable regression model to determine if biomechanical variables and other subject characteristics measured during a physical exam and gait analysis can predict which subjects with crouch gait will demonstrate improved knee kinematics on a follow-up gait analysis. We formulated the model and tested its performance by retrospectively analyzing 353 limbs of subjects who walked with crouch gait. The regression model was able to predict which subjects would demonstrate ‘improved’ and ‘unimproved’ knee kinematics with over 70% accuracy, and was able to explain approximately 49% of the variance in subjects’ change in knee flexion between gait analyses. We found that improvement in stance phase knee flexion was positively associated with three variables that were drawn from knowledge about the biomechanical contributors to crouch gait: i) adequate hamstrings lengths and velocities, possibly achieved via hamstrings lengthening surgery, ii) normal tibial torsion, possibly achieved via tibial derotation osteotomy, and iii) sufficient muscle strength. PMID:21616666

  5. Computerized gait analysis in Legg Calvé Perthes disease--analysis of the frontal plane.

    PubMed

    Westhoff, Bettina; Petermann, Andrea; Hirsch, Mark A; Willers, Reinhart; Krauspe, Rüdiger

    2006-10-01

    Current follow-up and outcome studies of Legg Calvé Perthes disease (LCPD) are based on subjective measures of function, clinical parameters and radiological changes [Herring JA, Kim HT, Browne RH. Legg-Calvé-Perthes disease. Part II: prospective multicenter study of the effect of treatment on outcome. J Bone Joint Surg 2004;86A:2121-34; Aksoy MC, Cankus MC, Alanay A, Yazici M, Caglar O, Alpaslan AM. Radiological outcome of proximal femoral varus osteotomy for the treatment of lateral pillar group-C. J Pediatr Orthop 2005;14 B:88-91; Kitakoji T, Hattori T, Kitoh H, Katho M, Ishiguro N. Which is a better method for Perthes' disease: femoral varus or Salter osteotomy? Clin Orthop 2005;430:163-170; Joseph B, Rao N, Mulpuri K, Varghese G, Nair S. How does femoral varus osteotomy alter the natural evolution of Perthes' disease. J Pediatr Orthop 2005;14B:10-5; Ishida A, Kuwajima SS, Laredo FJ, Milani C. Salter innominate osteotomy in the treatment of severe Legg-Calvé-Perthes disease: clinical and radiographic results in 32 patients (37 hips) at skeletal maturity. J Pediatr Orthop 2004;24:257-64.]. The objective of this study was to evaluate the frontal plane kinematics and the effect on hip joint loading on the affected side in children with a radiographic diagnosis of LCPD. Computerized, three-dimensional gait analysis was performed in 33 individuals aged > or =5 years (mean 8.0+/-2 years) with unilateral LCPD and no history of previous surgery to the hip or any disorder leading to gait abnormality. Frontal plane kinematics and kinetics were compared to a group of healthy children (n=30, mean age 8.1+/-1.2 years). Hip joint loading was estimated as a function of the hip abductor moment. Subjects with LCPD demonstrated two distinct frontal plane gait patterns, both deviating from normal. Type 1 (n=3) was characterized by a pelvic drop of the swinging limb, a trunk lean in relation to the pelvis towards the stance limb and hip adduction during stance phase and

  6. Evidence-based design and development of a VR-based treadmill system for gait research and rehabilitation of patients with Parkinson's disease.

    PubMed

    Pérez-Sanpablo, Alberto Isaac; González-Mendoza, Arturo; Quiñones-Uriostegui, Ivett; Rodríguez-Reyes, Gerardo; Núñez-Carrera, Lidia; Hernández-Arenas, Claudia; Boll-Woehrlen, Marie Catherine; Alessi Montero, Aldo

    2014-07-01

    Virtual reality (VR) in neurorehabilitation allows to reduce patient's risk and allows him to learn on a faster way. Up to now VR has been used in patients with Parkinson disease (PD) as a research tool and none of the developed systems are used in clinical practice. The goal of this project is to develop a VR-based system for gait therapy, and gait research of patients with PD designed based on published evidence. The developed system uses a digital camera to measure spatiotemporal gait parameters. The software was developed in C#, using Open-Source libraries that facilitates VR programming. The system has potential uses in clinical and research settings.

  7. Gait Recognition Based on Convolutional Neural Networks

    NASA Astrophysics Data System (ADS)

    Sokolova, A.; Konushin, A.

    2017-05-01

    In this work we investigate the problem of people recognition by their gait. For this task, we implement deep learning approach using the optical flow as the main source of motion information and combine neural feature extraction with the additional embedding of descriptors for representation improvement. In order to find the best heuristics, we compare several deep neural network architectures, learning and classification strategies. The experiments were made on two popular datasets for gait recognition, so we investigate their advantages and disadvantages and the transferability of considered methods.

  8. DMRT3 is associated with gait type in Mangalarga Marchador horses, but does not control gait ability.

    PubMed

    Patterson, L; Staiger, E A; Brooks, S A

    2015-04-01

    The Mangalarga Marchador (MM) is a Brazilian horse breed known for a uniquely smooth gait. A recent publication described a mutation in the DMRT3 gene that the authors claim controls the ability to perform lateral patterned gaits (Andersson et al. 2012). We tested 81 MM samples for the DMRT3 mutation using extracted DNA from hair bulbs using a novel RFLP. Horses were phenotypically categorized by their gait type (batida or picada), as recorded by the Brazilian Mangalarga Marchador Breeders Association (ABCCMM). Statistical analysis using the plink toolset (Purcell, 2007) revealed significant association between gait type and the DMRT3 mutation (P = 2.3e-22). Deviation from Hardy-Weinberg equilibrium suggests that selective pressure for gait type is altering allele frequencies in this breed (P = 1.00e-5). These results indicate that this polymorphism may be useful for genotype-assisted selection for gait type within this breed. As both batida and picada MM horses can perform lateral gaits, the DMRT3 mutation is not the only locus responsible for the lateral gait pattern. © 2015 Stichting International Foundation for Animal Genetics.

  9. Statistical Parametric Mapping to Identify Differences between Consensus-Based Joint Patterns during Gait in Children with Cerebral Palsy

    PubMed Central

    Papageorgiou, Eirini; Desloovere, Kaat; Molenaers, Guy; De Laet, Tinne

    2017-01-01

    Experts recently identified 49 joint motion patterns in children with cerebral palsy during a Delphi consensus study. Pattern definitions were therefore the result of subjective expert opinion. The present study aims to provide objective, quantitative data supporting the identification of these consensus-based patterns. To do so, statistical parametric mapping was used to compare the mean kinematic waveforms of 154 trials of typically developing children (n = 56) to the mean kinematic waveforms of 1719 trials of children with cerebral palsy (n = 356), which were classified following the classification rules of the Delphi study. Three hypotheses stated that: (a) joint motion patterns with ‘no or minor gait deviations’ (n = 11 patterns) do not differ significantly from the gait pattern of typically developing children; (b) all other pathological joint motion patterns (n = 38 patterns) differ from typically developing gait and the locations of difference within the gait cycle, highlighted by statistical parametric mapping, concur with the consensus-based classification rules. (c) all joint motion patterns at the level of each joint (n = 49 patterns) differ from each other during at least one phase of the gait cycle. Results showed that: (a) ten patterns with ‘no or minor gait deviations’ differed somewhat unexpectedly from typically developing gait, but these differences were generally small (≤3°); (b) all other joint motion patterns (n = 38) differed from typically developing gait and the significant locations within the gait cycle that were indicated by the statistical analyses, coincided well with the classification rules; (c) joint motion patterns at the level of each joint significantly differed from each other, apart from two sagittal plane pelvic patterns. In addition to these results, for several joints, statistical analyses indicated other significant areas during the gait cycle that were not included in the pattern definitions of the consensus

  10. Does robot-assisted gait training ameliorate gait abnormalities in multiple sclerosis? A pilot randomized-control trial.

    PubMed

    Straudi, S; Benedetti, M G; Venturini, E; Manca, M; Foti, C; Basaglia, N

    2013-01-01

    Gait disorders are common in multiple sclerosis (MS) and lead to a progressive reduction of function and quality of life. Test the effects of robot-assisted gait rehabilitation in MS subjects through a pilot randomized-controlled study. We enrolled MS subjects with Expanded Disability Status Scale scores within 4.5-6.5. The experimental group received 12 robot-assisted gait training sessions over 6 weeks. The control group received the same amount of conventional physiotherapy. Outcomes measures were both biomechanical assessment of gait, including kinematics and spatio-temporal parameters, and clinical test of walking endurance (six-minute walk test) and mobility (Up and Go Test). 16 subjects (n = 8 experimental group, n = 8 control group) were included in the final analysis. At baseline the two groups were similar in all variables, except for step length. Data showed walking endurance, as well as spatio-temporal gait parameters improvements after robot-assisted gait training. Pelvic antiversion and reduced hip extension during terminal stance ameliorated after aforementioned intervention. Robot-assisted gait training seems to be effective in increasing walking competency in MS subjects. Moreover, it could be helpful in restoring the kinematic of the hip and pelvis.

  11. Gait Partitioning Methods: A Systematic Review

    PubMed Central

    Taborri, Juri; Palermo, Eduardo; Rossi, Stefano; Cappa, Paolo

    2016-01-01

    In the last years, gait phase partitioning has come to be a challenging research topic due to its impact on several applications related to gait technologies. A variety of sensors can be used to feed algorithms for gait phase partitioning, mainly classifiable as wearable or non-wearable. Among wearable sensors, footswitches or foot pressure insoles are generally considered as the gold standard; however, to overcome some inherent limitations of the former, inertial measurement units have become popular in recent decades. Valuable results have been achieved also though electromyography, electroneurography, and ultrasonic sensors. Non-wearable sensors, such as opto-electronic systems along with force platforms, remain the most accurate system to perform gait analysis in an indoor environment. In the present paper we identify, select, and categorize the available methodologies for gait phase detection, analyzing advantages and disadvantages of each solution. Finally, we comparatively examine the obtainable gait phase granularities, the usable computational methodologies and the optimal sensor placements on the targeted body segments. PMID:26751449

  12. Gait Partitioning Methods: A Systematic Review.

    PubMed

    Taborri, Juri; Palermo, Eduardo; Rossi, Stefano; Cappa, Paolo

    2016-01-06

    In the last years, gait phase partitioning has come to be a challenging research topic due to its impact on several applications related to gait technologies. A variety of sensors can be used to feed algorithms for gait phase partitioning, mainly classifiable as wearable or non-wearable. Among wearable sensors, footswitches or foot pressure insoles are generally considered as the gold standard; however, to overcome some inherent limitations of the former, inertial measurement units have become popular in recent decades. Valuable results have been achieved also though electromyography, electroneurography, and ultrasonic sensors. Non-wearable sensors, such as opto-electronic systems along with force platforms, remain the most accurate system to perform gait analysis in an indoor environment. In the present paper we identify, select, and categorize the available methodologies for gait phase detection, analyzing advantages and disadvantages of each solution. Finally, we comparatively examine the obtainable gait phase granularities, the usable computational methodologies and the optimal sensor placements on the targeted body segments.

  13. Gait analysis before and after achilles tendon surgical suture in a single-subject study: a case report.

    PubMed

    Marcolin, Giuseppe; Buriani, Alessandro; Balasso, Alberto; Villaminar, Renato; Petrone, Nicola

    2015-01-01

    Achilles tendon rupture is a disabling injury that requires a long recovery time. We describe a unique case of a 46-year-old male who had undergone gait analysis as part of a personal physical examination and who, 16 months later, ruptured his left Achilles tendon while running. With gait kinematic and kinetic data available both before and after his injury, we determined the residual gait asymmetries on his uninjured side and compared the pre- and postinjury measurements. We analyzed his gait at 1, 4, and 7 weeks after his return to full weightbearing. Compared with the preinjury values, at 7 weeks he had almost complete range of motion in his left ankle (-2%) and a slight increase in gait velocity (+6%) and cadence (+3%). The peak power of his injured ankle was 90% of its preinjury value. In contrast, the unaffected ankle was at 118%. These observations suggest that measuring the asymmetries of the gait cycle, especially at the beginning of rehabilitation, can be used to improve treatment. We had the patient strengthen his ankle using a stationary bicycle before he returned to running. Kinetics also appears to be more powerful than kinematics in detecting functional asymmetries associated with reduced calf strength, even 15 weeks after surgery. Gait analysis could be used to predict the effectiveness of rehabilitation protocols and help calibrate and monitor the return to sports participation while preventing overloading muscle and tendon syndromes. Copyright © 2015 American College of Foot and Ankle Surgeons. Published by Elsevier Inc. All rights reserved.

  14. Femoral anteversion assessment: Comparison of physical examination, gait analysis, and EOS biplanar radiography.

    PubMed

    Westberry, David E; Wack, Linda I; Davis, Roy B; Hardin, James W

    2018-05-01

    Multiple measurement methods are available to assess transverse plane alignment of the lower extremity. This study was performed to determine the extent of correlation between femoral anteversion assessment using simultaneous biplanar radiographs and three-dimensional modeling (EOS imaging), clinical hip rotation by physical examination, and dynamic hip rotation assessed by gait analysis. Seventy-seven patients with cerebral palsy (GMFCS Level I and II) and 33 neurologically typical children with torsional abnormalities completed a comprehensive gait analysis with same day biplanar anterior-posterior and lateral radiographs and three-dimensional transverse plane assessment of femoral anteversion. Correlations were determined between physical exam of hip rotation, EOS imaging of femoral anteversion, and transverse plane hip kinematics for this retrospective review study. Linear regression analysis revealed a weak relationship between physical examination measures of hip rotation and biplanar radiographic assessment of femoral anteversion. Similarly, poor correlation was found between clinical evaluation of femoral anteversion and motion assessment of dynamic hip rotation. Correlations were better in neurologically typical children with torsional abnormalities compared to children with gait dysfunction secondary to cerebral palsy. Dynamic hip rotation cannot be predicted by physical examination measures of hip range of motion or from three-dimensional assessment of femoral anteversion derived from biplanar radiographs. Copyright © 2018 Elsevier B.V. All rights reserved.

  15. Balance and gait improved in patients with MS after physiotherapy based on the Bobath concept.

    PubMed

    Smedal, Tori; Lygren, Hildegunn; Myhr, Kjell-Morten; Moe-Nilssen, Rolf; Gjelsvik, Bente; Gjelsvik, Olav; Strand, Liv Inger; Inger, Liv

    2006-06-01

    Patients with multiple sclerosis (MS) tend to have movement difficulties, and the effect of physiotherapy for this group of patients has been subjected to limited systematic research. In the present study physiotherapy based on the Bobath concept, applied to MS patients with balance and gait problems, was evaluated. The ability of different functional tests to demonstrate change was evaluated. A single-subject experimental study design with ABAA phases was used, and two patients with relapsing-remitting MS in stable phase were treated. Tests were performed 12 times, three at each phase: A (at baseline); B (during treatment); A (immediately after treatment); and A (after two months). The key feature of treatment was facilitation of postural activity and selective control of movement. Several performance and self report measures and interviews were used. After intervention, improved balance was shown by the Berg Balance Scale (BBS) in both patients, and improved quality of gait was indicated by the Rivermead Visual Gait Assessment (RVGA). The patients also reported improved balance and gait function in the interviews and scored their condition as 'much improved'. Gait parameters, recorded by an electronic walkway, changed, but differently in the two patients. Among the physical performance tests the BBS and the RVGA demonstrated the highest change, while no or minimal change was demonstrated by the Rivermead Mobility Index (RMI) and Ratings of Perceived Exertion (RPE). The findings indicate that balance and gait can be improved after physiotherapy based on the Bobath concept, but this should be further evaluated in larger controlled trials of patients with MS.

  16. The use of instrumented gait analysis for individually tailored interdisciplinary interventions in children with cerebral palsy: a randomised controlled trial protocol.

    PubMed

    Rasmussen, Helle Mätzke; Pedersen, Niels Wisbech; Overgaard, Søren; Hansen, Lars Kjaersgaard; Dunkhase-Heinl, Ulrike; Petkov, Yanko; Engell, Vilhelm; Baker, Richard; Holsgaard-Larsen, Anders

    2015-12-07

    Children with cerebral palsy (CP) often have an altered gait. Orthopaedic surgery, spasticity management, physical therapy and orthotics are used to improve the gait. Interventions are individually tailored and are planned on the basis of clinical examinations and standardised measurements to assess walking ('care as usual'). However, these measurements do not describe features in the gait that reflect underlying neuro-musculoskeletal impairments. This can be done with 3-dimensional instrumented gait analysis (IGA). The aim of this study is to test the hypothesis that improvements in gait following individually tailored interventions when IGA is used are superior to those following 'care as usual'. A prospective, single blind, randomised, parallel group study will be conducted. Children aged 5 to 8 years with spastic CP, classified at Gross Motor Function Classification System levels I or II, will be included. The interventions under investigation are: 1) individually tailored interdisciplinary interventions based on the use of IGA, and 2) 'care as usual'. The primary outcome is gait measured by the Gait Deviation Index. Secondary outcome measures are: walking performance (1-min walk test) and patient-reported outcomes of functional mobility (Pediatric Evaluation of Disability Inventory), health-related quality of life (The Pediatric Quality of Life Inventory Cerebral Palsy Module) and overall health, pain and participation (The Pediatric Outcome Data Collection Instrument). The primary endpoint for assessing the outcome of the two interventions will be 52 weeks after start of intervention. A follow up will also be performed at 26 weeks; however, exclusively for the patient-reported outcomes. To our knowledge, this is the first randomised controlled trial comparing the effects of an individually tailored interdisciplinary intervention based on the use of IGA versus 'care as usual' in children with CP. Consequently, the study will provide novel evidence for the

  17. Health Monitors for Chronic Disease by Gait Analysis with Mobile Phones

    PubMed Central

    Juen, Joshua; Cheng, Qian; Prieto-Centurion, Valentin; Krishnan, Jerry A.

    2014-01-01

    Abstract We have developed GaitTrack, a phone application to detect health status while the smartphone is carried normally. GaitTrack software monitors walking patterns, using only accelerometers embedded in phones to record spatiotemporal motion, without the need for sensors external to the phone. Our software transforms smartphones into health monitors, using eight parameters of phone motion transformed into body motion by the gait model. GaitTrack is designed to detect health status while the smartphone is carried during normal activities, namely, free-living walking. The current method for assessing free-living walking is medical accelerometers, so we present evidence that mobile phones running our software are more accurate. We then show our gait model is more accurate than medical pedometers for counting steps of patients with chronic disease. Our gait model was evaluated in a pilot study involving 30 patients with chronic lung disease. The six-minute walk test (6MWT) is a major assessment for chronic heart and lung disease, including congestive heart failure and especially chronic obstructive pulmonary disease (COPD), affecting millions of persons. The 6MWT consists of walking back and forth along a measured distance for 6 minutes. The gait model using linear regression performed with 94.13% accuracy in measuring walk distance, compared with the established standard of direct observation. We also evaluated a different statistical model using the same gait parameters to predict health status through lung function. This gait model has high accuracy when applied to demographic cohorts, for example, 89.22% accuracy testing the cohort of 12 female patients with ages 50–64 years. PMID:24694291

  18. Robot-assisted gait training versus treadmill training in patients with Parkinson's disease: a kinematic evaluation with gait profile score.

    PubMed

    Galli, M; Cimolin, V; De Pandis, M F; Le Pera, D; Sova, I; Albertini, G; Stocchi, F; Franceschini, M

    2016-01-01

    The purpose of this study was to quantitatively compare the effects, on walking performance, of end-effector robotic rehabilitation locomotor training versus intensive training with a treadmill in Parkinson's disease (PD). Fifty patients with PD were randomly divided into two groups: 25 were assigned to the robot-assisted therapy group (RG) and 25 to the intensive treadmill therapy group (IG). They were evaluated with clinical examination and 3D quantitative gait analysis [gait profile score (GPS) and its constituent gait variable scores (GVSs) were calculated from gait analysis data] at the beginning (T0) and at the end (T1) of the treatment. In the RG no differences were found in the GPS, but there were significant improvements in some GVSs (Pelvic Obl and Hip Ab-Add). The IG showed no statistically significant changes in either GPS or GVSs. The end-effector robotic rehabilitation locomotor training improved gait kinematics and seems to be effective for rehabilitation in patients with mild PD.

  19. Towards more effective robotic gait training for stroke rehabilitation: a review

    PubMed Central

    2012-01-01

    Background Stroke is the most common cause of disability in the developed world and can severely degrade walking function. Robot-driven gait therapy can provide assistance to patients during training and offers a number of advantages over other forms of therapy. These potential benefits do not, however, seem to have been fully realised as of yet in clinical practice. Objectives This review determines ways in which robot-driven gait technology could be improved in order to achieve better outcomes in gait rehabilitation. Methods The literature on gait impairments caused by stroke is reviewed, followed by research detailing the different pathways to recovery. The outcomes of clinical trials investigating robot-driven gait therapy are then examined. Finally, an analysis of the literature focused on the technical features of the robot-based devices is presented. This review thus combines both clinical and technical aspects in order to determine the routes by which robot-driven gait therapy could be further developed. Conclusions Active subject participation in robot-driven gait therapy is vital to many of the potential recovery pathways and is therefore an important feature of gait training. Higher levels of subject participation and challenge could be promoted through designs with a high emphasis on robotic transparency and sufficient degrees of freedom to allow other aspects of gait such as balance to be incorporated. PMID:22953989

  20. Influence of altered gait patterns on the hip joint contact forces.

    PubMed

    Carriero, Alessandra; Zavatsky, Amy; Stebbins, Julie; Theologis, Tim; Lenaerts, Gerlinde; Jonkers, Ilse; Shefelbine, Sandra J

    2014-01-01

    Children who exhibit gait deviations often present a range of bone deformities, particularly at the proximal femur. Altered gait may affect bone growth and lead to deformities by exerting abnormal stresses on the developing bones. The objective of this study was to calculate variations in the hip joint contact forces with different gait patterns. Muscle and hip joint contact forces of four children with different walking characteristics were calculated using an inverse dynamic analysis and a static optimisation algorithm. Kinematic and kinetic analyses were based on a generic musculoskeletal model scaled down to accommodate the dimensions of each child. Results showed that for all the children with altered gaits both the orientation and magnitude of the hip joint contact force deviated from normal. The child with the most severe gait deviations had hip joint contact forces 30% greater than normal, most likely due to the increase in muscle forces required to sustain his crouched stance. Determining how altered gait affects joint loading may help in planning treatment strategies to preserve correct loading on the bone from a young age.

  1. Gait Kinematic Analysis in Water Using Wearable Inertial Magnetic Sensors.

    PubMed

    Fantozzi, Silvia; Giovanardi, Andrea; Borra, Davide; Gatta, Giorgio

    2015-01-01

    Walking is one of the fundamental motor tasks executed during aquatic therapy. Previous kinematics analyses conducted using waterproofed video cameras were limited to the sagittal plane and to only one or two consecutive steps. Furthermore, the set-up and post-processing are time-consuming and thus do not allow a prompt assessment of the correct execution of the movements during the aquatic session therapy. The aim of the present study was to estimate the 3D joint kinematics of the lower limbs and thorax-pelvis joints in sagittal and frontal planes during underwater walking using wearable inertial and magnetic sensors. Eleven healthy adults were measured during walking both in shallow water and in dry-land conditions. Eight wearable inertial and magnetic sensors were inserted in waterproofed boxes and fixed to the body segments by means of elastic modular bands. A validated protocol (Outwalk) was used. Gait cycles were automatically segmented and selected if relevant intraclass correlation coefficients values were higher than 0.75. A total of 704 gait cycles for the lower limb joints were normalized in time and averaged to obtain the mean cycle of each joint, among participants. The mean speed in water was 40% lower than that of the dry-land condition. Longer stride duration and shorter stride distance were found in the underwater walking. In the sagittal plane, the knee was more flexed (≈ 23°) and the ankle more dorsiflexed (≈ 9°) at heel strike, and the hip was more flexed at toe-off (≈ 13°) in water than on land. On the frontal plane in the underwater walking, smoother joint angle patterns were observed for thorax-pelvis and hip, and ankle was more inversed at toe-off (≈ 7°) and showed a more inversed mean value (≈ 7°). The results were mainly explained by the effect of the speed in the water as supported by the linear mixed models analysis performed. Thus, it seemed that the combination of speed and environment triggered modifications in the

  2. Gait in adolescent idiopathic scoliosis: energy cost analysis.

    PubMed

    Mahaudens, P; Detrembleur, C; Mousny, M; Banse, X

    2009-08-01

    Walking is a very common activity for the human body. It is so common that the musculoskeletal and cardiovascular systems are optimized to have the minimum energetic cost at 4 km/h (spontaneous speed). A previous study showed that lumbar and thoracolumbar adolescent idiopathic scoliosis (AIS) patients exhibit a reduction of shoulder, pelvic, and hip frontal mobility during gait. A longer contraction duration of the spinal and pelvic muscles was also noted. The energetic cost (C) of walking is normally linked to the actual mechanical work muscles have to perform. This total mechanical work (W(tot)) can be divided in two parts: the work needed to move the shoulders and lower limbs relative to the center of mass of the body (COM(b)) is known as the internal work (W(int)), whereas additional work, known as external work (W(ext)), is needed to accelerate and lift up the COM(b) relative to the ground. Normally, the COM(b) goes up and down by 3 cm with every step. Pathological walking usually leads to an increase in W (tot) (often because of increased vertical displacement of the COM(b)), and consequently, it increases the energetic cost. The goal of this study is to investigate the effects of scoliosis and scoliosis severity on the mechanical work and energetic cost of walking. Fifty-four female subjects aged 12 to 17 were used in this study. Thirteen healthy girls were in the control group, 12 were in scoliosis group 1 (Cobb angle [Cb] < or = 20 degrees), 13 were in scoliosis group 2 (20 degrees < Cb < 40 degrees), and 16 were in scoliosis group 3 (Cb > or = 40 degrees). They were assessed by physical examination and gait analysis. The 41 scoliotic patients had an untreated progressive left thoracolumbar or lumbar AIS. During gait analysis, the subject was asked to walk on a treadmill at 4 km h(-1). Movements of the limbs were followed by six infrared cameras, which tracked markers fixed on the body. W(int) was calculated from the kinematics. The movements of the COM

  3. Research the Gait Characteristics of Human Walking Based on a Robot Model and Experiment

    NASA Astrophysics Data System (ADS)

    He, H. J.; Zhang, D. N.; Yin, Z. W.; Shi, J. H.

    2017-02-01

    In order to research the gait characteristics of human walking in different walking ways, a robot model with a single degree of freedom is put up in this paper. The system control models of the robot are established through Matlab/Simulink toolbox. The gait characteristics of straight, uphill, turning, up the stairs, down the stairs up and down areanalyzed by the system control models. To verify the correctness of the theoretical analysis, an experiment was carried out. The comparison between theoretical results and experimental results shows that theoretical results are better agreement with the experimental ones. Analyze the reasons leading to amplitude error and phase error and give the improved methods. The robot model and experimental ways can provide foundation to further research the various gait characteristics of the exoskeleton robot.

  4. Gait rehabilitation with a high tech platform based on virtual reality conveys improvements in walking ability of children suffering from acquired brain injury.

    PubMed

    Biffi, E; Beretta, E; Diella, E; Panzeri, D; Maghini, C; Turconi, A C; Strazzer, S; Reni, G

    2015-01-01

    The Gait Real-time Analysis Interactive Lab (GRAIL) is an instrumented multi-sensor platform based on immersive virtual reality for gait training and rehabilitation. Few studies have been included GRAIL to evaluate gait patterns in normal and disabled people and to improve gait in adults, while at our knowledge no evidence on its use for the rehabilitation of children is available. In this study, 4 children suffering from acquired brain injury (ABI) underwent a 5 session treatment with GRAIL, to improve walking and balance ability in engaging VR environments. The first and the last sessions were partially dedicated to gait evaluation. Results are promising: improvements were recorded at the ankle level, selectively at the affected side, and at the pelvic level, while small changes were measured at the hip and knee joints, which were already comparable to healthy subjects. All these changes also conveyed advances in the symmetry of the walking pattern. In the next future, a longer intervention will be proposed and more children will be enrolled to strongly prove the effectiveness of GRAIL in the rehabilitation of children with ABI.

  5. Effects of Wearable Sensor-Based Balance and Gait Training on Balance, Gait, and Functional Performance in Healthy and Patient Populations: A Systematic Review and Meta-Analysis of Randomized Controlled Trials.

    PubMed

    Gordt, Katharina; Gerhardy, Thomas; Najafi, Bijan; Schwenk, Michael

    2018-01-01

    Wearable sensors (WS) can accurately measure body motion and provide interactive feedback for supporting motor learning. This review aims to summarize current evidence for the effectiveness of WS training for improving balance, gait and functional performance. A systematic literature search was performed in PubMed, Cochrane, Web of Science, and CINAHL. Randomized controlled trials (RCTs) using a WS exercise program were included. Study quality was examined by the PEDro scale. Meta-analyses were conducted to estimate the effects of WS balance training on the most frequently reported outcome parameters. Eight RCTs were included (Parkinson n = 2, stroke n = 1, Parkinson/stroke n = 1, peripheral neuropathy n = 2, frail older adults n = 1, healthy older adults n = 1). The sample size ranged from n = 20 to 40. Three types of training paradigms were used: (1) static steady-state balance training, (2) dynamic steady-state balance training, which includes gait training, and (3) proactive balance training. RCTs either used one type of training paradigm (type 2: n = 1, type 3: n = 3) or combined different types of training paradigms within their intervention (type 1 and 2: n = 2; all types: n = 2). The meta-analyses revealed significant overall effects of WS training on static steady-state balance outcomes including mediolateral (eyes open: Hedges' g = 0.82, CI: 0.43-1.21; eyes closed: g = 0.57, CI: 0.14-0.99) and anterior-posterior sway (eyes open: g = 0.55, CI: 0.01-1.10; eyes closed: g = 0.44, CI: 0.02-0.86). No effects on habitual gait speed were found in the meta-analysis (g = -0.19, CI: -0.68 to 0.29). Two RCTs reported significant improvements for selected gait variables including single support time, and fast gait speed. One study identified effects on proactive balance (Alternate Step Test), but no effects were found for the Timed Up and Go test and the Berg Balance Scale. Two studies reported positive results on feasibility and usability. Only one study was

  6. Effectiveness of Rehabilitation Interventions to Improve Gait Speed in Children With Cerebral Palsy: Systematic Review and Meta-analysis

    PubMed Central

    Bodkin, Amy Winter; Bjornson, Kristie; Hobbs, Amy; Soileau, Mallary; Lahasky, Kay

    2016-01-01

    Background Children with cerebral palsy (CP) have decreased gait speeds, which can negatively affect their community participation and quality of life. However, evidence for effective rehabilitation interventions to improve gait speed remains unclear. Purpose The purpose of this study was to determine the effectiveness of interventions for improving gait speed in ambulatory children with CP. Data Sources MEDLINE/PubMed, CINAHL, ERIC, and PEDro were searched from inception through April 2014. Study Selection The selected studies were randomized controlled trials or had experimental designs with a comparison group, included a physical therapy or rehabilitation intervention for children with CP, and reported gait speed as an outcome measure. Data Extraction Methodological quality was assessed by PEDro scores. Means, standard deviations, and change scores for gait speed were extracted. General study information and dosing parameters (frequency, duration, intensity, and volume) of the intervention were recorded. Data Synthesis Twenty-four studies were included. Three categories of interventions were identified: gait training (n=8), resistance training (n=9), and miscellaneous (n=7). Meta-analysis showed that gait training was effective in increasing gait speed, with a standardized effect size of 0.92 (95% confidence interval=0.19, 1.66; P=.01), whereas resistance training was shown to have a negligible effect (effect size=0.06; 95% confidence interval=−0.12, 0.25; P=.51). Effect sizes from negative to large were reported for studies in the miscellaneous category. Limitations Gait speed was the only outcome measure analyzed. Conclusions Gait training was the most effective intervention in improving gait speed for ambulatory children with CP. Strength training, even if properly dosed, was not shown to be effective in improving gait speed. Velocity training, electromyographic biofeedback training, and whole-body vibration were effective in improving gait speed in

  7. An innovative training program based on virtual reality and treadmill: effects on gait of persons with multiple sclerosis.

    PubMed

    Peruzzi, Agnese; Zarbo, Ignazio Roberto; Cereatti, Andrea; Della Croce, Ugo; Mirelman, Anat

    2017-07-01

    In this single blind randomized controlled trial, we examined the effect of a virtual reality-based training on gait of people with multiple sclerosis. Twenty-five individuals with multiple sclerosis with mild to moderate disability were randomly assigned to either the control group (n = 11) or the experimental group (n = 14). The subjects in the control group received treadmill training. Subjects in the experimental group received virtual reality based treadmill training. Clinical measures and gait parameters were evaluated. Subjects in both the groups significantly improved the walking endurance and speed, cadence and stride length, lower limb joint ranges of motion and powers, during single and dual task gait. Moreover, subjects in the experimental group also improved balance, as indicated by the results of the clinical motor tests (p < 0.05). Between-group comparisons revealed that the experimental group improved significantly more than control group in hip range of motion and hip generated power at terminal stance at post-training. Our results support the perceived benefits of training programs that incorporate virtual reality to improve gait measures in individuals with multiple sclerosis. Implication of rehabilitation Gait deficits are common in multiple sclerosis (85%) and worsen during dual task activities. Intensive and progressive treadmill training, with and without virtual reality, is effective on dual task gait in persons with multiple sclerosis. Virtual reality-based treadmill training requiring obstacle negotiation increases the range of motion and the power generated at the hip, consequently allowing longer stride length and, consequently, higher gait speed.

  8. Clinical usefulness of the virtual reality-based postural control training on the gait ability in patients with stroke.

    PubMed

    Park, Yu-Hyung; Lee, Chi-Ho; Lee, Byoung-Hee

    2013-01-01

    This study is a single blind randomized controlled trial to determine the effect of virtual reality-based postural control training on the gait ability in patients with chronic stroke. Sixteen subjects were randomly assigned to either experimental group (VR, n= 8) or control group (CPT, n= 8). Subjects in both groups received conventional physical therapy for 60 min per day, five days per week during a period of four weeks. Subjects in the VR group received additional augmented reality-based training for 30 min per day, three days per week during a period of four weeks. The subjects were evaluated one week before and after participating in a four week training and follow-up at one month post-training. Data derived from the gait analyses included spatiotemporal gait parameters, 10 meters walking test (10 mWT). In the gait parameters, subjects in the VR group showed significant improvement, except for cadence at post-training and follow-up within the experimental group. However, no obvious significant improvement was observed within the control group. In between group comparisons, the experimental group (VR group) showed significantly greater improvement only in stride length compared with the control group (P< 0.05), however, no significant difference was observed in other gait parameters. In conclusion, we demonstrate significant improvement in gait ability in chronic stroke patients who received virtual reality based postural control training. These findings suggest that virtual reality (VR) postural control training using real-time information may be a useful approach for enhancement of gait ability in patients with chronic stroke.

  9. Office management of gait disorders in the elderly

    PubMed Central

    Lam, Robert

    2011-01-01

    Abstract Objective To provide family physicians with an approach to office management of gait disorders in the elderly. Sources of information Ovid MEDLINE was searched from 1950 to July 2010 using subject headings for gait or neurologic gait disorders combined with physical examination. Articles specific to family practice or family physicians were selected. Relevant review articles and original research were used when appropriate and applicable to the elderly. Main message Gait and balance disorders in the elderly are difficult to recognize and diagnose in the family practice setting because they initially present with subtle undifferentiated manifestations, and because causes are usually multifactorial, with multiple diseases developing simultaneously. To further complicate the issue, these manifestations can be camouflaged in elderly patients by the physiologic changes associated with normal aging. A classification of gait disorders based on sensorimotor levels can be useful in the approach to management of this problem. Gait disorders in patients presenting to family physicians in the primary care setting are often related to joint and skeletal problems (lowest-level disturbances), as opposed to patients referred to neurology specialty clinics with sensory ataxia, myelopathy, multiple strokes, and parkinsonism (lowest-, middle-, and highest-level disturbances). The difficulty in diagnosing gait disorders stems from the challenge of addressing early undifferentiated disease caused by multiple disease processes involving all sensorimotor levels. Patients might present with a nonspecific “cautious” gait that is simply an adaptation of the body to disease limitations. This cautious gait has a mildly flexed posture with reduced arm swing and a broadening of the base of support. This article reviews the focused history (including medication review), practical physical examination, investigations, and treatments that are key to office management of gait disorders

  10. Office management of gait disorders in the elderly.

    PubMed

    Lam, Robert

    2011-07-01

    To provide family physicians with an approach to office management of gait disorders in the elderly. Ovid MEDLINE was searched from 1950 to July 2010 using subject headings for gait or neurologic gait disorders combined with physical examination. Articles specific to family practice or family physicians were selected. Relevant review articles and original research were used when appropriate and applicable to the elderly. Gait and balance disorders in the elderly are difficult to recognize and diagnose in the family practice setting because they initially present with subtle undifferentiated manifestations, and because causes are usually multifactorial, with multiple diseases developing simultaneously. To further complicate the issue, these manifestations can be camouflaged in elderly patients by the physiologic changes associated with normal aging. A classification of gait disorders based on sensorimotor levels can be useful in the approach to management of this problem. Gait disorders in patients presenting to family physicians in the primary care setting are often related to joint and skeletal problems (lowest-level disturbances), as opposed to patients referred to neurology specialty clinics with sensory ataxia, myelopathy, multiple strokes, and parkinsonism (lowest-, middle-, and highest-level disturbances). The difficulty in diagnosing gait disorders stems from the challenge of addressing early undifferentiated disease caused by multiple disease processes involving all sensorimotor levels. Patients might present with a nonspecific "cautious" gait that is simply an adaptation of the body to disease limitations. This cautious gait has a mildly flexed posture with reduced arm swing and a broadening of the base of support. This article reviews the focused history (including medication review), practical physical examination, investigations, and treatments that are key to office management of gait disorders. Family physicians will find it helpful to classify gait

  11. Robot-assisted gait training versus treadmill training in patients with Parkinson’s disease: a kinematic evaluation with gait profile score

    PubMed Central

    Galli, Manuela; Cimolin, Veronica; De Pandis, Maria Francesca; Le Pera, Domenica; Sova, Ivan; Albertini, Giorgio; Stocchi, Fabrizio; Franceschini, Marco

    2016-01-01

    Summary The purpose of this study was to quantitatively compare the effects, on walking performance, of end-effector robotic rehabilitation locomotor training versus intensive training with a treadmill in Parkinson’s disease (PD). Fifty patients with PD were randomly divided into two groups: 25 were assigned to the robot-assisted therapy group (RG) and 25 to the intensive treadmill therapy group (IG). They were evaluated with clinical examination and 3D quantitative gait analysis [gait profile score (GPS) and its constituent gait variable scores (GVSs) were calculated from gait analysis data] at the beginning (T0) and at the end (T1) of the treatment. In the RG no differences were found in the GPS, but there were significant improvements in some GVSs (Pelvic Obl and Hip Ab-Add). The IG showed no statistically significant changes in either GPS or GVSs. The end-effector robotic rehabilitation locomotor training improved gait kinematics and seems to be effective for rehabilitation in patients with mild PD. PMID:27678210

  12. Quantification of human motion: gait analysis-benefits and limitations to its application to clinical problems.

    PubMed

    Simon, Sheldon R

    2004-12-01

    The technology supporting the analysis of human motion has advanced dramatically. Past decades of locomotion research have provided us with significant knowledge about the accuracy of tests performed, the understanding of the process of human locomotion, and how clinical testing can be used to evaluate medical disorders and affect their treatment. Gait analysis is now recognized as clinically useful and financially reimbursable for some medical conditions. Yet, the routine clinical use of gait analysis has seen very limited growth. The issue of its clinical value is related to many factors, including the applicability of existing technology to addressing clinical problems; the limited use of such tests to address a wide variety of medical disorders; the manner in which gait laboratories are organized, tests are performed, and reports generated; and the clinical understanding and expectations of laboratory results. Clinical use is most hampered by the length of time and costs required for performing a study and interpreting it. A "gait" report is lengthy, its data are not well understood, and it includes a clinical interpretation, all of which do not occur with other clinical tests. Current biotechnology research is seeking to address these problems by creating techniques to capture data rapidly, accurately, and efficiently, and to interpret such data by an assortment of modeling, statistical, wave interpretation, and artificial intelligence methodologies. The success of such efforts rests on both our technical abilities and communication between engineers and clinicians.

  13. Detecting free-living steps and walking bouts: validating an algorithm for macro gait analysis.

    PubMed

    Hickey, Aodhán; Del Din, Silvia; Rochester, Lynn; Godfrey, Alan

    2017-01-01

    Research suggests wearables and not instrumented walkways are better suited to quantify gait outcomes in clinic and free-living environments, providing a more comprehensive overview of walking due to continuous monitoring. Numerous validation studies in controlled settings exist, but few have examined the validity of wearables and associated algorithms for identifying and quantifying step counts and walking bouts in uncontrolled (free-living) environments. Studies which have examined free-living step and bout count validity found limited agreement due to variations in walking speed, changing terrain or task. Here we present a gait segmentation algorithm to define free-living step count and walking bouts from an open-source, high-resolution, accelerometer-based wearable (AX3, Axivity). Ten healthy participants (20-33 years) wore two portable gait measurement systems; a wearable accelerometer on the lower-back and a wearable body-mounted camera (GoPro HERO) on the chest, for 1 h on two separate occasions (24 h apart) during free-living activities. Step count and walking bouts were derived for both measurement systems and compared. For all participants during a total of almost 20 h of uncontrolled and unscripted free-living activity data, excellent relative (rho  ⩾  0.941) and absolute (ICC (2,1)   ⩾  0.975) agreement with no presence of bias were identified for step count compared to the camera (gold standard reference). Walking bout identification showed excellent relative (rho  ⩾  0.909) and absolute agreement (ICC (2,1)   ⩾  0.941) but demonstrated significant bias. The algorithm employed for identifying and quantifying steps and bouts from a single wearable accelerometer worn on the lower-back has been demonstrated to be valid and could be used for pragmatic gait analysis in prolonged uncontrolled free-living environments.

  14. Gait Profile Score in multiple sclerosis patients with low disability.

    PubMed

    Morel, Eric; Allali, Gilles; Laidet, Magali; Assal, Frédéric; Lalive, Patrice H; Armand, Stéphane

    2017-01-01

    Gait abnormalities are subtle in multiple sclerosis (MS) patients with low disability and need to be better determined. As a biomechanical approach, the Gait Profile Score (GPS) is used to assess gait quality by combining nine gait kinematic variables in one single value. This study aims i) to establish if the GPS can detect gait impairments and ii) to compare GPS with discrete spatiotemporal and kinematic parameters in low-disabled MS patients. Thirty-four relapsing-remitting MS patients with an Expanded Disability Status Scale (EDSS) score ≤2 (mean age 36.32±8.72 years; 12 men, 22 women; mean EDSS 1.19±0.8) and twenty-two healthy controls (mean age 36.85±7.87 years; 6 men, 16 women) matched for age, weight, height, body mass index and gender underwent an instrumented gait analysis. No significant difference in GPS values and in spatiotemporal parameters was found between patients and controls. However patients showed a significant alteration at the ankle and pelvis level. GPS fails to identify gait abnormalities in low-disabled MS patients, although kinematic analysis revealed subtle gait alterations. Future studies should investigate other methods to assess gait impairments with a gait score in low-disabled MS patients. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Emotional state affects gait initiation in individuals with Parkinson’s disease

    PubMed Central

    Hass, Chris J.; Bowers, Dawn; Janelle, Christopher M.

