Sample records for galactic bulge giants

  1. Galactic Bulge Giants: Probing Stellar and Galactic Evolution. 1. Catalogue of Spitzer IRAC and MIPS Sources (PREPRINT)

    NASA Technical Reports Server (NTRS)

    Uttenthaler, Stefan; Stute, Matthias; Sahai, Raghvendra; Blommaert, Joris A.; Schultheis, Mathias; Kraemer, Kathleen E.; Groenewegen, Martin A.; Price, Stephan D.

    2010-01-01

    Aims. We aim at measuring mass-loss rates and the luminosities of a statistically large sample of Galactic bulge stars at several galactocentric radii. The sensitivity of previous infrared surveys of the bulge has been rather limited, thus fundamental questions for late stellar evolution, such as the stage at which substantial mass-loss begins on the red giant branch and its dependence on fundamental stellar properties, remain unanswered. We aim at providing evidence and answers to these questions. Methods. To this end, we observed seven 15 15 arcmin2 fields in the nuclear bulge and its vicinity with unprecedented sensitivity using the IRAC and MIPS imaging instruments on-board the Spitzer Space Telescope. In each of the fields, tens of thousands of point sources were detected. Results. In the first paper based on this data set, we present the observations, data reduction, the final catalogue of sources, and a detailed comparison to previous mid-IR surveys of the Galactic bulge, as well as to theoretical isochrones. We find in general good agreement with other surveys and the isochrones, supporting the high quality of our catalogue.

  2. The Galactic Bulge Radial Velocity/Abundance Assay

    NASA Astrophysics Data System (ADS)

    Rich, R. M.

    2012-08-01

    The Bulge Radial Velocity Assay (BRAVA) measured radial velocities for ˜ 9500 late-type giants in the Galactic bulge, predominantly from -10° < l < +10° and -2° < b < -10°. The project has discovered that the bulge exhibits cylindrical rotation characteristic of bars, and two studies of dynamics (Shen et al. 2010; Wang et al. 2012 MNRAS sub.) find that bar models- either N-body formed from an instability in a preexisting disk, or a self-consistent model- can account for the observed kinematics. Studies of the Plaut field at (l,b) = 0°, -8° show that alpha enhancement is found in bulge giants even 1 kpc from the nucleus. New infrared studies extending to within 0.25° = 35 pc of the Galactic Center find no iron or alpha gradient from Baade's Window (l,b) = 0.9°, -3.9° to our innermost field, in contrast to the marked gradient observed in the outer bulge. We consider the case of the remarkable globular cluster Terzan 5, which has a strongly bimodal iron and rm [α/Fe] within its members, and we consider evidence pro and con that the bulge was assembled from dissolved clusters. The Subaru telescope has the potential to contribute to study of the Galactic bulge, especially using the Hyper Superime-Cam and planned spectroscopic modes, as well as the high resolution spectrograph. The planned Jasmine satellite series may deliver a comprehensive survey of distances and proper motions of bulge stars, and insight into the origin and importance of the X-shaped bulge.

  3. The Formation of Galactic Bulges

    NASA Astrophysics Data System (ADS)

    Carollo, C. Marcella; Ferguson, Henry C.; Wyse, Rosemary F. G.

    2000-03-01

    Part I. Introduction: What are galactic bulges?; Part II. The Epoch of Bulge Formation: Origin of bulges; Deep sub-mm surveys: High-z ULIRGs and the formation of spheroids; Ages and metallicities for stars in the galactic bulge; Integrated stellar populations of bulges: First results; HST-NICMOS observations of galactic bulges: Ages and dust; Inside-out bulge formation and the origin of the Hubble sequence; Part III. The Timescales of Bulge Formation: Constraints on the bulge formation timescale from stellar populations; Bulge building with mergers and winds; Role of winds, starbursts, and activity in bulge formation; Dynamical timescales of bulge formation; Part IV. Physical Processes in Bulge Formation: the role of bars for secular bulge formation; Bars and boxy/peanut-shaped bulges: an observational point of view; Boxy- and peanut-shaped bulges; A new class of bulges; The role of secondary bars in bulge formation; Radial transport of molecular gas to the nuclei of spiral galaxies; Dynamical evolution of bulge shapes; Two-component stellar systems: Phase-space constraints; Central NGC 2146 - a firehose-type bending instability?; Bulge formation: the role of the multi-phase ISM; Global evolution of a self-gravitating multi-phase ISM in the central kpc region of galaxies; Part V. Bulge Phenomenology: Bulge-disk decomposition of spiral galaxies in the near-infrared; The triaxial bulge of NGC 1371; The bulge-disk orthogonal decoupling in galaxies: NGC 4698 and NGC 4672; The kinematics and the origin of the ionized gas in NGC 4036; Optically thin thermal plasma in the galactic bulge; X-ray properties of bulges; The host galaxies of radio-loud AGN; The centers of radio-loud early-type galaxies with HST; Central UV spikes in two galactic spheroids; Conference summary: where do we stand?

  4. The Optical Gravitational Lensing Experiment Catalog of stellar proper motions in the OGLE-II Galactic bulge fields

    NASA Astrophysics Data System (ADS)

    Sumi, T.; Wu, X.; Udalski, A.; Szymański, M.; Kubiak, M.; Pietrzyński, G.; Soszyński, I.; Woźniak, P.; Zebruń, K.; Szewczyk, O.; Wyrzykowski, L.

    2003-12-01

    We present proper motion (μ ) catalogue of 5,078,188 stars in 49 Optical Gravitational Lensing Experiment II (OGLE-II) Galactic bulge fields, with the total area close to 11 square degrees. The proper motion measurements are based on 138 - 555 I-band images taken during four observing seasons: 1997-2000. The catalogue stars are in the magnitude range 11 < I < 18 mag. In particular, the catalogue includes Red Clump Giants (RCGs) and Red Giants in the Galactic Bulge, and main sequence stars in the Galactic disc. The proper motions up to μ = 500 mas yr -1 were measured with the mean accuracy of 0.8 ˜ 3.5 mas yr-1, depending on the brightness of a star. This catalogue may be useful for studying the kinematic of stars in the Galactic Bulge and the Galactic disk with Extinction maps in these fields which are construncted by using two-band photometry of RCGs.

  5. EMISSION-LINE OBJECTS PROJECTED UPON THE GALACTIC BULGE*

    PubMed Central

    Herbig, G. H.

    1969-01-01

    Low-dispersion slit spectrograms have been obtained of 34 faint objects that lie in the direction of the galactic bulge and have the Hα line in emission upon a detectable continuum. Eleven of these are certain or probable symbiotic stars. A rough comparison with R CrB stars in the same area suggests that these brightest symbiotics in the bulge have in the mean Mv ≈ -3 to -4, which suggest Population II red giants rather than conventional Population I M-type objects. The sample also contains a number of hot stars having H and [O II] or [O III] in emission, as well as four conventional Be stars, and six certain or possible planetary nebulae. Images PMID:16578699

  6. Emission-line objects projected upon the galactic bulge.

    PubMed

    Herbig, G H

    1969-08-01

    Low-dispersion slit spectrograms have been obtained of 34 faint objects that lie in the direction of the galactic bulge and have the Halpha line in emission upon a detectable continuum. Eleven of these are certain or probable symbiotic stars. A rough comparison with R CrB stars in the same area suggests that these brightest symbiotics in the bulge have in the mean M(v) approximately -3 to -4, which suggest Population II red giants rather than conventional Population I M-type objects. The sample also contains a number of hot stars having H and [O II] or [O III] in emission, as well as four conventional Be stars, and six certain or possible planetary nebulae.

  7. Chemically Dissected Rotation Curves of the Galactic Bulge from Main-sequence Proper Motions

    NASA Astrophysics Data System (ADS)

    Clarkson, William I.; Calamida, Annalisa; Sahu, Kailash C.; Brown, Thomas M.; Gennaro, Mario; Avila, Roberto J.; Valenti, Jeff; Debattista, Victor P.; Rich, R. Michael; Minniti, Dante; Zoccali, Manuela; Aufdemberge, Emily R.

    2018-05-01

    We report results from an exploratory study implementing a new probe of Galactic evolution using archival Hubble Space Telescope imaging observations. Precise proper motions are combined with photometric relative metallicity and temperature indices, to produce the proper-motion rotation curves of the Galactic bulge separately for metal-poor and metal-rich main-sequence samples. This provides a “pencil-beam” complement to large-scale wide-field surveys, which to date have focused on the more traditional bright giant branch tracers. We find strong evidence that the Galactic bulge rotation curves drawn from “metal-rich” and “metal-poor” samples are indeed discrepant. The “metal-rich” sample shows greater rotation amplitude and a steeper gradient against line-of-sight distance, as well as possibly a stronger central concentration along the line of sight. This may represent a new detection of differing orbital anisotropy between metal-rich and metal-poor bulge objects. We also investigate selection effects that would be implied for the longitudinal proper-motion cut often used to isolate a “pure-bulge” sample. Extensive investigation of synthetic stellar populations suggests that instrumental and observational artifacts are unlikely to account for the observed rotation curve differences. Thus, proper-motion-based rotation curves can be used to probe chemodynamical correlations for main-sequence tracer stars, which are orders of magnitude more numerous in the Galactic bulge than the bright giant branch tracers. We discuss briefly the prospect of using this new tool to constrain detailed models of Galactic formation and evolution. Based on observations made with the NASA/ESA Hubble Space Telescope and obtained from the data archive at the Space Telescope Science Institute. STScI is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555.

  8. Chemical Characterization of the Inner Galactic bulge: North-South Symmetry

    NASA Astrophysics Data System (ADS)

    Nandakumar, G.; Ryde, N.; Schultheis, M.; Thorsbro, B.; Jönsson, H.; Barklem, P. S.; Rich, R. M.; Fragkoudi, F.

    2018-05-01

    While the number of stars in the Galactic bulge with detailed chemical abundance measurements is increasing rapidly, the inner Galactic bulge (|b| < 2°) remains poorly studied, due to heavy interstellar absorption and photometric crowding. We have carried out a high-resolution IR spectroscopic study of 72 M giants in the inner bulge using the CRIRES (ESO/VLT) facility. Our spectra cover the wavelength range of 2.0818 - 2.1444 μm with the resolution of R˜50,000 and have signal-to-noise ratio of 50-100. Our stars are located along the bulge minor axis at l = 0°, b = ±0°, ±1°, ±2°and +3°. Our sample was analysed in a homogeneous way using the most current K-band line list. We clearly detect a bimodal MDF with a metal-rich peak at ˜ +0.3 dex and a metal-poor peak at ˜ -0.5 dex, and no stars with [Fe/H] > +0.6 dex. The Galactic Center field reveals in contrast a mainly metal-rich population with a mean metallicity of +0.3 dex. We derived [Mg/Fe] and [Si/Fe] abundances which are consistent with trends from the outer bulge. We confirm for the supersolar metallicity stars the decreasing trend in [Mg/Fe] and [Si/Fe] as expected from chemical evolution models. With the caveat of a relatively small sample, we do not find significant differences in the chemical abundances between the Northern and the Southern fields, hence the evidence is consistent with symmetry in chemistry between North and South.

  9. Tracing the evolution of the Galactic bulge with chemodynamical modelling of alpha-elements

    NASA Astrophysics Data System (ADS)

    Friaça, A. C. S.; Barbuy, B.

    2017-02-01

    Context. Galactic bulge abundances can be best understood as indicators of bulge formation and nucleosynthesis processes by comparing them with chemo-dynamical evolution models. Aims: The aim of this work is to study the abundances of alpha-elements in the Galactic bulge, including a revision of the oxygen abundance in a sample of 56 bulge red giants. Methods: Literature abundances for O, Mg, Si, Ca and Ti in Galactic bulge stars are compared with chemical evolution models. For oxygen in particular, we reanalysed high-resolution spectra obtained using FLAMES+UVES on the Very Large Telescope, now taking each star's carbon abundances, derived from CI and C2 lines, into account simultaneously. Results: We present a chemical evolution model of alpha-element enrichment in a massive spheroid that represents a typical classical bulge evolution. The code includes multi-zone chemical evolution coupled with hydrodynamics of the gas. Comparisons between the model predictions and the abundance data suggest a typical bulge formation timescale of 1-2 Gyr. The main constraint on the bulge evolution is provided by the O data from analyses that have taken the C abundance and dissociative equilibrium into account. Mg, Si, Ca and Ti trends are well reproduced, whereas the level of overabundance critically depends on the adopted nucleosynthesis prescriptions. Observations collected both at the European Southern Observatory, Paranal, Chile (ESO programmes 71.B-0617A, 73.B0074A, and GTO 71.B-0196)

  10. Determining the Absolute Magnitudes of Galactic-Bulge Red Clump Giants in the Z and Y Filters of the Vista Sky Surveys and the IRAC Filters of the Spitzer Sky Surveys

    NASA Astrophysics Data System (ADS)

    Karasev, D. I.; Lutovinov, A. A.

    2018-04-01

    The properties of red clump giants in the central regions of the Galactic bulge are investigated in the photometric Z and Y bands of the infrared VVV (VISTA/ESO) survey and the [3.6], [4.5], [5.8], and [8.0] μm bands of the GLIMPSE (Spitzer/IRAC) Galactic plane survey. The absolute magnitudes for objects of this class have been determined in these bands for the first time: M Z = -0.20 ± 0.04, M Y = -0.470 ± 0.045, M [3.6] = -1.70 ± 0.03, M [4.5] = -1.60 ± 0.03, M [5.8] = -1.67 ± 0.03, and M [8.0] = -1.70 ± 0.03. A comparison of the measured magnitudes with the predictions of theoretical models for the spectra of the objects under study has demonstrated good mutual agreement and has allowed some important constraints to be obtained for the properties of bulge red clump giants. In particular, a comparison with evolutionary tracks has shown that we are dealing predominantly with the high-metallicity subgroup of bulge red clump giants. Their metallicity is slightly higher than has been thought previously, [ M/H] ≃ 0.40 ( Z ≃ 0.038) with an error of [ M/H] ≃ 0.1 dex, while the effective temperature is 4250± 150 K. Stars with an age of 9-10 Gyr are shown to dominate among the red clump giants, although some number of younger objects with an age of 8 Gyr can also be present. In addition, the distances to several Galactic bulge regions have been measured, as D = 8200-8500 pc, and the extinction law in these directions is shown to differ noticeably from the standard one.

  11. X-ray Selected Symbiotic Candidates in the Galactic Bulge Survey

    NASA Astrophysics Data System (ADS)

    Hynes, Robert I.; Wetuski, Joshua` D.; Jonker, Peter; Torres, Manuel; Heinke, Craig O.; Maccarone, Tom; Steeghs, Danny; Britt, Christopher; Johnson, Christopher; Nelemans, Gijs

    2017-06-01

    The Galactic Bulge Survey (GBS) is a broad, shallow survey of Bulge X-ray sources with extensive multiwavelength support. The limiting sensitivity, about 2×1032 erg/s at the Bulge distance, is well suited to finding symbiotic X-ray binaries (SyXBs) containing neutron stars accreting from a cool giant wind, as well as X-ray bright white dwarf systems. Giant counterparts can be securely detected in IR photometry, allowing us to estimate the total number of symbiotics detected by the GBS, and identify a good number of promising candidates. Such an X-ray selected symbiotic sample may be quite different to the traditional symbiotic star population which is usually selected by optical spectroscopy, and consequently biased towards systems with rich line emission. Of the 1640 unique X-ray sources identified by the GBS we find 91 significant matches with candidate Bulge giants. We expect 68 coincidences, so estimate a total sample of about 23 X-ray emitting cool giants detected by the GBS. Most of these are likely to be SyXBs or symbiotics of some type. Narrowing our search to sources coincident to 1", we find 23 matches, with only 8 coincidences expected, so this subsample has a relatively high purity, and likely includes most of the GBS symbiotics. The properties of this subsample are mostly consistent with cool giants, with typical SEDs, long-term lightcurves, and spectra. The sources are inconsistent in color with nearby M dwarfs and show small proper motions, so the foreground contamination is likely small. We present a selection of the best studied objects, focusing on one extremely variable X-ray source coincident with a carbon giant. This is quite an unusual object as carbon stars are rare in the Bulge. The scientific results reported in this article are based on observations made by the Chandra X-ray Observatory and data obtained from the Chandra Data Archive. Support for this work was provided by the National Aeronautics and Space Administration through Chandra

  12. Galactic bulge preferred over dark matter for the Galactic centre gamma-ray excess

    NASA Astrophysics Data System (ADS)

    Macias, Oscar; Gordon, Chris; Crocker, Roland M.; Coleman, Brendan; Paterson, Dylan; Horiuchi, Shunsaku; Pohl, Martin

    2018-05-01

    An anomalous gamma-ray excess emission has been found in the Fermi Large Area Telescope data1 covering the centre of the Galaxy2,3. Several theories have been proposed for this `Galactic centre excess'. They include self-annihilation of dark-matter particles4, an unresolved population of millisecond pulsars5, an unresolved population of young pulsars6, or a series of burst events7. Here, we report on an analysis that exploits hydrodynamical modelling to register the position of interstellar gas associated with diffuse Galactic gamma-ray emission. We find evidence that the Galactic centre excess gamma rays are statistically better described by the stellar over-density in the Galactic bulge and the nuclear stellar bulge, rather than a spherical excess. Given its non-spherical nature, we argue that the Galactic centre excess is not a dark-matter phenomenon but rather associated with the stellar population of the Galactic bulge and the nuclear bulge.

  13. Chemical evolution of the Galactic bulge as traced by microlensed dwarf and subgiant stars. IV. Two bulge populations

    NASA Astrophysics Data System (ADS)

    Bensby, T.; Adén, D.; Meléndez, J.; Gould, A.; Feltzing, S.; Asplund, M.; Johnson, J. A.; Lucatello, S.; Yee, J. C.; Ramírez, I.; Cohen, J. G.; Thompson, I.; Bond, I. A.; Gal-Yam, A.; Han, C.; Sumi, T.; Suzuki, D.; Wada, K.; Miyake, N.; Furusawa, K.; Ohmori, K.; Saito, To.; Tristram, P.; Bennett, D.

    2011-09-01

    Based on high-resolution (R ≈ 42 000 to 48 000) and high signal-to-noise (S/N ≈ 50 to 150) spectra obtained with UVES/VLT, we present detailed elemental abundances (O, Na, Mg, Al, Si, Ca, Ti, Cr, Fe, Ni, Zn, Y, and Ba) and stellar ages for 12 new microlensed dwarf and subgiant stars in the Galactic bulge. Including previous microlensing events, the sample of homogeneously analysed bulge dwarfs has now grown to 26. The analysis is based on equivalent width measurements and standard 1-D LTE MARCS model stellar atmospheres. We also present NLTE Li abundances based on line synthesis of the 7Li line at 670.8 nm. The results from the 26 microlensed dwarf and subgiant stars show that the bulge metallicity distribution (MDF) is double-peaked; one peak at [Fe/H] ≈ -0.6 and one at [Fe/H] ≈ + 0.3, and with a dearth of stars around solar metallicity. This is in contrast to the MDF derived from red giants in Baade's window, which peaks at this exact value. A simple significance test shows that it is extremely unlikely to have such a gap in the microlensed dwarf star MDF if the dwarf stars are drawn from the giant star MDF. To resolve this issue we discuss several possibilities, but we can not settle on a conclusive solution for the observed differences. We further find that the metal-poor bulge dwarf stars arepredominantly old with ages greater than 10 Gyr, while the metal-rich bulge dwarf stars show a wide range of ages. The metal-poor bulge sample is very similar to the Galactic thick disk in terms of average metallicity, elemental abundance trends, and stellar ages. Speculatively, the metal-rich bulge population might be the manifestation of the inner thin disk. If so, the two bulge populations could support the recent findings, based on kinematics, that there are no signatures of a classical bulge and that the Milky Way is a pure-disk galaxy. Also, recent claims of a flat IMF in the bulge based on the MDF of giant stars may have to be revised based on the MDF and

  14. Does the Galactic Bulge Have Fewer Planets?

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2016-12-01

    The Milky Ways dense central bulge is a very different environment than the surrounding galactic disk in which we live. Do the differences affect the ability of planets to form in the bulge?Exploring Galactic PlanetsSchematic illustrating how gravitational microlensing by an extrasolar planet works. [NASA]Planet formation is a complex process with many aspects that we dont yet understand. Do environmental properties like host star metallicity, the density of nearby stars, or the intensity of the ambient radiation field affect the ability of planets to form? To answer these questions, we will ultimately need to search for planets around stars in a large variety of different environments in our galaxy.One way to detect recently formed, distant planets is by gravitational microlensing. In this process, light from a distant source star is bent by a lens star that is briefly located between us and the source. As the Earth moves, this momentary alignment causes a blip in the sources light curve that we can detect and planets hosted by the lens star can cause an additional observable bump.Artists impression of the Milky Way galaxy. The central bulge is much denserthan the surroundingdisk. [ESO/NASA/JPL-Caltech/M. Kornmesser/R. Hurt]Relative AbundancesMost source stars reside in the galactic bulge, so microlensing events can probe planetary systems at any distance between the Earth and the galactic bulge. This means that planet detections from microlensing could potentially be used to measure the relative abundances of exoplanets in different parts of our galaxy.A team of scientists led by Matthew Penny, a Sagan postdoctoral fellow at Ohio State University, set out to do just that. The group considered a sample of 31 exoplanetary systems detected by microlensing and asked the following question: are the planet abundances in the galactic bulge and the galactic disk the same?A Paucity of PlanetsTo answer this question, Penny and collaborators derived the expected

  15. VERY METAL-POOR STARS IN THE OUTER GALACTIC BULGE FOUND BY THE APOGEE SURVEY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garcia Perez, Ana E.; Majewski, Steven R.; Hearty, Fred R.

    2013-04-10

    Despite its importance for understanding the nature of early stellar generations and for constraining Galactic bulge formation models, at present little is known about the metal-poor stellar content of the central Milky Way. This is a consequence of the great distances involved and intervening dust obscuration, which challenge optical studies. However, the Apache Point Observatory Galactic Evolution Experiment (APOGEE), a wide-area, multifiber, high-resolution spectroscopic survey within Sloan Digital Sky Survey III, is exploring the chemistry of all Galactic stellar populations at infrared wavelengths, with particular emphasis on the disk and the bulge. An automated spectral analysis of data on 2403more » giant stars in 12 fields in the bulge obtained during APOGEE commissioning yielded five stars with low metallicity ([Fe/H] {<=} -1.7), including two that are very metal-poor [Fe/H] {approx} -2.1 by bulge standards. Luminosity-based distance estimates place the 5 stars within the outer bulge, where 1246 of the other analyzed stars may reside. A manual reanalysis of the spectra verifies the low metallicities, and finds these stars to be enhanced in the {alpha}-elements O, Mg, and Si without significant {alpha}-pattern differences with other local halo or metal-weak thick-disk stars of similar metallicity, or even with other more metal-rich bulge stars. While neither the kinematics nor chemistry of these stars can yet definitively determine which, if any, are truly bulge members, rather than denizens of other populations co-located with the bulge, the newly identified stars reveal that the chemistry of metal-poor stars in the central Galaxy resembles that of metal-weak thick-disk stars at similar metallicity.« less

  16. Gauging the Helium Abundance of the Galactic Bulge RR Lyrae Stars

    NASA Astrophysics Data System (ADS)

    Marconi, Marcella; Minniti, Dante

    2018-02-01

    We report the first estimate of the He abundance of the population of RR Lyrae stars in the Galactic bulge. This is done by comparing the recent observational data with the latest models. We use the large samples of ab-type RR Lyrae stars found by OGLE IV in the inner bulge and by the VVV survey in the outer bulge. We present the result from the new models computed by Marconi et al., showing that the minimum period for fundamental RR Lyrae pulsators depends on the He content. By comparing these models with the observations in a period versus effective temperature plane, we find that the bulk of the bulge ab-type RR Lyrae are consistent with primordial He abundance Y = 0.245, ruling out a significant He-enriched population. This work demonstrates that the He content of the bulge RR Lyrae is different from that of the bulk of the bulge population as traced by the red clump giants that appear to be significantly more He-rich. Based on observations collected at the European Organisation for Astronomical Research in the Southern Hemisphere under ESO programmes 179.B-2002 and 298.D-5048.

  17. JASMINE: constructor of the dynamical structure of the Galactic bulge

    NASA Astrophysics Data System (ADS)

    Gouda, N.; Kobayashi, Y.; Yamada, Y.; Yano, T.; Tsujimoto, T.; Suganuma, M.; Niwa, Y.; Yamauchi, M.

    2008-07-01

    We introduce a Japanese space astrometry project which is called JASMINE. JASMINE (Japan Astrometry Satellite Mission for INfrared Exploration) will measure distances and tangential motions of stars in the Galactic bulge with yet unprecedented precision. JASMINE will operate in z-band whose central wavelength is 0.9 micron. It will measure parallaxes, positions with accuracy of about 10 micro-arcsec and proper motions with accuracy of about 10 micro- arcsec/year for the stars brighter than z=14 mag. The number of stars observed by JASMINE with high accuracy of parallaxes in the Galactic bulge is much larger than that observed in other space astrometry projects operating in optical bands. With the completely new “map of the Galactic bulge” including motions of bulge stars, we expect that many new exciting scientific results will be obtained in studies of the Galactic bulge. One of them is the construction of the dynamical structure of the Galactic bulge. Kinematics and distance data given by JASMINE are the closest approach to a view of the exact dynamical structure of the Galactic bulge. Presently, JASMINE is in a development phase, with a target launch date around 2016. We comment on the outline of JASMINE mission, scientific targets and a preliminary design of JASMINE in this paper.

  18. Milky Way demographics with the VVV survey. I. The 84-million star colour-magnitude diagram of the Galactic bulge

    NASA Astrophysics Data System (ADS)

    Saito, R. K.; Minniti, D.; Dias, B.; Hempel, M.; Rejkuba, M.; Alonso-García, J.; Barbuy, B.; Catelan, M.; Emerson, J. P.; Gonzalez, O. A.; Lucas, P. W.; Zoccali, M.

    2012-08-01

    Context. The Milky Way (MW) bulge is a fundamental Galactic component for understanding the formation and evolution of galaxies, in particular our own. The ESO Public Survey VISTA Variables in the Vía Láctea is a deep near-IR survey mapping the Galactic bulge and southern plane. Particularly for the bulge area, VVV is covering ~315 deg2. Data taken during 2010 and 2011 covered the entire bulge area in the JHKs bands. Aims: We used VVV data for the whole bulge area as a single and homogeneous data set to build for the first time a single colour - magnitude diagram (CMD) for the entire Galactic bulge. Methods: Photometric data in the JHKs bands were combined to produce a single and huge data set containing 173 150 467 sources in the three bands, for the ~315 deg2 covered by VVV in the bulge. Selecting only the data points flagged as stellar, the total number of sources is 84 095 284. Results: We built the largest colour-magnitude diagrams published up to date, containing 173.1+ million sources for all data points, and more than 84.0 million sources accounting for the stellar sources only. The CMD has a complex shape, mostly owing to the complexity of the stellar population and the effects of extinction and reddening towards the Galactic centre. The red clump (RC) giants are seen double in magnitude at b ~ -8° -10°, while in the inner part (b ~ -3°) they appear to be spreading in colour, or even splitting into a secondary peak. Stellar population models show the predominance of main-sequence and giant stars. The analysis of the outermost bulge area reveals a well-defined sequence of late K and M dwarfs, seen at (J - Ks) ~ 0.7-0.9 mag and Ks ≳ 14 mag. Conclusions: The interpretation of the CMD yields important information about the MW bulge, showing the fingerprint of its structure and content. We report a well-defined red dwarf sequence in the outermost bulge, which is important for the planetary transit searches of VVV. The double RC in magnitude seen in the

  19. Trajectories of Cepheid variable stars in the Galactic nuclear bulge

    NASA Astrophysics Data System (ADS)

    Matsunaga, Noriyuki

    2012-06-01

    The central region of our Galaxy provides us with a good opportunity to study the evolution of galactic nuclei and bulges because we can observe various phenomena in detail at the proximity of 8 kpc. There is a hierarchical alignment of stellar systems with different sizes; from the extended bulge, the nuclear bulge, down to the compact cluster around the central supermassive blackhole. The nuclear bulge contains stars as young as a few Myr, and even hosts the ongoing star formation. These are in contrast to the more extended bulge which are dominated by old stars, 10Gyr. It is considered that the star formation in the nuclear bulge is caused by fresh gas provided from the inner disk. In this picture, the nuclear bulge plays an important role as the interface between the gas supplier, the inner disk, and the galactic nucleus. Kinematics of young stars in the nuclear bulge is important to discuss the star forming process and the gas circulation in the Galactic Center. We here propose spectroscopic observations of Cepheid variable stars, 25 Myr, which we recently discovered in the nuclear bulge. The spectra taken in this proposal will allow timely estimates of the systemic velocities of the variable stars.

  20. Discovery of carbon-rich Miras in the Galactic bulge

    NASA Astrophysics Data System (ADS)

    Matsunaga, Noriyuki; Menzies, John W.; Feast, Michael W.; Whitelock, Patricia A.; Onozato, Hiroki; Barway, Sudhanshu; Aydi, Elias

    2017-08-01

    Only one carbon-rich (C-rich, hereinafter) Mira variable has so far been suggested as a member of the Galactic bulge and this is in a symbiotic system. Here we describe a method for selecting C-rich candidates from an infrared colour-colour diagram, (J - Ks) versus ([9] - [18]). Follow-up low-resolution spectroscopy resulted in the detection of eight C-rich Mira variables from a sample of 36 candidates towards the Galactic bulge. Our near-infrared photometry indicates that two of these, including the known symbiotic, are closer than the main body of the bulge while a third is a known foreground object. Of the five bulge members, one shows He I and [O II] emission and is possibly another symbiotic star. Our method is useful for identifying rare C-rich stars in the Galactic bulge and elsewhere. The age of these C-rich stars and the evolutionary process which produced them remain uncertain. They could be old and the products of either binary mass transfer or mergers, I.e. the descendants of blue stragglers, but we cannot rule out the possibility that they belong to a small in situ population of metal-poor intermediate age (<5 Gyr) stars in the bulge or that they have been accreted from a dwarf galaxy.

  1. OGLE-2017-BLG-1522: A Giant Planet around a Brown Dwarf Located in the Galactic Bulge

    NASA Astrophysics Data System (ADS)

    Jung, Y. K.; Udalski, A.; Gould, A.; Ryu, Y.-H.; Yee, J. C.; and; Han, C.; Albrow, M. D.; Lee, C.-U.; Kim, S.-L.; Hwang, K.-H.; Chung, S.-J.; Shin, I.-G.; Zhu, W.; Cha, S.-M.; Kim, D.-J.; Lee, Y.; Park, B.-G.; Lee, D.-J.; Kim, H.-W.; Pogge, R. W.; The KMTNet Collaboration; Szymański, M. K.; Mróz, P.; Poleski, R.; Skowron, J.; Pietrukowicz, P.; Soszyński, I.; Kozłowski, S.; Ulaczyk, K.; Pawlak, M.; Rybicki, K.; The OGLE Collaboration

    2018-05-01

    We report the discovery of a giant planet in the OGLE-2017-BLG-1522 microlensing event. The planetary perturbations were clearly identified by high-cadence survey experiments despite the relatively short event timescale of t E ∼ 7.5 days. The Einstein radius is unusually small, θ E = 0.065 mas, implying that the lens system either has very low mass or lies much closer to the microlensed source than the Sun, or both. A Bayesian analysis yields component masses ({M}host},{M}planet})=({46}-25+79,{0.75}-0.40+1.26) {M}{{J}} and source-lens distance {D}LS}={0.99}-0.54+0.91 {kpc}, implying that this is a brown-dwarf/Jupiter system that probably lies in the Galactic bulge, a location that is also consistent with the relatively low lens-source relative proper motion μ = 3.2 ± 0.5 mas yr‑1. The projected companion-host separation is {0.59}-0.11+0.12 {au}, indicating that the planet is placed beyond the snow line of the host, i.e., a sl ∼ 0.12 au. Planet formation scenarios combined with the small companion-host mass ratio q ∼ 0.016 and separation suggest that the companion could be the first discovery of a giant planet that formed in a protoplanetary disk around a brown-dwarf host.

  2. Microlensing optical depth towards the Galactic Bulge using bright sources from OGLE-II

    NASA Astrophysics Data System (ADS)

    Sumi, T.; Woźniak, P.; Udalski, A.; Szymański, M.; Kubiak, M.; Pietrzyński, G.; Soszyński, I.; Zebruń, K.; Szewczyk, O.; Wyrzykowski, L.

    2004-12-01

    We present a measurement of the microlensing optical depth towards the Galactic Bulge by using bright stars as sources from the central 20 OGLE-II Galactic bulge fields covering a range of 0o Giant (RCG) Region in the Colour Magnitude Diagram, where an extinction corrected I-band magnitude is brighter than about 15.5 mag. We find that a half of their source stars which are actually lensed are fainter blended stars. By using the 32 candidates whose actually lensed source stars are still in Extended RCG Region, we estimate the preliminary optical depth τ ˜ 2± 0.4 × 10-6 at (l,b)=(1.16, -2.75) for events with timescales 1< tE <200 days. This value is smaller than previous results with all sources but consistent with previous results with RCG sources and recent theoretical predictions.

  3. Orbits of Selected Globular Clusters in the Galactic Bulge

    NASA Astrophysics Data System (ADS)

    Pérez-Villegas, A.; Rossi, L.; Ortolani, S.; Casotto, S.; Barbuy, B.; Bica, E.

    2018-05-01

    We present orbit analysis for a sample of eight inner bulge globular clusters, together with one reference halo object. We used proper motion values derived from long time base CCD data. Orbits are integrated in both an axisymmetric model and a model including the Galactic bar potential. The inclusion of the bar proved to be essential for the description of the dynamical behaviour of the clusters. We use the Monte Carlo scheme to construct the initial conditions for each cluster, taking into account the uncertainties in the kinematical data and distances. The sample clusters show typically maximum height to the Galactic plane below 1.5 kpc, and develop rather eccentric orbits. Seven of the bulge sample clusters share the orbital properties of the bar/bulge, having perigalactic and apogalatic distances, and maximum vertical excursion from the Galactic plane inside the bar region. NGC 6540 instead shows a completely different orbital behaviour, having a dynamical signature of the thick disc. Both prograde and prograde-retrograde orbits with respect to the direction of the Galactic rotation were revealed, which might characterise a chaotic behaviour.

  4. The Optical Gravitational Lensing Experiment: catalogue of stellar proper motions in the OGLE-II Galactic bulge fields

    NASA Astrophysics Data System (ADS)

    Sumi, T.; Wu, X.; Udalski, A.; Szymański, M.; Kubiak, M.; Pietrzyński, G.; Soszyński, I.; Woźniak, P.; Żebruń, K.; Szewczyk, O.; Wyrzykowski, Ł.

    2004-03-01

    We present a proper-motion (μ) catalogue of 5 080 236 stars in 49 Optical Gravitational Lensing Experiment II (OGLE-II) Galactic bulge (GB) fields, covering a range of -11° < l < 11° and -6° < b < 3°, the total area close to 11 deg2. The proper-motion measurements are based on 138-555 I-band images taken during four observing seasons: 1997-2000. The catalogue stars are in the magnitude range 11 < I < 18 mag. In particular, the catalogue includes red clump giants and red giants in the GB, and main-sequence stars in the Galactic disc. The proper motions up to μ= 500 mas yr-1 were measured with a mean accuracy of 0.8-3.5 mas yr-1, depending on the brightness of a star. This catalogue may be useful for studying the kinematics of stars in the GB and the Galactic disc.

  5. Searching for fossil fragments of the Galactic bulge formation process

    NASA Astrophysics Data System (ADS)

    Ferraro, Francesco

    2017-08-01

    We have discovered that the stellar system Terzan5 (Ter5) in the Galactic bulge harbors stellar populations with very different IRON content (delta[Fe/H] 1 dex, Ferraro+09, Nature 462, 483) and AGES (12 Gyr and 4.5 Gyr for the sub-solar and super-solar metallicity populations, respectively, Ferraro+16, ApJ,828,75). This evidence demonstrates that Ter5 is not a globular cluster, and identifies it as (1) a site in the Galactic bulge where recent star formation occurred, and (2) the remnant of a massive system able to retain the iron-enriched gas ejected by violent supernova explosions. The striking chemical similarity between Ter5 and the bulge opens the fascinating possibility that we discovered the fossil remnant of a pristine massive structure that could have contributed to the Galactic bulge assembly.Prompted by this finding, here we propose to secure deep HST optical observations for the bulge stellar system Liller1, that shows a similar complexity as Ter5, with evidence of two stellar populations with different iron content. The immediate goal is to properly explore the main sequence turnoff region of the system for unveiling possible splits due to stellar populations of different ages. As demonstrated by our experience with Ter5, the requested HST observations, in combination with the K-band diffraction limited images that we already secured with GeMS-Gemini, are essential to achieve this goal.The project will allow us to establish if other fossil remnants of the bulge formation epoch do exist, thus probing that the merging of pre-evolved massive structures has been an important channel for the formation of the Galactic bulge.

  6. Thousands of Stellar SiO masers in the Galactic center: The Bulge Asymmetries and Dynamic Evolution (BAaDE) survey

    NASA Astrophysics Data System (ADS)

    Sjouwerman, Loránt O.; Pihlström, Ylva M.; Rich, R. Michael; Morris, Mark R.; Claussen, Mark J.

    2017-01-01

    A radio survey of red giant SiO sources in the inner Galaxy and bulge is not hindered by extinction. Accurate stellar velocities (<1 km/s) are obtained with minimal observing time (<1 min) per source. Detecting over 20,000 SiO maser sources yields data comparable to optical surveys with the additional strength of a much more thorough coverage of the highly obscured inner Galaxy. Modeling of such a large sample would reveal dynamical structures and minority populations; the velocity structure can be compared to kinematic structures seen in molecular gas, complex orbit structure in the bar, or stellar streams resulting from recently infallen systems. Our Bulge Asymmetries and Dynamic Evolution (BAaDE) survey yields bright SiO masers suitable for follow-up Galactic orbit and parallax determination using VLBI. Here we outline our early VLA observations at 43 GHz in the northern bulge and Galactic plane (0bulge (250

  7. Determining Mass-Loss Rates of Evolved Stars in the Galactic Bulge from Infrared Surveys

    NASA Astrophysics Data System (ADS)

    Riley, Allyssa; Sargent, Benjamin A.; Srinivasan, Sundar; Meixner, Margaret; Kastner, Joel H.

    2018-06-01

    To investigate the relationship between mass loss from evolved stars and host galaxy metallicity, we are computing the dust mass loss budget due to red supergiant (RSG) and asymptotic giant branch (AGB) stars in the Galactic Bulge and comparing this result to that previously obtained for the Magellanic Clouds. We construct spectral energy distributions (SEDs) for our candidate RSG and AGB stars using observations from various infrared surveys, including the Galactic Legacy Infrared Mid-Plane Survey Extraordinaire (GLIMPSE). Because Robitaille et al (2008, AJ, 136, 2413) have already identified Intrinsically Red Objects from the GLIMPSE I and II surveys, we use their method as a starting point and expand the study by using the GLIMPSE 3D survey. Because AGB stars can be variable, we also match the GLIMPSE I, II, and 3D sources to other surveys, such as DEEP GLIMPSE, WISE, VVV, and DENIS, in order to characterize the variability across the spectral energy distribution (SED) of each source. This allows us to determine the source’s average SED over multiple epochs. We use extinction curves derived from Spitzer studies of extinction in the Galaxy to determine the extinction corrections for our sample. To establish mass-loss rates of evolved stars in the Bulge, we use the Grid of Red supergiant and Asymptotic giant branch ModelS (GRAMS) of dust-enshrouded evolved stars (2011, A&A, 532, A54; 2011, ApJ, 728, 93). This allows us to determine the total mass return to the Bulge from these stars. This work has been supported by NASA ADAP grant 80NSSC17K0057.

  8. A New Population of Galactic Bulge Planetary Nebulas

    NASA Astrophysics Data System (ADS)

    Stenborg, T. N.

    A new population of Galactic bulge planetary nebulas is presented. Nebula candidates were discovered by systematically reviewing archival [OIII] on/off band survey imaging of the central -5° ≤ l ≤ 5°, -5° ≤ b ≤ 5° region around the Galactic centre. An image segmentation and interleaving scheme was developed to facilitate this review. The resultant candidates (> 200) were then double checked against complementary archival Hα sky survey data to screen for obvious planetary nebula (PN) mimics or spurious image artefacts. Confirmatory spectroscopy of the PN candidates was pursued with thin slit, fibre multiobject and wide field spectrographs. Custom software was built to streamline interfacing with third-party spectroscopic management tools and a parallel greedy set cover algorithm implemented for efficient field selection in constrained multi-object observations. The combined imaging and spectroscopic evidence yielded true (4), probable (31) and possible (83) PNs toward the bulge. Secondary discoveries such as new PN mimics and late type stars were by-products of the confirmatory spectroscopy. Instances of literature PN duplication encountered during the investigation were noticed and documented. Spectral analysis of new PNs, including those obtained with a new optimised sky subtraction technique devised and demonstrated here, provided diagnostic data allowing radial velocity and Balmer decrement determination. Using a combined diameter and radial velocity criterion, bona fide bulge PNs were distinguished from new foreground PNs. Where Balmer decrements were available for new bulge PNs, differential aperture photometry was used to provide a modest data increment to Galactic bulge planetary nebula luminosity function (PNLF). The PNLF was revised with data from some new bulge PNs, but more significantly, by a series of corrections to the data derived from previously known bulge PNs (~225), such as improved filter transmission effects, statistically

  9. VizieR Online Data Catalog: OGLE II. VI photometry of Galactic Bulge (Udalski+, 2002)

    NASA Astrophysics Data System (ADS)

    Udalski, A.; Szymanski, M.; Kubiak, M.; Pietrzynski, G.; Soszynski, I.; Wozniak, P.; Zebrun, K.; Szewczyk, O.; Wyrzykowski, L.

    2003-09-01

    We present the VI photometric maps of the Galactic bulge. They contain VI photometry and astrometry of about 30 million stars from 49 fields of 0.225 square degree each in the Galactic center region. The data were collected during the second phase of the OGLE microlensing project. We discuss the accuracy of data and present color-magnitude diagrams of selected fields observed by OGLE in the Galactic bulge. The VI maps of the Galactic bulge are accessible electronically for the astronomical community from the OGLE Internet archive (2 data files).

  10. Elucidation of kinematical and dynamical structure of the Galactic bulge

    NASA Astrophysics Data System (ADS)

    Yano, T.; Gouda, N.; Ueda, H.; Koyama, H.; Kan-ya, Y.; Taruya, A.

    2008-07-01

    Future space mission of astrometric satellite, GAIA and JASMINE (Japan Astrometry Satellite Mission for Infrared Exploration), will produce astrometric parameter, such as positions, parallaxes, and proper motions of stars in the Galactic bulge. Then kinematical information will be obtained in the future. Accordingly it is expected that our understanding of the dynamical structure will be greatly improved. Therefore it is important to make a method to construct a kinematical and dynamical structure of the Galactic bulge immediately.

  11. The Age of the Young Bulge-like Population in the Stellar System Terzan 5: Linking the Galactic Bulge to the High-z Universe

    NASA Astrophysics Data System (ADS)

    Ferraro, F. R.; Massari, D.; Dalessandro, E.; Lanzoni, B.; Origlia, L.; Rich, R. M.; Mucciarelli, A.

    2016-09-01

    The Galactic bulge is dominated by an old, metal-rich stellar population. The possible presence and the amount of a young (a few gigayears old) minor component is one of the major issues debated in the literature. Recently, the bulge stellar system Terzan 5 was found to harbor three sub-populations with iron content varying by more than one order of magnitude (from 0.2 up to two times the solar value), with chemical abundance patterns strikingly similar to those observed in bulge field stars. Here we report on the detection of two distinct main-sequence turnoff points in Terzan 5, providing the age of the two main stellar populations: 12 Gyr for the (dominant) sub-solar component and 4.5 Gyr for the component at super-solar metallicity. This discovery classifies Terzan 5 as a site in the Galactic bulge where multiple bursts of star formation occurred, thus suggesting a quite massive progenitor possibly resembling the giant clumps observed in star-forming galaxies at high redshifts. This connection opens a new route of investigation into the formation process and evolution of spheroids and their stellar content. Based on data obtained with (1) the ESA/NASA HST, under programs GO-14061, GO-12933, GO-10845, (2) the Very Large Telescope of the European Southern Observatory during the Science Verification of the camera MAD; (3) the W.M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California and NASA.

  12. The Cool Stellar Populations of Early-Type Galaxies and the Galactic Bulge

    NASA Astrophysics Data System (ADS)

    Houdashelt, Mark Lee

    1995-01-01

    Red (6800-9200 A) and near-infrared (K-band) spectra have been obtained for 34 early-type galaxies in the Virgo cluster, the Coma cluster and the field. The strengths of the Ca II triplet (lambdalambda 8498, 8542, 8662 A), the Na I doublet ( lambdalambda8183, 8195 A), the Mg I lambda8807 A line, and molecular bands of TiO and VO were measured from the red spectra. Absorption due to the CO band with bandhead at 2.29 mu m was measured from the near-infrared spectra. The behavior of the spectral indices was examined for the Virgo galaxy nuclei as functions of luminosity and color. Overall, the CO, TiO and Na I indices were found to be stronger in redder and brighter galaxies. The Mg I and the Ca II triplet lines did not vary significantly among galaxies of different color or brightness. These trends are consistent with a change in chemical composition producing the well-known color-magnitude relation for early -type galaxies. No significant differences were detected among galaxies of similar luminosity in the Virgo cluster, the Coma cluster and the field. To simulate the stellar population changes implied by the radial color gradients observed in early-type galaxies, models were constructed to represent the integrated light of the Galactic bulge as a function of latitude. A field in Baade's Window (BW) was studied first and the stellar population there was found to be quite inhomogeneous. The BW model indicated that the integrated light of BW is giant -dominated, and the BW spectral energy distribution is very similar to that of the nucleus of a low-luminosity early -type galaxy. From models of BW and a field at b = -8^circ, radial gradients were estimated for the Galactic bulge and compared to the changes which occur along a luminosity sequence of early -type galaxies in the Virgo cluster. This comparison showed that: (1) the Na I and I(8197) indices increase steeply with redder colors in the Virgo galaxies but appear to decrease with color in the Galactic bulge

  13. Dusty Mass Loss from Galactic Asymptotic Giant Branch Stars

    NASA Astrophysics Data System (ADS)

    Sargent, Benjamin A.; Srinivasan, Sundar; Meixner, Margaret; Kastner, Joel H.

    2016-06-01

    We are probing how mass loss from Asymptotic Giant Branch (AGB) stars depends upon their metallicity. Asymptotic giant branch (AGB) stars are evolved stars that eject large parts of their mass in outflows of dust and gas in the final stages of their lives. Our previous studies focused on mass loss from AGB stars in lower metallicity galaxies: the Large Magellanic Cloud (LMC) and the Small Magellanic Cloud (SMC). In our present study, we analyze AGB star mass loss in the Galaxy, with special attention to the Bulge, to investigate how mass loss differs in an overall higher metallicity environment. We construct radiative transfer models of the spectral energy distributions (SEDs) of stars in the Galaxy identified as AGB stars from infrared and optical surveys. Our Magellanic Cloud studies found that the AGB stars with the highest mass loss rates tended to have outflows with carbon-rich dust, and that overall more carbon-rich (C-rich) dust than oxygen-rich (O-rich) was produced by AGB stars in both LMC and SMC. Our radiative transfer models have enabled us to determine reliably the dust chemistry of the AGB star from the best-fit model. For our Galactic sample, we are investigating both the dust chemistries of the AGB stars and their mass-loss rates, to compare the balance of C-rich dust to O-rich dust between the Galactic bulge and the Magellanic Clouds. We are also constructing detailed dust opacity models of AGB stars in the Galaxy for which we have infrared spectra; e.g., from the Spitzer Space Telescope Infrared Spectrograph (IRS). This detailed dust modeling of spectra informs our choice of dust properties to use in radiative transfer modeling of SEDs of Galactic AGB stars. BAS acknowledges funding from NASA ADAP grant NNX15AF15G.

  14. The Optical Gravitational Lensing Experiment. BVI Maps of Dense Stellar Regions. III. The Galactic Bulge

    NASA Astrophysics Data System (ADS)

    Udalski, A.; Szymanski, M.; Kubiak, M.; Pietrzynski, G.; Soszynski, I.; Wozniak, P.; Zebrun, K.; Szewczyk, O.; Wyrzykowski, L.

    2002-09-01

    We present the VI photometric maps of the Galactic bulge. They contain VI photometry and astrometry of about 30 million stars from 49 fields of 0.225 square degree each in the Galactic center region. The data were collected during the second phase of the OGLE microlensing project. We discuss the accuracy of data and present color-magnitude diagrams of selected fields observed by OGLE in the Galactic bulge. The VI maps of the Galactic bulge are accessible electronically for the astronomical community from the OGLE Internet archive.

  15. Kinematics and abundances of K giants in the nuclear bulge of the Galaxy

    NASA Astrophysics Data System (ADS)

    Rich, R. Michael

    1990-10-01

    Radial velocities have been determined for 53 K giants in Baade's window, which belong to the nuclear bulge population and have abundances derived from low resolution spectra. Additional radial velocities for an overlapping sample of 71 bulge K giants show the same dependence of velocity dispersion on abundance; in both samples, the lower velocity dispersion of the metal-rich giants is found to be significant at a level above 90 percent. Extant data support the hypothesis that both M giants and IRAS bulge sources follow steep density laws similar to that which has been predicted for the metal-rick K giants. The abundance distribution of 88 K giants in Baade's window is noted to be notably well fitted by the simple, 'closed box' model of chemical evolution.

  16. Galactic bulge population II Cepheids in the VVV survey: period-luminosity relations and a distance to the Galactic centre

    NASA Astrophysics Data System (ADS)

    Bhardwaj, A.; Rejkuba, M.; Minniti, D.; Surot, F.; Valenti, E.; Zoccali, M.; Gonzalez, O. A.; Romaniello, M.; Kanbur, S. M.; Singh, H. P.

    2017-09-01

    Context. Multiple stellar populations of different ages and metallicities reside in the Galactic bulge that trace its structure and provide clues to its formation and evolution. Aims: We present the near-infrared observations of population II Cepheids in the Galactic bulge from VISTA Variables in the Vía Láctea (VVV) survey. The JHKs photometry together with optical data from Optical Gravitational Lensing Experiment (OGLE) survey provide an independent estimate of the distance to the Galactic centre. The old, metal-poor and low-mass population II Cepheids are also investigated as useful tracers for the structure of the Galactic bulge. Methods: We identify 340 population II Cepheids in the VVV survey Galactic bulge catalogue based on their match with the OGLE-III Catalogue. The single-epoch JH and multi-epoch Ks observations complement the accurate periods and optical (VI) mean-magnitudes from OGLE. The sample consisting of BL Herculis and W Virginis subtypes is used to derive period-luminosity relations after correcting mean-magnitudes for the extinction. Our Ks-band period-luminosity relation, Ks = -2.189(0.056) [log (P)-1] + 11.187(0.032), is consistent with published work for BL Herculis and W Virginis variables in the Large Magellanic Cloud. Results: We present a combined OGLE-III and VVV catalogue with periods, classification, mean magnitudes, and extinction for 264 Galactic bulge population II Cepheids that have good-quality Ks-band light curves. The absolute magnitudes for population II Cepheids and RR Lyraes calibrated using Gaia and Hubble Space Telescope parallaxes, together with calibrated magnitudes for Large Magellanic Cloud population II Cepheids, are used to obtain a distance to the Galactic centre, R0 = 8.34 ± 0.03(stat.) ± 0.41(syst.), which changes by with different extinction laws. While noting the limitation of small number statistics, we find that the present sample of population II Cepheids in the Galactic bulge shows a nearly spheroidal

  17. The Extinction Toward the Galactic Bulge from RR Lyrae Stars

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kunder, A; Popowski, P; Cook, K

    2007-11-07

    The authors present mean reddenings toward 3525 RR0 Lyrae stars from the Galactic bulge fields of the MACHO Survey. These reddenings are determined using the color at minimum V-band light of the RR0 Lyrae stars themselves and are found to be in general agreement with extinction estimates at the same location obtained from other methods. Using 3256 stars located in the Galactic Bulge, they derive the selective extinction coefficient R{sub V,VR} = A{sub V}/E(V-R) = 4.2 {+-} 0.2. this value is what is expected for a standard extinction law with R{sub V,BV} = 3.1 {+-} 0.3

  18. Zinc abundances in Galactic bulge field red giants: Implications for damped Lyman-α systems

    NASA Astrophysics Data System (ADS)

    Barbuy, B.; Friaça, A. C. S.; da Silveira, C. R.; Hill, V.; Zoccali, M.; Minniti, D.; Renzini, A.; Ortolani, S.; Gómez, A.

