Sample records for gal binding sites

  1. Laminar and regional distribution of galanin binding sites in cat and monkey visual cortex determined by in vitro receptor autoradiography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rosier, A.M.; Vandesande, F.; Orban, G.A.

    1991-03-08

    The distribution of galanin (GAL) binding sites in the visual cortex of cat and monkey was determined by autoradiographic visualization of ({sup 125}I)-GAL binding to tissue sections. Binding conditions were optimized and, as a result, the binding was saturable and specific. In cat visual cortex, GAL binding sites were concentrated in layers I, IVc, V, and VI. Areas 17, 18, and 19 exhibited a similar distribution pattern. In monkey primary visual cortex, the highest density of GAL binding sites was observed in layers II/III, lower IVc, and upper V. Layers IVA and VI contained moderate numbers of GAL binding sites,more » while layer I and the remaining parts of layer IV displayed the lowest density. In monkey secondary visual cortex, GAL binding sites were mainly concentrated in layers V-VI. Layer IV exhibited a moderate density, while the supragranular layers contained the lowest proportion of GAL binding sites. In both cat and monkey, we found little difference between regions subserving central and those subserving peripheral vision. Similarities in the distribution of GAL and acetylcholine binding sites are discussed.« less

  2. Localizing Carbohydrate Binding Sites in Proteins Using Hydrogen/Deuterium Exchange Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Zhang, Jingjing; Kitova, Elena N.; Li, Jun; Eugenio, Luiz; Ng, Kenneth; Klassen, John S.

    2016-01-01

    The application of hydrogen/deuterium exchange mass spectrometry (HDX-MS) to localize ligand binding sites in carbohydrate-binding proteins is described. Proteins from three bacterial toxins, the B subunit homopentamers of Cholera toxin and Shiga toxin type 1 and a fragment of Clostridium difficile toxin A, and their interactions with native carbohydrate receptors, GM1 pentasaccharides (β-Gal-(1→3)-β-GalNAc-(1→4)[α-Neu5Ac-(2→3)]-β-Gal-(1→4)-Glc), Pk trisaccharide (α-Gal-(1→4)-β-Gal-(1→4)-Glc) and CD-grease (α-Gal-(1→3)-β-Gal-(1→4)-β-GlcNAcO(CH2)8CO2CH3), respectively, served as model systems for this study. Comparison of the differences in deuterium uptake for peptic peptides produced in the absence and presence of ligand revealed regions of the proteins that are protected against deuterium exchange upon ligand binding. Notably, protected regions generally coincide with the carbohydrate binding sites identified by X-ray crystallography. However, ligand binding can also result in increased deuterium exchange in other parts of the protein, presumably through allosteric effects. Overall, the results of this study suggest that HDX-MS can serve as a useful tool for localizing the ligand binding sites in carbohydrate-binding proteins. However, a detailed interpretation of the changes in deuterium exchange upon ligand binding can be challenging because of the presence of ligand-induced changes in protein structure and dynamics.

  3. The D-galactose specific lectin of field bean (Dolichos lablab) seed binds sugars with extreme negative cooperativity and half-of-the-sites binding.

    PubMed

    Rao, Devavratha H; Gowda, Lalitha R

    2012-08-15

    The field bean (Dolichos lablab) lectin designated as PPO-haemagglutinin (DLL-II) is bifunctional, exhibiting both polyphenol oxidase and haemagglutinating activity. The lectin is unusual in that it binds galactose (Gal), lactose (Lac) and N-acetylgalactosamine (GalNAc) only in the presence of (NH₄)₂SO₄ and exhibits negative cooperativity and half-of-the-sites binding. Circular dichroism, isothermal titration calorimetry and fluorescence quenching were used to assess the sugar binding in the presence of (NH₄)₂O₄. Comparison of the near-UV CD spectra with and without bound sugar revealed ligand induced conformational changes. The intrinsic fluorescence quenching data indicate that DLL-II exhibits weak binding to Gal in the presence of (NH₄)₂SO₄ with a stoichiometry of one bound ligand per dimer. ITC data fitted using a two sets of sites binding model presented a similar picture. The K(a)'s for Gal, Lac and GalNAc in the presence of (NH₄)₂SO₄ were 0.16±0.002, 0.21±0.004 and 8.45±0.78 (×10⁻³) M⁻¹ respectively. The Hill plot for the binding of these sugars to DLL-II was curvilinear with a tangent slope <1.0 indicating negative cooperativity. DLL-II thus exhibits half-of-the-site binding, an extreme form of negative cooperativity in which the second ligand does not bind at all. This is the first report of a legume lectin, exhibiting half-of-the-sites binding. Copyright © 2012 Elsevier Inc. All rights reserved.

  4. The α-galactomannan Davanat binds galectin-1 at a site different from the conventional galectin carbohydrate binding domain

    PubMed Central

    Miller, Michelle C; Klyosov, Anatole; Mayo, Kevin H

    2009-01-01

    Galectins are a sub-family of lectins, defined by their highly conserved β-sandwich structures and ability to bind to β-galactosides, like Gal β1-4 Glc (lactose). Here, we used 15N-1H HSQC and pulse field gradient (PFG) NMR spectroscopy to demonstrate that galectin-1 (gal-1) binds to the relatively large galactomannan Davanat, whose backbone is composed of β1-4-linked d-mannopyranosyl units to which single d-galactopyranosyl residues are periodically attached via α1-6 linkage (weight-average MW of 59 kDa). The Davanat binding domain covers a relatively large area on the surface of gal-1 that runs across the dimer interface primarily on that side of the protein opposite to the lactose binding site. Our data show that gal-1 binds Davanat with an apparent equilibrium dissociation constant (Kd) of 10 × 10−6 M, compared to 260 × 10−6 M for lactose, and a stiochiometry of about 3 to 6 gal-1 molecules per Davanat molecule. Mannan also interacts at the same galactomannan binding domain on gal-1, but with at least 10-fold lower avidity, supporting the role of galactose units in Davanat for relatively strong binding to gal-1. We also found that the β-galactoside binding domain remains accessible in the gal-1/Davanat complex, as lactose can still bind with no apparent loss in affinity. In addition, gal-1 binding to Davanat also modifies the supermolecular structure of the galactomannan and appears to reduce its hydrodynamic radius and disrupt inter-glycan interactions thereby reducing glycan-mediated solution viscosity. Overall, our findings contribute to understanding gal-1–carbohydrate interactions and provide insight into gal-1 function with potentially significant biological consequences. PMID:19541770

  5. Role of water molecules in structure and energetics of Pseudomonas aeruginosa lectin I interacting with disaccharides.

    PubMed

    Nurisso, Alessandra; Blanchard, Bertrand; Audfray, Aymeric; Rydner, Lina; Oscarson, Stefan; Varrot, Annabelle; Imberty, Anne

    2010-06-25

    Calcium-dependent lectin I from Pseudomonas aeruginosa (PA-IL) binds specifically to oligosaccharides presenting an alpha-galactose residue at their nonreducing end, such as the disaccharides alphaGal1-2betaGalOMe, alphaGal1-3betaGalOMe, and alphaGal1-4betaGalOMe. This provides a unique model for studying the effect of the glycosidic linkage of the ligands on structure and thermodynamics of the complexes by means of experimental and theoretical tools. The structural features of PA-IL in complex with the three disaccharides were established by docking and molecular dynamics simulations and compared with those observed in available crystal structures, including PA-IL.alphaGal1-2betaGalOMe complex, which was solved at 2.4 A resolution and reported herein. The role of a structural bridge water molecule in the binding site of PA-IL was also elucidated through molecular dynamics simulations and free energy calculations. This water molecule establishes three very stable hydrogen bonds with O6 of nonreducing galactose, oxygen from Pro-51 main chain, and nitrogen from Gln-53 main chain of the lectin binding site. Binding free energies for PA-IL in complex with the three disaccharides were investigated, and the results were compared with the experimental data determined by titration microcalorimetry. When the bridge water molecule was included in the free energy calculations, the simulations predicted the correct binding affinity trends with the 1-2-linked disaccharide presenting three times stronger affinity ligand than the other two. These results highlight the role of the water molecule in the binding site of PA-IL and indicate that it should be taken into account when designing glycoderivatives active against P. aeruginosa adhesion.

  6. Crystal Structure of the Catalytic Domain of Drosophila [beta]1,4-Galactosyltransferase-7

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ramakrishnan, Boopathy; Qasba, Pradman K.

    2010-11-03

    The {beta}1,4-galactosyltransferase-7 ({beta}4Gal-T7) enzyme, one of seven members of the {beta}4Gal-T family, transfers in the presence of manganese Gal from UDP-Gal to an acceptor sugar (xylose) that is attached to a side chain hydroxyl group of Ser/Thr residues of proteoglycan proteins. It exhibits the least protein sequence similarity with the other family members, including the well studied family member {beta}4Gal-T1, which, in the presence of manganese, transfers Gal from UDP-Gal to GlcNAc. We report here the crystal structure of the catalytic domain of {beta}4Gal-T7 from Drosophila in the presence of manganese and UDP at 1.81 {angstrom} resolution. In the crystalmore » structure, a new manganese ion-binding motif (HXH) has been observed. Superposition of the crystal structures of {beta}4Gal-T7 and {beta}4Gal-T1 shows that the catalytic pocket and the substrate-binding sites in these proteins are similar. Compared with GlcNAc, xylose has a hydroxyl group (instead of an N-acetyl group) at C2 and lacks the CH{sub 2}OH group at C5; thus, these protein structures show significant differences in their acceptor-binding site. Modeling of xylose in the acceptor-binding site of the {beta}4Gal-T7 crystal structure shows that the aromatic side chain of Tyr{sup 177} interacts strongly with the C5 atom of xylose, causing steric hindrance to any additional group at C5. Because Drosophila Cd7 has a 73% protein sequence similarity to human Cd7, the present crystal structure offers a structure-based explanation for the mutations in human Cd7 that have been linked to Ehlers-Danlos syndrome.« less

  7. Two-level inhibition of galK expression by Spot 42: Degradation of mRNA mK2 and enhanced transcription termination before the galK gene

    PubMed Central

    Wang, Xun; Ji, Sang Chun; Jeon, Heung Jin; Lee, Yonho; Lim, Heon M.

    2015-01-01

    The Escherichia coli gal operon has the structure Pgal-galE-galT-galK-galM. During early log growth, a gradient in gene expression, named type 2 polarity, is established, as follows: galE > galT > galK > galM. However, during late-log growth, type 1 polarity is established in which galK is greater than galT, as follows: galE > galK > galT > galM. We found that type 2 polarity occurs as a result of the down-regulation of galK, which is caused by two different molecular mechanisms: Spot 42-mediated degradation of the galK-specific mRNA, mK2, and Spot 42-mediated Rho-dependent transcription termination at the end of galT. Because the concentration of Spot 42 drops during the transition period of the polarity type switch, these results demonstrate that type 1 polarity is the result of alleviation of Spot 42-mediated galK down-regulation. Because the Spot 42-binding site overlaps with a putative Rho-binding site, a molecular mechanism is proposed to explain how Spot 42, possibly with Hfq, enhances Rho-mediated transcription termination at the end of galT. PMID:26045496

  8. Lactose binding to galectin-1 modulates structural dynamics, increases conformational entropy, and occurs with apparent negative cooperativity.

    PubMed

    Nesmelova, Irina V; Ermakova, Elena; Daragan, Vladimir A; Pang, Mabel; Menéndez, Margarita; Lagartera, Laura; Solís, Dolores; Baum, Linda G; Mayo, Kevin H

    2010-04-16

    Galectins are a family of lectins with a conserved carbohydrate recognition domain that interacts with beta-galactosides. By binding cell surface glycoconjugates, galectin-1 (gal-1) is involved in cell adhesion and migration processes and is an important regulator of tumor angiogenesis. Here, we used heteronuclear NMR spectroscopy and molecular modeling to investigate lactose binding to gal-1 and to derive solution NMR structures of gal-1 in the lactose-bound and unbound states. Structure analysis shows that the beta-strands and loops around the lactose binding site, which are more open and dynamic in the unbound state, fold in around the bound lactose molecule, dampening internal motions at that site and increasing motions elsewhere throughout the protein to contribute entropically to the binding free energy. CD data support the view of an overall more open structure in the lactose-bound state. Analysis of heteronuclear single quantum coherence titration binding data indicates that lactose binds the two carbohydrate recognition domains of the gal-1 dimer with negative cooperativity, in that the first lactose molecule binds more strongly (K(1)=21+/-6 x 10(3) M(-1)) than the second (K(2)=4+/-2 x 10(3) M(-1)). Isothermal calorimetry data fit using a sequential binding model present a similar picture, yielding K(1)=20+/-10 x 10(3) M(-1) and K(2)=1.67+/-0.07 x 10(3) M(-1). Molecular dynamics simulations provide insight into structural dynamics of the half-loaded lactose state and, together with NMR data, suggest that lactose binding at one site transmits a signal through the beta-sandwich and loops to the second binding site. Overall, our results provide new insight into gal-1 structure-function relationships and to protein-carbohydrate interactions in general. Copyright (c) 2010. Published by Elsevier Ltd.

  9. Flexibility and mutagenic resiliency of glycosyltransferases.

    PubMed

    Bay, Marie Lund; Cuesta-Seijo, Jose A; Weadge, Joel T; Persson, Mattias; Palcic, Monica M

    2014-10-01

    The human blood group A and B antigens are synthesized by two highly homologous enzymes, glycosyltransferase A (GTA) and glycosyltransferase B (GTB), respectively. These enzymes catalyze the transfer of either GalNAc or Gal from their corresponding UDP-donors to αFuc1-2βGal-R terminating acceptors. GTA and GTB differ at only four of 354 amino acids (R176G, G235S, L266M, G268A), which alter the donor specificity from UDP-GalNAc to UDP-Gal. Blood type O individuals synthesize truncated or non-functional enzymes. The cloning, crystallization and X-ray structure elucidations for GTA and GTB have revealed key residues responsible for donor discrimination and acceptor binding. Structural studies suggest that numerous conformational changes occur during the catalytic cycle. Over 300 ABO alleles are tabulated in the blood group antigen mutation database (BGMUT) that provides a framework for structure-function studies. Natural mutations are found in all regions of GTA and GTB from the active site, flexible loops, stem region and surfaces remote from the active site. Our characterizations of natural mutants near a flexible loop (V175M), on a remote surface site (P156L), in the metal binding motif (M212V) and near the acceptor binding site (L232P) demonstrate the resiliency of GTA and GTB to mutagenesis.

  10. Molecular simulation and docking studies of Gal1p and Gal3p proteins in the presence and absence of ligands ATP and galactose: implication for transcriptional activation of GAL genes

    NASA Astrophysics Data System (ADS)

    Upadhyay, Sanjay K.; Sasidhar, Yellamraju U.

    2012-07-01

    The Gal4p mediated transcriptional activation of GAL genes requires the interaction between Gal3p bound with ATP and galactose and Gal80p. Though numerous studies suggest that galactose and ATP activate Gal3p/Gal1p interaction with Gal80p, neither the mechanism of activation nor the interacting surface that binds to Gal80p is well understood. In this study we investigated the dynamics of Gal3p and Gal1p in the presence and absence of ligands ATP and galactose to understand the role played by dynamics in the function of these proteins through molecular dynamics simulation and protein-protein docking studies. We performed simulations totaling to 510 ns on both Gal1p and Gal3p proteins in the presence and absence of ligands ATP and galactose. We find that, while binding of ligands ATP and galactose to Gal3p/Gal1p do not affect the global conformation of proteins, some local conformational changes around upper-lip helix including insertion domain are observed. We observed that only in the presence of ATP and galactose, Gal3p displays opening and closing motion between the two domains. And because of this motion, a binding interface, which is largely hydrophobic, opens up on the surface of Gal3p and this surface can bind to Gal80p. From our simulation studies we infer probable docking sites for Gal80p on Gal3p/Gal1p, which were further ascertained by the docking of Gal80p on to ligand bound Gal1p and Gal3p proteins, and the residues at the interface between Gal3p and Gal80p are identified. Our results correlate quite well with the existing body of literature on functional and dynamical aspects of Gal1p and Gal3p proteins.

  11. Molecular simulation and docking studies of Gal1p and Gal3p proteins in the presence and absence of ligands ATP and galactose: implication for transcriptional activation of GAL genes.

    PubMed

    Upadhyay, Sanjay K; Sasidhar, Yellamraju U

    2012-07-01

    The Gal4p mediated transcriptional activation of GAL genes requires the interaction between Gal3p bound with ATP and galactose and Gal80p. Though numerous studies suggest that galactose and ATP activate Gal3p/Gal1p interaction with Gal80p, neither the mechanism of activation nor the interacting surface that binds to Gal80p is well understood. In this study we investigated the dynamics of Gal3p and Gal1p in the presence and absence of ligands ATP and galactose to understand the role played by dynamics in the function of these proteins through molecular dynamics simulation and protein-protein docking studies. We performed simulations totaling to 510 ns on both Gal1p and Gal3p proteins in the presence and absence of ligands ATP and galactose. We find that, while binding of ligands ATP and galactose to Gal3p/Gal1p do not affect the global conformation of proteins, some local conformational changes around upper-lip helix including insertion domain are observed. We observed that only in the presence of ATP and galactose, Gal3p displays opening and closing motion between the two domains. And because of this motion, a binding interface, which is largely hydrophobic, opens up on the surface of Gal3p and this surface can bind to Gal80p. From our simulation studies we infer probable docking sites for Gal80p on Gal3p/Gal1p, which were further ascertained by the docking of Gal80p on to ligand bound Gal1p and Gal3p proteins, and the residues at the interface between Gal3p and Gal80p are identified. Our results correlate quite well with the existing body of literature on functional and dynamical aspects of Gal1p and Gal3p proteins.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pasek, Marta; Boeggeman, Elizabeth; Ramakrishnan, Boopathy

    The expression of recombinant proteins in Escherichia coli often leads to inactive aggregated proteins known as the inclusion bodies. To date, the best available tool has been the use of fusion tags, including the carbohydrate-binding protein; e.g., the maltose-binding protein (MBP) that enhances the solubility of recombinant proteins. However, none of these fusion tags work universally with every partner protein. We hypothesized that galectins, which are also carbohydrate-binding proteins, may help as fusion partners in folding the mammalian proteins in E. coli. Here we show for the first time that a small soluble lectin, human galectin-1, one member of amore » large galectin family, can function as a fusion partner to produce soluble folded recombinant human glycosyltransferase, {beta}-1,4-galactosyltransferase-7 ({beta}4Gal-T7), in E. coli. The enzyme {beta}4Gal-T7 transfers galactose to xylose during the synthesis of the tetrasaccharide linker sequence attached to a Ser residue of proteoglycans. Without a fusion partner, {beta}4Gal-T7 is expressed in E. coli as inclusion bodies. We have designed a new vector construct, pLgals1, from pET-23a that includes the sequence for human galectin-1, followed by the Tev protease cleavage site, a 6x His-coding sequence, and a multi-cloning site where a cloned gene is inserted. After lactose affinity column purification of galectin-1-{beta}4Gal-T7 fusion protein, the unique protease cleavage site allows the protein {beta}4Gal-T7 to be cleaved from galectin-1 that binds and elutes from UDP-agarose column. The eluted protein is enzymatically active, and shows CD spectra comparable to the folded {beta}4Gal-T1. The engineered galectin-1 vector could prove to be a valuable tool for expressing other proteins in E. coli.« less

  13. Mechanism of Mediator recruitment by tandem Gcn4 activation domains and three Gal11 activator-binding domains.

    PubMed

    Herbig, Eric; Warfield, Linda; Fish, Lisa; Fishburn, James; Knutson, Bruce A; Moorefield, Beth; Pacheco, Derek; Hahn, Steven

    2010-05-01

    Targets of the tandem Gcn4 acidic activation domains in transcription preinitiation complexes were identified by site-specific cross-linking. The individual Gcn4 activation domains cross-link to three common targets, Gal11/Med15, Taf12, and Tra1, which are subunits of four conserved coactivator complexes, Mediator, SAGA, TFIID, and NuA4. The Gcn4 N-terminal activation domain also cross-links to the Mediator subunit Sin4/Med16. The contribution of the two Gcn4 activation domains to transcription was gene specific and varied from synergistic to less than additive. Gcn4-dependent genes had a requirement for Gal11 ranging from 10-fold dependence to complete Gal11 independence, while the Gcn4-Taf12 interaction did not significantly contribute to the expression of any gene studied. Complementary methods identified three conserved Gal11 activator-binding domains that bind each Gcn4 activation domain with micromolar affinity. These Gal11 activator-binding domains contribute additively to transcription activation and Mediator recruitment at Gcn4- and Gal11-dependent genes. Although we found that the conserved Gal11 KIX domain contributes to Gal11 function, we found no evidence of specific Gcn4-KIX interaction and conclude that the Gal11 KIX domain does not function by specific interaction with Gcn4. Our combined results show gene-specific coactivator requirements, a surprising redundancy in activator-target interactions, and an activator-coactivator interaction mediated by multiple low-affinity protein-protein interactions.

  14. High-Affinity Quasi-Specific Sites in the Genome: How the DNA-Binding Proteins Cope with Them

    PubMed Central

    Chakrabarti, J.; Chandra, Navin; Raha, Paromita; Roy, Siddhartha

    2011-01-01

    Many prokaryotic transcription factors home in on one or a few target sites in the presence of a huge number of nonspecific sites. Our analysis of λ-repressor in the Escherichia coli genome based on single basepair substitution experiments shows the presence of hundreds of sites having binding energy within 3 Kcal/mole of the OR1 binding energy, and thousands of sites with binding energy above the nonspecific binding energy. The effect of such sites on DNA-based processes has not been fully explored. The presence of such sites dramatically lowers the occupation probability of the specific site far more than if the genome were composed of nonspecific sites only. Our Brownian dynamics studies show that the presence of quasi-specific sites results in very significant kinetic effects as well. In contrast to λ-repressor, the E. coli genome has orders of magnitude lower quasi-specific sites for GalR, an integral transcription factor, thus causing little competition for the specific site. We propose that GalR and perhaps repressors of the same family have evolved binding modes that lead to much smaller numbers of quasi-specific sites to remove the untoward effects of genomic DNA. PMID:21889449

  15. Characterization of Protein-Carbohydrate Interactions by NMR Spectroscopy.

    PubMed

    Grondin, Julie M; Langelaan, David N; Smith, Steven P

    2017-01-01

    Solution-state nuclear magnetic resonance (NMR) spectroscopy can be used to monitor protein-carbohydrate interactions. Two-dimensional 1 H- 15 N heteronuclear single quantum coherence (HSQC)-based techniques described in this chapter can be used quickly and effectively to screen a set of possible carbohydrate binding partners, to quantify the dissociation constant (K d ) of any identified interactions, and to map the carbohydrate binding site on the structure of the protein. Here, we describe the titration of a family 32 carbohydrate binding module from Clostridium perfringens (CpCBM32) with the monosaccharide N-acetylgalactosamine (GalNAc), in which we calculate the apparent dissociation of the interaction, and map the GalNAc binding site onto the structure of CpCBM32.

  16. Small leucine-rich repeat proteoglycans associated with mature insoluble elastin serve as binding sites for galectins.

    PubMed

    Itoh, Aiko; Nonaka, Yasuhiro; Ogawa, Takashi; Nakamura, Takanori; Nishi, Nozomu

    2017-11-01

    We previously reported that galectin-9 (Gal-9), an immunomodulatory animal lectin, could bind to insoluble collagen preparations and exerted direct cytocidal effects on immune cells. In the present study, we found that mature insoluble elastin is capable of binding Gal-9 and other members of the human galectin family. Lectin blot analysis of a series of commercial water-soluble elastin preparations, PES-(A) ~ PES-(E), revealed that only PES-(E) contained substances recognized by Gal-9. Gal-9-interacting substances in PES-(E) were affinity-purified, digested with trypsin and then analyzed by reversed-phase HPLC. Peptide fragments derived from five members of the small leucine-rich repeat proteoglycan family, versican, lumican, osteoglycin/mimecan, prolargin, and fibromodulin, were identified by N-terminal amino acid sequence analysis. The results indicate that Gal-9 and possibly other galectins recognize glycans attached to small leucine-rich repeat proteoglycans associated with insoluble elastin and also indicate the possibility that mature insoluble elastin serves as an extracellular reservoir for galectins.

  17. Structural Basis for Carbohydrate Recognition and Anti-inflammatory Modulation by Gastrointestinal Nematode Parasite Toxascaris leonina Galectin*

    PubMed Central

    Hwang, Eun Young; Jeong, Mi Suk; Park, Sang Kyun; Ha, Sung Chul; Yu, Hak Sun; Jang, Se Bok

    2016-01-01

    Toxascaris leonina galectin (Tl-gal) is a galectin-9 homologue protein isolated from an adult worm of the canine gastrointestinal nematode parasite, and Tl-gal-vaccinated challenge can inhibit inflammation in inflammatory bowel disease-induced mice. We determined the first X-ray structures of full-length Tl-gal complexes with carbohydrates (lactose, N-acetyllactosamine, lacto-N-tetraose, sialyllactose, and glucose). Bonds were formed on concave surfaces of both carbohydrate recognition domains (CRDs) in Tl-gal. All binding sites were found in the HXXXR and WGXEER motifs. Charged Arg61/Arg196 and Glu80/Glu215 on the conserved motif of Tl-gal N-terminal CRD and C-terminal CRD are critical amino acids for recognizing carbohydrate binding, and the residues can affect protein folding and structure. The polar amino acids His, Asn, and Trp are also important residues for the interaction with carbohydrates through hydrogen bonding. Hemagglutination activities of Tl-gal were inhibited by interactions with carbohydrates and mutations. We found that the mutation of Tl-gal (E80A/E215A) at the carbohydrate binding region induced protein aggregation and could be caused in many diseases. The short linker region between the N-terminal and C-terminal CRDs of Tl-gal was very stable against proteolysis and maintained its biological activity. This structural information is expected to elucidate the carbohydrate recognition mechanism of Tl-gal and improve our understanding of anti-inflammatory mediators and modulators of immune response. PMID:27742836

  18. Contribution of galectin-1, a glycan-binding protein, to gastrointestinal tumor progression.

    PubMed

    Bacigalupo, María L; Carabias, Pablo; Troncoso, María F

    2017-08-07

    Gastrointestinal cancer is a group of tumors that affect multiple sites of the digestive system, including the stomach, liver, colon and pancreas. These cancers are very aggressive and rapidly metastasize, thus identifying effective targets is crucial for treatment. Galectin-1 (Gal-1) belongs to a family of glycan-binding proteins, or lectins, with the ability to cross-link specific glycoconjugates. A variety of biological activities have been attributed to Gal-1 at different steps of tumor progression. Herein, we summarize the current literature regarding the roles of Gal-1 in gastrointestinal malignancies. Accumulating evidence shows that Gal-1 is drastically up-regulated in human gastric cancer, hepatocellular carcinoma, colorectal cancer and pancreatic ductal adenocarcinoma tissues, both in tumor epithelial and tumor-associated stromal cells. Moreover, Gal-1 makes a crucial contribution to the pathogenesis of gastrointestinal malignancies, favoring tumor development, aggressiveness, metastasis, immunosuppression and angiogenesis. We also highlight that alterations in Gal-1-specific glycoepitopes may be relevant for gastrointestinal cancer progression. Despite the findings obtained so far, further functional studies are still required. Elucidating the precise molecular mechanisms modulated by Gal-1 underlying gastrointestinal tumor progression, might lead to the development of novel Gal-1-based diagnostic methods and/or therapies.

  19. Site-specific O-glycosylation of members of the low-density lipoprotein receptor superfamily enhances ligand interactions.

    PubMed

    Wang, Shengjun; Mao, Yang; Narimatsu, Yoshiki; Ye, Zilu; Tian, Weihua; Goth, Christoffer K; Lira-Navarrete, Erandi; Pedersen, Nis B; Benito-Vicente, Asier; Martin, Cesar; Uribe, Kepa B; Hurtado-Guerrero, Ramon; Christoffersen, Christina; Seidah, Nabil G; Nielsen, Rikke; Christensen, Erik I; Hansen, Lars; Bennett, Eric P; Vakhrushev, Sergey Y; Schjoldager, Katrine T; Clausen, Henrik

    2018-05-11

    The low-density lipoprotein receptor (LDLR) and related receptors are important for the transport of diverse biomolecules across cell membranes and barriers. Their functions are especially relevant for cholesterol homeostasis and diseases, including neurodegenerative and kidney disorders. Members of the LDLR-related protein family share LDLR class A (LA) repeats providing binding properties for lipoproteins and other biomolecules. We previously demonstrated that short linker regions between these LA repeats contain conserved O -glycan sites. Moreover, we found that O -glycan modifications at these sites are selectively controlled by the GalNAc-transferase isoform, GalNAc-T11. However, the effects of GalNAc-T11-mediated O -glycosylation on LDLR and related receptor localization and function are unknown. Here, we characterized O -glycosylation of LDLR-related proteins and identified conserved O -glycosylation sites in the LA linker regions of VLDLR, LRP1, and LRP2 (Megalin) from both cell lines and rat organs. Using a panel of gene-edited isogenic cell line models, we demonstrate that GalNAc-T11-mediated LDLR and VLDLR O -glycosylation is not required for transport and cell-surface expression and stability of these receptors but markedly enhances LDL and VLDL binding and uptake. Direct ELISA-based binding assays with truncated LDLR constructs revealed that O -glycosylation increased affinity for LDL by ∼5-fold. The molecular basis for this observation is currently unknown, but these findings open up new avenues for exploring the roles of LDLR-related proteins in disease. © 2018 by The American Society for Biochemistry and Molecular Biology, Inc.

  20. Synthesis of biotinylated glycoconjugates and their use in a novel ELISA for direct comparison of HIV-1 Gp120 recognition of GalCer and related carbohydrate analogues.

    PubMed

    McReynolds, K D; Hadd, M J; Gervay-Hague, J

    1999-01-01

    As part of our program directed toward the design and synthesis of high-affinity ligands for the GalCer-binding site on the HIV cell surface glycoprotein, gp120, we required a reliable method for qualitatively assessing relative binding affinities for related analogues. Due to the hydrophilic nature of these synthetic conjugates, difficulties were encountered with typical ELISA methods, which rely upon hydrophobic interactions to anchor the ligand to a microtiter plate. Other types of assays were also problematic due to nonspecific binding of gp120. Therefore, we developed a general method for plating water-soluble ligands on microtiter plates using biotin/NeutrAvidin recognition for adhesion. A water-soluble GalCer analogue was prepared by conjugating psychosine to biotin using a novel tetraethylene glycol linker. In a similar manner, LacCer and GlcCer analogues were prepared and these conjugates were plated into microtiter wells containing NeutrAvidin. Unoccupied sites were blocked using biotin functionalized as a primary amide. Gp120 binding to galactosyl sphingosine, GalSph (19), GlcSph (22), and LacSph (23) conjugates was assessed through incubation with recombinant HRP-gp120. It was determined that LacSph has the strongest interaction with gp120. The binding affinities of GalSph and GlcSph were similar to each other and less strong than LacSph. These data contradict earlier studies where HPTLC showed that LacCer and GlcCer do not significantly bind gp120. They also contradict liposome-based assays that reported psychosine is not recognized by gp120. The extent of plating for each biotinylated molecule was quantified using HRP-biotin, allowing direct comparison of ligand plating efficiencies for the first time. Several other synthetic biotin conjugates were prepared and tested, demonstrating the feasibility of performing ELISA on water-soluble ligands.

  1. Structural Basis for Carbohydrate Recognition and Anti-inflammatory Modulation by Gastrointestinal Nematode Parasite Toxascaris leonina Galectin.

    PubMed

    Hwang, Eun Young; Jeong, Mi Suk; Park, Sang Kyun; Ha, Sung Chul; Yu, Hak Sun; Jang, Se Bok

    2016-12-02

    Toxascaris leonina galectin (Tl-gal) is a galectin-9 homologue protein isolated from an adult worm of the canine gastrointestinal nematode parasite, and Tl-gal-vaccinated challenge can inhibit inflammation in inflammatory bowel disease-induced mice. We determined the first X-ray structures of full-length Tl-gal complexes with carbohydrates (lactose, N-acetyllactosamine, lacto-N-tetraose, sialyllactose, and glucose). Bonds were formed on concave surfaces of both carbohydrate recognition domains (CRDs) in Tl-gal. All binding sites were found in the HXXXR and WGXEER motifs. Charged Arg 61 /Arg 196 and Glu 80 /Glu 215 on the conserved motif of Tl-gal N-terminal CRD and C-terminal CRD are critical amino acids for recognizing carbohydrate binding, and the residues can affect protein folding and structure. The polar amino acids His, Asn, and Trp are also important residues for the interaction with carbohydrates through hydrogen bonding. Hemagglutination activities of Tl-gal were inhibited by interactions with carbohydrates and mutations. We found that the mutation of Tl-gal (E80A/E215A) at the carbohydrate binding region induced protein aggregation and could be caused in many diseases. The short linker region between the N-terminal and C-terminal CRDs of Tl-gal was very stable against proteolysis and maintained its biological activity. This structural information is expected to elucidate the carbohydrate recognition mechanism of Tl-gal and improve our understanding of anti-inflammatory mediators and modulators of immune response. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  2. Identification of Key Functional Residues in the Active Site of Human β1,4-Galactosyltransferase 7

    PubMed Central

    Talhaoui, Ibtissam; Bui, Catherine; Oriol, Rafael; Mulliert, Guillermo; Gulberti, Sandrine; Netter, Patrick; Coughtrie, Michael W. H.; Ouzzine, Mohamed; Fournel-Gigleux, Sylvie

    2010-01-01

    Glycosaminoglycans (GAGs) play a central role in many pathophysiological events, and exogenous xyloside substrates of β1,4-galactosyltransferase 7 (β4GalT7), a major enzyme of GAG biosynthesis, have interesting biomedical applications. To predict functional peptide regions important for substrate binding and activity of human β4GalT7, we conducted a phylogenetic analysis of the β1,4-galactosyltransferase family and generated a molecular model using the x-ray structure of Drosophila β4GalT7-UDP as template. Two evolutionary conserved motifs, 163DVD165 and 221FWGWGREDDE230, are central in the organization of the enzyme active site. This model was challenged by systematic engineering of point mutations, combined with in vitro and ex vivo functional assays. Investigation of the kinetic properties of purified recombinant wild-type β4GalT7 and selected mutants identified Trp224 as a key residue governing both donor and acceptor substrate binding. Our results also suggested the involvement of the canonical carboxylate residue Asp228 acting as general base in the reaction catalyzed by human β4GalT7. Importantly, ex vivo functional tests demonstrated that regulation of GAG synthesis is highly responsive to modification of these key active site amino acids. Interestingly, engineering mutants at position 224 allowed us to modify the affinity and to modulate the specificity of human β4GalT7 toward UDP-sugars and xyloside acceptors. Furthermore, the W224H mutant was able to sustain decorin GAG chain substitution but not GAG synthesis from exogenously added xyloside. Altogether, this study provides novel insight into human β4GalT7 active site functional domains, allowing manipulation of this enzyme critical for the regulation of GAG synthesis. A better understanding of the mechanism underlying GAG assembly paves the way toward GAG-based therapeutics. PMID:20843813

  3. Novel Gal3 proteins showing altered Gal80p binding cause constitutive transcription of Gal4p-activated genes in Saccharomyces cerevisiae.

    PubMed Central

    Blank, T E; Woods, M P; Lebo, C M; Xin, P; Hopper, J E

    1997-01-01

    Gal4p-mediated activation of galactose gene expression in Saccharomyces cerevisiae normally requires both galactose and the activity of Gal3p. Recent evidence suggests that in cells exposed to galactose, Gal3p binds to and inhibits Ga180p, an inhibitor of the transcriptional activator Gal4p. Here, we report on the isolation and characterization of novel mutant forms of Gal3p that can induce Gal4p activity independently of galactose. Five mutant GAL3(c) alleles were isolated by using a selection demanding constitutive expression of a GAL1 promoter-driven HIS3 gene. This constitutive effect is not due to overproduction of Gal3p. The level of constitutive GAL gene expression in cells bearing different GAL3(c) alleles varies over more than a fourfold range and increases in response to galactose. Utilizing glutathione S-transferase-Gal3p fusions, we determined that the mutant Gal3p proteins show altered Gal80p-binding characteristics. The Gal3p mutant proteins differ in their requirements for galactose and ATP for their Gal80p-binding ability. The behavior of the novel Gal3p proteins provides strong support for a model wherein galactose causes an alteration in Gal3p that increases either its ability to bind to Gal80p or its access to Gal80p. With the Gal3p-Gal80p interaction being a critical step in the induction process, the Gal3p proteins constitute an important new reagent for studying the induction mechanism through both in vivo and in vitro methods. PMID:9111326

  4. Suppression of genetic recombination in the pseudoautosomal region and at subtelomeres in mice with a hypomorphic Spo11 allele.

    PubMed

    Smagulova, Fatima; Brick, Kevin; Pu, Yongmei; Sengupta, Uttara; Camerini-Otero, R Daniel; Petukhova, Galina V

    2013-07-22

    Homologous recombination is the key process that generates genetic diversity and drives evolution. SPO11 protein triggers recombination by introducing DNA double stranded breaks at discreet areas of the genome called recombination hotspots. The hotspot locations are largely determined by the DNA binding specificity of the PRDM9 protein in human, mice and most other mammals. In budding yeast Saccharomyces cerevisae, which lacks a Prdm9 gene, meiotic breaks are formed opportunistically in the regions of accessible chromatin, primarily at gene promoters. The genome-wide distribution of hotspots in this organism can be altered by tethering Spo11 protein to Gal4 recognition sequences in the strain expressing Spo11 attached to the DNA binding domain of the Gal4 transcription factor. To establish whether similar re-targeting of meiotic breaks can be achieved in PRDM9-containing organisms we have generated a Gal4BD-Spo11 mouse that expresses SPO11 protein joined to the DNA binding domain of yeast Gal4. We have mapped the genome-wide distribution of the recombination initiation sites in the Gal4BD-Spo11 mice. More than two hundred of the hotspots in these mice were novel and were likely defined by Gal4BD, as the Gal4 consensus motif was clustered around the centers in these hotspots. Surprisingly, meiotic DNA breaks in the Gal4BD-Spo11 mice were significantly depleted near the ends of chromosomes. The effect is particularly striking at the pseudoautosomal region of the X and Y chromosomes - normally the hottest region in the genome. Our data suggest that specific, yet-unidentified factors influence the initiation of meiotic recombination at subtelomeric chromosomal regions.

  5. Sugar-binding and crystallographic studies of an arabinose-binding protein mutant (Met108Leu) that exhibits enhanced affinity and altered specificity.

    PubMed

    Vermersch, P S; Lemon, D D; Tesmer, J J; Quiocho, F A

    1991-07-16

    In addition to hydrogen bonds, van der Waals forces contribute to the affinity of protein-carbohydrate interactions. Nonpolar van der Waals contacts in the complexes of the L-arabinose-binding protein (ABP) with monosaccharides have been studied by means of site-directed mutagenesis, equilibrium and rapid kinetic binding techniques, and X-ray crystallography. ABP, a periplasmic transport receptor of Escherichia coli, binds L-arabinose, D-galactose, and D-fucose with preferential affinity in the order of Ara greater than Gal much greater than Fuc. Well-refined, high-resolution structures of ABP complexed with the three sugars revealed that the structural differences in the ABP-sugar complexes are localized around C5 of the sugars, where the equatorial H of Ara has been substituted for CH3 (Fuc) or CH2OH (Gal). The side chain of Met108 undergoes a sterically dictated, ligand-specific, conformational change to optimize nonpolar interactions between its methyl group and the sugar. We found that the Met108Leu ABP binds Gal tighter than wild-type ABP binds Ara and exhibits a preference for ligand in the order of Gal much greater than Fuc greater than Ara. The differences in affinity can be attributed to differences in the dissociation rates of the ABP-sugar complexes. We have refined at better than 1.7-A resolution the crystal structures of the Met108Leu ABP complexed with each of the sugars and offer a molecular explanation for the altered binding properties.

  6. Activator Gcn4 employs multiple segments of Med15/Gal11, including the KIX domain, to recruit mediator to target genes in vivo.

    PubMed

    Jedidi, Iness; Zhang, Fan; Qiu, Hongfang; Stahl, Stephen J; Palmer, Ira; Kaufman, Joshua D; Nadaud, Philippe S; Mukherjee, Sujoy; Wingfield, Paul T; Jaroniec, Christopher P; Hinnebusch, Alan G

    2010-01-22

    Mediator is a multisubunit coactivator required for initiation by RNA polymerase II. The Mediator tail subdomain, containing Med15/Gal11, is a target of the activator Gcn4 in vivo, critical for recruitment of native Mediator or the Mediator tail subdomain present in sin4Delta cells. Although several Gal11 segments were previously shown to bind Gcn4 in vitro, the importance of these interactions for recruitment of Mediator and transcriptional activation by Gcn4 in cells was unknown. We show that interaction of Gcn4 with the Mediator tail in vitro and recruitment of this subcomplex and intact Mediator to the ARG1 promoter in vivo involve additive contributions from three different segments in the N terminus of Gal11. These include the KIX domain, which is a critical target of other activators, and a region that shares a conserved motif (B-box) with mammalian coactivator SRC-1, and we establish that B-box is a critical determinant of Mediator recruitment by Gcn4. We further demonstrate that Gcn4 binds to the Gal11 KIX domain directly and, by NMR chemical shift analysis combined with mutational studies, we identify the likely binding site for Gcn4 on the KIX surface. Gcn4 is distinctive in relying on comparable contributions from multiple segments of Gal11 for efficient recruitment of Mediator in vivo.

  7. Characterisation and functional comparison of single-CRD and multidomain containing galectins CgGal-2 and CgGal-3 from oyster Crassostrea gigas.

    PubMed

    Huang, Mengmeng; Zhou, Tao; Wu, Yuehong; Fei, Hui; Wang, Gaoyang; Li, Zhi; Lei, Yutong; Liu, Qian; Sun, Cong; Lv, Zhengbing; Xu, Xue-Wei

    2018-04-18

    Galectins are β-galactoside binding lectins that play crucial roles in innate immunity in vertebrates and invertebrates through their conserved carbohydrate-recognition domains (CRDs). In the present study, single- and four-CRD-containing galectins were identified in oyster Crassostrea gigas (designated CgGal-2 and CgGal-3). The open reading frames (ORFs) of CgGal-2 and CgGal-3 encode polypeptides of 200 and 555 amino acids, respectively. All CRDs of CgGal-3 include two consensus motifs essential for ligand-binding, and a novel motif is present in CgGal-2. Pathogen-associated molecular pattern (PAMP) profiles were determined for recombinant rCgGal-2 and rCgGal-3, and rCgGal-2 displayed low binding affinity for PAMPs, while rCgGal-3 bound various PAMPs including glucan, lipopolysaccharide (LPS), and peptidoglycan (PGN) with relatively high affinity. Furthermore, rCgGal-2 and rCgGal-3 exhibited different microbe binding profiles; rCgGal-2 bound to Gram-negative bacteria (Escherichia coli and Vibrio vulnificus) and fungi (Saccharomyces cerevisiae and Pichia pastoris), while rCgGal-3 bound to these microbes but also to Gram-positive bacteria (Micrococcus luteus). In addition, rCgGal-3 possessed microbial agglutinating activity and coagulation activity against fungi and erythrocytes, respectively, but rCgGal-2 lacked any agglutinating activity. Carbohydrate binding specificity analysis showed that rCgGal-3 specifically bound D-galactose. Furthermore, rCgGal-2 and rCgGal-3 functioned as opsonin participating in the clearance against invaders in C. gigas. Thus, CgGal-2 with one CRD and CgGal-3 with four CRDs are new members of the galectin family involved in immune responses against bacterial infection. Differences in the organisation and amino acid sequences of CRDs may affect their specificity and affinity for nonself substances. Copyright © 2018 Elsevier Ltd. All rights reserved.

  8. Effects of Lectins on initial attachment of cariogenic Streptococcus mutans.

    PubMed

    Ito, Takashi; Yoshida, Yasuhiro; Shiota, Yasuyoshi; Ito, Yuki; Yamamoto, Tadashi; Takashiba, Shogo

    2018-02-01

    Oral bacteria initiate biofilm formation by attaching to tooth surfaces via an interaction of a lectin-like bacterial protein with carbohydrate chains on the pellicle. This study aimed to find naturally derived lectins that inhibit the initial attachment of a cariogenic bacterial species, Streptococcus mutans (S. mutans), to carbohydrate chains in saliva in vitro. Seventy kinds of lectins were screened for candidate motifs that inhibit the attachment of S. mutans ATCC 25175 to a saliva-coated culture plate. The inhibitory effect of the lectins on attachment of the S. mutans to the plates was quantified by crystal violet staining, and the biofilm was observed under a scanning electron microscope (SEM). Surface plasmon resonance (SPR) analysis was performed to examine the binding of S. mutans to carbohydrate chains and the binding of candidate lectins to carbohydrate chains, respectively. Moreover, binding assay between the biotinylated-lectins and the saliva components was conducted to measure the lectin binding. Lectins recognizing a salivary carbohydrate chain, Galβ1-3GalNAc, inhibited the binding of S. mutans to the plate. In particular, Agaricus bisporus agglutinin (ABA) markedly inhibited the binding. This inhibition was confirmed by SEM observation. SPR analysis indicated that S. mutans strongly binds to Galβ1-3GalNAc, and ABA binds to Galβ1-3GalNAc. Finally, the biotinylated Galβ1-3GalNAc-binding lectins including ABA demonstrated marked binding to the saliva components. These results suggest that ABA lectin inhibited the attachment of S. mutans to Galβ1-3GalNAc in saliva and ABA can be useful as a potent inhibitor for initial attachment of oral bacteria and biofilm formation.

  9. Characterization of a beta-glycosidase highly active on disaccharides and of a beta-galactosidase from Tenebrio molitor midgut lumen.

    PubMed

    Ferreira, Alexandre H P; Terra, Walter R; Ferreira, Clélia

    2003-02-01

    The midgut of the yellow mealworm, Tenebrio molitor L. (Coleoptera: Tenebrionidae) larvae has four beta-glycosidases. The properties of two of these enzymes (betaGly1 and betaGly2) have been described elsewhere. In this paper, the characterization of the other two glycosidases (betaGly3 and betaGly4) is described. BetaGly3 has one active site, hydrolyzes disaccharides, cellodextrins, synthetic substrates and beta-glucosides produced by plants. The enzyme is inhibited by amygdalin, cellotriose, cellotetraose and cellopentaose in high concentrations, probably due to transglycosylation. betaGly3 hydrolyzes beta 1,4-glycosidic linkages with a catalytic rate independent of the substrate polymerization degree (k(int)) of 11.9 s(-1). Its active site is formed by four subsites, where subsites +1 and -1 bind glucose residues with higher affinity than subsite +2. The main role of betaGly3 seems to be disaccharide hydrolysis. BetaGly4 is a beta-galactosidase, since it has highest activity against beta-galactosides. It can also hydrolyze fucosides, but not glucosides, and has Triton X-100 as a non-essential activator (K(a)=15 microM, pH 4.5). betaGly4 has two active sites that can hydrolyze p-nitrophenyl beta-galactoside (NPbetaGal). The one hydrolyzing NPbetaGal with more efficiency is also active against methylumbellipheryl beta-D-galactoside and lactose. The other active site hydrolyzes NPbetaFucoside and binds NPbetaGal weakly. BetaGly4 hydrolyzes hydrophobic substrates with high catalytical efficiency and is able to bind octyl-beta-thiogalactoside in its active site with high affinity. The betaGly4 physiological role is supposed to be the hydrolysis of galactolipids that are found in membranes from vegetal tissues. As the enzyme has a hydrophobic site where Triton X-100 can bind, it might be activated by membrane lipids, thus becoming fully active only at the surface of cell membranes.

  10. Molecular characterization of a novel proto-type antimicrobial protein galectin-1 from striped murrel.

    PubMed

    Arasu, Abirami; Kumaresan, Venkatesh; Sathyamoorthi, Akila; Chaurasia, Mukesh Kumar; Bhatt, Prasanth; Gnanam, Annie J; Palanisamy, Rajesh; Marimuthu, Kasi; Pasupuleti, Mukesh; Arockiaraj, Jesu

    2014-11-01

    In this study, we reported a molecular characterization of a novel proto-type galectin-1 from the striped murrel Channa striatus (named as CsGal-1). The full length CsGal-1 was identified from an established striped murrel cDNA library and further we confirmed the sequence by cloning. The complete cDNA sequence of CsGal-1 is 590 base pairs (bp) in length and its coding region encoded a poly peptide of 135 amino acids. The polypeptide contains a galactoside binding lectin domain at 4-135. The domain carries a sugar binding site at 45-74 along with its signatures (H(45)-X-Asn(47)-X-Arg(49) and Trp(69)-X-X-Glu(72)-X-Arg(74)). CsGal-1 shares a highly conserved carbohydrate recognition domain (CRD) with galectin-1 from other proto-type galectin of teleosts. The mRNA expressions of CsGal-1 in healthy and various immune stimulants including Aphanomyces invadans, Aeromonas hydrophila, Escherchia coli lipopolysaccharide and poly I:C injected tissues of C. striatus were examined using qRT-PCR. CsGal-1 mRNA is highly expressed in kidney and is up-regulated with different immune stimulants at various time points. To understand its biological activity, the coding region of CsGal-1 gene was expressed in an E. coli BL21 (DE3) cloning system and its recombinant protein was purified. The recombinant CsGal-1 protein was agglutinated with mouse erythrocytes at a concentration of 4μg/mL in a calcium independent manner. CsGal-1 activity was inhibited by d-galactose at 25mM(-1) and d-glucose and d-fructose at 100mM(-1). The results of microbial binding assay showed that the recombinant CsGal-1 protein agglutinated only with the Gram-negative bacteria. Interestingly, we observed no agglutination against Gram-positive bacteria. Overall, the study showed that CsGal-1 is an important immune gene involved in the recognition and elimination of pathogens in C. striatus. Copyright © 2014 Elsevier GmbH. All rights reserved.

  11. Dynamic interplay between catalytic and lectin domains of GalNAc-transferases modulates protein O-glycosylation

    NASA Astrophysics Data System (ADS)

    Lira-Navarrete, Erandi; de Las Rivas, Matilde; Compañón, Ismael; Pallarés, María Carmen; Kong, Yun; Iglesias-Fernández, Javier; Bernardes, Gonçalo J. L.; Peregrina, Jesús M.; Rovira, Carme; Bernadó, Pau; Bruscolini, Pierpaolo; Clausen, Henrik; Lostao, Anabel; Corzana, Francisco; Hurtado-Guerrero, Ramon

    2015-05-01

    Protein O-glycosylation is controlled by polypeptide GalNAc-transferases (GalNAc-Ts) that uniquely feature both a catalytic and lectin domain. The underlying molecular basis of how the lectin domains of GalNAc-Ts contribute to glycopeptide specificity and catalysis remains unclear. Here we present the first crystal structures of complexes of GalNAc-T2 with glycopeptides that together with enhanced sampling molecular dynamics simulations demonstrate a cooperative mechanism by which the lectin domain enables free acceptor sites binding of glycopeptides into the catalytic domain. Atomic force microscopy and small-angle X-ray scattering experiments further reveal a dynamic conformational landscape of GalNAc-T2 and a prominent role of compact structures that are both required for efficient catalysis. Our model indicates that the activity profile of GalNAc-T2 is dictated by conformational heterogeneity and relies on a flexible linker located between the catalytic and the lectin domains. Our results also shed light on how GalNAc-Ts generate dense decoration of proteins with O-glycans.

  12. Molecular mechanism to recruit galectin-3 into multivesicular bodies for polarized exosomal secretion.

    PubMed

    Bänfer, Sebastian; Schneider, Dominik; Dewes, Jenny; Strauss, Maximilian T; Freibert, Sven-A; Heimerl, Thomas; Maier, Uwe G; Elsässer, Hans-Peter; Jungmann, Ralf; Jacob, Ralf

    2018-05-08

    The beta-galactoside binding lectin galectin-3 (Gal3) is found intracellularly and in the extracellular space. Secretion of this lectin is mediated independently of the secretory pathway by a not yet defined nonclassical mechanism. Here, we found Gal3 in the lumen of exosomes. Superresolution and electron microscopy studies visualized Gal3 recruitment and sorting into intraluminal vesicles. Exosomal Gal3 release depends on the endosomal sorting complex required for transport I (ESCRT-I) component Tsg101 and functional Vps4a. Either Tsg101 knockdown or expression of dominant-negative Vps4a E228Q causes an intracellular Gal3 accumulation at multivesicular body formation sites. In addition, we identified a highly conserved tetrapeptide P(S/T)AP motif in the amino terminus of Gal3 that mediates a direct interaction with Tsg101. Mutation of the P(S/T)AP motif results in a loss of interaction and a dramatic decrease in exosomal Gal3 secretion. We conclude that Gal3 is a member of endogenous non-ESCRT proteins which are P(S/T)AP tagged for exosomal release.

  13. Alteration of the carbohydrate-binding specificity of a C-type lectin CEL-I mutant with an EPN carbohydrate-binding motif.

    PubMed

    Hatakeyama, Tomomitsu; Ishimine, Tomohiro; Baba, Tomohiro; Kimura, Masanari; Unno, Hideaki; Goda, Shuichiro

    2013-07-01

    CEL-I is a Gal/GalNAc-specific C-type lectin isolated from the sea cucumber Cucumaria echinata. This lectin is composed of two carbohydrate-recognition domains (CRDs) with the carbohydrate-recognition motif QPD (Gln-Pro- Asp), which is generally known to exist in galactose-specific C-type CRDs. In the present study, a mutant CEL-I with EPN (Glu-Pro-Asn) motif, which is thought to be responsible for the carbohydrate-recognition of mannose-specific Ctype CRDs, was produced in Escherichia coli, and its effects on the carbohydrate-binding specificity were examined using polyamidoamine dendrimer (PD) conjugated with carbohydrates. Although wild-type CEL-I effectively formed complexes with N-acetylgalactosamine (GalNAc)-PD but not with mannose-PD, the mutant CEL-I showed relatively weak but definite affinity for mannose-PD. These results indicated that the QPD and EPN motifs play a significant role in the carbohydrate-recognition mechanism of CEL-I, especially in the discrimination of galactose and mannose. Additional mutations in the recombinant CEL-I binding site may further increase its specificity for mannose, and should provide insights into designing novel carbohydrate-recognition proteins.

  14. Gal4-VP16 directs ATP-independent chromatin reorganization in a yeast chromatin assembly system.

    PubMed

    Robinson, Karen M; Schultz, Michael C

    2005-03-22

    Major insights into the regulation of chromatin organization have stemmed from biochemical studies using Gal4-VP16, a chimeric transcriptional activator in which the DNA binding domain of Gal4p is fused to the activation domain of viral protein VP16. Unexpectedly, given previous intensive efforts to understand how Gal4-VP16 functions in the context of chromatin, we have uncovered a new mode of chromatin reorganization that is dependent on Gal4-VP16. This reorganization is performed by an activity in a crude DEAE (CD) fraction from budding yeast which also supports ATP-dependent assembly of physiologically spaced nucleosome arrays. Biochemical analysis reveals that the activity tightly associates with chromatin and reorganizes nucleosome arrays by a mechanism which is insensitive to ATP depletion after nucleosome assembly. It generates a chromatin organization in which a nucleosome is stably positioned immediately adjacent to Gal4p binding sites in the template DNA. Individual deletion of genes previously implicated in chromatin assembly and remodeling, namely, the histone chaperones NAP1, ASF1, and CAC1 and the SNF2-like DEAD/H ATPases SNF2, ISW1, ISW2, CHD1, SWR1, YFR038w, and SPT20, does not significantly perturb reorganization. Therefore, Gal4-VP16-directed chromatin reorganization in yeast can occur by an ATP-independent mechanism that does not require SAGA, SWI/SNF, Isw1, or Isw2 chromatin remodeling complexes.

  15. Avian and human influenza A virus receptors in trachea and lung of animals.

    PubMed

    Thongratsakul, Sukanya; Suzuki, Yasuo; Hiramatsu, Hiroaki; Sakpuaram, Thavajchai; Sirinarumitr, Theerapol; Poolkhet, Chaithep; Moonjit, Pattra; Yodsheewan, Rungrueang; Songserm, Thaweesak

    2010-12-01

    Influenza A viruses are capable of crossing the specific barrier between human beings and animals resulting in interspecies transmission. The important factor of potential infectivity of influenza A viruses is the suitability of the receptor binding site of the host and viruses. The affinities of avian and human influenza virus to bind with the receptors and the distributions of receptors in animals are different. This study aims to investigate the anatomical distribution of avian and human influenza virus receptors using the double staining lectin histochemistry method. Double staining of lectin histochemistry was performed to identify both SA alpha2,3 Gal and SA alpha2,6 Gal receptors in trachea and lung tissue of dogs, cats, tigers, ferret, pigs, ducks and chickens. We have demonstrated that avian and human influenza virus receptors were abundantly present in trachea, bronchus and bronchiole, but in alveoli of dogs, cats and tigers showed SA alpha2,6 Gal only. Furthermore, endothelial cells in lung tissues showed presence of SA alpha2,3 Gal. The positive sites of both receptors in respiratory tract, especially in the trachea, suggest that all mammalian species studied can be infected with avian influenza virus. These findings suggested that dogs and cats in close contact with humans should be of greater concern as an intermediate host for avian influenza A in which there is the potential for viral adaptation and reassortment.

  16. Defining the carbohydrate specificities of Abrus precatorius agglutinin as T (Gal beta 1----3GalNAc) greater than I/II (Gal beta 1----3/4GlcNAc).

    PubMed

    Wu, A M; Lin, S R; Chin, L K; Chow, L P; Lin, J Y

    1992-09-25

    The combining site of the nontoxic carbohydrate binding protein (Abrus precatorius agglutinin, APA) purified from the needs of Abrus precatorius (Jequirity bean), was studied by quantitative precipitin and precipitin-inhibition assays. Of 26 glycoproteins and polysaccharides tested, all, except sialic acid-containing glycoproteins and desialized ovine salivary glycoproteins, reacted strongly with the lectin, and precipitated over 70% of the lectin added, indicating that APA has a broad range of affinity and recognizes (internal) Gal beta 1----sequences of carbohydrate chains. The strong reaction with desialized porcine and rat salivary glycoproteins as well as pneumococcus type XIV polysaccharide suggests that APA has affinity for one or more of the following carbohydrate sequences: Thomsen-Friedenreich (T, Gal beta 1----3GalNAc), blood group precursor type I and/or type II (Gal beta 1----3/4GlcNAc) disaccharide determinants of complex carbohydrates. Among the oligosaccharides tested, the T structure was the best inhibitor; it was 2.4 and 3.2 times more active than type II and type I sequences, respectively. The blood group I Ma-active trisaccharide, Gal beta 1----4GlcNAc beta 1----6Gal, was about as active as the corresponding disaccharide (II). From the above results, we conclude that the size of the combining site of the A. precatorius agglutinin is probably as large as a disaccharide and most strongly complementary to the Gal beta 1----3GalNAc (T determinant) sequence. The carbohydrate specificities of this lectin will be further investigated once the related oligosaccharide structures become available.

  17. Structural basis of carbohydrate recognition by lectin II from Ulex europaeus, a protein with a promiscuous carbohydrate-binding site.

    PubMed

    Loris, R; De Greve, H; Dao-Thi, M H; Messens, J; Imberty, A; Wyns, L

    2000-08-25

    Protein-carbohydrate interactions are the language of choice for inter- cellular communication. The legume lectins form a large family of homologous proteins that exhibit a wide variety of carbohydrate specificities. The legume lectin family is therefore highly suitable as a model system to study the structural principles of protein-carbohydrate recognition. Until now, structural data are only available for two specificity families: Man/Glc and Gal/GalNAc. No structural data are available for any of the fucose or chitobiose specific lectins. The crystal structure of Ulex europaeus (UEA-II) is the first of a legume lectin belonging to the chitobiose specificity group. The complexes with N-acetylglucosamine, galactose and fucosylgalactose show a promiscuous primary binding site capable of accommodating both N-acetylglucos amine or galactose in the primary binding site. The hydrogen bonding network in these complexes can be considered suboptimal, in agreement with the low affinities of these sugars. In the complexes with chitobiose, lactose and fucosyllactose this suboptimal hydrogen bonding network is compensated by extensive hydrophobic interactions in a Glc/GlcNAc binding subsite. UEA-II thus forms the first example of a legume lectin with a promiscuous binding site and illustrates the importance of hydrophobic interactions in protein-carbohydrate complexes. Together with other known legume lectin crystal structures, it shows how different specificities can be grafted upon a conserved structural framework. Copyright 2000 Academic Press.

  18. The Galectin CvGal1 from the Eastern Oyster (Crassostrea virginica) Binds to Blood Group A Oligosaccharides on the Hemocyte Surface*

    PubMed Central

    Feng, Chiguang; Ghosh, Anita; Amin, Mohammed N.; Giomarelli, Barbara; Shridhar, Surekha; Banerjee, Aditi; Fernández-Robledo, José A.; Bianchet, Mario A.; Wang, Lai-Xi; Wilson, Iain B. H.; Vasta, Gerardo R.

    2013-01-01

    The galectin CvGal1 from the eastern oyster (Crassostrea virginica), which possesses four tandemly arrayed carbohydrate recognition domains, was previously shown to display stronger binding to galactosamine and N-acetylgalactosamine relative to d-galactose. CvGal1 expressed by phagocytic cells is “hijacked” by the parasite Perkinsus marinus to enter the host, where it proliferates and causes systemic infection and death. In this study, a detailed glycan array analysis revealed that CvGal1 preferentially recognizes type 2 blood group A oligosaccharides. Homology modeling of the protein and its oligosaccharide ligands supported this preference over type 1 blood group A and B oligosaccharides. The CvGal ligand models were further validated by binding, inhibition, and competitive binding studies of CvGal1 and ABH-specific monoclonal antibodies with intact and deglycosylated glycoproteins, hemocyte extracts, and intact hemocytes and by surface plasmon resonance analysis. A parallel glycomic study carried out on oyster hemocytes (Kurz, S., Jin, C., Hykollari, A., Gregorich, D., Giomarelli, B., Vasta, G. R., Wilson, I. B. H., and Paschinger, K. (2013) J. Biol. Chem. 288,) determined the structures of oligosaccharides recognized by CvGal1. Proteomic analysis of the hemocyte glycoproteins identified β-integrin and dominin as CvGal1 “self”-ligands. Despite strong CvGal1 binding to P. marinus trophozoites, no binding of ABH blood group antibodies was observed. Thus, parasite glycans structurally distinct from the blood group A oligosaccharides on the hemocyte surface may function as potentially effective ligands for CvGal1. We hypothesize that carbohydrate-based mimicry resulting from the host/parasite co-evolution facilitates CvGal1-mediated cross-linking to β-integrin, located on the hemocyte surface, leading to cell activation, phagocytosis, and host infection. PMID:23824193

  19. The acidic transcription activator Gcn4 binds the mediator subunit Gal11/Med15 using a simple protein interface forming a fuzzy complex.

    PubMed

    Brzovic, Peter S; Heikaus, Clemens C; Kisselev, Leonid; Vernon, Robert; Herbig, Eric; Pacheco, Derek; Warfield, Linda; Littlefield, Peter; Baker, David; Klevit, Rachel E; Hahn, Steven

    2011-12-23

    The structural basis for binding of the acidic transcription activator Gcn4 and one activator-binding domain of the Mediator subunit Gal11/Med15 was examined by NMR. Gal11 activator-binding domain 1 has a four-helix fold with a small shallow hydrophobic cleft at its center. In the bound complex, eight residues of Gcn4 adopt a helical conformation, allowing three Gcn4 aromatic/aliphatic residues to insert into the Gal11 cleft. The protein-protein interface is dynamic and surprisingly simple, involving only hydrophobic interactions. This allows Gcn4 to bind Gal11 in multiple conformations and orientations, an example of a "fuzzy" complex, where the Gcn4-Gal11 interface cannot be described by a single conformation. Gcn4 uses a similar mechanism to bind two other unrelated activator-binding domains. Functional studies in yeast show the importance of residues at the protein interface, define the minimal requirements for a functional activator, and suggest a mechanism by which activators bind to multiple unrelated targets. Copyright © 2011 Elsevier Inc. All rights reserved.

  20. Characterization of the binding of Actinomyces naeslundii (ATCC 12104) and Actinomyces viscosus (ATCC 19246) to glycosphingolipids, using a solid-phase overlay approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stroemberg, N.K.; Karlsson, K.A.

    1990-07-05

    Actinomyces naeslundii (ATCC 12104) and Actinomyces viscosus (ATCC 19246) were radiolabeled externally (125I) or metabolically (35S) and analyzed for their ability to bind glycosphingolipids separated on thin layer chromatograms or coated in microtiter wells. Two binding properties were found and characterized in detail. (i) Both bacteria showed binding to lactosylceramide (LacCer) in a fashion similar to bacteria characterized earlier. The activity of free LacCer was dependent on the ceramide structure; species with 2-hydroxy fatty acid and/or a trihydroxy base were positive, while species with nonhydroxy fatty acid and a dihydroxy base were negative binders. Several glycolipids with internal lactose weremore » active but only gangliotriaosylceramide and gangliotetraosylceramide were as active as free LacCer. The binding to these three species was half-maximal at about 200 ng of glycolipid and was not blocked by preincubation of bacteria with free lactose or lactose-bovine serum albumin. (ii) A. naeslundii, unlike A. viscosus, showed a superimposed binding concluded to be to terminal or internal GalNAc beta and equivalent to a lactose-inhibitable specificity previously analyzed by other workers. Terminal Gal beta was not recognized in several glycolipids, although free Gal and lactose were active as soluble inhibitors. The binding was half-maximal at about 10 ng of glycolipid. A glycolipid mixture prepared from a scraping of human buccal epithelium contained an active glycolipid with sites for both binding specificities.« less

  1. Substrate and Substrate-Mimetic Chaperone Binding Sites in Human α-Galactosidase A Revealed by Affinity-Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Moise, Adrian; Maeser, Stefan; Rawer, Stephan; Eggers, Frederike; Murphy, Mary; Bornheim, Jeff; Przybylski, Michael

    2016-06-01

    Fabry disease (FD) is a rare metabolic disorder of a group of lysosomal storage diseases, caused by deficiency or reduced activity of the enzyme α-galactosidase. Human α-galactosidase A (hαGAL) hydrolyses the terminal α-galactosyl moiety from glycosphingolipids, predominantly globotriaosylceramide (Gb3). Enzyme deficiency leads to incomplete or blocked breakdown and progressive accumulation of Gb3, with detrimental effects on normal organ functions. FD is successfully treated by enzyme replacement therapy (ERT) with purified recombinant hαGAL. An emerging treatment strategy, pharmacologic chaperone therapy (PCT), employs small molecules that can increase and/or reconstitute the activity of lysosomal enzyme trafficking by stabilizing misfolded isoforms. One such chaperone, 1-deoxygalactonojirimycin (DGJ), is a structural galactose analogue currently validated in clinical trials. DGJ is an active-site-chaperone that binds at the same or similar location as galactose; however, the molecular determination of chaperone binding sites in lysosomal enzymes represents a considerable challenge. Here we report the identification of the galactose and DGJ binding sites in recombinant α-galactosidase through a new affinity-mass spectrometry-based approach that employs selective proteolytic digestion of the enzyme-galactose or -inhibitor complex. Binding site peptides identified by mass spectrometry, [39-49], [83-100], and [141-168], contain the essential ligand-contacting amino acids, in agreement with the known X-ray crystal structures. The inhibitory effect of DGJ on galactose recognition was directly characterized through competitive binding experiments and mass spectrometry. The methods successfully employed in this study should have high potential for the characterization of (mutated) enzyme-substrate and -chaperone interactions, and for identifying chaperones without inhibitory effects.

  2. High Resolution Structures of the Human ABO(H) Blood Group Enzymes in Complex with Donor Analogs Reveal That the Enzymes Utilize Multiple Donor Conformations to Bind Substrates in a Stepwise Manner*

    PubMed Central

    Gagnon, Susannah M. L.; Meloncelli, Peter J.; Zheng, Ruixiang B.; Haji-Ghassemi, Omid; Johal, Asha R.; Borisova, Svetlana N.; Lowary, Todd L.; Evans, Stephen V.

    2015-01-01

    Homologous glycosyltransferases α-(1→3)-N-acetylgalactosaminyltransferase (GTA) and α-(1→3)-galactosyltransferase (GTB) catalyze the final step in ABO(H) blood group A and B antigen synthesis through sugar transfer from activated donor to the H antigen acceptor. These enzymes have a GT-A fold type with characteristic mobile polypeptide loops that cover the active site upon substrate binding and, despite intense investigation, many aspects of substrate specificity and catalysis remain unclear. The structures of GTA, GTB, and their chimeras have been determined to between 1.55 and 1.39 Å resolution in complex with natural donors UDP-Gal, UDP-Glc and, in an attempt to overcome one of the common problems associated with three-dimensional studies, the non-hydrolyzable donor analog UDP-phosphono-galactose (UDP-C-Gal). Whereas the uracil moieties of the donors are observed to maintain a constant location, the sugar moieties lie in four distinct conformations, varying from extended to the “tucked under” conformation associated with catalysis, each stabilized by different hydrogen bonding partners with the enzyme. Further, several structures show clear evidence that the donor sugar is disordered over two of the observed conformations and so provide evidence for stepwise insertion into the active site. Although the natural donors can both assume the tucked under conformation in complex with enzyme, UDP-C-Gal cannot. Whereas UDP-C-Gal was designed to be “isosteric” with natural donor, the small differences in structure imposed by changing the epimeric oxygen atom to carbon appear to render the enzyme incapable of binding the analog in the active conformation and so preclude its use as a substrate mimic in GTA and GTB. PMID:26374898

  3. Survey of immune-related, mannose/fucose-binding C-type lectin receptors reveals widely divergent sugar-binding specificities

    PubMed Central

    Lee, Reiko T; Hsu, Tsui-Ling; Huang, Shau Ku; Hsieh, Shie-Liang; Wong, Chi-Huey; Lee, Yuan C

    2011-01-01

    C-type lectins (CTLs) are proteins that contain one or more carbohydrate-recognition domains (CRDs) that require calcium for sugar binding and share high degree of sequence homology and tertiary structure. CTLs whose CRD contain EPN (Glu-Pro-Asn) tripeptide motifs have potential to bind mannose (Man), N-acetylglucosamine (GlcNAc), glucose (Glc) and l-fucose (Fuc), whereas those with QPD (Glu-Pro-Asp) tripeptide motifs bind galactose (Gal) and N-acetylgalactosamine (GalNAc). We report here for the first time a direct comparison of monosaccharide (and some di- and trisaccharides)-binding characteristics of 11 EPX-containing (X = N, S or D) immune-related CTLs using a competition assay and an enzyme-linked immunosorbent assay, and neoglycoproteins as ligand. The EPX CTLs studied are DC-SIGN, L-SIGN, mSIGNR1, human and mouse mannose receptors, Langerin, BDCA-2, DCIR, dectin-2, MCL and MINCLE. We found that: (1) they all bound Man and Fuc; (2) binding of Glc and GlcNAc varied considerably among these lectins, but was always less than Man and Fuc; (3) in general, Gal and GalNAc were not bound. However, dectin-2, DCIR and MINCLE showed ability to bind Gal/GalNAc; (4) DC-SIGN, L-SIGN, mSIGNR1 and Langerin showed enhanced binding of Manα2Man over Man, whereas all others showed no enhancement; (5) DC-SIGN bound Lex trisaccharide structure, which has terminal Gal and Fuc residues, more avidly than Fuc, whereas L-SIGN, mSIGNR1, DCIR and MINCLE bound Lex less avidly than Fuc. BDCA-2, dectin-2, Langerin, MCL and mannose receptor did not bind Lex at all. PMID:21112966

  4. Survey of immune-related, mannose/fucose-binding C-type lectin receptors reveals widely divergent sugar-binding specificities.

    PubMed

    Lee, Reiko T; Hsu, Tsui-Ling; Huang, Shau Ku; Hsieh, Shie-Liang; Wong, Chi-Huey; Lee, Yuan C

    2011-04-01

    C-type lectins (CTLs) are proteins that contain one or more carbohydrate-recognition domains (CRDs) that require calcium for sugar binding and share high degree of sequence homology and tertiary structure. CTLs whose CRD contain EPN (Glu-Pro-Asn) tripeptide motifs have potential to bind mannose (Man), N-acetylglucosamine (GlcNAc), glucose (Glc) and l-fucose (Fuc), whereas those with QPD (Glu-Pro-Asp) tripeptide motifs bind galactose (Gal) and N-acetylgalactosamine (GalNAc). We report here for the first time a direct comparison of monosaccharide (and some di- and trisaccharides)-binding characteristics of 11 EPX-containing (X = N, S or D) immune-related CTLs using a competition assay and an enzyme-linked immunosorbent assay, and neoglycoproteins as ligand. The EPX CTLs studied are DC-SIGN, L-SIGN, mSIGNR1, human and mouse mannose receptors, Langerin, BDCA-2, DCIR, dectin-2, MCL and MINCLE. We found that: (1) they all bound Man and Fuc; (2) binding of Glc and GlcNAc varied considerably among these lectins, but was always less than Man and Fuc; (3) in general, Gal and GalNAc were not bound. However, dectin-2, DCIR and MINCLE showed ability to bind Gal/GalNAc; (4) DC-SIGN, L-SIGN, mSIGNR1 and Langerin showed enhanced binding of Manα2Man over Man, whereas all others showed no enhancement; (5) DC-SIGN bound Le(x) trisaccharide structure, which has terminal Gal and Fuc residues, more avidly than Fuc, whereas L-SIGN, mSIGNR1, DCIR and MINCLE bound Le(x) less avidly than Fuc. BDCA-2, dectin-2, Langerin, MCL and mannose receptor did not bind Le(x) at all.

  5. Erythrocyte and porcine intestinal glycosphingolipids recognized by F4 fimbriae of enterotoxigenic Escherichia coli.

    PubMed

    Coddens, Annelies; Valis, Erik; Benktander, John; Ångström, Jonas; Breimer, Michael E; Cox, Eric; Teneberg, Susann

    2011-01-01

    Enterotoxigenic F4-fimbriated Escherichia coli is associated with diarrheal disease in neonatal and postweaning pigs. The F4 fimbriae mediate attachment of the bacteria to the pig intestinal epithelium, enabling an efficient delivery of diarrhea-inducing enterotoxins to the target epithelial cells. There are three variants of F4 fimbriae designated F4ab, F4ac and F4ad, respectively, having different antigenic and adhesive properties. In the present study, the binding of isolated F4ab, F4ac and F4ad fimbriae, and F4ab/ac/ad-fimbriated E. coli, to glycosphingolipids from erythrocytes and from porcine small intestinal epithelium was examined, in order to get a comprehensive view of the F4-binding glycosphingolipids involved in F4-mediated hemagglutination and adhesion to the epithelial cells of porcine intestine. Specific interactions between the F4ab, F4ac and F4ad fimbriae and both acid and non-acid glycosphingolipids were obtained, and after isolation of binding-active glycosphingolipids and characterization by mass spectrometry and proton NMR, distinct carbohydrate binding patterns were defined for each fimbrial subtype. Two novel glycosphingolipids were isolated from chicken erythrocytes, and characterized as GalNAcα3GalNAcß3Galß4Glcß1Cer and GalNAcα3GalNAcß3Galß4GlcNAcß3Galß4Glcß1Cer. These two compounds, and lactosylceramide (Galß4Glcß1Cer) with phytosphingosine and hydroxy fatty acid, were recognized by all three variants of F4 fimbriae. No binding of the F4ad fimbriae or F4ad-fimbriated E. coli to the porcine intestinal glycosphingolipids occurred. However, for F4ab and F4ac two distinct binding patterns were observed. The F4ac fimbriae and the F4ac-expressing E. coli selectively bound to galactosylceramide (Galß1Cer) with sphingosine and hydroxy 24:0 fatty acid, while the porcine intestinal glycosphingolipids recognized by F4ab fimbriae and the F4ab-fimbriated bacteria were characterized as galactosylceramide, sulfatide (SO(3)-3Galß1Cer), sulf-lactosylceramide (SO(3)-3Galß4Glcß1Cer), and globotriaosylceramide (Galα4Galß4Glcß1Cer) with phytosphingosine and hydroxy 24:0 fatty acid. Finally, the F4ad fimbriae and the F4ad-fimbriated E. coli, but not the F4ab or F4ac subtypes, bound to reference gangliotriaosylceramide (GalNAcß4Galß4Glcß1Cer), gangliotetraosylceramide (Galß3GalNAcß4Galß4Glcß1Cer), isoglobotriaosylceramide (Galα3Galß4Glcß1Cer), and neolactotetraosylceramide (Galß4GlcNAcß3Galß4Glcß1Cer).

  6. Erythrocyte and Porcine Intestinal Glycosphingolipids Recognized by F4 Fimbriae of Enterotoxigenic Escherichia coli

    PubMed Central

    Coddens, Annelies; Valis, Erik; Benktander, John; Ångström, Jonas; Breimer, Michael E.; Cox, Eric; Teneberg, Susann

    2011-01-01

    Enterotoxigenic F4-fimbriated Escherichia coli is associated with diarrheal disease in neonatal and postweaning pigs. The F4 fimbriae mediate attachment of the bacteria to the pig intestinal epithelium, enabling an efficient delivery of diarrhea-inducing enterotoxins to the target epithelial cells. There are three variants of F4 fimbriae designated F4ab, F4ac and F4ad, respectively, having different antigenic and adhesive properties. In the present study, the binding of isolated F4ab, F4ac and F4ad fimbriae, and F4ab/ac/ad-fimbriated E. coli, to glycosphingolipids from erythrocytes and from porcine small intestinal epithelium was examined, in order to get a comprehensive view of the F4-binding glycosphingolipids involved in F4-mediated hemagglutination and adhesion to the epithelial cells of porcine intestine. Specific interactions between the F4ab, F4ac and F4ad fimbriae and both acid and non-acid glycosphingolipids were obtained, and after isolation of binding-active glycosphingolipids and characterization by mass spectrometry and proton NMR, distinct carbohydrate binding patterns were defined for each fimbrial subtype. Two novel glycosphingolipids were isolated from chicken erythrocytes, and characterized as GalNAcα3GalNAcß3Galß4Glcß1Cer and GalNAcα3GalNAcß3Galß4GlcNAcß3Galß4Glcß1Cer. These two compounds, and lactosylceramide (Galß4Glcß1Cer) with phytosphingosine and hydroxy fatty acid, were recognized by all three variants of F4 fimbriae. No binding of the F4ad fimbriae or F4ad-fimbriated E. coli to the porcine intestinal glycosphingolipids occurred. However, for F4ab and F4ac two distinct binding patterns were observed. The F4ac fimbriae and the F4ac-expressing E. coli selectively bound to galactosylceramide (Galß1Cer) with sphingosine and hydroxy 24:0 fatty acid, while the porcine intestinal glycosphingolipids recognized by F4ab fimbriae and the F4ab-fimbriated bacteria were characterized as galactosylceramide, sulfatide (SO3-3Galß1Cer), sulf-lactosylceramide (SO3-3Galß4Glcß1Cer), and globotriaosylceramide (Galα4Galß4Glcß1Cer) with phytosphingosine and hydroxy 24:0 fatty acid. Finally, the F4ad fimbriae and the F4ad-fimbriated E. coli, but not the F4ab or F4ac subtypes, bound to reference gangliotriaosylceramide (GalNAcß4Galß4Glcß1Cer), gangliotetraosylceramide (Galß3GalNAcß4Galß4Glcß1Cer), isoglobotriaosylceramide (Galα3Galß4Glcß1Cer), and neolactotetraosylceramide (Galß4GlcNAcß3Galß4Glcß1Cer). PMID:21949679

  7. Galectin-1 dimers can scaffold Raf-effectors to increase H-ras nanoclustering

    PubMed Central

    Blaževitš, Olga; Mideksa, Yonatan G.; Šolman, Maja; Ligabue, Alessio; Ariotti, Nicholas; Nakhaeizadeh, Hossein; Fansa, Eyad K.; Papageorgiou, Anastassios C.; Wittinghofer, Alfred; Ahmadian, Mohammad R.; Abankwa, Daniel

    2016-01-01

    Galectin-1 (Gal-1) dimers crosslink carbohydrates on cell surface receptors. Carbohydrate-derived inhibitors have been developed for cancer treatment. Intracellularly, Gal-1 was suggested to interact with the farnesylated C-terminus of Ras thus specifically stabilizing GTP-H-ras nanoscale signalling hubs in the membrane, termed nanoclusters. The latter activity may present an alternative mechanism for how overexpressed Gal-1 stimulates tumourigenesis. Here we revise the current model for the interaction of Gal-1 with H-ras. We show that it indirectly forms a complex with GTP-H-ras via a high-affinity interaction with the Ras binding domain (RBD) of Ras effectors. A computationally generated model of the Gal-1/C-Raf-RBD complex is validated by mutational analysis. Both cellular FRET as well as proximity ligation assay experiments confirm interaction of Gal-1 with Raf proteins in mammalian cells. Consistently, interference with H-rasG12V-effector interactions basically abolishes H-ras nanoclustering. In addition, an intact dimer interface of Gal-1 is required for it to positively regulate H-rasG12V nanoclustering, but negatively K-rasG12V nanoclustering. Our findings suggest stacked dimers of H-ras, Raf and Gal-1 as building blocks of GTP-H-ras-nanocluster at high Gal-1 levels. Based on our results the Gal-1/effector interface represents a potential drug target site in diseases with aberrant Ras signalling. PMID:27087647

  8. Computational studies of H5N1 hemagglutinin binding with SA-{alpha}-2, 3-Gal and SA-{alpha}-2, 6-Gal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li Minyong; Wang Binghe

    2006-09-01

    For influenza H5N1 hemagglutinin, a switch from SA-{alpha}-2, 3-Gal to SA-{alpha}-2, 6-Gal receptor specificity is a critical step leading to the conversion from avian-to-human to human-to-human infection. Therefore, the understanding of the binding modes of SA-{alpha}-2, 3-Gal and SA-{alpha}-2, 6-Gal to H5N1 hemagglutinin will be very important for the examination of possible mutations needed for going from an avian to a human flu virus. Based on the available H5N1 hemagglutinin crystal structure, the binding profiles between H5N1 hemagglutinin and two saccharide ligands, SA-{alpha}-2, 3-Gal and SA-{alpha}-2, 6-Gal, were investigated by ab initio quantum mechanics, molecular docking, molecular mechanics, and molecularmore » dynamics simulations. It was found that SA-{alpha}-2, 3-Gal has strong multiple hydrophobic and hydrogen bond interactions in its trans conformation with H5N1 hemagglutinin, whereas the SA-{alpha}-2, 6-Gal only shows weak interactions in a different conformation (cis type)« less

  9. Bacterial Adhesion of Streptococcus suis to Host Cells and Its Inhibition by Carbohydrate Ligands

    PubMed Central

    Kouki, Annika; Pieters, Roland J.; Nilsson, Ulf J.; Loimaranta, Vuokko; Finne, Jukka; Haataja, Sauli

    2013-01-01

    Streptococcus suis is a Gram-positive bacterium, which causes sepsis and meningitis in pigs and humans. This review examines the role of known S. suis virulence factors in adhesion and S. suis carbohydrate-based adhesion mechanisms, as well as the inhibition of S. suis adhesion by anti-adhesion compounds in in vitro assays. Carbohydrate-binding specificities of S. suis have been identified, and these studies have shown that many strains recognize Galα1-4Gal-containing oligosaccharides present in host glycolipids. In the era of increasing antibiotic resistance, new means to treat infections are needed. Since microbial adhesion to carbohydrates is important to establish disease, compounds blocking adhesion could be an alternative to antibiotics. The use of oligosaccharides as drugs is generally hampered by their relatively low affinity (micromolar) to compete with multivalent binding to host receptors. However, screening of a library of chemically modified Galα1-4Gal derivatives has identified compounds that inhibit S. suis adhesion in nanomolar range. Also, design of multivalent Galα1-4Gal-containing dendrimers has resulted in a significant increase of the inhibitory potency of the disaccharide. The S. suis adhesin binding to Galα1-4Gal-oligosaccharides, Streptococcal adhesin P (SadP), was recently identified. It has a Galα1-4Gal-binding N-terminal domain and a C-terminal LPNTG-motif for cell wall anchoring. The carbohydrate-binding domain has no homology to E. coli P fimbrial adhesin, which suggests that these Gram-positive and Gram-negative bacterial adhesins recognizing the same receptor have evolved by convergent evolution. SadP adhesin may represent a promising target for the design of anti-adhesion ligands for the prevention and treatment of S. suis infections. PMID:24833053

  10. Alterations in Hemagglutinin Receptor-Binding Specificity Accompany the Emergence of Highly Pathogenic Avian Influenza Viruses

    PubMed Central

    Mochalova, Larisa; Harder, Timm; Tuzikov, Alexander; Bovin, Nicolai; Wolff, Thorsten; Matrosovich, Mikhail; Schweiger, Brunhilde

    2015-01-01

    ABSTRACT Highly pathogenic avian influenza viruses (HPAIVs) of hemagglutinin H5 and H7 subtypes emerge after introduction of low-pathogenic avian influenza viruses (LPAIVs) from wild birds into poultry flocks, followed by subsequent circulation and evolution. The acquisition of multiple basic amino acids at the endoproteolytical cleavage site of the hemagglutinin (HA) is a molecular indicator for high pathogenicity, at least for infections of gallinaceous poultry. Apart from the well-studied significance of the multibasic HA cleavage site, there is only limited knowledge on other alterations in the HA and neuraminidase (NA) molecules associated with changes in tropism during the emergence of HPAIVs from LPAIVs. We hypothesized that changes in tropism may require alterations of the sialyloligosaccharide specificities of HA and NA. To test this hypothesis, we compared a number of LPAIVs and HPAIVs for their HA-mediated binding and NA-mediated desialylation of a set of synthetic receptor analogs, namely, α2-3-sialylated oligosaccharides. NA substrate specificity correlated with structural groups of NAs and did not correlate with pathogenic potential of the virus. In contrast, all HPAIVs differed from LPAIVs by a higher HA receptor-binding affinity toward the trisaccharides Neu5Acα2-3Galβ1-4GlcNAcβ (3′SLN) and Neu5Acα2-3Galβ1-3GlcNAcβ (SiaLec) and by the ability to discriminate between the nonfucosylated and fucosylated sialyloligosaccharides 3′SLN and Neu5Acα2-3Galβ1-4(Fucα1-3)GlcNAcβ (SiaLex), respectively. These results suggest that alteration of the receptor-binding specificity accompanies emergence of the HPAIVs from their low-pathogenic precursors. IMPORTANCE Here, we have found for the first time correlations of receptor-binding properties of the HA with a highly pathogenic phenotype of poultry viruses. Our study suggests that enhanced receptor-binding affinity of HPAIVs for a typical “poultry-like” receptor, 3′SLN, is provided by substitutions in the receptor-binding site of HA which appeared in HA of LPAIVs in the course of transmission of LPAIVs from wild waterfowl into poultry flocks, with subsequent adaptation in poultry. The identification of LPAIVs with receptor characteristics of HPAIVs argues that the sialic acid-binding specificity of the HA may be used as a novel phenotypic marker of HPAIVs. PMID:25741006

  11. Galanin (1-15) enhancement of the behavioral effects of Fluoxetine in the forced swimming test gives a new therapeutic strategy against depression.

    PubMed

    Flores-Burgess, Antonio; Millón, Carmelo; Gago, Belén; Narváez, Manuel; Borroto-Escuela, Dasiel O; Mengod, Guadalupe; Narváez, José Angel; Fuxe, Kjell; Santín, Luis; Díaz-Cabiale, Zaida

    2017-05-15

    The pharmacological treatment of major depression is mainly based on drugs elevating serotonergic (5-HT) activity. Specifically, selective 5-HT reuptake inhibitors, including Fluoxetine (FLX), are the most commonly used for treatment of major depression. However, the understanding of the mechanism of action of FLX beyond its effect of elevating 5-HT is limited. The interaction between serotoninergic system and neuropeptides signaling could be a key aspect. We examined the ability of the neuropeptide Galanin(1-15) [GAL(1-15)] to modulate the behavioral effects of FLX in the forced swimming test (FST) and studied feasible molecular mechanisms. The data show that GAL(1-15) enhances the antidepressant-like effects induced by FLX in the FST, and we demonstrate the involvement of GALR1/GALR2 heteroreceptor complex in the GAL(1-15)-mediated effect using in vivo rat models for siRNA GALR1 or GALR2 knockdown. Importantly, 5-HT1A receptors (5HT1A-R) also participate in the GAL(1-15)/FLX interactions since the 5HT1AR antagonist WAY100635 blocked the behavioral effects in the FST induced by the coadministration of GAL(1-15) and FLX. The mechanism underlying GAL(1-15)/FLX interactions affected the binding characteristics as well as the mRNA levels of 5-HT1A-R specifically in the dorsal hippocampus while leaving unaffected mRNA levels and affinity and binding sites of this receptor in the dorsal raphe. The results open up the possibility to use GAL(1-15) as for a combination therapy with FLX as a novel strategy for treatment of depression. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Carcinoma autoantigens T and Tn and their cleavage products interact with Gal/GalNAc-specific receptors on rat Kupffer cells and hepatocytes.

    PubMed

    Schlepper-Schäfer, J; Springer, G F

    1989-10-09

    We studied interactions of isolated Thomsen-Friedenreich (T)- and Tn-specific glycoproteins with the Gal/GalNAc-specific receptors on rat Kupffer cells and compared them to those with rat hepatocytes. Immunoreactive T and Tn are specific pancarcinoma epitopes. Electron microscopy of gold-labelled T and Tn antigens revealed their specific binding to Kupffer cells, followed by their uptake via the coated pit/vesicle pathway of receptor-mediated endocytosis. Preincubation of Kupffer cells with GalNAc and GalNAc-BSA, but not GlcNAc or GlcNAc-BSA specifically inhibited binding of the T and Tn glycoproteins. Desialylated, isologous erythrocytes (T RBC) are known to bind to the Gal/GalNAc receptors of rat Kupffer cells and hepatocytes. This attachment was specifically inhibited by T and Tn in a concentration-dependent manner: 50% T RBC-Kupffer cell contacts were inhibited at 8.5.10(-6) mM T and 8.5.10(-5) mM Tn antigen concentrations, respectively. The corresponding figures for hepatocytes were 6.10(-6) mM T and 1.2.10(-6) mM Tn antigen. Amino-terminal cleavage products of the T glycoprotein, possessing clusters terminating in non-reducing Gal/GalNAc, inhibited T RBC binding to Kupffer cells and hepatocytes usually at 10(-2) to 10(-5) mM concentrations, whereas GalNAc, galactose and galactose glycosides inhibited at millimolar concentrations. Galactose-unrelated carbohydrates were inactive at concentrations greater than or equal to 50 mM.

  13. Impact of human galectin-1 binding to saccharide ligands on dimer dissociation kinetics and structure.

    PubMed

    Romero, Juan M; Trujillo, Madia; Estrin, Darío A; Rabinovich, Gabriel A; Di Lella, Santiago

    2016-12-01

    Endogenous lectins can control critical biological responses, including cell communication, signaling, angiogenesis and immunity by decoding glycan-containing information on a variety of cellular receptors and the extracellular matrix. Galectin-1 (Gal-1), a prototype member of the galectin family, displays only one carbohydrate recognition domain and occurs in a subtle homodimerization equilibrium at physiologic concentrations. Such equilibrium critically governs the function of this lectin signaling by allowing tunable interactions with a preferential set of glycosylated receptors. Here, we used a combination of experimental and computational approaches to analyze the kinetics and mechanisms connecting Gal-1 ligand unbinding and dimer dissociation processes. Kinetic constants of both processes were found to differ by an order of magnitude. By means of steered molecular dynamics simulations, the ligand unbinding process was followed monitoring water occupancy changes. By determining the water sites in a carbohydrate binding place during the unbinding process, we found that rupture of ligand-protein interactions induces an increase in energy barrier while ligand unbinding process takes place, whereas the entry of water molecules to the binding groove and further occupation of their corresponding water sites contributes to lowering of the energy barrier. Moreover, our findings suggested local asymmetries between the two subunits in the dimer structure detected at a nanosecond timescale. Thus, integration of experimental and computational data allowed a more complete understanding of lectin ligand binding and dimerization processes, suggesting new insights into the relationship between Gal-1 structure and function and renewing the discussion on the biophysics and biochemistry of lectin-ligand lattices. © The Author 2016. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  14. Identification and transcriptional analysis of two types of lectins (SgCTL-1 and SgGal-1) from mollusk Solen grandis.

    PubMed

    Wei, Xiumei; Yang, Jianmin; Liu, Xiangquan; Yang, Dinglong; Xu, Jie; Fang, Jinghui; Wang, Weijun; Yang, Jialong

    2012-08-01

    C-type lectin and galectin are two types of animal carbohydrate-binding proteins which serve as pathogen recognition molecules and play crucial roles in the innate immunity of invertebrates. In the present study, a C-type lectin (designated as SgCTL-1) and galectin (designated as SgGal-1) were identified from mollusk Solen grandis, and their expression patterns, both in tissues and toward three pathogen-associated molecular patterns (PAMPs) stimulation were characterized. The full-length cDNA of SgCTL-1 and SgGal-1 was 1280 and 1466 bp, containing an open reading frame (ORF) of 519 and 1218 bp, respectively. Their deduced amino acid sequences showed high similarity to other members of C-type lectin and galectin superfamily, respectively. SgCTL-1 encoded a single carbohydrate-recognition domain (CRD), and the motif of Ca(2+)-binding site 2 was EPN (Glu(135)-Pro(136)-Asn(137)). While SgGal-1 encoded two CRDs, and the amino acid residues constituted the carbohydrate-binding motifs were well conserved in CRD1 but partially conserved in CRD2. Although SgCTL-1 and SgGal-1 exhibited different tissue expression pattern, they were both constitutively expressed in all tested tissues, including hemocytes, gonad, mantle, muscle, gill and hepatopancreas, and they were both highly expressed in hepatopancreas and gill. Furthermore, the mRNA expression of two lectins in hemocytes was significantly (P < 0.01) up-regulated with different levels after S. grandis were stimulated by lipopolysaccharide (LPS), peptidoglycan (PGN) or β-1,3-glucan. Our results suggested that SgCTL-1 and SgGal-1 from razor clam were two novel members of animal lectins, and they might function as pattern recognition receptors (PRRs) taking part in the process of pathogen recognition. Copyright © 2012 Elsevier Ltd. All rights reserved.

  15. Galectin-9 enhances cytokine secretion, but suppresses survival and degranulation, in human mast cell line.

    PubMed

    Kojima, Reiji; Ohno, Tatsukuni; Iikura, Motoyasu; Niki, Toshiro; Hirashima, Mitsuomi; Iwaya, Keichi; Tsuda, Hitoshi; Nonoyama, Shigeaki; Matsuda, Akio; Saito, Hirohisa; Matsumoto, Kenji; Nakae, Susumu

    2014-01-01

    Galectin-9 (Gal-9), a lectin having a β-galactoside-binding domain, can induce apoptosis of Th1 cells by binding to TIM-3. In addition, Gal-9 inhibits IgE/Ag-mediated degranulation of mast cell/basophilic cell lines by binding to IgE, thus blocking IgE/Ag complex formation. However, the role of Gal-9 in mast cell function in the absence of IgE is not fully understood. Here, we found that recombinant Gal-9 directly induced phosphorylation of Erk1/2 but not p38 MAPK in a human mast cell line, HMC-1, which does not express FcεRI. Gal-9 induced apoptosis and inhibited PMA/ionomycin-mediated degranulation of HMC-1 cells. On the other hand, Gal-9 induced cytokine and/or chemokine production by HMC-1 cells, dependent on activation of ERK1/2 but not p38 MAPK. In addition, the lectin activity of Gal-9 was required for Gal-9-mediated cytokine secretion by HMC-1 cells. These observations suggest that Gal-9 has dual properties as both a regulator and an activator of mast cells.

  16. Activated Microglia Desialylate and Phagocytose Cells via Neuraminidase, Galectin-3, and Mer Tyrosine Kinase

    PubMed Central

    Nomura, Koji; Vilalta, Anna; Allendorf, David H.; Hornik, Tamara C.

    2017-01-01

    Activated microglia can phagocytose dying, stressed, or excess neurons and synapses via the phagocytic receptor Mer tyrosine kinase (MerTK). Galectin-3 (Gal-3) can cross-link surface glycoproteins by binding galactose residues that are normally hidden below terminal sialic acid residues. Gal-3 was recently reported to opsonize cells via activating MerTK. We found that LPS-activated BV-2 microglia rapidly released Gal-3, which was blocked by calcineurin inhibitors. Gal-3 bound to MerTK on microglia and to stressed PC12 (neuron-like) cells, and it increased microglial phagocytosis of PC12 cells or primary neurons, which was blocked by inhibition of MerTK. LPS-activated microglia exhibited a sialidase activity that desialylated PC12 cells and could be inhibited by Tamiflu, a neuraminidase (sialidase) inhibitor. Sialidase treatment of PC12 cells enabled Gal-3 to bind and opsonize the live cells for phagocytosis by microglia. LPS-induced microglial phagocytosis of PC12 was prevented by small interfering RNA knockdown of Gal-3 in microglia, lactose inhibition of Gal-3 binding, inhibition of neuraminidase with Tamiflu, or inhibition of MerTK by UNC569. LPS-induced phagocytosis of primary neurons by primary microglia was also blocked by inhibition of MerTK. We conclude that activated microglia release Gal-3 and a neuraminidase that desialylates microglial and PC12 surfaces, enabling Gal-3 binding to PC12 cells and their phagocytosis via MerTK. Thus, Gal-3 acts as an opsonin of desialylated surfaces, and inflammatory loss of neurons or synapses may potentially be blocked by inhibiting neuraminidases, Gal-3, or MerTK. PMID:28500071

  17. Galectin-3 is a non-classic RNA binding protein that stabilizes the mucin MUC4 mRNA in the cytoplasm of cancer cells.

    PubMed

    Coppin, Lucie; Vincent, Audrey; Frénois, Frédéric; Duchêne, Belinda; Lahdaoui, Fatima; Stechly, Laurence; Renaud, Florence; Villenet, Céline; Van Seuningen, Isabelle; Leteurtre, Emmanuelle; Dion, Johann; Grandjean, Cyrille; Poirier, Françoise; Figeac, Martin; Delacour, Delphine; Porchet, Nicole; Pigny, Pascal

    2017-03-06

    Pancreatic cancer cells express high levels of MUC1, MUC4 and MUC16 mRNAs that encode membrane-bound mucins. These mRNAs share unusual features such as a long half-life. However, it remains unknown how mucin mRNA stability is regulated. Galectin-3 (Gal-3) is an endogenous lectin playing important biological functions in epithelial cells. Gal-3 is encoded by LGALS3 which is up-regulated in pancreatic cancer. Despite the absence of a RNA-recognition motif, Gal-3 interacts indirectly with pre-mRNAs in the nucleus and promotes constitutive splicing. However a broader role of Gal-3 in mRNA fate is unexplored. We report herein that Gal-3 increases MUC4 mRNA stability through an intermediate, hnRNP-L which binds to a conserved CA repeat element in the 3'UTR in a Gal-3 dependent manner and also controls Muc4 mRNA levels in epithelial tissues of Gal3 -/- mice. Gal-3 interacts with hnRNP-L in the cytoplasm, especially during cell mitosis, but only partly associates with protein markers of P-Bodies or Stress Granules. By RNA-IP plus RNA-seq analysis and imaging, we demonstrate that Gal-3 binds to mature spliced MUC4 mRNA in the perinuclear region, probably in hnRNP-L-containing RNA granules. Our findings highlight a new role for Gal-3 as a non-classic RNA-binding protein that regulates MUC4 mRNA post-transcriptionally.

  18. Galectin-3 is a non-classic RNA binding protein that stabilizes the mucin MUC4 mRNA in the cytoplasm of cancer cells

    PubMed Central

    Coppin, Lucie; Vincent, Audrey; Frénois, Frédéric; Duchêne, Belinda; Lahdaoui, Fatima; Stechly, Laurence; Renaud, Florence; Villenet, Céline; Seuningen, Isabelle Van; Leteurtre, Emmanuelle; Dion, Johann; Grandjean, Cyrille; Poirier, Françoise; Figeac, Martin; Delacour, Delphine; Porchet, Nicole; Pigny, Pascal

    2017-01-01

    Pancreatic cancer cells express high levels of MUC1, MUC4 and MUC16 mRNAs that encode membrane-bound mucins. These mRNAs share unusual features such as a long half-life. However, it remains unknown how mucin mRNA stability is regulated. Galectin-3 (Gal-3) is an endogenous lectin playing important biological functions in epithelial cells. Gal-3 is encoded by LGALS3 which is up-regulated in pancreatic cancer. Despite the absence of a RNA-recognition motif, Gal-3 interacts indirectly with pre-mRNAs in the nucleus and promotes constitutive splicing. However a broader role of Gal-3 in mRNA fate is unexplored. We report herein that Gal-3 increases MUC4 mRNA stability through an intermediate, hnRNP-L which binds to a conserved CA repeat element in the 3′UTR in a Gal-3 dependent manner and also controls Muc4 mRNA levels in epithelial tissues of Gal3−/− mice. Gal-3 interacts with hnRNP-L in the cytoplasm, especially during cell mitosis, but only partly associates with protein markers of P-Bodies or Stress Granules. By RNA-IP plus RNA-seq analysis and imaging, we demonstrate that Gal-3 binds to mature spliced MUC4 mRNA in the perinuclear region, probably in hnRNP-L-containing RNA granules. Our findings highlight a new role for Gal-3 as a non-classic RNA-binding protein that regulates MUC4 mRNA post-transcriptionally. PMID:28262838

  19. Novel interactions of complex carbohydrates with peanut (PNA), Ricinus communis (RCA-I), Sambucus nigra (SNA-I) and wheat germ (WGA) agglutinins as revealed by the binding specificities of these lectins towards mucin core-2 O-linked and N-linked glycans and related structures.

    PubMed

    Chandrasekaran, E V; Xue, Jun; Xia, Jie; Khaja, Siraj D; Piskorz, Conrad F; Locke, Robert D; Neelamegham, Sriram; Matta, Khushi L

    2016-10-01

    Plant lectins through their multivalent quaternary structures bind intrinsically flexible oligosaccharides. They recognize fine structural differences in carbohydrates and interact with different sequences in mucin core 2 or complex-type N-glycan chain and also in healthy and malignant tissues. They are used in characterizing cellular and extracellular glycoconjugates modified in pathological processes. We study here, the complex carbohydrate-lectin interactions by determining the effects of substituents in mucin core 2 tetrasaccharide Galβ1-4GlcNAcβ1-6(Galβ1-3)GalNAcα-O-R and fetuin glycopeptides on their binding to agarose-immobilized lectins PNA, RCA-I, SNA-I and WGA. Briefly, in mucin core 2 tetrasaccharide (i) structures modified by α2-3/6-Sialyl LacNAc, LewisX and α1-3-Galactosyl LacNAc resulted in regular binding to PNA whereas compounds with 6-sulfo LacNAc displayed no-binding; (ii) strucures bearing α2-6-sialyl 6-sulfo LacNAc, or 6-sialyl LacdiNAc carbohydrates displayed strong binding to SNA-I; (iii) structures with α2-3/6-sialyl, α1-3Gal LacNAc or LewisX were non-binder to RCA-I and compounds with 6-sulfo LacNAc only displayed weak binding; (iv) structures containing LewisX, 6-Sulfo LewisX, α2-3/6-sialyl LacNAc, α2-3/6-sialyl 6-sulfo LacNAc and GalNAc Lewis-a were non-binding to WGA, those with α1-2Fucosyl, α1-3-Galactosyl LacNAc, α2-3-sialyl T-hapten plus 3'/6'sulfo LacNAc displayed weak binding, and compounds with α2-3-sialyl T-hapten, α2.6-Sialyl LacdiNAc, α2-3-sialyl D-Fucβ1-3 GalNAc and Fucα-1-2 D-Fucβ-1-3GalNAc displaying regular binding and GalNAc LewisX and LacdiNAc plus D-Fuc β-1-3 GalNAcα resulting in tight binding. RCA-I binds Fetuin triantennary asialoglycopeptide 100 % after α-2-3 and 25 % after α-2-6 sialylation, 30 % after α-1-2 and 100 % after α-1-3 fucosylation, and 50 % after α-1-3 galactosylation. WGA binds 3-but not 6-Fucosyl chitobiose core. Thus, information on the influence of complex carbohydrate chain constituents on lectin binding is apparently essential for the potential application of lectins in glycoconjugate research.

  20. The impact of serum incubation time on IgM/IgG binding to porcine aortic endothelial cells.

    PubMed

    Zhang, Zhongqiang; Gao, Bingsi; Zhao, Chengjiang; Long, Cassandra; Qi, Haizhi; Ezzelarab, Mohamed; Cooper, David Kc; Hara, Hidetaka

    2017-07-01

    The results of the assay for measuring anti-non-Gal antibodies (which affect pig xenograft survival) in recipients are important. Serum incubation time and concentration may be important factors in the extent of antibody binding to the graft. The aim of this in vitro study was to determine the optimal incubation time and serum concentration for measuring anti-non-Gal antibody binding to porcine aortic endothelial cells (pAECs). Pooled human, naive, and sensitized baboon sera were incubated with wild-type, α1,3-galactosyltransferase gene-knockout (GTKO), and GTKO/human CD55 pAECs. IgM/IgG binding to pAECs after varying serum incubation times (0.5, 1, 2, and 3 hour) and concentrations (5, 10, 20, and 40 μL) was determined by flow cytometry. An increase in incubation time from 30 minutes to 2 hour was associated with increases in anti-non-Gal IgM/IgG binding to GTKO and GTKO/hCD55 pAECs of pooled human, naive and sensitized baboon sera (P<.05). Pooled human serum showed a significant increase in anti-non-Gal IgM (1.5 times) and a minimal increase in anti-non-Gal IgG antibody binding. IgM/IgG binding of sensitized baboon serum to GTKO pAECs after 2-hour incubation was 1.5 times and 2 times greater than after 30-minutes incubation, respectively, whereas naïve baboon sera showed minimal (non-significant) increase in anti-non-Gal IgM/IgG antibody binding. With 2-hour incubation, increasing the serum concentration from 5 μL to 20 μL significantly increased antibody binding to non-Gal antigens in pooled human and sensitized baboon serum. With naïve baboon serum, only IgG was significantly increased. Increasing the serum incubation time contributed to improve the sensitivity of detecting anti-non-Gal antibodies, without affecting cell viability in vitro. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  1. Arabidopsis F-box protein containing a Nictaba-related lectin domain interacts with N-acetyllactosamine structures.

    PubMed

    Stefanowicz, Karolina; Lannoo, Nausicaä; Proost, Paul; Van Damme, Els J M

    2012-01-01

    The Arabidopsis thaliana genome contains a small group of bipartite F-box proteins, consisting of an N-terminal F-box domain and a C-terminal domain sharing sequence similarity with Nictaba, the jasmonate-induced glycan-binding protein (lectin) from tobacco. Based on the high sequence similarity between the C-terminal domain of these proteins and Nictaba, the hypothesis was put forward that the so-called F-box-Nictaba proteins possess carbohydrate-binding activity and accordingly can be considered functional homologs of the mammalian sugar-binding F-box or Fbs proteins which are involved in proteasomal degradation of glycoproteins. To obtain experimental evidence for the carbohydrate-binding activity and specificity of the A. thaliana F-box-Nictaba proteins, both the complete F-box-Nictaba sequence of one selected Arabidopsis F-box protein (in casu At2g02360) as well as the Nictaba-like domain only were expressed in Pichia pastoris and analyzed by affinity chromatography, agglutination assays and glycan micro-array binding assays. These results demonstrated that the C-terminal Nictaba-like domain provides the F-box-protein with a carbohydrate-binding activity that is specifically directed against N- and O-glycans containing N-acetyllactosamine (Galβ1-3GlcNAc and Galβ1-4GlcNAc) and poly-N-acetyllactosamine ([Galβ1-4GlcNAc]n) as well as Lewis A (Galβ1-3(Fucα1-4)GlcNAc), Lewis X (Galβ1-4(Fucα1-3)GlcNAc, Lewis Y (Fucα1-2Galβ1-4(Fucα1-3)GlcNAc) and blood type B (Galα1-3(Fucα1-2)Galβ1-3GlcNAc) motifs. Based on these findings one can reasonably conclude that at least the A. thaliana F-box-Nictaba protein encoded by At2g02360 can act as a carbohydrate-binding protein. The results from the glycan array assays revealed differences in sugar-binding specificity between the F-box protein and Nictaba, indicating that the same carbohydrate-binding motif can accommodate unrelated oligosaccharides.

  2. Site-specific O-glycosylation of N-terminal serine residues by polypeptide GalNAc-transferase 2 modulates human δ-opioid receptor turnover at the plasma membrane.

    PubMed

    Lackman, Jarkko J; Goth, Christoffer K; Halim, Adnan; Vakhrushev, Sergey Y; Clausen, Henrik; Petäjä-Repo, Ulla E

    2018-01-01

    G protein-coupled receptors (GPCRs) are an important protein family of signalling receptors that govern a wide variety of physiological functions. The capacity to transmit extracellular signals and the extent of cellular response are largely determined by the amount of functional receptors at the cell surface that is subject to complex and fine-tuned regulation. Here, we demonstrate that the cell surface expression level of an inhibitory GPCR, the human δ-opioid receptor (hδOR) involved in pain and mood regulation, is modulated by site-specific N-acetylgalactosamine (GalNAc) -type O-glycosylation. Importantly, we identified one out of the 20 polypeptide GalNAc-transferase isoforms, GalNAc-T2, as the specific regulator of O-glycosylation of Ser6, Ser25 and Ser29 in the N-terminal ectodomain of the receptor. This was demonstrated by in vitro glycosylation assays using peptides corresponding to the hδOR N-terminus, Vicia villosa lectin affinity purification of receptors expressed in HEK293 SimpleCells capable of synthesizing only truncated O-glycans, GalNAc-T edited cell line model systems, and site-directed mutagenesis of the putative O-glycosylation sites. Interestingly, a single-nucleotide polymorphism, at residue 27 (F27C), was found to alter O-glycosylation of the receptor in efficiency as well as in glycosite usage. Furthermore, flow cytometry and cell surface biotinylation assays using O-glycan deficient CHO-ldlD cells revealed that the absence of O-glycans results in decreased receptor levels at the plasma membrane due to enhanced turnover. In addition, mutation of the identified O-glycosylation sites led to a decrease in the number of ligand-binding competent receptors and impaired agonist-mediated inhibition of cyclic AMP accumulation in HEK293 cells. Thus, site-specific O-glycosylation by a selected GalNAc-T isoform can increase the stability of a GPCR, in a process that modulates the constitutive turnover and steady-state levels of functional receptors at the cell surface. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Biophysical studies on calcium and carbohydrate binding to carbohydrate recognition domain of Gal/GalNAc lectin from Entamoeba histolytica: insights into host cell adhesion.