    2013-01-01

    The purpose of the present study was to determine the impact of manipulating emotional state on gait initiation in persons with Parkinson’s disease (PD) and healthy older adults. Following the presentation of pictures that are known to elicit specific emotional responses, participants initiated gait and continued to walk for several steps at their normal pace. Reaction time, the displacement and velocity of the center of pressure (COP) trajectory during the preparatory postural adjustments, and length and velocity of the first two steps were measured. Analysis of the gait initiation measures revealed that exposure to (1) threatening pictures, relative to all other pictures, speeded the initiation of gait for PD patients and healthy older adults; (2) approach-oriented emotional pictures (erotic and happy people), relative to withdrawal-oriented pictures, facilitated the anticipatory postural adjustments of gait initiation for PD patients and healthy older adults, as evidenced by greater displacement and velocity of the COP movement; and (3) emotional pictures modulated gait initiation parameters in PD patients to the same degree as in healthy older adults. Collectively, these findings hold significant implications for understanding the circuitry underlying the manner by which emotions modulate movement and for the development of emotion-based interventions designed to maximize improvements in gait initiation for individuals with PD. PMID:22194236

  16. Validation of a commercial inertial sensor system for spatiotemporal gait measurements in children.

    PubMed

    Lanovaz, Joel L; Oates, Alison R; Treen, Tanner T; Unger, Janelle; Musselman, Kristin E

    2017-01-01

    Although inertial sensor systems are becoming a popular tool for gait analysis in both healthy and pathological adult populations, there are currently no data on the validity of these systems for use with children. The purpose of this study was to validate spatiotemporal data from a commercial inertial sensor system (MobilityLab) in typically-developing children. Data from 10 children (5 males; 3.0-8.3 years, mean=5.1) were collected simultaneously from MobilityLab and 3D motion capture during gait at self-selected and fast walking speeds. Spatiotemporal parameters were compared between the two methods using a Bland-Altman method. The results indicate that, while the temporal gait measurements were similar between the two systems, MobilityLab demonstrated a consistent bias with respect to measurement of the spatial data (stride length). This error is likely due to differences in relative leg length and gait characteristics in children compared to the MobilityLab adult reference population used to develop the stride length algorithm. A regression-based equation was developed based on the current data to correct the MobilityLab stride length output. The correction was based on leg length, stride time, and shank range-of-motion, each of which were independently associated with stride length. Once the correction was applied, all of the spatiotemporal parameters evaluated showed good agreement. The results of this study indicate that MobilityLab is a valid tool for gait analysis in typically-developing children. Further research is needed to determine the efficacy of this system for use in children suffering from pathologies that impact gait mechanics. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Quadrupedal rodent gait compensations in a low dose monoiodoacetate model of osteoarthritis.

    PubMed

    Lakes, Emily H; Allen, Kyle D

    2018-06-01

    Rodent gait analysis provides robust, quantitative results for preclinical musculoskeletal and neurological models. In prior work, surgical models of osteoarthritis have been found to result in a hind limb shuffle-stepping gait compensation, while a high dose monoiodoacetate (MIA, 3 mg) model resulted in a hind limb antalgic gait. However, it is unknown whether the antalgic gait caused by MIA is associated with severity of degeneration from the high dosage or the whole-joint degeneration associated with glycolysis inhibition. This study evaluates rodent gait changes resulting from a low dose, 1 mg unilateral intra-articular injection of MIA compared to saline injected and naïve rats. Spatiotemporal and dynamic gait parameters were collected from a total of 42 male Lewis rats spread across 3 time points: 1, 2, and 4 weeks post-injection. To provide a detailed analysis of this low dose MIA model, gait analysis was used to uniquely quantify both fore and hind limb gait parameters. Our data indicate that 1 mg of MIA caused relatively minor degeneration and a shuffle-step gait compensation, similar to the compensation observed in prior surgical models. These data from a 1 mg MIA model show a different gait compensation compared to a previously studied 3 mg model. This 1 mg MIA model resulted in gait compensations more similar to a previously studied surgical model of osteoarthritis. Additionally, this study provides detailed 4 limb analysis of rodent gait that includes spatiotemporal and dynamic data from the same gait trial. These data highlight the importance of measuring dynamic data in combination with spatiotemporal data, since compensatory gait patterns may not be captured by spatial, temporal, or dynamic characterizations alone. Copyright © 2018 Elsevier B.V. All rights reserved.

  18. Gait pattern of severely disabled hemiparetic subjects on a new controlled gait trainer as compared to assisted treadmill walking with partial body weight support.

    PubMed

    Hesse, S; Uhlenbrock, D; Sarkodie-Gyan, T

    1999-10-01

    To investigate to what extent and with how much therapeutic effort nonambulatory stroke patients could train a gait-like movement on a newly developed, machine-supported gait trainer. Open study comparing the movement on the gait trainer with assisted walking on the treadmill. Motion analysis laboratory of a rehabilitation centre. Fourteen chronic, nonambulatory hemiparetic patients. Complex gait analysis while training on the gait trainer and while walking on the treadmill. Gait kinematics, kinesiological EMG of several lower limb muscles and the required assistance. Patients could train a gait-like movement on the gait trainer, characterized kinematically by a perfect symmetry, larger hip extension during stance, less knee flexion and less ankle plantar flexion during swing as compared to treadmill walking (p <0.01). The pattern and amount of activation of relevant weight-bearing muscles was comparable with an even larger activation of the M. biceps femoris on the gait trainer (p <0.01). The tibialis anterior muscle of the nonaffected side, however, was less activated during swing (p <0.01). Two therapists assisted walking on the treadmill while only one therapist was necessary to help with weight shifting on the new device. The newly developed gait trainer offered severely disabled hemiparetic subjects the possibility of training a gait-like, highly symmetrical movement with a favourable facilitation of relevant anti-gravity muscles. At the same time, the effort required of the therapists was reduced.

  19. A Pilot Study of Gait Function in Farmworkers in Eastern North Carolina.

    PubMed

    Nguyen, Ha T; Kritchevsky, Stephen B; Foxworth, Judy L; Quandt, Sara A; Summers, Phillip; Walker, Francis O; Arcury, Thomas A

    2015-01-01

    Farmworkers endure many job-related hazards, including fall-related work injuries. Gait analysis may be useful in identifying potential fallers. The goal of this pilot study was to explore differences in gait between farmworkers and non-farmworkers. The sample included 16 farmworkers and 24 non-farmworkers. Gait variables were collected using the portable GAITRite system, a 16-foot computerized walkway. Generalized linear regression models were used to examine group differences. All models were adjusted for two established confounders, age and body mass index. There were no significant differences in stride length, step length, double support time, and base of support; but farmworkers had greater irregularity of stride length (P = .01) and step length (P = .08). Farmworkers performed significantly worse on gait velocity (P = .003) and cadence (P < .001) relative to non-farmworkers. We found differences in gait function between farmworkers and non-farmworkers. These findings suggest that measuring gait with a portable walkway system is feasible and informative in farmworkers and may possibly be of use in assessing fall risk.

  20. Spatio-temporal gait disorder and gait fatigue index in a six-minute walk test in women with fibromyalgia.

    PubMed

    Heredia-Jimenez, Jose; Latorre-Roman, Pedro; Santos-Campos, Maria; Orantes-Gonzalez, Eva; Soto-Hermoso, Victor M

    2016-03-01

    Gait disorders in fibromyalgia patients affect several gait parameters and different muscle recruitment patterns. The aim of this study was to assess the gait differences observed during a six-minute walk test between fibromyalgia patients and healthy controls. Forty-eight women with fibromyalgia and 15 healthy women were evaluated. Fibromyalgia patients met the American College of Rheumatology criteria for fibromyalgia selected of an ambulatory care. Both patients and controls had a negative history of musculoskeletal disease, neurological disorders, and gait abnormalities. The 15 controls were healthy women matched to the patients in age, height and body weight. Spatio-temporal gait variables and the rate of perceived exertion during the six-minute walk test (all subjects) and Fibromyalgia Impact Questionnaire (fibromyalgia subjects) were evaluated. All walking sets on the GaitRITE were collected and the gait variables were selected at three stages during the six-minute walk test: two sets at the beginning, two sets at 3 min and two sets at the end of the test. In addition, the Fibromyalgia Impact Questionnaire was used for the fibromyalgia patients. Fibromyalgia patients showed a significant decrease in all spatio-temporal gait variables at each of the three stages and had a lower walk distance covered in the six-minute walk test and higher rate of perceived exertion. No correlations were found between the Fibromyalgia Impact Questionnaire and gait variables. The fibromyalgia and control subjects showed lower gait fatigue indices between the middle and last stages. Gait analysis during a six-minute walk test is a good tool to assess the fatigue and physical symptoms of patients with fibromyalgia. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Android Platform for Realtime Gait Tracking Using Inertial Measurement Units.

    PubMed

    Aqueveque, Pablo; Sobarzo, Sergio; Saavedra, Francisco; Maldonado, Claudio; Gómez, Britam

    2016-06-13

    One of the most important movements performed by the humans is gait. Biomechanical Gait analysis is usually by optical capture systems. However, such systems are expensive and sensitive to light and obstacles. In order to reduce those costs a system based on Inertial Measurements Units (IMU) is proposed. IMU are a good option to make movement analisys indoor with a low post-processing data, allowing to connect those systems to an Android platform. The design is based on two elements: a) The IMU sensors and the b) Android device. The IMU sensor is simple, small (35 x 35 mm), portable and autonomous (7.8 hrs). A resolution of 0.01° in their measurements is obtained, and sends data via Bluetooth link. The Android application works for Android 4.2 or higher, and it is compatible with Bluetooth devices 2.0 or higher. Three IMU sensors send data to a Tablet wirelessly, in order to evaluate the angles evolution for each joint of the leg (hip, knee and ankle). This information is used to calculate gait index and evaluate the gait quality online during the physical therapist is working with the patient.

  2. Extraction and Classification of Human Gait Features

    NASA Astrophysics Data System (ADS)

    Ng, Hu; Tan, Wooi-Haw; Tong, Hau-Lee; Abdullah, Junaidi; Komiya, Ryoichi

    In this paper, a new approach is proposed for extracting human gait features from a walking human based on the silhouette images. The approach consists of six stages: clearing the background noise of image by morphological opening; measuring of the width and height of the human silhouette; dividing the enhanced human silhouette into six body segments based on anatomical knowledge; applying morphological skeleton to obtain the body skeleton; applying Hough transform to obtain the joint angles from the body segment skeletons; and measuring the distance between the bottom of right leg and left leg from the body segment skeletons. The angles of joints, step-size together with the height and width of the human silhouette are collected and used for gait analysis. The experimental results have demonstrated that the proposed system is feasible and achieved satisfactory results.

  3. A Personalized Multi-Channel FES Controller Based on Muscle Synergies to Support Gait Rehabilitation after Stroke.

    PubMed

    Ferrante, Simona; Chia Bejarano, Noelia; Ambrosini, Emilia; Nardone, Antonio; Turcato, Anna M; Monticone, Marco; Ferrigno, Giancarlo; Pedrocchi, Alessandra

    2016-01-01

    It has been largely suggested in neuroscience literature that to generate a vast variety of movements, the Central Nervous System (CNS) recruits a reduced set of coordinated patterns of muscle activities, defined as muscle synergies. Recent neurophysiological studies have recommended the analysis of muscle synergies to finely assess the patient's impairment, to design personalized interventions based on the specific nature of the impairment, and to evaluate the treatment outcomes. In this scope, the aim of this study was to design a personalized multi-channel functional electrical stimulation (FES) controller for gait training, integrating three novel aspects: (1) the FES strategy was based on healthy muscle synergies in order to mimic the neural solutions adopted by the CNS to generate locomotion; (2) the FES strategy was personalized according to an initial locomotion assessment of the patient and was designed to specifically activate the impaired biomechanical functions; (3) the FES strategy was mapped accurately on the altered gait kinematics providing a maximal synchronization between patient's volitional gait and stimulation patterns. The novel intervention was tested on two chronic stroke patients. They underwent a 4-week intervention consisting of 30-min sessions of FES-supported treadmill walking three times per week. The two patients were characterized by a mild gait disability (walking speed > 0.8 m/s) at baseline. However, before treatment both patients presented only three independent muscle synergies during locomotion, resembling two different gait abnormalities. After treatment, the number of extracted synergies became four and they increased their resemblance with the physiological muscle synergies, which indicated a general improvement in muscle coordination. The originally merged synergies seemed to regain their distinct role in locomotion control. The treatment benefits were more evident for one patient, who achieved a clinically important change

  4. A Personalized Multi-Channel FES Controller Based on Muscle Synergies to Support Gait Rehabilitation after Stroke

    PubMed Central

    Ferrante, Simona; Chia Bejarano, Noelia; Ambrosini, Emilia; Nardone, Antonio; Turcato, Anna M.; Monticone, Marco; Ferrigno, Giancarlo; Pedrocchi, Alessandra

    2016-01-01

    It has been largely suggested in neuroscience literature that to generate a vast variety of movements, the Central Nervous System (CNS) recruits a reduced set of coordinated patterns of muscle activities, defined as muscle synergies. Recent neurophysiological studies have recommended the analysis of muscle synergies to finely assess the patient's impairment, to design personalized interventions based on the specific nature of the impairment, and to evaluate the treatment outcomes. In this scope, the aim of this study was to design a personalized multi-channel functional electrical stimulation (FES) controller for gait training, integrating three novel aspects: (1) the FES strategy was based on healthy muscle synergies in order to mimic the neural solutions adopted by the CNS to generate locomotion; (2) the FES strategy was personalized according to an initial locomotion assessment of the patient and was designed to specifically activate the impaired biomechanical functions; (3) the FES strategy was mapped accurately on the altered gait kinematics providing a maximal synchronization between patient's volitional gait and stimulation patterns. The novel intervention was tested on two chronic stroke patients. They underwent a 4-week intervention consisting of 30-min sessions of FES-supported treadmill walking three times per week. The two patients were characterized by a mild gait disability (walking speed > 0.8 m/s) at baseline. However, before treatment both patients presented only three independent muscle synergies during locomotion, resembling two different gait abnormalities. After treatment, the number of extracted synergies became four and they increased their resemblance with the physiological muscle synergies, which indicated a general improvement in muscle coordination. The originally merged synergies seemed to regain their distinct role in locomotion control. The treatment benefits were more evident for one patient, who achieved a clinically important change

  5. Combining Gait Speed and Recall Memory to Predict Survival in Late Life: Population-Based Study

    PubMed Central

    Marengoni, Alessandra; Bandinelli, Stefania; Maietti, Elisa; Guralnik, Jack; Zuliani, Giovanni; Ferrucci, Luigi; Volpato, Stefano

    2017-01-01

    OBJECTIVES To evaluate the relationship between gait speed, recall memory, and mortality. DESIGN A cohort study (last follow-up December 2009). SETTING Tuscany, Italy. PARTICIPANTS Individual data from 1,014 community-dwelling older adults aged 60 years or older with baseline gait speed and recall memory measurements and follow-up for a median time of 9.10 (IQR 7.1;9.3) years. Participants were a mean (SD) age of 73.9 (7.3) years, and 55.8% women. Participants walking faster than 0.8 m/s were defined as fast walkers; good recall memory was defined as a score of 2 or 3 in the 3-word delayed recall section of the Mini-Mental State Examination. MEASUREMENTS All-cause mortality. RESULTS There were 302 deaths and the overall 100 person-year death rate was 3.77 (95% CI: 3.37–4.22). Both low gait speed and poor recall memory were associated with mortality when analysed separately (HR = 2.47; 95% CI: 1.87–3.27 and HR = 1.47; 95% CI: 1.16–1.87, respectively). When we grouped participants according to both recall and gait speed, death rates (100 person-years) progressively increased from those with both good gait speed and memory (2.0; 95% CI: 1.6–2.5), to those with fast walk but poor memory (3.4; 95% CI: 2.8–4.2), to those with slow walk and good memory (8.8; 95% CI: 6.4–12.1), to those with both slow walk and poor memory (13.0; 95% CI: 10.6–16.1). In multivariate analysis, poor memory significantly increases mortality risk among persons with fast gait speed (HR = 1.40; 95% CI: 1.04–1.89). CONCLUSION In older persons, gait speed and recall memory are independent predictors of expected survival. Information on memory function might better stratify mortality risk among persons with fast gait speed. PMID:28029688

  6. Combining Gait Speed and Recall Memory to Predict Survival in Late Life: Population-Based Study.

    PubMed

    Marengoni, Alessandra; Bandinelli, Stefania; Maietti, Elisa; Guralnik, Jack; Zuliani, Giovanni; Ferrucci, Luigi; Volpato, Stefano

    2017-03-01

    To evaluate the relationship between gait speed, recall memory, and mortality. A cohort study (last follow-up December 2009). Tuscany, Italy. Individual data from 1,014 community-dwelling older adults aged 60 years or older with baseline gait speed and recall memory measurements and follow-up for a median time of 9.10 (IQR 7.1;9.3) years. Participants were a mean (SD) age of 73.9 (7.3) years, and 55.8% women. Participants walking faster than 0.8 m/s were defined as fast walkers; good recall memory was defined as a score of 2 or 3 in the 3-word delayed recall section of the Mini-Mental State Examination. All-cause mortality. There were 302 deaths and the overall 100 person-year death rate was 3.77 (95% CI: 3.37-4.22). Both low gait speed and poor recall memory were associated with mortality when analysed separately (HR = 2.47; 95% CI: 1.87-3.27 and HR = 1.47; 95% CI: 1.16-1.87, respectively). When we grouped participants according to both recall and gait speed, death rates (100 person-years) progressively increased from those with both good gait speed and memory (2.0; 95% CI: 1.6-2.5), to those with fast walk but poor memory (3.4; 95% CI: 2.8-4.2), to those with slow walk and good memory (8.8; 95% CI: 6.4-12.1), to those with both slow walk and poor memory (13.0; 95% CI: 10.6-16.1). In multivariate analysis, poor memory significantly increases mortality risk among persons with fast gait speed (HR = 1.40; 95% CI: 1.04-1.89). In older persons, gait speed and recall memory are independent predictors of expected survival. Information on memory function might better stratify mortality risk among persons with fast gait speed. © 2016, Copyright the Authors Journal compilation © 2016, The American Geriatrics Society.

  7. Biomechanics of normal and pathological gait: implications for understanding human locomotor control.

    PubMed

    Winter, D A

    1989-12-01

    The biomechanical (kinetic) analysis of human gait reveals the integrated and detailed motor patterns that are essential in pinpointing the abnormal patterns in pathological gait. In a similar manner, these motor patterns (moments, powers, and EMGs) can be used to identify synergies and to validate theories of CNS control. Based on kinetic and EMG patterns for a wide range of normal subjects and cadences, evidence is presented that both supports and negates the central pattern generator theory of locomotion. Adaptive motor patterns that are evident in peripheral gait pathologies reinforce a strong peripheral rather than a central control. Finally, a three-component subtask theory of human gait is presented and is supported by reference to the motor patterns seen in a normal gait. The identified subtasks are (a) support (against collapse during stance); (b) dynamic balance of the upper body, also during stance; and (c) feedforward control of the foot trajectory to achieve safe ground clearance and a gentle heel contact.

  8. Flexed-knee gait in children with cerebral palsy.

    PubMed

    Church, C; Ge, J; Hager, S; Haumont, T; Lennon, N; Niiler, T; Hulbert, R; Miller, F

    2018-04-01

    Aims The purpose of this study was to evaluate the long-term outcome of adolescents with cerebral palsy who have undergone single-event multilevel surgery for a flexed-knee gait, followed into young adulthood using 3D motion analysis. Patients and Methods A total of 59 young adults with spastic cerebral palsy, with a mean age of 26 years (sd 3), were enrolled into the study in which their gait was compared with an evaluation that had taken place a mean of 12 years (sd 2) previously. At their visits during adolescence, the children walked with excessive flexion of the knee at initial contact and surgical or therapeutic interventions were not controlled between visits. Results Based on the change in flexed-knee gait over approximately ten years, improvements were seen in increased Gait Deviation Index (p < 0.001) and decreased flexion of the knee at initial contact (p < 0.001). Greater popliteal angle (p < 0.001), reduced Gross Motor Function Measure section D (p = 0.006), and reduced speed of gait (p = 0.007) suggested a mild decline in function. Quality-of-life measures showed that these patients fell within normal limits compared with typical young adults in areas other than physical function. Conclusion While some small significant changes were noted, little clinically significant change was seen in function and gait, with gross motor function maintained between adolescence and young adulthood. Cite this article: Bone Joint J 2018;100-B:549-56.

  9. Intra-individual gait patterns across different time-scales as revealed by means of a supervised learning model using kernel-based discriminant regression.

    PubMed

    Horst, Fabian; Eekhoff, Alexander; Newell, Karl M; Schöllhorn, Wolfgang I

    2017-01-01

    Traditionally, gait analysis has been centered on the idea of average behavior and normality. On one hand, clinical diagnoses and therapeutic interventions typically assume that average gait patterns remain constant over time. On the other hand, it is well known that all our movements are accompanied by a certain amount of variability, which does not allow us to make two identical steps. The purpose of this study was to examine changes in the intra-individual gait patterns across different time-scales (i.e., tens-of-mins, tens-of-hours). Nine healthy subjects performed 15 gait trials at a self-selected speed on 6 sessions within one day (duration between two subsequent sessions from 10 to 90 mins). For each trial, time-continuous ground reaction forces and lower body joint angles were measured. A supervised learning model using a kernel-based discriminant regression was applied for classifying sessions within individual gait patterns. Discernable characteristics of intra-individual gait patterns could be distinguished between repeated sessions by classification rates of 67.8 ± 8.8% and 86.3 ± 7.9% for the six-session-classification of ground reaction forces and lower body joint angles, respectively. Furthermore, the one-on-one-classification showed that increasing classification rates go along with increasing time durations between two sessions and indicate that changes of gait patterns appear at different time-scales. Discernable characteristics between repeated sessions indicate continuous intrinsic changes in intra-individual gait patterns and suggest a predominant role of deterministic processes in human motor control and learning. Natural changes of gait patterns without any externally induced injury or intervention may reflect continuous adaptations of the motor system over several time-scales. Accordingly, the modelling of walking by means of average gait patterns that are assumed to be near constant over time needs to be reconsidered in the context of

  10. Hybridization between multi-objective genetic algorithm and support vector machine for feature selection in walker-assisted gait.

    PubMed

    Martins, Maria; Costa, Lino; Frizera, Anselmo; Ceres, Ramón; Santos, Cristina

    2014-03-01

    Walker devices are often prescribed incorrectly to patients, leading to the increase of dissatisfaction and occurrence of several problems, such as, discomfort and pain. Thus, it is necessary to objectively evaluate the effects that assisted gait can have on the gait patterns of walker users, comparatively to a non-assisted gait. A gait analysis, focusing on spatiotemporal and kinematics parameters, will be issued for this purpose. However, gait analysis yields redundant information that often is difficult to interpret. This study addresses the problem of selecting the most relevant gait features required to differentiate between assisted and non-assisted gait. For that purpose, it is presented an efficient approach that combines evolutionary techniques, based on genetic algorithms, and support vector machine algorithms, to discriminate differences between assisted and non-assisted gait with a walker with forearm supports. For comparison purposes, other classification algorithms are verified. Results with healthy subjects show that the main differences are characterized by balance and joints excursion in the sagittal plane. These results, confirmed by clinical evidence, allow concluding that this technique is an efficient feature selection approach. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  11. Comparative gait analysis of ankle arthrodesis and arthroplasty: initial findings of a prospective study.

    PubMed

    Hahn, Michael E; Wright, Elise S; Segal, Ava D; Orendurff, Michael S; Ledoux, William R; Sangeorzan, Bruce J

    2012-04-01

    Little is known about functional outcomes of ankle arthroplasty compared with arthrodesis. This study compared pre-surgical and post-surgical gait measures in both patient groups. Eighteen patients with end-stage ankle arthritis participated in an ongoing longitudinal study (pre-surgery, 12 months post-surgery) involving gait analysis, assessment of pain and physical function. Outcome measures included temporal-distance, kinematic and kinetic data, the Short Form 36 (SF-36) body pain score, and average daily step count. A mixed effects linear model was used to detect effects of surgical group (arthrodesis and arthroplasty, n = 9 each) with walking speed as a covariate (α = 0.05). Both groups were similar in demographics and anthropometrics. Followup time was the same for each group. There were no complications in either group. Pain decreased (p < 0.001) and gait function improved (gait velocity, p = 0.02; stride length, p = 0.035) in both groups. Neither group increased average daily step count. Joint range of motion (ROM) differences were observed between groups after surgery (increased hip ROM in arthrodesis, p = 0.001; increased ankle ROM in arthroplasty, p = 0.036). Peak plantar flexor moment increased in arthrodesis patients and decreased in arthroplasty patients (p = 0.042). Initial findings of this ongoing clinical study indicate pain reduction and improved gait function 12 months after surgery for both treatments. Arthroplasty appears to regain more natural ankle joint function, with increased ROM. Long-term follow up should may reveal more clinically meaningful differences.

  12. Nonlinear analysis of electromyogram following gait training with myoelectrically triggered neuromuscular electrical stimulation in stroke survivors

    NASA Astrophysics Data System (ADS)

    Dutta, Anirban; Khattar, Bhawna; Banerjee, Alakananda

    2012-12-01

    Neuromuscular electrical stimulation (NMES) facilitates ambulatory function after paralysis by activating the muscles of the lower extremities. The NMES-assisted stepping can either be triggered by a heel-switch (switch-trigger), or by an electromyogram (EMG)-based gait event detector (EMG-trigger). The command sources—switch-trigger or EMG-trigger—were presented to each group of six chronic (>6 months post-stroke) hemiplegic stroke survivors. The switch-trigger group underwent transcutaneous NMES-assisted gait training for 1 h, five times a week for 2 weeks, where the stimulation of the tibialis anterior muscle of the paretic limb was triggered with a heel-switch detecting heel-rise of the same limb. The EMG-trigger group underwent transcutaneous NMES-assisted gait training of the same duration and frequency where the stimulation was triggered with surface EMG from medial gastrocnemius (MG) of the paretic limb in conjunction with a heel-switch detecting heel-rise of the same limb. During the baseline and post-intervention surface EMG assessment, a total of 10 s of surface EMG was recorded from bilateral MG muscle while the subjects tried to stand steady on their toes. A nonlinear tool—recurrence quantification analysis (RQA)—was used to analyze the surface EMG. The objective of this study was to find the effect of NMES-assisted gait training with switch-trigger or EMG-trigger on two RQA parameters—the percentage of recurrence (%Rec) and determinism (%Det), which were extracted from surface EMG during fatiguing contractions of the paretic muscle. The experimental results showed that during fatiguing contractions, (1) %Rec and %Det have a higher initial value for paretic muscle than the non-paretic muscle, (2) the rate of change in %Rec and %Det was negative for the paretic muscle but positive for the non-paretic muscle, (3) the rate of change in %Rec and %Det significantly increased from baseline for the paretic muscle after EMG-triggered NMES

  13. Estimation of Temporal Gait Parameters Using a Human Body Electrostatic Sensing-Based Method.

    PubMed

    Li, Mengxuan; Li, Pengfei; Tian, Shanshan; Tang, Kai; Chen, Xi

    2018-05-28

    Accurate estimation of gait parameters is essential for obtaining quantitative information on motor deficits in Parkinson's disease and other neurodegenerative diseases, which helps determine disease progression and therapeutic interventions. Due to the demand for high accuracy, unobtrusive measurement methods such as optical motion capture systems, foot pressure plates, and other systems have been commonly used in clinical environments. However, the high cost of existing lab-based methods greatly hinders their wider usage, especially in developing countries. In this study, we present a low-cost, noncontact, and an accurate temporal gait parameters estimation method by sensing and analyzing the electrostatic field generated from human foot stepping. The proposed method achieved an average 97% accuracy on gait phase detection and was further validated by comparison to the foot pressure system in 10 healthy subjects. Two results were compared using the Pearson coefficient r and obtained an excellent consistency ( r = 0.99, p < 0.05). The repeatability of the purposed method was calculated between days by intraclass correlation coefficients (ICC), and showed good test-retest reliability (ICC = 0.87, p < 0.01). The proposed method could be an affordable and accurate tool to measure temporal gait parameters in hospital laboratories and in patients' home environments.

  14. Gait re-education based on the Bobath concept in two patients with hemiplegia following stroke.

    PubMed

    Lennon, S

    2001-03-01

    This case report describes the use of gait re-education based on the Bobath concept to measure the changes that occurred in the gait of 2 patients with hemiplegia who were undergoing outpatient physical therapy. One patient ("NM"), a 65-year-old woman, was referred for physical therapy 6 weeks following a right cerebrovascular accident. She attended 30 therapy sessions over a 15-week period. The other patient ("SA"), a 71-year-old woman, was referred for physical therapy 7 weeks following a left cerebrovascular accident. She attended 28 therapy sessions over a 19-week period. Clinical indexes of impairment and disability and 3-dimensional gait data were obtained at the start of treatment and at discharge. Therapy was based on the Bobath concept. At discharge, NM demonstrated improvements in her hip and knee movements, reduced tone, and improved mobility. At discharge, SA demonstrated improved mobility. During gait, both patients demonstrated more normal movement patterns at the level of the pelvis, the knee, and the ankle in the sagittal plane. SA also demonstrated an improvement in hip extension. These cases demonstrate that recovery of more normal movement patterns and functional ability can be achieved following a cardiovascular accident and provide insight into the clinical decision making of experienced practitioners using Bobath's concept.

  15. Effects of Rhythmic Auditory Cueing in Gait Rehabilitation for Multiple Sclerosis: A Mini Systematic Review and Meta-Analysis

    PubMed Central

    Ghai, Shashank; Ghai, Ishan

    2018-01-01

    Rhythmic auditory cueing has been shown to enhance gait performance in several movement disorders. The “entrainment effect” generated by the stimulations can enhance auditory motor coupling and instigate plasticity. However, a consensus as to its influence over gait training among patients with multiple sclerosis is still warranted. A systematic review and meta-analysis was carried out to analyze the effects of rhythmic auditory cueing in studies gait performance in patients with multiple sclerosis. This systematic identification of published literature was performed according to PRISMA guidelines, from inception until Dec 2017, on online databases: Web of science, PEDro, EBSCO, MEDLINE, Cochrane, EMBASE, and PROQUEST. Studies were critically appraised using PEDro scale. Of 602 records, five studies (PEDro score: 5.7 ± 1.3) involving 188 participants (144 females/40 males) met our inclusion criteria. The meta-analysis revealed enhancements in spatiotemporal parameters of gait i.e., velocity (Hedge's g: 0.67), stride length (0.70), and cadence (1.0), and reduction in timed 25 feet walking test (−0.17). Underlying neurophysiological mechanisms, and clinical implications are discussed. This present review bridges the gaps in literature by suggesting application of rhythmic auditory cueing in conventional rehabilitation approaches to enhance gait performance in the multiple sclerosis community. PMID:29942278

  16. Insights into gait disorders: walking variability using phase plot analysis, Huntington's disease.

    PubMed

    Collett, Johnny; Esser, Patrick; Khalil, Hanan; Busse, Monica; Quinn, Lori; DeBono, Katy; Rosser, Anne; Nemeth, Andrea H; Dawes, Helen

    2014-09-01

    Huntington's disease (HD) is a progressive inherited neurodegenerative disorder. Identifying sensitive methodologies to quantitatively measure early motor changes have been difficult to develop. This exploratory observational study investigated gait variability and symmetry in HD using phase plot analysis. We measured the walking of 22 controls and 35 HD gene carriers (7 premanifest (PreHD)), 16 early/mid (HD1) and 12 late stage (HD2) in Oxford and Cardiff, UK. The unified Huntington's disease rating scale-total motor scores (UHDRS-TMS) and disease burden scores (DBS) were used to quantify disease severity. Data was collected during a clinical walk test (8.8 or 10 m) using an inertial measurement unit attached to the trunk. The 6 middle strides were used to calculate gait variability determined by spatiotemporal parameters (co-efficient of variation (CoV)) and phase plot analysis. Phase plots considered the variability in consecutive wave forms from vertical movement and were quantified by SDA (spatiotemporal variability), SDB (temporal variability), ratio ∀ (ratio SDA:SDB) and Δangleβ (symmetry). Step time CoV was greater in manifest HD (p<0.01, both manifest groups) than controls, as was stride length CoV for HD2 (p<0.01). No differences were found in spatiotemporal variability between PreHD and controls (p>0.05). Phase plot analysis identified differences between manifest HD and controls for SDB, Ratio ∀ and Δangle (all p<0.01, both manifest groups). Furthermore Ratio ∀ was smaller in PreHD compared with controls (p<0.01). Ratio ∀ also produced the strongest correlation with UHDRS-TMS (r=-0.61, p<0.01) and was correlated with DBS (r=-0.42, p=0.02). Phase plot analysis may be a sensitive method of detecting gait changes in HD and can be performed quickly during clinical walking tests. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Interlimb relation during the double support phase of gait: an electromyographic, mechanical and energy-based analysis.

    PubMed

    Sousa, Andreia S P; Silva, Augusta; Tavares, João Manuel R S

    2013-03-01

    The purpose of this study is to analyse the interlimb relation and the influence of mechanical energy on metabolic energy expenditure during gait. In total, 22 subjects were monitored as to electromyographic activity, ground reaction forces and VO2 consumption (metabolic power) during gait. The results demonstrate a moderate negative correlation between the activity of tibialis anterior, biceps femoris and vastus medialis of the trailing limb during the transition between mid-stance and double support and that of the leading limb during double support for the same muscles, and between these and gastrocnemius medialis and soleus of the trailing limb during double support. Trailing limb soleus during the transition between mid-stance and double support was positively correlated to leading limb tibialis anterior, vastus medialis and biceps femoris during double support. Also, the trailing limb centre of mass mechanical work was strongly influenced by the leading limbs, although only the mechanical power related to forward progression of both limbs was correlated to metabolic power. These findings demonstrate a consistent interlimb relation in terms of electromyographic activity and centre of mass mechanical work, being the relations occurred in the plane of forward progression the more important to gait energy expenditure.

  18. Intra-rater repeatability of gait parameters in healthy adults during self-paced treadmill-based virtual reality walking.

    PubMed

    Al-Amri, Mohammad; Al Balushi, Hilal; Mashabi, Abdulrhman

    2017-12-01

    Self-paced treadmill walking is becoming increasingly popular for the gait assessment and re-education, in both research and clinical settings. Its day-to-day repeatability is yet to be established. This study scrutinised the test-retest repeatability of key gait parameters, obtained from the Gait Real-time Analysis Interactive Lab (GRAIL) system. Twenty-three male able-bodied adults (age: 34.56 ± 5.12 years) completed two separate gait assessments on the GRAIL system, separated by 5 ± 3 days. Key gait kinematic, kinetic, and spatial-temporal parameters were analysed. The Intraclass-Correlation Coefficients (ICC), Standard Error Measurement (SEM), Minimum Detectable Change (MDC), and the 95% limits of agreements were calculated to evaluate the repeatability of these gait parameters. Day-to-day agreements were excellent (ICCs > 0.87) for spatial-temporal parameters with low MDC and SEM values, <0.153 and <0.055, respectively. The repeatability was higher for joint kinetic than kinematic parameters, as reflected in small values of SEM (<0.13 Nm/kg and <3.4°) and MDC (<0.335 Nm/kg and <9.44°). The obtained values of all parameters fell within the 95% limits of agreement. Our findings demonstrate the repeatability of the GRAIL system available in our laboratory. The SEM and MDC values can be used to assist researchers and clinicians to distinguish 'real' changes in gait performance over time.

  19. Gait characteristics and their discriminative power in geriatric patients with and without cognitive impairment.

    PubMed

    Kikkert, Lisette H J; Vuillerme, Nicolas; van Campen, Jos P; Appels, Bregje A; Hortobágyi, Tibor; Lamoth, Claudine J C

    2017-08-15

    A detailed gait analysis (e.g., measures related to speed, self-affinity, stability, and variability) can help to unravel the underlying causes of gait dysfunction, and identify cognitive impairment. However, because geriatric patients present with multiple conditions that also affect gait, results from healthy old adults cannot easily be extrapolated to geriatric patients. Hence, we (1) quantified gait outcomes based on dynamical systems theory, and (2) determined their discriminative power in three groups: healthy old adults, geriatric patients with- and geriatric patients without cognitive impairment. For the present cross-sectional study, 25 healthy old adults recruited from community (65 ± 5.5 years), and 70 geriatric patients with (n = 39) and without (n = 31) cognitive impairment from the geriatric dayclinic of the MC Slotervaart hospital in Amsterdam (80 ± 6.6 years) were included. Participants walked for 3 min during single- and dual-tasking at self-selected speed while 3D trunk accelerations were registered with an IPod touch G4. We quantified 23 gait outcomes that reflect multiple gait aspects. A multivariate model was built using Partial Least Square- Discriminant Analysis (PLS-DA) that best modelled participant group from gait outcomes. For single-task walking, the PLS-DA model consisted of 4 Latent Variables that explained 63 and 41% of the variance in gait outcomes and group, respectively. Outcomes related to speed, regularity, predictability, and stability of trunk accelerations revealed with the highest discriminative power (VIP > 1). A high proportion of healthy old adults (96 and 93% for single- and dual-task, respectively) was correctly classified based on the gait outcomes. The discrimination of geriatric patients with and without cognitive impairment was poor, with 57% (single-task) and 64% (dual-task) of the patients misclassified. While geriatric patients vs. healthy old adults walked slower, and less regular, predictable, and

  20. Self-perceived gait stability modulates the effect of daily life gait quality on prospective falls in older adults.

    PubMed

    Weijer, R H A; Hoozemans, M J M; van Dieën, J H; Pijnappels, M

    2018-05-01

    Quality of gait during daily life activities and perceived gait stability are both independent risk factors for future falls in older adults. We investigated whether perceived gait stability modulates the association between gait quality and falling in older adults. In this prospective cohort study, we used one-week daily-life trunk acceleration data of 272 adults over 65 years of age. Sample entropy (SE) of the 3D acceleration signals was calculated to quantify daily life gait quality. To quantify perceived gait stability, the level of concern about falling was assessed using the Falls Efficacy Scale international (FES-I) questionnaire and step length, estimated from the accelerometer data. A fall calendar was used to record fall incidence during a six-month follow up period. Logistic regression analyses were performed to study the association between falling and SE, step length or FES-I score, and their interactions. High (i.e., poor) SE in vertical direction was significantly associated with falling. FES-I scores significantly modulated this association, whereas step length did not. Subgroup analyses based on FES-I scores showed that high SE in the vertical direction was a risk factor for falls only in older adults who had a high (i.e. poor) FES-I score. In conclusion, perceived gait stability modulates the association between gait quality and falls in older adults such that an association between gait quality and falling is only present when perceived gait stability is poor. The results of the present study indicate that the effectiveness of interventions for fall prevention, aimed at improving gait quality, may be affected by a modulating effect of perceived gait stability. Results indicate that interventions to reduce falls in older adults might sort most effectiveness in populations with both a poor physiological and psychological status. Copyright © 2018 Elsevier B.V. All rights reserved.

  1. Information presentation through a head-worn display (“smart glasses”) has a smaller influence on the temporal structure of gait variability during dual-task gait compared to handheld displays (paper-based system and smartphone)

    PubMed Central

    Sedighi, Alireza; Ulman, Sophia M.

    2018-01-01

    The need to complete multiple tasks concurrently is a common occurrence both daily life and in occupational activities, which can often include simultaneous cognitive and physical demands. As one example, there is increasing availability of head-worn display technologies that can be employed when a user is mobile (e.g., while walking). This new method of information presentation may, however, introduce risks of adverse outcomes such as a decrement to gait performance. The goal of this study was thus to quantify the effects of a head-worn display (i.e., smart glasses) on motor variability during gait and to compare these effects with those of other common information displays (i.e., smartphone and paper-based system). Twenty participants completed four walking conditions, as a single task and in three dual-task conditions (three information displays). In the dual-task conditions, the information display was used to present several cognitive tasks. Three different measures were used to quantify variability in gait parameters for each walking condition (using the cycle-to-cycle standard deviation, sample entropy, and the “goal-equivalent manifold” approach). Our results indicated that participants used less adaptable gait strategies in dual-task walking using the paper-based system and smartphone conditions compared with single-task walking. Gait performance, however, was less affected during dual-task walking with the smart glasses. We conclude that the risk of an adverse gait event (e.g., a fall) in head-down walking conditions (i.e., the paper-based system and smartphone conditions) were higher than in single-task walking, and that head-worn displays might help reduce the risk of such events during dual-task gait conditions. PMID:29630614

  2. Effect of Virtual Reality Training on Balance and Gait Ability in Patients With Stroke: Systematic Review and Meta-Analysis.

    PubMed

    de Rooij, Ilona J M; van de Port, Ingrid G L; Meijer, Jan-Willem G

    2016-12-01

    Virtual reality (VR) training is considered to be a promising novel therapy for balance and gait recovery in patients with stroke. The aim of this study was to conduct a systematic literature review with meta-analysis to investigate whether balance or gait training using VR is more effective than conventional balance or gait training in patients with stroke. A literature search was carried out in the databases PubMed, Embase, MEDLINE, and Cochrane Library up to December 1, 2015. Randomized controlled trials that compared the effect of balance or gait training with and without VR on balance and gait ability in patients with stroke were included. Twenty-one studies with a median PEDro score of 6.0 were included. The included studies demonstrated a significant greater effect of VR training on balance and gait recovery after stroke compared with conventional therapy as indicated with the most frequently used measures: gait speed, Berg Balance Scale, and Timed "Up & Go" Test. Virtual reality was more effective to train gait and balance than conventional training when VR interventions were added to conventional therapy and when time dose was matched. The presence of publication bias and diversity in included studies were limitations of the study. The results suggest that VR training is more effective than balance or gait training without VR for improving balance or gait ability in patients with stroke. Future studies are recommended to investigate the effect of VR on participation level with an adequate follow-up period. Overall, a positive and promising effect of VR training on balance and gait ability is expected. © 2016 American Physical Therapy Association.

  3. Passive in-home measurement of stride-to-stride gait variability comparing vision and Kinect sensing.

    PubMed

    Stone, Erik E; Skubic, Marjorie

    2011-01-01

    We present an analysis of measuring stride-to-stride gait variability passively, in a home setting using two vision based monitoring techniques: anonymized video data from a system of two web-cameras, and depth imagery from a single Microsoft Kinect. Millions of older adults fall every year. The ability to assess the fall risk of elderly individuals is essential to allowing them to continue living safely in independent settings as they age. Studies have shown that measures of stride-to-stride gait variability are predictive of falls in older adults. For this analysis, a set of participants were asked to perform a number of short walks while being monitored by the two vision based systems, along with a marker based Vicon motion capture system for ground truth. Measures of stride-to-stride gait variability were computed using each of the systems and compared against those obtained from the Vicon.

  4. Trunk lean gait decreases multi-segmental coordination in the vertical direction.

    PubMed

    Tokuda, Kazuki; Anan, Masaya; Sawada, Tomonori; Tanimoto, Kenji; Takeda, Takuya; Ogata, Yuta; Takahashi, Makoto; Kito, Nobuhiro; Shinkoda, Koichi

    2017-11-01

    [Purpose] The strategy of trunk lean gait to reduce external knee adduction moment (KAM) may affect multi-segmental synergy control of center of mass (COM) displacement. Uncontrolled manifold (UCM) analysis is an evaluation index to understand motor variability. The purpose of this study was to investigate how motor variability is affected by using UCM analysis on adjustment of the trunk lean angle. [Subjects and Methods] Fifteen healthy young adults walked at their preferred speed under two conditions: normal and trunk lean gait. UCM analysis was performed with respect to the COM displacement during the stance phase. The KAM data were analyzed at the points of the first KAM peak during the stance phase. [Results] The KAM during trunk lean gait was smaller than during normal gait. Despite a greater segmental configuration variance with respect to mediolateral COM displacement during trunk lean gait, the synergy index was not significantly different between the two conditions. The synergy index with respect to vertical COM displacement during trunk lean gait was smaller than that during normal gait. [Conclusion] These results suggest that trunk lean gait is effective in reducing KAM; however, it may decrease multi-segmental movement coordination of COM control in the vertical direction.

  5. Neural substrates of lower extremity motor, balance, and gait function after supratentorial stroke using voxel-based lesion symptom mapping.

    PubMed

    Moon, Hyun Im; Pyun, Sung-Bom; Tae, Woo-Suk; Kwon, Hee Kyu

    2016-07-01

    Stroke impairs motor, balance, and gait function and influences activities of daily living. Understanding the relationship between brain lesions and deficits can help clinicians set goals during rehabilitation. We sought to elucidate the neural substrates of lower extremity motor, balance, and ambulation function using voxel-based lesion symptom mapping (VLSM) in supratentorial stroke patients. We retrospectively screened patients who met the following criteria: first-ever stroke, supratentorial lesion, and available brain magnetic resonance imaging (MRI) data. MRIs of 133 stroke patients were selected for VLSM analysis. We generated statistical maps of lesions related to lower extremity motor (lower extremity Fugl-Meyer assessment, LEFM), balance (Berg Balance Scale, BBS), and gait (Functional Ambulation Category, FAC) using VLSM. VLSM revealed that lower LEFM scores were associated with damage to the bilateral basal ganglia, insula, internal capsule, and subgyral white matter adjacent to the corona radiata. The lesions were more widely distributed in the left than in the right hemisphere, representing motor and praxis function necessary for performing tasks. However, no associations between lesion maps and balance and gait function were established. Motor impairment of the lower extremities was associated with lesions in the basal ganglia, insula, internal capsule, and white matter adjacent to the corona radiata. However, VLSM revealed no specific lesion locations with regard to balance and gait function. This might be because balance and gait are complex skills that require spatial and temporal integration of sensory input and execution of movement patterns. For more accurate prediction, factors other than lesion location need to be investigated.