    2015-08-01

    Context. Zinc in stars is an important reference element because it is a proxy to Fe in studies of damped Lyman-α systems (DLAs), permitting a comparison of chemical evolution histories of bulge stellar populations and DLAs. In terms of nucleosynthesis, it behaves as an alpha element because it is enhanced in metal-poor stars. Abundance studies in different stellar populations can give hints to the Zn production in different sites. Aims: The aim of this work is to derive the iron-peak element Zn abundances in 56 bulge giants from high resolution spectra. These results are compared with data from other bulge samples, as well as from disk and halo stars, and damped Lyman-α systems, in order to better understand the chemical evolution in these environments. Methods: High-resolution spectra were obtained using FLAMES+UVES on the Very Large Telescope. We computed the Zn abundances using the Zn i lines at 4810.53 and 6362.34 Å. We considered the strong depression in the continuum of the Zn i 6362.34 Å line, which is caused by the wings of the Ca i 6361.79 Å line suffering from autoionization. CN lines blending the Zn i 6362.34 Å line are also included in the calculations. Results: We find [Zn/Fe] = +0.24 ± 0.02 in the range -1.3 < [Fe/H] < -0.5 and [Zn/Fe] = + 0.06 ± 0.02 in the range -0.5 < [Fe/H] < -0.1, whereas for [Fe/H] ≥ -0.1, it shows a spread of -0.60 < [Zn/Fe] < + 0.15, with most of these stars having low [Zn/Fe] < 0.0. These low zinc abundances at the high metallicity end of the bulge define a decreasing trend in [Zn/Fe] with increasing metallicities. A comparison with Zn abundances in DLA systems is presented, where a dust-depletion correction was applied for both Zn and Fe. When we take these corrections into account, the [Zn/Fe] vs. [Fe/H] of the DLAs fall in the same region as the thick disk and bulge stars. Finally, we present a chemical evolution model of Zn enrichment in massive spheroids, representing a typical classical bulge evolution

  19. Mira variables in the Galactic Bulge .

    NASA Astrophysics Data System (ADS)

    Groenewegen, M. A. T.; Blommaert, J. A. D. L.

    The 222 000 I-band light curves of variable stars detected by the OGLE-II survey in the direction of the Galactic Bulge have been fitted and have been correlated with the DENIS and 2MASS databases. Results are presented for 2691 objects with I-band semi-amplitude larger than 0.45 magnitude, corresponding to classical Mira variables. The Mira period distribution of 5 fields at similar longitude but spanning latitudes from -1.2 to -5.8 are statistically indistinguisable indicating similar populations with initial masses of 1.5-2 M⊙ (corresponding to ages of 1-3 Gyr). A field at similar longitude at b = -0.05 from Glass et al. (2001) does show a significantly different period distribution, indicating the presence of a younger population of 2.5-3 M⊙ and ages below 1 Gyr. The K-band period-luminosity relation is presented for the whole sample, and for sub-fields. Simulations are carried out to show that the observations are naturally explained using the model of disk and bulge stars of Binney et al. (1997), for a viewing angle (major-axis Bar - axis perpendicular to the line-of-sight to the Galactic Centre) of 43 ± 17 degrees. A comparison is made with similar objects in the Magellanic Clouds, studied in a previous paper. The slope of the PL-relation in the Bulge and the MCs agree within the errorbars. Assuming the zero point does not depend on metallicity, a distance modulus difference of 3.72 between Bulge and LMC is derived. This implies a LMC DM of 18.21 for an assumed distance to the Galactic Centre (GC) of 7.9 kpc, or, assuming a LMC DM of 18.50, a distance to the GC of 9.0 kpc. From the results in Groenewegen (2004) it is found for carbon-rich Miras that the PL-relation implies a relative SMC-LMC DM of 0.38, assuming no metallicity dependence. This is somewhat smaller than the often quoted value near 0.50. Following theoretical work by Wood (1990) a metallicity term of the form M_K ˜ beta log Z is introduced. If a relative SMC-LMC DM of 0.50 is imposed

  20. New insights on the origin of the High Velocity Peaks in the Galactic Bulge

    NASA Astrophysics Data System (ADS)

    Fernández-Trincado, J. G.; Robin, A. C.; Moreno, E.; Pérez-Villegas, A.; Pichardo, B.

    2017-12-01

    We provide new insight on the origin of the cold high-V_{los} peaks (˜200 kms^{-1}) in the Milky Way bulge discovered in the APOGEE commissioning data (Nidever et al. 2012). Here we show that such kinematic behaviour present in the field regions towards the Galactic bulge is not likely associated with orbits that build the boxy/peanut (B/P) bulge. To this purpose, a new set of test particle simulations of a kinematically cold stellar disk evolved in a 3D steady-state barred Milky Way galactic potential, has been analysed in detail. Especially bar particles trapped into the bar are identified through the orbital Jacobi energy E_{J}, which allows us to identify the building blocks of the B/P feature and investigate their kinematic properties. Finally, we present preliminary results showing that the high-V_{los} features observed towards the Milky Way bulge are a natural consequence of a large-scale midplane particle structure, which is unlikely associated with the Galactic bar.

  1. Light, alpha, and Fe-peak element abundances in the galactic bulge

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, Christian I.; Rich, R. Michael; Kobayashi, Chiaki

    2014-10-01

    We present radial velocities and chemical abundances of O, Na, Mg, Al, Si, Ca, Cr, Fe, Co, Ni, and Cu for a sample of 156 red giant branch stars in two Galactic bulge fields centered near (l, b) = (+5.25,–3.02) and (0,–12). The (+5.25,–3.02) field also includes observations of the bulge globular cluster NGC 6553. The results are based on high-resolution (R ∼ 20,000), high signal-to-noise ration (S/N ≳ 70) FLAMES-GIRAFFE spectra obtained through the European Southern Observatory archive. However, we only selected a subset of the original observations that included spectra with both high S/N and that did notmore » show strong TiO absorption bands. This work extends previous analyses of this data set beyond Fe and the α-elements Mg, Si, Ca, and Ti. While we find reasonable agreement with past work, the data presented here indicate that the bulge may exhibit a different chemical composition than the local thick disk, especially at [Fe/H] ≳ –0.5. In particular, the bulge [α/Fe] ratios may remain enhanced to a slightly higher [Fe/H] than the thick disk, and the Fe-peak elements Co, Ni, and Cu appear enhanced compared to the disk. There is also some evidence that the [Na/Fe] (but not [Al/Fe]) trends between the bulge and local disk may be different at low and high metallicity. We also find that the velocity dispersion decreases as a function of increasing [Fe/H] for both fields, and do not detect any significant cold, high-velocity populations. A comparison with chemical enrichment models indicates that a significant fraction of hypernovae may be required to explain the bulge abundance trends, and that initial mass functions that are steep, top-heavy (and do not include strong outflow), or truncated to avoid including contributions from stars >40 M {sub ☉} are ruled out, in particular because of disagreement with the Fe-peak abundance data. For most elements, the NGC 6553 stars exhibit abundance trends nearly identical to comparable metallicity bulge

  2. A HIGH-VELOCITY BULGE RR LYRAE VARIABLE ON A HALO-LIKE ORBIT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kunder, Andrea; Storm, J.; Rich, R. M.

    2015-07-20

    We report on the RR Lyrae variable star, MACHO 176.18833.411, located toward the Galactic bulge and observed within the data from the ongoing Bulge RR Lyrae Radial Velocity Assay, which has the unusual radial velocity of −372 ± 8 km s{sup −1} and true space velocity of −482 ± 22 km s{sup −1} relative to the Galactic rest frame. Located less than 1 kpc from the Galactic center and toward a field at (l, b) = (3, −2.5), this pulsating star has properties suggesting it belongs to the bulge RR Lyrae star population, yet a velocity indicating it is abnormal,more » at least with respect to bulge giants and red clump stars. We show that this star is most likely a halo interloper and therefore suggest that halo contamination is not insignificant when studying metal-poor stars found within the bulge area, even for stars within 1 kpc of the Galactic center. We discuss the possibility that MACHO 176.18833.411 is on the extreme edge of the bulge RR Lyrae radial velocity distribution, and also consider a more exotic scenario in which it is a runaway star moving through the Galaxy.« less

  3. New VVV Survey Globular Cluster Candidates in the Milky Way Bulge

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Minniti, Dante; Gómez, Matías; Geisler, Douglas

    It is likely that a number of Galactic globular clusters remain to be discovered, especially toward the Galactic bulge. High stellar density combined with high and differential interstellar reddening are the two major problems for finding globular clusters located toward the bulge. We use the deep near-IR photometry of the VISTA Variables in the Vía Láctea (VVV) Survey to search for globular clusters projected toward the Galactic bulge, and hereby report the discovery of 22 new candidate globular clusters. These objects, detected as high density regions in our maps of bulge red giants, are confirmed as globular cluster candidates bymore » their color–magnitude diagrams. We provide their coordinates as well as their near-IR color–magnitude diagrams, from which some basic parameters are derived, such as reddenings and heliocentric distances. The color–magnitude diagrams reveal well defined red giant branches in all cases, often including a prominent red clump. The new globular cluster candidates exhibit a variety of extinctions (0.06 < A {sub Ks} < 2.77) and distances (5.3 < D < 9.5 kpc). We also classify the globular cluster candidates into 10 metal-poor and 12 metal-rich clusters, based on the comparison of their color–magnitude diagrams with those of known globular clusters also observed by the VVV Survey. Finally, we argue that the census for Galactic globular clusters still remains incomplete, and that many more candidate globular clusters (particularly the low luminosity ones) await to be found and studied in detail in the central regions of the Milky Way.« less

  4. Abundances of disk and bulge giants from high-resolution optical spectra. II. O, Mg, Ca, and Ti in the bulge sample

    NASA Astrophysics Data System (ADS)

    Jönsson, H.; Ryde, N.; Schultheis, M.; Zoccali, M.

    2017-02-01

    Context. Determining elemental abundances of bulge stars can, via chemical evolution modeling, help to understand the formation and evolution of the bulge. Recently there have been claims both for and against the bulge having a different [α/Fe] versus [Fe/H] trend as compared to the local thick disk. This could possibly indicate a faster, or at least different, formation timescale of the bulge as compared to the local thick disk. Aims: We aim to determine the abundances of oxygen, magnesium, calcium, and titanium in a sample of 46 bulge K giants, 35 of which have been analyzed for oxygen and magnesium in previous works, and compare this sample to homogeneously determined elemental abundances of a local disk sample of 291 K giants. Methods: We used spectral synthesis to determine both the stellar parameters and elemental abundances of the bulge stars analyzed here. We used the exact same method that we used to analyze the comparison sample of 291 local K giants in Paper I of this series. Results: Compared to the previous analysis of the 35 stars in our sample, we find lower [Mg/Fe] for [Fe/H] >-0.5, and therefore contradict the conclusion about a declining [O/Mg] for increasing [Fe/H]. We instead see a constant [O/Mg] over all the observed [Fe/H] in the bulge. Furthermore, we find no evidence for a different behavior of the alpha-iron trends in the bulge as compared to the local thick disk from our two samples. Note to the reader: following the publication of the corrigendum, the subtitle of the article was corrected on April 6, 2017. "O, Mg, Co, and Ti" has been replaced by "O, Mg, Ca, and Ti".Based on observations collected at the European Southern Observatory, Chile (ESO programs 71.B-0617(A), 073.B-0074(A), and 085.B-0552(A)).

  5. A parametric description of the 3D structure of the Galactic bar/bulge using the VVV survey

    NASA Astrophysics Data System (ADS)

    Simion, I. T.; Belokurov, V.; Irwin, M.; Koposov, S. E.; Gonzalez-Fernandez, C.; Robin, A. C.; Shen, J.; Li, Z.-Y.

    2017-11-01

    We study the structure of the inner Milky Way using the latest data release of the VISTA Variables in the Via Lactea (VVV) survey. The VVV is a deep near-infrared, multi-colour photometric survey with a coverage of 300 square degrees towards the bulge/bar. We use red clump (RC) stars to produce a high-resolution dust map of the VVV's field of view. From de-reddened colour-magnitude diagrams, we select red giant branch stars to investigate their 3D density distribution within the central 4 kpc. We demonstrate that our best-fitting parametric model of the bulge density provides a good description of the VVV data, with a median percentage residual of 5 per cent over the fitted region. The strongest of the otherwise low-level residuals are overdensities associated with a low-latitude structure as well as the so-called X-shape previously identified using the split RC. These additional components contribute only ˜5 per cent and ˜7 per cent respectively to the bulge mass budget. The best-fitting bulge is `boxy' with an axial ratio of [1:0.44:0.31] and is rotated with respect to the Sun-Galactic Centre line by at least 20°. We provide an estimate of the total, full sky, mass of the bulge of M_bulge^{Chabrier} = 2.36 × 10^{10} M_{⊙} for a Chabrier initial mass function. We show that there exists a strong degeneracy between the viewing angle and the dispersion of the RC absolute magnitude distribution. The value of the latter is strongly dependent on the assumptions made about the intrinsic luminosity function of the bulge.

  6. New VVV Survey Globular Cluster Candidates in the Milky Way Bulge

    NASA Astrophysics Data System (ADS)

    Minniti, Dante; Geisler, Douglas; Alonso-García, Javier; Palma, Tali; Beamín, Juan Carlos; Borissova, Jura; Catelan, Marcio; Clariá, Juan J.; Cohen, Roger E.; Contreras Ramos, Rodrigo; Dias, Bruno; Fernández-Trincado, Jose G.; Gómez, Matías; Hempel, Maren; Ivanov, Valentin D.; Kurtev, Radostin; Lucas, Phillip W.; Moni-Bidin, Christian; Pullen, Joyce; Ramírez Alegría, Sebastian; Saito, Roberto K.; Valenti, Elena

    2017-11-01

    It is likely that a number of Galactic globular clusters remain to be discovered, especially toward the Galactic bulge. High stellar density combined with high and differential interstellar reddening are the two major problems for finding globular clusters located toward the bulge. We use the deep near-IR photometry of the VISTA Variables in the Vía Láctea (VVV) Survey to search for globular clusters projected toward the Galactic bulge, and hereby report the discovery of 22 new candidate globular clusters. These objects, detected as high density regions in our maps of bulge red giants, are confirmed as globular cluster candidates by their color-magnitude diagrams. We provide their coordinates as well as their near-IR color-magnitude diagrams, from which some basic parameters are derived, such as reddenings and heliocentric distances. The color-magnitude diagrams reveal well defined red giant branches in all cases, often including a prominent red clump. The new globular cluster candidates exhibit a variety of extinctions (0.06 < A Ks < 2.77) and distances (5.3 < D < 9.5 kpc). We also classify the globular cluster candidates into 10 metal-poor and 12 metal-rich clusters, based on the comparison of their color-magnitude diagrams with those of known globular clusters also observed by the VVV Survey. Finally, we argue that the census for Galactic globular clusters still remains incomplete, and that many more candidate globular clusters (particularly the low luminosity ones) await to be found and studied in detail in the central regions of the Milky Way. Based on observations taken within the ESO programs 179.B-2002 and 298.D-5048.

  7. The Globular Clusters of the Galactic Bulge: Results from Multiwavelength Follow-up Imaging

    NASA Astrophysics Data System (ADS)

    Cohen, Roger; Geisler, Doug; Mauro, Francesco; Alonso Garcia, Javier; Hempel, Maren; Sarajedini, Ata

    2018-01-01

    The Galactic globular clusters (GGCs) located towards the bulge of the Milky Way suffer from severe total and differential extinction and high field star densities. They have therefore been systematically excluded from deep, large-scale homogenous GGC surveys, and will present a challenge for Gaia. Meanwhile, existing observations of bulge GGCs have revealed tantalizing hints that they hold clues to Galactic formation and evolution not found elsewhere. Therefore, in order to better characterize these poorly studied stellar systems and place them in the context of their optically well-studied counterparts, we have undertaken imaging programs at optical and near-infrared wavelengths. We describe these programs and present a variety of results, including self-consistent measurement of bulge GGC ages and structural parameters. The limitations imposed by spatially variable extinction and extinction law are highlighted, along with the complimentary nature of forthcoming facilities, allowing us to finally complete our picture of the Milky Way GGC system.

  8. Chandra Studies of Unidentified X-ray Sources in the Galactic Bulge

    NASA Astrophysics Data System (ADS)

    Mori, Hideyuki

    2013-09-01

    We propose to study a complete X-ray sample in the luminosity range of > 10^34 erg s^-1 in the Galactic bulge, including 5 unidentified sources detected in the ROSAT All Sky Survey. Our goal is to obtain a clear picture about X-ray populations in the bulge, by utilizing the excellent Chandra position accuracy leading to unique optical identification together with the X-ray spectral properties. This is a new step toward understanding the formation history of the bulge. Furthermore, because the luminosity range we observe corresponds to a ``missing link'' region ever studied for a neutron star or blackhole X-ray binary, our results are also unique to test accretion disk theories at intermediate mass accretion rates.

  9. Two Populations of SiO Masers in the Galactic Bulge

    NASA Astrophysics Data System (ADS)

    Trapp, Adam; Rich, Robert Michael; Morris, Mark; Pihlstrom, Ylva; Sjouwerman, Lorant; Claussen, Mark J.; Stroh, Michael

    2017-01-01

    We present a summary of the kinematics of stellar SiO masers observed in the direction of the galactic bulge with ALMA (885 sources), and the JVLA (2,479 sources). These objects are selected by color from the MSX point source catalog, which has given an SiO detection rate of ~70%. The presented sample, along with the ~24,000 sources still being observed and reduced, enable radial velocity measurements even in regions with extreme optical extinction. These maser stars are compared to the known bulge surveys: APOGEE (~25,000 sources), BRAVA (~8000 sources), and GIBS (~6,400 sources). We have found that BAaDE stars in the direction of the bulge exist in two subpopulations: (1) A kinematically hot population exhibiting cylindrical rotation consistent with the other bulge surveys, and (2) a kinematically cold population more consistent with a disk population. In the ALMA data, we find evidence for a -200 km/s feature at (l,b) = (-9,0), possibly the symmetric complement to a previously proposed +200 km/s feature (Nidever 2012), that we do not confirm with our data.

  10. Quasiperiodic oscillations in bright galactic-bulge X-ray sources

    NASA Technical Reports Server (NTRS)

    Lamb, F. K.; Shibazaki, N.; Alpar, M. A.; Shaham, J.

    1985-01-01

    Quasiperiodic oscillations with frequencies in the range 5-50 Hz have recently been discovered in X-rays from two bright galactic-bulge sources and Sco X-1. These sources are weakly magnetic neutron stars accreting from disks which the plasma is clumped. The interaction of the magnetosphere with clumps in the inner disk causes oscillations in the X-ray flux with many of the properties observed.

  11. Bulge Growth Through Disc Instabilities in High-Redshift Galaxies

    NASA Astrophysics Data System (ADS)

    Bournaud, Frédéric

    The role of disc instabilities, such as bars and spiral arms, and the associated resonances, in growing bulges in the inner regions of disc galaxies have long been studied in the low-redshift nearby Universe. There it has long been probed observationally, in particular through peanut-shaped bulges (Chap. 14 10.1007/978-3-319-19378-6_14"). This secular growth of bulges in modern disc galaxies is driven by weak, non-axisymmetric instabilities: it mostly produces pseudobulges at slow rates and with long star-formation timescales. Disc instabilities at high redshift (z > 1) in moderate-mass to massive galaxies (1010 to a few 1011 M⊙ of stars) are very different from those found in modern spiral galaxies. High-redshift discs are globally unstable and fragment into giant clumps containing 108-9 M⊙ of gas and stars each, which results in highly irregular galaxy morphologies. The clumps and other features associated to the violent instability drive disc evolution and bulge growth through various mechanisms on short timescales. The giant clumps can migrate inward and coalesce into the bulge in a few 108 years. The instability in the very turbulent media drives intense gas inflows toward the bulge and nuclear region. Thick discs and supermassive black holes can grow concurrently as a result of the violent instability. This chapter reviews the properties of high-redshift disc instabilities, the evolution of giant clumps and other features associated to the instability, and the resulting growth of bulges and associated sub-galactic components.

  12. Spectroscopic classification of X-ray sources in the Galactic Bulge Survey

    NASA Astrophysics Data System (ADS)

    Wevers, T.; Torres, M. A. P.; Jonker, P. G.; Nelemans, G.; Heinke, C.; Mata Sánchez, D.; Johnson, C. B.; Gazer, R.; Steeghs, D. T. H.; Maccarone, T. J.; Hynes, R. I.; Casares, J.; Udalski, A.; Wetuski, J.; Britt, C. T.; Kostrzewa-Rutkowska, Z.; Wyrzykowski, Ł.

    2017-10-01

    We present the classification of 26 optical counterparts to X-ray sources discovered in the Galactic Bulge Survey. We use (time-resolved) photometric and spectroscopic observations to classify the X-ray sources based on their multiwavelength properties. We find a variety of source classes, spanning different phases of stellar/binary evolution. We classify CX21 as a quiescent cataclysmic variable (CV) below the period gap, and CX118 as a high accretion rate (nova-like) CV. CXB12 displays excess UV emission, and could contain a compact object with a giant star companion, making it a candidate symbiotic binary or quiescent low-mass X-ray binary (although other scenarios cannot be ruled out). CXB34 is a magnetic CV (polar) that shows photometric evidence for a change in accretion state. The magnetic classification is based on the detection of X-ray pulsations with a period of 81 ± 2 min. CXB42 is identified as a young stellar object, namely a weak-lined T Tauri star exhibiting (to date unexplained) UX Ori-like photometric variability. The optical spectrum of CXB43 contains two (resolved) unidentified double-peaked emission lines. No known scenario, such as an active galactic nucleus or symbiotic binary, can easily explain its characteristics. We additionally classify 20 objects as likely active stars based on optical spectroscopy, their X-ray to optical flux ratios and photometric variability. In four cases we identify the sources as binary stars.

  13. The population of single and binary white dwarfs of the Galactic bulge

    NASA Astrophysics Data System (ADS)

    Torres, S.; García-Berro, E.; Cojocaru, R.; Calamida, A.

    2018-05-01

    Recent Hubble Space Telescope observations have unveiled the white dwarf cooling sequence of the Galactic bulge. Although the degenerate sequence can be well fitted employing the most up-to-date theoretical cooling sequences, observations show a systematic excess of red objects that cannot be explained by the theoretical models of single carbon-oxygen white dwarfs of the appropriate masses. Here, we present a population synthesis study of the white dwarf cooling sequence of the Galactic bulge that takes into account the populations of both single white dwarfs and binary systems containing at least one white dwarf. These calculations incorporate state-of-the-art cooling sequences for white dwarfs with hydrogen-rich and hydrogen-deficient atmospheres, for both white dwarfs with carbon-oxygen and helium cores, and also take into account detailed prescriptions of the evolutionary history of binary systems. Our Monte Carlo simulator also incorporates all the known observational biases. This allows us to model with a high degree of realism the white dwarf population of the Galactic bulge. We find that the observed excess of red stars can be partially attributed to white dwarf plus main sequence binaries, and to cataclysmic variables or dwarf novae. Our best fit is obtained with a higher binary fraction and an initial mass function slope steeper than standard values, as well as with the inclusion of differential reddening and blending. Our results also show that the possible contribution of double degenerate systems or young and thick-discbulge stars is negligible.

  14. The Split Red Clump of the Galactic Bulge from OGLE-III

    NASA Astrophysics Data System (ADS)

    Nataf, D. M.; Udalski, A.; Gould, A.; Fouqué, P.; Stanek, K. Z.

    2010-09-01

    The red clump (RC) is found to be split into two components along several sightlines toward the Galactic bulge. This split is detected with high significance toward the areas (-3.5 < l < 1, b < -5) and (l, b) = (0, + 5.2), i.e., along the bulge minor axis and at least 5 deg off the plane. The fainter (hereafter "main") component is the one that more closely follows the distance-longitude relation of the bulge RC. The main component is ~0.5 mag fainter than the secondary component and with an overall approximately equal population. For sightlines further from the plane, the difference in brightness increases, and more stars are found in the secondary component than in the main component. The two components have very nearly equal (V - I) color.

  15. COSMIC-LAB: unveling the true nature of Terzan 5, a pristine fragment of the Galactic bulge

    NASA Astrophysics Data System (ADS)

    Ferraro, Francesco

    2012-10-01

    We have discovered that Terzan5, a stellar system in the Galactic bulge, harbors two stellar populations with different iron content {Delta[Fe/H] 0.5 dex} and possibly different ages {Ferraro et al. 2009, Nature 462, 483}. Moreover, the observed chemical patterns {Origlia et al. 2011, ApJ 726, L20} significantly differ from those observed in any known genuine GC. These evidences demonstrate that, similarly to omega Centauri in the halo, Terzan5 is NOT a genuine globular cluster {GC}, but a stellar system that was able to retain the gas ejected by violent supernova {SN} explosions.Indeed the striking chemical similarity with the bulge stars suggests that Terzan5 and the Galactic bulge shared the same star formation and chemical enrichment processes, driven by an exceptional amount of SNeII explosions {this is also the key to understand the origin of the extraordinary population of millisecond pulsars in Terzan5}. A quite intriguing scenario is emerging from these observations: Terzan5 could be the relic of one of the massive clumps that contributed {through strong dynamical interactions with other pre-formed and internally-evolved sub-structures} to the formation of the Galactic bulge.Here we propose to use the WFC3 to accurately measure the age of the two populations directly from the main sequence turn-off luminosities. Precisely dating the first and second burst of star formation is a crucial step for the correct reconstruction of the evolutionary history of Terzan5, with a significant impact on our comprehension of the formation processes of the Milky Way bulge and, more in general, of galactic spheroids.

  16. First detection of the white dwarf cooling sequence of the galactic bulge

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Calamida, A.; Sahu, K. C.; Anderson, J.

    2014-08-01

    We present Hubble Space Telescope data of the low-reddening Sagittarius window in the Galactic bulge. The Sagittarius Window Eclipsing Extrasolar Planet Search field (∼3'× 3'), together with three more Advanced Camera for Surveys and eight Wide-Field Camera 3 fields, were observed in the F606W and F814W filters, approximately every two weeks for 2 yr, with the principal aim of detecting a hidden population of isolated black holes and neutron stars through astrometric microlensing. Proper motions were measured with an accuracy of ≈0.1 mas yr{sup –1} (≈4 km s{sup –1}) at F606W ≈ 25.5 mag, and better than ≈0.5 mas yr{supmore » –1} (≈20 km s{sup –1}) at F606W ≈ 28 mag, in both axes. Proper-motion measurements allowed us to separate disk and bulge stars and obtain a clean bulge color-magnitude diagram. We then identified for the first time a white dwarf (WD) cooling sequence in the Galactic bulge, together with a dozen candidate extreme horizontal branch stars. The comparison between theory and observations shows that a substantial fraction of the WDs (≈30%) are systematically redder than the cooling tracks for CO-core H-rich and He-rich envelope WDs. This evidence would suggest the presence of a significant number of low-mass WDs and WD-main-sequence binaries in the bulge. This hypothesis is further supported by the finding of two dwarf novae in outburst, two short-period (P ≲ 1 day) ellipsoidal variables, and a few candidate cataclysmic variables in the same field.« less

  17. VizieR Online Data Catalog: Galactic bulge eclipsing & ellipsoidal binaries (Soszynski+, 2016)

    NASA Astrophysics Data System (ADS)

    Soszynski, I.; Pawlak, M.; Pietrukowicz, P.; Udalski, A.; Szymanski, M. K.; Wyrzykowski, L.; Ulaczyk, K.; Poleski, R.; Kozlowski, S.; Skowron, D. M.; Skowron, J.; Mroz, P.; Hamanowicz, A.

    2018-04-01

    Our collection of binary systems in the Galactic bulge is based on the photometric data collected by the OGLE survey between 1997 and 2015 at Las Campanas Observatory, Chile, with the 1.3-m Warsaw Telescope. The observatory is operated by the Carnegie Institution for Science. In 1997-2000, during the OGLE-II stage, about 30 million stars in the area of 11 square degrees in the central parts of the Milky Way were constantly monitored. In 2001, with the beginning of the OGLE-III survey, the sky coverage was extended to nearly 69 square degrees and the number of monitored stars increased to 200 million. Finally, from 2010 until today the OGLE-IV project regularly observes about 400 million stars in 182 square degrees of the densest regions of the Galactic bulge. Our search for eclipsing variables was based primarily on the OGLE-IV data. (4 data files).

  18. Tracing the Chemical Evolution of Metal-rich Galactic Bulge Globular Clusters

    NASA Astrophysics Data System (ADS)

    Munoz Gonzalez, Cesar; Saviane, Ivo; Geisler, Doug; Villanova, Sandro

    2018-01-01

    We present in this poster the metallicity characterization of the four metal rich Bulge Galactic Gobular Clusters, which have controversial metallicities. We analyzed our high-resolution spectra (using UVES-580nm and GIRAFFE-HR13 setups) for a large sample of RGB/AGB targets in each cluster in order to measure their metallicity and prove or discard the iron spread hypothesis. We have also characterized chemically stars with potentially different iron content by measuring light (O, Na, Mg, Al), alpha (Si, Ca, Ti), iron–peak (V, Cr, Ni, Mn) and s and r process (Y, Zr, Ba, Eu) elements. We have identified possible channels responsible for the chemical heterogeneity of the cluster populations, like AGB or massive fast-rotating stars contamination, or SN explosion. Also, we have analyzed the origin and evolution of these bulge GCs and their connection with the bulge itself.

  19. CONSTRAINTS ON THE FORMATION OF THE GALACTIC BULGE FROM Na, Al, AND HEAVY-ELEMENT ABUNDANCES IN PLAUT's FIELD

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, Christian I.; Rich, R. Michael; Kobayashi, Chiaki

    2012-04-20

    We report chemical abundances of Na, Al, Zr, La, Nd, and Eu for 39 red giant branch (RGB) stars and 23 potential inner disk red clump stars located in Plaut's low-extinction window. We also measure lithium for a super Li-rich RGB star. The abundances were determined by spectrum synthesis of high-resolution (R Almost-Equal-To 25,000), high signal-to-noise (S/N {approx} 50-100 pixel{sup -1}) spectra obtained with the Blanco 4 m telescope and Hydra multifiber spectrograph. For the bulge RGB stars, we find a general increase in the [Na/Fe] and [Na/Al] ratios with increasing metallicity, and a similar decrease in [La/Fe] and [Nd/Fe].more » Additionally, the [Al/Fe] and [Eu/Fe] abundance trends almost identically follow those of the {alpha}-elements, and the [Zr/Fe] ratios exhibit relatively little change with [Fe/H]. The consistently low [La/Eu] ratios of the RGB stars indicate that at least a majority of bulge stars formed rapidly ({approx}<1 Gyr) and before the main s-process could become a significant pollution source. In contrast, we find that the potential inner disk clump stars exhibit abundance patterns more similar to those of the thin and thick disks. Comparisons between the abundance trends at different bulge locations suggest that the inner and outer bulges formed on similar timescales. However, we find evidence of some abundance differences between the most metal-poor and metal-rich stars in various bulge fields. The data also indicate that the halo may have had a more significant impact on the outer bulge initial composition than the inner bulge composition. The [Na/Fe], and to a lesser extent [La/Fe], abundances further indicate that the metal-poor bulge, at least at {approx}1 kpc from the Galactic center, and thick disk may not share an identical chemistry.« less

  20. Tidal stripping stellar substructures around four metal-poor globular clusters in the galactic bulge

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chun, Sang-Hyun; Kang, Minhee; Jung, DooSeok

    2015-01-01

    We investigate the spatial density configuration of stars around four metal-poor globular clusters (NGC 6266, NGC 6626, NGC 6642, and NGC 6723) in the Galactic bulge region using wide-field deep J, H, and K imaging data obtained with the Wide Field Camera near-infrared array on the United Kingdom Infrared Telescope. A statistical weighted filtering algorithm for the stars on the color–magnitude diagram is applied in order to sort cluster member candidates from the field star contamination. In two-dimensional isodensity contour maps of the clusters, we find that all four of the globular clusters exhibit strong evidence of tidally stripped stellarmore » features beyond the tidal radius in the form of tidal tails or small density lobes/chunks. The orientations of the extended stellar substructures are likely to be associated with the effect of dynamic interaction with the Galaxy and the cluster's space motion. The observed radial density profiles of the four globular clusters also describe the extended substructures; they depart from theoretical King and Wilson models and have an overdensity feature with a break in the slope of the profile at the outer region of clusters. The observed results could imply that four globular clusters in the Galactic bulge region have experienced strong environmental effects such as tidal forces or bulge/disk shocks of the Galaxy during the dynamical evolution of globular clusters. These observational results provide further details which add to our understanding of the evolution of clusters in the Galactic bulge region as well as the formation of the Galaxy.« less

  1. Microlensing results toward the galactic bulge, theory of fitting blended light curves, and discussion of weak lensing corrections

    NASA Astrophysics Data System (ADS)

    Thomas, Christian L.

    2006-06-01

    Analysis and results (Chapters 2-5) of the full 7 year Macho Project dataset toward the Galactic bulge are presented. A total of 450 high quality, relatively large signal-to-noise ratio, events are found, including several events exhibiting exotic effects, and lensing events on possible Sagittarius dwarf galaxy stars. We examine the problem of blending in our sample and conclude that the subset of red clump giants are minimally blended. Using 42 red clump giant events near the Galactic center we calculate the optical depth toward the Galactic bulge to be t = [Special characters omitted.] × 10 -6 at ( l, b ) = ([Special characters omitted.] ) with a gradient of (1.06 ± 0.71) × 10 -6 deg -1 in latitude, and (0.29±0.43) × 10 -6 deg -1 in longitude, bringing measurements into consistency with the models for the first time. In Chapter 6 we reexamine the usefulness of fitting blended light-curve models to microlensing photometric data. We find agreement with previous workers (e.g. Wozniak & Paczynski) that this is a difficult proposition because of the degeneracy of blend fraction with other fit parameters. We show that follow-up observations at specific points along the light curve (peak region and wings) of high magnification events are the most helpful in removing degeneracies. We also show that very small errors in the baseline magnitude can result in problems in measuring the blend fraction, and study the importance of non- Gaussian errors in the fit results. The biases and skewness in the distribution of the recovered blend fraction is discussed. We also find a new approximation formula relating the blend fraction and the unblended fit parameters to the underlying event duration needed to estimate microlensing optical depth. In Chapter 7 we present work-in-progress on the possibility of correcting standard candle luminosities for the magnification due to weak lensing. We consider the importance of lenses in different mass ranges and look at the contribution

  2. Peanuts, brezels and bananas: food for thought on the orbital structure of the Galactic bulge

    NASA Astrophysics Data System (ADS)

    Portail, Matthieu; Wegg, Christopher; Gerhard, Ortwin

    2015-06-01

    Recent observations have discovered the presence of a box/peanut or X-shape structure in the Galactic bulge. Such box/peanut structures are common in external disc galaxies, and are well known in N-body simulations where they form following the buckling instability of a bar. From studies of analytical potentials and N-body models, it has been claimed in the past that box/peanut bulges are supported by `bananas', or x1v1 orbits. We present here a set of N-body models where instead the peanut bulge is mainly supported by brezel-like orbits, allowing strong peanuts to form with short extent relative to the bar length. This shows that stars in the X-shape do not necessarily stream along banana orbits which follow the arms of the X-shape. The brezel orbits are also found to be the main orbital component supporting the peanut shape in our recent made-to-measure dynamical models of the Galactic bulge. We also show that in these models the fraction of stellar orbits that contribute to the X-structure account for 40-45 per cent of the stellar mass.

  3. The extended stellar substructures of four metal-poor globular clusters in the galactic bulge

    NASA Astrophysics Data System (ADS)

    Chun, Sang-Hyun; Sohn, Young-Jong

    2015-08-01

    We investigated stellar spatial density distribution around four metal-poor globular clusters (NGC 6266, NGC 6626, NGC 6642 and NGC 6723) in order to find extended stellar substructures. Wide-field deep J, H, and K imaging data were taken using the WFCAM near-infrared array on United Kingdom Infrared Telescope (UKIRT). The contamination of field stars around clusters was minimised by applying a statistical weighted filtering algorithm for the stars on the color-magnitude diagram. In two-dimensional isodensity contour map, we find that all four of the globular clusters shows tidal stripping stellar features in the form of tidal tails (NGC 6266 and NGC 6723) or small density lobes/chunk (NGC 6642 and NGC 6723). The stellar substructures extend toward the Galactic centre or anticancer, and the proper motion direction of the clusters. The radial density profiles of the clusters also depart from theoretical King and Wilson models and show overdensity feature with a break in a slope of profile at the outer region of clusters. The observed results indicate that four globular clusters in the Galactic bulge have experienced strong tidal force or bulge/disk shock effect of the Galaxy. These observational results provide us further constraints to understand the evolution of clusters in the Galactic bulge region as well as the formation of the Galaxy.

  4. Central stars of planetary nebulae in the Galactic bulge

    NASA Astrophysics Data System (ADS)

    Hultzsch, P. J. N.; Puls, J.; Méndez, R. H.; Pauldrach, A. W. A.; Kudritzki, R.-P.; Hoffmann, T. L.; McCarthy, J. K.

    2007-06-01

    Context: Optical high-resolution spectra of five central stars of planetary nebulae (CSPN) in the Galactic bulge have been obtained with Keck/HIRES in order to derive their parameters. Since the distance of the objects is quite well known, such a method has the advantage that stellar luminosities and masses can in principle be determined without relying on theoretical relations between both quantities. Aims: By alternatively combining the results of our spectroscopic investigation with evolutionary tracks, we obtain so-called spectroscopic distances, which can be compared with the known (average) distance of the bulge-CSPN. This offers the possibility to test the validity of model atmospheres and present date post-AGB evolution. Methods: We analyze optical H/He profiles of five Galactic bulge CSPN (plus one comparison object) by means of profile fitting based on state of the art non-LTE modeling tools, to constrain their basic atmospheric parameters (Teff, log g, helium abundance and wind strength). Masses and other stellar radius dependent quantities are obtained from both the known distances and from evolutionary tracks, and the results from both approaches are compared. Results: The major result of the present investigation is that the derived spectroscopic distances depend crucially on the applied reddening law. Assuming either standard reddening or values based on radio-Hβ extinctions, we find a mean distance of 9.0±1.6 kpc and 12.2±2.1 kpc, respectively. An “average extinction law” leads to a distance of 10.7±1.2 kpc, which is still considerably larger than the Galactic center distance of 8 kpc. In all cases, however, we find a remarkable internal agreement of the individual spectroscopic distances of our sample objects, within ±10% to ±15% for the different reddening laws. Conclusions: Due to the uncertain reddening correction, the analysis presented here cannot yet be regarded as a consistency check for our method, and a rigorous test of the CSPN

  5. Opening the Window on Galaxy Assembly: Ages and Structural Parameters of Globular Clusters Towards the Galactic Bulge

    NASA Astrophysics Data System (ADS)

    Cohen, Roger

    2015-10-01

    The primary aim of this program is to undertake a systematic investigation of highly reddened Galactic globular clusters (GGCs) located towards the Galactic bulge. These clusters have been excluded from deep space-based photometric surveys due to their severe total and differential extinction. We will exploit the photometric depth and homogeneity of two existing Treasury programs (the ACS GGC Treasury Survey and the WFC3 Bulge Treasury Program) along with the unique optical+IR parallel imaging capabilities of HST to finally place the bulge GGCs in the context of their optically well-studied counterparts. Specifically, by leveraging ACS/WFC together with WFC3/IR, we first exploit the reddening sensitivity at optical wavelengths to map severe, small-scale differential reddening in the cluster cores. Corrected two-color WFC3/IR photometry will then be used to measure cluster ages to better than 1 Gyr relative precision, finally completing the age-metallicity relation of the Milky Way GGC system. Ages are obtained using a demonstrated procedure which is strictly differential, and therefore insensitive to total distance, reddening, reddening law, or photometric calibration uncertainties. At the same time, deep archival Treasury survey imaging of the Galactic bulge will be used to decontaminate cluster luminosity functions, yielding measurements of bulge GGC mass functions and mass segregation on par with results from the ACS GGC Treasury survey. Finally, the imaging which we propose will be combined with existing wide-field near-IR PSF photometry, yielding complete radial number density profiles, structural and morphological parameters.

  6. Reddening and Extinction toward the Galactic Bulge from OGLE-III: The Inner Milky Way's RV ~ 2.5 Extinction Curve

    NASA Astrophysics Data System (ADS)

    Nataf, David M.; Gould, Andrew; Fouqué, Pascal; Gonzalez, Oscar A.; Johnson, Jennifer A.; Skowron, Jan; Udalski, Andrzej; Szymański, Michał K.; Kubiak, Marcin; Pietrzyński, Grzegorz; Soszyński, Igor; Ulaczyk, Krzysztof; Wyrzykowski, Łukasz; Poleski, Radosław

    2013-06-01

    We combine VI photometry from OGLE-III with VISTA Variables in The Via Lactea survey and Two Micron All Sky Survey measurements of E(J - Ks ) to resolve the longstanding problem of the non-standard optical extinction toward the Galactic bulge. We show that the extinction is well fit by the relation AI = 0.7465 × E(V - I) + 1.3700 × E(J - Ks ), or, equivalently, AI = 1.217 × E(V - I)(1 + 1.126 × (E(J - Ks )/E(V - I) - 0.3433)). The optical and near-IR reddening law toward the inner Galaxy approximately follows an RV ≈ 2.5 extinction curve with a dispersion {\\sigma }_{R_{V}} \\approx 0.2, consistent with extragalactic investigations of the hosts of Type Ia SNe. Differential reddening is shown to be significant on scales as small as our mean field size of 6'. The intrinsic luminosity parameters of the Galactic bulge red clump (RC) are derived to be (M_{I,RC}, \\sigma _{I,RC,0}, (V-I)_{RC,0}, \\sigma _{(V-I)_{RC}}, (J-K_{s})_{RC,0}) = (-0.12, 0.09, 1.06, 0.121, 0.66). Our measurements of the RC brightness, brightness dispersion, and number counts allow us to estimate several Galactic bulge structural parameters. We estimate a distance to the Galactic center of 8.20 kpc. We measure an upper bound on the tilt α ≈ 40° between the bulge's major axis and the Sun-Galactic center line of sight, though our brightness peaks are consistent with predictions of an N-body model oriented at α ≈ 25°. The number of RC stars suggests a total stellar mass for the Galactic bulge of ~2.3 × 1010 M ⊙ if one assumes a canonical Salpeter initial mass function (IMF), or ~1.6 × 1010 M ⊙ if one assumes a bottom-light Zoccali IMF. Based on observations obtained with the 1.3 m Warsaw telescope at the Las Campanas Observatory of the Carnegie Institution for Science.

  7. JASMINE-Astrometric Map of the Galactic Bulge-

    NASA Astrophysics Data System (ADS)

    Gouda, N.; Kobayashi, Y.; Yamada, Y.; Yano, T.; Tsujimoto, T.; Suganuma, M.; Niwa, Y.; Yamauchi, M.; Kawakatsu, Y.; Matsuhara, H.; Moda, A.; Tsuiki, A.; Utashima, M.; Ogawa, A.; Sako, N.

    2006-08-01

    We introduce a Japanese plan of infrared(z-band:0.9μm) space astrometry (JASMINE-project). JASMINE is the satellite (Japan Astrometry Satellite Mission for INfrared Exploration) which will measure the distances and apparent motions of stars around the center of the Milky Way with yet unprecedented precision. It will measure parallaxes, positions with the accuracy of 10 micro-arcsec and proper motions with the accuracy of 4 micro-arcsec/year for stars brighter than z=14mag. JASMINE can observe about ten million stars belonging to the bulge components of our Galaxy, which are hidden by the interstellar dust extinction in optical bands. Number of stars with sigma/pi <0.1 in the direction of the Galactic central bulge is about 1000 times larger than those observed in optical bands, where pi is a parallax and sigma is an error of the parallax. With the completely new "map of the bulge in the Milky Way", it is expected that many new exciting scientific results will be obtained in various fields of astronomy. We will introduce some scientific topics which will be obtained by JASMINE. Presently, JASMINE is in a development phase, with a target launch date around 2015. We adopt the following instrument design of JASMINE in order to get the accurate positions of many stars. We adopt a 3-mirrors optical system (modified Korsch system) with a primary mirror of 0.75m. On the astro-focal plane, we put dozens of new type of CCDs for z-band to get a wide field of view. The consideration of overall system(bus) design is now going on in cooperation with Japan Aerospace Exploration Agency (JAXA). The introduction of JASMINE and the present status of the project will be shown in the presentation.

  8. Peculiar Behaviors of Faint Galactic Bulge Transients

    NASA Technical Reports Server (NTRS)

    Swank, J. H.

    2004-01-01

    The Rossi X-ray Timing Explorer PCA scans of the Galactic bulge (galactic longitude plus or minus 11 degrees) have detected 8 recent transients which have peak intensities of 10 to 400 mCrab. Some of the transient events have a fast rise and slow decay typical of accretion disk instabilities. It is common for these decays to be oscillatory, rather than steady, as if there are waves within the disk. There are also outbursts with symmetric light curves. In particular, the source in Terzan 2 which had a very long (decade) doubling of intensity peaking near the beginning of 1997, in 2004 has had two 30 day brightenings by a factor of 5 only 100 days apart. During each of these a burst was observed in snapshot observations near the peak. The source SLX 1735-269, also a burster, though not in our observations, has had irregularly repeated occurrences of fast swings between close to zero and 2-4 times normal. Some examples, such as the increase, drop, and slow recovery of GS 1826-238 suggest a change in the accretion disk such as emptying and refilling or a peculiar alignment. Follow up observations have provided deeper information about these transient sources and possible explanations for their behavior will be addressed.

  9. Stellar photometry in the inner bulge of M31 using the Hubble Space Telescope wide field camera

    NASA Technical Reports Server (NTRS)

    Rich, R. M.; Mighell, K. J.

    1995-01-01

    We present photometry of two fields in the M31 bulge imaged with the Hubble Space Telescope (HST) Wide-Field Camara (WFC). The nuclear field (r less than 40 arcsecs = 150 pc) giant branch extends to I = 19.5, M(sub I) = -5 (Cousins system), a full 0.9 mag brighter than the giant-branch tips of metal-poor Galactic globular clusters and M31 halo fields. This is also approximately = 1.5 mag brighter than the giant branches of metal-rich Galactic globular clusters, but is no brighter than Mould's (1986) M31 bulge field 1 kpc from the nucleus. The data also suggest that the brighter stars may be preferentially concentrated to the center. The 648 luminous stars detected in 2 x 10(exp 9) solar luminosity is approximately = 25% that expected from a hypothetical population of evolved asymptotic giant branch (AGB) stars with lifetimes approximately = 10(exp 5) yr, with the cautionary note that we are near the detection limit. The number of bright stars is also consistent with the progeny of blue stragglers, if one uses a lifetime for the thermal-pulsing AGB of 2 x 10(exp 6) yr. We strongly caution that incompleteness becomes severe below I = 19.9 mag and that future surveys are likely to find numbers of bright stars too large to accomodate the blue straggler progeny hypothesis. We have imaged an additional field 2 arcmin = 500 pc south of the nucleus. The brightest stars in this field are also I = 19.5, but bright stars appear less numerous than in the nuclear field. If the population resembles that of the Galactic bulge, then M(sub bol) = -4.5 is a lower limit to the giant-branch tip luminosity; infrared studies should reveal stars 0.5 mag or more brighter. Either high-metallicity or (more likely) age approximately = 10 Gyr may be responsible for the presence of these luminous AGB stars. These observations confirm that previous ground-based infrared studies (e.g., Rich & Mould 1991) very likely detect an extended giant branch and not spurious luminous stars caused by

  10. Near-infrared counterparts to the Galactic Bulge Survey X-ray source population

    NASA Astrophysics Data System (ADS)

    Greiss, S.; Steeghs, D.; Jonker, P. G.; Torres, M. A. P.; Maccarone, T. J.; Hynes, R. I.; Britt, C. T.; Nelemans, G.; Gänsicke, B. T.

    2014-03-01

    We report on the near-infrared matches, drawn from three surveys, to the 1640 unique X-ray sources detected by Chandra in the Galactic Bulge Survey (GBS). This survey targets faint X-ray sources in the bulge, with a particular focus on accreting compact objects. We present all viable counterpart candidates and associate a false alarm probability (FAP) to each near-infrared match in order to identify the most likely counterparts. The FAP takes into account a statistical study involving a chance alignment test, as well as considering the positional accuracy of the individual X-ray sources. We find that although the star density in the bulge is very high, ˜90 per cent of our sources have an FAP <10 per cent, indicating that for most X-ray sources, viable near-infrared counterparts candidates can be identified. In addition to the FAP, we provide positional and photometric information for candidate counterparts to ˜95 per cent of the GBS X-ray sources. This information in combination with optical photometry, spectroscopy and variability constraints will be crucial to characterize and classify secure counterparts.

  11. DISCOVERY OF A PAIR OF CLASSICAL CEPHEIDS IN AN INVISIBLE CLUSTER BEYOND THE GALACTIC BULGE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dékány, I.; Palma, T.; Minniti, D.

    2015-01-20

    We report the discovery of a pair of extremely reddened classical Cepheid variable stars located in the Galactic plane behind the bulge, using near-infrared (NIR) time-series photometry from the VISTA Variables in the Vía Láctea Survey. This is the first time that such objects have ever been found in the opposite side of the Galactic plane. The Cepheids have almost identical periods, apparent brightnesses, and colors. From the NIR Leavitt law, we determine their distances with ∼1.5% precision and ∼8% accuracy. We find that they have a same total extinction of A(V)≃32 mag, and are located at the same heliocentricmore » distance of 〈d〉=11.4±0.9 kpc, and less than 1 pc from the true Galactic plane. Their similar periods indicate that the Cepheids are also coeval, with an age of ∼48±3 Myr, according to theoretical models. They are separated by an angular distance of only 18.″3, corresponding to a projected separation of ∼1 pc. Their position coincides with the expected location of the Far 3 kpc Arm behind the bulge. Such a tight pair of similar classical Cepheids indicates the presence of an underlying young open cluster that is both hidden behind heavy extinction and disguised by the dense stellar field of the bulge. All our attempts to directly detect this “invisible cluster” have failed, and deeper observations are needed. (letters)« less

  12. Abundances of disk and bulge giants from high-resolution optical spectra. I. O, Mg, Ca, and Ti in the solar neighborhood and Kepler field samples

    NASA Astrophysics Data System (ADS)

    Jönsson, H.; Ryde, N.; Nordlander, T.; Pehlivan Rhodin, A.; Hartman, H.; Jönsson, P.; Eriksson, K.

    2017-02-01

    Context. The Galactic bulge is an intriguing and significant part of our Galaxy, but it is hard to observe because it is both distant and covered by dust in the disk. Therefore, there are not many high-resolution optical spectra of bulge stars with large wavelength coverage, whose determined abundances can be compared with nearby, similarly analyzed stellar samples. Aims: We aim to determine the diagnostically important alpha elements of a sample of bulge giants using high-resolution optical spectra with large wavelength coverage. The abundances found are compared to similarly derived abundances from similar spectra of similar stars in the local thin and thick disks. In this first paper we focus on the solar neighborhood reference sample. Methods: We used spectral synthesis to derive the stellar parameters as well as the elemental abundances of both the local and bulge samples of giants. We took special care to benchmark our method of determining stellar parameters against independent measurements of effective temperatures from angular diameter measurements and surface gravities from asteroseismology. Results: In this first paper we present the method used to determine the stellar parameters and elemental abundances, evaluate them, and present the results for our local disk sample of 291 giants. Conclusions: When comparing our determined spectroscopic temperatures to those derived from angular diameter measurements, we reproduce these with a systematic difference of +10 K and a standard deviation of 53 K. The spectroscopic gravities reproduce those determined from asteroseismology with a systematic offset of +0.10 dex and a standard deviation of 0.12 dex. When it comes to the abundance trends, our sample of local disk giants closely follows trends found in other works analyzing solar neighborhood dwarfs, showing that the much brighter giant stars are as good abundance probes as the often used dwarfs. Based on observations made with the Nordic Optical Telescope

  13. ALMA observations of molecular absorption in four directions toward the Galactic bulge

    NASA Astrophysics Data System (ADS)

    Liszt, H.; Gerin, M.

    2018-02-01

    Context. Alma Cycle 3 observations serendipitously showed strong absorption from diffuse molecular gas in the Galactic bulge at -200 km s-1 < v < -140 km s-1 toward the compact extragalactic continuum source J1744-3116 at (l, b) = -2.13∘, - 1.00∘. Aims: We aimed to test whether molecular gas in the bulge could also be detected toward the three other, sufficiently strong mm-wave continuum sources seen toward the bulge at |b| < 3∘. Methods: We took absorption profiles of HCO+ (1-0), HCN(1-0), C2H(1-0), CS(2-1) and H13CO+(1-0) in ALMA Cycle 4 toward J1713-3418, J1717-3341, J1733-3722 and J1744-3116. Results: Strong molecular absorption from disk gas at |ν| ≲ 30 km s-1 was detected in all directions, and absorption from the 3 kpc arm was newly detected toward J1717 and J1744. However, only the sightline toward J1744 is dominated by molecular gas overall and no other sightlines showed molecular absorption from gas deep inside the bulge. No molecular absorption was detected toward J1717 where H I emission from the bulge was previously known. As observed in HCO+, HCN, C2H and CS, the bulge gas toward J1744 at v < -135 km s-1 has chemistry and kinematics like that seen near the Sun and in the Milky Way disk generally. We measured isotopologic ratios N(HCO+)/N(H13CO+) > 51(3σ) for the bulge gas toward J1744 and 58 ± 9 and 64 ± 4 for the disk gas toward J1717 and J1744, respectively, all well above the value of 20-25 typical of the central molecular zone. Conclusions: The kinematics and chemistry of the bulge gas observed toward J1744 more nearly resemble that of gas in the Milky Way disk than in the central molecular zone.

  14. The Gaia-ESO Survey: Exploring the complex nature and origins of the Galactic bulge populations

    NASA Astrophysics Data System (ADS)

    Rojas-Arriagada, A.; Recio-Blanco, A.; de Laverny, P.; Mikolaitis, Š.; Matteucci, F.; Spitoni, E.; Schultheis, M.; Hayden, M.; Hill, V.; Zoccali, M.; Minniti, D.; Gonzalez, O. A.; Gilmore, G.; Randich, S.; Feltzing, S.; Alfaro, E. J.; Babusiaux, C.; Bensby, T.; Bragaglia, A.; Flaccomio, E.; Koposov, S. E.; Pancino, E.; Bayo, A.; Carraro, G.; Casey, A. R.; Costado, M. T.; Damiani, F.; Donati, P.; Franciosini, E.; Hourihane, A.; Jofré, P.; Lardo, C.; Lewis, J.; Lind, K.; Magrini, L.; Morbidelli, L.; Sacco, G. G.; Worley, C. C.; Zaggia, S.