    PubMed

    Yadav, Rupali; Verma, Kuldeep; Chandra, Mintu; Mukherjee, Madhumita; Datta, Sunando

    2016-09-01

    Entamoeba histolytica, an enteric parasite expresses a Gal/GalNAc-specific lectin that contributes to its virulence by establishing adhesion to host cell. In this study, carbohydrate recognition domain of Hgl (EhCRD) was purified and biophysical studies were conducted to understand the thermodynamic basis of its binding to carbohydrate and Ca(++) Here, we show that carbohydrate recognition domain (CRD) of the lectin binds to calcium through DPN motif. To decipher the role of calcium in carbohydrate binding and host cell adhesion, biophysical and cell-based studies were carried out. We demonstrated that the presence of the cation neither change the affinity of the lectin for carbohydrates nor alters its conformation. Mutation of the calcium-binding motif in EhCRD resulted in complete loss of ability to bind calcium but retained its affinity for carbohydrates. Purified EhCRD significantly diminished adhesion of the amebic trophozoites to Chinese Hamster Ovary (CHO) cells as well as triggered red blood cell agglutination. The calcium-binding defective mutant abrogated amebic adhesion to CHO cells similar to the wild-type protein, but it failed to agglutinate RBCs suggesting a differential role of the cation in these two processes. This study provides the first molecular description of the role of calcium in Gal/GalNAc mediated host cell adhesion. © The Authors 2016. Published by Oxford University Press on behalf of the Japanese Biochemical Society. All rights reserved.

  4. Structure of ganglioside with CAD blood group antigen activity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gillard, B.K.; Blanchard, D.; Cartron, J.P.

    1986-05-01

    The novel erythrocyte ganglioside which carries the blood group Cad determinant has been isolated, and its structure has been determined. The ganglioside contained Glu:Gal:GalNAc:GlcNAc in a molar ratio of 1.00:1.94:0.93:0.95. The ganglioside binds Helix pomatia lectin and its chromatographic mobility is similar to G/sub D3/. After treatment with ..beta..-hexosaminidase (human placenta HexA) the product migrated with sialosylparagloboside (SPG), no longer binds Helix lectin, and binds a human anti-SPG antibody. Treatment of this material with neuraminidase (V. cholera) yielded a product with the mobility of paragloboside that bound monoclonal antibody 1B2. NMR analysis revealed that the terminal GalNAc is linked ..beta..1-4more » to Gal, and confirms the structure proposed previously: GalNAc..beta..1-4(NeuAc..cap alpha..2-3)Gal..beta..1-4GlcNAc..beta..1-3Gal..beta..1-4Glc-Cer. This structure is consistent with the previous demonstration that a compound with the same chromatographic mobility as the Cad ganglioside could be synthesized by enzymatic transfer of GalNAc to sialosylparagloboside.« less

  5. Comparative study of substrate and product binding to the human ABO(H) blood group glycosyltransferases.

    PubMed

    Soya, Naoto; Shoemaker, Glen K; Palcic, Monica M; Klassen, John S

    2009-11-01

    The first comparative thermodynamic study of the human blood group glycosyltransferases, alpha-(1-->3)-N-acetylgalactosaminyltransferase (GTA) and alpha-(1-->3)-galactosyltransferase (GTB), interacting with donor substrates, donor and acceptor analogs, and trisaccharide products in vitro is reported. The binding constants, measured at 24 degrees C with the direct electrospray ionization mass spectrometry (ES-MS) assay, provide new insights into these model GTs and their interactions with substrate and product. Notably, the recombinant forms of GTA and GTB used in this study are shown to exist as homodimers, stabilized by noncovalent interactions at neutral pH. In the absence of divalent metal ion, neither GTA nor GTB exhibits any appreciable affinity for its native donors (UDP-GalNAc, UDP-Gal). Upon introduction of Mn(2+), both donors undergo enzyme-catalyzed hydrolysis in the presence of either GTA or GTB. Hydrolysis of UDP-GalNAc in the presence of GTA proceeds very rapidly under the solution conditions investigated and a binding constant could not be directly measured. In contrast, the rate of hydrolysis of UDP-Gal in the presence of GTB is significantly slower and, utilizing a modified approach to analyze the ES-MS data, a binding constant of 2 x 10(4) M(-1) was established. GTA and GTB bind the donor analogs UDP-GlcNAc, UDP-Glc with affinities similar to those measured for UDP-Gal and UDP-GalNAc (GTB only), suggesting that the native donors and donor analogs bind to the GTA and GTB through similar interactions. The binding constant determined for GTA and UDP-GlcNAc (approximately 1 x 10(4) M(-1)), therefore, provides an estimate for the binding constant for GTA and UDP-GalNAc. Binding of GTA and GTB with the A and B trisaccharide products was also investigated for the first time. In the absence of UDP and Mn(2+), both GTA and GTB recognize their respective trisaccharide products but with a low affinity approximately 10(3) M(-1); the presence of UDP and Mn(2+) has no effect on A trisaccharide binding but precludes B-trisaccharide binding.

  6. Glycosylation-dependent binding of galectin-8 to activated leukocyte cell adhesion molecule (ALCAM/CD166) promotes its surface segregation on breast cancer cells.

    PubMed

    Fernández, Marisa M; Ferragut, Fátima; Cárdenas Delgado, Víctor M; Bracalente, Candelaria; Bravo, Alicia I; Cagnoni, Alejandro J; Nuñez, Myriam; Morosi, Luciano G; Quinta, Héctor R; Espelt, María V; Troncoso, María F; Wolfenstein-Todel, Carlota; Mariño, Karina V; Malchiodi, Emilio L; Rabinovich, Gabriel A; Elola, María T

    2016-10-01

    We previously demonstrated that the activated leukocyte cell adhesion molecule (ALCAM/CD166) can interact with galectin-8 (Gal-8) in endothelial cells. ALCAM is a member of the immunoglobulin superfamily that promotes homophilic and heterophilic cell-cell interactions. Gal-8 is a "tandem-repeat"-type galectin, known as a matricellular protein involved in cell adhesion. Here, we analyzed the physical interaction between both molecules in breast cancer cells and the functional relevance of this phenomenon. We performed binding assays by surface plasmon resonance to study the interaction between Gal-8 and the recombinant glycosylated ALCAM ectodomain or endogenous ALCAM from MDA-MB-231 breast cancer cells. We also analyzed the binding of ALCAM-silenced or control breast cancer cells to immobilized Gal-8 by SPR. In internalization assays, we evaluated the influence of Gal-8 on ALCAM surface localization. We showed that recombinant glycosylated ALCAM and endogenous ALCAM from breast carcinoma cells physically interacted with Gal-8 in a glycosylation-dependent fashion displaying a differential behavior compared to non-glycosylated ALCAM. Moreover, ALCAM-silenced breast cancer cells exhibited reduced binding to Gal-8 relative to control cells. Importantly, exogenously added Gal-8 provoked ALCAM segregation, probably trapping this adhesion molecule at the surface of breast cancer cells. Our data indicate that Gal-8 interacts with ALCAM at the surface of breast cancer cells through glycosylation-dependent mechanisms. A novel heterophilic interaction between ALCAM and Gal-8 is demonstrated here, suggesting its physiologic relevance in the biology of breast cancer cells. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Galectin-1-asialofetuin interaction is inhibited by peptides containing the tyr-xxx-tyr motif acting on the glycoprotein.

    PubMed

    Wéber, Edit; Hetényi, Anasztázia; Váczi, Balázs; Szolnoki, Eva; Fajka-Boja, Roberta; Tubak, Vilmos; Monostori, Eva; Martinek, Tamás A

    2010-01-25

    Galectin-1 (Gal-1), a ubiquitous beta-galactoside-binding protein expressed by various normal and pathological tissues, has been implicated in cancer and autoimmune/inflammatory diseases in consequence of its regulatory role in adhesion, cell viability, proliferation, and angiogenesis. The functions of Gal-1 depend on its affinity for beta-galactoside-containing glycoconjugates; accordingly, the inhibition of sugar binding blocks its functions, hence promising potential therapeutic tools. The Tyr-Xxx-Tyr peptide motifs have been reported to be glycomimetic sequences, mainly on the basis of their inhibitory effect on the Gal-1-asialofetuin (ASF) interaction. However, the results regarding the efficacy of the Tyr-Xxx-Tyr motif as a glycomimetic inhibitor are still controversial. The present STD and trNOE NMR experiments reveal that the Tyr-Xxx-Tyr peptides studied do not bind to Gal-1, whereas their binding to ASF is clearly detected. (15)N,(1)H HSQC titrations with (15)N-labeled Gal-1 confirm the absence of any peptide-Gal-1 interaction. These data indicate that the Tyr-Xxx-Tyr peptides tested in this work are not glycomimetics as they interact with ASF via an unrevealed molecular linkage.

  8. Dynamics of Galectin-3 in the Nucleus and Cytoplasm

    PubMed Central

    Haudek, Kevin C.; Spronk, Kimberly J.; Voss, Patricia G.; Patterson, Ronald J.; Wang, John L.; Arnoys, Eric J.

    2009-01-01

    This review summarizes selected studies on galectin-3 (Gal3) as an example of the dynamic behavior of a carbohydrate-binding protein in the cytoplasm and nucleus of cells. Within the 15-member galectin family of proteins, Gal3 (Mr ~30,000) is the sole representative of the chimera subclass in which a proline- and glycine-rich NH2-terminal domain is fused onto a COOH-terminal carbohydrate recognition domain responsible for binding galactose-containing glycoconjugates. The protein shuttles between the cytoplasm and nucleus on the basis of targeting signals that are recognized by importin(s) for nuclear localization and exportin-1 (CRM1) for nuclear export. Depending on the cell type, specific experimental conditions in vitro, or tissue location, Gal3 has been reported to be exclusively cytoplasmic, predominantly nuclear, or distributed between the two compartments. The nuclear versus cytoplasmic distribution of the protein must reflect, then, some balance between nuclear import and export, as well as mechanisms of cytoplasmic anchorage or binding to a nuclear component. Indeed, a number of ligands have been reported for Gal3 in the cytoplasm and in the nucleus. Most of the ligands appear to bind Gal3, however, through protein-protein interactions rather than through protein-carbohydrate recognition. In the cytoplasm, for example, Gal3 interacts with the apoptosis repressor Bcl-2 and this interaction may be involved in Gal3’s anti-apoptotic activity. In the nucleus, Gal3 is a required pre-mRNA splicing factor; the protein is incorporated into spliceosomes via its association with the U1 small nuclear ribonucleoprotein (snRNP) complex. Although the majority of these interactions occur via the carbohydrate recognition domain of Gal3 and saccharide ligands such as lactose can perturb some of these interactions, the significance of the protein’s carbohydrate-binding activity, per se, remains a challenge for future investigations. PMID:19616076

  9. Receptor Structure for F1C Fimbriae of Uropathogenic Escherichia coli

    PubMed Central

    Khan, A. Salam; Kniep, Bernhard; Oelschlaeger, Tobias A.; Van Die, Irma; Korhonen, Timo; Hacker, Jörg

    2000-01-01

    F1C fimbriae are correlated with uropathogenic Escherichia coli strains. Although F1C fimbriae mediate binding to kidney tubular cells, their receptor is not known. In this paper, we demonstrate for the first time specific carbohydrate residues as receptor structure for F1C-fimbria-expressing E. coli. The binding of the F1C fimbriated recombinant E. coli strain HB101(pPIL110-54) and purified F1C fimbriae to reference glycolipids of different carbohydrate compositions was evaluated by using thin-layer chromatography (TLC) overlay and solid-phase binding assays. TLC fimbrial overlay analysis revealed the binding ability of purified F1C fimbriae only to glucosylceramide (GlcCer), β1-linked galactosylceramide 2 (GalCer2) with nonhydroxy fatty acids, lactosylceramide, globotriaosylceramide, paragloboside (nLc4Cer), lactotriaosylceramide, gangliotriaosylceramide (asialo-GM2 [GgO3Cer]) and gangliotetraosylceramide (asialo-GM1 [GgO4Cer]). The binding of purified F1C fimbriae as well as F1C fimbriated recombinant E. coli strain HB101(pPIL110-54) was optimal to microtiter plates coated with asialo-GM2 (GgO3Cer). The bacterial interaction with asialo-GM1 (GgO4Cer) and asialo-GM2 (GgO3Cer) was strongly inhibited only by disaccharide GalNAcβ1-4Galβ linked to bovine serum albumin. We observed no binding to globotetraosylceramide or Forssman antigen (Gb5Cer) glycosphingolipids or to sialic-acid-containing gangliosides. It was demonstrated that the presence of a GalCer or GlcCer residue alone is not sufficient for optimal binding, and additional carbohydrate residues are required for high-affinity adherence. Indeed, the binding efficiency of F1C fimbriated recombinant bacteria increased by 19-fold when disaccharide sequence GalNAcβ1-4Galβ is linked to glucosylceramide as in asialo-GM2 (GgO3Cer). Thus, it is suggested that the disaccharide sequence GalNAcβ1-4Galβ of asialo-GM2 (GgO3Cer) which is positioned internally in asialo-GM1 (GgO4Cer) is the high-affinity binding epitope for the F1C fimbriae of uropathogenic E. coli. PMID:10816509

  10. Actinomyces naeslundii Displays Variant fimP and fimA Fimbrial Subunit Genes Corresponding to Different Types of Acidic Proline-Rich Protein and β-Linked Galactosamine Binding Specificity

    PubMed Central

    Hallberg, K.; Holm, C.; Öhman, U.; Strömberg, N.

    1998-01-01

    Actinomyces naeslundii genospecies 1 and 2 bind to acidic proline-rich proteins (APRPs) and statherin via type 1 fimbriae and to β-linked galactosamine (GalNAcβ) structures via type 2 fimbriae. In addition, A. naeslundii displays two types of binding specificity for both APRPs-statherin and GalNAcβ, while Actinomyces odontolyticus binds to unknown structures. To study the molecular basis for these binding specificities, DNA fragments spanning the entire or central portions of fimP (type 1) and fimA (type 2) fimbrial subunit genes were amplified by PCR from strains of genospecies 1 and 2 and hybridized with DNA from two independent collections of oral Actinomyces isolates. Isolates of genospecies 1 and 2 and A. odontolyticus, but no other Actinomyces species, were positive for hybridization with fimP and fimA full-length probes irrespective of binding to APRPs and statherin, GalNAcβ, or unknown structures. Isolates of genospecies 1 and 2, with deviating patterns of GalNAcβ1-3Galα-O-ethyl-inhibitable coaggregation with Streptococcus oralis Ss34 and MPB1, were distinguished by a fimA central probe from genospecies 1 and 2, respectively. Furthermore, isolates of genospecies 1 and 2 displaying preferential binding to APRPs over statherin were positive with a fimP central probe, while a genospecies 2 strain with the opposite binding preference was not. The sequences of fimP and fimA central gene segments were highly conserved among isolates with the same, but diversified between those with a variant, binding specificity. In conclusion, A. naeslundii exhibits variant fimP and fimA genes corresponding to diverse APRP and GalNAcβ specificities, respectively, while A. odontolyticus has a genetically related but distinct adhesin binding specificity. PMID:9712794

  11. Association analyses of large-scale glycan microarray data reveal novel host-specific substructures in influenza A virus binding glycans

    NASA Astrophysics Data System (ADS)

    Zhao, Nan; Martin, Brigitte E.; Yang, Chun-Kai; Luo, Feng; Wan, Xiu-Feng

    2015-10-01

    Influenza A viruses can infect a wide variety of animal species and, occasionally, humans. Infection occurs through the binding formed by viral surface glycoprotein hemagglutinin and certain types of glycan receptors on host cell membranes. Studies have shown that the α2,3-linked sialic acid motif (SA2,3Gal) in avian, equine, and canine species; the α2,6-linked sialic acid motif (SA2,6Gal) in humans; and SA2,3Gal and SA2,6Gal in swine are responsible for the corresponding host tropisms. However, more detailed and refined substructures that determine host tropisms are still not clear. Thus, in this study, we applied association mining on a set of glycan microarray data for 211 influenza viruses from five host groups: humans, swine, canine, migratory waterfowl, and terrestrial birds. The results suggest that besides Neu5Acα2-6Galβ, human-origin viruses could bind glycans with Neu5Acα2-8Neu5Acα2-8Neu5Ac and Neu5Gcα2-6Galβ1-4GlcNAc substructures; Galβ and GlcNAcβ terminal substructures, without sialic acid branches, were associated with the binding of human-, swine-, and avian-origin viruses; sulfated Neu5Acα2-3 substructures were associated with the binding of human- and swine-origin viruses. Finally, through three-dimensional structure characterization, we revealed that the role of glycan chain shapes is more important than that of torsion angles or of overall structural similarities in virus host tropisms.

  12. L-selectin-carbohydrate interactions: relevant modifications of the Lewis x trisaccharide.

    PubMed

    Sanders, W J; Katsumoto, T R; Bertozzi, C R; Rosen, S D; Kiessling, L L

    1996-11-26

    Protein-carbohydrate interactions are known to mediate cell-cell recognition and adhesion events. Specifically, three carbohydrate binding proteins termed selectins (E-, P-, and L-selectin) have been shown to be essential for leukocyte rolling along the vascular endothelium, the first step in the recruitment of leukocytes from the blood into inflammatory sites or into secondary lymphoid organs. Although this phenomenon is well-established, little is known about the molecular-level interactions on which it depends. All three selectins recognize sulfated and sialylated derivatives of the Lewis x [Le(x):Gal beta 1-->4(Fuc alpha 1-->3)GlcNAc] and Lewis a [Le(a): Gal beta 1-->3(Fuc alpha 1-->4)GlcNAc] trisaccharide cores with affinities in the millimolar range, and it is believed that variants of these structures are the carbohydrate determinants of selectin recognition. Recently it was shown that the mucin GlyCAM-1, a secreted physiological ligand for L-selectin, is capped with sulfated derivatives of sialyl Lewis x [sLe(x): Sia alpha 2-->3Gal beta 1-->4(Fuc alpha 1-->3)GlcNAc] and that sulfation is required for the high-affinity interaction between GlyCAM-1 and L-selectin. To elucidate the important sites of sulfation on Le(x) with respect to L-selectin recognition, we have synthesized six sulfated Le(x) analogs and determined their abilities to block binding of a recombinant L-selectin-Ig chimera to immobilized GlyCAM-1. Our results suggest that 6-sulfo sLe(x) binds to L-selectin with higher affinity than does sLe(x) or 6'-sulfo sLe(x) and that sulfation of sLe(x) capping groups on GlyCAM-1 at the 6-position is important for L-selectin recognition.

  13. Experimental identification of specificity determinants in the domain linker of a LacI/GalR protein: bioinformatics-based predictions generate true positives and false negatives.

    PubMed

    Meinhardt, Sarah; Swint-Kruse, Liskin

    2008-12-01

    In protein families, conserved residues often contribute to a common general function, such as DNA-binding. However, unique attributes for each homolog (e.g. recognition of alternative DNA sequences) must arise from variation in other functionally-important positions. The locations of these "specificity determinant" positions are obscured amongst the background of varied residues that do not make significant contributions to either structure or function. To isolate specificity determinants, a number of bioinformatics algorithms have been developed. When applied to the LacI/GalR family of transcription regulators, several specificity determinants are predicted in the 18 amino acids that link the DNA-binding and regulatory domains. However, results from alternative algorithms are only in partial agreement with each other. Here, we experimentally evaluate these predictions using an engineered repressor comprising the LacI DNA-binding domain, the LacI linker, and the GalR regulatory domain (LLhG). "Wild-type" LLhG has altered DNA specificity and weaker lacO(1) repression compared to LacI or a similar LacI:PurR chimera. Next, predictions of linker specificity determinants were tested, using amino acid substitution and in vivo repression assays to assess functional change. In LLhG, all predicted sites are specificity determinants, as well as three sites not predicted by any algorithm. Strategies are suggested for diminishing the number of false negative predictions. Finally, individual substitutions at LLhG specificity determinants exhibited a broad range of functional changes that are not predicted by bioinformatics algorithms. Results suggest that some variants have altered affinity for DNA, some have altered allosteric response, and some appear to have changed specificity for alternative DNA ligands.

  14. The N- and C-terminal carbohydrate recognition domains of Haemonchus contortus galectin bind to distinct receptors of goat PBMC and contribute differently to its immunomodulatory functions in host-parasite interactions.

    PubMed

    Lu, MingMin; Tian, XiaoWei; Yang, XinChao; Yuan, Cheng; Ehsan, Muhammad; Liu, XinChao; Yan, RuoFeng; Xu, LiXin; Song, XiaoKai; Li, XiangRui

    2017-09-05

    Hco-gal-m is a tandem-repeat galectin isolated from the adult worm of Haemonchus contortus. A growing body of studies have demonstrated that Hco-gal-m could exert its immunomodulatory effects on host peripheral blood mononuclear cells (PBMC) to facilitate the immune evasion. Our previous work revealed that C-terminal and N-terminal carbohydrate recognition domains (CRD) of Hco-gal-m had different sugar binding abilities. However, whether different domains of Hco-gal-m account differently for its multiple immunomodulatory functions in the host-parasite interaction remains to be elucidated. We found that the N-terminal CRD of Hco-gal-m (MNh) and the C-terminal CRD (MCh) could bind to goat peripheral blood mononuclear cells by distinct receptors: transmembrane protein 63A (TMEM63A) was a binding receptor of MNh, while transmembrane protein 147 (TMEM147) was a binding receptor of MCh. In addition, MCh was much more potent than MNh in inhibiting cell proliferation and inducing apoptosis, while MNh was much more effective in inhibiting NO production. Moreover, MNh could suppress the transcription of interferon-γ (IFN-γ), but MCh not. Our data suggested that these two CRDs of Hco-gal-m bind to distinct receptors and contributed differently to its ability to downregulate host immune response. These results will improve our understanding of galectins from parasitic nematodes contributing to the mechanism of parasitic immune evasion and continue to illustrate the diverse range of biological activities attributable to the galectin family.

  15. Cloning of Novel Isoforms of the Human Gli2 Oncogene and Their Activities To Enhance Tax-Dependent Transcription of the Human T-Cell Leukemia Virus Type 1 Genome

    PubMed Central

    Tanimura, Akira; Dan, Shingo; Yoshida, Mitsuaki

    1998-01-01

    The expression of human T-cell leukemia virus type 1 (HTLV-1) is activated by interaction of a viral transactivator protein, Tax, and cellular transcription factor, CREB (cyclic AMP response element binding protein), which bind to a 21-bp enhancer in the long terminal repeats (LTR). THP (Tax-helping protein) was previously determined to enhance the transactivation by Tax protein. Here we report novel forms of the human homolog of a member of the Gli oncogene family, Gli2 (also termed Gli2/THP), an extended form of a zinc finger protein, THP, which was described previously. Four possible isoforms (hGli2 α, β, γ, and δ) are formed by combinations of two independent alternative splicings, and all the isoforms could bind to a DNA motif, TRE2S, in the LTR. The longer isoforms, α and β, were abundantly expressed in various cell lines including HTLV-1-infected T-cell lines. Fusion proteins of the hGli2 isoforms with the DNA-binding domain of Gal4 activated transcription when the reporter contained a Gal4-binding site and one copy of the 21-bp sequence, to which CREB binds. This activation was observed only in the presence of Tax. The 21-bp sequence in the reporter was also essential for the activation. These results suggest that simultaneous binding of hGli2 and CREB to the respective sites in the reporter seems to be critical for Tax protein to activate transcription. Consequently, it is probable that the LTR can be regulated by two independent signals through hGli2 and CREB, since the LTR contains the 21-bp and TRE2S sequences in the vicinity. PMID:9557682

  16. Effects of pH and Iminosugar Pharmacological Chaperones on Lysosomal Glycosidase Structure and Stability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lieberman, Raquel L.; D’aquino, J. Alejandro; Ringe, Dagmar

    2009-06-05

    Human lysosomal enzymes acid-{beta}-glucosidase (GCase) and acid-{alpha}-galactosidase ({alpha}-Gal A) hydrolyze the sphingolipids glucosyl- and globotriaosylceramide, respectively, and mutations in these enzymes lead to the lipid metabolism disorders Gaucher and Fabry disease, respectively. We have investigated the structure and stability of GCase and {alpha}-Gal A in a neutral-pH environment reflective of the endoplasmic reticulum and an acidic-pH environment reflective of the lysosome. These details are important for the development of pharmacological chaperone therapy for Gaucher and Fabry disease, in which small molecules bind mutant enzymes in the ER to enable the mutant enzyme to meet quality control requirements for lysosomal trafficking.more » We report crystal structures of apo GCase at pH 4.5, at pH 5.5, and in complex with the pharmacological chaperone isofagomine (IFG) at pH 7.5. We also present thermostability analysis of GCase at pH 7.4 and 5.2 using differential scanning calorimetry. We compare our results with analogous experiments using {alpha}-Gal A and the chaperone 1-deoxygalactonijirimycin (DGJ), including the first structure of {alpha}-Gal A with DGJ. Both GCase and {alpha}-Gal A are more stable at lysosomal pH with and without their respective iminosugars bound, and notably, the stability of the GCase-IFG complex is pH sensitive. We show that the conformations of the active site loops in GCase are sensitive to ligand binding but not pH, whereas analogous galactose- or DGJ-dependent conformational changes in {alpha}-Gal A are not seen. Thermodynamic parameters obtained from {alpha}-Gal A unfolding indicate two-state, van't Hoff unfolding in the absence of the iminosugar at neutral and lysosomal pH, and non-two-state unfolding in the presence of DGJ. Taken together, these results provide insight into how GCase and {alpha}-Gal A are thermodynamically stabilized by iminosugars and suggest strategies for the development of new pharmacological chaperones for lysosomal storage disorders.« less

  17. Regulation of Blood Pressure by Targeting CaV1.2-Galectin-1 Protein Interaction.

    PubMed

    Hu, Zhenyu; Li, Guang; Wang, Jiong-Wei; Chong, Suet Yen; Yu, Dejie; Wang, Xiaoyuan; Soon, Jia Lin; Liang, Mui Cheng; Wong, Yuk Peng; Huang, Na; Colecraft, Henry M; Liao, Ping; Soong, Tuck Wah

    2018-04-12

    Background -L-type Ca V 1.2 channels play crucial roles in regulation of blood pressure. Galectin-1 (Gal-1), has been reported to bind to the I-II loop of Ca V 1.2 channels to reduce their current density. However, the mechanistic understanding for the down-regulation of Ca V 1.2 channels by Gal-1, and whether Gal-1 plays a direct role in blood pressure regulation remain unclear. Methods - In vitro experiments involving co-IP, western blot, patch-clamp recordings, immunohistochemistry and pressure myography were used to evaluate the molecular mechanisms by which Gal-1 down-regulates Ca V 1.2 channel in transfected HEK 293 cells, smooth muscle cells, arteries from Lgasl1 -/- mice, rat and human patients. In vivo experiments involving delivery of Tat-e9c peptide and AAV5-Gal-1 into rats were performed to investigate the effect of targeting Ca V 1.2-Gal-1 interaction on blood pressure monitored by tail cuff or telemetry methods. Results -Our study reveals that Gal-1 is a key regulator for proteasomal degradation of Ca V 1.2 channels. Gal-1 competed allosterically with Ca V β subunit for binding to the I-II loop of Ca V 1.2 channel. This competitive disruption of Ca V β binding led to Ca V 1.2 degradation by exposing the channels to poly-ubiquitination. Notably, we demonstrated that the inverse relationship of reduced Gal-1 and increased Ca V 1.2 protein levels in arteries was associated with hypertension in hypertensive rats and patients, and Gal-1 deficiency induces higher blood pressure in mice due to up-regulated Ca V 1.2 protein level in arteries. To directly regulate blood pressure by targeting the Ca V 1.2-Gal-1 interaction, we administered Tat-e9c, a peptide that competed for binding of Gal-1, by a mini-osmotic pump and this specific disruption of Ca V 1.2-Gal-1 coupling increased smooth muscle Ca V 1.2 currents, induced larger arterial contraction and caused hypertension in rats. In contrasting experiments, over-expression of Gal-1 in smooth muscle by a single bolus of AAV5-Gal-1 significantly reduced blood pressure in spontaneously hypertensive rats. Conclusions -We have defined molecularly that Gal-1 promotes Ca V 1.2 degradation by replacing Ca V β and thereby exposing specific lysines for poly-ubiquitination, and by masking I-II loop ER export signals. This mechanistic understanding provided the basis for targeting Ca V 1.2-Gal-1 interaction to demonstrate clearly the modulatory role Gal-1 plays in regulating blood pressure, and offering a potential approach for therapeutic management of hypertension.

  18. Spatiotemporal expression of chondroitin sulfate sulfotransferases in the postnatal developing mouse cerebellum.

    PubMed

    Ishii, Maki; Maeda, Nobuaki

    2008-08-01

    Chondroitin sulfate (CS) proteoglycans are major components of the cell surface and the extracellular matrix in the developing brain and bind to various proteins via CS chains in a CS structure-dependent manner. This study demonstrated the expression pattern of three CS sulfotransferase genes, dermatan 4-O-sulfotransferase (D4ST), uronyl 2-O-sulfotransferase (UST), and N-acetylgalactosamine 4-sulfate 6-O-sulfotransferase (GalNAc4S-6ST), in the mouse postnatal cerebellum. These sulfotransferases are responsible for the biosynthesis of oversulfated structures in CS chains such as B, D, and E units, which constitute the binding sites for various heparin-binding proteins. Real-time reverse transcription-polymerase chain reaction analysis indicated that the expression of UST increased remarkably during cerebellar development. The amounts of B and D units, which are generated by UST activity, in the cerebellar CS chains also increased during development. In contrast, the expression of GalNAc4S-6ST and its biosynthetic product, E unit, decreased during postnatal development. In situ hybridization experiments revealed the levels of UST and GalNAc4S-6ST mRNAs to correlate inversely in many cells including Purkinje cells, granule cells in the external granular layer, and inhibitory interneurons. In these neurons, the expression of UST increased and that of GalNAc4S-6ST decreased during development and/or maturation. D4ST was also expressed by many neurons, but its expression was not simply correlated with development, which might contribute to the diversification of CS structures expressed by distinct neurons. These results suggest that the CS structures of various cerebellar neurons change during development and such changes of CS are involved in the regulation of various signaling pathways.

  19. Evidence for glycosylation as a regulator of the pigmentary system: key roles of sialyl(α2-6)gal/GalNAc-terminated glycans in melanin synthesis and transfer.

    PubMed

    Diwakar, Ganesh; Klump, Vincent; Lazova, Rossitza; Pawelek, John

    2015-08-01

    The major regulators of melanogenesis are glycoproteins, however no role for glycosylation in the pathway has yet been described. We stained skin biopsies and melanocyte-keratinocyte co-cultures with a panel of 20 lectins as oligosaccharide markers. Notably, the Elderberry Bark Lectin (EBL/SNA) stained melanocytes in both systems. EBL binds the sequence Neu5Ac(α(2-6)Gal/GalNAc)- at the termini of some oligosaccharide antennae. We used inhibitors of synthesis and/or binding of this sequence to assess effects on pigmentation. Cell culture, lectin histochemistry, siRNA transfection, and assays for dopa oxidase and melanin were carried out by standard techniques. 6'-sialyllactose, a short homolog of the sequence in question, anti-sialyltransferase 6 (ST6) siRNA, and cytidine, a sialyltransferase (ST) inhibitor, each inhibited EBL binding, melanogenesis and melanosome transfer. Unexpectedly, 3'-sialyllactose and siRNA for ST3, chosen as a negative controls, also inhibited these processes. Though strong inhibitors of melanization, none of the agents affected tyrosinase/dopa oxidase activity, indicating previously unrecognized post-tyrosinase regulation of melanization. We report for the first time that Neu5Ac (α(2-6)Gal/GalNAc)- and possibly Neu5Ac(α(2-3)Gal/GalNAc)-terminated oligosaccharides play multiple roles in melanin synthesis and transfer.

  20. The xenoantibody response and immunoglobulin gene expression profile of cynomolgus monkeys transplanted with hDAF-transgenic porcine hearts.

    PubMed

    Zahorsky-Reeves, Joanne L; Kearns-Jonker, Mary K; Lam, Tuan T; Jackson, Jeremy R; Morris, Randall E; Starnes, Vaughn A; Cramer, Donald V

    2007-03-01

    Recent work has indicated a role for anti-Gal alpha 1-3Gal (Gal) and anti-non-Gal xenoantibodies in the primate humoral rejection response against human-decay accelerating factor (hDAF) transgenic pig organs. Our laboratory has shown that anti-porcine xenograft antibodies in humans and non-human primates are encoded by a small number of germline IgV(H) progenitors. In this study, we extended our analysis to identify the IgV(H) genes encoding xenoantibodies in immunosuppressed cynomolgus monkeys (Macaca fascicularis) transplanted with hDAF-transgenic pig organs. Three immunosuppressed monkeys underwent heterotopic heart transplantation with hDAF porcine heart xenografts. Two of three animals were given GAS914, a poly-L-lysine derivative shown to bind to anti-Gal xenoantibodies and neutralize them. One animal rejected its heart at post-operative day (POD) 39; a second animal rejected the transplanted heart at POD 78. The third monkey was euthanized on POD 36 but the heart was not rejected. Peripheral blood leukocytes (PBL) and serum were obtained from each animal before and at multiple time points after transplantation. We analyzed the immune response by enzyme-linked immunosorbent assay (ELISA) to confirm whether anti-Gal or anti-non-Gal xenoantibodies were induced after graft placement. Immunoglobulin heavy-chain gene (V(H)) cDNA libraries were then produced and screened. We generated soluble single-chain antibodies (scFv) to establish the binding specificity of the cloned immunoglobulin genes. Despite immunosuppression, which included the use of the polymer GAS914, the two animals that rejected their hearts showed elevated levels of cytotoxic anti-pig red blood cell (RBC) antibodies and anti-pig aortic endothelial cell (PAEC) antibodies. The monkey that did not reject its graft showed a decline in serum anti-RBC, anti-PAEC, and anti-Gal xenoantibodies when compared with pre-transplant levels. A V(H)3 family gene with a high level of sequence similarity to an allele of V(H)3-11, designated V(H)3-11(cyno), was expressed at elevated levels in the monkey that was not given GAS914 and whose graft was not rejected until POD 78. IgM but not IgG xenoantibodies directed at N-acetyl lactosamine (a precursor of the Gal epitope) were also induced in this animal. We produced soluble scFv from this new gene to determine whether this antibody could bind to the Gal carbohydrate, and demonstrated that this protein was capable of blocking the binding of human serum xenoantibody to Gal oligosaccharide, as had previously been shown with human V(H)3-11 scFv. DAF-transgenic organs transplanted into cynomolgus monkeys induce anti-Gal and anti-non-Gal xenoantibody responses mediated by both IgM and IgG xenoantibodies. Anti-non-Gal xenoantibodies are induced at high levels in animals treated with GAS914. Antibodies that bind to the Gal carbohydrate and to N-acetyl lactosamine are induced in the absence of GAS914 treatment. The animal whose heart remained beating for 78 days demonstrated increased usage of an antibody encoded by a germline progenitor that is structurally related, but distinct from IGHV311. This antibody binds to the Gal carbohydrate but does not induce the rapid rejection of the xenograft when expressed at high levels as early as day 8 post-transplantation.

  1. Bivalent Carbohydrate Binding Is Required for Biological Activity of Clitocybe nebularis Lectin (CNL), the N,N′-Diacetyllactosediamine (GalNAcβ1–4GlcNAc, LacdiNAc)-specific Lectin from Basidiomycete C. nebularis*

    PubMed Central

    Pohleven, Jure; Renko, Miha; Magister, Špela; Smith, David F.; Künzler, Markus; Štrukelj, Borut; Turk, Dušan; Kos, Janko; Sabotič, Jerica

    2012-01-01

    Lectins are carbohydrate-binding proteins that exert their biological activity by binding to specific cell glycoreceptors. We have expressed CNL, a ricin B-like lectin from the basidiomycete Clitocybe nebularis in Escherichia coli. The recombinant lectin, rCNL, agglutinates human blood group A erythrocytes and is specific for the unique glycan N,N′-diacetyllactosediamine (GalNAcβ1–4GlcNAc, LacdiNAc) as demonstrated by glycan microarray analysis. We here describe the crystal structures of rCNL in complex with lactose and LacdiNAc, defining its interactions with the sugars. CNL is a homodimeric lectin, each of whose monomers consist of a single ricin B lectin domain with its β-trefoil fold and one carbohydrate-binding site. To study the mode of CNL action, a nonsugar-binding mutant and nondimerizing monovalent CNL mutants that retain carbohydrate-binding activity were prepared. rCNL and the mutants were examined for their biological activities against Jurkat human leukemic T cells and the hypersensitive nematode Caenorhabditis elegans mutant strain pmk-1. rCNL was toxic against both, although the mutants were inactive. Thus, the bivalent carbohydrate-binding property of homodimeric CNL is essential for its activity, providing one of the rare pieces of evidence that certain activities of lectins are associated with their multivalency. PMID:22298779

  2. Cell Surface Galectin-9 Expressing Th Cells Regulate Th17 and Foxp3+ Treg Development by Galectin-9 Secretion

    PubMed Central

    Niki, Toshiro; Kadowaki, Takeshi; Ueno, Masaki; Nishi, Nozomu; Yamauchi, Akira; Hattori, Toshio; Masaki, Tsutomu; Hirashima, Mitsuomi

    2012-01-01

    Galectin-9 (Gal-9), a β-galactoside binding mammalian lectin, regulates immune responses by reducing pro-inflammatory IL-17-producing Th cells (Th17) and increasing anti-inflammatory Foxp3+ regulatory T cells (Treg) in vitro and in vivo. These functions of Gal-9 are thought to be exerted by binding to receptor molecules on the cell surface. However, Gal-9 lacks a signal peptide for secretion and is predominantly located in the cytoplasm, which raises questions regarding how and which cells secrete Gal-9 in vivo. Since Gal-9 expression does not necessarily correlate with its secretion, Gal-9-secreting cells in vivo have been elusive. We report here that CD4 T cells expressing Gal-9 on the cell surface (Gal-9+ Th cells) secrete Gal-9 upon T cell receptor (TCR) stimulation, but other CD4 T cells do not, although they express an equivalent amount of intracellular Gal-9. Gal-9+ Th cells expressed interleukin (IL)-10 and transforming growth factor (TGF)-β but did not express Foxp3. In a co-culture experiment, Gal-9+ Th cells regulated Th17/Treg development in a manner similar to that by exogenous Gal-9, during which the regulation by Gal-9+ Th cells was shown to be sensitive to a Gal-9 antagonist but insensitive to IL-10 and TGF-β blockades. Further elucidation of Gal-9+ Th cells in humans indicates a conserved role of these cells through evolution and implies the possible utility of these cells for diagnosis or treatment of immunological diseases. PMID:23144904

  3. Interfering with Gal-1-mediated angiogenesis contributes to the pathogenesis of preeclampsia.

    PubMed

    Freitag, Nancy; Tirado-González, Irene; Barrientos, Gabriela; Herse, Florian; Thijssen, Victor L J L; Weedon-Fekjær, Susanne M; Schulz, Herbert; Wallukat, Gerd; Klapp, Burghard F; Nevers, Tania; Sharma, Surendra; Staff, Anne Cathrine; Dechend, Ralf; Blois, Sandra M

    2013-07-09

    Preeclampsia (PE) is a pregnancy-specific disorder characterized by sudden onset of hypertension and proteinuria in the second half of pregnancy (>20 wk). PE is strongly associated with abnormal placentation and an excessive maternal inflammatory response. Galectin-1 (Gal-1), a member of a family of carbohydrate-binding proteins, has been shown to modulate several processes associated with placentation and to promote maternal tolerance toward fetal antigens. Here, we show that Gal-1 exhibits proangiogenic functions during early stages of pregnancy, promoting decidual vascular expansion through VEGF receptor 2 signaling. Blocking Gal-1-mediated angiogenesis or lectin, galactoside-binding, soluble, 1 deficiency results in a spontaneous PE-like syndrome in mice, mainly by deregulating processes associated with good placentation and maternal spiral artery remodeling. Consistent with these findings, we observed a down-regulation of Gal-1 in patients suffering from early onset PE. Collectively, these results strengthen the notion that Gal-1 is required for healthy gestation and highlight Gal-1 as a valuable biomarker for early PE diagnosis.

  4. POZ domain transcription factor, FBI-1, represses transcription of ADH5/FDH by interacting with the zinc finger and interfering with DNA binding activity of Sp1.

    PubMed

    Lee, Dong-Kee; Suh, Dongchul; Edenberg, Howard J; Hur, Man-Wook

    2002-07-26

    The POZ domain is a protein-protein interaction motif that is found in many transcription factors, which are important for development, oncogenesis, apoptosis, and transcription repression. We cloned the POZ domain transcription factor, FBI-1, that recognizes the cis-element (bp -38 to -22) located just upstream of the core Sp1 binding sites (bp -22 to +22) of the ADH5/FDH minimal promoter (bp -38 to +61) in vitro and in vivo, as revealed by electrophoretic mobility shift assay and chromatin immunoprecipitation assay. The ADH5/FDH minimal promoter is potently repressed by the FBI-1. Glutathione S-transferase fusion protein pull-down showed that the POZ domains of FBI-1, Plzf, and Bcl-6 directly interact with the zinc finger DNA binding domain of Sp1. DNase I footprinting assays showed that the interaction prevents binding of Sp1 to the GC boxes of the ADH5/FDH promoter. Gal4-POZ domain fusions targeted proximal to the GC boxes repress transcription of the Gal4 upstream activator sequence-Sp1-adenovirus major late promoter. Our data suggest that POZ domain represses transcription by interacting with Sp1 zinc fingers and by interfering with the DNA binding activity of Sp1.

  5. A galectin from Eriocheir sinensis functions as pattern recognition receptor enhancing microbe agglutination and haemocytes encapsulation.

    PubMed

    Wang, Mengqiang; Wang, Lingling; Huang, Mengmeng; Yi, Qilin; Guo, Ying; Gai, Yunchao; Wang, Hao; Zhang, Huan; Song, Linsheng

    2016-08-01

    Galectins are a family of β-galactoside binding lectins that function as pattern recognition receptors (PRRs) in innate immune system of both vertebrates and invertebrates. The cDNA of Chinese mitten crab Eriocheir sinensis galectin (designated as EsGal) was cloned via rapid amplification of cDNA ends (RACE) technique based on expressed sequence tags (ESTs) analysis. The full-length cDNA of EsGal was 999 bp. Its open reading frame encoded a polypeptide of 218 amino acids containing a GLECT/Gal-bind_lectin domain and a proline/glycine rich low complexity region. The deduced amino acid sequence and domain organization of EsGal were highly similar to those of crustacean galectins. The mRNA transcripts of EsGal were found to be constitutively expressed in a wide range of tissues and mainly in hepatopancreas, gill and haemocytes. The mRNA expression level of EsGal increased rapidly and significantly after crabs were stimulated by different microbes. The recombinant EsGal (rEsGal) could bind various pathogen-associated molecular patterns (PAMPs), including lipopolysaccharide (LPS), peptidoglycan (PGN) and glucan (GLU), and exhibited strong activity to agglutinate Escherichia coli, Vibrio anguillarum, Bacillus subtilis, Micrococcus luteus, Staphylococcus aureus and Pichia pastoris, and such agglutinating activity could be inhibited by both d-galactose and α-lactose. The in vitro encapsulation assay revealed that rEsGal could enhance the encapsulation of haemocytes towards agarose beads. These results collectively suggested that EsGal played crucial roles in the immune recognition and elimination of pathogens and contributed to the innate immune response against various microbes in crabs. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Repertoire of human natural anti-glycan immunoglobulins. Do we have auto-antibodies?

    PubMed

    Bovin, Nicolai; Obukhova, Polina; Shilova, Nadezhda; Rapoport, Evgenia; Popova, Inna; Navakouski, Maksim; Unverzagt, Carlo; Vuskovic, Marko; Huflejt, Margaret

    2012-09-01

    Profiling of donor's antibodies using glycan arrays demonstrated presence of antibodies capable of binding to >100 mammalian glycans or their fragments. For example, relatively high binding to Galα1-4Galβ1-4GlcNAc (P(1)), Galα1-4Galβ1-4Glc (P(k)), Galβ1-3GlcNAc (Le(c)), 4-O-SuGalβ1-4GlcNAc, and GalNAcα1-3GalNAc (Fs) was found in all tested individuals. Affinity isolation using hapten-specific chromatography in combination with epitope mapping revealed their glycotopes. Notably, a significant part of the antibodies was capable of recognizing a fragment of larger glycans, for example, -Galβ1-4Glc of glycolipids, or Fucα1-3GlcNAc motif of Le(X)/Le(Y) antigens. Their epitope specificity did not vary between different healthy individuals. Nominally, all the mentioned immunoglobulins could be classified as auto-antibodies. In this work we re-evaluated results published earlier and analyzed new data to address the question why autologous antibodies found in healthy individuals do not cause severe auto-immune reactions. In all cases the presumably "auto" antibodies were found to bind short fragments "subtracted" from larger glycans whereas recognition of the same fragment in the context of the whole natural chain was completely abolished. Thus, in spite of numerous formally positive signals observed on the printed glycan array, we are yet unable to identify in blood serum of healthy individuals true auto-antibodies capable of binding carbohydrate chains in their naturally occurring form. The identified natural anti-glycan antibodies were found to be specific, high-titer and population conservative immunoglobulins - all of this suggesting as yet unknown biological role(s) of the studied proteins. This article is part of a Special Issue entitled Glycoproteomics. Copyright © 2012 Elsevier B.V. All rights reserved.

  7. Protein-Glycan Quinary Interactions in Crowding Environment Unveiled by NMR Spectroscopy.

    PubMed

    Diniz, Ana; Dias, Jorge S; Jiménez-Barbero, Jesús; Marcelo, Filipa; Cabrita, Eurico J

    2017-09-21

    Protein-glycan interactions as modulators for quinary structures in crowding environments were explored. The interaction between human galectin 3 (Gal-3) and distinct macromolecular crowders, such as bovine and human serum albumin (BSA and HSA), Ficoll 70 and PEG3350, was scrutinized. The molecular recognition event of the specific ligand, lactose, by Gal-3 in crowding conditions was evaluated. Gal-3 interactions were monitored by NMR analysing chemical shift perturbation (CSP) and line broadening of 1 H 15 N-HSQC signals. The intensity of the Gal-3 1 H 15 N-HSQC signals decreased in the presence of all crowders, due to the increase in the solution viscosity and to the formation of large protein complexes. When glycosylated containing samples of BSA and HSA were used, signal broadening was more severe than that observed in the presence of the more viscous solutions of PEG3350 and Ficoll 70. However, for the samples containing glycoproteins, the signal intensity of 1 H 15 N-HSQC recovered upon addition of lactose. We show that serum proteins interact with Gal-3, through their α2,3-linked sialylgalactose moieties exposed at their surfaces, competing with lactose for the same binding site. The quinary interaction between Gal-3 and serum glycoproteins, could help to co-localize Gal-3 at the cell surface, and may play a role in adhesion and signalling functions of this protein. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Comparative analysis of carbohydrate residues in the midgut of phlebotomines (Diptera: Psychodidae) from colony and field populations from Amazon, Brazil.

    PubMed

    de Oliveira, Davi Marcos Souza; da Silva, Bruno José Martins; de Sena, Chubert Bernardo Castro; Lima, José Aprígio Nunes; Vasconcelos Dos Santos, Thiago; Silveira, Fernando Tobias; Silva, Edilene Oliveira

    2016-09-01

    Leishmaniasis are worldwide diseases that occur in 98 countries including Brazil, transmitted by the bite of female phlebotomines during blood feeding. In Brazil it is known that some species of sand flies as Lutzomyia longipalpis sensun latum (vector of Leishmania infantum chagasi), Lutzomyia flaviscutellata (vector of Leishmania (Leishmania) amazonensis) and Lutzomyia antunesi [suspected vector of Leishmania (Viannia) lindenbergi] are incriminated of transmitting the parasite Leishmania for the vertebrate host. The phlebotomine-parasite is mediated by the attachment of the promastigote lipophosphoglycan (LPG) to the midgut epithelium. However, another mechanism that is LPG-independent and mediated by N-acetyl-galactosamine (GalNAc) seems to occur in some species of phlebotomines that are classified as permissive. The aim of this study was to characterize the carbohydrate residues that, probably, play a role in parasite attachment to the midgut of phlebotomine from colony and field populations from the Brazilian Amazonian region. We observed the presence of GalNAc, mannose, galactose and GlcNAc in all phlebotomine species. A binding assay between L. (L.) amazonensis and L. i.chagasi to the midguts of different species of phlebotomines was performed. The attachment of both Leishmania and vector species suggests the presence of GalNAc on the midgut surfaces. Thus, these results suggested that GalNAc is a possible binding sites of Leishmania in sand flies from the Brazilian Amazonian region. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. 2.2 A resolution structure analysis of two refined N-acetylneuraminyl-lactose--wheat germ agglutinin isolectin complexes.

    PubMed

    Wright, C S

    1990-10-20

    The crystal structures of complexes of isolectins 1 and 2 of wheat germ agglutinin (WGA1 and WGA2) with N-acetylneuraminyl-lactose (NeuNAc-alpha(2-3)-Gal-beta(1-4)-Glc) have been refined on the basis of data in the 8 to 2.2 A resolution range to final crystallographic R-factors of 17.2% and 15.3% (Fo greater than 1 sigma), respectively. Specific binding interactions and water association, as well as changes in conformation and mobility of the structure upon ligand binding, were compared in the two complexes. The temperature factors (B = 16.3 A2 and 18.4 A2) were found to be much lower compared with those of their respective native structures (19 to 22 A2). Residues involved in sugar binding, dimerization and in lattice contacts exhibit the largest decreases in B-value, suggesting that sugar binding reduces the overall mobility of the protein molecules in the crystal lattice. The binding mode of this sialyl-trisaccharide, an important cell receptor analogue, has been compared in the two isolectins. Only one of the two unique binding sites (4 per dimer), located in the subunit/subunit interface, is occupied in the crystals. This site, termed the "primary" binding site, contains one of the five amino acid substitutions that differentiate WGA1 and WGA2. Superposition of the refined models in each of the independent crystallographic environments indicates a close match only of the terminal non-reducing NeuNAc residue (root-mean-square delta r of 0.5 to 0.6 A). The Gal-Glc portion was found to superimpose poorly, lack electron density, and possess high atomic thermal factors. In both complexes NeuNAc is stabilized through contact with six amino acid side-chains (Ser114 and Glu115 of subunit 1 and Ser62, Tyr64, Tyr(His)66 and Tyr73 of subunit 2), involving all NeuNAc ring substituents. Refinement has allowed accurate assessment of the contact distances for four hydrogen bonds, a strong buried non-polar contact with the acetamido CH3 group and a large number of van der Waals' interactions with the three aromatic side-chains. The higher affinity of N-acetylneuraminyl-lactose observed by nuclear magnetic resonance studies for WGA1 can be explained by the more favorable binding interactions that occur when residue 66 is a Tyr. The tyrosyl side-chain provides a larger surface for van der Waals' stacking against the NeuNAc pyranose ring than His66 and a hydrogen bond contact with Gal (C2-OH), not possible in WGA2.(ABSTRACT TRUNCATED AT 400 WORDS)

  10. Receptor-Binding Profiles of H7 Subtype Influenza Viruses in Different Host Species

    PubMed Central

    Gambaryan, Alexandra S.; Matrosovich, Tatyana Y.; Philipp, Jennifer; Munster, Vincent J.; Fouchier, Ron A. M.; Cattoli, Giovanni; Capua, Ilaria; Krauss, Scott L.; Webster, Robert G.; Banks, Jill; Bovin, Nicolai V.; Klenk, Hans-Dieter

    2012-01-01

    Influenza viruses of gallinaceous poultry and wild aquatic birds usually have distinguishable receptor-binding properties. Here we used a panel of synthetic sialylglycopolymers and solid-phase receptor-binding assays to characterize receptor-binding profiles of about 70 H7 influenza viruses isolated from aquatic birds, land-based poultry, and horses in Eurasia and America. Unlike typical duck influenza viruses with non-H7 hemagglutinin (HA), all avian H7 influenza viruses, irrespective of the host species, displayed a poultry-virus-like binding specificity, i.e., preferential binding to sulfated oligosaccharides Neu5Acα2-3Galβ1-4(6-O-HSO3)GlcNAc and Neu5Acα2-3Galβ1-4(Fucα1-3)(6-O-HSO3)GlcNAc. This phenotype correlated with the unique amino acid sequence of the amino acid 185 to 189 loop of H7 HA and seemed to be dependent on ionic interactions between the sulfate group of the receptor and Lys193 and on the lack of sterical clashes between the fucose residue and Gln222. Many North American and Eurasian H7 influenza viruses displayed weak but detectable binding to the human-type receptor moiety Neu5Acα2-6Galβ1-4GlcNAc, highlighting the potential of H7 influenza viruses for avian-to-human transmission. Equine H7 influenza viruses differed from other viruses by preferential binding to the N-glycolyl form of sialic acid. Our data suggest that the receptor-binding site of contemporary H7 influenza viruses in aquatic and terrestrial birds was formed after the introduction of their common precursor from ducks to a new host, presumably, gallinaceous poultry. The uniformity of the receptor-binding profile of H7 influenza viruses in various wild and domestic birds indicates that there is no strong receptor-mediated host range restriction in birds on viruses with this HA subtype. This notion agrees with repeated interspecies transmission of H7 influenza viruses from aquatic birds to poultry. PMID:22345462

  11. Accelerated healing of skin burns by anti-Gal/alpha-gal liposomes interaction.

    PubMed

    Galili, Uri; Wigglesworth, Kim; Abdel-Motal, Ussama M

    2010-03-01

    Topical application of alpha-gal liposomes on burns results in rapid local recruitment of neutrophils and macrophages. Recruited macrophages are pivotal for healing of burns because they secrete cytokines/growth factors that induce epidermis regeneration and tissue repair. alpha-Gal liposomes have glycolipids with alpha-gal epitopes (Galalpha1-3Galbeta1-4GlcNAc-R) which bind anti-Gal, the most abundant natural antibody in humans constituting approximately 1% of immunoglobulins. Interaction of alpha-gal liposomes with anti-Gal within the fluid film formed on burns, activates complement and generates chemotactic complement cleavage peptides which effectively recruit neutrophils and macrophages. Anti-Gal IgG coating alpha-gal liposomes further binds to Fcgamma receptors on macrophages and activates them to secrete cytokines/growth factors. Efficacy of alpha-gal liposomes treatment in accelerating burn healing is demonstrated in the experimental model of alpha1,3galactosyltransferase knockout mice. These mice are the only available nonprimate mammals that can produce anti-Gal in titers similar to those in humans. Pairs of burns in mice were covered either with a spot bandage coated with 10mg alpha-gal liposomes, or with a control spot bandage coated with saline. On Day 3 post-treatment, the alpha-gal liposomes treated burns contained approximately 5-fold as many neutrophils as control burns, whereas macrophages were found only in alpha-gal liposomes treated burns. On Day 6, 50-100% of the surface area of alpha-gal liposomes treated burns were covered with regenerating epidermis (re-epithelialization), whereas almost no epidermis was found in control burns. The extensive recruitment of macrophages by anti-Gal/alpha-gal liposomes interaction was further demonstrated in vivo with polyvinyl alcohol (PVA) sponge discs containing alpha-gal liposomes, implanted subcutaneously. Since anti-Gal is abundant in all humans, it is suggested that treatment with alpha-gal liposomes will be effective also in patients with burns and other skin wounds. Copyright (c) 2009 Elsevier Ltd and ISBI. All rights reserved.

  12. Syringic Acid Extracted from Herba dendrobii Prevents Diabetic Cataract Pathogenesis by Inhibiting Aldose Reductase Activity

    PubMed Central

    Wei, Xiaoyong; Chen, Dan; Yi, Yanchun; Qi, Hui; Gao, Xinxin; Fang, Hua; Gu, Qiong; Wang, Ling; Gu, Lianquan

    2012-01-01

    Objective. Effects of Syringic acid (SA) extracted from dendrobii on diabetic cataract (DC) pathogenesis were explored. Methods. Both in vitro and in vivo DC lens models were established using D-gal, and proliferation of HLEC exposed to SA was determined by MMT assay. After 60-day treatment with SA, rat lens transparency was observed by anatomical microscopy using a slit lamp. SA protein targets were extracted and isolated using 2-DE and MALDI TOF/TOF. AR gene expression was investigated using qRT-PCR. Interaction sites and binding characteristics were determined by molecule-docking techniques and dynamic models. Results. Targeting AR, SA provided protection from D-gal-induced damage by consistently maintaining lens transparency and delaying lens turbidity development. Inhibition of AR gene expression by SA was confirmed by qRT-PCR. IC50 of SA for inhibition of AR activity was 213.17 μg/mL. AR-SA binding sites were Trp111, His110, Tyr48, Trp20, Trp79, Leu300, and Phe122. The main binding modes involved hydrophobic interactions and hydrogen bonding. The stoichiometric ratio of non-covalent bonding between SA and AR was 1.0 to 13.3. Conclusion. SA acts to prevent DC in rat lenses by inhibiting AR activity and gene expression, which has potential to be developed into a novel drug for therapeutic management of DC. PMID:23365598

  13. Fluorescence emission and polarization analyses for evaluating binding of ruthenium metalloglycocluster to lectin and tetanus toxin c-fragment

    NASA Astrophysics Data System (ADS)

    Okada, Tomoko; Minoura, Norihiko

    2010-02-01

    We have developed a fluorescent ruthenium metalloglycocluster as a powerful molecular probe for evaluating a binding event between carbohydrates and lectins by fluorescence emission (FE) and fluorescence polarization (FP) analysis. The fluorescent ruthenium metalloglycoclusters, [Ru(bpy-2Gal)3] and [Ru(bpy-2Glc)3], possess clustered galactose and glucose surrounding the ruthenium center. Changes in FE and FP of these metalloglycoclusters were measured by adding each lectin (Peanut agglutinin (PNA), Ricinus communis agglutinin 120 (RCA), Concanavalin A (ConA), or Wheat germ agglutinin (WGA)) or tetanus toxin c-fragment (TCF). Following the addition of PNA, the FE spectrum of [Ru(bpy- 2Gal)3] showed new emission peak and the FP value of [Ru(bpy-2Gal)3] increased. Similarly, the FE spectrum of [Ru(bpy-2Glc)3] showed new emission peak and the FP value increased following the addition of ConA. Since other combinations of the metalloglycoclusters and lectin caused little change, specific bindings of galactose to PNA and glucose to ConA were proved by the FE and FP measurement. From nonlinear least-squares fitting, dissociation constants (Kd) of [Ru(bpy-2Gal)3] to PNA was 6.1 μM, while the Kd values of [Ru(bpy)2(bpy-2Gal)] to PNA was ca. 10-4 M. Therefore, the clustered carbohydrates were proved to increase affinity to lectins. Furthermore, the FP measurements proved specific binding of [Ru(bpy-2Gal)3] to TCF.

  14. Toward a new and noninvasive diagnostic method of papillary thyroid cancer by using peptide vectorized contrast agents targeted to galectin-1.

    PubMed

    Fanfone, Deborah; Despretz, Nadège; Stanicki, Dimitri; Rubio-Magnieto, Jenifer; Fossépré, Mathieu; Surin, Mathieu; Rorive, Sandrine; Salmon, Isabelle; Vander Elst, Luce; Laurent, Sophie; Muller, Robert N; Saussez, Sven; Burtea, Carmen

    2017-10-06

    The incidence of papillary thyroid cancer has increased these last decades due to a better detection. High prevalence of nodules combined with the low incidence of thyroid cancers constitutes an important diagnostic challenge. We propose to develop an alternative diagnostic method to reduce the number of useless and painful thyroidectomies using a vectorized contrast agent for magnetic resonance imaging. Galectin-1 (gal-1), a protein overexpressed in well-differentiated thyroid cancer, has been targeted with a randomized linear 12-mer peptide library using the phage display technique. Selected peptides have been conjugated to ultrasmall superparamagnetic particles of iron oxide (USPIO). Peptides and their corresponding contrast agents have been tested in vitro for their specific binding and toxicity. Two peptides (P1 and P7) were selected according to their affinity toward gal-1. Their binding has been revealed by immunohistochemistry on human thyroid cancer biopsies, and they were co-localized with gal-1 by immunofluorescence on TPC-1 cell line. Both peptides induce a decrease in TPC-1 cells' adhesion to gal-1 immobilized on culture plates. After coupling to USPIO, the peptides preserved their affinity toward gal-1. Their specific binding has been corroborated by co-localization with gal-1 expressed by TPC-1 cells and by their ability to compete with anti-gal-1 antibody. The peptides and their USPIO derivatives produce no toxicity in HepaRG cells as determined by MTT assay. The vectorized contrast agents are potential imaging probes for thyroid cancer diagnosis. Moreover, the two gal-1-targeted peptides prevent cancer cell adhesion by interacting with the carbohydrate-recognition domain of gal-1.

  15. A chicken influenza virus recognizes fucosylated α2,3 sialoglycan receptors on the epithelial cells lining upper respiratory tracts of chickens.

    PubMed

    Hiono, Takahiro; Okamatsu, Masatoshi; Nishihara, Shoko; Takase-Yoden, Sayaka; Sakoda, Yoshihiro; Kida, Hiroshi

    2014-05-01

    Influenza viruses recognize sialoglycans as receptors. Although viruses isolated form chickens preferentially bind to sialic acid α2,3 galactose (SAα2,3Gal) glycans as do those of ducks, chickens were not experimentally infected with viruses isolated from ducks. A chicken influenza virus, A/chicken/Ibaraki/1/2005 (H5N2) (Ck/IBR) bound to fucose-branched SAα2,3Gal glycans, whereas the binding towards linear SAα2,3Gal glycans was weak. On the epithelial cells of the upper respiratory tracts of chickens, fucose-branched SAα2,3Gal glycans were detected, but not linear SAα2,3Gal glycans. The growth of Ck/IBR in MDCK-FUT cells, which were genetically prepared to express fucose-branched SAα2,3Gal glycans, was significantly higher than that in the parental MDCK cells. The present results indicate that fucose-branched SAα2,3Gal glycans existing on the epithelial cells lining the upper respiratory tracts of chickens are critical for recognition by Ck/IBR. Copyright © 2014 Elsevier Inc. All rights reserved.

  16. Interfering with Gal-1–mediated angiogenesis contributes to the pathogenesis of preeclampsia

    PubMed Central

    Freitag, Nancy; Tirado-González, Irene; Barrientos, Gabriela; Herse, Florian; Thijssen, Victor L. J. L.; Weedon-Fekjær, Susanne M.; Schulz, Herbert; Wallukat, Gerd; Klapp, Burghard F.; Nevers, Tania; Sharma, Surendra; Staff, Anne Cathrine; Dechend, Ralf; Blois, Sandra M.

    2013-01-01

    Preeclampsia (PE) is a pregnancy-specific disorder characterized by sudden onset of hypertension and proteinuria in the second half of pregnancy (>20 wk). PE is strongly associated with abnormal placentation and an excessive maternal inflammatory response. Galectin-1 (Gal-1), a member of a family of carbohydrate-binding proteins, has been shown to modulate several processes associated with placentation and to promote maternal tolerance toward fetal antigens. Here, we show that Gal-1 exhibits proangiogenic functions during early stages of pregnancy, promoting decidual vascular expansion through VEGF receptor 2 signaling. Blocking Gal-1–mediated angiogenesis or lectin, galactoside-binding, soluble, 1 deficiency results in a spontaneous PE-like syndrome in mice, mainly by deregulating processes associated with good placentation and maternal spiral artery remodeling. Consistent with these findings, we observed a down-regulation of Gal-1 in patients suffering from early onset PE. Collectively, these results strengthen the notion that Gal-1 is required for healthy gestation and highlight Gal-1 as a valuable biomarker for early PE diagnosis. PMID:23798433

  17. Galectins are human milk glycan receptors

    PubMed Central

    Noll, Alexander J; Gourdine, Jean-Philippe; Yu, Ying; Lasanajak, Yi; Smith, David F; Cummings, Richard D

    2016-01-01

    The biological recognition of human milk glycans (HMGs) is poorly understood. Because HMGs are rich in galactose we explored whether they might interact with human galectins, which bind galactose-containing glycans and are highly expressed in epithelial cells and other cell types. We screened a number of human galectins for their binding to HMGs on a shotgun glycan microarray consisting of 247 HMGs derived from human milk, as well as to a defined HMG microarray. Recombinant human galectins (hGal)-1, -3, -4, -7, -8 and -9 bound selectively to glycans, with each galectin recognizing a relatively unique binding motif; by contrast hGal-2 did not recognize HMGs, but did bind to the human blood group A Type 2 determinants on other microarrays. Unlike other galectins, hGal-7 preferentially bound to glycans expressing a terminal Type 1 (Galβ1-3GlcNAc) sequence, a motif that had eluded detection on non-HMG glycan microarrays. Interactions with HMGs were confirmed in a solution setting by isothermal titration microcalorimetry and hapten inhibition experiments. These results demonstrate that galectins selectively bind to HMGs and suggest the possibility that galectin–HMG interactions may play a role in infant immunity. PMID:26747425

  18. Sperm plasma membrane remodeling during spermiogenetic maturation in men: relationship among plasma membrane beta 1,4-galactosyltransferase, cytoplasmic creatine phosphokinase, and creatine phosphokinase isoform ratios.

    PubMed

    Huszar, G; Sbracia, M; Vigue, L; Miller, D J; Shur, B D

    1997-04-01

    Sperm creatine phosphokinase (CK) concentrations and the synthesis of the CK-M isoform reflect normal spermiogenesis and predict maturity and fertilizing potential of ejaculated human spermatozoa. Immature spermatozoa, characterized by cytoplasmic retention and low CK-M to CK-B isoform ratios, are deficient in zona binding and fail to cause pregnancies. Because these sperm lack zona-binding ability, we examined in this study whether beta 1,4-galactosyltransferase (GalTase), a key element of sperm-zona interactions in mice, is diminished in immature human sperm. Unexpectedly, GalTase was overexpressed in immature sperm relative to mature sperm: the levels of cytoplasmic CK and plasma membrane GalTase were positively correlated (r = 0.78, p < 0.001, n = 88). Sperm populations with various levels of cellular maturity, prepared by Percoll gradients, had different CK and GalTase concentrations, but within each subpopulation the relationship between CK and GalTase was maintained (p < 0.01-0.001). GalTase activities in intact and vortex-disrupted sperm fractions were similar, showing that GalTase is present on the surface membrane of human sperm--similar to the situation in all other species assayed. The changes previously reported by our laboratory in zona-binding ability and lipid peroxidation rates (which occur simultaneously with cytoplasmic extrusion), decline in CK activity, and increased expression of the CK-M isoform are suggestive of a remodeling of the sperm surface concomitant with cytoplasmic maturation. The changes reported here in GalTase expression on the surface of maturing spermatozoa prove this hypothesis.

  19. CLEC4F Is an Inducible C-Type Lectin in F4/80-Positive Cells and Is Involved in Alpha-Galactosylceramide Presentation in Liver

    PubMed Central

    Yang, Chih-Ya; Chen, Jiun-Bo; Tsai, Ting-Fen; Tsai, Yi-Chen; Tsai, Ching-Yen; Liang, Pi-Hui; Hsu, Tsui-Ling; Wu, Chung-Yi; Netea, Mihai G.; Wong, Chi-Huey; Hsieh, Shie-Liang

    2013-01-01

    CLEC4F, a member of C-type lectin, was first purified from rat liver extract with high binding affinity to fucose, galactose (Gal), N-acetylgalactosamine (GalNAc), and un-sialylated glucosphingolipids with GalNAc or Gal terminus. However, the biological functions of CLEC4F have not been elucidated. To address this question, we examined the expression and distribution of murine CLEC4F, determined its binding specificity by glycan array, and investigated its function using CLEC4F knockout (Clec4f−/−) mice. We found that CLEC4F is a heavily glycosylated membrane protein co-expressed with F4/80 on Kupffer cells. In contrast to F4/80, CLEC4F is detectable in fetal livers at embryonic day 11.5 (E11.5) but not in yolk sac, suggesting the expression of CLEC4F is induced as cells migrate from yolk cells to the liver. Even though CLEC4F is not detectable in tissues outside liver, both residential Kupffer cells and infiltrating mononuclear cells surrounding liver abscesses are CLEC4F-positive upon Listeria monocytogenes (L. monocytogenes) infection. While CLEC4F has strong binding to Gal and GalNAc, terminal fucosylation inhibits CLEC4F recognition to several glycans such as Fucosyl GM1, Globo H, Bb3∼4 and other fucosyl-glycans. Moreover, CLEC4F interacts with alpha-galactosylceramide (α-GalCer) in a calcium-dependent manner and participates in the presentation of α-GalCer to natural killer T (NKT) cells. This suggests that CLEC4F is a C-type lectin with diverse binding specificity expressed on residential Kupffer cells and infiltrating monocytes in the liver, and may play an important role to modulate glycolipids presentation on Kupffer cells. PMID:23762286

  20. New GlcNAc/GalNAc-specific lectin from the ascidian Didemnum ternatanum.

    PubMed

    Molchanova, Valentina; Chikalovets, Irina; Li, Wei; Kobelev, Stanislav; Kozyrevskaya, Svetlana; Bogdanovich, Raisa; Howard, Eric; Belogortseva, Natalia

    2005-05-25

    Previously we isolated GlcNAc-specific lectin (DTL) from the ascidian Didemnum ternatanum by affinity chromatography on cross-linked ovalbumin. Here we report the purification and characterization of new D-GlcNAc/D-GalNAc-specific lectin DTL-A from the same ascidian. This lectin was isolated from non-bound cross-linked ovalbumin fraction and further was purified by gel filtration on Sepharose CL-4B, affinity chromatography on GlcNAc-agarose and gel filtration on Superdex 200. SDS-polyacrylamide gel electrophoresis and gel filtration of purified lectin on Sepharose CL-4B indicates that it exists as large aggregates in the native state. Investigations of the carbohydrate specificity of DTL-A by enzyme-linked lectin assay suggest the multi-specificity of this lectin. DTL-A binds BSM, asialo-BSM as well as heparin and dextran sulfate. The binding of DTL-A to BSM was inhibited by monosaccharides D-GlcNAc and D-GalNAc, their alpha- but not beta-anomers. Among polysaccharides and glycoconjugates, DTL-A binding to BSM was effectively inhibited by BSM, asialo-BSM, pronase-treated BSM and synthetic alpha-D-GalNAc-PAA. Fetuin and asialofetuin showed a much lower inhibitory potency, heparin and dextran sulfate were noninhibitory. On the other hand, DTL-A binding to heparin was effectively inhibited by dextran sulfate, fucoidan, whereas BSM showed insignificantly inhibitory effect. DTL-A binding to heparin was not inhibited by D-GlcNAc and D-GalNAc.

  1. Morphological and glycan features of the camel oviduct epithelium.

    PubMed

    Accogli, Gianluca; Monaco, Davide; El Bahrawy, Khalid Ahmed; El-Sayed, Ashraf Abd El-Halim; Ciannarella, Francesca; Beneult, Benedicte; Lacalandra, Giovanni Michele; Desantis, Salvatore

    2014-07-01

    This study describes regional differences in the oviduct of the one-humped camel (Camelus dromedarius) during the growth phase (GP) and the mature phase (MP) of the follicular wave by means of morphometry, scanning electron microscopy (SEM) and glycohistochemistry investigations. Epithelium height significantly increased in the ampulla and decreased in the isthmus passing from the GP to the MP. Under SEM, non-ciliated cells displayed apical blebs (secretory) or short microvilli. Cilia glycocalyx expressed glycans terminating with sialic acid linked α2,6 to Gal/GalNAc (SNA affinity) throughout the oviducts of GP and MP and sialic acid linked α2,3 to Galβ1,3GalNAc (MAL II and KOH-sialidase (K-s)-PNA staining) throughout the MP oviducts. Non-ciliated cells displayed lectin-binding sites from the supra-nuclear cytoplasm to the luminal surface. Ampulla non-ciliated cells showed O-linked (mucin-type) sialoglycans (MAL II and K-s-PNA) during GP and MP and N-linked sialoglycans (SNA) during the MP. Isthmus non-ciliated cells expressed SNA reactivity in GP and MP, also K-s-PNA binders in MP, and MAL II and PNA affinity (Galβ1,3GalNAc) during GP. Galβ1,3GalNAc was sialilated in the non-ciliated cells of GP UTJ. Luminal surface lacked of Galβ1,3GalNAc in GP and MP, whereas it expressed α2,6- and α2,3-linked sialic acids. In GP intraluminal substance reacted with SNA, MAL II, K-s-PNA in ampulla and only with MAL II in the isthmus and UTJ. These results demonstrate that the morphology and the glycan pattern of the camel oviductal epithelium vary during the follicular wave and that could relate to the region-specific functions. Copyright © 2014 Elsevier GmbH. All rights reserved.

  2. Differential Roles of the Glycogen-Binding Domains of β Subunits in Regulation of the Snf1 Kinase Complex▿

    PubMed Central

    Mangat, Simmanjeet; Chandrashekarappa, Dakshayini; McCartney, Rhonda R.; Elbing, Karin; Schmidt, Martin C.

    2010-01-01

    Members of the AMP-activated protein kinase family, including the Snf1 kinase of Saccharomyces cerevisiae, are activated under conditions of nutrient stress. AMP-activated protein kinases are heterotrimeric complexes composed of a catalytic α subunit and regulatory β and γ subunits. In this study, the role of the β subunits in the regulation of Snf1 activity was examined. Yeasts express three isoforms of the AMP-activated protein kinase consisting of Snf1 (α), Snf4 (γ), and one of three alternative β subunits, either Sip1, Sip2, or Gal83. The Gal83 isoform of the Snf1 complex is the most abundant and was analyzed in the greatest detail. All three β subunits contain a conserved domain referred to as the glycogen-binding domain. The deletion of this domain from Gal83 results in a deregulation of the Snf1 kinase, as judged by a constitutive activity independent of glucose availability. In contrast, the deletion of this homologous domain from the Sip1 and Sip2 subunits had little effect on Snf1 kinase regulation. Therefore, the different Snf1 kinase isoforms are regulated through distinct mechanisms, which may contribute to their specialized roles in different stress response pathways. In addition, the β subunits are subjected to phosphorylation. The responsible kinases were identified as being Snf1 and casein kinase II. The significance of the phosphorylation is unclear since the deletion of the region containing the phosphorylation sites in Gal83 had little effect on the regulation of Snf1 in response to glucose limitation. PMID:19897735

  3. Differential roles of the glycogen-binding domains of beta subunits in regulation of the Snf1 kinase complex.

    PubMed

    Mangat, Simmanjeet; Chandrashekarappa, Dakshayini; McCartney, Rhonda R; Elbing, Karin; Schmidt, Martin C

    2010-01-01

    Members of the AMP-activated protein kinase family, including the Snf1 kinase of Saccharomyces cerevisiae, are activated under conditions of nutrient stress. AMP-activated protein kinases are heterotrimeric complexes composed of a catalytic alpha subunit and regulatory beta and gamma subunits. In this study, the role of the beta subunits in the regulation of Snf1 activity was examined. Yeasts express three isoforms of the AMP-activated protein kinase consisting of Snf1 (alpha), Snf4 (gamma), and one of three alternative beta subunits, either Sip1, Sip2, or Gal83. The Gal83 isoform of the Snf1 complex is the most abundant and was analyzed in the greatest detail. All three beta subunits contain a conserved domain referred to as the glycogen-binding domain. The deletion of this domain from Gal83 results in a deregulation of the Snf1 kinase, as judged by a constitutive activity independent of glucose availability. In contrast, the deletion of this homologous domain from the Sip1 and Sip2 subunits had little effect on Snf1 kinase regulation. Therefore, the different Snf1 kinase isoforms are regulated through distinct mechanisms, which may contribute to their specialized roles in different stress response pathways. In addition, the beta subunits are subjected to phosphorylation. The responsible kinases were identified as being Snf1 and casein kinase II. The significance of the phosphorylation is unclear since the deletion of the region containing the phosphorylation sites in Gal83 had little effect on the regulation of Snf1 in response to glucose limitation.

  4. Lactose carrier protein of Escherichia coli. Transport and binding of 2'-(N-dansyl)aminoethyl beta-D-thiogalactopyranoside and p-nitrophenyl alpha-d-galactopyranoside.

    PubMed

    Overath, P; Teather, R M; Simoni, R D; Aichele, G; Wilhelm, U

    1979-01-09

    The elevated level of lactose carrier protein present in cytoplasmic membranes derived from Escherichia coli strain T31RT, which carries the Y gene of the lac operon on a plasmid vector (Teather, R. M., et al. (1978) Mol. Gen. Genet. 159, 239--248), has allowed the detection of a complex between the carrier and the fluorescent substrate 2'-(N-dansyl)-aminoethyl beta-D-thiogalactopyranoside (Dns2-S-Gal). Binding is accompanied by a 50-nm blue shift in the emission maximum of the dansyl residue. The complex (dissociation constant, KD = 30 micron) rapidly dissociates upon addition of competing substrates such as beta-D-galactopyranosyl 1-thio-beta-D-galactopyranoside or upon reaction with the thiol reagent p-chloromercuribenzenesulfonate. Binding of both Dns2-S-Gal and p-nitrophenyl alpha-D-galactopyranoside (alpha-NPG) occurs spontaneously in the absence of an electrochemical potential gradient across the membrane. Comparison of equilibrium binding experiments using Dns2-S-Gal or alpha-NPG and differential labeling of the carrier with radioactive amino acids shows that the carrier binds 1 mol of substrate per mol of polypeptide (molecular weight 30 000). In addition to specific binding to the lactose carrier, Dns2-S-gal binds unspecifically to lipid vesicles or membranes, as described by a partition coefficient, K = 60, resulting in a 25-nm blue shift in the emission maximum of the dansyl group. Both Dns2-S-Gal and alpha-NPG are not only bound by the lactose carrier but also transported across the membrane by this transport protein in cells and membrane vesicles. The fluorescence changes observed with dansylated galactosides in membrane vesicles in the presence of an electrochemical gradient (Schuldiner et al. (1975) J. Biol. Chem. 250, 1361--1370)) are interpreted as an increase in unspecific binding after translocation.

  5. EXPRESSION OF NeuGc ON PIG CORNEAS AND ITS POTENTIAL SIGNIFICANCE IN PIG CORNEAL XENOTRANSPLANTATION

    PubMed Central

    Lee, Whayoung; Miyagawa, Yuko; Long, Cassandra; Ekser, Burcin; Walters, Eric; Ramsoondar, Jagdeece; Ayares, David; Tector, A. Joseph; Cooper, David K. C.; Hara, Hidetaka

    2016-01-01

    Purpose Pigs expressing neither galactose-α1,3-galactose (Gal) nor N-glycolylneuraminic acid (NeuGc) take xenotransplantation one step closer to the clinic. Our aims were (i) to document the lack of NeuGc expression on corneas and aortas, and cultured endothelial cells (aortic [AECs]; corneal [CECs]) of GTKO/NeuGcKO pigs, and (ii) to investigate whether the absence of NeuGc reduced human antibody binding to the tissues and cells. Methods Wild-type (WT), GTKO, and GTKO/NeuGcKO pig were used for the study. Human tissues and cultured cells were negative controls. Immunofluorescence staining was performed using anti-Gal and anti-NeuGc antibodies, and to determine human IgM and IgG binding to tissues. Flow cytometric analysis was used to determine Gal and NeuGc expression on cultured CECs and AECs and to measure human IgM/IgG binding to these cells. Results Both Gal and NeuGc were detected on WT pig corneas and aortas. Although GTKO pigs expressed NeuGc, neither human nor GTKO/NeuGcKO pigs expressed Gal or NeuGc. Human IgM/IgG binding to corneas and aortas from GTKO and GTKO/NeuGcKO pigs was reduced compared to binding to WT pigs. Human antibody binding to GTKO/NeuGcKO AECs was significantly less than to GTKO AECs, but there was no significant difference in binding between GTKO and GTKO/NeuGcKO CECs. Conclusions The absence of NeuGc on GTKO aortic tissue and AECs is associated with reduced human antibody binding, and possibly will provide better outcome in clinical xenotransplantation using vascularized organs. For clinical corneal xenotransplantation, the absence of NeuGc expression on GTKO/NeuGcKO pig corneas may not prove an advantage over GTKO corneas. PMID:26418433

  6. Spatial location of neutralizing and non-neutralizing B cell epitopes on domain 1 of ricin toxin's binding subunit.

    PubMed

    Rong, Yinghui; Van Slyke, Greta; Vance, David J; Westfall, Jennifer; Ehrbar, Dylan; Mantis, Nicholas J

    2017-01-01

    Ricin toxin's binding subunit (RTB) is a galactose-/N-acetylgalactosamine (Gal/GalNac)-specific lectin that mediates uptake and intracellular trafficking of ricin within mammalian cells. Structurally, RTB consists of two globular domains, each divided into three homologous sub-domains (α, β, γ). In this report, we describe five new murine IgG monoclonal antibodies (mAbs) against RTB: MH3, 8A1, 8B3, LF1, and LC5. The mAbs have similar binding affinities (KD) for ricin holotoxin, but displayed a wide range of in vitro toxin-neutralizing activities. Competition ELISAs indicate that the two most potent toxin-neutralizing mAbs (MH3, 8A1), as well as one of the moderate toxin-neutralizing mAbs (LF1), recognize distinct epitopes near the low affinity Gal recognition domain in RTB subdomain 1α. Evaluated in a mouse model of systemic ricin challenge, all five mAbs afforded some benefit against intoxication, but only MH3 was protective. However, neither MH3 nor 24B11, another well-characterized mAb against RTB subdomain 1α, could passively protect mice against a mucosal (intranasal) ricin challenge. This is in contrast to SylH3, a previously characterized mAb directed against an epitope near RTB's high affinity Gal/GalNac recognition element in sub-domain 2γ, which protected animals against systemic and mucosal ricin exposure. SylH3 was significantly more effective than MH3 and 24B11 at blocking ricin attachment to host cell receptors, suggesting that mucosal immunity to ricin is best imparted by antibodies that target RTB's high affinity Gal/GalNac recognition element in subdomain 2γ, not the low affinity Gal recognition domain in subdomain 1α.

  7. Binding of Divalent Cations to Polygalacturonate: A Mechanism Driven by the Hydration Water.

    PubMed

    Huynh, Uyen T D; Lerbret, Adrien; Neiers, Fabrice; Chambin, Odile; Assifaoui, Ali

    2016-02-11

    We have investigated the interactions between polygalacturonate (polyGal) and four divalent cations (M(2+) = Ba(2+), Ca(2+), Mg(2+), Zn(2+)) that differ in size and affinity for water. Our results evidence that M(2+)-polyGal interactions are intimately linked to the affinity of M(2+) for water. Mg(2+) interacts so strongly with water that it remains weakly bound to polyGal (polycondensation) by sharing water molecules from its first coordination shell with the carboxylate groups of polyGal. In contrast, the other cations form transient ionic pairs with polyGal by releasing preferentially one water molecule (for Zn(2+)) or two (for Ca(2+) and Ba(2+)), which corresponds to monodentate and bidentate binding modes with carboxylates, respectively. The mechanism for the binding of these three divalent cations to polyGal can be described by two steps: (i) monocomplexation and formation of point-like cross-links between polyGal chains (at low M(2+)/Gal molar ratios, R) and (ii) dimerization (at higher R). The threshold molar ratio, R*, between these two steps depends on the nature of divalent cations and is lower for calcium ions (R* < 0.1) than for zinc and barium ions (R* > 0.3). This difference may be explained by the intermediate affinity of Ca(2+) for water with respect to those of Zn(2+) and Ba(2+), which may induce the formation of cross-links of intermediate flexibility. By comparison, the lower and higher flexibilities of the cross-links formed by Zn(2+) and Ba(2+), respectively, may shift the formation of dimers to higher molar ratios (R*).

  8. A novel O-linked glycan modulates Campylobacter jejuni major outer membrane protein-mediated adhesion to human histo-blood group antigens and chicken colonization

    PubMed Central

    Mahdavi, Jafar; Pirinccioglu, Necmettin; Oldfield, Neil J.; Carlsohn, Elisabet; Stoof, Jeroen; Aslam, Akhmed; Self, Tim; Cawthraw, Shaun A.; Petrovska, Liljana; Colborne, Natalie; Sihlbom, Carina; Borén, Thomas; Wooldridge, Karl G.; Ala'Aldeen, Dlawer A. A.

    2014-01-01

    Campylobacter jejuni is an important cause of human foodborne gastroenteritis; strategies to prevent infection are hampered by a poor understanding of the complex interactions between host and pathogen. Previous work showed that C. jejuni could bind human histo-blood group antigens (BgAgs) in vitro and that BgAgs could inhibit the binding of C. jejuni to human intestinal mucosa ex vivo. Here, the major flagella subunit protein (FlaA) and the major outer membrane protein (MOMP) were identified as BgAg-binding adhesins in C. jejuni NCTC11168. Significantly, the MOMP was shown to be O-glycosylated at Thr268; previously only flagellin proteins were known to be O-glycosylated in C. jejuni. Substitution of MOMP Thr268 led to significantly reduced binding to BgAgs. The O-glycan moiety was characterized as Gal(β1–3)-GalNAc(β1–4)-GalNAc(β1–4)-GalNAcα1-Thr268; modelling suggested that O-glycosylation has a notable effect on the conformation of MOMP and this modulates BgAg-binding capacity. Glycosylation of MOMP at Thr268 promoted cell-to-cell binding, biofilm formation and adhesion to Caco-2 cells, and was required for the optimal colonization of chickens by C. jejuni, confirming the significance of this O-glycosylation in pathogenesis. PMID:24451549

  9. A microscopic insight from conformational thermodynamics to functional ligand binding in proteins.

    PubMed

    Sikdar, Samapan; Chakrabarti, J; Ghosh, Mahua

    2014-12-01

    We show that the thermodynamics of metal ion-induced conformational changes aid to understand the functions of protein complexes. This is illustrated in the case of a metalloprotein, alpha-lactalbumin (aLA), a divalent metal ion binding protein. We use the histograms of dihedral angles of the protein, generated from all-atom molecular dynamics simulations, to calculate conformational thermodynamics. The thermodynamically destabilized and disordered residues in different conformational states of a protein are proposed to serve as binding sites for ligands. This is tested for β-1,4-galactosyltransferase (β4GalT) binding to the Ca(2+)-aLA complex, in which the binding residues are known. Among the binding residues, the C-terminal residues like aspartate (D) 116, glutamine (Q) 117, tryptophan (W) 118 and leucine (L) 119 are destabilized and disordered and can dock β4GalT onto Ca(2+)-aLA. No such thermodynamically favourable binding residues can be identified in the case of the Mg(2+)-aLA complex. We apply similar analysis to oleic acid binding and predict that the Ca(2+)-aLA complex can bind to oleic acid through the basic histidine (H) 32 of the A2 helix and the hydrophobic residues, namely, isoleucine (I) 59, W60 and I95, of the interfacial cleft. However, the number of destabilized and disordered residues in Mg(2+)-aLA are few, and hence, the oleic acid binding to Mg(2+)-bound aLA is less stable than that to the Ca(2+)-aLA complex. Our analysis can be generalized to understand the functionality of other ligand bound proteins.

  10. Orientation-dependent interaction between Drosophila insulators is a property of this class of regulatory elements.

    PubMed

    Kyrchanova, Olga; Chetverina, Darya; Maksimenko, Oksana; Kullyev, Andrey; Georgiev, Pavel

    2008-12-01

    Insulators are defined as a class of regulatory elements that delimit independent transcriptional domains within eukaryotic genomes. According to previous data, an interaction (pairing) between some Drosophila insulators can support distant activation of a promoter by an enhancer. Here, we have demonstrated that pairs of well-studied insulators such as scs-scs, scs'-scs', 1A2-1A2 and Wari-Wari support distant activation of the white promoter by the yeast GAL4 activator in an orientation-dependent manner. The same is true for the efficiency of the enhancer that stimulates white expression in the eyes. In all insulator pairs tested, stimulation of the white gene was stronger when insulators were inserted between the eye enhancer or GAL4 and the white promoter in opposite orientations relative to each other. As shown previously, Zw5, Su(Hw) and dCTCF proteins are required for the functioning of different insulators that do not interact with each other. Here, strong functional interactions have been revealed between DNA fragments containing binding sites for either Zw5 or Su(Hw) or dCTCF protein but not between heterologous binding sites [Zw5-Su(Hw), dCTCF-Su(Hw), or dCTCF-Zw5]. These results suggest that insulator proteins can support selective interactions between distant regulatory elements.

  11. Galectin-3: A Friend but Not a Foe during Trypanosoma cruzi Experimental Infection.

    PubMed

    da Silva, Aline A; Teixeira, Thaise L; Teixeira, Samuel C; Machado, Fabrício C; Dos Santos, Marlus A; Tomiosso, Tatiana C; Tavares, Paula C B; Brígido, Rebecca T E Silva; Martins, Flávia Alves; Silva, Nadjania S de Lira; Rodrigues, Cassiano C; Roque-Barreira, Maria C; Mortara, Renato A; Lopes, Daiana S; Ávila, Veridiana de Melo Rodrigues; da Silva, Claudio V

    2017-01-01

    Trypanosoma cruzi interacts with host cells, including cardiomyocytes, and induces the production of cytokines, chemokines, metalloproteinases, and glycan-binding proteins. Among the glycan-binding proteins is Galectin-3 (Gal-3), which is upregulated after T. cruzi infection. Gal-3 is a member of the lectin family with affinity for β-galactose containing molecules; it can be found in both the nucleus and the cytoplasm and can be either membrane-associated or secreted. This lectin is involved in several immunoregulatory and parasite infection process. Here, we explored the consequences of Gal-3 deficiency during acute and chronic T. cruzi experimental infection. Our results demonstrated that lack of Gal-3 enhanced in vitro replication of intracellular parasites, increased in vivo systemic parasitaemia, and reduced leukocyte recruitment. Moreover, we observed decreased secretion of pro-inflammatory cytokines in spleen and heart of infected Gal-3 knockout mice. Lack of Gal-3 also led to elevated mast cell recruitment and fibrosis of heart tissue. In conclusion, galectin-3 expression plays a pivotal role in controlling T. cruzi infection, preventing heart damage and fibrosis.

  12. Lewis type 1 antigen synthase (beta3Gal-T5) is transcriptionally regulated by homeoproteins.

    PubMed

    Isshiki, Soichiro; Kudo, Takashi; Nishihara, Shoko; Ikehara, Yuzuru; Togayachi, Akira; Furuya, Akiko; Shitara, Kenya; Kubota, Tetsuro; Watanabe, Masahiko; Kitajima, Masaki; Narimatsu, Hisashi

    2003-09-19

    The type 1 carbohydrate chain, Galbeta1-3GlcNAc, is synthesized by UDP-galactose:beta-N-acetylglucosamine beta1,3-galactosyltransferase (beta3Gal-T). Among six beta3Gal-Ts cloned to date, beta3Gal-T5 is an essential enzyme for the synthesis of type 1 chain in epithelium of digestive tracts or pancreatic tissue. It forms the type 1 structure on glycoproteins produced from such tissues. In the present study, we found that the transcriptional regulation of the beta3Gal-T5 gene is controlled by homeoproteins, i.e. members of caudal-related homeobox protein (Cdx) and hepatocyte nuclear factor (HNF) families. We found an important region (-151 to -121 from the transcription initiation site), named the beta3Gal-T5 control element (GCE), for the promoter activity. GCE contained the consensus sequences for members of the Cdx and HNF families. Mutations introduced into this sequence abolished the transcriptional activity. Four factors, Cdx1, Cdx2, HNF1alpha, and HNF1beta, could bind to GCE and transcriptionally activate the beta3Gal-T5 gene. Transcriptional regulation of the beta3Gal-T5 gene was consistent with that of members of the Cdx and HNF1 families in two in vivo systems. 1) During in vitro differentiation of Caco-2 cells, transcriptional up-regulation of beta3Gal-T5 was observed in correlation with the increase in transcripts for Cdx2 and HNF1alpha. 2) Both transcript and protein levels of beta3Gal-T5 were determined to be significantly reduced in colon cancer. This down-regulation was correlated with the decrease of Cdx1 and HNF1beta expression in cancer tissue. This is the first finding that a glycosyltransferase gene is transcriptionally regulated under the control of homeoproteins in a tissue-specific manner. beta3Gal-T5, controlled by the intestinal homeoproteins, may play an important role in the specific function of intestinal cells by modifying the carbohydrate structure of glycoproteins.

  13. Recombinant Mucin-Type Fusion Proteins with a Galα1,3Gal Substitution as Clostridium difficile Toxin A Inhibitors

    PubMed Central

    Jin, Chunsheng; Liu, Jining; Karlsson, Niclas G.; Holgersson, Jan

    2016-01-01

    The capability of a recombinant mucin-like fusion protein, P-selectin glycoprotein ligand-1/mouse IgG2b (PSGL-1/mIgG2b), carrying Galα1,3Galβ1,4GlcNAc determinants to bind and inhibit Clostridium difficile toxin A (TcdA) was investigated. The fusion protein, produced by a glyco-engineered stable CHO-K1 cell line and designated C-PGC2, was purified by affinity and gel filtration chromatography from large-scale cultures. Liquid chromatography-mass spectrometry was used to characterize O-glycans released by reductive β-elimination, and new diagnostic ions to distinguish Galα1,3Gal- from Galα1,4Gal-terminated O-glycans were identified. The C-PGC2 cell line, which was 20-fold more sensitive to TcdA than the wild-type CHO-K1, is proposed as a novel cell-based model for TcdA cytotoxicity and neutralization assays. The C-PGC2-produced fusion protein could competitively inhibit TcdA binding to rabbit erythrocytes, making it a high-efficiency inhibitor of the hemagglutination property of TcdA. The fusion protein also exhibited a moderate capability for neutralization of TcdA cytotoxicity in both C-PGC2 and CHO-K1 cells, the former with and the latter without cell surface Galα1,3Galβ1,4GlcNAc sequences. Future studies in animal models of C. difficile infection will reveal its TcdA-inhibitory effect and therapeutic potential in C. difficile-associated diseases. PMID:27456831

  14. The β-Defensin Gallinacin-6 Is Expressed in the Chicken Digestive Tract and Has Antimicrobial Activity against Food-Borne Pathogens▿

    PubMed Central

    van Dijk, Albert; Veldhuizen, Edwin J. A.; Kalkhove, Stefanie I. C.; Tjeerdsma-van Bokhoven, Johanna L. M.; Romijn, Roland A.; Haagsman, Henk P.

    2007-01-01

    Food-borne pathogens are responsible for most cases of food poisoning in developed countries and are often associated with poultry products, including chicken. Little is known about the role of β-defensins in the chicken digestive tract and their efficacy. In this study, the expression of chicken β-defensin gallinacin-6 (Gal-6) and its antimicrobial activity against food-borne pathogens were investigated. Reverse transcription-PCR analysis showed high expression of Gal-6 mRNA in the esophagus and crop, moderate expression in the glandular stomach, and low expression throughout the intestinal tract. Putative transcription factor binding sites for nuclear factor kappa beta, activator protein 1, and nuclear factor interleukin-6 were found in the Gal-6 gene upstream region, which suggests a possible inducible nature of the Gal-6 gene. In colony-counting assays, strong bactericidal and fungicidal activity was observed, including bactericidal activity against food-borne pathogens Campylobacter jejuni, Salmonella enterica serovar Typhimurium, Clostridium perfringens, and Escherichia coli. Treatment with 16 μg/ml synthetic Gal-6 resulted in a 3 log unit reduction in Clostridium perfringens survival within 60 min, indicating fast killing kinetics. Transmission electron microscopy examination of synthetic-Gal-6-treated Clostridium perfringens cells showed dose-dependent changes in morphology after 30 min, including intracellular granulation, cytoplasm retraction, irregular septum formation in dividing cells, and cell lysis. The high expression in the proximal digestive tract and broad antimicrobial activity suggest that chicken β-defensin gallinacin-6 plays an important role in chicken innate host defense. PMID:17194828

  15. Distribution of acetylated histones resulting from Gal4-VP16 recruitment of SAGA and NuA4 complexes

    PubMed Central

    Vignali, Marissa; Steger, David J.; Neely, Kristen E.; Workman, Jerry L.

    2000-01-01

    We analyzed the targeting of histone acetyltransferase (HAT) complexes by DNA-binding activators during transcriptional activation and the resulting distribution of acetylated histones. An in vitro competition assay was developed to acetylate and transcribe a nucleosomal array template in the presence of excess non-specific chromatin, which mimics in vivo conditions. Stimulation of transcription from the nucleosomal array template under competitive conditions by the SAGA and NuA4 HAT complexes depended on the presence of the Gal4-VP16 activator, which recognizes sites in the promoter and directly interacts with these HATs. Importantly, the stimulation of transcription by SAGA and NuA4 depended on the presence of Gal4-VP16 during histone acetylation, and Gal4-VP16-bound nucleosomal templates were acetylated preferentially by SAGA and NuA4 relative to the competitor chromatin. While targeting of the SAGA complex led to H3 acetylation of promoter-proximal nucleosomes, targeting of the NuA4 complex led to a broader domain of H4 acetylation of >3 kbp. Thus, either promoter-proximal H3 acetylation by SAGA or broadly distributed acetylation of H4 by NuA4 activated transcription from chromatin templates. PMID:10835360

  16. A single mutation in Taiwanese H6N1 influenza hemagglutinin switches binding to human-type receptors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    de Vries, Robert P.; Tzarum, Netanel; Peng, Wenjie

    In June 2013, the first case of human infection with an avian H6N1 virus was reported in a Taiwanese woman. Although this was a single non-fatal case, the virus continues to circulate in Taiwanese poultry. As with any emerging avian virus that infects humans, there is concern that acquisition of human-type receptor specificity could enable transmission in the human population. Despite mutations in the receptor-binding pocket of the human H6N1 isolate, it has retained avian-type (NeuAcα2-3Gal) receptor specificity. However, we show here that a single nucleotide substitution, resulting in a change from Gly to Asp at position 225 (G225D), completelymore » switches specificity to human-type (NeuAcα2-6Gal) receptors. Significantly, G225D H6 loses binding to chicken trachea epithelium and is now able to bind to human tracheal tissue. Structural analysis reveals that Asp225 directly interacts with the penultimate Gal of the human-type receptor, stabilizing human receptor binding.« less

  17. Spatial location of neutralizing and non-neutralizing B cell epitopes on domain 1 of ricin toxin’s binding subunit

    PubMed Central

    Rong, Yinghui; Van Slyke, Greta; Vance, David J.; Westfall, Jennifer; Ehrbar, Dylan

    2017-01-01

    Ricin toxin’s binding subunit (RTB) is a galactose-/N-acetylgalactosamine (Gal/GalNac)-specific lectin that mediates uptake and intracellular trafficking of ricin within mammalian cells. Structurally, RTB consists of two globular domains, each divided into three homologous sub-domains (α, β, γ). In this report, we describe five new murine IgG monoclonal antibodies (mAbs) against RTB: MH3, 8A1, 8B3, LF1, and LC5. The mAbs have similar binding affinities (KD) for ricin holotoxin, but displayed a wide range of in vitro toxin-neutralizing activities. Competition ELISAs indicate that the two most potent toxin-neutralizing mAbs (MH3, 8A1), as well as one of the moderate toxin-neutralizing mAbs (LF1), recognize distinct epitopes near the low affinity Gal recognition domain in RTB subdomain 1α. Evaluated in a mouse model of systemic ricin challenge, all five mAbs afforded some benefit against intoxication, but only MH3 was protective. However, neither MH3 nor 24B11, another well-characterized mAb against RTB subdomain 1α, could passively protect mice against a mucosal (intranasal) ricin challenge. This is in contrast to SylH3, a previously characterized mAb directed against an epitope near RTB’s high affinity Gal/GalNac recognition element in sub-domain 2γ, which protected animals against systemic and mucosal ricin exposure. SylH3 was significantly more effective than MH3 and 24B11 at blocking ricin attachment to host cell receptors, suggesting that mucosal immunity to ricin is best imparted by antibodies that target RTB’s high affinity Gal/GalNac recognition element in subdomain 2γ, not the low affinity Gal recognition domain in subdomain 1α. PMID:28700745

  18. Galectin-8 induces partial epithelial–mesenchymal transition with invasive tumorigenic capabilities involving a FAK/EGFR/proteasome pathway in Madin–Darby canine kidney cells

    PubMed Central

    Oyanadel, Claudia; Holmes, Christopher; Pardo, Evelyn; Retamal, Claudio; Shaughnessy, Ronan; Smith, Patricio; Cortés, Priscilla; Bravo-Zehnder, Marcela; Metz, Claudia; Feuerhake, Teo; Romero, Diego; Roa, Juan Carlos; Montecinos, Viviana; Soza, Andrea; González, Alfonso

    2018-01-01

    Epithelial cells can acquire invasive and tumorigenic capabilities through epithelial–mesenchymal-transition (EMT). The glycan-binding protein galectin-8 (Gal-8) activates selective β1-integrins involved in EMT and is overexpressed by certain carcinomas. Here we show that Gal-8 overexpression or exogenous addition promotes proliferation, migration, and invasion in nontumoral Madin–Darby canine kidney (MDCK) cells, involving focal-adhesion kinase (FAK)-mediated transactivation of the epidermal growth factor receptor (EGFR), likely triggered by α5β1integrin binding. Under subconfluent conditions, Gal-8–overexpressing MDCK cells (MDCK-Gal-8H) display hallmarks of EMT, including decreased E-cadherin and up-regulated expression of vimentin, fibronectin, and Snail, as well as increased β-catenin activity. Changes related to migration/invasion included higher expression of α5β1 integrin, extracellular matrix-degrading MMP13 and urokinase plasminogen activator/urokinase plasminogen activator receptor (uPA/uPAR) protease systems. Gal-8–stimulated FAK/EGFR pathway leads to proteasome overactivity characteristic of cancer cells. Yet MDCK-Gal-8H cells still develop apical/basolateral polarity reverting EMT markers and proteasome activity under confluence. This is due to the opposite segregation of Gal-8 secretion (apical) and β1-integrins distribution (basolateral). Strikingly, MDCK-Gal-8H cells acquired tumorigenic potential, as reflected in anchorage-independent growth in soft agar and tumor generation in immunodeficient NSG mice. Therefore, Gal-8 can promote oncogenic-like transformation of epithelial cells through partial and reversible EMT, accompanied by higher proliferation, migration/invasion, and tumorigenic properties. PMID:29298841

  19. Glycomic Characterization of Respiratory Tract Tissues of Ferrets

    PubMed Central

    Jia, Nan; Barclay, Wendy S.; Roberts, Kim; Yen, Hui-Ling; Chan, Renee W. Y.; Lam, Alfred K. Y.; Air, Gillian; Peiris, J. S. Malik; Dell, Anne; Nicholls, John M.; Haslam, Stuart M.

    2014-01-01

    The initial recognition between influenza virus and the host cell is mediated by interactions between the viral surface protein hemagglutinin and sialic acid-terminated glycoconjugates on the host cell surface. The sialic acid residues can be linked to the adjacent monosaccharide by α2–3- or α2–6-type glycosidic bonds. It is this linkage difference that primarily defines the species barrier of the influenza virus infection with α2–3 binding being associated with avian influenza viruses and α2–6 binding being associated with human strains. The ferret has been extensively used as an animal model to study the transmission of influenza. To better understand the validity of this model system, we undertook glycomic characterization of respiratory tissues of ferret, which allows a comparison of potential viral receptors to be made between humans and ferrets. To complement the structural analysis, lectin staining experiments were performed to characterize the regional distributions of glycans along the respiratory tract of ferrets. Finally, the binding between the glycans identified and the hemagglutinins of different strains of influenza viruses was assessed by glycan array experiments. Our data indicated that the respiratory tissues of ferret heterogeneously express both α2–3- and α2–6-linked sialic acids. However, the respiratory tissues of ferret also expressed the Sda epitope (NeuAcα2-3(GalNAcβ1–4)Galβ1–4GlcNAc) and sialylated N,N′-diacetyllactosamine (NeuAcα2–6GalNAcβ1–4GlcNAc), which have not been observed in the human respiratory tract surface epithelium. The presence of the Sda epitope reduces potential binding sites for avian viruses and thus may have implications for the usefulness of the ferret in the study of influenza virus infection. PMID:25135641

  20. Glycomic characterization of respiratory tract tissues of ferrets: implications for its use in influenza virus infection studies.

    PubMed

    Jia, Nan; Barclay, Wendy S; Roberts, Kim; Yen, Hui-Ling; Chan, Renee W Y; Lam, Alfred K Y; Air, Gillian; Peiris, J S Malik; Dell, Anne; Nicholls, John M; Haslam, Stuart M

    2014-10-10

    The initial recognition between influenza virus and the host cell is mediated by interactions between the viral surface protein hemagglutinin and sialic acid-terminated glycoconjugates on the host cell surface. The sialic acid residues can be linked to the adjacent monosaccharide by α2-3- or α2-6-type glycosidic bonds. It is this linkage difference that primarily defines the species barrier of the influenza virus infection with α2-3 binding being associated with avian influenza viruses and α2-6 binding being associated with human strains. The ferret has been extensively used as an animal model to study the transmission of influenza. To better understand the validity of this model system, we undertook glycomic characterization of respiratory tissues of ferret, which allows a comparison of potential viral receptors to be made between humans and ferrets. To complement the structural analysis, lectin staining experiments were performed to characterize the regional distributions of glycans along the respiratory tract of ferrets. Finally, the binding between the glycans identified and the hemagglutinins of different strains of influenza viruses was assessed by glycan array experiments. Our data indicated that the respiratory tissues of ferret heterogeneously express both α2-3- and α2-6-linked sialic acids. However, the respiratory tissues of ferret also expressed the Sda epitope (NeuAcα2-3(GalNAcβ1-4)Galβ1-4GlcNAc) and sialylated N,N'-diacetyllactosamine (NeuAcα2-6GalNAcβ1-4GlcNAc), which have not been observed in the human respiratory tract surface epithelium. The presence of the Sda epitope reduces potential binding sites for avian viruses and thus may have implications for the usefulness of the ferret in the study of influenza virus infection. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  1. Orientation-dependent interaction between Drosophila insulators is a property of this class of regulatory elements

    PubMed Central

    Kyrchanova, Olga; Chetverina, Darya; Maksimenko, Oksana; Kullyev, Andrey; Georgiev, Pavel

    2008-01-01

    Insulators are defined as a class of regulatory elements that delimit independent transcriptional domains within eukaryotic genomes. According to previous data, an interaction (pairing) between some Drosophila insulators can support distant activation of a promoter by an enhancer. Here, we have demonstrated that pairs of well-studied insulators such as scs–scs, scs’–scs’, 1A2–1A2 and Wari–Wari support distant activation of the white promoter by the yeast GAL4 activator in an orientation-dependent manner. The same is true for the efficiency of the enhancer that stimulates white expression in the eyes. In all insulator pairs tested, stimulation of the white gene was stronger when insulators were inserted between the eye enhancer or GAL4 and the white promoter in opposite orientations relative to each other. As shown previously, Zw5, Su(Hw) and dCTCF proteins are required for the functioning of different insulators that do not interact with each other. Here, strong functional interactions have been revealed between DNA fragments containing binding sites for either Zw5 or Su(Hw) or dCTCF protein but not between heterologous binding sites [Zw5–Su(Hw), dCTCF–Su(Hw), or dCTCF–Zw5]. These results suggest that insulator proteins can support selective interactions between distant regulatory elements. PMID:18987002

  2. Screening of binding proteins that interact with Chinese sacbrood virus VP3 capsid protein in Apis cerana larvae cDNA library by the yeast two-hybrid method.

    PubMed

    Fei, Dongliang; Wei, Dong; Yu, Xiaolei; Yue, Jinjin; Li, Ming; Sun, Li; Jiang, Lili; Li, Yijing; Diao, Qingyun; Ma, Mingxiao

    2018-03-15

    Chinese sacbrood virus (CSBV) causes larval death and apiary collapse of Apis cerana. VP3 is a capsid protein of CSBV but its function is poorly understood. To determine the function of VP3 and screen for novel binding proteins that interact with VP3, we conducted yeast two-hybrid screening, glutathione S-transferase pull-down, and co-immunoprecipitation assays. Galectin (GAL) is a protein involved in immune regulation and host-pathogen interactions. The yeast two-hybrid screen implicated GAL as a major VP3-binding candidate. The assays showed that the VP3 interacted with GAL. Identification of these cellular targets and clarifying their contributions to the host-pathogen interaction may be useful for the development of novel therapeutic and prevention strategies against CSBV infection. Copyright © 2018 Elsevier B.V. All rights reserved.