  6. Validity of the Kinect for Gait Assessment: A Focused Review

    PubMed Central

    Springer, Shmuel; Yogev Seligmann, Galit

    2016-01-01

    Gait analysis may enhance clinical practice. However, its use is limited due to the need for expensive equipment which is not always available in clinical settings. Recent evidence suggests that Microsoft Kinect may provide a low cost gait analysis method. The purpose of this report is to critically evaluate the literature describing the concurrent validity of using the Kinect as a gait analysis instrument. An online search of PubMed, CINAHL, and ProQuest databases was performed. Included were studies in which walking was assessed with the Kinect and another gold standard device, and consisted of at least one numerical finding of spatiotemporal or kinematic measures. Our search identified 366 papers, from which 12 relevant studies were retrieved. The results demonstrate that the Kinect is valid only for some spatiotemporal gait parameters. Although the kinematic parameters measured by the Kinect followed the trend of the joint trajectories, they showed poor validity and large errors. In conclusion, the Kinect may have the potential to be used as a tool for measuring spatiotemporal aspects of gait, yet standardized methods should be established, and future examinations with both healthy subjects and clinical participants are required in order to integrate the Kinect as a clinical gait analysis tool. PMID:26861323

  7. Quantitative method for gait pattern detection based on fiber Bragg grating sensors

    NASA Astrophysics Data System (ADS)

    Ding, Lei; Tong, Xinglin; Yu, Lie

    2017-03-01

    This paper presents a method that uses fiber Bragg grating (FBG) sensors to distinguish the temporal gait patterns in gait cycles. Unlike most conventional methods that focus on electronic sensors to collect those physical quantities (i.e., strains, forces, pressure, displacements, velocity, and accelerations), the proposed method utilizes the backreflected peak wavelength from FBG sensors to describe the motion characteristics in human walking. Specifically, the FBG sensors are sensitive to external strain with the result that their backreflected peak wavelength will be shifted according to the extent of the influence of external strain. Therefore, when subjects walk in different gait patterns, the strains on FBG sensors will be different such that the magnitude of the backreflected peak wavelength varies. To test the reliability of the FBG sensor platform for gait pattern detection, the gold standard method using force-sensitive resistors (FSRs) for defining gait patterns is introduced as a reference platform. The reliability of the FBG sensor platform is determined by comparing the detection results between the FBG sensors and FSRs platforms. The experimental results show that the FBG sensor platform is reliable in gait pattern detection and gains high reliability when compared with the reference platform.

  8. A perceptual map for gait symmetry quantification and pathology detection.

    PubMed

    Moevus, Antoine; Mignotte, Max; de Guise, Jacques A; Meunier, Jean

    2015-10-29

    The gait movement is an essential process of the human activity and the result of collaborative interactions between the neurological, articular and musculoskeletal systems, working efficiently together. This explains why gait analysis is important and increasingly used nowadays for the diagnosis of many different types (neurological, muscular, orthopedic, etc.) of diseases. This paper introduces a novel method to quickly visualize the different parts of the body related to an asymmetric movement in the human gait of a patient for daily clinical usage. The proposed gait analysis algorithm relies on the fact that the healthy walk has (temporally shift-invariant) symmetry properties in the coronal plane. The goal is to provide an inexpensive and easy-to-use method, exploiting an affordable consumer depth sensor, the Kinect, to measure the gait asymmetry and display results in a perceptual way. We propose a multi-dimensional scaling mapping using a temporally shift invariant distance, allowing us to efficiently visualize (in terms of perceptual color difference) the asymmetric body parts of the gait cycle of a subject. We also propose an index computed from this map and which quantifies locally and globally the degree of asymmetry. The proposed index is proved to be statistically significant and this new, inexpensive, marker-less, non-invasive, easy to set up, gait analysis system offers a readable and flexible tool for clinicians to analyze gait characteristics and to provide a fast diagnostic. This system, which estimates a perceptual color map providing a quick overview of asymmetry existing in the gait cycle of a subject, can be easily exploited for disease progression, recovery cues from post-operative surgery (e.g., to check the healing process or the effect of a treatment or a prosthesis) or might be used for other pathologies where gait asymmetry might be a symptom.

  9. Fractal and Multifractal Analysis of Human Gait

    NASA Astrophysics Data System (ADS)

    Muñoz-Diosdado, A.; del Río Correa, J. L.; Angulo-Brown, F.

    2003-09-01

    We carried out a fractal and multifractal analysis of human gait time series of young and old individuals, and adults with three illnesses that affect the march: The Parkinson's and Huntington's diseases and the amyotrophic lateral sclerosis (ALS). We obtained cumulative plots of events, the correlation function, the Hurst exponent and the Higuchi's fractal dimension of these time series and found that these fractal markers could be a factor to characterize the march, since we obtained different values of these quantities for youths and adults and they are different also for healthy and ill persons and the most anomalous values belong to ill persons. In other physiological signals there is complexity lost related with the age and the illness, in the case of the march the opposite occurs. The multifractal analysis could be also a useful tool to understand the dynamics of these and other complex systems.

  10. Markerless identification of key events in gait cycle using image flow.

    PubMed

    Vishnoi, Nalini; Duric, Zoran; Gerber, Naomi Lynn

    2012-01-01

    Gait analysis has been an interesting area of research for several decades. In this paper, we propose image-flow-based methods to compute the motion and velocities of different body segments automatically, using a single inexpensive video camera. We then identify and extract different events of the gait cycle (double-support, mid-swing, toe-off and heel-strike) from video images. Experiments were conducted in which four walking subjects were captured from the sagittal plane. Automatic segmentation was performed to isolate the moving body from the background. The head excursion and the shank motion were then computed to identify the key frames corresponding to different events in the gait cycle. Our approach does not require calibrated cameras or special markers to capture movement. We have also compared our method with the Optotrak 3D motion capture system and found our results in good agreement with the Optotrak results. The development of our method has potential use in the markerless and unencumbered video capture of human locomotion. Monitoring gait in homes and communities provides a useful application for the aged and the disabled. Our method could potentially be used as an assessment tool to determine gait symmetry or to establish the normal gait pattern of an individual.

  11. Assessing the efficacy of perioperative oral carprofen after cranial cruciate surgery using noninvasive, objective pressure platform gait analysis.

    PubMed

    Horstman, Christopher L; Conzemius, Michael G; Evans, Richard; Gordon, Wanda J

    2004-01-01

    To document, using pressure platform gait analysis, the effect of perioperative oral carprofen on limb function and pain after cranial cruciate ligament surgery in dogs. Blinded, prospective clinical investigation. Twenty dogs with naturally occurring unilateral cranial cruciate disease. Physiologic indices, subjective pain scoring, and pressure platform gait analyses were performed before and 24, 48, and 72 hours after surgery. Correlations were assessed between methods of evaluation and the data was compared across treatment groups. No strong correlations were noted between physiologic data, subjective scoring systems, or gait analysis data at a walk or stance. Although average measures of limb function were nearly twice as large in dogs treated with carprofen, no significant differences between groups over time were identified. No significant differences were noted in any other measure of pain or limb function. Power analysis of peak vertical force at a walk indicated that significant difference would have been detected had the number of dogs in each group been increased to 35. When limb function was assessed with pressure platform gait analysis no statistical difference was noted between groups with respect to PVF and VI at a walk or stance, although average ground reaction forces for dogs in the carprofen group were greater than the traditional pain management group at all time points. Oral carprofen appears to provide some benefit for the treatment of postoperative orthopedic pain.

  12. Probabilistic Gait Classification in Children with Cerebral Palsy: A Bayesian Approach

    ERIC Educational Resources Information Center

    Van Gestel, Leen; De Laet, Tinne; Di Lello, Enrico; Bruyninckx, Herman; Molenaers, Guy; Van Campenhout, Anja; Aertbelien, Erwin; Schwartz, Mike; Wambacq, Hans; De Cock, Paul; Desloovere, Kaat

    2011-01-01

    Three-dimensional gait analysis (3DGA) generates a wealth of highly variable data. Gait classifications help to reduce, simplify and interpret this vast amount of 3DGA data and thereby assist and facilitate clinical decision making in the treatment of CP. CP gait is often a mix of several clinically accepted distinct gait patterns. Therefore,…

  13. Gait impairment precedes clinical symptoms in spinocerebellar ataxia type 6.

    PubMed

    Rochester, Lynn; Galna, Brook; Lord, Sue; Mhiripiri, Dadirayi; Eglon, Gail; Chinnery, Patrick F

    2014-02-01

    Spinocerebellar ataxia type 6 (SCA6) is an inherited ataxia with no established treatment. Gait ataxia is a prominent feature causing substantial disability. Understanding the evolution of the gait disturbance is a key step in developing treatment strategies. We studied 9 gait variables in 24 SCA6 (6 presymptomatic; 18 symptomatic) and 24 controls and correlated gait with clinical severity (presymptomatic and symptomatic). Discrete gait characteristics precede symptoms in SCA6 with significantly increased variability of step width and step time, whereas a more global gait deficit was evident in symptomatic individuals. Gait characteristics discriminated between presymptomatic and symptomatic individuals and were selectively associated with disease severity. This is the largest study to include a detailed characterization of gait in SCA6, including presymptomatic subjects, allowing changes across the disease spectrum to be compared. Selective gait disturbance is already present in SCA6 before clinical symptoms appear and gait characteristics are also sensitive to disease progression. Early gait disturbance likely reflects primary pathology distinct from secondary changes. These findings open the opportunity for early evaluation and sensitive measures of therapeutic efficacy using instrumented gait analysis which may have broader relevance for all degenerative ataxias. © 2013 Movement Disorder Society.

  14. Subtle abnormalities of gait detected early in vitamin B6 deficiency in aged and weanling rats with hind leg gait analysis.

    PubMed

    Schaeffer, M C; Cochary, E F; Sadowski, J A

    1990-04-01

    Motor abnormalities have been observed in every species made vitamin B6 deficient, and have been detected and quantified early in vitamin B6 deficiency in young adult female Long-Evans rats with hind leg gait analysis. Our objective was to determine if hind leg gait analysis could be used to detect vitamin B6 deficiency in weanling (3 weeks) and aged (23 months) Fischer 344 male rats. Rats (n = 10 per group) were fed: the control diet ad libitum (AL-CON); the control diet devoid of added pyridoxine hydrochloride (DEF); or the control diet pair-fed to DEF (PF-CON). At 10 weeks, plasma pyridoxal phosphate concentration confirmed deficiency in both age groups. Gait abnormalities were detected in the absence of gross motor disturbances in both aged and weanling DEF rats at 2-3 weeks. Width of step was significantly reduced (16%, p less than 0.003) in DEF aged rats compared to AL- and PF-CON. This pattern of response was similar to that reported previously in young adult rats. In weanling rats, pair feeding alone reduced mean width of step (+/- SEM) by 25% compared to ad libitum feeding (2.7 +/- 0.1 vs 3.6 +/- 0.1 cm for PF- vs AL-CON, respectively, p less than 0.05). In DEF weanling rats, width (3.0 +/- 0.1 cm) was increased compared to PF-CON (11%, p less than 0.05) but decreased compared to AL-CON (16%, p less than 0.05). Width of step was significantly altered early in B6 deficiency in rats of different ages and strains and in both sexes.(ABSTRACT TRUNCATED AT 250 WORDS)

  15. Three-Dimensional Kinematic Gait Analysis of Doberman Pinschers with and without Cervical Spondylomyelopathy

    PubMed Central

    Foss, K.; da Costa, R.C.; Moore, S.

    2014-01-01

    Background The optimal treatment of cervical spondylomyelopathy (CSM) is controversial, with the owner’s and clinician’s perception of gait improvement often being used as outcome measures. These methods are subjective and suffer from observer bias. Objectives To establish kinematic gait parameters utilizing digital motion capture in normal Doberman Pinschers and compare them with CSM-affected Dobermans. Animals Nineteen Doberman Pinschers; 10 clinically normal and 9 with CSM. Methods All dogs were enrolled prospectively and fitted with a Lycra® body suit, and motion capture was performed and used to reconstruct a 3-D stick diagram representation of each dog based on 32 reflective markers, from which several parameters were measured. These included stride duration, length, and height; maximal and minimal spinal angles; elbow and stifle flexion and extension; and maximum and minimum distances between the thoracic and pelvic limbs. A random-effects linear regression model was used to compare parameters between groups. Results Significant differences between groups included smaller minimum (mean = 116 mm; P = .024) and maximum (mean = 184 mm; P = .001) distance between the thoracic limbs in CSM-affected dogs. Additionally, thoracic limb stride duration was also smaller (P = .009) in CSM-affected dogs (mean = 0.7 seconds) when compared with normal dogs (mean = 0.8 seconds). In the pelvic limbs, the average stifle flexion (mean = 100°; P = .048) and extension (mean = 136°; P = .009), as well as number of strides (mean = 2.7 strides; P = .033) were different between groups. Conclusions and Clinical Importance Our findings suggest that computerized gait analysis reveals more consistent kinematic differences in the thoracic limbs, which can be used as future objective outcome measures. PMID:23194100

  16. Gait Planning and Stability Control of a Quadruped Robot

    PubMed Central

    Li, Junmin; Wang, Jinge; Yang, Simon X.; Zhou, Kedong; Tang, Huijuan

    2016-01-01

    In order to realize smooth gait planning and stability control of a quadruped robot, a new controller algorithm based on CPG-ZMP (central pattern generator-zero moment point) is put forward in this paper. To generate smooth gait and shorten the adjusting time of the model oscillation system, a new CPG model controller and its gait switching strategy based on Wilson-Cowan model are presented in the paper. The control signals of knee-hip joints are obtained by the improved multi-DOF reduced order control theory. To realize stability control, the adaptive speed adjustment and gait switch are completed by the real-time computing of ZMP. Experiment results show that the quadruped robot's gaits are efficiently generated and the gait switch is smooth in the CPG control algorithm. Meanwhile, the stability of robot's movement is improved greatly with the CPG-ZMP algorithm. The algorithm in this paper has good practicability, which lays a foundation for the production of the robot prototype. PMID:27143959

  17. Gait Planning and Stability Control of a Quadruped Robot.

    PubMed

    Li, Junmin; Wang, Jinge; Yang, Simon X; Zhou, Kedong; Tang, Huijuan

    2016-01-01

    In order to realize smooth gait planning and stability control of a quadruped robot, a new controller algorithm based on CPG-ZMP (central pattern generator-zero moment point) is put forward in this paper. To generate smooth gait and shorten the adjusting time of the model oscillation system, a new CPG model controller and its gait switching strategy based on Wilson-Cowan model are presented in the paper. The control signals of knee-hip joints are obtained by the improved multi-DOF reduced order control theory. To realize stability control, the adaptive speed adjustment and gait switch are completed by the real-time computing of ZMP. Experiment results show that the quadruped robot's gaits are efficiently generated and the gait switch is smooth in the CPG control algorithm. Meanwhile, the stability of robot's movement is improved greatly with the CPG-ZMP algorithm. The algorithm in this paper has good practicability, which lays a foundation for the production of the robot prototype.

  18. Prevalence and Burden of Gait Disorders in Elderly Men and Women Aged 60–97 Years: A Population-Based Study

    PubMed Central

    Mahlknecht, Philipp; Kiechl, Stefan; Bloem, Bastiaan R.; Willeit, Johann; Scherfler, Christoph; Gasperi, Arno; Rungger, Gregorio; Poewe, Werner; Seppi, Klaus

    2013-01-01

    Background Although gait disorders are common in the elderly, the prevalence and overall burden of these disorders in the general community is not well defined. Methods In a cross-sectional investigation of the population-based Bruneck Study cohort, 488 community-residing elderly aged 60–97 years underwent a thorough neurological assessment including a standardized gait evaluation. Gait disorders were classified according to an accepted scheme and their associations to falls, neuropsychological measures, and quality of life were explored. Results Overall, 32.2% (95% confidence interval [CI] 28.2%–36.4%) of participants presented with impaired gait. Prevalence increased with age (p<0.001), but 38.3% (95%CI 30.1%–47.3%) of the subjects aged 80 years or older still had a normally preserved gait. A total of 24.0% (95%CI 20.4%–28.0%) manifested neurological gait disorders, 17.4% (14.3%–21.0%) non-neurological gait problems, and 9.2% (6.9%–12.1%) a combination of both. While there was no association of neurological gait disorders with gender, non-neurological gait disorders were more frequent in women (p = 0.012). Within the group of neurological gait disorders 69.2% (95%CI 60.3%–76.9%) had a single distinct entity and 30.8% (23.1%–39.7%) had multiple neurological causes for gait impairment. Gait disorders had a significant negative impact on quantitative gait measures, but only neurological gait disorders were associated with recurrent falls (odds ratio 3.3; 95%CI 1.4–7.5; p = 0.005 for single and 7.1; 2.7–18.7; p<0.001 for multiple neurological gait disorders). Finally, we detected a significant association of gait disorders, in particular neurological gait disorders, with depressed mood, cognitive dysfunction, and compromised quality of life. Conclusions Gait disorders are common in the general elderly population and are associated with reduced mobility. Neurological gait disorders in particular are associated with recurrent falls, lower

  19. Clinical Gait Evaluation of Patients with Lumbar Spine Stenosis.

    PubMed

    Sun, Jun; Liu, Yan-Cheng; Yan, Song-Hua; Wang, Sha-Sha; Lester, D Kevin; Zeng, Ji-Zhou; Miao, Jun; Zhang, Kuan

    2018-02-01

    The third generation Intelligent Device for Energy Expenditure and Activity (IDEEA3, MiniSun, CA) has been developed for clinical gait evaluation, and this study was designed to evaluate the accuracy and reliability of IDEEA3 for the gait measurement of lumbar spinal stenosis (LSS) patients. Twelve healthy volunteers were recruited to compare gait cycle, cadence, step length, velocity, and number of steps between a motion analysis system and a high-speed video camera. Twenty hospitalized LSS patients were recruited for the comparison of the five parameters between the IDEEA3 and GoPro camera. Paired t-test, intraclass correlation coefficient, concordance correlation coefficient, and Bland-Altman plots were used for the data analysis. The ratios of GoPro camera results to motion analysis system results, and the ratios of IDEEA3 results to GoPro camera results were all around 1.00. All P-values of paired t-tests for gait cycle, cadence, step length, and velocity were greater than 0.05, while all the ICC and CCC results were above 0.950 with P < 0.001. The measurements for gait cycle, cadence, step length, velocity, and number of steps with the GoPro camera are highly consistent with the measurements with the motion analysis system. The measurements for IDEEA3 are consistent with those for the GoPro camera. IDEEA3 can be effectively used in the gait measurement of LSS patients. © 2018 Chinese Orthopaedic Association and John Wiley & Sons Australia, Ltd.

  20. Unplanned gait termination in individuals with multiple sclerosis.

    PubMed

    Roeing, Kathleen L; Moon, Yaejin; Sosnoff, Jacob J

    2017-03-01

    Despite the pervasive nature of gait impairment in multiple sclerosis (MS), there is limited information concerning the control of gait termination in individuals with MS. The purpose of this investigation was to examine unplanned gait termination with and without cognitive distractors in individuals with MS compared to healthy controls. Thirty-one individuals with MS and 14 healthy controls completed a series of unplanned gait termination tasks over a pressure sensitive walkway under distracting and non-distracting conditions. Individuals with MS were further broken down into groups based on assistive device use: (no assistive device (MS noAD ) n=18; and assistive device (MS AD ) n=13). Individuals with MS who walked with an assistive device (MS AD : 67.8±15.1cm/s) walked slower than individuals without an assistive device (MS noAD : 110.4±32.3cm/s, p<0.01) and controls (120.0±30.0cm/s; p<0.01). There was a significant reduction in velocity in the cognitively distracting condition (93.4±32.1cm/s) compared to the normal condition [108.8±36.2cm/s; F(1,43)=3.4, p=0.04]. All participants took longer to stop during the distracting condition (1.7±0.6s) than the non-distracting condition (1.4±0.4s; U=673.0 p<0.01). After controlling for gait velocity, post-hoc analysis revealed the MS AD group took significantly longer to stop compared to the control group (p=0.05). Further research investigating the control of unplanned gait termination in MS is warranted. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Clinical gait evaluation of patients with knee osteoarthritis.

    PubMed

    Sun, Jun; Liu, Yancheng; Yan, Songhua; Cao, Guanglei; Wang, Shasha; Lester, D Kevin; Zhang, Kuan

    2017-10-01

    Knee osteoarthritis (KOA) is the most common osteoarthritis in lower limbs, and gait measurement is important to evaluate walking function of KOA patients before and after treatment. The third generation Intelligent Device for Energy Expenditure and Activity (IDEEA3) is a portable gait analysis system to evaluate gaits. This study is to evaluate the accuracy and reliability of IDEEA3 for gait measurement of KOA patients. Meanwhile, gait differences between KOA patients and healthy subjects are examined. Twelve healthy volunteers were recruited for measurement comparison of gait cycle (GC), cadence, step length, velocity and step counts between a motion analysis system and a high-speed camera (GoPro Hero3). Twenty-three KOA patients were recruited for measurement comparison of former five parameters between GoPro Hero3 and IDEEA3. Paired t-test, Concordance Correlation Coefficient (CCC) and Intraclass Correlation Coefficient (ICC) were used for data analysis. All p-values of paired t-tests for GC, cadence, step length and velocity were greater than 0.05 while all CCC and ICC results were above 0.95. The measurements of GC, cadence, step length, velocity and step counts by motion analysis system are highly consistent with the measurements by GoPro Hero3. The measurements of former parameters by GoPro Hero3 are not statistically different from the measurements by IDEEA3. IDEEA3 can be effectively used for the measurement of GC, cadence, step length, velocity and step counts in KOA patients. The KOA patients walk with longer GC, lower cadence, shorter step length and slower speed compared with healthy subjects in natural speed with flat shoes. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Simple analytical model reveals the functional role of embodied sensorimotor interaction in hexapod gaits

    PubMed Central

    Aoi, Shinya; Nachstedt, Timo; Manoonpong, Poramate; Wörgötter, Florentin; Matsuno, Fumitoshi

    2018-01-01

    Insects have various gaits with specific characteristics and can change their gaits smoothly in accordance with their speed. These gaits emerge from the embodied sensorimotor interactions that occur between the insect’s neural control and body dynamic systems through sensory feedback. Sensory feedback plays a critical role in coordinated movements such as locomotion, particularly in stick insects. While many previously developed insect models can generate different insect gaits, the functional role of embodied sensorimotor interactions in the interlimb coordination of insects remains unclear because of their complexity. In this study, we propose a simple physical model that is amenable to mathematical analysis to explain the functional role of these interactions clearly. We focus on a foot contact sensory feedback called phase resetting, which regulates leg retraction timing based on touchdown information. First, we used a hexapod robot to determine whether the distributed decoupled oscillators used for legs with the sensory feedback generate insect-like gaits through embodied sensorimotor interactions. The robot generated two different gaits and one had similar characteristics to insect gaits. Next, we proposed the simple model as a minimal model that allowed us to analyze and explain the gait mechanism through the embodied sensorimotor interactions. The simple model consists of a rigid body with massless springs acting as legs, where the legs are controlled using oscillator phases with phase resetting, and the governed equations are reduced such that they can be explained using only the oscillator phases with some approximations. This simplicity leads to analytical solutions for the hexapod gaits via perturbation analysis, despite the complexity of the embodied sensorimotor interactions. This is the first study to provide an analytical model for insect gaits under these interaction conditions. Our results clarified how this specific foot contact sensory

  3. Gait Patterns in Hemiplegic Children with Cerebral Palsy: Comparison of Right and Left Hemiplegia

    ERIC Educational Resources Information Center

    Galli, Manuela; Cimolin, Veronica; Rigoldi, Chiara; Tenore, Nunzio; Albertini, Giorgio

    2010-01-01

    The aims of this study are to compare quantitatively the gait strategy of the right and left hemiplegic children with Cerebral Palsy (CP) using gait analysis. The gait strategy of 28 right hemiparetic CP (RHG) and 23 left hemiparetic CP (LHG) was compared using gait analysis (spatio-temporal and kinematic parameters) and considering the hemiplegic…

  4. The effect of gait velocity on calcaneal balance at heel strike; Implications for orthotic prescription in injury prevention.

    PubMed

    Shanthikumar, Shivanthan; Low, Zi; Falvey, Eanna; McCrory, Paul; Franklyn-Miller, Andy

    2010-01-01

    Exercise related lower limb injuries (ERLLI), are common in the recreational and competitive sporting population. Although ERLLI are thought to be multi-factorial in aetiology, one of the critical predisposing factors is known to gait abnormality. There is little published evidence comparing walking and running gait in the same subjects, and no evidence on the effect of gait velocity on calcaneal pronation, even though this may have implications for orthotic prescription and injury prevention. In this study, the walking and running gait of 50 physically active subjects was assessed using pressure plate analysis. The results show that rearfoot pronation occurs on foot contact in both running and walking gait, and that there is significantly more rearfoot pronation in walking gait (p<0.01). The difference in the magnitude of rearfoot pronation affected foot orthoses prescription. A 63% fall in computerized correction suggested by RSscan D3D software prescription was seen, based on running vs. walking gait. The findings of this study suggest that in the athletic population orthoses prescription should be based on dynamic assessment of running gait. Crown Copyright 2009. Published by Elsevier B.V. All rights reserved.

  5. Gait Deviations in Children With Osteogenesis Imperfecta Type I.

    PubMed

    Garman, Christina R; Graf, Adam; Krzak, Joseph; Caudill, Angela; Smith, Peter; Harris, Gerald

    2017-08-02

    Osteogenesis imperfecta (OI) is a congenital connective tissue disorder often characterized by orthopaedic complications that impact normal gait. As such, mobility is of particular interest in the OI population as it is associated with multiple aspects of participation and quality of life. The purpose of the current study was to identify and describe common gait deviations in a large sample of individuals with type I OI and speculate the etiology with a goal of improving function. Gait analysis was performed on 44 subjects with type I (11.7±3.08 y old) and 30 typically developing controls (9.54±3.1 y old ). Spatial temporal, kinematic, and kinetic gait data were calculated from the Vicon Plug-in-Gait Model. Musculoskeletal modeling of the muscle tendon lengths (MTL) was done in OpenSim 3.3 to evaluate the MTL of the gastrocnemius and gluteus maximus. The gait deviation index, a dimensionless parameter that evaluates the deviation of 9 kinematic gait parameters from a control database, was also calculated. Walking speed, single support time, stride, and step length were lower and double support time was higher in the OI group. The gait deviation index score was lower and external hip rotation angle was higher in the OI group. Peak hip flexor, knee extensor and ankle plantarflexor moments, and power generation at the ankle were lower in the OI group. MTL analysis revealed no significant length discrepancies between the OI group and the typically developing group. Together, these findings provide a comprehensive description of gait characteristics among a group of individuals with type I OI. Such data inform clinicians about specific gait deviations in this population allowing clinicians to recommend more focused interventions. Level III-case-control study.

  6. Predicting ground contact events for a continuum of gait types: An application of targeted machine learning using principal component analysis.

    PubMed

    Osis, Sean T; Hettinga, Blayne A; Ferber, Reed

    2016-05-01

    An ongoing challenge in the application of gait analysis to clinical settings is the standardized detection of temporal events, with unobtrusive and cost-effective equipment, for a wide range of gait types. The purpose of the current study was to investigate a targeted machine learning approach for the prediction of timing for foot strike (or initial contact) and toe-off, using only kinematics for walking, forefoot running, and heel-toe running. Data were categorized by gait type and split into a training set (∼30%) and a validation set (∼70%). A principal component analysis was performed, and separate linear models were trained and validated for foot strike and toe-off, using ground reaction force data as a gold-standard for event timing. Results indicate the model predicted both foot strike and toe-off timing to within 20ms of the gold-standard for more than 95% of cases in walking and running gaits. The machine learning approach continues to provide robust timing predictions for clinical use, and may offer a flexible methodology to handle new events and gait types. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Natural progression of blood-induced joint damage in patients with haemophilia: clinical relevance and reproducibility of three-dimensional gait analysis.

    PubMed

    Lobet, S; Detrembleur, C; Francq, B; Hermans, C

    2010-09-01

    A major complication in haemophilia is the destruction of joint cartilage because of recurrent intraarticular and intramuscular bleeds. Therefore, joint assessment is critical to quantify the extent of joint damage, which has traditionally been evaluated using both radiological and clinical joint scores. Our study aimed to evaluate the natural progression of haemophilic arthopathy using three-dimensional gait analysis (3DGA) and to assess the reproducibility of this technique. We hypothesized that the musculoskeletal function was relatively stable in patients with haemophilia. Eighteen adults with established haemophilic arthropathies were evaluated twice by 3DGA (mean follow-up: 18 +/- 5 weeks). Unexpectedly, our findings revealed infraclinical deterioration of gait pattern, characterized by a 3.2% decrease in the recovery index, which is indicative of the subject's ability to save energy while walking. A tendency towards modification of segmental joint function was also observed. Gait analysis was sufficiently reproducible with regards to spatiotemporal parameters as well as kinetic, mechanical and energetic gait variables. The kinematic variables were reproducible in both the sagittal and frontal planes. In conclusion, 3DGA is a reproducible tool to assess abnormal gait patterns and monitor natural disease progression in haemophilic patients.

  8. Deviations in gait metrics in patients with chronic ankle instability: a case control study.

    PubMed

    Gigi, Roy; Haim, Amir; Luger, Elchanan; Segal, Ganit; Melamed, Eyal; Beer, Yiftah; Nof, Matityahu; Nyska, Meir; Elbaz, Avi

    2015-01-01

    Gait metric alterations have been previously reported in patients suffering from chronic ankle instability (CAI). Previous studies of gait in this population have been comprised of relatively small cohorts, and the findings of these studies are not uniform. The objective of the present study was to examine spatiotemporal gait metrics in patients with CAI and examine the relationship between self-reported disease severity and the magnitude of gait abnormalities. Forty-four patients with CAI were identified and compared to 53 healthy controls. Patients were evaluated with spatiotemporal gait analysis via a computerized mat and with the Short Form (SF) - 36 health survey. Patients with CAI were found to walk with approximately 16% slower walking velocity, 9% lower cadence and approximately 7% lower step length. Furthermore, the base of support, during walking, in the CAI group was approximately 43% wider, and the single limb support phase was 3.5% shorter compared to the control group. All of the SF-36 8-subscales, as well as the SF-36 physical component summary and SF-36 mental component summary, were significantly lower in patients with CAI compared to the control group. Finally, significant correlations were found between most of the objective gait measures and the SF-36 mental component summary and SF-36 physical component summary. The results outline a gait profile for patients suffering from CAI. Significant differences were found in most spatiotemporal gait metrics. An important finding was a significantly wider base of support. It may be speculated that these gait alterations may reflect a strategy to deal with imbalance and pain. These findings suggest the usefulness of gait metrics, alongside with the use of self-evaluation questionnaires, in assessing disease severity of patients with CAI.

  9. Is adult gait less susceptible than paediatric gait to hip joint centre regression equation error?

    PubMed

    Kiernan, D; Hosking, J; O'Brien, T

    2016-03-01

    Hip joint centre (HJC) regression equation error during paediatric gait has recently been shown to have clinical significance. In relation to adult gait, it has been inferred that comparable errors with children in absolute HJC position may in fact result in less significant kinematic and kinetic error. This study investigated the clinical agreement of three commonly used regression equation sets (Bell et al., Davis et al. and Orthotrak) for adult subjects against the equations of Harrington et al. The relationship between HJC position error and subject size was also investigated for the Davis et al. set. Full 3-dimensional gait analysis was performed on 12 healthy adult subjects with data for each set compared to Harrington et al. The Gait Profile Score, Gait Variable Score and GDI-kinetic were used to assess clinical significance while differences in HJC position between the Davis and Harrington sets were compared to leg length and subject height using regression analysis. A number of statistically significant differences were present in absolute HJC position. However, all sets fell below the clinically significant thresholds (GPS <1.6°, GDI-Kinetic <3.6 points). Linear regression revealed a statistically significant relationship for both increasing leg length and increasing subject height with decreasing error in anterior/posterior and superior/inferior directions. Results confirm a negligible clinical error for adult subjects suggesting that any of the examined sets could be used interchangeably. Decreasing error with both increasing leg length and increasing subject height suggests that the Davis set should be used cautiously on smaller subjects. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Gender may have an influence on the relationship between Functional Movement Screen scores and gait parameters in elite junior athletes - A pilot study.

    PubMed

    Magyari, N; Szakács, V; Bartha, C; Szilágyi, B; Galamb, K; Magyar, M O; Hortobágyi, T; Kiss, R M; Tihanyi, J; Négyesi, J

    2017-09-01

    Aims The aim of this study was to examine the effects of gender on the relationship between Functional Movement Screen (FMS) and treadmill-based gait parameters. Methods Twenty elite junior athletes (10 women and 10 men) performed the FMS tests and gait analysis at a fixed speed. Between-gender differences were calculated for the relationship between FMS test scores and gait parameters, such as foot rotation, step length, and length of gait line. Results Gender did not affect the relationship between FMS and treadmill-based gait parameters. The nature of correlations between FMS test scores and gait parameters was different in women and men. Furthermore, different FMS test scores predicted different gait parameters in female and male athletes. FMS asymmetry and movement asymmetries measured by treadmill-based gait parameters did not correlate in either gender. Conclusion There were no interactions between FMS, gait parameters, and gender; however, correlation analyses support the idea that strength and conditioning coaches need to pay attention not only to how to score but also how to correctly use FMS.

  11. A portable system for foot biomechanical analysis during gait.

    PubMed

    Samson, William; Sanchez, Stéphane; Salvia, Patrick; Jan, Serge Van Sint; Feipel, Véronique

    2014-07-01

    Modeling the foot is challenging due to its complex structure compared to most other body segments. To analyze the biomechanics of the foot, portable devices have been designed to allow measurement of temporal, spatial, and pedobarographic parameters. The goal of this study was to design and evaluate a portable system for kinematic and dynamic analysis of the foot during gait. This device consisted of a force plate synchronized with four cameras and integrated into a walkway. The complete system can be packaged for transportation. First, the measurement system was assessed using reference objects to evaluate accuracy and precision. Second, nine healthy participants were assessed during gait trials using both the portable and Vicon systems (coupled with a force plate). The ankle and metatarsophalangeal (MP) joint angles and moments were computed, as well as the ground reaction force (GRF). The intra- and inter-subject variability was analyzed for both systems, as well as the inter-system variation. The accuracy and precision were, respectively 0.4 mm and 0.4 mm for linear values and 0.5° and 0.6° for angular values. The variability of the portable and Vicon systems were similar (i.e., the inter-system variability never exceeded 2.1°, 0.081 Nmkg(-1) and 0.267 Nkg(-1) for the angles, moments and GRF, respectively). The inter-system differences were less than the inter-subject variability and similar to the intra-subject variability. Consequently, the portable system was considered satisfactory for biomechanical analysis of the foot, outside of a motion analysis laboratory. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Higher heritabilities for gait components than for overall gait scores may improve mobility in ducks.

    PubMed

    Duggan, Brendan M; Rae, Anne M; Clements, Dylan N; Hocking, Paul M

    2017-05-02

    Genetic progress in selection for greater body mass and meat yield in poultry has been associated with an increase in gait problems which are detrimental to productivity and welfare. The incidence of suboptimal gait in breeding flocks is controlled through the use of a visual gait score, which is a subjective assessment of walking ability of each bird. The subjective nature of the visual gait score has led to concerns over its effectiveness in reducing the incidence of suboptimal gait in poultry through breeding. The aims of this study were to assess the reliability of the current visual gait scoring system in ducks and to develop a more objective method to select for better gait. Experienced gait scorers assessed short video clips of walking ducks to estimate the reliability of the current visual gait scoring system. Kendall's coefficients of concordance between and within observers were estimated at 0.49 and 0.75, respectively. In order to develop a more objective scoring system, gait components were visually scored on more than 4000 pedigreed Pekin ducks and genetic parameters were estimated for these components. Gait components, which are a more objective measure, had heritabilities that were as good as, or better than, those of the overall visual gait score. Measurement of gait components is simpler and therefore more objective than the standard visual gait score. The recording of gait components can potentially be automated, which may increase accuracy further and may improve heritability estimates. Genetic correlations were generally low, which suggests that it is possible to use gait components to select for an overall improvement in both economic traits and gait as part of a balanced breeding programme.

  13. Low Power Shoe Integrated Intelligent Wireless Gait Measurement System

    NASA Astrophysics Data System (ADS)

    Wahab, Y.; Mazalan, M.; Bakar, N. A.; Anuar, A. F.; Zainol, M. Z.; Hamzah, F.

    2014-04-01

    Gait analysis measurement is a method to assess and identify gait events and the measurements of dynamic, motion and pressure parameters involving the lowest part of the body. This significant analysis is widely used in sports, rehabilitation as well as other health diagnostic towards improving the quality of life. This paper presents a new system empowered by Inertia Measurement Unit (IMU), ultrasonic sensors, piezoceramic sensors array, XBee wireless modules and Arduino processing unit. This research focuses on the design and development of a low power ultra-portable shoe integrated wireless intelligent gait measurement using MEMS and recent microelectronic devices for foot clearance, orientation, error correction, gait events and pressure measurement system. It is developed to be cheap, low power, wireless, real time and suitable for real life in-door and out-door environment.

  14. Gait analysis following treadmill training with body weight support versus conventional physical therapy: a prospective randomized controlled single blind study.

    PubMed

    Lucareli, P R; Lima, M O; Lima, F P S; de Almeida, J G; Brech, G C; D'Andréa Greve, J M

    2011-09-01

    Single-blind randomized, controlled clinical study. To evaluate, using kinematic gait analysis, the results obtained from gait training on a treadmill with body weight support versus those obtained with conventional gait training and physiotherapy. Thirty patients with sequelae from traumatic incomplete spinal cord injuries at least 12 months earlier; patients were able to walk and were classified according to motor function as ASIA (American Spinal Injury Association) impairment scale C or D. Patients were divided randomly into two groups of 15 patients by the drawing of opaque envelopes: group A (weight support) and group B (conventional). After an initial assessment, both groups underwent 30 sessions of gait training. Sessions occurred twice a week, lasted for 30 min each and continued for four months. All of the patients were evaluated by a single blinded examiner using movement analysis to measure angular and linear kinematic gait parameters. Six patients (three from group A and three from group B) were excluded because they attended fewer than 85% of the training sessions. There were no statistically significant differences in intra-group comparisons among the spatial-temporal variables in group B. In group A, the following significant differences in the studied spatial-temporal variables were observed: increases in velocity, distance, cadence, step length, swing phase and gait cycle duration, in addition to a reduction in stance phase. There were also no significant differences in intra-group comparisons among the angular variables in group B. However, group A achieved significant improvements in maximum hip extension and plantar flexion during stance. Gait training with body weight support was more effective than conventional physiotherapy for improving the spatial-temporal and kinematic gait parameters among patients with incomplete spinal cord injuries.

  15. Gait performance and foot pressure distribution during wearable robot-assisted gait in elderly adults.

    PubMed

    Lee, Su-Hyun; Lee, Hwang-Jae; Chang, Won Hyuk; Choi, Byung-Ok; Lee, Jusuk; Kim, Jeonghun; Ryu, Gyu-Ha; Kim, Yun-Hee

    2017-11-28

    A robotic exoskeleton device is an intelligent system designed to improve gait performance and quality of life for the wearer. Robotic technology has developed rapidly in recent years, and several robot-assisted gait devices were developed to enhance gait function and activities of daily living in elderly adults and patients with gait disorders. In this study, we investigated the effects of the Gait-enhancing Mechatronic System (GEMS), a new wearable robotic hip-assist device developed by Samsung Electronics Co, Ltd., Korea, on gait performance and foot pressure distribution in elderly adults. Thirty elderly adults who had no neurological or musculoskeletal abnormalities affecting gait participated in this study. A three-dimensional (3D) motion capture system, surface electromyography and the F-Scan system were used to collect data on spatiotemporal gait parameters, muscle activity and foot pressure distribution under three conditions: free gait without robot assistance (FG), robot-assisted gait with zero torque (RAG-Z) and robot-assisted gait (RAG). We found increased gait speed, cadence, stride length and single support time in the RAG condition. Reduced rectus femoris and medial gastrocnemius muscle activity throughout the terminal stance phase and reduced effort of the medial gastrocnemius muscle throughout the pre-swing phase were also observed in the RAG condition. In addition, walking with the assistance of GEMS resulted in a significant increase in foot pressure distribution, specifically in maximum force and peak pressure of the total foot, medial masks, anterior masks and posterior masks. The results of the present study reveal that GEMS may present an alternative way of restoring age-related changes in gait such as gait instability with muscle weakness, reduced step force and lower foot pressure in elderly adults. In addition, GEMS improved gait performance by improving push-off power and walking speed and reducing muscle activity in the lower

  16. Gait analysis of young male patients diagnosed with primary bladder neck obstruction.

    PubMed

    Zago, Matteo; Camerota, Tommaso Ciro; Pisu, Stefano; Ciprandi, Daniela; Sforza, Chiarella

    2017-08-01

    Primary bladder neck obstruction (PBNO) represents an inappropriate or inadequate relaxation of the bladder neck during micturition. Based on the observation of an increased rate of postural imbalances in male patients with PBNO, we hypothesized a possible role of an unbalanced biomechanics of the pelvis on urethral sphincters activity. Our aim was to identify kinematic imbalances, usually disregarded in PBNO patients, and which could eventually be involved in the etiopathogenesis of the disease. Seven male adult patients (39.6±7.1years) were recruited; in all patients, PBNO was suspected at bladder diary and uroflowmetry, and was endoscopically confirmed with urethroscopy. Participants gait was recorded with a motion capture system (BTS Spa, Italy) to obtain three-dimensional joint angles and gait parameters. Multivariate statistics based on a Principal Component model allowed to assess the similarity of patients' gait patterns with respect to control subjects. The main finding is that patients with PBNO showed significant discordance in the observations at the ankle and pelvis level. Additionally, 6/7 patients demonstrated altered trunk positions compared to normal curves. We suggest that the identified postural imbalances could represent the cause for an anomalous activation of pelvic floor muscles (hypertonia). The consequent urinary sphincters hypercontraction may be responsible for the development of voiding dysfunction in male patients with no significant morphological alterations. Results reinforced the hypothesis of an etiopathogenetic role of postural imbalances on primary bladder neck obstruction in male patients. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Morphological computation of multi-gaited robot locomotion based on free vibration.

    PubMed

    Reis, Murat; Yu, Xiaoxiang; Maheshwari, Nandan; Iida, Fumiya

    2013-01-01

    In recent years, there has been increasing interest in the study of gait patterns in both animals and robots, because it allows us to systematically investigate the underlying mechanisms of energetics, dexterity, and autonomy of adaptive systems. In particular, for morphological computation research, the control of dynamic legged robots and their gait transitions provides additional insights into the guiding principles from a synthetic viewpoint for the emergence of sensible self-organizing behaviors in more-degrees-of-freedom systems. This article presents a novel approach to the study of gait patterns, which makes use of the intrinsic mechanical dynamics of robotic systems. Each of the robots consists of a U-shaped elastic beam and exploits free vibration to generate different locomotion patterns. We developed a simplified physics model of these robots, and through experiments in simulation and real-world robotic platforms, we show three distinctive mechanisms for generating different gait patterns in these robots.