    2017-05-01

    Context. As observational evidence steadily accumulates, the nature of the Galactic bulge has proven to be rather complex: the structural, kinematic, and chemical analyses often lead to contradictory conclusions. The nature of the metal-rich bulge - and especially of the metal-poor bulge - and their relation with other Galactic components, still need to be firmly defined on the basis of statistically significant high-quality data samples. Aims: We used the fourth internal data release of the Gaia-ESO survey to characterize the bulge metallicity distribution function (MDF), magnesium abundance, spatial distribution, and correlation of these properties with kinematics. Moreover, the homogeneous sampling of the different Galactic populations provided by the Gaia-ESO survey allowed us to perform a comparison between the bulge, thin disk, and thick disk sequences in the [Mg/Fe] vs. [Fe/H] plane in order to constrain the extent of their eventual chemical similarities. Methods: We obtained spectroscopic data for 2500 red clump stars in 11 bulge fields, sampling the area -10° ≤ l ≤ + 8° and -10° ≤ b ≤ -4° from the fourth internal data release of the Gaia-ESO survey. A sample of 6300 disk stars was also selected for comparison. Spectrophotometric distances computed via isochrone fitting allowed us to define a sample of stars likely located in the bulge region. Results: From a Gaussian mixture models (GMM) analysis, the bulge MDF is confirmed to be bimodal across the whole sampled area. The relative ratio between the two modes of the MDF changes as a function of b, with metal-poor stars dominating at high latitudes. The metal-rich stars exhibit bar-like kinematics and display a bimodality in their magnitude distribution, a feature which is tightly associated with the X-shape bulge. They overlap with the metal-rich end of the thin disk sequence in the [Mg/Fe] vs. [Fe/H] plane. On the other hand, metal-poor bulge stars have a more isotropic hot kinematics and do

  15. Mass Loss at Higher Metallicity: Quantifying the Mass Return from Evolved Stars in the Galactic

    NASA Astrophysics Data System (ADS)

    Sargent, Benjamin

    Bulge Mass-losing evolved stars, and in particular asymptotic giant branch (AGB) stars and red supergiant (RSG) stars, are expected to be the major producers of dust in galaxies. This dust will help form planetary systems around future generations of stars. Our ADAP program to measure the mass loss from the AGB and RSG stars in the Magellanic Clouds is nearing completion, and we wish to extend this successful study to the Galactic bulge of the Milky Way Galaxy. Metallicity should determine the amount of elements available to condense dust in the star's outflow, so evolved stars of differing metallicities should have differing mass-loss rates. Building upon our work on evolved stars in the Magellanic Clouds, we will compare the mass-loss rates from AGB and RSG stars in the older and potentially more metal-rich Bulge to the mass-loss rates of AGB and RSG stars in the Magellanic Clouds, which have lower metallicity, making for an interesting contrast. In addition, the Galactic bulge, like the Clouds, is located at a well-determined distance ( 8 kpc), thereby removing the distance ambiguities that present a major uncertainty in determining mass-loss rates and luminosities for evolved stars. To model photometric observations of outflowing dust shells around evolved stars, we have constructed the Grid of Red supergiant and Asymptotic giant branch ModelS (GRAMS; Sargent et al 2011; Srinivasan et al 2011) using the radiative transfer code 2Dust (Ueta and Meixner 2003). Our study will apply these models to the large photometric database of sources identified in the Spitzer Space Telescope GLIMPSE survey of the Milky Way and also to the various infrared spectra of Bulge AGB and RSG stars from Spitzer, ISO, etc. We have already modeled a few Galactic bulge evolved stars with GRAMS, and we will use these results as the foundation for modeling a large and representative sample of Galactic bulge evolved stars identified and measured photometrically by GLIMPSE. We will use our

  16. VizieR Online Data Catalog: APOGEE kinematics. I. Galactic bulge overview (Ness+, 2016)

    NASA Astrophysics Data System (ADS)

    Ness, M.; Zasowski, G.; Johnson, J. A.; Athanassoula, E.; Majewski, S. R.; Garcia Perez, A. E.; Bird, J.; Nidever, D.; Schneider, D. P.; Sobeck, J.; Frinchaboy, P.; Pan, K.; Bizyaev, D.; Oravetz, D.; Simmons, A.

    2016-05-01

    We use the APOGEE spectra (R=22500) from the SDSS-III Data Release 12 (DR12; Ahn et al. 2014ApJS..211...17A) for about 20000 stars toward the Galactic bulge and surrounding disk. The APOGEE survey, part of the SDSS-III project (Eisenstein et al. 2011AJ....142...72E), operates at the 2.5m telescope of the Apache Point Observatory. (1 data file).

  17. Chemodynamical modelling of the galactic bulge and bar

    NASA Astrophysics Data System (ADS)

    Portail, Matthieu; Wegg, Christopher; Gerhard, Ortwin; Ness, Melissa

    2017-09-01

    We present the first self-consistent chemodynamical model fitted to reproduce data for the galactic bulge, bar and inner disc. We extend the Made-to-Measure method to an augmented phase-space including the metallicity of stars, and show its first application to the bar region of the Milky Way. Using data from the ARGOS and APOGEE (DR12) surveys, we adapt the recent dynamical model from Portail et al. to reproduce the observed spatial and kinematic variations as a function of metallicity, thus allowing the detailed study of the 3D density distributions, kinematics and orbital structure of stars in different metallicity bins. We find that metal-rich stars with [Fe/H] ≥ -0.5 are strongly barred and have dynamical properties that are consistent with a common disc origin. Metal-poor stars with [Fe/H] ≤ -0.5 show strong kinematic variations with metallicity, indicating varying contributions from the underlying stellar populations. Outside the central kpc, metal-poor stars are found to have the density and kinematics of a thick disc while in the inner kpc, evidence for an extra concentration of metal-poor stars is found. Finally, the combined orbit distributions of all metallicities in the model naturally reproduce the observed vertex deviations in the bulge. This paper demonstrates the power of Made-to-Measure chemodynamical models, that when extended to other chemical dimensions will be very powerful tools to maximize the information obtained from large spectroscopic surveys such as APOGEE, GALAH and MOONS.

  18. REDDENING AND EXTINCTION TOWARD THE GALACTIC BULGE FROM OGLE-III: THE INNER MILKY WAY'S R{sub V} {approx} 2.5 EXTINCTION CURVE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nataf, David M.; Gould, Andrew; Johnson, Jennifer A.

    We combine VI photometry from OGLE-III with VISTA Variables in The Via Lactea survey and Two Micron All Sky Survey measurements of E(J - K{sub s} ) to resolve the longstanding problem of the non-standard optical extinction toward the Galactic bulge. We show that the extinction is well fit by the relation A{sub I} = 0.7465 Multiplication-Sign E(V - I) + 1.3700 Multiplication-Sign E(J - K{sub s} ), or, equivalently, A{sub I} = 1.217 Multiplication-Sign E(V - I)(1 + 1.126 Multiplication-Sign (E(J - K{sub s} )/E(V - I) - 0.3433)). The optical and near-IR reddening law toward the inner Galaxymore » approximately follows an R{sub V} Almost-Equal-To 2.5 extinction curve with a dispersion {sigma}{sub R{sub V}}{approx}0.2, consistent with extragalactic investigations of the hosts of Type Ia SNe. Differential reddening is shown to be significant on scales as small as our mean field size of 6'. The intrinsic luminosity parameters of the Galactic bulge red clump (RC) are derived to be (M{sub I,RC},{sigma}{sub I,RC,0}, (V-I){sub RC,0},{sigma}{sub (V-I){sub R{sub C}}}, (J-K{sub s}){sub RC,0}) = (-0.12, 0.09, 1.06, 0.121, 0.66). Our measurements of the RC brightness, brightness dispersion, and number counts allow us to estimate several Galactic bulge structural parameters. We estimate a distance to the Galactic center of 8.20 kpc. We measure an upper bound on the tilt {alpha} Almost-Equal-To 40 Degree-Sign between the bulge's major axis and the Sun-Galactic center line of sight, though our brightness peaks are consistent with predictions of an N-body model oriented at {alpha} Almost-Equal-To 25 Degree-Sign . The number of RC stars suggests a total stellar mass for the Galactic bulge of {approx}2.3 Multiplication-Sign 10{sup 10} M{sub Sun} if one assumes a canonical Salpeter initial mass function (IMF), or {approx}1.6 Multiplication-Sign 10{sup 10} M{sub Sun} if one assumes a bottom-light Zoccali IMF.« less

  19. The peculiar Na-O anticorrelation of the bulge globular cluster NGC 6440

    NASA Astrophysics Data System (ADS)

    Muñoz, C.; Villanova, S.; Geisler, D.; Saviane, I.; Dias, B.; Cohen, R. E.; Mauro, F.

    2017-08-01

    Context. Galactic globular clusters (GCs) are essential tools for understanding the earliest epoch of the Milky Way, since they are among the oldest objects in the Universe and can be used to trace its formation and evolution. Current studies using high-resolution spectroscopy for many stars in each of a large sample of GCs allow us to develop a detailed observational picture of their formation and their relation with the Galaxy. However, it is necessary to complete this picture by including GCs that belong to all major Galactic components, including the bulge. Aims: Our aim is to perform a detailed chemical analysis of the bulge GC NGC 6440 in order to determine if this object has multiple populations (MPs) and investigate its relation with the bulge of the Milky Way and with the other Galactic GCs, especially those associated with the bulge, which are largely poorly studied. Methods: We determined the stellar parameters and the chemical abundances of light elements (Na, Al), iron-peak elements (Fe, Sc, Mn, Co, Ni), α-elements (O, Mg, Si, Ca, Ti) and heavy elements (Ba, Eu) in seven red giant members of NGC 6440 using high-resolution spectroscopy from FLAMES-UVES. Results: We found a mean iron content of [Fe/H] =-0.50 ± 0.03 dex in agreement with other studies. We found no internal iron spread. On the other hand, Na and Al show a significant intrinsic spread, but the cluster has no significant O-Na anticorrelation nor does it exhibit a Mg-Al anticorrelation. The α-elements show good agreement with the bulge field star trend, although they are at the high alpha end and are also higher than those of other GCs of comparable metallicity. The heavy elements are dominated by the r-process, indicating a strong contribution by SNeII. The chemical analysis suggests an origin similar to that of the bulge field stars.

  20. a Study of the AGB in Local Group Bulge Populations

    NASA Astrophysics Data System (ADS)

    Rich, R.

    1994-01-01

    We propose to survey the bolometric luminosities, colors, and space distribution of the most luminous asymptotic giant branch (AGB) stars in the bulges of M31, M32, and M33. We seek to discover whether the bulges of these galaxies are relatively young, of order 10 Gyr rather than 15 Gyr. We will use WFPC2 and the R, I, and F1042M (1 micron) filters. Knowing that F1042M falls on the first continuum point of M giants, we have shown that we can use 1.04 micron fluxes to reliably calculate bolometric magnitudes for these very red stars. Color information from R and I will permit (1) comparison with Galactic bulge M giants, (2) an estimate of the spread of abundance and (3) increase the accuracy of the bolometric magnitudes. Frames with the damaged HST show signs of resolution to within 3" of the M31 nucleus; Red images with the aberrated HST show a red star cluster associated with the nucleus. Ground-based studies of M32 find an intermediate-age population from spectroscopy and infrared photometry. The repaired HST should resolve stars close to the nuclei of these galaxies. We will measure bolometric luminosity functions to determine if the populations are intermediate age, and attempt to measure the abundance range for stars near the nuclei of these galaxies. If metals have been lost due to winds, theory predicts that we should see a substantial spread of abundances even near the nucleus.

  1. Gamma Rays from the Galactic Bulge and Large Extra Dimensions

    NASA Astrophysics Data System (ADS)

    Cassé, Michel; Paul, Jacques; Bertone, Gianfranco; Sigl, Günter

    2004-03-01

    An intriguing feature of extra dimensions is the possible production of Kaluza Klein gravitons by nucleon-nucleon bremsstrahlung, in the course of core collapse of massive stars, with gravitons then being trapped around the newly born neutron stars and decaying into two gamma rays, making neu­tron stars gamma-ray sources. We strengthen the limits on the radius of compactification of extra dimensions for a small number n of them, or alternatively the fundamental scale of quantum gravity, considering the gamma-ray emission of the whole population of neutron stars sitting in the Galactic bulge, instead of the closest member of this category. For n=1 the constraint on the compactification radius is R<400 μm.

  2. X-ray bursters and the X-ray sources of the galactic bulge

    NASA Technical Reports Server (NTRS)

    Lewin, W. H. G.; Joss, P. C.

    1980-01-01

    Type 1 X-ray bursts, optical, infrared, and radio properties of the galactic bulge sources, are discussed. It was proven that these burst sources are neutron stars in low mass, close binary stellar systems. Several burst sources are found in globular clusters with high central densities. Optical type 1 X-ray bursts were observed from three sources. Type 2 X-ray bursts, observed from the Rapid Burster, are due to an accretion instability which converts gravitational potential energy into heat and radiation, which makes them of a fundamentally different nature from Type 1 bursts.

  3. Polycyclic Aromatic Hydrocarbon Emission Toward the Galactic Bulge

    NASA Astrophysics Data System (ADS)

    Shannon, M. J.; Peeters, E.; Cami, J.; Blommaert, J. A. D. L.

    2018-03-01

    We examine polycyclic aromatic hydrocarbon (PAH), dust, and atomic/molecular emission toward the Galactic bulge using Spitzer Space Telescope observations of four fields: C32, C35, OGLE, and NGC 6522. These fields are approximately centered on (l, b) = (0.°0, 1.°0), (0.°0, ‑1.°0), (0.°4, ‑2.°4), and (1.°0, ‑3.°8), respectively. Far-infrared photometric observations complement the Spitzer/IRS spectroscopic data and are used to construct spectral energy distributions. We find that the dust and PAH emission are exceptionally similar between C32 and C35 overall, in part explained due to their locations—they reside on or near boundaries of a 7 Myr old Galactic outflow event and are partly shock-heated. Within the C32 and C35 fields, we identify a region of elevated Hα emission that is coincident with elevated fine-structure and [O IV] line emission and weak PAH feature strengths. We are likely tracing a transition zone of the outflow into the nascent environment. PAH abundances in these fields are slightly depressed relative to typical ISM values. In the OGLE and NGC 6522 fields, we observe weak features on a continuum dominated by zodiacal dust. SED fitting indicates that thermal dust grains in C32 and C35 have temperatures comparable to those of diffuse, high-latitude cirrus clouds. Little variability is detected in the PAH properties between C32 and C35, indicating that a stable population of PAHs dominates the overall spectral appearance. In fact, their PAH features are exceptionally similar to that of the M82 superwind, emphasizing that we are probing a local Galactic wind environment.

  4. The Optical Gravitational Lensing Experiment: Analysis of the Bulge RR Lyrae Population from the OGLE-III Data

    NASA Astrophysics Data System (ADS)

    Pietrukowicz, P.; Udalski, A.; Soszyński, I.; Nataf, D. M.; Wyrzykowski, Ł.; Poleski, R.; Kozłowski, S.; Szymański, M. K.; Kubiak, M.; Pietrzyński, G.; Ulaczyk, K.

    2012-05-01

    We have analyzed the data on 16,836 RR Lyrae (RR Lyr) variables observed toward the Galactic bulge during the third phase of the Optical Gravitational Lensing Experiment (OGLE-III), which took place in 2001-2009. Using these standard candles, we show that the ratio of total-to-selective extinction toward the bulge is given by RI = AI /E(V - I) = 1.080 ± 0.007 and is independent of color. We demonstrate that the bulge RR Lyr stars form a metal-uniform population, slightly elongated in its inner part. The photometrically derived metallicity distribution is sharply peaked at [Fe/H] = -1.02 ± 0.18, with a dispersion of 0.25 dex. In the inner regions (|l| < 3°, |b| < 4°) the RR Lyr tend to follow the barred distribution of the bulge red clump giants. The distance to the Milky Way center inferred from the bulge RR Lyr is R 0 = 8.54 ± 0.42 kpc. We report a break in the mean density distribution at a distance of ~0.5 kpc from the center indicating its likely flattening. Using the OGLE-III data, we assess that (4-7) × 104 type ab RR Lyr variables should be detected toward the bulge area of the ongoing near-IR VISTA Variables in the Via Lactea (VVV) survey, where the uncertainty partially results from the unknown RR Lyr spatial density distribution within 0.2 kpc from the Galactic center.

  5. Shaping the relation between the mass of supermassive black holes and the velocity dispersion of galactic bulges

    NASA Astrophysics Data System (ADS)

    Chan, M. H.

    2013-05-01

    I use the fact that the radiation emitted by the accretion disk of supermassive black hole can heat up the surrounding gas in the protogalaxy to achieve hydrostatic equilibrium during the galaxy formation. The correlation between the black hole mass M BH and velocity dispersion σ thus naturally arises. The result generally agrees with empirical fittings from observational data, even with M BH ≤106 M ⊙. This model provides a clear picture on how the properties of the galactic supermassive black holes are connected with the kinetic properties of the galactic bulges.

  6. Establishing the Galactic Centre distance using VVV Bulge RR Lyrae variables

    NASA Astrophysics Data System (ADS)

    Majaess, D.; Dékány, I.; Hajdu, G.; Minniti, D.; Turner, D.; Gieren, W.

    2018-06-01

    This study's objective was to exploit infrared VVV (VISTA Variables in the Via Lactea) photometry for high latitude RRab stars to establish an accurate Galactic Centre distance. RRab candidates were discovered and reaffirmed (n=4194) by matching Ks photometry with templates via χ 2 minimization, and contaminants were reduced by ensuring targets adhered to a strict period-amplitude (Δ Ks) trend and passed the Elorietta et al. classifier. The distance to the Galactic Centre was determined from a high latitude Bulge subsample (|b|>4°, R_{GC}=8.30 ± 0.36 kpc, random uncertainty is relatively negligible), and importantly, the comparatively low color-excess and uncrowded location mitigated uncertainties tied to the extinction law, the magnitude-limited nature of the analysis, and photometric contamination. Circumventing those problems resulted in a key uncertainty being the M_{Ks} relation, which was derived using LMC RRab stars (M_{Ks}=-(2.66± 0.06) log {P}-(1.03± 0.06), (J-Ks)0=(0.31± 0.04) log {P} + (0.35± 0.02), assuming μ _{0,LMC}=18.43). The Galactic Centre distance was not corrected for the cone-effect. Lastly, a new distance indicator emerged as brighter overdensities in the period-magnitude-amplitude diagrams analyzed, which arise from blended RRab and red clump stars. Blending may thrust faint extragalactic variables into the range of detectability.

  7. VizieR Online Data Catalog: Extinction map towards the Galactic bulge (Chen+, 2013)

    NASA Astrophysics Data System (ADS)

    Chen, B.; Schultheis, M.; Jiang, B.; Gonzalez, O. A.; Robin, A. C.; Rejkuba, M.; Minniti, D.

    2012-11-01

    We combine the observations with the Besancon model of the Galaxy to investigate the variations of extinction along different lines of sight towards the inner Galactic bulge as a function of distance. The full results are listed in Table 1 and Table 2. These results will be also added into the BEAM calculator webpage (http://mill.astro.puc.cl/BEAM/calculator.php). For each position we give the E(J-Ks), E(H-Ks) as well as the corresponding sigma for each distance bin starting from 1 to 10kpc. (2 data files).

  8. MOA-2012-BLG-505Lb: A Super-Earth-mass Planet That Probably Resides in the Galactic Bulge

    NASA Astrophysics Data System (ADS)

    Nagakane, M.; Sumi, T.; Koshimoto, N.; Bennett, D. P.; Bond, I. A.; Rattenbury, N.; Suzuki, D.; Abe, F.; Asakura, Y.; Barry, R.; Bhattacharya, A.; Donachie, M.; Fukui, A.; Hirao, Y.; Itow, Y.; Li, M. C. A.; Ling, C. H.; Masuda, K.; Matsubara, Y.; Matsuo, T.; Muraki, Y.; Ohnishi, K.; Ranc, C.; Saito, To.; Sharan, A.; Shibai, H.; Sullivan, D. J.; Tristram, P. J.; Yamada, T.; Yonehara, A.; MOA Collaboration

    2017-07-01

    We report the discovery of a super-Earth-mass planet in the microlensing event MOA-2012-BLG-505. This event has the second shortest event timescale of t E = 10 ± 1 days where the observed data show evidence of a planetary companion. Our 15 minute high cadence survey observation schedule revealed the short subtle planetary signature. The system shows the well known close/wide degeneracy. The planet/host-star mass ratio is q = 2.1 × 10-4 and the projected separation normalized by the Einstein radius is s = 1.1 or 0.9 for the wide and close solutions, respectively. We estimate the physical parameters of the system by using a Bayesian analysis and find that the lens consists of a super-Earth with a mass of {6.7}-3.6+10.7 {M}\\oplus orbiting around a brown dwarf or late-M-dwarf host with a mass of {0.10}-0.05+0.16 {M}⊙ with a projected star-planet separation of {0.9}-0.2+0.3 {au}. The system is at a distance of 7.2 ± 1.1 kpc, I.e., it is likely to be in the Galactic bulge. The small angular Einstein radius (θ E = 0.12 ± 0.02 mas) and short event timescale are typical for a low-mass lens in the Galactic bulge. Such low-mass planetary systems in the Bulge are rare because the detection efficiency of planets in short microlensing events is relatively low. This discovery may suggest that such low-mass planetary systems are abundant in the Bulge and currently on-going high cadence survey programs will detect more such events and may reveal an abundance of such planetary systems.

  9. OGLE-III Microlensing Events and the Structure of the Galactic Bulge

    NASA Astrophysics Data System (ADS)

    Wyrzykowski, Łukasz; Rynkiewicz, Alicja E.; Skowron, Jan; Kozłowski, Szymon; Udalski, Andrzej; Szymański, Michał K.; Kubiak, Marcin; Soszyński, Igor; Pietrzyński, Grzegorz; Poleski, Radosław; Pietrukowicz, Paweł; Pawlak, Michał

    2015-01-01

    We present and study the largest and most comprehensive catalog of microlensing events ever constructed. The sample of standard microlensing events comprises 3718 unique events from 2001-2009 with 1409 events that had not been detected before in real-time by the Early Warning System of the Optical Gravitational Lensing Experiment. The search pipeline uses machine learning algorithms to help find rare phenomena among 150 million objects and to derive the detection efficiency. Applications of the catalog can be numerous, from analyzing individual events to large statistical studies of the Galactic mass, kinematics distributions, and planetary abundances. We derive maps of the mean Einstein ring crossing time of events spanning 31 deg2 toward the Galactic center and compare the observed distributions with the most recent models. We find good agreement within the observed region and we see the signature of the tilt of the bar in the microlensing data. However, the asymmetry of the mean timescales seems to rise more steeply than predicted, indicating either a somewhat different orientation of the bar or a larger bar width. The map of events with sources in the Galactic bulge shows a dependence of the mean timescale on the Galactic latitude, signaling an increasing contribution from disk lenses closer to the plane relative to the height of the disk. Our data present a perfect set for comparing and enhancing new models of the central parts of the Milky Way and creating a three-dimensional picture of the Galaxy. Based on observations obtained with the 1.3 m Warsaw telescope at the Las Campanas Observatory of the Carnegie Institution for Science.

  10. THE BULGE RADIAL VELOCITY ASSAY (BRAVA). II. COMPLETE SAMPLE AND DATA RELEASE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kunder, Andrea; De Propris, Roberto; Stubbs, Scott A.

    2012-03-15

    We present new radial velocity measurements from the Bulge Radial Velocity Assay, a large-scale spectroscopic survey of M-type giants in the Galactic bulge/bar region. The sample of {approx}4500 new radial velocities, mostly in the region -10 Degree-Sign < l < +10 Degree-Sign and b Almost-Equal-To -6 Degree-Sign , more than doubles the existent published data set. Our new data extend our rotation curve and velocity dispersion profile to +20 Degree-Sign , which is {approx}2.8 kpc from the Galactic center. The new data confirm the cylindrical rotation observed at -6 Degree-Sign and -8 Degree-Sign and are an excellent fit to themore » Shen et al. N-body bar model. We measure the strength of the TiO{epsilon} molecular band as a first step toward a metallicity ranking of the stellar sample, from which we confirm the presence of a vertical abundance gradient. Our survey finds no strong evidence of previously unknown kinematic streams. We also publish our complete catalog of radial velocities, photometry, TiO band strengths, and spectra, which is available at the Infrared Science Archive as well as at UCLA.« less

  11. The continuous rise of bulges out of galactic disks

    NASA Astrophysics Data System (ADS)

    Breda, Iris; Papaderos, Polychronis

    2018-06-01

    Context. A key subject in extragalactic astronomy concerns the chronology and driving mechanisms of bulge formation in late-type galaxies (LTGs). The standard scenario distinguishes between classical bulges and pseudo-bulges (CBs and PBs, respectively), the first thought to form monolithically prior to disks and the second gradually out of disks. These two bulge formation routes obviously yield antipodal predictions on the bulge age and bulge-to-disk age contrast, both expected to be high (low) in CBs (PBs). Aims: Our main goal is to explore whether bulges in present-day LTGs segregate into two evolutionary distinct classes, as expected from the standard scenario. Other questions motivating this study center on evolutionary relations between LTG bulges and their hosting disks, and the occurrence of accretion-powered nuclear activity as a function of bulge stellar mass ℳ⋆ and stellar surface density Σ⋆. Methods: In this study, we have combined three techniques - surface photometry, spectral modeling of integral field spectroscopy data and suppression of stellar populations younger than an adjustable age cutoff with the code REMOVEYOUNG (ℛ𝒴) - toward a systematic analysis of the physical and evolutionary properties (e.g., ℳ⋆, Σ⋆ and mass-weighted stellar age ℳ and metallicity ℳ, respectively) of a representative sample of 135 nearby (≤ 130 Mpc) LTGs from the CALIFA survey that cover a range between 108.9 M⊙ and 1011.5 M⊙ in total stellar mass ℳ⋆,T. In particular, the analysis here revolves around ⟨δμ9G⟩, a new distance- and formally extinction-independent measure of the contribution by stellar populations of age ≥ 9 Gyr to the mean r-band surface brightness of the bulge. We argue that ⟨δμ9G⟩ offers a handy semi-empirical tracer of the physical and evolutionary properties of LTG bulges and a promising means for their characterization. Results: The essential insight from this study is that LTG bulges form

  12. Chemical evolution of the Galactic bulge as traced by microlensed dwarf and subgiant stars. VI. Age and abundance structure of the stellar populations in the central sub-kpc of the Milky Way

    NASA Astrophysics Data System (ADS)

    Bensby, T.; Feltzing, S.; Gould, A.; Yee, J. C.; Johnson, J. A.; Asplund, M.; Meléndez, J.; Lucatello, S.; Howes, L. M.; McWilliam, A.; Udalski, A.; Szymański, M. K.; Soszyński, I.; Poleski, R.; Wyrzykowski, Ł.; Ulaczyk, K.; Kozłowski, S.; Pietrukowicz, P.; Skowron, J.; Mróz, P.; Pawlak, M.; Abe, F.; Asakura, Y.; Bhattacharya, A.; Bond, I. A.; Bennett, D. P.; Hirao, Y.; Nagakane, M.; Koshimoto, N.; Sumi, T.; Suzuki, D.; Tristram, P. J.

    2017-09-01

    We present a detailed elemental abundance study of 90 F and G dwarf, turn-off, and subgiant stars in the Galactic bulge. Based on high-resolution spectra acquired during gravitational microlensing events, stellar ages and abundances for 11 elements (Na, Mg, Al, Si, Ca, Ti, Cr, Fe, Zn, Y and Ba) have been determined. Four main findings are presented: (1) a wide metallicity distribution with distinct peaks at [Fe/H] = -1.09, -0.63, -0.20, + 0.12, + 0.41; (2) ahigh fraction of intermediate-age to young stars where at [Fe/H] > 0 more than 35% are younger than 8 Gyr, and for [Fe/H] ≲ -0.5 most stars are 10 Gyr or older; (3) several episodes of significant star formation in the bulge has been identified: 3, 6, 8, and 11 Gyr ago; (4) tentatively the "knee" in the α-element abundance trends of the sub-solar metallicity bulge is located at a slightly higher [Fe/H] than in the local thick disk. These findings show that the Galactic bulge has complex age and abundance properties that appear to be tightly connected to the main Galactic stellar populations. In particular, the peaks in the metallicity distribution, the star formation episodes, and the abundance trends, show similarities with the properties of the Galactic thin and thick disks. At the same time, the star formation rate appears to have been slightly faster in the bulge than in the local thick disk, which most likely is an indication of the denser stellar environment closer to the Galactic centre. There are also additional components not seen outside the bulge region, and that most likely can be associated with the Galactic bar. Our results strengthen the observational evidence that support the idea of a secular origin for the Galactic bulge, formed out of the other main Galactic stellar populations present in the central regions of our Galaxy. Additionally, our analysis of this enlarged sample suggests that the (V-I)0 colour of the bulge red clump should be revised to 1.09. Based on data obtained with the

  13. High resolution infrared spectra of Bulge Globular Clusters: Liller 1, NGC 6553, and Ter 5

    NASA Astrophysics Data System (ADS)

    Origlia, L.; Rich, R. M.; Castro, S. M.

    2001-12-01

    Using the NIRSPEC spectrograph at Keck II, we have obtained echelle spectra covering the range 1.5-1.8μ m for 2 of the brightest giants in Liller 1 and NGC 6553, old metal rich globular clusters in the Galactic bulge. We also report a preliminary analysis for two giants in the obscured bulge globular cluster Ter 5. We use spectrum synthesis for the abundance analysis, and find [Fe/H]=-0.3+/-0.2 and [O/H]=+0.3+/- 0.1 (from the OH lines) for the giants in Liller 1 and NGC 6553. We measure strong lines for the alpha elements Mg, Ca, and Si, but the lower sensitivity of these lines to abundance permits us to only state a general [α /Fe]=+0.3+/-0.2 dex. The composition of the clusters is similar to that of field stars in the bulge and is consistent with a scenario in which the clusters formed early, with rapid enrichment. Our iron abundance for NGC 6553 is poorly consistent with either the low or the high values recently reported in the literature, unless unusally large, or no α -element enhancements are adopted, respectively. We will also present an abundance analsyis for 2 giants in the highly reddened bulge cluster Ter 5, which appears to be near the Solar metallicity. R. Michael Rich acknowledges finacial support from grant AST-0098739, from the National Science Foundation. Data presented herein were obtained at the W.M.Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W.M. Keck Foundation. The authors gratefully acknowledge those of Hawaiian ancestry on whose sacred mountain we are privileged to be guests. Without their generous hospitality, none of the observations presented would have been possible.

  14. A new photometric model of the Galactic bar using red clump giants

    NASA Astrophysics Data System (ADS)

    Cao, Liang; Mao, Shude; Nataf, David; Rattenbury, Nicholas J.; Gould, Andrew

    2013-09-01

    We present a study of the luminosity density distribution of the Galactic bar using number counts of red clump giants from the Optical Gravitational Lensing Experiment (OGLE) III survey. The data were recently published by Nataf et al. for 9019 fields towards the bulge and have 2.94 × 106 RC stars over a viewing area of 90.25 deg^2. The data include the number counts, mean distance modulus (μ), dispersion in μ and full error matrix, from which we fit the data with several triaxial parametric models. We use the Markov Chain Monte Carlo method to explore the parameter space and find that the best-fitting model is the E3 model, with the distance to the GC 8.13 kpc, the ratio of semimajor and semiminor bar axis scalelengths in the Galactic plane x0, y0 and vertical bar scalelength z0 x0: y0: z0 ≈ 1.00: 0.43: 0.40 (close to being prolate). The scalelength of the stellar density profile along the bar's major axis is ˜0.67 kpc and has an angle of 29.4°, slightly larger than the value obtained from a similar study based on OGLE-II data. The number of estimated RC stars within the field of view is 2.78 × 106, which is systematically lower than the observed value. We subtract the smooth parametric model from the observed counts and find that the residuals are consistent with the presence of an X-shaped structure in the Galactic Centre, the excess to the estimated mass content is ˜5.8 per cent. We estimate that the total mass of the bar is ˜1.8 × 1010 M⊙. Our results can be used as a key ingredient to construct new density models of the Milky Way and will have implications on the predictions of the optical depth to gravitational microlensing and the patterns of hydrodynamical gas flow in the Milky Way.

  15. Extinction maps toward the Milky Way bulge: Two-dimensional and three-dimensional tests with apogee

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schultheis, M.; Zasowski, G.; Allende Prieto, C.

    Galactic interstellar extinction maps are powerful and necessary tools for Milky Way structure and stellar population analyses, particularly toward the heavily reddened bulge and in the midplane. However, due to the difficulty of obtaining reliable extinction measures and distances for a large number of stars that are independent of these maps, tests of their accuracy and systematics have been limited. Our goal is to assess a variety of photometric stellar extinction estimates, including both two-dimensional and three-dimensional extinction maps, using independent extinction measures based on a large spectroscopic sample of stars toward the Milky Way bulge. We employ stellar atmosphericmore » parameters derived from high-resolution H-band Apache Point Observatory Galactic Evolution Experiment (APOGEE) spectra, combined with theoretical stellar isochrones, to calculate line-of-sight extinction and distances for a sample of more than 2400 giants toward the Milky Way bulge. We compare these extinction values to those predicted by individual near-IR and near+mid-IR stellar colors, two-dimensional bulge extinction maps, and three-dimensional extinction maps. The long baseline, near+mid-IR stellar colors are, on average, the most accurate predictors of the APOGEE extinction estimates, and the two-dimensional and three-dimensional extinction maps derived from different stellar populations along different sightlines show varying degrees of reliability. We present the results of all of the comparisons and discuss reasons for the observed discrepancies. We also demonstrate how the particular stellar atmospheric models adopted can have a strong impact on this type of analysis, and discuss related caveats.« less

  16. The stellar population and luminosity function in M31 bulge and Inner Disk Fields

    NASA Technical Reports Server (NTRS)

    Rich, R. Michael; Mould, J. R.; Graham, James R.

    1993-01-01

    We report infrared photometry and stellar identifications for stars in five fields in the M31 bulge located from 2 to 11 arcmin from the nucleus. These fields have been chosen such that the bulge/disk star ratio predicted from Kent's (1989) small bulge model varies from 7:1 to 1:5, allowing a study of near pure disk and near pure bulge stellar populations. We reject the hypothesis of Davies et al. (1991) that luminous stars found within 500 pc of the nucleus are due to a contaminating disk population. We find that the bulge contains stars in excess of M(sub bol) = -5 mag and that the bulge luminosity function has a distinct shape different from the disk fields. We find many stars redder than (J-K) = 2 mag, and suggest that these stars may be the counterparts of the IRAS-selected Galactic bulge Miras studied by Whitelock et at. (1991). The number of bright stars (M(sub bol) is less than -5 mag) falls off more rapidly than the r band surface brightness. By building model fields out of a bulge luminosity function and artificial stars, we are able to show that the change in the luminosity function toward the center cannot be explained simply by the mismeasurement of overcrowded star images. However, these tests also raise the possibility that the asymptotic giant branch (AGB) tip may be approximately equal to 1 mag fainter than actually measured in our most crowded field, reaching only M(sub bol) = -5. We compare observed counts of AGB stars with those predicted from theoretical lifetimes using a technique of general interest for this problem, the Fuel Consumption Theorem of Renzini & Buzzoni (1986) Spectral Evolution of Galaxies (Reidel, Dordrecht). Our methodology is generally applicable to the study of other resolved extragalactic stellar populations. The number of observed stars per magnitude up to a luminosity of M(bol) = -5.5 mag is consistent with AGB evolution of the whole population of the innermost bulge field with the standard lifetime on the AGB of 1.3 Myr

  17. METALLICITY DISTRIBUTION FUNCTIONS, RADIAL VELOCITIES, AND ALPHA ELEMENT ABUNDANCES IN THREE OFF-AXIS BULGE FIELDS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, Christian I.; Rich, R. Michael; Kobayashi, Chiaki

    2013-03-10

    We present radial velocities and chemical abundance ratios of [Fe/H], [O/Fe], [Si/Fe], and [Ca/Fe] for 264 red giant branch stars in three Galactic bulge off-axis fields located near (l, b) = (-5.5, -7), (-4, -9), and (+8.5, +9). The results are based on equivalent width and spectrum synthesis analyses of moderate resolution (R Almost-Equal-To 18,000), high signal-to-noise ratio (S/N {approx} 75-300 pixel{sup -1}) spectra obtained with the Hydra spectrographs on the Blanco 4 m and WIYN 3.5 m telescopes. The targets were selected from the blue side of the giant branch to avoid cool stars that would be strongly affectedmore » by CN and TiO; however, a comparison of the color-metallicity distribution in literature samples suggests that our selection of bluer targets should not present a significant bias against metal-rich stars. We find a full range in metallicity that spans [Fe/H] Almost-Equal-To -1.5 to +0.5, and that, in accordance with the previously observed minor-axis vertical metallicity gradient, the median [Fe/H] also declines with increasing Galactic latitude in off-axis fields. The off-axis vertical [Fe/H] gradient in the southern bulge is estimated to be {approx}0.4 dex kpc{sup -1}; however, comparison with the minor-axis data suggests that a strong radial gradient does not exist. The (+8.5, +9) field exhibits a higher than expected metallicity, with a median [Fe/H] = -0.23, that might be related to a stronger presence of the X-shaped bulge structure along that line-of-sight. This could also be the cause of an anomalous increase in the median radial velocity for intermediate metallicity stars in the (+8.5, +9) field. However, the overall radial velocity and dispersion for each field are in good agreement with recent surveys and bulge models. All fields exhibit an identical, strong decrease in velocity dispersion with increasing metallicity that is consistent with observations in similar minor-axis outer bulge fields. Additionally, the [O/Fe], [Si

  18. Can Jupiters be found by monitoring Galactic bulge microlensing events from northern sites?

    NASA Astrophysics Data System (ADS)

    Tsapras, Yiannis; Street, Rachel A.; Horne, Keith; Penny, Alan; Clarke, Fraser; Deeg, Hans; Garzon, Francisco; Kemp, Simon; Zapatero Osorio, Maria Rosa; Oscoz, Alejandro Abad; Sanchez, Santiago Madruga; Eiroa, Carlos; Mora, Alcione; Alberdi, Antxon; Collier Cameron, Andrew; Davies, John K.; Ferlet, Roger; Grady, Carol; Harris, Allan W.; Palacios, Javier; Quirrenbach, Andreas; Rauer, Heike; Schneider, Jean; de Winter, Dolf; Merin, Bruno; Solano, Enrique

    2001-08-01

    In 1998 the EXPORT team monitored microlensing event light curves using a charge-coupled device (CCD) camera on the IACQ4 0.8-m telescope on Tenerife to evaluate the prospect of using northern telescopes to find microlens anomalies that reveal planets orbiting the lens stars. The high airmass and more limited time available for observations of Galactic bulge sources make a northern site less favourable for microlensing planet searches. However, there are potentially a large number of northern 1-m class telescopes that could devote a few hours per night to monitor ongoing microlensing events. Our IAC observations indicate that accuracies sufficient to detect planets can be achieved despite the higher airmass.

  19. The MACHO Project Sample of Galactic Bulge High-Amplitude δ Scuti Stars: Pulsation Behavior and Stellar Properties

    NASA Astrophysics Data System (ADS)

    Alcock, C.; Allsman, R. A.; Alves, D. R.; Axelrod, T. S.; Becker, A. C.; Bennett, D. P.; Cook, K. H.; Freeman, K. C.; Geha, M.; Griest, K.; Lehner, M. J.; Marshall, S. L.; McNamara, B. J.; Minniti, D.; Nelson, C.; Peterson, B. A.; Popowski, P.; Pratt, M. R.; Quinn, P. J.; Rodgers, A. W.; Sutherland, W.; Templeton, M. R.; Vandehei, T.; Welch, D. L.

    2000-06-01

    We have detected 90 objects with periods and light-curve structures similar to those of field δ Scuti stars using the Massive Compact Halo Object (MACHO) Project database of Galactic bulge photometry. If we assume similar extinction values for all candidates and absolute magnitudes similar to those of other field high-amplitude δ Scuti stars (HADS), the majority of these objects lie in or near the Galactic bulge. At least two of these objects are likely foreground δ Scuti stars, one of which may be an evolved nonradial pulsator, similar to other evolved, disk-population δ Scuti stars. We have analyzed the light curves of these objects and find that they are similar to the light curves of field δ Scuti stars and the δ Scuti stars found by the Optical Gravitational Lens Experiment (OGLE). However, the amplitude distribution of these sources lies between those of low- and high-amplitude δ Scuti stars, which suggests that they may be an intermediate population. We have found nine double-mode HADS with frequency ratios ranging from 0.75 to 0.79, four probable double- and multiple-mode objects, and another four objects with marginal detections of secondary modes. The low frequencies (5-14 cycles day-1) and the observed period ratios of ~0.77 suggest that the majority of these objects are evolved stars pulsating in fundamental or first overtone radial modes.

  20. METALLICITY GRADIENTS THROUGH DISK INSTABILITY: A SIMPLE MODEL FOR THE MILKY WAY'S BOXY BULGE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martinez-Valpuesta, Inma; Gerhard, Ortwin, E-mail: imv@mpe.mpg.de, E-mail: gerhard@mpe.mpg.de

    2013-03-20

    Observations show a clear vertical metallicity gradient in the Galactic bulge, which is often taken as a signature of dissipative processes in the formation of a classical bulge. Various evidence shows, however, that the Milky Way is a barred galaxy with a boxy bulge representing the inner three-dimensional part of the bar. Here we show with a secular evolution N-body model that a boxy bulge formed through bar and buckling instabilities can show vertical metallicity gradients similar to the observed gradient if the initial axisymmetric disk had a comparable radial metallicity gradient. In this framework, the range of metallicities inmore » bulge fields constrains the chemical structure of the Galactic disk at early times before bar formation. Our secular evolution model was previously shown to reproduce inner Galaxy star counts and we show here that it also has cylindrical rotation. We use it to predict a full mean metallicity map across the Galactic bulge from a simple metallicity model for the initial disk. This map shows a general outward gradient on the sky as well as longitudinal perspective asymmetries. We also briefly comment on interpreting metallicity gradient observations in external boxy bulges.« less

  1. Star formation history of the Galactic bulge from deep HST imaging of low reddening windows

    NASA Astrophysics Data System (ADS)

    Bernard, Edouard J.; Schultheis, Mathias; Di Matteo, Paola; Hill, Vanessa; Haywood, Misha; Calamida, Annalisa

    2018-07-01

    Despite the huge amount of photometric and spectroscopic efforts targeting the Galactic bulge over the past few years, its age distribution remains controversial owing to both the complexity of determining the age of individual stars and the difficult observing conditions. Taking advantage of the recent release of very deep, proper-motion-cleaned colour-magnitude diagrams (CMDs) of four low reddening windows obtained with the Hubble Space Telescope (HST), we used the CMD-fitting technique to calculate the star formation history (SFH) of the bulge at -2° > b > -4° along the minor axis. We find that over 80 per cent of the stars formed before 8 Gyr ago, but that a significant fraction of the super-solar metallicity stars are younger than this age. Considering only the stars that are within reach of the current generation of spectrographs (i.e. V≲ 21), we find that 10 per cent of the bulge stars are younger than 5 Gyr, while this fraction rises to 20-25 per cent in the metal-rich peak. The age-metallicity relation is well parametrized by a linear fit, implying an enrichment rate of dZ/dt ˜ 0.005 Gyr-1. Our metallicity distribution function accurately reproduces that observed by several spectroscopic surveys of Baade's window, with the bulk of stars having metal content in the range [Fe/H]˜-0.7 to ˜0.6, along with a sparse tail to much lower metallicities.

  2. Star formation history of the Galactic bulge from deep HST imaging of low reddening windows

    NASA Astrophysics Data System (ADS)

    Bernard, Edouard J.; Schultheis, Mathias; Di Matteo, Paola; Hill, Vanessa; Haywood, Misha; Calamida, Annalisa

    2018-04-01

    Despite the huge amount of photometric and spectroscopic efforts targetting the Galactic bulge over the past few years, its age distribution remains controversial owing to both the complexity of determining the age of individual stars and the difficult observing conditions. Taking advantage of the recent release of very deep, proper-motion-cleaned colour-magnitude diagrams (CMDs) of four low reddening windows obtained with the Hubble Space Telescope (HST), we used the CMD-fitting technique to calculate the star formation history (SFH) of the bulge at -2° > b > -4° along the minor axis. We find that over 80 percent of the stars formed before 8 Gyr ago, but that a significant fraction of the super-solar metallicity stars are younger than this age. Considering only the stars that are within reach of the current generation of spectrographs (i.e. V≲ 21), we find that 10 percent of the bulge stars are younger than 5 Gyr, while this fraction rises to 20-25 percent in the metal-rich peak. The age-metallicity relation is well parametrized by a linear fit implying an enrichment rate of dZ/dt ˜ 0.005 Gyr-1. Our metallicity distribution function accurately reproduces that observed by several spectroscopic surveys of Baade's window, with the bulk of stars having metal-content in the range [Fe/H]˜-0.7 to ˜0.6, along with a sparse tail to much lower metallicities.

  3. VizieR Online Data Catalog: Metal-poor stars towards the Galactic bulge (Koch+, 2016)

    NASA Astrophysics Data System (ADS)

    Koch, A.; McWilliam, A.; Preston, G. W.; Thompson, I. B.

    2015-11-01

    The stars studied here were identified in a search for EMP stars in the Galactic bulge (Preston et al. unpublished), near b=-10°, employing the 2.5-m du Pont and 1-m Swope telescopes at Las Campanas Observatory. Observations of seven EMP candidates presented here were taken spread over six nights in July 2007 with a median seeing of 0.95", while individual exposures reached as high as 2" and notably better conditions (~0.6") during several nights. Our chosen set-up included a 0.5" slit, 2x1 binning in spectral and spatial dimensions and resulted in a resolving power of R~45000. An observing log is given in Table 1. (3 data files).

  4. Two Red Clumps and the X-shaped Milky Way Bulge

    NASA Astrophysics Data System (ADS)

    McWilliam, Andrew; Zoccali, Manuela

    2010-12-01

    From Two Micron All Sky Survey infrared photometry, we find two red clump (RC) populations coexisting in fields toward the Galactic bulge at latitudes |b|>5fdg5, ranging over ~13° in longitude and 20° in latitude. These RC peaks indicate two stellar populations separated by ~2.3 kpc at (l, b) = (+1, - 8) the two RCs are located at 6.5 and 8.8 ± 0.2 kpc. The double-peaked RC is inconsistent with a tilted bar morphology. Most of our fields show the two RCs at roughly constant distance with longitude, also inconsistent with a tilted bar; however, an underlying bar may be present. Stellar densities in the two RCs change dramatically with longitude: on the positive longitude side the foreground RC is dominant, while the background RC dominates negative longitudes. A line connecting the maxima of the foreground and background populations is tilted to the line of sight by ~20°±4°, similar to claims for the tilt of a Galactic bar. The distance between the two RCs decreases toward the Galactic plane; seen edge-on the bulge is X-shaped, resembling some extragalactic bulges and the results of N-body simulations. The center of this X is consistent with the distance to the Galactic center, although better agreement would occur if the bulge is 2-3 Gyr younger than 47 Tuc. Our observations may be understood if the two RC populations emanate, nearly tangentially, from the Galactic bar ends, in a funnel shape. Alternatively, the X, or double funnel, may continue to the Galactic center. From the Sun, this would appear peanut/box shaped, but X-shaped when viewed tangentially.

  5. The Segue K giant survey. II. A catalog of distance determinations for the Segue K giants in the galactic halo

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xue, Xiang-Xiang; Rix, Hans-Walter; Ma, Zhibo

    2014-04-01

    We present an online catalog of distance determinations for 6036 K giants, most of which are members of the Milky Way's stellar halo. Their medium-resolution spectra from the Sloan Digital Sky Survey/Sloan Extension for Galactic Understanding and Exploration are used to derive metallicities and rough gravity estimates, along with radial velocities. Distance moduli are derived from a comparison of each star's apparent magnitude with the absolute magnitude of empirically calibrated color-luminosity fiducials, at the observed (g – r){sub 0} color and spectroscopic [Fe/H]. We employ a probabilistic approach that makes it straightforward to properly propagate the errors in metallicities, magnitudes,more » and colors into distance uncertainties. We also fold in prior information about the giant-branch luminosity function and the different metallicity distributions of the SEGUE K-giant targeting sub-categories. We show that the metallicity prior plays a small role in the distance estimates, but that neglecting the luminosity prior could lead to a systematic distance modulus bias of up to 0.25 mag, compared to the case of using the luminosity prior. We find a median distance precision of 16%, with distance estimates most precise for the least metal-poor stars near the tip of the red giant branch. The precision and accuracy of our distance estimates are validated with observations of globular and open clusters. The stars in our catalog are up to 125 kpc from the Galactic center, with 283 stars beyond 50 kpc, forming the largest available spectroscopic sample of distant tracers in the Galactic halo.« less

  6. VizieR Online Data Catalog: OGLE-III Galactic bulge microlensing events (Wyrzykowski+, 2015)

    NASA Astrophysics Data System (ADS)

    Wyrzykowski, L.; Rynkiewicz, A. E.; Skowron, J.; Kozlowski, S.; Udalski, A.; Szymanski, M. K.; Kubiak, M.; Soszynski, I.; Pietrzynski, G.; Poleski, R.; Pietrukowicz, P.; Pawlak, M.

    2015-02-01

    The data used in this work were photometry of 150 million objects toward more than 31deg2 of the Galactic bulge observed in almost 74000 frames, i.e., about 11000 billion data points. We selected 91 fields out of all 177 ever observed by the Optical Gravitational Lensing Experiment (OGLE) Udalski et al. (2008AcA....58...69U) in its third phase from 2001 July until 2009 May, which had at least 250 observations. We use the re-reduced data obtained after the end of OGLE-III. For the final sample of microlensing events, we additionally produced new photometry which took into account the exact position of each event on the difference imaging technique (DIA, Wozniak 2000, J/AcA/50/421) image (see section 2). (4 data files).

  7. Sigma observations of the low mass X-ray binaries of the galactic bulge

    NASA Technical Reports Server (NTRS)

    Goldwurm, A.; Denis, M.; Paul, J.; Faisse, S.; Roques, J. P.; Bouchet, L.; Vedrenne, G.; Mandrou, P.; Sunyaev, R.; Churazov, E.

    1995-01-01

    The soft gamma-ray telescope (35-1300 keV) SIGMA aboard the high energy GRANAT space observatory has been monitoring the Galactic Bulge region for more than 2000 h of effective time since March 1990. In the resulting average 35-75 keV image we detected ten sources at a level of greater than 5 standard deviations, 6 of which can be identified with low mass X-ray binaries (LMXB). Among them, one is the 1993 X-ray nova in Ophiuchus (GRS 1726-249), one is an X-ray pulsar (GX 1+4), two are associated with X-ray bursters (GX 354-0 and A 1742-294) and two with bursting X-ray binaries in the globular clusters Terzan 2 and Terzan 1. Their spectral and long term variability behavior as measured by SIGMMA are presented and discussed.

  8. The density of dark matter in the Galactic bulge and implications for indirect detection

    DOE PAGES

    Hooper, Dan

    2016-11-29

    A recent study, making use of the number of horizontal branch stars observed in infrared photometric surveys and kinematic measurements of M-giant stars from the BRAVA survey, combined with N-body simulations of stellar populations, has presented a new determination of the dark matter mass within the bulge-bar region of the Milky Way. That study constrains the total mass within themore » $$\\pm 2.2 \\times \\pm 1.4 \\times \\pm 1.2$$ kpc volume of the bulge-bar region to be ($$1.84 \\pm 0.07) \\times 10^{10} \\, M_{\\odot}$$, of which 9-30% is made up of dark matter. Here, we use this result to constrain the the Milky Way's dark matter density profile, and discuss the implications for indirect dark matter searches. Furthermore uncertainties remain significant, these results favor dark matter distributions with a cusped density profile. For example, for a scale radius of 20 kpc and a local dark matter density of 0.4 GeV/cm$^3$, density profiles with an inner slope of 0.69 to 1.40 are favored, approximately centered around the standard NFW value. In contrast, profiles with large flat-density cores are disfavored by this information.« less

  9. Chemical and kinematical properties of galactic bulge stars surrounding the stellar system Terzan 5

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Massari, D.; Mucciarelli, A.; Ferraro, F. R.

    2014-08-20

    As part of a study aimed at determining the kinematical and chemical properties of Terzan 5, we present the first characterization of the bulge stars surrounding this puzzling stellar system. We observed 615 targets located well beyond the tidal radius of Terzan 5 and found that their radial velocity distribution is well described by a Gaussian function peaked at (v {sub rad}) = +21.0 ± 4.6 km s{sup –1} with dispersion σ {sub v} = 113.0 ± 2.7 km s{sup –1}. This is one of the few high-precision spectroscopic surveys of radial velocities for a large sample of bulge starsmore » in such a low and positive latitude environment (b = +1.°7). We found no evidence of the peak at (v {sub rad}) ∼ +200 km s{sup –1} found in Nidever et al. Strong contamination of many observed spectra by TiO bands prevented us from deriving the iron abundance for the entire spectroscopic sample, introducing a selection bias. The metallicity distribution was finally derived for a subsample of 112 stars in a magnitude range where the effect of the selection bias is negligible. The distribution is quite broad and roughly peaked at solar metallicity ([Fe/H] ≅ +0.05 dex) with a similar number of stars in the super-solar and in the sub-solar ranges. The population number ratios in different metallicity ranges agree well with those observed in other low-latitude bulge fields, suggesting (1) the possible presence of a plateau for |b| < 4° in the ratio between stars in the super-solar (0 < [Fe/H] <0.5 dex) and sub-solar (–0.5 < [Fe/H] <0 dex) metallicity ranges; (2) a severe drop in the metal-poor component ([Fe/H] <–0.5) as a function of Galactic latitude.« less

  10. Mapping the X-shaped Milky Way Bulge

    NASA Astrophysics Data System (ADS)

    Saito, R. K.; Zoccali, M.; McWilliam, A.; Minniti, D.; Gonzalez, O. A.; Hill, V.