  3. Fatty-binding protein and galectin of Baylisascaris schroederi: Prokaryotic expression and preliminary evaluation of serodiagnostic potential

    PubMed Central

    Sun, Ying; Li, Yu; Wu, Yiran; Xiong, Lang; Li, Caiwu; Wang, Chengdong; Li, Desheng; Lan, Jingchao; Zhang, Zhihe; Jing, Bo; Gu, Xiaobing; Xie, Yue; Lai, Weimin; Peng, Xuerong

    2017-01-01

    Baylisascaris schroederi is a common parasite of captive giant pandas. The diagnosis of this ascariasis is normally carried out by a sedimentation-floatation method or PCR to detect eggs in feces, but neither method is suitable for early diagnosis. Fatty acid-binding protein (FABP) and galectin (GAL) exist in various animals and participate in important biology of parasites. Because of their good immunogenicity, they are seen as potential antigens for the diagnosis of parasitic diseases. In this study, we cloned and expressed recombinant FABP and GAL from B. schroederi (rBs-FABP and rBs-GAL) and developed indirect enzyme-linked immunosorbent assays (ELISAs) to evaluate their potential for diagnosing ascariasis in giant pandas. Immunolocalization showed that Bs-FABP and Bs-GAL were widely distributed in adult worms. The ELISA based on rBs-FABP showed sensitivity of 95.8% (23/24) and specificity of 100% (12/12), and that based on rBs-GAL had sensitivity of 91.7% (22/24) and specificity of 100% (12/12). PMID:28750056

  4. Modulation of kidney urea transporter UT-A3 activity by alpha2,6-sialylation

    PubMed Central

    Qian, Xiaoqian; Sands, Jeff M.; Song, Xiang; Chen, Guangping

    2016-01-01

    Two urea transporters, UT-A1 and UT-A3, are expressed in the kidney terminal inner medullary collecting duct (IMCD) and are important for the production of concentrated urine. UT-A1, as the largest isoform of all UT-A urea transporters, has gained much attention and been extensively studied; however the role and the regulation of UT-A3 are less explored. In this study, we investigated UT-A3 regulation by glycosylation modification. A site-directed mutagenesis verified a single glycosylation site in UT-A3 at Asn279. Loss of the glycosylation reduced forskolin-stimulated UT-A3 cell membrane expression and urea transport activity. UT-A3 has two glycosylation forms, 45 kDa and 65 kDa. Using sugar specific-binding lectins, the UT-A3 glycosylation profile was examined. The 45 kDa form was pulled down by lectin Con A and GNL, indicating an immature glycan with a high amount of mannose (Man); whereas the 65 kDa form is a mature glycan composed of acetylglucosamine (GlcNAc), poly-N-acetyllactosame (poly-LacNAc) that was pulled down by WGA and tomato lectin, respectively. Interestingly, the mature form of UT-A3 glycan contains significant amounts of sialic acid. We explored the enzymes responsible for directing UT-A3 sialylation. Sialyltransferase ST6GalI, but not ST3GalIV, catabolizes UT-A3 α2, 6-sialylation. Activation of PKC by PDB treatment promoted UT-A3 glycan sialylation and membrane surface expression. PKC inhibitor chelerythrine blocks ST6GalI-induced UT-A3 sialylation. Increased sialylation by ST6GalI increased UT-A3 protein stability and urea transport activity. Collectively, our study reveals a novel mechanism of UT-A3 regulation by ST6GalI-mediated sialylation modification that may play an important in kidney urea reabsorption and the urinary concentrating mechanism. PMID:26972907

  5. Galectin-3 Induces Clustering of CD147 and Integrin-β1 Transmembrane Glycoprotein Receptors on the RPE Cell Surface

    PubMed Central

    Priglinger, Claudia S.; Szober, Christoph M.; Priglinger, Siegfried G.; Merl, Juliane; Euler, Kerstin N.; Kernt, Marcus; Gondi, Gabor; Behler, Jennifer; Geerlof, Arie; Kampik, Anselm; Ueffing, Marius; Hauck, Stefanie M.

    2013-01-01

    Proliferative vitreoretinopathy (PVR) is a blinding disease frequently occurring after retinal detachment surgery. Adhesion, migration and matrix remodeling of dedifferentiated retinal pigment epithelial (RPE) cells characterize the onset of the disease. Treatment options are still restrained and identification of factors responsible for the abnormal behavior of the RPE cells will facilitate the development of novel therapeutics. Galectin-3, a carbohydrate-binding protein, was previously found to inhibit attachment and spreading of retinal pigment epithelial cells, and thus bares the potential to counteract PVR-associated cellular events. However, the identities of the corresponding cell surface glycoprotein receptor proteins on RPE cells are not known. Here we characterize RPE-specific Gal-3 containing glycoprotein complexes using a proteomic approach. Integrin-β1, integrin-α3 and CD147/EMMPRIN, a transmembrane glycoprotein implicated in regulating matrix metalloproteinase induction, were identified as potential Gal-3 interactors on RPE cell surfaces. In reciprocal immunoprecipitation experiments we confirmed that Gal-3 associated with CD147 and integrin-β1, but not with integrin-α3. Additionally, association of Gal-3 with CD147 and integrin-β1 was observed in co-localization analyses, while integrin-α3 only partially co-localized with Gal-3. Blocking of CD147 and integrin-β1 on RPE cell surfaces inhibited binding of Gal-3, whereas blocking of integrin-α3 failed to do so, suggesting that integrin-α3 is rather an indirect interactor. Importantly, Gal-3 binding promoted pronounced clustering and co-localization of CD147 and integrin-β1, with only partial association of integrin-α3. Finally, we show that RPE derived CD147 and integrin-β1, but not integrin-α3, carry predominantly β-1,6-N-actyl-D-glucosamine-branched glycans, which are high-affinity ligands for Gal-3. We conclude from these data that extracellular Gal-3 triggers clustering of CD147 and integrin-β1 via interaction with β1,6-branched N-glycans on RPE cells and hypothesize that Gal-3 acts as a positive regulator for CD147/integrin-β1 clustering and therefore modifies RPE cell behavior contributing to the pathogenesis of PVR. Further investigations at this pathway may aid in the development of specific therapies for PVR. PMID:23922889

  6. Fluorescence Imaging of Streptococcus pneumoniae with the Helix pomatia agglutinin (HPA) As a Potential, Rapid Diagnostic Tool

    PubMed Central

    Domenech, Mirian; García, Ernesto

    2017-01-01

    Streptococcus pneumoniae is a common human pathogen and a major causal agent of life-threatening infections that can either be respiratory or non-respiratory. It is well known that the Helix pomatia (edible snail) agglutinin (HPA) lectin shows specificity for terminal αGalNAc residues present, among other locations, in the Forssman pentasaccharide (αGalNAc1→3βGalNAc1→3αGal1→4βGal1→4βGlc). Based on experiments involving choline-independent mutants and different growth conditions, we propose here that HPA recognizes the αGalNAc terminal residues of the cell wall teichoic and lipoteichoic acids of S. pneumoniae. In addition, experimental evidence showing that pneumococci can be specifically labeled with HPA when growing as planktonic cultures as well as in mixed biofilms of S. pneumoniae and Haemophilus influenzae has been obtained. It should be underlined that pneumococci were HPA-labeled despite of the presence of a capsule. Although some non-pneumococcal species also bind the agglutinin, HPA-binding combined with fluorescence microscopy constitutes a suitable tool for identifying S. pneumoniae and, if used in conjunction with Gram staining and/or other suitable technique like antigen detection, it may potentially facilitate a fast and accurate diagnosis of pneumococcal infections. PMID:28769901

  7. An α-subunit loop structure is required for GM2 activator protein binding by β-hexosaminidase A

    PubMed Central

    Zarghooni, Maryam; Bukovac, Scott; Tropak, Michael; Callahan, John; Mahuran, Don

    2010-01-01

    The α- and/or β-subunits of human β-hexosaminidase A (αβ) and B (ββ) are ~60% identical. In vivo only β-hexosaminidase A can utilize GM2 ganglioside as a substrate, but requires the GM2 activator protein to bind GM2 ganglioside and then interact with the enzyme, placing the terminal GalNAc residue in the active site of the α-subunit. A model for this interaction suggests that two loop structures, present only in the α-subunit, may be critical to this binding. Three amino acids in one of these loops are not encoded in the HEXB gene, while four from the other are removed posttranslationally from the pro-β-subunit. Natural substrate assays with forms of hexosaminidase A containing mutant α-subunits demonstrate that only the site that is removed from the β-subunit during its maturation is critical for the interaction. Our data suggest an unexpected biological role for such proteolytic processing events. PMID:15485660

  8. A single mutation in Taiwanese H6N1 influenza hemagglutinin switches binding to human-type receptors.

    PubMed

    de Vries, Robert P; Tzarum, Netanel; Peng, Wenjie; Thompson, Andrew J; Ambepitiya Wickramasinghe, Iresha N; de la Pena, Alba T Torrents; van Breemen, Marielle J; Bouwman, Kim M; Zhu, Xueyong; McBride, Ryan; Yu, Wenli; Sanders, Rogier W; Verheije, Monique H; Wilson, Ian A; Paulson, James C

    2017-09-01

    In June 2013, the first case of human infection with an avian H6N1 virus was reported in a Taiwanese woman. Although this was a single non-fatal case, the virus continues to circulate in Taiwanese poultry. As with any emerging avian virus that infects humans, there is concern that acquisition of human-type receptor specificity could enable transmission in the human population. Despite mutations in the receptor-binding pocket of the human H6N1 isolate, it has retained avian-type (NeuAcα2-3Gal) receptor specificity. However, we show here that a single nucleotide substitution, resulting in a change from Gly to Asp at position 225 (G225D), completely switches specificity to human-type (NeuAcα2-6Gal) receptors. Significantly, G225D H6 loses binding to chicken trachea epithelium and is now able to bind to human tracheal tissue. Structural analysis reveals that Asp225 directly interacts with the penultimate Gal of the human-type receptor, stabilizing human receptor binding. © 2017 The Authors. Published under the terms of the CC BY 4.0 license.

  9. Synthesis of chondroitin sulfate CC and DD tetrasaccharides and interactions with 2H6 and LY111.

    PubMed

    Matsushita, Kenya; Nakata, Tomomi; Takeda-Okuda, Naoko; Nadanaka, Satomi; Kitagawa, Hiroshi; Tamura, Jun-Ichi

    2018-03-01

    We synthesized the biotinylated chondroitin sulfate tetrasaccharides CS-CC [-3)βGalNAc6S(1-4)βGlcA(1-] 2 and CS-DD [-3)βGalNAc6S(1-4)βGlcA2S(1-] 2 which possess sulfate groups at O-6 of GalNAc and an additional sulfate group at O-2 of GlcA, respectively. We also analyzed interactions among CS-CC and CS-DD and the antibodies 2H6 and LY111, both of which are known to bind with CS-A, while CS-DD was shown for the first time to bind with both antibodies. Copyright © 2018 Elsevier Ltd. All rights reserved.

  10. The androgen receptor controls expression of the cancer-associated sTn antigen and cell adhesion through induction of ST6GalNAc1 in prostate cancer

    PubMed Central

    Munkley, Jennifer; Oltean, Sebastian; Vodák, Daniel; Wilson, Brian T.; Livermore, Karen E.; Zhou, Yan; Star, Eleanor; Floros, Vasileios I.; Johannessen, Bjarne; Knight, Bridget; McCullagh, Paul; McGrath, John; Crundwell, Malcolm; Skotheim, Rolf I.; Robson, Craig N.; Leung, Hing Y.; Harries, Lorna W.; Rajan, Prabhakar; Mills, Ian G.; Elliott, David J.

    2015-01-01

    Patterns of glycosylation are important in cancer, but the molecular mechanisms that drive changes are often poorly understood. The androgen receptor drives prostate cancer (PCa) development and progression to lethal metastatic castration-resistant disease. Here we used RNA-Seq coupled with bioinformatic analyses of androgen-receptor (AR) binding sites and clinical PCa expression array data to identify ST6GalNAc1 as a direct and rapidly activated target gene of the AR in PCa cells. ST6GalNAc1 encodes a sialytransferase that catalyses formation of the cancer-associated sialyl-Tn antigen (sTn), which we find is also induced by androgen exposure. Androgens induce expression of a novel splice variant of the ST6GalNAc1 protein in PCa cells. This splice variant encodes a shorter protein isoform that is still fully functional as a sialyltransferase and able to induce expression of the sTn-antigen. Surprisingly, given its high expression in tumours, stable expression of ST6GalNAc1 in PCa cells reduced formation of stable tumours in mice, reduced cell adhesion and induced a switch towards a more mesenchymal-like cell phenotype in vitro. ST6GalNAc1 has a dynamic expression pattern in clinical datasets, being significantly up-regulated in primary prostate carcinoma but relatively down-regulated in established metastatic tissue. ST6GalNAc1 is frequently upregulated concurrently with another important glycosylation enzyme GCNT1 previously associated with prostate cancer progression and implicated in Sialyl Lewis X antigen synthesis. Together our data establishes an androgen-dependent mechanism for sTn antigen expression in PCa, and are consistent with a general role for the androgen receptor in driving important coordinate changes to the glycoproteome during PCa progression. PMID:26452038

  11. Seismic hazard study for selected sites in New Mexico and Nevada

    NASA Astrophysics Data System (ADS)

    Johnston, J. C.

    1983-12-01

    Seismic hazard evaluations were conducted for specific sites in New Mexico and Nevada. For New Mexico, a model of seismicity was developed from historical accounts of medium to large shocks and the current microactivity record from local networks. Ninety percent confidence levels at Albuquerque and Roswell were computed to be 56 gals for a 10-year period and 77 gals for a 20-year period. Values of ground motion for Clovis were below these values. Peak velocity and displacement were also computed for each site. Deterministic spectra based on the estimated maximum credible earthquake for the zones which the sites occupy were also computed. For the sites in Nevada, the regionalizations used in Battis (1982) for the uniform seismicity model were slightly modified. For 10- and 20-year time periods, peak acceleration values for Indian Springs were computed to be 94 gals and 123 gals and for Hawthorne 206 gals and 268 gals. Deterministic spectra were also computed. The input parameters were well determined for the analysis for the Nevada sites because of the abundance of data. The values computed for New Mexico, however, are likely upper limits. As more data are collected from the area of the Rio Grande rift zone, the pattern of seismicity will become better understood. At this time a more detailed, and thus more accurate, model may emerge.

  12. Corneal surface glycosylation is modulated by IL-1R and Pseudomonas aeruginosa challenge but is insufficient for inhibiting bacterial binding.

    PubMed

    Jolly, Amber L; Agarwal, Paresh; Metruccio, Matteo M E; Spiciarich, David R; Evans, David J; Bertozzi, Carolyn R; Fleiszig, Suzanne M J

    2017-06-01

    Cell surface glycosylation is thought to be involved in barrier function against microbes at mucosal surfaces. Previously we showed that the epithelium of healthy mouse corneas becomes vulnerable to Pseudomonas aeruginosa adhesion if it lacks the innate defense protein MyD88 (myeloid differentiation primary response gene 88), or after superficial injury by blotting with tissue paper. Here we explored their effect on corneal surface glycosylation using a metabolic label, tetra-acetylated N -azidoacetylgalactosamine (Ac 4 GalNAz). Ac 4 GalNAz treatment labeled the surface of healthy mouse corneas, leaving most cells viable, and bacteria preferentially associated with GalNAz-labeled regions. Surprisingly, corneas from MyD88 -/- mice displayed similar GalNAz labeling to wild-type corneas, but labeling was reduced and patchy on IL-1 receptor (IL-1R)-knockout mouse corneas ( P < 0.05, ANOVA). Tissue paper blotting removed GalNAz-labeled surface cells, causing DAPI labeling (permeabilization) of underlying cells. MS of material collected on the tissue paper blots revealed 67 GalNAz-labeled proteins, including intracellular proteins. These data show that the normal distribution of surface glycosylation requires IL-1R, but not MyD88, and is not sufficient to prevent bacterial binding. They also suggest increased P. aeruginosa adhesion to MyD88 -/- and blotted corneas is not due to reduction in total surface glycosylation, and for tissue paper blotting is likely due to cell permeabilization.-Jolly, A. L., Agarwal, P., Metruccio, M. M. E., Spiciarich, D. R., Evans, D. J., Bertozzi, C. R., Fleiszig, S. M. J. Corneal surface glycosylation is modulated by IL-1R and Pseudomonas aeruginosa challenge but is insufficient for inhibiting bacterial binding. © FASEB.

  13. Leishmania major survival in selective Phlebotomus papatasi sand fly vector requires a specific SCG-encoded lipophosphoglycan galactosylation pattern.

    PubMed

    Dobson, Deborah E; Kamhawi, Shaden; Lawyer, Phillip; Turco, Salvatore J; Beverley, Stephen M; Sacks, David L

    2010-11-11

    Phlebotomine sand flies that transmit the protozoan parasite Leishmania differ greatly in their ability to support different parasite species or strains in the laboratory: while some show considerable selectivity, others are more permissive. In "selective" sand flies, Leishmania binding and survival in the fly midgut typically depends upon the abundant promastigote surface adhesin lipophosphoglycan (LPG), which exhibits species- and strain-specific modifications of the dominant phosphoglycan (PG) repeat units. For the "selective" fly Phlebotomus papatasi PpapJ, side chain galactosyl-modifications (scGal) of PG repeats play key roles in parasite binding. We probed the specificity and properties of this scGal-LPG PAMP (Pathogen Associated Molecular Pattern) through studies of natural isolates exhibiting a wide range of galactosylation patterns, and of a panel of isogenic L. major engineered to express similar scGal-LPG diversity by transfection of SCG-encoded β1,3-galactosyltransferases with different activities. Surprisingly, both 'poly-scGal' and 'null-scGal' lines survived poorly relative to PpapJ-sympatric L. major FV1 and other 'mono-scGal' lines. However, survival of all lines was equivalent in P. duboscqi, which naturally transmit L. major strains bearing 'null-scGal'-LPG PAMPs. We then asked whether scGal-LPG-mediated interactions were sufficient for PpapJ midgut survival by engineering Leishmania donovani, which normally express unsubstituted LPG, to express a 'PpapJ-optimal' scGal-LPG PAMP. Unexpectedly, these "L. major FV1-cloaked" L. donovani-SCG lines remained unable to survive within PpapJ flies. These studies establish that midgut survival of L. major in PpapJ flies is exquisitely sensitive to the scGal-LPG PAMP, requiring a specific 'mono-scGal' pattern. However, failure of 'mono-scGal' L. donovani-SCG lines to survive in selective PpapJ flies suggests a requirement for an additional, as yet unidentified L. major-specific parasite factor(s). The interplay of the LPG PAMP and additional factor(s) with sand fly midgut receptors may determine whether a given sand fly host is "selective" or "permissive", with important consequences to both disease transmission and the natural co-evolution of sand flies and Leishmania.

  14. Avian and human influenza virus compatible sialic acid receptors in little brown bats.

    PubMed

    Chothe, Shubhada K; Bhushan, Gitanjali; Nissly, Ruth H; Yeh, Yin-Ting; Brown, Justin; Turner, Gregory; Fisher, Jenny; Sewall, Brent J; Reeder, DeeAnn M; Terrones, Mauricio; Jayarao, Bhushan M; Kuchipudi, Suresh V

    2017-04-06

    Influenza A viruses (IAVs) continue to threaten animal and human health globally. Bats are asymptomatic reservoirs for many zoonotic viruses. Recent reports of two novel IAVs in fruit bats and serological evidence of avian influenza virus (AIV) H9 infection in frugivorous bats raise questions about the role of bats in IAV epidemiology. IAVs bind to sialic acid (SA) receptors on host cells, and it is widely believed that hosts expressing both SA α2,3-Gal and SA α2,6-Gal receptors could facilitate genetic reassortment of avian and human IAVs. We found abundant co-expression of both avian (SA α2,3-Gal) and human (SA α2,6-Gal) type SA receptors in little brown bats (LBBs) that were compatible with avian and human IAV binding. This first ever study of IAV receptors in a bat species suggest that LBBs, a widely-distributed bat species in North America, could potentially be co-infected with avian and human IAVs, facilitating the emergence of zoonotic strains.

  15. Structure of a lectin with antitumoral properties in king bolete (Boletus edulis) mushrooms.

    PubMed

    Bovi, Michele; Carrizo, Maria E; Capaldi, Stefano; Perduca, Massimiliano; Chiarelli, Laurent R; Galliano, Monica; Monaco, Hugo L

    2011-08-01

    A novel lectin has been isolated from the fruiting bodies of the common edible mushroom Boletus edulis (king bolete, penny bun, porcino or cep) by affinity chromatography on a chitin column. We propose for the lectin the name BEL (B. edulis lectin). BEL inhibits selectively the proliferation of several malignant cell lines and binds the neoplastic cell-specific T-antigen disaccharide, Galβ1-3GalNAc. The lectin was structurally characterized: the molecule is a homotetramer and the 142-amino acid sequence of the chains was determined. The protein belongs to the saline-soluble family of mushroom fruiting body-specific lectins. BEL was also crystallized and its three-dimensional structure was determined by X-ray diffraction to 1.15 Å resolution. The structure is similar to that of Agaricus bisporus lectin. Using the appropriate co-crystals, the interactions of BEL with specific mono- and disaccharides were also studied by X-ray diffraction. The six structures of carbohydrate complexes reported here provide details of the interactions of the ligands with the lectin and shed light on the selectivity of the two distinct binding sites present in each protomer.

  16. Localized Chemical Remodeling for Live Cell Imaging of Protein-Specific Glycoform.

    PubMed

    Hui, Jingjing; Bao, Lei; Li, Siqiao; Zhang, Yi; Feng, Yimei; Ding, Lin; Ju, Huangxian

    2017-07-03

    Live cell imaging of protein-specific glycoforms is important for the elucidation of glycosylation mechanisms and identification of disease states. The currently used metabolic oligosaccharide engineering (MOE) technology permits routinely global chemical remodeling (GCM) for carbohydrate site of interest, but can exert unnecessary whole-cell scale perturbation and generate unpredictable metabolic efficiency issue. A localized chemical remodeling (LCM) strategy for efficient and reliable access to protein-specific glycoform information is reported. The proof-of-concept protocol developed for MUC1-specific terminal galactose/N-acetylgalactosamine (Gal/GalNAc) combines affinity binding, off-on switchable catalytic activity, and proximity catalysis to create a reactive handle for bioorthogonal labeling and imaging. Noteworthy assay features associated with LCM as compared with MOE include minimum target cell perturbation, short reaction timeframe, effectiveness as a molecular ruler, and quantitative analysis capability. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Cell- and stage-specific localization of galectin-3, a β-galactoside-binding lectin, in a mouse model of experimental autoimmune encephalomyelitis.

    PubMed

    Itabashi, Tetsuya; Arima, Yasunobu; Kamimura, Daisuke; Higuchi, Kotaro; Bando, Yoshio; Takahashi-Iwanaga, Hiromi; Murakami, Masaaki; Watanabe, Masahiko; Iwanaga, Toshihiko; Nio-Kobayashi, Junko

    2018-06-16

    Multiple sclerosis (MS) is an autoimmune disease in which pathogenic T cells play an important role, and an experimental autoimmune encephalomyelitis (EAE) is used as an animal model of MS. Galectins are β-galactoside-binding lectins and involved in various physiological and pathological events. Among fifteen members of galectins, galectin-1, -8, and -9 play immunosuppressive roles in MS and EAE; however, the role of galectin-3 (gal-3) is complex and controversial. We examined expression of gal-3 in the spinal cord and nerve roots of EAE mice. No immunohistochemical signals were detected in naïve mice, whereas gal-3 appeared at lower lumbar levels of the spinal cord and nerve roots in EAE mice. In the spinal cord, gal-3-positive cells were activated microglia and/or infiltrating macrophages, which were round in shape and intensified for the lysosomal enzyme, cathepsin D, indicating elevated phagocytic activity. Gal-3-positive cells in the spinal cord were most abundant during the peak symptomatic period. In the recovery period, they disappeared from the spinal parenchyma but remained at moderate levels in the pia mater. Interestingly, gal-3-positive cells selectively appeared in ventral, but not dorsal, nerve roots running through the spinal canal, with expression peaking during the recovery period. In ventral nerve roots, the major cell type expressing gal-3 was a specific population of Schwann cells that surround unmyelinated axons and express the biosynthetic enzyme for l-serine, a potent neurotrophic amino acid. Gal-3 was also induced in Iba1/F4/80-positive macrophages, which engulf damaged myelin and axon debris. Thus, gal-3 is induced in distinct cell types that are engaged in removal of damaged axons and cell debris and axon regeneration and remyelination, suggesting a potential neuroprotective role of gal-3 in EAE mice. Copyright © 2018. Published by Elsevier Ltd.

  18. ST3GAL1-Associated Transcriptomic Program in Glioblastoma Tumor Growth, Invasion, and Prognosis.

    PubMed

    Chong, Yuk Kien; Sandanaraj, Edwin; Koh, Lynnette W H; Thangaveloo, Moogaambikai; Tan, Melanie S Y; Koh, Geraldene R H; Toh, Tan Boon; Lim, Grace G Y; Holbrook, Joanna D; Kon, Oi Lian; Nadarajah, Mahendran; Ng, Ivan; Ng, Wai Hoe; Tan, Nguan Soon; Lim, Kah Leong; Tang, Carol; Ang, Beng Ti

    2016-02-01

    Cell surface sialylation is associated with tumor cell invasiveness in many cancers. Glioblastoma is the most malignant primary brain tumor and is highly infiltrative. ST3GAL1 sialyltransferase gene is amplified in a subclass of glioblastomas, and its role in tumor cell self-renewal remains unexplored. Self-renewal of patient glioma cells was evaluated using clonogenic, viability, and invasiveness assays. ST3GAL1 was identified from differentially expressed genes in Peanut Agglutinin-stained cells and validated in REMBRANDT (n = 390) and Gravendeel (n = 276) clinical databases. Gene set enrichment analysis revealed upstream processes. TGFβ signaling on ST3GAL1 transcription was assessed using chromatin immunoprecipitation. Transcriptome analysis of ST3GAL1 knockdown cells was done to identify downstream pathways. A constitutively active FoxM1 mutant lacking critical anaphase-promoting complex/cyclosome ([APC/C]-Cdh1) binding sites was used to evaluate ST3Gal1-mediated regulation of FoxM1 protein. Finally, the prognostic role of ST3Gal1 was determined using an orthotopic xenograft model (3 mice groups comprising nontargeting and 2 clones of ST3GAL1 knockdown in NNI-11 [8 per group] and NNI-21 [6 per group]), and the correlation with patient clinical information. All statistical tests on patients' data were two-sided; other P values below are one-sided. High ST3GAL1 expression defines an invasive subfraction with self-renewal capacity; its loss of function prolongs survival in a mouse model established from mesenchymal NNI-11 (P < .001; groups of 8 in 3 arms: nontargeting, C1, and C2 clones of ST3GAL1 knockdown). ST3GAL1 transcriptomic program stratifies patient survival (hazard ratio [HR] = 2.47, 95% confidence interval [CI] = 1.72 to 3.55, REMBRANDT P = 1.92 x 10⁻⁸; HR = 2.89, 95% CI = 1.94 to 4.30, Gravendeel P = 1.05 x 10⁻¹¹), independent of age and histology, and associates with higher tumor grade and T2 volume (P = 1.46 x 10⁻⁴). TGFβ signaling, elevated in mesenchymal patients, correlates with high ST3GAL1 (REMBRANDT gliomacor = 0.31, P = 2.29 x 10⁻¹⁰; Gravendeel gliomacor = 0.50, P = 3.63 x 10⁻²⁰). The transcriptomic program upon ST3GAL1 knockdown enriches for mitotic cell cycle processes. FoxM1 was identified as a statistically significantly modulated gene (P = 2.25 x 10⁻⁵) and mediates ST3Gal1 signaling via the (APC/C)-Cdh1 complex. The ST3GAL1-associated transcriptomic program portends poor prognosis in glioma patients and enriches for higher tumor grades of the mesenchymal molecular classification. We show that ST3Gal1-regulated self-renewal traits are crucial to the sustenance of glioblastoma multiforme growth. © The Author 2015. Published by Oxford University Press.

  19. ST3GAL1-Associated Transcriptomic Program in Glioblastoma Tumor Growth, Invasion, and Prognosis

    PubMed Central

    Chong, Yuk Kien; Sandanaraj, Edwin; Koh, Lynnette W. H.; Thangaveloo, Moogaambikai; Tan, Melanie S. Y.; Koh, Geraldene R. H.; Toh, Tan Boon; Lim, Grace G. Y.; Holbrook, Joanna D.; Kon, Oi Lian; Nadarajah, Mahendran; Ng, Ivan; Ng, Wai Hoe; Tan, Nguan Soon; Lim, Kah Leong

    2016-01-01

    Background: Cell surface sialylation is associated with tumor cell invasiveness in many cancers. Glioblastoma is the most malignant primary brain tumor and is highly infiltrative. ST3GAL1 sialyltransferase gene is amplified in a subclass of glioblastomas, and its role in tumor cell self-renewal remains unexplored. Methods: Self-renewal of patient glioma cells was evaluated using clonogenic, viability, and invasiveness assays. ST3GAL1 was identified from differentially expressed genes in Peanut Agglutinin–stained cells and validated in REMBRANDT (n = 390) and Gravendeel (n = 276) clinical databases. Gene set enrichment analysis revealed upstream processes. TGFβ signaling on ST3GAL1 transcription was assessed using chromatin immunoprecipitation. Transcriptome analysis of ST3GAL1 knockdown cells was done to identify downstream pathways. A constitutively active FoxM1 mutant lacking critical anaphase-promoting complex/cyclosome ([APC/C]-Cdh1) binding sites was used to evaluate ST3Gal1-mediated regulation of FoxM1 protein. Finally, the prognostic role of ST3Gal1 was determined using an orthotopic xenograft model (3 mice groups comprising nontargeting and 2 clones of ST3GAL1 knockdown in NNI-11 [8 per group] and NNI-21 [6 per group]), and the correlation with patient clinical information. All statistical tests on patients’ data were two-sided; other P values below are one-sided. Results: High ST3GAL1 expression defines an invasive subfraction with self-renewal capacity; its loss of function prolongs survival in a mouse model established from mesenchymal NNI-11 (P < .001; groups of 8 in 3 arms: nontargeting, C1, and C2 clones of ST3GAL1 knockdown). ST3GAL1 transcriptomic program stratifies patient survival (hazard ratio [HR] = 2.47, 95% confidence interval [CI] = 1.72 to 3.55, REMBRANDT P = 1.92x10-8; HR = 2.89, 95% CI = 1.94 to 4.30, Gravendeel P = 1.05x10-11), independent of age and histology, and associates with higher tumor grade and T2 volume (P = 1.46x10-4). TGFβ signaling, elevated in mesenchymal patients, correlates with high ST3GAL1 (REMBRANDT gliomacor = 0.31, P = 2.29x10-10; Gravendeel gliomacor = 0.50, P = 3.63x10-20). The transcriptomic program upon ST3GAL1 knockdown enriches for mitotic cell cycle processes. FoxM1 was identified as a statistically significantly modulated gene (P = 2.25x10-5) and mediates ST3Gal1 signaling via the (APC/C)-Cdh1 complex. Conclusions: The ST3GAL1-associated transcriptomic program portends poor prognosis in glioma patients and enriches for higher tumor grades of the mesenchymal molecular classification. We show that ST3Gal1-regulated self-renewal traits are crucial to the sustenance of glioblastoma multiforme growth. PMID:26547933

  20. The glycan-binding protein galectin-1 controls survival of epithelial cells along the crypt-villus axis of small intestine.

    PubMed

    Muglia, C; Mercer, N; Toscano, M A; Schattner, M; Pozner, R; Cerliani, J P; Gobbi, R Papa; Rabinovich, G A; Docena, G H

    2011-05-26

    Intestinal epithelial cells serve as mechanical barriers and active components of the mucosal immune system. These cells migrate from the crypt to the tip of the villus, where different stimuli can differentially affect their survival. Here we investigated, using in vitro and in vivo strategies, the role of galectin-1 (Gal-1), an evolutionarily conserved glycan-binding protein, in modulating the survival of human and mouse enterocytes. Both Gal-1 and its specific glyco-receptors were broadly expressed in small bowel enterocytes. Exogenous Gal-1 reduced the viability of enterocytes through apoptotic mechanisms involving activation of both caspase and mitochondrial pathways. Consistent with these findings, apoptotic cells were mainly detected at the tip of the villi, following administration of Gal-1. Moreover, Gal-1-deficient (Lgals1(-/-)) mice showed longer villi compared with their wild-type counterparts in vivo. In an experimental model of starvation, fasted wild-type mice displayed reduced villi and lower intestinal weight compared with Lgals1(-/-) mutant mice, an effect reflected by changes in the frequency of enterocyte apoptosis. Of note, human small bowel enterocytes were also prone to this pro-apoptotic effect. Thus, Gal-1 is broadly expressed in mucosal tissue and influences the viability of human and mouse enterocytes, an effect which might influence the migration of these cells from the crypt, the integrity of the villus and the epithelial barrier function.

  1. Structure and binding analysis of Polyporus squamosus lectin in complex with the Neu5Acα2-6Galβ1-4GlcNAc human-type influenza receptor

    PubMed Central

    Kadirvelraj, Renuka; Grant, Oliver C; Goldstein, Irwin J; Winter, Harry C; Tateno, Hiroaki; Fadda, Elisa; Woods, Robert J

    2011-01-01

    Glycan chains that terminate in sialic acid (Neu5Ac) are frequently the receptors targeted by pathogens for initial adhesion. Carbohydrate-binding proteins (lectins) with specificity for Neu5Ac are particularly useful in the detection and isolation of sialylated glycoconjugates, such as those associated with pathogen adhesion as well as those characteristic of several diseases including cancer. Structural studies of lectins are essential in order to understand the origin of their specificity, which is particularly important when employing such reagents as diagnostic tools. Here, we report a crystallographic and molecular dynamics (MD) analysis of a lectin from Polyporus squamosus (PSL) that is specific for glycans terminating with the sequence Neu5Acα2-6Galβ. Because of its importance as a histological reagent, the PSL structure was solved (to 1.7 Å) in complex with a trisaccharide, whose sequence (Neu5Acα2-6Galβ1-4GlcNAc) is exploited by influenza A hemagglutinin for viral adhesion to human tissue. The structural data illuminate the origin of the high specificity of PSL for the Neu5Acα2-6Gal sequence. Theoretical binding free energies derived from the MD data confirm the key interactions identified crystallographically and provide additional insight into the relative contributions from each amino acid, as well as estimates of the importance of entropic and enthalpic contributions to binding. PMID:21436237

  2. Acceleration of Wound Healing by α-gal Nanoparticles Interacting with the Natural Anti-Gal Antibody

    PubMed Central

    Galili, Uri

    2015-01-01

    Application of α-gal nanoparticles to wounds and burns induces accelerated healing by harnessing the natural anti-Gal antibody which constitutes ~1% of human immunoglobulins. α-gal nanoparticles present multiple α-gal epitopes (Galα1-3Galβ1-4GlcNAc-R), the carbohydrate ligand of anti-Gal. Studied α-gal nanoparticles were comprised of glycolipids with α-gal epitopes, phospholipids, and cholesterol. Binding of anti-Gal to α-gal nanoparticles in wounds activates the complement cascade, resulting in formation of chemotactic complement cleavage peptides that induce rapid recruitment of many macrophages. The Fc/Fcγ receptors interaction between anti-Gal coating α-gal nanoparticles and the recruited macrophages activates macrophages to produce cytokines/growth factors that promote wound healing and recruit stem cells. Studies of wound healing by α-gal nanoparticles were feasible in α1,3galactosyltransferase knockout mice and pigs. In contrast to other nonprimate mammals, these mice and pigs lack the α-gal epitope, and thus they are not immunotolerant to it and produce anti-Gal. Treatment of skin wounds and burns with α-gal nanoparticles resulted in 40–60% decrease in healing time in comparison with control wounds treated with saline. This accelerated healing is associated with increased recruitment of macrophages and extensive angiogenesis in wounds, faster regrowth of epidermis, and regeneration of the dermis. The accelerated healing further decreases and may completely eliminate fibrosis and scar formation in wounds. Since healing of internal injuries is mediated by mechanisms similar to those in external wound healing, it is suggested that α-gal nanoparticles treatment may also improve regeneration and restoration of biological function following internal injuries such as surgical incisions, myocardial ischemia following infarction, and nerve injuries. PMID:25922849

  3. Targeted induction of meiotic double-strand breaks reveals chromosomal domain-dependent regulation of Spo11 and interactions among potential sites of meiotic recombination

    PubMed Central

    Fukuda, Tomoyuki; Kugou, Kazuto; Sasanuma, Hiroyuki; Shibata, Takehiko

    2008-01-01

    Meiotic recombination is initiated by programmed DNA double-strand break (DSB) formation mediated by Spo11. DSBs occur with frequency in chromosomal regions called hot domains but are seldom seen in cold domains. To obtain insights into the determinants of the distribution of meiotic DSBs, we examined the effects of inducing targeted DSBs during yeast meiosis using a UAS-directed form of Spo11 (Gal4BD-Spo11) and a meiosis-specific endonuclease, VDE (PI-SceI). Gal4BD-Spo11 cleaved its target sequence (UAS) integrated in hot domains but rarely in cold domains. However, Gal4BD-Spo11 did bind to UAS and VDE efficiently cleaved its recognition sequence in either context, suggesting that a cold domain is not a region of inaccessible or uncleavable chromosome structure. Importantly, self-association of Spo11 occurred at UAS in a hot domain but not in a cold domain, raising the possibility that Spo11 remains in an inactive intermediate state in cold domains. Integration of UAS adjacent to known DSB hotspots allowed us to detect competitive interactions among hotspots for activation. Moreover, the presence of VDE-introduced DSB repressed proximal hotspot activity, implicating DSBs themselves in interactions among hotspots. Thus, potential sites for Spo11-mediated DSB are subject to domain-specific and local competitive regulations during and after DSB formation. PMID:18096626

  4. Catfish (Clarias batrachus) serum lectin recognizes polyvalent Tn [alpha-D-GalpNAc1-Ser/Thr], Talpha [beta-D-Galp-(1-->3)-alpha-D-GalpNAc1-Ser/Thr], and II [beta-D-Galp(1-->4)-beta-D-GlcpNAc1-] mammalian glycotopes.

    PubMed

    Singha, Biswajit; Adhya, Mausumi; Chatterjee, Bishnu P

    2008-09-22

    A new calcium dependent GalNAc/Gal specific lectin was isolated from the serum of Indian catfish, Clarias batrachus and designated as C. batrachus lectin (CBL). It is a disulfide-linked homodecameric lectin of 74.65kDa subunits and the oligomeric form is essential for its activity. Binding specificity of CBL was investigated by enzyme-linked lectin-sorbent assay using a series of simple sugars, polysaccharides, and glycoproteins. GalNAc was more potent inhibitor than Gal; and alpha glycosides of both were more inhibitory than their beta counterparts. CBL showed maximum affinity for human tumor-associated Tn-antigens (GalNAcalpha1-Ser/Thr) at the molecular level and was 3.5 times higher than GalNAc. CBL interacted strongly with polyvalent Tn and Talpha (Galbeta1,3GalNAcalpha1-) as well as multivalent-II (Galbeta1,4GlcNAcbeta1-) antigens containing glycoproteins and intensity of inhibition was 10(3)-10(5) times more than monovalent ones. The overall specificity of CBL lies in the order of polyvalent Tn, Talpha and II>monovalent Tn > or = Me-alphaGalNAc>monovalent Talpha> Me-betaGalNAc>Me-alphaGal>monovalent T>GalNAc>monovalent F>monovalent II>Me-betaGal>Gal.

  5. Specialized sugar sensing in diverse fungi.

    PubMed

    Brown, Victoria; Sabina, Jeffrey; Johnston, Mark

    2009-03-10

    S. cerevisiae senses glucose and galactose differently. Glucose is detected through sensors that reside in the cellular plasma membrane. When activated, the sensors initiate a signal-transduction cascade that ultimately inactivates the Rgt1 transcriptional repressor by causing degradation of its corepressors Mth1 and Std1. This results in the expression of many HXT genes encoding glucose transporters. The ensuing flood of glucose into the cell activates Mig1, a transcriptional repressor that mediates "glucose repression" of many genes, including the GAL genes; hence, glucose sensing hinders galactose utilization. Galactose is sensed in the cytoplasm via Gal3. Upon binding galactose (and ATP), Gal3 sequesters the Gal80 protein, thereby emancipating the Gal4 transcriptional activator of the GAL genes. Gal4 also activates expression of MTH1, encoding a corepressor critical for Rgt1 function. Thus, galactose inhibits glucose assimilation by encouraging repression of HXT genes. C. albicans senses glucose similarly to S. cerevisiae but does not sense galactose through Gal3-Gal80-Gal4. Its genome harbors no GAL80 ortholog, and the severely truncated CaGal4 does not regulate CaGAL genes. We present evidence that C. albicans senses galactose with its Hgt4 glucose sensor, a capability that is enabled by transcriptional "rewiring" of its sugar-sensing signal-transduction pathways. We suggest that galactose sensing through Hgt4 is ancestral in fungi.

  6. Characterization of ppGalNAc-T18, a member of the vertebrate-specific Y subfamily of UDP-N-acetyl-α-D-galactosamine:polypeptide N-acetylgalactosaminyltransferases.

    PubMed

    Li, Xing; Wang, Jing; Li, Wei; Xu, Yingjiao; Shao, Dong; Xie, Yinyin; Xie, Wenxian; Kubota, Tomomi; Narimatsu, Hisashi; Zhang, Yan

    2012-05-01

    The first step of mucin-type O-glycosylation is catalyzed by members of the UDP-GalNAc:polypeptide N-acetylgalactosaminyltransferase (ppGalNAc-T; EC 2.4.1.41) family. Each member of this family has unique substrate specificity and expression profiles. In this report, we describe a new subfamily of ppGalNAc-Ts, designated the Y subfamily. The Y subfamily consists of four members, ppGalNAc-T8, -T9, -T17 and -T18, in which the conserved YDX(5)WGGENXE sequence in the Gal/GalNAc-T motif of ppGalNAc-Ts is mutated to LDX(5)YGGENXE. Phylogenetic analysis revealed that the Y subfamily members only exist in vertebrates. All four Y subfamily members lack in vitro GalNAc-transferase activity toward classical substrates possibly because of the UDP-GalNAc-binding pocket mutants. However, ppGalNAc-T18, the newly identified defining member, was localized in the endoplasmic reticulum rather than the Golgi apparatus in lung carcinoma cells. The knockdown of ppGalNAc-T18 altered cell morphology, proliferation potential and changed cell O-glycosylation. ppGalNAc-T18 can also modulate the in vitro GalNAc-transferase activity of ppGalNAc-T2 and -T10, suggesting that it may be a chaperone-like protein. These findings suggest that the new Y subfamily of ppGalNAc-Ts plays an important role in protein glycosylation; characterizing their functions will provide new insight into the role of ppGalNAc-Ts.

  7. Remedial Investigation Concept Plan for Picatinny Arsenal. Volume 1. Environmental Setting, Applicable Regulations, Summaries of Site Sampling Plans, Sampling Priorities, and Supporting Appendixes

    DTIC Science & Technology

    1991-03-22

    Ortho additive -- (80%) 40 gal June 1988 inventory 8aygon Propoxur (2%) 13.5 lb Sevin Carbaryl (80%) 38 lb Pyrethrins Pyrethrins (1%) 33 lb Killmaster...4 20 cans + 2.5 gal P.M.A.S. 9.5 gal Manzate 200F 7 cans + I gal Insecticides Carbaryl 4L 7 cans Proxol 80SP 1 can Oiazinon 2 gal Dursban 11 gal...1.92%) 25 cans Treflan Trifluralin (--) 70 lb Abate 4E Temephos (43%) I gal Baygon Propoxur (14.6%) 8 gal Combat ant baits Hydramethylnon (0.9%) 852

  8. Salmonella enterica serotype Typhimurium Std fimbriae bind terminal α (1,2)fucose residues in the cecal mucosa

    PubMed Central

    Chessa, Daniela; Winter, Maria G.; Jakomin, Marcello; Bäumler, Andreas J.

    2013-01-01

    SUMMARY The std operon encodes a fimbrial adhesin of Salmonella enterica serotype Typhimurium that is required for attachment to intestinal epithelial cells and for cecal colonization in the mouse. To study the mechanism by which this virulence factor contributes to colonization we characterized its binding specificity. Std-mediated binding to human colonic epithelial (Caco-2) cells could be abrogated by removing N-linked glycans. Adherence of Std fimbriated S. Typhimurium to Caco-2 cells could be blocked by co-incubation with H type 2 oligosaccharide (Fucα1-2Galβ1-4GlcNAc) or by pretreatment of cells with α1-2 fucosidase. In contrast, pretreatment of Caco-2 cells with neuraminidase or co-incubation with the type 2 disaccharide precursor (Galβ1-4GlcNAc) did not reduce adherence of Std fimbriated S. Typhimurium. Binding of purified Std fimbriae to Fucα1-2Galβ1-4GlcNAc in a solid phase binding assay was competitively inhibited by Ulex europaeus agglutinin-I (UEA-I), a lectin specific for Fucα1-2 moieties. Purified Std fimbriae and UEA both bound to a receptor localized in the mucus layer of the murine cecum. These data suggest that the std operon encodes an adhesin that binds an α1-2 fucosylated receptor(s) present in the cecal mucosa. PMID:19183274

  9. Structure of the effector-binding domain of the arabinose repressor AraR from Bacillus subtilis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Procházková, Kateřina; Čermáková, Kateřina; Pachl, Petr

    2012-02-01

    The crystal structure of the effector-binding domain of the transcriptional repressor AraR from B. subtilis in complex with the effector molecule (l-arabinose) was determined at 2.2 Å resolution. A detailed analysis of the crystal identified a dimer organization that is distinctive from that of other members of the GalR/LacI family. In Bacillus subtilis, the arabinose repressor AraR negatively controls the expression of genes in the metabolic pathway of arabinose-containing polysaccharides. The protein is composed of two domains of different phylogenetic origin and function: an N-terminal DNA-binding domain belonging to the GntR family and a C-terminal effector-binding domain that shows similaritymore » to members of the GalR/LacI family. The crystal structure of the C-terminal effector-binding domain of AraR in complex with the effector l-arabinose has been determined at 2.2 Å resolution. The l-arabinose binding affinity was characterized by isothermal titration calorimetry and differential scanning fluorimetry; the K{sub d} value was 8.4 ± 0.4 µM. The effect of l-arabinose on the protein oligomeric state was investigated in solution and detailed analysis of the crystal identified a dimer organization which is distinctive from that of other members of the GalR/LacI family.« less

  10. Metabolism of a plant derived galactose‐containing polysaccharide by Bifidobacterium breve UCC2003

    PubMed Central

    O'Connell Motherway, Mary; Fitzgerald, Gerald F.; van Sinderen, Douwe

    2011-01-01

    Summary In this study, we describe the functional characterization of the Bifidobacterium breve UCC2003 gal locus, which is dedicated to the utilization of galactan, a plant‐derived polysaccharide. Using a combination of molecular approaches we conclude that the galA gene of B. breve UCC2003 encodes a β‐1,4‐endogalactanase producing galacto‐oligosaccharides, which are specifically internalized by an ABC transport system, encoded by galBCDE, and which are then hydrolysed to galactose moieties by a dedicated intracellular β‐galactosidase, specified by galG. The generated galactose molecules are presumed to be fed into the fructose‐6‐phosphate phosphoketolase pathway via the Leloir pathway, thereby allowing B. breve UCC2003 to use galactan as its sole carbon and energy source. In addition to these findings we demonstrate that GalR is a LacI‐type DNA‐binding protein, which not only appears to control transcription of the galCDEGR operon, but also that of the galA gene. PMID:21375716

  11. A pivotal role for galectin-1 in fetomaternal tolerance.

    PubMed

    Blois, Sandra M; Ilarregui, Juan M; Tometten, Mareike; Garcia, Mariana; Orsal, Arif S; Cordo-Russo, Rosalia; Toscano, Marta A; Bianco, Germán A; Kobelt, Peter; Handjiski, Bori; Tirado, Irene; Markert, Udo R; Klapp, Burghard F; Poirier, Francoise; Szekeres-Bartho, Julia; Rabinovich, Gabriel A; Arck, Petra C

    2007-12-01

    A successful pregnancy requires synchronized adaptation of maternal immune-endocrine mechanisms to the fetus. Here we show that galectin-1 (Gal-1), an immunoregulatory glycan-binding protein, has a pivotal role in conferring fetomaternal tolerance. Consistently with a marked decrease in Gal-1 expression during failing pregnancies, Gal-1-deficient (Lgals1-/-) mice showed higher rates of fetal loss compared to wild-type mice in allogeneic matings, whereas fetal survival was unaffected in syngeneic matings. Treatment with recombinant Gal-1 prevented fetal loss and restored tolerance through multiple mechanisms, including the induction of tolerogenic dendritic cells, which in turn promoted the expansion of interleukin-10 (IL-10)-secreting regulatory T cells in vivo. Accordingly, Gal-1's protective effects were abrogated in mice depleted of regulatory T cells or deficient in IL-10. In addition, we provide evidence for synergy between Gal-1 and progesterone in the maintenance of pregnancy. Thus, Gal-1 is a pivotal regulator of fetomaternal tolerance that has potential therapeutic implications in threatened pregnancies.

  12. Fluorescence emission and polarization analyses for evaluating binding of ruthenium metalloglycoclusters to lectins and tetanus toxin C-fragment

    NASA Astrophysics Data System (ADS)

    Okada, Tomoko; Minoura, Norihiko

    2011-03-01

    We develop a fluorescent ruthenium metalloglycocluster for use as a powerful molecular probe in evaluating the binding between carbohydrates and lectins by fluorescence emission (FE) and fluorescence polarization (FP) analyses. Changes in the FE and FP of these metalloglycoclusters are measured following the addition of lectin [peanut agglutinin (PNA), Ricinus communis agglutinin 120, Concanavalin A (ConA), or wheat germ agglutinin] or tetanus toxin c-fragment (TCF). After the addition of PNA, the FE spectrum of [Ru(bpy-2Gal)3] shows a new emission peak and the FP value of [Ru(bpy-2Gal)3] increases. Similarly, the FE spectrum of [Ru(bpy-2Glc)3] shows a new emission peak and the FP value increases on addition of ConA. Because other combinations of metalloglycoclusters and lectins show little change, specific binding of galactose to PNA and that of glucose to ConA are confirmed by the FE and FP measurements. Resulting dissociation constants (Kd) prove that the metalloglycoclusters with highly clustered carbohydrates show higher affinity for the respective lectins than those with less clustered carbohydrates. Furthermore, specific binding of [Ru(bpy-2Gal)3] to TCF was confirmed by the FP measurement.

  13. Galectin-3 in autoimmunity and autoimmune diseases

    PubMed Central

    de Oliveira, Felipe L; Gatto, Mariele; Bassi, Nicola; Luisetto, Roberto; Ghirardello, Anna; Punzi, Leonardo

    2015-01-01

    Galectin-3 (gal-3) is a β-galactoside-binding lectin, which regulates cell–cell and extracellular interactions during self/non-self-antigen recognition and cellular activation, proliferation, differentiation, migration and apoptosis. It plays a significant role in cellular and tissue pathophysiology by organizing niches that drive inflammation and immune responses. Gal-3 has some therapeutic potential in several diseases, including chronic inflammatory disorders, cancer and autoimmune diseases. Gal-3 exerts a broad spectrum of functions which differs according to its intra- or extracellular localization. Recombinant gal-3 strategy has been used to identify potential mode of action of gal-3; however, exogenous gal-3 may not reproduce the functions of the endogenous gal-3. Notably, gal-3 induces monocyte–macrophage differentiation, interferes with dendritic cell fate decision, regulates apoptosis on T lymphocytes and inhibits B-lymphocyte differentiation into immunoglobulin secreting plasma cells. Considering the influence of these cell populations in the pathogenesis of several autoimmune diseases, gal-3 seems to play a role in development of autoimmunity. Gal-3 has been suggested as a potential therapeutic agent in patients affected with some autoimmune disorders. However, the precise role of gal-3 in driving the inflammatory process in autoimmune or immune-mediated disorders remains elusive. Here, we reviewed the involvement of gal-3 in cellular and tissue events during autoimmune and immune-mediated inflammatory diseases. PMID:26142116

  14. Evidence that family 35 carbohydrate binding modules display conserved specificity but divergent function

    PubMed Central

    Montanier, Cedric; van Bueren, Alicia Lammerts; Dumon, Claire; Flint, James E.; Correia, Marcia A.; Prates, Jose A.; Firbank, Susan J.; Lewis, Richard J.; Grondin, Gilles G.; Ghinet, Mariana G.; Gloster, Tracey M.; Herve, Cecile; Knox, J. Paul; Talbot, Brian G.; Turkenburg, Johan P.; Kerovuo, Janne; Brzezinski, Ryszard; Fontes, Carlos M. G. A.; Davies, Gideon J.; Boraston, Alisdair B.; Gilbert, Harry J.

    2009-01-01

    Enzymes that hydrolyze complex carbohydrates play important roles in numerous biological processes that result in the maintenance of marine and terrestrial life. These enzymes often contain noncatalytic carbohydrate binding modules (CBMs) that have important substrate-targeting functions. In general, there is a tight correlation between the ligands recognized by bacterial CBMs and the substrate specificity of the appended catalytic modules. Through high-resolution structural studies, we demonstrate that the architecture of the ligand binding sites of 4 distinct family 35 CBMs (CBM35s), appended to 3 plant cell wall hydrolases and the exo-β-d-glucosaminidase CsxA, which contributes to the detoxification and metabolism of an antibacterial fungal polysaccharide, is highly conserved and imparts specificity for glucuronic acid and/or Δ4,5-anhydrogalaturonic acid (Δ4,5-GalA). Δ4,5-GalA is released from pectin by the action of pectate lyases and as such acts as a signature molecule for plant cell wall degradation. Thus, the CBM35s appended to the 3 plant cell wall hydrolases, rather than targeting the substrates of the cognate catalytic modules, direct their appended enzymes to regions of the plant that are being actively degraded. Significantly, the CBM35 component of CsxA anchors the enzyme to the bacterial cell wall via its capacity to bind uronic acid sugars. This latter observation reveals an unusual mechanism for bacterial cell wall enzyme attachment. This report shows that the biological role of CBM35s is not dictated solely by their carbohydrate specificities but also by the context of their target ligands. PMID:19218457

  15. Crystallization and preliminary X-ray diffraction analysis of mouse galectin-4 N-terminal carbohydrate recognition domain in complex with lactose

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krejčiříková, Veronika; Fábry, Milan; Marková, Vladimíra

    2008-07-01

    Mouse galectin-4 carbohydrate binding domain was overexpressed in E. coli and crystallized in the presence of lactose. The crystals belong to tetragonal space group P42{sub 1}2 and diffraction data were collected to 2.1 Å resolution. Galectin-4 is thought to play a role in the process of tumour conversion of cells of the alimentary tract and the breast tissue; however, its exact function remains unknown. With the aim of elucidating the structural basis of mouse galectin-4 (mGal-4) binding specificity, we have undertaken X-ray analysis of the N-terminal domain, CRD1, of mGal-4 in complex with lactose (the basic building block of knownmore » galectin-4 carbohydrate ligands). Crystals of CRD1 in complex with lactose were obtained using vapour-diffusion techniques. The crystals belong to tetragonal space group P42{sub 1}2 with unit-cell parameters a = 91.1, b = 91.16, c = 57.10 Å and preliminary X-ray diffraction data were collected to 3.2 Å resolution. An optimized crystallization procedure and cryocooling protocol allowed us to extend resolution to 2.1 Å. Structure refinement is currently under way; the initial electron-density maps clearly show non-protein electron density in the vicinity of the carbohydrate binding site, indicating the presence of one lactose molecule. The structure will help to improve understanding of the binding specificity and function of the potential colon cancer marker galectin-4.« less

  16. Structural and biochemical characterization of novel bacterial α-galactosidases belonging to glycoside hydrolase family 31.

    PubMed

    Miyazaki, Takatsugu; Ishizaki, Yuichi; Ichikawa, Megumi; Nishikawa, Atsushi; Tonozuka, Takashi

    2015-07-01

    Glycoside hydrolase family 31 (GH31) proteins have been reportedly identified as exo-α-glycosidases with activity for α-glucosides and α-xylosides. We focused on a GH31 subfamily, which contains proteins with low sequence identity (<24%) to the previously reported GH31 glycosidases and characterized two enzymes from Pedobacter heparinus and Pedobacter saltans. The enzymes unexpectedly exhibited α-galactosidase activity, but were not active on α-glucosides and α-xylosides. The crystal structures of one of the enzymes, PsGal31A, in unliganded form and in complexes with D-galactose or L-fucose and the catalytic nucleophile mutant in unliganded form and in complex with p-nitrophenyl-α-D-galactopyranoside, were determined at 1.85-2.30 Å (1 Å=0.1 nm) resolution. The overall structure of PsGal31A contains four domains and the catalytic domain adopts a (β/α)8-barrel fold that resembles the structures of other GH31 enzymes. Two catalytic aspartic acid residues are structurally conserved in the enzymes, whereas most residues forming the active site differ from those of GH31 α-glucosidases and α-xylosidases. PsGal31A forms a dimer via a unique loop that is not conserved in other reported GH31 enzymes; this loop is involved in its aglycone specificity and in binding L-fucose. Considering potential genes for α-L-fucosidases and carbohydrate-related proteins within the vicinity of Pedobacter Gal31, the identified Gal31 enzymes are likely to function in a novel sugar degradation system. This is the first report of α-galactosidases which belong to GH31 family. © 2015 Authors; published by Portland Press Limited.

  17. Modulation of kidney urea transporter UT-A3 activity by alpha2,6-sialylation.

    PubMed

    Qian, Xiaoqian; Sands, Jeff M; Song, Xiang; Chen, Guangping

    2016-07-01

    Two urea transporters, UT-A1 and UT-A3, are expressed in the kidney terminal inner medullary collecting duct (IMCD) and are important for the production of concentrated urine. UT-A1, as the largest isoform of all UT-A urea transporters, has gained much attention and been extensively studied; however, the role and the regulation of UT-A3 are less explored. In this study, we investigated UT-A3 regulation by glycosylation modification. A site-directed mutagenesis verified a single glycosylation site in UT-A3 at Asn279. Loss of the glycosylation reduced forskolin-stimulated UT-A3 cell membrane expression and urea transport activity. UT-A3 has two glycosylation forms, 45 and 65 kDa. Using sugar-specific binding lectins, the UT-A3 glycosylation profile was examined. The 45-kDa form was pulled down by lectin concanavalin A (Con A) and Galant husnivalis lectin (GNL), indicating an immature glycan with a high amount of mannose (Man), whereas the 65-kDa form is a mature glycan composed of acetylglucosamine (GlcNAc) and poly-N-acetyllactosame (poly-LacNAc) that was pulled down by wheat germ agglutinin (WGA) and tomato lectin, respectively. Interestingly, the mature form of UT-A3 glycan contains significant amounts of sialic acid. We explored the enzymes responsible for directing UT-A3 sialylation. Sialyltransferase ST6GalI, but not ST3GalIV, catabolizes UT-A3 α2,6-sialylation. Activation of protein kinase C (PKC) by PDB treatment promoted UT-A3 glycan sialylation and membrane surface expression. The PKC inhibitor chelerythrine blocks ST6GalI-induced UT-A3 sialylation. Increased sialylation by ST6GalI increased UT-A3 protein stability and urea transport activity. Collectively, our study reveals a novel mechanism of UT-A3 regulation by ST6GalI-mediated sialylation modification that may play an important role in kidney urea reabsorption and the urinary concentrating mechanism.

  18. Cell-penetrating DNA-binding protein as a safe and efficient naked DNA delivery carrier in vitro and in vivo

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Eun-Sung; Yang, Seung-Woo; Hong, Dong-Ki

    Non-viral gene delivery is a safe and suitable alternative to viral vector-mediated delivery to overcome the immunogenicity and tumorigenesis associated with viral vectors. Using the novel, human-origin Hph-1 protein transduction domain that can facilitate the transduction of protein into cells, we developed a new strategy to deliver naked DNA in vitro and in vivo. The new DNA delivery system contains Hph-1-GAL4 DNA-binding domain (DBD) fusion protein and enhanced green fluorescent protein (EGFP) reporter plasmid that includes the five repeats of GAL4 upstream activating sequence (UAS). Hph-1-GAL4-DBD protein formed complex with plasmid DNA through the specific interaction between GAL4-DBD and UAS,more » and delivered into the cells via the Hph-1-PTD. The pEGFP DNA was successfully delivered by the Hph-1-GAL4 system, and the EGFP was effectively expressed in mammalian cells such as HeLa and Jurkat, as well as in Bright Yellow-2 (BY-2) plant cells. When 10 {mu}g of pEGFP DNA was intranasally administered to mice using Hph-1-GAL4 protein, a high level of EGFP expression was detected throughout the lung tissue for 7 days. These results suggest that an Hph-1-PTD-mediated DNA delivery strategy may be an useful non-viral DNA delivery system for gene therapy and DNA vaccines.« less

  19. The glycan-binding protein galectin-1 controls survival of epithelial cells along the crypt-villus axis of small intestine

    PubMed Central

    Muglia, C; Mercer, N; Toscano, M A; Schattner, M; Pozner, R; Cerliani, J P; Gobbi, R Papa; Rabinovich, G A; Docena, G H

    2011-01-01

    Intestinal epithelial cells serve as mechanical barriers and active components of the mucosal immune system. These cells migrate from the crypt to the tip of the villus, where different stimuli can differentially affect their survival. Here we investigated, using in vitro and in vivo strategies, the role of galectin-1 (Gal-1), an evolutionarily conserved glycan-binding protein, in modulating the survival of human and mouse enterocytes. Both Gal-1 and its specific glyco-receptors were broadly expressed in small bowel enterocytes. Exogenous Gal-1 reduced the viability of enterocytes through apoptotic mechanisms involving activation of both caspase and mitochondrial pathways. Consistent with these findings, apoptotic cells were mainly detected at the tip of the villi, following administration of Gal-1. Moreover, Gal-1-deficient (Lgals1−/−) mice showed longer villi compared with their wild-type counterparts in vivo. In an experimental model of starvation, fasted wild-type mice displayed reduced villi and lower intestinal weight compared with Lgals1−/− mutant mice, an effect reflected by changes in the frequency of enterocyte apoptosis. Of note, human small bowel enterocytes were also prone to this pro-apoptotic effect. Thus, Gal-1 is broadly expressed in mucosal tissue and influences the viability of human and mouse enterocytes, an effect which might influence the migration of these cells from the crypt, the integrity of the villus and the epithelial barrier function. PMID:21614093

  20. Glucose-1-phosphate uridylyltransferase from Erwinia amylovora: Activity, structure and substrate specificity.

    PubMed

    Benini, Stefano; Toccafondi, Mirco; Rejzek, Martin; Musiani, Francesco; Wagstaff, Ben A; Wuerges, Jochen; Cianci, Michele; Field, Robert A

    2017-11-01

    Erwinia amylovora, a Gram-negative plant pathogen, is the causal agent of Fire Blight, a contagious necrotic disease affecting plants belonging to the Rosaceae family, including apple and pear. E. amylovora is highly virulent and capable of rapid dissemination in orchards; effective control methods are still lacking. One of its most important pathogenicity factors is the exopolysaccharide amylovoran. Amylovoran is a branched polymer made by the repetition of units mainly composed of galactose, with some residues of glucose, glucuronic acid and pyruvate. E. amylovora glucose-1-phosphate uridylyltransferase (UDP-glucose pyrophosphorylase, EC 2.7.7.9) has a key role in amylovoran biosynthesis. This enzyme catalyses the production of UDP-glucose from glucose-1-phosphate and UTP, which the epimerase GalE converts into UDP-galactose, the main building block of amylovoran. We determined EaGalU kinetic parameters and substrate specificity with a range of sugar 1-phosphates. At time point 120min the enzyme catalysed conversion of the sugar 1-phosphate into the corresponding UDP-sugar reached 74% for N-acetyl-α-d-glucosamine 1-phosphate, 28% for α-d-galactose 1-phosphate, 0% for α-d-galactosamine 1-phosphate, 100% for α-d-xylose 1-phosphate, 100% for α-d-glucosamine 1-phosphate, 70% for α-d-mannose 1-phosphate, and 0% for α-d-galacturonic acid 1-phosphate. To explain our results we obtained the crystal structure of EaGalU and augmented our study by docking the different sugar 1-phosphates into EaGalU active site, providing both reliable models for substrate binding and enzyme specificity, and a rationale that explains the different activity of EaGalU on the sugar 1-phosphates used. These data demonstrate EaGalU potential as a biocatalyst for biotechnological purposes, as an alternative to the enzyme from Escherichia coli, besides playing an important role in E. amylovora pathogenicity. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Sorafenib induced alteration of protein glycosylation in hepatocellular carcinoma cells

    PubMed Central

    Liu, Tianhua; Liu, Riqiang; Zhang, Shu; Guo, Kun; Zhang, Qinle; Li, Wei; Liu, Yinkun

    2017-01-01

    Sorafenib is a multikinase inhibitor and is effective in treating hepatocellular carcinoma (HCC). However, it remains unknown whether sorafenib induces the alteration of protein glycosylation. The present study treated HCC MHCC97L and MHCC97H cells with a 50% inhibitory concentration of sorafenib. Following this treatment, alteration of protein glycosylation was detected using a lectin microarray. Compared with the controls, the binding capacity of glycoproteins extracted from sorafenib-treated HCC cells to the lectins Bauhinia purpurea lectin, Dolichos biflorus agglutinin, Euonymus europaeus lectin, Helix aspersa lectin, Helix pomatia lectin, Jacalin, Maclura pomifera lectin and Vicia villosa lectin were enhanced; while, the binding capacities to the lectins Caragana arborescens lectin, Lycopersicon esculentum lectin, Limulus polyphemus lectin, Maackia amurensis lecin I, Phaseolus vulgaris leucoagglutinin, Ricinus communis agglutinin 60, Sambucus nigra lectin and Solanum tuberosum lectin were reduced (spot intensity median/background intensity median ≥2, P<0.05). This difference in glycoprotein binding capacity indicates that cells treated with sorafenib could increase α-1,3GalNAc/Gal, β-1,3 Gal, GalNAcα-Ser/Thr(Tn) and α-GalNAc structures and decrease GlcNAc, sialic acid, tetra-antennary complex-type N-glycan and β-1,4Gal structures. These results were additionally confirmed by lectin blotting. Expression levels of signaling molecules including erythroblastosis 26–1 (Ets-1), extracellular signal-related kinases (ERK) and phosphorylated-ERK were measured by western blotting. There was a reduction in the expression of Ets-1 and ERK phosphorylation in sorafenib or 1,4-Diamino-2,3-dicyano-1,4-bis (2-aminophenylthio) butadiene treated cells suggesting that sorafenib may reduce the expression levels of Ets-1 by blocking the Ras/Raf/mitogen activated protein kinase signaling pathway. In the present study, it was clear that sorafenib could inhibit the proliferation of HCC cells and alter protein glycosylation. The findings of this study may lead to providing a novel way of designing new anti-HCC drugs. PMID:28693200

  2. Interaction study between synthetic glycoconjugate ligands and endocytic receptors using flow cytometry.

    PubMed

    Yura, Hirofumi; Ishihara, Masayuki; Kanatani, Yasuhiro; Takase, Bonpei; Hattori, Hidemi; Suzuki, Shinya; Kawakami, Mitsuyuki; Matsui, Takemi

    2006-04-01

    Flow cytometric analysis of synthetic galactosyl polymers, asialofetuin and LDL derivatives labeled with FITC (Fluorescein Isothiocyanate) was carried out to determine the phenotypes of endocytic receptors, such as asialoglycoprotein (ASPG) and the LDL receptor, on various types of cells. When FITC-labeled galactosyl polystyrene (GalCPS), being a synthetic ligand of ASPG, was applied to rat hepatocytes and human cancer cells (Hep G2 and Chang Liver), surface fluorescence intensities varied according to receptor expression on the cells. The fluorescence intensity originates from the calcium-dependent binding of the FITC-labeled GalCPS. Although unaltered by pre-treatment with glucosyl polystyrene (GluCPS), fetuin and LDL, the fluorescence intensity was suppressed by pre-treatment with (non-labeled) GalCPS and asialofetuin. Flow cytometry allowed us to demonstrate that the calcium-dependent binding of FITC-labeled LDL (prepared from rabbits) upon the addition of 17alpha-ethinyl estradiol enhances LDL receptor expression, and the expression is suppressed upon the addition of a monoclonal antibody to the LDL receptor. The binding efficiency based on the combination of FITC-labeled ligands suggests a possible application for the classification of cell types and conditions corresponding to endocytic receptor expression without the need for immuno-active antibodies or radiolabeled substances. Furthermore, the synthetic glycoconjugate (GalCPS) is shown to be a sensitive and useful marker for classification based on cell phenotype using flow cytometry.

  3. Co-localization of a CD1d-binding glycolipid with an adenovirus-based malaria vaccine for a potent adjuvant effect.

    PubMed

    Li, Xiangming; Huang, Jing; Kawamura, Akira; Funakoshi, Ryota; Porcelli, Steven A; Tsuji, Moriya

    2017-05-31

    A CD1d-binding, invariant (i) natural killer T (NKT)-cell stimulatory glycolipid, α-Galactosylceramide (αGalCer), has been shown to act as an adjuvant. We previously identified a fluorinated phenyl ring-modified αGalCer analog, 7DW8-5, displaying a higher binding affinity for CD1d molecule and more potent adjuvant activity than αGalCer. In the present study, 7DW8-5 co-administered intramuscularly (i.m.) with a recombinant adenovirus expressing a Plasmodium yoelii circumsporozoite protein (PyCSP), AdPyCS, has led to a co-localization of 7DW8-5 and a PyCSP in draining lymph nodes (dLNs), particularly in dendritic cells (DCs). This occurrence initiates a cascade of events, such as the recruitment of DCs to dLNs and their activation and maturation, and the enhancement of the ability of DCs to prime CD8+ T cells induced by AdPyCS and ultimately leading to a potent adjuvant effect and protection against malaria. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Statins Increase Plasminogen Activator Inhibitor Type 1 Gene Transcription through a Pregnane X Receptor Regulated Element

    PubMed Central

    Stanley, Frederick M.; Linder, Kathryn M.; Cardozo, Timothy J.

    2015-01-01

    Plasminogen activator inhibitor type 1 (PAI-1) is a multifunctional protein that has important roles in inflammation and wound healing. Its aberrant regulation may contribute to many disease processes such as heart disease. The PAI-1 promoter is responsive to multiple inputs including cytokines, growth factors, steroids and oxidative stress. The statin drugs, atorvastatin, mevastatin and rosuvastatin, increased basal and stimulated expression of the PAI-1 promoter 3-fold. A statin-responsive, nuclear hormone response element was previously identified in the PAI-1 promoter, but it was incompletely characterized. We characterized this direct repeat (DR) of AGGTCA with a 3-nucleotide spacer at -269/-255 using deletion and directed mutagenesis. Deletion or mutation of this element increased basal transcription from the promoter suggesting that it repressed PAI-1 transcription in the unliganded state. The half-site spacing and the ligand specificity suggested that this might be a pregnane X receptor (PXR) responsive element. Computational molecular docking showed that atorvastatin, mevastatin and rosuvastatin were structurally compatible with the PXR ligand-binding pocket in its agonist conformation. Experiments with Gal4 DNA binding domain fusion proteins showed that Gal4-PXR was activated by statins while other DR + 3 binding nuclear receptor fusions were not. Overexpression of PXR further enhanced PAI-1 transcription in response to statins. Finally, ChIP experiments using Halo-tagged PXR and RXR demonstrated that both components of the PXR-RXR heterodimer bound to this region of the PAI-1 promoter. PMID:26379245

  5. Metabolism of a plant derived galactose-containing polysaccharide by Bifidobacterium breve UCC2003.

    PubMed

    O'Connell Motherway, Mary; Fitzgerald, Gerald F; van Sinderen, Douwe

    2011-05-01

    In this study, we describe the functional characterization of the Bifidobacterium breve UCC2003 gal locus, which is dedicated to the utilization of galactan, a plant-derived polysaccharide. Using a combination of molecular approaches we conclude that the galA gene of B. breve UCC2003 encodes a β-1,4-endogalactanase producing galacto-oligosaccharides, which are specifically internalized by an ABC transport system, encoded by galBCDE, and which are then hydrolysed to galactose moieties by a dedicated intracellular β-galactosidase, specified by galG. The generated galactose molecules are presumed to be fed into the fructose-6-phosphate phosphoketolase pathway via the Leloir pathway, thereby allowing B. breve UCC2003 to use galactan as its sole carbon and energy source. In addition to these findings we demonstrate that GalR is a LacI-type DNA-binding protein, which not only appears to control transcription of the galCDEGR operon, but also that of the galA gene. © 2010 University College Cork. Journal compilation © 2010 Society for Applied Microbiology and Blackwell Publishing Ltd.

  6. AlloRep: A Repository of Sequence, Structural and Mutagenesis Data for the LacI/GalR Transcription Regulators.

    PubMed

    Sousa, Filipa L; Parente, Daniel J; Shis, David L; Hessman, Jacob A; Chazelle, Allen; Bennett, Matthew R; Teichmann, Sarah A; Swint-Kruse, Liskin

    2016-02-22

    Protein families evolve functional variation by accumulating point mutations at functionally important amino acid positions. Homologs in the LacI/GalR family of transcription regulators have evolved to bind diverse DNA sequences and allosteric regulatory molecules. In addition to playing key roles in bacterial metabolism, these proteins have been widely used as a model family for benchmarking structural and functional prediction algorithms. We have collected manually curated sequence alignments for >3000 sequences, in vivo phenotypic and biochemical data for >5750 LacI/GalR mutational variants, and noncovalent residue contact networks for 65 LacI/GalR homolog structures. Using this rich data resource, we compared the noncovalent residue contact networks of the LacI/GalR subfamilies to design and experimentally validate an allosteric mutant of a synthetic LacI/GalR repressor for use in biotechnology. The AlloRep database (freely available at www.AlloRep.org) is a key resource for future evolutionary studies of LacI/GalR homologs and for benchmarking computational predictions of functional change. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. A practical approach to pancreatic cancer immunotherapy using resected tumor lysate vaccines processed to express α-gal epitopes

    PubMed Central

    Miyoshi, Eiji; Eguchi, Hidetoshi; Nagano, Hiroaki; Matsunami, Katsuyoshi; Nagaoka, Satoshi; Yamada, Daisaku; Asaoka, Tadafumi; Noda, Takehiro; Wada, Hiroshi; Kawamoto, Koichi; Goto, Kunihito; Taniyama, Kiyomi; Mori, Masaki; Doki, Yuichiro

    2017-01-01

    Objectives Single-agent immunotherapy is ineffective against poorly immunogenic cancers, including pancreatic ductal adenocarcinoma (PDAC). The aims of this study were to demonstrate the feasibility of production of novel autologous tumor lysate vaccines from resected PDAC tumors, and verify vaccine safety and efficacy. Methods Fresh surgically resected tumors obtained from human patients were processed to enzymatically synthesize α-gal epitopes on the carbohydrate chains of membrane glycoproteins. Processed membranes were analyzed for the expression of α-gal epitopes and the binding of anti-Gal, and vaccine efficacy was assessed in vitro and in vivo. Results Effective synthesis of α-gal epitopes was demonstrated after processing of PDAC tumor lysates from 10 different patients, and tumor lysates readily bound an anti-Gal monoclonal antibody. α-gal(+) PDAC tumor lysate vaccines elicited strong antibody production against multiple tumor-associated antigens and activated multiple tumor-specific T cells. The lysate vaccines stimulated a robust immune response in animal models, resulting in tumor suppression and a significant improvement in survival without any adverse events. Conclusions Our data suggest that α-gal(+) PDAC tumor lysate vaccination may be a practical and effective new immunotherapeutic approach for treating pancreatic cancer. PMID:29077749

  8. A practical approach to pancreatic cancer immunotherapy using resected tumor lysate vaccines processed to express α-gal epitopes.

    PubMed

    Furukawa, Kenta; Tanemura, Masahiro; Miyoshi, Eiji; Eguchi, Hidetoshi; Nagano, Hiroaki; Matsunami, Katsuyoshi; Nagaoka, Satoshi; Yamada, Daisaku; Asaoka, Tadafumi; Noda, Takehiro; Wada, Hiroshi; Kawamoto, Koichi; Goto, Kunihito; Taniyama, Kiyomi; Mori, Masaki; Doki, Yuichiro

    2017-01-01

    Single-agent immunotherapy is ineffective against poorly immunogenic cancers, including pancreatic ductal adenocarcinoma (PDAC). The aims of this study were to demonstrate the feasibility of production of novel autologous tumor lysate vaccines from resected PDAC tumors, and verify vaccine safety and efficacy. Fresh surgically resected tumors obtained from human patients were processed to enzymatically synthesize α-gal epitopes on the carbohydrate chains of membrane glycoproteins. Processed membranes were analyzed for the expression of α-gal epitopes and the binding of anti-Gal, and vaccine efficacy was assessed in vitro and in vivo. Effective synthesis of α-gal epitopes was demonstrated after processing of PDAC tumor lysates from 10 different patients, and tumor lysates readily bound an anti-Gal monoclonal antibody. α-gal(+) PDAC tumor lysate vaccines elicited strong antibody production against multiple tumor-associated antigens and activated multiple tumor-specific T cells. The lysate vaccines stimulated a robust immune response in animal models, resulting in tumor suppression and a significant improvement in survival without any adverse events. Our data suggest that α-gal(+) PDAC tumor lysate vaccination may be a practical and effective new immunotherapeutic approach for treating pancreatic cancer.

  9. Elevated systemic galectin-1 levels characterize HELLP syndrome.

    PubMed

    Schnabel, Annegret; Blois, Sandra M; Meint, Peter; Freitag, Nancy; Ernst, Wolfgang; Barrientos, Gabriela; Conrad, Melanie L; Rose, Matthias; Seelbach-Göbel, Birgit

    2016-04-01

    Galectin-1 (gal-1), a member of a family of conserved β-galactoside-binding proteins, has been shown to exert a key role during gestation. Though gal-1 is expressed at higher levels in the placenta from HELLP patients, it is still poorly understood whether systemic gal-1 levels also differ in HELLP patients. In the present study, we evaluated the systemic expression of gal-1, together with the angiogenic factors, placental growth factor (PlGF) and soluble fms-like tyrosine kinase 1 (sFlt-1) in conjunction with HELLP syndrome severity. Systemic levels of gal-1 and sFlt-1 were elevated in patients with both early- and late-onset HELLP syndrome as compared to healthy controls. In contrast, peripheral PlGF levels were decreased in early- and late-onset HELLP. A positive correlation between systemic gal-1 levels and sFlt-1/PlGF ratios was found in early onset HELLP patients. Our results show that HELLP syndrome is associated with increased circulating levels of gal-1; integrating systemic gal-1 measurements into the diagnostic analyses of pregnant women may provide more effective prediction of HELLP syndrome development. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  10. The molecular architecture of human N-acetylgalactosamine kinase.

    PubMed

    Thoden, James B; Holden, Hazel M

    2005-09-23

    Galactokinase plays a key role in normal galactose metabolism by catalyzing the conversion of alpha-d-galactose to galactose 1-phosphate. Within recent years, the three-dimensional structures of human galactokinase and two bacterial forms of the enzyme have been determined. Originally, the gene encoding galactokinase in humans was mapped to chromosome 17. An additional gene, encoding a protein with sequence similarity to galactokinase, was subsequently mapped to chromosome 15. Recent reports have shown that this second gene (GALK2) encodes an enzyme with greater activity against GalNAc than galactose. This enzyme, GalNAc kinase, has been implicated in a salvage pathway for the reutilization of free GalNAc derived from the degradation of complex carbohydrates. Here we report the first structural analysis of a GalNAc kinase. The structure of the human enzyme was solved in the presence of MnAMPPNP and GalNAc or MgATP and GalNAc (which resulted in bound products in the active site). The enzyme displays a distinctly bilobal appearance with its active site wedged between the two domains. The N-terminal region is dominated by a seven-stranded mixed beta-sheet, whereas the C-terminal motif contains two layers of anti-parallel beta-sheet. The overall topology displayed by GalNAc kinase places it into the GHMP superfamily of enzymes, which generally function as small molecule kinases. From this investigation, the geometry of the GalNAc kinase active site before and after catalysis has been revealed, and the determinants of substrate specificity have been defined on a molecular level.

  11. A purified truncated form of yeast Gal4 expressed in Escherichia coli and used to functionalize poly(lactic acid) nanoparticle surface is transcriptionally active in cellulo.

    PubMed

    Legaz, Sophie; Exposito, Jean-Yves; Borel, Agnès; Candusso, Marie-Pierre; Megy, Simon; Montserret, Roland; Lahaye, Vincent; Terzian, Christophe; Verrier, Bernard

    2015-09-01

    Gal4/UAS system is a powerful tool for the analysis of numerous biological processes. Gal4 is a large yeast transcription factor that activates genes including UAS sequences in their promoter. Here, we have synthesized a minimal form of Gal4 DNA sequence coding for the binding and dimerization regions, but also part of the transcriptional activation domain. This truncated Gal4 protein was expressed as inclusion bodies in Escherichia coli. A structured and active form of this recombinant protein was purified and used to cover poly(lactic acid) (PLA) nanoparticles. In cellulo, these Gal4-vehicles were able to activate the expression of a Green Fluorescent Protein (GFP) gene under the control of UAS sequences, demonstrating that the decorated Gal4 variant can be delivery into cells where it still retains its transcription factor capacities. Thus, we have produced in E. coli and purified a short active form of Gal4 that retains its functions at the surface of PLA-nanoparticles in cellular assay. These decorated Gal4-nanoparticles will be useful to decipher their tissue distribution and their potential after ingestion or injection in UAS-GFP recombinant animal models. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. Measuring Positive Cooperativity Using the Direct ESI-MS Assay. Cholera Toxin B Subunit Homopentamer Binding to GM1 Pentasaccharide

    NASA Astrophysics Data System (ADS)

    Lin, Hong; Kitova, Elena N.; Klassen, John S.

    2014-01-01

    Direct electrospray ionization mass spectrometry (ESI-MS) assay was used to investigate the stepwise binding of the GM1 pentasaccharide β- D-Gal p-(1→3)-β-D-Gal pNAc-(1→4)[α-D-Neu5Ac-(2→3)]-β- D-Gal p-(1→4)-β-D-Glc p (GM1os) to the cholera toxin B subunit homopentamer (CTB5) and to establish conclusively whether GM1os binding is cooperative. Apparent association constants were measured for the stepwise addition of one to five GM1os to CTB5 at pH 6.9 and 22 °C. The intrinsic association constant, which was established from the apparent association constant for the addition of a single GM1os to CTB5, was found to be (3.2 ± 0.2) × 106 M-1. This is in reasonable agreement with the reported value of (6.4 ± 0.3) × 106 M-1, which was measured at pH 7.4 and 25 °C using isothermal titration calorimetry (ITC). Analysis of the apparent association constants provides direct and unambiguous evidence that GM1os binding exhibits small positive cooperativity. Binding was found to be sensitive to the number of ligand-bound nearest neighbor subunits, with the affinities enhanced by a factor of 1.7 and 2.9 when binding occurs next to one or two ligand-bound subunits, respectively. These findings, which provide quantitative support for the binding model proposed by Homans and coworkers [14], highlight the unique strengths of the direct ESI-MS assay for measuring cooperative ligand binding.

  13. Ipomoelin, a Jacalin-Related Lectin with a Compact Tetrameric Association and Versatile Carbohydrate Binding Properties Regulated by Its N Terminus

    PubMed Central

    Chang, Wei-Chieh; Liu, Kai-Lun; Hsu, Fang-Ciao; Jeng, Shih-Tong; Cheng, Yi-Sheng

    2012-01-01

    Many proteins are induced in the plant defense response to biotic stress or mechanical wounding. One group is lectins. Ipomoelin (IPO) is one of the wound-inducible proteins of sweet potato (Ipomoea batatas cv. Tainung 57) and is a Jacalin-related lectin (JRL). In this study, we resolved the crystal structures of IPO in its apo form and in complex with carbohydrates such as methyl α-D-mannopyranoside (Me-Man), methyl α-D-glucopyranoside (Me-Glc), and methyl α-D-galactopyranoside (Me-Gal) in different space groups. The packing diagrams indicated that IPO might represent a compact tetrameric association in the JRL family. The protomer of IPO showed a canonical β-prism fold with 12 strands of β-sheets but with 2 additional short β-strands at the N terminus. A truncated IPO (ΔN10IPO) by removing the 2 short β-strands of the N terminus was used to reveal its role in a tetrameric association. Gel filtration chromatography confirmed IPO as a tetrameric form in solution. Isothermal titration calorimetry determined the binding constants (KA) of IPO and ΔN10IPO against various carbohydrates. IPO could bind to Me-Man, Me-Glc, and Me-Gal with similar binding constants. In contrast, ΔN10IPO showed high binding ability to Me-Man and Me-Glc but could not bind to Me-Gal. Our structural and functional analysis of IPO revealed that its compact tetrameric association and carbohydrate binding polyspecificity could be regulated by the 2 additional N-terminal β-strands. The versatile carbohydrate binding properties of IPO might play a role in plant defense. PMID:22808208

  14. Imaging galectin-3 dependent endocytosis with lattice light-sheet microscopy

    NASA Astrophysics Data System (ADS)

    Baek, Jongho; Lou, Jieqiong; Coelho, Simao; Lim, Yean Jin; Seidlitz, Silvia; Nicovich, Philip R.; Wunder, Christian; Johannes, Ludger; Gaus, Katharina

    2017-04-01

    Lattice light-sheet (LLS) microscopy provides ultrathin light sheets of a two-dimensional optical lattice that allows us imaging three-dimensional (3D) objects for hundreds of time points at sub-second intervals and at or below the diffraction limit. Galectin-3 (Gal3), a carbohydrate-binding protein, triggers glycosphingolipid (GSL)-dependent biogenesis of morphologically distinct endocytic vesicles that are cargo specific and clathrin independent. In this study, we apply LLS microscopy to study the dynamics of Gal3 dependent endocytosis in live T cells. This will allow us to observe Gal3-mediated endocytosis at high temporal and excellent 3D spatial resolution, which may shed light on our understanding of the mechanism and physiological function of Gal3-induced endocytosis.

  15. Interactions between the cyclic AMP receptor protein and the alpha subunit of RNA polymerase at the Escherichia coli galactose operon P1 promoter.

    PubMed

    Attey, A; Belyaeva, T; Savery, N; Hoggett, J; Fujita, N; Ishihama, A; Busby, S

    1994-10-25

    DNAase I footprinting has been used to study open complexes between Escherichia coli RNA polymerase and the galactose operon P1 promoter, both in the absence and the presence of CRP (the cyclic AMP receptor protein, a transcription activator). From the effects of deletion of the C-terminal part of the RNA polymerase alpha subunit, we deduce that alpha binds at the upstream end of both the binary RNA polymerase-galP1 and ternary RNA polymerase-CRP-galP1 complexes. Disruption of the alpha-upstream contact suppresses open complex formation at galP1 at lower temperatures. In ternary RNA polymerase-CRP-galP1 complexes, alpha appears to make direct contact with Activating Region 1 in CRP. DNAase I footprinting has been used to detect and quantify interactions between purified alpha and CRP bound at galP1.

  16. Interactions between the cyclic AMP receptor protein and the alpha subunit of RNA polymerase at the Escherichia coli galactose operon P1 promoter.

    PubMed Central

    Attey, A; Belyaeva, T; Savery, N; Hoggett, J; Fujita, N; Ishihama, A; Busby, S

    1994-01-01

    DNAase I footprinting has been used to study open complexes between Escherichia coli RNA polymerase and the galactose operon P1 promoter, both in the absence and the presence of CRP (the cyclic AMP receptor protein, a transcription activator). From the effects of deletion of the C-terminal part of the RNA polymerase alpha subunit, we deduce that alpha binds at the upstream end of both the binary RNA polymerase-galP1 and ternary RNA polymerase-CRP-galP1 complexes. Disruption of the alpha-upstream contact suppresses open complex formation at galP1 at lower temperatures. In ternary RNA polymerase-CRP-galP1 complexes, alpha appears to make direct contact with Activating Region 1 in CRP. DNAase I footprinting has been used to detect and quantify interactions between purified alpha and CRP bound at galP1. Images PMID:7971267

  17. Interconversion of the Specificities of Human Lysosomal Enzymes Associated with Fabry and Schindler Diseases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tomasic, Ivan B.; Metcalf, Matthew C.; Guce, Abigail I.

    2010-09-03

    The human lysosomal enzymes {alpha}-galactosidase ({alpha}-GAL, EC 3.2.1.22) and {alpha}-N-acetylgalactosaminidase ({alpha}-NAGAL, EC 3.2.1.49) share 46% amino acid sequence identity and have similar folds. The active sites of the two enzymes share 11 of 13 amino acids, differing only where they interact with the 2-position of the substrates. Using a rational protein engineering approach, we interconverted the enzymatic specificity of {alpha}-GAL and {alpha}-NAGAL. The engineered {alpha}-GAL (which we call {alpha}-GALSA) retains the antigenicity of {alpha}-GAL but has acquired the enzymatic specificity of {alpha}-NAGAL. Conversely, the engineered {alpha}-NAGAL (which we call {alpha}-NAGAL{sup EL}) retains the antigenicity of {alpha}-NAGAL but has acquired themore » enzymatic specificity of the {alpha}-GAL enzyme. Comparison of the crystal structures of the designed enzyme {alpha}-GAL{sup SA} to the wild-type enzymes shows that active sites of {alpha}-GAL{sup SA} and {alpha}-NAGAL superimpose well, indicating success of the rational design. The designed enzymes might be useful as non-immunogenic alternatives in enzyme replacement therapy for treatment of lysosomal storage disorders such as Fabry disease.« less

  18. Effect of recombinant galectin-1 on the growth of immortal rat chondrocyte on chitosan-coated PLGA scaffold.

    PubMed

    Chen, Shiang-Jiuun; Lin, Chien-Chung; Tuan, Wei-Cheh; Tseng, Ching-Shiow; Huang, Rong-Nan

    2010-06-15

    The effect of galectin-1 (GAL1) on the growth of immortal rat chondrocyte (IRC) on chitosan-modified PLGA scaffold is investigated. The experimental results showed that water absorption ratio of chitosan-modified PLGA scaffold was 70% higher than that of PLGA alone after immersion in ddH(2)O for 2 weeks, indicating that chitosan-modification significantly enhances the hydrophilicity of PLGA. The experimental results also showed that GALl efficiently and spontaneously coats the chitosan-PLGA scaffold surface to promote adhesion and growth of immortal rat chondrocyte (IRC). To investigate the effect of endogenous GAL1, the full-length GAL1 cDNAs were cloned and constructed into pcDNA3.1 vectors to generate a plasmid expressed in IRC (IRC-GAL1). The results showed that IRC-GAL1 growth was significantly higher than that of IRC on chitosan-PLGA scaffold. The GAL1-potentiated IRC growth on chitosan-PLGA scaffold was dose-dependently inhibited by TDG (specific inhibitor of GAL1 binding). These results strongly suggest that GAL1 is critical for enhancing IRC cell adhesion and growth on chitosan-PLGA scaffold. Moreover, GAL1-coating or expression tends to promote IRC cell-cell aggregation on chitosan-PLGA scaffold and significantly enhances IRC migration. These results suggest that GAL1 probably could induce tissue differentiation and facilitates cartilage reconstruction. In conclusion, the experimental results suggest that both GAL1 and chitosan are important for enhancing IRC cell adhesion and growth on PLGA scaffold, and GAL1 is a potential biomaterial for tissue engineering. (c) 2009 Wiley Periodicals, Inc.

  19. Glucose-6-phosphate mediates activation of the carbohydrate responsive binding protein (ChREBP)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Ming V.; Departments of Medicine and Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030; Chen, Weiqin

    2010-05-07

    Carbohydrate response element binding protein (ChREBP) is a Mondo family transcription factor that activates a number of glycolytic and lipogenic genes in response to glucose stimulation. We have previously reported that high glucose can activate the transcriptional activity of ChREBP independent of the protein phosphatase 2A (PP2A)-mediated increase in nuclear entry and DNA binding. Here, we found that formation of glucose-6-phosphate (G-6-P) is essential for glucose activation of ChREBP. The glucose response of GAL4-ChREBP is attenuated by D-mannoheptulose, a potent hexokinase inhibitor, as well as over-expression of glucose-6-phosphatase (G6Pase); kinetics of activation of GAL4-ChREBP can be modified by exogenously expressedmore » GCK. Further metabolism of G-6-P through the two major glucose metabolic pathways, glycolysis and pentose-phosphate pathway, is not required for activation of ChREBP; over-expression of glucose-6-phosphate dehydrogenase (G6PD) diminishes, whereas RNAi knockdown of the enzyme enhances, the glucose response of GAL4-ChREBP, respectively. Moreover, the glucose analogue 2-deoxyglucose (2-DG), which is phosphorylated by hexokinase, but not further metabolized, effectively upregulates the transcription activity of ChREBP. In addition, over-expression of phosphofructokinase (PFK) 1 and 2, synergistically diminishes the glucose response of GAL4-ChREBP. These multiple lines of evidence support the conclusion that G-6-P mediates the activation of ChREBP.« less

  20. Leishmania infantum Exoproducts Inhibit Human Invariant NKT Cell Expansion and Activation.

    PubMed

    Belo, Renata; Santarém, Nuno; Pereira, Cátia; Pérez-Cabezas, Begoña; Macedo, Fátima; Leite-de-Moraes, Maria; Cordeiro-da-Silva, Anabela

    2017-01-01

    Leishmania infantum is one of the major parasite species associated with visceral leishmaniasis, a severe form of the disease that can become lethal if untreated. This obligate intracellular parasite has developed diverse strategies to escape the host immune response, such as exoproducts (Exo) carrying a wide range of molecules, including parasite virulence factors, which are potentially implicated in early stages of infection. Herein, we report that L. infantum Exo and its two fractions composed of extracellular vesicles (EVs) and vesicle-depleted-exoproducts (VDEs) inhibit human peripheral blood invariant natural killer T (iNKT) cell expansion in response to their specific ligand, the glycolipid α-GalactosylCeramide (α-GalCer), as well as their capacity to promptly produce IL-4 and IFNγ. Using plate-bound CD1d and α-GalCer, we found that Exo, EV, and VDE fractions reduced iNKT cell activation in a dose-dependent manner, suggesting that they prevented α-GalCer presentation by CD1d molecules. This direct effect on CD1d was confirmed by the observation that CD1d:α-GalCer complex formation was impaired in the presence of Exo, EV, and VDE fractions. Furthermore, lipid extracts from the three compounds mimicked the inhibition of iNKT cell activation. These lipid components of L. infantum exoproducts, including EV and VDE fractions, might compete for CD1-binding sites, thus blocking iNKT cell activation. Overall, our results provide evidence for a novel strategy through which L. infantum can evade immune responses of mammalian host cells by preventing iNKT lymphocytes from recognizing glycolipids in a TCR-dependent manner.

  1. Retargeting pre-existing human antibodies to a bacterial pathogen with an alpha-Gal conjugated aptamer.

    PubMed

    Kristian, Sascha A; Hwang, John H; Hall, Bradley; Leire, Emma; Iacomini, John; Old, Robert; Galili, Uri; Roberts, Charles; Mullis, Kary B; Westby, Mike; Nizet, Victor

    2015-06-01

    The ever-increasing threat of multi-drug resistant bacterial infections has spurred renewed interest in alternative approaches to classical antibiotic therapy. In contrast to other mammals, humans do not express the galactose-α-1,3-galactosyl-β-1,4-N-acetyl-glucosamine (α-Gal) epitope. As a result of exposure of humans to α-Gal in the environment, a large proportion of circulating antibodies are specific for the trisaccharide. In this study, we examine whether these anti-Gal antibodies can be recruited and redirected to exert anti-bacterial activity. We show that a specific DNA aptamer conjugated to an α-Gal epitope at its 5' end, herein termed an alphamer, can bind to group A Streptococcus (GAS) bacteria by recognition of a conserved region of the surface-anchored M protein. The anti-GAS alphamer was shown to recruit anti-Gal antibodies to the streptococcal surface in an α-Gal-specific manner, elicit uptake and killing of the bacteria by human phagocytes, and slow growth of invasive GAS in human whole blood. These studies provide a first in vitro proof of concept that alphamers have the potential to redirect pre-existing antibodies to bacteria in a specific manner and trigger an immediate antibacterial immune response. Further validation of this novel therapeutic approach of applying α-Gal technology in in vivo models of bacterial infection is warranted. . α-Gal-tagged aptamers lead to GAS opsonization with anti-Gal antibodies. . α-Gal-tagged aptamers confer phagocytosis and killing of GAS cells by human phagocytes. . α-Gal-tagged aptamers reduces replication of GAS in human blood. . α-Gal-tagged aptamers may have the potential to be used as novel passive immunization drugs.

  2. The quantity and quality of α-gal-specific antibodies differ in individuals with and without delayed red meat allergy.

    PubMed

    Kollmann, D; Nagl, B; Ebner, C; Emminger, W; Wöhrl, S; Kitzmüller, C; Vrtala, S; Mangold, A; Ankersmit, H-J; Bohle, B

    2017-02-01

    IgG to galactose-α-1,3-galactose (α-gal) are highly abundant natural antibodies (Ab) in humans. α-Gal-specific IgE Ab cause a special form of meat allergy characterized by severe systemic reactions 3-7 h after consumption of red meat. We investigated 20 patients who experienced such reactions and characterized their α-gal-specific IgE and IgG responses in more detail. α-Gal-specific IgE was determined by ImmunoCAP. IgE reactivity to meat extract and bovine gamma globulin (BGG) was assessed by immunoblotting and ELISA, respectively. In some experiments, sera were pre-incubated with α-gal or protein G to deplete IgG Ab. α-Gal-specific IgG 1-4 Ab in individuals with and without meat allergy were assessed by ELISA. In immunoblots, BGG was the most frequently recognized meat protein. Binding of IgE and IgG to BGG was confirmed by ELISA and completely abolished after pre-incubation with α-gal. Neither the depletion of autologous α-gal-specific IgG Ab nor the addition of α-gal-specific IgG Ab from nonallergic individuals changed the IgE recognition of BGG of meat-allergic patients. Meat-allergic patients showed significantly higher α-gal-specific IgG1 and IgG3 Ab than nonallergic individuals, whereas the latter showed significantly higher levels of α-gal-specific IgG4 Ab. Patients with delayed meat allergy display IgE and IgG Ab that selectively recognize the α-gal epitope on BGG. Their enhanced α-gal-specific IgE levels are accompanied by high levels of α-gal-specific IgG1 devoid of IgE-blocking activity. This subclass distribution is atypical for food allergies and distinct from natural α-gal IgG responses in nonallergic individuals. © 2016 The Authors. Allergy Published by John Wiley & Sons Ltd.

  3. Kid-1, a putative renal transcription factor: regulation during ontogeny and in response to ischemia and toxic injury.

    PubMed Central

    Witzgall, R; O'Leary, E; Gessner, R; Ouellette, A J; Bonventre, J V

    1993-01-01

    We have identified a new putative transcription factor from the rat kidney, termed Kid-1 (for kidney, ischemia and developmentally regulated gene 1). Kid-1 belongs to the C2H2 class of zinc finger genes. Its mRNA accumulates with age in postnatal renal development and is detected predominantly in the kidney. Kid-1 mRNA levels decline after renal injury secondary to ischemia or folic acid administration, two insults which result in epithelial cell dedifferentiation, followed by regenerative hyperplasia and differentiation. The low expression of Kid-1 early in postnatal development, and when renal tissue is recovering after injury, suggests that the gene product is involved in establishment of a differentiated phenotype and/or regulation of the proliferative response. The deduced protein contains 13 C2H2 zinc fingers at the COOH end in groups of 4 and 9 separated by a 32-amino-acid spacer. There are consensus sites for phosphorylation in the NH2 terminus non-zinc finger region as well as in the spacer region between zinc fingers 4 and 5. A region of the deduced protein shares extensive homology with a catalytic region of Raf kinases, a feature shared only with TFIIE among transcription factors. To determine whether Kid-1 can modulate transcription, a chimeric construct encoding the Kid-1 non-zinc finger region (sense or antisense) and the DNA-binding region of GAL4 was transfected into COS and LLC-PK1 cells together with a chloramphenicol acetyltransferase (CAT) reporter plasmid containing GAL4 binding sites, driven by either a minimal promoter or a simian virus 40 enhancer. CAT activity was markedly inhibited in cells transfected with the sense construct compared with the activity in cells transfected with the antisense construct. To our knowledge, this pattern of developmental regulation, kidney expression, and regulation of transcription is unique among the C2H2 class of zinc finger-containing DNA-binding proteins. Images PMID:8382778

  4. High entomotoxicity and mechanism of the fungal GalNAc/Gal-specific Rhizoctonia solani lectin in pest insects.

    PubMed

    Hamshou, Mohamad; Van Damme, Els J M; Caccia, Silvia; Cappelle, Kaat; Vandenborre, Gianni; Ghesquière, Bart; Gevaert, Kris; Smagghe, Guy

    2013-03-01

    Whole insect assays where Rhizoctonia solani agglutinin (RSA) was fed to larval stages of the cotton leaf-worm Spodoptera littoralis and the pea aphid Acyrthosiphon pisum demonstrated a high concentration-dependent entomotoxicity, suggesting that this GalNAc/Gal-specific fungal lectin might be a good control agent for different pest insects. RSA at 10 mg/g in the solid diet of 2nd-instar caterpillars caused 84% weight reduction after 8 days with none of the caterpillars reaching the 4th-instar stage. In sucking aphids, 50% mortality was achieved after 3 days with 9 μM of RSA in the liquid diet. Feeding of FITC-labeled RSA to both insect pest species revealed strong lectin binding at the apical/luminal side of the midgut epithelium with the brush border zone, suggesting the insect midgut as a primary insecticide target tissue for RSA. This was also confirmed with cell cultures in vitro, where there was high fluorescence binding at the microvillar zone with primary cultures of larval midgut columnar cells of S. littoralis, and also at the surface with the insect midgut CF-203 cell line without lectin uptake in the midgut cells. In vitro assays using insect midgut CF-203 cells, revealed that RSA was highly toxic with an EC50 of 0.3 μM. Preincubation with GalNAc and saponin indicated that this action of RSA was carbohydrate-binding dependent and happened at the surface of the cells. Intoxicated CF-203 cells showed symptoms of apoptosis as nuclear condensation and DNA fragmentation, and this concurred with an increase of caspase-3/7, -8 and -9 activities. Finally, RSA affinity chromatography of membrane extracts of CF-203 cells followed by LC-MS/MS allowed the identification of 5747 unique peptides, among which four putatively glycosylated membrane proteins that are associated with apoptosis induction, namely Fas-associated factor, Apoptosis-linked gene-2, Neuroglian and CG2076, as potential binding targets for RSA. These data are discussed in relation to the physiological effects of RSA. Copyright © 2012 Elsevier Ltd. All rights reserved.

  5. Influence of Sulfolane on ESI-MS Measurements of Protein-Ligand Affinities

    NASA Astrophysics Data System (ADS)

    Yao, Yuyu; Richards, Michele R.; Kitova, Elena N.; Klassen, John S.

    2016-03-01

    The results of an investigation into the influence of sulfolane, a commonly used supercharging agent, on electrospray ionization mass spectrometry (ESI-MS) measurements of protein-ligand affinities are described. Binding measurements carried out on four protein-carbohydrate complexes, lysozyme with β- d-GlcNAc-(1→4)-β- d-GlcNAc-(1→4)-β- d-GlcNAc-(1→4)- d-GlcNAc, a single chain variable fragment and α- d-Gal-(1→2)-[α- d-Abe-(1→3)]-α- d-Man-OCH3, cholera toxin B subunit homopentamer with β- d-Gal-(1→3)-β- d-GalNAc-(1→4)[α- d-Neu5Ac-(2→3)]-β- d-Gal-(1→4)-β- d-Glc, and a fragment of galectin 3 and α- l-Fuc-(1→2)-β- d-Gal-(1→3)-β- d-GlcNAc-(1→3)-β- d-Gal-(1→4)-β- d-Glc, revealed that sulfolane generally reduces the apparent (as measured by ESI-MS) protein-ligand affinities. To establish the origin of this effect, a detailed study was undertaken using the lysozyme-tetrasaccharide interaction as a model system. Measurements carried out using isothermal titration calorimetry (ITC), circular dichroism, and nuclear magnetic resonance spectroscopies reveal that sulfolane reduces the binding affinity in solution but does not cause any significant change in the higher order structure of lysozyme or to the intermolecular interactions. These observations confirm that changes to the structure of lysozyme in bulk solution are not responsible for the supercharging effect induced by sulfolane. Moreover, the agreement between the ESI-MS and ITC-derived affinities indicates that there is no dissociation of the complex during ESI or in the gas phase (i.e., in-source dissociation). This finding suggests that supercharging of lysozyme by sulfolane is not related to protein unfolding during the ESI process. Binding measurements performed using liquid sample desorption ESI-MS revealed that protein supercharging with sulfolane can be achieved without a reduction in affinity.

  6. Influence of Sulfolane on ESI-MS Measurements of Protein-Ligand Affinities.

    PubMed

    Yao, Yuyu; Richards, Michele R; Kitova, Elena N; Klassen, John S

    2016-03-01

    The results of an investigation into the influence of sulfolane, a commonly used supercharging agent, on electrospray ionization mass spectrometry (ESI-MS) measurements of protein-ligand affinities are described. Binding measurements carried out on four protein-carbohydrate complexes, lysozyme with β-D-GlcNAc-(1→4)-β-D-GlcNAc-(1→4)-β-D-GlcNAc-(1→4)-D-GlcNAc, a single chain variable fragment and α-D-Gal-(1→2)-[α-D-Abe-(1→3)]-α-D-Man-OCH3, cholera toxin B subunit homopentamer with β-D-Gal-(1→3)-β-D-GalNAc-(1→4)[α-D-Neu5Ac-(2→3)]-β-D-Gal-(1→4)-β-D-Glc, and a fragment of galectin 3 and α-L-Fuc-(1→2)-β-D-Gal-(1→3)-β-D-GlcNAc-(1→3)-β-D-Gal-(1→4)-β-D-Glc, revealed that sulfolane generally reduces the apparent (as measured by ESI-MS) protein-ligand affinities. To establish the origin of this effect, a detailed study was undertaken using the lysozyme-tetrasaccharide interaction as a model system. Measurements carried out using isothermal titration calorimetry (ITC), circular dichroism, and nuclear magnetic resonance spectroscopies reveal that sulfolane reduces the binding affinity in solution but does not cause any significant change in the higher order structure of lysozyme or to the intermolecular interactions. These observations confirm that changes to the structure of lysozyme in bulk solution are not responsible for the supercharging effect induced by sulfolane. Moreover, the agreement between the ESI-MS and ITC-derived affinities indicates that there is no dissociation of the complex during ESI or in the gas phase (i.e., in-source dissociation). This finding suggests that supercharging of lysozyme by sulfolane is not related to protein unfolding during the ESI process. Binding measurements performed using liquid sample desorption ESI-MS revealed that protein supercharging with sulfolane can be achieved without a reduction in affinity.

  7. Synthesis of single- and double-chain fluorocarbon and hydrocarbon galactosyl amphiphiles and their anti-HIV-1 activity.

    PubMed

    Faroux-Corlay, B; Clary, L; Gadras, C; Hammache, D; Greiner, J; Santaella, C; Aubertin, A M; Vierling, P; Fantini, J

    2000-07-24

    Galactosylceramide (GalCer) is an alternative receptor allowing HIV-1 entry into CD4(-)/GalCer(+) cells. This glycosphingolipid recognizes the V3 loop of HIV gp120, which plays a key role in the fusion of the HIV envelope and cellular membrane. To inhibit HIV uptake and infection, we designed and synthesized analogs of GalCer. These amphiphiles and bolaamphiphiles consist of single and double hydrocarbon and/or fluorocarbon chain beta-linked to galactose and galactosamine. They derive from serine (GalSer), cysteine (GalCys), and ethanolamine (GalAE). The anti-HIV activity and cytotoxicity of these galactolipids were evaluated in vitro on CEM-SS (a CD4(+) cell line), HT-29, a CD4(-) cell line expressing high levels of GalCer receptor, and/or HT29 genetically modified to express CD4. GalSer and GalAE derivatives, tested in aqueous medium or as part of liposome preparation, showed moderate anti-HIV-1 activities (IC50 in the 20-220 microM range), whereas none of the GalCys derivatives was found to be active. Moreover, only some of these anti-HIV active analogs inhibited the binding of [3H]suramin (a polysulfonyl compound which displays a high affinity for the V3 loop) to SPC3, a synthetic peptide which contains the conserved GPGRAF region of the V3 loop. Our results most likely indicate that the neutralization of the virion through masking of this conserved V3 loop region is not the only mechanism involved in the HIV-1 antiviral activity of our GalCer analogs.

  8. Theoretical estimates of exposure timescales of protein binding sites on DNA regulated by nucleosome kinetics.

    PubMed

    Parmar, Jyotsana J; Das, Dibyendu; Padinhateeri, Ranjith

    2016-02-29

    It is being increasingly realized that nucleosome organization on DNA crucially regulates DNA-protein interactions and the resulting gene expression. While the spatial character of the nucleosome positioning on DNA has been experimentally and theoretically studied extensively, the temporal character is poorly understood. Accounting for ATPase activity and DNA-sequence effects on nucleosome kinetics, we develop a theoretical method to estimate the time of continuous exposure of binding sites of non-histone proteins (e.g. transcription factors and TATA binding proteins) along any genome. Applying the method to Saccharomyces cerevisiae, we show that the exposure timescales are determined by cooperative dynamics of multiple nucleosomes, and their behavior is often different from expectations based on static nucleosome occupancy. Examining exposure times in the promoters of GAL1 and PHO5, we show that our theoretical predictions are consistent with known experiments. We apply our method genome-wide and discover huge gene-to-gene variability of mean exposure times of TATA boxes and patches adjacent to TSS (+1 nucleosome region); the resulting timescale distributions have non-exponential tails. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  9. Divergent and convergent synthesis of GalNAc-conjugated dendrimers using dual orthogonal ligations.