  18. An electromechanical gait trainer for restoration of gait in hemiparetic stroke patients: preliminary results.

    PubMed

    Hesse, S; Werner, C; Uhlenbrock, D; von Frankenberg, S; Bardeleben, A; Brandl-Hesse, B

    2001-01-01

    Modern concepts of gait rehabilitation after stroke favor a task-specific repetitive approach. In practice, the required physical effort of the therapists limits the realization of this approach. Therefore, a mechanized gait trainer enabling nonambulatory patients to have the repetitive practice of a gait-like movement without overstraining therapists was constructed. This preliminary study investigated whether an additional 4-week daily therapy on the gait trainer could improve gait ability in 14 chronic wheelchair-bound hemiparetic subjects. The 4 weeks of physiotherapy and gait-trainer therapy resulted in a relevant improvement of gait ability in all subjects. Velocity, cadence, and stride length improved significantly (p < 0.01). The kinesiologic electromyogram of selected lower-limb muscles revealed a more physiologic pattern. The confounding influence of spontaneous recovery, the lack of a control group, and the double amount of therapy limit the clinical relevance of this study. Nevertheless, the gait trainer seems feasible as an adjunctive tool in gait rehabilitation after stroke; further studies are needed.

  19. Management of a patient's gait abnormality using smartphone technology in-clinic for improved qualitative analysis: A case report.

    PubMed

    VanWye, William R; Hoover, Donald L

    2018-05-01

    Qualitative analysis has its limitations as the speed of human movement often occurs more quickly than can be comprehended. Digital video allows for frame-by-frame analysis, and therefore likely more effective interventions for gait dysfunction. Although the use of digital video outside laboratory settings, just a decade ago, was challenging due to cost and time constraints, rapid use of smartphones and software applications has made this technology much more practical for clinical usage. A 35-year-old man presented for evaluation with the chief complaint of knee pain 24 months status-post triple arthrodesis following a work-related crush injury. In-clinic qualitative gait analysis revealed gait dysfunction, which was augmented by using a standard IPhone® 3GS camera. After video capture, an IPhone® application (Speed Up TV®, https://itunes.apple.com/us/app/speeduptv/id386986953?mt=8 ) allowed for frame-by-frame analysis. Corrective techniques were employed using in-clinic equipment to develop and apply a temporary heel-to-toe rocker sole (HTRS) to the patient's shoe. Post-intervention video revealed significantly improved gait efficiency with a decrease in pain. The patient was promptly fitted with a permanent HTRS orthosis. This intervention enabled the patient to successfully complete a work conditioning program and progress to job retraining. Video allows for multiple views, which can be further enhanced by using applications for frame-by-frame analysis and zoom capabilities. This is especially useful for less experienced observers of human motion, as well as for establishing comparative signs prior to implementation of training and/or permanent devices.

  20. Real-time feedback to improve gait in children with cerebral palsy.

    PubMed

    van Gelder, Linda; Booth, Adam T C; van de Port, Ingrid; Buizer, Annemieke I; Harlaar, Jaap; van der Krogt, Marjolein M

    2017-02-01

    Real-time feedback may be useful for enhancing information gained from clinical gait analysis of children with cerebral palsy (CP). It may also be effective in functional gait training, however, it is not known if children with CP can adapt gait in response to real-time feedback of kinematic parameters. Sixteen children with cerebral palsy (age 6-16; GMFCS I-III), walking with a flexed-knee gait pattern, walked on an instrumented treadmill with virtual reality in three conditions: regular walking without feedback (NF), feedback on hip angle (FH) and feedback on knee angle (FK). Clinically relevant gait parameters were calculated and the gait profile score (GPS) was used as a measure of overall gait changes between conditions. All children, except one, were able to improve hip and/or knee extension during gait in response to feedback, with nine achieving a clinically relevant improvement. Peak hip extension improved significantly by 5.1±5.9° (NF: 8.9±12.8°, FH: 3.8±10.4°, p=0.01). Peak knee extension improved significantly by 7.7±7.1° (NF: 22.2±12.0°, FK: 14.5±12.7°, p<0.01). GPS did not change between conditions due to increased deviations in other gait parameters. Responders to feedback were shown to have worse initial gait as measured by GPS (p=0.005) and functional selectivity score (p=0.049). In conclusion, ambulatory children with CP show adaptability in gait and are able to respond to real-time feedback, resulting in significant and clinically relevant improvements in peak hip and knee extension. These findings show the potential of real-time feedback as a tool for functional gait training and advanced gait analysis in CP. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. [Three-dimensional gait analysis of patients with osteonecrosis of femoral head before and after treatments with vascularized greater trochanter bone flap].

    PubMed

    Cui, Daping; Zhao, Dewei

    2011-03-01

    To provide the objective basis for the evaluation of the operative results of vascularized greater trochanter bone flap in treating osteonecrosis of the femoral head (ONFH) by three-dimensional gait analysis. Between March 2006 and March 2007, 35 patients with ONFH were treated with vascularized greater trochanter bone flap, and gait analysis was made by using three-dimensional gait analysis system before operation and at 1, 2 years after operation. There were 23 males and 12 females, aged 21-52 years (mean, 35.2 years), including 8 cases of steroid-induced, 7 cases of traumatic, 6 cases of alcoholic, and 14 cases of idiopathic ONFH. The left side was involved in 15 cases, and right side in 20 cases. According to Association Research Circulation Osseous (ARCO) classification, all patients were diagnosed as having femoral-head necrosis at stage III. Preoperative Harris hip functional score (HHS) was 56.2 +/- 5.6. The disease duration was 1.5-18.6 years (mean, 5.2 years). All incisions healed at stage I without early postoperative complications of deep vein thrombosis and infections of incision. Thirty-five patients were followed up 2-3 years with an average of 2.5 years. At 2 years after operation, the HHS score was 85.8 +/- 4.1, showing significant difference when compared with the preoperative score (t = 23.200, P = 0.000). Before operation, patients showed a hip muscles gait, short gait, reduce pain gait, and the pathological gaits significantly improved at 1 year after operation. At 1 year and 2 years after operation, step frequency, pace, step length and hip flexion, hip extension, knee flexion, ankle flexion were significantly improved (P < 0.01). Acceleration-time curves showed that negative wave and spinous wave at acceleration-stance phase of front feet and hind feet in affected limb were obviously reduced at 1 year and 2 years after operation. Postoperative petronas wave appeared at swing phase; the preoperative situation was three normal phase waves

  2. The Influence of a Cognitive Dual Task on the Gait Parameters of Healthy Older Adults: A Systematic Review and Meta-Analysis.

    PubMed

    Smith, Erin; Cusack, Tara; Cunningham, Caitriona; Blake, Catherine

    2017-10-01

    This review examines the effect of a dual task on the gait parameters of older adults with a mean gait speed of 1.0 m/s or greater, and the effect of type and complexity of task. A systematic review of Web of Science, PubMed, SCOPUS, Embase, and PsycINFO was performed in July 2016. Twenty-three studies (28 data sets) were reviewed and pooled for meta-analysis. The effect size on seven gait parameters was measured as the raw mean difference between single- and dual-task performance. Gait speed significantly reduced with the addition of a dual task, with increasing complexity showing greater decrements. Cadence, stride time, and measures of gait variability were all negatively affected under the dual-task condition. In older adults, the addition of a dual task significantly reduces gait speed and cadence, with possible implications for the assessment of older people, as the addition of a dual task may expose deficits not observed under single-task assessment.

  3. Effects of 8 weeks of mat-based Pilates exercise on gait in chronic stroke patients.

    PubMed

    Roh, SuYeon; Gil, Ho Jong; Yoon, Sukhoon

    2016-09-01

    [Purpose] The purpose of this study was to investigate the effects of an 8-week program of Pilates exercise on gait in chronic hemiplegia patients and to determine whether or not it can be used for rehabilitation in postsrtoke patients. [Subjects and Methods] Twenty individuals with unilateral chronic hemiparetic stroke (age, 66.1 ± 4.4 yrs; height, 162.3 ± 8.3 cm; weight, 67.4 ± 12.3 kg) participated in this study and were randomly allocated equally to either a Pilates exercise group or a control group. To identify the effects of Pilates exercise, a 3-D motion analysis with 8 infrared cameras was performed. [Results] For the gait parameters, improvements were found in the Pilates exercise group for all variables, and statistical significance was observed for stride length, gait velocity, knee range of motion and hip range of motion. For the asymmetry indexes, insignificant improvements were found for all variables in the Pilates exercise group. [Conclusion] In conclusion, an 8-week program of Pilates exercise had a positive influence on improving the gait ability of poststroke patients, and the intervention could be applied to poststroke patients with various levels of physical disability by adjusting the intensity of training.

  4. Effects of 8 weeks of mat-based Pilates exercise on gait in chronic stroke patients

    PubMed Central

    Roh, SuYeon; Gil, Ho Jong; Yoon, Sukhoon

    2016-01-01

    [Purpose] The purpose of this study was to investigate the effects of an 8-week program of Pilates exercise on gait in chronic hemiplegia patients and to determine whether or not it can be used for rehabilitation in postsrtoke patients. [Subjects and Methods] Twenty individuals with unilateral chronic hemiparetic stroke (age, 66.1 ± 4.4 yrs; height, 162.3 ± 8.3 cm; weight, 67.4 ± 12.3 kg) participated in this study and were randomly allocated equally to either a Pilates exercise group or a control group. To identify the effects of Pilates exercise, a 3-D motion analysis with 8 infrared cameras was performed. [Results] For the gait parameters, improvements were found in the Pilates exercise group for all variables, and statistical significance was observed for stride length, gait velocity, knee range of motion and hip range of motion. For the asymmetry indexes, insignificant improvements were found for all variables in the Pilates exercise group. [Conclusion] In conclusion, an 8-week program of Pilates exercise had a positive influence on improving the gait ability of poststroke patients, and the intervention could be applied to poststroke patients with various levels of physical disability by adjusting the intensity of training. PMID:27799706

  5. The effect of gait training with shoe inserts on the improvement of pain and gait in sacroiliac joint patients.

    PubMed

    Cho, Byung-Yun; Yoon, Jung-Gyu

    2015-08-01

    [Purpose] The purpose of the current research was to identify how gait training with shoe inserts affects the pain and gait of sacroiliac joint dysfunction patients. [Subjects and Methods] Thirty subjects were randomly selected and assigned to be either the experimental group (gait training with shoe insert group) or control group. Each group consisted of 15 patients. Pain was measured by Visual Analogue Scale, and foot pressure in a standing position and during gait was measured with a Gateview AFA-50 system (Alpus, Seoul, Republic of Korea). A paired sample t-test was used to compare the pain and gait of the sacroiliac joint before and after the intervention. Correlation between pain and walking after gait training with shoe inserts was examined by Pearson test. The level of significance was set at α=0.05. [Results] It was found that application of the intervention to the experimental group resulted in a significant decrease in sacroiliac joint pain. It was also found that there was a significant correlation between Visual Analogue Scale score and dynamic asymmetric index (r= 0.796) and that there was a negative correlation between Visual Analogue Scale score and forefoot/rear foot peak pressure ratio (r=-0.728). [Conclusion] The results of our analysis lead us to conclude that the intervention with shoe inserts had a significant influence on the pain and gait of sacroiliac joint patients.

  6. Cerebral Palsy Gait, Clinical Importance

    PubMed Central

    TUGUI, Raluca Dana; ANTONESCU, Dinu

    2013-01-01

    ABSTRACT Cerebral palsy refers to a lesion on an immature brain, that determines permanent neurological disorders. Knowing the exact cause of the disease does not alter the treatment management. The etiology is 2-2.5/1000 births and the rate is constant in the last 40-50 years because advances in medical technologies have permitted the survival of smaller and premature new born children. Gait analysis has four directions: kinematics (represents body movements analysis without calculating the forces), kinetics (represents body moments and forces), energy consumption (measured by oximetry), and neuromuscular activity (measured by EMG). Gait analysis can observe specific deviations in a patient, allowing us to be more accurate in motor diagnoses and treatment solutions: surgery intervention, botulinum toxin injection, use of orthosis, physical kinetic therapy, oral medications, baclofen pump. PMID:24790675

  7. Evaluation of a Gait Assessment Module Using 3D Motion Capture Technology

    PubMed Central

    Baskwill, Amanda J.; Belli, Patricia; Kelleher, Leila

    2017-01-01

    Background Gait analysis is the study of human locomotion. In massage therapy, this observation is part of an assessment process that informs treatment planning. Massage therapy students must apply the theory of gait assessment to simulated patients. At Humber College, the gait assessment module traditionally consists of a textbook reading and a three-hour, in-class session in which students perform gait assessment on each other. In 2015, Humber College acquired a three-dimensional motion capture system. Purpose The purpose was to evaluate the use of 3D motion capture in a gait assessment module compared to the traditional gait assessment module. Participants Semester 2 massage therapy students who were enrolled in Massage Theory 2 (n = 38). Research Design Quasi-experimental, wait-list comparison study. Intervention The intervention group participated in an in-class session with a Qualisys motion capture system. Main Outcome Measure(s) The outcomes included knowledge and application of gait assessment theory as measured by quizzes, and students’ satisfaction as measured through a questionnaire. Results There were no statistically significant differences in baseline and post-module knowledge between both groups (pre-module: p = .46; post-module: p = .63). There was also no difference between groups on the final application question (p = .13). The intervention group enjoyed the in-class session because they could visualize the content, whereas the comparison group enjoyed the interactivity of the session. The intervention group recommended adding the assessment of gait on their classmates to their experience. Both groups noted more time was needed for the gait assessment module. Conclusions Based on the results of this study, it is recommended that the gait assessment module combine both the traditional in-class session and the 3D motion capture system. PMID:28293329

  8. Gait Phase Recognition for Lower-Limb Exoskeleton with Only Joint Angular Sensors

    PubMed Central

    Liu, Du-Xin; Wu, Xinyu; Du, Wenbin; Wang, Can; Xu, Tiantian

    2016-01-01

    Gait phase is widely used for gait trajectory generation, gait control and gait evaluation on lower-limb exoskeletons. So far, a variety of methods have been developed to identify the gait phase for lower-limb exoskeletons. Angular sensors on lower-limb exoskeletons are essential for joint closed-loop controlling; however, other types of sensors, such as plantar pressure, attitude or inertial measurement unit, are not indispensable.Therefore, to make full use of existing sensors, we propose a novel gait phase recognition method for lower-limb exoskeletons using only joint angular sensors. The method consists of two procedures. Firstly, the gait deviation distances during walking are calculated and classified by Fisher’s linear discriminant method, and one gait cycle is divided into eight gait phases. The validity of the classification results is also verified based on large gait samples. Secondly, we build a gait phase recognition model based on multilayer perceptron and train it with the phase-labeled gait data. The experimental result of cross-validation shows that the model has a 94.45% average correct rate of set (CRS) and an 87.22% average correct rate of phase (CRP) on the testing set, and it can predict the gait phase accurately. The novel method avoids installing additional sensors on the exoskeleton or human body and simplifies the sensory system of the lower-limb exoskeleton. PMID:27690023

  9. Comparison of Upright Gait with Supine Bungee-Cord Gait

    NASA Technical Reports Server (NTRS)

    Boda, Wanda L.; Hargens, Alan R.; Campbell, J. A.; Yang, C.; Holton, Emily M. (Technical Monitor)

    1998-01-01

    Running on a treadmill with bungee-cord resistance is currently used on the Russian space station MIR as a countermeasure for the loss of bone and muscular strength which occurs during spaceflight. However, it is unknown whether ground reaction force (GRF) at the feet using bungee-cord resistance is similar to that which occurs during upright walking and running on Earth. We hypothesized-that the DRAMs generated during upright walking and running are greater than the DRAMs generated during supine bungee-cord gait. Eleven healthy subjects walked (4.8 +/- 0.13 km/h, mean +/- SE) and ran (9.1 +/- 0.51 km/h) during upright and supine bungee-cord exercise on an active treadmill. Subjects exercised for 3 min in each condition using a resistance of 1 body weight calibrated during an initial, stationary standing position. Data were sampled at a frequency of 500Hz and the mean of 3 trials was analyzed for each condition. A repeated measures analysis of variance tested significance between the conditions. Peak DRAMs during upright walking were significantly greater (1084.9 +/- 111.4 N) than during supine bungee-cord walking (770.3 +/- 59.8 N; p less than 0.05). Peak GRFs were also significantly greater for upright running (1548.3 +/- 135.4 N) than for supine bungee-cord running (1099.5 +/- 158.46 N). Analysis of GRF curves indicated that forces decreased throughout the stance phase for bungee-cord gait but not during upright gait. These results indicate that bungee-cord exercise may not create sufficient loads at the feet to counteract the loss of bone and muscular strength that occurs during long-duration exposure to microgravity.

  10. Stress distribution of the foot during mid-stance to push-off in barefoot gait: a 3-D finite element analysis.

    PubMed

    Chen, W P; Tang, F T; Ju, C W

    2001-08-01

    To quantify stress distribution of the foot during mid-stance to push-off in barefoot gait using 3-D finite element analysis. To simulate the foot structure and facilitate later consideration of footwear. Finite element model was generated and loading condition simulating barefoot gait during mid-stance to push-off was used to quantify the stress distributions. A computational model can provide overall stress distributions of the foot subject to various loading conditions. A preliminary 3-D finite element foot model was generated based on the computed tomography data of a male subject and the bone and soft tissue structures were modeled. Analysis was performed for loading condition simulating barefoot gait during mid-stance to push-off. The peak plantar pressure ranged from 374 to 1003 kPa and the peak von Mises stress in the bone ranged from 2.12 to 6.91 MPa at different instants. The plantar pressure patterns were similar to measurement result from previous literature. The present study provides a preliminary computational model that is capable of estimating the overall plantar pressure and bone stress distributions. It can also provide quantitative analysis for normal and pathological foot motion. This model can identify areas of increased pressure and correlate the pressure with foot pathology. Potential applications can be found in the study of foot deformities, footwear, surgical interventions. It may assist pre-treatment planning, design of pedorthotic appliances, and predict the treatment effect of foot orthosis.

  11. Analysis of Modification Mechanism of Gait with Rhythmic Cueing Training Paradigm

    NASA Astrophysics Data System (ADS)

    Muto, Takeshi; Kanai, Tetsuya; Sakuta, Hiroshi; Miyake, Yoshihiro

    In this research, we applied the gait training method which takes in the rhythmic auditory stimulation as a pace maker to the assistance of gait motion, and analyzed the dynamical stability of the period and trajectory of the lower limbs' motions. As the result, it was clarified that, in the training style which presents a constant rhythm, trajectory of ankles was modified as the stable state which has the historical property, but the period of footsteps was not modified but susceptible to the external environment. This result suggests that the hierarchical modification mechanism of motor schema of gait is realized by the connection between the immediate and historical modification system.

  12. Real-Time Classification of Patients with Balance Disorders vs. Normal Subjects Using a Low-Cost Small Wireless Wearable Gait Sensor.

    PubMed

    Nukala, Bhargava Teja; Nakano, Taro; Rodriguez, Amanda; Tsay, Jerry; Lopez, Jerry; Nguyen, Tam Q; Zupancic, Steven; Lie, Donald Y C

    2016-11-29

    Gait analysis using wearable wireless sensors can be an economical, convenient and effective way to provide diagnostic and clinical information for various health-related issues. In this work, our custom designed low-cost wireless gait analysis sensor that contains a basic inertial measurement unit (IMU) was used to collect the gait data for four patients diagnosed with balance disorders and additionally three normal subjects, each performing the Dynamic Gait Index (DGI) tests while wearing the custom wireless gait analysis sensor (WGAS). The small WGAS includes a tri-axial accelerometer integrated circuit (IC), two gyroscopes ICs and a Texas Instruments (TI) MSP430 microcontroller and is worn by each subject at the T4 position during the DGI tests. The raw gait data are wirelessly transmitted from the WGAS to a near-by PC for real-time gait data collection and analysis. In order to perform successful classification of patients vs. normal subjects, we used several different classification algorithms, such as the back propagation artificial neural network (BP-ANN), support vector machine (SVM), k -nearest neighbors (KNN) and binary decision trees (BDT), based on features extracted from the raw gait data of the gyroscopes and accelerometers. When the range was used as the input feature, the overall classification accuracy obtained is 100% with BP-ANN, 98% with SVM, 96% with KNN and 94% using BDT. Similar high classification accuracy results were also achieved when the standard deviation or other values were used as input features to these classifiers. These results show that gait data collected from our very low-cost wearable wireless gait sensor can effectively differentiate patients with balance disorders from normal subjects in real time using various classifiers, the success of which may eventually lead to accurate and objective diagnosis of abnormal human gaits and their underlying etiologies in the future, as more patient data are being collected.

  13. Recognition using gait.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koch, Mark William

    2007-09-01

    Gait or an individual's manner of walking, is one approach for recognizing people at a distance. Studies in psychophysics and medicine indicate that humans can recognize people by their gait and have found twenty-four different components to gait that taken together make it a unique signature. Besides not requiring close sensor contact, gait also does not necessarily require a cooperative subject. Using video data of people walking in different scenarios and environmental conditions we develop and test an algorithm that uses shape and motion to identify people from their gait. The algorithm uses dynamic time warping to match stored templatesmore » against an unknown sequence of silhouettes extracted from a person walking. While results under similar constraints and conditions are very good, the algorithm quickly degrades with varying conditions such as surface and clothing.« less

  14. Analysis of several methods and inertial sensors locations to assess gait parameters in able-bodied subjects.

    PubMed

    Ben Mansour, Khaireddine; Rezzoug, Nasser; Gorce, Philippe

    2015-10-01

    The purpose of this paper was to determine which types of inertial sensors and which advocated locations should be used for reliable and accurate gait event detection and temporal parameter assessment in normal adults. In addition, we aimed to remove the ambiguity found in the literature of the definition of the initial contact (IC) from the lumbar accelerometer. Acceleration and angular velocity data was gathered from the lumbar region and the distal edge of each shank. This data was evaluated in comparison to an instrumented treadmill and an optoelectronic system during five treadmill speed sessions. The lumbar accelerometer showed that the peak of the anteroposterior component was the most accurate for IC detection. Similarly, the valley that followed the peak of the vertical component was the most precise for terminal contact (TC) detection. Results based on ANOVA and Tukey tests showed that the set of inertial methods was suitable for temporal gait assessment and gait event detection in able-bodied subjects. For gait event detection, an exception was found with the shank accelerometer. The tool was suitable for temporal parameters assessment, despite the high root mean square error on the detection of IC (RMSEIC) and TC (RMSETC). The shank gyroscope was found to be as accurate as the kinematic method since the statistical tests revealed no significant difference between the two techniques for the RMSE off all gait events and temporal parameters. The lumbar and shank accelerometers were the most accurate alternative to the shank gyroscope for gait event detection and temporal parameters assessment, respectively. Copyright © 2015. Published by Elsevier B.V.

  15. Biomechanical mechanism of lateral trunk lean gait for knee osteoarthritis patients.

    PubMed

    Tokuda, Kazuki; Anan, Masaya; Takahashi, Makoto; Sawada, Tomonori; Tanimoto, Kenji; Kito, Nobuhiro; Shinkoda, Koichi

    2018-01-03

    The biomechanical mechanism of lateral trunk lean gait employed to reduce external knee adduction moment (KAM) for knee osteoarthritis (OA) patients is not well known. This mechanism may relate to the center of mass (COM) motion. Moreover, lateral trunk lean gait may affect motor control of the COM displacement. Uncontrolled manifold (UCM) analysis is an evaluation index used to understand motor control and variability of the motor task. Here we aimed to clarify the biomechanical mechanism to reduce KAM during lateral trunk lean gait and how motor variability controls the COM displacement. Twenty knee OA patients walked under two conditions: normal and lateral trunk lean gait conditions. UCM analysis was performed with respect to the COM displacement in the frontal plane. We also determined how the variability is structured with regards to the COM displacement as a performance variable. The peak KAM under lateral trunk lean gait was lower than that under normal gait. The reduced peak KAM observed was accompanied by medially shifted knee joint center, shortened distance of the center of pressure to knee joint center, and shortened distance of the knee-ground reaction force lever arm during the stance phase. Knee OA patients with lateral trunk lean gait could maintain kinematic synergy by utilizing greater segmental configuration variance to the performance variable. However, the COM displacement variability of lateral trunk lean gait was larger than that of normal gait. Our findings may provide clinical insights to effectively evaluate and prescribe gait modification training for knee OA patients. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Quadrupedal gaits in hexapod animals - inter-leg coordination in free-walking adult stick insects.

    PubMed

    Grabowska, Martyna; Godlewska, Elzbieta; Schmidt, Joachim; Daun-Gruhn, Silvia

    2012-12-15

    The analysis of inter-leg coordination in insect walking is generally a study of six-legged locomotion. For decades, the stick insect Carausius morosus has been instrumental for unravelling the rules and mechanisms that control leg coordination in hexapeds. We analysed inter-leg coordination in C. morosus that freely walked on straight paths on plane surfaces with different slopes. Consecutive 1.7 s sections were assigned inter-leg coordination patterns (which we call gaits) based on footfall patterns. Regular gaits, i.e. wave, tetrapod or tripod gaits, occurred in different proportions depending on surface slopes. Tetrapod gaits were observed most frequently, wave gaits only occurred on 90 deg inclining slopes and tripod gaits occurred most often on 15 deg declining slopes, i.e. in 40% of the sections. Depending on the slope, 36-66% of the sections were assigned irregular gaits. Irregular gaits were mostly due to multiple stepping by the front legs, which is perhaps probing behaviour, not phase coupled to the middle legs' cycles. In irregular gaits, middle leg and hindleg coordination was regular, related to quadrupedal walk and wave gaits. Apparently, front legs uncouple from and couple to the walking system without compromising middle leg and hindleg coordination. In front leg amputees, the remaining legs were strictly coordinated. In hindleg and middle leg amputees, the front legs continued multiple stepping. The coordination of middle leg amputees was maladapted, with front legs and hindlegs performing multiple steps or ipsilateral legs being in simultaneous swing. Thus, afferent information from middle legs might be necessary for a regular hindleg stepping pattern.

  17. Detecting gait abnormalities after concussion or mild traumatic brain injury: A systematic review of single-task, dual-task, and complex gait.

    PubMed

    Fino, Peter C; Parrington, Lucy; Pitt, Will; Martini, Douglas N; Chesnutt, James C; Chou, Li-Shan; King, Laurie A

    2018-05-01

    While a growing number of studies have investigated the effects of concussion or mild traumatic brain injury (mTBI) on gait, many studies use different experimental paradigms and outcome measures. The path for translating experimental studies for objective clinical assessments of gait is unclear. This review asked 2 questions: 1) is gait abnormal after concussion/mTBI, and 2) what gait paradigms (single-task, dual-task, complex gait) detect abnormalities after concussion. Data sources included MEDLINE/PubMed, Scopus, Web of Science, and Cumulative Index to Nursing and Allied Health Literature (CINAHL) accessed on March 14, 2017. Original research articles reporting gait outcomes in people with concussion or mTBI were included. Studies of moderate, severe, or unspecified TBI, and studies without a comparator were excluded. After screening 233 articles, 38 studies were included and assigned to one or more sections based on the protocol and reported outcomes. Twenty-six articles reported single-task simple gait outcomes, 24 reported dual-task simple gait outcomes, 21 reported single-task complex gait outcomes, and 10 reported dual-task complex gait outcomes. Overall, this review provides evidence for two conclusions: 1) gait is abnormal acutely after concussion/mTBI but generally resolves over time; and 2) the inconsistency of findings, small sample sizes, and small number of studies examining homogenous measures at the same time-period post-concussion highlight the need for replication across independent populations and investigators. Future research should concentrate on dual-task and complex gait tasks, as they showed promise for detecting abnormal locomotor function outside of the acute timeframe. Additionally, studies should provide detailed demographic and clinical characteristics to enable more refined comparisons across studies. Copyright © 2018 Elsevier B.V. All rights reserved.

  18. Gait biometrics under spoofing attacks: an experimental investigation

    NASA Astrophysics Data System (ADS)

    Hadid, Abdenour; Ghahramani, Mohammad; Kellokumpu, Vili; Feng, Xiaoyi; Bustard, John; Nixon, Mark

    2015-11-01

    Gait is a relatively biometric modality which has a precious advantage over other modalities, such as iris and voice, in that it can be easily captured from a distance. Although it has recently become a topic of great interest in biometric research, there has been little investigation into gait spoofing attacks where a person tries to imitate the clothing or walking style of someone else. We recently analyzed for the first time the effects of spoofing attacks on silhouette-based gait biometric systems and showed that it was indeed possible to spoof gait biometric systems by clothing impersonation and the deliberate selection of a target that has a similar build to the attacker. To gain deeper insight into the performance of current gait biometric systems under spoofing attacks, we provide a thorough investigation on how clothing can be used to spoof a target and evaluate the performance of two state-of-the-art recognition methods on a gait spoofing database recorded at the University of Southampton. Furthermore, we describe and evaluate an initial solution coping with gait spoofing attacks. The obtained results are very promising and point out interesting findings which can be used for future investigations.

  19. Quantitative Gait Measurement With Pulse-Doppler Radar for Passive In-Home Gait Assessment

    PubMed Central

    Skubic, Marjorie; Rantz, Marilyn; Cuddihy, Paul E.

    2014-01-01

    In this paper, we propose a pulse-Doppler radar system for in-home gait assessment of older adults. A methodology has been developed to extract gait parameters including walking speed and step time using Doppler radar. The gait parameters have been validated with a Vicon motion capture system in the lab with 13 participants and 158 test runs. The study revealed that for an optimal step recognition and walking speed estimation, a dual radar set up with one radar placed at foot level and the other at torso level is necessary. An excellent absolute agreement with intraclass correlation coefficients of 0.97 was found for step time estimation with the foot level radar. For walking speed, although both radars show excellent consistency they all have a system offset compared to the ground truth due to walking direction with respect to the radar beam. The torso level radar has a better performance (9% offset on average) in the speed estimation compared to the foot level radar (13%–18% offset). Quantitative analysis has been performed to compute the angles causing the systematic error. These lab results demonstrate the capability of the system to be used as a daily gait assessment tool in home environments, useful for fall risk assessment and other health care applications. The system is currently being tested in an unstructured home environment. PMID:24771566

  20. Quantitative gait measurement with pulse-Doppler radar for passive in-home gait assessment.

    PubMed

    Wang, Fang; Skubic, Marjorie; Rantz, Marilyn; Cuddihy, Paul E

    2014-09-01

    In this paper, we propose a pulse-Doppler radar system for in-home gait assessment of older adults. A methodology has been developed to extract gait parameters including walking speed and step time using Doppler radar. The gait parameters have been validated with a Vicon motion capture system in the lab with 13 participants and 158 test runs. The study revealed that for an optimal step recognition and walking speed estimation, a dual radar set up with one radar placed at foot level and the other at torso level is necessary. An excellent absolute agreement with intraclass correlation coefficients of 0.97 was found for step time estimation with the foot level radar. For walking speed, although both radars show excellent consistency they all have a system offset compared to the ground truth due to walking direction with respect to the radar beam. The torso level radar has a better performance (9% offset on average) in the speed estimation compared to the foot level radar (13%-18% offset). Quantitative analysis has been performed to compute the angles causing the systematic error. These lab results demonstrate the capability of the system to be used as a daily gait assessment tool in home environments, useful for fall risk assessment and other health care applications. The system is currently being tested in an unstructured home environment.

  1. The effect of gait training with shoe inserts on the improvement of pain and gait in sacroiliac joint patients

    PubMed Central

    Cho, Byung-Yun; Yoon, Jung-Gyu

    2015-01-01

    [Purpose] The purpose of the current research was to identify how gait training with shoe inserts affects the pain and gait of sacroiliac joint dysfunction patients. [Subjects and Methods] Thirty subjects were randomly selected and assigned to be either the experimental group (gait training with shoe insert group) or control group. Each group consisted of 15 patients. Pain was measured by Visual Analogue Scale, and foot pressure in a standing position and during gait was measured with a Gateview AFA-50 system (Alpus, Seoul, Republic of Korea). A paired sample t-test was used to compare the pain and gait of the sacroiliac joint before and after the intervention. Correlation between pain and walking after gait training with shoe inserts was examined by Pearson test. The level of significance was set at α=0.05. [Results] It was found that application of the intervention to the experimental group resulted in a significant decrease in sacroiliac joint pain. It was also found that there was a significant correlation between Visual Analogue Scale score and dynamic asymmetric index (r= 0.796) and that there was a negative correlation between Visual Analogue Scale score and forefoot/rear foot peak pressure ratio (r=-0.728). [Conclusion] The results of our analysis lead us to conclude that the intervention with shoe inserts had a significant influence on the pain and gait of sacroiliac joint patients. PMID:26357428

  2. Disturbances of automatic gait control mechanisms in higher level gait disorder.

    PubMed

    Danoudis, Mary; Ganesvaran, Ganga; Iansek, Robert

    2016-07-01

    The underlying mechanisms responsible for the gait changes in frontal gait disorder (FGD), a form of higher level gait disorders, are poorly understood. We investigated the relationship between stride length and cadence (SLCrel) in people with FGD (n=15) in comparison to healthy older adults (n=21) to improve our understanding of the changes to gait in FGD. Gait data was captured using an electronic walkway system as participants walked at five self-selected speed conditions: preferred, very slow, slow, fast and very fast. Linear regression was used to determine the strength of the relationship (R(2)), slope and intercept. In the FGD group 9 participants had a strong SLCrel (linear group) (R(2)>0.8) and 6 a weak relationship (R(2)<0.8) (nonlinear group). The linear FGD group did not differ to healthy control for slope (p>0.05) but did have a lower intercept (p<0.001). The linear FGD group modulated gait speed by adjusting stride length and cadence similar to controls whereas the nonlinear FGD participants adjusted stride length but not cadence similar to controls. The non-linear FGD group had greater disturbance to their gait, poorer postural control and greater fear of falling compared to the linear FGD group. Investigation of the SLCrel resulted in new insights into the underlying mechanisms responsible for the gait changes found in FGD. The findings suggest stride length regulation was disrupted in milder FGD but as the disorder worsened, cadence control also became disordered resulting in a break down in the relationship between stride length and cadence. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Self-Tuning Threshold Method for Real-Time Gait Phase Detection Based on Ground Contact Forces Using FSRs.

    PubMed

    Tang, Jing; Zheng, Jianbin; Wang, Yang; Yu, Lie; Zhan, Enqi; Song, Qiuzhi

    2018-02-06

    This paper presents a novel methodology for detecting the gait phase of human walking on level ground. The previous threshold method (TM) sets a threshold to divide the ground contact forces (GCFs) into on-ground and off-ground states. However, the previous methods for gait phase detection demonstrate no adaptability to different people and different walking speeds. Therefore, this paper presents a self-tuning triple threshold algorithm (STTTA) that calculates adjustable thresholds to adapt to human walking. Two force sensitive resistors (FSRs) were placed on the ball and heel to measure GCFs. Three thresholds (i.e., high-threshold, middle-threshold andlow-threshold) were used to search out the maximum and minimum GCFs for the self-adjustments of thresholds. The high-threshold was the main threshold used to divide the GCFs into on-ground and off-ground statuses. Then, the gait phases were obtained through the gait phase detection algorithm (GPDA), which provides the rules that determine calculations for STTTA. Finally, the STTTA reliability is determined by comparing the results between STTTA and Mariani method referenced as the timing analysis module (TAM) and Lopez-Meyer methods. Experimental results show that the proposed method can be used to detect gait phases in real time and obtain high reliability when compared with the previous methods in the literature. In addition, the proposed method exhibits strong adaptability to different wearers walking at different walking speeds.

  4. Secure and Privacy Enhanced Gait Authentication on Smart Phone

    PubMed Central

    Choi, Deokjai

    2014-01-01

    Smart environments established by the development of mobile technology have brought vast benefits to human being. However, authentication mechanisms on portable smart devices, particularly conventional biometric based approaches, still remain security and privacy concerns. These traditional systems are mostly based on pattern recognition and machine learning algorithms, wherein original biometric templates or extracted features are stored under unconcealed form for performing matching with a new biometric sample in the authentication phase. In this paper, we propose a novel gait based authentication using biometric cryptosystem to enhance the system security and user privacy on the smart phone. Extracted gait features are merely used to biometrically encrypt a cryptographic key which is acted as the authentication factor. Gait signals are acquired by using an inertial sensor named accelerometer in the mobile device and error correcting codes are adopted to deal with the natural variation of gait measurements. We evaluate our proposed system on a dataset consisting of gait samples of 34 volunteers. We achieved the lowest false acceptance rate (FAR) and false rejection rate (FRR) of 3.92% and 11.76%, respectively, in terms of key length of 50 bits. PMID:24955403

  5. Gait analysis and weight bearing in pre-clinical joint pain research.

    PubMed

    Ängeby Möller, Kristina; Svärd, Heta; Suominen, Anni; Immonen, Jarmo; Holappa, Johanna; Stenfors, Carina

    2018-04-15

    There is a need for better joint pain treatment, but development of new medication has not been successful. Pre-clinical models with readouts that better reflect the clinical situation are needed. In patients with joint pain, pain at rest and pain at walking are two major complaints. We describe a new way of calculating results from gait analysis using the CatWalk™ setup. Rats with monoarthritis induced by injection of Complete Freund's Adjuvant (CFA) intra-articularly into the ankle joint of one hind limb were used to assess gait and dynamic weight bearing. The results show that dynamic weight bearing was markedly reduced for the injected paw. Gait parameters such as amount of normal step sequences, walking speed and duration of step placement were also affected. Treatment with naproxen (an NSAID commonly used for inflammatory pain) attenuated the CFA-induced effects. Pregabalin, which is used for neuropathic pain, had no effect. Reduced dynamic weight bearing during locomotion, assessed and calculated in the way we present here, showed a dose-dependent and lasting normalization after naproxen treatment. In contrast, static weight bearing while standing (Incapacitance tester) showed a significant effect for a limited time only. Mechanical sensitivity (von Frey Optihairs) was completely normalized by naproxen, and the window for testing pharmacological effect disappeared. Objective and reproducible effects, with an endpoint showing face validity compared to pain while walking in patients with joint pain, are achieved by a new way of calculating dynamic weight bearing in monoarthritic rats. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. [Gait disorders in geriatric patients. Classification and therapy].

    PubMed

    Jahn, K; Heinze, C; Selge, C; Heßelbarth, K; Schniepp, R

    2015-04-01

    Slow walking with reduced body dynamics is a characteristic feature of locomotion in the elderly. Impaired mobility and falls associated with gait disorders significantly contribute to a reduced quality of life in the elderly. A gait disorder is not an inevitable consequence of aging. This article shows that it is worth recognizing specific deficits and differentiating specific aspects in multifactorial disorders because many causes can be well treated. Also provided are the bases for clinical classification and therapeutic principles. Review of recent literature and clinical review based on own experience and own scientific results. Common causes of disturbed gait in the elderly are neurological deficits, including sensory deficits (e.g. peripheral neuropathy and vestibulopathy), neurodegeneration (e.g. cerebellar ataxia and parkinsonian syndromes, cognitive impairment (e.g. degenerative dementia), degeneration of joints (e.g. coxarthrosis) and general loss of muscle mass (sarcopenia). Furthermore, a fear of falling also contributes to the gait disorder. Multimodal therapies are often necessary and the principles are presented. Identification of deficits is a prerequisite for specific therapy. As physical activity protects against cognitive impairment, reduces the risk of falling and improves overall quality of life, a structured assessment of causes for gait impairment is crucial.

  7. A Wearable System for Gait Training in Subjects with Parkinson's Disease

    PubMed Central

    Casamassima, Filippo; Ferrari, Alberto; Milosevic, Bojan; Ginis, Pieter; Farella, Elisabetta; Rocchi, Laura

    2014-01-01

    In this paper, a system for gait training and rehabilitation for Parkinson's disease (PD) patients in a daily life setting is presented. It is based on a wearable architecture aimed at the provision of real-time auditory feedback. Recent studies have, in fact, shown that PD patients can receive benefit from a motor therapy based on auditory cueing and feedback, as happens in traditional rehabilitation contexts with verbal instructions given by clinical operators. To this extent, a system based on a wireless body sensor network and a smartphone has been developed. The system enables real-time extraction of gait spatio-temporal features and their comparison with a patient's reference walking parameters captured in the lab under clinical operator supervision. Feedback is returned to the user in form of vocal messages, encouraging the user to keep her/his walking behavior or to correct it. This paper describes the overall concept, the proposed usage scenario and the parameters estimated for the gait analysis. It also presents, in detail, the hardware-software architecture of the system and the evaluation of system reliability by testing it on a few subjects. PMID:24686731

  8. The Novel Quantitative Technique for Assessment of Gait Symmetry Using Advanced Statistical Learning Algorithm

    PubMed Central

    Wu, Jianning; Wu, Bin

    2015-01-01

    The accurate identification of gait asymmetry is very beneficial to the assessment of at-risk gait in the clinical applications. This paper investigated the application of classification method based on statistical learning algorithm to quantify gait symmetry based on the assumption that the degree of intrinsic change in dynamical system of gait is associated with the different statistical distributions between gait variables from left-right side of lower limbs; that is, the discrimination of small difference of similarity between lower limbs is considered the reorganization of their different probability distribution. The kinetic gait data of 60 participants were recorded using a strain gauge force platform during normal walking. The classification method is designed based on advanced statistical learning algorithm such as support vector machine algorithm for binary classification and is adopted to quantitatively evaluate gait symmetry. The experiment results showed that the proposed method could capture more intrinsic dynamic information hidden in gait variables and recognize the right-left gait patterns with superior generalization performance. Moreover, our proposed techniques could identify the small significant difference between lower limbs when compared to the traditional symmetry index method for gait. The proposed algorithm would become an effective tool for early identification of the elderly gait asymmetry in the clinical diagnosis. PMID:25705672

  9. The novel quantitative technique for assessment of gait symmetry using advanced statistical learning algorithm.

    PubMed

    Wu, Jianning; Wu, Bin

    2015-01-01

    The accurate identification of gait asymmetry is very beneficial to the assessment of at-risk gait in the clinical applications. This paper investigated the application of classification method based on statistical learning algorithm to quantify gait symmetry based on the assumption that the degree of intrinsic change in dynamical system of gait is associated with the different statistical distributions between gait variables from left-right side of lower limbs; that is, the discrimination of small difference of similarity between lower limbs is considered the reorganization of their different probability distribution. The kinetic gait data of 60 participants were recorded using a strain gauge force platform during normal walking. The classification method is designed based on advanced statistical learning algorithm such as support vector machine algorithm for binary classification and is adopted to quantitatively evaluate gait symmetry. The experiment results showed that the proposed method could capture more intrinsic dynamic information hidden in gait variables and recognize the right-left gait patterns with superior generalization performance. Moreover, our proposed techniques could identify the small significant difference between lower limbs when compared to the traditional symmetry index method for gait. The proposed algorithm would become an effective tool for early identification of the elderly gait asymmetry in the clinical diagnosis.

  10. Technological Advances in Interventions to Enhance Post-Stroke Gait

    PubMed Central

    Sheffler, Lynne R.; Chae, John

    2012-01-01

    Synopsis This article provides a comprehensive review of specific rehabilitation interventions used to enhance hemiparetic gait following stroke. Neurologic rehabilitation interventions may be either therapeutic resulting in enhanced motor recovery or compensatory whereby assistance or substitution for neurological deficits results in improved functional performance. Included in this review are lower extremity functional electrical stimulation (FES), body-weight supported treadmill training (BWSTT), and lower extremity robotic-assisted gait training. These post-stroke gait training therapies are predicated on activity-dependent neuroplasticity which is the concept that cortical reorganization following central nervous system injury may be induced by repetitive, skilled, and cognitively engaging active movement. All three interventions have been trialed extensively in both research and clinical settings to demonstrate a positive effect on various gait parameters and measures of walking performance. However, more evidence is necessary to determine if specific technology-enhanced gait training methods are superior to conventional gait training methods. This review provides an overview of evidence-based research which supports the efficacy of these three interventions to improve gait, as well as provide perspective on future developments to enhance post-stroke gait in neurologic rehabilitation. PMID:23598265

  11. Gait Training Interventions for Lower Extremity Amputees: A Systematic Literature Review

    PubMed Central

    Highsmith, M. Jason; Andrews, Casey R.; Millman, Claire; Fuller, Ashley; Kahle, Jason T.; Klenow, Tyler D.; Lewis, Katherine L.; Bradley, Rachel C.; Orriola, John J.