    2011-09-01

    We analyzed the distribution of the red clump (RC) stars throughout the Galactic bulge using Two Micron All Sky Survey data. We mapped the position of the RC in 1 deg2 fields within the area |l| <= 8fdg5 and 3fdg5 <= |b| <= 8fdg5, for a total of 170 deg2. The single RC seen in the central area splits into two components at high Galactic longitudes in both hemispheres, produced by two structures at different distances along the same line of sight. The X-shape is clearly visible in the Z-X plane for longitudes close to the l = 0° axis. Crude measurements of the space densities of RC stars in the bright and faint RC populations are consistent with the adopted RC distances, providing further supporting evidence that the X-structure is real, and that there is approximate front-back symmetry in our bulge fields. We conclude that the Milky Way bulge has an X-shaped structure within |l| <~ 2°, seen almost edge-on with respect to the line of sight. Additional deep near-infrared photometry extending into the innermost bulge regions combined with spectroscopic data is needed in order to discriminate among the different possibilities that can cause the observed X-shaped structure.

  11. The OGLE Collection of Variable Stars. Over 450 000 Eclipsing and Ellipsoidal Binary Systems Toward the Galactic Bulge

    NASA Astrophysics Data System (ADS)

    Soszyński, I.; Pawlak, M.; Pietrukowicz, P.; Udalski, A.; Szymański, M. K.; Wyrzykowski, Ł.; Ulaczyk, K.; Poleski, R.; Kozłowski, S.; Skowron, D. M.; Skowron, J.; Mróz, P.; Hamanowicz, A.

    2016-12-01

    We present a collection of 450 598 eclipsing and ellipsoidal binary systems detected in the OGLE fields toward the Galactic bulge. The collection consists of binary systems of all types: detached, semi-detached, and contact eclipsing binaries, RS CVn stars, cataclysmic variables, HW Vir binaries, double periodic variables, and even planetary transits. For all stars we provide the I- and V-band time-series photometry obtained during the OGLE-II, OGLE-III, and OGLE-IV surveys. We discuss methods used to identify binary systems in the OGLE data and present several objects of particular interest.

  12. Why is the rapid burster different from all other galactic-bulge X-ray sources?

    NASA Astrophysics Data System (ADS)

    Milgrom, M.

    1987-01-01

    It is suggested that the rapid X-ray burster exhibits unique behavior because it contains a neutron star whose stellar radius is smaller than the minimum radius of a circular orbit that is stable according to general relativity. The star accretes from a disk that extends down to the last stable orbit. In this state, the disk is unstable against a rapid fall and accretion of its innermost part onto the star. The sudden dumping of mass gives rise to a burst of X-rays. The disk then heals, refilling the inner region at a pace that is dictated mainly by the global accretion rate, in order to ready itself for the next burst. In all other galactic-bulge-type sources, the neutron star is larger than the last stable orbit.

  13. Effect of Binary Source Companions on the Microlensing Optical Depth Determination toward the Galactic Bulge Field

    NASA Astrophysics Data System (ADS)

    Han, Cheongho

    2005-11-01

    Currently, gravitational microlensing survey experiments toward the Galactic bulge field use two different methods of minimizing the blending effect for the accurate determination of the optical depth τ. One is measuring τ based on clump giant (CG) source stars, and the other is using ``difference image analysis'' (DIA) photometry to measure the unblended source flux variation. Despite the expectation that the two estimates should be the same assuming that blending is properly considered, the estimates based on CG stars systematically fall below the DIA results based on all events with source stars down to the detection limit. Prompted by the gap, we investigate the previously unconsidered effect of companion-associated events on τ determination. Although the image of a companion is blended with that of its primary star and thus not resolved, the event associated with the companion can be detected if the companion flux is highly magnified. Therefore, companions work effectively as source stars to microlensing, and thus the neglect of them in the source star count could result in a wrong τ estimation. By carrying out simulations based on the assumption that companions follow the same luminosity function as primary stars, we estimate that the contribution of the companion-associated events to the total event rate is ~5fbi% for current surveys and can reach up to ~6fbi% for future surveys monitoring fainter stars, where fbi is the binary frequency. Therefore, we conclude that the companion-associated events comprise a nonnegligible fraction of all events. However, their contribution to the optical depth is not large enough to explain the systematic difference between the optical depth estimates based on the two different methods.

  14. DISCOVERY OF RR LYRAE STARS IN THE NUCLEAR BULGE OF THE MILKY WAY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Minniti, Dante; Ramos, Rodrigo Contreras; Zoccali, Manuela

    Galactic nuclei, such as that of the Milky Way, are extreme regions with high stellar densities, and in most cases, the hosts of a supermassive black hole. One of the scenarios proposed for the formation of the Galactic nucleus is merging of primordial globular clusters. An implication of this model is that this region should host stars that are characteristically found in old Milky Way globular clusters. RR Lyrae stars are primary distance indicators, well known representatives of old and metal-poor stellar populations, and therefore are regularly found in globular clusters. Here we report the discovery of a dozen RRmore » Lyrae type ab stars in the vicinity of the Galactic center, i.e., in the so-called nuclear stellar bulge of the Milky Way. This discovery provides the first direct observational evidence that the Galactic nuclear stellar bulge contains ancient stars (>10 Gyr old). Based on this we conclude that merging globular clusters likely contributed to the build-up of the high stellar density in the nuclear stellar bulge of the Milky Way.« less

  15. CHARACTERIZATION OF A SAMPLE OF INTERMEDIATE-TYPE ACTIVE GALACTIC NUCLEI. II. HOST BULGE PROPERTIES AND BLACK HOLE MASS ESTIMATES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Benitez, Erika; Cruz-Gonzalez, Irene; Martinez, Benoni

    2013-02-15

    We present a study of the host bulge properties and their relations with the black hole mass for a sample of 10 intermediate-type active galactic nuclei (AGNs). Our sample consists mainly of early-type spirals, four of them hosting a bar. For 70{sup +10} {sub -17}% of the galaxies, we have been able to determine the type of the bulge, and find that these objects probably harbor a pseudobulge or a combination of classical bulge/pseudobulge, suggesting that pseudobulges might be frequent in intermediate-type AGNs. In our sample, 50% {+-} 14% of the objects show double-peaked emission lines. Therefore, narrow double-peaked emissionmore » lines seem to be frequent in galaxies harboring a pseudobulge or a combination of classical bulge/pseudobulge. Depending on the bulge type, we estimated the black hole mass using the corresponding M {sub BH}-{sigma}* relation and found them within a range of 5.69 {+-} 0.21 < log M {sup {sigma}}*{sub BH} < 8.09 {+-} 0.24. Comparing these M {sup {sigma}}*{sub BH} values with masses derived from the FWHM of H{beta} and the continuum luminosity at 5100 A from their SDSS-DR7 spectra (M {sub BH}), we find that 8 out of 10 (80{sup +7} {sub -17}%) galaxies have black hole masses that are compatible within a factor of 3. This result would support that M {sub BH} and M {sup {sigma}}*{sub BH} are the same for intermediate-type AGNs, as has been found for type 1 AGNs. However, when the type of the bulge is taken into account, only three out of the seven (43{sup +18} {sub -15}%) objects of the sample have their M {sup {sigma}}*{sub BH} and M {sub BH} compatible within 3{sigma} errors. We also find that estimations based on the M {sub BH}-{sigma}* relation for pseudobulges are not compatible in 50% {+-} 20% of the objects.« less

  16. Comment on “Characterizing the population of pulsars in the Galactic bulge with the Fermi large area telescope” [arXiv:1705.00009v1

    DOE PAGES

    Bartels, Richard

    2018-04-24

    Here, themore » $$\\textit{Fermi}$$-LAT Collaboration recently presented a new catalog of gamma-ray sources located within the $$40^{\\circ} \\times 40^{\\circ}$$ region around the Galactic Center~(Ajello et al. 2017) -- the Second Fermi Inner Galaxy (2FIG) catalog. Utilizing this catalog, they analyzed models for the spatial distribution and luminosity function of sources with a pulsar-like gamma-ray spectrum. Ajello et al. 2017 v1 also claimed to detect, in addition to a disk-like population of pulsar-like sources, an approximately 7$$\\sigma$$ preference for an additional centrally concentrated population of pulsar-like sources, which they referred to as a "Galactic Bulge" population. Such a population would be of great interest, as it would support a pulsar interpretation of the gamma-ray excess that has long been observed in this region. In an effort to further explore the implications of this new source catalog, we attempted to reproduce the results presented by the $$\\textit{Fermi}$$-LAT Collaboration, but failed to do so. Mimicking as closely as possible the analysis techniques undertaken in Ajello et al. 2017, we instead find that our likelihood analysis favors a very different spatial distribution and luminosity function for these sources. Most notably, our results do not exhibit a strong preference for a "Galactic Bulge" population of pulsars. Furthermore, we find that masking the regions immediately surrounding each of the 2FIG pulsar candidates does $$\\textit{not}$$ significantly impact the spectrum or intensity of the Galactic Center gamma-ray excess. Although these results refute the claim of strong evidence for a centrally concentrated pulsar population presented in Ajello et al. 2017, they neither rule out nor provide support for the possibility that the Galactic Center excess is generated by a population of low-luminosity and currently largely unobserved pulsars.« less

  17. Comment on “Characterizing the population of pulsars in the Galactic bulge with the Fermi large area telescope” [arXiv:1705.00009v1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bartels, Richard

    Here, themore » $$\\textit{Fermi}$$-LAT Collaboration recently presented a new catalog of gamma-ray sources located within the $$40^{\\circ} \\times 40^{\\circ}$$ region around the Galactic Center~(Ajello et al. 2017) -- the Second Fermi Inner Galaxy (2FIG) catalog. Utilizing this catalog, they analyzed models for the spatial distribution and luminosity function of sources with a pulsar-like gamma-ray spectrum. Ajello et al. 2017 v1 also claimed to detect, in addition to a disk-like population of pulsar-like sources, an approximately 7$$\\sigma$$ preference for an additional centrally concentrated population of pulsar-like sources, which they referred to as a "Galactic Bulge" population. Such a population would be of great interest, as it would support a pulsar interpretation of the gamma-ray excess that has long been observed in this region. In an effort to further explore the implications of this new source catalog, we attempted to reproduce the results presented by the $$\\textit{Fermi}$$-LAT Collaboration, but failed to do so. Mimicking as closely as possible the analysis techniques undertaken in Ajello et al. 2017, we instead find that our likelihood analysis favors a very different spatial distribution and luminosity function for these sources. Most notably, our results do not exhibit a strong preference for a "Galactic Bulge" population of pulsars. Furthermore, we find that masking the regions immediately surrounding each of the 2FIG pulsar candidates does $$\\textit{not}$$ significantly impact the spectrum or intensity of the Galactic Center gamma-ray excess. Although these results refute the claim of strong evidence for a centrally concentrated pulsar population presented in Ajello et al. 2017, they neither rule out nor provide support for the possibility that the Galactic Center excess is generated by a population of low-luminosity and currently largely unobserved pulsars.« less

  18. Establishing the connection between peanut-shaped bulges and galactic bars

    NASA Technical Reports Server (NTRS)

    Kuijken, Konrad; Merrifield, Michael R.

    1995-01-01

    It has been suggested that the peanut-shaped bulges seen in some edge-on disk galaxies are due to the presence of a central bar. Although bars cannot be detected photometrically in edge-on galaxies, we show that barred potentials produce a strong kinematic signature in the form of double-peaked line-of-sight velocity distributions with a characteristic 'figure-of-eight' variation with radius. We have obtained spectroscopic observations of two edge-on galaxies with peanut-shaped bulges (NGC 5746 and NGC 5965), and they reveal exactly such line-of-sight velocity distributions in both their gaseous (emission line) and their stellar (absorption line) components. These observations provide strong observational evidence that peanut-shaped bulges are a by-product of bar formation.

  19. The Chemical Composition of the Galactic Bulge and Implications for its Evolution

    NASA Astrophysics Data System (ADS)

    McWilliam, Andrew

    2016-08-01

    At a bulge latitude of b = -4°, the average [Fe/H] and [Mg/H] values are +0.06 and +0.17 dex, roughly 0.2 and 0.7 dex higher than the local thin and thick disk values, respectively, suggesting a large bulge effective yield, perhaps due to efficient retention of supernova ejecta. The bulge vertical [Fe/H] gradient, at ∼0.5 dex/kpc, appears to be due to a changing mixture of sub-populations (near +0.3 dex and -0.3 dex and one possibly near -0.7 dex) with latitude. At solar [Fe/H], the bulge [Al/Fe] and [α/Fe] ratios are ∼ +0.15 dex. Below [Fe/H] ∼ -0.5 dex, the bulge and local thick disk compositions are very similar; but the measured [Mg/Fe], [/Fe], [La/Eu] and dramatic [Cu/Fe] ratios suggest higher SFR in the bulge. However, these composition differences with the thick disk could be due to measurement errors and non-LTE effects. Unusual zig-zag trends of [Cu/Fe] and [Na/Fe] suggest metallicity-dependent nucleosynthesis by core-collapse supernovae in the Type Ia supernova time-delay scenario. The bulge sub-population compositions resemble the local thin and thick disks, but at higher [Fe/H], suggesting a radial [Fe/H] gradient of -0.04 to -0.05 dex/kpc for both the thin and thick disks. If the bulge formed through accretion of inner thin and thick disk stars, it appears that these stars retained vertical scale heights characteristic of their kinematic origin, resulting in the vertical [Fe/H] gradient and [α/Fe] trends seen today.

  20. Investigating ChaMPlane X-Ray Sources in the Galactic Bulge with Magellan LDSS2 Spectra

    NASA Astrophysics Data System (ADS)

    Koenig, Xavier; Grindlay, Jonathan E.; van den Berg, Maureen; Laycock, Silas; Zhao, Ping; Hong, JaeSub; Schlegel, Eric M.

    2008-09-01

    We have carried out optical and X-ray spectral analyses on a sample of 136 candidate optical counterparts of X-ray sources found in five Galactic bulge fields included in our Chandra Multiwavelength Plane Survey. We use a combination of optical spectral fitting and quantile X-ray analysis to obtain the hydrogen column density toward each object, and a three-dimensional dust model of the Galaxy to estimate the most probable distance in each case. We present the discovery of a population of stellar coronal emission sources, likely consisting of pre-main-sequence, young main-sequence, and main-sequence stars, as well as a component of active binaries of RS CVn or BY Dra type. We identify one candidate quiescent low-mass X-ray binary with a subgiant companion; we note that this object may also be an RS CVn system. We report the discovery of three new X-ray-detected cataclysmic variables (CVs) in the direction of the Galactic center (at distances lesssim2 kpc). This number is in excess of predictions made with a simple CV model based on a local CV space density of lesssim10-5 pc-3, and a scale height ~200 pc. We discuss several possible reasons for this observed excess.

  1. Comment on "Characterizing the population of pulsars in the Galactic bulge with the Fermi large area telescope" [arXiv:1705.00009v1

    NASA Astrophysics Data System (ADS)

    Bartels, Richard; Hooper, Dan; Linden, Tim; Mishra-Sharma, Siddharth; Rodd, Nicholas L.; Safdi, Benjamin R.; Slatyer, Tracy R.

    2018-06-01

    The Fermi-LAT Collaboration recently presented a new catalog of gamma-ray sources located within the 40 ° × 40 ° region around the Galactic Center Ajello et al. (2017) - the Second Fermi Inner Galaxy (2FIG) catalog. Utilizing this catalog, they analyzed models for the spatial distribution and luminosity function of sources with a pulsar-like gamma-ray spectrum. Ajello et al. (2017) v1 also claimed to detect, in addition to a disk-like population of pulsar-like sources, an approximately 7 σ preference for an additional centrally concentrated population of pulsar-like sources, which they referred to as a "Galactic Bulge" population. Such a population would be of great interest, as it would support a pulsar interpretation of the gamma-ray excess that has long been observed in this region. In an effort to further explore the implications of this new source catalog, we attempted to reproduce the results presented by the Fermi-LAT Collaboration, but failed to do so. Mimicking as closely as possible the analysis techniques undertaken in Ajello et al. (2017), we instead find that our likelihood analysis favors a very different spatial distribution and luminosity function for these sources. Most notably, our results do not exhibit a strong preference for a "Galactic Bulge" population of pulsars. Furthermore, we find that masking the regions immediately surrounding each of the 2FIG pulsar candidates does not significantly impact the spectrum or intensity of the Galactic Center gamma-ray excess. Although these results refute the claim of strong evidence for a centrally concentrated pulsar population presented in Ajello et al. (2017), they neither rule out nor provide support for the possibility that the Galactic Center excess is generated by a population of low-luminosity and currently largely unobserved pulsars. In a spirit of maximal openness and transparency, we have made our analysis code available at https://github.com/bsafdi/GCE-2FIG.

  2. The population of planetary nebulae near the Galactic Centre: chemical abundances

    NASA Astrophysics Data System (ADS)

    Mollá, M.; Cavichia, O.; Costa, R. D. D.; Maciel, W. J.

    2017-10-01

    In this work, we report physical parameters and abundances derived for a sample of 15 high extinction planetary nebulae located in the inner 2° of the Galactic bulge, based on low dispersion spectroscopy secured at the SOAR telescope using the Goodman spectrograph. The new data allow us to extend our database including older, weaker objects that are at the faint end of the planetary nebulae luminosity function. The data provide chemical compositions for PNe located in this region of the bulge to explore the chemical enrichment history of the central region of the Galactic bulge. The results show that the abundances of our sample are skewed to higher metallicities than previous data in the outer regions of the bulge. This can indicate a faster chemical enrichment taking place at the Galactic centre.

  3. Tidal radii and destruction rates of globular clusters in the Milky Way due to bulge-bar and disk shocking

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moreno, Edmundo; Pichardo, Bárbara; Velázquez, Héctor

    2014-10-01

    We calculate orbits, tidal radii, and bulge-bar and disk shocking destruction rates for 63 globular clusters in our Galaxy. Orbits are integrated in both an axisymmetric and a nonaxisymmetric Galactic potential that includes a bar and a three-dimensional model for the spiral arms. With the use of a Monte Carlo scheme, we consider in our simulations observational uncertainties in the kinematical data of the clusters. In the analysis of destruction rates due to the bulge-bar, we consider the rigorous treatment of using the real Galactic cluster orbit instead of the usual linear trajectory employed in previous studies. We compare resultsmore » in both treatments. We find that the theoretical tidal radius computed in the nonaxisymmetric Galactic potential compares better with the observed tidal radius than that obtained in the axisymmetric potential. In both Galactic potentials, bulge-shocking destruction rates computed with a linear trajectory of a cluster at its perigalacticons give a good approximation of the result obtained with the real trajectory of the cluster. Bulge-shocking destruction rates for clusters with perigalacticons in the inner Galactic region are smaller in the nonaxisymmetric potential than those in the axisymmetric potential. For the majority of clusters with high orbital eccentricities (e > 0.5), their total bulge+disk destruction rates are smaller in the nonaxisymmetric potential.« less

  4. The Galactic Nova Rate Revisited

    NASA Astrophysics Data System (ADS)

    Shafter, A. W.

    2017-01-01

    Despite its fundamental importance, a reliable estimate of the Galactic nova rate has remained elusive. Here, the overall Galactic nova rate is estimated by extrapolating the observed rate for novae reaching m≤slant 2 to include the entire Galaxy using a two component disk plus bulge model for the distribution of stars in the Milky Way. The present analysis improves on previous work by considering important corrections for incompleteness in the observed rate of bright novae and by employing a Monte Carlo analysis to better estimate the uncertainty in the derived nova rates. Several models are considered to account for differences in the assumed properties of bulge and disk nova populations and in the absolute magnitude distribution. The simplest models, which assume uniform properties between bulge and disk novae, predict Galactic nova rates of ˜50 to in excess of 100 per year, depending on the assumed incompleteness at bright magnitudes. Models where the disk novae are assumed to be more luminous than bulge novae are explored, and predict nova rates up to 30% lower, in the range of ˜35 to ˜75 per year. An average of the most plausible models yields a rate of {50}-23+31 yr-1, which is arguably the best estimate currently available for the nova rate in the Galaxy. Virtually all models produce rates that represent significant increases over recent estimates, and bring the Galactic nova rate into better agreement with that expected based on comparison with the latest results from extragalactic surveys.

  5. RADIO DETECTION PROSPECTS FOR A BULGE POPULATION OF MILLISECOND PULSARS AS SUGGESTED BY FERMI-LAT OBSERVATIONS OF THE INNER GALAXY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Calore, F.; Weniger, C.; Mauro, M. Di

    The dense stellar environment of the Galactic center has been proposed to host a large population of as-yet undetected millisecond pulsars (MSPs). Recently, this hypothesis has found support in an analysis of gamma-rays detected using the Large Area Telescope onboard the Fermi satellite, which revealed an excess of diffuse GeV photons in the inner 15 deg about the Galactic center. The excess can be interpreted as the collective emission of thousands of MSPs in the Galactic bulge, with a spherical distribution strongly peaked toward the Galactic center. In order to fully establish the MSP interpretation, it is essential to findmore » corroborating evidence in multi-wavelength searches, most notably through the detection of radio pulsations from individual bulge MSPs. Based on globular cluster observations and gamma-ray emission from the inner Galaxy, we investigate the prospects for detecting MSPs in the Galactic bulge. While previous pulsar surveys failed to identify this population, we demonstrate that upcoming large-area surveys of this region should lead to the detection of dozens of bulge MSPs. Additionally, we show that deep targeted searches of unassociated Fermi sources should be able to detect the first few MSPs in the bulge. The prospects for these deep searches are enhanced by a tentative gamma-ray/radio correlation that we infer from high-latitude gamma-ray MSPs. Such detections would constitute the first clear discoveries of field MSPs in the Galactic bulge, with far-reaching implications for gamma-ray observations, the formation history of the central Milky Way, and strategy optimization for future deep radio pulsar surveys.« less

  6. Erratum: The MACHO Project: 45 Candidate Microlensing Events from the First Year Galactic Bulge Data

    NASA Astrophysics Data System (ADS)

    Alcock, C.; Allsman, R. A.; Alves, D.; Axelrod, T. S.; Bennett, D. P.; Cook, K. H.; Freeman, K. C.; Griest, K.; Guern, J.; Lehner, M. J.; Marshall, S. L.; Park, H.-S.; Perlmutter, S.; Peterson, B. A.; Pratt, M. R.; Quinn, P. J.; Rodgers, A. W.; Stubbs, C. W.; Sutherland, W.

    1998-06-01

    In the paper ``The MACHO Project: 45 Candidate Microlensing Events from the First-Year Galactic Bulge Data'' by C. Alcock, R. A. Allsman, D. Alves, T. S. Axelrod, D. P. Bennett, K. H. Cook, K. C. Freeman, K. Griest, J. Guern, M. J. Lehner, S. L. Marshall, H.-S. Park, S. Perlmutter, B. A. Peterson, M. R. Pratt, P. J. Quinn, A. W. Rodgers, C. W. Stubbs, and W. Sutherland (ApJ, 479, 119 [1997]), an incorrect version of Table 1 was inadvertently sent to the Journal with the revised version of the paper. The incorrect table used a different event numbering scheme from the correct table, rendering much of the paper incomprehensible. The correct version of Table 1 is available in the preprint version of the paper (astro-ph/9512146) and is also printed below.

  7. Erratum: The MACHO Project: Microlensing Optical Depth toward the Galactic Bulge from Difference Image Analysis

    NASA Astrophysics Data System (ADS)

    Alcock, C.; Allsman, R. A.; Alves, D. R.; Axelrod, T. S.; Becker, A. C.; Bennett, D. P.; Cook, K. H.; Drake, A. J.; Freeman, K. C.; Geha, M.; Griest, K.; Lehner, M. J.; Marshall, S. L.; Minniti, D.; Nelson, C. A.; Peterson, B. A.; Popowski, P.; Pratt, M. R.; Quinn, P. J.; Stubbs, C. W.; Sutherland, W.; Tomaney, A. B.; Vandehei, T.; Welch, D. L.

    2001-08-01

    In the paper ``The MACHO Project: Microlensing Optical Depth toward the Galactic Bulge from Difference Image Analysis'' by C. Alcock, R. A. Allsman, D. R. Alves, T. S. Axelrod, A. C. Becker, D. P. Bennett, K. H. Cook, A. J. Drake, K. C. Freeman, M. Geha, K. Griest, M. J. Lehner, S. L. Marshall, D. Minniti, C. A. Nelson, B. A. Peterson, P. Popowski, M. R. Pratt, P. J. Quinn, C. W. Stubbs, W. Sutherland, A. B. Tomaney, T. Vandehei, and D. L. Welch (ApJ, 541, 734 [2000]) an incorrect version of Table 3 was published. A second copy of Table 2 was given as Table 3. The correct version of Table 3 is available in the preprint version of the paper (astro-ph/0002510) and is printed below. This correction does not affect any of the results in the paper.

  8. The diffuse molecular component in the nuclear bulge of the Milky Way

    NASA Astrophysics Data System (ADS)

    Riquelme, D.; Bronfman, L.; Mauersberger, R.; Finger, R.; Henkel, C.; Wilson, T. L.; Cortés-Zuleta, P.

    2018-02-01

    Context. The bulk of the molecular gas in the central molecular zone (CMZ) of the Galactic center region shows warm kinetic temperatures, ranging from >20 K in the coldest and densest regions (n 104-5 cm-3) up to more than 100 K for densities of about n 103 cm-3. Recently, a more diffuse, hotter (n 100 cm-3, T 250 K) gas component was discovered through absorption observations of H3+. This component may be widespread in the Galactic center, and low density gas detectable in absorption may be present even outside the CMZ along sightlines crossing the extended bulge of the Galaxy. Aim. We aim to observe and characterize diffuse and low density gas using observations of 3-mm molecular transitions seen in absorption. Methods: Using the Atacama Large (sub)Millimeter Array (ALMA) we observed the absorption against the quasar J1744-312, which is located toward the Galactic bulge region at (l, b) = (-2̊.13, -1̊.0), but outside the main molecular complexes. Results: ALMA observations in absorption against the J1744-312 quasar reveal a rich and complex chemistry in low density molecular and presumably diffuse clouds. We detected three velocity components at 0, -153, and -192 km s-1. The component at 0 km s-1 could represent gas in the Galactic disk while the velocity components at -153, and -192 km s-1 likely originate from the Galactic bulge. We detected 12 molecules in the survey, but only 7 in the Galactic bulge gas. This paper makes use of the following ALMA data: ADS/JAO.ALMA#2012.1.00119.S. ALMA is a partnership of ESO (representing its member states), NSF (USA) and NINS (Japan), together with NRC (Canada), NSC and ASIAA (Taiwan), and KASI (Republic of Korea), in cooperation with the Republic of Chile. The Joint ALMA Observatory is operated by ESO, AUI/NRAO, and NAOJ.

  9. Chemically-dissected Rotation Curves of the Galactic Bulge from Hubble Space Telescope Proper Motions on the Main Sequence

    NASA Astrophysics Data System (ADS)

    Clarkson, William I.; Calamida, Annalisa; Sahu, Kailash C.; Gennaro, Mario; Brown, Thomas M.; Avila, Roberto J.; Rich, R. Michael; Debattista, Victor P.

    2018-01-01

    We report results from a pilot study using archival Hubble Space Telescope imaging observations in seven filters over a multi-year time-baseline to probe the co-dependence of chemical abundance and kinematics, using proper motion-based rotation curves selected on relative metallicity. With spectroscopic studies suggesting the metallicity distribution of the Bulge may be bimodal, we follow a data-driven approach to classify stars as belonging to metal-rich or metal-poor ends of the observed relative photometric metallicity distribution, with classification implemented using standard unsupervised learning techniques. We detect clear differences in both slope and amplitude of the proper motion-based rotation curve as traced by the more “metal-rich” and “metal-poor” samples. The sense of the discrepancy is qualitatively in agreement both with recent observational and theoretical indications; the “metal-poor” sample does indeed show a weaker rotation signature.This is the first study to dissect the proper motion rotation curve of the Bulge by chemical abundance using main-sequence targets, which are orders of magnitude more common on the sky than bright giants. These techniques thus offer a pencil-beam complement to wide-field studies that use more traditional tracer populations.

  10. The missing bulge globular clusters in M31 - New optical candidates

    NASA Technical Reports Server (NTRS)

    Wirth, A.; Smarr, L. L.; Bruno, T. L.

    1985-01-01

    A new method to attack the question of the 'missing' globular clusters in the bulge of M31 is used. Image-processing techniques were used on 13 videocamera fields to obtain an accurate photometric census of stellar objects in M31's bulge down to a limiting B magnitude of 21. This luminosity distribution is compared with the Bahcall-Soneira model of galactic foreground stars. A statistically significant excess of bright images in the luminosity range of globular clusters at M31's distance is found. If the optical candidates considered prove to be globular clusters, they would double the number of known globular clusters in the surveyed region. The colors of a subsample of the candidates are the same as those of the known globular clusters. It is concluded that the previously observed flattening away from a de Vaucouleurs law in the radial distribution of M31 may be an observational selection effect. As an offshoot of this analysis, no evidence is found for very luminous stars in the inner bulge of M31. The lack of such stars indicates that there has not been active star formation (with a normal IMF) in the recent past. Coupled with the existence of many planetary nebulae in the bulge, this may strengthen the case for a galactic wind in M31's bulge.

  11. a Theoretical Calculation of Microlensing Signatures Caused by Free-Floating Planets Towards the Galactic Bulge

    NASA Astrophysics Data System (ADS)

    Hamolli, L.; Hafizi, M.; Nucita, A. A.

    2013-08-01

    Free-floating planets (FFPs) are recently drawing a special interest of the scientific community. Gravitational microlensing is up to now the exclusive method for the investigation of FFPs, including their spatial distribution function and mass function. In this paper, we examine the possibility that the future Euclid space-based observatory may allow to discover a substantial number of microlensing events caused by FFPs. Based on latest results about the free-floating planet (FFP) mass function in the mass range [10-5, 10-2]M⊙, we calculate the optical depth towards the Galactic bulge as well as the expected microlensing rate and find that Euclid may be able to detect hundreds to thousands of these events per month. Making use of a synthetic population, we also investigate the possibility of detecting parallax effect in simulated microlensing events due to FFPs and find a significant efficiency for the parallax detection that turns out to be around 30%.

  12. The great escape - III. Placing post-main-sequence evolution of planetary and binary systems in a Galactic context

    NASA Astrophysics Data System (ADS)

    Veras, Dimitri; Evans, N. Wyn; Wyatt, Mark C.; Tout, Christopher A.

    2014-01-01

    Our improving understanding of the life cycle of planetary systems prompts investigations of the role of the Galenvironment before, during and after asymptotic giant branch (AGB) stellar evolution. Here, we investigate the interplay between stellar mass-loss, Galactic tidal perturbations and stellar flybys for evolving stars which host one planet, smaller body or stellar binary companion and reside in the Milky Way's bulge or disc. We find that the potential evolutionary pathways from a main sequence (MS) to a white dwarf (WD) planetary system are a strong function of Galactocentric distance only with respect to the prevalence of stellar flybys. Planetary ejection and collision with the parent star should be more common towards the bulge. At a given location anywhere in the Galaxy, if the mass-loss is adiabatic, then the secondary is likely to avoid close flybys during AGB evolution, and cannot eventually escape the resulting WD because of Galactic tides alone. Partly because AGB mass-loss will shrink a planetary system's Hill ellipsoid axes by about 20 to 40 per cent, Oort clouds orbiting WDs are likely to be more depleted and dynamically excited than on the MS.

  13. The intrinsic shape of bulges in the CALIFA survey

    NASA Astrophysics Data System (ADS)

    Costantin, L.; Méndez-Abreu, J.; Corsini, E. M.; Eliche-Moral, M. C.; Tapia, T.; Morelli, L.; Dalla Bontà, E.; Pizzella, A.

    2018-02-01

    Context. The intrinsic shape of galactic bulges in nearby galaxies provides crucial information to separate bulge types. Aims: We aim to derive accurate constraints to the intrinsic shape of bulges to provide new clues on their formation mechanisms and set new limitations for future simulations. Methods: We retrieved the intrinsic shape of a sample of CALIFA bulges using a statistical approach. Taking advantage of GalMer numerical simulations of binary mergers we estimated the reliability of the procedure. Analyzing the i-band mock images of resulting lenticular remnants, we studied the intrinsic shape of their bulges at different galaxy inclinations. Finally, we introduced a new (B/A, C/A) diagram to analyze possible correlations between the intrinsic shape and the properties of bulges. Results: We tested the method on simulated lenticular remnants, finding that for galaxies with inclinations of 25° ≤ θ ≤ 65° we can safely derive the intrinsic shape of their bulges. We found that our CALIFA bulges tend to be nearly oblate systems (66%), with a smaller fraction of prolate spheroids (19%), and triaxial ellipsoids (15%). The majority of triaxial bulges are in barred galaxies (75%). Moreover, we found that bulges with low Sérsic indices or in galaxies with low bulge-to-total luminosity ratios form a heterogeneous class of objects; additionally, bulges in late-type galaxies or in less massive galaxies have no preference for being oblate, prolate, or triaxial. On the contrary, bulges with high Sérsic index, in early-type galaxies, or in more massive galaxies are mostly oblate systems. Conclusions: We concluded that various evolutionary pathways may coexist in galaxies, with merging events and dissipative collapse being the main mechanisms driving the formation of the most massive oblate bulges and bar evolution reshaping the less massive triaxial bulges.

  14. A Near-infrared RR Lyrae Census along the Southern Galactic Plane: The Milky Way’s Stellar Fossil Brought to Light

    NASA Astrophysics Data System (ADS)

    Dékány, István; Hajdu, Gergely; Grebel, Eva K.; Catelan, Márcio; Elorrieta, Felipe; Eyheramendy, Susana; Majaess, Daniel; Jordán, Andrés

    2018-04-01

    RR Lyrae stars (RRLs) are tracers of the Milky Way’s fossil record, holding valuable information on its formation and early evolution. Owing to the high interstellar extinction endemic to the Galactic plane, distant RRLs lying at low Galactic latitudes have been elusive. We attained a census of 1892 high-confidence RRLs by exploiting the near-infrared photometric database of the VVV survey’s disk footprint spanning ∼70° of Galactic longitude, using a machine-learned classifier. Novel data-driven methods were employed to accurately characterize their spatial distribution using sparsely sampled multi-band photometry. The RRL metallicity distribution function (MDF) was derived from their K s -band light-curve parameters using machine-learning methods. The MDF shows remarkable structural similarities to both the spectroscopic MDF of red clump giants and the MDF of bulge RRLs. We model the MDF with a multi-component density distribution and find that the number density of stars associated with the different model components systematically changes with both the Galactocentric radius and vertical distance from the Galactic plane, equivalent to weak metallicity gradients. Based on the consistency with results from the ARGOS survey, three MDF modes are attributed to the old disk populations, while the most metal-poor RRLs are probably halo interlopers. We propose that the dominant [Fe/H] component with a mean of ‑1 dex might correspond to the outskirts of an ancient Galactic spheroid or classical bulge component residing in the central Milky Way. The physical origins of the RRLs in this study need to be verified by kinematical information.

  15. Parameters of Six Selected Galactic Potential Models

    NASA Astrophysics Data System (ADS)

    Bajkova, Anisa; Bobylev, Vadim

    2017-11-01

    This paper is devoted to the refinement of the parameters of the six three-component (bulge, disk, halo) axisymmetric Galactic gravitational potential models on the basis of modern data on circular velocities of Galactic objects located at distances up to 200 kpc from the Galactic center. In all models the bulge and disk are described by the Miyamoto-Nagai expressions. To describe the halo, the models of Allen-Santillán (I), Wilkinson-Evans (II), Navarro- Frenk-White (III), Binney (IV), Plummer (V), and Hernquist (VI) are used. The sought-for parameters of potential models are determined by fitting the model rotation curves to the measured velocities, taking into account restrictions on the local dynamical matter density p⊙ - 0.1M⊙ pc-3 and the vertical force |Kz=1.1|/2πG = 77M⊙ pc-2. A comparative analysis of the refined potential models is made and for each of the models the estimates of a number of the Galactic characteristics are presented.

  16. The nature of giant clumps in distant galaxies probed by the anatomy of the cosmic snake

    NASA Astrophysics Data System (ADS)

    Cava, Antonio; Schaerer, Daniel; Richard, Johan; Pérez-González, Pablo G.; Dessauges-Zavadsky, Miroslava; Mayer, Lucio; Tamburello, Valentina

    2018-01-01

    Giant stellar clumps are ubiquitous in high-redshift galaxies1,2. They are thought to play an important role in the build-up of galactic bulges3 and as diagnostics of star formation feedback in galactic discs4. Hubble Space Telescope (HST) blank field imaging surveys have estimated that these clumps have masses of up to 109.5 M⊙ and linear sizes of ≳1 kpc5,6. Recently, gravitational lensing has also been used to get higher spatial resolution7-9. However, both recent lensed observations10,11 and models12,13 suggest that the clumps' properties may be overestimated by the limited resolution of standard imaging techniques. A definitive proof of this observational bias is nevertheless still missing. Here we investigate directly the effect of resolution on clump properties by analysing multiple gravitationally lensed images of the same galaxy at different spatial resolutions, down to 30 pc. We show that the typical mass and size of giant clumps, generally observed at 1 kpc resolution in high-redshift galaxies, are systematically overestimated. The high spatial resolution data, only enabled by strong gravitational lensing using currently available facilities, support smaller scales of clump formation by fragmentation of the galactic gas disk via gravitational instabilities.

  17. The imprints of bars on the vertical stellar population gradients of galactic bulges

    NASA Astrophysics Data System (ADS)

    Molaeinezhad, A.; Falcón-Barroso, J.; Martínez-Valpuesta, I.; Khosroshahi, H. G.; Vazdekis, A.; La Barbera, F.; Peletier, R. F.; Balcells, M.

    2017-05-01

    This is the second paper of a series aimed to study the stellar kinematics and population properties of bulges in highly inclined barred galaxies. In this work, we carry out a detailed analysis of the stellar age, metallicity and [Mg/Fe] of 28 highly inclined (I > 65°) disc galaxies, from S0 to S(B)c, observed with the SAURON integral-field spectrograph. The sample is divided into two clean samples of barred and unbarred galaxies, on the basis of the correlation between the stellar velocity and h3 profiles, as well as the level of cylindrical rotation within the bulge region. We find that while the mean stellar age, metallicity and [Mg/Fe] in the bulges of barred and unbarred galaxies are not statistically distinct, the [Mg/Fe] gradients along the minor axis (away from the disc) of barred galaxies are significantly different than those without bars. For barred galaxies, stars that are vertically further away from the mid-plane are in general more [Mg/Fe]-enhanced and thus the vertical gradients in [Mg/Fe] for barred galaxies are mostly positive, while for unbarred bulges the [Mg/Fe] profiles are typically negative or flat. This result, together with the old populations observed in the barred sample, indicates that bars are long-lasting structures, and therefore are not easily destroyed. The marked [Mg/Fe] differences with the bulges of unbarred galaxies indicate that different formation/evolution scenarios are required to explain their build-up, and emphasizes the role of bars in redistributing stellar material in the bulge-dominated regions.

  18. NGC 6273: Towards Defining A New Class of Galactic Globular Clusters?

    NASA Astrophysics Data System (ADS)

    Johnson, Christian I.; Rich, Robert Michael; Pilachowski, Catherine A.; Caldwell, Nelson; Mateo, Mario L.; Ira Bailey, John; Crane, Jeffrey D.

    2016-01-01

    A growing number of observations have found that several Galactic globular clusters exhibit abundance dispersions beyond the well-known light element (anti-)correlations. These clusters tend to be very massive, have >0.1 dex intrinsic metallicity dispersions, have complex sub-giant branch morphologies, and have correlated [Fe/H] and s-process element enhancements. Interestingly, nearly all of these clusters discovered so far have [Fe/H]~-1.7. In this context, we have examined the chemical composition of 18 red giant branch (RGB) stars in the massive, metal-poor Galactic bulge globular cluster NGC 6273 using high signal-to-noise, high resolution (R~27,000) spectra obtained with the Michigan/Magellan Fiber System (M2FS) and MSpec spectrograph mounted on the Magellan-Clay 6.5m telescope at Las Campanas Observatory. We find that the cluster exhibits a metallicity range from [Fe/H]=-1.80 to -1.30 and is composed of two dominant populations separated in [Fe/H] and [La/Fe] abundance. The increase in [La/Eu] as a function of [La/H] suggests that the increase in [La/Fe] with [Fe/H] is due to almost pure s-process enrichment. The most metal-rich star in our sample is not strongly La-enhanced, but is α-poor and may belong to a third "anomalous" stellar population. The two dominant populations exhibit the same [Na/Fe]-[Al/Fe] correlation found in other "normal" globular clusters. Therefore, NGC 6273 joins ω Centauri, M 22, M 2, and NGC 5286 as a possible new class of Galactic globular clusters.

  19. THE SEGUE K GIANT SURVEY. III. QUANTIFYING GALACTIC HALO SUBSTRUCTURE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Janesh, William; Morrison, Heather L.; Ma, Zhibo

    2016-01-10

    We statistically quantify the amount of substructure in the Milky Way stellar halo using a sample of 4568 halo K giant stars at Galactocentric distances ranging over 5–125 kpc. These stars have been selected photometrically and confirmed spectroscopically as K giants from the Sloan Digital Sky Survey’s Sloan Extension for Galactic Understanding and Exploration project. Using a position–velocity clustering estimator (the 4distance) and a model of a smooth stellar halo, we quantify the amount of substructure in the halo, divided by distance and metallicity. Overall, we find that the halo as a whole is highly structured. We also confirm earliermore » work using blue horizontal branch (BHB) stars which showed that there is an increasing amount of substructure with increasing Galactocentric radius, and additionally find that the amount of substructure in the halo increases with increasing metallicity. Comparing to resampled BHB stars, we find that K giants and BHBs have similar amounts of substructure over equivalent ranges of Galactocentric radius. Using a friends-of-friends algorithm to identify members of individual groups, we find that a large fraction (∼33%) of grouped stars are associated with Sgr, and identify stars belonging to other halo star streams: the Orphan Stream, the Cetus Polar Stream, and others, including previously unknown substructures. A large fraction of sample K giants (more than 50%) are not grouped into any substructure. We find also that the Sgr stream strongly dominates groups in the outer halo for all except the most metal-poor stars, and suggest that this is the source of the increase of substructure with Galactocentric radius and metallicity.« less

  20. Exploring the Chemical Composition and Double Horizontal Branch of the Bulge Globular Cluster NGC 6569

    NASA Astrophysics Data System (ADS)

    Johnson, Christian I.; Rich, R. Michael; Caldwell, Nelson; Mateo, Mario; Bailey, John I., III; Olszewski, Edward W.; Walker, Matthew G.

    2018-02-01

    Photometric and spectroscopic analyses have shown that the Galactic bulge cluster Terzan 5 hosts several populations with different metallicities and ages that manifest as a double red horizontal branch (HB). A recent investigation of the massive bulge cluster NGC 6569 revealed a similar, though less extended, HB luminosity split, but little is known about the cluster’s detailed chemical composition. Therefore, we have used high-resolution spectra from the Magellan–M2FS and VLT–FLAMES spectrographs to investigate the chemical compositions and radial velocity distributions of red giant branch and HB stars in NGC 6569. We found the cluster to have a mean heliocentric radial velocity of ‑48.8 km s‑1 (σ = 5.3 km s‑1 148 stars) and < [{Fe}/{{H}}]> =-0.87 dex (19 stars), but the cluster’s 0.05 dex [Fe/H] dispersion precludes a significant metallicity spread. NGC 6569 exhibits light- and heavy-element distributions that are common among old bulge/inner Galaxy globular clusters, including clear (anti)correlations between [O/Fe], [Na/Fe], and [Al/Fe]. The light-element data suggest that NGC 6569 may be composed of at least two distinct populations, and the cluster’s low < [{La}/{Eu}]> =-0.11 dex indicates significant pollution with r-process material. We confirm that both HBs contain cluster members, but metallicity and light-element variations are largely ruled out as sources for the luminosity difference. However, He mass fraction differences as small as ΔY ∼ 0.02 cannot be ruled out and may be sufficient to reproduce the double HB.

  1. THE VERTICAL X-SHAPED STRUCTURE IN THE MILKY WAY: EVIDENCE FROM A SIMPLE BOXY BULGE MODEL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li Zhaoyu; Shen Juntai, E-mail: jshen@shao.ac.cn

    2012-09-20

    A vertical X-shaped structure in the Galactic bulge was recently reported. Here, we present evidence of a similar X-shaped structure in the Shen et al. 2010 bar/boxy bulge model that simultaneously matches the stellar kinematics successfully. The X-shaped structure is found in the central region of our bar/boxy bulge model and is qualitatively consistent with the observed one in many aspects. End-to-end separations of the X-shaped structure in the radial and vertical directions are roughly 3 kpc and 1.8 kpc, respectively. The X-shaped structure contains about 7% of light in the boxy bulge region, but it is significant enough tomore » be identified in observations. An X-shaped structure naturally arises in the formation of bar/boxy bulges and is mainly associated with orbits trapped around the vertically extended x{sub 1} family. Like the bar in our model, the X-shaped structure tilts away from the Sun-Galactic center line by 20 Degree-Sign . The X-shaped structure becomes increasingly symmetric about the disk plane, so the observed symmetry may indicate that it formed at least a few billion years ago. The existence of the vertical X-shaped structure suggests that the formation of the Milky Way bulge is shaped mainly by internal disk dynamical instabilities.« less

  2. Oscillating Red Giants Observed during Campaign 1 of the Kepler K2 Mission: New Prospects for Galactic Archaeology

    NASA Astrophysics Data System (ADS)

    Stello, Dennis; Huber, Daniel; Sharma, Sanjib; Johnson, Jennifer; Lund, Mikkel N.; Handberg, Rasmus; Buzasi, Derek L.; Silva Aguirre, Victor; Chaplin, William J.; Miglio, Andrea; Pinsonneault, Marc; Basu, Sarbani; Bedding, Tim R.; Bland-Hawthorn, Joss; Casagrande, Luca; Davies, Guy; Elsworth, Yvonne; Garcia, Rafael A.; Mathur, Savita; Di Mauro, Maria Pia; Mosser, Benoit; Schneider, Donald P.; Serenelli, Aldo; Valentini, Marica

    2015-08-01

    NASA’s re-purposed Kepler mission—dubbed K2—has brought new scientific opportunities that were not anticipated for the original Kepler mission. One science goal that makes optimal use of K2's capabilities, in particular its 360° ecliptic field of view, is galactic archaeology—the study of the evolution of the Galaxy from the fossil stellar record. The thrust of this research is to exploit high-precision, time-resolved photometry from K2 in order to detect oscillations in red giant stars. This asteroseismic information can provide estimates of stellar radius (hence distance), mass, and age of vast numbers of stars across the Galaxy. Here we present the initial analysis of a subset of red giants, observed toward the north galactic gap, during the mission’s first full science campaign. We investigate the feasibility of using K2 data for detecting oscillations in red giants that span a range in apparent magnitude and evolutionary state (hence intrinsic luminosity). We demonstrate that oscillations are detectable for essentially all cool giants within the {log}g range ˜1.9-3.2. Our detection is complete down to {\\text{Kp}} ˜ 14.5, which results in a seismic sample with little or no detection bias. This sample is ideally suited to stellar population studies that seek to investigate potential shortcomings of contemporary Galaxy models.

  3. Dynamics of the CMZ - Giant Magnetic Loops Connection in the Galactic Center

    NASA Astrophysics Data System (ADS)

    Langer, William

    2012-10-01

    Understanding the mass transfer and dynamics among the Galactic Center, the disk, and the halo of the Milky Way is fundamental to the study of the evolution of galaxies and star formation. Several giant molecular loops (GML), detected in CO maps of the Galactic Center, are likely the result of the magnetic Parker instability. We have new evidence of a possible dynamical connection between these loops and the Central Molecular Zone (CMZ) from a sparse [CII] sampling from our Herschel Open Time Key Project GOT C+. The CMZ-GML region is dynamically active and is likely to have a significant ionized component. However, we have no information on the distribution and dynamics of the ionized gas. The fine-structure lines of [NII] are key probes of the warm ionized medium (WIM) and along with the [CII] can isolate the different ionization components. We have a Herschel OT2 Priority 1 program to map the GML and the CMZ-GML connection in [CII] in more detail. However, we did not propose needed [NII] observations due to an incomplete analysis of our limited GOT C+ data at the time. Here we propose to observe with the SOFIA/GREAT instrument, [NII] in the CMZ-GML interface region using the L1b band, and serendipitously CO (16-15) using band L2. With this data, combined with our Herschel HIFI [CII], Mopra 12CO (1-0) and 13CO (1-0), and HI, we will characterize these important ISM components and their motions in these Galactic Center features. These observations of the nearest such regions of galactic center activity, also have bearing on the dynamics of other galactic nuclei.

  4. Before the Bar: Kinematic Detection of a Spheroidal Metal-poor Bulge Component

    NASA Astrophysics Data System (ADS)

    Kunder, Andrea; Rich, R. M.; Koch, A.; Storm, J.; Nataf, D. M.; De Propris, R.; Walker, A. R.; Bono, G.; Johnson, C. I.; Shen, Juntai; Li, Z.-Y.

    2016-04-01

    We present 947 radial velocities of RR Lyrae variable stars in four fields located toward the Galactic bulge, observed within the data from the ongoing Bulge RR Lyrae Radial Velocity Assay (BRAVA-RR). We show that these RR Lyrae stars (RRLs) exhibit hot kinematics and null or negligible rotation and are therefore members of a separate population from the bar/pseudobulge that currently dominates the mass and luminosity of the inner Galaxy. Our RRLs predate these structures and have metallicities, kinematics, and spatial distribution that are consistent with a “classical” bulge, although we cannot yet completely rule out the possibility that they are the metal-poor tail of a more metal-rich ([{Fe}/{{H}}]˜ -1 dex) halo-bulge population. The complete catalog of radial velocities for the BRAVA-RR stars is also published electronically.

  5. Quiescent Giant Molecular Cloud Cores in the Galactic Center

    NASA Technical Reports Server (NTRS)

    Lis, D. C.; Serabyn, E.; Zylka, R.; Li, Y.

    2000-01-01

    We have used the Long Wavelength Spectrometer (LWS) aboard the Infrared Space Observatory (ISO) to map the far-infrared continuum emission (45-175 micrometer) toward several massive Giant Molecular Cloud (GMC) cores located near the Galactic center. The observed far-infrared and submillimeter spectral energy distributions imply low temperatures (approx. 15 - 22 K) for the bulk of the dust in all the sources, consistent with external heating by the diffuse ISRF and suggest that these GMCs do not harbor high- mass star-formation sites, in spite of their large molecular mass. Observations of FIR atomic fine structure lines of C(sub II) and O(sub I) indicate an ISRF enhancement of approx. 10(exp 3) in the region. Through continuum radiative transfer modeling we show that this radiation field strength is in agreement with the observed FIR and submillimeter spectral energy distributions, assuming primarily external heating of the dust with only limited internal luminosity (approx. 2 x 10(exp 5) solar luminosity). Spectroscopic observations of millimeter-wave transitions of H2CO, CS, and C-34S carried out with the Caltech Submillimeter Observatory (CSO) and the Institut de Radio Astronomie Millimetrique (IRAM) 30-meter telescope indicate a gas temperature of approx. 80 K, significantly higher than the dust temperatures, and density of approx. 1 x 10(exp 5)/cc in GCM0.25 + 0.01, the brightest submillimeter source in the region. We suggest that shocks caused by cloud collisions in the turbulent interstellar medium in the Galactic center region are responsible for heating the molecular gas. This conclusion is supported by the presence of wide-spread emission from molecules such as SiO, SO, and CH3OH, which are considered good shock tracers. We also suggest that the GMCs studied here are representative of the "typical", pre-starforming cloud population in the Galactic center.

  6. Giant molecular filaments in the Milky Way. II. The fourth Galactic quadrant

    NASA Astrophysics Data System (ADS)

    Abreu-Vicente, J.; Ragan, S.; Kainulainen, J.; Henning, Th.; Beuther, H.; Johnston, K.