    PubMed

    Thomas, Baptiste; Pifferi, Carlo; Daskhan, Gour Chand; Fiore, Michele; Berthet, Nathalie; Renaudet, Olivier

    2015-12-21

    The synthesis of glycodendrimers remains a challenging task. In this paper we propose a protocol based on both oxime ligation (OL) to combine cyclopeptide repeating units as the dendritic core and the copper(i)-catalyzed azide-alkyne cycloaddition (CuAAC) to conjugate peripheral α and β propargylated GalNAc. By contrast with the oxime-based iterative protocol reported in our group, our current strategy can be used in both divergent and convergent routes with similar efficiency and the resulting hexadecavalent glycodendrimers can be easily characterized compared to oxime-linked analogues. A series of glycoconjugates displaying four or sixteen copies of both α and β GalNAc have been prepared and their ability to inhibit the adhesion of the soybean agglutinin (SBA) lectin to polymeric-GalNAc immobilized on microtiter plates has been evaluated. As was anticipated, the higher inhibitory effect (IC50 = 0.46 μM) was measured with the structure displaying αGalNAc with the higher valency (compound 13), which demonstrates that the binding properties of these glycoconjugates are strongly dependent on the orientation and distribution of the GalNAc units.

  10. In situ characterization of glycans in the urothelium of donkey bladder: evidence of secretion of sialomucins.

    PubMed

    Desantis, Salvatore; Accogli, Gianluca; Zizza, Sara; Arrighi, Silvana

    2013-09-01

    The glycoprotein pattern was investigated by lectin histochemistry in the urothelium lining the urinary bladder of the donkey Equus asinus. Tissue sections were stained with a panel of twelve lectins, in combination with saponification and sialidase digestion (K-s). The urinary bladder urothelium has three distinct layers from the basal zone to the lumen consisting of basal, intermediate and superficial cells (umbrella cells). Cytoplasm of basal cells reacted with SNA, PNA, K-s-PNA, GSA I-B4 and Con A showing glycans ending with Neu5Acα2,6Gal/GalNAc, Neu5AcGalβ1,3GalNAc, αGal and with terminal/internal αMan. The cytoplasm of umbrella cells displayed an increase of Neu5AcGalβ1,3GalNAc and the appearance of Neu5AcGalβ1,3GalNAc, Neu5acα2,3Galβ1,4GlcNAc and Neu5AcGalNAc residues (MAL II, K-s-SBA and K-s-HPA staining). Scattered umbrella cells were characterized by glycans terminating with GalNAc binding DBA, SBA and HPA. The mucosa forms folds with a crypt-like appearance where the urothelium shows a different pattern of glycans. The bladder luminal surface stained with K-s-PNA, K-s-DBA, KOH-s-SBA, and K-s-HPA displaying a coating of sialoglycoproteins belonging to O-linked glycans (typical secretory moieties). These findings show that different glycosylation patterns exist along the donkey bladder urothelium, and different sub-populations of umbrella cells are present secreting the sialoglycans which constitute the protective gel layer lining the bladder. Copyright © 2013 Elsevier GmbH. All rights reserved.

  11. Elastin receptor (S-gal) occupancy by elastin peptides modulates T-cell response during murine emphysema.

    PubMed

    Meghraoui-Kheddar, Aïda; Pierre, Alexandre; Sellami, Mehdi; Audonnet, Sandra; Lemaire, Flora; Le Naour, Richard

    2017-09-01

    Chronic obstructive pulmonary disease and emphysema are associated with increased elastin peptides (EP) production because of excessive breakdown of lung connective tissue. We recently reported that exposure of mice to EP elicited hallmark features of emphysema. EP effects are largely mediated through a receptor complex that includes the elastin-binding protein spliced-galactosidase (S-gal). In previous studies, we established a correlation between cytokine production and S-gal protein expression in EP-treated immune cells. In this study, we investigated the S-gal-dependent EP effects on T-helper (Th) and T-cytotoxic (Tc) responses during murine EP-triggered pulmonary inflammation. C57BL/6J mice were endotracheally instilled with the valine-glycine-valine-alanine-proline-glycine (VGVAPG) elastin peptide, and, 21 days after treatment, local and systemic T-lymphocyte phenotypes were analyzed at cytokine and transcription factor expression levels by multicolor flow cytometry. Exposure of mice to the VGVAPG peptide resulted in a significant increase in the proportion of the CD4 + and CD8 + T cells expressing the cytokines IFN-γ or IL-17a and the transcription factors T-box expressed in T cells or retinoic acid-related orphan receptor-γt (RORγt) without effects on IL-4 and Gata-binding protein 3 to DNA sequence [A/T]GATA[A/G] expression. These effects were maximized when each T-cell subpopulation was challenged ex vivo with EP, and they were inhibited in vivo when an analogous peptide antagonizing the EP/S-gal interactions was instilled together with the VGVAPG peptide. This study demonstrates that, during murine emphysema, EP-S-gal interactions contribute to a Th-1 and Th-17 proinflammatory T-cell response combined with a Tc-1 response. Our study also highlights the S-gal receptor as a putative pharmacological target to modulate such an immune response. Copyright © 2017 the American Physiological Society.

  12. Evidence for an asialoglycoprotein receptor on nonparenchymal cells for O-linked glycoproteins.

    PubMed

    Stefanich, Eric G; Ren, Song; Danilenko, Dimitry M; Lim, Amy; Song, An; Iyer, Suhasini; Fielder, Paul J

    2008-11-01

    B cell-activating factor receptor 3 (BR3)-Fc is an IgG1-receptor dimeric fusion protein that has multiple O-linked glycosylation sites and sialylation levels that can vary in the manufacturing process. Increased sialic acid levels resulted from increased site occupancy with the O-linked N-acetylgalactosamine (GalNAc-Gal), but because the ratio of sialic acid per mole of oligosaccharide remained approximately 1, this led to increased asialo terminal GalNAc. Previous studies have demonstrated an effect of terminal asialo Gal or GalNAc on the clearance of glycoproteins due to uptake and degradation by lectin receptors in the liver. However, the previous studies examined N-linked oligosaccharides, and there are less data regarding O-linked oligosaccharides. The objective of these studies was to determine the effects on the pharmacokinetics and distribution of the asialo terminal GalNAc and varying amounts of sialic acid residues on BR3-Fc. The results of the data presented here suggest that exposed Gal on the desialylated BR3-Fc led to rapid clearance due to uptake and degradation in the liver that was associated with nonparenchymal cells. It is interesting to note that the data indicated a decreased clearance and increased exposure of BR3-Fc as the sialic acid levels increased, even though increased sialic acid was associated with increased asialo GalNAc. Therefore, the exposed GalNAc did not seem to play a role in the clearance of BR3-Fc; although the Gal linked to the hydroxyl group at position 3 may have prevented an interaction. Because we did not see uptake of desialylated BR3-Fc in hepatocytes where the asialoglycoprotein receptor is localized, this nonparenchymal cell lectin may have preference for O-linked glycoproteins.

  13. The influence of an intramolecular hydrogen bond in differential recognition of inhibitory acceptor analogs by human ABO(H) blood group A and B glycosyltransferases.

    PubMed

    Nguyen, Hoa P; Seto, Nina O L; Cai, Ye; Leinala, Eeva K; Borisova, Svetlana N; Palcic, Monica M; Evans, Stephen V

    2003-12-05

    Human ABO(H) blood group glycosyltransferases GTA and GTB catalyze the final monosaccharide addition in the biosynthesis of the human A and B blood group antigens. GTA and GTB utilize a common acceptor, the H antigen disaccharide alpha-l-Fucp-(1-->2)-beta-d-Galp-OR, but different donors, where GTA transfers GalNAc from UDP-GalNAc and GTB transfers Gal from UDP-Gal. GTA and GTB are two of the most homologous enzymes known to transfer different donors and differ in only 4 amino acid residues, but one in particular (Leu/Met-266) has been shown to dominate the selection between donor sugars. The structures of the A and B glycosyltransferases have been determined to high resolution in complex with two inhibitory acceptor analogs alpha-l-Fucp(1-->2)-beta-d-(3-deoxy)-Galp-OR and alpha-l-Fucp-(1-->2)-beta-d-(3-amino)-Galp-OR, in which the 3-hydroxyl moiety of the Gal ring has been replaced by hydrogen or an amino group, respectively. Remarkably, although the 3-deoxy inhibitor occupies the same conformation and position observed for the native H antigen in GTA and GTB, the 3-amino analog is recognized differently by the two enzymes. The 3-amino substitution introduces a novel intramolecular hydrogen bond between O2' on Fuc and N3' on Gal, which alters the minimum-energy conformation of the inhibitor. In the absence of UDP, the 3-amino analog can be accommodated by either GTA or GTB with the l-Fuc residue partially occupying the vacant UDP binding site. However, in the presence of UDP, the analog is forced to abandon the intramolecular hydrogen bond, and the l-Fuc residue is shifted to a less ordered conformation. Further, the residue Leu/Met-266 that was thought important only in distinguishing between donor substrates is observed to interact differently with the 3-amino acceptor analog in GTA and GTB. These observations explain why the 3-deoxy analog acts as a competitive inhibitor of the glycosyltransferase reaction, whereas the 3-amino analog displays complex modes of inhibition.

  14. Antibody glycosylation and its impact on the pharmacokinetics and pharmacodynamics of monoclonal antibodies and Fc-fusion proteins.

    PubMed

    Liu, Liming

    2015-06-01

    Understanding the impact of glycosylation and keeping a close control on glycosylation of product candidates are required for both novel and biosimilar monoclonal antibodies (mAbs) and Fc-fusion protein development to ensure proper safety and efficacy profiles. Most therapeutic mAbs are of IgG class and contain a glycosylation site in the Fc region at amino acid position 297 and, in some cases, in the Fab region. For Fc-fusion proteins, glycosylation also frequently occurs in the fusion partners. Depending on the expression host, glycosylation patterns in mAb or Fc-fusions can be significantly different, thus significantly impacting the pharmacokinetics (PK) and pharmacodynamics (PD) of mAbs. Glycans that have a major impact on PK and PD of mAb or Fc-fusion proteins include mannose, sialic acids, fucose (Fuc), and galactose (Gal). Mannosylated glycans can impact the PK of the molecule, leading to reduced exposure and potentially lower efficacy. The level of sialic acid, N-acetylneuraminic acid (NANA), can also have a significant impact on the PK of Fc-fusion molecules. Core Fuc in the glycan structure reduces IgG antibody binding to IgG Fc receptor IIIa relative to IgG lacking Fuc, resulting in decreased antibody-dependent cell-mediated cytotoxicity (ADCC) activities. Glycoengineered Chinese hamster ovary (CHO) expression systems can produce afucosylated mAbs that have increased ADCC activities. Terminal Gal in a mAb is important in the complement-dependent cytotoxicity (CDC) in that lower levels of Gal reduce CDC activity. Glycans can also have impacts on the safety of mAb. mAbs produced in murine myeloma cells such as NS0 and SP2/0 contain glycans such as Galα1-3Galβ1-4N-acetylglucosamine-R and N-glycolylneuraminic acid (NGNA) that are not naturally present in humans and can be immunogenic when used as therapeutics. © 2015 Wiley Periodicals, Inc. and the American Pharmacists Association.

  15. The loss of luteal progesterone production in women is associated with a galectin switch via α2,6-sialylation of glycoconjugates.

    PubMed

    Nio-Kobayashi, Junko; Boswell, Lyndsey; Amano, Maho; Iwanaga, Toshihiko; Duncan, W Colin

    2014-12-01

    Luteal progesterone is fundamental for reproduction, but the molecular regulation of the corpus luteum (CL) in women remains unclear. Galectin-1 and galectin-3 bind to the sugar chains on cells to control key biological processes including cell function and fate. The expression and localization of LGALS1 and LGALS3 were analyzed by quantitative PCR and histochemical analysis, with special reference to α2,6-sialylation of glycoconjugates in carefully dated human CL collected across the menstrual cycle and after exposure to human chorionic gonadotrophin (hCG) in vivo. The effects of hCG and prostaglandin E2 on the expression of galectins and an α2,6-sialyltransferase 1 (ST6GAL1) in granulosa lutein cells were analyzed in vitro. Galectin-1 was predominantly localized to healthy granulosa lutein cells and galectin-3 was localized to macrophages and regressing granulosa lutein cells. Acute exposure to luteotrophic hormones (hCG and prostaglandin E2) up-regulated LGALS1 expression (P < .001). ST6GAL1, which catalyzes α2,6-sialylation to block galectin-1 binding, increased during luteolysis (P < .05) as did LGALS3 (P < .05). Luteotrophic hormones reduced ST6GAL1 and LGALS3 in vivo (P < .05) and in vitro (P < .001). There was an inverse correlation between the expression of ST6GAL1 and HSD3B1 (P < .01) and a distinct cellular relationship among α2,6-sialylation, 3β-hydroxysteroid dehydrogenase, and galectin expression. Galectin-1 is a luteotrophic factor whose binding is inhibited by α2,6-sialylation in the human CL during luteolysis. ST6GAL1 and galectin-3 expression is increased during luteolysis and associated with a loss of progesterone synthesis. Luteotrophic hormones differentially regulate galectin-1 and galectin-3/α2,6-sialylation in granulosa lutein cells, suggesting a novel galectin switch regulated by luteotrophic stimuli during luteolysis and luteal rescue.

  16. Endogenous galectin-3 expression levels modulate immune responses in galectin-3 transgenic mice.

    PubMed

    Chaudhari, Aparna D; Gude, Rajiv P; Kalraiya, Rajiv D; Chiplunkar, Shubhada V

    2015-12-01

    Galectin-3 (Gal-3), a β-galactoside-binding mammalian lectin, is involved in cancer progression and metastasis. However, there is an unmet need to identify the underlying mechanisms of cancer metastasis mediated by endogenous host galectin-3. Galectin-3 is also known to be an important regulator of immune responses. The present study was aimed at analysing how expression of endogenous galectin-3 regulates host immunity and lung metastasis in B16F10 murine melanoma model. Transgenic Gal-3(+/-) (hemizygous) and Gal-3(-/-) (null) mice exhibited decreased levels of Natural Killer (NK) cells and lower NK mediated cytotoxicity against YAC-1 tumor targets, compared to Gal-3(+/+) (wild-type) mice. On stimulation, Gal-3(+/-) and Gal-3(-/-) mice splenocytes showed increased T cell proliferation than Gal-3(+/+) mice. Intracellular calcium flux was found to be lower in activated T cells of Gal-3(-/-) mice as compared to T cells from Gal-3(+/+) and Gal-3(+/-) mice. In Gal-3(-/-) mice, serum Th1, Th2 and Th17 cytokine levels were found to be lowest, exhibiting dysregulation of pro-inflammatory and anti-inflammatory cytokines balance. Marked decrease in serum IFN-γ levels and splenic IFN-γR1 (IFN-γ Receptor 1) expressing T and NK cell percentages were observed in Gal-3(-/-) mice. On recombinant IFN-γ treatment of splenocytes in vitro, Suppressor of Cytokine Signaling (SOCS) 1 and SOCS3 protein expression was higher in Gal-3(-/-) mice compared to that in Gal-3(+/+) and Gal-3(+/-) mice; suggesting possible attenuation of Signal Transducer and Activator of Transcription (STAT) 1 mediated IFN-γ signaling in Gal-3(-/-) mice. The ability of B16F10 melanoma cells to form metastatic colonies in the lungs of Gal-3(+/+) and Gal-3(-/-) mice remained comparable, whereas it was found to be reduced in Gal-3(+/-) mice. Our data indicates that complete absence of endogenous host galectin-3 facilitates lung metastasis of B16F10 cells in mice, which may be contributed by dysregulated immune responses resulting from decreased NK cytotoxicity, disturbed serum Th1, Th2, Th17 cytokine milieu, reduced serum IFN-γ levels and attenuation of splenic STAT1 mediated IFN-γ signalling in Gal-3(-/-) mice. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Fast-acting and nearly gratuitous induction of gene expression and protein depletion in Saccharomyces cerevisiae

    PubMed Central

    McIsaac, R. Scott; Silverman, Sanford J.; McClean, Megan N.; Gibney, Patrick A.; Macinskas, Joanna; Hickman, Mark J.; Petti, Allegra A.; Botstein, David

    2011-01-01

    We describe the development and characterization of a system that allows the rapid and specific induction of individual genes in the yeast Saccharomyces cerevisiae without changes in nutrients or temperature. The system is based on the chimeric transcriptional activator Gal4dbd.ER.VP16 (GEV). Upon addition of the hormone β-estradiol, cytoplasmic GEV localizes to the nucleus and binds to promoters containing Gal4p consensus binding sequences to activate transcription. With galactokinase Gal1p and transcriptional activator Gal4p absent, the system is fast-acting, resulting in readily detectable transcription within 5 min after addition of the inducer. β-Estradiol is nearly a gratuitous inducer, as indicated by genome-wide profiling that shows unintended induction (by GEV) of only a few dozen genes. Response to inducer is graded: intermediate concentrations of inducer result in production of intermediate levels of product protein in all cells. We present data illustrating several applications of this system, including a modification of the regulated degron method, which allows rapid and specific degradation of a specific protein upon addition of β-estradiol. These gene induction and protein degradation systems provide important tools for studying the dynamics and functional relationships of genes and their respective regulatory networks. PMID:21965290

  18. VizieR Online Data Catalog: GalIMF version 1.0.0 (Yan+, 2017)

    NASA Astrophysics Data System (ADS)

    Yan, Z.; Jerabkova, T.; Kroupa, P.

    2017-08-01

    GalIMF stands for the Galaxy-wide Initial Mass Function. It is a Python 3 module that allows users to compute galaxy-wide initial stellar mass functions based on locally derived empirical constraints following the IGIMF theory. See the GalIMF homepage https://sites.google.com/view/galimf/home for more information. (1 data file).

  19. Galectin-3 alters the lateral mobility and clustering of β1-integrin receptors

    PubMed Central

    Yang, Esther H.; Rode, Julia; Howlader, Md. Amran; Eckermann, Marina; Santos, Jobette T.; Hernandez Armada, Daniel; Zheng, Ruixiang; Zou, Chunxia

    2017-01-01

    Glycoprotein receptors are influenced by myriad intermolecular interactions at the cell surface. Specific glycan structures may interact with endogenous lectins that enforce or disrupt receptor-receptor interactions. Glycoproteins bound by multivalent lectins may form extended oligomers or lattices, altering the lateral mobility of the receptor and influencing its function through endocytosis or changes in activation. In this study, we have examined the interaction of Galectin-3 (Gal-3), a human lectin, with adhesion receptors. We measured the effect of recombinant Gal-3 added exogenously on the lateral mobility of the α5β1 integrin on HeLa cells. Using single-particle tracking (SPT) we detected increased lateral mobility of the integrin in the presence of Gal-3, while its truncated C-terminal domain (Gal-3C) showed only minor reductions in lateral mobility. Treatment of cells with Gal-3 increased β1-integrin mediated migration with no apparent changes in viability. In contrast, Gal-3C decreased both cell migration and viability. Fluorescence microscopy allowed us to confirm that exogenous Gal-3 resulted in reorganization of the integrin into larger clusters. We used a proteomics analysis to confirm that cells expressed endogenous Gal-3, and found that addition of competitive oligosaccharide ligands for the lectin altered the lateral mobility of the integrin. Together, our results are consistent with a Gal-3–integrin lattice model of binding and confirm that the lateral mobility of integrins is natively regulated, in part, by galectins. PMID:29016609

  20. Galectin-3 enhances angiogenic and migratory potential of microglial cells via modulation of integrin linked kinase signaling

    PubMed Central

    Wesley, Umadevi V.; Vemuganti, Raghu; Ayvaci, Rabia; Dempsey, Robert J.

    2013-01-01

    Focal cerebral ischemia initiates self-repair mechanisms that include the production of neurotrophic factors and cytokines. Galectin-3 is an important angiogenic cytokine. We have previously demonstrated that expression of galectin 3 (Gal-3), a carbohydrate binding protein is significantly upregulated in activated microglia in the brains of rats subjected to focal ischemia. Further blocking of Gal-3 function with Gal-3 neutralizing antibody decreased the microvessel density in ischemic brain. We currently show that Gal-3 significantly increases the viability of microglia BV2 cells subjected to oxygen glucose deprivation (OGD) and re-oxygenation. Exogenous Gal-3 promoted the formation of pro-angiogenic structures in an in vitro human umbilical vein endothelial (HUVEC) and BV2 cell co-culture model. Gal-3 induced angiogenesis was associated with increased expression of vascular endothelial growth factor. The conditioned medium of BV2 cells exposed to OGD contained increased Gal-3 levels, and promoted the formation of pro-angiogenic structures in an in vitro HUVEC culture model. Gal-3 also augmented the in vitro migratory potential of BV2 microglia. Gal-3 mediated functions were associated with increased levels of integrin-linked kinase (ILK) signaling as demonstrated by the impaired angiogenesis and migration of BV2 cells following targeted silencing of ILK expression by SiRNA. Furthermore, we show that ILK levels correlate with the levels of phos-AKT and ERK1/2 that are downstream effectors of ILK pathway. Taken together, our studies indicate that Gal-3 contributes to angiogenesis and microglia migration that may have implications in post stroke repair. PMID:23246924

  1. Interaction of residue tetracycline hydrochloride in milk with β-galactosidase protein by multi-spectrum methods and molecular docking

    NASA Astrophysics Data System (ADS)

    Gao, Xin; Bi, Hongna; Zuo, Huijun; Jia, Jingjing; Tang, Lin

    2017-08-01

    The purpose of this study was to explore the effect of residue tetracycline hydrochloride (TCH) in milk on molecular structure and activity of β-Gal. Inhibition kinetics assay showed the TCH inhibited β-Gal activity reversibly in a competitive manner. In addition, differences in the activity of β-Gal in the absence and presence of TCH as a function of pH and temperature were found although the optimum pH and temperature of β-Gal remained similar. Fluorescence experiment results showed that TCH effectively quenched the intrinsic fluorescence of β-Gal via static quenching. Thermodynamic parameters delineated the major roles of electrostatic forces played between β-Gal and TCH. Additionally, synchronous fluorescence and circular dichroism spectra (CD spectra) results indicated the secondary structure of β-Gal was changed due to the formation of β-Gal-TCH complexes. The molecular docking further revealed that TCH interacted with some amino acid residues of β-Gal, affecting the active site of the enzyme and thus leading to change in enzyme activity. These alterations in conformation and activity of β-Gal should be taken into consideration while using β-Gal for producing oligosaccharide prebiotics on dairy industries.

  2. Retargeting pre-existing human antibodies to a bacterial pathogen with an alpha-Gal conjugated aptamer

    PubMed Central

    Kristian, Sascha A.; Hwang, John H.; Hall, Bradley; Leire, Emma; Iacomini, John; Old, Robert; Galili, Uri; Roberts, Charles; Mullis, Kary B.; Westby, Mike; Nizet, Victor

    2015-01-01

    The ever-increasing threat of multi-drug resistant bacterial infections has spurred renewed interest in alternative approaches to classical antibiotic therapy. In contrast to other mammals, humans do not express the galactose-α-1,3-galactosyl-β-1,4-N-acetyl-glucosamine (α-Gal) epitope. As a result of exposure of humans to α-Gal in the environment, a large proportion of circulating antibodies are specific for the trisaccharide. In this study, we examine whether these anti-Gal antibodies can be recruited and redirected to exert anti-bacterial activity. We show that a specific DNA aptamer conjugated to an α-Gal epitope at its 5′ end, herein termed an alphamer, can bind to group A Streptococcus (GAS) bacteria by recognition of a conserved region of the surface-anchored M protein. The anti-GAS alphamer was shown to recruit anti-Gal antibodies to the streptococcal surface in an α-Gal-specific manner, elicit uptake and killing of the bacteria by human phagocytes, and slow growth of invasive GAS in human whole blood. These studies provide a first in vitro proof of concept that alphamers have the potential to redirect pre-existing antibodies to bacteria in a specific manner and trigger an immediate antibacterial immune response. Further validation of this novel therapeutic approach of applying α-Gal technology in in vivo models of bacterial infection is warranted. PMID:25940316

  3. The impact of galectin-3 inhibition on aldosterone-induced cardiac and renal injuries.

    PubMed

    Calvier, Laurent; Martinez-Martinez, Ernesto; Miana, Maria; Cachofeiro, Victoria; Rousseau, Elodie; Sádaba, J Rafael; Zannad, Faiez; Rossignol, Patrick; López-Andrés, Natalia

    2015-01-01

    This study investigated whether galectin (Gal)-3 inhibition could block aldosterone-induced cardiac and renal fibrosis and improve cardiorenal dysfunction. Aldosterone is involved in cardiac and renal fibrosis that is associated with the development of cardiorenal injury. However, the mechanisms of these interactions remain unclear. Gal-3, a β-galactoside-binding lectin, is increased in heart failure and kidney injury. Rats were treated with aldosterone-salt combined with spironolactone (a mineralocorticoid receptor antagonist) or modified citrus pectin (a Gal-3 inhibitor), for 3 weeks. Wild-type and Gal-3 knockout mice were treated with aldosterone for 3 weeks. Hemodynamic, cardiac, and renal parameters were analyzed. Hypertensive aldosterone-salt-treated rats presented cardiac and renal hypertrophy (at morphometric, cellular, and molecular levels) and dysfunction. Cardiac and renal expressions of Gal-3 as well as levels of molecular markers attesting fibrosis were also augmented by aldosterone-salt treatment. Spironolactone or modified citrus pectin treatment reversed all of these effects. In wild-type mice, aldosterone did not alter blood pressure levels but increased cardiac and renal Gal-3 expression, fibrosis, and renal epithelial-mesenchymal transition. Gal-3 knockout mice were resistant to aldosterone effects. In experimental hyperaldosteronism, the increase in Gal-3 expression was associated with cardiac and renal fibrosis and dysfunction but was prevented by pharmacological inhibition (modified citrus pectin) or genetic disruption of Gal-3. These data suggest a key role for Gal-3 in cardiorenal remodeling and dysfunction induced by aldosterone. Gal-3 could be used as a new biotarget for specific pharmacological interventions. Copyright © 2015 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jin Lim, Min; Ahn, Jiyeon; Youn Yi, Jae

    Fibrosis is one of the most serious side effects in cancer patients undergoing radio-/ chemo-therapy, especially of the lung, pancreas or kidney. Based on our previous finding that galectin-1 (Gal-1) was significantly increased during radiation-induced lung fibrosis in areas of pulmonary fibrosis, we herein clarified the roles and action mechanisms of Gal-1 during fibrosis. Our results revealed that treatment with TGF-β1 induced the differentiation of fibroblast cell lines (NIH3T3 and IMR-90) to myofibroblasts, as evidenced by increased expression of the fibrotic markers smooth muscle actin-alpha (α-SMA), fibronectin, and collagen (Col-1). We also observed marked and time-dependent increases in the expressionmore » level and nuclear accumulation of Gal-1. The TGF-β1-induced increases in Gal-1, α-SMA and Col-1 were decreased by inhibitors of PI3-kinase and p38 MAPK, but not ERK. Gal-1 knockdown using shRNA decreased the phosphorylation and nuclear retention of Smad2, preventing the differentiation of fibroblasts. Gal-1 interacted with Smad2 and phosphorylated Smad2, which may accelerate fibrotic processes. In addition, up-regulation of Gal-1 expression was demonstrated in a bleomycin (BLM)-induced mouse model of lung fibrosis in vivo. Together, our results indicate that Gal-1 may promote the TGF-β1-induced differentiation of fibroblasts by sustaining nuclear localization of Smad2, and could be a potential target for the treatment of pulmonary fibrotic diseases. - Highlights: • Galectin-1 (Gal-1) promotes TGF-β-induced fibroblast differentiation via activation of PI3-kinase and p38 MAPK. • Gal-1 binds to Smad2 and phosphorylated Smad2. • GAl-1 may be a new therapeutic target for attenuating lung fibrotic process.« less

  5. Involvement of histidine residues in the pH-dependent β-galactoside binding activity of human galectin-1.

    PubMed

    Hiramatsu, Hirotsugu; Takeuchi, Katsuyuki; Takeuchi, Hideo

    2013-04-02

    The pH dependence of the β-galactoside binding activity of human galectin-1 (hGal-1) was investigated by fluorescence spectroscopy using lactose as a ligand. The obtained binding constant Kb was 2.94 ± 0.10 mM(-1) at pH 7.5. The Kb value decreased at acidic pH with a midpoint of transition at pH 6.0 ± 0.1. To elucidate the molecular mechanism of the pH dependence, we investigated the structures of hGal-1 and its two His mutants (H44Q and H52Q) using fluorescence, circular dichroism, UV absorption, and UV resonance Raman spectroscopy. Analysis of the spectra has shown that the pKa values of His44 and His52 are 5.7 ± 0.2 and 6.3 ± 0.1, respectively. The protonation of His52 below pH 6.3 induces a small change in secondary structure and partly reduces the galactoside binding activity. On the other hand, the protonation of His44 below pH 5.7 exerts a cation-π interaction with Trp68 and largely diminishes the galactoside binding activity. With reference to the literature X-ray structures at pH 7.0 and 5.6, protonated His52 is proposed to move slightly away from the galactoside-binding region with a partial unfolding of the β-strand containing His52. On the other hand, protonated His44 becomes unable to form a hydrogen bond with galactoside and additionally induces a reorientation and/or displacement of Trp68 through cation-π interaction, leading to a loosening of the galactoside-binding pocket. These structural changes associated with His protonation are likely to be the origin of the pH dependence of the galactoside binding activity of hGal-1.

  6. Binding of Human GII.4 Norovirus Virus-Like Particles to Carbohydrates of Romaine Lettuce Leaf Cell Wall Materials

    PubMed Central

    Esseili, Malak A.

    2012-01-01

    Norovirus (NoV) genogroup II genotype 4 (GII.4) strains are the dominant cause of the majority of food-borne outbreaks, including those that involve leafy greens, such as lettuce. Since human NoVs use carbohydrates of histo-blood group antigens as receptors/coreceptors, we examined the role of carbohydrates in the attachment of NoV to lettuce leaves by using virus-like particles (VLPs) of a human NoV/GII.4 strain. Immunofluorescence analysis showed that the VLPs attached to the leaf surface, especially to cut edges, stomata, and along minor veins. Binding was quantified using enzyme-linked immunosorbent assay (ELISA) performed on cell wall materials (CWM) from innermost younger leaves and outermost lamina of older leaves. The binding to CWM of older leaves was significantly (P < 0.05) higher (1.5- to 2-fold) than that to CWM of younger leaves. Disrupting the carbohydrates of CWM or porcine gastric mucin (PGM) (a carbohydrate control) using 100 mM sodium periodate (NaIO4) significantly decreased the binding an average of 17% in younger leaves, 43% in older leaves, and 92% for PGM. In addition, lectins recognizing GalNAc, GlcNAc, and sialic acid at 100 μg/ml significantly decreased the binding an average of 41%, 33%, and 20% on CWM of older leaves but had no effect on younger leaves. Lectins recognizing α-d-Gal, α-d-Man/α-d-Glc, and α-l-Fuc showed significant inhibition on CWM of older leaves as well as that of younger leaves. All lectins, except for the lectin recognizing α-d-Gal, significantly inhibited NoV VLP binding to PGM. Collectively, our results indicate that NoV VLPs bind to lettuce CWM by utilizing multiple carbohydrate moieties. This binding may enhance virus persistence on the leaf surface and prevent effective decontamination. PMID:22138991

  7. Leishmania infantum Exoproducts Inhibit Human Invariant NKT Cell Expansion and Activation

    PubMed Central

    Belo, Renata; Santarém, Nuno; Pereira, Cátia; Pérez-Cabezas, Begoña; Macedo, Fátima; Leite-de-Moraes, Maria; Cordeiro-da-Silva, Anabela

    2017-01-01

    Leishmania infantum is one of the major parasite species associated with visceral leishmaniasis, a severe form of the disease that can become lethal if untreated. This obligate intracellular parasite has developed diverse strategies to escape the host immune response, such as exoproducts (Exo) carrying a wide range of molecules, including parasite virulence factors, which are potentially implicated in early stages of infection. Herein, we report that L. infantum Exo and its two fractions composed of extracellular vesicles (EVs) and vesicle-depleted-exoproducts (VDEs) inhibit human peripheral blood invariant natural killer T (iNKT) cell expansion in response to their specific ligand, the glycolipid α-GalactosylCeramide (α-GalCer), as well as their capacity to promptly produce IL-4 and IFNγ. Using plate-bound CD1d and α-GalCer, we found that Exo, EV, and VDE fractions reduced iNKT cell activation in a dose-dependent manner, suggesting that they prevented α-GalCer presentation by CD1d molecules. This direct effect on CD1d was confirmed by the observation that CD1d:α-GalCer complex formation was impaired in the presence of Exo, EV, and VDE fractions. Furthermore, lipid extracts from the three compounds mimicked the inhibition of iNKT cell activation. These lipid components of L. infantum exoproducts, including EV and VDE fractions, might compete for CD1-binding sites, thus blocking iNKT cell activation. Overall, our results provide evidence for a novel strategy through which L. infantum can evade immune responses of mammalian host cells by preventing iNKT lymphocytes from recognizing glycolipids in a TCR-dependent manner. PMID:28674535

  8. Secretion of Galectin-9 as a DAMP during Dengue Virus Infection in THP-1 Cells.

    PubMed

    Dapat, Isolde C; Pascapurnama, Dyshelly Nurkartika; Iwasaki, Hiroko; Labayo, Hannah Karen; Chagan-Yasutan, Haorile; Egawa, Shinichi; Hattori, Toshio

    2017-07-28

    Damage-associated molecular patterns (DAMPs) are endogenous cellular molecules released to the extracellular environment in response to stress conditions such as virus infection. Galectins are β-galactoside-binding proteins that are widely expressed in cells and tissues of the immune system, are localized in the cell cytoplasm, and have roles in inflammatory responses and immune responses against infection. Elevated levels of galectin-9 (Gal-9) in natural human infections have been documented in numerous reports. To investigate the effect of dengue virus (DENV) infection on expression of endogenous Gal-9, monocytic THP-1 cells were infected with varying doses of DENV-3 (multiplicity of infection (MOI) 0.01, 0.03 and 0.1) and incubated at varying time points (Day 1, Day 2, Day 3). Results showed augmentation of Gal-9 levels in the supernatant, reduction of Gal-9 levels in the cells and decreased expression of LGALS9 mRNA, while DENV-3 mRNA copies for all three doses remained stable through time. Dengue virus induced the secretion of Gal-9 as a danger response; in turn, Gal-9 and other inflammatory factors, and stimulated effector responses may have limited further viral replication. The results in this pilot experiment add to the evidence of Gal-9 as a potential DAMP.

  9. Differences between influenza virus receptors on target cells of duck and chicken and receptor specificity of the 1997 H5N1 chicken and human influenza viruses from Hong Kong.

    PubMed

    Gambaryan, A S; Tuzikov, A B; Bovin, N V; Yamnikova, S S; Lvov, D K; Webster, R G; Matrosovich, M N

    2003-01-01

    To study whether influenza virus receptors in chickens differ from those in other species, we compared the binding of lectins and influenza viruses with known receptor specificity to cell membranes and gangliosides from epithelial tissues of ducks, chickens, and African green monkeys. We found that chicken cells contained Neu5Ac alpha(2-6)Gal-terminated receptors recognized by Sambucus nigra lectin and by human viruses. This finding explains how some recent H9N2 viruses replicate in chickens despite their human virus-like receptor specificity. Duck virus bound to gangliosides with short sugar chains that were abundant in duck intestine. Human and chicken viruses did not bind to these gangliosides and bound more strongly than duck virus to gangliosides with long sugar chains that were found in chicken intestinal and monkey lung tissues. Chicken and duck viruses also differed by their ability to recognize the structure of the third sugar moiety in Sia2-3Gal-terminated receptors. Chicken viruses preferentially bound to Neu5Ac alpha(2-3)Gal beta(1-4)GlcNAc-containing synthetic sialylglycopolymer, whereas duck viruses displayed a higher affinity for Neu5Ac alpha(2-3)Gal beta(1-3)GalNAc-containing polymer. Our data indicate that sialyloligosaccharide receptors in different avian species are not identical and provide a potential explanation for the differences between the hemagglutinin and neuraminidase proteins of duck and chicken viruses.

  10. siRNA carrying an (E)-vinylphosphonate moiety at the 5΄ end of the guide strand augments gene silencing by enhanced binding to human Argonaute-2

    PubMed Central

    Elkayam, Elad; Parmar, Rubina; Brown, Christopher R.; Willoughby, Jennifer L.; Theile, Christopher S.

    2017-01-01

    Abstract Efficient gene silencing by RNA interference (RNAi) in vivo requires the recognition and binding of the 5΄- phosphate of the guide strand of an siRNA by the Argonaute protein. However, for exogenous siRNAs it is limited by the rapid removal of the 5΄- phosphate of the guide strand by metabolic enzymes. Here, we have determined the crystal structure of human Argonaute-2 in complex with the metabolically stable 5΄-(E)-vinylphosphonate (5΄-E-VP) guide RNA at 2.5-Å resolution. The structure demonstrates how the 5΄ binding site in the Mid domain of human Argonaute-2 is able to adjust the key residues in the 5΄-nucleotide binding pocket to compensate for the change introduced by the modified nucleotide. This observation also explains improved binding affinity of the 5΄-E-VP -modified siRNA to human Argonaute-2 in-vitro, as well as the enhanced silencing in the context of the trivalent N-acetylgalactosamine (GalNAc)-conjugated siRNA in mice relative to the un-modified siRNA. PMID:27903888

  11. [Expression and distribution of xenoantigen alpha-Gal in intervertebral disk of Chinese banna minipig inbred line].

    PubMed

    Shou, Jian-guo; Mi, Jian-hong; Ying, Da-jun

    2002-09-01

    To investigate the expression and distribution of xenoantigen in intervertebral disk of Chinese banna minipig inbred line, and to study the availability of xenograft transplantation of intervertebral disk. Samples of intervertebral disk were collected from six Banna pigs of 8 to 11-month-old. The fixation, embedment and slice were performed. alpha-Gal specific binding lection (BSI-B4) were used as affinity reagents and affinity-immunohistochemistry assays (SABC methods and DAB stain) were conducted to detect the expression and distribution of xenoantigen (alpha-Gal). alpha-Gal was found in chondrocyte cell and chondrocyte-like cell in intervertebral disk which have the positive yellow-stained particulate aggradation. There was no stain in the matrix, elastic fiber and collagen fiber. The distribution of xenoantigen is locally in the tissue of intervertebral disk and its expression is weak. This suggests that the intervertebral disk of Banna pig may be alternative donor for xenotransplantation.

  12. Significance of the evolutionary α1,3-galactosyltransferase (GGTA1) gene inactivation in preventing extinction of apes and old world monkeys.

    PubMed

    Galili, Uri

    2015-01-01

    The α1,3-galactosyltransferase (α1,3GT or GGTA1) gene displays unique evolutionary characteristics. This gene appeared early in mammalian evolution and is absent in other vertebrates. The α1,3GT gene is active in marsupials, nonprimate placental mammals, lemurs (prosimians) and New World monkeys, encoding the α1,3GT enzyme that synthesizes a carbohydrate antigen called "α-gal epitope." The α-gal epitope is present in large numbers on cell membrane glycolipids and glycoproteins. The α1,3GT gene was inactivated in ancestral Old World monkeys and apes by frameshift single-base deletions forming premature stop codons. Because of this gene inactivation, humans, apes, and Old World monkeys lack α-gal epitopes and naturally produce an antibody called the "anti-Gal antibody" which binds specifically to α-gal epitopes and which is the most abundant antibody in humans. The evolutionary event that resulted in the inactivation of the α1,3GT gene in ancestral Old World primates could have been mediated by a pathogen endemic to Eurasia-Africa landmass that exerted pressure for selection of primate populations lacking the α-gal epitope. Once the α-gal epitope was eliminated, primates could produce the anti-Gal antibody, possibly as means of defense against pathogens expressing this epitope. This assumption is supported by the fossil record demonstrating an almost complete extinction of apes in the late Miocene and failure of Old World monkeys to radiate into multiple species before that period. A present outcome of this evolutionary event is the anti-Gal-mediated rejection of mammalian xenografts expressing α-gal epitopes in humans, apes, and Old World monkeys.

  13. The Sda/GM2-glycan is a carbohydrate marker of porcine primordial germ cells and of a subpopulation of spermatogonia in cattle, pigs, horses and llama.

    PubMed

    Klisch, K; Contreras, D A; Sun, X; Brehm, R; Bergmann, M; Alberio, R

    2011-11-01

    Spermatogonia are a potential source of adult pluripotent stem cells and can be used for testis germ cell transplantation. Markers for the isolation of these cells are of great importance for biomedical applications. Primordial germ cells and prepubertal spermatogonia in many species can be identified by their binding of Dolichos biflorus agglutinin (DBA). This lectin binds to two different types of glycans, which are α-linked N-acetylgalactosamine (GalNac) and β-linked GalNac, if this is part of the Sda or GM2 glycotopes. We used the MAB CT1, which is specific for the trisaccharides motif NeuAcα2-3(GalNAcβ1-4)Galβ1-, which is common to both Sda and GM2 glycotopes, to further define the glycosylation of DBA binding germ cells. In porcine embryos, CT1 bound to migratory germ cells and gonocytes. CT1/DBA double staining showed that the mesonephros was CT1 negative but contained DBA-positive cells. Gonocytes in the female gonad became CT1 negative, while male gonocytes remained CT1 positive. In immunohistological double staining of cattle, pig, horse and llama testis, DBA and CT1 staining was generally colocalised in a subpopulation of spermatogonia. These spermatogonia were mainly single, sometimes paired or formed chains of up to four cells. Our data show that the Sda/GM2 glycotope is present in developing germ cells and spermatogonia in several species. Owing to the narrower specificity of the CT1 antibody, compared with DBA, the former is likely to be a useful tool for labelling and isolation of these cells.

  14. Getting too sweet: galectin-1 dysregulation in gestational diabetes mellitus.

    PubMed

    Blois, Sandra M; Gueuvoghlanian-Silva, Barbara Y; Tirado-González, Irene; Torloni, Maria R; Freitag, Nancy; Mattar, Rosiane; Conrad, Melanie L; Unverdorben, Laura; Barrientos, Gabriela; Knabl, Julia; Toldi, Gergely; Molvarec, Attila; Rose, Matthias; Markert, Udo R; Jeschke, Udo; Daher, Silvia

    2014-07-01

    Galectin-1 (gal-1) is a prototype carbohydrate-binding protein, whose dysregulation is associated with adverse pregnancy outcomes such as spontaneous abortion and pre-eclampsia. Furthermore, it is known that faulty gal-1 protein production or gene regulation can be caused by single-nucleotide polymorphisms in the LGALS1 gene. Gestational diabetes mellitus (GDM) is also an adverse pregnancy outcome and the most common metabolic disorder during gestation. However, gal-1 expression patterns during GDM remain largely unknown. Our aims were to define local and peripheral gal-1 expression patterns during pregnancy, and to investigate LGALS1 gene polymorphisms in GDM patients. Circulating gal-1 levels were determined by ELISA in GDM patients and normal pregnant controls, and LGALS1 gene polymorphisms were assessed for association with GDM. Placental tissues were collected from control and GDM term pregnancies to evaluate local gal-1 expression by immunofluorescence. Our results show that GDM is associated with a failure to increase circulating gal-1 levels during the second and third trimester, as well as overexpression of gal-1 in placental tissue. Additionally, the LGALS1 polymorphism rs4820294 was associated with the development of GDM. In pregnancies complicated by GDM, we observed gal-1 dysregulation both locally in the placenta and peripherally in the circulation. Furthermore, the association between the LGALS1 polymorphism and GDM may indicate a genetic contribution to this adverse pregnancy outcome. © The Author 2014. Published by Oxford University Press on behalf of the European Society of Human Reproduction and Embryology. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  15. Identification of new human pregnane X receptor ligands among pesticides using a stable reporter cell system.

    PubMed

    Lemaire, Géraldine; Mnif, Wissem; Pascussi, Jean-Marc; Pillon, Arnaud; Rabenoelina, Fanja; Fenet, Hélène; Gomez, Elena; Casellas, Claude; Nicolas, Jean-Claude; Cavaillès, Vincent; Duchesne, Marie-Josèphe; Balaguer, Patrick

    2006-06-01

    Pregnane X receptor (PXR, NR1I2) is activated by various chemically unrelated compounds, including environmental pollutants and drugs. We proceeded here to in vitro screening of 28 pesticides with a new reporter system that detects human pregnane X receptor (hPXR) activators. The cell line was obtained by a two-step stable transfection of cervical cancer HeLa cells. The first transfected cell line, HG5LN, contained an integrated luciferase reporter gene under the control of a GAL4 yeast transcription factor-binding site. The second cell line HGPXR was derived from HG5LN and stably expressed hPXR ligand-binding domain fused to GAL4 DNA-binding domain (DBD). The HG5LN cells were used as a control to detect nonspecific activities. Pesticides from various chemical classes were demonstrated, for the first time, to be hPXR activators: (1) herbicides: pretilachlor, metolachlor, and alachlor chloracetanilides, oxadiazon oxiconazole, and isoproturon urea; (2) fungicides: bupirimate and fenarimol pyrimidines, propiconazole, fenbuconazole, prochloraz conazoles, and imazalil triazole; and (3) insecticides: toxaphene organochlorine, permethrin pyrethroid, fipronil pyrazole, and diflubenzuron urea. Pretilachlor, metolachlor, bupirimate, and oxadiazon had an affinity for hPXR equal to or greater than the positive control rifampicin. Some of the newly identified hPXR activators were also checked for their ability to induce cytochrome P450 3A4 expression in a primary culture of human hepatocytes. HGPXR, with HG5LN as a reference, was grafted onto nude mice to assess compound bioavailability through in vivo quantification of hPXR activation. Altogether, our data indicate that HGPXR cells are an efficient tool for identifying hPXR ligands and establishing pesticides as hPXR activators.

  16. Galantamine is a Novel Post-Exposure Therapeutic Against Lethal VX Challenge

    DTIC Science & Technology

    2009-01-01

    administered as a post- exposure treatment 1 min after VX. GAL also reduced the high correlation associated between seizure activity and lethality...The standard U.S. military therapy for intoxication by anticholinesterase agents consists of administering ATR to antagonize excessive muscarinic...2003). A ball-and-stick repre- sentation of GAL is shown in Fig. 1 docking to the active site of two different acetylcholinesterase forms. GAL

  17. Contrasting acute graft-versus-host disease effects of Tim-3/galectin-9 pathway blockade dependent upon the presence of donor regulatory T cells

    PubMed Central

    Veenstra, Rachelle G.; Taylor, Patricia A.; Zhou, Qing; Panoskaltsis-Mortari, Angela; Hirashima, Mitsuomi; Flynn, Ryan; Liu, Derek; Anderson, Ana C.; Strom, Terry B.; Kuchroo, Vijay K.

    2012-01-01

    T-cell immunoglobulin mucin-3 (Tim-3) is expressed on pathogenic T cells, and its ligand galectin-9 (gal-9) is up-regulated in inflamed tissues. When Tim-3+ T cells encounter high gal-9 levels, they are deleted. Tim-3 is up-regulated on activated T cells during GVHD. Inhibition of Tim-3/gal-9 binding by infusion of a Tim-3-Ig fusion protein or Tim-3−/− donor T cells increased T-cell proliferation and GVHD lethality. When the Tim-3/gal-9 pathway engagement was augmented using gal-9 transgenic recipients, GVHD lethality was slowed. Together, these data indicate a potential for modulating this pathway to reduce disease by increasing Tim-3 or gal-9 engagement. Paradoxically, when Tim-3/gal-9 was inhibited in the absence of donor T-regulatory cells (Tregs), GVHD was inhibited. GVHD reduction was associated with decreased colonic inflammatory cytokines as well as epithelial barrier destruction. CD25-depleted Tim-3−/− donor T cells underwent increased activation-induced cell death because of increased IFN-γ production. To our knowledge, these studies are the first to show that although the absence of Tim-3/gal-9 pathway interactions augments systemic GVHD, concurrent donor Treg depletion paradoxically and surprisingly inhibits GVHD. Thus, although donor Tregs typically inhibit GVHD, under some conditions, such Tregs actually may contribute to GVHD by reducing activation-induced T-cell death. PMID:22677125

  18. A Pharmacogenetic Approach to Identify Mutant Forms of α-Galactosidase A that Respond to a Pharmacological Chaperone for Fabry Disease

    PubMed Central

    Wu, Xiaoyang; Katz, Evan; Valle, Maria Cecilia Della; Mascioli, Kirsten; Flanagan, John J; Castelli, Jeffrey P; Schiffmann, Raphael; Boudes, Pol; Lockhart, David J; Valenzano, Kenneth J; Benjamin, Elfrida R

    2011-01-01

    Fabry disease is caused by mutations in the gene (GLA) that encodes α-galactosidase A (α-Gal A). The iminosugar AT1001 (GR181413A, migalastat hydrochloride, 1-deoxygalactonojirimycin) is a pharmacological chaperone that selectively binds and stabilizes α-Gal A, increasing total cellular levels and activity for some mutant forms (defined as “responsive”). In this study, we developed a cell-based assay in cultured HEK-293 cells to identify mutant forms of α-Gal A that are responsive to AT1001. Concentration-dependent increases in α-Gal A activity in response to AT1001 were shown for 49 (60%) of 81 mutant forms. The responses of α-Gal A mutant forms were generally consistent with the responses observed in male Fabry patient-derived lymphoblasts. Importantly, the HEK-293 cell responses of 19 α-Gal A mutant forms to a clinically achievable concentration of AT1001 (10 µM) were generally consistent with observed increases in α-Gal A activity in peripheral blood mononuclear cells from male Fabry patients orally administered AT1001 during Phase 2 clinical studies. This indicates that the cell-based responses can identify mutant forms of α-Gal A that are likely to respond to AT1001 in vivo. Thus, the HEK-293 cell-based assay may be a useful aid in the identification of Fabry patients with AT1001-responsive mutant forms. Hum Mutat 32:1–13, 2011. © 2011 Wiley-Liss, Inc. PMID:21598360

  19. Helicobacter pylori and Complex Gangliosides

    PubMed Central

    Roche, Niamh; Ångström, Jonas; Hurtig, Marina; Larsson, Thomas; Borén, Thomas; Teneberg, Susann

    2004-01-01

    Recognition of sialic acid-containing glycoconjugates by the human gastric pathogen Helicobacter pylori has been repeatedly demonstrated. To investigate the structural requirements for H. pylori binding to complex gangliosides, a large number of gangliosides were isolated and characterized by mass spectrometry and proton nuclear magnetic resonance. Ganglioside binding of sialic acid-recognizing H. pylori strains (strains J99 and CCUG 17874) and knockout mutant strains with the sialic acid binding adhesin SabA or the NeuAcα3Galβ4GlcNAcβ3Galβ4GlcNAcβ-binding neutrophil-activating protein HPNAP deleted was investigated using the thin-layer chromatogram binding assay. The wild-type bacteria bound to N-acetyllactosamine-based gangliosides with terminal α3-linked NeuAc, while gangliosides with terminal NeuGcα3, NeuAcα6, or NeuAcα8NeuAcα3 were not recognized. The factors affecting binding affinity were identified as (i) the length of the N-acetyllactosamine carbohydrate chain, (ii) the branches of the carbohydrate chain, and (iii) fucose substitution of the N-acetyllactosamine core chain. While the J99/NAP− mutant strain displayed a ganglioside binding pattern identical to that of the parent J99 wild-type strain, no ganglioside binding was obtained with the J99/SabA− mutant strain, demonstrating that the SabA adhesin is the sole factor responsible for the binding of H. pylori bacterial cells to gangliosides. PMID:14977958

  20. Expression of prostate glycoconjugates in the stallion and castrated horse.

    PubMed

    Parillo, F; Mancuso, R; Vullo, C; Catone, G

    2010-10-01

    This work was undertaken to determine the glycoconjugates secreted by the epithelium of the prostate in the intact stallion and castrated horse using lectin histochemical procedures in conjunction with enzymatic digestion and deglycosylation treatments. Additionally, anti-5 and 13-16-cytokeratin antibodies were used to localize epithelial basal cells. In the stallion, lectin histochemistry showed the following sugar residues in the Golgi zone of the glandular cells: α-Glu/Man, α-Fuc and β-Gal included in both O- and N-linked oligosaccharides as well as β-GalNAc, GlcNAc and α-Gal, which belonged to O-glycoproteins. β-Gal and β-GalNAc moieties were also noted subterminal to sialyl residues. Sialic acid specific lectins identified Neu-5Ac(α2,3-6)-β-Gal or Neu5Ac(α2,6)-β-GalNAc sequences in both N- and O-bound glycoproteins. The prostatic glandular cells of the castrated horse expressed some of the same sugar moieties found in the stallions, such as α-Glu/Man, α-Gal and GlcNAc, but significant differences were also noted. In particular, β-D-GalNAc was only detected subterminal to sialic acid, β-D-Gal-(1-3)-D-GalNAc was found in N-linked glycans, whereas β-D-Gal-(1-4)-D-GlcNAc and Neu5Acα2,6Gal/GalNAc were noted only in O-glycoproteins. These results indicate that the lectin binding patterns in glandular cells may be modified by sex hormones. No specific lectin labelling of basal cells was found in either the stallion or the castrated horse even though they were immunostained with specific anti-cytokeratin antibodies. These cells stained more strongly in the castrated horse than in the intact stallion suggesting that they are androgen responsive. The glycomolecules detected in the equine prostate secretions may contribute to the remodelling of the sperm surface, which occurs during sperm transit through the male genital tract and also after ejaculation in the seminal plasma. These changes may be important in the understanding of the stallion fertility. © 2009 Blackwell Verlag GmbH.

  1. BRCA1 Regulation of Estrogen Signaling in the Breast

    DTIC Science & Technology

    2007-05-01

    PAGE and processed by immunoblot analysis with antibodies specific for GAL4- DBD or ER as indicated by arrows. Note that differences in the relative...derivative 1–150 (N terminus). Schematic diagrams of ER and DBC-1 indicate fragments used in binding reactions. AF-1, Activation function 1; DBD , DNA...solved by SDS-10% PAGE. Proteins were analyzed by im- munoblot using antibodies against GAL4- DBD (RK5C1; Santa Cruz Biotechnology, Santa Cruz, CA

  2. Cloning and characterization of GETS-1, a goldfish Ets family member that functions as a transcriptional repressor in muscle.

    PubMed

    Goldman, D; Sapru, M K; Stewart, S; Plotkin, J; Libermann, T A; Wasylyk, B; Guan, K

    1998-10-15

    An Ets transcription factor family member, GETS-1, was cloned from a goldfish retina cDNA library. GETS-1 contains a conserved Ets DNA-binding domain at its N-terminus and is most similar to ternary complex factor (TCF) serum-response-factor protein-1a (SAP-1a). GETS-1 is expressed in many tissues, but is enriched in retina and brain. As with the TCFs SAP-1a and ets-related protein (ERP), overexpression of the GETS-1 promoter suppresses nicotinic acetylcholine receptor epsilon-subunit gene expression in cultured muscle cells. A consensus Ets binding site sequence in the promoter of the epsilon-subunit gene is required for GETS-1-mediated repression. GETS-1 repressor activity is abrogated by overexpression of an activated Ras/mitogen-activated protein kinase (MAP kinase) or by mutation of Ser-405, a MAP kinase phosphorylation site in GETS-1. Fusion proteins created between GETS-1 and the Gal4 DNA-binding domain show that, like other TCFs, GETS-1 contains a C-terminal activation domain that is activated by a Ras/MAP kinase signalling cascade. Interestingly, mutation of Ser-405 located within this activation domain abrogated transcriptional activation of the fusion protein.

  3. Galectin-1 drives pancreatic carcinogenesis through stroma remodeling and Hedgehog signaling activation

    PubMed Central

    Martínez-Bosch, Neus; Fernández-Barrena, Maite G.; Moreno, Mireia; Ortiz-Zapater, Elena; André, Sabine; Gabius, Hans-Joachim; Hwang, Rosa F.; Poirier, Françoise; Munné-Collado, Jessica; Iglesias, Mar; Navas, Carolina; Guerra, Carmen; Fernández-Zapico, Martin E.; Navarro, Pilar

    2015-01-01

    Pancreatic ductal adenocarcinoma (PDA) is the most aggressive tumor, showing incidence and mortality values almost identical. Despite remarkable advances in PDA molecular characterization, this disease is still refractory to current treatments. Desmoplastic stroma, a constant hallmark of PDA, has recently emerged as the major responsible for PDA therapeutic resistance, therefore representing a promising target. Galectin-1 (Gal1), a glycan-binding protein, is highly expressed in PDA stroma but its role remains unknown. Here, we aim to understand in vivo Gal1 functions and the molecular pathways responsible for its oncogenic properties. Genetic ablation of Gal1 in Ela-myc mice dampens tumor progression through inhibition of proliferation, angiogenesis, desmoplasia and stimulation of tumor-associated immune response, resulting in a 20% increase on the animal life span. In vitro and in vivo studies unveil that these effects are mediated by modulation of the tumor microenvironment in a non-cell autonomous manner. Importantly, acinar-to-ductal metaplasia, a crucial step for PDA initiation, is also regulated by Gal1. Finally, high-throughput gene expression studies and molecular analysis aimed at identifying the underlying mechanism revealed that Gal1 promotes Hedgehog pathway both in PDA cells and stromal fibroblasts. In summary, our studies define a novel role of Gal1 in PDA tumor epithelium-stroma crosstalk and suggest this lectin as potential molecular target for therapy of neoplasms overexpressing Gal1. PMID:24812270

  4. Targeting galectin-1 inhibits pancreatic cancer progression by modulating tumor-stroma crosstalk.

    PubMed

    Orozco, Carlos A; Martinez-Bosch, Neus; Guerrero, Pedro E; Vinaixa, Judith; Dalotto-Moreno, Tomás; Iglesias, Mar; Moreno, Mireia; Djurec, Magdolna; Poirier, Françoise; Gabius, Hans-Joachim; Fernandez-Zapico, Martin E; Hwang, Rosa F; Guerra, Carmen; Rabinovich, Gabriel A; Navarro, Pilar

    2018-04-17

    Pancreatic ductal adenocarcinoma (PDA) remains one of the most lethal tumor types, with extremely low survival rates due to late diagnosis and resistance to standard therapies. A more comprehensive understanding of the complexity of PDA pathobiology, and especially of the role of the tumor microenvironment in disease progression, should pave the way for therapies to improve patient response rates. In this study, we identify galectin-1 (Gal1), a glycan-binding protein that is highly overexpressed in PDA stroma, as a major driver of pancreatic cancer progression. Genetic deletion of Gal1 in a Kras -driven mouse model of PDA ( Ela-Kras G12V p53 -/- ) results in a significant increase in survival through mechanisms involving decreased stroma activation, attenuated vascularization, and enhanced T cell infiltration leading to diminished metastasis rates. In a human setting, human pancreatic stellate cells (HPSCs) promote cancer proliferation, migration, and invasion via Gal1-driven pathways. Moreover, in vivo orthotopic coinjection of pancreatic tumor cells with Gal1-depleted HPSCs leads to impaired tumor formation and metastasis in mice. Gene-expression analyses of pancreatic tumor cells exposed to Gal1 reveal modulation of multiple regulatory pathways involved in tumor progression. Thus, Gal1 hierarchically regulates different events implicated in PDA biology including tumor cell proliferation, invasion, angiogenesis, inflammation, and metastasis, highlighting the broad therapeutic potential of Gal1-specific inhibitors, either alone or in combination with other therapeutic modalities.

  5. Molecular dynamics simulations of glycosyltransferase LgtC.

    PubMed

    Snajdrová, Lenka; Kulhánek, Petr; Imberty, Anne; Koca, Jaroslav

    2004-04-02

    Molecular dynamics simulations have been performed on fully solvated alpha-(1-->4)-galactosyltransferase LgtC from Neisseria meningitidis with and without the donor substrate UDP-Gal and in the presence of the manganese ion. The analysis of the trajectories revealed a limited movement in the loop X (residues 75-80) and a larger conformational change in the loop Y (residues 246-251) in the simulation, when UDP-Gal was not present. In this case, the loops X and Y open by almost 10A, exposing the active site to the solvent. The 'hinge region' responsible for the opening is composed of residues 246-247. We have also analyzed the behavior of the manganese ion in the simulations. The coordination number is 6 when UDP-Gal is present and it increases to 7 when it is absent. In the latter case, three water molecules become coordinated to the ion. In both cases, the coordination is very stable implying that the manganese ion is tightly bound in the active site of the enzyme even if UDP-Gal is not present. Further analysis of the structural water molecules location confirmed that the mobility of water molecules in the active site and the accessibility of this site for solvent are higher in the absence of the substrate.

  6. A Topographical Atlas of Shiga Toxin 2e Receptor Distribution in the Tissues of Weaned Piglets.

    PubMed

    Steil, Daniel; Bonse, Robert; Meisen, Iris; Pohlentz, Gottfried; Vallejo, German; Karch, Helge; Müthing, Johannes

    2016-11-30

    Shiga toxin (Stx) 2e of Stx-producing Escherichia coli (STEC) is the primary virulence factor in the development of pig edema disease shortly after weaning. Stx2e binds to the globo-series glycosphingolipids (GSLs) globotriaosylceramide (Gb3Cer, Galα1-4Galβ1-4Glcβ1-1Cer) and globotetraosylceramide (Gb4Cer, GalNAcβ1-3Galα1-4Galβ1-4Glcβ1-1Cer), the latter acting as the preferential Stx2e receptor. We determined Stx receptor profiles of 25 different tissues of a male and a female weaned piglet using immunochemical solid phase binding assays combined with mass spectrometry. All probed tissues harbored GSL receptors, ranging from high (category I) over moderate (category II) to low content (category III). Examples of Gb4Cer expression in category I tissues are small intestinal ileum, kidney pelvis and whole blood, followed by colon, small intestinal duodenum and jejunum belonging to category II, and kidney cortex, cerebrum and cerebellum as members of category III organs holding true for both genders. Dominant Gb3Cer and Gb4Cer lipoforms were those with ceramides carrying constant sphingosine (d18:1) and a variable C16:0, C22:0 or C24:1/C24:0 fatty acid. From the mapping data, we created a topographical atlas for Stx2e receptors in piglet tissues and organs, which might be helpful to further investigations on the molecular and cellular mechanisms that underlie infections of Stx2e-producing STEC in pigs and their zoonotic potential for humans.

  7. A Topographical Atlas of Shiga Toxin 2e Receptor Distribution in the Tissues of Weaned Piglets

    PubMed Central

    Steil, Daniel; Bonse, Robert; Meisen, Iris; Pohlentz, Gottfried; Vallejo, German; Karch, Helge; Müthing, Johannes

    2016-01-01

    Shiga toxin (Stx) 2e of Stx-producing Escherichia coli (STEC) is the primary virulence factor in the development of pig edema disease shortly after weaning. Stx2e binds to the globo-series glycosphingolipids (GSLs) globotriaosylceramide (Gb3Cer, Galα1-4Galβ1-4Glcβ1-1Cer) and globotetraosylceramide (Gb4Cer, GalNAcβ1-3Galα1-4Galβ1-4Glcβ1-1Cer), the latter acting as the preferential Stx2e receptor. We determined Stx receptor profiles of 25 different tissues of a male and a female weaned piglet using immunochemical solid phase binding assays combined with mass spectrometry. All probed tissues harbored GSL receptors, ranging from high (category I) over moderate (category II) to low content (category III). Examples of Gb4Cer expression in category I tissues are small intestinal ileum, kidney pelvis and whole blood, followed by colon, small intestinal duodenum and jejunum belonging to category II, and kidney cortex, cerebrum and cerebellum as members of category III organs holding true for both genders. Dominant Gb3Cer and Gb4Cer lipoforms were those with ceramides carrying constant sphingosine (d18:1) and a variable C16:0, C22:0 or C24:1/C24:0 fatty acid. From the mapping data, we created a topographical atlas for Stx2e receptors in piglet tissues and organs, which might be helpful to further investigations on the molecular and cellular mechanisms that underlie infections of Stx2e-producing STEC in pigs and their zoonotic potential for humans. PMID:27916888

  8. Site-specific O-Glycosylation by Polypeptide N-Acetylgalactosaminyltransferase 2 (GalNAc-transferase T2) Co-regulates β1-Adrenergic Receptor N-terminal Cleavage*

    PubMed Central

    Goth, Christoffer K.; Tuhkanen, Hanna E.; Khan, Hamayun; Lackman, Jarkko J.; Wang, Shengjun; Narimatsu, Yoshiki; Hansen, Lasse H.; Overall, Christopher M.; Clausen, Henrik; Schjoldager, Katrine T.; Petäjä-Repo, Ulla E.

    2017-01-01

    The β1-adrenergic receptor (β1AR) is a G protein-coupled receptor (GPCR) and the predominant adrenergic receptor subtype in the heart, where it mediates cardiac contractility and the force of contraction. Although it is the most important target for β-adrenergic antagonists, such as β-blockers, relatively little is yet known about its regulation. We have shown previously that β1AR undergoes constitutive and regulated N-terminal cleavage participating in receptor down-regulation and, moreover, that the receptor is modified by O-glycosylation. Here we demonstrate that the polypeptide GalNAc-transferase 2 (GalNAc-T2) specifically O-glycosylates β1AR at five residues in the extracellular N terminus, including the Ser-49 residue at the location of the common S49G single-nucleotide polymorphism. Using in vitro O-glycosylation and proteolytic cleavage assays, a cell line deficient in O-glycosylation, GalNAc-T-edited cell line model systems, and a GalNAc-T2 knock-out rat model, we show that GalNAc-T2 co-regulates the metalloproteinase-mediated limited proteolysis of β1AR. Furthermore, we demonstrate that impaired O-glycosylation and enhanced proteolysis lead to attenuated receptor signaling, because the maximal response elicited by the βAR agonist isoproterenol and its potency in a cAMP accumulation assay were decreased in HEK293 cells lacking GalNAc-T2. Our findings reveal, for the first time, a GPCR as a target for co-regulatory functions of site-specific O-glycosylation mediated by a unique GalNAc-T isoform. The results provide a new level of β1AR regulation that may open up possibilities for new therapeutic strategies for cardiovascular diseases. PMID:28167537

  9. The Diagnostic Utility of Determining Anti-GM1: GalC Complex Antibodies in Multifocal Motor Neuropathy: A Validation Study

    PubMed Central

    Galban-Horcajo, Francesc; Vlam, Lotte; Delmont, Emilien; Halstead, Susan K.; van den Berg, Leonard; van der Pol, W-Ludo; Willison, Hugh J.

    2015-01-01

    Abstract Background: Multifocal motor neuropathy (MMN) is associated with IgM antibodies to GM1 ganglioside. The importance of the lipid milieu that might facilitate or inhibit antibody binding to GM1 in immunoassays is well recognised. Existing studies, using a range of different approaches, generally concur that anti-GM1 IgM antibody detection rates are improved by the addition of galactocerebroside (GalC) to the GM1 assay. Objective: The current study sought to formally evaluate the clinical utility of the GM1:GalC complex assay in the diagnosis of MMN. Methods: Anti-GM1 and -GM1:GalC antibodies were examined using ELISA and glycoarray (dot blot) in a fully blinded study design, consisting of 100 MMN patients, 100 ALS cases and 100 healthy controls. Results: The detection of anti-GM1 Abs using glycoarray was 67% sensitive and 85% specific. The addition of GalC to GM1, (1:1 weight to weight ratio), increased the sensitivity to 81% , whilst dropping specificity to 80% . Increasing the GalC content to a 1:5 ratio (or higher) further decreased specificity, and in doing so limited the usefulness of the GM1:GalC assay to the level of GM1 alone. The addition of GalC to the ELISA method also significantly increased sensitivity compared with GM1 alone, albeit with a significant decrease in specificity. Conclusions: This study indicates that the GM1:GalC assay is an advantageous assay adaptation for detecting anti-GM1 antibodies in MMN, using either glycoarray or ELISA, and warrants introduction into clinical diagnostic practice. PMID:27858734

  10. Anaphylaxis to pork kidney is related to IgE antibodies specific for galactose-alpha-1,3-galactose.

    PubMed

    Morisset, M; Richard, C; Astier, C; Jacquenet, S; Croizier, A; Beaudouin, E; Cordebar, V; Morel-Codreanu, F; Petit, N; Moneret-Vautrin, D A; Kanny, G

    2012-05-01

    Carbohydrate-specific IgE antibodies present on nonprimate mammalian proteins were incriminated recently in delayed meat anaphylaxis. The aim of this study was to explore whether anaphylaxis to mammalian kidney is also associated with galactose-α-1,3-galactose (αGal)-specific IgE. Fourteen patients with anaphylaxis to pork or beef kidney underwent prick tests to meat and kidney. Some patients also underwent skin tests to Erbitux(®) (cetuximab). IgE antibodies to αGal, swine urine proteins, beef and pork meat, serum albumin proteins, cat, and rFel d 1 were measured by ImmunoCAP(®). The αGal levels were estimated in meats and kidney by ELISA inhibition assay. Cross-reactivity between αGal and pork kidney was studied with the ImmunoCAP(®) inhibition assay. Among the 14 patients, 12 presented with anaphylactic shock. Reactions occurred within 2 h from exposure in 67% of patients. Associated risk factors were observed in 10 cases, and alcohol was the main cofactor. Three patients underwent an oral challenge to pork kidney, and anaphylaxis occurred after ingestion of small quantities (1-2 g). Prick tests to kidney were positive in 54% of patients. All tested patients showed positive skin tests to Erbitux(®). All patients tested positive for IgE to αGal, with levels ranging from 0.4 to 294 kU/l. IgE binding to αGal was inhibited by raw pork kidney extract (mean, 77%; range, 55-87%), which showed a high amount of αGal determinants. Pork or beef kidney anaphylaxis is related to αGal IgE. Its peculiar severity could be due to an elevated content of αGal epitopes in kidney. © 2012 John Wiley & Sons A/S.

  11. The role of galectin-1 in in vitro and in vivo photodynamic therapy with a galactodendritic porphyrin.

    PubMed

    Pereira, Patrícia M R; Silva, Sandrina; Ramalho, José S; Gomes, Célia M; Girão, Henrique; Cavaleiro, José A S; Ribeiro, Carlos A F; Tomé, João P C; Fernandes, Rosa

    2016-11-01

    Conventional photodynamic agents used in clinic are porphyrin-based photosensitizers. However, they have low tumour selectivity, which may induce unwanted side-effects and damage to healthy tissues. In this study, we used a porphyrin with dendritic units of galactose (PorGal 8 ) developed by us, which can target the galactose-binding protein, galectin-1, known to be overexpressed in many tumour tissues. In vitro and in vivo studies had been conducted for the validation of PorGal 8 effectiveness. We showed a specific uptake of PorGal 8 and induction of apoptotic cell death by generating oxidative stress and alterations in the cytoskeleton of bladder cancer cells overexpressing galectin-1. We further validated the photodynamic efficiency of PorGal 8 in athymic nude mice (Balb/c nu/nu) bearing subcutaneously implanted luciferase-positive bladder cancer xenografts, overexpressing galectin-1 protein. PorGal 8 (5 μmol/kg, intraperitoneal), injected 24 h before light delivery (50.4 J/cm 2 ), inhibited tumour growth. We conclude that the use of PorGal 8 enables selective target and cytotoxicity by photodynamic therapy in cancer cells overexpressing galectin-1, preventing undesired phototoxicity in the surrounding healthy tissues. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Natural Killer T Cell Activation Protects Mice Against Experimental Autoimmune Encephalomyelitis

    PubMed Central

    Singh, Avneesh K.; Wilson, Michael T.; Hong, Seokmann; Olivares-Villagómez, Danyvid; Du, Caigan; Stanic, Aleksandar K.; Joyce, Sebastian; Sriram, Subramaniam; Koezuka, Yasuhiko; Van Kaer, Luc

    2001-01-01

    Experimental autoimmune encephalomyelitis (EAE) serves as a prototypic model for T cell–mediated autoimmunity. Vα14 natural killer T (NKT) cells are a subset of T lymphocytes that recognize glycolipid antigens presented by the nonpolymorphic major histocompatibility complex (MHC) class I–like protein CD1d. Here, we show that activation of Vα14 NKT cells by the glycosphingolipid α-galactosylceramide (α-GalCer) protects susceptible mice against EAE. β-GalCer, which binds CD1d but is not recognized by NKT cells, failed to protect mice against EAE. Furthermore, α-GalCer was unable to protect CD1d knockout (KO) mice against EAE, indicating the requirement for an intact CD1d antigen presentation pathway. Protection of disease conferred by α-GalCer correlated with its ability to suppress myelin antigen-specific Th1 responses and/or to promote myelin antigen-specific Th2 cell responses. α-GalCer was unable to protect IL-4 KO and IL-10 KO mice against EAE, indicating a critical role for both of these cytokines. Because recognition of α-GalCer by NKT cells is phylogenetically conserved, our findings have identified NKT cells as novel target cells for treatment of inflammatory diseases of the central nervous system. PMID:11748281

  13. Alien species pathways to the Galapagos Islands, Ecuador.

    PubMed

    Toral-Granda, M Verónica; Causton, Charlotte E; Jäger, Heinke; Trueman, Mandy; Izurieta, Juan Carlos; Araujo, Eddy; Cruz, Marilyn; Zander, Kerstin K; Izurieta, Arturo; Garnett, Stephen T

    2017-01-01

    Alien species, one of the biggest threats to natural ecosystems worldwide, are of particular concern for oceanic archipelagos such as Galápagos. To enable more effective management of alien species, we reviewed, collated and analysed all available records of alien species for Galápagos. We also assembled a comprehensive dataset on pathways to and among the Galápagos Islands, including tourist and resident numbers, tourist vessels, their itineraries and visitation sites, aircraft capacity and occupancy, air and sea cargo and biosecurity interceptions. So far, 1,579 alien terrestrial and marine species have been introduced to Galápagos by humans. Of these, 1,476 have become established. Almost half of these were intentional introductions, mostly of plants. Most unintentional introductions arrived on plants and plant associated material, followed by transport vehicles, and commodities (in particular fruit and vegetables). The number, frequency and geographic origin of pathways for the arrival and dispersal of alien species to and within Galápagos have increased over time, tracking closely the increase in human population (residents and tourists) on the islands. Intentional introductions of alien species should decline as biosecurity is strengthened but there is a danger that unintentional introductions will increase further as tourism on Galápagos expands. This unique world heritage site will only retain its biodiversity values if the pathways for invasion are managed effectively.

  14. Alien species pathways to the Galapagos Islands, Ecuador

    PubMed Central

    Trueman, Mandy; Izurieta, Juan Carlos; Araujo, Eddy; Cruz, Marilyn; Zander, Kerstin K.; Izurieta, Arturo

    2017-01-01

    Alien species, one of the biggest threats to natural ecosystems worldwide, are of particular concern for oceanic archipelagos such as Galápagos. To enable more effective management of alien species, we reviewed, collated and analysed all available records of alien species for Galápagos. We also assembled a comprehensive dataset on pathways to and among the Galápagos Islands, including tourist and resident numbers, tourist vessels, their itineraries and visitation sites, aircraft capacity and occupancy, air and sea cargo and biosecurity interceptions. So far, 1,579 alien terrestrial and marine species have been introduced to Galápagos by humans. Of these, 1,476 have become established. Almost half of these were intentional introductions, mostly of plants. Most unintentional introductions arrived on plants and plant associated material, followed by transport vehicles, and commodities (in particular fruit and vegetables). The number, frequency and geographic origin of pathways for the arrival and dispersal of alien species to and within Galápagos have increased over time, tracking closely the increase in human population (residents and tourists) on the islands. Intentional introductions of alien species should decline as biosecurity is strengthened but there is a danger that unintentional introductions will increase further as tourism on Galápagos expands. This unique world heritage site will only retain its biodiversity values if the pathways for invasion are managed effectively. PMID:28902860

  15. Isolation and characterization of xylitol-assimilating mutants of recombinant Saccharomyces cerevisiae.

    PubMed

    Tani, Tatsunori; Taguchi, Hisataka; Fujimori, Kazuhiro E; Sahara, Takehiko; Ohgiya, Satoru; Kamagata, Yoichi; Akamatsu, Takashi

    2016-10-01

    To clarify the mechanisms of xylitol utilization, three xylitol-assimilating mutants were isolated from recombinant Saccharomyces cerevisiae strains showing highly efficient xylose-utilization. The nucleotide sequences of the mutant genomes were analyzed and compared with those of the wild-type strains and the mutation sites were identified. gal80 mutations were common to all the mutants, and recessive to the wild-type allele. Hence we constructed a gal80Δ mutant and confirmed that the gal80Δ mutant showed a xylitol-assimilation phenotype. When the constructed gal80Δ mutant was crossed with the three isolated mutants, all diploid hybrids showed xylitol assimilation, indicating that the mutations were all located in the GAL80. We analyzed the role of the galactose permease Gal2, controlled by the regulatory protein Gal80, in assimilating xylitol. A gal2Δ gal80Δ double mutant did not show xylitol assimilation, whereas expression of GAL2 under the control of the TDH3 promoter in the GAL80 strain did result in assimilation. These data indicate that Gal2 was needed for xylitol assimilation in the wild-type strain. When the gal80 mutant with an initial cell concentration of A660 = 20 was used for batch fermentation in a complex medium containing 20 g/L xylose or 20 g/L xylitol at pH 5.0 and 30°C under oxygen limitation, the gal80 mutant consumed 100% of the xylose within 12 h, but <30% of the xylitol within 100 h, indicating that xylose reductase is required for xylitol consumption in oxygen-limited conditions. Copyright © 2016 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  16. Increased expression of Aspergillus parasiticus aflR, encoding a sequence-specific DNA-binding protein, relieves nitrate inhibition of aflatoxin biosynthesis.

    PubMed Central

    Chang, P K; Ehrlich, K C; Yu, J; Bhatnagar, D; Cleveland, T E

    1995-01-01

    The aflR gene from Aspergillus parasiticus and Aspergillus flavus may be involved in the regulation of aflatoxin biosynthesis. The aflR gene product, AFLR, possesses a GAL4-type binuclear zinc finger DNA-binding domain. A transformant, SU1-N3 (pHSP), containing an additional copy of aflR, showed increased transcription of aflR and the aflatoxin pathway structural genes, nor-1, ver-1, and omt-1, when cells were grown in nitrate medium, which normally suppresses aflatoxin production. Electrophoretic mobility shift assays showed that the recombinant protein containing the DNA-binding domain, AFLR1, bound specifically to the palindromic sequence, TTAGGCCTAA, 120 bp upstream of the AFLR translation start site. Expression of aflR thus appears to be autoregulated. Increased expression of aflatoxin biosynthetic genes in the transformant might result from an elevated basal level of AFLR, allowing it to overcome nitrate inhibition and to bind to the aflR promotor region, thereby initiating aflatoxin biosynthesis. Results further suggest that aflR is involved in the regulation of multiple parts of the aflatoxin biosynthetic pathway. PMID:7793958

  17. cDNA cloning, molecular modeling and docking calculations of L-type lectins from Swartzia simplex var. grandiflora (Leguminosae, Papilionoideae), a member of the tribe Swartzieae.

    PubMed

    Maranhão, Paulo A C; Teixeira, Claudener S; Sousa, Bruno L; Barroso-Neto, Ito L; Monteiro-Júnior, José E; Fernandes, Andreia V; Ramos, Marcio V; Vasconcelos, Ilka M; Gonçalves, José F C; Rocha, Bruno A M; Freire, Valder N; Grangeiro, Thalles B

    2017-07-01

    The genus Swartzia is a member of the tribe Swartzieae, whose genera constitute the living descendants of one of the early branches of the papilionoid legumes. Legume lectins comprise one of the main families of structurally and evolutionarily related carbohydrate-binding proteins of plant origin. However, these proteins have been poorly investigated in Swartzia and to date, only the lectin from S. laevicarpa seeds (SLL) has been purified. Moreover, no sequence information is known from lectins of any member of the tribe Swartzieae. In the present study, partial cDNA sequences encoding L-type lectins were obtained from developing seeds of S. simplex var. grandiflora. The amino acid sequences of the S. simplex grandiflora lectins (SSGLs) were only averagely related to the known primary structures of legume lectins, with sequence identities not greater than 50-52%. The SSGL sequences were more related to amino acid sequences of papilionoid lectins from members of the tribes Sophoreae and Dalbergieae and from the Cladratis and Vataireoid clades, which constitute with other taxa, the first branching lineages of the subfamily Papilionoideae. The three-dimensional structures of 2 representative SSGLs (SSGL-A and SSGL-E) were predicted by homology modeling using templates that exhibit the characteristic β-sandwich fold of the L-type lectins. Molecular docking calculations predicted that SSGL-A is able to interact with D-galactose, N-acetyl-D-galactosamine and α-lactose, whereas SSGL-E is probably a non-functional lectin due to 2 mutations in the carbohydrate-binding site. Using molecular dynamics simulations followed by density functional theory calculations, the binding free energies of the interaction of SSGL-A with GalNAc and α-lactose were estimated as -31.7 and -47.5 kcal/mol, respectively. These findings gave insights about the carbohydrate-binding specificity of SLL, which binds to immobilized lactose but is not retained in a matrix containing D-GalNAc as ligand. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Receptor specificity of the influenza virus hemagglutinin modulates sensitivity to soluble collectins of the innate immune system and virulence in mice.

    PubMed

    Tate, Michelle D; Brooks, Andrew G; Reading, Patrick C

    2011-04-25

    The hemagglutinin (HA) glycoprotein of influenza virus binds to cell surface sialic acid (SA) to initiate infection. In this study, a mutant of influenza A virus strain BJx109 (H3N2) was plaque-purified from the lungs of virus-infected mice that had been depleted of airway macrophages. Sequence analysis identified a single amino acid substitution (S186I) in the vicinity of the receptor-binding site of HA. This substitution was associated with enhanced binding to α(2,3)-Gal-linked SA and an increased ability to infect murine airway epithelial cells. Mutant viruses were less sensitive to neutralization by mouse airway fluids and less efficient in their ability to infect murine macrophages. Moreover, infection of mice with viruses bearing the S186I substitution led to severe disease, characterized by enhanced virus replication, lung pathology and pulmonary edema. Together, these studies confirm that residue 186 of H3 subtype viruses is a critical determinant of virulence in a mouse model of influenza infection. Copyright © 2010 Elsevier Inc. All rights reserved.

  19. Insights into the binding specificity of wild type and mutated wheat germ agglutinin towards Neu5Acα(2-3)Gal: a study by in silico mutations and molecular dynamics simulations.

    PubMed

    Parasuraman, Ponnusamy; Murugan, Veeramani; Selvin, Jeyasigamani F A; Gromiha, M Michael; Fukui, Kazuhiko; Veluraja, Kasinadar

    2014-08-01

    Wheat germ agglutinin (WGA) is a plant lectin, which specifically recognizes the sugars NeuNAc and GlcNAc. Mutated WGA with enhanced binding specificity can be used as biomarkers for cancer. In silico mutations are performed at the active site of WGA to enhance the binding specificity towards sialylglycans, and molecular dynamics simulations of 20 ns are carried out for wild type and mutated WGAs (WGA1, WGA2, and WGA3) in complex with sialylgalactose to examine the change in binding specificity. MD simulations reveal the change in binding specificity of wild type and mutated WGAs towards sialylgalactose and bound conformational flexibility of sialylgalactose. The mutated polar amino acid residues Asn114 (S114N), Lys118 (G118K), and Arg118 (G118R) make direct and water mediated hydrogen bonds and hydrophobic interactions with sialylgalactose. An analysis of possible hydrogen bonds, hydrophobic interactions, total pair wise interaction energy between active site residues and sialylgalactose and MM-PBSA free energy calculation reveals the plausible binding modes and the role of water in stabilizing different binding modes. An interesting observation is that the binding specificity of mutated WGAs (cyborg lectin) towards sialylgalactose is found to be higher in double point mutation (WGA3). One of the substituted residues Arg118 plays a crucial role in sugar binding. Based on the interactions and energy calculations, it is concluded that the order of binding specificity of WGAs towards sialylgalactose is WGA3 > WGA1 > WGA2 > WGA. On comparing with the wild type, double point mutated WGA (WGA3) exhibits increased specificity towards sialylgalactose, and thus, it can be effectively used in targeted drug delivery and as biological cell marker in cancer therapeutics. Copyright © 2014 John Wiley & Sons, Ltd.

  20. Surface charge-switchable polymeric magnetic nanoparticles for the controlled release of anticancer drug.

    PubMed

    Shen, Jian-Min; Yin, Tao; Tian, Xiao-Zhu; Gao, Fei-Yun; Xu, Shuang

    2013-08-14

    We develop paclitaxel (PTX) and magnetic nanoparticles (MNPs) coencapsulated, surface charge-switchable, thermosensitive poly(d,l-lactic-co-glycolic acid)-l-lysine-d-galactose (PTX-MNP-PLGA-Lys-Gal) NPs for the controlled release of the anticancer drug. The novel dual signal-responsive nanovehicle is formulated to shield off target at pH 7.4 but bind avidly to tumor cells in acidity, alleviating toxicity and side effects of the drug to normal tissues. The mechanism involves pH-sensitive NPs surface charge switching by the deblocking process of galactose molecules followed by protonation of ε-NH2 in lysine residue at acidic pH. Magnetic hyperthermia under near infrared (NIR) irradiation induced the contraction of PTX-MNP-PLGA-Lys-Gal NPs and, in turn, triggered burst release of PTX. Transmission electron microscopy (TEM), fluorescence microscope analyses, Fourier transform infrared (FTIR), X-ray diffraction (XRD), vibrating sample magnetometer (VSM), dynamic light scattering (DLS), and ξ-potential analyses were performed to characterize physicochemical properties of the as-prepared NPs. The size range of the globule PTX-MNP-PLGA-Lys-Gal NPs after being prescreened was from 130 to 150 nm under simulated physiological medium. The high encapsulation efficiencies of MNPs and PTX were obtained, reaching 85 and 78 wt % for PTX-MNP-PLGA-Lys-Gal NPs, respectively. The tumor inhibitory rate of 78.8% reflected that the resulting NPs could be promising to treat cancer by specific binding and targeting release drug to tumor.

  1. Epigenetic Regulation of Galectin-3 Expression by β1 Integrins Promotes Cell Adhesion and Migration*

    PubMed Central

    Margadant, Coert; van den Bout, Iman; van Boxtel, Antonius L.; Thijssen, Victor L.; Sonnenberg, Arnoud

    2012-01-01

    Introduction of the integrin β1- but not the β3-subunit in GE11 cells induces an epithelial-to-mesenchymal-transition (EMT)-like phenomenon that is characterized by the loss of cell-cell contacts, cell scattering, increased cell migration and RhoA activity, and fibronectin fibrillogenesis. Because galactose-binding lectins (galectins) have been implicated in these phenomena, we investigated whether galectins are involved in the β1-induced phenotype. We examined 9 galectins and, intriguingly, found that the expression of galectin-3 (Gal-3) is specifically induced by β1 but not by β3. Using β1-β3 chimeric integrins, we show that the induction of Gal-3 expression requires the hypervariable region in the extracellular domain of β1, but not its cytoplasmic tail. Furthermore, Gal-3 expression does not depend on RhoA signaling, serum factors, or any of the major signal transduction pathways involving protein kinase C (PKC), p38 mitogen-activated protein kinase (p38MAPK), extracellular signal-regulated kinase-1/-2 (ERK-1/2), phosphatidylinositol-3-OH kinase (PI3-K), or Src kinases. Instead, Gal-3 expression is controlled in an epigenetic manner. Whereas DNA methylation of the Lgals3 promoter maintains Gal-3 silencing in GE11 cells, expression of β1 causes its demethylation, leading to transcriptional activation of the Lgals3 gene. In turn, Gal-3 expression enhances β1 integrin-mediated cell adhesion to fibronectin (FN) and laminin (LN), as well as cell migration. Gal-3 also promotes β1-mediated cell adhesion to LN and Collagen-1 (Col)-1 in cells that endogenously express Gal-3 and β1 integrins. In conclusion, we identify a functional feedback-loop between β1 integrins and Gal-3 that involves the epigenetic induction of Gal-3 expression during integrin-induced EMT and cell scattering. PMID:23118221

  2. Murine Anti-vaccinia Virus D8 Antibodies Target Different Epitopes and Differ in Their Ability to Block D8 Binding to CS-E

    PubMed Central

    Matho, Michael H.; de Val, Natalia; Miller, Gregory M.; Brown, Joshua; Schlossman, Andrew; Meng, Xiangzhi; Crotty, Shane; Peters, Bjoern; Xiang, Yan; Hsieh-Wilson, Linda C.; Ward, Andrew B.; Zajonc, Dirk M.

    2014-01-01

    The IMV envelope protein D8 is an adhesion molecule and a major immunodominant antigen of vaccinia virus (VACV). Here we identified the optimal D8 ligand to be chondroitin sulfate E (CS-E). CS-E is characterized by a disaccharide moiety with two sulfated hydroxyl groups at positions 4′ and 6′ of GalNAc. To study the role of antibodies in preventing D8 adhesion to CS-E, we have used a panel of murine monoclonal antibodies, and tested their ability to compete with CS-E for D8 binding. Among four antibody specificity groups, MAbs of one group (group IV) fully abrogated CS-E binding, while MAbs of a second group (group III) displayed widely varying levels of CS-E blocking. Using EM, we identified the binding site for each antibody specificity group on D8. Recombinant D8 forms a hexameric arrangement, mediated by self-association of a small C-terminal domain of D8. We propose a model in which D8 oligomerization on the IMV would allow VACV to adhere to heterogeneous population of CS, including CS-C and potentially CS-A, while overall increasing binding efficiency to CS-E. PMID:25474621

  3. Murine anti-vaccinia virus D8 antibodies target different epitopes and differ in their ability to block D8 binding to CS-E.

    PubMed

    Matho, Michael H; de Val, Natalia; Miller, Gregory M; Brown, Joshua; Schlossman, Andrew; Meng, Xiangzhi; Crotty, Shane; Peters, Bjoern; Xiang, Yan; Hsieh-Wilson, Linda C; Ward, Andrew B; Zajonc, Dirk M

    2014-12-01

    The IMV envelope protein D8 is an adhesion molecule and a major immunodominant antigen of vaccinia virus (VACV). Here we identified the optimal D8 ligand to be chondroitin sulfate E (CS-E). CS-E is characterized by a disaccharide moiety with two sulfated hydroxyl groups at positions 4' and 6' of GalNAc. To study the role of antibodies in preventing D8 adhesion to CS-E, we have used a panel of murine monoclonal antibodies, and tested their ability to compete with CS-E for D8 binding. Among four antibody specificity groups, MAbs of one group (group IV) fully abrogated CS-E binding, while MAbs of a second group (group III) displayed widely varying levels of CS-E blocking. Using EM, we identified the binding site for each antibody specificity group on D8. Recombinant D8 forms a hexameric arrangement, mediated by self-association of a small C-terminal domain of D8. We propose a model in which D8 oligomerization on the IMV would allow VACV to adhere to heterogeneous population of CS, including CS-C and potentially CS-A, while overall increasing binding efficiency to CS-E.

  4. Hydrogeologic Factors Affecting Base-Flow Yields in the Jefferson County Area, West Virginia, October-November 2007

    USGS Publications Warehouse

    Evaldi, Ronald D.; Paybins, Katherine S.; Kozar, Mark D.

    2009-01-01

    Base-flow yields at approximately the annual 75-percent-duration flow were determined for watersheds in the Jefferson County area, WV, from stream-discharge measurements made during October 31 to November 2, 2007. Five discharge measurements of Opequon Creek defined increased flow from 29,000,000 gallons per day (gal/d) at Carters Ford to 51,400,000 gal/d near Vanville. No flow was observed at 45 of 110 additional stream sites inspected, and discharge at the 65 flowing stream sites ranged from 1,940 to 17,100,000 gallons per day (gal/d). Discharge at 28 springs ranged from no flow to 2,430,000 gal/d. Base-flow yields were computed as the change in stream-channel discharge between measurement sites divided by the change in drainage area between the sites. Yields were negative for losing (influent) channel reaches and positive for gaining (effluent) reaches. Channels in 14 watersheds were determined to have lost flow ranging from -9.6 to -1,770 gallons per day per acre (gal/d/acre). Channels in 51 watersheds were determined to have gained flow ranging from 3.4 to 235,000 gal/d/acre. Water temperature at the stream sites ranged from 5.0 to 16.3 deg C (quarry pumpage), and specific conductance ranged from 51 to 881 microsiemens per centimeter (uS/cm). Water temperature at the springs ranged from 11.5 to 15.0 deg C, and specific conductance ranged from 22 to 958 uS/cm. Large springs in some watersheds in western Jefferson County are adjacent to other watersheds with little or no surface-water discharge; this is probably the result of interbasin transfer of groundwater along faults that dissect the area. Most watersheds located adjacent to the Potomac River in northeastern Jefferson County were not flowing during this study; this is most likely because the Potomac River is deeply incised, and groundwater flows directly to it rather than to the local stream systems in these areas. Except for one watershed with a yield of 651 gal/d/acre, no watersheds in northeastern Jefferson County yielded more than 305 gal/d/acre. Base-flow yields of several watersheds in south-central Jefferson County exceeded 400 gal/d/acre, and the effect of the Shenadoah River on base flows in the watershed appears to be less than that of the Potomac River in the northeastern part of the county. In the southeastern part of the county, because of steep relief and low-permeability bedrock, several streams were not flowing at the time of the study, and yields from all flowing streams were all less than 100 gal/d/acre. On the basis of historical data from 1961 through 2008, the mean and median depths to groundwater in 213 wells in western Jefferson County were 33.4 and 29.3 ft, respectively. Mean and median depths to groundwater in 69 wells in the northeastern county area were 56.0 and 55.0 ft below land surface, respectively. However, mean and median depths to groundwater in 28 wells within 1.5 miles of the Potomac River were 70.0 and 71.3 ft below land surface, respectively. Mean and median depths to groundwater in 108 wells in the south-central county area were 53.9 and 52.8 ft below land surface, respectively. Mean and median depths to groundwater of 26 wells in the southeastern county area were 86.6 and 59.5 ft below land surface, respectively.

  5. Human Lipooligosaccharide IGG That Prevents Endemic Meningococcal Disease Recognizes an Internal Lacto-N-neotetraose Structure*

    PubMed Central

    Cheng, Hui; Yang, Zhijie; Estabrook, Michele M.; John, Constance M.; Jarvis, Gary A.; McLaughlin, Stephanie; Griffiss, J. McLeod

    2011-01-01

    Antibodies that initiate complement-mediated killing of Neisseria meningitidis as they enter the bloodstream from the oropharynx protect against disseminated disease. Human IgGs that bind the neisserial L7 lipooligosaccharide (LOS) are bactericidal for L3,7 and L2,4 meningococci in the presence of human complement. These strains share a lacto-N-neotetraose (nLc4) LOS α chain. We used a set of mutants that have successive saccharide deletions from the nLc4 α chain to characterize further the binding and bactericidal activity of nLc4 LOS IgG. We found that the nLc4 α chain conforms at least four different antigens. We separately purified IgG that required the nLc4 (non-reducing) terminal galactose (Gal) for binding and IgG that bound the truncated nLc3 α chain that lacks this Gal residue. IgG that bound the internal nLc3 α chain killed both L3,7 and L2,4 strains, whereas IgG that required the nLc4 terminal Gal residue for binding killed L2,4 stains but not L3,7 strains. These results show that the diversity of LOS antibodies in human serum is as much a function of the conformation of multiple antigens by a single glycoform as of the production of multiple glycoforms. Differences in sensitivity to killing by human nLc4 LOS IgG may account for the fact that fully two-thirds of endemic group B meningococcal disease in infants and children is caused by L3,7 strains, but only 20% is caused by L2,4 stains. PMID:22027827

  6. Inhibiting fungal multidrug resistance by disrupting an activator-Mediator interaction.

    PubMed

    Nishikawa, Joy L; Boeszoermenyi, Andras; Vale-Silva, Luis A; Torelli, Riccardo; Posteraro, Brunella; Sohn, Yoo-Jin; Ji, Fei; Gelev, Vladimir; Sanglard, Dominique; Sanguinetti, Maurizio; Sadreyev, Ruslan I; Mukherjee, Goutam; Bhyravabhotla, Jayaram; Buhrlage, Sara J; Gray, Nathanael S; Wagner, Gerhard; Näär, Anders M; Arthanari, Haribabu

    2016-02-25

    Eukaryotic transcription activators stimulate the expression of specific sets of target genes through recruitment of co-activators such as the RNA polymerase II-interacting Mediator complex. Aberrant function of transcription activators has been implicated in several diseases. However, therapeutic targeting efforts have been hampered by a lack of detailed molecular knowledge of the mechanisms of gene activation by disease-associated transcription activators. We previously identified an activator-targeted three-helix bundle KIX domain in the human MED15 Mediator subunit that is structurally conserved in Gal11/Med15 Mediator subunits in fungi. The Gal11/Med15 KIX domain engages pleiotropic drug resistance transcription factor (Pdr1) orthologues, which are key regulators of the multidrug resistance pathway in Saccharomyces cerevisiae and in the clinically important human pathogen Candida glabrata. The prevalence of C. glabrata is rising, partly owing to its low intrinsic susceptibility to azoles, the most widely used antifungal agent. Drug-resistant clinical isolates of C. glabrata most commonly contain point mutations in Pdr1 that render it constitutively active, suggesting that this transcriptional activation pathway represents a linchpin in C. glabrata multidrug resistance. Here we perform sequential biochemical and in vivo high-throughput screens to identify small-molecule inhibitors of the interaction of the C. glabrata Pdr1 activation domain with the C. glabrata Gal11A KIX domain. The lead compound (iKIX1) inhibits Pdr1-dependent gene activation and re-sensitizes drug-resistant C. glabrata to azole antifungals in vitro and in animal models for disseminated and urinary tract C. glabrata infection. Determining the NMR structure of the C. glabrata Gal11A KIX domain provides a detailed understanding of the molecular mechanism of Pdr1 gene activation and multidrug resistance inhibition by iKIX1. We have demonstrated the feasibility of small-molecule targeting of a transcription factor-binding site in Mediator as a novel therapeutic strategy in fungal infectious disease.

  7. Transient gene silencing of galectin-3 suppresses pancreatic cancer cell migration and invasion through degradation of β-catenin

    PubMed Central

    Kobayashi, Tsutomu; Shimura, Tatsuo; Yajima, Toshiki; Kubo, Norio; Araki, Kenichiro; Tsutsumi, Soichi; Suzuki, Hideki; Kuwano, Hiroyuki; Raz, Avraham

    2013-01-01

    Pancreatic cancer is a leading cause of cancer-related mortality and often has a poor prognosis because of its late diagnosis, aggressive local invasion, early metastasis, and poor response to chemotherapy. The chemotherapeutic agent gemcitabine is effective for treating advanced pancreatic cancer, but its efficacy remains less than satisfactory. It is expected that further investigation of pancreatic cancer cell invasion and development of strategies to block this process should improve the disease prognosis. In this study, we tested our hypothesis that galectin-3 (gal-3), a multifunctional member of the β-galactoside-binding protein family, may regulate pancreatic cancer cell motility, and silencing of it inhibit cell motility. Previous studies demonstrated that this protein is associated with tumor cell adhesion, proliferation, differentiation, angiogenesis, apoptosis, and metastasis. Here, we used gal-3 small interfering RNA (siRNA) to silence its expression in various pancreatic cancer cell lines to determine whether gal-3 regulates cell proliferation, migration and invasion in vitro. We found that silencing gal-3 reduced cellular migration and invasion, but failed to affect proliferation. In gal-3 siRNA-transfected cells, we detected a decrease in β-catenin expression, an important signal for cancer cell invasion, which was caused by down-regulation of phosphorylated Akt and GSK-3β. We also found that matrix metalloproteinase (MMP)-2 expression was reduced by gal-3 silencing. These results indicate that gal-3-mediated invasion via MMP-2 regulated by β-catenin degradation is initiated by Akt phosphorylation in pancreatic cancer cells. Our results suggest that gal-3 can be a novel therapeutic target in pancreatic cancer. PMID:21448903

  8. Treatment with galectin-1 eye drops regulates mast cell degranulation and attenuates the severity of conjunctivitis.

    PubMed

    Mello-Bosnic, Claudia; Gimenes, Alexandre Dantas; Oliani, Sonia Maria; Gil, Cristiane Damas

    2018-05-31

    Galectin-1 (Gal-1) is a β-galactoside-binding protein with diverse biological activities in the pathogenesis of inflammation, however the mechanisms by which Gal-1 modulates cellular responses in allergic inflammatory processes have not been fully determined. In this study, we evaluated the therapeutic potential of Gal-1 eye drops in an experimental model of conjunctivitis. Wistar rats received a topical application of compound (C)48/80 (100 mg/ml) into right eyes and a drop of vehicle into the contralateral eye. Another group of rats received Gal-1 (0.3 or 3 μg/eye) or sodium cromoglycate (SCG; 40 mg/ml) in both eyes and, after 15 min, right eye was challenged with C48/80. Conjunctivitis-induced by C48/80 was characterized by severe eyelid oedema and tearing, but clinical signs were ameliorated by eye drop doses of both Gal-1 (0.3/3 μg) and SCG. As expected, an increased proportion of degranulated mast cells (62%, P < 0.01) and lower histamine levels were observed after 6 h of C48/80 challenge, compared to control (32%). This effect was abrogated by Gal-1 and SCG, which reduced mast cell degranulation (31-36%), eosinophil migration and eosinophil peroxidase levels in the eyes. Gal-1 (3 μg) and SCG treatments also decreased IL-4 levels, as well as activation of mitogen activated protein kinases compared to untreated C48/80 eyes. Our findings suggest that Gal-1 eye drops represent a new therapeutic strategy for ocular allergic inflammation. Copyright © 2018 Elsevier B.V. All rights reserved.

  9. Glycosyltransferase ST6GAL1 contributes to the regulation of pluripotency in human pluripotent stem cells

    PubMed Central

    Wang, Yu-Chieh; Stein, Jason W.; Lynch, Candace L.; Tran, Ha T.; Lee, Chia-Yao; Coleman, Ronald; Hatch, Adam; Antontsev, Victor G.; Chy, Hun S.; O’Brien, Carmel M.; Murthy, Shashi K.; Laslett, Andrew L.; Peterson, Suzanne E.; Loring, Jeanne F.

    2015-01-01

    Many studies have suggested the significance of glycosyltransferase-mediated macromolecule glycosylation in the regulation of pluripotent states in human pluripotent stem cells (hPSCs). Here, we observed that the sialyltransferase ST6GAL1 was preferentially expressed in undifferentiated hPSCs compared to non-pluripotent cells. A lectin which preferentially recognizes α-2,6 sialylated galactosides showed strong binding reactivity with undifferentiated hPSCs and their glycoproteins, and did so to a much lesser extent with differentiated cells. In addition, downregulation of ST6GAL1 in undifferentiated hPSCs led to a decrease in POU5F1 (also known as OCT4) protein and significantly altered the expression of many genes that orchestrate cell morphogenesis during differentiation. The induction of cellular pluripotency in somatic cells was substantially impeded by the shRNA-mediated suppression of ST6GAL1, partially through interference with the expression of endogenous POU5F1 and SOX2. Targeting ST6GAL1 activity with a sialyltransferase inhibitor during cell reprogramming resulted in a dose-dependent reduction in the generation of human induced pluripotent stem cells (hiPSCs). Collectively, our data indicate that ST6GAL1 plays an important role in the regulation of pluripotency and differentiation in hPSCs, and the pluripotent state in human cells can be modulated using pharmacological tools to target sialyltransferase activity. PMID:26304831

  10. The reactivities of human erythrocyte autoantibodies anti-Pr2, anti-Gd, Fl and Sa with gangliosides in a chromatogram binding assay.

    PubMed Central

    Uemura, K; Roelcke, D; Nagai, Y; Feizi, T

    1984-01-01

    The thin layer chromatogram binding assay was used to study the reaction of several natural-monoclonal autoantibodies which recognize sialic acid-dependent antigens of human erythrocytes. Immunostaining of gangliosides derived from human and bovine erythrocytes was achieved with four autoantibodies designated anti-Pr2, anti-Gd, Sa and Fl, each of which has a different haemagglutination pattern with untreated and proteinase-treated erythrocytes and with cells of I and i antigen types. From the chromatogram binding patterns of anti-Pr2 with gangliosides of the neolacto and the ganglio series, it is deduced that this antibody reacts best with N-acetylneuraminic acid when it is alpha 2-3- or alpha 2-6-linked to a terminal Gal(beta 1-4)Glc/GlcNAc GlcNAc sequence and to a lesser extent when it is alpha 2-3-linked to a terminal Gal(beta 1-3)GalNAc sequence or to an internal galactose and when it is alpha 2-8-linked to another, internal N-acetylneuraminic acid residue. The other three antibodies differ from anti-Pr2 in their lack of reaction with glycolipids of the ganglio series. They react with the NeuAc(alpha 2-3)Gal(beta 1-4)Glc/GlcNAc sequence as found in GM3 and in glycolipids of the neolacto series, but show a preference for the latter, longer sequences. Thus all four antibodies react with sialylated oligosaccharides containing i type (linear) and I type (branched) neolacto backbones. Fl antibody differs from the other three in its stronger reaction with branched neolacto sequences in accordance with its stronger agglutination of erythrocytes of I rather than i type. The four antibodies show a specificity for N-acetyl- rather than N-glycolyl-neuraminic acid. Images Fig. 1. Fig. 2. Fig. 3. Fig. 4. PMID:6204642

  11. Repeated cis-regulatory tuning of a metabolic bottleneck gene during evolution.

    PubMed

    Kuang, Meihua Christina; Kominek, Jacek; Alexander, William G; Cheng, Jan-Fang; Wrobel, Russell L; Hittinger, Chris Todd

    2018-05-21

    Repeated evolutionary events imply underlying genetic constraints that can make evolutionary mechanisms predictable. Morphological traits are thought to evolve frequently through cis-regulatory changes because these mechanisms bypass constraints in pleiotropic genes that are reused during development. In contrast, the constraints acting on metabolic traits during evolution are less well studied. Here we show how a metabolic bottleneck gene has repeatedly adopted similar cis-regulatory solutions during evolution, likely due to its pleiotropic role integrating flux from multiple metabolic pathways. Specifically, the genes encoding phosphoglucomutase activity (PGM1/PGM2), which connect GALactose catabolism to glycolysis, have gained and lost direct regulation by the transcription factor Gal4 several times during yeast evolution. Through targeted mutations of predicted Gal4-binding sites in yeast genomes, we show this galactose-mediated regulation of PGM1/2 supports vigorous growth on galactose in multiple yeast species, including Saccharomyces uvarum and Lachancea kluyveri. Furthermore, the addition of galactose-inducible PGM1 alone is sufficient to improve the growth on galactose of multiple species that lack this regulation, including Saccharomyces cerevisiae. The strong association between regulation of PGM1/2 by Gal4 even enables remarkably accurate predictions of galactose growth phenotypes between closely related species. This repeated mode of evolution suggests that this specific cis-regulatory connection is a common way that diverse yeasts can govern flux through the pathway, likely due to the constraints imposed by this pleiotropic bottleneck gene. Since metabolic pathways are highly interconnected, we argue that cis-regulatory evolution might be widespread at pleiotropic genes that control metabolic bottlenecks and intersections.

  12. Using avian surveillance in Ecuador to assess the imminence of West Nile virus incursion to Galápagos.

    PubMed

    Eastwood, Gillian; Goodman, Simon J; Hilgert, Nancy; Cruz, Marilyn; Kramer, Laura D; Cunningham, Andrew A

    2014-01-01

    Infectious disease emergence represents a global threat to human, agricultural animal and wildlife health. West Nile virus (WNV) first emerged in the Americas in 1999 following its introduction to New York from the Old World. This flavivirus rapidly spread across much of North America, causing human, equine and avian mortalities and population declines of multiple wild bird species. It has now spread to Central and South America, and there is concern that the virus will reach the Galápagos Islands, a UNESCO World Heritage Site famous for its unique biodiversity, with potentially catastrophic results. Here, we use wild bird surveillance to examine the current WNV status in the Galapagos Islands and around the Ecuadorian city of Guayaquil (the main air and sea port serving Galápagos). We conducted serosurveys of wild birds on three Galápagos Islands (Baltra, San Cristobal and Santa Cruz) with direct transport links to the South American continent. In addition, dead birds killed by car collisions on Santa Cruz were tested for WNV infection. On mainland Ecuador, serosurveys of wild birds were conducted at three sites around Guayaquil. No evidence of WNV seropositivity or infection was detected. Although wider testing is recommended on the mainland, the study highlights a limit of WNV spread within South America. Our results indicate the continued absence of WNV on Galápagos and suggest the current likelihood of human-mediated transport of WNV to Galápagos to be low. The risk of emergence will almost certainly increase over time, however, and stringent biosecurity and surveillance measures should be put in place to minimise the risk of the introduction of WNV (and other alien pathogens) to Galápagos.

  13. Antibody Epitope of Human α-Galactosidase A Revealed by Affinity Mass Spectrometry: A Basis for Reversing Immunoreactivity in Enzyme Replacement Therapy of Fabry Disease.