    2016-01-01

    Lower extremity (LE) amputation patients who use prostheses have gait asymmetries and altered limb loading and movement strategies when ambulating. Subsequent secondary conditions are believed to be associated with gait deviations and lead to long-term complications that impact function and quality of life as a result. The purpose of this study was to systematically review the literature to determine the strength of evidence supporting gait training interventions and to formulate evidence statements to guide practice and research related to therapeutic gait training for lower extremity amputees. A systematic review of three databases was conducted followed by evaluation of evidence and synthesis of empirical evidence statements (EES). Eighteen manuscripts were included in the review, which covered two areas of gait training interventions: 1) overground and 2) treadmill-based. Eight EESs were synthesized. Four addressed overground gait training, one covered treadmill training, and three statements addressed both forms of therapy. Due to the gait asymmetries, altered biomechanics, and related secondary consequences associated with LE amputation, gait training interventions are needed along with study of their efficacy. Overground training with verbal or other auditory, manual, and psychological awareness interventions was found to be effective at improving gait. Similarly, treadmill-based training was found to be effective: 1) as a supplement to overground training; 2) independently when augmented with visual feedback and/or body weight support; or 3) as part of a home exercise plan. Gait training approaches studied improved multiple areas of gait, including sagittal and coronal biomechanics, spatiotemporal measures, and distance walked. PMID:28066520

  12. Nonlinear analysis of gait kinematics to track changes in oxygen consumption in prolonged load carriage walking: a pilot study.

    PubMed

    Schiffman, Jeffrey M; Chelidze, David; Adams, Albert; Segala, David B; Hasselquist, Leif

    2009-09-18

    Linking human mechanical work to physiological work for the purpose of developing a model of physical fatigue is a complex problem that cannot be solved easily by conventional biomechanical analysis. The purpose of the study was to determine if two nonlinear analysis methods can address the fundamental issue of utilizing kinematic data to track oxygen consumption from a prolonged walking trial: we evaluated the effectiveness of dynamical systems and fractal analysis in this study. Further, we selected, oxygen consumption as a measure to represent the underlying physiological measure of fatigue. Three male US Army Soldier volunteers (means: 23.3 yr; 1.80 m; 77.3 kg) walked for 120 min at 1.34 m/s with a 40-kg load on a level treadmill. Gait kinematic data and oxygen consumption (VO(2)) data were collected over the 120-min period. For the fractal analysis, utilizing stride interval data, we calculated fractal dimension. For the dynamical systems analysis, kinematic angle time series were used to estimate phase space warping based features at uniform time intervals: smooth orthogonal decomposition (SOD) was used to extract slowly time-varying trends from these features. Estimated fractal dimensions showed no apparent trend or correlation with independently measured VO(2). While inter-individual difference did exist in the VO(2) data, dominant SOD time trends tracked and correlated with the VO(2) for all volunteers. Thus, dynamical systems analysis using gait kinematics may be suitable to develop a model to predict physiologic fatigue based on biomechanical work.

  13. Low-cost three-dimensional gait analysis system for mice with an infrared depth sensor.

    PubMed

    Nakamura, Akihiro; Funaya, Hiroyuki; Uezono, Naohiro; Nakashima, Kinichi; Ishida, Yasumasa; Suzuki, Tomohiro; Wakana, Shigeharu; Shibata, Tomohiro

    2015-11-01

    Three-dimensional (3D) open-field gait analysis of mice is an essential procedure in genetic and nerve regeneration research. Existing gait analysis systems are generally expensive and may interfere with the natural behaviors of mice because of optical markers and transparent floors. In contrast, the proposed system captures the subjects shape from beneath using a low-cost infrared depth sensor (Microsoft Kinect) and an opaque infrared pass filter. This means that we can track footprints and 3D paw-tip positions without optical markers or a transparent floor, thereby preventing any behavioral changes. Our experimental results suggest with healthy mice that they are more active on opaque floors and spend more time in the center of the open-field, when compared with transparent floors. The proposed system detected footprints with a comparable performance to existing systems, and precisely tracked the 3D paw-tip positions in the depth image coordinates. Copyright © 2015 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.

  14. Automatic Gait Recognition for Human ID at a Distance

    DTIC Science & Technology

    2004-11-01

    at the modeling and understanding of human movement through image sequences. The ongoing interest in gait in a biometric is in a large part the wider...2.2 Model -Based Approaches...with Canonical Analysis (CA) [11]. At that stage, only one approach had used a model to analyze leg movement [12] as opposed to using human body shape

  15. Differences between opening versus closing high tibial osteotomy on clinical outcomes and gait analysis.

    PubMed

    Deie, Masataka; Hoso, Takayuki; Shimada, Noboru; Iwaki, Daisuke; Nakamae, Atsuo; Adachi, Nobuo; Ochi, Mitsuo

    2014-12-01

    High tibial osteotomy (HTO) for medial knee osteoarthritis (OA) is mainly performed via two procedures: closing wedge HTO (CW) and opening wedge HTO (OW). In this study, differences between these procedures were assessed by serial clinical evaluation and gait analysis before and after surgery. Twenty-one patients underwent HTO for medial knee OA in 2011 and 2012, with 12 patients undergoing CW and nine undergoing OW. The severity of OA was classified according to the Kellgren-Lawrence classification. The Japanese Orthopedic Association score for assessment of knee OA (JOA score), the Numeric Rating Scale (NRS), and the femoral tibial angle (FTA) on X-ray were evaluated. For gait analysis, gait speed, varus moment, varus angle and lateral thrust were calculated. The JOA score and NRS were improved significantly one year postoperatively in both groups. The FTA was maintained in both groups at one year. Varus angle and varus moment were significantly improved in both groups at each postoperative follow-up, when compared preoperatively. Lateral thrust was significantly improved at three months postoperatively in both groups. However, the significant improvement in lateral thrust had disappeared in the CW group six months postoperatively, whereas it was maintained for at least one year in the OW group. This study found that clinical outcomes were well maintained after HTO. OW reduced knee varus moment and lateral thrust, whereas CW had little effect on reducing lateral thrust. Level IV. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Learning Efficient Spatial-Temporal Gait Features with Deep Learning for Human Identification.

    PubMed

    Liu, Wu; Zhang, Cheng; Ma, Huadong; Li, Shuangqun

    2018-02-06

    The integration of the latest breakthroughs in bioinformatics technology from one side and artificial intelligence from another side, enables remarkable advances in the fields of intelligent security guard computational biology, healthcare, and so on. Among them, biometrics based automatic human identification is one of the most fundamental and significant research topic. Human gait, which is a biometric features with the unique capability, has gained significant attentions as the remarkable characteristics of remote accessed, robust and security in the biometrics based human identification. However, the existed methods cannot well handle the indistinctive inter-class differences and large intra-class variations of human gait in real-world situation. In this paper, we have developed an efficient spatial-temporal gait features with deep learning for human identification. First of all, we proposed a gait energy image (GEI) based Siamese neural network to automatically extract robust and discriminative spatial gait features for human identification. Furthermore, we exploit the deep 3-dimensional convolutional networks to learn the human gait convolutional 3D (C3D) as the temporal gait features. Finally, the GEI and C3D gait features are embedded into the null space by the Null Foley-Sammon Transform (NFST). In the new space, the spatial-temporal features are sufficiently combined with distance metric learning to drive the similarity metric to be small for pairs of gait from the same person, and large for pairs from different persons. Consequently, the experiments on the world's largest gait database show our framework impressively outperforms state-of-the-art methods.

  17. Three-Dimensional Trunk and Lower Limbs Characteristics during Gait in Patients with Huntington's Disease.

    PubMed

    Mirek, Elzbieta; Filip, Magdalena; Chwała, Wiesław; Banaszkiewicz, Krzysztof; Rudzinska-Bar, Monika; Szymura, Jadwiga; Pasiut, Szymon; Szczudlik, Andrzej

    2017-01-01

    Objective: A number of studies on gait disturbances have been conducted, however, no clear pattern of gait disorders was described. The aim of the study was to characterize the gait pattern in HD patients by conducting analysis of mean angular movement changes the lower limb joints and trunk (kinematics parameters). Methods: The study group consisted of 30 patients with HD (17 women and 13 men). The reference data include the results of 30 healthy subjects (17 women and 13 men). Registration of gait with the Vicon 250 system was performed using passive markers attached to specific anthropometric points directly on the skin, based on the Golem biomechanical model (Oxford Metrics Ltd.). The research group and the control group were tested once. Results: Statistically significant ( p < 0.05) angular changes in gait cycle for HD patients were observed in: insufficient plantar flexion during Loading Response and Pre-swing phases; insufficient flexion of the knee joint during Initial Swing and Mid Swing phases; excessive flexion of the hip in Terminal Stance and Pre-swing phases and over-normative forward inclination of the trunk in all gait phases. It should be noted that the group of patients with HD obtained, for all the mean angular movement changes higher standard deviation. Conclusion: A characteristic gait disorder common to all patients with HD occurring throughout the whole duration of the gait cycle is a pathological anterior tilt of the trunk. The results will significantly contribute to programming physiotherapy for people with HD, aimed at stabilizing the trunk in a position of extension during gait.

  18. Mobile Phone-Based Measures of Activity, Step Count, and Gait Speed: Results From a Study of Older Ambulatory Adults in a Naturalistic Setting

    PubMed Central

    Aung, Thawda; Whittington, Jackie; High, Robin R; Goulding, Evan H; Schenk, A Katrin

    2017-01-01

    participants in the community over a 24-hour period occurring within 1 week of the initial assessment. Results We identified statistically significant differences between functionally intact and frail participants in mobile phone-derived measures of percent activity (P=.002, t test), active versus inactive status (P=.02, t test), average step counts (P<.001, repeated measures analysis of variance [ANOVA]) and gait speed (P<.001, t test). In functionally intact individuals, the above mobile phone metrics assessed aspects of functional status independent (Bland-Altman and correlation analysis) of both survey- and/or performance battery-based functional measures. In contrast, in frail individuals, the above mobile phone metrics correlated with submeasures of both SAFFE and PROMIS-GH. Conclusions Continuous mobile phone-based measures of participant community activity and mobility strongly differentiate between persons with intact functional status and persons with a frailty phenotype. These measures assess dimensions of functional status independent of those measured using current validated questionnaires and physical performance assessments to identify functional compromise. Mobile phone-based gait measures may provide a more readily accessible and less-time consuming measure of gait, while further providing clinicians with longitudinal gait measures that are currently difficult to obtain. PMID:28974482

  19. Gait Analysis in Rats with Single Joint Inflammation: Influence of Experimental Factors

    PubMed Central

    Ängeby Möller, Kristina; Kinert, Susanne; Størkson, Rolf; Berge, Odd-Geir

    2012-01-01

    Disability and movement-related pain are major symptoms of joint disease, motivating the development of methods to quantify motor behaviour in rodent joint pain models. We used observational scoring and automated methods to compare weight bearing during locomotion and during standing after single joint inflammation induced by Freund's complete adjuvant (0.12–8.0 mg/mL) or carrageenan (0.47–30 mg/mL). Automated gait analysis was based on video capture of prints generated by light projected into the long edge of the floor of a walkway, producing an illuminated image of the contact area of each paw with light intensity reflecting the contact pressure. Weight bearing was calculated as an area-integrated paw pressure, that is, the light intensity of all pixels activated during the contact phase of a paw placement. Automated static weight bearing was measured with the Incapacitance tester. Pharmacological sensitivity of weight-bearing during locomotion was tested in carrageenan-induced monoarthritis by administration of the commonly used analgesics diclofenac, ibuprofen, and naproxen, as well as oxycodone and paracetamol. Observational scoring and automated quantification yielded similar results. We found that the window between control rats and monoarthritic rats was greater during locomotion. The response was more pronounced for inflammation in the ankle as compared to the knee, suggesting a methodological advantage of using this injection site. The effects of both Freund's complete adjuvant and carrageenan were concentration related, but Freund's incomplete adjuvant was found to be as effective as lower, commonly used concentrations of the complete adjuvant. The results show that gait analysis can be an effective method to quantify behavioural effects of single joint inflammation in the rat, sensitive to analgesic treatment. PMID:23071540

  20. Evaluation of breast reduction surgery effect on body posture and gait pattern using three-dimensional gait analysis.

    PubMed

    Sahin, Ismail; Iskender, Salim; Ozturk, Serdar; Balaban, Birol; Isik, Selcuk

    2013-06-01

    Breast hypertrophy is a significant health burden with symptoms of back and shoulder pain, intertrigo, and shoulder grooving from the bra straps. Women often rely on surgery to relieve these symptoms, and they are mostly satisfied with the results. The satisfaction from surgery usually is evaluated by subjective measures. Objective evidence testing of the surgical outcomes is lacking. In this study, 10 women with breast hypertrophy underwent reduction mammaplasty. Their surgical outcomes were evaluated using three-dimensional gait analysis before surgery and 2 months afterward. A statistical difference was sought between the kinematic data of the spine, hip, knee, and ankle joints. The average maximum anterior pelvic tilt angles decreased 41 %, and the average maximum spine anterior flexion angles decreased 30 %. The difference between the pre- and postoperative values was statistically significant. The analysis of the kinematic data showed no significant difference in the hip, knee, or ankle joint angles postoperatively. The outcomes of breast reduction surgery have been evaluated mostly by subjective means until recently. As an objective evidence for surgical gain in the current study, reduction mammaplasty resulted in the patients' improved body posture when walking. This journal requires that authors assign a level of evidence to each article. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266 .

  1. A mechanized gait trainer for restoring gait in nonambulatory subjects.

    PubMed

    Hesse, S; Uhlenbrock, D; Werner, C; Bardeleben, A

    2000-09-01

    To construct an advanced mechanized gait trainer to enable patients the repetitive practice of a gaitlike movement without overstraining therapists. DEVICE: Prototype gait trainer that simulates the phases of gait (by generating a ratio of 40% to 60% between swing and stance phases), supports the subjects according to their ability (lifts the foot during swing phase), and controls the center of mass in the vertical and horizontal directions. Two nonambulatory, hemiparetic patients who regained their walking ability after 4 weeks of daily training on the gait trainer, a 55-year-old woman and a 62-year-old man, both of whom had a first-time ischemic stroke. Four weeks of training, five times a week, each session 20 minutes long. Functional ambulation category (FAC, levels 0-5) to assess gait ability and ground level walking velocity. Rivermead motor assessment score (RMAS, 0-13) to assess gross motor function. Patient 1: At the end of treatment, she was able to walk independently on level ground with use of a walking stick. Her walking velocity had improved from .29m/sec to .59m/sec. Her RMAS score increased from 4 to 10, meaning she could walk at least 40 meters outside, pick up objects from floor, and climb stairs independently. Patient 2: At end of 4-week training, he could walk independently on even surfaces (FAC level 4), using an ankle-foot orthosis and a walking stick. His walking velocity improved from .14m/sec to .63m/sec. His RMAS increased from 3 to 10. The gait trainer enabled severely affected patients the repetitive practice of a gaitlike movement. Future studies may elucidate its value in gait rehabilitation of nonambulatory subjects.

  2. An Automatic Gait Feature Extraction Method for Identifying Gait Asymmetry Using Wearable Sensors

    PubMed Central

    Vassallo, Michael

    2018-01-01

    This paper aims to assess the use of Inertial Measurement Unit (IMU) sensors to identify gait asymmetry by extracting automatic gait features. We design and develop an android app to collect real time synchronous IMU data from legs. The results from our method are validated using a Qualisys Motion Capture System. The data are collected from 10 young and 10 older subjects. Each performed a trial in a straight corridor comprising 15 strides of normal walking, a turn around and another 15 strides. We analyse the data for total distance, total time, total velocity, stride, step, cadence, step ratio, stance, and swing. The accuracy of detecting the stride number using the proposed method is 100% for young and 92.67% for older subjects. The accuracy of estimating travelled distance using the proposed method for young subjects is 97.73% and 98.82% for right and left legs; and for the older, is 88.71% and 89.88% for right and left legs. The average travelled distance is 37.77 (95% CI ± 3.57) meters for young subjects and is 22.50 (95% CI ± 2.34) meters for older subjects. The average travelled time for young subjects is 51.85 (95% CI ± 3.08) seconds and for older subjects is 84.02 (95% CI ± 9.98) seconds. The results show that wearable sensors can be used for identifying gait asymmetry without the requirement and expense of an elaborate laboratory setup. This can serve as a tool in diagnosing gait abnormalities in individuals and opens the possibilities for home based self-gait asymmetry assessment. PMID:29495299

  3. Does a single gait training session performed either overground or on a treadmill induce specific short-term effects on gait parameters in patients with hemiparesis? A randomized controlled study.

    PubMed

    Bonnyaud, Céline; Pradon, Didier; Zory, Raphael; Bensmail, Djamel; Vuillerme, Nicolas; Roche, Nicolas

    2013-01-01

    Gait training for patients with hemiparesis is carried out independently overground or on a treadmill. Several studies have shown differences in hemiparetic gait parameters during overground versus treadmill walking. However, few studies have compared the effects of these 2 gait training conditions on gait parameters, and no study has compared the short-term effects of these techniques on all biomechanical gait parameters. To determine whether a gait training session performed overground or on a treadmill induces specific short-term effects on biomechanical gait parameters in patients with hemiparesis. Twenty-six subjects with hemiparesis were randomly assigned to a single session of either overground or treadmill gait training. The short-term effects on spatiotemporal, kinematic, and kinetic gait parameters were assessed using gait analysis before and immediately after the training and after a 20-minute rest. Speed, cadence, percentage of single support phase, peak knee extension, peak propulsion, and braking on the paretic side were significantly increased after the gait training session. However, there were no specific changes dependent on the type of gait training performed (overground or on a treadmill). A gait training session performed by subjects with hemiparesis overground or on a treadmill did not induce specific short-term effects on biomechanical gait parameters. The increase in gait velocity that followed a gait training session seemed to reflect specific modifications of the paretic lower limb and adaptation of the nonparetic lower limb.

  4. Biped Robot Gait Planning Based on 3D Linear Inverted Pendulum Model

    NASA Astrophysics Data System (ADS)

    Yu, Guochen; Zhang, Jiapeng; Bo, Wu

    2018-01-01

    In order to optimize the biped robot’s gait, the biped robot’s walking motion is simplify to the 3D linear inverted pendulum motion mode. The Center of Mass (CoM) locus is determined from the relationship between CoM and the Zero Moment Point (ZMP) locus. The ZMP locus is planned in advance. Then, the forward gait and lateral gait are simplified as connecting rod structure. Swing leg trajectory using B-spline interpolation. And the stability of the walking process is discussed in conjunction with the ZMP equation. Finally the system simulation is carried out under the given conditions to verify the validity of the proposed planning method.

  5. Relationships between age at menarche, walking gait base of support, and stance phase frontal plane knee biomechanics in adolescent females

    PubMed Central

    Grannis, Kimberly A.; Sherwood, Richard J.; Duren, Dana L

    2016-01-01

    Background Age at menarche impacts patterns of pubertal growth and skeletal development. These effects may carry over into variation in biomechanical profiles involved in sports-related traumatic and overuse knee injuries. The present study investigated whether age at menarche is a potential indicator of knee injury risk through its influence on knee biomechanics during normal walking. Objective To test the hypothesis that earlier menarche is related to post-pubertal biomechanical risk factors for knee injuries, including a wider, more immature gait base of support, and greater valgus knee angles and moments. Design Cross-sectional observational study. Setting University research facility. Participants Healthy, post-menarcheal, adolescent females. Methods Age at menarche was obtained by recall questionnaire. Pubertal growth and anthropometric data were collected using standard methods. Biomechanical data were taken from tests of walking gait at self-selected speed. Reflective marker position data were collected using a three-dimensional quantitative motion analysis system, and three force plates recorded kinetic data. Main Outcome Measures Age at menarche; growth and anthropometric measurements; base of support; static knee frontal plane angle; dynamic knee frontal plane angles and moments during stance. Results Earlier menarche was significantly correlated with abbreviated pubertal growth and post-pubertal retention of immature traits, including a wider base of support. Earlier menarche and wider base of support were both correlated with more valgus static knee angles, more valgus knee abduction angles and moments at foot-strike, and a more valgus peak knee abduction angle during stance. Peak knee abduction moment during stance was not correlated with age at menarche or base of support. Conclusions Earlier menarche and its effects on growth are associated with retention of a relatively immature gait base of support and a tendency for static and dynamic valgus knee

  6. Gait kinematics and kinetics are affected more by peripheral arterial disease than age

    PubMed Central

    Myers, Sara A.; Applequist, Bryon C.; Huisinga, Jessie M.; Pipinos, Iraklis I.; Johanning, Jason M.

    2016-01-01

    Peripheral arterial disease (PAD) produces abnormal gait and disproportionately affects older individuals. The current study investigated PAD gait biomechanics in young and older subjects. Sixty-one (31 < 65 years, age: 57.4 ± 5.3 years and 30 ≥ 65 years; age: 72.2 ± 5.4 years) patients with PAD and 52 healthy age matched controls were included. Patients with PAD were tested during pain free walking and compared to matched healthy controls. Joint kinematics and kinetics (torques) were compared using a 2 × 2 ANOVA (Groups: PAD vs. Control, Age: Younger vs. Older). Patients with PAD had significantly increased ankle and decreased hip range of motion during the stance phase as well as decreased ankle dorsiflexor torque compared to controls. Gait changes in older individuals are largely constrained to time-distance parameters. Joint kinematics and kinetics are significantly altered in patients with PAD during pain free ambulation. Symptomatic PAD produces a consistent ambulatory deficit across ages definable by advanced biomechanical analysis. The most important finding of the current study is that gait, in the absence of PAD and other ambulatory comorbidities, does not decline significantly with age based on advanced biomechanical analysis. Therefore, previous studies must be examined in the context of potential PAD patients being present in the population and future ambulatory studies must include PAD as a confounding factor when assessing the gait function of elderly individuals. PMID:27149635

  7. Gait performance of children and adolescents with sensorineural hearing loss.

    PubMed

    Melo, Renato de Souza

    2017-09-01

    Several studies have demonstrated that children with sensorineural hearing loss (SNHL) may exhibit balance disorders, which can compromise the gait performance of this population. Compare the gait performance of normal hearing (NH) children and those with SNHL, considering the sex and age range of the sample, and analyze gait performance according to degrees of hearing loss and etiological factors in the latter group. This is a cross-sectional study that assessed 96 students, 48 NH and 48 with SNHL, aged between 7 and 18 years. The Brazilian version of the Dynamic Gait Index (DGI) was used to analyze gait and the Mann-Whitney test for statistical analysis. The group with SNHL obtained lower average gait performance compared to NH subjects (p=0.000). This was also observed when the children were grouped by sex female and male (p=0.000). The same difference occurred when the children were stratified by age group: 7-18 years (p=0.000). The group with severe and profound hearing loss exhibited worse gait performance than those with mild and moderate loss (p=0.048) and children with prematurity as an etiological factor demonstrated the worst gait performance. The children with SNHL showed worse gait performance compared to NH of the same sex and age group. Those with severe and profound hearing loss and prematurity as an etiological factor demonstrated the worst gait performances. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Validity of an Exercise Test Based on Habitual Gait Speed in Mobility-Limited Older Adults

    PubMed Central

    Li, Xin; Forman, Daniel E.; Kiely, Dan K.; LaRose, Sharon; Hirschberg, Ronald; Frontera, Walter R.; Bean, Jonathan F.

    2013-01-01

    Objective To evaluate whether a customized exercise tolerance testing (ETT) protocol based on an individual’s habitual gait speed (HGS) on level ground would be a valid mode of exercise testing older adults. Although ETT provides a useful means to risk-stratify adults, age-related declines in gait speed paradoxically limit the utility of standard ETT protocols for evaluating older adults. A customized ETT protocol may be a useful alternative to these standard methods, and this study hypothesized that this alternative approach would be valid. Design We performed a cross-sectional analysis of baseline data from a randomized controlled trial of older adults with observed mobility problems. Screening was performed using a treadmill-based ETT protocol customized for each individual’s HGS. We determined the content validity by assessing the results of the ETTs, and we evaluated the construct validity of treadmill time in relation to the Physical Activity Scale for the Elderly (PASE) and the Late Life Function and Disability Instrument (LLFDI). Setting Outpatient rehabilitation center. Participants Community-dwelling, mobility-limited older adults (N = 141). Interventions Not applicable. Main Outcome Measures Cardiac instability, ETT duration, peak heart rate, peak systolic blood pressure, PASE, and LLFDI. Results Acute cardiac instability was identified in 4 of the participants who underwent ETT. The remaining participants (n = 137, 68% female; mean age, 75.3y) were included in the subsequent analyses. Mean exercise duration was 9.39 minutes, with no significant differences in durations being observed after evaluating among tertiles by HGS status. Mean peak heart rate and mean peak systolic blood pressure were 126.6 beats/ min and 175.0mmHg, respectively. Within separate multivariate models, ETT duration in each of the 3 gait speed groups was significantly associated (P<.05) with PASE and LLFDI. Conclusions Mobility-limited older adults can complete this customized

  9. Image based weighted center of proximity versus directly measured knee contact location during simulated gait

    PubMed Central

    Wang, Hongsheng; Chen, Tony; Koff, Matthew F.; Hutchinson, Ian D.; Gilbert, Susannah; Choi, Dan; Warren, Russell F.; Rodeo, Scott A.; Maher, Suzanne A.

    2014-01-01

    To understand the mechanical consequences of knee injury requires a detailed analysis of the effect of that injury on joint contact mechanics during activities of daily living. Three-dimensional (3D) knee joint geometric models have been combined with knee joint kinematics to dynamically estimate the location of joint contact during physiological activities – using a weighted center of proximity (WCoP) method. However, the relationship between the estimated WCoP and the actual location of contact has not been defined. The objective of this study was to assess the relationship between knee joint contact location as estimated using the image-based WCoP method, and a directly measured weighted center of contact (WCoC) method during simulated walking. To achieve this goal, we created knee specific models of six human cadaveric knees from magnetic resonance imaging. All knees were then subjected to physiological loads on a knee simulator intended to mimic gait. Knee joint motion was captured using a motion capture system. Knee joint contact stresses were synchronously recorded using a thin electronic sensor throughout gait, and used to compute WCoC for the medial and lateral plateaus of each knee. WCoP was calculated by combining knee kinematics with the MRI-based knee specific model. Both metrics were compared throughout gait using linear regression. The anteroposterior (AP) location of WCoP was significantly correlated with that of WCoC on both tibial plateaus in all specimens (P < 0.01, 95% confidence interval of Person’s coefficient r > 0), but the correlation was not significant in the mediolateral (ML) direction for 4/6 knees (P > 0.05). Our study demonstrates that while the location of joint contact obtained from 3D knee joint contact model, using the WCoP method, is significantly correlated with the location of actual contact stresses in the AP direction, that relationship is less certain in the ML direction. PMID:24837219

  10. Implementation An image processing technique for video motion analysis during the gait cycle canine

    NASA Astrophysics Data System (ADS)

    López, G.; Hernández, J. O.

    2017-01-01

    Nowadays the analyses of human movement, more specifically of the gait have ceased to be a priority for our species. Technological advances and implementations engineering have joined to obtain data and information regarding the gait cycle in another animal species. The aim of this paper is to analyze the canine gait in order to get results that describe the behavior of the limbs during the gait cycle. The research was performed by: 1. Dog training, where it is developed the step of adaptation and trust; 2. Filming gait cycle; 3. Data acquisition, in order to obtain values that describe the motion cycle canine and 4. Results, obtaining the kinematics variables involved in the march. Which are essential to determine the behavior of the limbs, as well as for the development of prosthetic or orthotic. This project was carried out with conventional equipment and using computational tools easily accessible.

  11. Dual gait generative models for human motion estimation from a single camera.

    PubMed

    Zhang, Xin; Fan, Guoliang

    2010-08-01

    This paper presents a general gait representation framework for video-based human motion estimation. Specifically, we want to estimate the kinematics of an unknown gait from image sequences taken by a single camera. This approach involves two generative models, called the kinematic gait generative model (KGGM) and the visual gait generative model (VGGM), which represent the kinematics and appearances of a gait by a few latent variables, respectively. The concept of gait manifold is proposed to capture the gait variability among different individuals by which KGGM and VGGM can be integrated together, so that a new gait with unknown kinematics can be inferred from gait appearances via KGGM and VGGM. Moreover, a new particle-filtering algorithm is proposed for dynamic gait estimation, which is embedded with a segmental jump-diffusion Markov Chain Monte Carlo scheme to accommodate the gait variability in a long observed sequence. The proposed algorithm is trained from the Carnegie Mellon University (CMU) Mocap data and tested on the Brown University HumanEva data with promising results.

  12. Balance control during gait initiation: State-of-the-art and research perspectives.

    PubMed

    Yiou, Eric; Caderby, Teddy; Delafontaine, Arnaud; Fourcade, Paul; Honeine, Jean-Louis

    2017-11-18

    It is well known that balance control is affected by aging, neurological and orthopedic conditions. Poor balance control during gait and postural maintenance are associated with disability, falls and increased mortality. Gait initiation - the transient period between the quiet standing posture and steady state walking - is a functional task that is classically used in the literature to investigate how the central nervous system (CNS) controls balance during a whole-body movement involving change in the base of support dimensions and center of mass progression. Understanding how the CNS in able-bodied subjects exerts this control during such a challenging task is a pre-requisite to identifying motor disorders in populations with specific impairments of the postural system. It may also provide clinicians with objective measures to assess the efficiency of rehabilitation programs and better target interventions according to individual impairments. The present review thus proposes a state-of-the-art analysis on: (1) the balance control mechanisms in play during gait initiation in able bodied subjects and in the case of some frail populations; and (2) the biomechanical parameters used in the literature to quantify dynamic stability during gait initiation. Balance control mechanisms reviewed in this article included anticipatory postural adjustments, stance leg stiffness, foot placement, lateral ankle strategy, swing foot strike pattern and vertical center of mass braking. Based on this review, the following viewpoints were put forward: (1) dynamic stability during gait initiation may share a principle of homeostatic regulation similar to most physiological variables, where separate mechanisms need to be coordinated to ensure stabilization of vital variables, and consequently; and (2) rehabilitation interventions which focus on separate or isolated components of posture, balance, or gait may limit the effectiveness of current clinical practices.

  13. Balance control during gait initiation: State-of-the-art and research perspectives

    PubMed Central

    Yiou, Eric; Caderby, Teddy; Delafontaine, Arnaud; Fourcade, Paul; Honeine, Jean-Louis

    2017-01-01

    It is well known that balance control is affected by aging, neurological and orthopedic conditions. Poor balance control during gait and postural maintenance are associated with disability, falls and increased mortality. Gait initiation - the transient period between the quiet standing posture and steady state walking - is a functional task that is classically used in the literature to investigate how the central nervous system (CNS) controls balance during a whole-body movement involving change in the base of support dimensions and center of mass progression. Understanding how the CNS in able-bodied subjects exerts this control during such a challenging task is a pre-requisite to identifying motor disorders in populations with specific impairments of the postural system. It may also provide clinicians with objective measures to assess the efficiency of rehabilitation programs and better target interventions according to individual impairments. The present review thus proposes a state-of-the-art analysis on: (1) the balance control mechanisms in play during gait initiation in able bodied subjects and in the case of some frail populations; and (2) the biomechanical parameters used in the literature to quantify dynamic stability during gait initiation. Balance control mechanisms reviewed in this article included anticipatory postural adjustments, stance leg stiffness, foot placement, lateral ankle strategy, swing foot strike pattern and vertical center of mass braking. Based on this review, the following viewpoints were put forward: (1) dynamic stability during gait initiation may share a principle of homeostatic regulation similar to most physiological variables, where separate mechanisms need to be coordinated to ensure stabilization of vital variables, and consequently; and (2) rehabilitation interventions which focus on separate or isolated components of posture, balance, or gait may limit the effectiveness of current clinical practices. PMID:29184756

  14. Apolipoprotein E4 Allele and Gait Performance in Mild Cognitive Impairment: Results From the Gait and Brain Study.

    PubMed

    Sakurai, Ryota; Montero-Odasso, Manuel

    2017-11-09

    The apolipoprotein E polymorphism ε4 allele (ApoE4) and gait impairment are both known risk factors for developing cognitive decline and dementia. However, it is unclear the interrelationship between these factors, particularly among older adults with mild cognitive impairment (MCI) who are considered as prodromal for Alzheimer's disease. This study aimed to determine whether ApoE4 carrier individuals with MCI may experience greater impairment in gait performance. Fifty-six older adults with MCI from the "Gait and Brain Study" who were identified as either ApoE4 carriers (n = 20) or non-ApoE4 carriers (n = 36) with 1 year of follow-up were included. Gait variability, the main outcome variable, was assessed as stride time variability with an electronic walkway. Additional gait variables and cognitive performance (mini-mental state examination [MMSE] and Montreal Cognitive Assessment [MoCA]) were also recorded. Covariates included age, sex, education level, body mass index, and number of comorbidities. Baseline characteristics were similar for both groups. Repeated measures analysis of covariance showed that gait stride time and stride length variabilities significantly increased in ApoE4 carriers but was maintained in the non-ApoE4 carriers. Similarly, ApoE4 carriers showed greater decrease in MMSE score at follow-up. In this sample of older adults with MCI, the presence of at least one copy of ApoE4 was associated with the development of both increased gait variability and cognitive decline during 1 year of follow-up. ApoE4 genotype might be considered as a potential mediator of decline in mobility function in MCI; future studies with larger samples are needed to confirm our preliminary findings. © The Author 2017. Published by Oxford University Press on behalf of The Gerontological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  15. Effects of conventional overground gait training and a gait trainer with partial body weight support on spatiotemporal gait parameters of patients after stroke

    PubMed Central

    Park, Byoung-Sun; Kim, Mee-Young; Lee, Lim-Kyu; Yang, Seung-Min; Lee, Won-Deok; Noh, Ji-Woong; Shin, Yong-Sub; Kim, Ju-Hyun; Lee, Jeong-Uk; Kwak, Taek-Yong; Lee, Tae-Hyun; Kim, Ju-Young; Kim, Junghwan

    2015-01-01

    [Purpose] The purpose of this study was to confirm the effects of both conventional overground gait training (CGT) and a gait trainer with partial body weight support (GTBWS) on spatiotemporal gait parameters of patients with hemiparesis following chronic stroke. [Subjects and Methods] Thirty stroke patients were alternately assigned to one of two treatment groups, and both groups underwent CGT and GTBWS. [Results] The functional ambulation classification on the affected side improved significantly in the CGT and GTBWS groups. Walking speed also improved significantly in both groups. [Conclusion] These results suggest that the GTBWS in company with CGT may be, in part, an effective method of gait training for restoring gait ability in patients after a stroke. PMID:26157272

  16. Effects of conventional overground gait training and a gait trainer with partial body weight support on spatiotemporal gait parameters of patients after stroke.

    PubMed

    Park, Byoung-Sun; Kim, Mee-Young; Lee, Lim-Kyu; Yang, Seung-Min; Lee, Won-Deok; Noh, Ji-Woong; Shin, Yong-Sub; Kim, Ju-Hyun; Lee, Jeong-Uk; Kwak, Taek-Yong; Lee, Tae-Hyun; Kim, Ju-Young; Kim, Junghwan

    2015-05-01

    [Purpose] The purpose of this study was to confirm the effects of both conventional overground gait training (CGT) and a gait trainer with partial body weight support (GTBWS) on spatiotemporal gait parameters of patients with hemiparesis following chronic stroke. [Subjects and Methods] Thirty stroke patients were alternately assigned to one of two treatment groups, and both groups underwent CGT and GTBWS. [Results] The functional ambulation classification on the affected side improved significantly in the CGT and GTBWS groups. Walking speed also improved significantly in both groups. [Conclusion] These results suggest that the GTBWS in company with CGT may be, in part, an effective method of gait training for restoring gait ability in patients after a stroke.

  17. Effects of narrow-base walking and dual tasking on gait spatiotemporal characteristics in anterior cruciate ligament-injured adults compared to healthy adults.

    PubMed

    Mazaheri, Masood; Negahban, Hossein; Soltani, Maryam; Mehravar, Mohammad; Tajali, Shirin; Hessam, Masumeh; Salavati, Mahyar; Kingma, Idsart

    2017-08-01

    The present experiment was conducted to examine the hypothesis that challenging control through narrow-base walking and/or dual tasking affects ACL-injured adults more than healthy control adults. Twenty male ACL-injured adults and twenty healthy male adults walked on a treadmill at a comfortable speed under two base-of-support conditions, normal-base versus narrow-base, with and without a cognitive task. Gait patterns were assessed using mean and variability of step length and mean and variability of step velocity. Cognitive performance was assessed using the number of correct counts in a backward counting task. Narrow-base walking resulted in a larger decrease in step length and a more pronounced increase in variability of step length and of step velocity in ACL-injured adults than in healthy adults. For most of the gait parameters and for backward counting performance, the dual-tasking effect was similar between the two groups. ACL-injured adults adopt a more conservative and more unstable gait pattern during narrow-base walking. This can be largely explained by deficits of postural control in ACL-injured adults, which impairs gait under more balance-demanding conditions. The observation that the dual-tasking effect did not differ between the groups may be explained by the fact that walking is an automatic process that involves minimal use of attentional resources, even after ACL injury. Clinicians should consider the need to include aspects of terrain complexity, such as walking on a narrow walkway, in gait assessment and training of patients with ACL injury. III.

  18. How doing a dynamical analysis of gait movement may provide information about Autism

    NASA Astrophysics Data System (ADS)

    Wu, D.; Torres, E.; Nguyen, J.; Mistry, S.; Whyatt, C.; Kalampratsidou, V.; Kolevzon, A.; Jose, J.

    Individuals with Autism Spectrum Disorder (ASD) are known to have deficits in language and social skills. They also have deficits on how they move. Why individuals get ASD? It is not generally known. There is, however, one particular group of children with a SHANK3 gene deficiency (Phelan-McDermid Syndrome (PMDS)) that present symptoms similar to ASD. We have been searching for universal mechanism in ASD going beyond the usual heterogeneous ASD symptoms. We studied motions in gaits for both PMDS patients and idiopathic ASD. We have examined their motions continuously at milliseconds time scale, away from naked eye detection. Gait is a complex process, requiring a complex integration and coordination of different joints' motions. Significant information about the development and/or deficits in the sensory system is hidden in our gaits. We discovered that the speed smoothness in feet motion during gaits is a critical feature that provides a significant distinction between subjects with ASD and typical controls. The differences in appearance of the speed fluctuations suggested a different coordination mechanism in subjects with disorders. Our work provides a very important feature in gait motion that has significant physiological information.

  19. Automatic identification of gait events using an instrumented sock

    PubMed Central

    2011-01-01

    Background Textile-based transducers are an emerging technology in which piezo-resistive properties of materials are used to measure an applied strain. By incorporating these sensors into a sock, this technology offers the potential to detect critical events during the stance phase of the gait cycle. This could prove useful in several applications, such as functional electrical stimulation (FES) systems to assist gait. Methods We investigated the output of a knitted resistive strain sensor during walking and sought to determine the degree of similarity between the sensor output and the ankle angle in the sagittal plane. In addition, we investigated whether it would be possible to predict three key gait events, heel strike, heel lift and toe off, with a relatively straight-forward algorithm. This worked by predicting gait events to occur at fixed time offsets from specific peaks in the sensor signal. Results Our results showed that, for all subjects, the sensor output exhibited the same general characteristics as the ankle joint angle. However, there were large between-subjects differences in the degree of similarity between the two curves. Despite this variability, it was possible to accurately predict gait events using a simple algorithm. This algorithm displayed high levels of trial-to-trial repeatability. Conclusions This study demonstrates the potential of using textile-based transducers in future devices that provide active gait assistance. PMID:21619570

  20. Examination of sustained gait speed during extended walking in individuals with chronic stroke.

    PubMed

    Altenburger, Peter A; Dierks, Tracy A; Miller, Kristine K; Combs, Stephanie A; Van Puymbroeck, Marieke; Schmid, Arlene A

    2013-12-01

    To determine if individuals with chronic stroke were able to sustain their peak gait speed during the 6-minute walk test (6MWT), and to explore this sustainability across community ambulation potential subgroups. Prospective cross-sectional study. University-based research laboratory, hospitals, and stroke support groups. A sample of individuals with chronic stroke (N=48) completed a series of questionnaires and physical outcome measures, including gait mat assessment, during a single visit. Not applicable; 1-time cross-sectional data collection. During the 6MWT, we measured peak gait speed and end gait speed to assess sustainability, along with beginning gait speed, total distance walked, and rating of perceived exertion. We also assessed maximum gait speed during the 10-meter walk test (10MWT). Finally, we examined these gait outcomes across the subgroups. During the 6MWT, peak gait speed declined from .89m/s (SD=.38) to an end speed of .82m/s (SD=.36), whereas perceived exertion increased from 7.7 (SD=2.6) to 11.8 (SD=3.6). This peak gait speed was slower than the 10MWT maximum speed of 1.06m/s (SD=.51), but faster than the 6MWT beginning speed of .81m/s (SD=.34). The unlimited community ambulator subgroup was the primary contributor to sustainability differences. Predicting community ambulation potential based on the discrete gait speed from the 10MWT and endurance based on the average from the 6MWT might be incomplete if gait speed sustainability is not also assessed. Copyright © 2013 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  1. Improved Leg Tracking Considering Gait Phase and Spline-Based Interpolation during Turning Motion in Walk Tests.

    PubMed

    Yorozu, Ayanori; Moriguchi, Toshiki; Takahashi, Masaki

    2015-09-04

    Falling is a common problem in the growing elderly population, and fall-risk assessment systems are needed for community-based fall prevention programs. In particular, the timed up and go test (TUG) is the clinical test most often used to evaluate elderly individual ambulatory ability in many clinical institutions or local communities. This study presents an improved leg tracking method using a laser range sensor (LRS) for a gait measurement system to evaluate the motor function in walk tests, such as the TUG. The system tracks both legs and measures the trajectory of both legs. However, both legs might be close to each other, and one leg might be hidden from the sensor. This is especially the case during the turning motion in the TUG, where the time that a leg is hidden from the LRS is longer than that during straight walking and the moving direction rapidly changes. These situations are likely to lead to false tracking and deteriorate the measurement accuracy of the leg positions. To solve these problems, a novel data association considering gait phase and a Catmull-Rom spline-based interpolation during the occlusion are proposed. From the experimental results with young people, we confirm   that the proposed methods can reduce the chances of false tracking. In addition, we verify the measurement accuracy of the leg trajectory compared to a three-dimensional motion analysis system (VICON).

  2. Clinical usefulness of augmented reality using infrared camera based real-time feedback on gait function in cerebral palsy: a case study

    PubMed Central

    Lee, Byoung-Hee

    2016-01-01

    [Purpose] This study investigated the effects of real-time feedback using infrared camera recognition technology-based augmented reality in gait training for children with cerebral palsy. [Subjects] Two subjects with cerebral palsy were recruited. [Methods] In this study, augmented reality based real-time feedback training was conducted for the subjects in two 30-minute sessions per week for four weeks. Spatiotemporal gait parameters were used to measure the effect of augmented reality-based real-time feedback training. [Results] Velocity, cadence, bilateral step and stride length, and functional ambulation improved after the intervention in both cases. [Conclusion] Although additional follow-up studies of the augmented reality based real-time feedback training are required, the results of this study demonstrate that it improved the gait ability of two children with cerebral palsy. These findings suggest a variety of applications of conservative therapeutic methods which require future clinical trials. PMID:27190489

  3. Clinical usefulness of augmented reality using infrared camera based real-time feedback on gait function in cerebral palsy: a case study.

    PubMed

    Lee, Byoung-Hee

    2016-04-01

    [Purpose] This study investigated the effects of real-time feedback using infrared camera recognition technology-based augmented reality in gait training for children with cerebral palsy. [Subjects] Two subjects with cerebral palsy were recruited. [Methods] In this study, augmented reality based real-time feedback training was conducted for the subjects in two 30-minute sessions per week for four weeks. Spatiotemporal gait parameters were used to measure the effect of augmented reality-based real-time feedback training. [Results] Velocity, cadence, bilateral step and stride length, and functional ambulation improved after the intervention in both cases. [Conclusion] Although additional follow-up studies of the augmented reality based real-time feedback training are required, the results of this study demonstrate that it improved the gait ability of two children with cerebral palsy. These findings suggest a variety of applications of conservative therapeutic methods which require future clinical trials.