    2016-05-01

    Context. Filamentary structures are common morphological features of the cold, molecular interstellar medium (ISM). Recent studies have discovered massive, hundred-parsec-scale filaments that may be connected to the large-scale, Galactic spiral arm structure. Addressing the nature of these giant molecular filaments (GMFs) requires a census of their occurrence and properties. Aims: We perform a systematic search of GMFs in the fourth Galactic quadrant and determine their basic physical properties. Methods: We identify GMFs based on their dust extinction signatures in the near- and mid-infrared and the velocity structure probed by 13CO line emission. We use the 13CO line emission and ATLASGAL dust emission data to estimate the total and dense gas masses of the GMFs. We combine our sample with an earlier sample from literature and study the Galactic environment of the GMFs. Results: We identify nine GMFs in the fourth Galactic quadrant: six in the Centaurus spiral arm and three in inter-arm regions. Combining this sample with an earlier study using the same identification criteria in the first Galactic quadrant results in 16 GMFs, nine of which are located within spiral arms. The GMFs have sizes of 80-160 pc and 13CO-derived masses between 5-90 × 104M⊙. Their dense gas mass fractions are between 1.5-37%, which is higher in the GMFs connected to spiral arms. We also compare the different GMF-identification methods and find that emission and extinction-based techniques overlap only partially, thereby highlighting the need to use both to achieve a complete census. Table A.2 is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/590/A131

  7. Galaxies Grow Their Bulges and Black Holes in Diverse Ways

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bell, Eric F.; Harmsen, Benjamin; D’Souza, Richard

    Galaxies with Milky Way–like stellar masses have a wide range of bulge and black hole masses; in turn, these correlate with other properties such as star formation history. While many processes may drive bulge formation, major and minor mergers are expected to play a crucial role. Stellar halos offer a novel and robust measurement of galactic merger history; cosmologically motivated models predict that mergers with larger satellites produce more massive, higher-metallicity stellar halos, reproducing the recently observed stellar halo metallicity–mass relation. We quantify the relationship between stellar halo mass and bulge or black hole prominence using a sample of 18more » Milky Way-mass galaxies with newly available measurements of (or limits on) stellar halo properties. There is an order of magnitude range in bulge mass, and two orders of magnitude in black hole mass, at a given stellar halo mass (or, equivalently, merger history). Galaxies with low-mass bulges show a wide range of quiet merger histories, implying formation mechanisms that do not require intense merging activity. Galaxies with massive “classical” bulges and central black holes also show a wide range of merger histories. While three of these galaxies have massive stellar halos consistent with a merger origin, two do not—merging appears to have had little impact on making these two massive “classical” bulges. Such galaxies may be ideal laboratories to study massive bulge formation through pathways such as early gas-rich accretion, violent disk instabilities, or misaligned infall of gas throughout cosmic time.« less

  8. Galaxies Grow Their Bulges and Black Holes in Diverse Ways

    NASA Astrophysics Data System (ADS)

    Bell, Eric F.; Monachesi, Antonela; Harmsen, Benjamin; de Jong, Roelof S.; Bailin, Jeremy; Radburn-Smith, David J.; D'Souza, Richard; Holwerda, Benne W.

    2017-03-01

    Galaxies with Milky Way-like stellar masses have a wide range of bulge and black hole masses; in turn, these correlate with other properties such as star formation history. While many processes may drive bulge formation, major and minor mergers are expected to play a crucial role. Stellar halos offer a novel and robust measurement of galactic merger history; cosmologically motivated models predict that mergers with larger satellites produce more massive, higher-metallicity stellar halos, reproducing the recently observed stellar halo metallicity-mass relation. We quantify the relationship between stellar halo mass and bulge or black hole prominence using a sample of 18 Milky Way-mass galaxies with newly available measurements of (or limits on) stellar halo properties. There is an order of magnitude range in bulge mass, and two orders of magnitude in black hole mass, at a given stellar halo mass (or, equivalently, merger history). Galaxies with low-mass bulges show a wide range of quiet merger histories, implying formation mechanisms that do not require intense merging activity. Galaxies with massive “classical” bulges and central black holes also show a wide range of merger histories. While three of these galaxies have massive stellar halos consistent with a merger origin, two do not—merging appears to have had little impact on making these two massive “classical” bulges. Such galaxies may be ideal laboratories to study massive bulge formation through pathways such as early gas-rich accretion, violent disk instabilities, or misaligned infall of gas throughout cosmic time.

  9. The Optical Gravitational Lensing Experiment. Small Amplitude Variable Red Giants in the Magellanic Clouds

    NASA Astrophysics Data System (ADS)

    Soszynski, I.; Udalski, A.; Kubiak, M.; Szymanski, M.; Pietrzynski, G.; Zebrun, K.; Szewczyk, O.; Wyrzykowski, L.

    2004-06-01

    We present analysis of the large sample of variable red giants from the Large and Small Magellanic Clouds detected during the second phase of the Optical Gravitational Lensing Experiment (OGLE-II) and supplemented with OGLE-III photometry. Comparing pulsation properties of detected objects we find that they constitute two groups with clearly distinct features. In this paper we analyze in detail small amplitude variable red giants (about 15400 and 3000 objects in the LMC and SMC, respectively). The vast majority of these objects are multi-periodic. At least 30% of them exhibit two modes closely spaced in the power spectrum, what likely indicates non-radial oscillations. About 50% exhibit additional so called Long Secondary Period. To distinguish between AGB and RGB red giants we compare PL diagrams of multi-periodic red giants located above and below the tip of the Red Giant Branch (TRGB). The giants above the TRGB form four parallel ridges in the PL diagram. Among much more numerous sample of giants below the TRGB we find objects located on the low luminosity extensions of these ridges, but most of the stars are located on the ridges slightly shifted in log P. We interpret the former as the second ascent AGB red giants and the latter as the first ascent RGB objects. Thus, we empirically show that the pulsating red giants fainter than the TRGB are a mixture of RGB and AGB giants. Finally, we compare the Petersen diagrams of the LMC, SMC and Galactic bulge variable red giants and find that they are basically identical indicating that the variable red giants in all these different stellar environments share similar pulsation properties.

  10. Central Stellar Mass Deficits in the Bulges of Local Lenticular Galaxies

    NASA Astrophysics Data System (ADS)

    Dullo, B. T.

    2014-03-01

    The centers of giant galaxies display stellar mass deficits (Mdef) which are thought to be a signature left by inspiraling supermassive black hole (SMBH) binaries that are formed in post-merger galaxies. We quantify these deficits for a sample of five luminous lenticular galaxies with bulge magnitude MV ≲ -21 mag and find Mdef ≍ 0.5 - 2MBH (black hole mass). Contrary to the traditionally proposed lenticular galaxy formation mechanisms such as ram-pressure stripping and galaxy harassment, the mass deficits in these galaxies suggest a two stage inside-out process for their assembly. That is, their bulges may have formed through “dry” major-merger events involving SMBHs while their disk was subsequently built up via cold gas accretion scenarios. Interestingly, these bulges have sizes and mass densities comparable to the compact massive galaxies found at z ˜ 2.

  11. Solving the Mystery of Galaxy Bulges and Bulge Substructure

    NASA Astrophysics Data System (ADS)

    Erwin, Peter

    2017-08-01

    Understanding galaxy bulges is crucial for understanding galaxy evolution and the growth of supermassive black holes (SMBHs). Recent studies have shown that at least some - perhaps most - disk-galaxy bulges are actually composite structures, with both classical-bulge (spheroid) and pseudobulge (disky) components; this calls into question the standard practice of using simple, low-resolution bulge/disk decompositions to determine spheroid and SMBH mass functions. We propose WFC3 optical and near-IR imaging of a volume- and mass-limited sample of local disk galaxies to determine the full range of pure-classical, pure-pseudobulge, and composite-bulge frequencies and parameters, including stellar masses for classical bulges, disky pseudobulges, and boxy/peanut-shaped bulges. We will combine this with ground-based spectroscopy to determine the stellar-kinematic and population characteristics of the different substructures revealed by our WFC3 imaging. This will help resolve growing uncertainties about the status and nature of bulges and their relation to SMBH masses, and will provide an essential local-universe reference for understanding bulge (and SMBH) formation and evolution.

  12. Diffuse X-ray sky in the Galactic center

    NASA Astrophysics Data System (ADS)

    Koyama, Katsuji

    2018-01-01

    The Galactic diffuse X-ray emission (GDXE) in the Milky Way Galaxy is spatially and spectrally decomposed into the Galactic center X-ray emission (GCXE), the Galactic ridge X-ray emission (GRXE), and the Galactic bulge X-ray emission (GBXE). The X-ray spectra of the GDXE are characterized by the strong K-shell lines of the highly ionized atoms, and the brightest lines are the K-shell transition (principal quantum number transition of n = 2 → 1) of neutral iron (Fe I-Kα), He-like iron (Fe XXV-Heα), and He-like sulfur (S XV-Heα). Accordingly, the GDXE is composed of a high-temperature plasma of ˜7 keV (HTP) and a low-temperature plasma of ˜1 keV, which emit the Fe XXV-Heα and S XV-Heα lines, respectively. The Fe I-Kα line is emitted from nearly neutral irons, and hence the third component of the GDXE is a cool gas (CG). The Fe I-Kα distribution in the GCXE region is clumpy (Fe I-Kα clump), associated with giant molecular cloud (MC) complexes (Sagittarius A, B, C, D, and E) in the central molecular zone. The origin of the Fe I-Kα clumps is the fluorescence and Thomson scattering from the MCs irradiated by past big flares of the supermassive black hole Sagittarius A*. The scale heights and equivalent widths of the Fe I-Kα, Fe XXV-Heα, and Fe XXVI-Lyα (n = 2 → 1 transition of H-like iron) lines are different among the GCXE, GBXE, and GRXE. Therefore, their structures and origins are separately examined. This paper gives an overview of the research history and the present understandings of the GDXE, while in particular focusing on the origin of the HTP and CG in the GCXE.

  13. Finding evolved stars in the inner Galactic disk with Gaia

    NASA Astrophysics Data System (ADS)

    Quiroga-Nuñez, L. H.; van Langevelde, H. J.; Pihlström, Y. M.; Sjouwerman, L. O.; Brown, A. G. A.

    2018-04-01

    The Bulge Asymmetries and Dynamical Evolution (BAaDE) survey will provide positions and line-of-sight velocities of ~20, 000 evolved, maser bearing stars in the Galactic plane. Although this Galactic region is affected by optical extinction, BAaDE targets may have Gaia cross-matches, eventually providing additional stellar information. In an initial attempt to cross-match BAaDE targets with Gaia, we have found more than 5,000 candidates. Of these, we may expect half to show SiO emission, which will allow us to obtain velocity information. The cross-match is being refined to avoid false positives using different criteria based on distance analysis, flux variability, and color assessment in the mid- and near-IR. Once the cross-matches can be confirmed, we will have a unique sample to characterize the stellar population of evolved stars in the Galactic bulge, which can be considered fossils of the Milky Way formation.

  14. The Milky Way, the Galactic halo, and the Halos of Galaxies

    NASA Astrophysics Data System (ADS)

    Gerhard, Ortwin

    2015-08-01

    The Milky Way, "our" Galaxy, is currently the subject of intense study with many ground-based surveys, in anticipation of upcoming results from the GAIA mission. From this work we have been learning about the full three-dimensional structure of the Galactic box/peanut bulge, the distribution of stars in the bar and disk, and the many streams in the Galactic halo. The data tell us that most of the Galactic bulge formed from the disk, and that a large fraction of the Galactic halo has been accreted from outside. Similarly, in many external galaxy halos there is now evidence for tidal streams and accretion of satellites. To see these features requires exquisite data - mostly very deep photometry, but some halo substructures have also been found with kinematic data. These observations illustrate how galaxy halos are still growing, and sometimes can be used to "time" the accretion events. In comparison with cosmological simulations, the structure of galaxy halos gives us a vivid illustration of the hierarchical nature of our Universe.

  15. Searches for point sources in the Galactic Center region

    NASA Astrophysics Data System (ADS)

    di Mauro, Mattia; Fermi-LAT Collaboration

    2017-01-01

    Several groups have demonstrated the existence of an excess in the gamma-ray emission around the Galactic Center (GC) with respect to the predictions from a variety of Galactic Interstellar Emission Models (GIEMs) and point source catalogs. The origin of this excess, peaked at a few GeV, is still under debate. A possible interpretation is that it comes from a population of unresolved Millisecond Pulsars (MSPs) in the Galactic bulge. We investigate the detection of point sources in the GC region using new tools which the Fermi-LAT Collaboration is developing in the context of searches for Dark Matter (DM) signals. These new tools perform very fast scans iteratively testing for additional point sources at each of the pixels of the region of interest. We show also how to discriminate between point sources and structural residuals from the GIEM. We apply these methods to the GC region considering different GIEMs and testing the DM and MSPs intepretations for the GC excess. Additionally, we create a list of promising MSP candidates that could represent the brightest sources of a MSP bulge population.

  16. CXOGBS J173620.2-293338: A candidate symbiotic X-ray binary associated with a bulge carbon star

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hynes, Robert I.; Britt, C. T.; Johnson, C. B.

    2014-01-01

    The Galactic Bulge Survey (GBS) is a wide but shallow X-ray survey of regions above and below the Plane in the Galactic Bulge. It was performed using the Chandra X-ray Observatory's ACIS camera. The survey is primarily designed to find and classify low luminosity X-ray binaries. The combination of the X-ray depth of the survey and the accessibility of optical and infrared counterparts makes this survey ideally suited to identification of new symbiotic X-ray binaries (SyXBs) in the Bulge. We consider the specific case of the X-ray source CXOGBS J173620.2-293338. It is coincident to within 1 arcsec with a verymore » red star, showing a carbon star spectrum and irregular variability in the Optical Gravitational Lensing Experiment data. We classify the star as a late C-R type carbon star based on its spectral features, photometric properties, and variability characteristics, although a low-luminosity C-N type cannot be ruled out. The brightness of the star implies it is located in the Bulge, and its photometric properties are overall consistent with the Bulge carbon star population. Given the rarity of carbon stars in the Bulge, we estimate the probability of such a close chance alignment of any GBS source with a carbon star to be ≲ 10{sup –3}, suggesting that this is likely to be a real match. If the X-ray source is indeed associated with the carbon star, then the X-ray luminosity is around 9 × 10{sup 32} erg s{sup –1}. Its characteristics are consistent with a low luminosity SyXB, or possibly a low accretion rate white dwarf symbiotic.« less

  17. Star formation induced by cloud-cloud collisions and galactic giant molecular cloud evolution

    NASA Astrophysics Data System (ADS)

    Kobayashi, Masato I. N.; Kobayashi, Hiroshi; Inutsuka, Shu-ichiro; Fukui, Yasuo

    2018-05-01

    Recent millimeter/submillimeter observations towards nearby galaxies have started to map the whole disk and to identify giant molecular clouds (GMCs) even in the regions between galactic spiral structures. Observed variations of GMC mass functions in different galactic environments indicates that massive GMCs preferentially reside along galactic spiral structures whereas inter-arm regions have many small GMCs. Based on the phase transition dynamics from magnetized warm neutral medium to molecular clouds, Kobayashi et al. (2017, ApJ, 836, 175) proposes a semi-analytical evolutionary description for GMC mass functions including a cloud-cloud collision (CCC) process. Their results show that CCC is less dominant in shaping the mass function of GMCs than the accretion of dense H I gas driven by the propagation of supersonic shock waves. However, their formulation does not take into account the possible enhancement of star formation by CCC. Millimeter/submillimeter observations within the Milky Way indicate the importance of CCC in the formation of star clusters and massive stars. In this article, we reformulate the time-evolution equation largely modified from Kobayashi et al. (2017, ApJ, 836, 175) so that we additionally compute star formation subsequently taking place in CCC clouds. Our results suggest that, although CCC events between smaller clouds are more frequent than the ones between massive GMCs, CCC-driven star formation is mostly driven by massive GMCs ≳ 10^{5.5} M_{⊙} (where M⊙ is the solar mass). The resultant cumulative CCC-driven star formation may amount to a few 10 percent of the total star formation in the Milky Way and nearby galaxies.

  18. Bulge growth and quenching since z = 2.5 in CANDELS/3D-HST

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lang, Philipp; Wuyts, Stijn; Schreiber, Natascha M. Förster

    2014-06-10

    Exploiting the deep high-resolution imaging of all five CANDELS fields, and accurate redshift information provided by 3D-HST, we investigate the relation between structure and stellar populations for a mass-selected sample of 6764 galaxies above 10{sup 10} M {sub ☉}, spanning the redshift range 0.5 < z < 2.5. For the first time, we fit two-dimensional models comprising a single Sérsic fit and two-component (i.e., bulge + disk) decompositions not only to the H-band light distributions, but also to the stellar mass maps reconstructed from resolved stellar population modeling. We confirm that the increased bulge prominence among quiescent galaxies, as reportedmore » previously based on rest-optical observations, remains in place when considering the distributions of stellar mass. Moreover, we observe an increase of the typical Sérsic index and bulge-to-total ratio (with median B/T reaching 40%-50%) among star-forming galaxies above 10{sup 11} M {sub ☉}. Given that quenching for these most massive systems is likely to be imminent, our findings suggest that significant bulge growth precedes a departure from the star-forming main sequence. We demonstrate that the bulge mass (and ideally knowledge of the bulge and total mass) is a more reliable predictor of the star-forming versus quiescent state of a galaxy than the total stellar mass. The same trends are predicted by the state-of-the-art, semi-analytic model by Somerville et al. In this model, bulges and black holes grow hand in hand through merging and/or disk instabilities, and feedback from active galactic nuclei shuts off star formation. Further observations will be required to pin down star formation quenching mechanisms, but our results imply that they must be internal to the galaxies and closely associated with bulge growth.« less

  19. Bulge Growth and Quenching since z = 2.5 in CANDELS/3D-HST

    NASA Astrophysics Data System (ADS)

    Lang, Philipp; Wuyts, Stijn; Somerville, Rachel S.; Förster Schreiber, Natascha M.; Genzel, Reinhard; Bell, Eric F.; Brammer, Gabe; Dekel, Avishai; Faber, Sandra M.; Ferguson, Henry C.; Grogin, Norman A.; Kocevski, Dale D.; Koekemoer, Anton M.; Lutz, Dieter; McGrath, Elizabeth J.; Momcheva, Ivelina; Nelson, Erica J.; Primack, Joel R.; Rosario, David J.; Skelton, Rosalind E.; Tacconi, Linda J.; van Dokkum, Pieter G.; Whitaker, Katherine E.

    2014-06-01

    Exploiting the deep high-resolution imaging of all five CANDELS fields, and accurate redshift information provided by 3D-HST, we investigate the relation between structure and stellar populations for a mass-selected sample of 6764 galaxies above 1010 M ⊙, spanning the redshift range 0.5 < z < 2.5. For the first time, we fit two-dimensional models comprising a single Sérsic fit and two-component (i.e., bulge + disk) decompositions not only to the H-band light distributions, but also to the stellar mass maps reconstructed from resolved stellar population modeling. We confirm that the increased bulge prominence among quiescent galaxies, as reported previously based on rest-optical observations, remains in place when considering the distributions of stellar mass. Moreover, we observe an increase of the typical Sérsic index and bulge-to-total ratio (with median B/T reaching 40%-50%) among star-forming galaxies above 1011 M ⊙. Given that quenching for these most massive systems is likely to be imminent, our findings suggest that significant bulge growth precedes a departure from the star-forming main sequence. We demonstrate that the bulge mass (and ideally knowledge of the bulge and total mass) is a more reliable predictor of the star-forming versus quiescent state of a galaxy than the total stellar mass. The same trends are predicted by the state-of-the-art, semi-analytic model by Somerville et al. In this model, bulges and black holes grow hand in hand through merging and/or disk instabilities, and feedback from active galactic nuclei shuts off star formation. Further observations will be required to pin down star formation quenching mechanisms, but our results imply that they must be internal to the galaxies and closely associated with bulge growth.

  20. Evolutionary Description of Giant Molecular Cloud Mass Functions on Galactic Disks

    NASA Astrophysics Data System (ADS)

    Kobayashi, Masato I. N.; Inutsuka, Shu-ichiro; Kobayashi, Hiroshi; Hasegawa, Kenji

    2017-02-01

    Recent radio observations show that giant molecular cloud (GMC) mass functions noticeably vary across galactic disks. High-resolution magnetohydrodynamics simulations show that multiple episodes of compression are required for creating a molecular cloud in the magnetized interstellar medium. In this article, we formulate the evolution equation for the GMC mass function to reproduce the observed profiles, for which multiple compressions are driven by a network of expanding shells due to H II regions and supernova remnants. We introduce the cloud-cloud collision (CCC) terms in the evolution equation in contrast to previous work (Inutsuka et al.). The computed time evolution suggests that the GMC mass function slope is governed by the ratio of GMC formation timescale to its dispersal timescale, and that the CCC effect is limited only in the massive end of the mass function. In addition, we identify a gas resurrection channel that allows the gas dispersed by massive stars to regenerate GMC populations or to accrete onto pre-existing GMCs. Our results show that almost all of the dispersed gas contributes to the mass growth of pre-existing GMCs in arm regions whereas less than 60% contributes in inter-arm regions. Our results also predict that GMC mass functions have a single power-law exponent in the mass range <105.5 {M}⊙ (where {M}⊙ represents the solar mass), which is well characterized by GMC self-growth and dispersal timescales. Measurement of the GMC mass function slope provides a powerful method to constrain those GMC timescales and the gas resurrecting factor in various environments across galactic disks.

  1. OT2_wlanger_7: Dynamics of Giant Magnetic Gas Loops and Their Connection to the CMZ in the Galactic Center

    NASA Astrophysics Data System (ADS)

    Langer, W.

    2011-09-01

    Understanding the mass transfer and dynamics among the Galactic Center, the disk, and the halo of the Milky Way is fundamental to the study of the evolution of galaxies and star formation. Recently several giant loops of molecular gas (GML) have been found in the Galactic Center from CO maps, which are likely the result of the magnetic Parker instability. There is new evidence of a possible connection between these loops and the Central Molecular Zone as shown in a sparse [CII] sampling made by the Herschel Key Project GOT C+. Here we propose to map various features of the GMLs and the interface region in [CII] with HIFI. We will also map the foot points of the loop, which are thought to be highly shocked regions, in the ortho 110-101 line of water, which is a known shock tracer. With this data we will characterize different ISM components and their flow among these Galactic Center features.

  2. GSFC Contributions to the NATO X-ray Astronomy Institute, Erice, July 1979. [X-ray spectra of supernova remants, galactic X-ray sources, active galactic nuclei, and clusters of galaxies

    NASA Technical Reports Server (NTRS)

    Holt, S. S.; Mushotzky, R. F.

    1979-01-01

    An overview of X-ray astronomical spectroscopy in general is presented and results obtained by HEAO 1 and 2 as well as earlier spacecraft are examined. Particular emphasis is given to the spectra of supernova remnants; galactic binary X-ray sources, cataclysmic variables, bulges, pulsars, and stars; the active nuclei of Seyfert 1 galaxy, BL Lac, and quasars; the diffuse X-ray background; and galactic clusters.

  3. Most pseudo-bulges can be formed at later stages of major mergers

    NASA Astrophysics Data System (ADS)

    Sauvaget, T.; Hammer, F.; Puech, M.; Yang, Y. B.; Flores, H.; Rodrigues, M.

    2018-01-01

    Most giant spiral galaxies have pseudo or disc-like bulges that are considered to be the result of purely secular processes. This may challenge the hierarchical scenario predicting about one major merger per massive galaxy (>3 × 1010 M⊙) since the last ∼9 billion years. Here, we verify whether or not the association between pseudo-bulges and secular processes is irrevocable. Using GADGET2 N-body/SPH simulations, we have conducted a systematic study of remnants of major mergers for which progenitors have been selected (1) to follow the gas richness-look back time relationship, and (2) with a representative distribution of orbits and spins in a cosmological frame. Analysing the surface mass density profile of both nearby galaxies and merger remnants with two components, we find that most of them show pseudo-bulges or bar dominated centres. Even if some orbits lead to classical bulges just after the fusion, the contamination by the additional gas that gradually accumulates to the centre and forming stars later on, leads to remnants apparently dominated by pseudo-bulges. We also found that simple smoothed particle hydrodynamics (SPH) simulations should be sufficient to form realistic spiral galaxies as remnants of ancient gas-rich mergers without the need for specifically tuned feedback conditions. We then conclude that pseudo-bulges and bars in spiral galaxies are natural consequences of major mergers when they are realized in a cosmological context, i.e. with gas-rich progenitors as expected when selected in the distant Universe.

  4. Observations of galactic X-ray sources by OSO-7

    NASA Technical Reports Server (NTRS)

    Markert, T. H.; Canizares, C. R.; Clark, G. W.; Hearn, D. R.; Li, F. K.; Sprott, G. F.; Winkler, P. F.

    1977-01-01

    We present the MIT data from the OSO-7 satellite for observations of the galactic plane between 1971 and 1974. A number of sources discovered in the MIT all-sky survey are described in detail: MX 0049 + 59, MX 0836 - 42, MX 1353 - 64, MX 1406 - 61, MX 1418 - 61, MX 1709 - 40, and MX 1608 - 52 (the persistent source suggested to be associated with the X-ray burst source XB 1608 - 52). Upper limits to the X-ray emission from a number of interesting objects are also derived. General results describing all of our observations of galactic sources are presented. Specifically, we display the number-intensity diagrams, luminosity functions, and color-color diagrams for all of the sources we detected. The data are divided between disk and bulge populations, and the characteristics of the two groups are contrasted. Finally, the concept of X-ray source populations and the relationship of globular cluster sources and burst sources to the disk and bulge populations are discussed.

  5. VizieR Online Data Catalog: The SEGUE K giant survey. III. Galactic halo (Janesh+, 2016)

    NASA Astrophysics Data System (ADS)

    Janesh, W.; Morrison, H. L.; Ma, Z.; Rockosi, C.; Starkenburg, E.; Xue, X. X.; Rix, H.-W.; Harding, P.; Beers, T. C.; Johnson, J.; Lee, Y. S.; Schneider, D. P.

    2016-03-01

    We statistically quantify the amount of substructure in the Milky Way stellar halo using a sample of 4568 halo K giant stars at Galactocentric distances ranging over 5-125kpc. These stars have been selected photometrically and confirmed spectroscopically as K giants from the Sloan Digital Sky Survey's Sloan Extension for Galactic Understanding and Exploration (SEGUE) project. Using a position-velocity clustering estimator (the 4distance) and a model of a smooth stellar halo, we quantify the amount of substructure in the halo, divided by distance and metallicity. Overall, we find that the halo as a whole is highly structured. We also confirm earlier work using blue horizontal branch (BHB) stars which showed that there is an increasing amount of substructure with increasing Galactocentric radius, and additionally find that the amount of substructure in the halo increases with increasing metallicity. Comparing to resampled BHB stars, we find that K giants and BHBs have similar amounts of substructure over equivalent ranges of Galactocentric radius. Using a friends-of-friends algorithm to identify members of individual groups, we find that a large fraction (~33%) of grouped stars are associated with Sgr, and identify stars belonging to other halo star streams: the Orphan Stream, the Cetus Polar Stream, and others, including previously unknown substructures. A large fraction of sample K giants (more than 50%) are not grouped into any substructure. We find also that the Sgr stream strongly dominates groups in the outer halo for all except the most metal-poor stars, and suggest that this is the source of the increase of substructure with Galactocentric radius and metallicity. (2 data files).

  6. UKIRT-2017-BLG-001Lb: A Giant Planet Detected through the Dust

    NASA Astrophysics Data System (ADS)

    Shvartzvald, Y.; Calchi Novati, S.; Gaudi, B. S.; Bryden, G.; Nataf, D. M.; Penny, M. T.; Beichman, C.; Henderson, C. B.; Jacklin, S.; Schlafly, E. F.; Huston, M. J.

    2018-04-01

    We report the discovery of a giant planet in event UKIRT-2017-BLG-001, detected by the United Kingdom Infrared Telescope (UKIRT) microlensing survey. The mass ratio between the planet and its host is q={1.50}-0.14+0.17× {10}-3, about 1.5 times the Jupiter/Sun mass ratio. The event lies 0.°35 from the Galactic center and suffers from high extinction of A K = 1.68. Therefore, it could be detected only by a near-infrared (NIR) survey. The field also suffers from large spatial differential extinction, which makes it difficult to estimate the source properties required to derive the angular Einstein radius. Nevertheless, we find evidence suggesting that the source is located in the far disk. If correct, this would be the first source star of a microlensing event to be identified as belonging to the far disk. We estimate the lens mass and distance using a Bayesian analysis to find that the planet’s mass is {1.28}-0.44+0.37 {M}J, and it orbits a {0.81}-0.27+0.21 {M}ȯ star at an instantaneous projected separation of {4.18}-0.88+0.96 au. The system is at a distance of {6.3}-2.1+1.6 kpc, and so likely resides in the Galactic bulge. In addition, we find a non-standard extinction curve in this field, in agreement with previous results toward high-extinction fields near the Galactic center.

  7. Development of a near-infrared high-resolution spectrograph (WINERED) for a survey of bulge stars

    NASA Astrophysics Data System (ADS)

    Tsujimoto, T.; Kobayashi, N.; Yasui, C.; Kondo, S.; Minami, A.; Motohara, K.; Ikeda, Y.; Gouda, N.

    2008-07-01

    We are developing a new near-infrared high-resolution (R[max] = 100,000) and high-sensitive spectrograph WINERED, which is specifically customized for short NIR bands at 0.9 1.35 μm. WINERED employs an innovative optical system; a portable design and a warm optics without any cold stops. The planned astrometric space mission JASMINE will provide precise positions, distances, and proper motions of the bulge stars. The missing components, the radial velocity and chemical composition will be measured by WINERED. These combined data brought by JASMINE and WINERED will certainly reveal the nature of the Galactic bulge. We plan to complete this instrument for observations of single objects by the end of 2008 and to attach it to various 4 10m telescopes as a PI-type instrument. We hope to upgrade WINERED with a multi-object feed in the future for efficient survey of the JASMINE bulge stars.

  8. Extremely metal-poor stars from the cosmic dawn in the bulge of the Milky Way.

    PubMed

    Howes, L M; Casey, A R; Asplund, M; Keller, S C; Yong, D; Nataf, D M; Poleski, R; Lind, K; Kobayashi, C; Owen, C I; Ness, M; Bessell, M S; Da Costa, G S; Schmidt, B P; Tisserand, P; Udalski, A; Szymański, M K; Soszyński, I; Pietrzyński, G; Ulaczyk, K; Wyrzykowski, Ł; Pietrukowicz, P; Skowron, J; Kozłowski, S; Mróz, P

    2015-11-26

    The first stars are predicted to have formed within 200 million years after the Big Bang, initiating the cosmic dawn. A true first star has not yet been discovered, although stars with tiny amounts of elements heavier than helium ('metals') have been found in the outer regions ('halo') of the Milky Way. The first stars and their immediate successors should, however, preferentially be found today in the central regions ('bulges') of galaxies, because they formed in the largest over-densities that grew gravitationally with time. The Milky Way bulge underwent a rapid chemical enrichment during the first 1-2 billion years, leading to a dearth of early, metal-poor stars. Here we report observations of extremely metal-poor stars in the Milky Way bulge, including one star with an iron abundance about 10,000 times lower than the solar value without noticeable carbon enhancement. We confirm that most of the metal-poor bulge stars are on tight orbits around the Galactic Centre, rather than being halo stars passing through the bulge, as expected for stars formed at redshifts greater than 15. Their chemical compositions are in general similar to typical halo stars of the same metallicity although intriguing differences exist, including lower abundances of carbon.

  9. Galactic-scale Feedback Observed in the 3C 298 Quasar Host Galaxy

    NASA Astrophysics Data System (ADS)

    Vayner, Andrey; Wright, Shelley A.; Murray, Norman; Armus, Lee; Larkin, James E.; Mieda, Etsuko

    2017-12-01

    We present high angular resolution multiwavelength data of the 3C 298 radio-loud quasar host galaxy (z = 1.439) taken using the W.M. Keck Observatory OSIRIS integral field spectrograph (IFS) with adaptive optics, the Atacama Large Millimeter/submillimeter Array (ALMA), the Hubble Space Telescope (HST) WFC3, and the Very Large Array (VLA). Extended emission is detected in the rest-frame optical nebular emission lines Hβ, [O III], Hα, [N II], and [S II], as well as in the molecular lines CO (J = 3‑2) and (J = 5‑4). Along the path of the relativistic jets of 3C 298, we detect conical outflows in ionized gas emission with velocities of up to 1700 {km} {{{s}}}-1 and an outflow rate of 450–1500 {M}ȯ {{yr}}-1 extended over 12 kpc. Near the spatial center of the conical outflow, CO (J = 3‑2) emission shows a molecular gas disk with a rotational velocity of ±150 {km} {{{s}}}-1 and total molecular mass ({M}{{{H}}2}) of 6.6+/- 0.36× {10}9 {M}ȯ . On the blueshifted side of the molecular disk, we observe broad extended emission that is due to a molecular outflow with a rate of 2300 {M}ȯ {{yr}}-1 and depletion timescale of 3 Myr. We detect no narrow Hα emission in the outflow regions, suggesting a limit on star formation of 0.3 {M}ȯ {{yr}}-1 {{kpc}}-2. Quasar-driven winds are evacuating the molecular gas reservoir, thereby directly impacting star formation in the host galaxy. The observed mass of the supermassive black hole is {10}9.37{--9.56} {M}ȯ , and we determine a dynamical bulge mass of {M}{bulge}=1{--}1.7× {10}10\\tfrac{R}{1.6 {kpc}} {M}ȯ . The bulge mass of 3C 298 lies 2–2.5 orders of magnitude below the expected value from the local galactic bulge—supermassive black hole mass ({M}{bulge}{--}{M}{BH}) relationship. A second galactic disk observed in nebular emission is offset from the quasar by 9 kpc, suggesting that the system is an intermediate-stage merger. These results show that galactic-scale negative feedback is occurring early in the merger

  10. QSO Emission Lines and the Black Hole-Galaxy Bulge Relation

    NASA Astrophysics Data System (ADS)

    Shields, G. A.; Gebhardt, K.; Salviander, S.; Wills, B. J.; Yuan, M.; Xie, B.; Dietrich, M.

    2002-05-01

    Supermassive black holes in galactic nuclei have masses closely related to the properties of the host galaxy bulge. In particular, MBH varies as the fourth power of σ , the stellar velocity dispersion (Tremaine et al. 2002, ApJ in press, and references therein). The origin of the black hole-bulge relation is unknown, although theoretical suggestions abound. An important clue would be provided by knowledge of how the relation has evolved over cosmic time. This requires measurement of black hole masses and galactic potentials at large look-back times, which is difficult to do directly. However, black hole masses may be derived from the continuum luminosity and the widths of the broad Balmer lines of QSOs (e.g., Kaspi et al. 2000, ApJ 533, 631), and σ may be derived from the widths of the narrow [O III] lines (Nelson 2000, ApJ, 544, L91). We have carried out this program for a set of published and unpublished observations of Seyfert galaxies and QSOs. Results for low redshift objects support the use of this method to derive MBH and σ . The few available measurements of high redshift QSOs are consistent little or no change in the MBH-σ relation between the present and redshifts up to z = 3.3, when the universe was only two billion years old. This material is based in part upon work supported by the Texas Advanced Research Program under Grant No. 003658-0177-2001.

  11. BULGES OF NEARBY GALAXIES WITH SPITZER: SCALING RELATIONS IN PSEUDOBULGES AND CLASSICAL BULGES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fisher, David B.; Drory, Niv, E-mail: dbfisher@astro.as.utexas.ed

    2010-06-20

    We investigate scaling relations of bulges using bulge-disk decompositions at 3.6 {mu}m and present bulge classifications for 173 E-Sd galaxies within 20 Mpc. Pseudobulges and classical bulges are identified using Sersic index, Hubble Space Telescope morphology, and star formation activity (traced by 8 {mu}m emission). In the near-IR pseudobulges have n{sub b} < 2 and classical bulges have n{sub b} >2, as found in the optical. Sersic index and morphology are essentially equivalent properties for bulge classification purposes. We confirm, using a much more robust sample, that the Sersic index of pseudobulges is uncorrelated with other bulge structural properties, unlikemore » for classical bulges and elliptical galaxies. Also, the half-light radius of pseudobulges is not correlated with any other bulge property. We also find a new correlation between surface brightness and pseudobulge luminosity; pseudobulges become more luminous as they become more dense. Classical bulges follow the well-known scaling relations between surface brightness, luminosity, and half-light radius that are established by elliptical galaxies. We show that those pseudobulges (as indicated by Sersic index and nuclear morphology) that have low specific star formation rates are very similar to models of galaxies in which both a pseudobulge and classical bulge exist. Therefore, pseudobulge identification that relies only on structural indicators is incomplete. Our results, especially those on scaling relations, imply that pseudobulges are very different types of objects than elliptical galaxies.« less

  12. Galactic Angular Momentum in Cosmological Zoom-in Simulations. I. Disk and Bulge Components and the Galaxy-Halo Connection

    NASA Astrophysics Data System (ADS)

    Sokołowska, Aleksandra; Capelo, Pedro R.; Fall, S. Michael; Mayer, Lucio; Shen, Sijing; Bonoli, Silvia

    2017-02-01

    We investigate the angular momentum evolution of four disk galaxies residing in Milky-Way-sized halos formed in cosmological zoom-in simulations with various sub-grid physics and merging histories. We decompose these galaxies, kinematically and photometrically, into their disk and bulge components. The simulated galaxies and their components lie on the observed sequences in the j *-M * diagram, relating the specific angular momentum and mass of the stellar component. We find that galaxies in low-density environments follow the relation {j}* \\propto {M}* α past major mergers, with α ˜ 0.6 in the case of strong feedback, when bulge-to-disk ratios are relatively constant, and α ˜ 1.4 in the other cases, when secular processes operate on shorter timescales. We compute the retention factors (I.e., the ratio of the specific angular momenta of stars and dark matter) for both disks and bulges and show that they vary relatively slowly after averaging over numerous but brief fluctuations. For disks, the retention factors are usually close to unity, while for bulges, they are a few times smaller. Our simulations therefore indicate that galaxies and their halos grow in a quasi-homologous way.

  13. Characterization of the VVV Survey RR Lyrae Population across the Southern Galactic Plane

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Minniti, Dante; Palma, Tali; Pullen, Joyce

    Deep near-IR images from the VISTA Variables in the Vía Láctea (VVV) Survey were used to search for RR Lyrae stars in the Southern Galactic plane. A sizable sample of 404 RR Lyrae of type ab stars was identified across a thin slice of the fourth Galactic quadrant (295° < ℓ < 350°, −2.°24 < b < −1.°05). The sample’s distance distribution exhibits a maximum density that occurs at the bulge tangent point, which implies that this primarily Oosterhoff type I population of RRab stars does not trace the bar delineated by their red clump counterparts. The bulge RR Lyraemore » population does not extend beyond ℓ  ∼ 340°, and the sample’s spatial distribution presents evidence of density enhancements and substructure that warrants further investigation. Indeed, the sample may be employed to evaluate Galactic evolution models, and is particularly lucrative since half of the discovered RR Lyrae are within reach of Gaia astrometric observations.« less

  14. VISTA variables in the Sagittarius dwarf spheroidal galaxy: pulsation-versus dust-driven winds on the giant branches

    NASA Astrophysics Data System (ADS)

    McDonald, I.; Zijlstra, A. A.; Sloan, G. C.; Kerins, E.; Lagadec, E.; Minniti, D.

    2014-04-01

    Variability is examined in over 2.6 million stars covering 11 square degrees of the core of the Sagittarius dwarf spheroidal galaxy (Sgr dSph) from Visible and Infrared Survey Telescope for Astronomy Z-band observations. Generally, pulsation on the Sgr dSph giant branches appears to be excited by the internal κ mechanism. Pulsation amplitudes appear identical between red and asymptotic (red giant branch/asymptotic giant branch) giant stars, and between unreddened carbon and oxygen-rich stars at the same luminosity. The lack of correlation between infrared excess and variability among oxygen-rich stars indicates that pulsations do not contribute significantly to wind driving in oxygen-rich stars in the Sgr dSph, though the low amplitudes of these stars mean this may not apply elsewhere. The dust-enshrouded carbon stars have the highest amplitudes of the stars we observe. Only in these stars does an external κ-mechanism-driven pulsation seem likely, caused by variations in their more opaque carbon-rich molecules or dust. This may allow pulsation driving of winds to be effective in carbon stars. Variability can be simplified to a power law (A ∝ L/T2), as in other systems. In total, we identify 3026 variable stars (with rms variability of δZ ≳ 0.015 mag), of which 176 are long-period variables associable with the upper giant branches of the Sgr dSph. We also identify 324 candidate RR Lyrae variables in the Sgr dSph and 340 in the outer Galactic bulge.

  15. KINEMATIC SIGNATURES OF BULGES CORRELATE WITH BULGE MORPHOLOGIES AND SERSIC INDEX

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fabricius, Maximilian H.; Saglia, Roberto P.; Bender, Ralf

    2012-07-20

    We use the Marcario Low Resolution Spectrograph at the Hobby-Eberly Telescope to study the kinematics of pseudobulges and classical bulges in the nearby universe. We present major axis rotational velocities, velocity dispersions, and h{sub 3} and h{sub 4} moments derived from high-resolution ({sigma}{sub inst} Almost-Equal-To 39 km s{sup -1}) spectra for 45 S0 to Sc galaxies; for 27 of the galaxies we also present minor axis data. We combine our kinematics with bulge-to-disk decompositions. We demonstrate for the first time that purely kinematic diagnostics of the bulge dichotomy agree systematically with those based on Sersic index. Low Sersic index bulgesmore » have both increased rotational support (higher v/{sigma} values) and on average lower central velocity dispersions. Furthermore, we confirm that the same correlation also holds when visual morphologies are used to diagnose bulge type. The previously noted trend of photometrically flattened bulges to have shallower velocity dispersion profiles turns out to be significant and systematic if the Sersic index is used to distinguish between pseudobulges and classical bulges. The anti-correlation between h{sub 3} and v/{sigma} observed in elliptical galaxies is also observed in intermediate-type galaxies, irrespective of bulge type. Finally, we present evidence for formerly undetected counter-rotation in the two systems NGC 3945 and NGC 4736.« less

  16. 3D Asymmetrical motions of the Galactic outer disc with LAMOST K giant stars

    NASA Astrophysics Data System (ADS)

    Wang, Haifeng; López-Corredoira, Martín; Carlin, Jeffrey L.; Deng, Licai

    2018-07-01

    We present a three dimensional velocity analysis of Milky Way disc kinematics using LAMOST K giant stars and the GPS1 proper motion catalogue. We find that Galactic disc stars near the anticentre direction (in the range of Galactocentric distance between R = 8 and 13 kpc and vertical position between Z = -2 and 2 kpc) exhibit asymmetrical motions in the Galactocentric radial, azimuthal, and vertical components. Radial motions are not zero, thus departing from circularity in the orbits; they increase outwards within R ≲ 12 kpc, show some oscillation in the northern (0 < Z < 2 kpc) stars, and have north-south asymmetry in the region corresponding to a well-known nearby northern structure in the velocity field. There is a clear vertical gradient in azimuthal velocity, and also an asymmetry that shifts from a larger azimuthal velocity above the plane near the solar radius to faster rotation below the plane at radii of 11-12 kpc. Stars both above and below the plane at R ≳ 9 kpc exhibit net upward vertical motions. We discuss some possible mechanisms that might create the asymmetrical motions, such as external perturbations due to dwarf galaxy minor mergers or dark matter sub-haloes, warp dynamics, internal processes due to spiral arms or the Galactic bar, and (most likely) a combination of some or all of these components.

  17. Clear Evidence for the Presence of Second-generation Asymptotic Giant Branch Stars in Metal-poor Galactic Globular Clusters

    NASA Astrophysics Data System (ADS)

    García-Hernández, D. A.; Mészáros, Sz.; Monelli, M.; Cassisi, S.; Stetson, P. B.; Zamora, O.; Shetrone, M.; Lucatello, S.

    2015-12-01

    Galactic globular clusters (GCs) are known to host multiple stellar populations: a first generation (FG) with a chemical pattern typical of halo field stars and a second generation (SG) enriched in Na and Al and depleted in O and Mg. Both stellar generations are found at different evolutionary stages (e.g., the main-sequence turnoff, the subgiant branch, and the red giant branch (RGB)). The non detection of SG asymptotic giant branch (AGB) stars in several metal-poor ([Fe/H] < -1) GCs suggests that not all SG stars ascend the AGB phase, and that failed AGB stars may be very common in metal-poor GCs. This observation represents a serious problem for stellar evolution and GC formation/evolution theories. We report fourteen SG-AGB stars in four metal-poor GCs (M13, M5, M3, and M2) with different observational properties: horizontal branch (HB) morphology, metallicity, and age. By combining the H-band Al abundances obtained by the Apache Point Observatory Galactic Evolution Experiment survey with ground-based optical photometry, we identify SG Al-rich AGB stars in these four GCs and show that Al-rich RGB/AGB GC stars should be Na-rich. Our observations provide strong support for present, standard stellar models, i.e., without including a strong mass-loss efficiency, for low-mass HB stars. In fact, current empirical evidence is in agreement with the predicted distribution of FG and SG stars during the He-burning stages based on these standard stellar models.

  18. The Apache Point Observatory Galactic Evolution Experiment (APOGEE) and its successor, APOGEE-2

    NASA Astrophysics Data System (ADS)

    Majewski, S. R.; APOGEE Team; APOGEE-2 Team

    2016-09-01

    The Apache Point Observatory Galactic Evolution Experiment (APOGEE) of Sloan Digital Sky Survey III (SDSS-III) has produced a large catalog of high resolution ({R = 22 500}), high quality (S/N > 100), infrared (H-band) spectra for stars throughout all stellar populations of the Milky Way, including in regions veiled by significant dust opacity. APOGEE's half million spectra collected on > 163 000 unique stars, with time series information via repeat visits to each star, are being applied to numerous problems in stellar populations, Galactic astronomy, and stellar astrophysics. From among the early results of the APOGEE project - which span from measurements of Galactic dynamics, to multi-element chemical maps of the disk and bulge, new views of the interstellar medium, explorations of stellar companions, the chemistry of star clusters, and the discovery of rare stellar species - I highlight a few results that demonstrate APOGEE's unique ability to sample and characterize the Galactic disk and bulge. Plans are now under way for an even more ambitious successor to APOGEE: the six-year, dual-hemisphere APOGEE-2 project. Both phases of APOGEE feature a strong focus on targets having asteroseismological measurements from either Kepler or {CoRoT}, from which it is possible to derive relatively precise stellar ages. The combined APOGEE and APOGEE-2 databases of stellar chemistry, dynamics and ages constitute an unusually comprehensive, systematic and homogeneous resource for constraining models of Galactic evolution.

  19. BULGELESS GIANT GALAXIES CHALLENGE OUR PICTURE OF GALAXY FORMATION BY HIERARCHICAL CLUSTERING ,

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kormendy, John; Cornell, Mark E.; Drory, Niv

    2010-11-01

    To better understand the prevalence of bulgeless galaxies in the nearby field, we dissect giant Sc-Scd galaxies with Hubble Space Telescope (HST) photometry and Hobby-Eberly Telescope (HET) spectroscopy. We use the HET High Resolution Spectrograph (resolution R {identical_to} {lambda}/FWHM {approx_equal} 15, 000) to measure stellar velocity dispersions in the nuclear star clusters and (pseudo)bulges of the pure-disk galaxies M 33, M 101, NGC 3338, NGC 3810, NGC 6503, and NGC 6946. The dispersions range from 20 {+-} 1 km s{sup -1} in the nucleus of M 33 to 78 {+-} 2 km s{sup -1} in the pseudobulge of NGC 3338.more » We use HST archive images to measure the brightness profiles of the nuclei and (pseudo)bulges in M 101, NGC 6503, and NGC 6946 and hence to estimate their masses. The results imply small mass-to-light ratios consistent with young stellar populations. These observations lead to two conclusions. (1) Upper limits on the masses of any supermassive black holes are M{sub .} {approx}< (2.6 {+-} 0.5) x 10{sup 6} M{sub sun} in M 101 and M{sub .} {approx}< (2.0 {+-} 0.6) x 10{sup 6} M{sub sun} in NGC 6503. (2) We show that the above galaxies contain only tiny pseudobulges that make up {approx}<3% of the stellar mass. This provides the strongest constraints to date on the lack of classical bulges in the biggest pure-disk galaxies. We inventory the galaxies in a sphere of radius 8 Mpc centered on our Galaxy to see whether giant, pure-disk galaxies are common or rare. We find that at least 11 of 19 galaxies with V{sub circ} > 150 km s{sup -1}, including M 101, NGC 6946, IC 342, and our Galaxy, show no evidence for a classical bulge. Four may contain small classical bulges that contribute 5%-12% of the light of the galaxy. Only four of the 19 giant galaxies are ellipticals or have classical bulges that contribute {approx}1/3 of the galaxy light. We conclude that pure-disk galaxies are far from rare. It is hard to understand how bulgeless galaxies could form as the

  20. K-band observations of boxy bulges - I. Morphology and surface brightness profiles

    NASA Astrophysics Data System (ADS)

    Bureau, M.; Aronica, G.; Athanassoula, E.; Dettmar, R.-J.; Bosma, A.; Freeman, K. C.

    2006-08-01

    In this first paper of a series on the structure of boxy and peanut-shaped (B/PS) bulges, Kn-band observations of a sample of 30 edge-on spiral galaxies are described and discussed. Kn-band observations best trace the dominant luminous galactic mass and are minimally affected by dust. Images, unsharp-masked images, as well as major-axis and vertically summed surface brightness profiles are presented and discussed. Galaxies with a B/PS bulge tend to have a more complex morphology than galaxies with other bulge types, more often showing centred or off-centred X structures, secondary maxima along the major-axis and spiral-like structures. While probably not uniquely related to bars, those features are observed in three-dimensional N-body simulations of barred discs and may trace the main bar orbit families. The surface brightness profiles of galaxies with a B/PS bulge are also more complex, typically containing three or more clearly separated regions, including a shallow or flat intermediate region (Freeman Type II profiles). The breaks in the profiles offer evidence for bar-driven transfer of angular momentum and radial redistribution of material. The profiles further suggest a rapid variation of the scaleheight of the disc material, contrary to conventional wisdom but again as expected from the vertical resonances and instabilities present in barred discs. Interestingly, the steep inner region of the surface brightness profiles is often shorter than the isophotally thick part of the galaxies, itself always shorter than the flat intermediate region of the profiles. The steep inner region is also much more prominent along the major-axis than in the vertically summed profiles. Similarly to other recent work but contrary to the standard `bulge + disc' model (where the bulge is both thick and steep), we thus propose that galaxies with a B/PS bulge are composed of a thin concentrated disc (a disc-like bulge) contained within a partially thick bar (the B/PS bulge), itself

  1. A near-infrared high-resolution spectroscopic survey of bulge stars - JASMINE prestudy

    NASA Astrophysics Data System (ADS)

    Tsujimoto, T.; Gouda, N.; Kobayashi, N.; Yasui, C.; Kondo, S.; Minami, A.; Motohara, K.; Ikeda, Y.

    2006-08-01

    We are developing a new near-infrared high-resolution (R[max]= 100,000) and high-sensitive spectrograph WINERED, which is specifically customized for short NIR bands at 0.9-1.35 μm. WINERED employs the novelty in the optical system; a potable design and a warm optics without any cold stops. The planned astrometric space mission JASMINE will provide the exact positions, distances, and proper motions of the bulge stars. The missing components, the radial velocity and chemical compositions will be measured by WINERED with high accuracies (δV< 1km/s). These combined data brought by JASMINE and WINERED will certainly reveal the nature of the Galactic bulge. We plan to complete this instrument for the observation of a single object by the end of 2008 and hope to attach it to various 4-10m telescopes as a PI-type instrument. In succession, we will develop it to the design for a simultaneous multi-object spectroscopy.

  2. The OGLE Collection of Variable Stars. Classical, Type II, and Anomalous Cepheids toward the Galactic Center

    NASA Astrophysics Data System (ADS)

    Soszyński, I.; Udalski, A.; Szymański, M. K.; Wyrzykowski, Ł.; Ulaczyk, K.; Poleski, R.; Pietrukowicz, P.; Kozłowski, S.; Skowron, D. M.; Skowron, J.; Mróz, P.; Pawlak, M.; Rybicki, K.; Jacyszyn-Dobrzeniecka, A.

    2017-12-01

    We present a collection of classical, typeII, and anomalous Cepheids detected in the OGLE fields toward the Galactic center. The sample contains 87 classical Cepheids pulsating in one, two or three radial modes, 924 type II Cepheids divided into BL Her, W Vir, peculiar W Vir, and RV Tau stars, and 20 anomalous Cepheids - first such objects found in the Galactic bulge. Additionally, we upgrade the OGLE Collection of RR Lyr stars in the Galactic bulge by adding 828 newly identified variables. For all Cepheids and RRLyr stars, we publish time-series VI photometry obtained during the OGLE-IV project, from 2010 through 2017. We discuss basic properties of our classical pulsators: their spatial distribution, light curve morphology, period-luminosity relations, and position in the Petersen diagram. We present the most interesting individual objects in our collection: a typeII Cepheid with additional eclipsing modulation, WVir stars with the period doubling effect and the RVb phenomenon, a mode-switching RR Lyr star, and a triple-mode anomalous RRd star.

  3. Gastric lipoma presenting as a giant bulging mass in an oligosymptomatic patient: a case report

    PubMed Central

    2012-01-01

    Introduction Lipomas of the gastrointestinal tract are a rare condition. Only 5% are of gastric origin, and this corresponds to 2% to 3% of all benign tumors of the stomach and less than 1% of all gastric neoplasms. It is our purpose to report an unusual presentation of a giant gastric lipoma in an oligosymptomatic patient and highlight the importance of discussing differential diagnosis in this situation. A review of the literature has shown that this is one of the largest gastric lipomas described. Case presentation We describe a rare case of a benign gastric tumor with uncommon features in a 63-year-old Caucasian woman. She was admitted with abdominal discomfort, nausea, and upper abdominal fullness after eating. The lesion was suspicious of malignancy because of its dimension and central contrast enhancement on computed tomography. Conventional upper digestive endoscopy revealed a large bulging mass in the gastric posterior wall and three ulcerated areas. In this procedure, a technical limitation due to the location of the mass in the submucosa prevented an adequate biopsy from being obtained. The fragments obtained from the ulcers revealed nothing but necrotic mucosa. Our patient underwent a subtotal gastrectomy and D1 lymphadenectomy with a Roux-en-Y reconstruction. Macroscopic findings revealed a 12 × 8 × 6cm mass with a volume of 576cm3, and the histological pattern demonstrated well-differentiated mature adipose tissue surrounded by a fibrous capsule, confirming the diagnosis of gastric submucosal lipoma. Conclusions Gastric lipoma is a rare benign disease that eventually simulates a malignant tumor. PMID:23006791

  4. CNO isotopes in red giant stars

    NASA Technical Reports Server (NTRS)

    Wannier, P. G.