    PubMed

    Kukacka, Zdenek; Iurascu, Marius; Lupu, Loredana; Rusche, Hendrik; Murphy, Mary; Altamore, Lorenzo; Borri, Fabio; Maeser, Stefan; Papini, Anna Maria; Hennermann, Julia; Przybylski, Michael

    2018-05-08

    α-Galactosidase (αGal) is a lysosomal enzyme that hydrolyses the terminal α-galactosyl moiety from glycosphingolipids. Mutations in the encoding genes for αGal lead to defective or misfolded enzyme, which results in substrate accumulation and subsequent organ dysfunction. The metabolic disease caused by a deficiency of human α-galactosidase A is known as Fabry disease or Fabry-Anderson disease, and it belongs to a larger group known as lysosomal storage diseases. An effective treatment for Fabry disease has been developed by enzyme replacement therapy (ERT), which involves infusions of purified recombinant enzyme in order to increase enzyme levels and decrease the amounts of accumulated substrate. However, immunoreactivity and IgG antibody formation are major, therapy-limiting, and eventually life-threatening complications of ERT. The present study focused on the epitope determination of human α-galactosidase A against its antibody formed. Here we report the identification of the epitope of human αGal(309-332) recognized by a human monoclonal anti-αGal antibody, using a combination of proteolytic excision of the immobilized immune complex and surface plasmon resonance biosensing mass spectrometry. The epitope peptide, αGal(309-332), was synthesized by solid-phase peptide synthesis. Determination of its affinity by surface plasmon resonance analysis revealed a high binding affinity for the antibody (K D =39×10 -9  m), which is nearly identical to that of the full-length enzyme (K D =16×10 -9  m). The proteolytic excision affinity mass spectrometry method is shown here to be an efficient tool for epitope identification of an immunogenic lysosomal enzyme. Because the full-length αGal and the antibody epitope showed similar binding affinities, this provides a basis for reversing immunogenicity upon ERT by: 1) treatment of patients with the epitope peptide to neutralize antibodies, or 2) removal of antibodies by apheresis, and thus significantly improving the response to ERT. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Site-specific O-Glycosylation by Polypeptide N-Acetylgalactosaminyltransferase 2 (GalNAc-transferase T2) Co-regulates β1-Adrenergic Receptor N-terminal Cleavage.

    PubMed

    Goth, Christoffer K; Tuhkanen, Hanna E; Khan, Hamayun; Lackman, Jarkko J; Wang, Shengjun; Narimatsu, Yoshiki; Hansen, Lasse H; Overall, Christopher M; Clausen, Henrik; Schjoldager, Katrine T; Petäjä-Repo, Ulla E

    2017-03-17

    The β 1 -adrenergic receptor (β 1 AR) is a G protein-coupled receptor (GPCR) and the predominant adrenergic receptor subtype in the heart, where it mediates cardiac contractility and the force of contraction. Although it is the most important target for β-adrenergic antagonists, such as β-blockers, relatively little is yet known about its regulation. We have shown previously that β 1 AR undergoes constitutive and regulated N-terminal cleavage participating in receptor down-regulation and, moreover, that the receptor is modified by O -glycosylation. Here we demonstrate that the polypeptide GalNAc-transferase 2 (GalNAc-T2) specifically O -glycosylates β 1 AR at five residues in the extracellular N terminus, including the Ser-49 residue at the location of the common S49G single-nucleotide polymorphism. Using in vitro O -glycosylation and proteolytic cleavage assays, a cell line deficient in O -glycosylation, GalNAc-T-edited cell line model systems, and a GalNAc-T2 knock-out rat model, we show that GalNAc-T2 co-regulates the metalloproteinase-mediated limited proteolysis of β 1 AR. Furthermore, we demonstrate that impaired O -glycosylation and enhanced proteolysis lead to attenuated receptor signaling, because the maximal response elicited by the βAR agonist isoproterenol and its potency in a cAMP accumulation assay were decreased in HEK293 cells lacking GalNAc-T2. Our findings reveal, for the first time, a GPCR as a target for co-regulatory functions of site-specific O -glycosylation mediated by a unique GalNAc-T isoform. The results provide a new level of β 1 AR regulation that may open up possibilities for new therapeutic strategies for cardiovascular diseases. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  15. Program for Army Spill Sites. Phase 1, Task 24, Version 3.2. Volume 1

    DTIC Science & Technology

    1987-11-01

    7355 14 gals Diazinon 6840-00-753-5038 197 lbs Vapona 140 strips Naled 6840-00-926-9163 22 gals Carbaryl 100 lbs Propoxur 1 gal Baygon Propoxur 6840...544 thiram 75% Arsenate of Lead 2 lbs Building 544 Baygon Roach Bait 2.5 lbs Building 544 propoxur 2% Cyanogas-A 1 lb Building 544 Calcium Cyanide 42...Rodenticidal Bait 150 lbs Building 544 Anticoagulant warfarin 0.025% 6840-00-753-4973 Sevin Sprayable 220 lbs Building 544 Carbaryl 80% 6840-00-932-7297

  16. Natural anti-carbohydrate antibodies contributing to evolutionary survival of primates in viral epidemics?

    PubMed

    Galili, Uri

    2016-11-01

    Humans produce multiple natural antibodies against carbohydrate antigens on gastrointestinal bacteria. Two such antibodies appeared in primates in recent geological times. Anti-Gal, abundant in humans, apes and Old-World monkeys, appeared 20-30 million years ago (mya) following inactivation of the α1,3GT gene (GGTA1). This gene encodes in other mammals the enzyme α1,3galactosyltransferase (α1,3GT) that synthesizes α-gal epitopes (Galα1-3Galβ1-4GlcNAc-R) which bind anti-Gal. Anti-Neu5Gc, found only in humans, appeared in hominins <6 mya, following elimination of N-glycolylneuraminic-acid (Neu5Gc) because of inactivation of CMAH, the gene encoding hydroxylase that converts N-acetylneuraminic-acid (Neu5Ac) into Neu5Gc. These antibodies, were initially produced in few individuals that acquired random mutations inactivating the corresponding genes and eliminating α-gal epitopes or Neu5Gc, which became nonself antigens. It is suggested that these evolutionary selection events were induced by epidemics of enveloped viruses, lethal to ancestral Old World primates or hominins. Such viruses presented α-gal epitopes or Neu5Gc, synthesized in primates that conserved active GGTA1 or CMAH, respectively, and were lethal to their hosts. The natural anti-Gal or anti-Neu5Gc antibodies, produced in offspring lacking the corresponding carbohydrate antigens, neutralized and destroyed viruses presenting α-gal epitopes or Neu5Gc. These antibodies further induced rapid, effective immune responses against virus antigens, thus preventing infections from reaching lethal stages. These epidemics ultimately resulted in extinction of primate populations synthesizing these carbohydrate antigens and their replacement with offspring populations lacking the antigens and producing protective antibodies against them. Similar events could mediate the elimination of various carbohydrate antigens, thus preventing the complete extinction of other vertebrate species. © The Author 2016. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  17. Binding of galectin-1 to breast cancer cells MCF7 induces apoptosis and inhibition of proliferation in vitro in a 2D- and 3D- cell culture model.

    PubMed

    Geiger, Pamina; Mayer, Barbara; Wiest, Irmi; Schulze, Sandra; Jeschke, Udo; Weissenbacher, Tobias

    2016-11-08

    Galectin-1 (gal-1) belongs to the family of β-galactoside-binding proteins which primarily recognizes the Galβ1-4GlcNAc sequences of oligosaccharides associated with several cell surface glycoconjugates. The lectin recognizes correspondent glycoepitopes on human breast cancer cells. Galectin-1 is expressed both in normal and malignant tissues. Lymphatic organs naturally possessing high rates of apoptotic cells, express high levels of Galectin-1. Furthermore galectin-1 can initiate T cell apoptosis. Binding of galectin-1 to trophoblast tumor cells presenting the oncofetal Thomsen-Friedenreich (TF) carbohydrate antigen inhibits tumor cell proliferation. In this study we examined the impact galectin-1 has in vitro on cell proliferation, apoptotic potential and metabolic activity of MCF-7 and T-47D breast cancer cells in dependence to their expression of the Thomsen-Friedenreich (TF) tumor antigen. For proliferation and apoptosis assays cells were grown in presence of 10, 30 and 60 μg gal-1/ml medium. Cell proliferation was determined by a BrdU uptake ELISA. Detection of apoptotic cells was done by M30 cyto death staining, in situ nick translation and by a nucleosome ELISA method. Furthermore we studied the impact galectin-1 has on the metabolic activity of MCF-7 and T-47D cells in a homotypic three-dimensional spheroid cell culture model mimicking a micro tumour environment. Gal-1 inhibited proliferation of MCF-7 cells (strong expression of the TF epitope) but did not significantly change proliferation of T-47D cells (weak expression of the TF epitope). The incubation of MCF-7 cells with gal-1 raised number of apoptotic cells significantly. Treating the spheroids with 30 μg/ml galectin-1 in addition to standard chemotherapeutic regimes (FEC, TAC) resulted in further suppression of the metabolic activity in MCF-7 cells whereas T-47D cells were not affected. Our results demonstrate that galectin-1 can inhibit proliferation und metabolic cell activity and induce apoptosis in breast tumor cell lines with high expression levels of the Thomsen-Friedenreich (TF) antigen in monolayer and spheroid cell culture models.

  18. Human Galectin-9 Is a Potent Mediator of HIV Transcription and Reactivation

    PubMed Central

    Abdel-Mohsen, Mohamed; Chavez, Leonard; Tandon, Ravi; Chew, Glen M.; Deng, Xutao; Danesh, Ali; Keating, Sheila; Lanteri, Marion; Samuels, Michael L.; Hoh, Rebecca; Sacha, Jonah B.; Norris, Philip J.; Niki, Toshiro; Shikuma, Cecilia M.; Hirashima, Mitsuomi; Deeks, Steven G.; Ndhlovu, Lishomwa C.; Pillai, Satish K.

    2016-01-01

    Identifying host immune determinants governing HIV transcription, latency and infectivity in vivo is critical to developing an HIV cure. Based on our recent finding that the host factor p21 regulates HIV transcription during antiretroviral therapy (ART), and published data demonstrating that the human carbohydrate-binding immunomodulatory protein galectin-9 regulates p21, we hypothesized that galectin-9 modulates HIV transcription. We report that the administration of a recombinant, stable form of galectin-9 (rGal-9) potently reverses HIV latency in vitro in the J-Lat HIV latency model. Furthermore, rGal-9 reverses HIV latency ex vivo in primary CD4+ T cells from HIV-infected, ART-suppressed individuals (p = 0.002), more potently than vorinostat (p = 0.02). rGal-9 co-administration with the latency reversal agent "JQ1", a bromodomain inhibitor, exhibits synergistic activity (p<0.05). rGal-9 signals through N-linked oligosaccharides and O-linked hexasaccharides on the T cell surface, modulating the gene expression levels of key transcription initiation, promoter proximal-pausing, and chromatin remodeling factors that regulate HIV latency. Beyond latent viral reactivation, rGal-9 induces robust expression of the host antiviral deaminase APOBEC3G in vitro and ex vivo (FDR<0.006) and significantly reduces infectivity of progeny virus, decreasing the probability that the HIV reservoir will be replenished when latency is reversed therapeutically. Lastly, endogenous levels of soluble galectin-9 in the plasma of 72 HIV-infected ART-suppressed individuals were associated with levels of HIV RNA in CD4+ T cells (p<0.02) and with the quantity and binding avidity of circulating anti-HIV antibodies (p<0.009), suggesting a role of galectin-9 in regulating HIV transcription and viral production in vivo during therapy. Our data suggest that galectin-9 and the host glycosylation machinery should be explored as foundations for novel HIV cure strategies. PMID:27253379

  19. A diverse range of bacterial and eukaryotic chitinases hydrolyzes the LacNAc (Galβ1-4GlcNAc) and LacdiNAc (GalNAcβ1-4GlcNAc) motifs found on vertebrate and insect cells.

    PubMed

    Frederiksen, Rikki F; Yoshimura, Yayoi; Storgaard, Birgit G; Paspaliari, Dafni K; Petersen, Bent O; Chen, Kowa; Larsen, Tanja; Duus, Jens Ø; Ingmer, Hanne; Bovin, Nicolai V; Westerlind, Ulrika; Blixt, Ola; Palcic, Monica M; Leisner, Jørgen J

    2015-02-27

    There is emerging evidence that chitinases have additional functions beyond degrading environmental chitin, such as involvement in innate and acquired immune responses, tissue remodeling, fibrosis, and serving as virulence factors of bacterial pathogens. We have recently shown that both the human chitotriosidase and a chitinase from Salmonella enterica serovar Typhimurium hydrolyze LacNAc from Galβ1-4GlcNAcβ-tetramethylrhodamine (LacNAc-TMR (Galβ1-4GlcNAcβ(CH2)8CONH(CH2)2NHCO-TMR)), a fluorescently labeled model substrate for glycans found in mammals. In this study we have examined the binding affinities of the Salmonella chitinase by carbohydrate microarray screening and found that it binds to a range of compounds, including five that contain LacNAc structures. We have further examined the hydrolytic specificity of this enzyme and chitinases from Sodalis glossinidius and Polysphondylium pallidum, which are phylogenetically related to the Salmonella chitinase, as well as unrelated chitinases from Listeria monocytogenes using the fluorescently labeled substrate analogs LacdiNAc-TMR (GalNAcβ1-4GlcNAcβ-TMR), LacNAc-TMR, and LacNAcβ1-6LacNAcβ-TMR. We found that all chitinases examined hydrolyzed LacdiNAc from the TMR aglycone to various degrees, whereas they were less active toward LacNAc-TMR conjugates. LacdiNAc is found in the mammalian glycome and is a common motif in invertebrate glycans. This substrate specificity was evident for chitinases of different phylogenetic origins. Three of the chitinases also hydrolyzed the β1-6 bond in LacNAcβ1-6LacNAcβ-TMR, an activity that is of potential importance in relation to mammalian glycans. The enzymatic affinities for these mammalian-like structures suggest additional functional roles of chitinases beyond chitin hydrolysis. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  20. Functional involvement of TMF/ARA160 in Rab6-dependent retrograde membrane traffic.

    PubMed

    Yamane, Junko; Kubo, Akiharu; Nakayama, Kazuhisa; Yuba-Kubo, Akiko; Katsuno, Tatsuya; Tsukita, Shoichiro; Tsukita, Sachiko

    2007-10-01

    The small GTPase Rab6 regulates retrograde membrane traffic from endosomes to the Golgi apparatus and from the Golgi to the endoplasmic reticulum (ER). We examined the role of a Rab6-binding protein, TMF/ARA160 (TATA element modulatory factor/androgen receptor-coactivator of 160 kDa), in this process. High-resolution immunofluorescence imaging revealed that TMF signal surrounded Rab6-positive Golgi structures and immunoelectron microscopy revealed that TMF is concentrated at the budding structures localized at the tips of cisternae. The knockdown of either TMF or Rab6 by RNA interference blocked retrograde transport of endocytosed Shiga toxin from early/recycling endosomes to the trans-Golgi network, causing missorting of the toxin to late endosomes/lysosomes. However, the TMF knockdown caused Rab6-dependent displacement of N-acetylgalactosaminyltransferase-2 (GalNAc-T2), but not beta1,4-galactosyltransferase (GalT), from the Golgi. Analyses using chimeric proteins, in which the cytoplasmic regions of GalNAc-T2 and GalT were exchanged, revealed that the cytoplasmic region of GalNAc-T2 plays a crucial role in its TMF-dependent Golgi retention. These observations suggest critical roles for TMF in two Rab6-dependent retrograde transport processes: one from endosomes to the Golgi and the other from the Golgi to the ER.

  1. Targeting galectin-1-induced angiogenesis mitigates the severity of endometriosis.

    PubMed

    Bastón, Juan I; Barañao, Rosa I; Ricci, Analía G; Bilotas, Mariela A; Olivares, Carla N; Singla, José J; Gonzalez, Alejandro M; Stupirski, Juan C; Croci, Diego O; Rabinovich, Gabriel A; Meresman, Gabriela F

    2014-11-01

    Endometriosis is characterized by the presence of endometrial tissue outside the uterus that causes severe pelvic pain and infertility in women of reproductive age. Although not completely understood, the pathophysiology of the disease involves chronic dysregulation of inflammatory and vascular signalling. In the quest for novel therapeutic targets, we investigated the involvement of galectin-1 (Gal-1), an endogenous glycan-binding protein endowed with both immunosuppressive and pro-angiogenic activities, in the pathophysiology of endometriotic lesions. Here we show that Gal-1 is selectively expressed in stromal and endothelial cells of human endometriotic lesions. Using an experimental endometriosis model induced in wild-type and Gal-1-deficient (Lgals1(-/-) ) mice, we showed that this lectin orchestrates the formation of vascular networks in endometriotic lesions in vivo, facilitating their ectopic growth independently of vascular endothelial growth factor (VEGF) and the keratinocyte-derived CXC-motif (CXC-KC) chemokine. Targeting Gal-1 using a specific neutralizing mAb reduced the size and vascularized area of endometriotic lesions within the peritoneal compartment. These results underline the essential role of Gal-1 during endometriosis and validate this lectin as a possible target for the treatment of disease. Copyright © 2014 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.

  2. Human Synovial Lubricin Expresses Sialyl Lewis x Determinant and Has L-selectin Ligand Activity*

    PubMed Central

    Jin, Chunsheng; Ekwall, Anna-Karin Hultgård; Bylund, Johan; Björkman, Lena; Estrella, Ruby P.; Whitelock, John M.; Eisler, Thomas; Bokarewa, Maria; Karlsson, Niclas G.

    2012-01-01

    Lubricin (or proteoglycan 4 (PRG4)) is an abundant mucin-like glycoprotein in synovial fluid (SF) and a major component responsible for joint lubrication. In this study, it was shown that O-linked core 2 oligosaccharides (Galβ1–3(GlcNAcβ1–6)GalNAcα1-Thr/Ser) on lubricin isolated from rheumatoid arthritis SF contained both sulfate and fucose residues, and SF lubricin was capable of binding to recombinant L-selectin in a glycosylation-dependent manner. Using resting human polymorphonuclear granulocytes (PMN) from peripheral blood, confocal microscopy showed that lubricin coated circulating PMN and that it partly co-localized with L-selectin expressed by these cells. In agreement with this, activation-induced shedding of L-selectin also mediated decreased lubricin binding to PMN. It was also found that PMN recruited to inflamed synovial area and fluid in rheumatoid arthritis patients kept a coat of lubricin. These observations suggest that lubricin is able to bind to PMN via an L-selectin-dependent and -independent manner and may play a role in PMN-mediated inflammation. PMID:22930755

  3. Development of a consensus protocol to quantify primate anti-non-Gal xenoreactive antibodies using pig aortic endothelial cells.

    PubMed

    Azimzadeh, Agnes M; Byrne, Guerard W; Ezzelarab, Mohamed; Welty, Emily; Braileanu, Gheorghe; Cheng, Xiangfei; Robson, Simon C; McGregor, Christopher G A; Cooper, David K C; Pierson, Richard N

    2014-01-01

    Scientists working in the field of xenotransplantation do not employ a uniform method to measure and report natural and induced antibody responses to non-Galα(1,3)Gal (non-Gal) epitopes. Such humoral responses are thought to be particularly pathogenic after transplantation of vascularized GalTKO pig organs and having a more uniform assay and reporting format would greatly facilitate comparisons between laboratories. Flow cytometry allows examination of antibody reactivity to intact antigens in their natural location and conformation on cell membranes. We have established a simple and reproducible flow cytometric assay to detect antibodies specific for non-Gal pig antigens using primary porcine aortic endothelial cells (pAECs) and cell culture-adapted pAEC cell lines generated from wild type and α1,3galactosyl transferase knockout (GalTKO) swine. The consensus protocol we propose here is based on procedures routinely used in four xenotransplantation centers and was independently evaluated at three sites using shared cells and serum samples. Our observation support use of the cell culture-adapted GalTKO pAEC KO:15502 cells as a routine method to determine the reactivity of anti-non-Gal antibodies in human and baboon serum. We have developed an assay that allows the detection of natural and induced non-Gal xenoreactive antibodies present in human or baboon serum in a reliable and consistent manner. This consensus assay and format for reporting the data should be accessible to laboratories and will be useful for assessing experimental results between multiple research centers. Adopting this assay and format for reporting the data should facilitate the detection, monitoring, and detailed characterization of non-Gal antibody responses. © 2014 John Wiley & Sons A/S Published by John Wiley & Sons Ltd.

  4. Engineering of N. benthamiana L. plants for production of N-acetylgalactosamine-glycosylated proteins--towards development of a plant-based platform for production of protein therapeutics with mucin type O-glycosylation.

    PubMed

    Daskalova, Sasha M; Radder, Josiah E; Cichacz, Zbigniew A; Olsen, Sam H; Tsaprailis, George; Mason, Hugh; Lopez, Linda C

    2010-08-24

    Mucin type O-glycosylation is one of the most common types of post-translational modifications that impacts stability and biological functions of many mammalian proteins. A large family of UDP-GalNAc polypeptide:N-acetyl-α-galactosaminyltransferases (GalNAc-Ts) catalyzes the first step of mucin type O-glycosylation by transferring GalNAc to serine and/or threonine residues of acceptor polypeptides. Plants do not have the enzyme machinery to perform this process, thus restricting their use as bioreactors for production of recombinant therapeutic proteins. The present study demonstrates that an isoform of the human GalNAc-Ts family, GalNAc-T2, retains its localization and functionality upon expression in N. benthamiana L. plants. The recombinant enzyme resides in the Golgi as evidenced by the fluorescence distribution pattern of the GalNAc-T2:GFP fusion and alteration of the fluorescence signature upon treatment with Brefeldin A. A GalNAc-T2-specific acceptor peptide, the 113-136 aa fragment of chorionic gonadotropin β-subunit, is glycosylated in vitro by the plant-produced enzyme at the "native" GalNAc attachment sites, Ser-121 and Ser-127. Ectopic expression of GalNAc-T2 is sufficient to "arm" tobacco cells with the ability to perform GalNAc-glycosylation, as evidenced by the attachment of GalNAc to Thr-119 of the endogenous enzyme endochitinase. However, glycosylation of highly expressed recombinant glycoproteins, like magnICON-expressed E. coli enterotoxin B subunit:H. sapiens mucin 1 tandem repeat-derived peptide fusion protein (LTBMUC1), is limited by the low endogenous UDP-GalNAc substrate pool and the insufficient translocation of UDP-GalNAc to the Golgi lumen. Further genetic engineering of the GalNAc-T2 plants by co-expressing Y. enterocolitica UDP-GlcNAc 4-epimerase gene and C. elegans UDP-GlcNAc/UDP-GalNAc transporter gene overcomes these limitations as indicated by the expression of the model LTBMUC1 protein exclusively as a glycoform. Plant bioreactors can be engineered that are capable of producing Tn antigen-containing recombinant therapeutics.

  5. Distinct regulators of Shh transcription in the floor plate and notochord indicate separate origins for these tissues in the mouse node.

    PubMed

    Jeong, Yongsu; Epstein, Douglas J

    2003-08-01

    The establishment of the floor plate at the ventral midline of the CNS is dependent on an inductive signaling process mediated by the secreted protein Sonic hedgehog (Shh). To understand molecularly how floor plate induction proceeds we identified a Shh-responsive regulatory element that directs transgene reporter expression to the ventral midline of the CNS and notochord in a Shh-like manner and characterized critical cis-acting sequences regulating this element. Cross-species comparisons narrowed the activity of the Shh floor plate enhancer to an 88-bp sequence within intron 2 of Shh that included highly conserved binding sites matching the consensus for homeodomain, Tbx and Foxa transcription factors. Mutational analysis revealed that the homeodomain and Foxa binding sites are each required for activation of the Shh floor plate enhancer, whereas the Tbx site was required for repression in regions of the CNS where Shh is not normally expressed. We further show that Shh enhancer activity was detected in the mouse node from where the floor plate and notochord precursors derive. Shh reporter expression was restricted to the ventral (mesodermal) layer of the node in a pattern similar to endogenous Shh. X-gal-positive cells emerging from the node were only detected in the notochord lineage, suggesting that the floor plate and notochord arise from distinct precursors in the mouse node.

  6. Structure of the apo form of the catabolite control protein A (CcpA) from Bacillus megaterium with a DNA-binding domain

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singh, Rajesh Kumar; Palm, Gottfried J.; Panjikar, Santosh

    2007-04-01

    Crystal structure analysis of the apo form of catabolite control protein A reveals the three-helix bundle of the DNA-binding domain. In the crystal packing, this domain interacts with the binding site for the corepressor protein. Crystal structure determination of catabolite control protein A (CcpA) at 2.6 Å resolution reveals for the first time the structure of a full-length apo-form LacI-GalR family repressor protein. In the crystal structures of these transcription regulators, the three-helix bundle of the DNA-binding domain has only been observed in cognate DNA complexes; it has not been observed in other crystal structures owing to its mobility. Inmore » the crystal packing of apo-CcpA, the protein–protein contacts between the N-terminal three-helix bundle and the core domain consisted of interactions between the homodimers that were similar to those between the corepressor protein HPr and the CcpA N-subdomain in the ternary DNA complex. In contrast to the DNA complex, the apo-CcpA structure reveals large subdomain movements in the core, resulting in a complete loss of contacts between the N-subdomains of the homodimer.« less

  7. Galectin-9 Expression Predicts Favorable Clinical Outcome in Solid Tumors: A Systematic Review and Meta-Analysis

    PubMed Central

    Zhou, Xiaoxiang; Sun, Lejia; Jing, Dan; Xu, Gang; Zhang, Jinmei; Lin, Li; Zhao, Jingjing; Yao, Zhuoran; Lin, Hongfeng

    2018-01-01

    Background and Objective: Galectin-9 (Gal-9) is one of the galectin family members which are known as proteins with β-galactoside-binding affinity. Accumulative evidence suggest that Gal-9 plays multifaceted roles in tumor biology. However, the prognostic significance of Gal-9 in solid cancer patients remains controversial. The objective of the study was to clarify the prognostic significance of Gal-9 in solid tumors via meta-analysis. Methods: We searched PubMed, Embase and the Cochrane library for studies that report the correlation between Gal-9 expression and prognosis or clinicopathological parameters in solid cancer patients from inception to October 2017, with no language restriction. We calculated pooled hazard ratio (HR) and 95% confidence interval (CI) to investigate the prognostic significance of Gal-9 expression in solid tumors. We also calculated Odds ratio (OR) to explore the association between Gal-9 expression and clinicopathological features. Results: We included Fourteen studies with 2326 patients in our meta-analysis. The synthetic results revealed that high Gal-9 expression indicated improved overall survival (OS; HR = 0.70, 95% CI = 0.51–0.71, P = 0.006) but had no correlation with disease-free survival (DFS)/recurrence-free survival (RFS) (HR = 0.85, 95% CI = 0.51–1.41, P = 0.527) in solid tumors. In stratified analyses, high Gal-9 expression was significantly correlated with improved OS in hepatocellular carcinoma and colon cancer and with improved DFS/RFS in gastric cancer and non-small cell lung cancer. In addition, ethnicity and the method of data extraction didn’t affect the positive prognostic values of high Gal-9 expression. Moreover, high Gal-9 expression was significantly correlated with a smaller depth of invasion (TI/TII vs. TIII/TIV, OR = 2.80, 95% CI = 1.97–3.96, P < 0.001), an earlier histopathological stage (I/II vs. III/IV, OR = 3.00, 95% CI = 2.04–4.42, P < 0.001), negative lymph node metastasis (Presence vs. Absence, OR = 0.47, 95% CI = 0.25–0.89, P = 0.020) and negative distal tumor metastasis (Presence vs. Absence, OR = 13.85, 95% CI = 3.50–54.76, P < 0.001). Conclusion: Gal-9 expression indicates beneficial outcome in patients with solid tumors and is correlated with the pathogenesis of solid tumors. Gal-9 may serve as a prognostic biomarker and an emerging therapeutic target against solid tumors. PMID:29765332

  8. Galectin-9 Expression Predicts Favorable Clinical Outcome in Solid Tumors: A Systematic Review and Meta-Analysis.

    PubMed

    Zhou, Xiaoxiang; Sun, Lejia; Jing, Dan; Xu, Gang; Zhang, Jinmei; Lin, Li; Zhao, Jingjing; Yao, Zhuoran; Lin, Hongfeng

    2018-01-01

    Background and Objective: Galectin-9 (Gal-9) is one of the galectin family members which are known as proteins with β-galactoside-binding affinity. Accumulative evidence suggest that Gal-9 plays multifaceted roles in tumor biology. However, the prognostic significance of Gal-9 in solid cancer patients remains controversial. The objective of the study was to clarify the prognostic significance of Gal-9 in solid tumors via meta-analysis. Methods: We searched PubMed, Embase and the Cochrane library for studies that report the correlation between Gal-9 expression and prognosis or clinicopathological parameters in solid cancer patients from inception to October 2017, with no language restriction. We calculated pooled hazard ratio (HR) and 95% confidence interval (CI) to investigate the prognostic significance of Gal-9 expression in solid tumors. We also calculated Odds ratio (OR) to explore the association between Gal-9 expression and clinicopathological features. Results: We included Fourteen studies with 2326 patients in our meta-analysis. The synthetic results revealed that high Gal-9 expression indicated improved overall survival (OS; HR = 0.70, 95% CI = 0.51-0.71, P = 0.006) but had no correlation with disease-free survival (DFS)/recurrence-free survival (RFS) (HR = 0.85, 95% CI = 0.51-1.41, P = 0.527) in solid tumors. In stratified analyses, high Gal-9 expression was significantly correlated with improved OS in hepatocellular carcinoma and colon cancer and with improved DFS/RFS in gastric cancer and non-small cell lung cancer. In addition, ethnicity and the method of data extraction didn't affect the positive prognostic values of high Gal-9 expression. Moreover, high Gal-9 expression was significantly correlated with a smaller depth of invasion (TI/TII vs. TIII/TIV, OR = 2.80, 95% CI = 1.97-3.96, P < 0.001), an earlier histopathological stage (I/II vs. III/IV, OR = 3.00, 95% CI = 2.04-4.42, P < 0.001), negative lymph node metastasis (Presence vs. Absence, OR = 0.47, 95% CI = 0.25-0.89, P = 0.020) and negative distal tumor metastasis (Presence vs. Absence, OR = 13.85, 95% CI = 3.50-54.76, P < 0.001). Conclusion: Gal-9 expression indicates beneficial outcome in patients with solid tumors and is correlated with the pathogenesis of solid tumors. Gal-9 may serve as a prognostic biomarker and an emerging therapeutic target against solid tumors.

  9. Site-specific O-Glycosylation on the MUC2 Mucin Protein Inhibits Cleavage by the Porphyromonas gingivalis Secreted Cysteine Protease (RgpB)*

    PubMed Central

    van der Post, Sjoerd; Subramani, Durai B.; Bäckström, Malin; Johansson, Malin E. V.; Vester-Christensen, Malene B.; Mandel, Ulla; Bennett, Eric P.; Clausen, Henrik; Dahlén, Gunnar; Sroka, Aneta; Potempa, Jan; Hansson, Gunnar C.

    2013-01-01

    The colonic epithelial surface is protected by an inner mucus layer that the commensal microflora cannot penetrate. We previously demonstrated that Entamoeba histolytica secretes a protease capable of dissolving this layer that is required for parasite penetration. Here, we asked whether there are bacteria that can secrete similar proteases. We screened bacterial culture supernatants for such activity using recombinant fragments of the MUC2 mucin, the major structural component, and the only gel-forming mucin in the colonic mucus. MUC2 has two central heavily O-glycosylated mucin domains that are protease-resistant and has cysteine-rich N and C termini responsible for polymerization. Culture supernatants of Porphyromonas gingivalis, a bacterium that secretes proteases responsible for periodontitis, cleaved the MUC2 C-terminal region, whereas the N-terminal region was unaffected. The active enzyme was isolated and identified as Arg-gingipain B (RgpB). Two cleavage sites were localized to IR↓TT and NR↓QA. IR↓TT cleavage will disrupt the MUC2 polymers. Because this site has two potential O-glycosylation sites, we tested whether recombinant GalNAc-transferases (GalNAc-Ts) could glycosylate a synthetic peptide covering the IRTT sequence. Only GalNAc-T3 was able to glycosylate the second Thr in IRTT, rendering the sequence resistant to cleavage by RgpB. Furthermore, when GalNAc-T3 was expressed in CHO cells expressing the MUC2 C terminus, the second threonine was glycosylated, and the protein became resistant to RgpB cleavage. These findings suggest that bacteria can produce proteases capable of dissolving the inner protective mucus layer by specific cleavages in the MUC2 mucin and that this cleavage can be modulated by site-specific O-glycosylation. PMID:23546879

  10. The artificial zinc finger coding gene 'Jazz' binds the utrophin promoter and activates transcription.

    PubMed

    Corbi, N; Libri, V; Fanciulli, M; Tinsley, J M; Davies, K E; Passananti, C

    2000-06-01

    Up-regulation of utrophin gene expression is recognized as a plausible therapeutic approach in the treatment of Duchenne muscular dystrophy (DMD). We have designed and engineered new zinc finger-based transcription factors capable of binding and activating transcription from the promoter of the dystrophin-related gene, utrophin. Using the recognition 'code' that proposes specific rules between zinc finger primary structure and potential DNA binding sites, we engineered a new gene named 'Jazz' that encodes for a three-zinc finger peptide. Jazz belongs to the Cys2-His2 zinc finger type and was engineered to target the nine base pair DNA sequence: 5'-GCT-GCT-GCG-3', present in the promoter region of both the human and mouse utrophin gene. The entire zinc finger alpha-helix region, containing the amino acid positions that are crucial for DNA binding, was specifically chosen on the basis of the contacts more frequently represented in the available list of the 'code'. Here we demonstrate that Jazz protein binds specifically to the double-stranded DNA target, with a dissociation constant of about 32 nM. Band shift and super-shift experiments confirmed the high affinity and specificity of Jazz protein for its DNA target. Moreover, we show that chimeric proteins, named Gal4-Jazz and Sp1-Jazz, are able to drive the transcription of a test gene from the human utrophin promoter.

  11. Sensitization to the mammalian oligosaccharide galactose-alpha-1,3-galactose (alpha-gal): experience in a Flemish case series.

    PubMed

    Ebo, D G; Faber, M; Sabato, V; Leysen, J; Gadisseur, A; Bridts, C H; De Clerck, L S

    2013-01-01

    Recent observations have disclosed that the galactose-alpha (1,3)-galactose (alpha-gal) moiety of non-primate glycoproteins can constitute a target for meat allergy. To describe adults with allergic reactions to mammalian meat, dairy products and gelatin. To investigate whether patients could demonstrate sensitization to activated recombinant human coagulation factor VII ectapog alpha that is produced in baby hamster kidney cells. Ten adults with mammalian meat, dairy products and gelatin allergies were examined using quantification of specific IgE and/or skin prick test for red meat, milk, milk components, gelatin, cetuximab and eptacog alpha. Most patients demonstrate quite typical clinical histories and serological profiles, with anti-alpha-gal titers varying from less than 1% to over 25% of total serum IgE. All patients demonstrate negative sIgE for gelatin, except the patient with a genuine gelatin allergy. All patients also demonstrated a negative sIgE to recombinant milk components casein, lactalbumin and lactoglobulin. Specific IgE to eptacog was positive in 5 out of the 9 patients sensitized to alpha-gal and none of the 10 control individuals. This series confirms the importance of the alpha-gal carbohydrate moiety as a potential target for allergy to mammalian meat, dairy products and gelatin (oral, topical or parenteral) in a Flemish population of meat allergic adults. It also confirms in vitro tests to mammalian meat generally to be more reliable than mammalian meat skin tests, but that diagnosis can benefit from skin testing with cetuximab. Specific IgE to gelatin is far too insensitive to diagnose alphaa-gal related gelatin allergy. IgE binding studies indicate a potential risk of alpha-gal-containing human recombinant proteins produced in mammalians.

  12. Minimal sulfated carbohydrates for recognition by L-selectin and the MECA-79 antibody.

    PubMed

    Bruehl, R E; Bertozzi, C R; Rosen, S D

    2000-10-20

    Sulfated forms of sialyl-Le(X) containing Gal-6-SO(4) or GlcNAc-6-SO(4) have been implicated as potential recognition determinants on high endothelial venule ligands for L-selectin. The optimal configuration of sulfate esters on the N-acetyllactosamine (Galbeta1-->4GlcNAc) core of sulfosialyl-Le(X), however, remains unsettled. Using a panel of sulfated lactose (Galbeta1-->4Glc) neoglycolipids as substrates in direct binding assays, we found that 6',6-disulfolactose was the preferred structure for L-selectin, although significant binding to 6'- and 6-sulfolactose was observed as well. Binding was EDTA-sensitive and blocked by L-selectin-specific monoclonal antibodies. Surprisingly, 6', 6-disulfolactose was poorly recognized by MECA-79, a carbohydrate- and sulfate-dependent monoclonal antibody that binds competitively to L-selectin ligands. Instead, MECA-79 bound preferentially to 6-sulfolactose. The difference in preferred substrates between L-selectin and MECA-79 may explain the variable activity of MECA-79 as an inhibitor of lymphocyte adhesion to high endothelial venules in lymphoid organs. Our results suggest that both Gal-6-SO(4) and GlcNAc-6-SO(4) may contribute to L-selectin recognition, either as components of sulfosialyl-Le(X) capping groups or in internal structures. By contrast, only GlcNAc-6-SO(4) appears to contribute to MECA-79 binding.

  13. Crystal structure of lactose permease in complex with an affinity inactivator yields unique insight into sugar recognition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chaptal, Vincent; Kwon, Seunghyug; Sawaya, Michael R.

    Lactose permease of Escherichia coli (LacY) with a single-Cys residue in place of A122 (helix IV) transports galactopyranosides and is specifically inactivated by methanethiosulfonyl-galactopyranosides (MTS-gal), which behave as unique suicide substrates. In order to study the mechanism of inactivation more precisely, we solved the structure of single-Cys122 LacY in complex with covalently bound MTS-gal. This structure exhibits an inward-facing conformation similar to that observed previously with a slight narrowing of the cytoplasmic cavity. MTS-gal is bound covalently, forming a disulfide bond with C122 and positioned between R144 and W151. E269, a residue essential for binding, coordinates the C-4 hydroxyl ofmore » the galactopyranoside moiety. The location of the sugar is in accord with many biochemical studies.« less

  14. BEL β-trefoil: a novel lectin with antineoplastic properties in king bolete (Boletus edulis) mushrooms.

    PubMed

    Bovi, Michele; Cenci, Lucia; Perduca, Massimiliano; Capaldi, Stefano; Carrizo, Maria E; Civiero, Laura; Chiarelli, Laurent R; Galliano, Monica; Monaco, Hugo L

    2013-05-01

    A novel lectin was purified from the fruiting bodies of king bolete mushrooms (Boletus edulis, also called porcino, cep or penny bun). The lectin was structurally characterized i.e its amino acid sequence and three-dimensional structure were determined. The new protein is a homodimer and each protomer folds as β-trefoil domain and therefore we propose the name Boletus edulis lectin (BEL) β-trefoil to distinguish it from the other lectin that has been described in these mushrooms. The lectin has potent anti-proliferative effects on human cancer cells, which confers to it an interesting therapeutic potential as an antineoplastic agent. Several crystal forms of the apoprotein and of complexes with different carbohydrates were studied by X-ray diffraction. The structure of the apoprotein was solved at 1.12 Å resolution. The interaction of the lectin with lactose, galactose, N-acetylgalactosamine and T-antigen disaccharide, Galβ1-3GalNAc, was examined in detail. All the three potential binding sites present in the β-trefoil fold are occupied in at least one crystal form and are described in detail in this paper. No important conformational changes are observed in the lectin when comparing its co-crystals with carbohydrates with those of the ligand-free protein.

  15. Plant-Derived Transcription Factors for Orthologous Regulation of Gene Expression in the Yeast Saccharomyces cerevisiae.

    PubMed

    Naseri, Gita; Balazadeh, Salma; Machens, Fabian; Kamranfar, Iman; Messerschmidt, Katrin; Mueller-Roeber, Bernd

    2017-09-15

    Control of gene expression by transcription factors (TFs) is central in many synthetic biology projects for which a tailored expression of one or multiple genes is often needed. As TFs from evolutionary distant organisms are unlikely to affect gene expression in a host of choice, they represent excellent candidates for establishing orthogonal control systems. To establish orthogonal regulators for use in yeast (Saccharomyces cerevisiae), we chose TFs from the plant Arabidopsis thaliana. We established a library of 106 different combinations of chromosomally integrated TFs, activation domains (yeast GAL4 AD, herpes simplex virus VP64, and plant EDLL) and synthetic promoters harboring cognate cis-regulatory motifs driving a yEGFP reporter. Transcriptional output of the different driver/reporter combinations varied over a wide spectrum, with EDLL being a considerably stronger transcription activation domain in yeast than the GAL4 activation domain, in particular when fused to Arabidopsis NAC TFs. Notably, the strength of several NAC-EDLL fusions exceeded that of the strong yeast TDH3 promoter by 6- to 10-fold. We furthermore show that plant TFs can be used to build regulatory systems encoded by centromeric or episomal plasmids. Our library of TF-DNA binding site combinations offers an excellent tool for diverse synthetic biology applications in yeast.

  16. Increased levels of anti-non-Gal IgG following pig-to-baboon bone marrow transplantation correlate with failure of engraftment

    PubMed Central

    Liang, Fan; Wamala, Isaac; Scalea, Joseph; Tena, Aseda; Cormack, Taylor; Pratts, Shannon; Struuck, Raimon Duran; Elias, Nahel; Hertl, Martin; Huang, Christene A.; Sachs, David H.

    2013-01-01

    Background The development of genetically modified pigs which lack the expression of alpha 1–3 galactosyl transferase, (GalT-KO pigs) has facilitated the xenogeneic transplantation of porcine organs and tissues into primates by avoiding hyperacute rejection due to pre-existing antibodies against the Gal epitope. However, antibodies against other antigens (anti-non-Gal antibodies), are found at varying levels in the pre-transplant sera of most primates. We have previously found that baboons with high levels of pre-transplant anti-non-Gal IgG, conditioned with a non-myeloablative conditioning regimen, failed to engraft following pig-to-baboon bone marrow transplantation [8]. Two baboons with low levels of pre-transplant anti-non-Gal IgG, conditioned with the same regimen, showed porcine bone marrow progenitors at 28 days following transplantation, suggesting engraftment. These baboons also showed evidence of donor-specific hypo-responsiveness. This observation led us to investigate the hypothesis that selecting for baboon recipients with low pre-transplant anti-non-Gal IgG levels might improve engraftment levels following GalT-KO pig-to-baboon bone marrow transplantation. Methods Five baboons, with low pre-transplant anti-non-Gal IgG levels, received transplantation of bone marrow cells (1–5 × 10^9/kg of recipient weight) from GalT-KO pigs. They received a non-myeloablative conditioning regimen consisting of low-dose total body irradiation (150cGy), thymic irradiation (700cGy), anti-thymocyte globulin (ATG) and tacrolimus. In addition, two baboons received Rituximab and Bortezomib (Velcade) treatment as well as extra-corporeal immunoadsorption using GalT-KO pig livers. Bone marrow engraftment was assessed by porcine-specific PCR on colony forming units (CFU) of day 28 bone marrow aspirates. Anti-non-Gal antibody levels were assessed by serum binding towards GalT-KO PBMC using flow cytometry (FACS). Peripheral macro-chimerism was measured by FACS using pig and baboon-specific antibodies and baboon anti-pig cellular responses were assessed by mixed lymphocyte reactions (MLR). Results As previously reported, two of five baboons demonstrated detectable bone marrow engraftment at four weeks after transplantation. Engraftment was associated with lack of an increase in anti–non-Gal IgG levels as well as cellular hypo-responsiveness towards pig. Three subsequent baboons with similarly low levels of pre-existing anti-non-Gal IgG showed no engraftment and an increase in anti-non-Gal IgG antibody levels following transplantation. Peripheral macrochimerism was only seen for a few days following transplantation regardless of antibody development. Conclusions Selecting for baboon recipients with low levels of pre-transplant anti-non-Gal IgG did not ensure bone marrow engraftment. Failure to engraft was associated with an increase in anti-non-Gal IgG levels following transplantation. These results suggest that anti-non-Gal-IgG is likely involved in early bone marrow rejection and that successful strategies for combating anti-non-Gal IgG development may allow better engraftment. Since engraftment was only low and transient regardless of antibody development, innate immune, or species compatibility mechanisms will likely also need to be addressed in order to achieve long term engraftment. PMID:24289469

  17. Characterization of Glycan Structures of Chondroitin Sulfate-Glycopeptides Facilitated by Sodium Ion-Pairing and Positive Mode LC-MS/MS

    NASA Astrophysics Data System (ADS)

    Nilsson, Jonas; Noborn, Fredrik; Gomez Toledo, Alejandro; Nasir, Waqas; Sihlbom, Carina; Larson, Göran

    2017-02-01

    Purification and liquid chromatography-tandem mass spectrometry (LC-MS/MS) characterization of glycopeptides, originating from protease digests of glycoproteins, enables site-specific analysis of protein N- and O-glycosylations. We have described a protocol to enrich, hydrolyze by chondroitinase ABC, and characterize chondroitin sulfate-containing glycopeptides (CS-glycopeptides) using positive mode LC-MS/MS. The CS-glycopeptides, originating from the Bikunin proteoglycan of human urine samples, had ΔHexAGalNAcGlcAGalGalXyl- O-Ser hexasaccharide structure and were further substituted with 0-3 sulfate and 0-1 phosphate groups. However, it was not possible to exactly pinpoint sulfate attachment residues, for protonated precursors, due to extensive fragmentation of sulfate groups using high-energy collision induced dissociation (HCD). To circumvent the well-recognized sulfate instability, we now introduced Na+ ions to form sodiated precursors, which protected sulfate groups from decomposition and facilitated the assignment of sulfate modifications. Sulfate groups were pinpointed to both Gal residues and to the GalNAc of the hexasaccharide structure. The intensities of protonated and sodiated saccharide oxonium ions were very prominent in the HCD-MS2 spectra, which provided complementary structural analysis of sulfate substituents of CS-glycopeptides. We have demonstrated a considerable heterogeneity of the bikunin CS linkage region. The realization of these structural variants should be beneficial in studies aimed at investigating the importance of the CS linkage region with regards to the biosynthesis of CS and potential interactions to CS binding proteins. Also, the combined use of protonated and sodiated precursors for positive mode HCD fragmentation analysis will likely become useful for additional classes of sulfated glycopeptides.

  18. GAL-021, a new intravenous BKCa-channel blocker, is well tolerated and stimulates ventilation in healthy volunteers.

    PubMed

    McLeod, J F; Leempoels, J M; Peng, S X; Dax, S L; Myers, L J; Golder, F J

    2014-11-01

    Potassium-channels in the carotid body and the brainstem are important regulators of ventilation. The BKCa-channel contains response elements for CO, O2, and CO2. Its block increases carotid body signalling, phrenic nerve activity, and respiratory drive. GAL-021, a new BKCa-channel blocker, increases minute ventilation in rats and non-human primates. This study assessed the single-dose safety, tolerability, pharmacokinetics (PKs), and pharmacodynamics (PDs) of GAL-021 in healthy volunteers. Thirty subjects participated in a nine-period, randomized, double-blinded, placebo-controlled, crossover, ascending dose, first-in-human study with i.v. infusions of 0.1-0.96 mg kg(-1) h(-1) for 1 h and intermediate doses up to 4 h. Adverse event rates were generally similar among dose levels and between placebo- and GAL-021-treated subjects. At higher GAL-021 doses, a mild/moderate burning sensation at the infusion site occurred during the infusion. No clinically significant changes in vital signs or clinical chemistries were noted. Minute ventilation increased (AUE0-1 h ≈ 16%, P<0.05) and end-tidal carbon dioxide ([Formula: see text]) decreased (AUE0-1 h ≈ 6%, P<0.05) during the first hour at 0.96 mg kg(-1) h(-1) with 1/2-maximal [Formula: see text] and [Formula: see text]-change occurring by 7.5 min. Drug concentration rose rapidly during the infusion and decreased rapidly initially (distribution t1/2 of 30 min) and then more slowly (terminal t1/2 of 5.6 h). GAL-021 was safe and generally well tolerated with adverse events comparable with placebo except for an infusion site burning sensation. GAL-021 stimulated ventilation at the highest doses suggesting that greater infusion rates may be required for maximum PD effects. GAL-021 had PK characteristics consistent with an acute care medication. © The Author 2014. Published by Oxford University Press on behalf of the British Journal of Anaesthesia. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  19. Leishmania major Survival in Selective Phlebotomus papatasi Sand Fly Vector Requires a Specific SCG-Encoded Lipophosphoglycan Galactosylation Pattern

    PubMed Central

    Dobson, Deborah E.; Kamhawi, Shaden; Lawyer, Phillip; Turco, Salvatore J.; Beverley, Stephen M.; Sacks, David L.

    2010-01-01

    Phlebotomine sand flies that transmit the protozoan parasite Leishmania differ greatly in their ability to support different parasite species or strains in the laboratory: while some show considerable selectivity, others are more permissive. In “selective” sand flies, Leishmania binding and survival in the fly midgut typically depends upon the abundant promastigote surface adhesin lipophosphoglycan (LPG), which exhibits species- and strain-specific modifications of the dominant phosphoglycan (PG) repeat units. For the “selective” fly Phlebotomus papatasi PpapJ, side chain galactosyl-modifications (scGal) of PG repeats play key roles in parasite binding. We probed the specificity and properties of this scGal-LPG PAMP (Pathogen Associated Molecular Pattern) through studies of natural isolates exhibiting a wide range of galactosylation patterns, and of a panel of isogenic L. major engineered to express similar scGal-LPG diversity by transfection of SCG-encoded β1,3-galactosyltransferases with different activities. Surprisingly, both ‘poly-scGal’ and ‘null-scGal’ lines survived poorly relative to PpapJ-sympatric L. major FV1 and other ‘mono-scGal’ lines. However, survival of all lines was equivalent in P. duboscqi, which naturally transmit L. major strains bearing ‘null-scGal’-LPG PAMPs. We then asked whether scGal-LPG-mediated interactions were sufficient for PpapJ midgut survival by engineering Leishmania donovani, which normally express unsubstituted LPG, to express a ‘PpapJ-optimal’ scGal-LPG PAMP. Unexpectedly, these “L. major FV1-cloaked” L. donovani-SCG lines remained unable to survive within PpapJ flies. These studies establish that midgut survival of L. major in PpapJ flies is exquisitely sensitive to the scGal-LPG PAMP, requiring a specific ‘mono-scGal’ pattern. However, failure of ‘mono-scGal’ L. donovani-SCG lines to survive in selective PpapJ flies suggests a requirement for an additional, as yet unidentified L. major-specific parasite factor(s). The interplay of the LPG PAMP and additional factor(s) with sand fly midgut receptors may determine whether a given sand fly host is “selective” or “permissive”, with important consequences to both disease transmission and the natural co-evolution of sand flies and Leishmania. PMID:21085609

  20. Highly sulfated hexasaccharide sequences isolated from chondroitin sulfate of shark fin cartilage: insights into the sugar sequences with bioactivities.

    PubMed

    Mizumoto, Shuji; Murakoshi, Saori; Kalayanamitra, Kittiwan; Deepa, Sarama Sathyaseelan; Fukui, Shigeyuki; Kongtawelert, Prachya; Yamada, Shuhei; Sugahara, Kazuyuki

    2013-02-01

    Chondroitin sulfate (CS) chains regulate the development of the central nervous system in vertebrates and are linear polysaccharides consisting of variously sulfated repeating disaccharides, [-4GlcUAβ1-3GalNAcβ1-](n), where GlcUA and GalNAc represent D-glucuronic acid and N-acetyl-D-galactosamine, respectively. CS chains containing D-disaccharide units [GlcUA(2-O-sulfate)-GalNAc(6-O-sulfate)] are involved in the development of cerebellar Purkinje cells and neurite outgrowth-promoting activity through interaction with a neurotrophic factor, pleiotrophin, resulting in the regulation of signaling. In this study, to obtain further structural information on the CS chains containing d-disaccharide units involved in brain development, oligosaccharides containing D-units were isolated from a shark fin cartilage. Seven novel hexasaccharide sequences, ΔO-D-D, ΔA-D-D, ΔC-D-D, ΔE-A-D, ΔD-D-C, ΔE-D-D and ΔA-B-D, in addition to three previously reported sequences, ΔC-A-D, ΔC-D-C and ΔA-D-A, were isolated from a CS preparation of shark fin cartilage after exhaustive digestion with chondroitinase AC-I, which cannot act on the galactosaminidic linkages bound to D-units. The symbol Δ stands for a 4,5-unsaturated bond of uronic acids, whereas A, B, C, D, E and O represent [GlcUA-GalNAc(4-O-sulfate)], [GlcUA(2-O-sulfate)-GalNAc(4-O-sulfate)], [GlcUA-GalNAc(6-O-sulfate)], [GlcUA(2-O-sulfate)-GalNAc(6-O-sulfate)], [GlcUA-GalNAc(4-O-, 6-O-sulfate)] and [GlcUA-GalNAc], respectively. In binding studies using an anti-CS monoclonal antibody, MO-225, the epitopes of which are involved in cerebellar development in mammals, novel epitope structures, ΔA-D-A, ΔA-D-D and ΔA-B-D, were revealed. Hexasaccharides containing two consecutive D-units or a B-unit will be useful for the structural and functional analyses of CS chains particularly in the neuroglycobiological fields.

  1. Substrate Specificity and Inhibitor Sensitivity of Plant UDP-Sugar Producing Pyrophosphorylases.

    PubMed

    Decker, Daniel; Kleczkowski, Leszek A

    2017-01-01

    UDP-sugars are essential precursors for glycosylation reactions producing cell wall polysaccharides, sucrose, glycoproteins, glycolipids, etc. Primary mechanisms of UDP sugar formation involve the action of at least three distinct pyrophosphorylases using UTP and sugar-1-P as substrates. Here, substrate specificities of barley and Arabidopsis (two isozymes) UDP-glucose pyrophosphorylases (UGPase), Arabidopsis UDP-sugar pyrophosphorylase (USPase) and Arabidopsis UDP- N -acetyl glucosamine pyrophosphorylase2 (UAGPase2) were investigated using a range of sugar-1-phosphates and nucleoside-triphosphates as substrates. Whereas all the enzymes preferentially used UTP as nucleotide donor, they differed in their specificity for sugar-1-P. UGPases had high activity with D-Glc-1-P, but could also react with Fru-1-P and Fru-2-P ( K m values over 10 mM). Contrary to an earlier report, their activity with Gal-1-P was extremely low. USPase reacted with a range of sugar-1-phosphates, including D-Glc-1-P, D-Gal-1-P, D-GalA-1-P ( K m of 1.3 mM), β-L-Ara-1-P and α-D-Fuc-1-P ( K m of 3.4 mM), but not β-L-Fuc-1-P. In contrast, UAGPase2 reacted only with D-GlcNAc-1-P, D-GalNAc-1-P ( K m of 1 mM) and, to some extent, D-Glc-1-P ( K m of 3.2 mM). Generally, different conformations/substituents at C2, C4, and C5 of the pyranose ring of a sugar were crucial determinants of substrate specificity of a given pyrophosphorylase. Homology models of UDP-sugar binding to UGPase, USPase and UAGPase2 revealed more common amino acids for UDP binding than for sugar binding, reflecting differences in substrate specificity of these proteins. UAGPase2 was inhibited by a salicylate derivative that was earlier shown to affect UGPase and USPase activities, consistent with a common structural architecture of the three pyrophosphorylases. The results are discussed with respect to the role of the pyrophosphorylases in sugar activation for glycosylated end-products.

  2. Substrate Specificity and Inhibitor Sensitivity of Plant UDP-Sugar Producing Pyrophosphorylases

    PubMed Central

    Decker, Daniel; Kleczkowski, Leszek A.

    2017-01-01

    UDP-sugars are essential precursors for glycosylation reactions producing cell wall polysaccharides, sucrose, glycoproteins, glycolipids, etc. Primary mechanisms of UDP sugar formation involve the action of at least three distinct pyrophosphorylases using UTP and sugar-1-P as substrates. Here, substrate specificities of barley and Arabidopsis (two isozymes) UDP-glucose pyrophosphorylases (UGPase), Arabidopsis UDP-sugar pyrophosphorylase (USPase) and Arabidopsis UDP-N-acetyl glucosamine pyrophosphorylase2 (UAGPase2) were investigated using a range of sugar-1-phosphates and nucleoside-triphosphates as substrates. Whereas all the enzymes preferentially used UTP as nucleotide donor, they differed in their specificity for sugar-1-P. UGPases had high activity with D-Glc-1-P, but could also react with Fru-1-P and Fru-2-P (Km values over 10 mM). Contrary to an earlier report, their activity with Gal-1-P was extremely low. USPase reacted with a range of sugar-1-phosphates, including D-Glc-1-P, D-Gal-1-P, D-GalA-1-P (Km of 1.3 mM), β-L-Ara-1-P and α-D-Fuc-1-P (Km of 3.4 mM), but not β-L-Fuc-1-P. In contrast, UAGPase2 reacted only with D-GlcNAc-1-P, D-GalNAc-1-P (Km of 1 mM) and, to some extent, D-Glc-1-P (Km of 3.2 mM). Generally, different conformations/substituents at C2, C4, and C5 of the pyranose ring of a sugar were crucial determinants of substrate specificity of a given pyrophosphorylase. Homology models of UDP-sugar binding to UGPase, USPase and UAGPase2 revealed more common amino acids for UDP binding than for sugar binding, reflecting differences in substrate specificity of these proteins. UAGPase2 was inhibited by a salicylate derivative that was earlier shown to affect UGPase and USPase activities, consistent with a common structural architecture of the three pyrophosphorylases. The results are discussed with respect to the role of the pyrophosphorylases in sugar activation for glycosylated end-products. PMID:28970843

  3. Structural analysis and unique molecular recognition properties of a Bauhinia forficata lectin that inhibits cancer cell growth.

    PubMed

    Lubkowski, Jacek; Durbin, Sarah V; Silva, Mariana C C; Farnsworth, David; Gildersleeve, Jeffrey C; Oliva, Maria Luiza V; Wlodawer, Alexander

    2017-02-01

    Lectins have been used at length for basic research and clinical applications. New insights into the molecular recognition properties enhance our basic understanding of carbohydrate-protein interactions and aid in the design/development of new lectins. In this study, we used a combination of cell-based assays, glycan microarrays, and X-ray crystallography to evaluate the structure and function of the recombinant Bauhinia forficata lectin (BfL). The lectin was shown to be cytostatic for several cancer cell lines included in the NCI-60 panel; in particular, it inhibited growth of melanoma cancer cells (LOX IMVI) by over 95%. BfL is dimeric in solution and highly specific for binding of oligosaccharides and glycopeptides with terminal N-acetylgalactosamine (GalNAc). BfL was found to have especially strong binding (apparent K d  = 0.5-1.0 nm) to the tumor-associated Tn antigen. High-resolution crystal structures were determined for the ligand-free lectin, as well as for its complexes with three Tn glycopeptides, globotetraose, and the blood group A antigen. Extensive analysis of the eight crystal structures and comparison to structures of related lectins revealed several unique features of GalNAc recognition. Of special note, the carboxylate group of Glu126, lining the glycan-binding pocket, forms H-bonds with both the N-acetyl of GalNAc and the peptide amido group of Tn antigens. Stabilization provided by Glu126 is described here for the first time for any GalNAc-specific lectin. Taken together, the results provide new insights into the molecular recognition of carbohydrates and provide a structural understanding that will enable rational engineering of BfL for a variety of applications. Structural data are available in the PDB under the accession numbers 5T50, 5T52, 5T55, 5T54, 5T5L, 5T5J, 5T5P, and 5T5O. © 2016 Federation of European Biochemical Societies.

  4. Characterization of the specificities of human blood group H gene-specified alpha 1,2-L-fucosyltransferase toward sulfated/sialylated/fucosylated acceptors: evidence for an inverse relationship between alpha 1,2-L-fucosylation of Gal and alpha 1,6-L-fucosylation of asparagine-linked GlcNAc.

    PubMed

    Chandrasekaran, E V; Jain, R K; Larsen, R D; Wlasichuk, K; Matta, K L

    1996-07-09

    The assembly of complex structures bearing the H determinant was examined by characterizing the specificities of a cloned blood group H gene-specified alpha 1,2-L-fucosyltransferase (FT) toward a variety of sulfated, sialylated, or fucosylated Gal beta 1,3/4GlcNAc beta- or Gal beta 1,3GalNAc alpha-based acceptor structures. (a) As compared to the basic type 2, Gal beta 1,4GlcNAc beta-(K(m) = 1.67 mM), the basic type 1 was 137% active (K(m) = 0.83 mM). (b) On C-6 sulfation of Gal, type 1 became 142.1% active and type 2 became 223.0% active (K(m) = 0.45 mM). (c) On C-6 sulfation of GlcNAc, type 2 showed 33.7% activity. (d) On C-3 or C-4 fucosylation of GlcNAc, both types 1 and 2 lost activity. (e) Type 1 showed 70.8% and 5.8% activity, respectively, on C-6 and C-4 O-methylation of GlcNAc. (f) Type 1 retained 18.8% activity on alpha 2,6-sialylation of GlcNAc. (g) Terminal type 1 or 2 of extended chain had lower activity. (h) With Gal in place of GlcNAc in type 1, the activity became 43.2%. (i) Compounds with terminal alpha 1,3-linked Gal were inactive. (j) Gal beta 1,3GalNAc alpha- (the T-hapten) was approximately 0.4-fold as active as Gal beta 1,4GlcNAc beta-. (k) C-6 sulfation of Gal on the T-hapten did not affect the acceptor activity. (l) C-6 sulfation of GalNAc decreased the activity to 70%, whereas on C-6 sulfation of both Gal and GalNAc the T-hapten lost the acceptor ability. (m) C-6 sialylation of GalNAc also led to inactivity. (n) beta 1,6 branching from GalNAc of the T-hapten by a GlcNAc residue or by units such as Gal beta 1, 4GlcNAc-, Gal beta 1,4(Fuc alpha 1,3)GlcNAc-, or 3-sulfoGal beta 1,4GlcNAc- resulted in 111.9%, 282.8%, 48.3%, and 75.3% activities, respectively. (o) The enhancement of enzyme affinity by a sulfo group on C-6 of Gal was demonstrated by an increase (approximately 5-fold) in the K(m) for Gal beta 1,4GlcNAc beta 1,6(Gal beta 1,3)GalNAc alpha-O-Bn in presence of 6-sulfoGal beta 1,- 4GlcNAc beta-O-Me (3.0 mM). (p) Among the two sites in Gal beta 1, 4GlcNAc beta 1,6(Gal beta 1,3) GalNAc alpha-O-Bn, the enzyme had a higher affinity ( > 3-fold) for the Gal linked to GlcNAc. (q) With respect to Gal beta 1,- 3GlcNAc beta-O-Bn (3.0 mM), fetuin triantennary asialo glycopeptide (2.4 mM), bovine IgG diantennary glycopeptide (2.8 mM), asialo Cowper's gland mucin (0.06 mM), and the acrylamide copolymers (0.125 mM each) containing Gal beta 1,3GlcNAc beta-, Gal beta 1,3(6-sulfo)GlcNAc beta-, Gal beta 1,3GalNAc alpha-, Gal beta 1,3Gal beta-, or Gal alpha 1,3Gal beta- units were 153.6%, 43.0%, 6.2%, 52.5%, 94.9%, 14.7%, 23.6%, and 15.6% active, respectively. (r) Fucosylation by alpha 1,2-L-FT of the galactosyl residue which occurs on the antennary structure of the bovine IgG glycopeptide was adversely affected by the presence of an alpha 1,6-L-fucosyl residue located on the distant glucosaminyl residue that is directly attached to the asparagine of the protein backbone. This became evident from the 4-fold activity of alpha 1,2-L-FT toward bovine IgG glycopeptide after approximately 5% removal of alpha 1,6-linked Fuo.

  5. Prototype and Chimera-Type Galectins in Placentas with Spontaneous and Recurrent Miscarriages.

    PubMed

    Unverdorben, Laura; Haufe, Thomas; Santoso, Laura; Hofmann, Simone; Jeschke, Udo; Hutter, Stefan

    2016-04-28

    Galectins are galactose binding proteins and, in addition, factors for a wide range of pathologies in pregnancy. We have analyzed the expression of prototype (gal-1, -2, -7, -10) and chimera-type (gal-3) galectins in the placenta in cases of spontaneous abortions (SPA) and recurrent abortions (RA) in the first trimester. Fifteen placental samples from healthy pregnancies were used as a control group. Nine placentas were examined for spontaneous abortions, and 12 placentas for recurrent abortions. For differentiation and evaluation of different cell types of galectin-expression in the decidua, immunofluorescence was used. For all investigated prototype galectins (gal-1, -2, -7, -10) in SPA and RA placenta trophoblast cells the expression is significantly decreased. In the decidua/extravillous trophoblast only gal-2 expression was significantly lowered, which could be connected to its role in angiogenesis. In trophoblasts in first-trimester placentas and in cases of SPA and RA, prototype galectins are altered in the same way. We suspect prototype galectins have a similar function in placental tissue because of their common biochemical structure. Expression of galectin 3 as a chimera type galectin was not found to be significantly altered in abortive placentas.

  6. Prototype and Chimera-Type Galectins in Placentas with Spontaneous and Recurrent Miscarriages

    PubMed Central

    Unverdorben, Laura; Haufe, Thomas; Santoso, Laura; Hofmann, Simone; Jeschke, Udo; Hutter, Stefan

    2016-01-01

    Galectins are galactose binding proteins and, in addition, factors for a wide range of pathologies in pregnancy. We have analyzed the expression of prototype (gal-1, -2, -7, -10) and chimera-type (gal-3) galectins in the placenta in cases of spontaneous abortions (SPA) and recurrent abortions (RA) in the first trimester. Fifteen placental samples from healthy pregnancies were used as a control group. Nine placentas were examined for spontaneous abortions, and 12 placentas for recurrent abortions. For differentiation and evaluation of different cell types of galectin-expression in the decidua, immunofluorescence was used. For all investigated prototype galectins (gal-1, -2, -7, -10) in SPA and RA placenta trophoblast cells the expression is significantly decreased. In the decidua/extravillous trophoblast only gal-2 expression was significantly lowered, which could be connected to its role in angiogenesis. In trophoblasts in first-trimester placentas and in cases of SPA and RA, prototype galectins are altered in the same way. We suspect prototype galectins have a similar function in placental tissue because of their common biochemical structure. Expression of galectin 3 as a chimera type galectin was not found to be significantly altered in abortive placentas. PMID:27136536

  7. Mimetics of beta-galactosylceramide with simple ceramide substitutes: Synthesis and binding togp 120 of HIV-1, and, Enactment of chemistry knowledge by a high school student at a summer program

    NASA Astrophysics Data System (ADS)

    Augustin, Line A.

    This thesis is the account of two research works. The first part reports the synthesis of O- and C- and aza-C-glycosides of beta-Galactosylceramide (GalCer) that contain simple ceramide substitutes, and the initial results of their binding with gp120 of HIV-1. The O-glycosides were prepared via an established procedure. The C- and aza-C-glycosides originated from a central C1-substituted galactal precursor, and their synthesis is illustrative of a potentially general method for pairs of C- and aza-C-beta-galactosides. They aza-C-glycoside with a simple C-17 hydrocarbon chain exhibited significant higher affinity than GalCer, whereas the corresponding C-glycoside was as active as GalCer. The second part describes the ethnographic study of the enactment of the chemistry knowledge of a high school student at a summer program and the influence of a cultural practice, othermothering, on her ability to perform well on her chemistry Regents Exams. Kelly, an 11th grade student exhibited very good understanding of the chemistry curriculum in the classroom, the laboratory period and the tutoring sessions where she plays a caring role for her peers. The same level of understanding was not reflected on the paper pencil exams taken during the summer program.

  8. Improved Dual-Luciferase Reporter Assays for Nuclear Receptors

    PubMed Central

    Paguio, Aileen; Stecha, Pete; Wood, Keith V; Fan, Frank

    2010-01-01

    Nuclear receptors play important roles in many cellular functions through control of gene transcription. It is also a large target class for drug discovery. Luciferase reporter assays are frequently used to study nuclear receptor function because of their wide dynamic range, low endogenous activity, and ease of use. Recent improvements of luciferase genes and vectors have further enhanced their utilities. Here we applied these improvements to two reporter formats for studying nuclear receptors. The first assay contains a Murine Mammary Tumor Virus promoter upstream of a destabilized luciferase. The presence of response elements for nuclear hormone receptor in this promoter allows the studies of endogenous and/or exogenous full length receptors. The second assay contains a ligand binding domain (LBD) of a nuclear receptor fused to the GAL4 DNA binding domain (DBD) on one vector and multiple Gal4 Upstream Activator Sequences (UAS) upstream of luciferase reporter on another vector. We showed that codon optimization of luciferase reporter genes increased expression levels in conjunction with the incorporation of protein destabilizing sequences into luciferase led to a larger assay dynamic range in both formats. The optimum number of UAS to generate the best response was determined. The expression vector for nuclear receptor LBD/GAL4 DBD fusion also constitutively expresses a Renilla luciferase-neoR fusion protein, which provides selection capability (G418 resistance, neoR) as well as an internal control (Renilla luciferase). This dual-luciferase format allowed detecting compound cytotoxicity or off-target change in expression during drug screening, therefore improved data quality. These luciferase reporter assays provided better research and drug discovery tools for studying the functions of full length nuclear receptors and ligand binding domains. PMID:21687560

  9. Regulation of ozone-induced lung inflammation and injury by the β-galactoside-binding lectin galectin-3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sunil, Vasanthi R., E-mail: sunilva@pharmacy.rutgers.edu; Francis, Mary, E-mail: maryfranrutgers@gmail.com; Vayas, Kinal N., E-mail: kinalv5@gmail.com

    Macrophages play a dual role in ozone toxicity, contributing to both pro- and anti-inflammatory processes. Galectin-3 (Gal-3) is a lectin known to regulate macrophage activity. Herein, we analyzed the role of Gal-3 in the response of lung macrophages to ozone. Bronchoalveolar lavage (BAL) and lung tissue were collected 24–72 h after exposure (3 h) of WT and Gal-3{sup -/-} mice to air or 0.8 ppm ozone. In WT mice, ozone inhalation resulted in increased numbers of proinflammatory (Gal-3{sup +}, iNOS{sup +}) and anti-inflammatory (MR-1{sup +}) macrophages in the lungs. While accumulation of iNOS{sup +} macrophages was attenuated in Gal-3{sup -/-}more » mice, increased numbers of enlarged MR-1{sup +} macrophages were noted. This correlated with increased numbers of macrophages in BAL. Flow cytometric analysis showed that these cells were CD11b{sup +} and consisted mainly (> 97%) of mature (F4/80{sup +}CD11c{sup +}) proinflammatory (Ly6GLy6C{sup hi}) and anti-inflammatory (Ly6GLy6C{sup lo}) macrophages. Increases in both macrophage subpopulations were observed following ozone inhalation. Loss of Gal-3 resulted in a decrease in Ly6C{sup hi} macrophages, with no effect on Ly6C{sup lo} macrophages. CD11b{sup +}Ly6G{sup +}Ly6C{sup +} granulocytic (G) and monocytic (M) myeloid derived suppressor cells (MDSC) were also identified in the lung after ozone. In Gal-3{sup -/-} mice, the response of G-MDSC to ozone was attenuated, while the response of M-MDSC was heightened. Changes in inflammatory cell populations in the lung of ozone treated Gal-3{sup -/-} mice were correlated with reduced tissue injury as measured by cytochrome b5 expression. These data demonstrate that Gal-3 plays a role in promoting proinflammatory macrophage accumulation and toxicity in the lung following ozone exposure. - Highlights: • Multiple monocytic-macrophage subpopulations accumulate in the lung after ozone inhalation. • Galectin-3 plays a proinflammatory role in ozone-induced lung injury. • In the absence of gal-3, inflammatory cells with a myeloid derived suppressor cell phenotype contribute to tissue repair.« less

  10. A sequence-specific transcription activator motif and powerful synthetic variants that bind Mediator using a fuzzy protein interface.

    PubMed

    Warfield, Linda; Tuttle, Lisa M; Pacheco, Derek; Klevit, Rachel E; Hahn, Steven

    2014-08-26

    Although many transcription activators contact the same set of coactivator complexes, the mechanism and specificity of these interactions have been unclear. For example, do intrinsically disordered transcription activation domains (ADs) use sequence-specific motifs, or do ADs of seemingly different sequence have common properties that encode activation function? We find that the central activation domain (cAD) of the yeast activator Gcn4 functions through a short, conserved sequence-specific motif. Optimizing the residues surrounding this short motif by inserting additional hydrophobic residues creates very powerful ADs that bind the Mediator subunit Gal11/Med15 with high affinity via a "fuzzy" protein interface. In contrast to Gcn4, the activity of these synthetic ADs is not strongly dependent on any one residue of the AD, and this redundancy is similar to that of some natural ADs in which few if any sequence-specific residues have been identified. The additional hydrophobic residues in the synthetic ADs likely allow multiple faces of the AD helix to interact with the Gal11 activator-binding domain, effectively forming a fuzzier interface than that of the wild-type cAD.

  11. An antibody to the GM1/GalNAc-GD1a complex correlates with development of pure motor Guillain-Barré syndrome with reversible conduction failure.

    PubMed

    Ogawa, Go; Kaida, Ken-ichi; Kuwahara, Motoi; Kimura, Fumihiko; Kamakura, Keiko; Kusunoki, Susumu

    2013-01-15

    Antibodies to a ganglioside complex consisting of GM1 and GalNAc-GD1a (GM1/GalNAc-GD1a) are found in sera from patients with Guillain-Barré syndrome (GBS). To elucidate the clinical significance of anti-GM1/GalNAc-GD1a antibodies in GBS, clinical features of 58 GBS patients with IgG anti-GM1/GalNAc-GD1a antibodies confirmed by enzyme-linked immunosorbent assay and thin layer chromatography immunostaining were analyzed. Compared to GBS patients without anti-GM1/GalNAc-GD1a antibodies, anti-GM1/GalNAc-GD1a-positive patients more frequently had a preceding respiratory infection (n=38, 66%, p<0.01) and were characterized by infrequency of cranial nerve deficits (n=9, 16%, p<0.01) and sensory disturbances (n=26, 45%, p<0.01). Of the 28 anti-GM1/GalNAc-GD1a-positive patients for whom electrophysiological data were available, 14 had conduction blocks (CBs) at intermediate segments of motor nerves, which were not followed by evident remyelination. Eight of 10 bedridden cases were able to walk independently within one month after the nadir. These results show that the presence of anti-GM1/GalNAc-GD1a antibodies correlated with pure motor GBS characterized by antecedent respiratory infection, fewer cranial nerve deficits, and CBs at intermediate sites of motor nerves. The CB may be generated through alteration of the regulatory function of sodium channels in the nodal axolemma. Copyright © 2012 Elsevier B.V. All rights reserved.

  12. Making Home Sweet and Sturdy: Toxoplasma gondii ppGalNAc-Ts Glycosylate in Hierarchical Order and Confer Cyst Wall Rigidity

    PubMed Central

    Tomita, Tadakimi; Sugi, Tatsuki; Yakubu, Rama; Tu, Vincent; Ma, Yanfen

    2017-01-01

    ABSTRACT The protozoan intracellular parasite Toxoplasma gondii forms latent cysts in the central nervous system (CNS) and persists for the lifetime of the host. This cyst is cloaked with a glycosylated structure called the cyst wall. Previously, we demonstrated that a mucin-like glycoprotein, CST1, localizes to the cyst wall and confers structural rigidity on brain cysts in a mucin-like domain-dependent manner. The mucin-like domain of CST1 is composed of 20 units of threonine-rich tandem repeats that are O-GalNAc glycosylated. A family of enzymes termed polypeptide N-acetylgalactosaminyltransferases (ppGalNAc-Ts) initiates O-GalNAc glycosylation. To identify which isoforms of ppGalNAc-Ts are responsible for the glycosylation of the CST1 mucin-like domain and to evaluate the function of each ppGalNAc-T in the overall glycosylation of the cyst wall, all five ppGalNAc-T isoforms were deleted individually from the T. gondii genome. The ppGalNAc-T2 and -T3 deletion mutants produced various glycosylation defects on the cyst wall, implying that many cyst wall glycoproteins are glycosylated by T2 and T3. Both T2 and T3 glycosylate the CST1 mucin-like domain, and this glycosylation is necessary for CST1 to confer structural rigidity on the cyst wall. We established that T2 is required for the initial glycosylation of the mucin-like domain and that T3 is responsible for the sequential glycosylation on neighboring acceptor sites, demonstrating hierarchical glycosylation by two distinct initiating and filling-in ppGalNAc-Ts in an intact organism. PMID:28074022

  13. The Most Abundant Glycoprotein of Amebic Cyst Walls (Jacob) Is a Lectin with Five Cys-Rich, Chitin-Binding Domains

    PubMed Central

    Frisardi, Marta; Ghosh, Sudip K.; Field, Jessica; Van Dellen, Katrina; Rogers, Rick; Robbins, Phillips; Samuelson, John

    2000-01-01

    The infectious stage of amebae is the chitin-walled cyst, which is resistant to stomach acids. In this study an extraordinarily abundant, encystation-specific glycoprotein (Jacob) was identified on two-dimensional protein gels of cyst walls purified from Entamoeba invadens. Jacob, which was acidic and had an apparent molecular mass of ∼100 kDa, contained sugars that bound to concanavalin A and ricin. The jacob gene encoded a 45-kDa protein with a ladder-like series of five Cys-rich domains. These Cys-rich domains were reminiscent of but not homologous to the Cys-rich chitin-binding domains of insect chitinases and peritrophic matrix proteins that surround the food bolus in the insect gut. Jacob bound purified chitin and chitin remaining in sodium dodecyl sulfate-treated cyst walls. Conversely, the E. histolytica plasma membrane Gal/GalNAc lectin bound sugars of intact cyst walls and purified Jacob. In the presence of galactose, E. invadens formed wall-less cysts, which were quadranucleate and contained Jacob and chitinase (another encystation-specific protein) in secretory vesicles. A galactose lectin was found to be present on the surface of wall-less cysts, which phagocytosed bacteria and mucin-coated beads. These results suggest that the E. invadens cyst wall forms when the plasma membrane galactose lectin binds sugars on Jacob, which in turn binds chitin via its five chitin-binding domains. PMID:10858239

  14. Carbohydrate binding specificity of immobilized Psathyrella velutina lectin.

    PubMed

    Endo, T; Ohbayashi, H; Kanazawa, K; Kochibe, N; Kobata, A

    1992-01-15

    The carbohydrate binding specificity of Psathyrella velutina lectin (PVL) was thoroughly investigated by analyzing the behavior of various complex-type oligosaccharides and human milk oligosaccharides on a PVL-Affi-Gel 10 column. Basically, the lectin interacts with the nonreducing terminal beta-N-acetylglucosamine residue, but does not show any affinity for the nonreducing terminal N-acetylgalactosamine or N-acetylneuraminic acid residue. Substitution of the terminal N-acetylglucosamine residues of oligosaccharides by galactose completely abolishes their affinity to the column. GlcNAc beta 1----3Gal beta 1----4sorbitol binds to the column, but GlcNAc beta 1----6Gal beta 1----4sorbitol is only retarded in the column. The behavior of degalactosylated N-linked oligosaccharides is quite interesting. Although all degalactosylated monoantennary sugar chain isomers are retarded in the column, those with the GlcNAc beta 1----2Man group interact more strongly with the column than those with the GlcNAc beta 1----4Man group or the GlcNAc beta 1----6Man group. The degalactosylated bi- and triantennary sugar chains bind to the column, but the tetraantennary ones are only retarded in the column. These results indicated that the binding affinity is not simply determined by the number of terminal N-acetylglucosamine residues. Addition of the bisecting N-acetylglucosamine residue reduces the affinity of oligosaccharides to the column, but addition of an alpha-fucosyl residue at the C-6 position of the proximal N-acetylglucosamine residue does not affect the behavior of oligosaccharides in the column. These results indicated that the binding specificity of PVL is quite different from those of other N-acetylglucosamine-binding lectins from higher plants, which interact preferentially with the GlcNAc beta 1----4 residue.

  15. Targeted DNA demethylation in human cells by fusion of a plant 5-methylcytosine DNA glycosylase to a sequence-specific DNA binding domain

    PubMed Central

    Parrilla-Doblas, Jara Teresa; Ariza, Rafael R.; Roldán-Arjona, Teresa

    2017-01-01

    ABSTRACT DNA methylation is a crucial epigenetic mark associated to gene silencing, and its targeted removal is a major goal of epigenetic editing. In animal cells, DNA demethylation involves iterative 5mC oxidation by TET enzymes followed by replication-dependent dilution and/or replication-independent DNA repair of its oxidized derivatives. In contrast, plants use specific DNA glycosylases that directly excise 5mC and initiate its substitution for unmethylated C in a base excision repair process. In this work, we have fused the catalytic domain of Arabidopsis ROS1 5mC DNA glycosylase (ROS1_CD) to the DNA binding domain of yeast GAL4 (GBD). We show that the resultant GBD-ROS1_CD fusion protein binds specifically a GBD-targeted DNA sequence in vitro. We also found that transient in vivo expression of GBD-ROS1_CD in human cells specifically reactivates transcription of a methylation-silenced reporter gene, and that such reactivation requires both ROS1_CD catalytic activity and GBD binding capacity. Finally, we show that reactivation induced by GBD-ROS1_CD is accompanied by decreased methylation levels at several CpG sites of the targeted promoter. All together, these results show that plant 5mC DNA glycosylases can be used for targeted active DNA demethylation in human cells. PMID:28277978

  16. The cAMP receptor protein CRP can function as an osmoregulator of transcription in Escherichia coli

    PubMed Central

    Landis, Lenore; Xu, Jimin; Johnson, Reid C.

    1999-01-01

    Transcription of the P1 promoter of the Escherichia coli proP gene, which encodes a transporter of osmoprotectants, is strongly induced by a shift to hyperosmotic media. Unlike most other osmotically regulated promoters, the induction occurs for a brief period of time, corresponding to the replacement of intracellular K+ glutamate with osmoprotecting compounds. This burst of proP transcription is correlated with the osmolarity-dependent binding of the cAMP receptor protein CRP to a site within the proP P1 promoter. We show that CRP–cAMP functions as an osmotically sensitive repressor of proP P1 transcription in vitro. Binding of CRP to the proP promoter in vivo is transiently destabilized after a hyperosmotic shift with kinetics that correspond to the derepression of transcription, whereas Fis and Lac repressor binding is not osmotically sensitive. Similar osmotic regulation of proP P1 transcription by the CRP* mutant implies that binding of cAMP is not responsible for the unusual osmotic sensitivity of CRP activity. Osmotic regulation of CRP activity is not limited to proP. Activation of the lac promoter by CRP is also transiently inhibited after an osmotic upshift, as is the binding of CRP to the galΔ4 P1 promoter. These findings suggest that CRP functions in certain contexts to regulate gene expression in response to osmotic changes, in addition to its role in catabolite control. PMID:10601034

  17. Lack of the central nervous system- and neural crest-expressed forkhead gene Foxs1 affects motor function and body weight.

    PubMed

    Heglind, Mikael; Cederberg, Anna; Aquino, Jorge; Lucas, Guilherme; Ernfors, Patrik; Enerbäck, Sven

    2005-07-01

    To gain insight into the expression pattern and functional importance of the forkhead transcription factor Foxs1, we constructed a Foxs1-beta-galactosidase reporter gene "knock-in" (Foxs1beta-gal/beta-gal) mouse, in which the wild-type (wt) Foxs1 allele has been inactivated and replaced by a beta-galactosidase reporter gene. Staining for beta-galactosidase activity reveals an expression pattern encompassing neural crest-derived cells, e.g., cranial and dorsal root ganglia as well as several other cell populations in the central nervous system (CNS), most prominently the internal granule layer of cerebellum. Other sites of expression include the lachrymal gland, outer nuclear layer of retina, enteric ganglion neurons, and a subset of thalamic and hypothalamic nuclei. In the CNS, blood vessel-associated smooth muscle cells and pericytes stain positive for Foxs1. Foxs1beta-gal/beta-gal mice perform significantly better (P < 0.01) on a rotating rod than do wt littermates. We have also noted a lower body weight gain (P < 0.05) in Foxs1beta-gal/lbeta-gal males on a high-fat diet, and we speculate that dorsomedial hypothalamic neurons, expressing Foxs1, could play a role in regulating body weight via regulation of sympathetic outflow. In support of this, we observed increased levels of uncoupling protein 1 mRNA in Foxs1beta-gal/beta-gal mice. This points toward a role for Foxs1 in the integration and processing of neuronal signals of importance for energy turnover and motor function.

  18. Galectin-9 Signaling through TIM-3 Is Involved in Neutrophil-Mediated Gram-Negative Bacterial Killing: An Effect Abrogated within the Cystic Fibrosis Lung

    PubMed Central

    Vega-Carrascal, Isabel; Bergin, David A.; McElvaney, Oliver J.; McCarthy, Cormac; Banville, Nessa; Pohl, Kerstin; Hirashima, Mitsuomi; Kuchroo, Vijay K.; Reeves, Emer P.; McElvaney, Noel G.

    2016-01-01

    The T cell Ig and mucin domain–containing molecule (TIM) family of receptors have emerged as potential therapeutic targets to correct abnormal immune function in chronic inflammatory conditions. TIM-3 serves as a functional receptor in structural cells of the airways and via the ligand galectin-9 (Gal-9) can modulate the inflammatory response. The aim of this study was to investigate TIM-3 expression and function in neutrophils, focusing on its potential role in cystic fibrosis (CF) lung disease. Results revealed that TIM-3 mRNA and protein expression values of circulating neutrophils were equal between healthy controls (n = 20) and people with CF (n = 26). TIM-3 was detected on resting neutrophil membranes by FACS analysis, and expression levels significantly increased post IL-8 or TNF-α exposure (p < 0.05). Our data suggest a novel role for TIM-3/Gal-9 signaling involving modulation of cytosolic calcium levels. Via TIM-3 interaction, Gal-9 induced neutrophil degranulation and primed the cell for enhanced NADPH oxidase activity. Killing of Pseudomonas aeruginosa was significantly increased upon bacterial opsonization with Gal-9 (p < 0.05), an effect abrogated by blockade of TIM-3 receptors. This mechanism appeared to be Gram-negative bacteria specific and mediated via Gal-9/ LPS binding. Additionally, we have demonstrated that neutrophil TIM-3/Gal-9 signaling is perturbed in the CF airways due to proteolytic degradation of the receptor. In conclusion, results suggest a novel neutrophil defect potentially contributing to the defective bacterial clearance observed in the CF airways and suggest that manipulation of the TIM-3 signaling pathway may be of therapeutic value in CF, preferably in conjunction with antiprotease treatment. PMID:24477913

  19. Three dimensional structural studies of alpha-N-acetylgalactosaminidase (alpha-NAGA) in alpha-NAGA deficiency (Kanzaki disease): different gene mutations cause peculiar structural changes in alpha-NAGAs resulting in different substrate specificities and clinical phenotypes.

    PubMed

    Kanekura, Takuro; Sakuraba, Hitoshi; Matsuzawa, Fumiko; Aikawa, Seiichi; Doi, Hirofumi; Hirabayashi, Yoshio; Yoshii, Noriko; Fukushige, Tomoko; Kanzaki, Tamotsu

    2005-01-01

    Kanzaki disease (OMIM#104170) is attributable to a deficiency in alpha-N-acetylgalactosaminidase (alpha-NAGA; E.C.3.2.1.49), which hydrolyzes GalNAcalpha1-O-Ser/Thr. Missense mutations, R329W or R329Q were identified in two Japanese Kanzaki patients. Although they are on the same codon, the clinical manifestation was more severe in R329W because an amino acid substitution led to protein instability resulting in structural change, which is greater in R329W than in R329Q. To examine whether the different clinical phenotypes are attributable to the two mutations. Plasma alpha-NAGA activity and urinary excreted glycopeptides were measured and three-dimensional models of human alpha-NAGA and its complexes with GalNAcalpha1-O-Ser and GalNAcalpha1-O-Thr were constructed by homology modeling. Residual enzyme activity was significantly higher in the R329Q- than the R329W mutant (0.022+/-0.005 versus 0.005+/-0.001 nmol/h/ml: p<0.05); the urinary ratios of GalNAcalpha1-O-Ser:GalNAcalpha1-O-Thr were 2:10 and 8:10, respectively. GalNAcalpha1-O-Ser/Thr fit tightly in a narrow space of the active site pocket of alpha-NAGA. GalNAcalpha1-O-Thr requires a larger space to associate with alpha-NAGA because of the side chain (CH3) of the threonine residue. Our findings suggest that the association of alpha-NAGA with its substrates is strongly affected by the amino acid substitution at R329 and that the association with GalNAcalpha1-O-Thr is more highly susceptible to structural changes. The residual mutant enzyme in R329W could not associate with GalNAcalpha1-O-Thr and GalNAcalpha1-O-Ser. However, the residual mutant enzyme in R329Q catalyzed GalNAcalpha1-O-Ser to some extent. Therefore, the urinary ratio of GalNAcalpha1-O-Ser:GalNAcalpha1-O-Thr was lower and the clinical phenotype was milder in the R329Q mutation. Structural analysis revealed biochemical and phenotypic differences in these Kanzaki patients with the R329Q and R329W mutation.

  20. Glycan structure of Gc Protein-derived Macrophage Activating Factor as revealed by mass spectrometry.

    PubMed

    Borges, Chad R; Rehder, Douglas S

    2016-09-15

    Disagreement exists regarding the O-glycan structure attached to human vitamin D binding protein (DBP). Previously reported evidence indicated that the O-glycan of the Gc1S allele product is the linear core 1 NeuNAc-Gal-GalNAc-Thr trisaccharide. Here, glycan structural evidence is provided from glycan linkage analysis and over 30 serial glycosidase-digestion experiments which were followed by analysis of the intact protein by electrospray ionization mass spectrometry (ESI-MS). Results demonstrate that the O-glycan from the Gc1F protein is the same linear trisaccharide found on the Gc1S protein and that the hexose residue is galactose. In addition, the putative anti-cancer derivative of DBP known as Gc Protein-derived Macrophage Activating Factor (GcMAF, which is formed by the combined action of β-galactosidase and neuraminidase upon DBP) was analyzed intact by ESI-MS, revealing that the activating E. coli β-galactosidase cleaves nothing from the protein-leaving the glycan structure of active GcMAF as a Gal-GalNAc-Thr disaccharide, regardless of the order in which β-galactosidase and neuraminidase are applied. Moreover, glycosidase digestion results show that α-N-Acetylgalactosamindase (nagalase) lacks endoglycosidic function and only cleaves the DBP O-glycan once it has been trimmed down to a GalNAc-Thr monosaccharide-precluding the possibility of this enzyme removing the O-glycan trisaccharide from cancer-patient DBP in vivo. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Tracking the Response of Natural Killer T Cells to a Glycolipid Antigen Using Cd1d Tetramers

    PubMed Central

    Matsuda, Jennifer L.; Naidenko, Olga V.; Gapin, Laurent; Nakayama, Toshinori; Taniguchi, Masaru; Wang, Chyung-Ru; Koezuka, Yasuhiko; Kronenberg, Mitchell

    2000-01-01

    A major group of natural killer (NK) T cells express an invariant Vα14+ T cell receptor (TCR) specific for the lipoglycan α-galactosylceramide (α-GalCer), which is presented by CD1d. These cells may have an important immune regulatory function, but an understanding of their biology has been hampered by the lack of suitable reagents for tracking them in vivo. Here we show that tetramers of mouse CD1d loaded with α-GalCer are a sensitive and highly specific reagent for identifying Vα14+ NK T cells. Using these tetramers, we find that α-GalCer–specific T lymphocytes are more widely distributed than was previously appreciated, with populations of largely NK1.1− but tetramer-binding T cells present in the lymph nodes and the intestine. Injection of α-GalCer leads to the production of both interferon γ and interleukin 4 by nearly all NK T cells in the liver and the majority of the spleen within 2 h. These cells mostly disappear by 5 h, and they do not reappear after 1 wk. Curiously, tetramer-positive thymocytes do not rapidly synthesize cytokines, nor do they undergo decreases in cell number after lipid antigen stimulation, although they express equivalent TCR levels. In summary, the data presented here demonstrate that α-GalCer–specific NK T cells undergo a unique and highly compartmentalized response to antigenic stimulation. PMID:10974039

  2. Characterization of the binding specificity of Anguilla anguilla agglutinin (AAA) in comparison to Ulex europaeus agglutinin I (UEA-I).

    PubMed

    Baldus, S E; Thiele, J; Park, Y O; Hanisch, F G; Bara, J; Fischer, R

    1996-08-01

    Using immunochemical and immunohistochemical methods, the binding site of Anguilla anguilla agglutinin (AAA) was characterized and compared with the related fucose-specific lectin from Ulex europaeus (UEA-I). In solid-phase enzyme-linked immunoassays, the two lectins recognized Fuc alpha 1-2Gal beta-HSA. AAA additionally cross-reacted with neoglycolipids bearing lacto-N-fucopentaose (LNFP) I [H type 1] and II [Le(a)] and lactodifucotetraose (LDFT) as glycan moieties. UEA-I, on the other hand, bound to a LDFT-derived neoglycolipid but not to the other neoglycolipids tested. Binding of AAA to gastric mucin was competitively neutralized by Le(a)-specific monoclonal antibodies. UEA-I binding, on the other hand, was reduced after co-incubation with H type 2- and Le(y)-specific monoclonal antibodies. According to our results, AAA reacts with fucosylated type 1 chain antigens, whereas UEA-I binds only to the alpha 1-2-fucosylated LDFT-derived neoglycolipid. In immunohistochemical studies, the reactivity of AAA and UEA-I in normal pyloric mucosa from individuals with known Lewis and secretor status was analysed. AAA showed a broad reaction in the superficial pyloric mucosa from secretors and non-secretors, but AAA reactivity was more pronounced in Le(a+b-) individuals. On the other hand, UEA-I stained the superficial pyloric mucosa only from secretor individuals. A staining of deep mucous glands by the lectins was found in all specimens. Both reacted with most human carcinomas of different origin. Slight differences in their binding pattern were observed and may be explained by the different fine-specificities of the lectins.

  3. Efficient disruption of Zebrafish genes using a Gal4-containing gene trap

    PubMed Central

    2013-01-01

    Background External development and optical transparency of embryos make zebrafish exceptionally suitable for in vivo insertional mutagenesis using fluorescent proteins to visualize expression patterns of mutated genes. Recently developed Gene Breaking Transposon (GBT) vectors greatly improve the fidelity and mutagenicity of transposon-based gene trap vectors. Results We constructed and tested a bipartite GBT vector with Gal4-VP16 as the primary gene trap reporter. Our vector also contains a UAS:eGFP cassette for direct detection of gene trap events by fluorescence. To confirm gene trap events, we generated a UAS:mRFP tester line. We screened 270 potential founders and established 41 gene trap lines. Three of our gene trap alleles display homozygous lethal phenotypes ranging from embryonic to late larval: nsf tpl6, atp1a3atpl10 and flrtpl19. Our gene trap cassette is flanked by direct loxP sites, which enabled us to successfully revert nsf tpl6, atp1a3atpl10 and flrtpl19 gene trap alleles by injection of Cre mRNA. The UAS:eGFP cassette is flanked by direct FRT sites. It can be readily removed by injection of Flp mRNA for use of our gene trap alleles with other tissue-specific GFP-marked lines. The Gal4-VP16 component of our vector provides two important advantages over other GBT vectors. The first is increased sensitivity, which enabled us to detect previously unnoticed expression of nsf in the pancreas. The second advantage is that all our gene trap lines, including integrations into non-essential genes, can be used as highly specific Gal4 drivers for expression of other transgenes under the control of Gal4 UAS. Conclusions The Gal4-containing bipartite Gene Breaking Transposon vector presented here retains high specificity for integrations into genes, high mutagenicity and revertibility by Cre. These features, together with utility as highly specific Gal4 drivers, make gene trap mutants presented here especially useful to the research community. PMID:24034702

  4. Anti-GM2 gangliosides IgM paraprotein induces neuromuscular block without neuromuscular damage.

    PubMed

    Santafé, Manel M; Sabaté, M Mar; Garcia, Neus; Ortiz, Nico; Lanuza, M Angel; Tomàs, Josep

    2008-11-15

    We analyzed the effect on the mouse neuromuscular synapses of a human monoclonal IgM, which binds specifically to gangliosides with the common epitope [GalNAc beta 1-4Gal(3-2 alpha NeuAc)beta 1-]. We focused on the role of the complement. Evoked neurotransmission was partially blocked by IgM both acutely (1 h) and chronically (10 days). Transmission electron microscopy shows important nerve terminal growth and retraction remodelling though axonal injury can be ruled out. Synapses did not show mouse C5b-9 immunofluorescence and were only immunolabelled when human complement was added. Therefore, the IgM-induced synaptic changes occur without complement-mediated membrane attack.

  5. Simultaneous In Vitro Characterisation of DNA Deaminase Function and Associated DNA Repair Pathways

    PubMed Central

    Franchini, Don-Marc; Incorvaia, Elisabetta; Rangam, Gopinath; Coker, Heather A.; Petersen-Mahrt, Svend K.

    2013-01-01

    During immunoglobulin (Ig) diversification, activation-induced deaminase (AID) initiates somatic hypermutation and class switch recombination by catalysing the conversion of cytosine to uracil. The synergy between AID and DNA repair pathways is fundamental for the introduction of mutations, however the molecular and biochemical mechanisms underlying this process are not fully elucidated. We describe a novel method to efficiently decipher the composition and activity of DNA repair pathways that are activated by AID-induced lesions. The in vitro resolution (IVR) assay combines AID based deamination and DNA repair activities from a cellular milieu in a single assay, thus avoiding synthetically created DNA-lesions or genetic-based readouts. Recombinant GAL4-AID fusion protein is targeted to a plasmid containing GAL4 binding sites, allowing for controlled cytosine deamination within a substrate plasmid. Subsequently, the Xenopus laevis egg extract provides a source of DNA repair proteins and functional repair pathways. Our results demonstrated that DNA repair pathways which are in vitro activated by AID-induced lesions are reminiscent of those found during AID-induced in vivo Ig diversification. The comparative ease of manipulation of this in vitro systems provides a new approach to dissect the complex DNA repair pathways acting on defined physiologically lesions, can be adapted to use with other DNA damaging proteins (e.g. APOBECs), and provide a means to develop and characterise pharmacological agents to inhibit these potentially oncogenic processes. PMID:24349193

  6. Lectin binding assays for in-process monitoring of sialylation in protein production.

    PubMed

    Xu, Weiduan; Chen, Jianmin; Yamasaki, Glenn; Murphy, John E; Mei, Baisong

    2010-07-01

    Many therapeutic proteins require appropriate glycosylation for their biological activities and plasma half life. Coagulation factor VIII (FVIII) is a glycoprotein which has extensive post-translational modification by N-linked glycosylation. The terminal sialic acid in the N-linked glycans of FVIII is required for maximal circulatory half life. The extent of FVIII sialylation can be determined by high pH anion-exchange chromatography coupled with a pulse electrochemical detector (HPAEC-PED), but this requires a large amount of purified protein. Using FVIII as a model, the objective of the present study was to develop assays that enable detection and prediction of sialylation deficiency at an early stage in the process and thus prevent downstream product quality excursions. Lectin ECA (Erythrina Cristagalli) binds to unsialylated Galbeta1-4 GlcNAc and the ECA-binding level (i.e., terminal Gal(beta1-4) exposure) is inversely proportional to the level of sialylation. By using ECA, a cell-based assay was developed to measure the global sialylation profile in FVIII producing cells. To examine the Galbeta1-4 exposure on the FVIII molecule in bioreactor tissue culture fluid (TCF), an ELISA-based ECA-FVIII binding assay was developed. The ECA-binding specificity in both assays was assessed by ECA-specific sugar inhibitors and neuraminidase digestion. The ECA-binding specificity was also independently confirmed by a ST3GAL4 siRNA knockdown experiment. To establish the correlation between Galbeta1-4 exposure and the HPAEC-PED determined FVIII sialylation value, the FVIII containing bioreactor TCF and the purified FVIII samples were tested with ECA ELISA binding assay. The results indicated an inverse correlation between ECA binding and the corresponding HPAEC-PED sialylation value. The ECA-binding assays are cost effective and can be rapidly performed, thereby making them effective for in-process monitoring of protein sialylation.

  7. Making Home Sweet and Sturdy: Toxoplasma gondii ppGalNAc-Ts Glycosylate in Hierarchical Order and Confer Cyst Wall Rigidity.

    PubMed

    Tomita, Tadakimi; Sugi, Tatsuki; Yakubu, Rama; Tu, Vincent; Ma, Yanfen; Weiss, Louis M

    2017-01-10

    The protozoan intracellular parasite Toxoplasma gondii forms latent cysts in the central nervous system (CNS) and persists for the lifetime of the host. This cyst is cloaked with a glycosylated structure called the cyst wall. Previously, we demonstrated that a mucin-like glycoprotein, CST1, localizes to the cyst wall and confers structural rigidity on brain cysts in a mucin-like domain-dependent manner. The mucin-like domain of CST1 is composed of 20 units of threonine-rich tandem repeats that are O-GalNAc glycosylated. A family of enzymes termed polypeptide N-acetylgalactosaminyltransferases (ppGalNAc-Ts) initiates O-GalNAc glycosylation. To identify which isoforms of ppGalNAc-Ts are responsible for the glycosylation of the CST1 mucin-like domain and to evaluate the function of each ppGalNAc-T in the overall glycosylation of the cyst wall, all five ppGalNAc-T isoforms were deleted individually from the T. gondii genome. The ppGalNAc-T2 and -T3 deletion mutants produced various glycosylation defects on the cyst wall, implying that many cyst wall glycoproteins are glycosylated by T2 and T3. Both T2 and T3 glycosylate the CST1 mucin-like domain, and this glycosylation is necessary for CST1 to confer structural rigidity on the cyst wall. We established that T2 is required for the initial glycosylation of the mucin-like domain and that T3 is responsible for the sequential glycosylation on neighboring acceptor sites, demonstrating hierarchical glycosylation by two distinct initiating and filling-in ppGalNAc-Ts in an intact organism. Toxoplasma gondii is an obligate intracellular parasite that infects a third of the world's population. It can cause severe congenital disease and devastating encephalitis in immunocompromised individuals. We identified two glycosyltransferases, ppGalNAc-T2 and -T3, which are responsible for glycosylating cyst wall proteins in a hierarchical fashion. This glycosylation confers structural rigidity on the brain cyst. Our studies provide new insights into the mechanisms of O-GalNAc glycosylation in T. gondii. Copyright © 2017 Tomita et al.

  8. Cloning and expression of porcine β1,4 N-acetylgalactosaminyl transferase encoding a new xenoreactive antigen.

    PubMed

    Byrne, Guerard W; Du, Zeji; Stalboerger, Paul; Kogelberg, Heide; McGregor, Christopher G A

    2014-01-01

    Xenograft rejection of pigs organs with an engineered mutation in the GGTA-1 gene (GTKO) remains a predominantly antibody mediated process which is directed to a variety of non-Gal protein and carbohydrate antigens. We previously used an expression library screening strategy to identify six porcine endothelial cell cDNAs which encode pig antigens that bind to IgG induced after pig-to-primate cardiac xenotransplantation. One of these gene products was a glycosyltransferase with homology to the bovine β1,4 N-acetylgalactosaminyltransferase (B4GALNT2). We now characterize the porcine B4GALNT2 gene sequence, genomic organization, expression, and functional significance. The porcine B4GALNT2 cDNA was recovered from the original library isolate, subcloned, sequenced, and used to identify a bacterial artificial chromosome (BAC) containing the entire B4GALNT2 locus from the Children's Hospital Oakland Research Institute BACPAC Resource Centre (#AC173453). PCR primers were designed to map the intron/exon genomic organization in the BAC clone. A stable human embryonic kidney (HEK) cell line expressing porcine B4GALNT2 (HEK-B4T) was produced. Expression of porcine B4GALNT2 in HEK-B4T cells was characterized by immune staining and siRNA transfection. The effects of B4GALNT2 expression in HEK-B4T cells was measured by flow cytometry and complement mediated lysis. Antibody binding to HEK and HEK-B4T cells was used to detect an induced antibody response to the B4GALNT2 produced glycan and the results were compared to GTKO PAEC specific non-Gal antibody induction. Expression of porcine B4GALNT2 in pig cells and tissues was measured by qualitative and quantitative real time reverse transcriptase PCR and by Dolichos biflorus agglutinin (DBA) tissue staining. The porcine B4GALNT2 gene shares a conserved genomic organization and encodes an open reading frame with 76 and 70% amino acid identity to the human and murine B4GALNT2 genes, respectively. The B4GALNT2 gene is expressed in porcine endothelial cells and shows a broadly distributed expression pattern. Expression of porcine B4GALNT2 in human HEK cells (HEK-B4T) results in increased binding of antibody to the B4GALNT2 enzyme, and increased reactivity with anti-Sd(a) and DBA. HEK-B4T cells show increased sensitivity to complement mediated lysis when challenged with serum from primates after pig to primate cardiac xenotransplantation. In GTKO and GTKO:CD55 cardiac xenotransplantation recipients there is a significant correlation between the induction of a non-Gal antibody, measured using GTKO PAECs, and the induction of antibodies which preferentially bind to HEK-B4T cells. The functional isolation of the porcine B4GALNT2 gene from a PAEC expression library, the pattern of B4GALNT2 gene expression and its sensitization of HEK-B4T cells to antibody binding and complement mediated lysis indicates that the enzymatic activity of porcine B4GALNT2 produces a new immunogenic non-Gal glycan which contributes in part to the non-Gal immune response detected after pig-to-baboon cardiac xenotransplantation. © 2014 The Authors. Xenotransplantation Published by John Wiley & Sons Ltd.

  9. Hydrogeology of a hazardous-waste disposal site near Brentwood, Williamson County, Tennessee

    USGS Publications Warehouse

    Tucci, Patrick; Hanchar, D.W.; Lee, R.W.

    1990-01-01

    Approximately 44,000 gal of industrial solvent wastes were disposed in pits on a farm near Brentwood, Tennessee, in 1978, and contaminants were reported in the soil and shallow groundwater on the site in 1985. In order for the State to evaluate possible remedial-action alternatives, an 18-month study was conducted to define the hydrogeologic setting of the site and surrounding area. The area is underlain by four hydrogeologic units: (1) an upper aquifer consisting of saturated regolith, Bigby-Cannon Limestone, and weathered Hermitage Formation; (2) the Hermitage confining unit; (3) a lower aquifer consisting of the Carters Limestone; and (4) the Lebanon confining unit. Wells generally are low yielding less than 1 gal/min ), although locally the aquifers may yield as much as 80 gal/minute. This lower aquifer is anisotropic, and transmissivity of this aquifer is greatest in a northwest-southeast direction. Recharge to the groundwater system is primarily from precipitation, and estimates of average annual recharge rates range from 6 to 15 inches/year. Discharge from the groundwater system is primarily to the Little Harpeth River and its tributaries. Groundwater flow at the disposal site is mainly to a small topographic depression that drains the site. Geochemical data indicate four distinct water types. These types represent (1) shallow, rapidly circulating groundwater; (2) deeper (> than 100 ft), rapidly circulating groundwater; (3) shallow, slow moving groundwater; and (4) deeper, slow moving groundwater. Results of the numerical model indicate that most flow is in the upper aquifer. (USGS)

  10. Screening natural libraries of human milk oligosaccharides against lectins using CaR-ESI-MS.

    PubMed

    El-Hawiet, Amr; Chen, Yajie; Shams-Ud-Doha, Km; Kitova, Elena N; Kitov, Pavel I; Bode, Lars; Hage, Naim; Falcone, Franco H; Klassen, John S

    2018-01-15

    Human milk oligosaccharides (HMOs) afford many health benefits to breast-fed infants, such as protection against infection and regulation of the immune system, through the formation of non-covalent interactions with protein receptors. However, the molecular details of these interactions are poorly understood. Here, we describe the application of catch-and-release electrospray ionization mass spectrometry (CaR-ESI-MS) for screening natural libraries of HMOs against lectins. The HMOs in the libraries were first identified based on molecular weights (MWs), ion mobility separation arrival times (IMS-ATs) and collision-induced dissociation (CID) fingerprints of their deprotonated anions. The libraries were then screened against lectins and the ligands identified from the MWs, IMS-ATs and CID fingerprints of HMOs released from the lectin in the gas phase. To demonstrate the assay, four fractions, extracted from pooled human milk and containing ≥35 different HMOs, were screened against a C-terminal fragment of human galectin-3 (hGal-3C), for which the HMOs specificities have been previously investigated, and a fragment of the blood group antigen-binding adhesin (BabA) from Helicobacter pylori, for which the HMO specificities have not been previously established. The structures of twenty-one ligands, corresponding to both neutral and acidic HMOs, of hGal-3C were identified; all twenty-one were previously shown to be ligands for this lectin. The presence of HMO ligands at six other MWs was also ascertained. Application of the assay to BabA revealed nineteen specific HMO structures that are recognized by the protein and HMO ligands at two other MWs. Notably, it was found that BabA exhibits broad specificity for HMOs, and recognizes both neutral HMOs, including non-fucosylated ones, and acidic HMOs. The results of competitive binding experiments indicate that HMOs can interact with BabA at previously unknown binding sites. The affinities of eight purified HMOs for BabA were measured by ESI-MS and found to be in the 10 3 M -1 to 10 4 M -1 range.

  11. Enzyme replacement for GM1-gangliosidosis: Uptake, lysosomal activation, and cellular disease correction using a novel β-galactosidase:RTB lectin fusion.