  4. Gait characteristics after gait-oriented rehabilitation in chronic stroke.

    PubMed

    Peurala, Sinikka H; Titianova, Ekaterina B; Mateev, Plamen; Pitkänen, Kauko; Sivenius, Juhani; Tarkka, Ina M

    2005-01-01

    To assess the effects of rehabilitation in thirty-seven ambulatory patients with chronic stroke during three weeks in-patient rehabilitation period. In the intervention group, each patient received 75 min physiotherapy daily every workday including 20 minutes in the electromechanical gait trainer with body-weight support (BWS). In the control group, each patient participated in 45 min conventional physiotherapy daily. Motor ability was assessed with the first five items of the Modified Motor Assessment Scale (MMAS1-5) and ten meters walking speed. Spatio-temporal gait characteristics were recorded with an electrical walkway. The MMAS1-5 (p<0.0005 and p=0.005) and ten meters walking time (p<0.0005 and p=0.006) improved in both groups. The improvements in MMAS1-5 and ten meters walking time did not differ between the groups (p=0.217 and p=0.195). Specific gait characteristics improved only in the intervention group, as seen in increased Functional Ambulation Profile score (p=0.023), velocity (p=0.023), the step lengths (affected side, p=0.011, non-affected side p=0.040), the stride lengths (p=0.018, p=0.006) and decreased step-time differential (p=0.043). Furthermore, all gait characteristics and other motor abilities remained in the discharge level at the six months in the intervention group. It appears that BWS training gives a long-lasting benefit in gait qualities even in chronic stroke patients.

  5. Robotic Gait Training for Individuals With Cerebral Palsy: A Systematic Review and Meta-Analysis.

    PubMed

    Carvalho, Igor; Pinto, Sérgio Medeiros; Chagas, Daniel das Virgens; Praxedes Dos Santos, Jomilto Luiz; de Sousa Oliveira, Tainá; Batista, Luiz Alberto

    2017-11-01

    To identify the effects of robotic gait training practices in individuals with cerebral palsy. The search was performed in the following electronic databases: PubMed, Embase, Medline (OvidSP), Cochrane Database of Systematic Reviews, Web of Science, Scopus, Compendex, IEEE Xplore, ScienceDirect, Academic Search Premier, and Physiotherapy Evidence Database. Studies were included if they fulfilled the following criteria: (1) they investigated the effects of robotic gait training, (2) they involved patients with cerebral palsy, and (3) they enrolled patients classified between levels I and IV using the Gross Motor Function Classification System. The information was extracted from the selected articles using the descriptive-analytical method. The Critical Review Form for Quantitative Studies was used to quantitate the presence of critical components in the articles. To perform the meta-analysis, the effects of the intervention were quantified by effect size (Cohen d). Of the 133 identified studies, 10 met the inclusion criteria. The meta-analysis showed positive effects on gait speed (.21 [-.09, .51]), endurance (.21 [-.06, .49]), and gross motor function in dimension D (.18 [-.10, .45]) and dimension E (0.12 [-.15, .40]). The results obtained suggest that this training benefits people with cerebral palsy, specifically by increasing walking speed and endurance and improving gross motor function. For future studies, we suggest investigating device configuration parameters and conducting a large number of randomized controlled trials with larger sample sizes and individuals with homogeneous impairment. Copyright © 2017 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  6. A Compact Forearm Crutch Based on Force Sensors for Aided Gait: Reliability and Validity.

    PubMed

    Chamorro-Moriana, Gema; Sevillano, José Luis; Ridao-Fernández, Carmen

    2016-06-21

    Frequently, patients who suffer injuries in some lower member require forearm crutches in order to partially unload weight-bearing. These lesions cause pain in lower limb unloading and their progression should be controlled objectively to avoid significant errors in accuracy and, consequently, complications and after effects in lesions. The design of a new and feasible tool that allows us to control and improve the accuracy of loads exerted on crutches during aided gait is necessary, so as to unburden the lower limbs. In this paper, we describe such a system based on a force sensor, which we have named the GCH System 2.0. Furthermore, we determine the validity and reliability of measurements obtained using this tool via a comparison with the validated AMTI (Advanced Mechanical Technology, Inc., Watertown, MA, USA) OR6-7-2000 Platform. An intra-class correlation coefficient demonstrated excellent agreement between the AMTI Platform and the GCH System. A regression line to determine the predictive ability of the GCH system towards the AMTI Platform was found, which obtained a precision of 99.3%. A detailed statistical analysis is presented for all the measurements and also segregated for several requested loads on the crutches (10%, 25% and 50% of body weight). Our results show that our system, designed for assessing loads exerted by patients on forearm crutches during assisted gait, provides valid and reliable measurements of loads.

  7. Pilot study of atomoxetine in patients with Parkinson's disease and dopa-unresponsive Freezing of Gait.

    PubMed

    Revuelta, Gonzalo J; Embry, Aaron; Elm, Jordan J; Gregory, Chris; Delambo, Amy; Kautz, Steve; Hinson, Vanessa K

    2015-01-01

    Freezing of gait (FoG) is a common and debilitating condition in Parkinson's disease (PD) associated with executive dysfunction. A subtype of FoG does not respond to dopaminergic therapy and may be related to noradrenergic deficiency. This pilot study explores the effects of atomoxetine on gait in PD patients with dopa-unresponsive FoG using a novel paradigm for objective gait assessment. Ten patients with PD and dopa-unresponsive FoG were enrolled in this eight-week open label pilot study. Assessments included an exploratory gait analysis protocol that quantified spatiotemporal parameters during straight-away walking and turning, while performing a dual task. Clinical, and subjective assessments of gait, quality of life, and safety were also administered. The primary outcome was a validated subjective assessment for FoG (FOG-Q). Atomoxetine was well tolerated, however, no significant change was observed in the primary outcome. The gait analysis protocol correlated well with clinical scales, but not with subjective assessments. DBS patients were more likely to increase gait velocity (p = 0.033), and improved in other clinical assessments. Objective gait analysis protocols assessing gait while dual tasking are feasible and useful for this patient population, and may be superior correlates of FoG severity than subjective measures. These findings can inform future trials in this population.

  8. Subliminal gait initiation deficits in REM sleep behavior disorder: a harbinger of freezing of gait?

    PubMed Central

    Alibiglou, L.; Videnovic, A.; Planetta, P.J.; Vaillancourt, D.E.; MacKinnon, C.D.

    2016-01-01

    Background Muscle activity during REM sleep is markedly increased in people with REM sleep behavior disorder (RBD) and people with Parkinson’s disease (PD) who have freezing of gait. This study examined if individuals with RBD, who do not have a diagnosis of PD, show abnormalities in gait initiation that resemble the impairments observed in PD and whether there is a relationship between these deficits and the level of REM sleep without atonia. Methods Gait initiation and polysomnography studies were conducted in four groups of 10 subjects each: RBD, PD with and without freezing of gait and control subjects. Results Significant reductions were seen in the posterior shift of the center of pressure during the propulsive phase of gait initiation in the RBD and PD with freezing of gait groups compared with controls and PD non-freezers. These reductions negatively correlated with the amount of REM sleep without atonia. The duration of the initial dorsiflexor muscle burst during gait initiation was significantly reduced in both PD groups and the RBD cohort. Conclusions These results provide evidence that people with RBD, prior to a diagnosis of a degenerative neurologic disorder, show alterations in the coupling of posture and gait similar to those seen in PD. The correlation between increased REM sleep without atonia and deficits in forward propulsion during the push-off phase of gait initiation suggests that abnormities in the regulation of muscle tone during REM sleep may be related to the pathogenesis of freezing of gait. PMID:27250871

  9. What is the Best Configuration of Wearable Sensors to Measure Spatiotemporal Gait Parameters in Children with Cerebral Palsy?

    PubMed Central

    Carcreff, Lena; Paraschiv-Ionescu, Anisoara; De Coulon, Geraldo; Armand, Stéphane; Aminian, Kamiar

    2018-01-01

    Wearable inertial devices have recently been used to evaluate spatiotemporal parameters of gait in daily life situations. Given the heterogeneity of gait patterns in children with cerebral palsy (CP), the sensor placement and analysis algorithm may influence the validity of the results. This study aimed at comparing the spatiotemporal measurement performances of three wearable configurations defined by different sensor positioning on the lower limbs: (1) shanks and thighs, (2) shanks, and (3) feet. The three configurations were selected based on their potential to be used in daily life for children with CP and typically developing (TD) controls. For each configuration, dedicated gait analysis algorithms were used to detect gait events and compute spatiotemporal parameters. Fifteen children with CP and 11 TD controls were included. Accuracy, precision, and agreement of the three configurations were determined in comparison with an optoelectronic system as a reference. The three configurations were comparable for the evaluation of TD children and children with a low level of disability (CP-GMFCS I) whereas the shank-and-thigh-based configuration was more robust regarding children with a higher level of disability (CP-GMFCS II–III). PMID:29385700

  10. A Study on Fitts' Law Based Gait Symmetric Evaluation and It's Clinic Application.

    PubMed

    Rencheng, Wang; Meiqin, Zhang; Xiaonan, Deng; Dewen, Jin; Maobin, Wang; Guangqing, Li

    2005-01-01

    Symmetry, one of the prominent characters of normal human gait, could be destroyed by some special or abnormal factors such as barrier spanning, walking impediment, etc. Therefore, it becomes an important factor used to evaluate qualities and functions of walking. In this paper, the fitts' law based symmetry index calculation is introduced and its application in clinic test is also reported. The results show that the fitts' law based index is effective in clinic evaluation.

  11. Spastic diplegia in children with HIV encephalopathy: first description of gait and physical status.

    PubMed

    Langerak, Nelleke G; du Toit, Jacques; Burger, Marlette; Cotton, Mark F; Springer, Priscilla E; Laughton, Barbara

    2014-07-01

    The aim of this study was to explore the physical status and gait patterns of children with spastic diplegia secondary to human immunodeficiency virus encephalopathy (HIVE). A cross-sectional study was conducted on children diagnosed with HIVE and spastic diplegia. Sociodemographic and clinical background information was obtained, followed by three-dimensional gait analysis (3DGA) and a physical examination including assessments of muscle tone, strength, motor control, contractures, and bony deformities of the lower extremities. Fourteen children (eight males, six females; mean age 5 y 8 mo [SD 9 mo], range 4 y 4 mo-6 y 10 mo) were studied. The cohort was divided into two groups based on distinctive gait patterns. Nine participants in group I showed only limited abnormalities. Group II displayed a more pathological gait pattern including stiff knee and equinus ankle abnormalities. Results of 3DGA, as with the physical examination outcomes, showed increased impairments from proximal to distal (except for hip extension). This study provides a first description of distinctive gait patterns and related physical characteristics of children with HIVE and spastic diplegia. Further research is necessary. © 2013 Mac Keith Press.

  12. To pace or not to pace: a pilot study of four- and five-gaited Icelandic horses homozygous for the DMRT3 'Gait Keeper' mutation.

    PubMed

    Jäderkvist Fegraeus, K; Hirschberg, I; Árnason, T; Andersson, L; Velie, B D; Andersson, L S; Lindgren, G

    2017-12-01

    The Icelandic horse is a breed known mainly for its ability to perform the ambling four-beat gait 'tölt' and the lateral two-beat gait pace. The natural ability of the breed to perform these alternative gaits is highly desired by breeders. Therefore, the discovery that a nonsense mutation (C>A) in the DMRT3 gene was the main genetic factor for horses' ability to perform gaits in addition to walk, trot and canter was of great interest. Although several studies have demonstrated that homozygosity for the DMRT3 mutation is important for the ability to pace, only about 70% of the homozygous mutant (AA) Icelandic horses are reported to pace. The aim of the study was to genetically compare four- and five-gaited (i.e. horses with and without the ability to pace) AA Icelandic horses by performing a genome-wide association (GWA) analysis. All horses (n = 55) were genotyped on the 670K Axiom Equine Genotyping Array, and a GWA analysis was performed using the genabel package in r. No SNP demonstrated genome-wide significance, implying that the ability to pace goes beyond the presence of a single gene variant. Despite its limitations, the current study provides additional information regarding the genetic complexity of pacing ability in horses. However, to fully understand the genetic differences between four- and five-gaited AA horses, additional studies with larger sample materials and consistent phenotyping are needed. © 2017 Stichting International Foundation for Animal Genetics.

  13. Effect of 6-month community-based exercise interventions on gait and functional fitness of an older population: a quasi-experimental study.

    PubMed

    Ramalho, Fátima; Santos-Rocha, Rita; Branco, Marco; Moniz-Pereira, Vera; André, Helô-Isa; Veloso, António P; Carnide, Filomena

    2018-01-01

    Gait ability in older adults has been associated with independent living, increased survival rates, fall prevention, and quality of life. There are inconsistent findings regarding the effects of exercise interventions in the maintenance of gait parameters. The aim of the study was to analyze the effects of a community-based periodized exercise intervention on the improvement of gait parameters and functional fitness in an older adult group compared with a non-periodized program. A quasi-experimental study with follow-up was performed in a periodized exercise group (N=15) and in a non-periodized exercise group (N=13). The primary outcomes were plantar pressure gait parameters, and the secondary outcomes were physical activity, aerobic endurance, lower limb strength, agility, and balance. These variables were recorded at baseline and after 6 months of intervention. Both programs were tailored to older adults' functional fitness level and proved to be effective in reducing the age-related decline regarding functional fitness and gait parameters. Gait parameters were sensitive to both the exercise interventions. These exercise protocols can be used by exercise professionals in prescribing community exercise programs, as well as by health professionals in promoting active aging.

  14. Computing the variations in the self-similar properties of the various gait intervals in Parkinson disease patients.

    PubMed

    Manjeri Keloth, Sana; Arjunan, Sridhar P; Kumar, Dinesh

    2017-07-01

    This study has investigated the stride, swing, stance and double support intervals of gait for Parkinson's disease (PD) patients with different levels of severity. Self-similar properties of the gait signal were analyzed to investigate the changes in the gait pattern of the healthy and PD patients. To understand the self-similar property, detrended fluctuation analysis was performed. The analysis shows that the PD patients have less defined gait when compared to healthy. The study also shows that among the stance and swing phase of stride interval, the self-similarity is less for swing interval when compared to the stance interval of gait and decreases with the severity of gait. Also, PD patients show decreased self-similar patterns in double support interval of gait. This suggest that there are less rhythmic gait intervals and a sense of urgency to remain in support phase of gait by the PD patients.

  15. Screw-Home Movement of the Tibiofemoral Joint during Normal Gait: Three-Dimensional Analysis

    PubMed Central

    Kim, Ha Yong; Yang, Dae Suk; Jeung, Sang Wook; Choi, Han Gyeol; Choy, Won Sik

    2015-01-01

    Background The purpose of this study was to evaluate the screw-home movement at the tibiofemoral joint during normal gait by utilizing the 3-dimensional motion capture technique. Methods Fifteen young males and fifteen young females (total 60 knee joints) who had no history of musculoskeletal disease or a particular gait problem were included in this study. Two more markers were attached to the subject in addition to the Helen-Hayes marker set. Thus, two virtual planes, femoral coronal plane (Pf) and tibial coronal plane (Pt), were created by Skeletal Builder software. This study measured the 3-dimensional knee joint movement in the sagittal, coronal, and transverse planes of these two virtual planes (Pf and Pt) during normal gait. Results With respect to kinematics and kinetics, both males and females showed normal adult gait patterns, and the mean difference in the temporal gait parameters was not statistically significant (p > 0.05). In the transverse plane, the screw-home movement occurred as expected during the pre-swing phase and the late-swing phase at an angle of about 17°. However, the tibia rotated externally with respect to the femur, rather than internally, while the knee joint started to flex during the loading response (paradoxical screw-home movement), and the angle was 6°. Conclusions Paradoxical screw-home movement may be an important mechanism that provides stability to the knee joint during the remaining stance phase. Obtaining the kinematic values of the knee joint during gait can be useful in diagnosing and treating the pathological knee joints. PMID:26330951

  16. Screw-Home Movement of the Tibiofemoral Joint during Normal Gait: Three-Dimensional Analysis.

    PubMed

    Kim, Ha Yong; Kim, Kap Jung; Yang, Dae Suk; Jeung, Sang Wook; Choi, Han Gyeol; Choy, Won Sik

    2015-09-01

    The purpose of this study was to evaluate the screw-home movement at the tibiofemoral joint during normal gait by utilizing the 3-dimensional motion capture technique. Fifteen young males and fifteen young females (total 60 knee joints) who had no history of musculoskeletal disease or a particular gait problem were included in this study. Two more markers were attached to the subject in addition to the Helen-Hayes marker set. Thus, two virtual planes, femoral coronal plane (P f ) and tibial coronal plane (P t ), were created by Skeletal Builder software. This study measured the 3-dimensional knee joint movement in the sagittal, coronal, and transverse planes of these two virtual planes (P f and P t ) during normal gait. With respect to kinematics and kinetics, both males and females showed normal adult gait patterns, and the mean difference in the temporal gait parameters was not statistically significant (p > 0.05). In the transverse plane, the screw-home movement occurred as expected during the pre-swing phase and the late-swing phase at an angle of about 17°. However, the tibia rotated externally with respect to the femur, rather than internally, while the knee joint started to flex during the loading response (paradoxical screw-home movement), and the angle was 6°. Paradoxical screw-home movement may be an important mechanism that provides stability to the knee joint during the remaining stance phase. Obtaining the kinematic values of the knee joint during gait can be useful in diagnosing and treating the pathological knee joints.

  17. Mobile Phone-Based Measures of Activity, Step Count, and Gait Speed: Results From a Study of Older Ambulatory Adults in a Naturalistic Setting.

    PubMed

    Rye Hanton, Cassia; Kwon, Yong-Jun; Aung, Thawda; Whittington, Jackie; High, Robin R; Goulding, Evan H; Schenk, A Katrin; Bonasera, Stephen J

    2017-10-03

    over a 24-hour period occurring within 1 week of the initial assessment. We identified statistically significant differences between functionally intact and frail participants in mobile phone-derived measures of percent activity (P=.002, t test), active versus inactive status (P=.02, t test), average step counts (P<.001, repeated measures analysis of variance [ANOVA]) and gait speed (P<.001, t test). In functionally intact individuals, the above mobile phone metrics assessed aspects of functional status independent (Bland-Altman and correlation analysis) of both survey- and/or performance battery-based functional measures. In contrast, in frail individuals, the above mobile phone metrics correlated with submeasures of both SAFFE and PROMIS-GH. Continuous mobile phone-based measures of participant community activity and mobility strongly differentiate between persons with intact functional status and persons with a frailty phenotype. These measures assess dimensions of functional status independent of those measured using current validated questionnaires and physical performance assessments to identify functional compromise. Mobile phone-based gait measures may provide a more readily accessible and less-time consuming measure of gait, while further providing clinicians with longitudinal gait measures that are currently difficult to obtain. ©Cassia Rye Hanton, Yong-Jun Kwon, Thawda Aung, Jackie Whittington, Robin R High, Evan H Goulding, A Katrin Schenk, Stephen J Bonasera. Originally published in JMIR Mhealth and Uhealth (http://mhealth.jmir.org), 03.10.2017.

  18. Functional asymmetry of gait in children and youth with low-grade scoliosis.

    PubMed

    Nowotny-Czupryna, Olga; Nowotny, Janusz; Brzek, Anna; Czupryna, Krzysztof

    2006-04-28

    Background. Compensation for abnormal alignment of body parts in scoliosis may occur above or below the pelvis. This manifests as dislocation of body parts or changes in the angular composition of the lower limbs. Compensation for unbalanced body arrangement through changes in pelvic tilt and lower limb joints are typically reflected in the gait pattern of the person with scoliosis. The aim of our research was to determine whether and how improper body arrangement in the frontal plane is reflected in the gait pattern of children and youth with lower degree scolioses. Material and method. Children and youth with scolioses of varying grade were examined. In addition to photogrammetric body posture examination, three-dimensional gait analysis was performed during particular gait phases. For each examined child the results of this analysis were compared to the posture parameters. Results. Varying signs of gait asymmetry were observed in the whole group of children and youth with scoliosis. The symptoms were connected with both general gait attributes (unisommetry and unisochrony) and further gait markers. The most obvious changes were observed in pelvis rotation during the swing phase and excessive pelvis elevation during the mid-stance phase. These deviations did not correlate significantly with the results of the static examination. Conclusions. The gait asymmetries observed in children and youth with low-grade scoliosis are non-specific, and probably depend on the individual capabilities of each person to compensate for deficiencies.

  19. Gait characteristics under different walking conditions: Association with the presence of cognitive impairment in community-dwelling older people

    PubMed Central

    Fransen, Erik; Perkisas, Stany; Verhoeven, Veronique; Beauchet, Olivier; Remmen, Roy

    2017-01-01

    Background Gait characteristics measured at usual pace may allow profiling in patients with cognitive problems. The influence of age, gender, leg length, modified speed or dual tasking is unclear. Methods Cross-sectional analysis was performed on a data registry containing demographic, physical and spatial-temporal gait parameters recorded in five walking conditions with a GAITRite® electronic carpet in community-dwelling older persons with memory complaints. Four cognitive stages were studied: cognitively healthy individuals, mild cognitive impaired patients, mild dementia patients and advanced dementia patients. Results The association between spatial-temporal gait characteristics and cognitive stages was the most prominent: in the entire study population using gait speed, steps per meter (translation for mean step length), swing time variability, normalised gait speed (corrected for leg length) and normalised steps per meter at all five walking conditions; in the 50-to-70 years old participants applying step width at fast pace and steps per meter at usual pace; in the 70-to-80 years old persons using gait speed and normalised gait speed at usual pace, fast pace, animal walk and counting walk or steps per meter and normalised steps per meter at all five walking conditions; in over-80 years old participants using gait speed, normalised gait speed, steps per meter and normalised steps per meter at fast pace and animal dual-task walking. Multivariable logistic regression analysis adjusted for gender predicted in two compiled models the presence of dementia or cognitive impairment with acceptable accuracy in persons with memory complaints. Conclusion Gait parameters in multiple walking conditions adjusted for age, gender and leg length showed a significant association with cognitive impairment. This study suggested that multifactorial gait analysis could be more informative than using gait analysis with only one test or one variable. Using this type of gait analysis

  20. EMG normalization method based on grade 3 of manual muscle testing: Within- and between-day reliability of normalization tasks and application to gait analysis.

    PubMed

    Tabard-Fougère, Anne; Rose-Dulcina, Kevin; Pittet, Vincent; Dayer, Romain; Vuillerme, Nicolas; Armand, Stéphane

    2018-02-01

    Electromyography (EMG) is an important parameter in Clinical Gait Analysis (CGA), and is generally interpreted with timing of activation. EMG amplitude comparisons between individuals, muscles or days need normalization. There is no consensus on existing methods. The gold standard, maximum voluntary isometric contraction (MVIC), is not adapted to pathological populations because patients are often unable to perform an MVIC. The normalization method inspired by the isometric grade 3 of manual muscle testing (isoMMT3), which is the ability of a muscle to maintain a position against gravity, could be an interesting alternative. The aim of this study was to evaluate the within- and between-day reliability of the isoMMT3 EMG normalizing method during gait compared with the conventional MVIC method. Lower limb muscles EMG (gluteus medius, rectus femoris, tibialis anterior, semitendinosus) were recorded bilaterally in nine healthy participants (five males, aged 29.7±6.2years, BMI 22.7±3.3kgm -2 ) giving a total of 18 independent legs. Three repeated measurements of the isoMMT3 and MVIC exercises were performed with an EMG recording. EMG amplitude of the muscles during gait was normalized by these two methods. This protocol was repeated one week later. Within- and between-day reliability of normalization tasks were similar for isoMMT3 and MVIC methods. Within- and between-day reliability of gait EMG normalized by isoMMT3 was higher than with MVIC normalization. These results indicate that EMG normalization using isoMMT3 is a reliable method with no special equipment needed and will support CGA interpretation. The next step will be to evaluate this method in pathological populations. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. The effect of a supervised community-based exercise program on balance, balance confidence, and gait in individuals with lower limb amputation.

    PubMed

    Miller, Carol A; Williams, Jennifer E; Durham, Katey L; Hom, Selena C; Smith, Julie L

    2017-10-01

    Many individuals with lower limb loss report concern with walking ability after completing structured traditional rehabilitation. The purpose of this study was to explore the impact of a supervised community-based exercise program on balance, balance confidence, and gait in individuals with lower limb amputation. Repeated measures. The supervised exercise program was offered biweekly for 6 weeks. The GAITRite System by CIR Systems, Inc., the Figure-of-8 Walk Test, and Activity-specific Balance Confidence Scale were used to measure clinical outcomes pre- and post-intervention. In total, 16 participants with lower limb amputation (mean age: 50.8 years) completed the study. A multivariate, repeated measures analysis of variance indicated a statistically significant effect of training across six clinical outcome measures ( F(6, 10) = 4.514, p = .018). Moderate effect sizes were found for the Figure-of-8 Walk Test ( η 2 = .586), Activity-specific Balance Confidence Scale ( η 2 = .504), and gait velocity at comfortable walking speed ( η 2 = .574). The average increase in gait speed was clinically meaningful at .14 m/s. The supervised community-based exercise program implemented in this study was designed to address specific functional needs for individuals with lower limb loss. Each participant experienced clinically meaningful improvements in balance, balance confidence, and walking ability. Clinical relevance The provision of a supervised community-based exercise program, after traditional rehabilitation, provides opportunity to offer a continuum of care that may enhance prosthetic functional ability and active participation in the community for individuals with lower limb amputation.

  2. View-invariant gait recognition method by three-dimensional convolutional neural network

    NASA Astrophysics Data System (ADS)

    Xing, Weiwei; Li, Ying; Zhang, Shunli

    2018-01-01

    Gait as an important biometric feature can identify a human at a long distance. View change is one of the most challenging factors for gait recognition. To address the cross view issues in gait recognition, we propose a view-invariant gait recognition method by three-dimensional (3-D) convolutional neural network. First, 3-D convolutional neural network (3DCNN) is introduced to learn view-invariant feature, which can capture the spatial information and temporal information simultaneously on normalized silhouette sequences. Second, a network training method based on cross-domain transfer learning is proposed to solve the problem of the limited gait training samples. We choose the C3D as the basic model, which is pretrained on the Sports-1M and then fine-tune C3D model to adapt gait recognition. In the recognition stage, we use the fine-tuned model to extract gait features and use Euclidean distance to measure the similarity of gait sequences. Sufficient experiments are carried out on the CASIA-B dataset and the experimental results demonstrate that our method outperforms many other methods.

  3. Effects of frontal and sagittal thorax attitudes in gait on trunk and pelvis three-dimensional kinematics.

    PubMed

    Begon, Mickaël; Leardini, Alberto; Belvedere, Claudio; Farahpour, Nader; Allard, Paul

    2015-10-01

    While sagittal trunk inclinations alter upper body biomechanics, little is known about the extent of frontal trunk bending on upper body and pelvis kinematics in adults during gait and its relation to sagittal trunk inclinations. The objective was to determine the effect of the mean lateral trunk attitude on upper body and pelvis three-dimensional kinematics during gait in asymptomatic subjects. Three gait cycles were collected in 30 subjects using a motion analysis system (Vicon 612) and an established protocol. Sub-groups were formed based on the mean thorax lateral bending angle, bending side, and also sagittal tilt. These were compared based on 38 peak angles identified on pelvis, thorax and shoulder kinematics using MANOVAs. A main effect for bending side (p = 0.038) was found, especially for thorax peak angles. Statistics revealed also a significant interaction (p = 0.04993) between bending side and tilt for the thorax sagittal inclination during body-weight transfer. These results reinforce the existence of different gait patterns, which correlate upper body and pelvis motion measures. The results also suggest that frontal and sagittal trunk attitude should be considered carefully when treating a patient with impaired gait. Copyright © 2015 IPEM. Published by Elsevier Ltd. All rights reserved.

  4. Cognitive Contributions to Gait and Falls: Evidence and Implications

    PubMed Central

    Amboni, Marianna; Barone, Paolo; Hausdorff, Jeffrey M.

    2014-01-01

    Dementia and gait impairments often coexist in older adults and patients with neurodegenerative disease. Both conditions represent independent risk factors for falls. The relationship between cognitive function and gait has recently received increasing attention. Gait is no longer considered merely automated motor activity but rather an activity that requires executive function and attention as well as judgment of external and internal cues. In this review, we intend to: (1) summarize and synthesize the experimental, neuropsychological, and neuroimaging evidence that supports the role played by cognition in the control of gait; and (2) briefly discuss the implications deriving from the interplay between cognition and gait. In recent years, the dual task paradigm has been widely used as an experimental method to explore the interplay between gait and cognition. Several neuropsychological investigations have also demonstrated that walking relies on the use of several cognitive domains, including executive-attentional function, visuospatial abilities, and even memory resources. A number of morphological and functional neuroimaging studies have offered additional evidence supporting the relationship between gait and cognitive resources. Based on the findings from 3 lines of studies, it appears that a growing body of evidence indicates a pivotal role of cognition in gait control and fall prevention. The interplay between higher-order neural function and gait has a number of clinical implications, ranging from integrated assessment tools to possible innovative lines of interventions, including cognitive therapy for falls prevention on one hand and walking program for reducing dementia risk on the other. PMID:24132840

  5. The Gait Deviation Index Is Associated with Hip Muscle Strength and Patient-Reported Outcome in Patients with Severe Hip Osteoarthritis-A Cross-Sectional Study.

    PubMed

    Rosenlund, Signe; Holsgaard-Larsen, Anders; Overgaard, Søren; Jensen, Carsten

    2016-01-01

    The Gait Deviation Index summarizes overall gait 'quality', based on kinematic data from a 3-dimensional gait analysis. However, it is unknown which clinical outcomes may affect the Gait Deviation Index in patients with primary hip osteoarthritis. The aim of this study was to investigate associations between Gait Deviation Index as a measure of gait 'quality' and hip muscle strength and between Gait Deviation Index and patient-reported outcomes in patients with primary hip osteoarthritis. Forty-seven patients (34 males), aged 61.1 ± 6.7 years, with BMI 27.3 ± 3.4 (kg/m2) and with severe primary hip osteoarthritis underwent 3-dimensional gait analysis. Mean Gait Deviation Index, pain after walking and maximal isometric hip muscle strength (flexor, extensor, and abductor) were recorded. All patients completed the 'Physical Function Short-form of the Hip disability and Osteoarthritis Outcome Score (HOOS-Physical Function) and the Hip disability and Osteoarthritis Outcome Score subscales for pain (HOOS-Pain) and quality-of-life (HOOS-QOL). Mean Gait Deviation Index was positively associated with hip abduction strength (p<0.01, r = 0.40), hip flexion strength (p = 0.01, r = 0.37), HOOS-Physical Function (p<0.01, r = 0.41) HOOS-QOL (p<0.01, r = 0.41), and negatively associated with HOOS-Pain after walking (p<0.01, r = -0.45). Adjusting the analysis for walking speed did not affect the association. Patients with the strongest hip abductor and hip flexor muscles had the best gait 'quality'. Furthermore, patients with higher physical function, quality of life scores and lower pain levels demonstrated better gait 'quality'. These findings indicate that interventions aimed at improving hip muscle strength and pain management may to a moderate degree improve the overall gait 'quality' in patients with primary hip OA.

  6. The Gait Deviation Index Is Associated with Hip Muscle Strength and Patient-Reported Outcome in Patients with Severe Hip Osteoarthritis—A Cross-Sectional Study

    PubMed Central

    Rosenlund, Signe; Holsgaard-Larsen, Anders; Overgaard, Søren; Jensen, Carsten

    2016-01-01

    Background The Gait Deviation Index summarizes overall gait ‘quality’, based on kinematic data from a 3-dimensional gait analysis. However, it is unknown which clinical outcomes may affect the Gait Deviation Index in patients with primary hip osteoarthritis. The aim of this study was to investigate associations between Gait Deviation Index as a measure of gait ‘quality’ and hip muscle strength and between Gait Deviation Index and patient-reported outcomes in patients with primary hip osteoarthritis. Method Forty-seven patients (34 males), aged 61.1 ± 6.7 years, with BMI 27.3 ± 3.4 (kg/m2) and with severe primary hip osteoarthritis underwent 3-dimensional gait analysis. Mean Gait Deviation Index, pain after walking and maximal isometric hip muscle strength (flexor, extensor, and abductor) were recorded. All patients completed the ‘Physical Function Short-form of the Hip disability and Osteoarthritis Outcome Score (HOOS-Physical Function) and the Hip disability and Osteoarthritis Outcome Score subscales for pain (HOOS-Pain) and quality-of-life (HOOS-QOL). Results Mean Gait Deviation Index was positively associated with hip abduction strength (p<0.01, r = 0.40), hip flexion strength (p = 0.01, r = 0.37), HOOS-Physical Function (p<0.01, r = 0.41) HOOS-QOL (p<0.01, r = 0.41), and negatively associated with HOOS-Pain after walking (p<0.01, r = -0.45). Adjusting the analysis for walking speed did not affect the association. Conclusion Patients with the strongest hip abductor and hip flexor muscles had the best gait ‘quality’. Furthermore, patients with higher physical function, quality of life scores and lower pain levels demonstrated better gait ‘quality’. These findings indicate that interventions aimed at improving hip muscle strength and pain management may to a moderate degree improve the overall gait ‘quality’ in patients with primary hip OA. PMID:27065007

  7. Selective motor control correlates with gait abnormality in children with cerebral palsy.

    PubMed

    Chruscikowski, Emily; Fry, Nicola R D; Noble, Jonathan J; Gough, Martin; Shortland, Adam P

    2017-02-01

    Children with bilateral cerebral palsy (CP) commonly have limited selective motor control (SMC). This affects their ability to complete functional tasks. The impact of impaired SMC on walking has yet to be fully understood. Measures of SMC have been shown to correlate with specific characteristics of gait, however the impact of SMC on overall gait pattern has not been reported. This study explored SMC data collected as part of routine gait analysis in children with bilateral CP. As part of their clinical assessment, SMC was measured with the Selective Control Assessment of the Lower Extremities (SCALE) in 194 patients with bilateral cerebral palsy attending for clinical gait analysis at a single centre. Their summed SCALE score was compared with overall gait impairment, as measured by Gait Profile Score (GPS). Score on SCALE showed a significant negative correlation with GPS (r s =-0.603, p<0.001). Cerebral injuries in CP result in damage to the motor tracts responsible for SMC. Our results indicate that this damage is also associated with changes in the development of walking pattern in children with CP. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. The developmental dynamics of gait maturation with a focus on spatiotemporal measures.

    PubMed

    Kraan, C M; Tan, A H J; Cornish, K M

    2017-01-01

    Gait analysis is recognised as a powerful clinical tool for studying relationships between motor control and brain function. By drawing on the literature investigating gait in individuals with neurological disorders, this review provides insight into the neural processes that contribute to and regulate specific spatiotemporal sub-components of gait and how they may mature across early to late childhood. This review also discusses the roles of changing anthropomorphic characteristics, and maturing sensory and higher-order cognitive processes in differentiating the developmental trajectories of the sub-components of gait. Importantly, although studies have shown that cognitive-gait interference is larger in children compared to adults, the contributing neurocognitive mechanisms may vary across age groups who have different types of attentional or cognitive vulnerabilities. These findings have implications for current models of gait maturation by highlighting the need for a dynamic model that focuses on the integration of various factors that contribute to gait though experience and practice. This is essential to elucidating why gait and other motor deficits are often contiguous with cognitive neurodevelopmental disorders. Copyright © 2016. Published by Elsevier B.V.

  9. A Feasibility Study of View-independent Gait Identification

    DTIC Science & Technology

    2012-03-01

    ice skates . For walking, the footprint records for single pixels form clusters that are well separated in space and time. (Any overlap of contact...Pattern Recognition 2007, 1-8. Cheng M-H, Ho M-F & Huang C-L (2008), "Gait Analysis for Human Identification Through Manifold Learning and HMM... Learning and Cybernetics 2005, 4516-4521 Moeslund T B & Granum E (2001), "A Survey of Computer Vision-Based Human Motion Capture", Computer Vision

  10. Cognitive and motor dual task gait training improve dual task gait performance after stroke - A randomized controlled pilot trial.

    PubMed

    Liu, Yan-Ci; Yang, Yea-Ru; Tsai, Yun-An; Wang, Ray-Yau

    2017-06-22

    This study investigated effects of cognitive and motor dual task gait training on dual task gait performance in stroke. Participants (n = 28) were randomly assigned to cognitive dual task gait training (CDTT), motor dual task gait training (MDTT), or conventional physical therapy (CPT) group. Participants in CDTT or MDTT group practiced the cognitive or motor tasks respectively during walking. Participants in CPT group received strengthening, balance, and gait training. The intervention was 30 min/session, 3 sessions/week for 4 weeks. Three test conditions to evaluate the training effects were single walking, walking while performing cognitive task (serial subtraction), and walking while performing motor task (tray-carrying). Parameters included gait speed, dual task cost of gait speed (DTC-speed), cadence, stride time, and stride length. After CDTT, cognitive-motor dual task gait performance (stride length and DTC-speed) was improved (p = 0.021; p = 0.015). After MDTT, motor dual task gait performance (gait speed, stride length, and DTC-speed) was improved (p = 0.008; p = 0.008; p = 0.008 respectively). It seems that CDTT improved cognitive dual task gait performance and MDTT improved motor dual task gait performance although such improvements did not reach significant group difference. Therefore, different types of dual task gait training can be adopted to enhance different dual task gait performance in stroke.

  11. Quadriceps femoris spasticity in children with cerebral palsy: measurement with the pendulum test and relationship with gait abnormalities.

    PubMed

    Szopa, Andrzej; Domagalska-Szopa, Małgorzata; Kidoń, Zenon; Syczewska, Małgorzata

    2014-12-16

    Development of a reliable and objective test of spasticity is important for assessment and treatment of children with cerebral palsy. The pendulum test has been reported to yield reliable measurements of spasticity and to be sensitive to variations in spasticity in these children. However, the relationship between the pendulum test scores and other objective measures of spasticity has not been studied. The present study aimed to assess the effectiveness of an accelerometer-based pendulum test as a measurement of spasticity in CP, and to explore the correlation between the measurements of this test and the global index of deviation from normal gait in in children with cerebral palsy. We studied thirty-six children with cerebral palsy, including 18 with spastic hemiplegia and 18 with spastic diplegia, and a group of 18 typically-developing children. Knee extensor spasticity was assessed bilaterally using the accelerometer-based pendulum test and three-dimensional gait analysis. The Gillette Gait Index was calculated from the results of the gait analysis. The data from the accelerometer-based pendulum test could be used to distinguish between able-bodied children and children with cerebral palsy. Additionally, two of the measurements, first swing excursion and relaxation index, could be used to differentiate the degree of knee extensor spasticity in the children with cerebral palsy. Only a few moderate correlations were found between the Gillette Gait Index and the pendulum test data. This study demonstrates that the pendulum test can be used to discriminate between typically developing children and children with CP, as well as between various degrees of spasticity, such as spastic hemiplegia and spastic diplegia, in the knee extensor muscle of children with CP. Deviations from normal gait in children with CP were not correlated with the results of the pendulum test.

  12. Nonlinear dynamical model of human gait

    NASA Astrophysics Data System (ADS)

    West, Bruce J.; Scafetta, Nicola

    2003-05-01

    We present a nonlinear dynamical model of the human gait control system in a variety of gait regimes. The stride-interval time series in normal human gait is characterized by slightly multifractal fluctuations. The fractal nature of the fluctuations becomes more pronounced under both an increase and decrease in the average gait. Moreover, the long-range memory in these fluctuations is lost when the gait is keyed on a metronome. Human locomotion is controlled by a network of neurons capable of producing a correlated syncopated output. The central nervous system is coupled to the motocontrol system, and together they control the locomotion of the gait cycle itself. The metronomic gait is simulated by a forced nonlinear oscillator with a periodic external force associated with the conscious act of walking in a particular way.

  13. Effects of a virtual reality and treadmill training on gait of subjects with multiple sclerosis: a pilot study.

    PubMed

    Peruzzi, Agnese; Cereatti, Andrea; Della Croce, Ugo; Mirelman, Anat

    2016-01-01

    Gait and cognitive deficits are common in multiple sclerosis (MS) and are negatively affected during dual-task walking. Treadmill (TM) training has been previously used to preserve locomotor activity in MS. Virtual reality (VR) engages the user in cognitive and motor activities simultaneously. A training combining TM and VR has been successfully adopted in several neurological diseases, but not in MS. This study aims at investigating the feasibility of a VR-based TM training program on gait of subjects with MS. Eight persons with relapsing-remitting MS were recruited to participate in a six-week VR-based TM training program. Gait analysis was performed both in single and dual task conditions. Clinical tests were used to assess walking endurance and obstacle negotiation. All the evaluations were performed before, immediately and one month after the training. Gait speed and stride length improved in dual task post-intervention and were retained at follow-up. An improved ability in negotiating obstacles was found across the evaluations. VR-based TM training program is feasible and safe for MS subjects with moderate disabilities and may positively affect gait under complex conditions, such as dual tasking and obstacle negotiation. Copyright © 2015. Published by Elsevier B.V.

  14. Clinical assessment of spatiotemporal gait parameters in patients and older adults.

    PubMed

    Item-Glatthorn, Julia F; Maffiuletti, Nicola A

    2014-11-07

    Spatial and temporal characteristics of human walking are frequently evaluated to identify possible gait impairments, mainly in orthopedic and neurological patients, but also in healthy older adults. The quantitative gait analysis described in this protocol is performed with a recently-introduced photoelectric system (see Materials table) which has the potential to be used in the clinic because it is portable, easy to set up (no subject preparation is required before a test), and does not require maintenance and sensor calibration. The photoelectric system consists of series of high-density floor-based photoelectric cells with light-emitting and light-receiving diodes that are placed parallel to each other to create a corridor, and are oriented perpendicular to the line of progression. The system simply detects interruptions in light signal, for instance due to the presence of feet within the recording area. Temporal gait parameters and 1D spatial coordinates of consecutive steps are subsequently calculated to provide common gait parameters such as step length, single limb support and walking velocity, whose validity against a criterion instrument has recently been demonstrated. The measurement procedures are very straightforward; a single patient can be tested in less than 5 min and a comprehensive report can be generated in less than 1 min.

  15. Effects of gyrokinesis exercise on the gait pattern of female patients with chronic low back pain

    PubMed Central

    Seo, Kook-Eun; Park, Tae-Jin

    2016-01-01

    [Purpose] The purpose of the present study was to use kinematic variables to identify the effects of 8/weeks’ performance of a gyrokinesis exercise on the gait pattern of females with chronic low back pain. [Subjects] The subjects of the present study were females in their late 20s to mid 30s who were chronic back pain patients. [Methods] A 3-D motion analysis system was used to measure the changes in their gait patterns between pre and post-gyrokintic exercise. The SPSS 21.0 statistics program was used to perform the paired t-test, to compare the gait patterns of pre-post-gyrokinesis exercise. [Results] In the gait analysis, pre-post-gyrokinesis exercise gait patterns showed statistically significant differences in right and left step length, stride length, right-left step widths, and stride speed. [Conclusion] Gait pattern analysis revealed increases in step length, stride length, and stride speed along with a decrease in step width after 8 weeks of gyrokinesis exercise, demonstrating it improved gait pattern. PMID:27065537

  16. Gait Characteristics in Adolescents With Multiple Sclerosis.

    PubMed

    Kalron, Alon; Frid, Lior; Menascu, Shay

    2017-03-01

    Multiple sclerosis is a progressive autoimmune disease of the central nervous system. A presentation of multiple sclerosis before age18 years has traditionally been thought to be rare. However, during the past decade, more cases have been reported. We examined gait characteristics in 24 adolescents with multiple sclerosis (12 girls, 12 boys). Mean disease duration was 20.4 (S.D. = 24.9) months and mean age was 15.5 (S.D. = 1.1) years. The mean expanded disability status scale score was 1.7 (S.D. = 0.7) indicating minimal disability. Outcomes were compared with gait and the gait variability index value of healthy age-matched adolescents. Adolescents with multiple sclerosis walked slower with a wider base of support compared with age-matched healthy control subjects. Moreover, the gait variability index was lower in the multiple sclerosis group compared with the values in the healthy adolescents: 85.4 (S.D. = 8.1) versus 96.5 (S.D. = 7.4). We present gait parameters of adolescents with multiple sclerosis. From a clinical standpoint, our data could improve management of walking dysfunction in this relatively young population. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Scrunching: a novel escape gait in planarians

    NASA Astrophysics Data System (ADS)

    Cochet-Escartin, Olivier; Mickolajczyk, Keith J.; Collins, Eva-Maria S.