    1985-01-01

    Observational data on CNO abundance ratios in red giants and the interstellar medium (ISM) are analyzed for the implications for the production and distribution of CNO nuclides. The data included isotope abundance measurements for the atmospheres and recent ejecta of cool giants, e.g., carbon stars, S-type stars, red supergiants and oxygen-rich giants beginning an ascent of the giant branch. The contribution of intermediate-mass stars to galactic nuclear evolution is discussed after comparing red giant abundances with ISM abundances, particularly the isotopes O-16, -17 and -18. The O-12/O-18 ratios of red giants are distinctly different from those in interstellar molecular clouds. The CNO values also vary widely from the values found in the solar system.

  5. LIFTING THE DUSTY VEIL WITH NEAR- AND MID-INFRARED PHOTOMETRY. III. TWO-DIMENSIONAL EXTINCTION MAPS OF THE GALACTIC MIDPLANE USING THE RAYLEIGH-JEANS COLOR EXCESS METHOD

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nidever, David L.; Zasowski, Gail; Majewski, Steven R., E-mail: dln5q@virginia.edu, E-mail: gz2n@virginia.edu, E-mail: srm4n@virginia.edu

    We provide new, high-resolution A(K{sub s} ) extinction maps of the heavily reddened Galactic midplane based on the Rayleigh-Jeans Color Excess ({sup R}JCE{sup )} method. RJCE determines star-by-star reddening based on a combination of near- and mid-infrared photometry. The new RJCE-generated maps have 2' Multiplication-Sign 2' pixels and span some of the most severely extinguished regions of the Galaxy-those covered with Spitzer/IRAC imaging by the GLIMPSE-I, -II, -3D, and Vela-Carina surveys, from 256 Degree-Sign < l < 65 Degree-Sign and, in general, for |b| {<=} 1 Degree-Sign -1.{sup 0}5 (extending up to |b| {<=} 4 Degree-Sign in the bulge). Usingmore » RJCE extinction measurements, we generate dereddened color-magnitude diagrams and, in turn, create maps based on main sequence, red clump, and red giant star tracers, each probing different distances and thereby providing coarse three-dimensional information on the relative placement of dust cloud structures. The maps generated from red giant stars, which reach to {approx}18-20 kpc, probe beyond most of the Milky Way extinction in most directions and provide close to a 'total Galactic extinction' map-at minimum they provide high angular resolution maps of lower limits on A(K{sub s} ). Because these maps are generated directly from measurements of reddening by the very dust being mapped, rather than inferred on the basis of some less direct means, they are likely the most accurate to date for charting in detail the highly patchy differential extinction in the Galactic midplane. We provide downloadable FITS files and an IDL tool for retrieving extinction values for any line of sight within our mapped regions.« less

  6. The intrinsic three-dimensional shape of galactic bars

    NASA Astrophysics Data System (ADS)

    Méndez-Abreu, J.; Costantin, L.; Aguerri, J. A. L.; de Lorenzo-Cáceres, A.; Corsini, E. M.

    2018-06-01

    We present the first statistical study on the intrinsic three-dimensional (3D) shape of a sample of 83 galactic bars extracted from the CALIFA survey. We use the galaXYZ code to derive the bar intrinsic shape with a statistical approach. The method uses only the geometric information (ellipticities and position angles) of bars and discs obtained from a multi-component photometric decomposition of the galaxy surface-brightness distributions. We find that bars are predominantly prolate-triaxial ellipsoids (68%), with a small fraction of oblate-triaxial ellipsoids (32%). The typical flattening (intrinsic C/A semiaxis ratio) of the bars in our sample is 0.34, which matches well the typical intrinsic flattening of stellar discs at these galaxy masses. We demonstrate that, for prolate-triaxial bars, the intrinsic shape of bars depends on the galaxy Hubble type and stellar mass (bars in massive S0 galaxies are thicker and more circular than those in less massive spirals). The bar intrinsic shape correlates with bulge, disc, and bar parameters. In particular with the bulge-to-total (B/T) luminosity ratio, disc g - r color, and central surface brightness of the bar, confirming the tight link between bars and their host galaxies. Combining the probability distributions of the intrinsic shape of bulges and bars in our sample we show that 52% (16%) of bulges are thicker (flatter) than the surrounding bar at 1σ level. We suggest that these percentages might be representative of the fraction of classical and disc-like bulges in our sample, respectively.

  7. Asymmetric 511 keV Positron Annihilation Line Emission from the Inner Galactic Disk

    NASA Technical Reports Server (NTRS)

    Skinner, Gerry; Weidenspointner, Georg; Jean, Pierre; Knodlseder, Jurgen; Ballmoos, Perer von; Bignami, Giovanni; Diehl, Roland; Strong, Andrew; Cordier, Bertrand; Schanne, Stephane; hide

    2008-01-01

    A recently reported asymmetry in the 511 keV gamma-ray line emission from the inner galactic disk is unexpected and mimics an equally unexpected one in the distribution of LMXBs seen at hard X-ray energies. A possible conclusion is that LMXBs are an important source of the positrons whose annihilation gives rise to the line. We will discuss these results, their statistical significance and that of any link between the two. The implication of any association between LMXBs and positrons for the strong annihilation radiation from the galactic bulge will be reviewed.

  8. Self-consistent Bulge/Disk/Halo Galaxy Dynamical Modeling Using Integral Field Kinematics

    NASA Astrophysics Data System (ADS)

    Taranu, D. S.; Obreschkow, D.; Dubinski, J. J.; Fogarty, L. M. R.; van de Sande, J.; Catinella, B.; Cortese, L.; Moffett, A.; Robotham, A. S. G.; Allen, J. T.; Bland-Hawthorn, J.; Bryant, J. J.; Colless, M.; Croom, S. M.; D'Eugenio, F.; Davies, R. L.; Drinkwater, M. J.; Driver, S. P.; Goodwin, M.; Konstantopoulos, I. S.; Lawrence, J. S.; López-Sánchez, Á. R.; Lorente, N. P. F.; Medling, A. M.; Mould, J. R.; Owers, M. S.; Power, C.; Richards, S. N.; Tonini, C.

    2017-11-01

    We introduce a method for modeling disk galaxies designed to take full advantage of data from integral field spectroscopy (IFS). The method fits equilibrium models to simultaneously reproduce the surface brightness, rotation, and velocity dispersion profiles of a galaxy. The models are fully self-consistent 6D distribution functions for a galaxy with a Sérsic profile stellar bulge, exponential disk, and parametric dark-matter halo, generated by an updated version of GalactICS. By creating realistic flux-weighted maps of the kinematic moments (flux, mean velocity, and dispersion), we simultaneously fit photometric and spectroscopic data using both maximum-likelihood and Bayesian (MCMC) techniques. We apply the method to a GAMA spiral galaxy (G79635) with kinematics from the SAMI Galaxy Survey and deep g- and r-band photometry from the VST-KiDS survey, comparing parameter constraints with those from traditional 2D bulge-disk decomposition. Our method returns broadly consistent results for shared parameters while constraining the mass-to-light ratios of stellar components and reproducing the H I-inferred circular velocity well beyond the limits of the SAMI data. Although the method is tailored for fitting integral field kinematic data, it can use other dynamical constraints like central fiber dispersions and H I circular velocities, and is well-suited for modeling galaxies with a combination of deep imaging and H I and/or optical spectra (resolved or otherwise). Our implementation (MagRite) is computationally efficient and can generate well-resolved models and kinematic maps in under a minute on modern processors.

  9. An empirical mass-loss law for Population II giants from the Spitzer-IRAC survey of Galactic globular clusters

    NASA Astrophysics Data System (ADS)

    Origlia, L.; Ferraro, F. R.; Fabbri, S.; Fusi Pecci, F.; Dalessandro, E.; Rich, R. M.; Valenti, E.

    2014-04-01

    Aims: The main aim of the present work is to derive an empirical mass-loss (ML) law for Population II stars in first and second ascent red giant branches. Methods: We used the Spitzer InfraRed Array Camera (IRAC) photometry obtained in the 3.6-8 μm range of a carefully chosen sample of 15 Galactic globular clusters spanning the entire metallicity range and sampling the vast zoology of horizontal branch (HB) morphologies. We complemented the IRAC photometry with near-infrared data to build suitable color-magnitude and color-color diagrams and identify mass-losing giant stars. Results: We find that while the majority of stars show colors typical of cool giants, some stars show an excess of mid-infrared light that is larger than expected from their photospheric emission and that is plausibly due to dust formation in mass flowing from them. For these stars, we estimate dust and total (gas + dust) ML rates and timescales. We finally calibrate an empirical ML law for Population II red and asymptotic giant branch stars with varying metallicity. We find that at a given red giant branch luminosity only a fraction of the stars are losing mass. From this, we conclude that ML is episodic and is active only a fraction of the time, which we define as the duty cycle. The fraction of mass-losing stars increases by increasing the stellar luminosity and metallicity. The ML rate, as estimated from reasonable assumptions for the gas-to-dust ratio and expansion velocity, depends on metallicity and slowly increases with decreasing metallicity. In contrast, the duty cycle increases with increasing metallicity, with the net result that total ML increases moderately with increasing metallicity, about 0.1 M⊙ every dex in [Fe/H]. For Population II asymptotic giant branch stars, we estimate a total ML of ≤0.1 M⊙, nearly constant with varying metallicity. This work is based on observations made with the Spitzer Space Telescope, which is operated by the Jet Propulsion Laboratory

  10. The Gaia-ESO Survey: Galactic evolution of sulphur and zinc

    NASA Astrophysics Data System (ADS)

    Duffau, S.; Caffau, E.; Sbordone, L.; Bonifacio, P.; Andrievsky, S.; Korotin, S.; Babusiaux, C.; Salvadori, S.; Monaco, L.; François, P.; Skúladóttir, Á.; Bragaglia, A.; Donati, P.; Spina, L.; Gallagher, A. J.; Ludwig, H.-G.; Christlieb, N.; Hansen, C. J.; Mott, A.; Steffen, M.; Zaggia, S.; Blanco-Cuaresma, S.; Calura, F.; Friel, E.; Jiménez-Esteban, F. M.; Koch, A.; Magrini, L.; Pancino, E.; Tang, B.; Tautvaišienė, G.; Vallenari, A.; Hawkins, K.; Gilmore, G.; Randich, S.; Feltzing, S.; Bensby, T.; Flaccomio, E.; Smiljanic, R.; Bayo, A.; Carraro, G.; Casey, A. R.; Costado, M. T.; Damiani, F.; Franciosini, E.; Hourihane, A.; Jofré, P.; Lardo, C.; Lewis, J.; Morbidelli, L.; Sousa, S. G.; Worley, C. C.

    2017-08-01

    Context. Due to their volatile nature, when sulphur and zinc are observed in external galaxies, their determined abundances represent the gas-phase abundances in the interstellar medium. This implies that they can be used as tracers of the chemical enrichment of matter in the Universe at high redshift. Comparable observations in stars are more difficult and, until recently, plagued by small number statistics. Aims: We wish to exploit the Gaia-ESO Survey (GES) data to study the behaviour of sulphur and zinc abundances of a large number of Galactic stars, in a homogeneous way. Methods: By using the UVES spectra of the GES sample, we are able to assemble a sample of 1301 Galactic stars, including stars in open and globular clusters in which both sulphur and zinc were measured. Results: We confirm the results from the literature that sulphur behaves as an α-element. We find a large scatter in [Zn/Fe] ratios among giant stars around solar metallicity. The lower ratios are observed in giant stars at Galactocentric distances less than 7.5 kpc. No such effect is observed among dwarf stars, since they do not extend to that radius. Conclusions: Given the sample selection, giants and dwarfs are observed at different Galactic locations, and it is plausible, and compatible with simple calculations, that Zn-poor giants trace a younger population more polluted by SN Ia yields. It is necessary to extend observations in order to observe both giants and dwarfs at the same Galactic location. Further theoretical work on the evolution of zinc is also necessary. Based on observations collected at the European Organisation for Astronomical Research in the Southern Hemisphere under ESO programmes 188.B-3002, 193.B-0936.The full table of S abundances is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/604/A128

  11. Bright compact bulges at intermediate redshifts

    NASA Astrophysics Data System (ADS)

    Sachdeva, Sonali; Saha, Kanak

    2018-07-01

    Studying bright (MB < -20), intermediate-redshift (0.4 < z< 1.0), disc-dominated (nB < 2.5) galaxies from Hubble Space Telescope/Advanced Camera for Surveys and Wide Field Camera 3 in Chandra Deep Field-South, in rest-frame B and I band, we found a new class of bulges that is brighter and more compact than ellipticals. We refer to them as `bright, compact bulges' (BCBs) - they resemble neither classical nor pseudo-bulges and constitute ˜12 per cent of the total bulge population at these redshifts. Examining free-bulge + disc decomposition sample and elliptical galaxy sample from Simard et al., we find that only ˜0.2 per cent of the bulges can be classified as BCBs in the local Universe. Bulge to total light ratio of disc galaxies with BCBs is (at ˜0.4) a factor of ˜2 and ˜4 larger than for those with classical and pseudo-bulges. BCBs are ˜2.5 and ˜6 times more massive than classical and pseudo-bulges. Although disc galaxies with BCBs host the most massive and dominant bulge type, their specific star formation rate is 1.5-2 times higher than other disc galaxies. This is contrary to the expectations that a massive compact bulge would lead to lower star formation rates. We speculate that our BCB host disc galaxies are descendant of massive, compact, and passive elliptical galaxies observed at higher redshifts. Those high-redshift ellipticals lack local counterparts and possibly evolved by acquiring a compact disc around them. The overall properties of BCBs support a picture of galaxy assembly in which younger discs are being accreted around massive pre-existing spheroids.

  12. Velocity Dispersions Across Bulge Types

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fabricius, Maximilian; Bender, Ralf; Hopp, Ulrich

    2010-06-08

    We present first results from a long-slit spectroscopic survey of bulge kinematics in local spiral galaxies. Our optical spectra were obtained at the Hobby-Eberly Telescope with the LRS spectrograph and have a velocity resolution of 45 km/s (sigma*), which allows us to resolve the velocity dispersions in the bulge regions of most objects in our sample. We find that the velocity dispersion profiles in morphological classical bulge galaxies are always centrally peaked while the velocity dispersion of morphologically disk-like bulges stays relatively flat towards the center--once strongly barred galaxies are discarded.

  13. THE VVV SURVEY REVEALS CLASSICAL CEPHEIDS TRACING A YOUNG AND THIN STELLAR DISK ACROSS THE GALAXY’S BULGE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dékány, I.; Minniti, D.; Majaess, D.

    2015-10-20

    Solid insight into the physics of the inner Milky Way is key to understanding our Galaxy’s evolution, but extreme dust obscuration has historically hindered efforts to map the area along the Galactic mid-plane. New comprehensive near-infrared time-series photometry from the VVV Survey has revealed 35 classical Cepheids, tracing a previously unobserved component of the inner Galaxy, namely a ubiquitous inner thin disk of young stars along the Galactic mid-plane, traversing across the bulge. The discovered period (age) spread of these classical Cepheids implies a continuous supply of newly formed stars in the central region of the Galaxy over the lastmore » 100 million years.« less

  14. Evolution of the Oort Cloud under Galactic Perturbations

    NASA Astrophysics Data System (ADS)

    Higuchi, A.; Kokubo, E.; Mukai, T.

    2005-08-01

    The Oort cloud is a spherical comet reservoir surrounding the solar system. There is general agreement that the Oort cloud comets are the residual planetesimals of planet formation. The standard scenario of the Oort cloud formation consists of two dynamical stages: (1) giant planets raise the aphelia of planetesimals to the outer region of the solar system and (2) the galactic tide, passing stars, and giant molecular clouds pull up their perihelia out of the planetary region and randomize their inclinations. Here we show the orbital evolution of planetesimals due to the galactic tide. Planetesimals with large aphelion distances change their perihelion distances toward the outside of the planetary region by the galactic tide and become members of the Oort cloud. We consider only the vertical component of the galactic tide because it is dominant compared to other components. Then, under such an axi-symmetric assumption, some planetesimals may show the librations around ω (argument of perihelion)=π /2 or 3π /2 (the Kozai mechanism). The alternate increases of eccentricity and inclination of the Kozai mechanism are effective to form the Oort cloud. Using the secular perturbation theory, we can understand the motion of the planetesimals analytically. We applied the Kozai mechanism to the galactic tide and found that the galactic tide raise perihelia and randomize inclinations of planetesimals with semimajor axes larger than ˜ 103 AU in 5Gyr. We take into account time evolution of the local galactic density, which is thought to be denser in the early stage of the sun than the current one. This work was supported by the 21st Century COE Program Origin and Evolution of Planetary Systems of the Ministry of Education, Culture, Sports, Science, and Technology, Japan, and JSPS Research Fellowship for Young Scientists.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ferraro, F. R.; Dalessandro, E.; Lanzoni, B.

    The Galactic bulge is dominated by an old, metal-rich stellar population. The possible presence and the amount of a young (a few gigayears old) minor component is one of the major issues debated in the literature. Recently, the bulge stellar system Terzan 5 was found to harbor three sub-populations with iron content varying by more than one order of magnitude (from 0.2 up to two times the solar value), with chemical abundance patterns strikingly similar to those observed in bulge field stars. Here we report on the detection of two distinct main-sequence turnoff points in Terzan 5, providing the agemore » of the two main stellar populations: 12 Gyr for the (dominant) sub-solar component and 4.5 Gyr for the component at super-solar metallicity. This discovery classifies Terzan 5 as a site in the Galactic bulge where multiple bursts of star formation occurred, thus suggesting a quite massive progenitor possibly resembling the giant clumps observed in star-forming galaxies at high redshifts. This connection opens a new route of investigation into the formation process and evolution of spheroids and their stellar content.« less

  16. Orbital Evolution of Planetesimals by the Galactic Tide

    NASA Astrophysics Data System (ADS)

    Higuchi, A.; Kokubo, E.; Mukai, T.

    2005-05-01

    The Oort cloud is a spherical comet reservoir surrounding the solar system. There is general agreement that the Oort cloud comets are the residual planetesimals of planet formation. The standard scenario of the Oort cloud formation consists of two dynamical stages: (1) giant planets raise the aphelia of planetesimals to the outer region of the solar system and (2) the galactic tide, passing stars, and giant molecular clouds pull up their perihelia out of the planetary region. Here we show the orbital evolution of planetesimals by the galactic tide. Planetesimals with large aphelion distances change their perihelion distances toward the outside of the planetary region by the galactic tide and become members of the Oort cloud. The effect of the galactic tide on the planetesimals with semimajor axes of ˜ 104AU is about 10-3 of the solar gravity. The timescale of the orbital evolution is ˜ 108 years. We consider only the vertical component of the galactic tide. Under the axisymmetric potential, some planetesimals may show the librations around ω (argument of perihelion)=π /2 and 3π /2 (the Kozai mechanism). The alternate increases of eccentricity and inclination of the Kozai mechanism are effective to form the Oort cloud. The secular perturbation theory demonstrates the Kozai mechanism and we can understand the motion of the planetesimals analytically. We apply the Kozai mechanism to the galactic tide and discuss the property of the Oort cloud formed by the Kozai mechanizm. This work was supported by the 21st Century COE Program Origin and Evolution of Planetary Systems of the Ministry of Education, Culture, Sports, Science, and Technology, Japan, and JSPS Research Fellowship for Young Scientists.

  17. The Compositin of the Bulge Globular Cluster NGC 6273

    NASA Astrophysics Data System (ADS)

    Pilachowski, Catherine A.; Johnson, Christian

    2015-08-01

    Observations of red giants in the Bulge globular cluster NGC 6273 with the Michigan/Magellan Fiber System (M2FS) mounted on the Nasmyth-East port of the Magellan-Clay 6.5m telescope at Las Campanas Observatory reveal a spread in metallicity. Members have been confirmed with radial velocity. NGC 6273 has at least two populations separated by 0.2-0.3 dex in [Fe/H]. The sodium and aluminum abundances are correlated while the magnesium and aluminum abundances are anti-correlated. The cluster also shows a rise in the abundance of the s-process element lanthanum with [Fe/H] similar to other massive clusters. The cluster contains a possible 3rd population depleted in most elements by 0.3 dex.

  18. The Composition of the Bulge Globular Cluster NGC 6273

    NASA Astrophysics Data System (ADS)

    Pilachowski, C. A.; Johnson, C. I.; Rich, R. M.; Caldwell, N.; Mateo, M.; Bailey, J. I.; Crane, J. D.

    2017-03-01

    Observations of red giants in the Bulge globular cluster NGC 6273 with the Michigan/Magellan Fiber System (M2FS) mounted on the Nasmuth-East port of the Magellan-Clay 6.5-m telescope at the Las Campanas Observatory reveal a spread in metallicity. Members have been confirmed with radial velocity. NGC 6273 has at least two populations separated by 0.2-0.3 dex in [Fe/H]. The sodium and aluminum abundances are correlated while the magnesium and aluminum abundances are anti-correlated. The cluster also shows a rise in the abundance of the s-process element lanthanum with [Fe/H] similar to other massive clusters. The cluster contains a possible third population depleted in most elements by 0.3 dex.

  19. Discovery of a Gas Giant Planet in Microlensing Event Ogle-2014-BLG-1760

    NASA Technical Reports Server (NTRS)

    Bhattacharya, A.; Bennett, D. P.; Bond, I. A.; Sumi, T.; Udalski, A.; Street, R.; Tsapras, Y.; Abe, F.; Freeman, M.; Fukui, A.

    2016-01-01

    We present the analysis of the planetary microlensing event OGLE-2014-BLG-1760, which shows a strong light-curve signal due to the presence of a Jupiter mass ratio planet. One unusual feature of this event is that the source star is quite blue, with V-I = 1.48 +/- 0.08. This is marginally consistent with a source star in the Galactic bulge, but it could possibly indicate a young source star on the far side of the disk. Assuming a bulge source, we perform a Bayesian analysis assuming a standard Galactic model, and this indicates that the planetary system resides in or near the Galactic bulge at D(sub L) = 6.9 +/- 1.1 kpc. It also indicates a host-star mass of M(sub *) = 0.51(sup + 0.44/sub -0.28) M(sub theta), a planet mass of m(sub p ) = 0.56(sup +0.34/sub -0.26) M(sub J), and a projected star-planet separation of a(perpendicular) = 1.75(sup +0.33/sub -0.34) au. The lens-source relative proper motion is micro(sub rel) = 6.5 +/- 1.1mas per yr. The lens (and stellar host star) is estimated to be very faint compared to the source star, so it is most likely that it can be detected only when the lens and source stars start to separate. Due to the relatively high relative proper motion, the lens and source will be resolved to about approximately 46 mas in 6-8 yr after the peak magnification. So, by 2020-2022, we can hope to detect the lens star with deep, high-resolution images.

  20. Submillimeter evidence for the coeval growth of massive black holes and galaxy bulges.

    PubMed

    Page, M J; Stevens, J A; Mittaz, J P; Carrera, F J

    2001-12-21

    The correlation, found in nearby galaxies, between black hole mass and stellar bulge mass implies that the formation of these two components must be related. Here we report submillimeter photometry of eight x-ray-absorbed active galactic nuclei that have luminosities and redshifts characteristic of the sources that produce the bulk of the accretion luminosity in the universe. The four sources with the highest redshifts are detected at 850 micrometers, with flux densities between 5.9 and 10.1 millijanskies, and hence are ultraluminous infrared galaxies. If the emission is from dust heated by starbursts, then the majority of stars in spheroids were formed at the same time as their central black holes built up most of their mass by accretion. This would account for the observed demography of massive black holes in the local universe. The skewed rate of submillimeter detection with redshift is consistent with a high redshift epoch of star formation in radio-quiet active galactic nuclei, similar to that seen in radio galaxies.

  1. Nuclear planetology: understanding habitable planets as Galactic bulge stellar remnants (black dwarfs) in a Hertzsprung-Russell (HR) diagram

    NASA Astrophysics Data System (ADS)

    Roller, Goetz

    2016-04-01

    model constraining the evolution of a rocky planet like Earth or Mercury from a stellar precursor of the oldest population to a Fe-C BLD, shifting through different spectral classes in a HR diagram after massive decompression and tremendous energy losses. In the light of WD/BLD cosmochronology [1], solar system bodies like Earth, Mercury and Moon are regarded as captured interlopers from the Galactic bulge, Earth and Moon possibly representing remnants of an old binary system. Such a preliminary scenario is supported by similar ages obtained from WD's for the Galactic halo [1] and, independently, by means of 187Re-232Th-238U nuclear geochronometry [2, 4, 5], together with recent observations extremely metal-poor stars from the cosmic dawn in the bulge of the Milky Way [6]. This might be further elucidated in the near future by Th/U cosmochronometry based upon a nuclear production ratio Th/U = 0.96 [5] and additionally by means of a newly developed nucleogeochronometric age dating method for stellar spectroscopy, which will be presented in a forthcoming paper. The model shall stimulate geochemical data interpretation from a different perspective to constrain the (thermal) evolution of a habitable planet as to its geo-, bio-, hydro- and atmosphere. [1] Fontaine et al. (2001), Public. Astron. Soc. of the Pacific 113, 409-435. [2] Roller (2015), Abstract T34B-0407, AGU Spring Meeting 2015. [3] Arevalo et al. (2010), Chem. Geol. 271, 70-85. [4] Roller (2015), Geophys. Res. Abstr. 17, EGU2015-2399. [5] Roller (2015), 78th Annu. Meeting Met. Soc., Abstract #5041. [6] Howes et al. (2015), Nature 527, 484-487.

  2. Bright Compact Bulges (BCBs) at intermediate redshifts

    NASA Astrophysics Data System (ADS)

    Sachdeva, Sonali; Saha, Kanak

    2018-04-01

    Studying bright (MB < -20), intermediate-redshift (0.4 < z < 1.0), disc dominated (nB < 2.5) galaxies from HST/ACS and WFC3 in Chandra Deep Field South, in rest-frame B and I-band, we found a new class of bulges which is brighter and more compact than ellipticals. We refer to them as "Bright, Compact Bulges" (BCBs) - they resemble neither classical nor pseudo-bulges and constitute ˜12% of the total bulge population at these redshifts. Examining free-bulge + disc decomposition sample and elliptical galaxy sample from Simard et al. (2011), we find that only ˜0.2% of the bulges can be classified as BCBs in the local Universe. Bulge to total ratio (B/T) of disc galaxies with BCBs is (at ˜0.4) a factor of ˜2 and ˜4 larger than for those with classical and pseudo bulges. BCBs are ˜2.5 and ˜6 times more massive than classical and pseudo bulges. Although disc galaxies with BCBs host the most massive and dominant bulge type, their specific star formation rate is 1.5-2 times higher than other disc galaxies. This is contrary to the expectations that a massive compact bulge would lead to lower star formation rates. We speculate that our BCB host disc galaxies are descendant of massive, compact and passive elliptical galaxies observed at higher redshifts. Those high redshift ellipticals lack local counterparts and possibly evolved by acquiring a compact disc around them. The overall properties of BCBs supports a picture of galaxy assembly in which younger discs are being accreted around massive pre-existing spheroids.

  3. The K2 Galactic Archaeology Program Data Release. I. Asteroseismic Results from Campaign 1

    NASA Astrophysics Data System (ADS)

    Stello, Dennis; Zinn, Joel; Elsworth, Yvonne; Garcia, Rafael A.; Kallinger, Thomas; Mathur, Savita; Mosser, Benoit; Sharma, Sanjib; Chaplin, William J.; Davies, Guy; Huber, Daniel; Jones, Caitlin D.; Miglio, Andrea; Silva Aguirre, Victor

    2017-01-01

    NASA's K2 mission is observing tens of thousands of stars along the ecliptic, providing data suitable for large-scale asteroseismic analyses to inform galactic archaeology studies. Its first campaign covered a field near the north Galactic cap, a region never covered before by large asteroseismic-ensemble investigations, and was therefore of particular interest for exploring this part of our Galaxy. Here we report the asteroseismic analysis of all stars selected by the K2 Galactic Archaeology Program during the mission's “north Galactic cap” campaign 1. Our consolidated analysis uses six independent methods to measure the global seismic properties, in particular the large frequency separation and the frequency of maximum power. From the full target sample of 8630 stars we find about 1200 oscillating red giants, a number comparable with estimates from galactic synthesis modeling. Thus, as a valuable by-product we find roughly 7500 stars to be dwarfs, which provide a sample well suited for galactic exoplanet occurrence studies because they originate from our simple and easily reproducible selection function. In addition, to facilitate the full potential of the data set for galactic archaeology, we assess the detection completeness of our sample of oscillating red giants. We find that the sample is at least nearly complete for stars with 40 ≲ {ν }\\max /μHz ≲ 270 and {ν }\\max ,{detect}< 2.6× {10}6\\cdot {2}-{\\text{Kp}} μHz. There is a detection bias against helium core burning stars with {ν }\\max ˜ 30 μHz, affecting the number of measurements of {{Δ }}ν and possibly also {ν }\\max . Although we can detect oscillations down to {\\text{Kp}} = 15, our campaign 1 sample lacks enough faint giants to assess the detection completeness for stars fainter than {\\text{Kp}} ˜ 14.5.

  4. Ordinary Dark Matter versus Mysterious Dark Matter in Galactic Rotation

    NASA Astrophysics Data System (ADS)

    Gallo, C. F.; Feng, James

    2008-04-01

    To theoretically describe the measured rotational velocity curves of spiral galaxies, there are two different approaches and conclusions. (1) ORDINARY DARK MATTER. We assume Newtonian gravity/dynamics and successfully find (via computer) mass distributions in bulge/disk configurations that duplicate the measured rotational velocities. There is ordinary dark matter within the galactic disk towards the cooler periphery which has lower emissivity/opacity. There are no mysteries in this scenario based on verified physics. (2) MYSTERIOUS DARK MATTER. Others INaccurately assume the galactic mass distributions follow the measured light distributions, and then the measured rotational velocity curves are NOT duplicated. To alleviate this discrepancy, speculations are invoked re ``Massive Peripheral Spherical Halos of Mysterious Dark Matter.'' But NO matter has been detected in this UNtenable Halo configuration. Many UNverified ``Mysteries'' are invoked as necessary and convenient. CONCLUSION. The first approach utilizing Newtonian gravity/dynamics and searching for the ordinary mass distributions within the galactic disk simulates reality and agrees with data.

  5. Special Features of Galactic Dynamics

    NASA Astrophysics Data System (ADS)

    Efthymiopoulos, Christos; Voglis, Nikos; Kalapotharakos, Constantinos

    This is an introductory article to some basic notions and currently open problems of galactic dynamics. The focus is on topics mostly relevant to the so-called `new methods' of celestial mechanics or Hamiltonian dynamics, as applied to the ellipsoidal components of galaxies, i.e., to the elliptical galaxies and to the dark halos and bulges of disk galaxies. Traditional topics such as Jeans theorem, the role of a `third integral' of motion, Nekhoroshev theory, violent relaxation, and the statistical mechanics of collisionless stellar systems are first discussed. The emphasis is on modern extrapolations of these old topics. Recent results from orbital and global dynamical studies of galaxies are then shortly reviewed. The role of various families of orbits in supporting self-consistency, as well as the role of chaos in galaxies, are stressed. A description is then given of the main numerical techniques of integration of the N-body problem in the framework of stellar dynamics and of the results obtained via N-Body experiments. A final topic is the secular evolution and self-organization of galactic systems.

  6. The Milky Way, the Galactic Halo, and the Halos of Galaxies

    NASA Astrophysics Data System (ADS)

    Gerhard, Ortwin

    2016-08-01

    The Milky Way, ``our'' Galaxy, is currently the subject of intense study with many ground-based surveys, in anticipation of upcoming results from the Gaia mission. From this work we have been learning about the full three-dimensional structure of the Galactic box/peanut bulge, the distribution of stars in the bar and disk, and the many streams and substructures in the Galactic halo. The data indicate that a large fraction of the Galactic halo has been accreted from outside. Similarly, in many external galaxy halos there is now evidence for tidal streams and accretion of satellites. To study these features requires exquisite, deep photometry and spectroscopy. These observations illustrate how galaxy halos are still growing, and sometimes can be used to ``time'' the accretion events. In comparison with cosmological simulations, the structure of galaxy halos gives us a vivid illustration of the hierarchical nature of our Universe.

  7. Stellar populations, stellar masses and the formation of galaxy bulges and discs at z < 3 in CANDELS

    NASA Astrophysics Data System (ADS)

    Margalef-Bentabol, Berta; Conselice, Christopher J.; Mortlock, Alice; Hartley, Will; Duncan, Kenneth; Kennedy, Rebecca; Kocevski, Dale D.; Hasinger, Guenther

    2018-02-01

    We present a multicomponent structural analysis of the internal structure of 1074 high-redshift massive galaxies at 1 < z < 3 from the CANDELS HST Survey. In particular, we examine galaxies best fitted by two structural components, and thus likely forming discs and bulges. We examine the stellar mass, star formation rates (SFRs) and colours of both the inner 'bulge' and outer 'disc' components for these systems using Spectral Energy Distribution (SED) information from the resolved ACS+WFC3 HST imaging. We find that the majority of both inner and outer components lie in the star-forming region of UVJ space (68 and 90 per cent, respectively). However, the inner portions, or the likely forming bulges, are dominated by dusty star formation. Furthermore, we show that the outer components of these systems have a higher SFR than their inner regions, and the ratio of SFR between 'disc' and 'bulge' increases at lower redshifts. Despite the higher SFR of the outer component, the stellar mass ratio of inner to outer component remains constant through this epoch. This suggests that there is mass transfer from the outer to inner components for typical two-component-forming systems, thus building bulges from discs. Finally, using Chandra data we find that the presence of an active galactic nucleus is more common in both one-component spheroid-like galaxies and two-component systems (13 ± 3 and 11 ± 2 per cent) than in one-component disc-like galaxies (3 ± 1 per cent), demonstrating that the formation of a central inner component likely triggers the formation of central massive black holes in these galaxies.

  8. Lithium in giant stars in NGC 752 and M67

    NASA Astrophysics Data System (ADS)

    Pilachowski, Catherine; Saha, A.; Hobbs, L. M.

    1988-04-01

    Spectra of giant stars in the intermediate-age galactic cluster NGC 752 and in the old cluster M67 have been examined for the presence of Li I λ6707. The lithium feature is not present in any of the M67 giants observed, leading to upper-limit abundances of log ɛ(Li) ≤ -1.0 to 0.3. While lithium is not present in most NGC 752 giants, the feature is strong in two giants, Heinemann 77 and 208, log ɛ(Li) = +1.1 and +1.4, respectively. In the remaining giants in NGC 752, log ɛ(Li) < 0.5. The absence of lithium in M67 giants may be because these giants evolve from progenitors in the region of the main-sequence lithium dip.

  9. Impact of red giant/AGB winds on active galactic nucleus jet propagation

    NASA Astrophysics Data System (ADS)

    Perucho, M.; Bosch-Ramon, V.; Barkov, M. V.

    2017-10-01

    Context. Dense stellar winds may mass-load the jets of active galactic nuclei, although it is unclear on what time and spatial scales the mixing takes place. Aims: Our aim is to study the first steps of the interaction between jets and stellar winds, and also the scales on which the stellar wind mixes with the jet and mass-loads it. Methods: We present a detailed 2D simulation - including thermal cooling - of a bubble formed by the wind of a star designed to study the initial stages of jet-star interaction. We also study the first interaction of the wind bubble with the jet using a 3D simulation in which the star enters the jet. Stability analysis is carried out for the shocked wind structure to evaluate the distances over which the jet-dragged wind, which forms a tail, can propagate without mixing with the jet flow. Results.The 2D simulations point to quick wind bubble expansion and fragmentation after about one bubble shock crossing time. Three-dimensional simulations and stability analysis point to local mixing in the case of strong perturbations and relatively low density ratios between the jet and the jet dragged-wind, and to a possibly more stable shocked wind structure at the phase of maximum tail mass flux. Analytical estimates also indicate that very early stages of the star jet-penetration time may be also relevant for mass-loading. The combination of these and previous results from the literature suggests highly unstable interaction structures and efficient wind-jet flow mixing on the scale of the jet interaction height. Conclusions: The winds of stars with strong mass loss can efficiently mix with jets from active galactic nuclei. In addition, the initial wind bubble shocked by the jet leads to a transient, large interaction surface. The interaction between jets and stars can produce strong inhomogeneities within the jet. As mixing is expected to be effective on large scales, even individual asymptotic giant branch stars can significantly contribute to

  10. Mapping a stellar disk into a boxy bulge: The outside-in part of the Milky Way bulge formation

    NASA Astrophysics Data System (ADS)

    Di Matteo, P.; Haywood, M.; Gómez, A.; van Damme, L.; Combes, F.; Hallé, A.; Semelin, B.; Lehnert, M. D.; Katz, D.

    2014-07-01

    By means of idealized, dissipationless N-body simulations that follow the formation and subsequent buckling of a stellar bar, we study the characteristics of boxy/peanut-shaped bulges and compare them with the properties of the stellar populations in the Milky Way (MW) bulge. The main results of our modeling, valid for the general family of boxy/peanut shaped bulges, are the following: (i) Because of the spatial redistribution in the disk initiated at the epoch of bar formation, stars from the innermost regions to the outer Lindblad resonance (OLR) of the stellar bar are mapped into a boxy bulge. (ii) The contribution of stars to the local bulge density depends on their birth radius: stars born in the innermost disk tend to dominate the innermost regions of the boxy bulge, while stars originating closer to the OLR are preferably found in the outer regions of the boxy/peanut structure. (iii) Stellar birth radii are imprinted in the bulge kinematics: the larger the birth radii of stars ending up in the bulge, the greater their rotational support and the higher their line-of-sight velocity dispersions (but note that this last trend depends on the bar viewing angle). (iv) The higher the classical bulge-over-disk ratio, the larger its fractional contribution of stars at large vertical distance from the galaxy midplane. Comparing these results with the properties of the stellar populations of the MW bulge recently revealed by the ARGOS survey, we conclude that (I) the two most metal-rich populations of the MW bulge, labeled A and B in the ARGOS survey, originate in the disk, with the population of A having formed on average closer to the Galaxy center than the population of component B; (II) a massive (B/D ~ 0.25) classical spheroid can be excluded for the MW, thus confirming previous findings that the MW bulge is composed of populations that mostly have a disk origin. On the basis of their chemical and kinematic characteristics, the results of our modeling suggest that

  11. CNO isotopes in red giant stars

    NASA Technical Reports Server (NTRS)

    Wannier, P. G.

    1985-01-01

    The production and distribution of the CNO nuclides is discussed in light of observed abundance ratios in red giants and in the interstellar medium. Isotope abundances have been measured in the atmospheres and in the recent ejecta of cool giants, including carbon stars, S-type stars and red supergiants as well as in oxygen-rich giants making their first ascent of the giant branch. Several of the observations suggest revision of currently accepted nuclear cross-sections and of the mixing processes operating in giant envelopes. By comparing red giant abundances with high-quality observations of the interstellar medium, conclusions are reached about the contribution of intermediate-mass stars to galactic nuclear evolution. The three oxygen isotopes, O-16, -17 and -18, are particularly valuable for such comparison because they reflect three different stages of stellar nucleosynthesis. One remarkable result comes from observations of O-17/O-18 in several classes of red giant stars. The observed range of values for red giants excludes the entire range of values seen in interstellar molecular clouds. Furthermore, both the observations of stars and interstellar clouds exclude the isotopic ratio found in the solar system.

  12. Photometric detection of a candidate low-mass giant binary system at the Milky Way Galactic Center

    NASA Astrophysics Data System (ADS)

    Krishna Gautam, Abhimat; Do, Tuan; Ghez, Andrea; Sakai, Shoko; Morris, Mark; Lu, Jessica; Witzel, Gunther; Jia, Siyao; Becklin, Eric Eric; Matthews, Keith

    2018-01-01

    We present the discovery of a new periodic variable star at the Milky Way Galactic Center (GC). This study uses laser guide-star adaptive optics data collected with the W. M. Keck 10 m telescope in the K‧-band (2.2 µm) over 35 nights spanning an 11 year time baseline, and 5 nights of additional H-band (1.6 µm) data. We implemented an iterative photometric calibration and local correction technique, resulting in a photometric uncertainty of Δm_K‧ ∼ 0.03 to a magnitude of m_K‧ ∼ 16.The periodically variable star has a 39.42 day period. We find that the star is not consistent with known periodically variable star classes in this period range with its observed color and luminosity, nor with an eclipsing binary system. The star's color and luminosity are however consistent with an ellipsoidal binary system at the GC, consisting of a K-giant and a dwarf component with an orbital period of 78.84 days. If a binary system, it represents the first detection of a low-mass giant binary system in the central half parsec of the GC. Such long-period binary systems can easily evaporate in the dense environment of the GC due to interactions with other stars. The existence and properties of a low-mass, long-period binary system can thus place valuable constraints on dynamical models of the GC environment and probe the density of the hypothesized dark cusp of stellar remnants at the GC.

  13. MASSIVE GALAXIES IN COSMOS: EVOLUTION OF BLACK HOLE VERSUS BULGE MASS BUT NOT VERSUS TOTAL STELLAR MASS OVER THE LAST 9 Gyr?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jahnke, Knud; Cisternas, Mauricio; Inskip, Katherine

    2009-12-01

    We constrain the ratio of black hole (BH) mass to total stellar mass of type-1 active galactic nuclei (AGNs) in the COSMOS survey at 1 < z < 2. For 10 AGNs at mean redshift z approx 1.4 with both Hubble Space Telescope (HST)/ACS and HST/NICMOS imaging data, we are able to compute the total stellar mass M {sub *,total}, based on rest-frame UV-to-optical host galaxy colors which constrain mass-to-light ratios. All objects have virial M {sub BH} estimates available from the COSMOS Magellan/IMACS and zCOSMOS surveys. We find within errors zero difference between the M {sub BH}-M {sub *,total}more » relation at z approx 1.4 and the M {sub BH}-M {sub *,bulge} relation in the local universe. Our interpretation is (1) if our objects were purely bulge-dominated, the M {sub BH}-M {sub *,bulge} relation has not evolved since z approx 1.4. However, (2) since we have evidence for substantial disk components, the bulges of massive galaxies (M {sub *,total} = 11.1 +- 0.3 or log M {sub BH} approx 8.3 +- 0.2) must have grown over the last 9 Gyr predominantly by redistribution of the disk into the bulge mass. Since all necessary stellar mass exists in galaxies at z = 1.4, no star formation or addition of external stellar material is required, but only a redistribution, e.g., induced by minor and major merging or through disk instabilities. Merging, in addition to redistributing mass in the galaxy, will add both BH and stellar/bulge mass, but does not change the overall final M {sub BH}/M {sub *,bulge} ratio. Since the overall cosmic stellar and BH mass buildup trace each other tightly over time, our scenario of bulge formation in massive galaxies is independent of any strong BH feedback and means that the mechanism coupling BH and bulge mass until the present is very indirect.« less

  14. Consistency between the luminosity function of resolved millisecond pulsars and the galactic center excess

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ploeg, Harrison; Gordon, Chris; Crocker, Roland

    Fermi Large Area Telescope data reveal an excess of GeV gamma rays from the direction of the Galactic Center and bulge. Several explanations have been proposed for this excess including an unresolved population of millisecond pulsars (MSPs) and self-annihilating dark matter. It has been claimed that a key discriminant for or against the MSP explanation can be extracted from the properties of the luminosity function describing this source population. Specifically, is the luminosity function of the putative MSPs in the Galactic Center consistent with that characterizing the resolved MSPs in the Galactic disk? To investigate this we have used amore » Bayesian Markov Chain Monte Carlo to evaluate the posterior distribution of the parameters of the MSP luminosity function describing both resolved MSPs and the Galactic Center excess. At variance with some other claims, our analysis reveals that, within current uncertainties, both data sets can be well fit with the same luminosity function.« less

  15. JASMINE: galactic structure surveyor

    NASA Astrophysics Data System (ADS)

    Gouda, Naoteru; Kobayashi, Yukiyasu; Yamada, Yoshiyuki; Yano, Taihei; Tsujimoto, Takuji; Suganuma, Masahiro; Niwa, Yoshito; Yamauchi, Masahiro; Kawakatsu, Yasuhiro; Matsuhara, Hideo; Noda, Atsushi; Tsuiki, Atsuo; Utashima, Masayoshi; Ogawa, Akira

    2006-06-01

    We introduce a Japanese plan of infrared(z-band:0.9μm) space astrometry(JASMINE-project). JASMINE is the satellite (Japan Astrometry Satellite Mission for INfrared Exploration) which will measure distances and apparent motions of stars around the center of the Milky Way with yet unprecedented precision. It will measure parallaxes, positions with the accuracy of 10 micro-arcsec and proper motions with the accuracy of ~ 4microarcsec/ year for stars brighter than z=14mag. JASMINE can observe about ten million stars belonging to the bulge components of our Galaxy, which are hidden by the interstellar dust extinction in optical bands. Number of stars with σ/π < 0.1 in the direction of the Galactic central bulge is about 1000 times larger than those observed in optical bands, where π is a parallax and σ is an error of the parallax. With the completely new "map of the bulge in the Milky Way", it is expected that many new exciting scientific results will be obtained in various fields of astronomy. Presently, JASMINE is in a development phase, with a target launch date around 2015. We adopt the following instrument design of JASMINE in order to get the accurate positions of many stars. A 3-mirrors optical system(modified Korsch system)with a primary mirror of~ 0.85m is one of the candidate for the optical system. On the astro-focal plane, we put dozens of new type of CCDs for z-band to get a wide field of view. The accurate measurements of the astrometric parameters requires the instrument line-of-sight highly stability and the opto-mechanical highly stability of the payload in the JASMINE spacecraft. The consideration of overall system(bus) design is now going on in cooperation with Japan Aerospace Exploration Agency(JAXA).

  16. THE GALACTIC POSITRON ANNIHILATION RADIATION AND THE PROPAGATION OF POSITRONS IN THE INTERSTELLAR MEDIUM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Higdon, J. C.; Lingenfelter, R. E.; Rothschild, R. E.

    2009-06-10

    The ratio of the luminosity of diffuse 511 keV positron annihilation radiation, measured by INTEGRAL in its four years, from a Galactic 'positron bulge' (<1.5 kpc) compared to that of the disk is {approx}1.4. This ratio is roughly 4 times larger than that expected simply from the stellar bulge-to-disk ratio of {approx}0.33 of the Galactic supernovae (SNe), which are thought to be the principal source of the annihilating positrons through the decay of radionuclei made by explosive nucleosynthesis in the SNe. This large discrepancy has prompted a search for new sources. Here, however, we show that the measured 511 keVmore » luminosity ratio can be fully understood in the context of a Galactic SN origin when the differential propagation of these {approx} MeV positrons in the various phases of the interstellar medium is taken into consideration, since these relativistic positrons must first slow down to energies {<=}10 eV before they can annihilate. Moreover, without propagation, none of the proposed positron sources, new or old, can explain the two basic properties on the Galactic annihilation radiation: the fraction of the annihilation that occurs through positronium formation and the ratio of the broad/narrow components of the 511 keV line. In particular, we show that in the neutral phases of the interstellar medium, which fill most of the disk (>3.5 kpc), the cascade of the magnetic turbulence, which scatters the positrons, is damped by ion-neutral friction, allowing positrons to stream along magnetic flux tubes. We find that nearly 1/2 of the positrons produced in the disk escape from it into the halo. On the other hand, we show that within the extended, or interstellar, bulge (<3.5 kpc), essentially all of the positrons are born in the hot plasmas which fill that volume. We find that the diffusion mean free path is long enough that only a negligible fraction annihilate there and {approx}80% of them escape down into the H II and H I envelopes of molecular clouds

  17. The Gaia-ESO Survey: Sodium and aluminium abundances in giants and dwarfs. Implications for stellar and Galactic chemical evolution

    NASA Astrophysics Data System (ADS)

    Smiljanic, R.; Romano, D.; Bragaglia, A.; Donati, P.; Magrini, L.; Friel, E.; Jacobson, H.; Randich, S.; Ventura, P.; Lind, K.; Bergemann, M.; Nordlander, T.; Morel, T.; Pancino, E.; Tautvaišienė, G.; Adibekyan, V.; Tosi, M.; Vallenari, A.; Gilmore, G.; Bensby, T.; François, P.; Koposov, S.; Lanzafame, A. C.; Recio-Blanco, A.; Bayo, A.; Carraro, G.; Casey, A. R.; Costado, M. T.; Franciosini, E.; Heiter, U.; Hill, V.; Hourihane, A.; Jofré, P.; Lardo, C.; de Laverny, P.; Lewis, J.; Monaco, L.; Morbidelli, L.; Sacco, G. G.; Sbordone, L.; Sousa, S. G.; Worley, C. C.; Zaggia, S.

    2016-05-01

    Context. Stellar evolution models predict that internal mixing should cause some sodium overabundance at the surface of red giants more massive than ~1.5-2.0 M⊙. The surface aluminium abundance should not be affected. Nevertheless, observational results disagree about the presence and/or the degree of Na and Al overabundances. In addition, Galactic chemical evolution models adopting different stellar yields lead to very different predictions for the behavior of [Na/Fe] and [Al/Fe] versus [Fe/H]. Overall, the observed trends of these abundances with metallicity are not well reproduced. Aims: We readdress both issues, using new Na and Al abundances determined within the Gaia-ESO Survey. Our aim is to obtain better observational constraints on the behavior of these elements using two samples: I) more than 600 dwarfs of the solar neighborhood and of open clusters and II) low- and intermediate-mass clump giants in six open clusters. Methods: Abundances were determined using high-resolution UVES spectra. The individual Na abundances were corrected for nonlocal thermodynamic equilibrium effects. For the Al abundances, the order of magnitude of the corrections was estimated for a few representative cases. For giants, the abundance trends with stellar mass are compared to stellar evolution models. For dwarfs, the abundance trends with metallicity and age are compared to detailed chemical evolution models. Results: Abundances of Na in stars with mass below ~2.0 M⊙, and of Al in stars below ~3.0 M⊙, seem to be unaffected by internal mixing processes. For more massive stars, the Na overabundance increases with stellar mass. This trend agrees well with predictions of stellar evolutionary models. For Al, our only cluster with giants more massive than 3.0 M⊙, NGC 6705, is Al enriched. However, this might be related to the environment where the cluster was formed. Chemical evolution models that well fit the observed [Na/Fe] vs. [Fe/H] trend in solar neighborhood dwarfs

  18. Science Brought by JASMINE Data

    NASA Astrophysics Data System (ADS)

    Tsujimoto, T.

    The planned astrometric space mission JASMINE will provide the exact positions, distances, and proper motions of the bulge stars. These data will certainly reveal the origin and evolution of the Galactic bulge. In fact, the formation process of the bulge is still veiled. It is generally believed that the Galactic bulge possesses a simple old population. On the other hand, the Galactic bulge has a bar with some kinematic implications for a secular evolution. Here we review some evidences for the recent star formation in the Galactic bulge, that will be verified by JASMINE.

  19. Building the Galactic halo from globular clusters: evidence from chemically unusual red giants

    NASA Astrophysics Data System (ADS)

    Martell, S. L.; Smolinski, J. P.; Beers, T. C.; Grebel, E. K.

    2011-10-01

    We present a spectroscopic search for halo field stars that originally formed in globular clusters. Using moderate-resolution SDSS-III/SEGUE-2 spectra of 561 red giants with typical halo metallicities (-1.8 ≤ [Fe/H] ≤ -1.0), we identify 16 stars, 3% of the sample, with CN and CH bandstrength behavior indicating depleted carbon and enhanced nitrogen abundances relative to the rest of the data set. Since globular clusters are the only environment known in which stars form with this pattern of atypical light-element abundances, we claim that these stars are second-generation globular cluster stars that have been lost to the halo field via normal cluster mass-loss processes. Extrapolating from theoretical models of two-generation globular cluster formation, this result suggests that globular clusters contributed significant numbers of stars to the construction of the Galactic halo: we calculate that a minimum of 17% of the present-day mass of the stellar halo was originally formed in globular clusters. The ratio of CN-strong to CN-normal stars drops with Galactocentric distance, suggesting that the inner-halo population may be the primary repository of these stars. Full Tables 1 and 3 are available in electronic form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/534/A136

  20. On the physical nature of globular cluster candidates in the Milky Way bulge

    NASA Astrophysics Data System (ADS)

    Piatti, Andrés E.

    2018-06-01

    We present results from 2MASS JKs photometry on the physical reality of recently reported globular cluster (GC) candidates in the Milky Way (MW) bulge. We relied our analysis on photometric membership probabilities that allowed us to distinguish real stellar aggregates from the composite field star population. When building colour-magnitude diagrams and stellar density maps for stars at different membership probability levels, the genuine GC candidate populations are clearly highlighted. We then used the tip of the red giant branch (RGB) as distance estimator, resulting in heliocentric distances that place many of the objects in regions near the MW bulge, where no GC had been previously recognized. Some few GC candidates resulted to be MW halo/disc objects. Metallicities estimated from the standard RGB method are in agreement with the values expected according to the position of the GC candidates in the Galaxy. Finally, we derived, for the first time, their structural parameters. We found that the studied objects have core, half-light, and tidal radii in the ranges spanned by the population of known MW GCs. Their internal dynamical evolutionary stages will be described properly when their masses are estimated.

  1. Infrared Spectroscopic Studies of the Properties of Dust in the Ejecta of Galactic Oxygen-Rich Asymptotic Giant Branch Stars

    NASA Astrophysics Data System (ADS)

    Sargent, Benjamin A.; Srinivasan, Sundar; Kastner, Joel; Meixner, Margaret; Riley, Allyssa

    2018-06-01

    We are conducting a series of infrared studies of large samples of mass-losing asymptotic giant branch (AGB) stars to explore the relationship between the composition of evolved star ejecta and host galaxy metallicity. Our previous studies focused on mass loss from evolved stars in the relatively low-metallicity Large and Small Magellanic Clouds. In our present study, we analyze dust in the mass-losing envelopes of AGB stars in the Galaxy, with special focus on the ejecta of oxygen-rich (O-rich) AGB stars. We have constructed detailed dust opacity models of AGB stars in the Galaxy for which we have infrared spectra from, e.g., the Spitzer Space Telescope Infrared Spectrograph (IRS). This detailed modeling of dust features in IRS spectra informs our choice of dust properties to use in radiative transfer modeling of the broadband SEDs of Bulge AGB stars. We investigate the effects of dust grain composition, size, shape, etc. on the AGB stars' infrared spectra, studying both the silicate dust and the opacity source(s) commonly attributed to alumina (Al2O3). BAS acknowledges funding from NASA ADAP grant 80NSSC17K0057.