    PubMed

    Condori, Jose; Acosta, Walter; Ayala, Jorge; Katta, Varun; Flory, Ashley; Martin, Reid; Radin, Jonathan; Cramer, Carole L; Radin, David N

    2016-02-01

    New enzyme delivery technologies are required for treatment of lysosomal storage disorders with significant pathologies associated with the so-called "hard-to-treat" tissues and organs. Genetic deficiencies in the GLB1 gene encoding acid β-galactosidase lead to GM1-gangliosidosis or Morquio B, lysosomal diseases with predominant disease manifestation associated with the central nervous system or skeletal system, respectively. Current lysosomal ERTs are delivered into cells based on receptor-mediated endocytosis and do not effectively address several hard-to-treat organs including those critical for GM1-gangliosidosis patients. Lectins provide alternative cell-uptake mechanisms based on adsorptive-mediated endocytosis and thus may provide unique biodistribution for lysosomal disease therapeutics. In the current study, genetic fusions of the plant galactose/galactosamine-binding lectin, RTB, and the human acid β-galactosidase enzyme were produced using a plant-based bioproduction platform. β-gal:RTB and RTB:β-gal fusion products retained both lectin activity and β-galactosidase activity. Purified proteins representing both fusion orientations were efficiently taken up into GM1 patient fibroblasts and mediated the reduction of GM1 ganglioside substrate with activities matching mammalian cell-derived β-galactosidase. In contrast, plant-derived β-gal alone was enzymatically active but did not mediate uptake or correction indicating the need for either lectin-based (plant product) or mannose-6-phosphate-based (mammalian product) delivery. Native β-galactosidase undergoes catalytic activation (cleavage within the C-terminal region) in lysosomes and is stabilized by association with protective protein/cathepsin A. Enzymatic activity and lysosomal protein processing of the RTB fusions were assessed following internalization into GM1 fibroblasts. Within 1-4h, both β-gal:RTB and RTB:β-gal were processed to the ~64kDa "activated" β-gal form; the RTB lectin was cleaved and rapidly degraded. The activated β-gal was still detected at 48h suggesting interactions with protective protein/cathepsin A. Uptake-saturation analyses indicated that the RTB adsorptive-mediated mechanisms of β-gal:RTB supported significantly greater accumulation of β-galactose activity in fibroblasts compared to the receptor-mediated mechanisms of the mammalian cell-derived β-gal. These data demonstrate that plant-made β-gal:RTB functions as an effective replacement enzyme for GM1-gangliosidosis - delivering enzyme into cells, enabling essential lysosomal processing, and mediating disease substrate clearance at the cellular level. RTB provides novel uptake behaviors and thus may provide new receptor-independent strategies that could broadly impact lysosomal disease treatments. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. Partially esterified oligogalacturonides are the preferred substrates for pectin methylesterase of Aspergillus niger.

    PubMed

    van Alebeek, Gert-Jan W M; van Scherpenzeel, Katrien; Beldman, Gerrit; Schols, Henk A; Voragen, Alphons G J

    2003-05-15

    Investigations on the mode of action of Aspergillus niger pectin methylesterase (PME) towards differently C(6)- and C(1)-substituted oligogalacturonides (oligoGal p A) are described. De-esterification of methyl-esterified (un)saturated oligoGal p A proceeds via a specific pattern, depending on the degree of polymerization. Initially, a first methyl ester of the oligomer is hydrolysed, resulting in one free carboxyl group. Subsequently, this first product is preferred as a substrate and is de-esterified for a second time. This product is then accumulated and hereafter de-esterified further to the final product, i.e. oligoGal p A containing one methyl ester located at the non-reducing end residue for both saturated and unsaturated oligoGal p A, as found by post-source decay matrix-assisted laser-desorption/ionization-time-of-flight MS. The saturated hexamer is an exception to this: three methyl esters are removed very rapidly, instead of two methyl esters. When unsaturated oligoGal p A were used, the formation of the end product differed slightly, suggesting that the unsaturated bond at the non-reducing end influences the de-esterification process. In vivo, PME prefers methyl esters, but the enzyme appeared to be tolerant for other C(6)- and C(1)-substituents. Changing the type of ester (ethyl esterification) or addition of a methyl glycoside (C(1)) only reduced the activity or had no effect respectively. The specific product pattern was identical for all methyl- and ethyl-esterified oligoGal p A and methyl-glycosidated oligoGal p A, which strongly indicates that one or perhaps two non-esterified oligoGal p A are preferred in the active-site cleft.

  13. Partially esterified oligogalacturonides are the preferred substrates for pectin methylesterase of Aspergillus niger.

    PubMed Central

    van Alebeek, Gert-Jan W M; van Scherpenzeel, Katrien; Beldman, Gerrit; Schols, Henk A; Voragen, Alphons G J

    2003-01-01

    Investigations on the mode of action of Aspergillus niger pectin methylesterase (PME) towards differently C(6)- and C(1)-substituted oligogalacturonides (oligoGal p A) are described. De-esterification of methyl-esterified (un)saturated oligoGal p A proceeds via a specific pattern, depending on the degree of polymerization. Initially, a first methyl ester of the oligomer is hydrolysed, resulting in one free carboxyl group. Subsequently, this first product is preferred as a substrate and is de-esterified for a second time. This product is then accumulated and hereafter de-esterified further to the final product, i.e. oligoGal p A containing one methyl ester located at the non-reducing end residue for both saturated and unsaturated oligoGal p A, as found by post-source decay matrix-assisted laser-desorption/ionization-time-of-flight MS. The saturated hexamer is an exception to this: three methyl esters are removed very rapidly, instead of two methyl esters. When unsaturated oligoGal p A were used, the formation of the end product differed slightly, suggesting that the unsaturated bond at the non-reducing end influences the de-esterification process. In vivo, PME prefers methyl esters, but the enzyme appeared to be tolerant for other C(6)- and C(1)-substituents. Changing the type of ester (ethyl esterification) or addition of a methyl glycoside (C(1)) only reduced the activity or had no effect respectively. The specific product pattern was identical for all methyl- and ethyl-esterified oligoGal p A and methyl-glycosidated oligoGal p A, which strongly indicates that one or perhaps two non-esterified oligoGal p A are preferred in the active-site cleft. PMID:12589708

  14. Kukoamine B promotes TLR4-independent lipopolysaccharide uptake in murine hepatocytes.

    PubMed

    Yang, Dong; Zheng, Xinchuan; Wang, Ning; Fan, Shijun; Yang, Yongjun; Lu, Yongling; Chen, Qian; Liu, Xin; Zheng, Jiang

    2016-09-06

    Free bacterial lipopolysaccharide (LPS) is generally removed from the bloodstream through hepatic uptake via TLR4, the LPS pattern recognition receptor, but mechanisms for internalization and clearance of conjugated LPS are less clear. Kukoamine B (KB) is a novel cationic alkaloid that interferes with LPS binding to TLR4. In this study, KB accelerated blood clearance of LPS. KB also enhanced LPS distribution in the hepatic tissues of C57 BL/6 mice, along with LPS uptake in primary hepatocytes and HepG2 cells. By contrast, KB inhibited LPS internalization in Kupffer and RAW 264.7 cells. Loss of TLR4 did not affect LPS uptake into KB-treated hepatocytes. We also detected selective upregulation of the asialoglycoprotein receptor (ASGPR) upon KB treatment, and ASGPR colocalized with KB in cultured hepatocytes. Molecular docking showed that KB bound to ASGPR in a manner similar to GalNAc, a known ASGPR agonist. GalNAc dose-dependently reduced KB internalization, suggesting it competes with KB for ASGPR binding, and ASGPR knockdown also impaired LPS uptake into hepatocytes. Finally, while KB enhanced LPS uptake, it was protective against LPS-induced inflammation and hepatocyte injury. Our study provides a new mechanism for conjugated LPS hepatic uptake induced by the LPS neutralizer KB and mediated by membrane ASGPR binding.

  15. Active-site-directed inactivation of Aspergillus oryzae beta-galactosidase with beta-D-galactopyranosylmethyl-p-nitrophenyltriazene.

    PubMed

    Mega, T; Nishijima, T; Ikenaka, T

    1990-04-01

    beta-D-Galactopyranosylmethyl-p-nitrophenyltriazene (beta-GalMNT), a specific inhibitor of beta-galactosidase, was isolated as crystals by HPLC and its chemical and physicochemical characteristics were examined. Aspergillus oryzae beta-galactosidase was inactivated by the compound. We studied the inhibition mechanism in detail. The inhibitor was hydrolyzed by the enzyme to p-nitroaniline and an active intermediate (beta-galactopyranosylmethyl carbonium or beta-galactopyranosylmethyldiazonium), which inactivated the enzyme. The efficiency of inactivation of the enzyme (the ratio of moles of inactivated enzyme to moles of beta-GalMNT hydrolyzed by the enzyme) was 3%; the efficiency of Escherichia coli beta-galactosidase was 49%. In spite of the low efficiency, the rate of inactivation of A. oryzae enzyme was not very different from that of the E. coli enzyme, because the former hydrolyzed beta-GalMNT faster than the latter did. A. oryzae beta-galactosidase was also inactivated by p-chlorophenyl, p-tolyl, and m-nitrophenyl derivatives of beta-galactopyranosylmethyltriazene. However, E. coli beta-galactosidase was not inactivated by these triazene derivatives. The results showed that the inactivation of A. oryzae and E. coli beta-galactosidases by beta-GalMNT was an enzyme-activated and active-site-directed irreversible inactivation. The possibility of inactivation by intermediates produced nonenzymatically was ruled out for E. coli, but not for the A. oryzae enzyme.

  16. Barbaloin loaded polydopamine-polylactide-TPGS (PLA-TPGS) nanoparticles against gastric cancer as a targeted drug delivery system: Studies in vitro and in vivo.

    PubMed

    Wang, Yi-Ran; Yang, Shi-Yan; Chen, Guang-Xia; Wei, Ping

    2018-04-30

    Gastric cancer is the third leading cause of cancer-associated death worldwide. Although a decrease in its incidence is observed, gastric cancer still poses a major clinical challenge due to poor prognosis and limited treatments. Barbaloin (BBL) is a main medicinal composition of the Chinese traditional medicine aloe vera. BBL has various bioactivities, including anti-oxidant, anti-inflammatory and anti-tumor properties. Polydopamine (pD)-based surface modification is easy to functionalize polymeric nanoparticles (NPs) surfaces with ligands and/or additional polymeric layers. In the present study, BBL-loaded formulations was developed with pD-modified NPs, which was synthesized by polylactide-TPGS (PLA-TPGS) (pD-PLA-TPGS/NPs). And galactosamine (Gal) was conjugated on the prepared NPs (Gal-pD-PLA-TPGS/NPs) for targeting the gastric cancer cells. Here, we found that BBL-loaded Gal-pD-PLA-TPGS/NPs showed the highest cellular uptake efficacy in gastric cancer cells. Gal-pD-PLA-TPGS/NPs more significantly reduced the gastric cancer cell viability. Further, greater apoptosis, autophagy and ROS generation was induced by Gal-pD-PLA-TPGS/NPs in gastric cancer cells. Additionally, compared to the other two NPs, Gal-pD-PLA-TPGS/NPs most markedly decreased ATP levels in gastric cancer cells. In vivo, Gal-pD-PLA-TPGS/NPs were specifically targeted to tumor site. Moreover, Gal-pD-PLA-TPGS/NPs exhibited the most anti-tumor effects, as evidenced by the lowest tumor volume and tumor weight. Of note, there was no significant difference was observed in body and liver weight, as well as the histological changes in major organs isolated from each group of mice. Together, the findings indicated that BBL-loaded Gal-pD-PLA-TPGS/NPs could be targeted to gastric cancer cells to suppress tumor progression without toxicity. Copyright © 2018. Published by Elsevier Inc.

  17. Sulfation and Cation Effects on the Conformational Properties of the Glycan Backbone of Chondroitin Sulfate Disaccharides

    PubMed Central

    Faller, Christina E.; Guvench, Olgun

    2015-01-01

    Chondroitin sulfate (CS) is one of several glycosaminoglycans that are major components of proteoglycans. A linear polymer consisting of repeats of the disaccharide -4GlcAβ1-3GalNAcβ1-, CS undergoes differential sulfation resulting in five unique sulfation patterns. Because of the dimer repeat, the CS glycosidic “backbone” has two distinct sets of conformational degrees of freedom defined by pairs of dihedral angles: (ϕ1, ψ1) about the β1-3 glycosidic linkage and (ϕ2, ψ2) about the β1-4 glycosidic linkage. Differential sulfation and the possibility of cation binding, combined with the conformational flexibility and biological diversity of CS, complicate experimental efforts to understand CS three-dimensional structures at atomic resolution. Therefore, all-atom explicit-solvent molecular dynamics simulations with Adaptive Biasing Force sampling of the CS backbone were applied to obtain high resolution, high precision free energies of CS disaccharides as a function of all possible backbone geometries. All ten disaccharides (β1-3 vs. β1-4 linkage x five different sulfation patterns) were studied; additionally, ion effects were investigated by considering each disaccharide in the presence of either neutralizing sodium or calcium cations. GlcAβ1-3GalNAc disaccharides have a single, broad, thermodynamically important free-energy minimum whereas GalNAcβ1-4GlcA disaccharides have two such minima. Calcium cations but not sodium cations bind to the disaccharides, and binding is primarily to the GlcA –COO− moiety as opposed to sulfate groups. This binding alters the glycan backbone thermodynamics in instances where a calcium cation bound to –COO− can act to bridge and stabilize an interaction with an adjacent sulfate group, whereas, in the absence of this cation, the proximity of a sulfate group to –COO− results in two like charges being both desolvated and placed adjacent to each other and is found to be destabilizing. In addition to providing information on sulfation and cation effects, the present results can be applied to building models of CS polymers and as a point of comparison in studies of CS polymer backbone dynamics and thermodynamics. PMID:25906376

  18. Sulfation and cation effects on the conformational properties of the glycan backbone of chondroitin sulfate disaccharides.

    PubMed

    Faller, Christina E; Guvench, Olgun

    2015-05-21

    Chondroitin sulfate (CS) is one of several glycosaminoglycans that are major components of proteoglycans. A linear polymer consisting of repeats of the disaccharide -4GlcAβ1-3GalNAcβ1-, CS undergoes differential sulfation resulting in five unique sulfation patterns. Because of the dimer repeat, the CS glycosidic "backbone" has two distinct sets of conformational degrees of freedom defined by pairs of dihedral angles: (ϕ1, ψ1) about the β1-3 glycosidic linkage and (ϕ2, ψ2) about the β1-4 glycosidic linkage. Differential sulfation and the possibility of cation binding, combined with the conformational flexibility and biological diversity of CS, complicate experimental efforts to understand CS three-dimensional structures at atomic resolution. Therefore, all-atom explicit-solvent molecular dynamics simulations with Adaptive Biasing Force sampling of the CS backbone were applied to obtain high-resolution, high-precision free energies of CS disaccharides as a function of all possible backbone geometries. All 10 disaccharides (β1-3 vs β1-4 linkage × five different sulfation patterns) were studied; additionally, ion effects were investigated by considering each disaccharide in the presence of either neutralizing sodium or calcium cations. GlcAβ1-3GalNAc disaccharides have a single, broad, thermodynamically important free-energy minimum, whereas GalNAcβ1-4GlcA disaccharides have two such minima. Calcium cations but not sodium cations bind to the disaccharides, and binding is primarily to the GlcA -COO(-) moiety as opposed to sulfate groups. This binding alters the glycan backbone thermodynamics in instances where a calcium cation bound to -COO(-) can act to bridge and stabilize an interaction with an adjacent sulfate group, whereas, in the absence of this cation, the proximity of a sulfate group to -COO(-) results in two like charges being both desolvated and placed adjacent to each other and is found to be destabilizing. In addition to providing information on sulfation and cation effects, the present results can be applied to building models of CS polymers and as a point of comparison in studies of CS polymer backbone dynamics and thermodynamics.

  19. Regulated binding of PTP1B-like phosphatase to N-cadherin: control of cadherin-mediated adhesion by dephosphorylation of beta-catenin

    PubMed Central

    1996-01-01

    Cadherins are a family of cell-cell adhesion molecules which play a central role in controlling morphogenetic movements during development. Cadherin function is regulated by its association with the actin containing cytoskeleton, an association mediated by a complex of cytoplasmic proteins, the catenins: alpha, beta, and gamma. Phosphorylated tyrosine residues on beta-catenin are correlated with loss of cadherin function. Consistent with this, we find that only nontyrosine phosphorylated beta-catenin is associated with N-cadherin in E10 chick retina tissue. Moreover, we demonstrate that a PTP1B-like tyrosine phosphatase associates with N-cadherin and may function as a regulatory switch controlling cadherin function by dephosphorylating beta-catenin, thereby maintaining cells in an adhesion-competent state. The PTP1B-like phosphatase is itself tyrosine phosphorylated. Moreover, both direct binding experiments performed with phosphorylated and dephosphorylated molecules, and treatment of cells with tyrosine kinase inhibitors indicate that the interaction of the PTP1B-like phosphatase with N-cadherin depends on its tyrosine phosphorylation. Concomitant with the tyrosine kinase inhibitor-induced loss of the PTP1B-like phosphatase from its association with N-cadherin, phosphorylated tyrosine residues are retained on beta-catenin, the association of N- cadherin with the actin containing cytoskeleton is lost and N-cadherin- mediated cell adhesion is prevented. Tyrosine phosphatase inhibitors also result in the accumulation of phosphorylated tyrosine residues on beta-catenin, loss of the association of N-cadherin with the actin- containing cytoskeleton, and prevent N-cadherin mediated adhesion, presumably by directly blocking the function of the PTP1B-like phosphatase. We previously showed that the binding of two ligands to the cell surface N-acetylgalactosaminylphosphotransferase (GalNAcPTase), the monoclonal antibody 1B11 and a proteoglycan with a 250-kD core protein, results in the accumulation of phosphorylated tyrosine residues on beta-catenin, uncoupling of N-cadherin from its association with the actin containing cytoskeleton, and loss of N- cadherin function. We now report that binding of these ligands to the GalNAcPTase results in the absence of the PTP1B-like phosphatase from its association with N-cadherin as well as the loss of the tyrosine kinase and tyrosine phosphatase activities that otherwise co- precipitate with N-cadherin. Control antibodies and proteoglycans have no such effect. This effect is similar to that observed with tyrosine kinase inhibitors, suggesting that the GalNAcPTase/proteoglycan interaction inhibits a tyrosine kinase, thereby preventing the phosphorylation of the PTP1B-like phosphatase, and its association with N-cadherin. Taken together these data indicate that a PTP1B-like tyrosine phosphatase can regulate N-cadherin function through its ability to dephosphorylate beta-catenin and that the association of the phosphatase with N-cadherin is regulated via the interaction of the GalNAcPTase with its proteoglycan ligand. In this manner the GalNAcPTase-proteoglycan interaction may play a major role in morphogenetic cell and tissue interactions during development. PMID:8707857

  20. The Long Non-Coding RNA Transcriptome Landscape in CHO Cells Under Batch and Fed-Batch Conditions.

    PubMed

    Amann, Thomas; Hansen, Anders Holmgaard; Kol, Stefan; Lee, Gyun Min; Andersen, Mikael Rørdam; Kildegaard, Helene Faustrup

    2018-06-03

    In production of recombinant proteins for biopharmaceuticals, N-glycosylation is often important for protein efficacy and patient safety. IgG with agalactosylated (G0)-N-glycans can improve the activation of the lectin-binding complement system and be advantageous in the therapy of lupus and virus diseases. In this study, we aimed to engineer CHO-S cells for the production of proteins with G0-N-glycans by targeting B4Gal-T isoform genes with CRISPR/Cas9. Indel mutations in genes encoding B4Gal-T1, -T2 and-T3 with and without a disrupted B4Gal-T4 sequence resulted in only ∼1% galactosylated N-glycans on total secreted proteins of 3-4 clones per genotype. We revealed that B4Gal-T4 is not active in N-glycan galactosylation in CHO-S cells. In the triple-KO clones, transiently expressed erythropoietin (EPO) and rituximab harbored only ∼6% and ∼3% galactosylated N-glycans, respectively. However, simultaneous disruption of B4Gal-T1 and -T3 may decrease cell growth. Altogether, we present the advantage of analyzing total secreted protein N-glycans after disrupting galactosyltransferases, followed by expressing recombinant proteins in selected clones with desired N-glycan profiles at a later stage. Furthermore, we provide a cell platform that prevalently glycosylates proteins with G0-N-glycans to further study the impact of agalactosylation on different in vitro and in vivo functions of recombinant proteins. This article is protected by copyright. All rights reserved.

  1. Centrosome-Based Mechanisms, Prognostics and Therapeutics in Prostate Cancer

    DTIC Science & Technology

    2007-12-01

    panel 1) and syn- taxin-2 (data not shown). Very late in cytokinesis, the intercellular bridge narrows to w0.5 m, and microtu- bule bundles are reduced...transactivation domain (AD), and GAL4 DNA binding domain (DBD) (Santa Cruz Biotechnology, Inc.); and GT335 for stabilized microtu- bules (Gromley et al

  2. Co-expression of sialic acid receptors compatible with avian and human influenza virus binding in emus (Dromaius novaehollandiae).

    PubMed

    Gujjar, Naveen; Chothe, Shubhada K; Gawai, Shashikant; Nissly, Ruth; Bhushan, Gitanjali; Kanagaraj, Vijayarani; Jayarao, Bhushan M; Kathaperumal, Kumanan; Subbiah, Madhuri; Kuchipudi, Suresh V

    2017-01-01

    Influenza A viruses (IAVs) continue to threaten animal and human health with constant emergence of novel variants. While aquatic birds are a major reservoir of most IAVs, the role of other terrestrial birds in the evolution of IAVs is becoming increasingly evident. Since 2006, several reports of IAV isolations from emus have surfaced and avian influenza infection of emus can lead to the selection of mammalian like PB2-E627K and PB2-D701N mutants. However, the potential of emus to be co-infected with avian and mammalian IAVs is not yet understood. As a first step, we investigated sialic acid (SA) receptor distribution across major organs and body systems of emu and found a widespread co-expression of both SAα2,3Gal and SAα2,6Gal receptors in various tissues that are compatible with avian and human IAV binding. Our results suggest that emus could allow genetic recombination and hence play an important role in the evolution of IAVs. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. The hemagglutinin structure of an avian H1N1 influenza A virus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, Tianwei; Wang, Gengyan; Li, Anzhang

    2009-09-15

    The interaction between hemagglutinin (HA) and receptors is a kernel in the study of evolution and host adaptation of H1N1 influenza A viruses. The notion that the avian HA is associated with preferential specificity for receptors with Sia{alpha}2,3Gal glycosidic linkage over those with Sia{alpha}2,6Gal linkage is not all consistent with the available data on H1N1 viruses. By x-ray crystallography, the HA structure of an avian H1N1 influenza A virus, as well as its complexes with the receptor analogs, was determined. The structures revealed no preferential binding of avian receptor analogs over that of the human analog, suggesting that the HA/receptormore » binding might not be as stringent as is commonly believed in determining the host receptor preference for some subtypes of influenza viruses, such as the H1N1 viruses. The structure also showed difference in glycosylation despite the preservation of related sequences, which may partly contribute to the difference between structures of human and avian origin.« less

  4. Glycoproteomics enabled by tagging sialic acid- or galactose-terminated glycans

    PubMed Central

    Ramya, T N C; Weerapana, Eranthie; Cravatt, Benjamin F; Paulson, James C

    2013-01-01

    In this paper, we present two complementary strategies for enrichment of glycoproteins on living cells that combine the desirable attributes of “robust enrichment” afforded by covalent-labeling techniques and “specificity for glycoproteins” typically provided by lectin or antibody affinity reagents. Our strategy involves the selective introduction of aldehydes either into sialic acids by periodate oxidation (periodate oxidation and aniline-catalyzed oxime ligation (PAL)) or into terminal galactose and N-acetylgalactosamine residues by galactose oxidase (galactose oxidase and aniline-catalyzed oxime ligation (GAL)), followed by aniline-catalyzed oxime ligation with aminooxy-biotin to biotinylate the glycans of glycoprotein subpopulations with high efficiency and cell viability. As expected, the two methods exhibit reciprocal tagging efficiencies when applied to fully sialylated cells compared with sialic acid-deficient cells. To assess the utility of these labeling methods for glycoproteomics, we enriched the PAL- and GAL-labeled (biotinylated) glycoproteome by adsorption onto immobilized streptavidin. Glycoprotein identities (IDs) and N-glycosylation site information were then obtained by liquid chromatography-tandem mass spectrometry on total tryptic peptides and on peptides subsequently released from N-glycans still bound to the beads using peptide N-glycosidase F. A total of 175 unique N-glycosylation sites were identified, belonging to 108 nonredundant glycoproteins. Of the 108 glycoproteins, 48 were identified by both methods of labeling and the remainder was identified using PAL on sialylated cells (40) or GAL on sialic acid-deficient cells (20). Our results demonstrate that PAL and GAL can be employed as complementary methods of chemical tagging for targeted proteomics of glycoprotein subpopulations and identification of glycosylation sites of proteins on cells with an altered sialylation status. PMID:23070960

  5. Structures of yeast Apa2 reveal catalytic insights into a canonical AP₄A phosphorylase of the histidine triad superfamily.

    PubMed

    Hou, Wen-Tao; Li, Wen-Zhe; Chen, Yuxing; Jiang, Yong-Liang; Zhou, Cong-Zhao

    2013-08-09

    The homeostasis of intracellular diadenosine 5',5″'-P(1),P(4)-tetraphosphate (Ap4A) in the yeast Saccharomyces cerevisiae is maintained by two 60% sequence-identical paralogs of Ap4A phosphorylases (Apa1 and Apa2). Enzymatic assays show that, compared to Apa1, Apa2 has a relatively higher phosphorylase activity towards Ap3A (5',5″'-P(1),P(3)-tetraphosphate), Ap4A, and Ap5A (5',5″'-P(1),P(5)-tetraphosphate), and Ap4A is the favorable substrate for both enzymes. To decipher the catalytic insights, we determined the crystal structures of Apa2 in the apo-, AMP-, and Ap4A-complexed forms at 2.30, 2.80, and 2.70Å resolution, respectively. Apa2 is an α/β protein with a core domain of a twisted eight-stranded antiparallel β-sheet flanked by several α-helices, similar to the galactose-1-phosphate uridylyltransferase (GalT) members of the histidine triad (HIT) superfamily. However, a unique auxiliary domain enables an individual Apa2 monomer to possess an intact substrate-binding cleft, which is distinct from previously reported dimeric GalT proteins. This cleft is perfectly complementary to the favorable substrate Ap4A, the AMP and ATP moieties of which are perpendicular to each other, leaving the α-phosphate group exposed at the sharp turn against the catalytic residue His161. Structural comparisons combined with site-directed mutagenesis and activity assays enable us to define the key residues for catalysis. Furthermore, multiple-sequence alignment reveals that Apa2 and homologs represent canonical Ap4A phosphorylases, which could be grouped as a unique branch in the GalT family. Copyright © 2013 The Authors. Published by Elsevier Ltd.. All rights reserved.

  6. Non‐glycosidic compounds can stimulate both human and mouse iNKT cells

    PubMed Central

    Jukes, John‐Paul; Gileadi, Uzi; Ghadbane, Hemza; Yu, Ting‐Fong; Shepherd, Dawn; Cox, Liam R.; Besra, Gurdyal S.

    2016-01-01

    Invariant natural killer T (iNKT) cells recognize CD1d/glycolipid complexes and upon activation with synthetic agonists display immunostimulatory properties. We have previously described that the non‐glycosidic CD1d‐binding lipid, threitolceramide (ThrCer) activates murine and human iNKT cells. Here, we show that incorporating the headgroup of ThrCer into a conformationally more restricted 6‐ or 7‐membered ring results in significantly more potent non‐glycosidic analogs. In particular, ThrCer 6 was found to promote strong anti‐tumor responses and to induce a more prolonged stimulation of iNKT cells than does the canonical α‐galactosylceramide (α‐GalCer), achieving an enhanced T‐cell response at lower concentrations compared with α‐GalCer both in vitro, using human iNKT‐cell lines and in vivo, using C57BL/6 mice. Collectively, these studies describe novel non‐glycosidic ThrCer‐based analogs that have improved potency in iNKT‐cell activation compared with that of α‐GalCer, and are clinically relevant iNKT‐cell agonists. PMID:26873393

  7. Food webs and fishing affect parasitism of the sea urchin Eucidaris galapagensis in the Galápagos

    USGS Publications Warehouse

    Sonnenholzner, Jorge I.; Lafferty, Kevin D.; Ladah, Lydia B.

    2011-01-01

    In the Galápagos Islands, two eulimid snails parasitize the common pencil sea urchin, Eucidaris galapagensis. Past work in the Galápagos suggests that fishing reduces lobster and fish densities and, due to this relaxation of predation pressure, indirectly increases urchin densities, creating the potential for complex indirect interactions between fishing and parasitic snails. To measure indirect effects of fishing on these parasitic snails, we investigated the spatial relationships among urchins, parasitic snails, commensal crabs, and large urchin predators (hogfish and lobsters). Parasitic snails had higher densities at sites where urchins were abundant, probably due to increased resource availability. Commensal crabs that shelter under urchin spines, particularly the endemic Mithrax nodosus, preyed on the parasitic snails in aquaria, and snails were less abundant at field sites where these crabs were common. In aquaria, hogfish and lobsters readily ate crabs, but crabs were protected from predation under urchin spines, leading to a facultative mutualism between commensal crabs and urchins. In the field, fishing appeared to indirectly increase the abundance of urchins and their commensal crabs by reducing predation pressure from fish and lobsters. Fished sites had fewer snails per urchin, probably due to increased predation from commensal crabs. However, because fished sites also tended to have more urchins, there was no significant net effect of fishing on the number of snails per square meter. These results suggest that fishing can have complex indirect effects on parasites by altering food webs.

  8. Development of a transient expression assay for detecting environmental oestrogens in zebrafish and medaka embryos

    PubMed Central

    2012-01-01

    Background Oestrogenic contaminants are widespread in the aquatic environment and have been shown to induce adverse effects in both wildlife (most notably in fish) and humans, raising international concern. Available detecting and testing systems are limited in their capacity to elucidate oestrogen signalling pathways and physiological impacts. Here we developed a transient expression assay to investigate the effects of oestrogenic chemicals in fish early life stages and to identify target organs for oestrogenic effects. To enhance the response sensitivity to oestrogen, we adopted the use of multiple tandem oestrogen responsive elements (EREc38) in a Tol2 transposon mediated Gal4ff-UAS system. The plasmid constructed (pTol2_ERE-TATA-Gal4ff), contains three copies of oestrogen response elements (3ERE) that on exposure to oestrogen induces expression of Gal4ff which this in turn binds Gal4-responsive Upstream Activated Sequence (UAS) elements, driving the expression of a second reporter gene, EGFP (Enhanced Green Fluorescent Protein). Results The response of our construct to oestrogen exposure in zebrafish embryos was examined using a transient expression assay. The two plasmids were injected into 1–2 cell staged zebrafish embryos, and the embryos were exposed to various oestrogens including the natural steroid oestrogen 17ß-oestradiol (E2), the synthetic oestrogen 17α- ethinyloestradiol (EE2), and the relatively weak environmental oestrogen nonylphenol (NP), and GFP expression was examined in the subsequent embryos using fluorescent microscopy. There was no GFP expression detected in unexposed embryos, but specific and mosaic expression of GFP was detected in the liver, heart, somite muscle and some other tissue cells for exposures to steroid oestrogen treatments (EE2; 10 ng/L, E2; 100 ng/L, after 72 h exposures). For the NP exposures, GFP expression was observed at 10 μg NP/L after 72 h (100 μg NP/L was toxic to the fish). We also demonstrate that our construct works in medaka, another model fish test species, suggesting the transient assay is applicable for testing oestrogenic chemicals in fish generally. Conclusion Our results indicate that the transient expression assay system can be used as a rapid integrated testing system for environmental oestrogens and to detect the oestrogenic target sites in developing fish embryos. PMID:22726887

  9. Helicobacter pylori β1,3-N-acetylglucosaminyltransferase for versatile synthesis of type 1 and type 2 poly-LacNAcs on N-linked, O-linked and I-antigen glycans

    PubMed Central

    Peng, Wenjie; Pranskevich, Jennifer; Nycholat, Corwin; Gilbert, Michel; Wakarchuk, Warren; Paulson, James C; Razi, Nahid

    2012-01-01

    Poly-N-acetyllactosamine extensions on N- and O-linked glycans are increasingly recognized as biologically important structural features, but access to these structures has not been widely available. Here, we report a detailed substrate specificity and catalytic efficiency of the bacterial β3-N-acetylglucosaminyltransferase (β3GlcNAcT) from Helicobacter pylori that can be adapted to the synthesis of a rich diversity of glycans with poly-LacNAc extensions. This glycosyltransferase has surprisingly broad acceptor specificity toward type-1, -2, -3 and -4 galactoside motifs on both linear and branched glycans, found commonly on N-linked, O-linked and I-antigen glycans. This finding enables the production of complex ligands for glycan-binding studies. Although the enzyme shows preferential activity for type 2 (Galβ1-4GlcNAc) acceptors, it is capable of transferring N-acetylglucosamine (GlcNAc) in β1-3 linkage to type-1 (Galβ1-3GlcNAc) or type-3/4 (Galβ1-3GalNAcα/β) sequences. Thus, by alternating the use of the H. pylori β3GlcNAcT with galactosyltransferases that make the β1-4 or β1-3 linkages, various N-linked, O-linked and I-antigen acceptors could be elongated with type-2 and type-1 LacNAc repeats. Finally, one-pot incubation of di-LacNAc biantennary N-glycopeptide with the β3GlcNAcT and GalT-1 in the presence of uridine diphosphate (UDP)-GlcNAc and UDP-Gal, yielded products with 15 additional LacNAc units on the precursor, which was seen as a series of sequential ion peaks representing alternative additions of GlcNAc and Gal residues, on matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF MS) analysis. Overall, our data demonstrate a broader substrate specificity for the H. pylori β3GlcNAcT than previously recognized and demonstrate its ability as a potent resource for preparative chemo-enzymatic synthesis of complex glycans. PMID:22786570

  10. Cardiac tissue enriched factors serum response factor and GATA-4 are mutual coregulators

    NASA Technical Reports Server (NTRS)

    Belaguli, N. S.; Sepulveda, J. L.; Nigam, V.; Charron, F.; Nemer, M.; Schwartz, R. J.

    2000-01-01

    Combinatorial interaction among cardiac tissue-restricted enriched transcription factors may facilitate the expression of cardiac tissue-restricted genes. Here we show that the MADS box factor serum response factor (SRF) cooperates with the zinc finger protein GATA-4 to synergistically activate numerous myogenic and nonmyogenic serum response element (SRE)-dependent promoters in CV1 fibroblasts. In the absence of GATA binding sites, synergistic activation depends on binding of SRF to the proximal CArG box sequence in the cardiac and skeletal alpha-actin promoter. GATA-4's C-terminal activation domain is obligatory for synergistic coactivation with SRF, and its N-terminal domain and first zinc finger are inhibitory. SRF and GATA-4 physically associate both in vivo and in vitro through their MADS box and the second zinc finger domains as determined by protein A pullout assays and by in vivo one-hybrid transfection assays using Gal4 fusion proteins. Other cardiovascular tissue-restricted GATA factors, such as GATA-5 and GATA-6, were equivalent to GATA-4 in coactivating SRE-dependent targets. Thus, interaction between the MADS box and C4 zinc finger proteins, a novel regulatory paradigm, mediates activation of SRF-dependent gene expression.

  11. Rice cyclophilin OsCYP18-2 is translocated to the nucleus by an interaction with SKIP and enhances drought tolerance in rice and Arabidopsis.

    PubMed

    Lee, Sang Sook; Park, Hyun Ji; Yoon, Dae Hwa; Kim, Beom-Gi; Ahn, Jun Cheul; Luan, Sheng; Cho, Hye Sun

    2015-10-01

    Cyclophilin 18-2 (CYP18-2) genes, homologues of human peptidyl-prolyl isomerase-like 1 (PPiL1), are conserved across multicellular organisms and Schizosaccharomyces pombe. Although PPiL1 is known to interact with ski-interacting protein (SKIP), a transcriptional co-regulator and spliceosomal component, there have been no functional analyses of PPiL1 homologues in plants. Rice cyclophilin 18-2 (OsCYP18-2) bound directly to amino acids 56-95 of OsSKIP and its binding was independent of cyclosporin A, a cyclophilin-binding drug. Moreover, OsCYP18-2 exhibited PPIase activity regardless of its interaction with OsSKIP. Therefore, the binding site for OsCYP18-2's interaction with SKIP was distinct from the PPIase active site. OsCYP18-2's interaction with SKIP full-length protein enabled OsCYP18-2's translocation from the cytoplasm into the nucleus and AtSKIP interacted in planta with both AtCYP18-2 and OsCYP18-2. Drought and salt stress induced similar expression of OsCYP18-2 and OsSKIP. Overexpression of OsCYP18-2 in transgenic rice and Arabidopsis thaliana plants enhanced drought tolerance and altered expression and pre-mRNA splicing patterns of stress-related genes in Arabidopsis under drought conditions. Furthermore, OsCYP18-2 caused transcriptional activation with/without OsSKIP in the GAL4 system of yeast; thus the OsSKIP-OsCYP18-2 interaction has an important role in the transcriptional and post-transcriptional regulation of stress-related genes and increases tolerance to drought stress. © 2015 John Wiley & Sons Ltd.

  12. A Lectin from Platypodium elegans with Unusual Specificity and Affinity for Asymmetric Complex N-Glycans*

    PubMed Central

    Benevides, Raquel Guimarães; Ganne, Géraldine; Simões, Rafael da Conceição; Schubert, Volker; Niemietz, Mathäus; Unverzagt, Carlo; Chazalet, Valérie; Breton, Christelle; Varrot, Annabelle; Cavada, Benildo Sousa; Imberty, Anne

    2012-01-01

    Lectin activity with specificity for mannose and glucose has been detected in the seed of Platypodium elegans, a legume plant from the Dalbergieae tribe. The gene of Platypodium elegans lectin A has been cloned, and the resulting 261-amino acid protein belongs to the legume lectin family with similarity with Pterocarpus angolensis agglutinin from the same tribe. The recombinant lectin has been expressed in Escherichia coli and refolded from inclusion bodies. Analysis of specificity by glycan array evidenced a very unusual preference for complex type N-glycans with asymmetrical branches. A short branch consisting of one mannose residue is preferred on the 6-arm of the N-glycan, whereas extensions by GlcNAc, Gal, and NeuAc are favorable on the 3-arm. Affinities have been obtained by microcalorimetry using symmetrical and asymmetrical Asn-linked heptasaccharides prepared by the semi-synthetic method. Strong affinity with Kd of 4.5 μm was obtained for both ligands. Crystal structures of Platypodium elegans lectin A complexed with branched trimannose and symmetrical complex-type Asn-linked heptasaccharide have been solved at 2.1 and 1.65 Å resolution, respectively. The lectin adopts the canonical dimeric organization of legume lectins. The trimannose bridges the binding sites of two neighboring dimers, resulting in the formation of infinite chains in the crystal. The Asn-linked heptasaccharide binds with the 6-arm in the primary binding site with extensive additional contacts on both arms. The GlcNAc on the 6-arm is bound in a constrained conformation that may rationalize the higher affinity observed on the glycan array for N-glycans with only a mannose on the 6-arm. PMID:22692206

  13. Detection of Distinct Changes in Gene-expression Profiles in Specimens of Tumors and Transition Zones of Tenascin-positive/-negative Head and Neck Squamous Cell Carcinoma.

    PubMed

    Zivicova, Veronika; Gal, Peter; Mifkova, Alzbeta; Novak, Stepan; Kaltner, Herbert; Kolar, Michal; Strnad, Hynek; Sachova, Jana; Hradilova, Miluse; Chovanec, Martin; Gabius, Hans-Joachim; Smetana, Karel; Fik, Zdenek

    2018-03-01

    Having previously initiated genome-wide expression profiling in head and neck squamous cell carcinoma (HNSCC) for regions of the tumor, the margin of surgical resecate (MSR) and normal mucosa (NM), we here proceed with respective analysis of cases after stratification according to the expression status of tenascin (Ten). Tissue specimens of each anatomical site were analyzed by immunofluorescent detection of Ten, fibronectin (Fn) and galectin-1 (Gal-1) as well as by microarrays. Histopathological examination demonstrated that Ten + Fn + Gal-1 + co-expression occurs more frequently in samples of HNSCC (55%) than in NM (9%; p<0.01). Contrary, the Ten - Fn + Gal-1 - (45%) and Ten - Fn - Gal-1 - (39%) status occurred with significantly (p<0.01) higher frequency than in HNSCC (3% and 4%, respectively). In MSRs, different immunophenotypes were distributed rather equally (Ten + Fn + Gal-1 + =24%; Ten - Fn + Gal-1 - =36%; Ten - Fn - Gal-1 - =33%), differing to the results in tumors (p<0.05). Absence/presence of Ten was used for stratification of patients into cohorts without a difference in prognosis, to comparatively examine gene-activity signatures. Microarray analysis revealed i) expression of several tumor progression-associated genes in Ten + HNSCC tumors and ii) a strong up-regulation of gene expression assigned to lipid metabolism in MSRs of Ten - tumors, while NM profiles remained similar. The presented data reveal marked and specific changes in tumors and MSR specimens of HNSCC without a separation based on prognosis. Copyright© 2018, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  14. Functional characterization of Gne (UDP-N-acetylglucosamine-4-epimerase), Wzz (chain length determinant), and Wzy (O-antigen polymerase) of Yersinia enterocolitica serotype O:8.

    PubMed

    Bengoechea, José Antonio; Pinta, Elise; Salminen, Tiina; Oertelt, Clemens; Holst, Otto; Radziejewska-Lebrecht, Joanna; Piotrowska-Seget, Zofia; Venho, Reija; Skurnik, Mikael

    2002-08-01

    The lipopolysaccharide (LPS) O-antigen of Yersinia enterocolitica serotype O:8 is formed by branched pentasaccharide repeat units that contain N-acetylgalactosamine (GalNAc), L-fucose (Fuc), D-galactose (Gal), D-mannose (Man), and 6-deoxy-D-gulose (6d-Gul). Its biosynthesis requires at least enzymes for the synthesis of each nucleoside diphosphate-activated sugar precursor; five glycosyltransferases, one for each sugar residue; a flippase (Wzx); and an O-antigen polymerase (Wzy). As this LPS shows a characteristic preferred O-antigen chain length, the presence of a chain length determinant protein (Wzz) is also expected. By targeted mutagenesis, we identify within the O-antigen gene cluster the genes encoding Wzy and Wzz. We also present genetic and biochemical evidence showing that the gene previously called galE encodes a UDP-N-acetylglucosamine-4-epimerase (EC 5.1.3.7) required for the biosynthesis of the first sugar of the O-unit. Accordingly, the gene was renamed gne. Gne also has some UDP-glucose-4-epimerase (EC 5.1.3.2) activity, as it restores the core production of an Escherichia coli K-12 galE mutant. The three-dimensional structure of Gne was modeled based on the crystal structure of E. coli GalE. Detailed structural comparison of the active sites of Gne and GalE revealed that additional space is required to accommodate the N-acetyl group in Gne and that this space is occupied by two Tyr residues in GalE whereas the corresponding residues present in Gne are Leu136 and Cys297. The Gne Leu136Tyr and Cys297Tyr variants completely lost the UDP-N-acetylglucosamine-4-epimerase activity while retaining the ability to complement the LPS phenotype of the E. coli galE mutant. Finally, we report that Yersinia Wzx has relaxed specificity for the translocated oligosaccharide, contrary to Wzy, which is strictly specific for the O-unit to be polymerized.

  15. Expression of Functional Human Sialyltransferases ST3Gal1 and ST6Gal1 in Escherichia coli

    PubMed Central

    Ortiz-Soto, Maria Elena; Seibel, Jürgen

    2016-01-01

    Sialyltransferases (STs) are disulfide-containing, type II transmembrane glycoproteins that catalyze the transfer of sialic acid to proteins and lipids and participate in the synthesis of the core structure oligosaccharides of human milk. Sialic acids are found at the outermost position of glycostructures, playing a key role in health and disease. Sialylation is also essential for the production of recombinant therapeutic proteins (RTPs). Despite their importance, availability of sialyltransferases is limited due to the low levels of stable, soluble and active protein produced in bacterial expression systems, which hampers biochemical and structural studies on these enzymes and restricts biotechnological applications. We report the successful expression of active human sialyltransferases ST3Gal1 and ST6Gal1 in commercial Escherichia coli strains designed for production of disulfide-containing proteins. Fusion of hST3Gal1 with different solubility enhancers and substitution of exposed hydrophobic amino acids by negatively charged residues (supercharging-like approach) were performed to promote solubility and folding. Co-expression of sialyltransferases with the chaperon/foldases sulfhydryl oxidase, protein disulfide isomerase and disulfide isomerase C was explored to improve the formation of native disulfide bonds. Active sialyltransferases fused with maltose binding protein (MBP) were obtained in sufficient amounts for biochemical and structural studies when expressed under oxidative conditions and co-expression of folding factors increased the yields of active and properly folded sialyltransferases by 20%. Mutation of exposed hydrophobic amino acids increased recovery of active enzyme by 2.5-fold, yielding about 7 mg of purified protein per liter culture. Functionality of recombinant enzymes was evaluated in the synthesis of sialosides from the β-d-galactoside substrates lactose, N-acetyllactosamine and benzyl 2-acetamido-2-deoxy-3-O-(β-d-galactopyranosyl)-α-d-galactopyranoside. PMID:27166796

  16. Peroxisome Proliferator-Activated Receptor β/δ (PPARβ/δ) but Not PPARα Serves as a Plasma Free Fatty Acid Sensor in Liver ▿ †

    PubMed Central

    Sanderson, Linda M.; Degenhardt, Tatjana; Koppen, Arjen; Kalkhoven, Eric; Desvergne, Beatrice; Müller, Michael; Kersten, Sander

    2009-01-01

    Peroxisome proliferator-activated receptor α (PPARα) is an important transcription factor in liver that can be activated physiologically by fasting or pharmacologically by using high-affinity synthetic agonists. Here we initially set out to elucidate the similarities in gene induction between Wy14643 and fasting. Numerous genes were commonly regulated in liver between the two treatments, including many classical PPARα target genes, such as Aldh3a2 and Cpt2. Remarkably, several genes induced by Wy14643 were upregulated by fasting independently of PPARα, including Lpin2 and St3gal5, suggesting involvement of another transcription factor. Using chromatin immunoprecipitation, Lpin2 and St3gal5 were shown to be direct targets of PPARβ/δ during fasting, whereas Aldh3a2 and Cpt2 were exclusive targets of PPARα. Binding of PPARβ/δ to the Lpin2 and St3gal5 genes followed the plasma free fatty acid (FFA) concentration, consistent with activation of PPARβ/δ by plasma FFAs. Subsequent experiments using transgenic and knockout mice for Angptl4, a potent stimulant of adipose tissue lipolysis, confirmed the stimulatory effect of plasma FFAs on Lpin2 and St3gal5 expression levels via PPARβ/δ. In contrast, the data did not support activation of PPARα by plasma FFAs. The results identify Lpin2 and St3gal5 as novel PPARβ/δ target genes and show that upregulation of gene expression by PPARβ/δ is sensitive to plasma FFA levels. In contrast, this is not the case for PPARα, revealing a novel mechanism for functional differentiation between PPARs. PMID:19805517

  17. The glycan-specific sulfotransferase (R77W)GalNAc-4-ST1 putatively responsible for peeling skin syndrome has normal properties consistent with a simple sequence polymorphisim.

    PubMed

    Fiete, Dorothy; Mi, Yiling; Beranek, Mary; Baenziger, Nancy L; Baenziger, Jacques U

    2017-05-01

    Expanded access to DNA sequencing now fosters ready detection of site-specific human genome alterations whose actual significance requires in-depth functional study to rule in or out disease-causing mutations. This is a particular concern for genomic sequence differences in glycosyltransferases, whose implications are often difficult to assess. A recent whole-exome sequencing study identifies (c.229 C > T) in the GalNAc-4-ST1 glycosyltransferase (CHST8) as a disease-causing missense R77W mutation yielding the genodermatosis peeling skin syndrome (PSS) when homozygous. Cabral et al. (Genomics. 2012;99:202-208) cite this sequence change as reducing keratinocyte GalNAc-4-ST1 activity, thus decreasing glycosaminoglycan sulfation, as the mechanism for this blistering disorder. Such an identification could point toward potential clinical and/or prenatal diagnosis of a harmful medical condition. However, GalNAc-4-ST1 has minimal activity toward glycosaminoglycans, instead modifying terminal β1,4-linked GalNAc on N- and O-linked oligosaccharides on specific glycoproteins. We find expression, processing and catalytic activity of GalNAc-4-ST1 completely equivalent between wild type and (R77W) sulfotransferases. Moreover, keratinocytes have little or no GalNAc-4-ST1 mRNA, indicating that they do not express GalNAc-4-ST1. In addition, loss-of-function of GalNAc-4-ST1 primarily presents as reproductive system aberrations rather than skin effects. These findings, an allele frequency of 0.004357, and a 10-fold difference in prevalence of CHST8 (c.299 C > T, R77W) across different ethnic groups, suggest that this sequence represents a "passenger" distributed polymorphism, a simple sequence variant form of the enzyme having normal activity, rather than a "driver" disease-causing mutation that accounts for PSS. This study presents an example for guiding biomedical research initiatives, as well as medical and personal/family perspectives, regarding newly-identified genomic sequence differences. © The Author 2017. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  18. Sequence context and crosslinking mechanism affect the efficiency of in vivo capture of a protein-protein interaction

    PubMed Central

    Lancia, Jody K.; Nwokoye, Adaora; Dugan, Amanda; Joiner, Cassandra; Pricer, Rachel; Mapp, Anna K.

    2014-01-01

    Protein-protein interactions (PPIs) are essential for implementing cellular processes and thus methods for the discovery and study of PPIs are highly desirable. An emerging method for capturing PPIs in their native cellular environment is in vivo covalent chemical capture, a method that uses nonsense suppression to site specifically incorporate photoactivable unnatural amino acids in living cells. However, in one study we found that this method did not capture a PPI for which there was abundant functional evidence, a complex formed between the transcriptional activator Gal4 and its repressor protein Gal80. Here we describe the factors that influence the success of covalent chemical capture and show that the innate reactivity of the two unnatural amino acids utilized, (p-benzoylphenylalanine (pBpa) and p-azidophenylalanine (pAzpa)), plays a profound role in the capture of Gal80 by Gal4. Based upon these data, guidelines are outlined for the successful use of in vivo photo-crosslinking to capture novel PPIs and to characterize the interfaces. PMID:24037947

  19. A recombinant fungal lectin for labeling truncated glycans on human cancer cells.

    PubMed

    Audfray, Aymeric; Beldjoudi, Mona; Breiman, Adrien; Hurbin, Amandine; Boos, Irene; Unverzagt, Carlo; Bouras, Mourad; Lantuejoul, Sylvie; Coll, Jean-Luc; Varrot, Annabelle; Le Pendu, Jacques; Busser, Benoit; Imberty, Anne

    2015-01-01

    Cell surface glycoconjugates present alterations of their structures in chronic diseases and distinct oligosaccharide epitopes have been associated with cancer. Among them, truncated glycans present terminal non-reducing β-N-acetylglucosamine (GlcNAc) residues that are rare on healthy tissues. Lectins from unconventional sources such as fungi or algi provide novel markers that bind specifically to such epitopes, but their availability may be challenging. A GlcNAc-binding lectin from the fruiting body of the fungus Psathyrella velutina (PVL) has been produced in good yield in bacterial culture. A strong specificity for terminal GlcNAc residues was evidenced by glycan array. Affinity values obtained by microcalorimetry and surface plasmon resonance demonstrated a micromolar affinity for GlcNAcβ1-3Gal epitopes and for biantennary N-glycans with GlcNAcβ1-2Man capped branches. Crystal structure of PVL complexed with GlcNAcβ1-3Gal established the structural basis of the specificity. Labeling of several types of cancer cells and use of inhibitors of glycan metabolism indicated that rPVL binds to terminal GlcNAc but also to sialic acid (Neu5Ac). Analysis of glycosyltransferase expression confirmed the higher amount of GlcNAc present on cancer cells. rPVL binding is specific to cancer tissue and weak or no labeling is observed for healthy ones, except for stomach glands that present unique αGlcNAc-presenting mucins. In lung, breast and colon carcinomas, a clear delineation could be observed between cancer regions and surrounding healthy tissues. PVL is therefore a useful tool for labeling agalacto-glycans in cancer or other diseases.

  20. A Recombinant Fungal Lectin for Labeling Truncated Glycans on Human Cancer Cells

    PubMed Central

    Hurbin, Amandine; Boos, Irene; Unverzagt, Carlo; Bouras, Mourad; Lantuejoul, Sylvie; Coll, Jean-Luc; Varrot, Annabelle; Le Pendu, Jacques; Busser, Benoit; Imberty, Anne

    2015-01-01

    Cell surface glycoconjugates present alterations of their structures in chronic diseases and distinct oligosaccharide epitopes have been associated with cancer. Among them, truncated glycans present terminal non-reducing β-N-acetylglucosamine (GlcNAc) residues that are rare on healthy tissues. Lectins from unconventional sources such as fungi or algi provide novel markers that bind specifically to such epitopes, but their availability may be challenging. A GlcNAc-binding lectin from the fruiting body of the fungus Psathyrella velutina (PVL) has been produced in good yield in bacterial culture. A strong specificity for terminal GlcNAc residues was evidenced by glycan array. Affinity values obtained by microcalorimetry and surface plasmon resonance demonstrated a micromolar affinity for GlcNAcβ1-3Gal epitopes and for biantennary N-glycans with GlcNAcβ1-2Man capped branches. Crystal structure of PVL complexed with GlcNAcβ1-3Gal established the structural basis of the specificity. Labeling of several types of cancer cells and use of inhibitors of glycan metabolism indicated that rPVL binds to terminal GlcNAc but also to sialic acid (Neu5Ac). Analysis of glycosyltransferase expression confirmed the higher amount of GlcNAc present on cancer cells. rPVL binding is specific to cancer tissue and weak or no labeling is observed for healthy ones, except for stomach glands that present unique αGlcNAc-presenting mucins. In lung, breast and colon carcinomas, a clear delineation could be observed between cancer regions and surrounding healthy tissues. PVL is therefore a useful tool for labeling agalacto-glycans in cancer or other diseases. PMID:26042789

  1. Knowledge-based modeling of a legume lectin and docking of the carbohydrate ligand: the Ulex europaeus lectin I and its interaction with fucose.

    PubMed

    Gohier, A; Espinosa, J F; Jimenez-Barbero, J; Carrupt, P A; Pérez, S; Imberty, A

    1996-12-01

    Ulex europaeus isolectin I is specific for fucose-containing oligosaccharide such as H type 2 trisaccharide alpha-L-Fuc (1-->2) beta-D-Gal (1-->4) beta-D-GlcNAc. Several legume lectins have been crystallized and modeled, but no structural data are available concerning such fucose-binding lectin. The three-dimensional structure of Ulex europaeus isolectin I has been constructed using seven legume lectins for which high-resolution crystal structures were available. Some conserved water molecules, as well as the structural cations, were taken into account for building the model. In the predicted binding site, the most probable locations of the secondary hydroxyl groups were determined using the GRID method. Several possible orientations could be determined for a fucose residue. All of the four possible conformations compatible with energy calculations display several hydrogen bonds with Asp-87 and Ser-132 and a stacking interaction with Tyr-220 and Phe-136. In two orientations, the O-3 and O-4 hydroxyl groups of fucose are the most buried ones, whereas two other, the O-2 and O-3 hydroxyl groups are at the bottom of the site. Possible docking modes are also studied by analysis of the hydrophobic and hydrophilic surfaces for both the ligand and the protein. The SCORE method allows for a quantitative evaluation of the complementarity of these surfaces, on the basis of molecular lipophilicity calculations. The predictions presented here are compared with known biochemical data.

  2. Separation and Identification of Isomeric Glycopeptides by High Field Asymmetric Waveform Ion Mobility Spectrometry

    PubMed Central

    2012-01-01

    The analysis of intact glycopeptides by mass spectrometry is challenging due to the numerous possibilities for isomerization, both within the attached glycan and the location of the modification on the peptide backbone. Here, we demonstrate that high field asymmetric wave ion mobility spectrometry (FAIMS), also known as differential ion mobility, is able to separate isomeric O-linked glycopeptides that have identical sequences but differing sites of glycosylation. Two glycopeptides from the glycoprotein mucin 5AC, GT(GalNAc)TPSPVPTTSTTSAP and GTTPSPVPTTST(GalNAc)TSAP (where GalNAc is O-linked N-acetylgalactosamine), were shown to coelute following reversed-phase liquid chromatography. However, FAIMS analysis of the glycopeptides revealed that the compensation voltage ranges in which the peptides were transmitted differed. Thus, it is possible at certain compensation voltages to completely separate the glycopeptides. Separation of the glycopeptides was confirmed by unique reporter ions produced by supplemental activation electron transfer dissociation mass spectrometry. These fragments also enable localization of the site of glycosylation. The results suggest that glycan position plays a key role in determining gas-phase glycopeptide structure and have implications for the application of FAIMS in glycoproteomics. PMID:22280549

  3. Chemical characterization of milk oligosaccharides of the tiger quoll (Dasyurus maculatus), a marsupial.

    PubMed

    Urashima, Tadasu; Yamamoto, Tomoko; Hirayama, Kentaro; Fukuda, Kenji; Nakamura, Tadashi; Saito, Tadao; Newgrain, Keith; Merchant, Jim; Green, Brian; Messer, Michael

    2016-10-01

    Milk oligosaccharides were separated from the carbohydrate fraction of milk of the tiger quoll a species of marsupial that is closely related to the eastern quoll, Dasyurus viverrinus. They were characterized by (1)H - nuclear magnetic resonance spectroscopy and matrix - assisted laser desorption/ionization time-of-flight mass spectrometry. The following oligosaccharides were identified; Gal(β1-3)Gal(β1-4)Glc, Gal(β1-3)Gal(β1-3)Gal(β1-4)Glc, Gal(β1-3)[Gal(β1-4)GlcNAc(β1-6)]Gal(β1-4)Glc, Gal(β1-3)Gal(β1-3)[Gal(β1-4)GlcNAc(β1-6)]Gal(β1-4)Glc, Gal(β1-3)[Gal(β1-4)GlcNAc(β1-6)]Gal(β1-3)Gal(β1-4)Glc, Gal(β1-3)[Gal(β1-3)Gal(β1-4)GlcNAc(β1-6)]Gal(β1-4)Glc, Gal(β1-3)[Gal(β1-4)GlcNAc(β1-6)]Gal(β1-3)[Gal(β1-4)GlcNAc(β1-6)]Gal(β1-4)Glc, Neu5Ac(α2-3) Gal(β1-3)[Gal(β1-4)GlcNAc(β1-6)]Gal(β1-3)[Gal(β1-4)GlcNAc(β1-6)]Gal(β1-4)Glc, Gal(β1-3)[Gal(β1-4)GlcNAc(β1-6)]Gal(β1-3)[Gal(β1-4)GlcNAc(β1-6)]Gal(β1-4)Glc with an α(2-3)Neu5Ac linked to β(1-4)Gal residue of either branch of Gal(β1-4)GlcNAc(β1-6) units, and Gal(β1-3)[Gal(β1-4)GlcNAc(β1-6)]Gal(β1-3)[Gal(β1-4)GlcNAc(β1-6)]Gal(β1-4)Glc with a β(1-3) linked Gal and an α(2-3) linked Neu5Ac. In addition, larger oligosaccharides were characterized as follows; Gal(β1-3){Gal(β1-3)[Gal(β1-4)GlcNAc(β1-6)]Gal(β1-4)GlcNAc(β1-6)}Gal(β1-3)[Gal(β1-4)GlcNAc(β1-6)]Gal(β1-4)Glc and Gal(β1-3)[Gal(β1-4)GlcNAc(β1-6)]Gal(β1-3){Gal(β1-3)[Gal(β1-4)GlcNAc(β1-6)]Gal(β1-4)GlcNAc(β1-6)}Gal(β1-4)Glc and their α(2-3) linked Neu5Ac derivatives.

  4. Using Electrophoretic Mobility Shift Assays to Measure Equilibrium Dissociation Constants: GAL4-p53 Binding DNA as a Model System

    ERIC Educational Resources Information Center

    Heffler, Michael A.; Walters, Ryan D.; Kugel, Jennifer F.

    2012-01-01

    An undergraduate biochemistry laboratory experiment is described that will teach students the practical and theoretical considerations for measuring the equilibrium dissociation constant (K[subscript D]) for a protein/DNA interaction using electrophoretic mobility shift assays (EMSAs). An EMSA monitors the migration of DNA through a native gel;…

  5. The structurally effect of surface coated rhamnogalacturonan I on response of the osteoblast-like cell line SaOS-2.

    PubMed

    Svava, Rikke; Gurzawska, Katarzyna; Yihau, Yu; Haugshøj, Kenneth Brian; Dirscherl, Kai; Levery, Steven B; Jørgensen, Niklas Rye; Gotfredsen, Klaus; Damager, Iben; Ulvskov, Peter; Jørgensen, Bodil

    2014-06-01

    Osseointegration is important when implants are inserted into the bone and can be improved by biochemical surface coating of the implant. In this paper enzymatically modified rhamnogalacturonan I (RG-I) from apple and lupin was used for biochemical coating of aminated surfaces and the importance of the quality of RG-I, the nature of the binding, the fine structure of RG-I, and its effect on SaOS-2 cell line cultured on coated surfaces was investigated. SaOS-2 cells are osteoblast-like cells and a well-established in vitro model of bone-matrix forming osteoblasts. Purification by gel filtration could remove small fragments of galacturonic acid (GalA) and binding studies showed that the purity of the RG-I molecules was important for the quality of the coating. The structure of RG-I and osteoblast-like cells' viability were positively correlated so that high content of 1,4-linked galactose (Gal) and a low content of arabinose in the RG-I molecules favored cell viability. These results indicate that coating of implants with RG-I affect osseointegration positively. Copyright © 2013 Wiley Periodicals, Inc.

  6. Low MHC variation in the endangered Galápagos penguin (Spheniscus mendiculus).

    PubMed

    Bollmer, Jennifer L; Vargas, F Hernán; Parker, Patricia G

    2007-07-01

    The major histocompatibility complex (MHC) is one of the most polymorphic regions of the genome, likely due to balancing selection acting to maintain alleles over time. Lack of MHC variability has been attributed to factors such as genetic drift in small populations and relaxed selection pressure. The Galápagos penguin (Spheniscus mendiculus), endemic to the Galápagos Islands, is the only penguin that occurs on the equator. It relies upon cold, nutrient-rich upwellings and experiences severe population declines when ocean temperatures rise during El Niño events. These bottlenecks, occurring in an already small population, have likely resulted in reduced genetic diversity in this species. In this study, we used MHC class II exon 2 sequence data from a DRB1-like gene to characterize the amount of genetic variation at the MHC in 30 Galápagos penguins, as well as one Magellanic penguin (S. magellanicus) and two king penguins (Aptenodytes patagonicus), and compared it to that in five other penguin species for which published data exist. We found that the Galápagos penguin had the lowest MHC diversity (as measured by number of polymorphic sites and average divergence among alleles) of the eight penguin species studied. A phylogenetic analysis showed that Galápagos penguin MHC sequences are most closely related to Humboldt penguin (Spheniscus humboldti) sequences, its putative sister species based on other loci. An excess of non-synonymous mutations and a pattern of trans-specific evolution in the neighbor-joining tree suggest that selection is acting on the penguin MHC.

  7. Lectin Staining Shows no Evidence of Involvement of Glycocalyx/Mucous Layer Carbohydrate Structures in Development of Celiac Disease

    PubMed Central

    Toft-Hansen, Henrik; Nielsen, Christian; Biagini, Matteo; Husby, Steffen; Lillevang, Søren T.

    2013-01-01

    The presence of unique carbohydrate structures in the glycocalyx/mucous layer of the intestine may be involved in a susceptibility to celiac disease (CD) by serving as attachment sites for bacteria. This host-microbiota interaction may influence the development of CD and possibly other diseases with autoimmune components. We examined duodenal biopsies from a total of 30 children, of which 10 had both celiac disease (CD) and type 1 diabetes (T1D); 10 had CD alone; and 10 were suspected of having gastrointestinal disease, but had normal duodenal histology (non-CD controls). Patients with both CD and T1D were examined before and after remission following a gluten-free diet. We performed lectin histochemistry using peanut agglutinin (PNA) and Ulex europaeus agglutinin (UEA) staining for Gal-β(1,3)-GalNAc and Fucα1-2Gal-R, respectively, of the glycocalyx/mucous layer. The staining was scored based on dissemination of stained structures on a scale from 0 to 3. Evaluation of the scores revealed no difference between biopsies obtained before and after remission in the group of children with both CD and T1D. A comparison of this pre-remission group with the children who had CD alone or the non-CD controls also showed no significant differences. Based on our material, we found no indication that the presence of Gal-β(1,3)-GalNAc or Fucα1-2Gal-R is involved in the susceptibility to CD, or that the disease process affects the expression of these carbohydrates. PMID:24253051

  8. Why human anti-Galα1-4Galβ1-4Glc natural antibodies do not recognize the trisaccharide on erythrocyte membrane? Molecular dynamics and immunochemical investigation.

    PubMed

    Volynsky, Pavel; Efremov, Roman; Mikhalev, Ilya; Dobrochaeva, Kira; Tuzikov, Alexander; Korchagina, Elena; Obukhova, Polina; Rapoport, Evgenia; Bovin, Nicolai

    2017-10-01

    Human blood contains a big variety of natural antibodies, circulating throughout life at constant concentration. Previously, we have found natural antibodies capable of binding to trisaccharide Galα1-4Galβ1-4Glc (P k ) practically in all humans. Intriguingly, the same trisaccharide is a key fragment of glycosphingolipid globotriaosylceramide (Gb3Cer) - normal component of erythrocyte and endothelial cell membrane, i.e. the antibodies and their cognate antigen coexist without any immunological reaction. To explain the inertness of human anti-P k antibodies towards own cells. We used a combination of immunochemical and molecular dynamics (MD) experiments. Antibodies were isolated using affinity media with P k trisaccharide, their epitope specificity was characterized using ELISA (enzyme-linked immunosorbent assay) with a set of synthetic glycans related to P k synthetic glycans and FACS (Fluorescence-Activated Cell Sorting) analysis of cells with inserted natural Gb3Cer and its synthetic analogue. Conformations and clustering of glycolipids immersed into a lipid bilayer were studied using MD simulations. Isolated specific antibodies were completely unable to bind natural Gb3Cer both inserted into cells and in artificial membrane, whereas strong interaction took place with synthetic analogue differing by the presence of a spacer between trisaccharide and lipid part. MD simulations revealed: i) although membrane-bound glycans do not form stable long-living aggregates, their transient packing is more compact in natural Gb3 as compared with the synthetic analog, ii) similar conformation of P k glycan in composition of the glycolipids, iii) no effect on the mentioned above results when cholesterol was inserted into membrane, and iv) better accessibility of the synthetic version for interaction with proteins. Both immunochemical and molecular dynamics data argue that the reason of the "tolerance" of natural anti-P k antibodies towards cell-bound Gb3Cer is the spatial inaccessibility of P k glycotope for interaction. We can conclude that the antibodies are not related to the blood group P system. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Two phenylalanines in the C-terminus of Epstein-Barr virus Rta protein reciprocally modulate its DNA binding and transactivation function

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, L.-W.; Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, CT 06520; Raghavan, Vineetha

    The Rta (R transactivator) protein plays an essential role in the Epstein-Barr viral (EBV) lytic cascade. Rta activates viral gene expression by several mechanisms including direct and indirect binding to target viral promoters, synergy with EBV ZEBRA protein, and stimulation of cellular signaling pathways. We previously found that Rta proteins with C-terminal truncations of 30 aa were markedly enhanced in their capacity to bind DNA (Chen, L.W., Chang, P.J., Delecluse, H.J., and Miller, G., (2005). Marked variation in response of consensus binding elements for the Rta protein of Epstein-Barr virus. J. Virol. 79(15), 9635-9650.). Here we show that two phenylalaninesmore » (F600 and F605) in the C-terminus of Rta play a crucial role in mediating this DNA binding inhibitory function. Amino acids 555 to 605 of Rta constitute a functional DNA binding inhibitory sequence (DBIS) that markedly decreased DNA binding when transferred to a minimal DNA binding domain of Rta (aa 1-350). Alanine substitution mutants, F600A/F605A, abolished activity of the DBIS. F600 and F605 are located in the transcriptional activation domain of Rta. Alanine substitutions, F600A/F605A, decreased transcriptional activation by Rta protein, whereas aromatic substitutions, such as F600Y/F605Y or F600W/F605W, partially restored transcriptional activation. Full-length Rta protein with F600A/F605A mutations were enhanced in DNA binding compared to wild-type, whereas Rta proteins with F600Y/F605Y or F600W/F605W substitutions were, like wild-type Rta, relatively poor DNA binders. GAL4 (1-147)/Rta (416-605) fusion proteins with F600A/F605A mutations were diminished in transcriptional activation, relative to GAL4/Rta chimeras without such mutations. The results suggest that, in the context of a larger DBIS, F600 and F605 play a role in the reciprocal regulation of DNA binding and transcriptional activation by Rta. Regulation of DNA binding by Rta is likely to be important in controlling its different modes of action.« less

  10. Multiple Copies of a Simple MYB-Binding Site Confers Trans-regulation by Specific Flavonoid-Related R2R3 MYBs in Diverse Species.

    PubMed

    Brendolise, Cyril; Espley, Richard V; Lin-Wang, Kui; Laing, William; Peng, Yongyan; McGhie, Tony; Dejnoprat, Supinya; Tomes, Sumathi; Hellens, Roger P; Allan, Andrew C

    2017-01-01

    In apple, the MYB transcription factor MYB10 controls the accumulation of anthocyanins. MYB10 is able to auto-activate its expression by binding its own promoter at a specific motif, the R1 motif. In some apple accessions a natural mutation, termed R6, has more copies of this motif within the MYB10 promoter resulting in stronger auto-activation and elevated anthocyanins. Here we show that other anthocyanin-related MYBs selected from apple, pear, strawberry, petunia, kiwifruit and Arabidopsis are able to activate promoters containing the R6 motif. To examine the specificity of this motif, members of the R2R3 MYB family were screened against a promoter harboring the R6 mutation. Only MYBs from subgroups 5 and 6 activate expression by binding the R6 motif, with these MYBs sharing conserved residues in their R2R3 DNA binding domains. Insertion of the apple R6 motif into orthologous promoters of MYB10 in pear ( PcMYB10 ) and Arabidopsis ( AtMY75 ) elevated anthocyanin levels. Introduction of the R6 motif into the promoter region of an anthocyanin biosynthetic enzyme F3'5'H of kiwifruit imparts regulation by MYB10. This results in elevated levels of delphinidin in both tobacco and kiwifruit. Finally, an R6 motif inserted into the promoter the vitamin C biosynthesis gene GDP-L-Gal phosphorylase increases vitamin C content in a MYB10-dependent manner. This motif therefore provides a tool to re-engineer novel MYB-regulated responses in plants.

  11. A designed glycoprotein analogue of Gc-MAF exhibits native-like phagocytic activity.

    PubMed

    Bogani, Federica; McConnell, Elizabeth; Joshi, Lokesh; Chang, Yung; Ghirlanda, Giovanna

    2006-06-07

    Rational protein design has been successfully used to create mimics of natural proteins that retain native activity. In the present work, de novo protein engineering is explored to develop a mini-protein analogue of Gc-MAF, a glycoprotein involved in the immune system activation that has shown anticancer activity in mice. Gc-MAF is derived in vivo from vitamin D binding protein (VDBP) via enzymatic processing of its glycosaccharide to leave a single GalNAc residue located on an exposed loop. We used molecular modeling tools in conjunction with structural analysis to splice the glycosylated loop onto a stable three-helix bundle (alpha3W, PDB entry 1LQ7). The resulting 69-residue model peptide, MM1, has been successfully synthesized by solid-phase synthesis both in the aglycosylated and the glycosylated (GalNAc-MM1) form. Circular dichroism spectroscopy confirmed the expected alpha-helical secondary structure. The thermodynamic stability as evaluated from chemical and thermal denaturation is comparable with that of the scaffold protein, alpha3W, indicating that the insertion of the exogenous loop of Gc-MAF did not significantly perturb the overall structure. GalNAc-MM1 retains the macrophage stimulation activity of natural Gc-MAF; in vitro tests show an identical enhancement of Fc-receptor-mediated phagocytosis in primary macrophages. GalNAc-MM1 provides a framework for the development of mutants with increased activity that could be used in place of Gc-MAF as an immunomodulatory agent in therapy.

  12. Genomic organization and expression of the expanded SCG/L/R gene family of Leishmania major: internal clusters and telomeric localization of SCGs mediating species-specific LPG modifications.

    PubMed

    Dobson, Deborah E; Scholtes, Luella D; Myler, Peter J; Turco, Salvatore J; Beverley, Stephen M

    2006-04-01

    Stage-specific modifications to the abundant surface lipophosphoglycan (LPG) adhesin of Leishmania play critical roles in binding and release of the parasite during its infectious cycle in the sand fly, and control the ability of different fly species to transmit different parasite strains and species. In Leishmania major Friedlin V1, binding to a sand fly midgut lectin is mediated by side chain galactosyl (scGal) modifications of the LPG phosphoglycan (PG) repeats, while release occurs following arabinose-capping of scGals. Previously we identified a family of six SCG genes encoding PG scbeta-galactosyltransferases, and here we show that the extended SCG gene family (now termed SCG/L/R) encompasses 14 members in three subfamilies (SCG, SCGL and SCGR). Northern blot and RT-PCR analyses suggest that most of the SCG/L/R genes are expressed, with distinct patterns during the infectious cycle. The six SCGR subfamily genes are clustered and interspersed with the two SCA genes responsible for developmentally regulated arabinosylation of PG scGals; relationships amongst the SCGR revealed clear evidence of extensive gene conversion. In contrast, the seven SCG 'core' family members are localized adjacent to telomeres. These telomeres share varying amounts of sequence upstream and/or downstream of the SCG ORFs, again providing evidence of past gene conversions. Multiple SCG1-7 RNAs were expressed simultaneously within parasite populations. Potentially, telomeric localization of SCG genes may function primarily to facilitate gene conversion and the elaboration of functional evolutionary diversity in the degree of PG sc-galactosylation observed in other strains of L. major.

  13. Aym1, a mouse meiotic gene identified by virtue of its ability to activate early meiotic genes in the yeast Saccharomyces cerevisiae.

    PubMed

    Malcov, Mira; Cesarkas, Karen; Stelzer, Gil; Shalom, Sarah; Dicken, Yosef; Naor, Yaniv; Goldstein, Ronald S; Sagee, Shira; Kassir, Yona; Don, Jeremy

    2004-12-01

    Our understanding of the molecular mechanisms that operate during differentiation of mitotically dividing spermatogonia cells into spermatocytes lags way behind what is known about other differentiating systems. Given the evolutionary conservation of the meiotic process, we screened for mouse proteins that could specifically activate early meiotic promoters in Saccharomyces cerevisiae yeast cells, when fused to the Gal4 activation domain (Gal4AD). Our screen yielded the Aym1 gene that encodes a short peptide of 45 amino acids. We show that a Gal4AD-AYM1 fusion protein activates expression of reporter genes through the promoters of the early meiosis-specific genes IME2 and HOP1, and that this activation is dependent on the DNA-binding protein Ume6. Aym1 is transcribed predominantly in mouse primary spermatocytes and in gonads of female embryos undergoing the corresponding meiotic divisions. Aym1 immunolocalized to nuclei of primary spermatocytes and oocytes and to specific type A spermatogonia cells, suggesting it might play a role in the processes leading to meiotic competence. The potential functional relationship between AYM1 and yeast proteins that regulate expression of early meiotic genes is discussed.

  14. Assessment of single-shell tank residual-liquid issues at Hanford Site, Washington

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Murthy, K.S.; Stout, L.A.; Napier, B.A.

    1983-06-01

    This report provides an assessment of the overall effectiveness and implications of jet pumping the interstitial liquids (IL) from single-shell tanks at Hanford. The jet-pumping program, currently in progress at Hanford, involves the planned removal of IL contained in 89 of the 149 single-shell tanks and its transfer to double-shell tanks after volume reduction by evaporation. The purpose of this report is to estimate the public and worker doses associated with (1) terminating pumping immediately, (2) pumping to a 100,000-gal limit per tank, (3) pumping to a 50,000-gal limit per tank, and (4) pumping to the maximum practical liquid removalmore » level of 30,000 gal. Assessment of the cost-effectiveness of these various levels of pumping in minimizing any undue health and safety risks to the public or worker is also presented.« less

  15. Target-specific NMR detection of protein-ligand interactions with antibody-relayed 15N-group selective STD.

    PubMed

    Hetényi, Anasztázia; Hegedűs, Zsófia; Fajka-Boja, Roberta; Monostori, Éva; Kövér, Katalin E; Martinek, Tamás A

    2016-12-01

    Fragment-based drug design has been successfully applied to challenging targets where the detection of the weak protein-ligand interactions is a key element. 1 H saturation transfer difference (STD) NMR spectroscopy is a powerful technique for this work but it requires pure homogeneous proteins as targets. Monoclonal antibody (mAb)-relayed 15 N-GS STD spectroscopy has been developed to resolve the problem of protein mixtures and impure proteins. A 15 N-labelled target-specific mAb is selectively irradiated and the saturation is relayed through the target to the ligand. Tests on the anti-Gal-1 mAb/Gal-1/lactose system showed that the approach is experimentally feasible in a reasonable time frame. This method allows detection and identification of binding molecules directly from a protein mixture in a multicomponent system.

  16. The recognition of three different epitopes for the H-type 2 human blood group determinant by lectins of Ulex europaeus, Galactia tenuiflora and Psophocarpus tetragonolobus (winged bean).

    PubMed

    Du, M H; Spohr, U; Lemieux, R U

    1994-10-01

    The chemical mapping of the regions of H-type 2 human blood group-related trisaccharide (Fuc alpha (1-2)Gal beta (1-4)GlcNAc beta Me) that are recognized by three different lectins, the so-called epitopes, are reviewed together with an account of how and why oligosaccharides form specific complexes with proteins as presently viewed in this laboratory. The occasion is used to report the synthesis of the various mono-O-methyl derivatives of the above trisaccharide that were used in these investigations. Also, Fuc alpha (1-2)Gal beta (1-4)Xyl beta Me was synthesized in order to examine whether or not the hydroxymethyl group of the GlcNAc residue participates in the binding reaction.

  17. A role for p21 (WAF1) in the cAMP-dependent differentiation of F9 teratocarcinoma cells into parietal endoderm

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Drdova, Blanka; Vachtenheim, Jiri

    2005-03-10

    Combined treatment of teratocarcinoma F9 cells with retinoic acid and dibutyryl-cAMP induces the differentiation into cells with a phenotype resembling parietal endoderm. We show that the levels of cyclin-dependent kinase inhibitor p21/WAF1/Cip1 (p21) protein and mRNA are dramatically elevated at the end of this differentiation, concomitantly with the appearance of p21 in the immunoprecipitated CDK2-cyclin E complex. The induction of differentiation markers could not be achieved by expression of ectopic p21 alone and still required treatment with differentiation agents. Clones of F9 cells transfected with sense or antisense p21 cDNA constructs revealed, upon differentiation, upregulated levels of mRNA for thrombomodulin,more » a parietal endoderm-specific marker, or increased fraction of cells in sub-G1 phase of the cell cycle, respectively. Consistent with this observation, whereas p21 was strictly nuclear in undifferentiated cells, a large proportion of differentiated cells had p21 localized also in the cytoplasm, a site associated with the antiapoptotic function of p21. Furthermore, p21 activated the thrombomodulin promoter in transient reporter assays and the p21 mutant defective in binding to cyclin E was equally efficient in activation. The promoter activity in differentiated cells was reduced by cotransfection of p21-specific siRNA or antisense cDNA. Coexpression of p21 increased the activity of the GAL-p300(1-1303) fusion protein on the GAL sites-containing TM promoter. This implies that p21 might act through a derepression of the p300 N-terminal-residing repression domain, thereby enhancing the p300 coactivator function. As differentiation of F9 cells into parietal endoderm-like cells requires the cAMP signaling, the results together suggest that the cyclin-dependent kinase inhibitor p21 may promote specifically this pathway in F9 cells.« less

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wood, A.

    Cyclohexane buyers, hit by a string of US plant closures, are breathing a sigh of relief at signs of an upswing in capacity. Phillips Petroleum has assured the future of a cyclohexane plant at its Guayama, PR site, while Kerr-McGee Chemical has confirmed it will acquire a mothballed 30-million gal/year unit from Unocal and restart it. Phillips deal is connected to an agreement to license Chevron Chemical's Aromax catalytic reforming technology for its Guayama refinery. The technology, which will cut the company's aromatics production costs, secures the future of Phillips petrochemical operations at the site, including the downstream 90-million gal/yearmore » cyclohexane plant. The Chevron process is said to boost yields of benzene, toluene, and xylene above those of conventional reforming processes. It relies on a zeolite catalyst to convert light paraffins into aromatics; conventional reforming converts higher-valued aromatic naphthas.« less

  19. Chemical characterization of milk oligosaccharides of the common wombat (Vombatus ursinus).

    PubMed

    Hirayama, Kentaro; Taufik, Epi; Kikuchi, Megumi; Nakamura, Tadashi; Fukuda, Kenji; Saito, Tadao; Newgrain, Keith; Green, Brian; Messer, Michael; Urashima, Tadasu

    2016-09-01

    Previous structural characterizations of marsupial milk oligosaccharides have been performed in the tammar wallaby, red kangaroo, koala, common brushtail possum and the eastern quoll. To clarify the homology and heterogeneity of milk oligosaccharides among marsupial species, which could provide information on their evolution, the oligosaccharides of wombat milk carbohydrate were characterized in this study. Neutral and acidic oligosaccharides were isolated from the carbohydrate fractions of two samples of milk of the common wombat and characterized by (1) H-nuclear magnetic resonance spectroscopy. The structures of six neutral saccharides were found to be Gal(β1-4)Glc (lactose), Gal(β1-3)Gal(β1-4)Glc (3'-galactosyllactose), Gal(β1-3)Gal(β1-3)Gal(β1-4)Glc (3',3"-digalactosyllactose), Gal(β1-3)Gal(β1-3)Gal(β1-3)Gal(β1-4)Glc, Gal(β1-3)Gal(β1-3)[Gal(β1-4)GlcNAc(β1-6)]Gal(β1-4)Glc (galactosyl lacto-N-novopentaose I) and Gal(β1-3)[Gal(β1-4)GlcNAc(β1-6)]Gal(β1-3)[Gal(β1-4)GlcNAc(β1-6)]Gal(β1-4)Glc (lacto-N-novooctaose), while those of six acidic saccharides were Neu5Ac(α2-3)Gal(β1-3)Gal(β1-4)Glc. (sialyl 3'-galactosyllactose), Neu5Ac(α2-3)Gal(β1-3)Gal(β1-3)Gal(β1-4)Glc (sialyl 3',3"-digalactosyllactose), Neu5Ac(α2-3)Gal(β1-3)[Gal(β1-4)GlcNAc(β1-6)]Gal(β1-4)Glc (sialyl lacto-N-novopentaose a), Gal(β1-3)[Neu5Ac(α2-3)Gal(β1-4)GlcNAc(β1-6)]Gal(β1-4)Glc (sialyl lacto-N-novopentaose c), Neu5Ac(α2-3)Gal(β1-3)Gal(β1-3)Gal(β1-3)Gal(β1-4)Glc,, Neu5Ac(α2-3)Gal(β1-3)Gal(β1-3)[Gal(β1-4)GlcNAc(β1-6)]Gal(β1-4)Glc and Gal(β1-3)Gal(β1-3)[Neu5Ac(α2-3)Gal(β1-4)GlcNAc(β1-6)]Gal(β1-4)Glc. In addition, small amounts of sulfated oligosaccharides but no oligosaccharides containing Neu5Gc or α(2-6) linked Neu5Ac were detected. © 2015 Japanese Society of Animal Science.

  20. Large-scale identification of target proteins of a glycosyltransferase isozyme by Lectin-IGOT-LC/MS, an LC/MS-based glycoproteomic approach

    PubMed Central

    Sugahara, Daisuke; Kaji, Hiroyuki; Sugihara, Kazushi; Asano, Masahide; Narimatsu, Hisashi

    2012-01-01

    Model organisms containing deletion or mutation in a glycosyltransferase-gene exhibit various physiological abnormalities, suggesting that specific glycan motifs on certain proteins play important roles in vivo. Identification of the target proteins of glycosyltransferase isozymes is the key to understand the roles of glycans. Here, we demonstrated the proteome-scale identification of the target proteins specific for a glycosyltransferase isozyme, β1,4-galactosyltransferase-I (β4GalT-I). Although β4GalT-I is the most characterized glycosyltransferase, its distinctive contribution to β1,4-galactosylation has been hardly described so far. We identified a large number of candidates for the target proteins specific to β4GalT-I by comparative analysis of β4GalT-I-deleted and wild-type mice using the LC/MS-based technique with the isotope-coded glycosylation site-specific tagging (IGOT) of lectin-captured N-glycopeptides. Our approach to identify the target proteins in a proteome-scale offers common features and trends in the target proteins, which facilitate understanding of the mechanism that controls assembly of a particular glycan motif on specific proteins. PMID:23002422

  1. Ligand-mediated Galectin-1 endocytosis prevents intraneural H2O2 production promoting F-actin dynamics reactivation and axonal re-growth.

    PubMed

    Quintá, Héctor R; Wilson, Carlos; Blidner, Ada G; González-Billault, Christian; Pasquini, Laura A; Rabinovich, Gabriel A; Pasquini, Juana M

    2016-09-01

    Axonal growth cone collapse following spinal cord injury (SCI) is promoted by semaphorin3A (Sema3A) signaling via PlexinA4 surface receptor. This interaction triggers intracellular signaling events leading to increased hydrogen peroxide levels which in turn promote filamentous actin (F-actin) destabilization and subsequent inhibition of axonal re-growth. In the current study, we demonstrated that treatment with galectin-1 (Gal-1), in its dimeric form, promotes a decrease in hydrogen peroxide (H2O2) levels and F-actin repolimerization in the growth cone and in the filopodium of neuron surfaces. This effect was dependent on the carbohydrate recognition activity of Gal-1, as it was prevented using a Gal-1 mutant lacking carbohydrate-binding activity. Furthermore, Gal-1 promoted its own active ligand-mediated endocytosis together with the PlexinA4 receptor, through mechanisms involving complex branched N-glycans. In summary, our results suggest that Gal-1, mainly in its dimeric form, promotes re-activation of actin cytoskeleton dynamics via internalization of the PlexinA4/Gal-1 complex. This mechanism could explain, at least in part, critical events in axonal regeneration including the full axonal re-growth process, de novo formation of synapse clustering, axonal re-myelination and functional recovery of coordinated locomotor activities in an in vivo acute and chronic SCI model. Axonal regeneration is a response of injured nerve cells critical for nerve repair in human spinal cord injury. Understanding the molecular mechanisms controlling nerve repair by Galectin-1, may be critical for therapeutic intervention. Our results show that Galectin-1; in its dimeric form, interferes with hydrogen peroxide production triggered by Semaphorin3A. The high levels of this reactive oxygen species (ROS) seem to be the main factor preventing axonal regeneration due to promotion of actin depolymerization at the axonal growth cone. Thus, Galectin-1 administration emerges as a novel therapeutic modality for promoting nerve repair and preventing axonal loss. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Adenovirus Vector Pseudotyping in Fiber-Expressing Cell Lines: Improved Transduction of Epstein-Barr Virus-Transformed B Cells

    PubMed Central

    Von Seggern, Dan J.; Huang, Shuang; Fleck, Shonna Kaye; Stevenson, Susan C.; Nemerow, Glen R.

    2000-01-01

    While adenovirus (Ad) gene delivery vectors are useful in many gene therapy applications, their broad tropism means that they cannot be directed to a specific target cell. There are also a number of cell types involved in human disease which are not transducible with standard Ad vectors, such as Epstein-Barr virus (EBV)-transformed B lymphocytes. Adenovirus binds to host cells via the viral fiber protein, and Ad vectors have previously been retargeted by modifying the fiber gene on the viral chromosome. This requires that the modified fiber be able to bind to the cell in which the vector is grown, which prevents truly specific vector targeting. We previously reported a gene delivery system based on a fiber gene-deleted Ad type 5 (Ad5) vector (Ad5.βgal.ΔF) and packaging cells that express the viral fiber protein. Expression of different fibers in packaging cells will allow Ad retargeting without modifying the viral chromosome. Importantly, fiber proteins which can no longer bind to the producer cells can also be used. Using this approach, we generated for the first time pseudotyped Ad5.βgal.ΔF particles containing either the wild-type Ad5 fiber protein or a chimeric fiber with the receptor-binding knob domain of the Ad3 fiber. Particles equipped with the chimeric fiber bound to the Ad3 receptor rather than the coxsackievirus-adenovirus receptor protein used by Ad5. EBV-transformed B lymphocytes were infected efficiently by the Ad3-pseudotyped particles but poorly by virus containing the Ad5 fiber protein. The strategy described here represents a broadly applicable method for targeting gene delivery to specific cell types. PMID:10590124

  3. Chemical characterization of milk oligosaccharides of the eastern quoll (Dasyurus viverrinus).

    PubMed

    Urashima, Tadasu; Sun, Yiliang; Fukuda, Kenji; Hirayama, Kentaro; Taufik, Epi; Nakamura, Tadashi; Saito, Tadao; Merchant, Jim; Green, Brian; Messer, Michael

    2015-08-01

    Structural characterizations of marsupial milk oligosaccharides have been performed in four species to date: the tammar wallaby (Macropus eugenii), the red kangaroo (Macropus rufus), the koala (Phascolarctos cinereus) and the common brushtail possum (Trichosurus vulpecula). To clarify the homology and heterogeneity of milk oligosaccharides among marsupials, the oligosaccharides in the carbohydrate fraction of eastern quoll milk were characterized in this study. Neutral and acidic oligosaccharides were separated and characterized by (1)H-nuclear magnetic resonance spectroscopy and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. The structures of the neutral oligosaccharides were Gal(β1-3)Gal(β1-4)Glc (3'-galactosyllactose), Gal(β1-3)Gal(β1-3)Gal(β1-4)Glc (3",3'-digalactosyllactose), Gal(β1-3)[Gal(β1-4)GlcNAc(β1-6)]Gal(β1-4)Glc (lacto-N-novopentaose I), Gal(β1-3)Gal(β1-3)[Gal(β1-4)GlcNAc(β1-6)]Gal(β1-4)Glc (galactosyl lacto-N-novopentaose I), Gal(β1-3)[Gal(β1-4)GlcNAc(β1-6)]Gal(β1-3)Gal(β1-4)Glc (galactosyl lacto-N-novopentaose II), Gal(β1-3)[Gal(β1-3)Gal(β1-4)GlcNAc(β1-6)]Gal(β1-4)Glc (galactosyl lacto-N-novopentaose III) and Gal(β1-3)[Gal(β1-4)GlcNAc(β1-6)]Gal(β1-3)[Gal(β1-4)GlcNAc(β1-6)]Gal(β1-4)Glc (lacto-N-novooctaose). The structures of the acidic oligosaccharides detected are Neu5Ac(α2-3)Gal(β1-4)Glc (3'-sialyllactose), Gal(β1-3)(O-3-sulfate)[Gal(β1-4)GlcNAc(β1-6)]Gal(β1-4)Glc (lacto-N-novopentaose I sulfate a), Gal(β1-3)[Gal(β1-4)(O-3-sulfate)GlcNAc(β1-6)]Gal(β1-4)Glc (lacto-N-novopentaose I sulfate b), Neu5Ac(α2-3)Gal(β1-3)[Gal(β1-4)GlcNAc(β1-6)]Gal(β1-4)Glc (sialyl lacto-N-novopentaose a), Gal(β1-3)[Neu5Ac(α2-3)Gal(β1-4)GlcNAc(β1-6)]Gal(β1-4)Glc (sialyl lacto-N-novopentaose c), Neu5Ac(α2-3) Gal(β1-3)[Gal(β1-4)GlcNAc(β1-6)]Gal(β1-3)[Gal(β1-4)GlcNAc(β1-6)]Gal(β1-4)Glc, and Gal(β1-3)[Gal(β1-4)GlcNAc(β1-6)]Gal(β1-3)[Gal(β1-4)GlcNAc(β1-6)]Gal(β1-4)Glc with an α(2-3) Neu5Ac linked to β(1-4)Gal residue of either branch of Gal(β1-4)GlcNAc(β1-6) units. The most predominant oligosaccharides in the carbohydrate fraction of mid-lactation milk were found to be lacto-N-novopentaose I and lacto-N-novooctaose, i.e., branched oligosaccharides that contain N-acetylglucosamine. The predominance of these branched oligosaccharides, rather than of a series of linear β(1-3) linked galacto oligosaccharides, appears to be the main feature of the eastern quoll milk oligosaccharides that differentiates them from those of the tammar wallaby and the brushtail possum.

  4. Results of the first North American comparison of absolute gravimeters, NACAG-2010

    USGS Publications Warehouse

    Schmerge, David; Francis, Olvier; Henton, J.; Ingles, D.; Jones, D.; Kennedy, Jeffrey R.; Krauterbluth, K.; Liard, J.; Newell, D.; Sands, R.; Schiel, J.; Silliker, J.; van Westrum, D.

    2012-01-01

    The first North American Comparison of absolute gravimeters (NACAG-2010) was hosted by the National Oceanic and Atmospheric Administration at its newly renovated Table Mountain Geophysical Observatory (TMGO) north of Boulder, Colorado, in October 2010. NACAG-2010 and the renovation of TMGO are part of NGS’s GRAV-D project (Gravity for the Redefinition of the American Vertical Datum). Nine absolute gravimeters from three countries participated in the comparison. Before the comparison, the gravimeter operators agreed to a protocol describing the strategy to measure, calculate, and present the results. Nine sites were used to measure the free-fall acceleration of g. Each gravimeter measured the value of g at a subset of three of the sites, for a total set of 27 g-values for the comparison. The absolute gravimeters agree with one another with a standard deviation of 1.6 µGal (1 Gal = 1 cm s-2). The minimum and maximum offsets are -2.8 and 2.7 µGal. This is an excellent agreement and can be attributed to multiple factors, including gravimeters that were in good working order, good operators, a quiet observatory, and a short duration time for the experiment. These results can be used to standardize gravity surveys internationally.

  5. Investigation on interaction of Achatinin, a 9-O-acetyl sialic acid-binding lectin, with lipopolysaccharide in the innate immunity of Achatina fulica snails.

    PubMed

    Biswas, C; Sinha, D; Mandal, C

    2000-01-01

    Achatinin, a 9-O-acetyl sialic acid (9-O-AcSA) binding lectin, has been demonstrated to be synthesized in amoebocytes of Achatina fulica snails. This lectin was affinity-purified from Achatina amoebocytes lysate (AAL); it appeared as a single band on native polyacrylamide gel electrophoresis (PAGE) and showed 16 identical subunits of M.W. 15 kDa on sodium dodecyl sulphate (SDS)-PAGE. It was found to be homologous with an earlier reported lectin, Achatinin-H, derived from hemolymph of A. fulica snails (Sen, G., Mandal, C., 1995. The specificity of the binding site of Achatinin-H, a sialic-acid binding lectin from Achantia fulica. Carbohydr. Res., 268, 115-125). Homology between both lectins was confirmed by their similar electrophoretic mobilities, carbohydrate specificity and cross reactivity on immunodiffusion. Achatinin showed in vitro calcium dependent binding to two 9-O-acetylated sialoglyoconjugates (9-O-AcSG) on lipopolysaccharide (LPS) (Escherichia coli 055: B5) of M.W. 40 kDa and 27.5 kDa, which was abolished following de-O-acetylation. Based on the previously defined narrow sugar specificity of Achatinin towards 9-O-AcSAalpha2-->6GalNAc [Sen, G., Mandal, C., 1995. The specificity of the binding site of Achatinin-H, a sialic-acid binding lectin from Achatina fulica. Carbohydr. Res., 268, 115-125], we conclude that LPS contains this lectinogenic epitope at the terminal sugar moiety. The Achatinin-mediated hemagglutination inhibition of rabbit erythrocytes by LPS further confirmed it. The lectin exhibited bacteriostatic effect on Gram-negative bacteria E. coli, DH5alpha and C600. AAL was earlier reported to undergo coagulation in presence of pg level of LPS (Biswas, C., Mandal, C., 1999. The role of amoebocytes in the endotoxin-mediated coagulation in the innate immunity of Achatina fulica snail, Scand. J. Immunol. 49, 131-138). We now demonstrate that Achatinin participates in LPS-mediated coagulation of AAL as indicated by enhanced release of Achatinin from the LPS stimulated amoebocytes and most importantly, by exhibiting a 77% decline in the coagulation of AAL when depleted of Achatinin. Level of Achatinin sharply declined (17-fold) following injection of LPS (20 microg per snail) to the snails, which was reversible by simultaneous injection of LPS and leupeptin implying the presence of LPS-mediated serine protease activity in Achatinin. This was substantiated when purified Achatinin in vitro showed serine protease activity in the presence of LPS followed by its complete blockage in the presence of leupeptin and phenyl methyl sulphonyl fluoride. Therefore, Achatinin, an abundantly available lectin at multiple sites of A. fulica, by virtue of its interaction with LPS, essentially plays a crucial role in the innate immune protection of A. fulica snails.

  6. A vital sugar code for ricin toxicity.

    PubMed

    Taubenschmid, Jasmin; Stadlmann, Johannes; Jost, Markus; Klokk, Tove Irene; Rillahan, Cory D; Leibbrandt, Andreas; Mechtler, Karl; Paulson, James C; Jude, Julian; Zuber, Johannes; Sandvig, Kirsten; Elling, Ulrich; Marquardt, Thorsten; Thiel, Christian; Koerner, Christian; Penninger, Josef M

    2017-11-01

    Ricin is one of the most feared bioweapons in the world due to its extreme toxicity and easy access. Since no antidote exists, it is of paramount importance to identify the pathways underlying ricin toxicity. Here, we demonstrate that the Golgi GDP-fucose transporter Slc35c1 and fucosyltransferase Fut9 are key regulators of ricin toxicity. Genetic and pharmacological inhibition of fucosylation renders diverse cell types resistant to ricin via deregulated intracellular trafficking. Importantly, cells from a patient with SLC35C1 deficiency are also resistant to ricin. Mechanistically, we confirm that reduced fucosylation leads to increased sialylation of Lewis X structures and thus masking of ricin-binding sites. Inactivation of the sialyltransferase responsible for modifications of Lewis X (St3Gal4) increases the sensitivity of cells to ricin, whereas its overexpression renders cells more resistant to the toxin. Thus, we have provided unprecedented insights into an evolutionary conserved modular sugar code that can be manipulated to control ricin toxicity.

  7. A vital sugar code for ricin toxicity

    PubMed Central

    Taubenschmid, Jasmin; Stadlmann, Johannes; Jost, Markus; Klokk, Tove Irene; Rillahan, Cory D; Leibbrandt, Andreas; Mechtler, Karl; Paulson, James C; Jude, Julian; Zuber, Johannes; Sandvig, Kirsten; Elling, Ulrich; Marquardt, Thorsten; Thiel, Christian; Koerner, Christian; Penninger, Josef M

    2017-01-01

    Ricin is one of the most feared bioweapons in the world due to its extreme toxicity and easy access. Since no antidote exists, it is of paramount importance to identify the pathways underlying ricin toxicity. Here, we demonstrate that the Golgi GDP-fucose transporter Slc35c1 and fucosyltransferase Fut9 are key regulators of ricin toxicity. Genetic and pharmacological inhibition of fucosylation renders diverse cell types resistant to ricin via deregulated intracellular trafficking. Importantly, cells from a patient with SLC35C1 deficiency are also resistant to ricin. Mechanistically, we confirm that reduced fucosylation leads to increased sialylation of Lewis X structures and thus masking of ricin-binding sites. Inactivation of the sialyltransferase responsible for modifications of Lewis X (St3Gal4) increases the sensitivity of cells to ricin, whereas its overexpression renders cells more resistant to the toxin. Thus, we have provided unprecedented insights into an evolutionary conserved modular sugar code that can be manipulated to control ricin toxicity. PMID:28925387

  8. Transition state-based ST6Gal I inhibitors: Mimicking the phosphodiester linkage with a triazole or carbamate through an enthalpy-entropy compensation.

    PubMed

    Montgomery, Andrew P; Skropeta, Danielle; Yu, Haibo

    2017-10-31

    Human β-galactoside α-2,6-sialyltransferase I (ST6Gal I) catalyses the synthesis of sialylated glycoconjugates. Overexpression of ST6Gal I is observed in many cancers, where it promotes metastasis through altered cell surface sialylation. A wide range of sialyltransferase inhibitors have been developed, with analogues structurally similar to the transition state exhibiting the highest inhibitory activity. To improve synthetic accessibility and pharmacokinetics of previously reported inhibitors, the replacement of the charged phosphodiester linker with a potential neutral isostere such as a carbamate or a 1,2,3-triazole has been investigated. Extensive molecular dynamics simulations have demonstrated that compounds with the alternate linkers could maintain key interactions with the human ST6Gal I active site, demonstrating the potential of a carbamate or a 1,2,3-triazole as a phosphodiester isostere. Free energy perturbation calculations provided energetic evidence suggesting that the carbamate and 1,2,3-triazole were slightly more favourable than the phosphodiester. Further exploration with free energy component, quasi-harmonic and cluster analysis suggested that there is an enthalpy-entropy compensation accounting for the replacement of the flexible charged phosphodiester with a neutral and rigid isostere. Overall, these simulations provide a strong rationale for the use of a carbamate or 1,2,3-triazole as a phosphodiester isostere in the development of novel inhibitors of human ST6Gal I.

  9. GABAergic terminals are a source of galanin to modulate cholinergic neuron development in the neonatal forebrain.

    PubMed

    Keimpema, Erik; Zheng, Kang; Barde, Swapnali Shantaram; Berghuis, Paul; Dobszay, Márton B; Schnell, Robert; Mulder, Jan; Luiten, Paul G M; Xu, Zhiqing David; Runesson, Johan; Langel, Ülo; Lu, Bai; Hökfelt, Tomas; Harkany, Tibor

    2014-12-01

    The distribution and (patho-)physiological role of neuropeptides in the adult and aging brain have been extensively studied. Galanin is an inhibitory neuropeptide that can coexist with γ-aminobutyric acid (GABA) in the adult forebrain. However, galanin's expression sites, mode of signaling, impact on neuronal morphology, and colocalization with amino acid neurotransmitters during brain development are less well understood. Here, we show that galaninergic innervation of cholinergic projection neurons, which preferentially express galanin receptor 2 (GalR2) in the neonatal mouse basal forebrain, develops by birth. Nerve growth factor (NGF), known to modulate cholinergic morphogenesis, increases GalR2 expression. GalR2 antagonism (M871) in neonates reduces the in vivo expression and axonal targeting of the vesicular acetylcholine transporter (VAChT), indispensable for cholinergic neurotransmission. During cholinergic neuritogenesis in vitro, GalR2 can recruit Rho-family GTPases to induce the extension of a VAChT-containing primary neurite, the prospective axon. In doing so, GalR2 signaling dose-dependently modulates directional filopodial growth and antagonizes NGF-induced growth cone differentiation. Galanin accumulates in GABA-containing nerve terminals in the neonatal basal forebrain, suggesting its contribution to activity-driven cholinergic development during the perinatal period. Overall, our data define the cellular specificity and molecular complexity of galanin action in the developing basal forebrain. © The Author 2013. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  10. Distribution of the Galβ1-4Gal epitope among birds: species-specific loss of the glycan structure in chicken and its relatives.

    PubMed

    Suzuki, Noriko; Nawa, Daisuke; Su, Tseng-Hsiung; Lin, Chia-Wei; Khoo, Kay-Hooi; Yamamoto, Kazuo

    2013-01-01

    The Galβ1-4Gal epitope is rarely found in mammals, and the natural antibody against Galβ1-4Gal is rich in human. In contrast, we have previously demonstrated the presence of Galβ1-4Gal in pigeon and ostrich, and the absence of this epitope in chicken. Here, to further investigate the expression of this glycan among birds, egg white glycoproteins and egg yolk IgG from nine species of birds, namely, chicken, duck, emu, guineafowl, ostrich, peafowl, pigeon, quail, and turkey, were analyzed by western blot using an anti-(Galβ1-4Gal) antibody. The results indicated that some egg white glycoproteins from emu, ostrich, and quail, and heavy chains of IgG from all of the birds, except chicken and quail, were stained with the antibody. The presence of Galβ1-4Gal on N-glycans of IgGs from guineafowl, peafowl, and turkey were confirmed by mass spectrometry (MS), MS/MS, and MS(n) analyses. In quail, the presence of Galβ1-4Gal was confirmed by detecting the activities of UDP-galactose: β-galactoside β1,4-galactosyltransferase (β4GalT(Gal)) in various tissues, and by detecting Galβ1-4Gal by western blotting. In contrast, bamboo partridge, which is a close relative of chicken, did not show any detectable activities of β4GalT(Gal) or Galβ1-4Gal on glycoproteins. Because quail, peafowl, turkey, chicken, and bamboo partridge belong to the same family, i.e., Phasianidae, expression of Galβ1-4Gal was most likely differentiated within this family. Considering that Galβ1-4Gal is also expressed in ostrich, emu, and pigeon, which are phylogenetically distant relatives within modern birds, Galβ1-4Gal expression appears to be widely distributed among birds, but might have been abolished in the ancestors of chicken and bamboo partridge.

  11. Sequence analyses of fimbriae subunit FimA proteins on Actinomyces naeslundii genospecies 1 and 2 and Actinomyces odontolyticus with variant carbohydrate binding specificities

    PubMed Central

    Drobni, Mirva; Hallberg, Kristina; Öhman, Ulla; Birve, Anna; Persson, Karina; Johansson, Ingegerd; Strömberg, Nicklas

    2006-01-01

    Background Actinomyces naeslundii genospecies 1 and 2 express type-2 fimbriae (FimA subunit polymers) with variant Galβ binding specificities and Actinomyces odontolyticus a sialic acid specificity to colonize different oral surfaces. However, the fimbrial nature of the sialic acid binding property and sequence information about FimA proteins from multiple strains are lacking. Results Here we have sequenced fimA genes from strains of A.naeslundii genospecies 1 (n = 4) and genospecies 2 (n = 4), both of which harboured variant Galβ-dependent hemagglutination (HA) types, and from A.odontolyticus PK984 with a sialic acid-dependent HA pattern. Three unique subtypes of FimA proteins with 63.8–66.4% sequence identity were present in strains of A. naeslundii genospecies 1 and 2 and A. odontolyticus. The generally high FimA sequence identity (>97.2%) within a genospecies revealed species specific sequences or segments that coincided with binding specificity. All three FimA protein variants contained a signal peptide, pilin motif, E box, proline-rich segment and an LPXTG sorting motif among other conserved segments for secretion, assembly and sorting of fimbrial proteins. The highly conserved pilin, E box and LPXTG motifs are present in fimbriae proteins from other Gram-positive bacteria. Moreover, only strains of genospecies 1 were agglutinated with type-2 fimbriae antisera derived from A. naeslundii genospecies 1 strain 12104, emphasizing that the overall folding of FimA may generate different functionalities. Western blot analyses with FimA antisera revealed monomers and oligomers of FimA in whole cell protein extracts and a purified recombinant FimA preparation, indicating a sortase-independent oligomerization of FimA. Conclusion The genus Actinomyces involves a diversity of unique FimA proteins with conserved pilin, E box and LPXTG motifs, depending on subspecies and associated binding specificity. In addition, a sortase independent oligomerization of FimA subunit proteins in solution was indicated. PMID:16686953

  12. Gc protein (vitamin D-binding protein): Gc genotyping and GcMAF precursor activity.

    PubMed

    Nagasawa, Hideko; Uto, Yoshihiro; Sasaki, Hideyuki; Okamura, Natsuko; Murakami, Aya; Kubo, Shinichi; Kirk, Kenneth L; Hori, Hitoshi

    2005-01-01

    The Gc protein (human group-specific component (Gc), a vitamin D-binding protein or Gc globulin), has important physiological functions that include involvement in vitamin D transport and storage, scavenging of extracellular G-actin, enhancement of the chemotactic activity of C5a for neutrophils in inflammation and macrophage activation (mediated by a GalNAc-modified Gc protein (GcMAF)). In this review, the structure and function of the Gc protein is focused on especially with regard to Gc genotyping and GcMAF precursor activity. A discussion of the research strategy "GcMAF as a target for drug discovery" is included, based on our own research.

  13. The Identification of Zebrafish Mutants Showing Alterations in Senescence-Associated Biomarkers

    PubMed Central

    Uchiyama, Junzo; Koshimizu, Eriko; Qi, Jie; Nanjappa, Purushothama; Imamura, Shintaro; Islam, Asiful; Neuberg, Donna; Amsterdam, Adam; Roberts, Thomas M.