    2015-10-01

    The ability to escape a predator or other life-threatening situations is central to animal survival. Different species have evolved unique strategies under anatomical and environmental constraints. In this study, we describe a novel musculature-driven escape gait in planarians, ‘scrunching’, which is quantitatively different from other planarian gaits, such as gliding and peristalsis. We show that scrunching is a conserved gait among different flatworm species, underlying its importance as an escape mechanism. We further demonstrate that it can be induced by a variety of physical stimuli, including amputation, high temperature, electric shock and low pH. We discuss the functional basis for scrunching as the preferential gait when gliding is impaired due to a disruption of mucus production. Finally, we show that the key mechanical features of scrunching are adequately captured by a simple biomechanical model that is solely based on experimental data from traction force microscopy and tissue rheology without fit parameters. Together, our results form a complete description of this novel form of planarian locomotion. Because scrunching has distinct dynamics, this gait can serve as a robust behavioral readout for studies of motor neuron and muscular functions in planarians and in particular the restoration of these functions during regeneration.

  18. Group-based exercise combined with dual-task training improves gait but not vascular health in active older adults without dementia.

    PubMed

    Gregory, Michael A; Gill, Dawn P; Zou, Guangyong; Liu-Ambrose, Teresa; Shigematsu, Ryosuke; Fitzgerald, Clara; Hachinski, Vladimir; Shoemaker, Kevin; Petrella, Robert J

    2016-01-01

    Gait abnormalities and vascular disease risk factors are associated with cognitive impairment in aging. To determine the impact of group-based exercise and dual-task training on gait and vascular health, in active community-dwelling older adults without dementia. Participants [n=44, mean (SD) age: 73.5 (7.2) years, 68% female] were randomized to either intervention (exercise+dual-task; EDT) or control (exercise only; EO). Each week, for 26 weeks, both groups accumulated 50 or 75 min of aerobic exercise from group-based classes and 45 min of beginner-level square stepping exercise (SSE). Participants accumulating only 50 min of aerobic exercise were instructed to participate in an additional 25 min each week outside of class. The EDT group also answered cognitively challenging questions while performing SSE (i.e., dual-task training). The effect of the interventions on gait and vascular health was compared between groups using linear mixed effects models. At 26 weeks, the EDT group demonstrated increased dual-task (DT) gait velocity [difference between groups in mean change from baseline (95% CI): 0.29 m/s (0.16-0.43), p<0.001], DT step length [5.72 cm (2.19-9.24), p =0.002], and carotid intima-media thickness [0.10mm (0.003-0.20), p=0.04], as well as reduced DT stride time variability [8.31 coefficient of variation percentage points (-12.92 to -3.70), p<0.001], when compared to the EO group. Group-based exercise combined with dual-task training can improve DT gait characteristics in active older adults without dementia. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  19. Characterization of gait function in patients with postsurgical sagittal (flatback) deformity: a prospective study of 21 patients.

    PubMed

    Sarwahi, Vishal; Boachie-Adjei, Oheneba; Backus, Sherry I; Taira, Gaku

    2002-11-01

    This study prospectively analyzed gait in 21 patients with flatback and reviewed radiographs and charts. To analyze the effect of sagittal imbalance on gait and hip and knee joints. Loss of lumbar lordosis causes anterior displacement of the center of gravity, which creates instability and increases the work of gait. Several compensatory changes occur in response. The long-term effect of these changes on extra-axial joints has not been reported, nor have many studies analyzed the gait deviations in patients with flatback. Over time, as patients' ability to compensate is limited, increased gait deviations result. A total of 21 of 44 patients who had gait analysis as part of the preoperative workup were selected based on outlined criteria. Kinetics and kinematics data were analyzed along with radiographic and chart review. Normal healthy individuals served as controls. Gait deviations were present in gait kinetics and kinematics, including decreased stride length and velocity, to almost 60% of controls. Stance duration was prolonged with increased hip and knee flexion during stance. Hip and knee extensor moments were decreased with vertical ground reaction force showing slower rate of loading, reduced peak values, and flattening of normal loading response. Patients with flatback develop several compensatory mechanisms. The goal of the compensation is to maintain an efficient gait and decrease joint damage, but these safeguards fail over time. Flatback not only causes backache, abnormal posture, and abnormal body mechanics but also compromises the stability of gait and taxes the knee and hip joints adversely.

  20. Wavelet-based multiscale analysis of minimum toe clearance variability in the young and elderly during walking.

    PubMed

    Khandoker, Ahsan H; Karmakar, Chandan K; Begg, Rezaul K; Palaniswami, Marimuthu

    2007-01-01

    As humans age or are influenced by pathology of the neuromuscular system, gait patterns are known to adjust, accommodating for reduced function in the balance control system. The aim of this study was to investigate the effectiveness of a wavelet based multiscale analysis of a gait variable [minimum toe clearance (MTC)] in deriving indexes for understanding age-related declines in gait performance and screening of balance impairments in the elderly. MTC during walking on a treadmill for 30 healthy young, 27 healthy elderly and 10 falls risk elderly subjects with a history of tripping falls were analyzed. The MTC signal from each subject was decomposed to eight detailed signals at different wavelet scales by using the discrete wavelet transform. The variances of detailed signals at scales 8 to 1 were calculated. The multiscale exponent (beta) was then estimated from the slope of the variance progression at successive scales. The variance at scale 5 was significantly (p<0.01) different between young and healthy elderly group. Results also suggest that the Beta between scales 1 to 2 are effective for recognizing falls risk gait patterns. Results have implication for quantifying gait dynamics in normal, ageing and pathological conditions. Early detection of gait pattern changes due to ageing and balance impairments using wavelet-based multiscale analysis might provide the opportunity to initiate preemptive measures to be undertaken to avoid injurious falls.

  1. Gait-Related Brain Activity in People with Parkinson Disease with Freezing of Gait

    PubMed Central

    Peterson, Daniel S.; Pickett, Kristen A.; Duncan, Ryan; Perlmutter, Joel; Earhart, Gammon M.

    2014-01-01

    Approximately 50% of people with Parkinson disease experience freezing of gait, described as a transient inability to produce effective stepping. Complex gait tasks such as turning typically elicit freezing more commonly than simple gait tasks, such as forward walking. Despite the frequency of this debilitating and dangerous symptom, the brain mechanisms underlying freezing remain unclear. Gait imagery during functional magnetic resonance imaging permits investigation of brain activity associated with locomotion. We used this approach to better understand neural function during gait-like tasks in people with Parkinson disease who experience freezing- “FoG+” and people who do not experience freezing- ”FoG−“. Nine FoG+ and nine FoG− imagined complex gait tasks (turning, backward walking), simple gait tasks (forward walking), and quiet standing during measurements of blood oxygen level dependent (BOLD) signal. Changes in BOLD signal (i.e. beta weights) during imagined walking and imagined standing were analyzed across FoG+ and FoG− groups in locomotor brain regions including supplementary motor area, globus pallidus, putamen, mesencephalic locomotor region, and cerebellar locomotor region. Beta weights in locomotor regions did not differ for complex tasks compared to simple tasks in either group. Across imagined gait tasks, FoG+ demonstrated significantly lower beta weights in the right globus pallidus with respect to FoG−. FoG+ also showed trends toward lower beta weights in other right-hemisphere locomotor regions (supplementary motor area, mesencephalic locomotor region). Finally, during imagined stand, FoG+ exhibited lower beta weights in the cerebellar locomotor region with respect to FoG−. These data support previous results suggesting FoG+ exhibit dysfunction in a number of cortical and subcortical regions, possibly with asymmetric dysfunction towards the right hemisphere. PMID:24595265

  2. Kinematic Analysis of Gait Following Intra-articular Corticosteroid Injection into the Knee Joint with an Acute Exacerbation of Arthritis

    PubMed Central

    Mehta, Saurabh; Szturm, Tony; El-Gabalawy, Hani S.

    2011-01-01

    ABSTRACT Purpose: The objective of this study was to examine the effects of intra-articular corticosteroid injection (ICI) on ipsilateral knee flexion/extension, ankle dorsiflexion/plantarflexion (DF/PF), and hip abduction/adduction (abd/add) during stance phase in people with an acute exacerbation of rheumatoid arthritis (RA) of the knee joint. The study also assessed the effects of ICI on spatiotemporal parameters of gait and functional status in this group. Methods: Nine people with an exacerbation of RA of the knee were recruited. Kinematic and spatiotemporal gait parameters were obtained for each participant. Knee-related functional status was assessed using the Knee injury and Osteoarthritis Outcome Score (KOOS). Spatiotemporal gait parameters and joint angles (knee flexion, ankle DF/PF, hip abd/add) of the affected side were compared pre- and post-ICI. Results: Data for eight people were available for analysis. Median values for knee flexion and ankle PF increased significantly following ICI. Gait parameters of cadence, velocity, bilateral stride length, bilateral step length, step width, double-support percentage, and step time on the affected side also showed improvement. Pain and knee-related functional status as measured by the KOOS showed improvement. Conclusions: This study demonstrated a beneficial short-term effect of ICI on knee-joint movements, gait parameters, and knee-related functional status in people with acute exacerbation of RA of the knee. PMID:22942516

  3. A flexible wearable sensor for knee flexion assessment during gait.

    PubMed

    Papi, Enrica; Bo, Yen Nee; McGregor, Alison H

    2018-05-01

    Gait analysis plays an important role in the diagnosis and management of patients with movement disorders but it is usually performed within a laboratory. Recently interest has shifted towards the possibility of conducting gait assessments in everyday environments thus facilitating long-term monitoring. This is possible by using wearable technologies rather than laboratory based equipment. This study aims to validate a novel wearable sensor system's ability to measure peak knee sagittal angles during gait. The proposed system comprises a flexible conductive polymer unit interfaced with a wireless acquisition node attached over the knee on a pair of leggings. Sixteen healthy volunteers participated to two gait assessments on separate occasions. Data was simultaneously collected from the novel sensor and a gold standard 10 camera motion capture system. The relationship between sensor signal and reference knee flexion angles was defined for each subject to allow the transformation of sensor voltage outputs to angular measures (degrees). The knee peak flexion angle from the sensor and reference system were compared by means of root mean square error (RMSE), absolute error, Bland-Altman plots and intra-class correlation coefficients (ICCs) to assess test-retest reliability. Comparisons of knee peak flexion angles calculated from the sensor and gold standard yielded an absolute error of 0.35(±2.9°) and RMSE of 1.2(±0.4)°. Good agreement was found between the two systems with the majority of data lying within the limits of agreement. The sensor demonstrated high test-retest reliability (ICCs>0.8). These results show the ability of the sensor to monitor knee peak sagittal angles with small margins of error and in agreement with the gold standard system. The sensor has potential to be used in clinical settings as a discreet, unobtrusive wearable device allowing for long-term gait analysis. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.

  4. Variability of gait, bilateral coordination, and asymmetry in women with fibromyalgia.

    PubMed

    Heredia-Jimenez, J; Orantes-Gonzalez, E; Soto-Hermoso, V M

    2016-03-01

    To analyze how fibromyalgia affected the variability, asymmetry, and bilateral coordination of gait walking at comfortable and fast speeds. 65 fibromyalgia (FM) patients and 50 healthy women were analyzed. Gait analysis was performed using an instrumented walkway (GAITRite system). Average walking speed, coefficient of variation (CV) of stride length, swing time, and step width data were obtained and bilateral coordination and gait asymmetry were analyzed. FM patients presented significantly lower speeds than the healthy group. FM patients obtained significantly higher values of CV_StrideLength (p=0.04; p<0.001), CV_SwingTime (p<0.001; p<0.001), CV_StepWidth (p=0.004; p<0.001), phase coordination index (p=0.01; p=0.03), and p_CV (p<0.001; p=0.001) than the control group, walking at comfortable or fast speeds. Gait asymmetry only showed significant differences in the fast condition. FM patients walked more slowly and presented a greater variability of gait and worse bilateral coordination than healthy subjects. Gait asymmetry only showed differences in the fast condition. The variability and the bilateral coordination were particularly affected by FM in women. Therefore, variability and bilateral coordination of gait could be analyzed to complement the gait evaluation of FM patients. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Cost-effective MEMS piezoresistive cantilever-based sensor fabrication for gait movement analysis

    NASA Astrophysics Data System (ADS)

    Saadon, Salem; Anuar, A. F. M.; Wahab, Yufridin

    2017-03-01

    The conventional photolithography of crystalline silicon technique is limited to two-dimensional and structure scaling. It's also requiring a lot of time and chemical involves for the whole process. These problems can be overcome by using laser micromachining technique, that capable to produce three-dimensional structure and simultaneously avoiding the photo mask needs. In this paper, we reported on the RapidX-250 Excimer laser micromachining with 248 nm KrF to create in-time mask design and assisting in the fabrication process of piezo-resistive micro cantilever structures. Firstly, laser micromachining parameters have been investigated in order to fabricate the acceleration sensor to analyzing human gait movement. Preliminary result shows that the fabricated sensor able to define the movement difference of human motion regarding the electrical characteristic of piezo-resistor.

  6. Classification of walking ability of household walkers versus community walkers based on K-BBS, gait velocity and upright motor control.

    PubMed

    Joa, K L; Kwon, S Y; Choi, J W; Hong, S E; Kim, C H; Jung, H Y

    2015-10-01

    Few guidelines are available to assist clinicians with assessment of whether a patient is a household or community walker. To assess the Korean Berg balance scale (K-BBS) and gait velocity cut-off points of a household walker versus a community walker and evaluate which combinations of the three scales (K-BBS, upright motor control test (UMCT), and gait velocity) best assessed walking ability. Cross-sectional study. Outpatient. A total of 124 stroke patients with walking difficulty. Participants were classified into one of six walking classifications (three household walkers and three community walkers) and K-BBS, UMCT, and gait velocity were evaluated. The optimal cut-off scores for walking classification were determined based on received operator characteristic (ROC) analyses. The cut-off value of K-BBS for dividing the household walker versus the community walker was 42 points. The cut-off value of gait velocity was 48 m/s for the community walker. The area under the ROC curve of the combined K-BBS and gait velocity values was larger than that of each individual scale and those of the other combined scales. The results suggest that K-BBS, gait velocity, and UMCT are useful instruments for classifying household ambulation and community ambulation. The authors recommend K-BBS as single scale and K-BBS and gait velocity as combined scales for evaluating community ambulation in stroke patients In this report, we have some clinical implication. We recommend 3 outcome measures to assess walking ability about home or community; K-BBS (>42 points), gait speed (>48 m/min), UMCT (strong grade in either knee flexion of extension). Suggesting cut-off points of Korean Berg balance scale, gait velocity, and level of upright motor control test for community ambulation could be used as outcome measures to evaluate patient's actual performance level. It is also important to combine several scales for determining walking classification. We suggest to evaluate walking ability by

  7. Assessment of gait parameters and fatigue in MS patients during inpatient rehabilitation: a pilot trial.

    PubMed

    Sacco, Rosaria; Bussman, Rita; Oesch, Peter; Kesselring, Jürg; Beer, Serafin

    2011-05-01

    Gait impairment and fatigue are common and disabling problems in multiple sclerosis (MS). Characterisation of abnormal gait in MS patients has been done mainly using observational studies and simple walking tests providing only limited quantitative and no qualitative data, or using intricate and time-consuming assessment procedures. In addition, the correlation of gait impairments with fatigue is largely unknown. The aim of this study was to characterise spatio-temporal gait parameters by a simple and easy-to-use gait analysis system (GAITRite®) in MS patients compared with healthy controls, and to analyse changes and correlation with fatigue during inpatient rehabilitation. Twenty-four MS patients (EDSS <6.5) admitted for inpatient rehabilitation and 19 healthy subjects were evaluated using the GAITRite® Functional Ambulation System. Between-group differences and changes of gait parameters during inpatient rehabilitation were analysed, and correlation with fatigue, using the Wurzburg Fatigue Inventory for Multiple Sclerosis (WEIMuS), was determined. Compared to healthy controls MS patients showed significant impairments in different spatio-temporal gait parameters, which showed a significant improvement during inpatient rehabilitation. Different gait parameters were correlated with fatigue physical score, and change of gait parameters was correlated with improvement of fatigue. Spatio-temporal gait analysis is helpful to assess specific walking impairments in MS patients and subtle changes during rehabilitation. Correlation with fatigue may indicate a possible negative impact of fatigue on rehabilitation outcome.

  8. Effects of Design Variants in Lower-Limb Prostheses on Gait Synergy

    PubMed Central

    Pitkin, Mark R.

    2016-01-01

    A lower-limb prosthesis is the mechanical device with which an amputee’s residual limb interacts with the walking surface. The pressure and shear forces that affect the residuum due to prosthesis use are the sources of pain, residual-limb skin problems and gait deviations. Direct approaches to reducing these problems include improving fit, alignment technique and socket design as well as increasing cushioning with socket liners. A summary of typical malalignments and their consequences is presented. The malalignments are considered sources of excessive moments applied to the residuum, which simplifies the analysis of a patient’s gait. A better design of prosthetic joints could improve prosthetic gait. This article addresses the key mechanical parameter of prosthetic joints, namely the dependence “moment of resistance/angle of deflection.” A mathematical model has been developed that links stresses on the residuum in transtibial amputees with the moment of resistance in the prosthetic ankle at the critical gait phases. Analysis of the model yields a substantial decrease in stresses on the residuum during the most demanding, load-bearing phase of stance if the moment of resistance in the ankle is similar to that seen in the biological ankle joint. Gait study shows use of the experimental rolling-joint prosthetic foot more closely simulates normal gait synergy than the SACH foot. PMID:27087763

  9. The Effects of Augmented Reality-based Otago Exercise on Balance, Gait, and Falls Efficacy of Elderly Women.

    PubMed

    Yoo, Ha-Na; Chung, Eunjung; Lee, Byoung-Hee

    2013-07-01

    [Purpose] The purpose of this study was to determine the effects of augmented reality-based Otago exercise on balance, gait, and falls efficacy of elderly women. [Subjects] The subjects were 21 elderly women, who were randomly divided into two groups: an augmented reality-based Otago exercise group of 10 subjects and an Otago exercise group of 11 subjects. [Methods] All subjects were evaluated for balance (Berg Balance Scale, BBS), gait parameters (velocity, cadence, step length, and stride length), and falls efficacy. Within 12 weeks, Otago exercise for muscle strengthening and balance training was conducted three times, for a period of 60 minutes each, and subjects in the experimental group performed augmented reality-based Otago exercise. [Results] Following intervention, the augmented reality-based Otago exercise group showed significant increases in BBS, velocity, cadence, step length (right side), stride length (right side and left side) and falls efficacy. [Conclusion] The results of this study suggest the feasibility and suitability of this augmented reality-based Otago exercise for elderly women.

  10. Assessment of Gait Characteristics in Total Knee Arthroplasty Patients Using a Hierarchical Partial Least Squares Method.

    PubMed

    Wang, Wei; Ackland, David C; McClelland, Jodie A; Webster, Kate E; Halgamuge, Saman

    2018-01-01

    Quantitative gait analysis is an important tool in objective assessment and management of total knee arthroplasty (TKA) patients. Studies evaluating gait patterns in TKA patients have tended to focus on discrete data such as spatiotemporal information, joint range of motion and peak values of kinematics and kinetics, or consider selected principal components of gait waveforms for analysis. These strategies may not have the capacity to capture small variations in gait patterns associated with each joint across an entire gait cycle, and may ultimately limit the accuracy of gait classification. The aim of this study was to develop an automatic feature extraction method to analyse patterns from high-dimensional autocorrelated gait waveforms. A general linear feature extraction framework was proposed and a hierarchical partial least squares method derived for discriminant analysis of multiple gait waveforms. The effectiveness of this strategy was verified using a dataset of joint angle and ground reaction force waveforms from 43 patients after TKA surgery and 31 healthy control subjects. Compared with principal component analysis and partial least squares methods, the hierarchical partial least squares method achieved generally better classification performance on all possible combinations of waveforms, with the highest classification accuracy . The novel hierarchical partial least squares method proposed is capable of capturing virtually all significant differences between TKA patients and the controls, and provides new insights into data visualization. The proposed framework presents a foundation for more rigorous classification of gait, and may ultimately be used to evaluate the effects of interventions such as surgery and rehabilitation.

  11. Stimulation of the mesencephalic locomotor region for gait recovery after stroke.

    PubMed

    Fluri, Felix; Malzahn, Uwe; Homola, György A; Schuhmann, Michael K; Kleinschnitz, Christoph; Volkmann, Jens

    2017-11-01

    One-third of all stroke survivors are unable to walk, even after intensive physiotherapy. Thus, other concepts to restore walking are needed. Because electrical stimulation of the mesencephalic locomotor region (MLR) is known to elicit gait movements, this area might be a promising target for restorative neurostimulation in stroke patients with gait disability. The present study aims to delineate the effect of high-frequency stimulation of the MLR (MLR-HFS) on gait impairment in a rodent stroke model. Male Wistar rats underwent photothrombotic stroke of the right sensorimotor cortex and chronic implantation of a stimulating electrode into the right MLR. Gait was assessed using clinical scoring of the beam-walking test and video-kinematic analysis (CatWalk) at baseline and on days 3 and 4 after experimental stroke with and without MLR-HFS. Kinematic analysis revealed significant changes in several dynamic and static gait parameters resulting in overall reduced gait velocity. All rats exhibited major coordination deficits during the beam-walking challenge and were unable to cross the beam. Simultaneous to the onset of MLR-HFS, a significantly higher walking speed and improvements in several dynamic gait parameters were detected by the CatWalk system. Rats regained the ability to cross the beam unassisted, showing a reduced number of paw slips and misses. MLR-HFS can improve disordered locomotor function in a rodent stroke model. It may act by shielding brainstem and spinal locomotor centers from abnormal cortical input after stroke, thus allowing for compensatory and independent action of these circuits. Ann Neurol 2017;82:828-840. © 2017 American Neurological Association.

  12. Crowd-Sourced Amputee Gait Data: A Feasibility Study Using YouTube Videos of Unilateral Trans-Femoral Gait.

    PubMed

    Gardiner, James; Gunarathne, Nuwan; Howard, David; Kenney, Laurence

    2016-01-01

    Collecting large datasets of amputee gait data is notoriously difficult. Additionally, collecting data on less prevalent amputations or on gait activities other than level walking and running on hard surfaces is rarely attempted. However, with the wealth of user-generated content on the Internet, the scope for collecting amputee gait data from alternative sources other than traditional gait labs is intriguing. Here we investigate the potential of YouTube videos to provide gait data on amputee walking. We use an example dataset of trans-femoral amputees level walking at self-selected speeds to collect temporal gait parameters and calculate gait asymmetry. We compare our YouTube data with typical literature values, and show that our methodology produces results that are highly comparable to data collected in a traditional manner. The similarity between the results of our novel methodology and literature values lends confidence to our technique. Nevertheless, clear challenges with the collection and interpretation of crowd-sourced gait data remain, including long term access to datasets, and a lack of validity and reliability studies in this area.

  13. Crowd-Sourced Amputee Gait Data: A Feasibility Study Using YouTube Videos of Unilateral Trans-Femoral Gait

    PubMed Central

    Gardiner, James; Gunarathne, Nuwan; Howard, David; Kenney, Laurence

    2016-01-01

    Collecting large datasets of amputee gait data is notoriously difficult. Additionally, collecting data on less prevalent amputations or on gait activities other than level walking and running on hard surfaces is rarely attempted. However, with the wealth of user-generated content on the Internet, the scope for collecting amputee gait data from alternative sources other than traditional gait labs is intriguing. Here we investigate the potential of YouTube videos to provide gait data on amputee walking. We use an example dataset of trans-femoral amputees level walking at self-selected speeds to collect temporal gait parameters and calculate gait asymmetry. We compare our YouTube data with typical literature values, and show that our methodology produces results that are highly comparable to data collected in a traditional manner. The similarity between the results of our novel methodology and literature values lends confidence to our technique. Nevertheless, clear challenges with the collection and interpretation of crowd-sourced gait data remain, including long term access to datasets, and a lack of validity and reliability studies in this area. PMID:27764226

  14. Kinematic analysis of subtalar eversion during gait in women with fibromyalgia.

    PubMed

    Silva, Ana Paula; Chagas, Daniel das Virgens; Cavaliere, Maria Lúcia; Pinto, Sérgio; de Oliveira Barbosa, José Silvio; Batista, Luiz Alberto

    2016-08-01

    To analyse the subtalar eversion range of motion during walking in women with fibromyalgia. Twenty women diagnosed with fibromyalgia were directed to walk barefoot at comfortable and self-paced speed on a 7m walkway. Subtalar eversion range of motion was measured using the difference between the maximum and minimum values of subtalar eversion in stance phase. A range of motion between 4°-6° was considered as reference values for subtalar eversion during gait. Descriptive statistics were performed. In both right and left lower limb analysis of subtalar eversion range of motion, five women showed joint hypomobility, and twelve showed hypermobility. Only one patient performed unaltered subtalar eversion range of motion in both lower limbs. Both joints expressed high variability, and there were no significant differences between the right and left sides. The findings suggest that biomechanical function of the subtalar joint eversion during the loading response phase of gait in women with fibromyalgia, by excessive rigidity or complacency joint, tends to be impaired. This finding suggests that the indication of walking as an auxiliary strategy in the treatment of women with fibromyalgia should be preceded by thorough examination of the mechanical conditions of the subtalar joint of the patient. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Characterizing left-right gait balance using footstep-induced structural vibrations

    NASA Astrophysics Data System (ADS)

    Fagert, Jonathon; Mirshekari, Mostafa; Pan, Shijia; Zhang, Pei; Noh, Hae Young

    2017-04-01

    In this paper, we introduce a method for estimating human left/right walking gait balance using footstep-induced structural vibrations. Understanding human gait balance is an integral component of assessing gait, neurological and musculoskeletal conditions, overall health status, and risk of falls. Existing techniques utilize pressure- sensing mats, wearable devices, and human observation-based assessment by healthcare providers. These existing methods are collectively limited in their operation and deployment; often requiring dense sensor deployment or direct user interaction. To address these limitations, we utilize footstep-induced structural vibration responses. Based on the physical insight that the vibration energy is a function of the force exerted by a footstep, we calculate the vibration signal energy due to a footstep and use it to estimate the footstep force. By comparing the footstep forces while walking, we determine balance. This approach enables non-intrusive gait balance assessment using sparsely deployed sensors. The primary research challenge is that the floor vibration signal energy is also significantly affected by the distance between the footstep location and the vibration sensor; this function is unclear in real-world scenarios and is a mixed function of wave propagation and structure-dependent properties. We overcome this challenge through footstep localization and incorporating structural factors into an analytical force-energy-distance function. This function is estimated through a nonlinear least squares regression analysis. We evaluate the performance of our method with a real-world deployment in a campus building. Our approach estimates footstep forces with a RMSE of 61.0N (8% of participant's body weight), representing a 1.54X improvement over the baseline.

  16. Efficacy and Safety of Pedunculopontine Nuclei (PPN) Deep Brain Stimulation in the Treatment of Gait Disorders: A Meta-Analysis of Clinical Studies.

    PubMed

    Golestanirad, Laleh; Elahi, Behzad; Graham, Simon J; Das, Sunit; Wald, Lawrence L

    2016-01-01

    Pedunculopontine nucleus (PPN) has complex reciprocal connections with basal ganglia, especially with internal globus pallidus and substantia nigra, and it has been postulated that PPN stimulation may improve gait instability and freezing of gait. In this meta-analysis, we will assess the evidence for PPN deep brain stimulation in treatment of gait and motor abnormalities especially focusing on Parkinson disease patients. PubMed and Scopus electronic databases were searched for related studies published before February 2014. Medline (1966-2014), Embase (1974-2010), CINAHL, Web of Science, Scopus bibliographic, and Google Scholar databases (1960-2014) were also searched for studies investigating effect of PPN deep brain stimulation in treatment of postural and postural instability and total of ten studies met the inclusion criteria for this analysis. Our findings showed a significant improvement in postural instability (p<0.001) and motor symptoms of Parkinson disease on and off medications (p<0.05), but failed to show improvement in freezing of gait. Despite significant improvement in postural instability observed in included studies, evidence from current literature is not sufficient to generalize these findings to the majority of patients.

  17. 3D finite element model of the diabetic neuropathic foot: a gait analysis driven approach.

    PubMed

    Guiotto, Annamaria; Sawacha, Zimi; Guarneri, Gabriella; Avogaro, Angelo; Cobelli, Claudio

    2014-09-22

    Diabetic foot is an invalidating complication of diabetes that can lead to foot ulcers. Three-dimensional (3D) finite element analysis (FEA) allows characterizing the loads developed in the different anatomical structures of the foot in dynamic conditions. The aim of this study was to develop a subject specific 3D foot FE model (FEM) of a diabetic neuropathic (DNS) and a healthy (HS) subject, whose subject specificity can be found in term of foot geometry and boundary conditions. Kinematics, kinetics and plantar pressure (PP) data were extracted from the gait analysis trials of the two subjects with this purpose. The FEM were developed segmenting bones, cartilage and skin from MRI and drawing a horizontal plate as ground support. Materials properties were adopted from previous literature. FE simulations were run with the kinematics and kinetics data of four different phases of the stance phase of gait (heel strike, loading response, midstance and push off). FEMs were then driven by group gait data of 10 neuropathic and 10 healthy subjects. Model validation focused on agreement between FEM-simulated and experimental PP. The peak values and the total distribution of the pressures were compared for this purpose. Results showed that the models were less robust when driven from group data and underestimated the PP in each foot subarea. In particular in the case of the neuropathic subject's model the mean errors between experimental and simulated data were around the 20% of the peak values. This knowledge is crucial in understanding the aetiology of diabetic foot. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Relationships Between Age at Menarche, Walking Gait Base of Support, and Stance Phase Frontal Plane Knee Biomechanics in Adolescent Girls.

    PubMed

    Froehle, Andrew W; Grannis, Kimberly A; Sherwood, Richard J; Duren, Dana L

    2017-05-01

    Age at menarche impacts patterns of pubertal growth and skeletal development. These effects may carry over into variation in biomechanical profiles involved in sports-related traumatic and overuse knee injuries. The present study investigated whether age at menarche is a potential indicator of knee injury risk through its influence on knee biomechanics during normal walking. To test the hypothesis that earlier menarche is related to postpubertal biomechanical risk factors for knee injuries, including a wider, more immature gait base of support, and greater valgus knee angles and moments. Cross-sectional observational study. University research facility. Healthy, postmenarcheal, adolescent girls. Age at menarche was obtained by recall questionnaire. Pubertal growth and anthropometric data were collected by using standard methods. Biomechanical data were taken from tests of walking gait at self-selected speed. Reflective marker position data were collected with a 3-dimensional quantitative motion analysis system, and 3 force plates recorded kinetic data. Age at menarche; growth and anthropometric measurements; base of support; static knee frontal plane angle; and dynamic knee frontal plane angles and moments during stance. Earlier menarche was correlated significantly with abbreviated pubertal growth and postpubertal retention of immature traits, including a wider base of support. Earlier menarche and wider base of support were both correlated with more valgus static knee angles, more valgus knee abduction angles and moments at foot-strike, and a more valgus peak knee abduction angle during stance. Peak knee abduction moment during stance was not correlated with age at menarche or base of support. Earlier menarche and its effects on growth are associated with retention of a relatively immature gait base of support and a tendency for static and dynamic valgus knee alignment. This biomechanical profile may put girls with earlier menarche at greater risk for sports

  19. Visual assessment of hemiplegic gait following stroke: pilot study.

    PubMed

    Hughes, K A; Bell, F

    1994-10-01

    A form that will guide clinicians through a reliable and valid visual assessment of hemiplegic gait was designed. Six hemiplegic patients were filmed walking along an instrumented walkway. These films were shown to three physiotherapists who used the form to rate the patients' gait. Each physiotherapist rated the six patients at both stages of recovery, repeating this a further two times. This resulted in 108 completed forms. Within-rater reliability is statistically significant for some raters and some individual form sections. Between-rater reliability is significant for some sections. Detailed analysis has shown that parts of the form have caused reduced reliability. These are mainly sections that ask for severity judgments or are duplicated. Some indication of normal gait should be included on the form. To test validity fully the form should be tested on a group of patients who all have significant changes in each objective gait measurement.

  20. A model to calculate the progression of the centre of pressure under the foot during gait analysis.

    PubMed

    Louey, Melissa Gar Yee; Mudge, Anita; Wojciechowski, Elizabeth; Sangeux, Morgan

    2017-09-01

    Pedobarography and the centre of pressure (COP) progression is useful to understand foot function. Pedobarography is often unavailable in gait laboratories or completed asynchronously to kinematic and kinetic data collection. This paper presents a model that allows calculation of COP progression synchronously using force plate data. The model is an adjunct to Plug-In-Gait and was applied to 49 typically developing children to create reference COP data. COP progressions were noted to spend 8% of stance behind the ankle joint centre, traverse lateral of the longitudinal axis of the foot through the midfoot for 76% of stance and finishing past the second metatarsal head on the medial side for 16% of stance. It is hoped the model will bridge the information gap for gait laboratories lacking pedobarography during foot assessments and will open up the possibility of retrospective research into COP progression based indices on kinematic data. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Gait variability and basal ganglia disorders: stride-to-stride variations of gait cycle timing in Parkinson's disease and Huntington's disease

    NASA Technical Reports Server (NTRS)

    Hausdorff, J. M.; Cudkowicz, M. E.; Firtion, R.; Wei, J. Y.; Goldberger, A. L.

    1998-01-01

    The basal ganglia are thought to play an important role in regulating motor programs involved in gait and in the fluidity and sequencing of movement. We postulated that the ability to maintain a steady gait, with low stride-to-stride variability of gait cycle timing and its subphases, would be diminished with both Parkinson's disease (PD) and Huntington's disease (HD). To test this hypothesis, we obtained quantitative measures of stride-to-stride variability of gait cycle timing in subjects with PD (n = 15), HD (n = 20), and disease-free controls (n = 16). All measures of gait variability were significantly increased in PD and HD. In subjects with PD and HD, gait variability measures were two and three times that observed in control subjects, respectively. The degree of gait variability correlated with disease severity. In contrast, gait speed was significantly lower in PD, but not in HD, and average gait cycle duration and the time spent in many subphases of the gait cycle were similar in control subjects, HD subjects, and PD subjects. These findings are consistent with a differential control of gait variability, speed, and average gait cycle timing that may have implications for understanding the role of the basal ganglia in locomotor control and for quantitatively assessing gait in clinical settings.

  2. A Compact Forearm Crutch Based on Force Sensors for Aided Gait: Reliability and Validity

    PubMed Central

    Chamorro-Moriana, Gema; Sevillano, José Luis; Ridao-Fernández, Carmen

    2016-01-01

    Frequently, patients who suffer injuries in some lower member require forearm crutches in order to partially unload weight-bearing. These lesions cause pain in lower limb unloading and their progression should be controlled objectively to avoid significant errors in accuracy and, consequently, complications and after effects in lesions. The design of a new and feasible tool that allows us to control and improve the accuracy of loads exerted on crutches during aided gait is necessary, so as to unburden the lower limbs. In this paper, we describe such a system based on a force sensor, which we have named the GCH System 2.0. Furthermore, we determine the validity and reliability of measurements obtained using this tool via a comparison with the validated AMTI (Advanced Mechanical Technology, Inc., Watertown, MA, USA) OR6-7-2000 Platform. An intra-class correlation coefficient demonstrated excellent agreement between the AMTI Platform and the GCH System. A regression line to determine the predictive ability of the GCH system towards the AMTI Platform was found, which obtained a precision of 99.3%. A detailed statistical analysis is presented for all the measurements and also segregated for several requested loads on the crutches (10%, 25% and 50% of body weight). Our results show that our system, designed for assessing loads exerted by patients on forearm crutches during assisted gait, provides valid and reliable measurements of loads. PMID:27338396

  3. Balance and gait analysis of senior tumble-prone patients with cerebrovascular disease.

    PubMed

    Fang, Hong

    2017-05-01

    This study aims to observe the tumble status for senior patients with cerebrovascular disease, and to analyze the balance and gait condition in order to provide the basis for clinical prevention and nursing care. A total of 48 senior patients with cerebrovascular disease were investigated with the Tinetti balance and gait evaluation, and the relation between tumble occurrence and balance ability was interrogated. The total score of balance evaluation value and gait value for 89.1% of the senior patients with cerebrovascular disease was fewer than 19 points, which indicated a risk of tumble. The majority of patients could not complete the immediate standing balance well, turning stand balance, mild chest-pushed balance and eyes-closed standing balance. The occurrence of immediate standing balance and turning stand balance fewer than three times was less frequent than the occurrence of tumble for one time, which had significant difference (P<0.05). The senior patients with cerebrovascular disease and immediate standing balance and turning stand balance could easily tumble many times, which was crucial for the nursing staff to carry out preventive strategies. Detailed observations of balance and gait function for senior patients were described, which provided a promising basis for designing appropriate nursing measures.

  4. Spatio-temporal and kinematic gait analysis in patients with Frontotemporal dementia and Alzheimer's disease through 3D motion capture.

    PubMed

    Rucco, Rosaria; Agosti, Valeria; Jacini, Francesca; Sorrentino, Pierpaolo; Varriale, Pasquale; De Stefano, Manuela; Milan, Graziella; Montella, Patrizia; Sorrentino, Giuseppe

    2017-02-01

    Alzheimer's disease (AD) and behavioral variant of Frontotemporal Dementia (bvFTD) are characterized respectively by atrophy in the medial temporal lobe with memory loss and prefrontal and anterior temporal degeneration with dysexecutive syndrome. In this study, we hypothesized that specific gait patterns are induced by either frontal or temporal degeneration. To test this hypothesis, we studied the gait pattern in bvFTD (23) and AD (22) patients in single and dual task ("motor" and "cognitive") conditions. To detect subtle alterations, we performed motion analysis estimating both spatio-temporal parameters and joint excursions. In the single task condition, the bvFTD group was more unstable and slower compared to healthy subjects, while only two stability parameters were compromised in the AD group. During the motor dual task, both velocity and stability parameters worsened further in the bvFTD group. In the same experimental conditions, AD patients showed a significantly lower speed and stride length than healthy subjects. During the cognitive dual task, a further impairment of velocity and stability parameters was observed in the bvFTD group. Interestingly, during the cognitive dual task, the gait performance of the AD group markedly deteriorated, as documented by the impairment of more indices of velocity and stability. Finally, the kinematic data of thigh, knee, and ankle were more helpful in revealing gait impairment than the spatio-temporal parameters alone. In conclusion, our data showed that the dysexecutive syndrome induces specific gait alterations. Furthermore, our results suggest that the gait worsens in the AD patients when the cognitive resources are stressed. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Accuracy of clinical observations of push-off during gait after stroke.

    PubMed

    McGinley, Jennifer L; Morris, Meg E; Greenwood, Ken M; Goldie, Patricia A; Olney, Sandra J

    2006-06-01

    To determine the accuracy (criterion-related validity) of real-time clinical observations of push-off in gait after stroke. Criterion-related validity study of gait observations. Rehabilitation hospital in Australia. Eleven participants with stroke and 8 treating physical therapists. Not applicable. Pearson product-moment correlation between physical therapists' observations of push-off during gait and criterion measures of peak ankle power generation from a 3-dimensional motion analysis system. A high correlation was obtained between the observational ratings and the measurements of peak ankle power generation (Pearson r =.98). The standard error of estimation of ankle power generation was .32W/kg. Physical therapists can make accurate real-time clinical observations of push-off during gait following stroke.

  6. Comparison of a robotic-assisted gait training program with a program of functional gait training for children with cerebral palsy: design and methods of a two group randomized controlled cross-over trial.

    PubMed

    Hilderley, Alicia J; Fehlings, Darcy; Lee, Gloria W; Wright, F Virginia

    2016-01-01

    Enhancement of functional ambulation is a key goal of rehabilitation for children with cerebral palsy (CP) who experience gross motor impairment. Physiotherapy (PT) approaches often involve overground and treadmill-based gait training to promote motor learning, typically as free walking or with body-weight support. Robotic-assisted gait training (RAGT), using a device such as the Lokomat ® Pro, may permit longer training duration, faster and more variable gait speeds, and support walking pattern guidance more than overground/treadmill training to further capitalize on motor learning principles. Single group pre-/post-test studies have demonstrated an association between RAGT and moderate to large improvements in gross motor skills, gait velocity and endurance. A single published randomized controlled trial (RCT) comparing RAGT to a PT-only intervention showed no difference in gait kinematics. However, gross motor function and walking endurance were not evaluated and conclusions were limited by a large PT group drop-out rate. In this two-group cross-over RCT, children are randomly allocated to the RAGT or PT arm (each with twice weekly sessions for eight weeks), with cross-over to the other intervention arm following a six-week break. Both interventions are grounded in motor learning principles with incorporation of individualized mobility-based goals. Sessions are fully operationalized through manualized, menu-based protocols and post-session documentation to enhance internal and external validity. Assessments occur pre/post each intervention arm (four time points total) by an independent assessor. The co-primary outcomes are gross motor functional ability (Gross Motor Function Measure (GMFM-66) and 6-minute walk test), with secondary outcome measures assessing: (a) individualized goals; (b) gait variables and daily walking amounts; and (c) functional abilities, participation and quality of life. Investigators and statisticians are blinded to study group

  7. Effects of walking speed on asymmetry and bilateral coordination of gait

    PubMed Central

    Plotnik, Meir; Bartsch, Ronny P.; Zeev, Aviva; Giladi, Nir; Hausdorff, Jeffery M.

    2013-01-01

    The mechanisms regulating the bilateral coordination of gait in humans are largely unknown. Our objective was to study how bilateral coordination changes as a result of gait speed modifications during over ground walking. 15 young adults wore force sensitive insoles that measured vertical forces used to determine the timing of the gait cycle events under three walking conditions (i.e., usual-walking, fast and slow). Ground reaction force impact (GRFI) associated with heel-strikes was also quantified, representing the potential contribution of sensory feedback to the regulation of gait. Gait asymmetry (GA) was quantified based on the differences between right and left swing times and the bilateral coordination of gait was assessed using the phase coordination index (PCI), a metric that quantifies the consistency and accuracy of the anti-phase stepping pattern. GA was preserved in the three different gait speeds. PCI was higher (reduced coordination) in the slow gait condition, compared to usual-walking (3.51% vs. 2.47%, respectively, p=0.002), but was not significantly affected in the fast condition. GRFI values were lower in the slow walking as compared to usual-walking and higher in the fast walking condition (p<0.001). Stepwise regression revealed that slowed gait related changes in PCI were not associated with the slowed gait related changes in GRFI. The present findings suggest that left-right anti-phase stepping is similar in normal and fast walking, but altered during slowed walking. This behavior might reflect a relative increase in attention resources required to regulate a slow gait speed, consistent with the possibility that cortical function and supraspinal input influences the bilateral coordination of gait. PMID:23680424

  8. [Subjective Gait Stability in the Elderly].

    PubMed

    Hirsch, Theresa; Lampe, Jasmin; Michalk, Katrin; Röder, Lotte; Munsch, Karoline; Marquardt, Jonas

    2017-07-10

    It can be assumed that the feeling of gait stability or gait instability in the elderly may be independent of a possible fear of falling or a history of falling when walking. Up to now, there has been a lack of spatiotemporal gait parameters for older people who subjectively feel secure when walking. The aim of the study is to analyse the distribution of various gait parameters for older people who subjectively feel secure when walking. In a cross-sectional study, the gait parameters stride time, step time, stride length, step length, double support, single support, and walking speed were measured using a Vicon three-dimensional motion capture system (Plug-In Gait Lower-Body Marker Set) in 31 healthy people aged 65 years and older (mean age 72 ± 3.54 years) who subjectively feel secure when walking. There was a homogeneous distribution in the gait parameters examined, with no abnormalities. The mean values have a low variance with narrow confidence intervals. This study provides evidence that people who subjectively feel secure when walking demonstrate similarly objective gait parameters..

  9. Arm swing magnitude and asymmetry during gait in the early stages of Parkinson's disease.

    PubMed

    Lewek, Michael D; Poole, Roxanne; Johnson, Julia; Halawa, Omar; Huang, Xuemei

    2010-02-01

    The later stages of Parkinson's disease (PD) are characterized by altered gait patterns. Although decreased arm swing during gait is the most frequently reported motor dysfunction in individuals with PD, quantitative descriptions of gait in early PD have largely ignored upper extremity movements. This study was designed to perform a quantitative analysis of arm swing magnitude and asymmetry that might be useful in the assessment of early PD. Twelve individuals with early PD (in "off" state) and eight controls underwent gait analysis using an optically-based motion capture system. Participants were instructed to walk at normal and fast velocities, and then on heels (to minimize push-off). Arm swing was measured as the excursion of the wrist with respect to the pelvis. Arm swing magnitude for each arm, and inter-arm asymmetry, were compared between groups. Both groups had comparable gait velocities (p = 0.61), and there was no significant difference between the groups in the magnitude of arm swing in all walking conditions for the arm that swung more (p = 0.907) or less (p = 0.080). Strikingly, the PD group showed significantly greater arm swing asymmetry (asymmetry angle: 13.9 + or - 7.9%) compared to the control group (asymmetry angle: 5.1 + or - 4.0%; p = 0.003). Unlike arm swing magnitude, arm swing asymmetry unequivocally differs between people with early PD and controls. Such quantitative evaluation of arm swing, especially its asymmetry, may have utility for early and differential diagnosis, and for tracking disease progression in patients with later PD. Copyright 2009 Elsevier B.V. All rights reserved.