  2. X-Ray Processing of ChaMPlane Fields: Methods and Initial Results for Selected Anti-Galactic Center Fields

    NASA Astrophysics Data System (ADS)

    Hong, JaeSub; van den Berg, Maureen; Schlegel, Eric M.; Grindlay, Jonathan E.; Koenig, Xavier; Laycock, Silas; Zhao, Ping

    2005-12-01

    We describe the X-ray analysis procedure of the ongoing Chandra Multiwavelength Plane (ChaMPlane) Survey and report the initial results from the analysis of 15 selected anti-Galactic center observations (90degGalactic sources but also of general use: optimum photometry in crowded fields using advanced techniques for overlapping sources, rigorous astrometry and 95% error circles for combining X-ray images or matching to optical/IR images, and application of quantile analysis for spectral analysis of faint sources. We apply these techniques to 15 anti-Galactic center observations (of 14 distinct fields), in which we have detected 921 X-ray point sources. We present logN-logS distributions and quantile analysis to show that in the hard band (2-8 keV) active galactic nuclei dominate the sources. Complete analysis of all ChaMPlane anti-Galactic center fields will be given in a subsequent paper, followed by papers on sources in the Galactic center and bulge regions.

  3. Results from the MACHO Galactic Pixel Lensing Search

    NASA Astrophysics Data System (ADS)

    Drake, Andrew J.; Minniti, Dante; Alcock, Charles; Allsman, Robyn A.; Alves, David; Axelrod, Tim S.; Becker, Andrew C.; Bennett, David; Cook, Kem H.; Freeman, Ken C.; Griest, Kim; Lehner, Matt; Marshall, Stuart; Peterson, Bruce; Pratt, Mark; Quinn, Peter; Rodgers, Alex; Stubbs, Chris; Sutherland, Will; Tomaney, Austin; Vandehei, Thor; Welch, Doug L.

    The MACHO, EROS, OGLE and AGAPE collaborations have been studying nature of the galactic halo for a number of years using microlensing events. The MACHO group undertakes observations of the LMC, SMC and Galactic Bulge monitoring the light curves of millions of stars to detect microlensing. Most of these fields are crowded to the extent that all the monitored stars are blended. Such crowding makes the performance of accurate photometry difficult. We apply the new technique of Difference Image Analysis (DIA) on archival data to improve the photometry and increase both the detection sensitivity and effective search area. The application of this technique also allows us to detect so called `pixel lensing' events. These are microlensing events where the source star is only detectable during lensing. The detection of these events will allow us to make a large increase in the number of detected microlensing events. We present a light curve demonstrating the detection of a pixel lensing event with this technique.

  4. Ongoing Massive Star Formation in the Bulge of M51

    NASA Astrophysics Data System (ADS)

    Lamers, H. J. G. L. M.; Panagia, N.; Scuderi, S.; Romaniello, M.; Spaans, M.; de Wit, W. J.; Kirshner, R.

    2002-02-01

    We present a study of Hubble Space Telescope Wide Field Planetary Camera 2 observations of the inner kiloparsec of the interacting galaxy M51 in six bands from 2550 to 8140 Å. The images show an oval-shaped area (which we call the ``bulge'') of about 11''×16'', or 450×650 pc, around the nucleus that is dominated by a smooth ``yellow/reddish'' background population with overimposed dust lanes. These dust lanes are the inner extensions of the spiral arms. The extinction properties, derived in four fields in and outside dust lanes, are similar to the Galactic extinction law. The reddish stellar population has an intrinsic color of (B-V)0~=1.0, suggesting an age in excess of 5 Gyr. We found 30 bright pointlike sources in the bulge of M51, i.e., within 110-350 pc from the nucleus. The point sources have 21.4

  5. A and F stars as probes of outer Galactic disc kinematics

    NASA Astrophysics Data System (ADS)

    Harris, A.; Drew, J. E.; Farnhill, H. J.; Monguió, M.; Gebran, M.; Wright, N. J.; Drake, J. J.; Sale, S. E.

    2018-04-01

    Previous studies of the rotation law in the outer Galactic disc have mainly used gas tracers or clump giants. Here, we explore A and F stars as alternatives: these provide a much denser sampling in the outer disc than gas tracers and have experienced significantly less velocity scattering than older clump giants. This first investigation confirms the suitability of A stars in this role. Our work is based on spectroscopy of ˜1300 photometrically selected stars in the red calcium-triplet region, chosen to mitigate against the effects of interstellar extinction. The stars are located in two low Galactic latitude sightlines, at longitudes ℓ = 118°, sampling strong Galactic rotation shear, and ℓ = 178°, near the anticentre. With the use of Markov Chain Monte Carlo parameter fitting, stellar parameters and radial velocities are measured, and distances computed. The obtained trend of radial velocity with distance is inconsistent with existing flat or slowly rising rotation laws from gas tracers (Brand & Blitz 1993; Reid et al. 2014). Instead, our results fit in with those obtained by Huang et al. (2016) from disc clump giants that favoured rising circular speeds. An alternative interpretation in terms of spiral arm perturbation is not straight forward. We assess the role that undetected binaries in the sample and distance error may have in introducing bias, and show that the former is a minor factor. The random errors in our trend of circular velocity are within ±5 km s-1.

  6. THE FRAGMENTING PAST OF THE DISK AT THE GALACTIC CENTER: THE CULPRIT FOR THE MISSING RED GIANTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Amaro-Seoane, Pau; Chen, Xian, E-mail: Pau.Amaro-Seoane@aei.mpg.de, E-mail: Xian.Chen@aei.mpg.de

    2014-01-20

    Since 1996 we have known that the Galactic Center (GC) displays a core-like distribution of red giant branch (RGB) stars starting at ∼10'', which poses a theoretical problem because the GC should have formed a segregated cusp of old stars. This issue has been addressed invoking stellar collisions, massive black hole binaries, and infalling star clusters, which can explain it to some extent. Another observational fact, key to the work presented here, is the presence of a stellar disk at the GC. We postulate that the reason for the missing stars in the RGB is closely intertwined with the diskmore » formation process, which initially was gaseous and went through a fragmentation phase to form the stars. Using simple analytical estimates, we prove that during fragmentation the disk developed regions with densities much higher than a homogeneous gaseous disk, i.e., ''clumps'', which were optically thick, and hence contracted slowly. Stars in the GC interacted with them and in the case of RGB stars, the clumps were dense enough to totally remove their outer envelopes after a relatively low number of impacts. Giant stars in the horizontal branch (HB), however, have much denser envelopes. Hence, the fragmentation phase of the disk must have had a lower impact on their distribution, because it was more difficult to remove their envelopes. We predict that future deeper observations of the GC should reveal less depletion of HB stars and that the released dense cores of RGB stars will still be populating the GC.« less

  7. Jupiter's hydrogen bulge: A Cassini perspective

    NASA Astrophysics Data System (ADS)

    Melin, Henrik; Stallard, T. S.

    2016-11-01

    We present observations of H Ly-α and H2 emissions on the body of Jupiter obtained during the Cassini flyby in late 2000 and early 2001. The H Ly-α emission is highly organised by System III longitude and latitude, peaking at a brightness of 22 kR between 90 and 120° longitude. This is known as the H Ly-α 'bulge'. These observations add to a number of previous studies, showing that the feature is very long-lived, present over several decades. We show that there is a strong correlation between the prevailing solar H Ly-α flux (measured at Earth) and the peak brightness of the H Ly-α bulge at Jupiter, which supports the notion that it is primarily driven by solar resonance scatter. The H Ly-α brightness distribution is not aligned with the jovigraphic equator, but is approximately aligned with the particle drift equator of some, but not all, major Jupiter magnetic field models. On the time scale of days, the bulge region appears twice as variable as the non-bulge region. We propose that the electron recombination of H3+ is an important reaction for the generation of the H Ly-α bulge, which requires an enhancement of soft electrons at the location of the bulge. We derive an equatorial H3+ lifetime of 1.6 ± 0.4 h and a corresponding column averaged electron density of 1.7 × 109 m-3.

  8. Recognition of DNA/RNA bulges by antimicrobial and antitumor metallohelices.

    PubMed

    Malina, Jaroslav; Scott, Peter; Brabec, Viktor

    2015-09-07

    Bulged structures have been identified in nucleic acids and have been shown to be linked to biomolecular processes involved in numerous diseases. Thus, chemical agents with affinity for bulged nucleic acids are of general biological significance. Herein, the mechanism of specific recognition and stabilization of bulged DNA and RNA by helical bimetallic species was established through detailed molecular biophysics and biochemistry assays. These agents, known as 'flexicates', are potential mimetics of α-helical peptides in cancer treatment, exhibiting antimicrobial and antitumor effects. The flexicates have positive impacts on the thermal stability of DNA duplexes containing bulges, which means that the flexicates interact with the duplexes containing bulges, and that these interactions stabilize the secondary structures of these duplexes. Notably, the stabilising effect of the flexicates increases with the size of the bulge, the maximal stabilization is observed for the duplexes containing a bulge composed of at least three bases. The flexicates bind most preferentially to the bulges composed of pyrimidines flanked on both sides also by pyrimidines. It is suggested that it is so because these bulges exhibit greatest conformational variability in comparison with other combinations of bases in the bulge loop and bases flanking the bulge. Finally, the results indicate that there is only one dominant binding site for the flexicates on the DNA and RNA bulges and that the flexicates bind directly to the bulge or in its close proximity. It is also shown that the flexicates effectively bind to RNA duplexes containing the bulged region of HIV-1 TAR RNA.

  9. Massive stellar content of some Galactic supershells

    NASA Astrophysics Data System (ADS)

    Kaltcheva, Nadejda; Golev, Valeri

    2015-08-01

    The giant Galactic H II regions provide a unique opportunity to study the OB-star influence on the surrounding interstellar matter. In this contribution, several multi-wavelength surveys (Wisconsin H-α Mapper Northern Sky Survey, Southern H-α Sky Survey Atlas, MSX Mid-IR Galactic Plane Survey, WISE All-Sky Data Release, CO survey of the Milky Way, and the Southern Galactic Plane HI Survey) are combined with available intermediate-band uvbyβ photometry to attempt a precise spatial correlation between the OB-stars and the neutral and ionized material. Our study is focused on the H I supershell GSH 305+01-24 in Centaurus, the Car OB2 supershell, the Cygnus star-forming complex and the GSH 224-01+24 shell toward the GMN 39/Seagull nebula region. We refine the massive stellar content of these star-forming fields and study the energetics of its interaction with the shells’ material.

  10. The panchromatic Hubble Andromeda treasury. VII. The steep mid-ultraviolet to near-infrared extinction curve in the central 200 pc of the M31 Bulge

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dong, Hui; Lauer, Tod R.; Olsen, Knut

    We measure the extinction curve in the central 200 pc of M31 at mid-ultraviolet to near-infrared wavelengths (from 1928 Å to 1.5 μm), using Swift/UVOT and Hubble Space Telescope (HST) Wide Field Camera 3 (WFC3)/Advanced Camera for Surveys (ACS) observations in 13 bands. Taking advantage of the high angular resolution of the HST/WFC3 and ACS detectors, we develop a method to simultaneously determine the relative extinction and the fraction of obscured starlight for five dusty complexes located in the circumnuclear region. The extinction curves of these clumps (R{sub V} = 2.4-2.5) are steeper than the average Galactic one (R{sub V}more » = 3.1), but are similar to optical and near-infrared curves recently measured toward the Galactic bulge (R{sub V} ∼ 2.5). This similarity suggests that steep extinction curves may be common in the inner bulge of galaxies. In the ultraviolet, the extinction curves of these clumps are also unusual. We find that one dusty clump (size < 2 pc) exhibits a strong UV bump (extinction at 2175 Å), more than three standard deviation higher than that predicted by common models. Although the high stellar metallicity of the M31 bulge indicates that there are sufficient carbon and silicon to produce large dust grains, the grains may have been destroyed by supernova explosions or past activity of the central supermassive black hole, resulting in the observed steepened extinction curve.« less

  11. CHEMICAL ABUNDANCES IN FIELD RED GIANTS FROM HIGH-RESOLUTION H-BAND SPECTRA USING THE APOGEE SPECTRAL LINELIST

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, Verne V.; Cunha, Katia; Shetrone, Matthew D.

    2013-03-01

    High-resolution H-band spectra of five bright field K, M, and MS giants, obtained from the archives of the Kitt Peak National Observatory Fourier transform spectrometer, are analyzed to determine chemical abundances of 16 elements. The abundances were derived via spectrum synthesis using the detailed linelist prepared for the Sloan Digital Sky Survey III Apache Point Galactic Evolution Experiment (APOGEE), which is a high-resolution near-infrared spectroscopic survey to derive detailed chemical abundance distributions and precise radial velocities for 100,000 red giants sampling all Galactic stellar populations. The red giant sample studied here was chosen to probe which chemical elements can bemore » derived reliably from the H-band APOGEE spectral region. These red giants consist of two K-giants ({alpha} Boo and {mu} Leo), two M-giants ({beta} And and {delta} Oph), and one thermally pulsing asymptotic giant branch (TP-AGB) star of spectral type MS (HD 199799). Measured chemical abundances include the cosmochemically important isotopes {sup 12}C, {sup 13}C, {sup 14}N, and {sup 16}O, along with Mg, Al, Si, K, Ca, Ti, V, Cr, Mn, Fe, Co, Ni, and Cu. The K and M giants exhibit the abundance signature of the first dredge-up of CN-cycle material, while the TP-AGB star shows clear evidence of the addition of {sup 12}C synthesized during {sup 4}He-burning thermal pulses and subsequent third dredge-up. A comparison of the abundances derived here with published values for these stars reveals consistent results to {approx}0.1 dex. The APOGEE spectral region and linelist is thus well suited for probing both Galactic chemical evolution, as well as internal nucleosynthesis and mixing in populations of red giants via high-resolution spectroscopy.« less

  12. Recognition of DNA bulges by dinuclear iron(II) metallosupramolecular helicates.

    PubMed

    Malina, Jaroslav; Hannon, Michael J; Brabec, Viktor

    2014-02-01

    Bulged DNA structures are of general biological significance because of their important roles in a number of biochemical processes. Compounds capable of targeting bulged DNA sequences can be used as probes for studying their role in nucleic acid function, or could even have significant therapeutic potential. The interaction of [Fe(2)L(3)](4+) metallosupramolecular helicates (L = C(25)H(20)N(4)) with DNA duplexes containing bulges has been studied by measurement of the DNA melting temperature and gel electrophoresis. This study was aimed at exploring binding affinities of the helicates for DNA bulges of various sizes and nucleotide sequences. The studies reported herein reveal that both enantiomers of [Fe(2)L(3)](4+) bind to DNA bulges containing at least two unpaired nucleotides. In addition, these helicates show considerably enhanced affinity for duplexes containing unpaired pyrimidines in the bulge and/or pyrimidines flanking the bulge on both sides. We suggest that the bulge creates the structural motif, such as the triangular prismatic pocket formed by the unpaired bulge bases, to accommodate the [Fe(2)L(3)](4+) helicate molecule, and is probably responsible for the affinity for duplexes with a varying number of bulge bases. Our results reveal that DNA bulges represent another example of unusual DNA structures recognized by dinuclear iron(II) ([Fe(2)L(3)](4+)) supramolecular helicates. © 2013 FEBS.

  13. Alpha Elements' Effects on Planet Formation and the Hunt for Extragalactic Planets

    NASA Astrophysics Data System (ADS)

    Penny, Matthew; Rodriguez, Joseph E.; Beatty, Thomas; Zhou, George

    2018-01-01

    A star's likelihood of hosting a giant planet is well known to be strongly dependent on metallicity. However, little is known about what elements cause this correlation (e.g. bulk metals, iron, or alpha elements such as silicon and oxygen). This is likely because most planet searches target stars in the Galactic disk, and due to Galactic chemical evolution, alpha element abundances are themselves correlated with metallicity within a population. We investigate the feasibility of simultaneous transiting planet search towards the alpha-poor Sagittarius dwarf galaxy and alpha-rich Galactic bulge in a single field of view of DECam, that would enable a comparative study of planet frequency over an [alpha/Fe] baseline of ~0.4 dex. We show that a modestly sized survey could detect planet candidates in both populations, but that false positive rejection in Sgr Dwarf may be prohibitively expensive. Conversely, two-filter survey observations alone would be sufficient to rule out a large fraction of bulge false positives, enabling statistical validation of candidates with a modest follow-up investment. Although over a shorter [alpha/Fe] baseline, this survey would provide a test of whether it is alpha or iron that causes the planet metallicity correlation.

  14. THE X-SHAPED BULGE OF THE MILKY WAY REVEALED BY WISE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ness, Melissa; Lang, Dustin, E-mail: ness@mpia-hd.mpg.de

    2016-07-01

    The Milky Way bulge has a boxy/peanut morphology and an X-shaped structure. This X-shape has been revealed by the “split in the red clump” from star counts along the line of sight toward the bulge, measured from photometric surveys. This boxy, X-shaped bulge morphology is not unique to the Milky Way and such bulges are observed in other barred spiral galaxies. N -body simulations show that boxy and X-shaped bulges are formed from the disk via dynamical instabilities. It has also been proposed that the Milky Way bulge is not X-shaped, but rather, the apparent split in the red clumpmore » stars is a consequence of different stellar populations, in an old classical spheroidal bulge. We present a Wide-Field Infrared Survey Explorer ( WISE ) image of the Milky Way bulge, produced by downsampling the publicly available “unWISE” coadds. The WISE image of the Milky Way bulge shows that the X-shaped nature of the Milky Way bulge is self-evident and irrefutable. The X-shape morphology of the bulge in itself and the fraction of bulge stars that comprise orbits within this structure has important implications for the formation history of the Milky Way, and, given the ubiquity of boxy X-shaped bulges, spiral galaxies in general.« less

  15. The dependence of stellar age distributions on giant molecular cloud environment

    NASA Astrophysics Data System (ADS)

    Dobbs, C. L.; Pringle, J. E.; Naylor, T.

    2014-01-01

    In this Letter, we analyse the distributions of stellar ages in giant molecular clouds (GMCs) in spiral arms, interarm spurs and at large galactic radii, where the spiral arms are relatively weak. We use the results of numerical simulations of galaxies, which follow the evolution of GMCs and include star particles where star formation events occur. We find that GMCs in spiral arms tend to have predominantly young (<10 Myr) stars. By contrast, clouds which are the remainders of spiral arm giant molecular asssociations that have been sheared into interarm GMCs contain fewer young (<10 Myr) stars and more ˜20 Myr stars. We also show that clouds which form in the absence of spiral arms, due to local gravitational and thermal instabilities, contain preferentially young stars. We propose that the age distributions of stars in GMCs will be a useful diagnostic to test different cloud evolution scenarios, the origin of spiral arms and the success of numerical models of galactic star formation. We discuss the implications of our results in the context of Galactic and extragalactic molecular clouds.

  16. The spectroscopic evolution of novae in the bulge of M31 and a search for their possible origin in the M31 globular cluster system

    NASA Astrophysics Data System (ADS)

    Tomaney, Austin Bede

    Results are presented from a three year (1987 to 1989) spectroscopic and photometric survey of novae in M3l's bulge, the first comprehensive study of novae outside the Galactic and Magellanic Cloud systems. Nine novae were detected and monitored and their spectra cover a range of outburst states from early decline to the early nebular phases. Broad agreement in spectral morphology and evolution is found with Galactic novae. Since Galactic novae are mainly disk objects, this indicates that novae outburst properties are not critically dependent on the metallicity of the progenitor population. However, in this sample, and in a sample of four M31 nova spectra taken in 1983, no fast, violent outbursts frequently associated with nova systems containing ONeMg white dwarfs were found, suggestive of a systematic difference between the observed proportion of such outbursts between Galactic and M31 bulge novae. Three novae in the sample were observed on succeeding nights during the transition phase of their evolution. Extraordinary variations in some nightly line strengths, particularly the N III lines, were discovered. It is argued that this variability reflects the deposition of drag energy by the secondary star during the common envelope phase of nova evolution and is indicative of a key phase in mass loss from nova systems. Observations include the spectroscopic coverage of an extremely slow nova from 1987 to l990, during the object's evolution in the nebula phase. This provided a unique opportunity to make the first detailed comparison of the evolution and properties of an extra galactic nova with those in our own Galaxy. The roughly solar abundances obtained are typical of similar slow Galactic novae. Further observations are also presented of a unique outburst in 1988 that was independently discovered and reported by Rich et al. These data confirm the inferences of other observers that the outburst differed markedly from that of a typical classical nova. Finally an

  17. Nuclear starburst activity induced by elongated bulges in spiral galaxies

    NASA Astrophysics Data System (ADS)

    Kim, Eunbin; Kim, Sungsoo S.; Choi, Yun-Young; Lee, Gwang-Ho; de Grijs, Richard; Lee, Myung Gyoon; Hwang, Ho Seong

    2018-06-01

    We study the effects of bulge elongation on the star formation activity in the centres of spiral galaxies using the data from the Sloan Digital Sky Survey Data Release 7. We construct a volume-limited sample of face-on spiral galaxies with Mr < -19.5 mag at 0.02 ≤z< 0.055 by excluding barred galaxies, where the aperture of the SDSS spectroscopic fibre covers the bulges of the galaxies. We adopt the ellipticity of bulges measured by Simard et al. (2011) who performed two-dimensional bulge+disc decompositions using the SDSS images of galaxies, and identify nuclear starbursts using the fibre specific star formation rates derived from the SDSS spectra. We find a statistically significant correlation between bulge elongation and nuclear starbursts in the sense that the fraction of nuclear starbursts increases with bulge elongation. This correlation is more prominent for fainter and redder galaxies, which exhibit higher ratios of elongated bulges. We find no significant environmental dependence of the correlation between bulge elongation and nuclear starbursts. These results suggest that non-axisymmetric bulges can efficiently feed the gas into the centre of galaxies to trigger nuclear starburst activity.

  18. Signatures of bulge triaxiality from kinematics in Baade's window

    NASA Astrophysics Data System (ADS)

    Zhao, Hongsheng; Spergel, David N.; Rich, R. Michael

    1994-12-01

    We study a sample of 62 Baade's Window, (l,b) = (1, -4)deg, K giants that have published proper motions, radial velocity, and metallicity. Using R0 = 8 kpc, we construct the velocity ellipsoids, namely the 3x3 velocity dispersion tensors, for the metal rich stars ((Fe/H) greater than or equal to 0) and metal poor stars ((Fe/H) less than or equal to -0.2). After diagonalizing the tensor, we find a vertex deviation characteristic of a nonaxisymmetric system. Eigenvalues for the two velocity ellipsoids (sigma1, sigma2, sigma3) are (126, 89, 65) +/- 13 km/s for the metal rich sample and (154, 77, 83) +/- 25 km/s for the metal poor sample with their long axes pointing to two nearly perpendicular directions (lv, bv) = (-65 +/- 9 deg, +14 +/- 9 deg) and (lv, bv) = (25 +/- 14 deg, -11 +/- 14 deg), respectively. The vertex deviations of the velocity ellipsoids cannot be consistently explained by any oblate model. We are able to reject the hypothesis that the metal poor and metal rich populations are drawn from the same distribution at better than the 97% confidence level. We populate orbits in a realistic bar potential with a Gaussian velocity distribution, allowing us to simulate and interpret observations. We conclude that the data are consistent with a triaxial bulge pointing towards (l,b) with l less than 0 deg and b = 0 deg as suggested by earlier work on gas dynamics and the observed light distribution. We also predict that low latitude (absolute value of b less than or equal to 4 deg) bulge fields should show the vertex deviation more strongly and would therefore be the best locations for future proper motion studies. In the classification scheme of Athanassoula et al. (1983) the metal rich stars appear to occupy the B-family orbits which rotate in the prograde sense in the rest frame and have boxy shapes that are aligned with and supporting the bar. The metal poor stars in the sample lag behind the metal rich bulge and appear to occupy R-family orbits which rotate

  19. Galactic Shapiro delay to the Crab pulsar and limit on weak equivalence principle violation

    NASA Astrophysics Data System (ADS)

    Desai, Shantanu; Kahya, Emre

    2018-02-01

    We calculate the total galactic Shapiro delay to the Crab pulsar by including the contributions from the dark matter as well as baryonic matter along the line of sight. The total delay due to dark matter potential is about 3.4 days. For baryonic matter, we included the contributions from both the bulge and the disk, which are approximately 0.12 and 0.32 days respectively. The total delay from all the matter distribution is therefore 3.84 days. We also calculate the limit on violations of Weak equivalence principle by using observations of "nano-shot" giant pulses from the Crab pulsar with time-delay <0.4 ns, as well as using time differences between radio and optical photons observed from this pulsar. Using the former, we obtain a limit on violation of Weak equivalence principle in terms of the PPN parameter Δ γ < 2.41× 10^{-15}. From the time-difference between simultaneous optical and radio observations, we get Δ γ < 1.54× 10^{-9}. We also point out differences in our calculation of Shapiro delay and that from two recent papers (Yang and Zhang, Phys Rev D 94(10):101501, 2016; Zhang and Gong, Astrophys J 837:134, 2017), which used the same observations to obtain a corresponding limit on Δ γ.

  20. Grains in galactic haloes

    NASA Technical Reports Server (NTRS)

    Ferrara, Andrea; Barsella, Bruno; Ferrini, F.; Greenberg, J. Mayo; Aiello, Santi

    1989-01-01

    Researchers considered the effect of extensive forces on dust grains subjected to the light and matter distribution of a spiral galaxy (Greenberg et al. (1987), Ferrini et al. (1987), Barsella et al (1988). Researchers showed that the combined force on a small particle located above the plane of a galactic disk may be either attractive or repulsive depending on a variety of parameters. They found, for example, that graphite grains from 20 nm to 250 nm radius are expelled from a typical galaxy, while silicates and other forms of dielectrics, after initial expulsion, may settle in potential minimum within the halo. They discuss only the statistical behavior of the forces for 17 galaxies whose luminosity and matter distribution in the disk, bulge and halo components are reasonably well known. The preliminary results of the study of the motion of a dust grain for NGC 3198 are given.

  1. Tube Bulge Process : Theoretical Analysis and Finite Element Simulations

    NASA Astrophysics Data System (ADS)

    Velasco, Raphael; Boudeau, Nathalie

    2007-05-01

    This paper is focused on the determination of mechanics characteristics for tubular materials, using tube bulge process. A comparative study is made between two different models: theoretical model and finite element analysis. The theoretical model is completely developed, based first on a geometrical analysis of the tube profile during bulging, which is assumed to strain in arc of circles. Strain and stress analysis complete the theoretical model, which allows to evaluate tube thickness and state of stress, at any point of the free bulge region. Free bulging of a 304L stainless steel is simulated using Ls-Dyna 970. To validate FE simulations approach, a comparison between theoretical and finite elements models is led on several parameters such as: thickness variation at the free bulge region pole with bulge height, tube thickness variation with z axial coordinate, and von Mises stress variation with plastic strain. Finally, the influence of geometrical parameters deviations on flow stress curve is observed using analytical model: deviations of the tube outer diameter, its initial thickness and the bulge height measurement are taken into account to obtain a resulting error on plastic strain and von Mises stress.

  2. Revisiting the Stellar Mass–Angular Momentum–Morphology Relation: Extension to Higher Bulge Fraction and the Effect of Bulge Type

    NASA Astrophysics Data System (ADS)

    Sweet, Sarah M.; Fisher, David; Glazebrook, Karl; Obreschkow, Danail; Lagos, Claudia; Wang, Liang

    2018-06-01

    We present the relation between stellar specific angular momentum j *, stellar mass M *, and bulge-to-total light ratio β for The H I Nearby Galaxy Survey, the Calar Alto Legacy Integral Field Area Survey, and Romanowsky & Fall data sets, exploring the existence of a fundamental plane between these parameters, as first suggested by Obreschkow & Glazebrook. Our best-fit M *–j * relation yields a slope of α = 1.03 ± 0.11 with a trivariate fit including β. When ignoring the effect of β, the exponent α = 0.56 ± 0.06 is consistent with α = 2/3 that is predicted for dark matter halos. There is a linear β–j */M * relation for β ≲ 0.4, exhibiting a general trend of increasing β with decreasing j */M *. Galaxies with β ≳ 0.4 have higher j * than predicted by the relation. Pseudobulge galaxies have preferentially lower β for a given j */M * than galaxies that contain classical bulges. Pseudobulge galaxies follow a well-defined track in β–j */M * space, consistent with Obreschkow & Glazebrook, while galaxies with classical bulges do not. These results are consistent with the hypothesis that while growth in either bulge type is linked to a decrease in j */M *, the mechanisms that build pseudobulges seem to be less efficient at increasing bulge mass per decrease in specific angular momentum than those that build classical bulges.

  3. On the orbits that generate the X-shape in the Milky Way bulge

    NASA Astrophysics Data System (ADS)

    Abbott, Caleb G.; Valluri, Monica; Shen, Juntai; Debattista, Victor P.

    2017-09-01

    The Milky Way (MW) bulge shows a boxy/peanut or X-shaped bulge (hereafter BP/X) when viewed in infrared or microwave bands. We examine orbits in an N-body model of a barred disc galaxy that is scaled to match the kinematics of the MW bulge. We generate maps of projected stellar surface density, unsharp masked images, 3D excess-mass distributions (showing mass outside ellipsoids), line-of-sight number count distributions, and 2D line-of-sight kinematics for the simulation as well as co-added orbit families, in order to identify the orbits primarily responsible for the BP/X shape. We estimate that between 19 and 23 per cent of the mass of the bar in this model is associated with the BP/X shape and that the majority of bar orbits contribute to this shape that is clearly seen in projected surface density maps and 3D excess mass for non-resonant box orbits, 'banana' orbits, 'fish/pretzel' orbits and 'brezel' orbits. Although only the latter two families (comprising 7.5 per cent of the total mass) show a distinct X-shape in unsharp masked images, we find that nearly all bar orbit families contribute some mass to the 3D BP/X-shape. All co-added orbit families show a bifurcation in stellar number count distribution with distance that resembles the bifurcation observed in red clump stars in the MW. However, only the box orbit family shows an increasing separation of peaks with increasing galactic latitude |b|, similar to that observed. Our analysis suggests that no single orbit family fully explains all the observed features associated with the MW's BP/X-shaped bulge, but collectively the non-resonant boxes and various resonant boxlet orbits contribute at different distances from the centre to produce this feature. We propose that since box orbits (which are the dominant population in bars) have three incommensurable orbital fundamental frequencies, their 3D shapes are highly flexible and, like Lissajous figures, this family of orbits is most easily able to adapt to

  4. The Heavy Ion Afternoon Bulge: Structure and Formation Mechanisms

    NASA Astrophysics Data System (ADS)

    Fernandes, P. A.; Larsen, B.; Skoug, R. M.; Reeves, G. D.; Denton, M.; Engel, M.; Ferradas, C.; Funsten, H. O.; Henderson, M. G.; Jahn, J. M.; Morley, S.; Thomsen, M. F.

    2017-12-01

    Recent observations of near-equatorial inner magnetosphere plasma composition indicate the presence of an "afternoon bulge" plasma population at low L-shell. A detailed statistical survey using HOPE data characterized this afternoon bulge as an enhancement in 10 keV O+ and He+ ions extending from 1100-2200 MLT and 2 ≤ L ≤ 4 during quiet/moderate geomagnetic activity (Kp < 5). This statistical HOPE study postulated that formation of the bulge is caused by variations in Kp: 10 keV particles have access to low L-shells during geomagnetically active times and become trapped during the transition to quiet times. In this study, we expand on previous observations of the afternoon bulge by examining individual transits of this feature by the Van Allen Probes. We analyze periods with optimal spacecraft transits of the afternoon bulge region, including: May - Oct. 2013, Feb. - June 2014, and Apr. - Aug. 2015. We determine the presence and duration of the bulge during case studies representing three categories of geomagnetic activity: 1) extended quiet geomagnetic conditions; 2) sharp transitions of Kp from active to quiet conditions; and 3) rises and falls in Kp on the time scales of spacecraft orbits to days. We thoroughly characterize the energy structure of the bulge as a function of Kp. We also analyze these transits of the bulge in the context of plasma access using both drift path modeling and UBK-derived energy access maps.

  5. A Spectroscopic and Photometric Study of Gravitational Microlensing Events

    NASA Astrophysics Data System (ADS)

    Kane, Stephen R.

    2000-08-01

    results presented in this thesis are from observations of 34 microlensing events over three consecutive bulge seasons. These results are presented along with a discussion of the observations and the data reduction procedures. The colour-magnitude diagrams indicate that the microlensed sources are main sequence and red clump giant stars. Most of the events appear to exhibit standard Paczynski point source - point lens curves whilst a few deviate significantly from the standard model. Various microlensing models that include anomalous structure are fitted to a selection of the observed events resulting in the discovery of a possible binary source event. These fitted events are used to estimate the sensitivity to extra-solar planets and it is found that the sampling rate for these events was insufficient by about a factor of 7.5 for detecting a Jupiter-mass planet. This result assumes that deviations of 5% can be reliably detected. If microlensing is caused predominantly by bulge stars, as has been suggested by Kiraga and Paczynski, the lensed stars should have larger extinction than other observed stars since they would preferentially be located at the far side of the Galactic bulge. Hence, spectroscopy of Galactic microlensing events may be used as a tool for studying the kinematics and extinction effects in the Galactic bulge. The spectroscopic work in this project involved using Kurucz model spectra to create theoretical extinction effects for various spectral classes towards the Galactic centre. These extinction effects are then used to interpret spectroscopic data taken with the 3.6 m ESO telescope. These data consist of a sample of microlensed stars towards the Galactic bulge and are used to derive the extinction offsets of the lensed source with respect to the average population and a measurement of the fraction of bulge-bulge lensing is made. Hence, it is shown statistically that the microlensed sources are generally located on the far side of the Galactic bulge

  6. New Asymptotic Giant Branch Carbon Stars in the Galactic Halo

    NASA Astrophysics Data System (ADS)

    Mauron, N.; Gigoyan, K. S.; Kostandyan, G. R.

    2018-03-01

    For the first time the data on the eight confirmed or candidate carbon (C) stars found mainly from objective-prism plates are presented. By using the Catalina database of lightcurves, we find that all these stars are pulsating, allowing a distance to be estimated through the K-band Period-Luminosity (PL) relation. This relation does not depend on spectral type (M or C) and distances are reliable even for C candidates. Seven stars are more than 10 kpc from the galactic plane, suggesting they do not belong to the galactic disk. We also find one star located at about 180 kpc from the Sun, being one of the most distant star in the Galaxy. Many of these new C stars are relatively blue. Some comments are also provided on seven other known halo carbon stars for which either a pulsation period is obtained, or because they were not included in previous works on halo C stars.

  7. Time Evolution of the Giant Molecular Cloud Mass Functions across Galactic Disks

    NASA Astrophysics Data System (ADS)

    Kobayashi, Masato I. N.; Inutsuka, Shu-Ichiro; Kobayashi, Hiroshi; Hasegawa, Kenji

    2017-01-01

    We formulate and conduct the time-integration of time evolution equation for the giant molecular cloud mass function (GMCMF) including the cloud-cloud collision (CCC) effect. Our results show that the CCC effect is only limited in the massive-end of the GMCMF and indicate that future high resolution and sensitivity radio observations may constrain giant molecular cloud (GMC) timescales by observing the GMCMF slope in the lower mass regime.

  8. Imaging Galactic Dark Matter with High-Energy Cosmic Neutrinos

    NASA Astrophysics Data System (ADS)

    Argüelles, Carlos A.; Kheirandish, Ali; Vincent, Aaron C.

    2017-11-01

    We show that the high-energy cosmic neutrinos seen by the IceCube Neutrino Observatory can be used to probe interactions between neutrinos and the dark sector that cannot be reached by current cosmological methods. The origin of the observed neutrinos is still unknown, and their arrival directions are compatible with an isotropic distribution. This observation, together with dedicated studies of Galactic plane correlations, suggests a predominantly extragalactic origin. Interactions between this isotropic extragalactic flux and the dense dark matter (DM) bulge of the Milky Way would thus lead to an observable imprint on the distribution, which would be seen by IceCube as (i) slightly suppressed fluxes at energies below a PeV and (ii) a deficit of events in the direction of the Galactic center. We perform an extended unbinned likelihood analysis using the four-year high-energy starting event data set to constrain the strength of DM-neutrino interactions for two model classes. We find that, in spite of low statistics, IceCube can probe regions of the parameter space inaccessible to current cosmological methods.

  9. Imaging Galactic Dark Matter with High-Energy Cosmic Neutrinos.

    PubMed

    Argüelles, Carlos A; Kheirandish, Ali; Vincent, Aaron C

    2017-11-17

    We show that the high-energy cosmic neutrinos seen by the IceCube Neutrino Observatory can be used to probe interactions between neutrinos and the dark sector that cannot be reached by current cosmological methods. The origin of the observed neutrinos is still unknown, and their arrival directions are compatible with an isotropic distribution. This observation, together with dedicated studies of Galactic plane correlations, suggests a predominantly extragalactic origin. Interactions between this isotropic extragalactic flux and the dense dark matter (DM) bulge of the Milky Way would thus lead to an observable imprint on the distribution, which would be seen by IceCube as (i) slightly suppressed fluxes at energies below a PeV and (ii) a deficit of events in the direction of the Galactic center. We perform an extended unbinned likelihood analysis using the four-year high-energy starting event data set to constrain the strength of DM-neutrino interactions for two model classes. We find that, in spite of low statistics, IceCube can probe regions of the parameter space inaccessible to current cosmological methods.

  10. Footpoints of the giant molecular loops in the Galactic center region

    NASA Astrophysics Data System (ADS)

    Riquelme, D.; Amo-Baladrón, M. A.; Martín-Pintado, J.; Mauersberger, R.; Martín, S.; Burton, M.; Cunningham, M.; Jones, P. A.; Menten, K. M.; Bronfman, L.; Güsten, R.

    2018-05-01

    Aims: We aim to reveal the morphology, chemical composition, kinematics, and to establish the main processes prevalent in the gas at the footpoints of the giant molecular loops (GMLs) in the Galactic center region. Methods: Using the 22-m Mopra telescope, we mapped the M-3.8+0.9 molecular cloud, placed at the footpoints of a GML, in 3-mm range molecular lines. To derive the molecular hydrogen column density, we also observed the 13CO(2 - 1) line at 1 mm using the 12-m APEX telescope. From the 3 mm observations 12 molecular species were detected, namely HCO+, HCN, H13CN, HNC, SiO, CS, CH3OH, N2H+, SO, HNCO, OCS, and HC3N. Results: Maps revealing the morphology and kinematics of the M-3.8+0.9 molecular cloud in different molecules are presented. We identify six main molecular complexes. We derive fractional abundances in 11 selected positions of the different molecules assuming local thermodynamical equilibrium. Conclusions: Most of the fractional abundances derived for the M-3.8+0.9 molecular cloud are very similar over the whole cloud. However, the fractional abundances of some molecules show significant difference with respect to those measured in the central molecular zone (CMZ). The abundances of the shock tracer SiO are very similar between the GMLs and the CMZ. The methanol emission is the most abundant species in the GMLs. This indicates that the gas is likely affected by moderate 30 km s-1 or even high velocity (50 km s-1) shocks, consistent with the line profile observed toward one of the studied position. The origin of the shocks is likely related to the flow of the gas throughout the GMLs towards the footpoints. OPRA and APEX final data cubes (FITS) are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/613/A42

  11. HEAVY ELEMENT NUCLEOSYNTHESIS IN THE BRIGHTEST GALACTIC ASYMPTOTIC GIANT BRANCH STARS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Karakas, Amanda I.; Garcia-Hernandez, D. A.; Lugaro, Maria, E-mail: akarakas@mso.anu.edu.au, E-mail: agarcia@iac.es, E-mail: maria.lugaro@monash.edu.au

    2012-05-20

    We present updated calculations of stellar evolutionary sequences and detailed nucleosynthesis predictions for the brightest asymptotic giant branch (AGB) stars in the Galaxy with masses between 5 M{sub Sun} and 9 M{sub Sun }, with an initial metallicity of Z = 0.02 ([Fe/H] = 0.14). In our previous studies we used the Vassiliadis and Wood mass-loss rate, which stays low until the pulsation period reaches 500 days after which point a superwind begins. Vassiliadis and Wood noted that for stars over 2.5 M{sub Sun} the superwind should be delayed until P Almost-Equal-To 750 days at 5 M{sub Sun }. Wemore » calculate evolutionary sequences where we delay the onset of the superwind to pulsation periods of P Almost-Equal-To 700-800 days in models of M = 5, 6, and 7 M{sub Sun }. Post-processing nucleosynthesis calculations show that the 6 and 7 M{sub Sun} models produce the most Rb, with [Rb/Fe] Almost-Equal-To 1 dex, close to the average of most of the Galactic Rb-rich stars ([Rb/Fe] Almost-Equal-To 1.4 {+-} 0.8 dex). Changing the rate of the {sup 22}Ne +{alpha} reactions results in variations of [Rb/Fe] as large as 0.5 dex in models with a delayed superwind. The largest enrichment in heavy elements is found for models that adopt the NACRE rate of the {sup 22}Ne({alpha}, n){sup 25}Mg reaction. Using this rate allows us to best match the composition of most of the Rb-rich stars. A synthetic evolution algorithm is then used to remove the remaining envelope resulting in final [Rb/Fe] of Almost-Equal-To 1.4 dex although with C/O ratios >1. We conclude that delaying the superwind may account for the large Rb overabundances observed in the brightest metal-rich AGB stars.« less

  12. Galactic Bulge Giants: Probing Stellar and Galactic Evolution. 1. Catalogue of Spitzer IRAC and MIPS Sources (PREPRINT)

    DTIC Science & Technology

    2010-12-29

    1997), the 2 Micron All Sky Survey ( 2MASS ; Skrutskie et al. 2006), the Midcourse Space Experiment (MSX) catalogue, and the Infra- Red Astronomical...made for these sources with a search radius of 3.′′0 with DENIS and 2MASS , and 30.′′0 for identification with an MSX or IRAS counterpart. The... 2MASS and DENIS counterpart (depending on the field, between 3.1% and 6.7% of the sources), or (ii) a DENIS and 2MASS counterpart at a distance

  13. GalMod: A Galactic Synthesis Population Model

    NASA Astrophysics Data System (ADS)

    Pasetto, Stefano; Grebel, Eva K.; Chiosi, Cesare; Crnojević, Denija; Zeidler, Peter; Busso, Giorgia; Cassarà, Letizia P.; Piovan, Lorenzo; Tantalo, Rosaria; Brogliato, Claudio

    2018-06-01

    We present a new Galaxy population synthesis Model, GalMod. GalMod is a star-count model featuring an asymmetric bar/bulge as well as spiral arms and related extinction. The model, initially introduced in Pasetto et al., has been here completed with a central bar, a new bulge description, new disk vertical profiles, and several new bolometric corrections. The model can generate synthetic mock catalogs of visible portions of the Milky Way, external galaxies like M31, or N-body simulation initial conditions. At any given time, e.g., at a chosen age of the Galaxy, the model contains a sum of discrete stellar populations, namely the bulge/bar, disk, and halo. These populations are in turn the sum of different components: the disk is the sum of the spiral arms, thin disks, a thick disk, and various gas components, while the halo is the sum of a stellar component, a hot coronal gas, and a dark-matter component. The Galactic potential is computed from these population density profiles and used to generate detailed kinematics by considering up to the first four moments of the collisionless Boltzmann equation. The same density profiles are then used to define the observed color–magnitude diagrams in a user-defined field of view (FoV) from an arbitrary solar location. Several photometric systems have been included and made available online, and no limits on the size of the FoV are imposed thus allowing full-sky simulations, too. Finally, we model the extinction by adopting a dust model with advanced ray-tracing solutions. The model's Web page (and tutorial) can be accessed at www.GalMod.org and support is provided at Galaxy.Model@yahoo.com.

  14. The formation of giant low surface brightness galaxies

    NASA Technical Reports Server (NTRS)

    Hoffman, Yehuda; Silk, Joseph; Wyse, Rosemary F. G.

    1992-01-01

    It is demonstrated that the initial structure of galaxies can be strongly affected by their large-scale environments. In particular, rare (about 3 sigma) massive galaxies in voids will have normal bulges, but unevolved, extended disks; it is proposed that the low surface brightness objects Malin I and Malin II are prototypes of this class of object. The model predicts that searches for more examples of 'crouching giants' should be fruitful, but that such galaxies do not provide a substantial fraction of mass in the universe. The identification of dwarf galaxies is relatively unaffected by their environment.

  15. DISCOVERY OF RELATIVELY HYDROGEN-POOR GIANTS IN THE GALACTIC GLOBULAR CLUSTER ω CENTAURI

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hema, B. P.; Pandey, Gajendra, E-mail: hema@iiap.res.in, E-mail: pandey@iiap.res.in

    2014-09-10

    In this Letter, the results of our low-resolution spectroscopic survey for identifying hydrogen-deficient stars in the red giant sample of the globular cluster ω Cen are reported. Spectral analyses were carried out on the basis of the strengths of the (0, 0) MgH band and the Mg b triplet. In our sample, four giants were identified with weak/absent MgH bands in their observed spectra, which was unexpected for their well determined stellar parameters. The Mg abundances for the program stars were determined from the subordinate lines of the MgH band to the blue of the Mg b triplet, using the spectral synthesis technique. Themore » derived Mg abundances for the program stars were as expected for the red giants of ω Cen, except for the four identified candidates. The determined Mg abundances of these four candidates are much lower than that expected for the red giants of ω Cen, and are unacceptable based on the strengths of the Mg b triplet in their observed spectra. Hence, a plausible explanation for the weak/absent MgH bands in the observed spectra of these stars is a relatively lower abundance of hydrogen in their atmospheres. These giants may belong to the group of helium-enriched red giants of ω Cen.« less

  16. Mapping photometric metallicities in the Galactic halo using broadband photometry

    NASA Astrophysics Data System (ADS)

    Hebenstreit, Samuel David; Nidever, David L.; Munn, Jeffrey A.; Majewski, Steven R.

    2018-06-01

    An important objective of modern Astrophysics is to trace the history of galaxies and the dynamics of their formations. The outer regions of the Milky Way, including the Galactic halo, could potentially elucidate the evolutionary history of our galaxy. In this study, we make use of extensive DDO51 photometry combined with SDSS broadband photometry to select giant stars reaching to 90 kpc. Photometric metallicities, calibrated by overlapping spectroscopic data (SDSS, APOGEE and LAMOST), and distances are calculated for all giant stars. Using these metallicities and distances, we construct metallicity distribution functions (MDFs) from these stars. We study the MDFs for information pertaining to the accretion history of the Milky Way.

  17. SEISMIC DIAGNOSTICS OF RED GIANTS: FIRST COMPARISON WITH STELLAR MODELS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Montalban, J.; Miglio, A.; Noels, A.

    2010-10-01

    The clear detection with CoRoT and KEPLER of radial and non-radial solar-like oscillations in many red giants paves the way for seismic inferences on the structure of such stars. We present an overview of the properties of the adiabatic frequencies and frequency separations of radial and non-radial oscillation modes for an extended grid of models. We highlight how their detection allows a deeper insight into the internal structure and evolutionary state of red giants. In particular, we find that the properties of dipole modes constitute a promising seismic diagnostic tool of the evolutionary state of red giant stars. We comparemore » our theoretical predictions with the first 34 days of KEPLER data and predict the frequency diagram expected for red giants in the CoRoT exofield in the galactic center direction.« less

  18. On the nature of the barlens component in barred galaxies: what do boxy/peanut bulges look like when viewed face-on?

    NASA Astrophysics Data System (ADS)

    Athanassoula, E.; Laurikainen, E.; Salo, H.; Bosma, A.

    2015-12-01

    Barred galaxies have interesting morphological features whose presence and properties set constraints on galactic evolution. Here we examine barlenses, i.e. lens-like components whose extent along the bar major axis is shorter than that of the bar and whose outline is oval or circular. We identify and analyse barlenses in N-body plus SPH simulations, compare them extensively with those from the NIRS0S (Near-IR S0 galaxy Survey) and the S4G samples (Spitzer Survey of Stellar Structure in Galaxies) and find very good agreement. We observe barlenses in our simulations from different viewing angles. This reveals that barlenses are the vertically thick part of the bar seen face-on, i.e. a barlens seen edge-on is a boxy/peanut/X bulge. In morphological studies, and in the absence of kinematics or photometry, a barlens, or part of it, may be mistaken for a classical bulge. Thus the true importance of classical bulges, both in numbers and mass, is smaller than currently assumed, which has implications for galaxy formation studies. Finally, using the shape of the isodensity curves, we propose a rule of thumb for measuring the barlens extent along the bar major axis of moderately inclined galaxies, thus providing an estimate of which part of the bar is thicker.

  19. AC-electric field dependent electroformation of giant lipid vesicles.

    PubMed

    Politano, Timothy J; Froude, Victoria E; Jing, Benxin; Zhu, Yingxi

    2010-08-01

    Giant vesicles of larger than 5 microm, which have been of intense interest for their potential as drug delivery vehicles and as a model system for cell membranes, can be rapidly formed from a spin-coated lipid thin film under an electric field. In this work, we explore the AC-field dependent electroformation of giant lipid vesicles in aqueous media over a wide range of AC-frequency from 1 Hz to 1 MHz and peak-to-peak field strength from 0.212 V/mm to 40 V/mm between two parallel conducting electrode surfaces. By using fluorescence microscopy, we perform in-situ microscopic observations of the structural evolution of giant vesicles formed from spin-coated lipid films under varied uniform AC-electric fields. The real-time observation of bilayer bulging from the lipid film, vesicle growth and fusing further examine the critical role of AC-induced electroosmotic flow of surrounding fluids for giant vesicle formation. A rich AC-frequency and field strength phase diagram is obtained experimentally to predict the AC-electroformation of giant unilamellar vesicles (GUVs) of l-alpha-phosphatidylcholine, where a weak dependence of vesicle size on AC-frequency is observed at low AC-field voltages, showing decreased vesicle size with a narrowed size distribution with increased AC-frequency. Formation of vesicles was shown to be constrained by an upper field strength of 10 V/mm and an upper AC-frequency of 10 kHz. Within these parameters, giant lipid vesicles were formed predominantly unilamellar and prevalent across the entire electrode surfaces. Copyright 2010 Elsevier B.V. All rights reserved.

  20. Stellar populations in the bulges of isolated galaxies

    NASA Astrophysics Data System (ADS)

    Morelli, L.; Parmiggiani, M.; Corsini, E. M.; Costantin, L.; Dalla Bontà, E.; Méndez-Abreu, J.; Pizzella, A.

    2016-12-01

    We present photometry and long-slit spectroscopy for 12 S0 and spiral galaxies selected from the Catalogue of Isolated Galaxies. The structural parameters of the sample galaxies are derived from the Sloan Digital Sky Survey I-band images by performing a two-dimensional photometric decomposition of the surface brightness distribution. This is assumed to be the sum of the contribution of a Sérsic bulge, an exponential disc, and a Ferrers bar characterized by elliptical and concentric isophotes with constant ellipticity and position angles. The rotation curves and velocity dispersion profiles of the stellar component are measured from the spectra obtained along the major axis of galaxies. The radial profiles of the Hβ, Mg and Fe line-strength indices are derived too. Correlations between the central values of the Mg2 and line-strength indices and the velocity dispersion are found. The mean age, total metallicity and total α/Fe enhancement of the stellar population in the centre and at the radius, where the bulge gives the same contribution to the total surface brightness as the remaining components, are obtained using stellar population models with variable element abundance ratios. We identify intermediate-age bulges with solar metallicity and old bulges with a large spread in metallicity. Most of the sample bulges display supersolar α/Fe enhancement, no gradient in age and negative gradients of metallicity and α/Fe enhancement. These findings support a formation scenario via dissipative collapse where environmental effects are remarkably less important than in the assembly of bulges of galaxies in groups and clusters.

  1. Age bimodality in the central region of pseudo-bulges in S0 galaxies

    NASA Astrophysics Data System (ADS)

    Mishra, Preetish K.; Barway, Sudhanshu; Wadadekar, Yogesh

    2017-11-01

    We present evidence for bimodal stellar age distribution of pseudo-bulges of S0 galaxies as probed by the Dn(4000) index. We do not observe any bimodality in age distribution for pseudo-bulges in spiral galaxies. Our sample is flux limited and contains 2067 S0 and 2630 spiral galaxies drawn from the Sloan Digital Sky Survey. We identify pseudo-bulges in S0 and spiral galaxies, based on the position of the bulge on the Kormendy diagram and their central velocity dispersion. Dividing the pseudo-bulges of S0 galaxies into those containing old and young stellar populations, we study the connection between global star formation and pseudo-bulge age on the u - r colour-mass diagram. We find that most old pseudo-bulges are hosted by passive galaxies while majority of young bulges are hosted by galaxies that are star forming. Dividing our sample of S0 galaxies into early-type S0s and S0/a galaxies, we find that old pseudo-bulges are mainly hosted by early-type S0 galaxies while most of the pseudo-bulges in S0/a galaxies are young. We speculate that morphology plays a strong role in quenching of star formation in the disc of these S0 galaxies, which stops the growth of pseudo-bulges, giving rise to old pseudo-bulges and the observed age bimodality.

  2. Effects of De-spinning and Lithosphere Thickening on the Lunar Fossil Bulge

    NASA Astrophysics Data System (ADS)

    Zhong, S.; Qin, C.; Phillips, R. J.