    2008-01-01

    There is an interesting overlap of function in a wide range of organisms between genes that modulate the stress responses and those that regulate aging phenotypes and, in some cases, lifespan. We have therefore screened mutagenized zebrafish embryos for the altered expression of a stress biomarker, senescence-associated β-galactosidase (SA-β-gal) in our current study. We validated the use of embryonic SA-β-gal production as a screening tool by analyzing a collection of retrovirus-insertional mutants. From a pool of 306 such mutants, we identified 11 candidates that showed higher embryonic SA-β-gal activity, two of which were selected for further study. One of these mutants is null for a homologue of Drosophila spinster, a gene known to regulate lifespan in flies, whereas the other harbors a mutation in a homologue of the human telomeric repeat binding factor 2 (terf2) gene, which plays roles in telomere protection and telomere-length regulation. Although the homozygous spinster and terf2 mutants are embryonic lethal, heterozygous adult fish are viable and show an accelerated appearance of aging symptoms including lipofuscin accumulation, which is another biomarker, and shorter lifespan. We next used the same SA-β-gal assay to screen chemically mutagenized zebrafish, each of which was heterozygous for lesions in multiple genes, under the sensitizing conditions of oxidative stress. We obtained eight additional mutants from this screen that, when bred to homozygosity, showed enhanced SA-β-gal activity even in the absence of stress, and further displayed embryonic neural and muscular degenerative phenotypes. Adult fish that are heterozygous for these mutations also showed the premature expression of aging biomarkers and the accelerated onset of aging phenotypes. Our current strategy of mutant screening for a senescence-associated biomarker in zebrafish embryos may thus prove to be a useful new tool for the genetic dissection of vertebrate stress response and senescence mechanisms. PMID:18704191

  14. Mucin-type O-glycans in Tears of Normal Subjects and Patients with Non-Sjögren’s Dry Eye

    PubMed Central

    Guzman-Aranguez, Ana; Mantelli, Flavio; Argüeso, Pablo

    2009-01-01

    Purpose O-linked carbohydrates (O-glycans) contribute to the hydrophilic character of mucins in mucosal tissues. This study aimed to identify the repertoire of O-glycans in the tear film, and the glycosyltransferases associated with their biosynthesis, in normal subjects and patients with non-Sjögren’s dry eye. Methods Human tear fluid was collected from the inferior conjunctival fornix. O-glycans were released by hydrazinolysis, labeled with 2-aminobenzamide, and analyzed by fluorometric, high-performance liquid chromatography (HPLC) coupled with exoglycosidase digestions. O-glycan structures identified in tears were related to potential biosynthetic pathways in human conjunctival epithelium using a glycogene microarray database. Lectin-binding analyses were performed using agglutinins from Arachis hypogaea, Maackia amurensis, and Sambucus nigra. Results The O-glycan profile of human tears consisted primarily of core 1 (Galβ1-3GalNAcα1-Ser/Thr)-based structures. Mono-sialyl O-glycans represented approximately 66% of the glycan pool, being α2-6-sialyl core 1 the predominant O-glycan structure in human tears (48%). Four families of glycosyltranferases potentially related to the biosynthesis of these structures were identified in human conjunctiva. These included thirteen polypeptide-GalNAc-transferases (GALNT), the core 1 β-3-galactosyltransferase (T-synthase), three α2-6-sialyltransferases (ST6GalNAc), and two α2-3-sialyltransferases (ST3Gal). No significant differences in total amount of O-glycans were detected between tears of normal subjects and dry eye patients, by HPLC and lectin blot. Likewise, no differences in glycosyltransferase expression were found by glycogene microarray. Conclusions This study identifies the most common mucin-type O-glycans in human tears and their expected biosynthetic pathways in ocular surface epithelia. Patients with non-Sjögren’s dry eye show no alterations in composition and amount of O-glycans in the tear fluid. PMID:19407012

  15. The 9aaTAD Transactivation Domains: From Gal4 to p53.

    PubMed

    Piskacek, Martin; Havelka, Marek; Rezacova, Martina; Knight, Andrea

    2016-01-01

    The family of the Nine amino acid Transactivation Domain, 9aaTAD family, comprises currently over 40 members. The 9aaTAD domains are universally recognized by the transcriptional machinery from yeast to man. We had identified the 9aaTAD domains in the p53, Msn2, Pdr1 and B42 activators by our prediction algorithm. In this study, their competence to activate transcription as small peptides was proven. Not surprisingly, we elicited immense 9aaTAD divergence in hundreds of identified orthologs and numerous examples of the 9aaTAD species' convergence. We found unforeseen similarity of the mammalian p53 with yeast Gal4 9aaTAD domains. Furthermore, we identified artificial 9aaTAD domains generated accidentally by others. From an evolutionary perspective, the observed easiness to generate 9aaTAD transactivation domains indicates the natural advantage for spontaneous generation of transcription factors from DNA binding precursors.

  16. Data on publications, structural analyses, and queries used to build and utilize the AlloRep database.

    PubMed

    Sousa, Filipa L; Parente, Daniel J; Hessman, Jacob A; Chazelle, Allen; Teichmann, Sarah A; Swint-Kruse, Liskin

    2016-09-01

    The AlloRep database (www.AlloRep.org) (Sousa et al., 2016) [1] compiles extensive sequence, mutagenesis, and structural information for the LacI/GalR family of transcription regulators. Sequence alignments are presented for >3000 proteins in 45 paralog subfamilies and as a subsampled alignment of the whole family. Phenotypic and biochemical data on almost 6000 mutants have been compiled from an exhaustive search of the literature; citations for these data are included herein. These data include information about oligomerization state, stability, DNA binding and allosteric regulation. Protein structural data for 65 proteins are presented as easily-accessible, residue-contact networks. Finally, this article includes example queries to enable the use of the AlloRep database. See the related article, "AlloRep: a repository of sequence, structural and mutagenesis data for the LacI/GalR transcription regulators" (Sousa et al., 2016) [1].

  17. Spill Prevention Control and Countermeasure Plan, Headquarters, U.S. Army Garrison, Fort Ritchie, Maryland

    DTIC Science & Technology

    1993-04-01

    additive (55 gal) - paint (180 gal total) - algicide (55 gal) - sodium bisulfite - lube oil (200 gal) - ethylene glycol (55 gal) - detergent (30 gal...I 2.6.1 Storage Hazardous materials stored in Building 601 include:I * 55 gal of fuel additive, • 180 gal total volume of paint, * 55 gal of algicide

  18. Evaluation of the Contributing Area for Recovery Wells at the Naval Industrial Reserve Ordnance Plant, Fridley, Minnesota

    USGS Publications Warehouse

    Davis, J. Hal

    2007-01-01

    The Naval Industrial Reserve Ordnance Plant is located on the southernmost tip of Anoka County, Minnesota, within the City of Fridley, and about one-quarter mile east of the Mississippi River. Industrial production at the plant began in 1941 and has continued since that time. Contamination spills and poor disposal practices in the past have led to significant ground-water contamination beneath the facility. A ground-water recovery (and containment) system began operation in 1992 to prevent contaminated ground-water from migrating off site. In an effort to determine the effectiveness of the recovery system, pressure transducers were installed in 23 monitoring wells, multiple hand water-level measurements were taken in an additional 56 wells, and two extensive rounds of water-level measurements were taken in all wells (one during pumping and one during non-pumping conditions). The cones of depression of the shallow flow zone wells AT-8 (17 gallons per minute (gal/min) and AT-9 (142 gal/min) overlap to form one broad cone, while the cone of depression of well AT-7 (42 gal/min) was more isolated. Shallow flow zone well AT-5A (156 gal/min) had a large, broad cone of depression which was the result of the relatively high pumping rate and the relatively high permeability of 200 feet per day (ft/d). Intermediate flow zone well AT-3A (182 gal/min) had a broad cone of depression that extended to the intermediate clays; well AT-10 (23 gal/min) had a relatively steep cone because it was screened in a relatively low-permeability zone. Deep flow zone well AT-5B (86 gal/min) had a broad cone of depression. Intermediate well AT-3A appears to be drawing water up vertically out of the deep flow zone. The combined contributing areas of recovery wells AT-7, AT-8, and AT-9 capture the high levels of trichloroethene (TCE) contamination (greater than 100 parts per billion (ppb) along their combined axis. Well AT-5A has a broad contributing area that reaches approximately halfway to the Mississippi River and captures the eastern flank of the highest levels of contamination in the shallow zone; but it does not capture the highest levels that will still discharge to the Mississippi River. The combined contributing areas of wells AT-3A and AT-10 should capture the TCE contamination in the intermediate zone that is moving off site. Well AT-5B captures about a third of the TCE contamination in the deep flow zone where the concentration exceeds 100 ppb.

  19. A role for galanin N-terminal fragment (1-15) in anxiety- and depression-related behaviors in rats.

    PubMed

    Millón, Carmelo; Flores-Burgess, Antonio; Narváez, Manuel; Borroto-Escuela, Dasiel O; Santín, Luis; Parrado, Concepción; Narváez, José Angel; Fuxe, Kjell; Díaz-Cabiale, Zaida

    2014-10-31

    Galanin (GAL) plays a role in mood regulation. In this study we analyzed the action of the active N-terminal fragment [GAL(1-15)] in anxiety- and depression-related behavioral tests in rats. The effect of GAL(1-15) was analyzed in the forced swimming test, tail suspension test, open field test, and light/dark test. The proximity of GAL1 and GAL2 receptors was examined with the proximity ligation assay (PLA). We tested the GAL receptors involved in GAL(1-15) effects with the GAL2 receptor antagonist M871 and with an in vivo model of siRNA GAL2 receptor knockdown or siRNA GAL1 receptor knockdown rats. The effects of GAL(1-15) were also studied in the cell line RN33B. GAL(1-15) induced strong depression-like and anxiogenic-like effects in all the tests. These effects were stronger than the ones induced by GAL. The involvement of the GAL2 receptor was demonstrated with M871 and with the siRNA GAL2 receptor knockdown rats. The PLA indicated the possible existence of GAL1 and GAL2 heteroreceptor complexes in the dorsal hippocampus and especially in the dorsal raphe nucleus. In the siRNA GAL1 receptor knockdown rats the behavioral actions of GAL(1-15) disappeared, and in the siRNA GAL2 receptor knockdown rats the reductions of the behavioral actions of GAL(1-15) was linked to a disappearance of PLA. In the cell line RN33B, GAL(1-15) decreased 5-HT immunoreactivity more strongly than GAL. Our results indicate that GAL(1-15) exerts strong depression-related and anxiogenic-like effects and may give the basis for the development of drugs targeting GAL1 and GAL2 heteroreceptor complexes in the raphe-limbic system for the treatment of depression and anxiety. © The Author 2015. Published by Oxford University Press on behalf of CINP.

  20. A Role for Galanin N-Terminal Fragment (1–15) in Anxiety- and Depression-Related Behaviors in Rats

    PubMed Central

    Millón, Carmelo; Flores-Burgess, Antonio; Narváez, Manuel; Borroto-Escuela, Dasiel O.; Santín, Luis; Parrado, Concepción; Narváez, José Angel; Fuxe, Kjell

    2015-01-01

    Background: Galanin (GAL) plays a role in mood regulation. In this study we analyzed the action of the active N-terminal fragment [GAL(1–15)] in anxiety- and depression-related behavioral tests in rats. Methods: The effect of GAL(1–15) was analyzed in the forced swimming test, tail suspension test, open field test, and light/dark test. The proximity of GAL1 and GAL2 receptors was examined with the proximity ligation assay (PLA). We tested the GAL receptors involved in GAL(1–15) effects with the GAL2 receptor antagonist M871 and with an in vivo model of siRNA GAL2 receptor knockdown or siRNA GAL1 receptor knockdown rats. The effects of GAL(1–15) were also studied in the cell line RN33B. Results: GAL(1–15) induced strong depression-like and anxiogenic-like effects in all the tests. These effects were stronger than the ones induced by GAL. The involvement of the GAL2 receptor was demonstrated with M871 and with the siRNA GAL2 receptor knockdown rats. The PLA indicated the possible existence of GAL1 and GAL2 heteroreceptor complexes in the dorsal hippocampus and especially in the dorsal raphe nucleus. In the siRNA GAL1 receptor knockdown rats the behavioral actions of GAL(1–15) disappeared, and in the siRNA GAL2 receptor knockdown rats the reductions of the behavioral actions of GAL(1–15) was linked to a disappearance of PLA. In the cell line RN33B, GAL(1–15) decreased 5-HT immunoreactivity more strongly than GAL. Conclusions: Our results indicate that GAL(1–15) exerts strong depression-related and anxiogenic-like effects and may give the basis for the development of drugs targeting GAL1 and GAL2 heteroreceptor complexes in the raphe-limbic system for the treatment of depression and anxiety. PMID:25522404

  1. Multiple Copies of a Simple MYB-Binding Site Confers Trans-regulation by Specific Flavonoid-Related R2R3 MYBs in Diverse Species

    PubMed Central

    Brendolise, Cyril; Espley, Richard V.; Lin-Wang, Kui; Laing, William; Peng, Yongyan; McGhie, Tony; Dejnoprat, Supinya; Tomes, Sumathi; Hellens, Roger P.; Allan, Andrew C.

    2017-01-01

    In apple, the MYB transcription factor MYB10 controls the accumulation of anthocyanins. MYB10 is able to auto-activate its expression by binding its own promoter at a specific motif, the R1 motif. In some apple accessions a natural mutation, termed R6, has more copies of this motif within the MYB10 promoter resulting in stronger auto-activation and elevated anthocyanins. Here we show that other anthocyanin-related MYBs selected from apple, pear, strawberry, petunia, kiwifruit and Arabidopsis are able to activate promoters containing the R6 motif. To examine the specificity of this motif, members of the R2R3 MYB family were screened against a promoter harboring the R6 mutation. Only MYBs from subgroups 5 and 6 activate expression by binding the R6 motif, with these MYBs sharing conserved residues in their R2R3 DNA binding domains. Insertion of the apple R6 motif into orthologous promoters of MYB10 in pear (PcMYB10) and Arabidopsis (AtMY75) elevated anthocyanin levels. Introduction of the R6 motif into the promoter region of an anthocyanin biosynthetic enzyme F3′5′H of kiwifruit imparts regulation by MYB10. This results in elevated levels of delphinidin in both tobacco and kiwifruit. Finally, an R6 motif inserted into the promoter the vitamin C biosynthesis gene GDP-L-Gal phosphorylase increases vitamin C content in a MYB10-dependent manner. This motif therefore provides a tool to re-engineer novel MYB-regulated responses in plants. PMID:29163590

  2. Fossil pollen as a guide to conservation in the Galapagos.

    PubMed

    van Leeuwen, Jacqueline F N; Froyd, Cynthia A; van der Knaap, W O; Coffey, Emily E; Tye, Alan; Willis, Katherine J

    2008-11-21

    Paleoecological evidence from the past 8000 years in the Galápagos Islands shows that six presumed introduced or doubtfully native species (Ageratum conyzoides, Borreria laevis/Diodia radula-type, Brickellia diffusa, Cuphea carthagenensis, Hibiscus diversifolius, and Ranunculus flagelliformis) are in fact native to the archipelago. Fossil pollen and macrofossils from four sites in the highlands of Santa Cruz Island reveal that all were present thousands of years before the advent of human impact, refuting their classification as introduced species. These findings have substantial implications not only for conservation in Galápagos but for the management of introduced species and pantropical weeds in general.

  3. NIP/DuoxA is essential for Drosophila embryonic development and regulates oxidative stress response.

    PubMed

    Xie, Xiaojun; Hu, Jack; Liu, Xiping; Qin, Hanjuan; Percival-Smith, Anthony; Rao, Yong; Li, Shawn S C

    2010-05-11

    NIP/DuoxA, originally cloned as a protein capable of binding to the cell fate determinant Numb in Drosophila, was recently identified as a modulator of reactive oxygen species (ROS) production in mammalian systems. Despite biochemical and cellular studies that link NIP/DuoxA to the generation of ROS through the dual oxidase (Duox) enzyme, the in vivo function of NIP/DuoxA has not been characterized to date. Here we report a genetic and functional characterization of nip in Drosophila melanogaster. We show that nip is essential for Drosophila development as nip null mutants die at the 1(st) larval instar. Expression of UAS-nip, but not UAS-Duox, rescued the lethality. To understand the function of nip beyond the early larval stage, we generated GAL4 inducible UAS-RNAi transgenes. da(G32)-GAL4 driven, ubiquitous RNAi-mediated silencing of nip led to profound abnormality in pre-adult development, crinkled wing and markedly reduced lifespan at 29 degrees C. Compared to wild type flies, da-GAL4 induced nip-RNAi transgenic flies exhibited significantly reduced ability to survive under oxidative stress and displayed impaired mitochondrial aconitase function. Our work provides in vivo evidence for a critical role for nip in the development and oxidative stress response in Drosophila.

  4. The beta-1,4-endogalactanase A gene from Aspergillus niger is specifically induced on arabinose and galacturonic acid and plays an important role in the degradation of pectic hairy regions.

    PubMed

    De Vries, Ronald P; Parenicová, Lucie; Hinz, Sandra W A; Kester, Harry C M; Beldman, Gerrit; Benen, Jacques A E; Visser, Jaap

    2002-10-01

    The Aspergillus nigerbeta-1,4-endogalactanase encoding gene (galA) was cloned and characterized. The expression of galA in A. niger was only detected in the presence of sugar beet pectin, d-galacturonic acid and l-arabinose, suggesting that galA is coregulated with both the pectinolytic genes as well as the arabinanolytic genes. The corresponding enzyme, endogalactanase A (GALA), contains both active site residues identified previously for the Pseudomonas fluorescensbeta-1,4-endogalactanase. The galA gene was overexpressed to facilitate purification of GALA. The enzyme has a molecular mass of 48.5 kDa and a pH optimum between 4 and 4.5. Incubations of arabinogalactans of potato, onion and soy with GALA resulted initially in the release of d-galactotriose and d-galactotetraose, whereas prolonged incubation resulted in d-galactose and d-galactobiose, predominantly. MALDI-TOF analysis revealed the release of l-arabinose substituted d-galacto-oligosaccharides from soy arabinogalactan. This is the first report of the ability of a beta-1,4-endogalactanase to release substituted d-galacto-oligosaccharides. GALA was not active towards d-galacto-oligosaccharides that were substituted with d-glucose at the reducing end.

  5. Structural Divergence in Vertebrate Phylogeny of a Duplicated Prototype Galectin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bhat, R.; Chakraborty, M.; Mian, I. S.

    Prototype galectins, endogenously expressed animal lectins with a single carbohydrate recognition domain, are well-known regulators of tissue properties such as growth and adhesion. The earliest discovered and best studied of the prototype galectins is Galectin-1 (Gal-1). In the Gallus gallus (chicken) genome, Gal-1 is represented by two homologs: Gal-1A and Gal-1B, with distinct biochemical properties, tissue expression, and developmental functions. We investigated the origin of the Gal-1A/Gal-1B divergence to gain insight into when their developmental functions originated and how they could have contributed to vertebrate phenotypic evolution. Sequence alignment and phylogenetic tree construction showed that the Gal-1A/Gal-1B divergence can bemore » traced back to the origin of the sauropsid lineage (consisting of extinct and extant reptiles and birds) although lineage-specific duplications also occurred in the amphibian and actinopterygian genomes. Gene synteny analysis showed that sauropsid gal-1b (the gene for Gal-1B) and its frog and actinopterygian gal-1 homologs share a similar chromosomal location, whereas sauropsid gal-1a has translocated to a new position. Surprisingly, we found that chicken Gal-1A, encoded by the translocated gal-1a, was more similar in its tertiary folding pattern than Gal-1B, encoded by the untranslocated gal-1b, to experimentally determined and predicted folds of nonsauropsid Gal-1s. This inference is consistent with our finding of a lower proportion of conserved residues in sauropsid Gal-1Bs, and evidence for positive selection of sauropsid gal-1b, but not gal-1a genes. We propose that the duplication and structural divergence of Gal-1B away from Gal-1A led to specialization in both expression and function in the sauropsid lineage.« less

  6. Structural Divergence in Vertebrate Phylogeny of a Duplicated Prototype Galectin

    DOE PAGES

    Bhat, R.; Chakraborty, M.; Mian, I. S.; ...

    2014-09-25

    Prototype galectins, endogenously expressed animal lectins with a single carbohydrate recognition domain, are well-known regulators of tissue properties such as growth and adhesion. The earliest discovered and best studied of the prototype galectins is Galectin-1 (Gal-1). In the Gallus gallus (chicken) genome, Gal-1 is represented by two homologs: Gal-1A and Gal-1B, with distinct biochemical properties, tissue expression, and developmental functions. We investigated the origin of the Gal-1A/Gal-1B divergence to gain insight into when their developmental functions originated and how they could have contributed to vertebrate phenotypic evolution. Sequence alignment and phylogenetic tree construction showed that the Gal-1A/Gal-1B divergence can bemore » traced back to the origin of the sauropsid lineage (consisting of extinct and extant reptiles and birds) although lineage-specific duplications also occurred in the amphibian and actinopterygian genomes. Gene synteny analysis showed that sauropsid gal-1b (the gene for Gal-1B) and its frog and actinopterygian gal-1 homologs share a similar chromosomal location, whereas sauropsid gal-1a has translocated to a new position. Surprisingly, we found that chicken Gal-1A, encoded by the translocated gal-1a, was more similar in its tertiary folding pattern than Gal-1B, encoded by the untranslocated gal-1b, to experimentally determined and predicted folds of nonsauropsid Gal-1s. This inference is consistent with our finding of a lower proportion of conserved residues in sauropsid Gal-1Bs, and evidence for positive selection of sauropsid gal-1b, but not gal-1a genes. We propose that the duplication and structural divergence of Gal-1B away from Gal-1A led to specialization in both expression and function in the sauropsid lineage.« less

  7. Polycomb Group Repression Reduces DNA Accessibility

    PubMed Central

    Fitzgerald, Daniel P.; Bender, Welcome

    2001-01-01

    The Polycomb group proteins are responsible for long-term repression of a number of genes in Drosophila melanogaster, including the homeotic genes of the bithorax complex. The Polycomb protein is thought to alter the chromatin structure of its target genes, but there has been little direct evidence for this model. In this study, the chromatin structure of the bithorax complex was probed with three separate assays for DNA accessibility: (i) activation of polymerase II (Pol II) transcription by Gal4, (ii) transcription by the bacteriophage T7 RNA polymerase (T7RNAP), and (iii) FLP-mediated site-specific recombination. All three processes are restricted or blocked in Polycomb-repressed segments. In contrast, control test sites outside of the bithorax complex permitted Gal4, T7RNAP, and FLP activities throughout the embryo. Several P insertions in the bithorax complex were tested, providing evidence that the Polycomb-induced effect is widespread over target genes. This accessibility effect is similar to that seen for SIR silencing in Saccharomyces cerevisiae. In contrast to SIR silencing, however, episomes excised from Polycomb-repressed chromosomal sites do not show an altered superhelix density. PMID:11533246

  8. Amino acid sequence surrounding the chondroitin sulfate attachment site of thrombomodulin regulates chondroitin polymerization.

    PubMed

    Izumikawa, Tomomi; Kitagawa, Hiroshi

    2015-05-01

    Thrombomodulin (TM) is a cell-surface glycoprotein and a critical mediator of endothelial anticoagulant function. TM exists as both a chondroitin sulfate (CS) proteoglycan (PG) form and a non-PG form lacking a CS chain (α-TM); therefore, TM can be described as a part-time PG. Previously, we reported that α-TM bears an immature, truncated linkage tetrasaccharide structure (GlcAβ1-3Galβ1-3Galβ1-4Xyl). However, the biosynthetic mechanism to generate part-time PGs remains unclear. In this study, we used several mutants to demonstrate that the amino acid sequence surrounding the CS attachment site influences the efficiency of chondroitin polymerization. In particular, the presence of acidic residues surrounding the CS attachment site was indispensable for the elongation of CS. In addition, mutants defective in CS elongation did not exhibit anti-coagulant activity, as in the case with α-TM. Together, these data support a model for CS chain assembly in which specific core protein determinants are recognized by a key biosynthetic enzyme involved in chondroitin polymerization. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Genome-wide analysis of endogenously expressed ZEB2 binding sites reveals inverse correlations between ZEB2 and GalNAc-transferase GALNT3 in human tumors.

    PubMed

    Balcik-Ercin, Pelin; Cetin, Metin; Yalim-Camci, Irem; Odabas, Gorkem; Tokay, Nurettin; Sayan, A Emre; Yagci, Tamer

    2018-03-07

    ZEB2 is a transcriptional repressor that regulates epithelial-to-mesenchymal transition (EMT) through binding to bipartite E-box motifs in gene regulatory regions. Despite the abundant presence of E-boxes within the human genome and the multiplicity of pathophysiological processes regulated during ZEB2-induced EMT, only a small fraction of ZEB2 targets has been identified so far. Hence, we explored genome-wide ZEB2 binding by chromatin immunoprecipitation-sequencing (ChIP-seq) under endogenous ZEB2 expression conditions. For ChIP-Seq we used an anti-ZEB2 monoclonal antibody, clone 6E5, in SNU398 hepatocellular carcinoma cells exhibiting a high endogenous ZEB2 expression. The ChIP-Seq targets were validated using ChIP-qPCR, whereas ZEB2-dependent expression of target genes was assessed by RT-qPCR and Western blotting in shRNA-mediated ZEB2 silenced SNU398 cells and doxycycline-induced ZEB2 overexpressing colorectal carcinoma DLD1 cells. Changes in target gene expression were also assessed using primary human tumor cDNA arrays in conjunction with RT-qPCR. Additional differential expression and correlation analyses were performed using expO and Human Protein Atlas datasets. Over 500 ChIP-Seq positive genes were annotated, and intervals related to these genes were found to include the ZEB2 binding motif CACCTG according to TOMTOM motif analysis in the MEME Suite database. Assessment of ZEB2-dependent expression of target genes in ZEB2-silenced SNU398 cells and ZEB2-induced DLD1 cells revealed that the GALNT3 gene serves as a ZEB2 target with the highest, but inversely correlated, expression level. Remarkably, GALNT3 also exhibited the highest enrichment in the ChIP-qPCR validation assays. Through the analyses of primary tumor cDNA arrays and expO datasets a significant differential expression and a significant inverse correlation between ZEB2 and GALNT3 expression were detected in most of the tumors. We also explored ZEB2 and GALNT3 protein expression using the Human Protein Atlas dataset and, again, observed an inverse correlation in all analyzed tumor types, except malignant melanoma. In contrast to a generally negative or weak ZEB2 expression, we found that most tumor tissues exhibited a strong or moderate GALNT3 expression. Our observation that ZEB2 negatively regulates a GalNAc-transferase (GALNT3) that is involved in O-glycosylation adds another layer of complexity to the role of ZEB2 in cancer progression and metastasis. Proteins glycosylated by GALNT3 may be exploited as novel diagnostics and/or therapeutic targets.

  10. The alpha-galactosidase A p.Arg118Cys variant does not cause a Fabry disease phenotype: data from individual patients and family studies.

    PubMed

    Ferreira, Susana; Ortiz, Alberto; Germain, Dominique P; Viana-Baptista, Miguel; Caldeira-Gomes, António; Camprecios, Marta; Fenollar-Cortés, Maria; Gallegos-Villalobos, Ángel; Garcia, Diego; García-Robles, José Antonio; Egido, Jesús; Gutiérrez-Rivas, Eduardo; Herrero, José Antonio; Mas, Sebastián; Oancea, Raluca; Péres, Paloma; Salazar-Martín, Luis Manuel; Solera-Garcia, Jesús; Alves, Helena; Garman, Scott C; Oliveira, João Paulo

    2015-02-01

    Lysosomal α-galactosidase A (α-Gal) is the enzyme deficient in Fabry disease (FD), an X-linked glycosphingolipidosis caused by pathogenic mutations affecting the GLA gene. The early-onset, multi-systemic FD classical phenotype is associated with absent or severe enzyme deficiency, as measured by in vitro assays, but patients with higher levels of residual α-Gal activity may have later-onset, more organ-restricted clinical presentations. A change in the codon 118 of the wild-type α-Gal sequence, replacing basic arginine by a potentially sulfhydryl-binding cysteine residue - GLA p.(Arg118Cys) -, has been recurrently described in large FD screening studies of high-risk patients. Although the Cys118 allele is associated with high residual α-Gal activity in vitro, it has been classified as a pathogenic mutation, mainly on the basis of theoretical arguments about the chemistry of the cysteine residue. However its pathogenicity has never been convincingly demonstrated by pathology criteria. We reviewed the clinical, biochemical and histopathology data obtained from 22 individuals of Portuguese and Spanish ancestry carrying the Cys118 allele, including 3 homozygous females. Cases were identified either on the differential diagnosis of possible FD manifestations and on case-finding studies (n=11; 4 males), or on unbiased cascade screening of probands' close relatives (n=11; 3 males). Overall, those data strongly suggest that the GLA p.(Arg118Cys) variant does not segregate with FD clinical phenotypes in a Mendelian fashion, but might be a modulator of the multifactorial risk of cerebrovascular disease. The Cys118 allelic frequency in healthy Portuguese adults (n=696) has been estimated as 0.001, therefore not qualifying for "rare" condition. Copyright © 2014 Elsevier Inc. All rights reserved.

  11. Gene expression patterns and catalytic properties of UDP-D-glucose 4-epimerases from barley (Hordeum vulgare L.).

    PubMed

    Zhang, Qisen; Hrmova, Maria; Shirley, Neil J; Lahnstein, Jelle; Fincher, Geoffrey B

    2006-02-15

    UGE (UDP-Glc 4-epimerase or UDP-Gal 4-epimerase; EC 5.1.3.2) catalyses the interconversion of UDP-Gal and UDP-Glc. Both nucleotide sugars act as activated sugar donors for the biosynthesis of cell wall polysaccharides such as cellulose, xyloglucans, (1,3;1,4)-beta-D-glucan and pectins, together with other biologically significant compounds including glycoproteins and glycolipids. Three members of the HvUGE (barley UGE) gene family, designated HvUGE1, HvUGE2 and HvUGE3, have been characterized. Q-PCR (quantitative real-time PCR) showed that HvUGE1 mRNA was most abundant in leaf tips and mature roots, but its expression levels were relatively low in basal leaves and root tips. The HvUGE2 gene was transcribed at significant levels in all organs examined, while HvUGE3 mRNA levels were very low in all the organs. Heterologous expression of a near full-length cDNA confirmed that HvUGE1 encodes a functional UGE. A non-covalently bound NAD+ was released from the enzyme after denaturing with aqueous ethanol and was identified by its spectrophotometric properties and by electrospray ionization MS. The K(m) values were 40 microM for UDP-Gal and 55 muM for UDP-Glc. HvUGE also catalyses the interconversion of UDP-GalNAc and UDP-GlcNAc, although it is not known if this has any biological significance. A three-dimensional model of the HvUGE revealed that its overall structural fold is highly conserved compared with the human UGE and provides a structural rationale for its ability to bind UDP-GlcNAc.

  12. LC-MS/MS Analysis of Permethylated Free Oligosaccharides and N-glycans Derived from Human, Bovine, and Goat Milk Samples

    PubMed Central

    Dong, Xue; Zhou, Shiyue; Mechref, Yehia

    2016-01-01

    Oligosaccharides in milk not only provide nutrition to the infants, but also have significant immune biofunctions such as inhibition of pathogen binding to the host cell. The main component in milk oligosaccharides is free oligosaccharides. Since the proteins in milk are highly glycosylated, N-glycans in milk also play an import role. In this study, we investigated the permethylated free oligosaccharides and N-glycans extracted from bovine, goat and human milk using LC-MS/MS. Quantitation profiles of free oligosaccharides and N-glycans were reported. The number of free oligosaccharides observed in bovine, goat and human milk samples (without isomeric consideration) were 11, 8 and 11 respectively. Human milk had more complex free oligosaccharides structures than the other two milk samples. Totally 58, 21, and 43 N-glycan structures (without isomeric consideration) were associated with whey proteins extracted from bovine, goat and human milk samples, respectively. Bovine milk free oligosaccharides and N-glycans from whey proteins were highly sialylated and to a lesser extend fucosylated. Goat and human milk free oligosaccharides and N-glycans from whey proteins were both highly fucosylated. Also, the isomeric glycans in milk samples were determined by PGC LC at elevated temperatures. For example, separation of human milk free oligosaccharide Gal-GlcNAc-(Fuc)-Gal-Glc and Gal-GlcNAc-Gal-Glc-Fuc isomers was achieved using PGC column. Permethylation of the glycan structures facilitated the interpretation of tandem MS. For example, internal cleavage and glycosidic bond cleavage are readily distinguished in the tandem mass spectra of permethylated glycans. This feature resulted in the identification of several isomers. PMID:26959529

  13. Glycan gimmickry by parasitic helminths: a strategy for modulating the host immune response?

    PubMed

    van Die, Irma; Cummings, Richard D

    2010-01-01

    Parasitic helminths (worms) co-evolved with vertebrate immune systems to enable long-term survival of worms in infected hosts. Among their survival strategies, worms use their glycans within glycoproteins and glycolipids, which are abundant on helminth surfaces and in their excretory/ secretory products, to regulate and suppress host immune responses. Many helminths express unusual and antigenic (nonhost-like) glycans, including those containing polyfucose, tyvelose, terminal GalNAc, phosphorylcholine, methyl groups, and sugars in unusual linkages. In addition, some glycan antigens are expressed that share structural features with those in their intermediate and vertebrate hosts (host-like glycans), including Le(X) (Galbeta1-4[Fucalpha1-3]GlcNAc-), LDNF (GalNAcbeta1-4[Fucalpha1-3]GlcNAc-), LDN (GalNAcbeta1-4GlcNAc-), and Tn (GalNAcalpha1-O-Thr/Ser) antigens. The expression of host-like glycan determinants is remarkable and suggests that helminths may gain advantages by synthesizing such glycans. The expression of host-like glycans by parasites previously led to the concept of "molecular mimicry," in which molecules are either derived from the pathogen or acquired from the host to evade recognition by the host immune system. However, recent discoveries into the potential of host glycan-binding proteins (GBPs), such as C-type lectin receptors and galectins, to functionally interact with various host-like helminth glycans provide new insights. Host GBPs through their interactions with worm-derived glycans participate in shaping innate and adaptive immune responses upon infection. We thus propose an alternative concept termed "glycan gimmickry," which is defined as an active strategy of parasites to use their glycans to target GBPs within the host to promote their survival.

  14. LC-MS/MS analysis of permethylated free oligosaccharides and N-glycans derived from human, bovine, and goat milk samples.

    PubMed

    Dong, Xue; Zhou, Shiyue; Mechref, Yehia

    2016-06-01

    Oligosaccharides in milk not only provide nutrition to the infants but also have significant immune biofunctions such as inhibition of pathogen binding to the host cell. The main component in milk oligosaccharides is free oligosaccharides. Since the proteins in milk are highly glycosylated, N-glycans in milk also play an import role. In this study, we investigated the permethylated free oligosaccharides and N-glycans extracted from bovine, goat, and human milks using LC-MS/MS. Quantitation profiles of free oligosaccharides and N-glycans were reported. The number of free oligosaccharides observed in bovine, goat, and human milk samples (without isomeric consideration) were 11, 8, and 11, respectively. Human milk had more complex free oligosaccharides structures than the other two milk samples. Totally 58, 21, and 43 N-glycan structures (without isomeric consideration) were associated with whey proteins extracted from bovine, goat, and human milk samples, respectively. Bovine milk free oligosaccharides and N-glycans from whey proteins were highly sialylated and to a lesser extend fucosylated. Goat and human milk free oligosaccharides and N-glycans from whey proteins were both highly fucosylated. Also, the isomeric glycans in milk samples were determined by porous graphitic carbon LC at elevated temperatures. For example, separation of human milk free oligosaccharide Gal-GlcNAc-(Fuc)-Gal-Glc and Gal-GlcNAc-Gal-Glc-Fuc isomers was achieved using porous graphitic carbon column. Permethylation of the glycan structures facilitated the interpretation of MS/MS. For example, internal cleavage and glycosidic bond cleavage are readily distinguished in the tandem mass spectra of permethylated glycans. This feature resulted in the identification of several isomers. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Analysis of Leishmania mimetic neoglycoproteins for the cutaneous leishmaniasis diagnosis.

    PubMed

    de Souza, Lígia Moraes Barizon; Thomaz Soccol, Vanete; Petterle, Ricardo Rasmussen; Bates, Michelle D; Bates, Paul A

    2018-05-28

    Oligosaccharides are broadly present on Leishmania cell surfaces. They can be useful for the leishmaniases diagnosis and also helpful in identifying new cell markers for the disease. The disaccharide Galα1-3Galβ is the immunodominant saccharide in Leishmania cell surface and is the unique non-reducing terminal glycosphingolipids structure recognized by anti-α-Gal. This study describes an enzyme-linked immunosorbent assay (ELISA) used to measure serum levels of anti-α-galactosyl (α-Gal) antibodies in patients with cutaneous leishmaniasis (CL). Optimal ELISA conditions were established and two neoglycoproteins (NGP) containing the Galα1-3Gal terminal fraction (Galα1-3Galβ1-4GlcNAc-HAS and Galα1-3Gal-HAS) and one Galα1-3Gal NGP analogue (Galα1-3Galβ1-3GlcNAc-HAS) were used as antigens. Means of anti-α-Gal antibody titres of CL patients were significantly higher (P < 0.05) than the healthy individuals for all NGPs tested. Sensitivity and specificity of all NGPs ranged from 62.2 to 78.4% and 58.3 to 96.7%, respectively. In conclusion, the NGPs can be used for CL diagnosis.

  16. Detection of Differentially Expressed Wound-Healing–Related Glycogenes in Galectin-3–Deficient Mice

    PubMed Central

    Saravanan, Chandrassegar; Cao, Zhiyi; Head, Steven R.; Panjwani, Noorjahan

    2010-01-01

    Purpose A prior study showed that exogenous galectin-3 (Gal-3) stimulates re-epithelialization of corneal wounds in wild-type (Gal-3+/+) mice but, surprisingly, not in galectin-3–deficient (Gal-3−/−) mice. In an effort to understand why the injured corneas of Gal-3−/− mice are unresponsive to exogenous Gal-3, the present study was designed to determine whether genes encoding the enzymes that regulate the synthesis of glycan ligands of Gal-3 are differentially expressed in Gal-3−/− corneas compared with the Gal-3+/+ corneas. Methods Glycogene microarray technology was used to identify differentially expressed glycosyltransferases in healing Gal-3+/+ and Gal-3−/− corneas. Results Of ~2000 glycogenes on the array, the expression of 8 was upregulated and that of 14 was downregulated more than 1.3-fold in healing Gal-3−/− corneas. A galactosyltransferase, β3GalT5, which has the ability to synthesize Gal-3 ligands was markedly downregulated in healing Gal-3−/− corneas. The genes for polypeptide galactosaminyltransferases (ppGalNAcT-3 and -7) that are known to initiate O-linked glycosylation and N-aspartyl-β-glucosaminidase, which participates in the removal of N-glycans, were found to be upregulated in healing Gal-3−/− corneas. Microarray data were validated by qRT-PCR. Conclusions Based on the known functions of the differentially expressed glycogenes, it appears that the glycan structures on glycoproteins and glycolipids, synthesized as a result of the differential glycogene expression pattern in healing Gal-3−/− corneas may lead to the downregulation of specific counterreceptors for Gal-3. This may explain, at least in part, why, unlike healing Gal-3+/+ corneas, the healing Gal-3−/− corneas are unresponsive to the stimulatory effect of exogenous Gal-3 on re-epithelialization of corneal wounds. PMID:19643959

  17. The comparison of structure and anticancer activity in vitro of polysaccharides from brown algae Alaria marginata and A. angusta.

    PubMed

    Usoltseva Menshova, Roza V; Anastyuk, Stanislav D; Shevchenko, Natalia M; Zvyagintseva, Tatiana N; Ermakova, Svetlana P

    2016-11-20

    Laminaran and three fucoidan fractions were obtained from the brown alga Alaria marginata. Alaria angusta, studied earlier by us, has the same polysaccharide composition. Galactofucan AmF3 from A. marginata has a main chain of →3)-α-l-Fucp-(2,4-SO3(-))-(1→residues, similar to galactofucan from A. angusta. However, the structure of the branches in fucoidan AmF3 can differ from those in the fucoidan from A. angusta. The following fragments were identified in AmF3: HexA-(1→2)-Fuc, HexA-(1→2)-Gal, Gal-(1→4)-HexA, Fuc-(1→2)-Gal-6-SO3(-), Fuc-4-SO3(-)-(1→6)-Gal, Gal-(1→2)-Gal-2-SO3(-), Gal-4-SO3(-)-(1 →6)-Gal, Gal-4-SO3(-)-(1→3)-Fuc-(1→3)-Fuc, Fuc-4-SO3(-)-(1→6)-Gal-(1→4)-Gal, Gal-(1→4)-Gal-(1→3)-Fuc, Gal-2-SO3(-)-(1→4)-Gal-(1→4)-Gal, Gal-(1→4)-Gal-6-SO3(-)-(1→2)-Gal. Chains of galactose residues (DP up to 9) were found in AmF3 fucoidan. The laminarans, galactofucans and their derivatives from both algae exhibited no cytotoxicity in vitro. Polysaccharides from A. angusta were more effective against colony formation of HT-29 cells, while those from A. marginata had a greater effect on T-47D cells. Sulfated and desulfated fucoidans possessed weak antitumor activity using SK-MEL-28 cells. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Hydrogeologic investigation of the Malvern TCE Superfund Site, Chester County, Pennsylvania

    USGS Publications Warehouse

    Sloto, Ronald A.

    1997-01-01

    The Malvern TCE Superfund Site, a former solvent recycling facility that now stores and sells solvents, consists of a plant and disposal area, which are approximately 1,900 ft (feet) apart. The site is underlain by an unconfined carbonate bedrock aquifer in which permeability has been enhanced in places by solution. Water levels respond quickly to precipitation and show a similar seasonal variation, response to precipitation, and range of fluctuation. The altitude of water levels in wells at the disposal area is nearly identical because of the small hydraulic gradient. A comparison of water-table maps for 1983, 1993, and 1994 shows that the general shape of the water table and hydraulic gradients in the area have remained the same through time and for different climatic conditions.The plant area is underlain by dolomite of the Elbrook Formation. The dolomite at the plant area does not yield as much water as the dolomite at the disposal area because it is less fractured, and wells penetrate few water-bearing fractures. Yields of nine wells at the plant area range from 1 to 200 gal/min (gallons per minute); the median yield is 6 gal/min. Specific capacities range from 0.08 to 2 (gal/min)/ft (gallons per minute per foot). Aquifer tests were conducted in two wells; median transmissivities estimated from the aquifer-test data ranged from 528 to 839 feet squared per day. Maximum concentrations of volatile organic compounds (VOC's) in ground water at the plant area in 1996 were 53,900 ug/L (micrograms per liter) for trichloroethylene (TCE), 7,110 ug/L for tetrachloroethylene (PCE), and 17,700 ug/L for 1,1,1-trichloroethane (TCA).A ground-water divide is located between the plant area and the disposal area. Ground-water withdrawal for dewatering the Catanach quarry has caused a cone of depression in the water-table surface that reaches to the plant area. From the plant area, ground water flows 1.2 miles to the northeast and discharges to the Catanach quarry. The regional hydraulic gradient between the plant and the Catanach quarry is 0.019. Concentrations of VOC's in water from wells drilled northeast and donwgradient of the plant property boundary are one to two orders of magnitude less than concentrations in water from wells less than 100 ft away at the plant.A capture-zone analysis was performed for two wells at the plant area. The analysis showed that pumping well CC-19 at 20 gal/min would be sufficient to capture all ground-water flow from the plant area. Although water from other wells at the plant site contains higher concentrations of VOC's than water from well CC-19, pumping well CC-19 would induce the flow of water with higher concentrations of VOC's; however, pumping well CC-19 might causes VOC's to move lower into the aquifer.The disposal area is underlain by the Ledger Dolomite. The dolomite at the disposal area is much more fractured than the dolomite at the plant area. Although many of the fractures are filled or partially filled with clay, the dolomite at the disposal area yields more water than the dolomite at the plant area. Yields of eight wells at the disposal area range from 15 to more than 200 gal/min; the median yield is greater than 100 gal/min. Specific capacities range from 2 to 280 (gal/min)/ft. Aquifer tests were conducted in two wells; estimated transimissivities were 34,900 and 56,300 feet squared per day. Concentrations of VOC's in ground water are lower at the disposal area than at the plant area. Water samples collected from wells at the disposal area in 1996 had maximum concentrations of TCE of 768 ug/L, PCE of 111 ug/L, and TCA of 108 ug/L. These concentrations are lower than concentrations in water samples collected before cleanup of drums in the disposal area was completed in 1984.Ground water from the disposal area flows south-southeast toward Valley Creek. The hydraulic gradient between the disposal area and Valley Creek is 0.001. A well-defined plume of VOC’s in ground water extends downgradient from the disposal area toward Valley Creek. A comparison of data from 1995 to 1996 with data from 1981 to 1984 shows that concentrations of TCE, PCE, and TCA in water from most off-site wells have decreased and that water from fewer wells contains detectable concentrations of those compounds.A capture-zone analysis was performed for three wells at the disposal area. The analysis showed that pumping wells CC-16, CC-17, and CC-18 at a combined rate of 270 gal/min would form a capture zone ranging from approximately 443 to 477 ft wide at a distance 500 ft upgradient from the center of the pumping wells. Pumping wells CC-16 and CC-17 together at a combined rate of 172 gal/min would form a capture zone ranging from approximately 172 to 400 ft wide at a distance 500 ft upgradient from the center of the pumping wells.

  19. GAL3 receptor KO mice exhibit an anxiety-like phenotype

    PubMed Central

    Brunner, Susanne M.; Farzi, Aitak; Locker, Felix; Holub, Barbara S.; Drexel, Meinrad; Reichmann, Florian; Lang, Andreas A.; Mayr, Johannes A.; Vilches, Jorge J.; Navarro, Xavier; Lang, Roland; Sperk, Günther; Holzer, Peter; Kofler, Barbara

    2014-01-01

    The neuropeptide galanin (GAL) is widely distributed in the central and peripheral nervous systems. It is a modulator of various physiological and pathological processes, and it mediates its effects via three G protein-coupled receptors (GAL1–3 receptors). A role for GAL as a modulator of mood and anxiety was suggested, because GAL and its receptors are highly expressed in limbic brain structures of rodents. In recent years, numerous studies of animal models have suggested an involvement of GAL and GAL1 and GAL2 receptors in anxiety- and depression-related behavior. However, to date, there is sparse literature implicating GAL3 receptors in behavioral functions. Therefore, we studied the behavior of GAL3 receptor-deficient (GAL3-KO) mice to elucidate whether GAL3 receptors are involved in mediating behavior-associated actions of GAL. The GAL3-KO mouse line exhibited normal breeding and physical development. In addition to behavioral tests, phenotypic characterization included analysis of hematology, amino acid profiles, metabolism, and sudomotor function. In contrast to WT littermates, male GAL3-KO mice exhibited an anxiety-like phenotype in the elevated plus maze, open field, and light/dark box tests, and they were less socially affiliated than WT animals to a stranger mouse in a social interaction test. In conclusion, our data suggest involvement of GAL3 receptors in GAL-mediated effects on mood, anxiety, and behavior, making it a possible target for alternative treatment strategies for mood disorders. PMID:24782539

  20. The Ras suppressor Rsu-1 binds to the LIM 5 domain of the adaptor protein PINCH1 and participates in adhesion-related functions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dougherty, Gerard W.; Section on Structural Cell Biology, National Institute on Deafness and Communication Disorders; Chopp, Treasa

    2005-05-15

    Rsu-1 is a highly conserved leucine rich repeat (LRR) protein that is expressed ubiquitously in mammalian cells. Rsu-1 was identified based on its ability to inhibit transformation by Ras, and previous studies demonstrated that ectopic expression of Rsu-1 inhibited anchorage-independent growth of Ras-transformed cells and human tumor cell lines. Using GAL4-based yeast two-hybrid screening, the LIM domain protein, PINCH1, was identified as the binding partner of Rsu-1. PINCH1 is an adaptor protein that localizes to focal adhesions and it has been implicated in the regulation of adhesion functions. Subdomain mapping in yeast revealed that Rsu-1 binds to the LIM 5more » domain of PINCH1, a region not previously identified as a specific binding domain for any other protein. Additional testing demonstrated that PINCH2, which is highly homologous to PINCH1, except in the LIM 5 domain, does not interact with Rsu-1. Glutathione transferase fusion protein binding studies determined that the LRR region of Rsu-1 interacts with PINCH1. Transient expression studies using epitope-tagged Rsu-1 and PINCH1 revealed that Rsu-1 co-immunoprecipitated with PINCH1 and colocalized with vinculin at sites of focal adhesions in mammalian cells. In addition, endogenous P33 Rsu-1 from 293T cells co-immunoprecipitated with transiently expressed myc-tagged PINCH1. Furthermore, RNAi-induced reduction in Rsu-1 RNA and protein inhibited cell attachment, and while previous studies demonstrated that ectopic expression of Rsu-1 inhibited Jun kinase activation, the depletion of Rsu-1 resulted in activation of Jun and p38 stress kinases. These studies demonstrate that Rsu-1 interacts with PINCH1 in mammalian cells and functions, in part, by altering cell adhesion.« less

  1. A novel galanin receptor 1a gene in zebrafish: tissue distribution, developmental expression roles in nutrition regulation.

    PubMed

    Li, Linfang; Wei, Shulei; Huang, Qiaoyan; Feng, Dong; Zhang, Shicui; Liu, Zhenhui

    2013-03-01

    Galanin (Gal), a 29 (30 in human) amino acid neuropeptide, exerts its biological activities through three different G protein-coupled receptors, namely GalR1, GalR2 and GalR3. However, we previously found that only GalR1 and GalR2 exist in fish, and fish GalR1 has two genes (GalR1a and GalR1b), with GalR1a possibly representing the primitive gene form during fish evolution. To uncover the functions of GalR1a in fish, here the tissue distribution, developmental expression and the role in nutrition regulation of GalR1a were investigated in zebrafish (Danio rerio). Interestingly, the expression of GalR1a mRNA was restricted to the intestine and brain in adult zebrafish, while GalR1b mRNA was present in all tissues tested. During embryogenesis, GalR1a mRNA was abundant at 1hpf (hour past fertilization) and decreased gradually in abundance from 3 hpf to 10 hpf; then a significant increase in the amount of GalR1a transcripts was observed at 35 hpf, and this high level was maintained until 5 dpf (day past fertilization). In situ hybridization of embryos and larvae, expression pattern of GalR1a was mainly restricted to the intestine, pectoral fin, branchial arches and head, indicating a role of GalR1a during zebrafish embryogenesis. Quantitative real-time PCR assay suggested that fasting, high fat feeding or linoleic acid (LA) all could significantly induce up-regulation of GalR1a both in vitro and in vivo, suggesting roles of GalR1a in control of nutrition intake, especially to fat. In addition, a potential role of zebrafish GalR1a in accumulation of lipid droplets in cells was also demonstrated. Our study lays a foundation for further investigation of GalR1a function and evolution in fish. Copyright © 2012 Elsevier Inc. All rights reserved.

  2. Molecular and Biochemical Analysis of the Galactose Phenotype of Dairy Streptococcus thermophilus Strains Reveals Four Different Fermentation Profiles

    PubMed Central

    de Vin, Filip; Rådström, Peter; Herman, Lieve; De Vuyst, Luc

    2005-01-01

    Lactose-limited fermentations of 49 dairy Streptococcus thermophilus strains revealed four distinct fermentation profiles with respect to galactose consumption after lactose depletion. All the strains excreted galactose into the medium during growth on lactose, except for strain IMDOST40, which also displayed extremely high galactokinase (GalK) activity. Among this strain collection eight galactose-positive phenotypes sensu stricto were found and their fermentation characteristics and Leloir enzyme activities were measured. As the gal promoter seems to play an important role in the galactose phenotype, the galR-galK intergenic region was sequenced for all strains yielding eight different nucleotide sequences (NS1 to NS8). The gal promoter played an important role in the Gal-positive phenotype but did not determine it exclusively. Although GalT and GalE activities were detected for all Gal-positive strains, GalK activity could only be detected for two out of eight Gal-positive strains. This finding suggests that the other six S. thermophilus strains metabolize galactose via an alternative route. For each type of fermentation profile obtained, a representative strain was chosen and four complete Leloir gene clusters were sequenced. It turned out that Gal-positive strains contained more amino acid differences within their gal genes than Gal-negative strains. Finally, the biodiversity regarding lactose-galactose utilization among the different S. thermophilus strains used in this study was shown by RAPD-PCR. Five Gal-positive strains that contain nucleotide sequence NS2 in their galR-galK intergenic region were closely related. PMID:16000774

  3. A 1.5 Ma record of plume-ridge interaction at the Western Galápagos Spreading Center (91°40‧-92°00‧W)

    NASA Astrophysics Data System (ADS)

    Herbrich, Antje; Hauff, Folkmar; Hoernle, Kaj; Werner, Reinhard; Garbe-Schönberg, Dieter; White, Scott

    2016-07-01

    Shallow (elevated) portions of mid-ocean ridges with enriched geochemical compositions near hotspots document the interaction of hot, geochemically-enriched plume mantle with shallow depleted upper mantle. Whereas the spatial variations in geochemical composition of ocean crust along the ridge axis in areas where plume-ridge interaction is taking place have been studied globally, only restricted information exists concerning temporal variations in geochemistry of ocean crust formed through plume-ridge interaction. Here we present a detailed geochemical study of 0-1.5 Ma ocean crust sampled from the Western Galápagos Spreading Center (WGSC) axis to 50 km north of the axis, an area that is presently experiencing a high influx of mantle material from the Galápagos hotspot. The tholeiitic to basaltic andesitic fresh glass and few bulk rock samples have incompatible element abundances and Sr-Nd-Pb isotopic compositions intermediate between depleted normal mid-ocean-ridge basalt (N-MORB) from >95.5°W along the WGSC and enriched lavas from the Galápagos Archipelago, displaying enriched (E-)MORB type compositions. Only limited and no systematic geochemical variations are observed with distance from the ridge axis for <1.0 Ma old WGSC crust, whereas 1.0-1.5 Ma old crust trends to more enriched isotopic compositions in 87Sr/86Sr, 143Nd/144Nd, 207Pb/204Pb and 208Pb/204Pb isotope ratios. On isotope correlation diagrams, the data set displays correlations between depleted MORB and two enriched components. Neither the geographically referenced geochemical domains of the Galápagos Archipelago nor the end members used for principal component analysis can successfully describe the observed mixing relations. Notably an off-axis volcanic cone at site DR63 has the appropriate composition to serve as the enriched component for the younger WGSC and could represent a portion of the northern part of the Galápagos plume not sampled south of the WGSC. Similar compositions to samples from volcanic cone DR63 have been found in the northern part of the 11-14 Ma Galápagos hotspot track offshore Costa Rica, indicating that this composition is derived from the northern portion of the Galápagos plume. The older WGSC requires involvement of an enriched mantle two (EMII) type source, not recognized thus far in the Galápagos system, and is interpreted to reflect entrained material either from small-scale heterogeneities within the upper mantle or from the mantle transition zone. Overall the source material for the 0-1.5 Ma WGSC ocean crust appears to represent mixing of depleted upper mantle with Northern Galápagos Plume material of relatively uniform composition in relatively constant proportions.

  4. Transcriptional regulation of cellular ageing by the CCAAT box-binding factor CBF/NF-Y.

    PubMed

    Matuoka, Koozi; Chen, Kuang Yu

    2002-09-01

    Cellular ageing is a systematic process affecting the entirety of cell structure and function. Since changes in gene expression are extensive and global during ageing, involvement of general transcription regulators in the phenomenon is likely. Here, we focus on NF-Y, the major CCAAT box-binding factor, which exerts differential regulation on a wide variety of genes through its interaction with the CCAAT box present in as many as 25% of the eukaryotic genes. When a cell ages, senescing signals arise, typically through DNA damage due to oxidative stress or telomere shortening, and are transduced to proteins such as p53, retinoblastoma protein, and phosphatidylinositol 3-kinase. Among them, activated p53 family proteins suppress the function of NF-Y and thereby downregulate a set of cell cycle-related genes, including E2F1, which further leads to downregulation of E2F-regulated genes and cell cycle arrest. The p53 family also induces other ageing phenotypes such as morphological alterations and senescence-associated beta-galactosidase (SA-gal) presumably by upregulation of some genes through NF-Y suppression. In fact, the activities of NF-Y and E2F decrease during ageing and a dominant negative NF-YA induces SA-gal. Based on these observations, NF-Y appears to play an important role in the process of cellular ageing.

  5. Genetic and biological characterization of three poultry-origin H5N6 avian influenza viruses with all internal genes from genotype S H9N2 viruses.

    PubMed

    Liu, Kaituo; Gu, Min; Hu, Shunlin; Gao, Ruyi; Li, Juan; Shi, Liwei; Sun, Wenqi; Liu, Dong; Gao, Zhao; Xu, Xiulong; Hu, Jiao; Wang, Xiaoquan; Liu, Xiaowen; Chen, Sujuan; Peng, Daxin; Jiao, Xinan; Liu, Xiufan

    2018-04-01

    During surveillance for avian influenza viruses, three H5N6 viruses were isolated in chickens obtained from live bird markets in eastern China, between January 2015 and April 2016. Sequence analysis revealed a high genomic homology between these poultry isolates and recent human H5N6 variants whose internal genes were derived from genotype S H9N2 avian influenza viruses. Glycan binding assays revealed that all avian H5N6 viruses were capable of binding to both human-type SAα-2,6Gal receptors and avian-type SAα-2,3Gal receptors. Their biological characteristics were further studied in BALB/c mice, specific-pathogen-free chickens, and mallard ducks. All three isolates had low pathogenicity in mice but were highly pathogenic to chickens, as evidenced by 100% mortality 36-120 hours post infection at a low dose of 10 3.0 EID 50 and through effective contact transmission. Moreover, all three poultry H5N6 isolates caused asymptomatic infections in ducks, which may serve as a reservoir host for their maintenance and dissemination; these migrating waterfowl could cause a potential global pandemic. Our study suggests that continuous epidemiological surveillance in poultry should be implemented for the early prevention of future influenza outbreaks.

  6. Inhibition of the lethality of Shiga-like toxin-1 by functional gold nanoparticles.

    PubMed

    Li, Chun-Hsien; Bai, Yi-Ling; Chen, Yu-Chie

    2018-02-15

    Escherichia coli O157:H7 is a pathogen, which can generate Shiga-like toxins (SLTs) and cause hemolytic-uremic syndrome. Foodborne illness outbreaks caused by E. coli O157:H7 have become a global issue. Since SLTs are quite toxic, effective medicines that can reduce the damage caused by SLTs should be explored. SLTs consist of a single A and five B subunits, which can inhibit ribosome activity for protein synthesis and bind with the cell membrane of host cells, respectively. Pigeon ovalbumin (POA), i.e. a glycoprotein, is abundant in pigeon egg white (PEW) proteins. The structure of POA contains Gal-α(1→4)-Gal-β(1→4)-GlcNAc ligands, which have binding affinity toward the B subunit in SLT type-1 (SLT-1B). POA immobilized gold nanoparticles (POA-Au NPs) can be generated by reacting PEW proteins with aqueous tetrachloroauric acid in one-pot. The generated POA-Au NPs have been demonstrated to have selective trapping-capacity toward SLT-1B previously. Herein, we explore that POA-Au NPs can be used as protective agents to neutralize the toxicity of SLT-1 in SLT-1-infected model cells. The results show that the cells can be completely rescued when a sufficient amount of POA-Au NPs is used to treat the SLT-1-infected cells within 1 h.

  7. Functional analysis of variant lysosomal acid glycosidases of Anderson-Fabry and Pompe disease in a human embryonic kidney epithelial cell line (HEK 293 T).

    PubMed

    Ebrahim, Hatim Y; Baker, Robert J; Mehta, Atul B; Hughes, Derralynn A

    2012-03-01

    The functional significance of missense mutations in genes encoding acid glycosidases of lysosomal storage disorders (LSDs) is not always clear. Here we describe a method of investigating functional properties of variant enzymes in vitro using a human embryonic kidney epithelial cell line. Site-directed mutagenesis was performed on the parental plasmids containing cDNA encoding for alpha-galactosidase A (α-Gal A) and acid maltase (α-Glu) to prepare plasmids encoding relevant point mutations. Mutant plasmids were transfected into HEK 293 T cells, and transient over-expression of variant enzymes was measured after 3 days. We have illustrated the method by examining enzymatic activities of four unknown α-Gal A and one α-Glu variants identified in our patients with Anderson-Fabry disease and Pompe diseases respectively. Comparison with control variants known to be either pathogenic or non-pathogenic together with over-expression of wild-type enzyme allowed determination of the pathogenicity of the mutation. One leader sequence novel variant of α-Gal A (p.A15T) was shown not to significantly reduce enzyme activity, whereas three other novel α-Gal A variants (p.D93Y, p.L372P and p.T410I) were shown to be pathogenic as they resulted in significant reduction of enzyme activity. A novel α-Glu variant (p.L72R) was shown to be pathogenic as this significantly reduced enzyme activity. Certain acid glycosidase variants that have been described in association with late-onset LSDs and which are known to have variable residual plasma and leukocyte enzyme activity in patients appear to show intermediate to low enzyme activity (p.N215S and p.Q279E α-Gal A respectively) in the over-expression system.

  8. Intravascular local gene transfer mediated by protein-coated metallic stent.

    PubMed

    Yuan, J; Gao, R; Shi, R; Song, L; Tang, J; Li, Y; Tang, C; Meng, L; Yuan, W; Chen, Z

    2001-10-01

    To assess the feasibility, efficiency and selectivity of adenovirus-mediated gene transfer to local arterial wall by protein-coated metallic stent. A replication-defective recombinant adenovirus carrying the Lac Z reporter gene for nuclear-specific beta-galactosidase (Ad-beta gal) was used in this study. The coating for metallic stent was made by immersing it in a gelatin solution containing crosslinker. The coated stents were mounted on a 4.0 or 3.0 mm percutaneous transluminal coronary angioplasty (PTCA) balloon and submersed into a high-titer Ad-beta gal viral stock (2 x 10(10) pfu/ml) for 3 min, and then implanted into the carotid arteries in 4 mini-swines and into the left anterior descending branch of the coronary artery in 2 mini-swines via 8F large lumen guiding catheters. The animals were sacrificed 7 (n = 4), 14 (n = 1) and 21 (n = 1) days after implantation, respectively. The beta-galactosidase expression was assessed by X-gal staining. The results showed that the expression of transgene was detected in all animal. In 1 of carotid artery with an intact intima, the beta-gal expression was limited to endothelial cells. In vessels with denuded endothelium, gene expression was found in the sub-intima, media and adventitia. The transfection efficiency of medial smooth muscle cells was 38.6%. In 2 animals sacrificed 7 days after transfection, a microscopic examination of X-gal-stained samples did not show evidence of transfection in remote organs and arterial segments adjacent to the treated arterial site. Adenovirus-mediated arterial gene transfer to endothelial, smooth muscle cells and adventitia by protein-coated metallic stent is feasible. The transfection efficiency is higher. The coated stent may act as a good carrier of adenovirus-mediated gene transfer and have a potential to prevent restenosis following PTCA.

  9. Integrative View of α2,3-Sialyltransferases (ST3Gal) Molecular and Functional Evolution in Deuterostomes: Significance of Lineage-Specific Losses

    PubMed Central

    Petit, Daniel; Teppa, Elin; Mir, Anne-Marie; Vicogne, Dorothée; Thisse, Christine; Thisse, Bernard; Filloux, Cyril; Harduin-Lepers, Anne

    2015-01-01

    Sialyltransferases are responsible for the synthesis of a diverse range of sialoglycoconjugates predicted to be pivotal to deuterostomes’ evolution. In this work, we reconstructed the evolutionary history of the metazoan α2,3-sialyltransferases family (ST3Gal), a subset of sialyltransferases encompassing six subfamilies (ST3Gal I–ST3Gal VI) functionally characterized in mammals. Exploration of genomic and expressed sequence tag databases and search of conserved sialylmotifs led to the identification of a large data set of st3gal-related gene sequences. Molecular phylogeny and large scale sequence similarity network analysis identified four new vertebrate subfamilies called ST3Gal III-r, ST3Gal VII, ST3Gal VIII, and ST3Gal IX. To address the issue of the origin and evolutionary relationships of the st3gal-related genes, we performed comparative syntenic mapping of st3gal gene loci combined to ancestral genome reconstruction. The ten vertebrate ST3Gal subfamilies originated from genome duplication events at the base of vertebrates and are organized in three distinct and ancient groups of genes predating the early deuterostomes. Inferring st3gal gene family history identified also several lineage-specific gene losses, the significance of which was explored in a functional context. Toward this aim, spatiotemporal distribution of st3gal genes was analyzed in zebrafish and bovine tissues. In addition, molecular evolutionary analyses using specificity determining position and coevolved amino acid predictions led to the identification of amino acid residues with potential implication in functional divergence of vertebrate ST3Gal. We propose a detailed scenario of the evolutionary relationships of st3gal genes coupled to a conceptual framework of the evolution of ST3Gal functions. PMID:25534026

  10. Modulation of TEL transcription activity by interaction with the ubiquitin-conjugating enzyme UBC9

    PubMed Central

    Chakrabarti, Subhra Ranjan; Sood, Rashmi; Ganguly, Surajit; Bohlander, Stefan; Shen, Zhiyuan; Nucifora, Giuseppina

    1999-01-01

    The E-26 transforming specific (ETS)-related gene TEL, also known as ETV6, is involved in a large number of chromosomal rearrangements associated with leukemia and congenital fibrosarcoma. The encoded protein contains two functional domains: a helix–loop–helix (HLH) domain (also known as pointed domain) located at the N terminus and a DNA-binding domain located at the C terminus. The HLH domain is involved in protein–protein interaction with itself and other members of the ETS family of transcription factors such as FLI1. TEL is a transcription factor, and we and others have shown that it is a repressor of gene expression. To understand further the role of TEL in the cell, we have used an in vivo interaction system to identify proteins that interact with TEL. We show that a protein, UBC9, interacts specifically with TEL in vitro and in vivo. UBC9 is a member of the family of ubiquitin-conjugating enzymes. These enzymes usually are involved in proteosome-mediated degradation; however, our data suggest that interaction of TEL with UBC9 does not lead to TEL degradation. Our studies show that UBC9 binds to TEL exclusively through the HLH domain of TEL. We also show that TEL expressed as fusion to the DNA-binding domain of Gal4 completely represses a Gal4-responsive promoter, but that the coexpression of UBC9 in the same system restores the activity of the promoter. Targeted point mutation of conserved amino acids in UBC9 essential for enzymatic ubiquitination of proteins does not affect interaction nor transcriptional activity. Based on our data, we conclude that UBC9 physically interacts with TEL through the HLH domain and that the interaction leads to modulation of the transcription activity of TEL. PMID:10377438

  11. A novel core 1 O-linked glycan-specific binding lectin from the fruiting body of Hericium erinaceus.

    PubMed

    Kim, Seonghun

    2018-02-01

    Mucin-type O-glycans are involved in biological functions on the cell surface as well as the glycoproteins and can also be used as specific carbohydrate biomarkers of many diseases. In this study, I purified a novel core 1 O-linked glycan specific lectin, Hericium erinaceus lecin (HeL), from the fruiting body of the mushroom Hericium erinaceus, which is known as the natural source for a sialic acid-binding lectin. Upon optimization of the purification conditions, a sequence of ion exchange, affinity, ion exchange, and size-exclusion chromatography resulted in the highest yield and best quality of lectin without protease activity. The resulting purified HeL is an apparent hexameric protein with a subunit molecular weight of 15kDa, and a pI of 4.3. In hemagglutination inhibition assay, the purified lectin was only inhibited by glycoproteins containing mucin-type O-glycans and reacted weakly with Galβ(1,3)GalNAc. Glycan array analyses showed that HeL specifically interacts with core 1 O-linked glycans as well as extended O-glycan structures containing sialylation or fucosylation. The glycan binding specificity of HeL is comparable to that of peanut agglutinin for detection of a broader range of extended core 1 O-glycan structures. Taken together, these results provide an efficient and optimized procedure for the purification of HeL from the fruiting body of the mushroom Hericium erinaceus. Moreover, HeL represents a powerful tool for analyzing core 1 and extended core 1 O- glycan structures in diagnosis assays. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Gal knockout and beyond.

    PubMed

    Zhong, R

    2007-01-01

    Recently, Galalpha1-3Galbeta1-4GlcNAc (Gal) knockout (k/o) pigs have been developed using genetic cloning technologies. This remarkable achievement has generated great enthusiasm in xenotransplantation studies. This review summarizes the current status of nonhuman primate experiments using Gal k/o pig organs. Briefly, when Gal k/o pig organs are transplanted into primates, hyperacute rejection does not occur. Although graft survival has been prolonged up to a few months in some cases, the overall results were not better than those using Gal-positive pig organs with human complement regulatory protein transgenes. Gal k/o pig kidneys rapidly developed rejection which was associated with increased anti-non-Gal antibodies. Although the precise mechanisms of Gal k/o pig organ rejection are not clear, it could result from incomplete deletion of Gal, up-regulation of new antigen (non-Gal antigen) and/or production of non-Gal antibodies. Future work in xenotransplantation should place emphasis on further modification of donors, such as combining human complement regulatory genes with Gal k/o, deleting non-Gal antigens and adding protective/surviving genes or a gene that inhibits coagulation. Induction of donor-specific T- and B-cell tolerance and promotion of accommodation are also warranted.

  13. Galectin-3 and IL-33/ST2 axis roles and interplay in diet-induced steatohepatitis

    PubMed Central

    Pejnovic, Nada; Jeftic, Ilija; Jovicic, Nemanja; Arsenijevic, Nebojsa; Lukic, Miodrag L

    2016-01-01

    Immune reactivity and chronic low-grade inflammation (metaflammation) play an important role in the pathogenesis of obesity-associated metabolic disorders, including type 2 diabetes and nonalcoholic fatty liver disease (NAFLD), a spectrum of diseases that include liver steatosis, nonalcoholic steatohepatitis (NASH), fibrosis, and cirrhosis. Increased adiposity and insulin resistance contribute to the progression from hepatic steatosis to NASH and fibrosis through the development of proinflammatory and profibrotic processes in the liver, including increased hepatic infiltration of innate and adaptive immune cells, altered balance of cytokines and chemokines, increased reactive oxygen species generation and hepatocellular death. Experimental models of dietary-induced NAFLD/NASH in mice on different genetic backgrounds or knockout mice with different immune reactivity are used for elucidating the pathogenesis of NASH and liver fibrosis. Galectin-3 (Gal-3), a unique chimera-type β-galactoside-binding protein of the galectin family has a regulatory role in immunometabolism and fibrogenesis. Mice deficient in Gal-3 develop pronounced adiposity, hyperglycemia and hepatic steatosis, as well as attenuated liver inflammation and fibrosis when fed an obesogenic high-fat diet. Interleukin (IL)-33, a member of the IL-1 cytokine family, mediates its effects through the ST receptor, which is present on immune and nonimmune cells and participates in immunometabolic and fibrotic disorders. Recent evidence, including our own data, suggests a protective role for the IL-33/IL-33R (ST2) signaling pathway in obesity, adipose tissue inflammation and atherosclerosis, but a profibrotic role in NASH development. The link between Gal-3 and soluble ST2 in myocardial fibrosis and heart failure progression has been demonstrated and we have recently shown that Gal-3 and the IL-33/ST2 pathway interact and both have a profibrotic role in diet-induced NASH. This review discusses the current evidence on the roles of Gal-3 and the IL-33/ST2 pathway and their interplay in obesity-associated hepatic inflammation and fibrogenesis that may be of interest in the development of therapeutic interventions to prevent and/or reverse obesity-associated hepatic inflammation and fibrosis. PMID:27956794

  14. Avian Pox Discovered in the Critically Endangered Waved Albatross (Phoebastria irrorata) from the Galápagos Islands, Ecuador.

    PubMed

    Tompkins, Emily M; Anderson, David J; Pabilonia, Kristy L; Huyvaert, Kathryn P

    2017-10-01

    The Waved Albatross (Phoebastria irrorata) is a critically endangered seabird in a rapidly shrinking population in the Galápagos Islands, Ecuador. The introduction of novel pathogens and parasites poses a threat to population persistence. Monitoring disease prevalence and guarding against the spread of such agents in endemic taxa are conservation priorities for the Galápagos, where recent increases in the prevalence of avian pox may have contributed to population declines and range contractions in other bird species. During November 2013-January 2014, we identified 14 Waved Albatross nestlings at our study site on Española Island with avian pox-like lesions and clinical signs. Other seabirds, landbirds, and adult Waved Albatrosses were apparently unaffected. Histopathology of tissue samples from five infected nestlings revealed inclusion bodies in all samples, consistent with avipoxvirus infection. We documented higher mortality (6 of 14 nestlings) in affected nestlings than in unaffected young in this small outbreak of avian pox, the first report of its kind in the world's only tropical albatross.

  15. MBD3L2 interacts with MBD3 and components of the NuRD complex and can oppose MBD2-MeCP1-mediated methylation silencing.

    PubMed

    Jin, Seung-Gi; Jiang, Chun-Ling; Rauch, Tibor; Li, Hongwei; Pfeifer, Gerd P

    2005-04-01

    MBD2 and MBD3 are two proteins that contain methyl-CpG binding domains and have a transcriptional repression function. Both proteins are components of a large CpG-methylated DNA binding complex named MeCP1, which consists of the nucleosome remodeling and histone deacetylase complex Mi2-NuRD and MBD2. MBD3L2 (methyl-CpG-binding protein 3-like 2) is a protein with substantial homology to MBD2 and MBD3, but it lacks the methyl-CpG-binding domain. Unlike MBD3L1, which is specifically expressed in haploid male germ cells, MBD3L2 expression is more widespread. MBD3L2 interacts with MBD3 in vitro and in vivo, co-localizes with MBD3 but not MBD2, and does not localize to methyl-CpG-rich regions in the nucleus. In glutathione S-transferase pull-down assays, MBD3L2 is found associated with several known components of the Mi2-NuRD complex, including HDAC1, HDAC2, MTA1, MBD3, p66, RbAp46, and RbAp48. Gel shift experiments with nuclear extracts and a CpG-methylated DNA probe indicate that recombinant MBD3L2 can displace a form of the MeCP1 complex from methylated DNA. MBD3L2 acts as a transcriptional repressor when tethered to a GAL4-DNA binding domain. Repression by GAL4-MBD3L2 is relieved by MBD2 and vice versa, and repression by MBD2 from a methylated promoter is relieved by MBD3L2. The data are consistent with a role of MBD3L2 as a transcriptional modulator that can interchange with MBD2 as an MBD3-interacting component of the NuRD complex. Thus, MBD3L2 has the potential to recruit the MeCP1 complex away from methylated DNA and reactivate transcription.

  16. SECURING CONTAINERIZED HAZARDOUS WASTES WITH WELDED POLYETHYLENE ENCAPSULATES

    EPA Science Inventory

    Full-scale encapsulation of 208-liter (55-gal) drums was studied as a means for managing corroding containers of hazardous wastes in the field and rendering them suitable for transport and safe deposit within a final disposal site such as a landfill. Polyethylene (PE) receivers w...

  17. Effects of exogenous galanin on neuropathic pain state and change of galanin and its receptors in DRG and SDH after sciatic nerve-pinch injury in rat.

    PubMed

    Xu, Xiaofeng; Yang, Xiangdong; Zhang, Ping; Chen, Xiuying; Liu, Huaxiang; Li, Zhenzhong

    2012-01-01

    A large number of neuroanatomical, neurophysiologic, and neurochemical mechanisms are thought to contribute to the development and maintenance of neuropathic pain. However, mechanisms responsible for neuropathic pain have not been completely delineated. It has been demonstrated that neuropeptide galanin (Gal) is upregulated after injury in the dorsal root ganglion (DRG) and spinal dorsal horn (SDH) where it plays a predominantly antinociceptive role. In the present study, sciatic nerve-pinch injury rat model was used to determine the effects of exogenous Gal on the expression of the Gal and its receptors (GalR1, GalR2) in DRG and SDH, the alterations of pain behavior, nerve conduction velocity (NCV) and morphology of sciatic nerve. The results showed that exogenous Gal had antinociceptive effects in this nerve-pinch injury induced neuropathic pain animal model. It is very interesting that Gal, GalR1 and GalR2 change their expression greatly in DRG and SDH after nerve injury and intrathecal injection of exougenous Gal. Morphological investigation displays a serious damage after nerve-pinch injury and an amendatory regeneration after exogenous Gal treatment. These findings imply that Gal, via activation of GalR1 and/or GalR2, may have neuroprotective effects in reducing neuropathic pain behaviors and improving nerve regeneration after nerve injury.

  18. Metabolic engineering of Agrobacterium sp. strain ATCC 31749 for production of an α-Gal epitope

    PubMed Central

    2010-01-01

    Background Oligosaccharides containing a terminal Gal-α1,3-Gal moiety are collectively known as α-Gal epitopes. α-Gal epitopes are integral components of several medical treatments under development, including flu and HIV vaccines as well as cancer treatments. The difficulty associated with synthesizing the α-Gal epitope hinders the development and application of these treatments due to the limited availability and high cost of the α-Gal epitope. This work illustrates the development of a whole-cell biocatalyst for synthesizing the α-Gal epitope, Gal-α1,3-Lac. Results Agrobacterium sp. ATCC 31749 was engineered to produce Gal-α1,3-Lac by the introduction of a UDP-galactose 4'-epimerase:α1,3-galactosyltransferase fusion enzyme. The engineered Agrobacterium synthesized 0.4 g/L of the α-Gal epitope. Additional metabolic engineering efforts addressed the factors limiting α-Gal epitope production, namely the availability of the two substrates, lactose and UDP-glucose. Through expression of a lactose permease, the intracellular lactose concentration increased by 60 to 110%, subsequently leading to an improvement in Gal-α1,3-Lac production. Knockout of the curdlan synthase gene increased UDP-glucose availability by eliminating the consumption of UDP-glucose for synthesis of the curdlan polysaccharide. With these additional engineering efforts, the final engineered strain synthesized approximately 1 g/L of Gal-α1,3-Lac. Conclusions The Agrobacterium biocatalyst developed in this work synthesizes gram-scale quantities of α-Gal epitope and does not require expensive cofactors or permeabilization, making it a useful biocatalyst for industrial production of the α-Gal epitope. Furthermore, the engineered Agrobacterium, with increased lactose uptake and improved UDP-glucose availability, is a promising host for the production of other medically-relevant oligosaccharides. PMID:20067629

  19. Anti-α-Gal antibodies detected by novel neoglycoproteins as a diagnostic tool for Old World cutaneous leishmaniasis caused by Leishmania major.

    PubMed

    Subramaniam, Krishanthi S; Austin, Victoria; Schocker, Nathaniel S; Montoya, Alba L; Anderson, Matthew S; Ashmus, Roger A; Mesri, Mina; Al-Salem, Waleed; Almeida, Igor C; Michael, Katja; Acosta-Serrano, Alvaro

    2018-06-14

    Outbreaks of Old World cutaneous leishmaniasis (CL) have significantly increased due to the conflicts in the Middle East, with most of the cases occurring in resource-limited areas such as refugee settlements. The standard methods of diagnosis include microscopy and parasite culture, which have several limitations. To address the growing need for a CL diagnostic that can be field applicable, we have identified five candidate neoglycoproteins (NGPs): Galα (NGP3B), Galα(1,3)Galα (NGP17B), Galα(1,3)Galβ (NGP9B), Galα(1,6)[Galα(1,2)]Galβ (NGP11B), and Galα(1,3)Galβ(1,4)Glcβ (NGP1B) that are differentially recognized in sera from individuals with Leishmania major infection as compared with sera from heterologous controls. These candidates contain terminal, non-reducing α-galactopyranosyl (α-Gal) residues, which are known potent immunogens to humans. Logistic regression models found that NGP3B retained the best diagnostic potential (area under the curve from receiver-operating characteristic curve = 0.8). Our data add to the growing body of work demonstrating the exploitability of the human anti-α-Gal response in CL diagnosis.

  20. A systematic analysis of acceptor specificity and reaction kinetics of five human α(2,3)sialyltransferases: Product inhibition studies illustrate reaction mechanism for ST3Gal-I

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gupta, Rohitesh, E-mail: rohitesh.gupta@gmail.com; Matta, Khushi L.; Neelamegham, Sriram, E-mail: neel@buffalo.edu

    2016-01-15

    Sialyltransferases (STs) catalyze the addition of sialic acids to the non-reducing ends of glycoproteins and glycolipids. In this work, we examined the acceptor specificity of five human α(2,3)sialyltransferases, namely ST3Gal -I, -II, -III, -IV and -VI. K{sub M} values for each of these enzymes is presented using radioactivity for acceptors containing Type-I (Galβ1,3GlcNAc), Type-II (Galβ1,4GlcNAc), Type-III (Galβ1,3GalNAc) and Core-2 (Galβ1,3(GlcNAcβ1,6)GalNAc) reactive groups. Several variants of acceptors inhibited ST3Gal activity emphasizing structural role of acceptor in enzyme-catalyzed reactions. In some cases, mass spectrometry was performed for structural verification. The results demonstrate human ST3Gal-I catalysis towards Type-III and Core-2 acceptors with K{submore » M} = 5–50 μM and high V{sub Max} values. The K{sub M} for ST3Gal-I and ST3Gal-II was 100 and 30-fold lower, respectively, for Type-III compared to Type-I acceptors. Variants of Type-I and Type-II structures characterized ST3Gal-III, -IV and -VI for their catalytic specificity. This manuscript also estimates K{sub M} for human ST3Gal-VI using Type-I and Type-II substrates. Together, these findings built a platform for designing inhibitors of STs having therapeutic potential. - Highlights: • K{sub M} for five Human ST3Gals is reported towards Type-I, Type-II & Type-III acceptors. • LC-MS simultaneously quantifies CMP-Neu5Ac & Glycans in a sialylation reaction. • Efficient Core2 sialylation indicates co-operativitiy between ST3Gal-I & C2GnT1. • ST3Gal-I inhibition study proposes iso- or random-sequential bi-bi mechanism.« less

  1. Truncation of Gal4p explains the inactivation of the GAL/MEL regulon in both Saccharomyces bayanus and some Saccharomyces cerevisiae wine strains.

    PubMed

    Dulermo, Rémi; Legras, Jean-Luc; Brunel, François; Devillers, Hugo; Sarilar, Véronique; Neuvéglise, Cécile; Nguyen, Huu-Vang

    2016-09-01

    In the past, the galactose-negative (Gal(-)) phenotype was a key physiological character used to distinguish Saccharomyces bayanus from S. cerevisiae In this work, we investigated the inactivation of GAL gene networks in S. bayanus, which is an S. uvarum/S. eubayanus hybrid, and in S. cerevisiae wine strains erroneously labelled 'S. bayanus'. We made an inventory of their GAL genes using genomes that were either available publicly, re-sequenced by us, or assembled from public data and completed with targeted sequencing. In the S. eubayanus/S. uvarum CBS 380(T) hybrid, the GAL/MEL network is composed of genes from both parents: from S. uvarum, an otherwise complete set that lacks GAL4, and from S. eubayanus, a truncated version of GAL4 and an additional copy of GAL3 and GAL80 Similarly, two different truncated GAL4 alleles were found in S. cerevisiae wine strains EC1118 and LalvinQA23. The lack of GAL4 activity in these strains was corrected by introducing a full-length copy of S. cerevisiae GAL4 on a CEN4/ARS plasmid. Transformation with this plasmid restored galactose utilisation in Gal(-) strains, and melibiose fermentation in strain CBS 380(T) The melibiose fermentation phenotype, formerly regarded as characteristic of S. uvarum, turned out to be widespread among Saccharomyces species. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  2. Handling of Bodies After Violent Death: Strategies for Coping

    DTIC Science & Technology

    1993-04-01

    the dis- ers were together and out of public view. tress. It was reported that, during the Viet - Some body handlers were frightened of "gal- nam War...sensitivities of the families and takes ally observed on site. Participants reported pride in cosmetic treatment of the de- often feeling concerned

  3. GALREX 2011: Initial Results of the 2011 NOAA Ocean Exploration Cruise to the Galápagos Rift Using Interactive Telepresence Technology

    NASA Astrophysics Data System (ADS)

    Holden, J. F.; Baker, E. T.; Embley, R. W.; Hammond, S. R.; Shank, T. M.; Walker, S. L.; White, S. M.; Galrex 2011 Team

    2011-12-01

    The Galápagos Rift is a classic example of ridge-hotspot interaction. In theory, the increased magma supply to the Rift should create an abundance of active hydrothermal vent sites, and yet previous surveys found that high-temperature vents were more scarce than predicted. The mission goals of GALREX 2011 were to explore the diverse habitats and geological settings of the deep Galápagos region primarily to search for hydrothermal venting, but also to explore other areas of interest. In June 2011, the first multibeam bathymetric map of the Galápagos Rift axis from 101° 18' W to 98° W was made with the EM302 sonar, and an along-axis 'tow-yo' CTD-LSS-ORP hydrocast was conducted for hydrothermal plume signals along with additional EM302 mapping from 89° 18' W to 85° 21' W. In July 2011, the ROV Lil' Hercules explored new sites of hydrothermal venting along the eastern arm of the Rift, the Rosebud hydrothermal vent field, hydrothermal mounds 20 km south of the Rift, one of the Paramount Seamounts for a macrofaunal survey, and a volcano on the Ecuador Rift. Data and ROV video feeds were transmitted by broad-band satellite in real time from the ship to a team of scientists in Seattle, WA; Newport, OR; and Woods Hole, MA. The team evaluated the transmitted data and helped direct seafloor ROV operations in real-time. In total, nearly 4,000 km of seafloor were mapped by EM302, 11 CTD tows covered the entire eastern arm of the Rift, and 12 ROV dives collected > 5 TB of high-definition digital video of the seafloor. The hydrocast survey along the eastern Rift identified two regions with abundant optical and ORP signals directly over the spreading axis. The largest of these was nearly 50 km long between 88° 5' W and 88° 33' W. Five ROV dives near 88° 18' W found recently erupted lobate lava flows and several regions of active diffuse hydrothermal venting. The site had the appearance of a relatively recent eruption as the diffuse venting at the site led to extensive white particles of putative sulfur, presumably of bacterial origin, on the rocks and suspended in the lower water column (hence the high optical signal) and there were only mobile rather than sessile fauna at these vents. Extinct hydrothermal sulfide chimneys over 30 m tall were found within 2 km of the active vents suggesting that the region had previously experienced a period of intense heat loss. Three ROV dives at another plume site near 86° W showed reinvigorated diffuse venting in a once massive clam bed now actively colonized by tubeworms, mussels, and microbial mats and ringed with abundant dandelions. The lack of biota and vitreous, unsedimented lobate flows at the Rosebud diffuse vent field (86° 12' W) suggests that it was paved over by an eruption since 2005. The eastern Galápagos Rift appears to have experienced a series of recent dike injections producing new lava flows and extensive diffuse venting, possibly within the past 5 years. Active, focused high-temperature hydrothermal flow has yet to be found on the eastern Rift, though extinct sulfide chimneys attest that it has occurred.

  4. Closure Report for Corrective Action Unit 166: Storage Yards and Contaminated Materials, Nevada Test Site, Nevada

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NSTec Environmental Restoration

    2009-08-01

    Corrective Action Unit (CAU) 166 is identified in the Federal Facility Agreement and Consent Order (FFACO) as 'Storage Yards and Contaminated Materials' and consists of the following seven Corrective Action Sites (CASs), located in Areas 2, 3, 5, and 18 of the Nevada Test Site: CAS 02-42-01, Condo Release Storage Yd - North; CAS 02-42-02, Condo Release Storage Yd - South; CAS 02-99-10, D-38 Storage Area; CAS 03-42-01, Conditional Release Storage Yard; CAS 05-19-02, Contaminated Soil and Drum; CAS 18-01-01, Aboveground Storage Tank; and CAS 18-99-03, Wax Piles/Oil Stain. Closure activities were conducted from March to July 2009 according tomore » the FF ACO (1996, as amended February 2008) and the Corrective Action Plan for CAU 166 (U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office, 2007b). The corrective action alternatives included No Further Action and Clean Closure. Closure activities are summarized. CAU 166, Storage Yards and Contaminated Materials, consists of seven CASs in Areas 2, 3, 5, and 18 of the NTS. The closure alternatives included No Further Action and Clean Closure. This CR provides a summary of completed closure activities, documentation of waste disposal, and confirmation that remediation goals were met. The following site closure activities were performed at CAU 166 as documented in this CR: (1) At CAS 02-99-10, D-38 Storage Area, approximately 40 gal of lead shot were removed and are currently pending treatment and disposal as MW, and approximately 50 small pieces of DU were removed and disposed as LLW. (2) At CAS 03-42-01, Conditional Release Storage Yard, approximately 7.5 yd{sup 3} of soil impacted with lead and Am-241 were removed and disposed as LLW. As a BMP, approximately 22 ft{sup 3} of asbestos tile were removed from a portable building and disposed as ALLW, approximately 55 gal of oil were drained from accumulators and are currently pending disposal as HW, the portable building was removed and disposed as LLW, and accumulators, gas cylinders, and associated debris were removed and are currently pending treatment and disposal as MW. (3) At CAS 05-19-02, Contaminated Soil and Drum, as a BMP, an empty drum was removed and disposed as sanitary waste. (4) At CAS 18-01-01, Aboveground Storage Tank, approximately 165 gal of lead-impacted liquid were removed and are currently pending disposal as HW, and approximately 10 gal of lead shot and 6 yd{sup 3} of wax embedded with lead shot were removed and are currently pending treatment and disposal as MW. As a BMP, approximately 0.5 yd{sup 3} of wax were removed and disposed as hydrocarbon waste, approximately 55 gal of liquid were removed and disposed as sanitary waste, and two metal containers were grouted in place. (5) At CAS 18-99-03, Wax Piles/Oil Stain, no further action was required; however, as a BMP, approximately l.5 yd{sup 3} of wax were removed and disposed as hydrocarbon waste, and one metal container was grouted in place.« less

  5. Hydroponically cultivated radish fed L-galactono-1,4-lactone exhibit increased tolerance to ozone.

    PubMed

    Maddison, Joanna; Lyons, Tom; Plöchl, Matthias; Barnes, Jeremy

    2002-01-01

    Leaf L-ascorbate content of an ozone (O3)-sensitive radish genotype (Raphanus sativus L. cv. Cherry Belle) was increased 2-fold by feeding hydroponically cultivated plants L-galactono- 1,4-lactone (GalL). Plants were grown in controlled-environment chambers ventilated with charcoal/Purafil-filtered air, and administered one of two O3 fumigation regimes: chronic exposure (75 nmol O3 mol(-1) for 7 h day(-1) for 21 days) and acute exposure (180 nmol O3 mol(-1) for 9 h). Chronic O3 exposure decreased root growth by 11% in plants maintained in pure nutrient solution (-GalL), but resulted in no change in root growth in GalL-fed plants (+GalL). Similarly, GalL-feeding counteracted the negative effects of O3 on CO2 assimilation rate observed in control plants (-GalL). Under acute O3 exposure, GalL-fed plants showed none of the visible symptoms of injury, which were extensive in plants not fed GalL. Leaf CO2 assimilation rate was decreased by acute 03 exposure in both GalL treatments, but the extent of the decline was less marked in GalL-fed plants. No significant changes in stomatal conductance resulted from GalL treatment, so O3 Uptake into leaves was equivalent in + GalL and -GalL plants. Feeding GalL, on the other hand, enhanced the level of ascorbate, and resulted in the maintenance of the redox state of ascorbate under acute O3 fumigation, in both the leaf apoplast and symplast. The effect of GalL treatment on ascorbate pools was consistent with the reduction in O3 damage observed in GalL-fed plants. Attempts to model O3 interception by the ascorbate pool in the leaf apoplast suggested a greater capacity for O3 detoxification in GalL-fed plants, which corresponded with the increase in O3 tolerance observed. However, modelled data for GalL-fed plants suggested that additional constituents of the leaf apoplast may play an important role in the attenuation of environmentally-relevant O3 fluxes.

  6. Amblyomma sculptum tick saliva: α-Gal identification, antibody response and possible association with red meat allergy in Brazil.

    PubMed

    Araujo, Ricardo Nascimento; Franco, Paula Ferreira; Rodrigues, Henrique; Santos, Luiza C B; McKay, Craig S; Sanhueza, Carlos A; Brito, Carlos Ramon Nascimento; Azevedo, Maíra Araújo; Venuto, Ana Paula; Cowan, Peter J; Almeida, Igor C; Finn, M G; Marques, Alexandre F

    2016-03-01

    The anaphylaxis response is frequently associated with food allergies, representing a significant public health hazard. Recently, exposure to tick bites and production of specific IgE against α-galactosyl (α-Gal)-containing epitopes has been correlated to red meat allergy. However, this association and the source of terminal, non-reducing α-Gal-containing epitopes have not previously been established in Brazil. Here, we employed the α-1,3-galactosyltransferase knockout mouse (α1,3-GalT-KO) model and bacteriophage Qβ-virus like particles (Qβ-VLPs) displaying Galα1,3Galβ1,4GlcNAc (Galα3LN) epitopes to investigate the presence of α-Gal-containing epitopes in the saliva of Amblyomma sculptum, a species of the Amblyomma cajennense complex, which represents the main tick that infests humans in Brazil. We confirmed that the α-1,3-galactosyltransferase knockout animals produce significant levels of anti-α-Gal antibodies against the Galα1,3Galβ1,4GlcNAc epitopes displayed on Qβ-virus like particles. The injection of A. sculptum saliva or exposure to feeding ticks was also found to induce both IgG and IgE anti-α-Gal antibodies in α-1,3-galactosyltransferase knockout mice, thus indicating the presence of α-Gal-containing epitopes in the tick saliva. The presence of α-Gal-containing epitopes was confirmed by ELISA and immunoblotting following removal of terminal α-Gal epitopes by α-galactosidase treatment. These results suggest for the first known time that bites from the A. sculptum tick may be associated with the unknown etiology of allergic reactions to red meat in Brazil. Copyright © 2016 Australian Society for Parasitology Inc. Published by Elsevier Ltd. All rights reserved.

  7. Methods for the detection and serum depletion of porcine galectin-3.

    PubMed

    Eliaz, Isaac; Patil, Aarti; Navarro-Alvarez, Nalu; Wang, Zhirui; Eliaz, Amity; Weil, Elaine; Wilk, Barry; Sachs, David H; Huang, Christene A

    2017-10-01

    Circulating galectin-3 (Gal-3) is elevated in systemic inflammatory disorders, fibrotic diseases, and in cancers. Gal-3 is a promising cancer target where it promotes tumorigenesis and metastasis, as well as in renal, pulmonary, hepatic, and cardiovascular diseases, because of its role as a driver of fibrotic remodeling. This reports goal was to establish methods for the detection and removal of porcine Gal-3 that will enable further studies of the therapeutic potential of Gal-3 depletion by apheresis in porcine disease models. The long-term aim is to develop a safe, effective method of removing Gal-3 via apheresis as a standalone therapeutic tool and as an adjuvant to other therapies. Purified recombinant porcine Gal-3 was prepared and used as the standard for development of a porcine Gal-3 enzyme-linked immunosorbent assay (ELISA). Different affinity column matrices that incorporated either a rat IgG2a anti-Gal-3 monoclonal antibody or carbohydrate ligand were assessed for depletion of Gal-3 from porcine serum. A porcine Gal-3 ELISA with a linear range from 0.3 to 20 ng/mL was able to detect native porcine Gal-3 in both fetal (∼150-200 ng/mL) and juvenile (∼5-15 ng/mL) porcine serum samples. Use of an anti-Gal-3 monoclonal antibody affinity column depleted Gal-3 from porcine serum to at least 313 pg/mL, the limit of ELISA detection. Methods have been developed for the detection and depletion of porcine Gal-3. These methods will be used to study the specific effects of Gal-3 depletion via apheresis in porcine models of disease. © 2017 Wiley Periodicals, Inc.

  8. Amblyomma sculptum tick saliva: α-Gal identification, antibody response and possible association with red meat allergy in Brazil

    PubMed Central

    Araujo, Ricardo Nascimento; Franco, Paula Ferreira; Rodrigues, Henrique; Santos, Luiza C.B.; McKay, Craig S.; Sanhueza, Carlos A.; Brito, Carlos Ramon Nascimento; Azevedo, Maíra Araújo; Venuto, Ana Paula; Cowan, Peter J.; Almeida, Igor C.; Finn, M.G.; Marques, Alexandre F.

    2017-01-01

    The anaphylaxis response is frequently associated with food allergies, representing a significant public health hazard. Recently, exposure to tick bites and production of specific IgE against α-galactosyl (α-Gal)-containing epitopes has been correlated to red meat allergy. However, this association and the source of terminal, non-reducing α-Gal-containing epitopes have not previously been established in Brazil. Here, we employed the α-1,3-galactosyltransferase knockout mouse (α1,3-GalT-KO) model and bacteriophage Qβ-virus like particles (Qβ-VLPs) displaying Galα1,3Galβ1,4GlcNAc (Galα3LN) epitopes to investigate the presence of α-Gal-containing epitopes in the saliva of Amblyomma sculptum, a species of the Amblyomma cajennense complex, which represents the main tick that infests humans in Brazil. We confirmed that the α-1,3-galactosyltransferase knockout animals produce significant levels of anti-α-Gal antibodies against the Galα1,3Galβ1,4GlcNAc epitopes displayed on Qβ-virus like particles. The injection of A. sculptum saliva or exposure to feeding ticks was also found to induce both IgG and IgE anti-α-Gal antibodies in α-1,3-galactosyltransferase knockout mice, thus indicating the presence of α-Gal-containing epitopes in the tick saliva. The presence of α-Gal-containing epitopes was confirmed by ELISA and immunoblotting following removal of terminal α-Gal epitopes by α-galactosidase treatment. These results suggest for the first known time that bites from the A. sculptum tick may be associated with the unknown etiology of allergic reactions to red meat in Brazil. PMID:26812026

  9. Base Exterior Architecture Plan

    DTIC Science & Technology

    1989-02-01

    horstalllae Kuhio Vine QLThunbergia grandiflora Moon Flower Dimorphotheca sinuata Cape Marigold - azana Hybrids Clumping Gaz; ULI- Ophiopogon...2-1/2 Gal. Silver Morning Glory I Gal. Bougainvillea 1 to 5 Gal. Cat’s Claw 1 Gal. Kuhio Vine 1 Gal. Moon Flower 1 Gal. Cape Marigold 4’ pots 12’ o.c...Vine ALThunbergia granditlora Moon Flower Dimorphotheca sinuata Cape Marigold - Gazania Hybrids Clumping Gazer o> L~i Ophiopogon japonicus Mondo Grass

  10. Alternative splicing within the ligand binding domain of the human constitutive androstane receptor.

    PubMed

    Savkur, Rajesh S; Wu, Yifei; Bramlett, Kelli S; Wang, Minmin; Yao, Sufang; Perkins, Douglas; Totten, Michelle; Searfoss, George; Ryan, Timothy P; Su, Eric W; Burris, Thomas P

    2003-01-01

    The human constitutive androstane receptor (hCAR; NR1I3) is a member of the nuclear receptor superfamily. The activity of hCAR is regulated by a variety of xenobiotics including clotrimazole and acetaminophen metabolites. hCAR, in turn, regulates a number of genes responsible for xenobiotic metabolism and transport including several cytochrome P450s (CYP 2B5, 2C9, and 3A4) and the multidrug resistance-associated protein 2 (MRP2, ABCC2). Thus, hCAR is believed to be a mediator of drug-drug interactions. We identified two novel hCAR splice variants: hCAR2 encodes a receptor in which alternative splice acceptor sites are utilized resulting in a 4 amino acid insert between exons 6 and 7, and a 5 amino acid insert between 7 and 8, and hCAR3 encodes a receptor with exon 7 completely deleted resulting in a 39 amino acid deletion. Both hCAR2 and hCAR3 mRNAs are expressed in a pattern similar to the initially described MB67 (hCAR1) with some key distinctions. Although the levels of expression vary depending on the tissue examined, hCAR2 and hCAR3 contribute 6-8% of total hCAR mRNA in liver. Analysis of the activity of these variants indicates that both hCAR2 and hCAR3 lose the ability to heterodimerize with RXR and lack transactivation activity in cotransfection experiments where either full-length receptor or GAL4 DNA-binding domain/CAR ligand binding domain chimeras were utilized. Although the role of hCAR2 and hCAR3 is currently unclear, these additional splice variants may provide for increased diversity in terms of responsiveness to xenobiotics.

  11. Structure-Function Analysis of the Drosophila melanogaster Caudal Transcription Factor Provides Insights into Core Promoter-preferential Activation.

    PubMed

    Shir-Shapira, Hila; Sharabany, Julia; Filderman, Matan; Ideses, Diana; Ovadia-Shochat, Avital; Mannervik, Mattias; Juven-Gershon, Tamar

    2015-07-10

    Regulation of RNA polymerase II transcription is critical for the proper development, differentiation, and growth of an organism. The RNA polymerase II core promoter is the ultimate target of a multitude of transcription factors that control transcription initiation. Core promoters encompass the RNA start site and consist of functional elements such as the TATA box, initiator, and downstream core promoter element (DPE), which confer specific properties to the core promoter. We have previously discovered that Drosophila Caudal, which is a master regulator of genes involved in development and differentiation, is a DPE-specific transcriptional activator. Here, we show that the mouse Caudal-related homeobox (Cdx) proteins (mCdx1, mCdx2, and mCdx4) are also preferential core promoter transcriptional activators. To elucidate the mechanism that enables Caudal to preferentially activate DPE transcription, we performed structure-function analysis. Using a systematic series of deletion mutants (all containing the intact DNA-binding homeodomain) we discovered that the C-terminal region of Caudal contributes to the preferential activation of the fushi tarazu (ftz) Caudal target gene. Furthermore, the region containing both the homeodomain and the C terminus of Caudal was sufficient to confer core promoter-preferential activation to the heterologous GAL4 DNA-binding domain. Importantly, we discovered that Drosophila CREB-binding protein (dCBP) is a co-activator for Caudal-regulated activation of ftz. Strikingly, dCBP conferred the ability to preferentially activate the DPE-dependent ftz reporter to mini-Caudal proteins that were unable to preferentially activate ftz transcription themselves. Taken together, it is the unique combination of dCBP and Caudal that enables the co-activation of ftz in a core promoter-preferential manner. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  12. Sialylation of EGFR by the ST6Gal-I sialyltransferase promotes EGFR activation and resistance to gefitinib-mediated cell death.

    PubMed

    Britain, Colleen M; Holdbrooks, Andrew T; Anderson, Joshua C; Willey, Christopher D; Bellis, Susan L

    2018-02-05

    The ST6Gal-I sialyltransferase is upregulated in numerous cancers, and high expression of this enzyme correlates with poor patient prognosis in various malignancies, including ovarian cancer. Through its sialylation of a select cohort of cell surface receptors, ST6Gal-I modulates cell signaling to promote tumor cell survival. The goal of the present study was to investigate the influence of ST6Gal-I on another important receptor that controls cancer cell behavior, EGFR. Additionally, the effect of ST6Gal-I on cancer cells treated with the common EGFR inhibitor, gefitinib, was evaluated. Using the OV4 ovarian cancer cell line, which lacks endogenous ST6Gal-I expression, a kinomics assay revealed that cells with forced overexpression of ST6Gal-I exhibited increased global tyrosine kinase activity, a finding confirmed by immunoblotting whole cell lysates with an anti-phosphotyrosine antibody. Interestingly, the kinomics assay suggested that one of the most highly activated tyrosine kinases in ST6Gal-I-overexpressing OV4 cells was EGFR. Based on these findings, additional analyses were performed to investigate the effect of ST6Gal-I on EGFR activation. To this end, we utilized, in addition to OV4 cells, the SKOV3 ovarian cancer cell line, engineered with both ST6Gal-I overexpression and knockdown, as well as the BxPC3 pancreatic cancer cell line with knockdown of ST6Gal-I. In all three cell lines, we determined that EGFR is a substrate of ST6Gal-I, and that the sialylation status of EGFR directly correlates with ST6Gal-I expression. Cells with differential ST6Gal-I expression were subsequently evaluated for EGFR tyrosine phosphorylation. Cells with high ST6Gal-I expression were found to have elevated levels of basal and EGF-induced EGFR activation. Conversely, knockdown of ST6Gal-I greatly attenuated EGFR activation, both basally and post EGF treatment. Finally, to illustrate the functional importance of ST6Gal-I in regulating EGFR-dependent survival, cells were treated with gefitinib, an EGFR inhibitor widely used for cancer therapy. These studies showed that ST6Gal-I promotes resistance to gefitinib-mediated apoptosis, as measured by caspase activity assays. Results herein indicate that ST6Gal-I promotes EGFR activation and protects against gefitinib-mediated cell death. Establishing the tumor-associated ST6Gal-I sialyltransferase as a regulator of EGFR provides novel insight into the role of glycosylation in growth factor signaling and chemoresistance.

  13. Effect of N-acetylgalactosamine ligand valency on targeting dendrimers to hepatic cancer cells.

    PubMed

    Kuruvilla, Sibu P; Tiruchinapally, Gopinath; Kaushal, Neha; ElSayed, Mohamed E H

    2018-04-16

    The display of N-acetylgalactosamine (NAcGal) ligands has shown great potential in improving the targeting of various therapeutic molecules to hepatocellular carcinoma (HCC), a severe disease whose clinical treatment is severely hindered by limitations in delivery of therapeutic cargo. We previously used the display of NAcGal on generation 5 (G5) polyamidoamine (PAMAM) dendrimers connected through a poly(ethylene glycol) (PEG) brush (i.e. G5-cPEG-NAcGal; monoGal) to effectively target hepatic cancer cells and deliver a loaded therapeutic cargo. In this study, we were interested to see if tri-valent NAcGal ligands (i.e. NAcGal 3 ) displayed on G5 dendrimers (i.e. G5-cPEG-NAcGal 3 ; triGal) could improve their ability to target hepatic cancer cells compared to their monoGal counterparts. We therefore synthesized a library of triGal particles, with either 2, 4, 6, 8, 11, or 14 targeting branches (i.e. cPEG-NAcGal 3 ) attached. Conventional flow cytometry studies showed that all particle formulations can label hepatic cancer cells in a concentration-dependent manner, reaching 90-100% of cells labeled at either 285 or 570 nM G5, but interestingly, monoGal labeled more cells at lower concentrations. To elucidate the difference in internalization of monoGal versus triGal conjugates, we turned to multi-spectral imaging flow cytometry and quantified the amount of internalized (I) versus surface-bound (I 0 ) conjugates to determine the ratio of internalization (I/I 0 ) in all treatment groups. Results show that regardless of NAcGal valency, or the density of targeting branches, all particles achieve full internalization and diffuse localization throughout the cell (I/I 0  ∼ 3.0 for all particle compositions). This indicates that while tri-valent NAcGal is a promising technique for targeting nanoparticles to hepatic cancer cells, mono-valent NAcGal is more efficient, contrary to what is observed with small molecules. Copyright © 2018 Elsevier B.V. All rights reserved.

  14. Elucidating Mechanisms of Farnesyltransferase Inhibitor Action and Resistance in Breast Cancer by Bioluminescence Imaging

    DTIC Science & Technology

    2009-06-01

    Ras or Cdc42, and a downstream IRES (internal ribosome entry site) to express Renilla luciferase for normalization of infection efficiency. As...internal ribosome entry site (IRES) downstream of Gal4-GFP-VP16-H-Ras/Cdc42 to drive constitutive expression of Renilla luciferase as a means of...for infection efficiency ( renilla luc). 8 mechanisms determining FTI or GGTI sensitivity and resistance in tumors. The system now will be

  15. Absence of Gal epitope prolongs survival of swine lungs in an ex vivo model of hyperacute rejection

    PubMed Central

    Nguyen, Bao-Ngoc H.; Azimzadeh, Agnes M.; Schroeder, Carsten; Buddensick, Thomas; Zhang, Tianshu; Laaris, Amal; Cochrane, Megan; Schuurman, Henk-Jan; Sachs, David H.; Allan, James S.; Pierson, Richard N.

    2012-01-01

    Background Galactosyl transferase gene knock-out (GalTKO) swine offer a unique tool to evaluate the role of the Gal antigen in xenogenic lung hyperacute rejection. Methods We perfused GalTKO miniature swine lungs with human blood. Results were compared with those from previous studies using wild-type and human decay-accelerating factor-transgenic (hDAF+/+) pig lungs. Results GalTKO lungs survived 132 ± 52 min compared to 10 ± 9 min for wild-type lungs (P = 0.001) and 45 ± 60 min for hDAF+/+ lungs (P = 0.18). GalTKO lungs displayed stable physiologic flow and pulmonary vascular resistance (PVR) until shortly before graft demise, similar to autologous perfusion, and unlike wild-type or hDAF+/+ lungs. Early (15 and 60 min) complement (C3a) and platelet activation and intrapulmonary platelet deposition were significantly diminished in GalTKO lungs relative to wild-type or hDAF+/+ lungs. However, GalTKO lungs adsorbed cytotoxic anti-non-Gal antibody and elaborated high levels of thrombin; their demise was associated with increased PVR, capillary congestion, intravascular thrombi and strong CD41 deposition not seen at earlier time points. Conclusions In summary, GalTKO lungs are substantially protected from injury but, in addition to anti-non-Gal antibody and complement, platelet adhesion and non-physiologic intravascular coagulation contribute to Gal-independent lung injury mechanisms. PMID:21496117

  16. Production of alpha 1,3-galactosyltransferase gene-deficient pigs by somatic cell nuclear transfer: a novel selection method for gal alpha 1,3-Gal antigen-deficient cells.

    PubMed

    Fujimura, Tatsuya; Takahagi, Yoichi; Shigehisa, Tamotsu; Nagashima, Hiroshi; Miyagawa, Shuji; Shirakura, Ryota; Murakami, Hiroshi

    2008-09-01

    The objective of the present study was to isolate alpha 1,3-galactosyltransferase (GalGT)-gene double knockout (DKO) cells using a novel simple method of cell selection method. To obtain GalGT-DKO cells, GalGT-gene single knockout (SKO) fetal fibroblast cells were cultured for three to nine passages and GalGT-null cells were separated using a biotin-labeled IB4 lectin attached to streptavidin-coated magnetic beads. After 15-17 days of additional cultivation, seven GalGT-DKO cell colonies were obtained from a total of 2.5 x 10(7) GalGT-SKO cells. A total of 926 somatic nuclear transferred embryos reconstructed with the DKO cells were transferred into eight recipient pigs, producing four farrowed, three liveborns, and six stillborns. Absence of GalGT gene in the cloned pigs was confirmed by PCR and Southern blotting. Flow cytometric analysis revealed that alphaGal antigens were not present in the cells of the cloned DKO pigs.