  10. Arm Swing Magnitude and Asymmetry During Gait in the Early Stages of Parkinson's Disease

    PubMed Central

    Lewek, Michael D.; Poole, Roxanne; Johnson, Julia; Halawa, Omar; Huang, Xuemei

    2009-01-01

    The later stages of Parkinson's disease (PD) are characterized by altered gait patterns. Although decreased arm swing during gait is the most frequently reported motor dysfunction in individuals with PD, quantitative descriptions of gait in early PD have largely ignored upper extremity movements. This study was designed to perform a quantitative analysis of arm swing magnitude and asymmetry that might be useful in the assessment of early PD. Twelve individuals with early PD (in “off” state) and eight controls underwent gait analysis using an optically-based motion capture system. Participants were instructed to walk at normal and fast velocities, and then on heels (to minimize push-off). Arm swing was measured as the excursion of the wrist with respect to the pelvis. Arm swing magnitude for each arm, and inter-arm asymmetry, were compared between groups. Both groups had comparable gait velocities (p=0.61), and there was no significant difference between the groups in the magnitude of arm swing in all walking conditions for the arm that swung more (p=0.907) or less (p=0.080). Strikingly, the PD group showed significantly greater arm swing asymmetry (asymmetry angle: 13.9±7.9%) compared to the control group (asymmetry angle: 5.1±4.0%; p=0.003). Unlike arm swing magnitude, arm swing asymmetry unequivocally differs between people with early PD and controls. Such quantitative evaluation of arm swing, especially its asymmetry, may have utility for early and differential diagnosis, and for tracking disease progression in patients with later PD. PMID:19945285

  11. Synthesis of walking sounds for alleviating gait disturbances in Parkinson's disease.

    PubMed

    Rodger, Matthew W M; Young, William R; Craig, Cathy M

    2014-05-01

    Managing gait disturbances in people with Parkinson's disease is a pressing challenge, as symptoms can contribute to injury and morbidity through an increased risk of falls. While drug-based interventions have limited efficacy in alleviating gait impairments, certain nonpharmacological methods, such as cueing, can also induce transient improvements to gait. The approach adopted here is to use computationally-generated sounds to help guide and improve walking actions. The first method described uses recordings of force data taken from the steps of a healthy adult which in turn were used to synthesize realistic gravel-footstep sounds that represented different spatio-temporal parameters of gait, such as step duration and step length. The second method described involves a novel method of sonifying, in real time, the swing phase of gait using real-time motion-capture data to control a sound synthesis engine. Both approaches explore how simple but rich auditory representations of action based events can be used by people with Parkinson's to guide and improve the quality of their walking, reducing the risk of falls and injury. Studies with Parkinson's disease patients are reported which show positive results for both techniques in reducing step length variability. Potential future directions for how these sound approaches can be used to manage gait disturbances in Parkinson's are also discussed.

  12. Gait analysis with cognitive-motor dual tasks to distinguish fallers from nonfallers among rehabilitating stroke patients.

    PubMed

    Baetens, Tina; De Kegel, Alexandra; Palmans, Tanneke; Oostra, Kristine; Vanderstraeten, Guy; Cambier, Dirk

    2013-04-01

    To evaluate fall risk in stroke patients based on single- and dual-task gait analyses, and to investigate the difference between 2 cognitive tasks in the dual-task paradigm. Prospective cohort study. Rehabilitation hospitals. Subacute stroke patients (N=32), able to walk without physical/manual help with or without walking aids, while performing a verbal task. Not applicable. Functional gait measures were Functional Ambulation Categories (FAC) and use of a walking aid. Gait measures were evaluated by an electronic walkway system under single- and dual-task (DT) conditions. For the single-task, subjects were instructed to walk at their usual speed. One of the DTs was a verbal fluency dual task, whereby subjects had to walk while simultaneously enumerating as many different animals as possible. For the other DT (counting dual task), participants had to walk while performing serial subtractions. After inclusion, participants kept a 6-month falls diary. Eighteen (56.3%) of the 32 included patients fell. Ten (31.3%) were single fallers (SFs), and 8 (25%) were multiple fallers (MFs). Fallers (Fs) more frequently used a walking aid and more frequently needed an observatory person for walking safely (FAC score of 3) than nonfallers (NFs). Two gait decrement parameters in counting dual task could distinguish potential Fs from NFs: decrement in stride length percentage (P=.043) and nonparetic step length percentage (P=.047). Regarding the division in 3 groups (NFs, SFs, and MFs), only MFs had a significantly higher percentage of decrement for paretic step length (P=.023) than SFs. Examining the decrement of spatial gait characteristics (stride length and paretic and nonparetic step length) during a DT addressing working memory can identify fall-prone subacute stroke patients. Copyright © 2013 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  13. Effect of body mass index on hemiparetic gait.

    PubMed

    Sheffler, Lynne R; Bailey, Stephanie Nogan; Gunzler, Douglas; Chae, John

    2014-10-01

    To evaluate the relationship between body mass index (BMI) and spatiotemporal, kinematic, and kinetic gait parameters in chronic hemiparetic stroke survivors. Secondary analysis of data collected in a randomized controlled trial comparing two 12-week ambulation training treatments. Academic medical center. Chronic hemiparetic stroke survivors (N = 108, >3 months poststroke) Linear regression analyses were performed of BMI, and selected pretreatment gait parameters were recorded using quantitative gait analysis. Spatiotemporal, kinematic, and kinetic gait parameters. A series of linear regression models that controlled for age, gender, stroke type (ischemic versus hemorrhagic), interval poststroke, level of motor impairment (Fugl-Meyer score), and walking speed found BMI to be positively associated with step width (m) (β = 0.364, P < .001), positively associated with peak hip abduction angle of the nonparetic limb during stance (deg) (β = 0.177, P = .040), negatively associated with ankle dorsiflexion angle at initial contact of the paretic limb (deg) (β = -0.222, P = .023), and negatively associated with peak ankle power at push-off (W/kg) of the paretic limb (W/kg)(β = -0.142, P = .026). When walking at a similar speed, chronic hemiparetic stroke subjects with a higher BMI demonstrated greater step width, greater hip hiking of the paretic lower limb, less paretic limb dorsiflexion at initial contact, and less paretic ankle power at push-off as compared to stroke subjects with a lower BMI and similar level of motor impairment. Further studies are necessary to determine the clinical relevance of these findings with respect to rehabilitation strategies for gait dysfunction in hemiparetic patients with higher BMIs. Copyright © 2014 American Academy of Physical Medicine and Rehabilitation. Published by Elsevier Inc. All rights reserved.

  14. Altering length and velocity feedback during a neuro-musculoskeletal simulation of normal gait contributes to hemiparetic gait characteristics.

    PubMed

    Jansen, Karen; De Groote, Friedl; Aerts, Wouter; De Schutter, Joris; Duysens, Jacques; Jonkers, Ilse

    2014-04-30

    Spasticity is an important complication after stroke, especially in the anti-gravity muscles, i.e. lower limb extensors. However the contribution of hyperexcitable muscle spindle reflex loops to gait impairments after stroke is often disputed. In this study a neuro-musculoskeletal model was developed to investigate the contribution of an increased length and velocity feedback and altered reflex modulation patterns to hemiparetic gait deficits. A musculoskeletal model was extended with a muscle spindle model providing real-time length and velocity feedback of gastrocnemius, soleus, vasti and rectus femoris during a forward dynamic simulation (neural control model). By using a healthy subject's base muscle excitations, in combination with increased feedback gains and altered reflex modulation patterns, the effect on kinematics was simulated. A foot-ground contact model was added to account for the interaction effect between the changed kinematics and the ground. The qualitative effect i.e. the directional effect and the specific gait phases where the effect is present, on the joint kinematics was then compared with hemiparetic gait deviations reported in the literature. Our results show that increased feedback in combination with altered reflex modulation patterns of soleus, vasti and rectus femoris muscle can contribute to excessive ankle plantarflexion/inadequate dorsiflexion, knee hyperextension/inadequate flexion and increased hip extension/inadequate flexion during dedicated gait cycle phases. Increased feedback of gastrocnemius can also contribute to excessive plantarflexion/inadequate dorsiflexion, however in combination with excessive knee and hip flexion. Increased length/velocity feedback can therefore contribute to two types of gait deviations, which are both in accordance with previously reported gait deviations in hemiparetic patients. Furthermore altered modulation patterns, in particular the reduced suppression of the muscle spindle feedback during

  15. Walking dynamics of the passive compass-gait model under OGY-based control: Emergence of bifurcations and chaos

    NASA Astrophysics Data System (ADS)

    Gritli, Hassène; Belghith, Safya

    2017-06-01

    An analysis of the passive dynamic walking of a compass-gait biped model under the OGY-based control approach using the impulsive hybrid nonlinear dynamics is presented in this paper. We describe our strategy for the development of a simplified analytical expression of a controlled hybrid Poincaré map and then for the design of a state-feedback control. Our control methodology is based mainly on the linearization of the impulsive hybrid nonlinear dynamics around a desired nominal one-periodic hybrid limit cycle. Our analysis of the controlled walking dynamics is achieved by means of bifurcation diagrams. Some interesting nonlinear phenomena are displayed, such as the period-doubling bifurcation, the cyclic-fold bifurcation, the period remerging, the period bubbling and chaos. A comparison between the raised phenomena in the impulsive hybrid nonlinear dynamics and the hybrid Poincaré map under control was also presented.

  16. View-Invariant Gait Recognition Through Genetic Template Segmentation

    NASA Astrophysics Data System (ADS)

    Isaac, Ebenezer R. H. P.; Elias, Susan; Rajagopalan, Srinivasan; Easwarakumar, K. S.

    2017-08-01

    Template-based model-free approach provides by far the most successful solution to the gait recognition problem in literature. Recent work discusses how isolating the head and leg portion of the template increase the performance of a gait recognition system making it robust against covariates like clothing and carrying conditions. However, most involve a manual definition of the boundaries. The method we propose, the genetic template segmentation (GTS), employs the genetic algorithm to automate the boundary selection process. This method was tested on the GEI, GEnI and AEI templates. GEI seems to exhibit the best result when segmented with our approach. Experimental results depict that our approach significantly outperforms the existing implementations of view-invariant gait recognition.

  17. Stylistic gait synthesis based on hidden Markov models

    NASA Astrophysics Data System (ADS)

    Tilmanne, Joëlle; Moinet, Alexis; Dutoit, Thierry

    2012-12-01

    In this work we present an expressive gait synthesis system based on hidden Markov models (HMMs), following and modifying a procedure originally developed for speaking style adaptation, in speech synthesis. A large database of neutral motion capture walk sequences was used to train an HMM of average walk. The model was then used for automatic adaptation to a particular style of walk using only a small amount of training data from the target style. The open source toolkit that we adapted for motion modeling also enabled us to take into account the dynamics of the data and to model accurately the duration of each HMM state. We also address the assessment issue and propose a procedure for qualitative user evaluation of the synthesized sequences. Our tests show that the style of these sequences can easily be recognized and look natural to the evaluators.

  18. An accelerometry-based comparison of 2 robotic assistive devices for treadmill training of gait.

    PubMed

    Regnaux, Jean-Philippe; Saremi, Kaveh; Marehbian, Jon; Bussel, Bernard; Dobkin, Bruce H

    2008-01-01

    Two commercial robotic devices, the Gait Trainer (GT) and the Lokomat (LOKO), assist task-oriented practice of walking. The gait patterns induced by these motor-driven devices have not been characterized and compared. A healthy participant chose the most comfortable gait pattern on each device and for treadmill (TM) walking at 1, 2 (maximum for the GT), and 3 km/h and over ground at similar speeds. A system of accelerometers on the thighs and feet allowed the calculation of spatiotemporal features and accelerations during the gait cycle. At the 1 and 2 km/h speed settings, single-limb stance times were prolonged on the devices compared with overground walking. Differences on the LOKO were decreased by adjusting the hip and knee angles and step length. At the 3 km/h setting, the LOKO approximated the participant's overground parameters. Irregular accelerations and decelerations from toe-off to heel contact were induced by the devices, especially at slower speeds. The LOKO and GT impose mechanical constraints that may alter leg accelerations-decelerations during stance and swing phases, as well as stance duration, especially at their slower speed settings, that are not found during TM and overground walking. The potential impact of these perturbations on training to improve gait needs further study.

  19. A pilot study of randomized clinical controlled trial of gait training in subacute stroke patients with partial body-weight support electromechanical gait trainer and functional electrical stimulation: six-month follow-up.

    PubMed

    Ng, Maple F W; Tong, Raymond K Y; Li, Leonard S W

    2008-01-01

    This study aimed to assess the effectiveness of gait training using an electromechanical gait trainer with or without functional electrical stimulation for people with subacute stroke. This was a nonblinded randomized controlled trial with a 6-month follow-up. Fifty-four subjects were recruited within 6 weeks after stroke onset and were randomly assigned to 1 of 3 gait intervention groups: conventional overground gait training treatment (CT, n=21), electromechanical gait trainer (GT, n=17) and, electromechanical gait trainer with functional electrical stimulation (GT-FES, n=16). All subjects were to undergo an assigned intervention program comprising a 20-minute session every weekday for 4 weeks. The outcome measures were Functional Independence Measure, Barthel Index, Motricity Index leg subscale, Elderly Mobility Scale (EMS), Berg Balance Scale, Functional Ambulatory Category (FAC), and 5-meter walking speed test. Assessments were made at baseline, at the end of the 4-week intervention program, and 6 months after the program ended. By intention-to-treat and multivariate analysis, statistically significant differences showed up in EMS (Wilks' lambda=0.743, P=0.005), FAC (Wilks' lambda=0.744, P=0.005) and gait speed (Wilks' lambda=0.658, P<0.0001). Post hoc analysis (univariate 2-way ANCOVA) revealed that the GT and GT-FES groups showed significantly better improvement in comparison with the CT group at the end of the 4 weeks of training and in the 6-month follow-up. For the early stage after stroke, this study indicated a higher effectiveness in poststroke gait training that used an electromechanical gait trainer compared with conventional overground gait training. The training effect was sustained through to the 6-month follow-up after the intervention.

  20. Gait analysis in patients operated on for sacrococcygeal teratoma.

    PubMed

    Zaccara, Antonio; Iacobelli, Barbara D; Adorisio, Ottavio; Petrarca, Maurizio; Di Rosa, Giuseppe; Pierro, Marcello M; Bagolan, Pietro

    2004-06-01

    Long-term follow-up of sacrococcygeal teratoma (SCT) is well established; however, little is known about the effects of extensive surgery in the pelvic and perineal region, which involves disruption of muscles providing maximal support in normal walking. Thirteen patients operated on at birth for SCT with extensive muscle dissection underwent gait studies with a Vicon 3-D motion analysis system with 6 cameras. Results were compared with 15 age-matched controls. Statistical analysis was performed with Mann-Whitney test; correlations were sought with Spearman's correlation coefficient. All subjects were independent ambulators, and no statistically significant differences were seen in walking velocity and stride length. However, in all patients, toe-off occurred earlier (at 58% +/- 1.82% of stride length) than controls (at 65.5% +/- 0.52%; P <.05). On kinetics, all patients exhibited, on both limbs, a significant reduction of hip extensory moment (-0.11 +/- 0.11 left; -0.16 +/- 0.15 right v 1.19 +/- 0.08 Newtonmeter/kg; P <.05) and of ankle dorsi/plantar moment (-0.07 +/- 0.09 right; -0.08 +/- 0.16 v -0.15 +/- 0.05 Nm/kg, p < 0.05). Knee power was also significantly reduced (0.44 +/- 0.55 right, 0.63 +/- 0.45 left v 0.04 +/- 0.05 W/kg), whereas ankle power was increased (3 +/- 1.5 right; 2.8 +/- 0.9 left v 1.97 +/- 0.2 W/kg; P <.05). No statistically significant correlation was found between tumor size and either muscle power generation or flexory/extensory moments. Patients operated on for SCT exhibit nearly normal gait patterns. However, this normal pattern is accompanied by abnormal kinetics of some ambulatory muscles, and the extent of these abnormalities appears to be independent of tumor size. A careful follow-up is warranted to verify if such modifications are stable or progress over the years, thereby impairing ambulatory potential or leading to early arthrosis.

  1. Does dance-based therapy increase gait speed in older adults with chronic lower extremity pain: a feasibility study.

    PubMed

    Krampe, Jean; Wagner, Joanne M; Hawthorne, Kelly; Sanazaro, Deborah; Wong-Anuchit, Choochart; Budhathoki, Chakra; Lorenz, Rebecca A; Raaf, Soren

    2014-01-01

    A decreased gait speed in older adults can lead to dependency when the individuals are no longer able to participate in activities or do things for themselves. Thirty-seven senior apartment residents (31 females; Mean age=80.6 years; SD=8.9) with lower extremity pain/stiffness participated in a feasibility and preliminary efficacy study of 12 weeks (24 sessions). Healthy-Steps dance therapy compared to a wait-list control group. Small improvements in gait speed ([ES]=0.33) were noted for participants completing 19-24 dance sessions. Improvements in gait speed measured by a 10 Meter Walk Test (0.0517 m/s) exceeded 0.05 m/s, a value deemed to be meaningful in community dwelling older adults. These feasibility study findings support the need for additional research using dance-based therapy for older adults with lower extremity pain. Copyright © 2014 Elsevier Inc. All rights reserved.

  2. Association of Dual-Task Gait With Incident Dementia in Mild Cognitive Impairment: Results From the Gait and Brain Study.

    PubMed

    Montero-Odasso, Manuel M; Sarquis-Adamson, Yanina; Speechley, Mark; Borrie, Michael J; Hachinski, Vladimir C; Wells, Jennie; Riccio, Patricia M; Schapira, Marcelo; Sejdic, Ervin; Camicioli, Richard M; Bartha, Robert; McIlroy, William E; Muir-Hunter, Susan

    2017-07-01

    Gait performance is affected by neurodegeneration in aging and has the potential to be used as a clinical marker for progression from mild cognitive impairment (MCI) to dementia. A dual-task gait test evaluating the cognitive-motor interface may predict dementia progression in older adults with MCI. To determine whether a dual-task gait test is associated with incident dementia in MCI. The Gait and Brain Study is an ongoing prospective cohort study of community-dwelling older adults that enrolled 112 older adults with MCI. Participants were followed up for 6 years, with biannual visits including neurologic, cognitive, and gait assessments. Data were collected from July 2007 to March 2016. Incident all-cause dementia was the main outcome measure, and single- and dual-task gait velocity and dual-task gait costs were the independent variables. A neuropsychological test battery was used to assess cognition. Gait velocity was recorded under single-task and 3 separate dual-task conditions using an electronic walkway. Dual-task gait cost was defined as the percentage change between single- and dual-task gait velocities: ([single-task gait velocity - dual-task gait velocity]/ single-task gait velocity) × 100. Cox proportional hazard models were used to estimate the association between risk of progression to dementia and the independent variables, adjusted for age, sex, education, comorbidities, and cognition. Among 112 study participants with MCI, mean (SD) age was 76.6 (6.9) years, 55 were women (49.1%), and 27 progressed to dementia (24.1%), with an incidence rate of 121 per 1000 person-years. Slow single-task gait velocity (<0.8 m/second) was not associated with progression to dementia (hazard ratio [HR], 3.41; 95% CI, 0.99-11.71; P = .05)while high dual-task gait cost while counting backward (HR, 3.79; 95% CI, 1.57-9.15; P = .003) and naming animals (HR, 2.41; 95% CI, 1.04-5.59; P = .04) were associated with dementia progression (incidence rate, 155 per

  3. A fault tolerant gait for a hexapod robot over uneven terrain.

    PubMed

    Yang, J M; Kim, J H

    2000-01-01

    The fault tolerant gait of legged robots in static walking is a gait which maintains its stability against a fault event preventing a leg from having the support state. In this paper, a fault tolerant quadruped gait is proposed for a hexapod traversing uneven terrain with forbidden regions, which do not offer viable footholds but can be stepped over. By comparing performance of straight-line motion and crab walking over even terrain, it is shown that the proposed gait has better mobility and terrain adaptability than previously developed gaits. Based on the proposed gait, we present a method for the generation of the fault tolerant locomotion of a hexapod over uneven terrain with forbidden regions. The proposed method minimizes the number of legs on the ground during walking, and foot adjustment algorithm is used for avoiding steps on forbidden regions. The effectiveness of the proposed strategy over uneven terrain is demonstrated with a computer simulation.

  4. Spatial-temporal parameters of gait in women with fibromyalgia.

    PubMed

    Heredia Jiménez, José María; Aparicio García-Molina, Virginia A; Porres Foulquie, Jesús M; Delgado Fernández, Manuel; Soto Hermoso, Victor M

    2009-05-01

    The aim of the present study was to determine if there are differences in such parameters among patients affected by fibromyalgia (FM) and healthy subjects and whether the degree of affectation by FM can decrease the gait parameters. We studied 55 women with FM and 44 controls. Gait analysis was performed using an instrumented walkway for measurement of the kinematic parameters of gait (GAITRite system), and patients completed a Spanish version of Fibromyalgia Impact Questionnaire (FIQ). Significant differences (p < 0.001) between FM and control groups were found in velocity, stride length, cadence, single support ratio, double support ratio, stance phase ratio, and swing phase ratio. There were significant inverse correlations between FIQ and velocity, stride length, swing phase, and single support, whereas significant direct correlations were found with stance phase and double support. Gait parameters of women affected by FM were severely impaired when compared to those of healthy women. Different factors such as lack of physical activity, bradikinesia, overweight, fatigue, and pain together with a lower isometric force in the legs can be responsible for the alterations in gait and poorer life quality of women with FM.

  5. The gait standard deviation, a single measure of kinematic variability.

    PubMed

    Sangeux, Morgan; Passmore, Elyse; Graham, H Kerr; Tirosh, Oren

    2016-05-01

    Measurement of gait kinematic variability provides relevant clinical information in certain conditions affecting the neuromotor control of movement. In this article, we present a measure of overall gait kinematic variability, GaitSD, based on combination of waveforms' standard deviation. The waveform standard deviation is the common numerator in established indices of variability such as Kadaba's coefficient of multiple correlation or Winter's waveform coefficient of variation. Gait data were collected on typically developing children aged 6-17 years. Large number of strides was captured for each child, average 45 (SD: 11) for kinematics and 19 (SD: 5) for kinetics. We used a bootstrap procedure to determine the precision of GaitSD as a function of the number of strides processed. We compared the within-subject, stride-to-stride, variability with the, between-subject, variability of the normative pattern. Finally, we investigated the correlation between age and gait kinematic, kinetic and spatio-temporal variability. In typically developing children, the relative precision of GaitSD was 10% as soon as 6 strides were captured. As a comparison, spatio-temporal parameters required 30 strides to reach the same relative precision. The ratio stride-to-stride divided by normative pattern variability was smaller in kinematic variables (the smallest for pelvic tilt, 28%) than in kinetic and spatio-temporal variables (the largest for normalised stride length, 95%). GaitSD had a strong, negative correlation with age. We show that gait consistency may stabilise only at, or after, skeletal maturity. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Computational intelligence in gait research: a perspective on current applications and future challenges.

    PubMed

    Lai, Daniel T H; Begg, Rezaul K; Palaniswami, Marimuthu

    2009-09-01

    Our mobility is an important daily requirement so much so that any disruption to it severely degrades our perceived quality of life. Studies in gait and human movement sciences, therefore, play a significant role in maintaining the well-being of our mobility. Current gait analysis involves numerous interdependent gait parameters that are difficult to adequately interpret due to the large volume of recorded data and lengthy assessment times in gait laboratories. A proposed solution to these problems is computational intelligence (CI), which is an emerging paradigm in biomedical engineering most notably in pathology detection and prosthesis design. The integration of CI technology in gait systems facilitates studies in disorders caused by lower limb defects, cerebral disorders, and aging effects by learning data relationships through a combination of signal processing and machine learning techniques. Learning paradigms, such as supervised learning, unsupervised learning, and fuzzy and evolutionary algorithms, provide advanced modeling capabilities for biomechanical systems that in the past have relied heavily on statistical analysis. CI offers the ability to investigate nonlinear data relationships, enhance data interpretation, design more efficient diagnostic methods, and extrapolate model functionality. These are envisioned to result in more cost-effective, efficient, and easy-to-use systems, which would address global shortages in medical personnel and rising medical costs. This paper surveys current signal processing and CI methodologies followed by gait applications ranging from normal gait studies and disorder detection to artificial gait simulation. We review recent systems focusing on the existing challenges and issues involved in making them successful. We also examine new research in sensor technologies for gait that could be combined with these intelligent systems to develop more effective healthcare solutions.

  7. Gait analysis of patients with knee osteoarthritis highlights a pathological mechanical pathway and provides a basis for therapeutic interventions

    PubMed Central

    Favre, Julien; Jolles, Brigitte M.

    2016-01-01

    Knee osteoarthritis (OA) is a painful and incapacitating disease affecting a large portion of the elderly population, for which no cure exists. There is a critical need to enhance our understanding of OA pathogenesis, as a means to improve therapeutic options. Knee OA is a complex disease influenced by many factors, including the loading environment. Analysing knee biomechanics during walking - the primary cyclic load-bearing activity - is therefore particularly relevant. There is evidence of meaningful differences in the knee adduction moment, flexion moment and flexion angle during walking between non-OA individuals and patients with medial knee OA. Furthermore, these kinetic and kinematic gait variables have been associated with OA progression. Gait analysis provides the critical information needed to understand the role of ambulatory biomechanics in OA development, and to design therapeutic interventions. Multidisciplinary research is necessary to relate the biomechanical alterations to the structural and biological components of OA. Cite this article: Favre J, Jolles BM. Analysis of gait, knee biomechanics and the physiopathology of knee osteoarthritis in the development of therapeutic interventions. EFORT Open Rev 2016;1:368-374. DOI: 10.1302/2058-5241.1.000051. PMID:28461915

  8. Validity and Reliability of Gait and Postural Control Analysis Using the Tri-axial Accelerometer of the iPod Touch.

    PubMed

    Kosse, Nienke M; Caljouw, Simone; Vervoort, Danique; Vuillerme, Nicolas; Lamoth, Claudine J C

    2015-08-01

    Accelerometer-based assessments can identify elderly with an increased fall risk and monitor interventions. Smart devices, like the iPod Touch, with built-in accelerometers are promising for clinical gait and posture assessments due to easy use and cost-effectiveness. The aim of the present study was to establish the validity and reliability of the iPod Touch for gait and posture assessment. Sixty healthy participants (aged 18-75 years) were measured with an iPod Touch and stand-alone accelerometer while they walked under single- and dual-task conditions, and while standing in parallel and semi-tandem stance with eyes open, eyes closed and when performing a dual task. Cross-correlation values (CCV) showed high correspondence of anterior-posterior and medio-lateral signal patterns (CCV's ≥ 0.88). Validity of gait parameters (foot contacts, index of harmonicity, and amplitude variability) and standing posture parameters [root mean square of accelerations, median power frequency (MPF) and sway area] as indicated by intra-class correlation (ICC) was high (ICC = 0.85-0.99) and test-retest reliability was good (ICC = 0.81-0.97), except for MPF (ICC = 0.59-0.87). Overall, the iPod Touch obtained valid and reliable measures of gait and postural control in healthy adults of all ages under different conditions. Additionally, smart devices have the potential to be used for clinical gait and posture assessments.

  9. Analysis of the Applicability of an Ankle-Foot Orthosis during Gait in Poststroke Patients

    PubMed Central

    Costa, Rafael Vital; Grecco, Luanda André Collange; Neto, Hugo Pasini; Franco de Moura, Renata Calhes; Correa, João Carlos Ferrari; Corrêa, Fernanda Ishida; Oliveira, Claudia Santos

    2013-01-01

    [Purpose] The aim of this study was to develop and assess the applicability of an experimental ankle-foot orthosis during gait in patients with hemiparesis. [Subjects and Methods] This was a noncontrolled cross-sectional study. Ten adult patients with hemiparesis but who were capable of independent gait were included in the study. Gait assessment was performed using two platforms (EMG System do Brasil), an electromyograph (EMG System do Brasil), and a video camera. The experimental orthosis consisted of a single piece that fit over the foot and 1/3 of the distal tibia and had a steel spring. [Results] There was greater activation of the rectus femoris and vastus lateralis muscles in the stance and mid-stance phases with the use of the experimental ankle-foot orthosis in comparison with the use of a polypropylene ankle-foot orthosis and no orthosis. Regarding spatial and temporal gait parameters, the individuals achieved an increase in stride length with the use of the experimental ankle-foot orthosis in comparison with the use of a polypropylene ankle-foot orthosis. [Conclusion] The results of the present study demonstrate that individuals with hemiparesis achieved an improvement in the stance and mid-stance phases of gait with the use of the experimental ankle-foot orthosis. PMID:24259903

  10. Outcomes following kinesthetic feedback for gait training in a direct access environment: a case report on social wellness in relation to gait impairment.

    PubMed

    Blievernicht, Jessica; Sullivan, Kate; Erickson, Mark R

    2012-05-01

    The purpose of this case report was to describe the outcomes following the use of kinesthetic feedback as a primary intervention strategy for gait training. The plan of care for this 22-year-old female addressed the patient's social wellness goal of "walking more normally," using motor learning principles. At initial examination, the patient demonstrated asymmetries for gait kinematics between the left and right lower extremity (analyzed using video motion analysis), pattern of force distribution at the foot, and activation of specific lower extremity muscles (as measured by surface electromyography). Interventions for this patient consisted of neuromuscular and body awareness training, with an emphasis on kinesthetic feedback. Weekly sessions lasted 30-60 minutes over 4 weeks. The patient was prescribed a home program of walking 30-60 minutes three times/week at a comfortable pace while concentrating on gait correction through kinesthetic awareness of specific deviations. Following intervention, the patient's gait improved across all objective measures. She reported receiving positive comments from others regarding improved gait and a twofold increase in her walking confidence. Outcomes support a broadened scope of practice that incorporates previously unreported integration of a patient's social wellness goals into patient management.

  11. Gait Implications of Visual Field Damage from Glaucoma.

    PubMed

    Mihailovic, Aleksandra; Swenor, Bonnielin K; Friedman, David S; West, Sheila K; Gitlin, Laura N; Ramulu, Pradeep Y

    2017-06-01

    To evaluate fall-relevant gait features in older glaucoma patients. The GAITRite Electronic Walkway was used to define fall-related gait parameters in 239 patients with suspected or manifest glaucoma under normal usual-pace walking conditions and while carrying a cup or tray. Multiple linear regression models assessed the association between gait parameters and integrated visual field (IVF) sensitivity after controlling for age, race, sex, medications, and comorbid illness. Under normal walking conditions, worse IVF sensitivity was associated with a wider base of support (β = 0.60 cm/5 dB IVF sensitivity decrement, 95% confidence interval [CI] = 0.12-1.09, P = 0.016). Worse IVF sensitivity was not associated with slower gait speed, shorter step or stride length, or greater left-right drift under normal walking conditions ( P > 0.05 for all), but was during cup and/or tray carrying conditions ( P < 0.05 for all). Worse IVF sensitivity was positively associated with greater stride-to-stride variability in step length, stride length, and stride velocity ( P < 0.005 for all). Inferior and superior IVF sensitivity demonstrated associations with each of the above gait parameters as well, though these associations were consistently similar to, or weaker than, the associations noted for overall IVF sensitivity. Glaucoma severity was associated with several gait parameters predictive of higher fall risk in prior studies, particularly measures of stride-to-stride variability. Gait may be useful in identifying glaucoma patients at higher risk of falls, and in designing and testing interventions to prevent falls in this high-risk group. These findings could serve to inform the development of the interventions for falls prevention in glaucoma patients.

  12. Evaluation and management of crouch gait.

    PubMed

    Kedem, Paz; Scher, David M

    2016-02-01

    Crouch gait is defined as excessive ankle dorsiflexion, knee and hip flexion during the stance phase. This gait disorder is common among patients with cerebral palsy. The present article brings an up-to-date literature review on the pathoanatomy, natural history, and treatment of this frequent gait abnormality. Hamstrings are often not shortened in patients with crouch. Patella alta must be addressed if surgery is performed. Surgical correction of joint contractures and lever arm dysfunction can be effectively achieved through a single-event multilevel surgery. Crouch gait is a common gait deviation, often seen among ambulatory diplegic and quadriplegic patients, once they reach the pubertal spurt, when weak muscles can no longer support a toe walking pattern because of rapidly increased weight. This form of gait is highly ineffective and might compromise walking ability over time. The anterior knee is overloaded; pain, extensor mechanism failure, and arthritis might develop. Its progressive nature often requires surgical intervention. The cause of crouch gait is multifactorial, and surgery should be tailored to meet the individual's specific anatomic and physiologic abnormalities.

  13. Development of Vision Based Multiview Gait Recognition System with MMUGait Database

    PubMed Central

    Ng, Hu; Tan, Wooi-Haw; Tong, Hau-Lee

    2014-01-01

    This paper describes the acquisition setup and development of a new gait database, MMUGait. This database consists of 82 subjects walking under normal condition and 19 subjects walking with 11 covariate factors, which were captured under two views. This paper also proposes a multiview model-based gait recognition system with joint detection approach that performs well under different walking trajectories and covariate factors, which include self-occluded or external occluded silhouettes. In the proposed system, the process begins by enhancing the human silhouette to remove the artifacts. Next, the width and height of the body are obtained. Subsequently, the joint angular trajectories are determined once the body joints are automatically detected. Lastly, crotch height and step-size of the walking subject are determined. The extracted features are smoothened by Gaussian filter to eliminate the effect of outliers. The extracted features are normalized with linear scaling, which is followed by feature selection prior to the classification process. The classification experiments carried out on MMUGait database were benchmarked against the SOTON Small DB from University of Southampton. Results showed correct classification rate above 90% for all the databases. The proposed approach is found to outperform other approaches on SOTON Small DB in most cases. PMID:25143972

  14. Improved gait after repetitive locomotor training in children with cerebral palsy.

    PubMed

    Smania, Nicola; Bonetti, Paola; Gandolfi, Marialuisa; Cosentino, Alessandro; Waldner, Andreas; Hesse, Stefan; Werner, Cordula; Bisoffi, Giulia; Geroin, Christian; Munari, Daniele

    2011-02-01

    The aim of this study was to evaluate the effectiveness of repetitive locomotor training with an electromechanical gait trainer in children with cerebral palsy. In this randomized controlled trial, 18 ambulatory children with diplegic or tetraplegic cerebral palsy were randomly assigned to an experimental group or a control group. The experimental group received 30 mins of repetitive locomotor training with an applied technology (Gait Trainer GT I) plus 10 mins of passive joint mobilization and stretching exercises. The control group received 40 mins of conventional physiotherapy. Each subject underwent a total of 10 treatment sessions over a 2-wk period. Performance on the 10-m walk test, 6-min walk test, WeeFIM scale, and gait analysis was evaluated by a blinded rater before and after treatment and at 1-mo follow-up. The experimental group showed significant posttreatment improvement on the 10-m walk test, 6-min walk test, hip kinematics, gait speed, and step length, all of which were maintained at the 1-mo follow-up assessment. No significant changes in performance parameters were observed in the control group. Repetitive locomotor training with an electromechanical gait trainer may improve gait velocity, endurance, spatiotemporal, and kinematic gait parameters in patients with cerebral palsy.

  15. Gait alterations to effectively reduce hip contact forces.

    PubMed

    Wesseling, Mariska; de Groote, Friedl; Meyer, Christophe; Corten, Kristoff; Simon, Jean-Pierre; Desloovere, Kaat; Jonkers, Ilse

    2015-07-01

    Patients with hip pathology present alterations in gait which have an effect on joint moments and loading. In knee osteoarthritic patients, the relation between medial knee contact forces and the knee adduction moment are currently being exploited to define gait retraining strategies to effectively reduce pain and disease progression. However, the relation between hip contact forces and joint moments has not been clearly established. Therefore, this study aims to investigate the effect of changes in hip and pelvis kinematics during gait on internal hip moments and contact forces which is calculated using muscle driven simulations. The results showed that frontal plane kinetics have the largest effect on hip contact forces. Given the high correlation between the change in hip adduction moment and contact force at initial stance (R(2)  = 0.87), this parameter can be used to alter kinematics and predict changes in contact force. At terminal stance the hip adduction and flexion moment can be used to predict changes in contact force (R(2)  = 0.76). Therefore, gait training that focuses on decreasing hip adduction moments, a wide base gait pattern, has the largest potential to reduce hip contact forces. © 2015 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  16. Surface-EMG analysis for the quantification of thigh muscle dynamic co-contractions during normal gait.

    PubMed

    Strazza, Annachiara; Mengarelli, Alessandro; Fioretti, Sandro; Burattini, Laura; Agostini, Valentina; Knaflitz, Marco; Di Nardo, Francesco

    2017-01-01

    The research purpose was to quantify the co-contraction patterns of quadriceps femoris (QF) vs. hamstring muscles during free walking, in terms of onset-offset muscular activation, excitation intensity, and occurrence frequency. Statistical gait analysis was performed on surface-EMG signals from vastus lateralis (VL), rectus femoris (RF), and medial hamstrings (MH), in 16315 strides walked by 30 healthy young adults. Results showed full superimpositions of MH with both VL and RF activity from terminal swing, 80 to 100% of gait cycle (GC), to the successive loading response (≈0-15% of GC), in around 90% of the considered strides. A further superimposition was detected during the push-off phase both between VL and MH activation intervals (38.6±12.8% to 44.1±9.6% of GC) in 21.9±13.6% of strides, and between RF and MH activation intervals (45.9±5.3% to 50.7±9.7 of GC) in 32.7±15.1% of strides. These findings led to identify three different co-contractions among QF and hamstring muscles during able-bodied walking: in early stance (in ≈90% of strides), in push-off (in 25-30% of strides) and in terminal swing (in ≈90% of strides). The co-contraction in terminal swing is the one with the highest levels of muscle excitation intensity. To our knowledge, this analysis represents the first attempt for quantification of QF/hamstring muscles co-contraction in young healthy subjects during normal gait, able to include the physiological variability of the phenomenon. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Gait training reduces ankle joint stiffness and facilitates heel strike in children with Cerebral Palsy.

    PubMed

    Willerslev-Olsen, Maria; Lorentzen, Jakob; Nielsen, Jens Bo

    2014-01-01

    Foot drop and toe walking are frequent concerns in children with cerebral palsy (CP). Increased stiffness of the ankle joint muscles may contribute to these problems. Does four weeks of daily home based treadmill training with incline reduce ankle joint stiffness and facilitate heel strike in children with CP? Seventeen children with CP (4-14 years) were recruited. Muscle stiffness and gait ability were measured twice before and twice after training with an interval of one month. Passive and reflex-mediated stiffness were measured by a dynamometer which applied stretches below and above reflex threshold. Gait kinematics were recorded by 3-D video-analysis during treadmill walking. Foot pressure was measured by force-sensitive foot soles during treadmill and over-ground walking. Children with increased passive stiffness showed a significant reduction in stiffness following training (P = 0.01). Toe lift in the swing phase (P = 0.014) and heel impact (P = 0.003) increased significantly following the training during both treadmill and over-ground walking. Daily intensive gait training may influence the elastic properties of ankle joint muscles and facilitate toe lift and heel strike in children with CP. Intensive gait training may be beneficial in preventing contractures and maintain gait ability in children with CP.

  18. Compressive tibiofemoral force during crouch gait.

    PubMed

    Steele, Katherine M; Demers, Matthew S; Schwartz, Michael H; Delp, Scott L

    2012-04-01

    Crouch gait, a common walking pattern in individuals with cerebral palsy, is characterized by excessive flexion of the hip and knee. Many subjects with crouch gait experience knee pain, perhaps because of elevated muscle forces and joint loading. The goal of this study was to examine how muscle forces and compressive tibiofemoral force change with the increasing knee flexion associated with crouch gait. Muscle forces and tibiofemoral force were estimated for three unimpaired children and nine children with cerebral palsy who walked with varying degrees of knee flexion. We scaled a generic musculoskeletal model to each subject and used the model to estimate muscle forces and compressive tibiofemoral forces during walking. Mild crouch gait (minimum knee flexion 20-35°) produced a peak compressive tibiofemoral force similar to unimpaired walking; however, severe crouch gait (minimum knee flexion>50°) increased the peak force to greater than 6 times body-weight, more than double the load experienced during unimpaired gait. This increase in compressive tibiofemoral force was primarily due to increases in quadriceps force during crouch gait, which increased quadratically with average stance phase knee flexion (i.e., crouch severity). Increased quadriceps force contributes to larger tibiofemoral and patellofemoral loading which may contribute to knee pain in individuals with crouch gait. Copyright © 2011 Elsevier B.V. All rights reserved.

  19. Gait and Functional Mobility Deficits in Fragile X-Associated Tremor/Ataxia Syndrome.

    PubMed

    O'Keefe, Joan A; Robertson-Dick, Erin E; Hall, Deborah A; Berry-Kravis, Elizabeth

    2016-08-01

    Fragile X-associated tremor/ataxia syndrome (FXTAS) results from a "premutation" (PM) size CGG repeat expansion in the fragile X mental retardation 1 (FMR1) gene. Cerebellar gait ataxia is the primary feature in some FXTAS patients causing progressive disability. However, no studies have quantitatively characterized gait and mobility deficits in FXTAS. We performed quantitative gait and mobility analysis in seven FMR1 PM carriers with FXTAS and ataxia, six PM carriers without FXTAS, and 18 age-matched controls. We studied four independent gait domains, trunk range of motion (ROM), and movement transitions using an instrumented Timed Up and Go (i-TUG). We correlated these outcome measures with FMR1 molecular variables and clinical severity scales. PM carriers with FXTAS were globally impaired in every gait performance domain except trunk ROM compared to controls. These included total i-TUG duration, stride velocity, gait cycle time, cadence, double-limb support and swing phase times, turn duration, step time before turn, and turn-to-sit duration, and increased gait variability on several measures. Carriers without FXTAS did not differ from controls on any parameters, but double-limb support time was close to significance. Balance and disability scales correlated with multiple gait and movement transition parameters, while the FXTAS Rating Scale did not. This is the first study to quantitatively examine gait and movement transitions in FXTAS patients. Gait characteristics were consistent with those from previous cohorts with cerebellar ataxia. Sensitive measures like the i-TUG may help determine efficacy of interventions, characterize disease progression, and provide early markers of disease in FXTAS.

  20. Development of a novel virtual reality gait intervention.

    PubMed

    Boone, Anna E; Foreman, Matthew H; Engsberg, Jack R

    2017-02-01

    Improving gait speed and kinematics can be a time consuming and tiresome process. We hypothesize that incorporating virtual reality videogame play into variable improvement goals will improve levels of enjoyment and motivation and lead to improved gait performance. To develop a feasible, engaging, VR gait intervention for improving gait variables. Completing this investigation involved four steps: 1) identify gait variables that could be manipulated to improve gait speed and kinematics using the Microsoft Kinect and free software, 2) identify free internet videogames that could successfully manipulate the chosen gait variables, 3) experimentally evaluate the ability of the videogames and software to manipulate the gait variables, and 4) evaluate the enjoyment and motivation from a small sample of persons without disability. The Kinect sensor was able to detect stride length, cadence, and joint angles. FAAST software was able to identify predetermined gait variable thresholds and use the thresholds to play free online videogames. Videogames that involved continuous pressing of a keyboard key were found to be most appropriate for manipulating the gait variables. Five participants without disability evaluated the effectiveness for modifying the gait variables and enjoyment and motivation during play. Participants were able to modify gait variables to permit successful videogame play. Motivation and enjoyment were high. A clinically feasible and engaging virtual intervention for improving gait speed and kinematics has been developed and initially tested. It may provide an engaging avenue for achieving thousands of repetitions necessary for neural plastic changes and improved gait. Copyright © 2016 Elsevier B.V. All rights reserved.