  17. The acetylation of transcription factor HBP1 by p300/CBP enhances p16INK4A expression

    PubMed Central

    Wang, Weibin; Pan, Kewu; Chen, Yifan; Huang, Chunyin; Zhang, Xiaowei

    2012-01-01

    HBP1 is a sequence-specific DNA-binding transcription factor with many important biological roles. It activates or represses the expression of some specific genes during cell growth and differentiation. Previous studies have exhibited that HBP1 binds to p16INK4A promoter and activates p16INK4A expression. We found that trichostatin A (TSA), an inhibitor of HDAC (histone deacetylase), induces p16INK4A expression in an HBP1-dependent manner. This result was drawn from a transactivation experiment by measuring relative luciferase activities of p16INK4A promoter with HBP1-binding site in comparison with that of the wild-type p16INK4A promoter by transient cotransfection with HBP1 into HEK293T cells and 2BS cells. HBP1 acetylation after TSA treatment was confirmed by immunoprecipitation assay. Our data showed that HBP1 interacted with histone acetyltransferase p300 and CREB-binding protein (CBP) and also recruited p300/CBP to p16INK4A promoter. HBP1 was acetylated by p300/CBP in two regions: repression domain (K297/305/307) and P domain (K171/419). Acetylation of Repression domain was not required for HBP1 transactivation on p16INK4A. However, luciferase assay and western blotting results indicate that acetylation of P domain, especially K419 acetylation is essential for HBP1 transactivation on p16INK4A. As assayed by SA-beta-gal staining, the acetylation of HBP1 at K419 enhanced HBP1-induced premature senescence in 2BS cells. In addition, HDAC4 repressed HBP1-induced premature senescence through permanently deacetylating HBP1. We conclude that our data suggest that HBP1 acetylation at K419 plays an important role in HBP1-induced p16INK4A expression. PMID:21967847

  18. An α-Gal-containing neoglycoprotein-based vaccine partially protects against murine cutaneous leishmaniasis caused by Leishmania major

    PubMed Central

    Iniguez, Eva; Schocker, Nathaniel S.; Subramaniam, Krishanthi; Portillo, Susana; Montoya, Alba L.; Al-Salem, Waleed S.; Torres, Caresse L.; Rodriguez, Felipe; Moreira, Otacilio C.; Acosta-Serrano, Alvaro; Michael, Katja; Maldonado, Rosa A.

    2017-01-01

    Background Protozoan parasites from the genus Leishmania cause broad clinical manifestations known as leishmaniases, which affect millions of people worldwide. Cutaneous leishmaniasis (CL), caused by L. major, is one the most common forms of the disease in the Old World. There is no preventive or therapeutic human vaccine available for L. major CL, and existing drug treatments are expensive, have toxic side effects, and resistant parasite strains have been reported. Hence, further therapeutic interventions against the disease are necessary. Terminal, non-reducing, and linear α-galactopyranosyl (α-Gal) epitopes are abundantly found on the plasma membrane glycolipids of L. major known as glycoinositolphospholipids. The absence of these α-Gal epitopes in human cells makes these glycans highly immunogenic and thus potential targets for vaccine development against CL. Methodology/Principal findings Here, we evaluated three neoglycoproteins (NGPs), containing synthetic α-Gal epitopes covalently attached to bovine serum albumin (BSA), as vaccine candidates against L. major, using α1,3-galactosyltransferase-knockout (α1,3GalT-KO) mice. These transgenic mice, similarly to humans, do not express nonreducing, linear α-Gal epitopes in their cells and are, therefore, capable of producing high levels of anti-α-Gal antibodies. We observed that Galα(1,6)Galβ-BSA (NGP5B), but not Galα(1,4)Galβ-BSA (NGP12B) or Galα(1,3)Galα-BSA (NGP17B), was able to significantly reduce the size of footpad lesions by 96% in comparison to control groups. Furthermore, we observed a robust humoral and cellular immune response with production of high levels of protective lytic anti-α-Gal antibodies and induction of Th1 cytokines. Conclusions/Significance We propose that NGP5B is an attractive candidate for the study of potential synthetic α-Gal-neoglycoprotein-based vaccines against L. major infection. PMID:29069089

  19. An α-Gal-containing neoglycoprotein-based vaccine partially protects against murine cutaneous leishmaniasis caused by Leishmania major.

    PubMed

    Iniguez, Eva; Schocker, Nathaniel S; Subramaniam, Krishanthi; Portillo, Susana; Montoya, Alba L; Al-Salem, Waleed S; Torres, Caresse L; Rodriguez, Felipe; Moreira, Otacilio C; Acosta-Serrano, Alvaro; Michael, Katja; Almeida, Igor C; Maldonado, Rosa A

    2017-10-01

    Protozoan parasites from the genus Leishmania cause broad clinical manifestations known as leishmaniases, which affect millions of people worldwide. Cutaneous leishmaniasis (CL), caused by L. major, is one the most common forms of the disease in the Old World. There is no preventive or therapeutic human vaccine available for L. major CL, and existing drug treatments are expensive, have toxic side effects, and resistant parasite strains have been reported. Hence, further therapeutic interventions against the disease are necessary. Terminal, non-reducing, and linear α-galactopyranosyl (α-Gal) epitopes are abundantly found on the plasma membrane glycolipids of L. major known as glycoinositolphospholipids. The absence of these α-Gal epitopes in human cells makes these glycans highly immunogenic and thus potential targets for vaccine development against CL. Here, we evaluated three neoglycoproteins (NGPs), containing synthetic α-Gal epitopes covalently attached to bovine serum albumin (BSA), as vaccine candidates against L. major, using α1,3-galactosyltransferase-knockout (α1,3GalT-KO) mice. These transgenic mice, similarly to humans, do not express nonreducing, linear α-Gal epitopes in their cells and are, therefore, capable of producing high levels of anti-α-Gal antibodies. We observed that Galα(1,6)Galβ-BSA (NGP5B), but not Galα(1,4)Galβ-BSA (NGP12B) or Galα(1,3)Galα-BSA (NGP17B), was able to significantly reduce the size of footpad lesions by 96% in comparison to control groups. Furthermore, we observed a robust humoral and cellular immune response with production of high levels of protective lytic anti-α-Gal antibodies and induction of Th1 cytokines. We propose that NGP5B is an attractive candidate for the study of potential synthetic α-Gal-neoglycoprotein-based vaccines against L. major infection.

  20. Circulating Galectin-3 Levels Are Persistently Elevated After Heart Transplantation and Are Associated With Renal Dysfunction.

    PubMed

    Grupper, Avishay; Nativi-Nicolau, Jose; Maleszewski, Joseph J; Geske, Jennifer R; Kremers, Walter K; Edwards, Brooks S; Kushwaha, Sudhir S; Pereira, Naveen L

    2016-11-01

    This study evaluated changes in serum levels of galectin (Gal)-3 before and after heart transplantation (HTx) and assessed the role of pre-HTx Gal-3 as a biomarker for post-HTx outcomes. Gal-3 is a novel biomarker that reflects cardiac remodeling and fibrosis. Elevated serum Gal-3 levels are associated with poor prognosis in heart failure patients. Whether Gal-3 levels change following HTx and the significance of post-HTx outcomes are unknown. Serum Gal-3 levels were measured in 62 patients at 118 days (Interquartile Range [IQR]: 23 to 798 days) before and 365 days (IQR: 54 to 767 days) post HTx. Cardiac tissue taken during routine post-HTx endomyocardial biopsy was evaluated to assess the correlation between tissue Gal-3 staining and serum Gal-3 levels and with the presence of myocardial hypertrophy and fibrosis. Serum Gal-3 levels remained significantly elevated (>17.8 ng/ml) in 35 patients (56%) post HTx. There was a significant inverse correlation between Gal-3 levels and glomerular filtration rate measured before and after HTx (p > 0.005). There was no association between Gal-3 serum level and Gal-3 staining of myocardial tissue or with the presence of myocyte hypertrophy and interstitial fibrosis post HTx. Elevated pre-HTx Gal-3 levels were associated with reduced post-HTx exercise capacity, but this association was not significant after adjustment for age, body mass index, and glomerular filtration rate. This is the first study to demonstrate the fact that Gal-3 levels remain elevated in the majority of patients despite HTx and is associated with renal dysfunction. Our findings suggest Gal-3 is a systemic rather than cardiac-specific biomarker. Copyright © 2016 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.

  1. Alpha2,3-sialyltransferase III knockdown sensitized ovarian cancer cells to cisplatin-induced apoptosis.

    PubMed

    Wang, Xiaoyu; Zhang, Yiting; Lin, Haiyingjie; Liu, Yan; Tan, Yi; Lin, Jie; Gao, Fenze; Lin, Shaoqiang

    2017-01-22

    Emerging evidence indicates that β-galactoside-α2,3-sialyltransferase III (ST3Gal3) involves in development, inflammation, neoplastic transformation, and metastasis. However, the role of ST3Gal3 in regulating cancer chemoresistance remains elusive. Herein, we investigated the functional effects of ST3Gal3 in cisplatin-resistant ovarian cancer cells. We found that the levels of ST3Gal3 mRNA differed significantly among ovarian cancer cell lines. HO8910PM cells that have high invasive and metastatic capacity express elevated ST3Gal3 mRNA and are resistant to cisplatin, comparing to SKOV3 cells that have a lower level of ST3Gal3 expression and are more chemosensitive to cisplatin. We found that the expression of ST3Gal3 has reverse correlation with the dosage of cisplatin used in both SKOV3 and HO8910PM cells, and high dose of cisplatin could down-regulate ST3Gal3 expression. We then examined the functional effects of ST3Gal3 knockdown in cancer cell lines using FACS analysis. The number of apoptotic cells was much higher in cells if ST3Gal3 expression was knocked down by siRNA and/or by treating cells with higher dosage of cisplatin in comparison to control cells. Interestingly, in HO8910PM cells with ST3Gal3 knockdown, the levels of caspase 8 and caspase 3 proteins increased, which was more obvious in cells treated with both ST3Gal3 knockdown and cisplatin, suggesting that ST3Gal3 knockdown synergistically enhanced cisplatin-induced apoptosis in ovarian cancer cells. Taken together, these results uncover an alternative mechanism of cisplatin-resistance through ST3Gal3 and open a window for effective prevention of chemoresistance and relapse of ovarian cancer by targeting ST3Gal3. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Deployment Requirements for U.S. Coast Guard Pollution Response Equipment : Volume II. Appendixes.

    DOT National Transportation Integrated Search

    1978-02-01

    This report presents the results of a study to examine the siting and equipment requirements that would have to be met by the U.S. Coast Guard to provide an adequate response within six hours for spills of up to 10,000 tons (28,000,000 gals.)of oil i...

  3. Deployment Requirements for U.S. Coast Guard Pollution Response Equipment. Volume I. Analysis.

    DOT National Transportation Integrated Search

    1979-02-01

    This report presents the results of a study to examine the siting and equipment requirements that would have to be met by the U.S. Coast Guard to provide an adequate response within six hours for spills of up to 10,000 tons (28,000,000 gals.)of oil i...

  4. Deployment Requirements for U.S. Coast Guard Pollution Response Equipment : Volume I. Analysis.

    DOT National Transportation Integrated Search

    1978-02-01

    This report presents the results of a study to examine the siting and equipment requirements that would have to be met by the U.S. Coast Guard to provide an adequate response within six hours for spills of up to 10,000 tons (28,000,000 gals.)of oil i...

  5. Arm-Gal4 inheritance influences development and lifespan in Drosophila melanogaster.

    PubMed

    Slade, F A; Staveley, B E

    2015-10-19

    The UAS-Gal4 ectopic expression system is a widely used and highly valued tool that allows specific gene expression in Drosophila melanogaster. Yeast transcription factor Gal4 can be directed using D. melanogaster transcriptional control elements, and is often assumed to have little effect on the organism. By evaluation of the consequences of maternal and paternal inheritance of a Gal4 transgene under the transcriptional regulation of armadillo control elements (arm-Gal4), we demonstrated that Gal4 expression could be detrimental to development and longevity. Male progeny expressing arm-Gal4 in the presence of UAS-lacZ transgene had reduced numbers and size of ommatidia, compared to flies expressing UAS-lacZ transgene under the control of other Gal4 transgenes. Aged at 25°C, the median life span of male flies with maternally inherited elav-Gal4 was 70 days, without a responding transgene or with UAS-lacZ. The median life span of maternally inherited arm-Gal4 male flies without a responding transgene was 48 days, and 40 days with the UAS-lacZ transgene. A partial rescue of this phenotype was observed with the expression of UAS-lacZ under paternal arm-Gal4 control, having an average median lifespan of 60 days. This data suggests that arm-Gal4 has detrimental effects on Drosophila development and lifespan that are directly dependent upon parental inheritance, and that the benign responder and reporter gene UAS-lacZ may influence D. melanogaster development. These findings should be taken into consideration during the design and execution of UAS-Gal4 expression experiments.

  6. Deletion of galectin-3 exacerbates microglial activation and accelerates disease progression and demise in a SOD1G93A mouse model of amyotrophic lateral sclerosis

    PubMed Central

    Lerman, Bruce J; Hoffman, Eric P; Sutherland, Margaret L; Bouri, Khaled; Hsu, Daniel K; Liu, Fu-Tong; Rothstein, Jeffrey D; Knoblach, Susan M

    2012-01-01

    Galectins are pleiotropic carbohydrate-binding lectins involved in inflammation, growth/differentiation, and tissue remodeling. The functional role of galectins in amyotrophic lateral sclerosis (ALS) is unknown. Expression studies revealed increases in galectin-1 mRNA and protein in spinal cords from SOD1G93A mice, and in galectin-3 and -9 mRNAs and proteins in spinal cords of both SOD1G93A mice and sporadic ALS patients. As the increase in galectin-3 appeared in early presymptomatic stages and increased progressively through to end stage of disease in the mouse, it was selected for additional study, where it was found to be mainly expressed by microglia. Galectin-3 antagonists are not selective and do not readily cross the blood–brain barrier; therefore, we generated SOD1G93A/Gal-3−/− transgenic mice to evaluate galectin-3 deletion in a widely used mouse model of ALS. Disease progression, neurological symptoms, survival, and inflammation were assessed to determine the effect of galectin-3 deletion on the SOD1G93A disease phenotype. Galectin-3 deletion did not change disease onset, but resulted in more rapid progression through functionally defined disease stages, more severely impaired neurological symptoms at all stages of disease, and expiration, on average, 25 days earlier than SOD1G93A/Gal-3+/+ cohorts. In addition, microglial staining, as well as TNF-α, and oxidative injury were increased in SOD1G93A/Gal-3−/− mice compared with SOD1G93A/Gal-3+/+ cohorts. These data support an important functional role for microglial galectin-3 in neuroinflammation during chronic neurodegenerative disease. We suggest that elevations in galectin-3 by microglia as disease progresses may represent a protective, anti-inflammatory innate immune response to chronic motor neuron degeneration. PMID:23139902

  7. Characterization of a ricin-resistant mutant of Leishmania donovani that expresses lipophosphoglycan.

    PubMed

    Phillips, Megan R; Turco, Salvatore J

    2015-04-01

    The abundant cell-surface lipophosphoglycan (LPG) of Leishmania parasites plays a central role throughout the eukaryote's life cycle. A number of LPG-defective mutants and their complementing genes have been isolated and have proven invaluable in assessing the importance of LPG and related glycoconjugates in parasite virulence. While ricin agglutination selection protocols frequently result in lpg- mutants, one  Leishmania donovani variant we isolated, named JABBA, was found to be lpg+. Procyclic (logarithmic) JABBA expresses significant amounts of a large-sized LPG, larger than observed from procyclic wild type but similar in size to LPG from wild type from metacyclic (stationary) phase. Structural analysis of the LPG from logarithmically grown JABBA by capillary electrophoresis protocols revealed that it averaged 30 repeat units composed of the unsubstituted Gal(β1,4)Man(α1)-PO4 typical of wild-type L. donovani. Analysis of JABBA LPG caps indicated that 20% is branched trisaccharide Gal(β1,4)[Glc(β1,2)]Man and tetrasaccharide Gal(β1,4)[Glc(β1,2)Man(α1,2)]Man instead of the usual Gal(β1,4)Man and Man(α1,2)Man terminating caps. Consistent with these structural observations, analyses of the relevant glycosyltransferases in JABBA microsomes involved in LPG biosynthesis showed a 2-fold increase in elongating mannosylphosphoryltransferase activity and up-regulation of a β-glucosyltransferase activity. Furthermore, the caps of JABBA LPG are cryptic in presentation as shown by the loss of binding by the lectins, ricin, peanut agglutinin and concanavalin A and reduced accessibility of the terminal galactose residues to oxidation by galactose oxidase. These results indicate that LPG from JABBA is intriguingly similar to the larger LPG in wild-type parasites that arises following the differentiation of the non-infectious procyclic promastigotes to infectious, metacyclic forms. © The Author 2014. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  8. The alpha-galactosidase A p.Arg118Cys variant does not cause a Fabry disease phenotype: data from individual patients and family studies

    PubMed Central

    Ferreira, Susana; Ortiz, Alberto; Germain, Dominique P.; Viana-Baptista, Miguel; Gomes, António Caldeira; Camprecios, Marta; Fenollar-Cortés, Maria; Gallegos-Villalobos, Ángel; Garcia, Diego; García-Robles, José Antonio; Egido, Jesús; Gutiérrez-Rivas, Eduardo; Herrero, José Antonio; Mas, Sebastián; Oancea, Raluca; Péres, Paloma; Salazar-Martín, Luis Manuel; Solera-Garcia, Jesús; Alves, Helena; Garman, Scott C.; Oliveira, João Paulo

    2015-01-01

    Summary Lysosomal α-galactosidase A (α-Gal) is the enzyme deficient in Fabry disease (FD), an X-linked glycosphingolipidosis caused by pathogenic mutations affecting the GLA gene. The early-onset, multi-systemic FD classical phenotype is associated with absent or severe enzyme deficiency, as measured by in vitro assays, but patients with higher levels of residual α-Gal activity may have later-onset, more organ-restricted clinical presentations. A change in the codon 118 of the wild-type α-Gal sequence, replacing basic arginine by a potentially sulfhydryl-binding cysteine residue – GLA p.(Arg118Cys) –, has been recurrently described in large FD screening studies of high-risk patients. Although the Cys118 allele is associated with high residual α-Gal activity in vitro, it has been classified as a pathogenic mutation, mainly on the basis of theoretical arguments about the chemistry of the cysteine residue. However its pathogenicity has never been convincingly demonstrated by pathology criteria. We reviewed the clinical, biochemical and histopathology data obtained from 22 individuals of Portuguese and Spanish ancestry carrying the Cys118 allele, including 3 homozygous females. Cases were identified either on the differential diagnosis of possible FD manifestations and on case-finding studies (n=11; 4 males), or on unbiased cascade screening of probands’ close relatives (n=11; 3 males). Overall, those data strongly suggest that the GLA p.(Arg118Cys) variant does not segregate with FD clinical phenotypes in a Mendelian fashion, but might be a modulator of the multifactorial risk of cerebrovascular disease, since the allelic frequency in stroke patients was 0.0087 (p=0.0185 vs the general population). The Cys118 allelic frequency in healthy Portuguese adults (n=696) has been estimated as 0.001, therefore not qualifying for “rare” condition. PMID:25468652

  9. The mitochondrial cytochrome c peroxidase Ccp1 of Saccharomyces cerevisiae is involved in conveying an oxidative stress signal to the transcription factor Pos9 (Skn7).

    PubMed

    Charizanis, C; Juhnke, H; Krems, B; Entian, K D

    1999-10-01

    In Saccharomyces cerevisiae two transcription factors, Pos9 (Skn7) and Yap1, are involved in the response to oxidative stress. Fusion of the Pos9 response-regulator domain to the Gal4 DNA-binding domain results in a transcription factor which renders the expression of a GAL1-lacZ reporter gene dependent on oxidative stress. To identify genes which are involved in the oxygen-dependent activation of the Gal4-Pos9 hybrid protein we screened for mutants that failed to induce the heterologous test system upon oxidative stress (fap mutants for factors activating Pos9). We isolated several respiration-deficient and some respiration-competent mutants by this means. We selected for further characterization only those mutants which also displayed an oxidative-stress-sensitive phenotype. One of the respiration-deficient mutants (complementation groupfap6) could be complemented by the ISM1 gene, which encodes mitochondrial isoleucyl tRNA synthetase, suggesting that respiration competence was important for signalling of oxidative stress. In accordance with this notion a rho0 strain and a wild-type strain in which respiration had been blocked (by treatment with antimycin A or with cyanide) also failed to activate Gal4-Pos9 upon imposition of oxidative stress. Another mutant, fap24, which was respiration-competent, could be complemented by CCP1, which encodes the mitochondrial cytochrome c peroxidase. Mitochondrial cytochrome c peroxidase degrades reactive oxygen species within the mitochondria. This suggested a possible sensor function for the enzyme in the oxidative stress response. To test this we used the previously described point mutant ccp1 W191F, which is characterized by a 10(4)-fold decrease in electron flux between cytochrome c and cytochrome c peroxidase. The Ccp1W191F mutant was still capable of activating the Pos9 transcriptional activation domain, suggesting that the signalling function of Ccp1 is independent of electron flux rates.

  10. Characterization of a ricin-resistant mutant of Leishmania donovani that expresses lipophosphoglycan

    PubMed Central

    Phillips, Megan R; Turco, Salvatore J

    2015-01-01

    The abundant cell-surface lipophosphoglycan (LPG) of Leishmania parasites plays a central role throughout the eukaryote's life cycle. A number of LPG-defective mutants and their complementing genes have been isolated and have proven invaluable in assessing the importance of LPG and related glycoconjugates in parasite virulence. While ricin agglutination selection protocols frequently result in lpg− mutants, one  Leishmania donovani variant we isolated, named JABBA, was found to be lpg+. Procyclic (logarithmic) JABBA expresses significant amounts of a large-sized LPG, larger than observed from procyclic wild type but similar in size to LPG from wild type from metacyclic (stationary) phase. Structural analysis of the LPG from logarithmically grown JABBA by capillary electrophoresis protocols revealed that it averaged 30 repeat units composed of the unsubstituted Gal(β1,4)Man(α1)-PO4 typical of wild-type L. donovani. Analysis of JABBA LPG caps indicated that 20% is branched trisaccharide Gal(β1,4)[Glc(β1,2)]Man and tetrasaccharide Gal(β1,4)[Glc(β1,2)Man(α1,2)]Man instead of the usual Gal(β1,4)Man and Man(α1,2)Man terminating caps. Consistent with these structural observations, analyses of the relevant glycosyltransferases in JABBA microsomes involved in LPG biosynthesis showed a 2-fold increase in elongating mannosylphosphoryltransferase activity and up-regulation of a β-glucosyltransferase activity. Furthermore, the caps of JABBA LPG are cryptic in presentation as shown by the loss of binding by the lectins, ricin, peanut agglutinin and concanavalin A and reduced accessibility of the terminal galactose residues to oxidation by galactose oxidase. These results indicate that LPG from JABBA is intriguingly similar to the larger LPG in wild-type parasites that arises following the differentiation of the non-infectious procyclic promastigotes to infectious, metacyclic forms. PMID:25472443

  11. TEM and Gravity Data for Roosevelt Hot Springs, Utah FORGE Site

    DOE Data Explorer

    Hardwick, Christian; Nash, Greg

    2018-02-05

    This submission includes a gravity data in text format and as a GIS point shapefile and transient electromagnetic (TEM) raw data. Each text file additionally contains location data (UTM Zone 12, NAD83) and elevation (meters) data for that station. The gravity data shapefile was in part downloaded from PACES, University of Texas at El Paso, http://gis.utep.edu/subpages/GMData.html, and in part collected by the Utah Geological Survey (UGS) as part of the DOE GTO supported Utah FORGE geothermal energy project near Milford, Utah. The PACES data were examined and scrubbed to eliminate any questionable data. A 2.67 g/cm^3 reduction density was used for the Bouguer correction. The attribute table column headers for the gravity data shapefile are explained below. There is also metadata attached to the GIS shapefile. name: the individual gravity station name. HAE: height above ellipsoid [meter] NGVD29: vertical datum for geoid [meter] obs: observed gravity ERRG: gravity measurement error [mGal] IZTC: inner zone terrain correction [mGal] OZTC: outer zone terrain correction [mGal] Gfa: free air gravity gSBGA: Bouguer horizontal slab sCBGA: Complete Bouguer anomaly

  12. [Assessment Method of Remnant α-1, 3-galactosyle Epitopes in Animal Tissue-derived Biomaterials].

    PubMed

    Shan, Yongqiang; Xu, Liming; Ke, Linnan; Lu, Yan; Shao, Anliang; Zhang, Na; Zeng, Bixin

    2015-06-01

    The aim of this study was to establish an assessment method for determining α-Gal (α-1, 3-galactosyle) epitopes contained in animal tissue or animal tissue-derived biological materials with ELISA inhibition assay. Firstly, a 96 well plate was coated with Gal α-1, 3-Gal/bovine serum albumin (BSA) as a solid phase antigen and meanwhile, the anti-α-Gal M86 was used to react with α-Gal antigens which contained in the test materials. Then, the residual antibodies (M86) in the supernatant of M86-Gal reaction mixture were measured using ELISA inhibition assay by the α-Gal coating plate. The inhibition curve of the ELISA inhibition assay, the R2 = 0.999, was well established. Checking using both α-Gal positive materials (rat liver tissues) and α-Gal negative materials (human placenta tissues) showed a good sensitivity and specificity. Based on the presently established method, the α-Gal expression profile of rat tissues, decellular animal tissue-derived biological materials and porcine dermal before and after decellular treatment were determined. The M86 ELISA inhibition assay method, which can quantitatively determine the α-Gal antigens contained in animal tissues or animal tissue-derived biomaterials, was refined. This M86 specific antibody based-ELISA inhibition assay established in the present study has good sensitivity and specificity, and could be a useful method for determining remnant α-1, 3Gal antigens in animal tissue-derived biomaterials.

  13. Differential Spatiotemporal Patterns of Galectin Expression are a Hallmark of Endotheliochorial Placentation.

    PubMed

    Conrad, Melanie L; Freitag, Nancy; Diessler, Mónica E; Hernandez, Rocío; Barrientos, Gabriela; Rose, Matthias; Casas, Luciano A; Barbeito, Claudio G; Blois, Sandra M

    2016-03-01

    Galectins influence the progress of pregnancy by regulating key processes associated with embryo-maternal cross talk, including angiogenesis and placentation. Galectin family members exert multiple roles in the context of hemochorial and epitheliochorial placentation; however, the galectin prolife in endotheliochorial placenta remains to be investigated. Here, we used immunohistochemistry to analyze galectin (gal)-1, gal-3 and gal-9 expression during early and late endotheliochorial placentation in two different species (dogs and cats). We found that during early feline gestation, all three galectin members were more strongly expressed on trophoblast and maternal vessels compared to the decidua. This was accompanied by an overall decrease of gal-1, gal-3 and gal-9 expressions in late feline gestation. In canine early pregnancy, we observed that gal-1 and gal-9 were expressed strongly in cytotrophoblast (CTB) cells compared to gal-3, and no galectin expression was observed in syncytiotrophoblast (STB) cells. Progression of canine gestation was accompanied by increased gal-1 and gal-3 expressions on STB cells, whereas gal-9 expression remained similar in CTB and STB. These data suggest that both the maternal and fetal compartments are characterized by a spatiotemporal regulation of galectin expression during endotheliochorial placentation. This strongly suggests the involvement of the galectin family in important developmental processes during gestation including immunemodulation, trophoblast invasion and angiogenesis. A conserved functional role for galectins during mammalian placental development emerges from these studies. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  14. An In-Port Feeding System for Shipboard Personnel. Volume 2. A Cost Benefit Analysis of the Use of Convenience Foods in a Military Foodservice Operation.

    DTIC Science & Technology

    1981-10-01

    levels Day 1 Item 500 1000 A. Lunch: Chicken Noodle Soup 11$/#5 cn 500-45% cns 1000-91 cnsGrilled Reuben Sandwich* .3 min/batch 250-125# 500-250...500-78#Fried Chicken 10 oz. 250-160# 500-320# Mashed Potatoes 24$1# Instant ; 32$/1 gal 500-21#/16 gal 1000-42*/32 galGreen Peas 1/2 c. 250-50# 500-100...500-91 cns Veal Parmesan 2.5$/# 250-100# 500-200# NChicken A La King 21$/gal 250-12 gal 500-24 gal Mashed Potatoes 24$/1* instant ; 32$/gal 500-21#/16

  15. Covalent decoration of adenovirus vector capsids with the carbohydrate epitope αGal does not improve vector immunogenicity, but allows to study the in vivo fate of adenovirus immunocomplexes.

    PubMed

    Kratzer, Ramona F; Espenlaub, Sigrid; Hoffmeister, Andrea; Kron, Matthias W; Kreppel, Florian

    2017-01-01

    Adenovirus-based vectors are promising tools for genetic vaccination. However, several obstacles have to be overcome prior to a routine clinical application of adenovirus-based vectors as efficacious vectored vaccines. The linear trisaccharide epitope αGal (alpha-Gal) with the carbohydrate sequence galactose-α-1,3-galactosyl-β-1,4-N-acetylglucosamine has been described as a potent adjuvant for recombinant or attenuated vaccines. Humans and α-1,3-galactosyltransferase knockout mice do not express this epitope. Upon exposure of α-1,3-galactosyltransferase-deficient organisms to αGal in the environment, large amounts of circulating anti-Gal antibodies are produced consistently. Immunocomplexes formed between recombinant αGal-decorated vaccines and anti-Gal antibodies exhibit superior immunogenicity. We studied the effects of the trisaccharide epitope on CD8 T cell responses that are directed specifically to vector-encoded transgenic antigens. For that, covalently αGal-decorated adenovirus vectors were delivered to anti-Gal α-1,3-galactosyltransferase knockout mice. We generated replication-defective, E1-deleted adenovirus type 5 vectors that were decorated with αGal at the hexon hypervariable regions 1 or 5, at fiber knob, or at penton base. Surprisingly, none of the adenovirus immunocomplexes being formed from αGal-decorated adenovirus vectors and anti-Gal immunoglobulins improved the frequencies of CD8 T cell responses against the transgenic antigen ovalbumin. Humoral immunity directed to the adenovirus vector was neither increased. However, our data indicated that decoration of Ad vectors with the αGal epitope is a powerful tool to analyze the fate of adenovirus immunocomplexes in vivo.

  16. Galectin-1 influences trophoblast immune evasion and emerges as a predictive factor for the outcome of pregnancy.

    PubMed

    Tirado-González, Irene; Freitag, Nancy; Barrientos, Gabriela; Shaikly, Valerie; Nagaeva, Olga; Strand, Magnus; Kjellberg, Lennart; Klapp, Burghard F; Mincheva-Nilsson, Lucia; Cohen, Marie; Blois, Sandra M

    2013-01-01

    Galectin-1 (gal-1) is expressed at the feto-maternal interface and plays a role in regulating the maternal immune response against placental alloantigens, contributing to pregnancy maintenance. Both decidua and placenta contribute to gal-1 expression and may be important for the maternal immune regulation. The expression of gal-1 within the placenta is considered relevant to cell-adhesion and invasion of trophoblasts, but the role of gal-1 in the immune evasion machinery exhibited by trophoblast cells remains to be elucidated. In this study, we analyzed gal-1 expression in preimplantation human embryos and first-trimester decidua-placenta specimens and serum gal-1 levels to investigate the physiological role played by this lectin during pregnancy. The effect on human leukocyte antigen G (HLA-G) expression in response to stimulation or silencing of gal-1 was also determined in the human invasive, proliferative extravillous cytotrophoblast 65 (HIPEC65) cell line. Compared with normal pregnant women, circulating gal-1 levels were significantly decreased in patients who subsequently suffered a miscarriage. Human embryos undergoing preimplantation development expressed gal-1 on the trophectoderm and inner cell mass. Furthermore, our in vitro experiments showed that exogenous gal-1 positively regulated the membrane-bound HLA-G isoforms (HLA-G1 and G2) in HIPEC65 cells, whereas endogenous gal-1 also induced expression of the soluble isoforms (HLA-G5 and -G6). Our results suggest that gal-1 plays a key role in pregnancy maternal immune regulation by modulating HLA-G expression on trophoblast cells. Circulating gal-1 levels could serve as a predictive factor for pregnancy success in early human gestation.

  17. Construction and characterization of Gal-chitosan graft methoxy poly (ethylene glycol) (Gal-CS-mPEG) nanoparticles as efficient gene carrier

    NASA Astrophysics Data System (ADS)

    Jin, Jiting; Fu, Wandong; Liao, Miaofei; Han, Baoqin; Chang, Jing; Yang, Yan

    2017-10-01

    In the present study, galactosylated chitosan (Gal-CS) was conjugated with methoxy poly(ethylene glycol) (mPEG) as a hydrophilic group. The structure of Gal-CS-mPEG polymer was characterized and the nanoparticles (NPs) were prepared using ironic gelation method. The study was designed to investigate the characteristics and functions of Gal-CS-mPEG NPs. The morphology of Gal-CS-mPEG NPs was observed by SEM and it was a compact and spherical shape. The size of the NPs was approximately 200 nm in diameter under the ideal process parameters. The interaction between Gal-CS-mPEG NPs and pDNA, and the protection of pDNA against DNase I and serum degradation by Gal-CS-mPEG NPs were evaluated. Agarose gel electrophoresis results showed that Gal-CS-mPEG NPs had strong interaction with pDNA at the weight ratio of 12:1, 4:1 and 2:1 and could protect pDNA from DNase I and serum degradation. Gal-CS-mPEG NPs exhibited high loading efficiency and sustainable in vitro release. The blood compatibility studies demonstrated that Gal-CS-mPEG NPs had superior compatibility with erythrocytes in terms of aggregation degree and hemolysis level. Gal-CS-mPEG NPs showed no cytotoxicity on L929 cells, which is a normal mouse connective tissue fibroblast, but showed inhibitory effects on the proliferation of Bel-7402 cells, which is a liver cancer cell line. In conclusion, Gal-CS-mPEG NP is a bio-safe and efficient gene carrier with potential application in gene delivery.

  18. Galectin-3 Inhibits Galectin-8/Parkin-Mediated Ubiquitination of Group A Streptococcus.

    PubMed

    Cheng, Yi-Lin; Wu, Yan-Wei; Kuo, Chih-Feng; Lu, Shiou-Ling; Liu, Fu-Tong; Anderson, Robert; Lin, Chiou-Feng; Liu, Yi-Ling; Wang, Wan-Yu; Chen, Ying-Da; Zheng, Po-Xing; Wu, Jiunn-Jong; Lin, Yee-Shin

    2017-07-25

    Group A streptococcus (GAS) is an important human pathogen that causes a wide variety of cutaneous and systemic infections. Although originally thought to be an extracellular bacterium, numerous studies have demonstrated that GAS can trigger internalization into nonimmune cells to escape from immune surveillance or antibiotic-mediated killing. Epithelial cells possess a defense mechanism involving autophagy-mediated targeting and killing of GAS within lysosome-fused autophagosomes. In endothelial cells, in contrast, we previously showed that autophagy is not sufficient for GAS killing. In the present study, we showed higher galectin-3 (Gal-3) expression and lower Gal-8 expression in endothelial cells than in epithelial cells. The recruitment of Gal-3 to GAS is higher and the recruitment of Gal-8 to GAS is lower in endothelial cells than in epithelial cells. We further showed that Gal-3 promotes GAS replication and diminishes the recruitment of Gal-8 and ubiquitin, the latter of which is a critical protein for autophagy sequestration. After knockdown of Gal-3 in endothelial cells, the colocalization of Gal-8, parkin, and ubiquitin-decorated GAS is significantly increased, as is the interaction of Gal-8 and parkin, an E3 ligase. Furthermore, inhibition of Gal-8 in epithelial cells attenuates recruitment of parkin; both Gal-8 and parkin contribute to ubiquitin recruitment and GAS elimination. Animal studies confirmed that Gal-3-knockout mice develop less-severe skin damage and that GAS replication can be detected only in the air pouch and not in organs and endothelial cells. These results demonstrate that Gal-3 inhibits ubiquitin recruitment by blocking Gal-8 and parkin recruitment, resulting in GAS replication in endothelial cells. IMPORTANCE In epithelial cells, GAS can be efficiently killed within the lysosome-fused autophaosome compartment. However, we previously showed that, in spite of LC-3 recruitment, the autophagic machinery is not sufficient for GAS killing in endothelial cells. In this report, we provide the first evidence that Gal-3, highly expressed in endothelial cells, blocks the tagging of ubiquitin to GAS by inhibiting recruitment of Gal-8 and parkin, leading to an enhancement of GAS replication. We also provide the first demonstration that Gal-8 can interact with parkin, the critical E3 ligase, for resistance to intracellular bacteria by facilitating the decoration of bacteria with ubiquitin chains. Our findings reveal that differential levels of Gal-3 and Gal-8 expression and recruitment to GAS between epithelial cells and endothelial cells may contribute to the different outcomes of GAS elimination or survival and growth of GAS in these two types of cells. Copyright © 2017 Cheng et al.

  19. The neuropeptide genes SST, TAC1, HCRT, NPY, and GAL are powerful epigenetic biomarkers in head and neck cancer: a site-specific analysis.

    PubMed

    Misawa, Kiyoshi; Mima, Masato; Imai, Atsushi; Mochizuki, Daiki; Misawa, Yuki; Endo, Shiori; Ishikawa, Ryuji; Kanazawa, Takeharu; Mineta, Hiroyuki

    2018-01-01

    Staging and pathological grading systems are convenient but imperfect predictors of recurrence in head and neck squamous cell carcinoma (HNSCC). Identifying biomarkers for HNSCC that will progress and cause death is a critical research area, particularly if the biomarker can be linked to selection of patients. Therefore, to identify potential alternative prognostic markers, we investigated the methylation status of five neuropeptide gene promoters. The promoter methylation status was determined by quantitative methylation-specific PCR in 230 cases of HNSCC; 58 hypopharynx, 45 larynx, 56 oropharynx, and 71 oral cavity tumor samples were studied. The somatostatin ( SST ), tachykinin precursor 1 ( TAC1 ), hypocretin neuropeptide precursor ( HCRT ), neuropeptide Y ( NPY ), and galanin ( GAL ) promoters were methylated in 84.3, 63.5, 32.6, 28.3, and 20.0%, respectively, of the samples. The mean number of methylated genes per sample was 2.29 (range, 0-5). Disease-free survival was lower in patients with 3-5 methylated genes than in those with 0-2 methylated genes (log-rank test, P  = 0.007). In multivariate Cox proportional hazards analysis, TAC1 and GAL promoter methylation independently predicted recurrence (odds ratios 1.620, 95% confidence interval [CI] 1.018-2.578, P  = 0.042, and odds ratios 1.692, 95% CI 1.063-2.694, P  = 0.027, respectively). In patients with oral cancer, TAC1 methylation showed the best correlation with poor survival (odds ratio 4.427, 95% CI 1.634-12.00, P  = 0.003). Similar findings were observed for HCRT and GAL in patients with laryngeal cancer and oropharyngeal cancer, respectively. In this study, we demonstrated the methylation status of the neuropeptide-encoding genes SST , TAC1 , HCRT , NPY , and GAL and its relationship with recurrence and survival in HNSCC. These methylation changes may serve as potential molecular markers for defining the risk and prognosis of HNSCC.

  20. Natural protection from zoonosis by alpha-gal epitopes on virus particles in xenotransmission.

    PubMed

    Kim, Na Young; Jung, Woon-Won; Oh, Yu-Kyung; Chun, Taehoon; Park, Hong-Yang; Lee, Hoon-Taek; Han, In-Kwon; Yang, Jai Myung; Kim, Young Bong

    2007-03-01

    Clinical transplantation has become one of the preferred treatments for end-stage organ failure, and one of the novel approaches being pursued to overcome the limited supply of human organs involves the use of organs from other species. The pig appears to be a near ideal animal due to proximity to humans, domestication, and ability to procreate. The presence of Gal-alpha1,3-Gal residues on the surfaces of pig cells is a major immunological obstacle to xenotransplantation. Alpha1,3galactosyltransferase (alpha1,3GT) catalyzes the synthesis of Gal alpha 1-3Gal beta 1-4GlcNAc-R (alpha-gal epitope) on the glycoproteins and glycolipids of non-primate mammals, but this does not occur in humans. Moreover, the alpha-gal epitope causes hyperacute rejection of pig organs in humans, and thus, the elimination of this antigen from pig tissues is highly desirable. Recently, concerns have been raised that the risk of virus transmission from such pigs may be increased due to the absence of alpha-gal on their viral particles. In this study, transgenic cells expressing alpha1,3GT were selected using 1.25 mg/ml neomycin. The development of HeLa cells expressing alpha1,3GT now allows accurate studies to be conducted on the function of the alpha-gal epitope in xenotransmission. The expressions of alpha-gal epitopes on HeLa/alpha-gal cells were demonstrated by flow cytometry and confocal microscopy using cells stained with IB4-fluorescein isothiocyanate lectin. Vaccinia viruses propagated in HeLa/alpha-gal cells also expressed alpha-gal on their viral envelopes and were more sensitive to inactivation by human sera than vaccinia virus propagated in HeLa cells. Moreover, neutralization of vaccinia virus was inhibited in human serum by 10 mm ethylene glycol bis(beta-aminoethylether)tetraacetic acid (EDTA) treatment. Our data indicated that alpha-gal epitopes are one of the major barriers to zoonosis via xenotransmission.

  1. Analysis of metabolisms and transports of xylitol using xylose- and xylitol-assimilating Saccharomyces cerevisiae.

    PubMed

    Tani, Tatsunori; Taguchi, Hisataka; Akamatsu, Takashi

    2017-05-01

    To clarify the relationship between NAD(P) + /NAD(P)H redox balances and the metabolisms of xylose or xylitol as carbon sources, we analyzed aerobic and anaerobic batch cultures of recombinant Saccharomyces cerevisiae in a complex medium containing 20 g/L xylose or 20 g/L xylitol at pH 5.0 and 30°C. The TDH3p-GAL2 or gal80Δ strain completely consumed the xylose within 24 h and aerobically consumed 92-100% of the xylitol within 96 h, but anaerobically consumed only 20% of the xylitol within 96 h. Cells of both strains grew well in aerobic culture. The addition of acetaldehyde (an effective oxidizer of NADH) increased the xylitol consumption by the anaerobically cultured strain. These results indicate that in anaerobic culture, NAD + generated in the NAD(P)H-dependent xylose reductase reaction was likely needed in the NAD + -dependent xylitol dehydrogenase reaction, whereas in aerobic culture, the NAD + generated by oxidation of NADH in the mitochondria is required in the xylitol dehydrogenase reaction. The role of Gal2 and Fps1 in importing xylitol into the cytosol and exporting it from the cells was analyzed by examining the xylitol consumption in aerobic culture and the export of xylitol metabolized from xylose in anaerobic culture, respectively. The xylitol consumptions of gal80Δ gal2Δ and gal80Δ gal2Δ fps1Δ strains were reduced by 81% and 88% respectively, relative to the gal80Δ strain. The maximum xylitol concentration accumulated by the gal80Δ, gal80Δ gal2Δ, and gal80Δ gal2Δ fps1Δ strains was 7.25 g/L, 5.30 g/L, and 4.27 g/L respectively, indicating that Gal2 and Fps1 transport xylitol both inward and outward. Copyright © 2017 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  2. Experimental studies of rapid bioerosion of coral reefs in the Galápagos Islands

    NASA Astrophysics Data System (ADS)

    Reaka-Kudla, M. L.; Feingold, J. S.; Glynn, W.

    1996-06-01

    Experimental carbonate blocks of coral skeleton, Porites lobata (PL), and cathedral limestone (LS) were deployed for 14.8 months at shallow (5 6 m) and deep (11 13m) depths on a severely bioeroded coral reef, Champion Island, Galápagos Islands, Ecuador. Sea urchins ( Eucidaris thouarsii) were significantly more abundant at shallow versus deep sites. Porites lobata blocks lost an average of 25.4 kg m-2yr-1 (23.71 m-2yr-1 or 60.5% decrease yr-1). Losses did not vary significantly at depths tested. Internal bioeroders excavated an average of 2.6 kg m-2 yr-1 (2.41 m-2 yr-1 or 0.6% decrease yr-1), while external bioeroders removed an average of 22.8 kg m-2 yr-1). (21.31 m-2 yr-1). or 59.9% decrease yr-1). few encrusting organisms were observed on the PL blocks. Cathedral limestone blocks lost an average of 4.1 kg m-2 yr-1). (1.81 m-2 yr-1). or 4.6% decrease yr-'), also with no relation to depth. Internal bioeroders excavated an average of 0.6 kg m-2 yr-1). (0.31 m-2 yr-1). or 0.7% decrease yr-1). and external bioeroders removed an average of 3.5 kg m-2 yr-1). (1.51 m-2 yr-1). or 3.9% decrease yr-1). from the LS blocks. Most (57.6%) encrustation occurred on the bottom of LS blocks, and there was more accretion on block bottoms in deep (61.4 mg cm-2 yr-1). versus shallow (35.0 mg cm-2 yr-1) sites. External bioerosion reduced the average height of the reef framework by 0.2 cm yr-1). for hard substrata (represented by LS) and 2.3 cm yr-1). for soft substrata (represented by PL). The results of this study suggest that coral reef frameworks in the Galápagos Islands are in serious jeopardy. If rates of coral recruitment do not increase, and if rates of bioerosion do not decline, coral reefs in the Galápagos Islands could be eliminated entirely.

  3. Three mutations switch H7N9 influenza to human-type receptor specificity.

    PubMed

    de Vries, Robert P; Peng, Wenjie; Grant, Oliver C; Thompson, Andrew J; Zhu, Xueyong; Bouwman, Kim M; de la Pena, Alba T Torrents; van Breemen, Marielle J; Ambepitiya Wickramasinghe, Iresha N; de Haan, Cornelis A M; Yu, Wenli; McBride, Ryan; Sanders, Rogier W; Woods, Robert J; Verheije, Monique H; Wilson, Ian A; Paulson, James C

    2017-06-01

    The avian H7N9 influenza outbreak in 2013 resulted from an unprecedented incidence of influenza transmission to humans from infected poultry. The majority of human H7N9 isolates contained a hemagglutinin (HA) mutation (Q226L) that has previously been associated with a switch in receptor specificity from avian-type (NeuAcα2-3Gal) to human-type (NeuAcα2-6Gal), as documented for the avian progenitors of the 1957 (H2N2) and 1968 (H3N2) human influenza pandemic viruses. While this raised concern that the H7N9 virus was adapting to humans, the mutation was not sufficient to switch the receptor specificity of H7N9, and has not resulted in sustained transmission in humans. To determine if the H7 HA was capable of acquiring human-type receptor specificity, we conducted mutation analyses. Remarkably, three amino acid mutations conferred a switch in specificity for human-type receptors that resembled the specificity of the 2009 human H1 pandemic virus, and promoted binding to human trachea epithelial cells.

  4. A Combined NMR-Computational Study of the Interaction between Influenza Virus Hemagglutinin and Sialic Derivatives from Human and Avian Receptors on the Surface of Transfected Cells.

    PubMed

    Vasile, Francesca; Panigada, Maddalena; Siccardi, Antonio; Potenza, Donatella; Tiana, Guido

    2018-04-24

    The development of small-molecule inhibitors of influenza virus Hemagglutinin could be relevant to the opposition of the diffusion of new pandemic viruses. In this work, we made use of Nuclear Magnetic Resonance (NMR) spectroscopy to study the interaction between two derivatives of sialic acid, Neu5Ac-α-(2,6)-Gal-β-(1⁻4)-GlcNAc and Neu5Ac-α-(2,3)-Gal-β-(1⁻4)-GlcNAc, and hemagglutinin directly expressed on the surface of recombinant human cells. We analyzed the interaction of these trisaccharides with 293T cells transfected with the H5 and H1 variants of hemagglutinin, which thus retain their native trimeric conformation in such a realistic environment. By exploiting the magnetization transfer between the protein and the ligand, we obtained evidence of the binding event, and identified the epitope. We analyzed the conformational features of the glycans with an approach combining NMR spectroscopy and data-driven molecular dynamics simulations, thus obtaining useful information for an efficient drug design.

  5. The predictive value of plasma cytokines on gastroesophageal anastomotic leakage at an early stage in patients undergoing esophagectomy.

    PubMed

    Song, Jie-Qiong; He, Yi-Zhou; Fang, Yuan; Wu, Wei; Zhong, Ming

    2017-08-01

    It's difficult to diagnose gastroesophageal anastomotic leakage (GAL) at early postoperative stage. This study was conducted to evaluate the early predictive value of plasma cytokines levels on GAL in patients undergoing esophagectomy. Consecutive esophageal cancer patients who underwent esophagectomy and admitted to Surgical Intensive Care Unit (SICU) just after surgery were retrospectively analyzed. The baseline and postoperative 1 day plasma cytokine levels were collected and analyzed to evaluate the predictive value for clinically important anastomotic leakage. Area under receiver operating characteristic curve (AUROC) analysis was also performed. A total of 183 patients were included. Sixteen patients (8.74%) experienced GAL (GAL group) and the others did not (non-GAL group). The concentrations of tumor necrosis factor-alpha (TNF-α), interleukin (IL)-2R, IL-6, IL-8 and IL-10 in plasma on the first postoperative day significantly increased in the GAL group than in the non-GAL group (P<0.05). IL-6, IL-8 and IL-10 were fair predictors of GAL (AUROC >0.7) and the other two cytokines were poorly predictive (AUROC <0.7). The mean length of ICU and hospital stay were significantly longer in the GAL group than in the non-GAL group (P<0.05). Plasma concentrations of IL-6, IL-8 and IL-10 on the first postoperative day can predict clinically important GAL in patients undergoing esophagectomy.

  6. Chelation by collagen in the immobilization of Aspergillus oryzae β-galactosidase: A potential biocatalyst to hydrolyze lactose by batch processes.

    PubMed

    Gennari, Adriano; Mobayed, Francielle Herrmann; Volpato, Giandra; de Souza, Claucia Fernanda Volken

    2018-04-01

    This work is the first study of the immobilization of Aspergillus oryzae β-galactosidase (Gal) on powdered collagen (Col) that had formed a chelate with aluminum (Col-Al-Gal). Other collagen treatments, including those with acetic acid, glutaraldehyde, and a combination of aluminum and glutaraldehyde (Col-Al-Glu-Gal), were also tested. High-yield (superior to 80%) and high-efficiency (superior to 99%) immobilization was obtained for the derivatives Col-Al-Gal and Col-Al-Glu-Gal, even at high protein loads (500-1,000 mg g -1 of support). The storage stability of Gal immobilized on Col-Al and Col-Al-Glu resulted in Gal retaining approximately 60% of its initial activity after 90 days at 4 °C. The half-life values of derivatives Col-Al-Gal and Col-Al-Glu-Gal were higher than those of soluble enzyme at 65, 68, 70, and 73 °C. The derivatives Col-Al-Gal and Col-Al-Glu-Gal retained high enzyme activity in batch hydrolysis of lactose in permeate and lactose solutions for 50 and 60 cycles, respectively. Our results suggest that powdered collagen treated with aluminum, a low-cost support, is a promising support for the immobilization of β-galactosidase. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. The Shiga and Shiga-Like Cytotoxins: Gene Regulation and Functional Analysis of the Binding Subunits

    DTIC Science & Technology

    1989-05-05

    SLT-I and SLT-II operons, designated slt-I and slt-II respectively, have been cloned from toxin-converting coliphage (Newland et al. 1985; Willshaw...The plasmid bands were removed through the sides of the tubes with a 20-gauge needle, the EtBr was extracted with water -saturated butanol, and the...pBluescript vectors were spread on LB agar plates with 50 ~1 Bluo-gal (BRL; 2% in dimethyl formamide) and 25 ~1 IPTG (BRL; lOOmM in water ) on LB agar

  8. Prevalence of type I sensitization to alpha-gal in forest service employees and hunters.

    PubMed

    Fischer, J; Lupberger, E; Hebsaker, J; Blumenstock, G; Aichinger, E; Yazdi, A S; Reick, D; Oehme, R; Biedermann, T

    2017-10-01

    The production of IgE molecules specific to the carbohydrate galactose-α-1,3-galactose (alpha-gal) is known to induce delayed anaphylaxis against mammalian meat. Tick bites constitute the primary sensitization source, as ticks transfer alpha-gal in their saliva to a host during a bite. The reported prevalence of alpha-gal-specific IgE (alpha-gal-sIgE) positivity varies between different populations from diverse geographic regions. To investigate the prevalence of alpha-gal-sIgE positivity in a population of forest service employees who are highly exposed to ticks in comparison with a residential population and a historic sample. A cross-sectional study evaluating 300 forest service employees and hunters from southwest Germany was performed. Alpha-gal-sIgE levels were assessed by ImmunoCAP assay. The prevalence of alpha-gal-sIgE-positive individuals was compared with a matched cohort composed of a residential population and blood samples from forest service employees collected 15 years ago. In the study population, the prevalence of alpha-gal-sIgE-positive (≥0.10 kU A /L) individuals was 35.0%, whereas the prevalence of individuals with alpha-gal-sIgE levels ≥0.35 kU A /L was 19.3%. Alpha-gal-sIgE positivity was associated with total IgE levels and recent tick bites. Mammalian meat-induced delayed anaphylaxis was found in 8.6% of the participants with alpha-gal-sIgE levels ≥0.35 kU A /L. For forest service employees and hunters, the odds ratio for alpha-gal-sIgE positivity was 2.48 compared to the residential population. The prevalence of alpha-gal-sIgE positivity in the current and historic cohort was comparable. Forest service employees and hunters compose a population with a high prevalence of alpha-gal-sIgE positivity and carry a considerable risk of red meat allergy. © 2017 EAACI and John Wiley and Sons A/S. Published by John Wiley and Sons Ltd.

  9. Peptides derived from human galectin-3 N-terminal tail interact with its carbohydrate recognition domain in a phosphorylation-dependent manner

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berbís, M. Álvaro; André, Sabine; Cañada, F. Javier

    2014-01-03

    Highlights: •Galectin-3 is composed of a carbohydrate recognition domain and an N-terminal tail. •Synthetic peptides derived from the tail are shown to interact with the CRD. •This interaction is modulated by Ser- and Tyr-phosphorylation of the peptides. -- Abstract: Galectin-3 (Gal-3) is a multi-functional effector protein that functions in the cytoplasm and the nucleus, as well as extracellularly following non-classical secretion. Structurally, Gal-3 is unique among galectins with its carbohydrate recognition domain (CRD) attached to a rather long N-terminal tail composed mostly of collagen-like repeats (nine in the human protein) and terminating in a short non-collagenous terminal peptide sequence uniquemore » in this lectin family and not yet fully explored. Although several Ser and Tyr sites within the N-terminal tail can be phosphorylated, the physiological significance of this post-translational modification remains unclear. Here, we used a series of synthetic (phospho)peptides derived from the tail to assess phosphorylation-mediated interactions with {sup 15}N-labeled Gal-3 CRD. HSQC-derived chemical shift perturbations revealed selective interactions at the backface of the CRD that were attenuated by phosphorylation of Tyr 107 and Tyr 118, while phosphorylation of Ser 6 and Ser 12 was essential. Controls with sequence scrambling underscored inherent specificity. Our studies shed light on how phosphorylation of the N-terminal tail may impact on Gal-3 function and prompt further studies using phosphorylated full-length protein.« less

  10. Geochemical and Geophysical Estimates of Lithospheric Thickness Variation Beneath Galápagos

    NASA Astrophysics Data System (ADS)

    Gibson, S. A.; Geist, D.

    2010-12-01

    Active volcanism in Galápagos is far more widespread (>40,000 km2) than in other hotspot-related archipelagos, such as Hawaii (~20,000 km2). We have employed geochemical and geophysical data to constrain the causes of this widespread volcanism. Basaltic magmas recently erupted across the Galápagos Archipelago are linked to the variable distribution of ‘enriched’, depleted MORB (DMM) and FOZO-like plume (PLUME) components in anomalously-hot upwelling mantle. We have used rare-earth-element inversion modelling for basalts dominated by PLUME and DMM components to constrain the depth to the top of the melt column beneath different Galápagos volcanoes. Basalts erupted on islands in the southwest of the Galápagos Archipelago (e.g. Fernandina and Isabela) -- and closest to the postulated axis of the present-day plume -- have the highest [Sm/Yb]n (typically 2.3 to 3). REE inversion models suggest that adiabatic decompression melting of anhydrous peridotite occurs beneath these islands between ~ 85 and 58 km. In the northeast of the archipelago (e.g. Genovesa, Marchena, eastern Santiago and northern Santa Cruz) [Sm/Yb]n ratios are lower (1.0 to 2.3) and inversion models predict that melting of anhydrous peridotite occurs between 85 and 48 km depth. Models run with different PLUME and DMM source compositions give almost identical depth estimates for the base and top of the anhydrous melt column, because primitive mantle, MORB and recycled oceanic crust all have [Sm/Yb]n close to unity. Incipient melting (of volatile-rich peridotite and or pyroxenite) at depths between ~85 and 150 km is required to explain elevated concentrations of strongly-incompatible trace elements. The length of this small-fraction melt ‘tail’ is greatest for basalts erupted closest to the plume axis, which have super-chondritic Nb/La ratios but variable 3He/4He. By converting surface wave data from a recently published tomographic experiment [1] to temperature we have been able to map the base of the Galápagos thermal lithosphere. An excellent correlation exists between the results of this modelling and our estimates of the top of the melt column from geochemical modelling. The seismic data suggest that the base of the thermal lithosphere is ~56 km beneath western Galapagos and ~50 km beneath the northeast of the archipelago. These estimates are also consistent with those derived from models of conductive geotherms for plate ages of 5 and 10 Ma and a mantle potential temperature of 1400oC. We propose that thinner lithosphere away from the postulated site of the present-day Galápagos plume axis, combined with the lateral deflection of the plume head, is responsible for active volcanism over a relatively large area. Non-uniform variations in lithospheric thickness relative to distance from the Galápagos Spreading Centre are consistent with the complex nature of the oceanic lithosphere beneath this part of the Pacific. [1] Villagomez, D.R. et al., 2007. Upper mantle structure beneath the Galápagos Archipelago from surface wave tomography. JGR 112.

  11. Aerospace Technologies of the 21st Century: New Technologies of Experimental Research and Simulation Held in Berlin, Germany on 8-9 June 2000

    DTIC Science & Technology

    2000-01-01

    11. Gal-Or, B., U.S. PAT. Appl .. 08/516870/1, Aug. 18, 1995 & Isr. Pat. Appl . 113636, May 7,1995 by Gal- Or, Lichtsinder and Sherbaum.. 12. Gal-Or...B., U.S. PAT. Appl . 08/516870/2, Aug. 18, 1995 & Isr. Pat. Appl . 111265, Oct. 12,94 by Gal- Or, Lichtsinder and Sherbaum. 13. Gal-Or, B., U.S. PAT... Appl . 08/554087, Nov. 6,1995. 14. Gal-Or, B., ?Proposed Flight Testing Standards for Engine Thrust Vectoring to Maximize Kill Ra- tios, Post-Stall

  12. Beneficial Effects of Galectin-3 Blockade in Vascular and Aortic Valve Alterations in an Experimental Pressure Overload Model

    PubMed Central

    Ibarrola, Jaime; Martínez-Martínez, Ernesto; Sádaba, J. Rafael; Arrieta, Vanessa; García-Peña, Amaia; Álvarez, Virginia; Fernández-Celis, Amaya; Gainza, Alicia; Rossignol, Patrick; Cachofeiro Ramos, Victoria; López-Andrés, Natalia

    2017-01-01

    Galectin-3 (Gal-3) is involved in cardiovascular fibrosis and aortic valve (AV) calcification. We hypothesized that Gal-3 pharmacological inhibition with modified citrus pectin (MCP) could reduce aortic and AV remodeling in normotensive rats with pressure overload (PO). Six weeks after aortic constriction, vascular Gal-3 expression was up-regulated in male Wistar rats. Gal-3 overexpression was accompanied by an increase in the aortic media layer thickness, enhanced total collagen, and augmented expression of fibrotic mediators. Further, vascular inflammatory markers as well as inflammatory cells content were greater in aorta from PO rats. MCP treatment (100 mg/kg/day) prevented the increase in Gal-3, media thickness, fibrosis, and inflammation in the aorta of PO rats. Gal-3 levels were higher in AVs from PO rats. This paralleled enhanced AV fibrosis, inflammation, as well as greater expression of calcification markers. MCP treatment prevented the increase in Gal-3 as well as fibrosis, inflammation, and calcification in AVs. Overall, Gal-3 is overexpressed in aorta and AVs from PO rats. Gal-3 pharmacological inhibition blocks aortic and AV remodeling in experimental PO. Gal-3 could be a new therapeutic approach to delay the progression and the development of aortic remodeling and AV calcification in PO. PMID:28758988

  13. Galectin-3 Performance in Histologic and Cytologic Assessment of Thyroid Nodules: A Systematic Review and Meta-Analysis

    PubMed Central

    Trimboli, Pierpaolo; Virili, Camilla; Romanelli, Francesco; Crescenzi, Anna; Giovanella, Luca

    2017-01-01

    The literature on Galectin-3 (Gal-3) was systematically reviewed to achieve more robust information on its histologic reliability in identifying thyroid cancers and on the concordance between Gal-3 test in histologic and cytologic samples. A computer search of the PubMed and Scopus databases was conducted by combinations of the terms thyroid and Gal-3. Initially, 545 articles were found and, after their critical review, 52 original papers were finally included. They reported 8172 nodules with histologic evaluation of Gal-3, of which 358 with also preoperative FNAC Gal-3 assessment. At histology, Gal-3 sensitivity was 87% (95% confidence intervals [CI] from 86% to 88%), and specificity 87% (95% CI from 86% to 88%); in both cases, we found heterogeneity (I2 85% and 93%, respectively) and significant publication bias (p < 0.001). The pooled rate of positive Gal-3 at fine needle aspiration (FNAC) among cancers with histologically proven Gal-3 positivity was 94% (95% CI from 89% to 97%), with neither heterogeneity (I2 14.5%) nor bias (p = 0.086). These data show high reliability of Gal-3 for thyroid cancer at histology, while its sensitivity on FNAC samples is lower. The limits of cytologic preparations and interpretation of Gal-3 results have to be solved. PMID:28800068

  14. Ceria-containing uncoated and coated hydroxyapatite-based galantamine nanocomposites for formidable treatment of Alzheimer's disease in ovariectomized albino-rat model.

    PubMed

    Wahba, Sanaa M R; Darwish, Atef S; Kamal, Sara M

    2016-08-01

    This paper upraises delivery and therapeutic actions of galantamine drug (GAL) against Alzheimer's disease (AD) in rat brain through attaching GAL to ceria-containing hydroxyapatite (GAL@Ce-HAp) as well ceria-containing carboxymethyl chitosan-coated hydroxyapatite (GAL@Ce-HAp/CMC) nanocomposites. Physicochemical features of such nanocomposites were analyzed by XRD, FT-IR, Raman spectroscopy, UV-vis spectrophotometer, N2-BET, DLS, zeta-potential measurements, SEM, and HR-TEM. Limited interactions were observed in GAL@Ce-HAp with prevailed existence of dispersed negatively charged rod-like particles conjugated with ceria nanodots. On contrary, GAL@Ce-HAp/CMC was well-structured developing aggregates of uncharged tetragonal-shaped particles laden with accession of ceria quantum dots. Such nanocomposites were i.p. injected into ovariectomized AD albino-rats at galantamine dose of 2.5mg/kg/day for one month, then brain tissues were collected for biochemical and histological tests. GAL@Ce-HAp adopted as a promising candidate for AD curativeness, whereas oxidative stress markers were successfully upregulated, degenerated neurons in hippocampal and cerebral tissues were wholly recovered and Aβ-plaques were vanished. Also, optimizable in-vitro release for GAL and nanoceria were displayed from GAL@Ce-HAp, while delayed in-vitro release for those species were developed from GAL@Ce-HAp/CMC. This proof of concept work allow futuristic omnipotency of rod-like hydroxyapatite particles for selective delivery of GAL and nanoceria to AD affected brain areas. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Mice lacking sialyltransferase ST3Gal-II develop late-onset obesity and insulin resistance

    PubMed Central

    Lopez, Pablo HH; Aja, Susan; Aoki, Kazuhiro; Seldin, Marcus M; Lei, Xia; Ronnett, Gabriele V; Wong, G William; Schnaar, Ronald L

    2017-01-01

    Sialyltransferases are a family of 20 gene products in mice and humans that transfer sialic acid from its activated precursor, CMP-sialic acid, to the terminus of glycoprotein and glycolipid acceptors. ST3Gal-II (coded by the St3gal2 gene) transfers sialic acid preferentially to the three positions of galactose on the Galβ1-3GalNAc terminus of gangliosides GM1 and GD1b to synthesize GD1a and GT1b, respectively. Mice with a targeted disruption of St3gal2 unexpectedly displayed late-onset obesity and insulin resistance. At 3 months of age, St3gal2-null mice were the same weight as their wild type (WT) counterparts, but by 13 months on standard chow they were visibly obese, 22% heavier and with 37% greater fat/lean ratio than WT mice. St3gal2-null mice became hyperglycemic and displayed impaired glucose tolerance by 9 months of age. They had sharply reduced insulin responsiveness despite equivalent pancreatic islet morphology. Analyses of insulin receptor (IR) tyrosine kinase substrate IRS-1 and downstream target Akt revealed decreased insulin-induced phosphorylation in adipose tissue but not liver or skeletal muscle of St3gal2-null mice. Thin-layer chromatography and mass spectrometry revealed altered ganglioside profiles in the adipose tissue of St3gal2-null mice compared to WT littermates. Metabolically, St3gal2-null mice display a reduced respiratory exchange ratio compared to WT mice, indicating a preference for lipid oxidation as an energy source. Despite their altered metabolism, St3gal2-null mice were hyperactive. We conclude that altered ganglioside expression in adipose tissue results in diminished IR sensitivity and late-onset obesity. PMID:27683310

  16. Silencing of galectin-1 inhibits retinal neovascularization and ameliorates retinal hypoxia in a murine model of oxygen-induced ischemic retinopathy.

    PubMed

    Yang, Ning; Zhang, Wenxi; He, Tao; Xing, Yiqiao

    2017-06-01

    Aberrant neovascularization is a consequence of inappropriate angiogenic signaling and contributes to several diseases. Although many regulators of pathogenic angiogenesis have been identified, the understanding of this process remains incomplete. Galectin-1 (Gal-1), as a homodimeric protein with a single carbohydrate-recognition domain, is implicated in several pathologic processes, including angiogenesis; however, its involvement in retinal neovascularization (RNV) remains unknown. Here, we investigated the anti-angiogenic effect of silencing Gal-1 through intravitreal injection in a mouse model of oxygen-induced retinopathy (OIR). Our results revealed that Gal-1 was overexpressed and closely related to retinal neo-vessels in OIR retinas. After silencing Gal-1 via intravitreal injection of adenoviral-Gal-1-RNA interference (Ad-Gal-1-RNAi), RNV and retinal hypoxia were significantly attenuated, indicating the anti-angiogenic effect of Gal-1 inhibition. Western blot analysis and real-time polymerase chain reaction indicated that the expression of both neuropilin-1 (Nrp-1) and B cell lymphoma-2 (Bcl-2) decreased after intravitreal injection of Ad-Gal-1-RNAi, implying the possible involvement of Nrp-1 and Bcl-2 in Gal-1-related angiogenic processes. Additionally, whole-mount fluorescence and hematoxylin and eosin staining showed that intravitreal injection of Ad-Gal-1-RNAi did not significantly disrupt the retinal vasculature and neuronal structure of room air mice. Moreover, Ad-Gal-1-RNAi transfer promoted retinal vascular sprouting and increased retinal vascular perfusion, likely through decreased phosphorylation of myosin phosphatase target protein-1. Collectively, our results demonstrated that Gal-1 functions as an important regulator in RNV and offers a promising strategy for the treatment of RNV diseases, such as proliferative diabetic retinopathy and retinopathy of prematurity. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Upregulation of CD59

    PubMed Central

    Griesemer, Adam D.; Okumi, Masayoshi; Shimizu, Akira; Moran, Shannon; Ishikawa, Yoshinori; Iorio, Justin; Arn, J. Scott; Yamada, Kazuhiko

    2009-01-01

    Background Survival of ABO-mismatched kidneys with stable renal function despite the persistence of anti-ABO antibodies is called accommodation. The mechanism of accommodation is unclear, but may involve complement regulatory proteins such as CD59. The development of alpha-1,3-Galactosyltransferase knock-out (GalT-KO) swine that produce anti-Gal antibodies provides a large animal model capable of determining the role of complement regulatory proteins in accommodation. Methods ELISA and antibody FACS were used to examine the rate of anti-Gal antibody expression as a function of age. MHC-matched kidneys were transplanted from Gal-positive MGH miniature swine to MGH GalT-KO swine with systemic immunosuppression. One recipient underwent adsorbtion of anti-Gal antibodies prior to transplantation. Graft survival, antibody and complement deposition patterns and CD59 expression were determined. Results Three animals rejected Gal-positive kidneys via humoral mechanisms. One animal with low titers of anti-Gal Ab displayed spontaneous accommodation and the animal that was treated with Ab adsorbtion also displayed accommodation. Rejected grafts had deposition of IgM, IgG, C3 and C5b-9 with low expression of CD59, while accommodated grafts had low deposition of C5b-9 and high expression of CD59. Re-transplantation of one accommodated graft to a naïve GalT-KO animal confirmed that changes in the graft were responsible for the lack of C5b-9 deposition. Conclusion GalT-KO miniature swine produce anti-Gal antibodies and titers increase with age. These anti-Gal antibodies can cause rejection of MHC matched kidneys unless accommodation occurs. CD59 upregulation appears to be involved in the mechanism of accommodation by preventing the formation of the MAC on the accommodated graft. PMID:19424030

  18. The generation of knock-in mice expressing fluorescently tagged galanin receptors 1 and 2

    PubMed Central

    Kerr, Niall; Holmes, Fiona E.; Hobson, Sally-Ann; Vanderplank, Penny; Leard, Alan; Balthasar, Nina; Wynick, David

    2015-01-01

    The neuropeptide galanin has diverse roles in the central and peripheral nervous systems, by activating the G protein-coupled receptors Gal1, Gal2 and the less studied Gal3 (GalR1–3 gene products). There is a wealth of data on expression of Gal1–3 at the mRNA level, but not at the protein level due to the lack of specificity of currently available antibodies. Here we report the generation of knock-in mice expressing Gal1 or Gal2 receptor fluorescently tagged at the C-terminus with, respectively, mCherry or hrGFP (humanized Renilla green fluorescent protein). In dorsal root ganglia (DRG) neurons expressing the highest levels of Gal1-mCherry, localization to the somatic cell membrane was detected by live-cell fluorescence and immunohistochemistry, and that fluorescence decreased upon addition of galanin. In spinal cord, abundant Gal1-mCherry immunoreactive processes were detected in the superficial layers of the dorsal horn, and highly expressing intrinsic neurons of the lamina III/IV border showed both somatic cell membrane localization and outward transport of receptor from the cell body, detected as puncta within cell processes. In brain, high levels of Gal1-mCherry immunofluorescence were detected within thalamus, hypothalamus and amygdala, with a high density of nerve endings in the external zone of the median eminence, and regions with lesser immunoreactivity included the dorsal raphe nucleus. Gal2-hrGFP mRNA was detected in DRG, but live-cell fluorescence was at the limits of detection, drawing attention to both the much lower mRNA expression than to Gal1 in mice and the previously unrecognized potential for translational control by upstream open reading frames (uORFs). PMID:26292267

  19. D-galactose induces necroptotic cell death in neuroblastoma cell lines.

    PubMed

    Li, Na; He, Yangyan; Wang, Ling; Mo, Chunfen; Zhang, Jie; Zhang, Wei; Li, Junhong; Liao, Zhiyong; Tang, Xiaoqiang; Xiao, Hengyi

    2011-12-01

    D-Galactose (D-gal) can induce oxidative stress in non-cancer cells and result in cell damage by disturbing glucose metabolism. However, the effect of D-gal on cancer cells is yet to be explored. In this study, we investigated the toxicity of D-gal to malignant cells specifically neuroblastoma cells. As the results, high concentrations of D-gal had significant toxicity to cancer cells, whereas the same concentrations of glucose had no; the viability loss via D-gal treatment was prominent to malignant cells (Neuro2a, SH-SY5Y, PC-3, and HepG2) comparing to non-malignant cells (NIH3T3 and LO(2)). Differing from the apoptosis induced by H(2) O(2), D-gal damaged cells showed the characters of necrotic cell death, such as trypan blue-tangible and early phase LDH leakage. Further experiments displayed that the toxic effect of D-gal can be alleviated by necroptosis inhibitor Necrostatin (Nec-1) and autophagy inhibitor 3-methyladenine (3-MA) but not by caspase inhibitor z-VAD-fmk. D-Gal treatment can transcriptionally up-regulate the genes relevant to necroptosis (Bmf, Bnip3) and autophagy (Atg5, TIGAR) but not the genes related to apoptosis (Caspase3, Bax, and p53). D-Gal did not activate Caspase-3, but prompted puncta-like GFP-LC3 distribution, an indicator for activated autophagy. The involvement of aldose reductase (AR)-mediated polyol pathway was proved because the inhibitor of AR can attenuate the toxicity of D-gal and D-gal treatment elevates the expression of AR. This study demonstrates for the first time that D-gal can induce non-apoptotic but necroptotic cell death in neuroblastoma cells and provides a new clue for developing the strategy against apoptosis-resistant cancers. Copyright © 2011 Wiley Periodicals, Inc.

  20. Unexpected distribution of CA19.9 and other type 1 chain Lewis antigens in normal and cancer tissues of colon and pancreas: Importance of the detection method and role of glycosyltransferase regulation.

    PubMed

    Aronica, Adele; Avagliano, Laura; Caretti, Anna; Tosi, Delfina; Bulfamante, Gaetano Pietro; Trinchera, Marco

    2017-01-01

    CA19.9 antigen has been assumed as an abundant product of cancer cells, due to the reactivity found by immunohistochemical staining of cancer tissues with anti-CA19.9 antibody. Expression and biosynthesis of type 1 chain Lewis antigens in the colon and the pancreas were studied by immunodetection in tissue sections and lysates, quantification of glycosyltransferase transcripts, bisulfite sequencing, and chromatin immunoprecipitation assays. CA19.9 was poorly detectable in normal colon mucosa and almost undetectable in colon cancer, while it was easily detected in the pancreatic ducts, together with Lewis b antigen, under both normal and cancer conditions. B3GALT5 transcripts were down-regulated in colon cancer, while they remained expressed in pancreatic cancer. Even ST3GAL3 transcript appeared well expressed in the pancreas but poorly in the colon, irrespective of normal or cancer conditions. CpG islands flanking B3GALT5 native promoter presented an extremely low degree of methylation in pancreatic cancer with respect to colon cancer. In a DNA region about 1kb away from the B3GALT5 retroviral promoter, a stretch of CG dinucleotides presented a methylation pattern potentially associated with transcription. Such a DNA region and the transcription factor binding site provided overlapping results by chromatin immunoprecipitation assays, corroborating the hypothesis. CA19.9 appears as a physiological product whose synthesis strongly depends on the tissue specific and epigenetically-regulated expression of B3GALT5 and ST3GAL3. CA19.9 and other Lewis antigens acquire tumor marker properties in the pancreas due to mechanisms giving rise to reabsorption into vessels and elevation in circulating levels. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Estimation of rates of aerobic hydrocarbon biodegradation by simulation of gas transport in the unsaturated zone

    USGS Publications Warehouse

    Lahvis, Matthew A.; Baehr, Arthur L.

    1996-01-01

    The distribution of oxygen and carbon dioxide gases in the unsaturated zone provides a geochemical signature of aerobic hydrocarbon degradation at petroleum product spill sites. The fluxes of these gases are proportional to the rate of aerobic biodegradation and are quantified by calibrating a mathematical transport model to the oxygen and carbon dioxide gas concentration data. Reaction stoichiometry is assumed to convert the gas fluxes to a corresponding rate of hydrocarbon degradation. The method is applied at a gasoline spill site in Galloway Township, New Jersey, to determine the rate of aerobic degradation of hydrocarbons associated with passive and bioventing remediation field experiments. At the site, microbial degradation of hydrocarbons near the water table limits the migration of hydrocarbon solutes in groundwater and prevents hydrocarbon volatilization into the unsaturated zone. In the passive remediation experiment a site-wide degradation rate estimate of 34,400 g yr−1 (11.7 gal. yr−1) of hydrocarbon was obtained by model calibration to carbon dioxide gas concentration data collected in December 1989. In the bioventing experiment, degradation rate estimates of 46.0 and 47.9 g m−2 yr−1(1.45 × 10−3 and 1.51 × 10−3 gal. ft.−2yr−1) of hydrocarbon were obtained by model calibration to oxygen and carbon dioxide gas concentration data, respectively. Method application was successful in quantifying the significance of a naturally occurring process that can effectively contribute to plume stabilization.

  2. Quantitative Comparison of Human Parainfluenza Virus Hemagglutinin-Neuraminidase Receptor Binding and Receptor Cleavage

    PubMed Central

    Tappert, Mary M.; Porterfield, J. Zachary; Mehta-D'Souza, Padmaja; Gulati, Shelly

    2013-01-01

    The human parainfluenza virus (hPIV) hemagglutinin-neuraminidase (HN) protein binds (H) oligosaccharide receptors that contain N-acetylneuraminic acid (Neu5Ac) and cleaves (N) Neu5Ac from these oligosaccharides. In order to determine if one of HN′s two functions is predominant, we measured the affinity of H for its ligands by a solid-phase binding assay with two glycoprotein substrates and by surface plasmon resonance with three monovalent glycans. We compared the dissociation constant (Kd) values from these experiments with previously determined Michaelis-Menten constants (Kms) for the enzyme activity. We found that glycoprotein substrates and monovalent glycans containing Neu5Acα2-3Galβ1-4GlcNAc bind HN with Kd values in the 10 to 100 μM range. Km values for HN were previously determined to be on the order of 1 mM (M. M. Tappert, D. F. Smith, and G. M. Air, J. Virol. 85:12146–12159, 2011). A Km value greater than the Kd value indicates that cleavage occurs faster than the dissociation of binding and will dominate under N-permissive conditions. We propose, therefore, that HN is a neuraminidase that can hold its substrate long enough to act as a binding protein. The N activity can therefore regulate binding by reducing virus-receptor interactions when the concentration of receptor is high. PMID:23740997

  3. Chemical characterization of milk oligosaccharides of the island flying fox (Pteropus hypomelanus) (Chiroptera: Pteropodidae).

    PubMed

    Senda, Akitsugu; Kobayashi, Rui; Fukuda, Kenji; Saito, Tadao; Hood, Wendy R; Kunz, Thomas H; Oftedal, Olav T; Urashima, Tadasu

    2011-12-01

    Although a considerable amount of information has accumulated about oligosaccharides in the milk and colostrum of representatives of various mammalian orders, nothing is so far known concerning these sugars in the milk of any bat species (order Chiroptera). In this study, we determined that the following oligosaccharides occur in milk of the island flying fox, Pteropus hypomelanus (Chiroptera: Pteropidae): Gal(α1-3)Gal(β1-4)Glc (isoglobotriose), Gal(β1-4)GlcNAc(β1-3)Gal(β1-4)Glc (lacto-N-neotetraose), Gal(β1-4)GlcNAc(β1-3)[Gal(β1-4)GlcNAc(β1-6)]Gal(β1-4)Glc (lacto-N-neohexaose) and Neu5Gc(α2-3)Gal(β1-4)Glc (3'-NGc-SL). However, lactose was found to be the dominant saccharide in this milk, as in most eutherian mammals. The biologic importance of oligosaccharides in Chiropteran milks warrants further study. © 2011 The Authors. Animal Science Journal © 2011 Japanese Society of Animal Science.

  4. Dissecting transcription-coupled and global genomic repair in the chromatin of yeast GAL1-10 genes.

    PubMed

    Li, Shisheng; Smerdon, Michael J

    2004-04-02

    Transcription-coupled repair (TCR) and global genomic repair (GGR) of UV-induced cyclobutane pyrimidine dimers were investigated in the yeast GAL1-10 genes. Both Rpb9- and Rad26-mediated TCR are confined to the transcribed strands, initiating at upstream sites approximately 100 nucleotides from the upstream activating sequence shared by the two genes. However, TCR initiation sites do not correlate with either transcription start sites or TATA boxes. Rad16-mediated GGR tightly correlates with nucleosome positioning when the genes are repressed and are slow in the nucleosome core and fast in linker DNA. Induction of transcription enhanced GGR in nucleosome core DNA, especially in the nucleosomes around and upstream of the transcription start sites. Furthermore, when the genes were induced, GGR was slower in the transcribed regions than in the upstream regions. Finally, simultaneous deletion of RAD16, RAD26, and RPB9 resulted in no detectable repair in all sites along the region analyzed. Our results suggest that (a). TCR may be initiated by a transcription activator, presumably through the loading of RNA polymerase II, rather than by transcription initiation or elongation per se; (b). TCR and nucleosome disruption-enhanced GGR are the major causes of rapid repair in regions around and upstream of transcription start sites; (c). transcription machinery may hinder access of NER factors to a DNA lesion in the absence of a transcription-repair coupling factor; and (d). other than GGR mediated by Rad16 and TCR mediated by Rad26 and Rpb9, no other nucleotide excision repair pathway exists in these RNA polymerase II-transcribed genes.

  5. Hydrology, water quality, and water-supply potential of ponds at Hunter Army Airfield, Chatham County, Georgia, November 2008-July 2009

    USGS Publications Warehouse

    Clarke, John S.; Painter, Jaime A.

    2010-01-01

    The hydrology, water quality, and water-supply potential of four ponds constructed to capture stormwater runoff at Hunter Army Airfield, Chatham County, Georgia, were evaluated as potential sources of supplemental irrigation supply. The ponds are, Oglethorpe Lake, Halstrum Pond, Wilson Gate Pond, and golf course pond. During the dry season, when irrigation demand is highest, ponds maintain water levels primarily from groundwater seepage. The availability of water from ponds during dry periods is controlled by the permeability of surficial deposits, precipitation and evaporation, and the volume of water stored in the pond. Net groundwater seepage (Gnet) was estimated using a water-budget approach that used onsite and nearby climatic and hydrologic data collected during November-December 2008 including precipitation, evaporation, pond stage, and discharge. Gnet was estimated at three of the four sites?Oglethorpe Lake, Halstrum Pond, and Wilson Gate Pond?during November-December 2008. Pond storage volume in the three ponds ranged from 5.34 to 12.8 million gallons. During November-December 2008, cumulative Gnet ranged from -5.74 gallons per minute (gal/min), indicating a net loss in pond volume, to 19 gal/min, indicating a net gain in pond volume. During several periods of stage recovery, daily Gnet rates were higher than the 2-month cumulative amount, with the highest rates of 178 to 424 gal/min following major rainfall events during limited periods. These high rates may include some contribution from stormwater runoff; more typical recovery rates were from 23 to 223 gal/min. A conservative estimate of the volume of water available for irrigation supply from three of the ponds was provided by computing the rate of depletion of pond volume for a variety of withdrawal rates based on long-term average July precipitation and evaporation and the lowest estimated Gnet rate at each pond. Withdrawal rates of 1,000, 500, and 250 gal/min were applied during an 8-hour daily pumping period. At a withdrawal rate of 1,000 gal/min, available pond volume would be depleted in 13-29 days, at a rate of 500 gal/min in 24-60 days, and at a rate of 250 gal/min, in 44 to 130 days. In each case, Halstrum Pond had the largest amount of available pond volume. The water-supply potential at the golf course pond was assessed by measuring flow downstream from the pond during February-July 2009, and examining historic stormflow measurements collected during 1979-87. Streamflow during both of these periods exceeded average daily (2005-2007) golf course water use. Assuming an 8-hour daily irrigation period, the average discharge rate required to meet Golf Course water demand during peak demand months of March-May and July-October exceeds 200 gal/min, with the greatest rate of 531 gal/min during July. During February-July 2009, daily average streamflow downstream of the golf course pond exceeded 238 gal/min 90 percent of the time. Based on samples collected for chemical analysis during April 2009, water from all four ponds at Hunter Army Airfield is fresh and suitable for irrigation supply, with chloride concentrations below 12 milligrams per liter. With the exception of iron in Wilson Gate Pond, constituent concentrations are below U.S. Environmental Protection Agency primary and secondary drinking water maximum contaminant levels. Water in Wilson Gate Pond contained an iron concentration of 419 mg/L, which exceeds the secondary maximum contaminant level of 300 micrograms per liter. Although not a health hazard, when the iron concentration exceeds 300 micrograms per liter, iron staining of sidewalks and plumbing fixtures may occur. Levels of dissolved oxygen were below the Georgia Environmental Protection Divison standard of 4 milligrams per liter for waters supporting warm-water fishes at deeper depths in Oglethorpe Lake, Wilson Gate Pond, and Halstrum Pond, and in the composite sample at the golf course pond.

  6. O-Glycosylation-mediated signaling circuit drives metastatic castration-resistant prostate cancer.

    PubMed

    Tzeng, Sheue-Fen; Tsai, Chin-Hsien; Chao, Tai-Kuang; Chou, Yu-Ching; Yang, Yu-Chih; Tsai, Mong-Hsun; Cha, Tai-Lung; Hsiao, Pei-Wen

    2018-06-15

    Disseminated castration-resistant prostate cancer (CRPC) is a common disease in men that is characterized by limited survival and resistance to androgen-deprivation therapy. The increase in human epidermal growth factor receptor 2 (HER2) signaling contributes to androgen receptor activity in a subset of patients with CRPC; however, enigmatically, HER2-targeted therapies have demonstrated a lack of efficacy in patients with CRPC. Aberrant glycosylation is a hallmark of cancer and involves key processes that support cancer progression. Using transcriptomic analysis of prostate cancer data sets, histopathologic examination of clinical specimens, and in vivo experiments of xenograft models, we reveal in this study a coordinated increase in glycan-binding protein, galectin-4, specific glycosyltransferases of core 1 synthase, glycoprotein- N-acetylgalactosamine 3-β-galactosyltransferase 1 (C1GALT1) and ST3 beta-galactoside α-2,3-sialyltransferase 1 (ST3GAL1), and resulting mucin-type O-glycans during the progression of CRPC. Furthermore, galectin-4 engaged with C1GALT1-dependent O-glycans to promote castration resistance and metastasis by activating receptor tyrosine kinase signaling and cancer cell stemness properties mediated by SRY-box 9 (SOX9). This galectin-glycan interaction up-regulated the MYC-dependent expression of C1GALT1 and ST3GAL1, which altered cellular mucin-type O-glycosylation to allow for galectin-4 binding. In clinical prostate cancer, high-level expression of C1GALT1 and galectin-4 together predict poor overall survival compared with low-level expression of C1GALT1 and galectin-4. In summary, MYC regulates abnormal O-glycosylation, thus priming cells for binding to galectin-4 and downstream signaling, which promotes castration resistance and metastasis.-Tzeng, S.-F., Tsai, C.-H., Chao, T.-K., Chou, Y.-C., Yang, Y.-C., Tsai, M.-H., Cha, T.-L., Hsiao, P.-W. O-Glycosylation-mediated signaling circuit drives metastatic castration-resistant prostate cancer.

  7. Analysis of β-Galactosidase During Fruit Development and Ripening in Two Different Texture Types of Apple Cultivars

    PubMed Central

    Yang, Huijuan; Liu, Junling; Dang, Meile; Zhang, Bo; Li, Hongguang; Meng, Rui; Qu, Dong; Yang, Yazhou; Zhao, Zhengyang

    2018-01-01

    β-galactosidase (β-Gal), one of the cell wall modifying enzymes, plays an important role in fruit ripening and softening. However, its role in apple fruit texture remains unclear. In this study, the role of β-Gal was analyzed in two apple cultivars, ‘Fuji’ and ‘Qinguan,’ which are characterized by different fruit texture types, during fruit development and ripening. The firmness and pectin content of the fruits rapidly decreased and were much lower in ‘Fuji’ than in ‘Qinguan’ from 105 days after full bloom (DAFB). Transmission electron microscopy showed that the pectin-rich middle lamella was substantially degraded from 105 to 180 DAFB in the two apple cultivars. However, the degradation was more severe in ‘Fuji’ than in ‘Qinguan.’ Subcellular localization analysis showed that the Mdβ-Gal1, Mdβ-Gal2, and Mdβ-Gal5 proteins were located in the cell wall. β-Gal activity continuously increased during all fruit developmental stages and was much higher in the mature fruits of ‘Fuji’ than in those of ‘Qinguan,’ indicating that pectin was degraded by β-Gal. Consistent with the enzyme activities, expression levels of β-Gal genes (Mdβ-Gal1, Mdβ-Gal2, and Mdβ-Gal5) showed only slight changes from 60 to 105 DAFB but then dramatically increased until fruit ripening, with higher values in ‘Fuji’ than in ‘Qinguan.’ Furthermore, we found that activities of deletion derivatives in the Mdβ-Gal2 promoter and transcript level of Mdβ-Gal2 were induced by the treatment with methyl jasmonate (MeJA) and ethylene (ETH) hormones. Two ETH and one MeJA hormone-responsive elements were identified by analyzing the promoter sequence. These results suggest that β-Gals, induced by ETH and MeJA, are involved in different fruit texture types of apple cultivars by influencing the degradation of pectin during the mature fruit stage. PMID:29740469

  8. Two β-Galactosidases from the Human Isolate Bifidobacterium breve DSM 20213: Molecular Cloning and Expression, Biochemical Characterization and Synthesis of Galacto-Oligosaccharides

    PubMed Central

    Suljic, Jasmina; Kittl, Roman; Pham, Ngoc Hung; Kosma, Paul; Haltrich, Dietmar; Nguyen, Thu-Ha

    2014-01-01

    Two β-galactosidases, β-gal I and β-gal II, from Bifidobacterium breve DSM 20213, which was isolated from the intestine of an infant, were overexpressed in Escherichia coli with co-expression of the chaperones GroEL/GroES, purified to electrophoretic homogeneity and biochemically characterized. Both β-gal I and β-gal II belong to glycoside hydrolase family 2 and are homodimers with native molecular masses of 220 and 211 kDa, respectively. The optimum pH and temperature for hydrolysis of the two substrates o-nitrophenyl-β-D-galactopyranoside (oNPG) and lactose were determined at pH 7.0 and 50°C for β-gal I, and at pH 6.5 and 55°C for β-gal II, respectively. The k cat/K m values for oNPG and lactose hydrolysis are 722 and 7.4 mM−1s−1 for β-gal I, and 543 and 25 mM−1s−1 for β-gal II. Both β-gal I and β-gal II are only moderately inhibited by their reaction products D-galactose and D-glucose. Both enzymes were found to be very well suited for the production of galacto-oligosaccharides with total GOS yields of 33% and 44% of total sugars obtained with β-gal I and β-gal II, respectively. The predominant transgalactosylation products are β-D-Galp-(1→6)-D-Glc (allolactose) and β-D-Galp-(1→3)-D-Lac, accounting together for more than 75% and 65% of the GOS formed by transgalactosylation by β-gal I and β-gal II, respectively, indicating that both enzymes have a propensity to synthesize β-(1→6) and β-(1→3)-linked GOS. The resulting GOS mixtures contained relatively high fractions of allolactose, which results from the fact that glucose is a far better acceptor for galactosyl transfer than galactose and lactose, and intramolecular transgalactosylation contributes significantly to the formation of this disaccharide. PMID:25089712

  9. Two β-galactosidases from the human isolate Bifidobacterium breve DSM 20213: molecular cloning and expression, biochemical characterization and synthesis of galacto-oligosaccharides.

    PubMed

    Arreola, Sheryl Lozel; Intanon, Montira; Suljic, Jasmina; Kittl, Roman; Pham, Ngoc Hung; Kosma, Paul; Haltrich, Dietmar; Nguyen, Thu-Ha

    2014-01-01

    Two β-galactosidases, β-gal I and β-gal II, from Bifidobacterium breve DSM 20213, which was isolated from the intestine of an infant, were overexpressed in Escherichia coli with co-expression of the chaperones GroEL/GroES, purified to electrophoretic homogeneity and biochemically characterized. Both β-gal I and β-gal II belong to glycoside hydrolase family 2 and are homodimers with native molecular masses of 220 and 211 kDa, respectively. The optimum pH and temperature for hydrolysis of the two substrates o-nitrophenyl-β-D-galactopyranoside (oNPG) and lactose were determined at pH 7.0 and 50°C for β-gal I, and at pH 6.5 and 55°C for β-gal II, respectively. The kcat/Km values for oNPG and lactose hydrolysis are 722 and 7.4 mM-1s-1 for β-gal I, and 543 and 25 mM-1s-1 for β-gal II. Both β-gal I and β-gal II are only moderately inhibited by their reaction products D-galactose and D-glucose. Both enzymes were found to be very well suited for the production of galacto-oligosaccharides with total GOS yields of 33% and 44% of total sugars obtained with β-gal I and β-gal II, respectively. The predominant transgalactosylation products are β-D-Galp-(1→6)-D-Glc (allolactose) and β-D-Galp-(1→3)-D-Lac, accounting together for more than 75% and 65% of the GOS formed by transgalactosylation by β-gal I and β-gal II, respectively, indicating that both enzymes have a propensity to synthesize β-(1→6) and β-(1→3)-linked GOS. The resulting GOS mixtures contained relatively high fractions of allolactose, which results from the fact that glucose is a far better acceptor for galactosyl transfer than galactose and lactose, and intramolecular transgalactosylation contributes significantly to the formation of this disaccharide.

  10. Gravity measurements in southeastern Alaska reveal negative gravity rate of change caused by glacial isostatic adjustment

    NASA Astrophysics Data System (ADS)

    Sun, W.; Miura, S.; Sato, T.; Sugano, T.; Freymueller, J.; Kaufman, M.; Larsen, C. F.; Cross, R.; Inazu, D.

    2010-12-01

    For the past 300 years, southeastern Alaska has undergone rapid ice-melting and land uplift attributable to global warming. Corresponding crustal deformation (3 cm/yr) caused by the Little Ice Age retreat is detectable with modern geodetic techniques such as GPS and tidal gauge measurements. Geodetic deformation provides useful information for assessing ice-melting rates, global warming effects, and subcrustal viscosity. Nevertheless, integrated geodetic observations, including gravity measurements, are important. To detect crustal deformation caused by glacial isostatic adjustment and to elucidate the viscosity structure in southeastern Alaska, Japanese and U.S. researchers began a joint 3-year project in 2006 using GPS, Earth tide, and absolute gravity measurements. A new absolute gravity network was established, comprising five sites around Glacier Bay, near Juneau, Alaska. This paper reports the network's gravity measurements during 2006-2008. The bad ocean model in this area hindered ocean loading correction: Large tidal residuals remain in the observations. Accurate tidal correction necessitated on-site tidal observation. Results show high observation precision for all five stations: <1 μGal. The gravity rate of change was found to be -3.5 to -5.6 μGal/yr in the gravity network. Furthermore, gravity results obtained during the 3 years indicate a similar gravity change rate. These gravity data are anticipated for application in geophysical studies of southeastern Alaska. Using gravity and vertical displacement data, we constructed a quantity to remove viscoelastic effects. The observations are thus useful to constrain present-day ice thickness changes. A gravity bias of about -13.2 ± 0.1 mGal exists between the Potsdam and current FG5 gravity data.

  11. Terminal Galactosylation and Sialylation Switching on Membrane Glycoproteins upon TNF-Alpha-Induced Insulin Resistance in Adipocytes*

    PubMed Central

    Parker, Benjamin L.; Thaysen-Andersen, Morten; Fazakerley, Daniel J.; Holliday, Mira; Packer, Nicolle H.; James, David E.

    2016-01-01

    Insulin resistance (IR) is a complex pathophysiological state that arises from both environmental and genetic perturbations and leads to a variety of diseases, including type-2 diabetes (T2D). Obesity is associated with enhanced adipose tissue inflammation, which may play a role in disease progression. Inflammation modulates protein glycosylation in a variety of cell types, and this has been associated with biological dysregulation. Here, we have examined the effects of an inflammatory insult on protein glycosylation in adipocytes. We performed quantitative N-glycome profiling of membrane proteins derived from mouse 3T3-L1 adipocytes that had been incubated with or without the proinflammatory cytokine TNF-alpha to induce IR. We identified the regulation of specific terminal N-glycan epitopes, including an increase in terminal di-galactose- and a decrease in biantennary alpha-2,3-sialoglycans. The altered N-glycosylation of TNF-alpha-treated adipocytes correlated with the regulation of specific glycosyltransferases, including the up-regulation of B4GalT5 and Ggta1 galactosyltransferases and down-regulation of ST3Gal6 sialyltransferase. Knockdown of B4GalT5 down-regulated the terminal di-galactose N-glycans, confirming the involvement of this enzyme in the TNF-alpha-regulated N-glycome. SILAC-based quantitative glycoproteomics of enriched N-glycopeptides with and without deglycosylation were used to identify the protein and glycosylation sites modified with these regulated N-glycans. The combined proteome and glycoproteome workflow provided a relative quantification of changes in protein abundance versus N-glycosylation occupancy versus site-specific N-glycans on a proteome-wide level. This revealed the modulation of N-glycosylation on specific proteins in IR, including those previously associated with insulin-stimulated GLUT4 trafficking to the plasma membrane. PMID:26537798

  12. Calibrating accelerometer sensor on android phone with Accelerograph TDL 303 QS for earthquake online recorder

    NASA Astrophysics Data System (ADS)

    Riantana, R.; Darsono, D.; Triyono, A.; Azimut, H. B.

    2016-11-01

    Calibration of the android censor was done by placing the device in a mounting at side of accelerograph TDL 303 QS that will be a means of comparison. Leveling of both devices was set same, so that the state of the device can be assumed same anyway. Then applied vibrations in order to have the maximum amplitude value of both censor, so it can be found equality of the coefficient of proportionality both of them. The results on both devices obtain the Peak Ground Acceleration (PGA) as follows, on the x axis (EW) android censor is obtained PGA -2.4478145 gal than at TDL 303 QS obtained PGA -2.5504 gal, the y-axis (NS) on the censor android obtained PGA 3.0066964 gal than at TDL 303 QS obtained PGA 3.2073 gal, the z-axis (UD) on the android censor obtained PGA -14.0702377 gal than at TDL 303 QS obtained PGA -13.2927 gal, A correction value for android accelerometer censor is ± 0.1 gal for the x-axis (EW), ± 0.2 gal for the y-axis (NS), and ± 0.7 gal for the z-axis (UD).

  13. Gut Microbiota Elicits a Protective Immune Response against Malaria Transmission

    PubMed Central

    Yilmaz, Bahtiyar; Portugal, Silvia; Tran, Tuan M.; Gozzelino, Raffaella; Ramos, Susana; Gomes, Joana; Regalado, Ana; Cowan, Peter J.; d’Apice, Anthony J.F.; Chong, Anita S.; Doumbo, Ogobara K.; Traore, Boubacar; Crompton, Peter D.; Silveira, Henrique; Soares, Miguel P.

    2014-01-01

    Summary Glycosylation processes are under high natural selection pressure, presumably because these can modulate resistance to infection. Here, we asked whether inactivation of the UDP-galactose:β-galactoside-α1-3-galactosyltransferase (α1,3GT) gene, which ablated the expression of the Galα1-3Galβ1-4GlcNAc-R (α-gal) glycan and allowed for the production of anti-α-gal antibodies (Abs) in humans, confers protection against Plasmodium spp. infection, the causative agent of malaria and a major driving force in human evolution. We demonstrate that both Plasmodium spp. and the human gut pathobiont E. coli O86:B7 express α-gal and that anti-α-gal Abs are associated with protection against malaria transmission in humans as well as in α1,3GT-deficient mice, which produce protective anti-α-gal Abs when colonized by E. coli O86:B7. Anti-α-gal Abs target Plasmodium sporozoites for complement-mediated cytotoxicity in the skin, immediately after inoculation by Anopheles mosquitoes. Vaccination against α-gal confers sterile protection against malaria in mice, suggesting that a similar approach may reduce malaria transmission in humans. PaperFlick PMID:25480293

  14. Glucosylceramide transferase in Giardia preferentially catalyzes the synthesis of galactosylceramide during encystation.

    PubMed

    Robles-Martinez, Leobarda; Mendez, Tavis L; Apodaca, Jennifer; Das, Siddhartha

    2017-01-01

    The stage differentiation from trophozoite to cyst (i.e., encystation) is an essential step for Giardia to survive outside its human host and spread the infection via the fecal-oral route. We have previously shown that Giardia expresses glucosylceramide transferase 1 (GlcT1) enzyme, the activity of which is elevated during encystation. We have also reported that blocking the activity of gGlcT1 interferes with the biogenesis of encystation-specific vesicles (ESVs) and cyst viability in Giardia. To further understand the role of this enzyme and how it regulates encystation, we overexpressed, knocked down, and rescued the giardial GlcT1 (gGlcT1) gene and measured its enzymatic activity in live parasites as well as in isolated membrane fractions using NBD-ceramide and UDP-glucose or UDP-galactose. We observed that gGlcT1 is able to catalyze the synthesis of both glucosylceramide (GlcCer) and galactosylceramide (GalCer), however the synthesis of GalCer is 2-3 fold higher than of GlcCer. Although both activities follow Michaelis-Menten kinetics, the bindings of UDP-glucose and UDP-galactose with the enzyme appear to be non-competitive and independent of each other. The modulation of gGlcT1 synthesis concomitantly influenced the expression cyst-wall protein (CWP) and overall encystation. We propose that gGlcT1 is a unique enzyme and that Giardia uses this enzyme to synthesize both GlcCer and GalCer to facilitate the process of encystation/cyst production. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Ionizing radiation induces cellular senescence of articular chondrocytes via negative regulation of SIRT1 by p38 kinase.

    PubMed

    Hong, Eun-Hee; Lee, Su-Jae; Kim, Jae-Sung; Lee, Kee-Ho; Um, Hong-Duck; Kim, Jae-Hong; Kim, Song-Ja; Kim, Jong-Il; Hwang, Sang-Gu

    2010-01-08

    Radiotherapy is increasingly used in the treatment of joint diseases, but limited information is available on the effects of radiation on cartilage. Here, we characterize the molecular mechanisms leading to cellular senescence in irradiated primary cultured articular chondrocytes. Ionizing radiation (IR) causes activation of ERK, in turn generating intracellular reactive oxygen species (ROS) with induction of senescence-associated beta-galactosidase (SA-beta-gal) activity. ROS activate p38 kinase, which further promotes ROS generation, forming a positive feedback loop to sustain ROS-p38 kinase signaling. The ROS inhibitors, nordihydroguaiaretic acid and GSH, suppress phosphorylation of p38 and cell numbers positive for SA-beta-gal following irradiation. Moreover, inhibition of the ERK and p38 kinase pathways leads to blockage of IR-induced SA-beta-gal activity via reduction of ROS generation. Although JNK is activated by ROS, this pathway is not associated with cellular senescence of chondrocytes. Interestingly, IR triggers down-regulation of SIRT1 protein expression but not the transcript level, indicative of post-transcriptional cleavage of the protein. SIRT1 degradation is markedly blocked by SB203589 or MG132 after IR treatment, suggesting that cleavage occurs as a result of binding with p38 kinase, followed by processing via the 26 S proteasomal degradation pathway. Overexpression or activation of SIRT1 significantly reduces the IR-induced senescence phenotype, whereas inhibition of SIRT1 activity induces senescence. Based on these findings, we propose that IR induces cellular senescence of articular chondrocytes by negative post-translational regulation of SIRT1 via ROS-dependent p38 kinase activation.

  16. Carbohydrate Recognition Specificity of Trans-sialidase Lectin Domain from Trypanosoma congolense

    PubMed Central

    Waespy, Mario; Gbem, Thaddeus T.; Elenschneider, Leroy; Jeck, André-Philippe; Day, Christopher J.; Hartley-Tassell, Lauren; Bovin, Nicolai; Tiralongo, Joe; Haselhorst, Thomas; Kelm, Sørge

    2015-01-01

    Fourteen different active Trypanosoma congolense trans-sialidases (TconTS), 11 variants of TconTS1 besides TconTS2, TconTS3 and TconTS4, have been described. Notably, the specific transfer and sialidase activities of these TconTS differ by orders of magnitude. Surprisingly, phylogenetic analysis of the catalytic domains (CD) grouped each of the highly active TconTS together with the less active enzymes. In contrast, when aligning lectin-like domains (LD), the highly active TconTS grouped together, leading to the hypothesis that the LD of TconTS modulates its enzymatic activity. So far, little is known about the function and ligand specificity of these LDs. To explore their carbohydrate-binding potential, glycan array analysis was performed on the LD of TconTS1, TconTS2, TconTS3 and TconTS4. In addition, Saturation Transfer Difference (STD) NMR experiments were done on TconTS2-LD for a more detailed analysis of its lectin activity. Several mannose-containing oligosaccharides, such as mannobiose, mannotriose and higher mannosylated glycans, as well as Gal, GalNAc and LacNAc containing oligosaccharides were confirmed as binding partners of TconTS1-LD and TconTS2-LD. Interestingly, terminal mannose residues are not acceptor substrates for TconTS activity. This indicates a different, yet unknown biological function for TconTS-LD, including specific interactions with oligomannose-containing glycans on glycoproteins and GPI anchors found on the surface of the parasite, including the TconTS itself. Experimental evidence for such a scenario is presented. PMID:26474304

  17. Use of Absolute Gravity Measurements to Monitor Groundwater in the Española Basin, New Mexico

    NASA Astrophysics Data System (ADS)

    Cogbill, A. H.; Ferguson, J. F.; Keating, E. H.

    2005-05-01

    We present early results of three-year project using absolute gravity instrumentation to monitor groundwater in an arid to semi-arid region in northern New Mexico. Over 100 permanent gravity stations have been established in the groundwater basin. A-10 absolute gravity meters, manufactured by Micro-g Solutions, Inc., have been used to monitor long-term gravity changes in the groundwater basin. Over fifty A-10 sites have been established; other gravity sites have been established by reference to the primary A-10 sites using Scintrex CG-3M relative gravimeters. We have used geodetic-quality GPS surveys to directly measure any possible elevation changes at the gravity sites; thus far, no significant changes in elevation have been observed. For the A-10 gravity sites, we have learned that sites must be constructed rather carefully to minimize noise levels due to certain characteristics of the A-10 measurement system. At good sites, away from regions where we expect changes due to groundwater removal, reproducibility of the A-10 measurements is ±4~μGal. To date, we have data from repeat campaigns over a period of 22 months. We have observed systematic changes in gravity of as much as 14~μGal at certain sites. We have directly incorporated gravity modeling into a detailed 3D groundwater model of the basin. On the basis of groundwater modeling, we believe that such gravity changes are due to increased recharge at some sites, as precipitation began to return to normal amounts after a long, pronounced drought about a year into the study. Somewhat surprisingly, no significant gravity changes have been observed at the Buckman Well Field, a spatially small well field that is heavily pumped as a municipal supply field for Santa Fe, New Mexico. One interpretation of this observation is that pumping at the Buckman Field is accessing nearby surface sources rather than groundwater, despite the fact that pumping is occurring from more than 300~m depth.

  18. Role of Phragmites australis (common reed) for heavy metals phytoremediation of estuarine sediments.

    PubMed

    Cicero-Fernández, Diego; Peña-Fernández, Manuel; Expósito-Camargo, Jose A; Antizar-Ladislao, Blanca

    2016-01-01

    The ability of Phragmites australis to take up heavy metals (Co, Ni, Mo, Cd, Pb, Cr, Cu, Fe, Mn, Zn, and Hg) and other trace elements (As, Se, Ba), from estuarine sediments was investigated using a pilot plant experimental approach. Bioaccumulation (BCF) and translocation factors (TF) were calculated in vegetative and senescence periods for two populations of P. australis, from contaminated (MIC) and non-contaminated (GAL) estuarine sediments, respectively, both growing in estuarine contaminated sediment (RIA) from ría del Carmen y Boo, Santander Bay, Spain. The highest BCF values were obtained for Ni (0.43), Ba (0.43) Mo (0.36), Cr (0.35), and Cd (0.31) for plants collected from site GAL following the senescence period. The highest BCF values recorded for plants collected from MIC following the senescence period were for Mo (0.22) and Cu (0.22). Following senescence, plants collected from GAL and MIC presented TF>1 for Ni, Mo, Se, and Zn, and in addition plants collected from MIC presented TF>1 for Ba, Cr, and Mn. A substantial increase of Micedo's rhizosphere, six times higher than Galizano's rhizosphere, suggested adaptation to contaminated sediment. The evaluated communities of P. australis demonstrated their suitability for phytoremediation of heavy metals contaminated estuarine sediments.

  19. Installation Assessment of Headquarters, Walter Reed Army Medical Center, Washington, DC and Noncontiguous Sections Forest Glen, Silver Spring, Maryland and Glen Haven, Wheaton, Maryland.

    DTIC Science & Technology

    1984-06-01

    percent Aerosol 30 12-oz cans Diazinon 47.5 percent EML 8 gal Malathion 3 percent solution 55 gal Propoxur 1 percent solution 2 gal Propoxur 2 percent...bait 2 5-lb cans Amino 2,4-D 49 percent EML 5 gal Metham-Sodiwa 33 percent solution I gal Carbaryl 41.5 percent flowable 2 lb Pival 0.025 percent 30 lb...Lice "o"pital 9,000 ft 2 DiasLnon 47.5 percent DII. 0.3 gal Wasps Residential 2,000 ft2 Carbaryl 60 percent Dust 0.21 lbs Plant Disease Open Brush I

  20. Gamma-aminobutyric acid-modulated benzodiazepine binding sites in bacteria

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lummis, S.C.R.; Johnston, G.A.R.; Nicoletti, G.

    1991-01-01

    Benzodiazepine binding sites, which were once considered to exist only in higher vertebrates, are here demonstrated in the bacteria E. coli. The bacterial ({sup 3}H)diazepam binding sites are modulated by GABA; the modulation is dose dependent and is reduced at high concentrations. The most potent competitors of E.Coli ({sup 3}H)diazepam binding are those that are active in displacing ({sup 3}H)benzodiazepines from vertebrate peripheral benzodiazepine binding sites. These vertebrate sites are not modulated by GABA, in contrast to vertebrate neuronal benzodiazepine binding sites. The E.coli benzodiazepine binding sites therefore differ from both classes of vertebrate benzodiazepine binding sites; however the ligandmore » spectrum and GABA-modulatory properties of the E.coli sites are similar to those found in insects. This intermediate type of receptor in lower species suggests a precursor for at least one class of vertebrate benzodiazepine binding sites may have existed.« less

Top