    2016-12-01

    The Moon has abnormally large degree-2 anomalies in gravity and shape (or bulge). The degree-2 gravity coefficients C20 and C22 are, respectively, 22 and 7 times greater than expected from the Moon's current orbital and rotational states. One prevalent hypothesis, called the fossil bulge hypothesis, interprets the current degree-2 shape as a remnant of the bulge that froze in when the Moon was closer to the Earth with stronger tidal and rotational potentials. However, the dynamic feasibility of the freeze-in process has never been quantitatively examined. In this study, we explore, using numerical models of viscoelastic deformation with time-dependent rotational potential and lithospheric rheology, how the degree-2 bulge would evolve with time as the early Moon cools and migrates away from the Earth. Our model includes two competing effects: 1) a thickening lithosphere with time through cooling, which helps maintain the bulge, and 2) de-spinning through tidal locking, which tends to reduce the bulge. In our model, a strong lithosphere is represented by the topmost layer that is orders of magnitude more viscous than the mantle. The benchmark results show that our numerical model can compute the bulge size accurately. Our calculations start with a bulge size that is in hydrostatic equilibrium with the initial rotational rate. The bulge reduces with time as the Moon spins down, while the lithosphere can support certain amount of bulge as it thickens. We find that the final size of the bulge is controlled by the relative time scales of the two processes. At limiting cases, if the time scale of de-spinning were much larger than that of lithosphere thickening, the bulge size would be largely maintained. Conversely, the bulge size would be reduced significantly. We will consider more realistic time scales for these two processes, as well as effects of other subsequent processes after lunar magma ocean crystallization, such as large impacts and mare volcanism.

  3. NuSTAR results from the Galactic Center - diffuse emission

    NASA Astrophysics Data System (ADS)

    Hailey, Charles

    2016-03-01

    Galactic Center will be discussed. The first class are the giant molecular clouds, which are strong hard X-ray emitters. These hard X-rays are believed to be produced when one or more giant outbursts from the supermassive black hole Sgr A*, more than a century ago, resulted in hard X-rays being reflected from the clouds, and detected only today. I discuss how these hard X-rays are used to elucidate the past history of the supermassive black hole, and to compare and contrast these past giant outbursts with those observed from the supermassive black hole more recently. The second class are non-thermal filaments, magnetized structures with both radio and soft X-ray emission that have now been shown by NuSTAR to be hard X-ray emitters. The electrons generating the hard X-rays observed in one of these filaments are the most energetic that have been observed in the galaxy. The filaments are a heterogeneous class of hard X-ray emitters, and the various mechanisms by which they produce hard X-ray emission will be discussed. Future NuSTAR observations of the Galactic Center with NuSTAR will also be discussed.

  4. A Comparison of Galaxy Bulge+Disk Decomposition Between Pan-STARRS and SDSS

    NASA Astrophysics Data System (ADS)

    Lokken, Martine Elena; McPartland, Conor; Sanders, David B.

    2018-01-01

    Measurements of the size and shape of bulges in galaxies provide key constraints for models of galaxy evolution. A comprehensive catalog of bulge measurements for Sloan Digital Sky Survey (SDSS) DR7 galaxies is currently available to the public. However, the Pan-STARRS1 (PS1) 3π survey now covers the same region with ~1-2 mag deeper photometry, a ~10-30% smaller PSF, and additional coverage in y-band. To test how much improvement in galaxy parameter measurements (e.g. bulge + disk) can be achieved using the new PS1 data, we make use of ultra-deep imaging data from the Hyper Suprime-Cam (HSC) Subaru Strategic Program (SSP). We fit bulge+disk models to images of 372 bright (mi < 18.5) galaxies detected in all three surveys. Comparison of galaxy parameters derived from SDSS and PS1 images with those measured from HSC-SSP images shows a tighter correlation between PS1 and SSP measurements for both bulge and disk parameters. Bulge parameters, such as bulge-to-total fraction and bulge radius, show the strongest improvement. However, measurements of all parameters degrade for galaxies with total r-band magnitude below the SDSS spectroscopic limit, mr = 17.7. We plan to use the PS1 3π survey data to produce an updated catalog of bulge+disk decomposition measurements for the entire SDSS DR7 spectroscopic galaxy sample.

  5. Why are classical bulges more common in S0 galaxies than in spiral galaxies?

    NASA Astrophysics Data System (ADS)

    Mishra, Preetish K.; Wadadekar, Yogesh; Barway, Sudhanshu

    2018-07-01

    In this paper, we try to understand why the classical bulge fraction observed in S0 galaxies is significantly higher than that in spiral galaxies. We carry out a comparative study of the bulge and global properties of a sample of spiral and S0 galaxies in a fixed environment. Our sample is flux limited and contains 262 spiral and 155 S0 galaxies drawn from the Sloan Digital Sky Survey. We have classified bulges into classical and pseudo-bulge categories based on their position on the Kormendy diagram. Dividing our sample into bins of galaxy stellar mass, we find that the fraction of S0 galaxies hosting a classical bulge is significantly higher than the classical bulge fraction seen in spirals even at fixed stellar mass. We have compared the bulge and the global properties of spirals and S0 galaxies in our sample and find indications that spiral galaxies which host a classical bulge, preferentially get converted into S0 population as compared to pseudo-bulge hosting spirals. By studying the star formation properties of our galaxies in the NUV-r colour-mass diagram, we find that the pseudo-bulge hosting spirals are mostly star forming while the majority of classical bulge host spirals are in the green valley or in the passive sequence. We suggest that some internal process, such as AGN feedback or morphological quenching due to the massive bulge, quenches these classical bulge hosting spirals and transforms them into S0 galaxies, thus resulting in the observed predominance of the classical bulge in S0 galaxies.

  6. Process optimization of joining by upset bulging with local heating

    NASA Astrophysics Data System (ADS)

    Rusch, Michael; Almohallami, Amer; Sviridov, Alexander; Bonk, Christian; Behrens, Bernd-Arno; Bambach, Markus

    2017-10-01

    Joining by upset bulging is a mechanical joining method where axial load is applied to a tube to form two revolving bulges, which clamp the parts to be joined and create a force and form fit. It can be used to join tubes with other structures such as sheets, plates, tubes or profiles of the same or different materials. Other processes such as welding are often limited in joining multi-material assemblies or high-strength materials. With joining by upset bulging at room temperature, the main drawback is the possible initiation of damage (cracks) in the inner buckling zone because of high local stresses and strains. In this paper, a method to avoid the formation of cracks is introduced. Before forming the bulge the tube is locally heated by an induction coil. For the construction steel (E235+N) a maximum temperature of 700 °C was used to avoid phase transformation. For the numerical study of the process the mechanical properties of the tube material were examined at different temperatures and strain rates to determine its flow curves. A parametrical FE model was developed to simulate the bulging process with local heating. Experiments with local heating were executed and metallographic studies of the bulging area were conducted. While specimens heated to 500 °C showed small cracks left, damage-free flanges could be created at 600 and 700 °C. Static testing of damage-free bulges showed improvements in tensile strength and torsion strength compared to bulges formed at room-temperature, while bending and compression behavior remained nearly unchanged. In cyclic testing the locally heated specimens underwent about 3.7 times as many cycles before failure as the specimens formed at room temperature.

  7. Metallicity-dependent kinematics and morphology of the Milky Way bulge

    NASA Astrophysics Data System (ADS)

    Athanassoula, E.; Rodionov, S. A.; Prantzos, N.

    2017-05-01

    We use N-body chemo-dynamic simulations to study the coupling between morphology, kinematics and metallicity of the bar/bulge region of our Galaxy. We make qualitative comparisons of our results with available observations and find very good agreement. We conclude that this region is complex, since it comprises several stellar components with different properties - I.e. a boxy/peanut bulge, thin and thick disc components, and, to lesser extents, a disky pseudo-bulge, a stellar halo and a small classical bulge - all cohabiting in dynamical equilibrium. Our models show strong links between kinematics and metallicity, or morphology and metallicity, as already suggested by a number of recent observations. We discuss and explain these links.

  8. Modulating terrestrial impacts from Oort cloud comets by the adiabatically changing galactic tides

    NASA Astrophysics Data System (ADS)

    Matese, J. J.; Whitman, P. G.; Innanen, K. A.; Valtonen, M. J.

    Time modulation of the flux of new Jupiter-dominated Oort cloud comets is the subject of interest here. The major perturbation of these comets during the present epoch is due to the tidal field of the relatively smooth distribution of matter in the galactic disk. A secondary source of the near-parabolic comet flux are stars penetrating the inner Oort cloud and providing impulses that create brief comet showers. Substantial stellar-induced showers occur approximately every 100 m.y. Less frequent (but stronger) impulses due to giant molecular clouds can also perturb comets from the inner cloud. These occur on timescales of approximately equal to 500 m.y. In contrast to these infrequent stochastic shower phenomena is the continuously varying tidal-induced flux due to the galaxy. As the Sun orbits the galactic center it undergoes quasiharmonic motion about the galactic midplane, which is superimposed on the small eccentricity, near-Keplerian motion in the plane having epicycle period approximately equal to 150 m.y. In the process the galactic tidal field on the Sun/cloud system will vary causing a modulation of the observable Oort cloud flux. We have created a model of the galactic matter distribution as it affects the solar motion over a time interval ranging from 300 m.y. in the past to 100 m.y. into the future. As constraints on the disk's compact dark matter component we require consistency with the following: (1) the observed galactic rotation curve, (2) today's flux distribution of new comets, (3) the studies of K-giant distributions, and (4) the periodicity found in the terrestrial cratering record. The adiabatically varying galactic tidal torque is then determined and used to predict the time dependence of the flux. We find that a model in which approximately half the disk matter is compact is consistent with these constraints. Under such circumstances the peak-to-trough flux variation will be approx. equal to 5:1 with a full width of 9 m.y. This variability

  9. On the shoulders of giants: properties of the stellar halo and the Milky Way mass distribution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kafle, Prajwal Raj; Sharma, Sanjib; Lewis, Geraint F.

    2014-10-10

    Halo stars orbit within the potential of the Milky Way, and hence their kinematics can be used to understand the underlying mass distribution. However, the inferred mass distribution depends sensitively on assumptions made on the density and the velocity anisotropy profiles of the tracer population. Also, there is a degeneracy between the parameters of the halo and those of the disk or bulge. Most previous attempts that use halo stars have made arbitrary assumptions about these. In this paper, we decompose the Galaxy into three major components—a bulge, a Miyamoto-Nagai disk, and a Navarro-Frenk-White dark matter halo - and thenmore » model the kinematic data of the halo blue horizontal branch and K-giant stars from the Sloan Extension for Galactic Understanding and Exploration. Additionally, we use the gas terminal velocity curve and the Sgr A* proper motion. With the distance of the Sun from the center of the Galaxy R {sub ☉} = 8.5 kpc, our kinematic analysis reveals that the density of the stellar halo has a break at 17.2{sub −1.0}{sup +1.1} kpc and an exponential cutoff in the outer parts starting at 97.7{sub −15.8}{sup +15.6} kpc. Also, we find that the tracer velocity anisotropy is radially biased with β {sub s} = 0.4 ± 0.2 in the outer halo. We measure halo virial mass M {sub vir} to be 0.80{sub −0.16}{sup +0.31}×10{sup 12} M{sub ⊙}, concentration c to be 21.1{sub −8.3}{sup +14.8}, disk mass to be 0.95{sub −0.30}{sup +0.24}×10{sup 11} M{sub ⊙}, disk scale length to be 4.9{sub −0.4}{sup +0.4} kpc, and bulge mass to be 0.91{sub −0.38}{sup +0.31}×10{sup 10} M{sub ⊙}. The halo mass is found to be small, and this has important consequences. The giant stars reveal that the outermost halo stars have low velocity dispersion, but interestingly this suggests a truncation of the stellar halo density rather than a small overall mass of the Galaxy. Our estimates of local escape velocity v{sub esc}=550.9{sub −22.1}{sup +32.4} km s{sup −1

  10. A study of the effect of bulges on bar formation in disc galaxies

    NASA Astrophysics Data System (ADS)

    Kataria, Sandeep Kumar; Das, Mousumi

    2018-04-01

    We use N-body simulations of bar formation in isolated galaxies to study the effect of bulge mass and bulge concentration on bar formation. Bars are global disc instabilities that evolve by transferring angular momentum from the inner to outer discs and to the dark matter halo. It is well known that a massive spherical component such as halo in a disc galaxy can make it bar stable. In this study, we explore the effect of another spherical component, the bulge, on bar formation in disc galaxies. In our models, we vary both the bulge mass and concentration. We have used two sets of models: one that has a dense bulge and high surface density disc, and the other model has a less concentrated bulge and a lighter disc. In both models, we vary the bulge to disc mass fraction from 0 to 0.7. Simulations of both the models show that there is an upper cut-off in bulge-to-disc mass ratio Mb/Md above which bars cannot form; the cut-off is smaller for denser bulges (Mb/Md = 0.2) compared to less denser ones (Mb/Md = 0.5). We define a new criterion for bar formation in terms of the ratio of bulge to total radial force (Fb/Ftot) at the disc scale lengths above which bars cannot form. We find that if Fb/Ftot > 0.35, a disc is stable and a bar cannot form. Our results indicate that early-type disc galaxies can still form strong bars in spite of having massive bulges.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ryde, N.; Schultheis, M.; Grieco, V.

    The structure, formation, and evolution of the Milky Way bulge is a matter of debate. Important diagnostics for discriminating between models of bulge formation and evolution include α-abundance trends with metallicity, and spatial abundance and metallicity gradients. Due to the severe optical extinction in the inner Bulge region, only a few detailed investigations of this region have been performed. Here we aim at investigating the inner 2 degrees of the Bulge (projected galactocentric distance of approximately 300 pc), rarely investigated before, by observing the [α/Fe] element trends versus metallicity, and by trying to derive the metallicity gradient in the bmore » < 2° region. [α/Fe] and metallicities have been determined by spectral synthesis of 2 μm spectra of 28 M-giants in the Bulge, lying along the southern minor axis at (l, b) = (0, 0), (0, −1°), and (0, −2°). These were observed with the CRIRES spectrometer at the Very Large Telescope, (VLT) at high spectral resolution. Low-resolution K-band spectra, observed with the ISAAC spectrometer at the VLT, are used to determine the effective temperature of the stars. We present the first connection between the Galactic center (GC) and the Bulge using similar stars, high spectral resolution, and analysis techniques. The [α/Fe] trends in all our three fields show a large similarity among each other and with trends further out in the Bulge. All point to a rapid star formation episode in the Bulge. We find that there is a lack of an [α/Fe] gradient in the Bulge all the way into the center, suggesting a homogeneous Bulge when it comes to the enrichment process and star formation history. We find a large range of metallicities from −1.2 < [Fe/H] < +0.3, with a lower dispersion in the GC: −0.2 < [Fe/H] < +0.3. The derived metallicities of the stars in the three fields get, in the mean, progressively higher the closer to the Galactic plane they lie. We could interpret this as a continuation of the

  12. The Star Formation History in the M31 Bulge

    NASA Astrophysics Data System (ADS)

    Dong, Hui; Olsen, Knut; Lauer, Tod; Saha, Abhijit; Li, Zhiyuan; García-Benito, Ruben; Schödel, Rainer

    2018-05-01

    We present the study of stellar populations in the central 5.5' (˜1.2 kpc) of the M31 bulge by using the optical color magnitude diagram derived from HST ACS WFC/HRC observations. In order to enhance image quality and then obtain deeper photometry, we construct Nyquist-sampled images and use a deconvolution method to detect sources and measure their photometry. We demonstrate that our method performs better than DOLPHOT in the extremely crowded region. The resolved stars in the M31 bulge have been divided into nine annuli and the color magnitude diagram fitting is performed for each of them. We confirm that the majority of stars (>70%) in the M31 bulge are indeed very old (> 5 Gyr) and metal-rich ([Fe/H]˜0.3). At later times, the star formation rate decreased and then experienced a significant rise around 1 Gyr ago, which pervaded the entire M31 bulge. After that, stars formed at less than 500 Myr ago in the central 130" . Through simulation, we find that these intermediate-age stars cannot be the artifacts introduced by the blending effect. Our results suggest that although the majority of the M31 bulge are very old, the secular evolutionary process still continuously builds up the M31 bulge slowly. We compare our star formation history with an older analysis derived from the spectral energy distribution fitting, which suggests that the latter one is still a reasonable tool for the study of stellar populations in remote galaxies.

  13. Bulge Region as a Putative Hair Follicle Stem Cells Niche: A Brief Review

    PubMed Central

    JOULAI VEIJOUYE, Sanaz; YARI, Abazar; HEIDARI, Fatemeh; SAJEDI, Nayereh; GHOROGHI MOGHANI, Fatemeh; NOBAKHT, Maliheh

    2017-01-01

    Background: Hair follicle stem cells exist in different sites. Most of the hair follicle stem cells are reside in niche called bulge. Bulge region is located between the opening of sebaceous gland and the attachment site of the arrector pili muscle. Methods: Data were collected using databases and resources of PubMed, Web of Science, Science Direct, Scopus, MEDLINE and their references from the earliest available published to identify English observational studies on hair follicle bulge region. Results: Bulge stem cells are pluripotent with high proliferative capacity. Specific markers allow the bulge cells to be isolated from mouse or human hair follicle. Stem cells isolated from bulge region are label retaining and slow cycling hence these cells are defined as label-retaining cells. Bulge cell populations, due to their plasticity nature are able to differentiate into distinct linage and could contribute in tissue regeneration. Conclusion: The current review discuss about bulge stem cells characteristics and biology including their cycle, location, plasticity, specific markers and regenerative nature. Also the differences between mouse and human hair follicles are investigated. PMID:29026781

  14. The Gaia-ESO Survey: Lithium enrichment histories of the Galactic thick and thin disc

    NASA Astrophysics Data System (ADS)

    Fu, X.; Romano, D.; Bragaglia, A.; Mucciarelli, A.; Lind, K.; Delgado Mena, E.; Sousa, S. G.; Randich, S.; Bressan, A.; Sbordone, L.; Martell, S.; Korn, A. J.; Abia, C.; Smiljanic, R.; Jofré, P.; Pancino, E.; Tautvaišienė, G.; Tang, B.; Magrini, L.; Lanzafame, A. C.; Carraro, G.; Bensby, T.; Damiani, F.; Alfaro, E. J.; Flaccomio, E.; Morbidelli, L.; Zaggia, S.; Lardo, C.; Monaco, L.; Frasca, A.; Donati, P.; Drazdauskas, A.; Chorniy, Y.; Bayo, A.; Kordopatis, G.

    2018-02-01

    Lithium abundance in most of the warm metal-poor main sequence stars shows a constarnt plateau (A(Li) 2.2 dex) and then the upper envelope of the lithium vs. metallicity distribution increases as we approach solar metallicity. Meteorites, which carry information about the chemical composition of the interstellar medium (ISM) at the solar system formation time, show a lithium abundance A(Li) 3.26 dex. This pattern reflects the Li enrichment history of the ISM during the Galaxy lifetime. After the initial Li production in big bang nucleosynthesis, the sources of the enrichment include asymptotic giant branch (AGB) stars, low-mass red giants, novae, type II supernovae, and Galactic cosmic rays. The total amount of enriched Li is sensitive to the relative contribution of these sources. Thus different Li enrichment histories are expected in the Galactic thick and thin disc. We investigate the main sequence stars observed with UVES in Gaia-ESO Survey iDR4 catalogue and find a Li-anticorrelation independent of [Fe/H], Teff, and log(g). Since in stellar evolution different α enhancements at the same metallicity do not lead to a measurable Li abundance change, the anticorrelation indicates that more Li is produced during the Galactic thin disc phase than during the Galactic thick disc phase. We also find a correlation between the abundance of Li and s-process elements Ba and Y, and they both decrease above the solar metallicity, which can be explained in the framework of the adopted Galactic chemical evolution models. The full Table 1 is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/610/A38

  15. Recognition of thymine in DNA bulges by a Zn(II) macrocyclic complex.

    PubMed

    del Mundo, Imee Marie A; Fountain, Matthew A; Morrow, Janet R

    2011-08-14

    A Zn(II) macrocyclic complex with appended quinoline is a bifunctional recognition agent that uses both the Zn(II) center and the pendent aromatic group to bind to thymine in bulges with good selectivity over DNA containing G, C or A bulges. Spectroscopic studies show that the stem containing the bulge stays largely intact in a DNA hairpin with the Zn(II) complex bound to the thymine bulge. This journal is © The Royal Society of Chemistry 2011

  16. Determination of Material Strengths by Hydraulic Bulge Test.

    PubMed

    Wang, Hankui; Xu, Tong; Shou, Binan

    2016-12-30

    The hydraulic bulge test (HBT) method is proposed to determine material tensile strengths. The basic idea of HBT is similar to the small punch test (SPT), but inspired by the manufacturing process of rupture discs-high-pressure hydraulic oil is used instead of punch to cause specimen deformation. Compared with SPT method, the HBT method can avoid some of influence factors, such as punch dimension, punch material, and the friction between punch and specimen. A calculation procedure that is entirely based on theoretical derivation is proposed for estimate yield strength and ultimate tensile strength. Both conventional tensile tests and hydraulic bulge tests were carried out for several ferrous alloys, and the results showed that hydraulic bulge test results are reliable and accurate.

  17. The suppression of star formation by powerful active galactic nuclei.

    PubMed

    Page, M J; Symeonidis, M; Vieira, J D; Altieri, B; Amblard, A; Arumugam, V; Aussel, H; Babbedge, T; Blain, A; Bock, J; Boselli, A; Buat, V; Castro-Rodríguez, N; Cava, A; Chanial, P; Clements, D L; Conley, A; Conversi, L; Cooray, A; Dowell, C D; Dubois, E N; Dunlop, J S; Dwek, E; Dye, S; Eales, S; Elbaz, D; Farrah, D; Fox, M; Franceschini, A; Gear, W; Glenn, J; Griffin, M; Halpern, M; Hatziminaoglou, E; Ibar, E; Isaak, K; Ivison, R J; Lagache, G; Levenson, L; Lu, N; Madden, S; Maffei, B; Mainetti, G; Marchetti, L; Nguyen, H T; O'Halloran, B; Oliver, S J; Omont, A; Panuzzo, P; Papageorgiou, A; Pearson, C P; Pérez-Fournon, I; Pohlen, M; Rawlings, J I; Rigopoulou, D; Riguccini, L; Rizzo, D; Rodighiero, G; Roseboom, I G; Rowan-Robinson, M; Sánchez Portal, M; Schulz, B; Scott, D; Seymour, N; Shupe, D L; Smith, A J; Stevens, J A; Trichas, M; Tugwell, K E; Vaccari, M; Valtchanov, I; Viero, M; Vigroux, L; Wang, L; Ward, R; Wright, G; Xu, C K; Zemcov, M

    2012-05-09

    The old, red stars that constitute the bulges of galaxies, and the massive black holes at their centres, are the relics of a period in cosmic history when galaxies formed stars at remarkable rates and active galactic nuclei (AGN) shone brightly as a result of accretion onto black holes. It is widely suspected, but unproved, that the tight correlation between the mass of the black hole and the mass of the stellar bulge results from the AGN quenching the surrounding star formation as it approaches its peak luminosity. X-rays trace emission from AGN unambiguously, whereas powerful star-forming galaxies are usually dust-obscured and are brightest at infrared and submillimetre wavelengths. Here we report submillimetre and X-ray observations that show that rapid star formation was common in the host galaxies of AGN when the Universe was 2-6 billion years old, but that the most vigorous star formation is not observed around black holes above an X-ray luminosity of 10(44) ergs per second. This suppression of star formation in the host galaxy of a powerful AGN is a key prediction of models in which the AGN drives an outflow, expelling the interstellar medium of its host and transforming the galaxy's properties in a brief period of cosmic time.

  18. A general theory for the lifetimes of giant molecular clouds under the influence of galactic dynamics

    NASA Astrophysics Data System (ADS)

    Jeffreson, Sarah M. R.; Kruijssen, J. M. Diederik

    2018-05-01

    We propose a simple analytic theory for environmentally dependent molecular cloud lifetimes, based on the large-scale (galactic) dynamics of the interstellar medium. Within this theory, the cloud lifetime is set by the time-scales for gravitational collapse, galactic shear, spiral arm interactions, epicyclic perturbations, and cloud-cloud collisions. It is dependent on five observable quantities, accessible through measurements of the galactic rotation curve, the gas and stellar surface densities, and the gas and stellar velocity dispersions of the host galaxy. We determine how the relative importance of each dynamical mechanism varies throughout the space of observable galactic properties, and conclude that gravitational collapse and galactic shear play the greatest role in setting the cloud lifetime for the considered range of galaxy properties, while cloud-cloud collisions exert a much lesser influence. All five environmental mechanisms are nevertheless required to obtain a complete picture of cloud evolution. We apply our theory to the galaxies M31, M51, M83, and the Milky Way, and find a strong dependence of the cloud lifetime upon galactocentric radius in each case, with a typical cloud lifetime between 10 and 50 Myr. Our theory is ideally suited for systematic observational tests with the Atacama Large Millimetre/submillimetre array.

  19. Structural basis for bifunctional zinc(II) macrocyclic complex recognition of thymine bulges in DNA.

    PubMed

    del Mundo, Imee Marie A; Siters, Kevin E; Fountain, Matthew A; Morrow, Janet R

    2012-05-07

    The zinc(II) complex of 1-(4-quinoylyl)methyl-1,4,7,10-tetraazacyclododecane (cy4q) binds selectively to thymine bulges in DNA and to a uracil bulge in RNA. Binding constants are in the low-micromolar range for thymine bulges in the stems of hairpins, for a thymine bulge in a DNA duplex, and for a uracil bulge in an RNA hairpin. Binding studies of Zn(cy4q) to a series of hairpins containing thymine bulges with different flanking bases showed that the complex had a moderate selectivity for thymine bulges with neighboring purines. The dissociation constants of the most strongly bound Zn(cy4q)-DNA thymine bulge adducts were 100-fold tighter than similar sequences with fully complementary stems or than bulges containing cytosine, guanine, or adenine. In order to probe the role of the pendent group, three additional zinc(II) complexes containing 1,4,7,10-tetraazacyclododecane (cyclen) with aromatic pendent groups were studied for binding to DNA including 1-(2-quinolyl)methyl-1,4,7,10-tetraazacyclododecane (cy2q), 1-(4-biphenyl)methyl-1,4,7,10-tetraazacyclododecane (cybp), and 5-(1,4,7,10-tetraazacyclododecan-1-ylsulfonyl)-N,N-dimethylnaphthalen-1-amine (dsc). The Zn(cybp) complex binds with moderate affinity but little selectivity to DNA hairpins with thymine bulges and to DNA lacking bulges. Similarly, Zn(dsc) binds weakly both to thymine bulges and hairpins with fully complementary stems. The zinc(II) complex of cy2q has the 2-quinolyl moiety bound to the Zn(II) center, as shown by (1)H NMR spectroscopy and pH-potentiometric titrations. As a consequence, only weak (500 μM) binding is observed to DNA with no appreciable selectivity. An NMR structure of a thymine-bulge-containing hairpin shows that the thymine is extrahelical but rotated toward the major groove. NMR data for Zn(cy4q) bound to DNA containing a thymine bulge is consistent with binding of the zinc(II) complex to the thymine N3(-) and stacking of the quinoline on top of the thymine. The thymine-bulge bound

  20. The gravitational self-interaction of the Earth's tidal bulge

    NASA Astrophysics Data System (ADS)

    Norsen, Travis; Dreese, Mackenzie; West, Christopher

    2017-09-01

    According to a standard, idealized analysis, the Moon would produce a 54 cm equilibrium tidal bulge in the Earth's oceans. This analysis omits many factors (beyond the scope of the simple idealized model) that dramatically influence the actual height and timing of the tides at different locations, but it is nevertheless an important foundation for more detailed studies. Here, we show that the standard analysis also omits another factor—the gravitational interaction of the tidal bulge with itself—which is entirely compatible with the simple, idealized equilibrium model and which produces a surprisingly non-trivial correction to the predicted size of the tidal bulge. Our analysis uses ideas and techniques that are familiar from electrostatics, and should thus be of interest to teachers and students of undergraduate E&M, Classical Mechanics (and/or other courses that cover the tides), and geophysics courses that cover the closely related topic of Earth's equatorial bulge.

  1. Nonlinear bulging factor based on R-curve data

    NASA Technical Reports Server (NTRS)

    Jeong, David Y.; Tong, Pin

    1994-01-01

    In this paper, a nonlinear bulging factor is derived using a strain energy approach combined with dimensional analysis. The functional form of the bulging factor contains an empirical constant that is determined using R-curve data from unstiffened flat and curved panel tests. The determination of this empirical constant is based on the assumption that the R-curve is the same for both flat and curved panels.

  2. THE MOLECULAR GAS DENSITY IN GALAXY CENTERS AND HOW IT CONNECTS TO BULGES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fisher, David B.; Bolatto, Alberto; Drory, Niv

    2013-02-20

    In this paper we present gas density, star formation rate (SFR), stellar masses, and bulge-disk decompositions for a sample of 60 galaxies. Our sample is the combined sample of the BIMA SONG, CARMA STING, and PdBI NUGA surveys. We study the effect of using CO-to-H{sub 2} conversion factors that depend on the CO surface brightness, and also that of correcting SFRs for diffuse emission from old stellar populations. We estimate that SFRs in bulges are typically lower by 20% when correcting for diffuse emission. Using the surface brightness dependent conversion factor, we find that over half of the galaxies inmore » our sample have {Sigma}{sub mol} > 100 M {sub Sun} pc{sup -2}. Though our sample is not complete in any sense, our results are enough to rule out the assumption that bulges are uniformly gas-poor systems. We find a trend between gas density of bulges and bulge Sersic index; bulges with lower Sersic index have higher gas density. Those bulges with low Sersic index (pseudobulges) have gas fractions that are similar to that of disks. Conversely, the typical molecular gas fraction in classical bulges is more similar to that of an elliptical galaxy. We also find that there is a strong correlation between bulges with the highest gas surface density and the galaxy being barred. However, we also find that classical bulges with low gas surface density can be barred as well. Our results suggest that understanding the connection between the central surface density of gas in disk galaxies and the presence of bars should also take into account the total gas content of the galaxy. Finally, we show that when using the corrected SFRs and gas densities, the correlation between SFR surface density and gas surface density of bulges is similar to that of disks. This implies that at the scale of the bulges the timescale for converting gas into stars is comparable to those results found in disks.« less

  3. Morpho-kinematic properties of field S0 bulges in the CALIFA survey

    NASA Astrophysics Data System (ADS)

    Méndez-Abreu, J.; Aguerri, J. A. L.; Falcón-Barroso, J.; Ruiz-Lara, T.; Sánchez-Menguiano, L.; de Lorenzo-Cáceres, A.; Costantin, L.; Catalán-Torrecilla, C.; Zhu, L.; Sánchez-Blazquez, P.; Florido, E.; Corsini, E. M.; Wild, V.; Lyubenova, M.; van de Ven, G.; Sánchez, S. F.; Bland-Hawthorn, J.; Galbany, L.; García-Benito, R.; García-Lorenzo, B.; González Delgado, R. M.; López-Sánchez, A. R.; Marino, R. A.; Márquez, I.; Ziegler, B.; Califa Collaboration

    2018-02-01

    We study a sample of 28 S0 galaxies extracted from the integral field spectroscopic (IFS) survey Calar Alto Legacy Integral Field Area. We combine an accurate two-dimensional (2D) multicomponent photometric decomposition with the IFS kinematic properties of their bulges to understand their formation scenario. Our final sample is representative of S0s with high stellar masses (M⋆/M⊙ > 1010). They lay mainly on the red sequence and live in relatively isolated environments similar to that of the field and loose groups. We use our 2D photometric decomposition to define the size and photometric properties of the bulges, as well as their location within the galaxies. We perform mock spectroscopic simulations mimicking our observed galaxies to quantify the impact of the underlying disc on our bulge kinematic measurements (λ and v/σ). We compare our bulge corrected kinematic measurements with the results from Schwarzschild dynamical modelling. The good agreement confirms the robustness of our results and allows us to use bulge deprojected values of λ and v/σ. We find that the photometric (n and B/T) and kinematic (v/σ and λ) properties of our field S0 bulges are not correlated. We demonstrate that this morpho-kinematic decoupling is intrinsic to the bulges and it is not due to projection effects. We conclude that photometric diagnostics to separate different types of bulges (disc-like versus classical) might not be useful for S0 galaxies. The morpho-kinematics properties of S0 bulges derived in this paper suggest that they are mainly formed by dissipational processes happening at high redshift, but dedicated high-resolution simulations are necessary to better identify their origin.

  4. Stellar populations of bulges in galaxies with a low surface-brightness disc

    NASA Astrophysics Data System (ADS)

    Morelli, L.; Corsini, E. M.; Pizzella, A.; Dalla Bontà, E.; Coccato, L.; Méndez-Abreu, J.

    2015-03-01

    The radial profiles of the Hβ, Mg, and Fe line-strength indices are presented for a sample of eight spiral galaxies with a low surface-brightness stellar disc and a bulge. The correlations between the central values of the line-strength indices and velocity dispersion are consistent to those known for early-type galaxies and bulges of high surface-brightness galaxies. The age, metallicity, and α/Fe enhancement of the stellar populations in the bulge-dominated region are obtained using stellar population models with variable element abundance ratios. Almost all the sample bulges are characterized by a young stellar population, on-going star formation, and a solar α/Fe enhancement. Their metallicity spans from high to sub-solar values. No significant gradient in age and α/Fe enhancement is measured, whereas only in a few cases a negative metallicity gradient is found. These properties suggest that a pure dissipative collapse is not able to explain formation of all the sample bulges and that other phenomena, like mergers or acquisition events, need to be invoked. Such a picture is also supported by the lack of a correlation between the central value and gradient of the metallicity in bulges with very low metallicity. The stellar populations of the bulges hosted by low surface-brightness discs share many properties with those of high surface-brightness galaxies. Therefore, they are likely to have common formation scenarios and evolution histories. A strong interplay between bulges and discs is ruled out by the fact that in spite of being hosted by discs with extremely different properties, the bulges of low and high surface-brightness discs are remarkably similar.

  5. Why are classical bulges more common in S0 galaxies than in spiral galaxies?

    NASA Astrophysics Data System (ADS)

    Mishra, Preetish K.; Wadadekar, Yogesh; Barway, Sudhanshu

    2018-05-01

    In this paper, we try to understand why the classical bulge fraction observed in S0 galaxies is significantly higher than that in spiral galaxies. We carry out a comparative study of the bulge and global properties of a sample of spiral and S0 galaxies in a fixed environment. Our sample is flux limited and contains 262 spiral and 155 S0 galaxies drawn from the Sloan Digital Sky Survey. We have classified bulges into classical and pseudobulge categories based on their position on the Kormendy diagram. Dividing our sample into bins of galaxy stellar mass, we find that the fraction of S0 galaxies hosting a classical bulge is significantly higher than the classical bulge fraction seen in spirals even at fixed stellar mass. We have compared the bulge and the global properties of spirals and S0 galaxies in our sample and find indications that spiral galaxies which host a classical bulge, preferentially get converted into S0 population as compared to pseudobulge hosting spirals. By studying the star formation properties of our galaxies in the NUV - r color-mass diagram, we find that the pseudobulge hosting spirals are mostly star forming while the majority of classical bulge host spirals are in the green valley or in the passive sequence. We suggest that some internal process, such as AGN feedback or morphological quenching due to the massive bulge, quenches these classical bulge hosting spirals and transforms them into S0 galaxies, thus resulting in the observed predominance of the classical bulge in S0 galaxies.

  6. Photometric evolution of seven recent novae and the double-component characterizing the light curve of those emitting in gamma rays

    NASA Astrophysics Data System (ADS)

    Munari, U.; Hambsch, F.-J.; Frigo, A.

    2017-08-01

    The BVI light curves of seven recent novae (I.e. V1534 Sco, V1535 Sco, V2949 Oph, V3661 Oph, MASTER OT J010603.18-744715.8, TCP J1734475-240942 and ASASSN-16ma) have been extensively mapped with daily robotic observations from Atacama (Chile): five belong to the Galactic bulge, one to the Small Magellanic Cloud and another is a Galactic disc object. The two programme novae detected in γ-rays by Fermi-LAT (I.e. TCP J1734475-240942 and ASASSN-16ma) are bulge objects with unevolved companions. They distinguish themselves by showing a double-component optical light curve. The first component to develop is the fireball from freely expanding, ballistic-launched ejecta, with a time of passage through maximum that is strongly dependent on wavelength (˜1 d delay between the B and I bands). The second component, emerging simultaneously with the nova detection in γ-rays, evolves at a slower pace, its optical brightness being proportional to the γ-ray flux, and its passage through maximum not dependent on wavelength. The fact that γ-rays are detected at a flux level that differs by four times from novae at the distance of the bulge seems to suggest that γ-ray emission is not a widespread property of normal novae. We discuss the advantages offered by high-quality photometric observations collected with only one telescope (as opposed to data provided by a number of different instruments). We also observe the effects of the wavelength dependence of fireball expansion, the recombination in the flashed wind of a giant companion, the subtle presence of hiccups and plateaus, and the super-soft X-ray emission and its switch-off. Four programme novae (V2949 Oph, V3661 Oph, TCP J18102829-2729590 and ASASSN-16ma) have normal dwarf companions: V1534 Sco contains an M3 III giant, V1535 Sco a K-type giant and MASTER OT J010603.18-744715.8 a subgiant. We also comment briefly on the maximum absolute magnitude relation with decline time (MMRD).

  7. On the effect of galactic outflows in cosmological simulations of disc galaxies

    NASA Astrophysics Data System (ADS)

    Valentini, Milena; Murante, Giuseppe; Borgani, Stefano; Monaco, Pierluigi; Bressan, Alessandro; Beck, Alexander M.

    2017-09-01

    We investigate the impact of galactic outflow modelling on the formation and evolution of a disc galaxy, by performing a suite of cosmological simulations with zoomed-in initial conditions (ICs) of a Milky Way-sized halo. We verify how sensitive the general properties of the simulated galaxy are to the way in which stellar feedback triggered outflows are implemented, keeping ICs, simulation code and star formation (SF) model all fixed. We present simulations that are based on a version of the gadget3 code where our sub-resolution model is coupled with an advanced implementation of smoothed particle hydrodynamics that ensures a more accurate fluid sampling and an improved description of gas mixing and hydrodynamical instabilities. We quantify the strong interplay between the adopted hydrodynamic scheme and the sub-resolution model describing SF and feedback. We consider four different galactic outflow models, including the one introduced by Dalla Vecchia & Schaye (2012) and a scheme that is inspired by the Springel & Hernquist (2003) model. We find that the sub-resolution prescriptions adopted to generate galactic outflows are the main shaping factor of the stellar disc component at low redshift. The key requirement that a feedback model must have to be successful in producing a disc-dominated galaxy is the ability to regulate the high-redshift SF (responsible for the formation of the bulge component), the cosmological infall of gas from the large-scale environment, and gas fall-back within the galactic radius at low redshift, in order to avoid a too high SF rate at z = 0.

  8. The Galactic Distribution of Planets via Spitzer Microlensing Parallax

    NASA Astrophysics Data System (ADS)

    Gould, Andrew; Yee, Jennifer; Carey, Sean; Shvartzvald, Yossi

    2018-05-01

    We will measure the Galactic distribution of planets by obtaining 'microlens parallaxes' of about 200 events, including 3 planetary events, from the comparison of microlens lightcurves observed from Spitzer and Earth, which are separated by >1.5 AU in projection. The proposed observations are part of a campaign that we have conducted with Spitzer since 2014. The planets expected to be identified in this campaign when combined with previous work will yield a first statistically significant measurement of the frequency of planets in the Galactic bulge versus the Galactic disk. As we have demonstrated in three previous programs, the difference in these lightcurves yields both the 'microlens parallax' (ratio of the lens-source relative parallax) to the Einstein radius, and the direction of lens-source relative motion. For planetary events, this measurement directly yields the mass and distance of the planet. This proposal is significantly more sensitive to planets than previous work because it takes advantage of the KMTNet observing strategy that covers >85 sq.deg t >0.4/hr cadence, 24/7 from 3 southern observatories and a alert system KMTNet is implementing for 2019. This same observing program also provides a unique probe of dark objects. It will yield an improved measurement of the isolated-brown-dwarf mass function. Thirteen percent of the observations will specifically target binaries, which will probe systems with dark components (brown dwarfs, neutron stars, black holes) that are difficult or impossible to investigate by other methods. The observations and methods from this work are a test bed for WFIRST microlensing.

  9. Kinematics of metal-poor giants in an inner-halo field, with implications for disk formation

    NASA Technical Reports Server (NTRS)

    Morrison, Heather L.

    1993-01-01

    A sample of approximately 100 predominantly metal-weak giants, identified in a high-latitude field towards the galactic center using an automated objective-prism survey technique, is presented. Abundances and radial velocities have been measured for these giants, whose distances from the Sun range from 1 to 18 kpc. While the extremely metal-weak stars in the field have halo kinematics, the majority of the stars with intermediate abundance have thick disk kinematics, despite the fact that their average distance from the galactic plane is 3 kpc. The most satisfactory explanation for this effect is that the inner halo is moderately flattened, and the metal-weak stars of the thick disk have a scale height of about 2 kpc. It is suggested that the thick disk may have formed in a dissipational collapse, rather than in a separate event such as the accretion of a small satellite galaxy.

  10. Technique and outcomes of laparoscopic bulge repair after abdominal free flap reconstruction.

    PubMed

    Lee, Johnson C; Whipple, Lauren A; Binetti, Brian; Singh, T Paul; Agag, Richard

    2016-01-21

    Bulges and hernias after abdominal free flap surgery are uncommon with rates ranging from as low as 0-36%. In the free flap breast reconstruction population, there are no clear guidelines or optimal strategies to treating postoperative bulges. We describe our minimally invasive technique and outcomes in managing bulge complications in abdominal free flap breast reconstruction patients. A retrospective review was performed on all abdominal free flap breast reconstruction patients at Albany Medical Center from 2011 to 2014. All patients with bulges on clinical exam underwent abdominal CT imaging prior to consultation with a minimally invasive surgeon. Confirmed symptomatic bulges were repaired laparoscopically and patients were monitored regularly in the outpatient setting. Sixty-two patients received a total of 80 abdominal free flap breast reconstructions. Flap types included 41 deep inferior epigastric perforator (DIEP), 36 muscle-sparing transverse rectus abdominus myocutaneous (msTRAM), 2 superficial inferior epigastric artery, and 1 transverse rectus abdominus myocutaneous flap. There were a total of 9 (14.5%) bulge complications, with the majority of patients having undergone msTRAM or DIEP reconstruction. There were no complications, revisions, or recurrences from laparoscopic bulge repair after an average follow-up of 181 days. Although uncommon, bulge formation after abdominal free flap reconstruction can create significant morbidity to patients. Laproscopic hernia repair using composite mesh underlay offers an alternative to traditional open hernia repair and can be successfully used to minimize scarring, infection, and pain to free flap patients who have already undergone significant reconstructive procedures. © 2016 Wiley Periodicals, Inc. Microsurgery, 2016. © 2016 Wiley Periodicals, Inc.

  11. MOA-2011-BLG-262Lb: A sub-Earth-mass moon orbiting a gas giant primary or a high velocity planetary system in the galactic Bulge

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bennett, D. P.; Batista, V.; Bond, I. A.

    2014-04-20

    We present the first microlensing candidate for a free-floating exoplanet-exomoon system, MOA-2011-BLG-262, with a primary lens mass of M {sub host} ∼ 4 Jupiter masses hosting a sub-Earth mass moon. The argument for an exomoon hinges on the system being relatively close to the Sun. The data constrain the product M{sub L} π{sub rel} where M{sub L} is the lens system mass and π{sub rel} is the lens-source relative parallax. If the lens system is nearby (large π{sub rel}), then M{sub L} is small (a few Jupiter masses) and the companion is a sub-Earth-mass exomoon. The best-fit solution has amore » large lens-source relative proper motion, μ{sub rel} = 19.6 ± 1.6 mas yr{sup –1}, which would rule out a distant lens system unless the source star has an unusually high proper motion. However, data from the OGLE collaboration nearly rule out a high source proper motion, so the exoplanet+exomoon model is the favored interpretation for the best fit model. However, there is an alternate solution that has a lower proper motion and fits the data almost as well. This solution is compatible with a distant (so stellar) host. A Bayesian analysis does not favor the exoplanet+exomoon interpretation, so Occam's razor favors a lens system in the bulge with host and companion masses of M{sub host}=0.12{sub −0.06}{sup +0.19} M{sub ⊙} and m{sub comp}=18{sub −10}{sup +28} M{sub ⊕}, at a projected separation of a{sub ⊥}=0.84{sub −0.14}{sup +0.25} AU. The existence of this degeneracy is an unlucky accident, so current microlensing experiments are in principle sensitive to exomoons. In some circumstances, it will be possible to definitively establish the mass of such lens systems through the microlensing parallax effect. Future experiments will be sensitive to less extreme exomoons.« less

  12. Pathway to the Galactic Distribution of Planets: Combined Spitzer and Ground-Based Microlens Parallax Measurements of 21 Single-Lens Events

    NASA Technical Reports Server (NTRS)

    Novati, S. Calchi; Gould, A.; Udalski, A.; Menzies, J. W.; Bond, I. A.; Shvartzvald, Y.; Street, R. A.; Hundertmark, M.; Beichman, C. A.; Barry, R. K.

    2015-01-01

    We present microlens parallax measurements for 21 (apparently) isolated lenses observed toward the Galactic bulge that were imaged simultaneously from Earth and Spitzer, which was approximately 1 Astronomical Unit west of Earth in projection. We combine these measurements with a kinematic model of the Galaxy to derive distance estimates for each lens, with error bars that are small compared to the Sun's galactocentric distance. The ensemble therefore yields a well-defined cumulative distribution of lens distances. In principle, it is possible to compare this distribution against a set of planets detected in the same experiment in order to measure the Galactic distribution of planets. Since these Spitzer observations yielded only one planet, this is not yet possible in practice. However, it will become possible as larger samples are accumulated.

  13. Pathway to the Galactic Distribution of Planets: Combined Spitzer and Ground-Based Microlens Parallax Measurements of 21 Single-Lens Events

    NASA Astrophysics Data System (ADS)

    Calchi Novati, S.; Gould, A.; Udalski, A.; Menzies, J. W.; Bond, I. A.; Shvartzvald, Y.; Street, R. A.; Hundertmark, M.; Beichman, C. A.; Yee, J. C.; Carey, S.; Poleski, R.; Skowron, J.; Kozłowski, S.; Mróz, P.; Pietrukowicz, P.; Pietrzyński, G.; Szymański, M. K.; Soszyński, I.; Ulaczyk, K.; Wyrzykowski, Ł.; OGLE Collaboration; Albrow, M.; Beaulieu, J. P.; Caldwell, J. A. R.; Cassan, A.; Coutures, C.; Danielski, C.; Dominis Prester, D.; Donatowicz, J.; Lončarić, K.; McDougall, A.; Morales, J. C.; Ranc, C.; Zhu, W.; PLANET Collaboration; Abe, F.; Barry, R. K.; Bennett, D. P.; Bhattacharya, A.; Fukunaga, D.; Inayama, K.; Koshimoto, N.; Namba, S.; Sumi, T.; Suzuki, D.; Tristram, P. J.; Wakiyama, Y.; Yonehara, A.; MOA Collaboration; Maoz, D.; Kaspi, S.; Friedmann, M.; Wise Group; Bachelet, E.; Figuera Jaimes, R.; Bramich, D. M.; Tsapras, Y.; Horne, K.; Snodgrass, C.; Wambsganss, J.; Steele, I. A.; Kains, N.; RoboNet Collaboration; Bozza, V.; Dominik, M.; Jørgensen, U. G.; Alsubai, K. A.; Ciceri, S.; D'Ago, G.; Haugbølle, T.; Hessman, F. V.; Hinse, T. C.; Juncher, D.; Korhonen, H.; Mancini, L.; Popovas, A.; Rabus, M.; Rahvar, S.; Scarpetta, G.; Schmidt, R. W.; Skottfelt, J.; Southworth, J.; Starkey, D.; Surdej, J.; Wertz, O.; Zarucki, M.; MiNDSTEp Consortium; Gaudi, B. S.; Pogge, R. W.; DePoy, D. L.; μFUN Collaboration

    2015-05-01

    We present microlens parallax measurements for 21 (apparently) isolated lenses observed toward the Galactic bulge that were imaged simultaneously from Earth and Spitzer, which was ˜1 AU west of Earth in projection. We combine these measurements with a kinematic model of the Galaxy to derive distance estimates for each lens, with error bars that are small compared to the Sun’s galactocentric distance. The ensemble therefore yields a well-defined cumulative distribution of lens distances. In principle, it is possible to compare this distribution against a set of planets detected in the same experiment in order to measure the Galactic distribution of planets. Since these Spitzer observations yielded only one planet, this is not yet possible in practice. However, it will become possible as larger samples are accumulated.

  14. EXPLORING THE UNUSUALLY HIGH BLACK-HOLE-TO-BULGE MASS RATIOS IN NGC 4342 AND NGC 4291: THE ASYNCHRONOUS GROWTH OF BULGES AND BLACK HOLES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bogdan, Akos; Forman, William R.; Kraft, Ralph P.

    2012-07-10

    We study two nearby early-type galaxies, NGC 4342 and NGC 4291, that host unusually massive black holes relative to their low stellar mass. The observed black-hole-to-bulge mass ratios of NGC 4342 and NGC 4291 are 6.9{sup +3.8}{sub -2.3}% and 1.9% {+-} 0.6%, respectively, which significantly exceed the typical observed ratio of {approx}0.2%. As a consequence of the exceedingly large black-hole-to-bulge mass ratios, NGC 4342 and NGC 4291 are Almost-Equal-To 5.1{sigma} and Almost-Equal-To 3.4{sigma} outliers from the M{sub .}-M{sub bulge} scaling relation, respectively. In this paper, we explore the origin of the unusually high black-hole-to-bulge mass ratio. Based on Chandra X-raymore » observations of the hot gas content of NGC 4342 and NGC 4291, we compute gravitating mass profiles, and conclude that both galaxies reside in massive dark matter halos, which extend well beyond the stellar light. The presence of dark matter halos around NGC 4342 and NGC 4291 and a deep optical image of the environment of NGC 4342 indicate that tidal stripping, in which {approx}> 90% of the stellar mass was lost, cannot explain the observed high black-hole-to-bulge mass ratios. Therefore, we conclude that these galaxies formed with low stellar masses, implying that the bulge and black hole did not grow in tandem. We also find that the black hole mass correlates well with the properties of the dark matter halo, suggesting that dark matter halos may play a major role in regulating the growth of the supermassive black holes.« less

  15. A SURVEY OF CN AND CH VARIATIONS IN GALACTIC GLOBULAR CLUSTERS FROM SLOAN DIGITAL SKY SURVEY SPECTROSCOPY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smolinski, Jason P.; Beers, Timothy C.; Lee, Young Sun

    We present a homogeneous survey of the CN and CH band strengths in eight Galactic globular clusters observed during the course of the Sloan Extension for Galactic Understanding and Exploration sub-survey of the Sloan Digital Sky Survey. We confirm the existence of a bimodal CN distribution among red giant branch (RGB) stars in all of the clusters with metallicity greater than [Fe/H] = -1.7; the lowest metallicity cluster with an observed CN bimodality is M53, with [Fe/H] {approx_equal} -2.1. There is also some evidence for individual CN groups on the subgiant branches of M92, M2, and M13, and on themore » RGBs of M92 and NGC 5053. Finally, we quantify the correlation between overall cluster metallicity and the slope of the CN band strength-luminosity plot as a means of further demonstrating the level of CN enrichment in cluster giants. Our results agree well with previous studies reported in the literature.« less

  16. Quantitative analysis of the extensional tectonics of Tharsis bulge, Mars - Geodynamic implications

    NASA Astrophysics Data System (ADS)

    Thomas, P. G.; Allemand, P.

    1993-07-01

    The amount of horizontal strain on the Martian Tharsis bulge is quantified in order to provide further information on the tectonic evolution of this province. About 10 percent of the Tharsis surface bulge exhibits elliptical impact craters, which are the largest strain markers in the solar system. It is shown that these strain ellipses indicate more strain than could be due to the bulge building alone. The existence of such intensely deformed areas, the direction of the extensive strain, the localization of these areas on the bulge crest or on the top of topographic slopes, and the evidence of nonthinned crust under these areas may all be explained by gravitational slidings of the bulge surface over the topographic slope. This sliding would be possible because of the presence of a decollement level two kilometers below the surface, and because of the prefracturation which have made the detachment possible.

  17. The infrared counterpart of GX 13 + 1

    NASA Technical Reports Server (NTRS)

    Garcia, M. R.; Grindlay, J. E.; Bailyn, C. D.; Pipher, J. L.; Shure, M. A.; Woodward, C. E.

    1992-01-01

    A bright (K = 12) IR source is discovered which is likely the counterpart to the bright galactic-bulge X-ray source GX 13 + 1. Observations with the MMT IR photometer and the Rochester IR Array camera at the IRTF allow determination of the source position to about 0.7 arcsec, allow the IR colors to be measured, and show no variability on a 1-yr timescale. Four possible sources for the IR emission are considered and it is most likely due to a K-giant secondary. The discovery of a late-type giant secondary in GX 13 + 1 is contrary to the expectation that low-mass X-ray binaries which show quasi-periodic oscillations (QPO) have giant companions, while those which do not show QPO (like GX 13 + 1) have dwarf secondaries. The relation between the size of the scattered X-ray halo and the Av inferred from the IR observations is compared to that found in other X-ray sources.

  18. The Suppression of Star Formation by Powerful Active Galactic Nuclei

    NASA Technical Reports Server (NTRS)

    Dwek, E.

    2012-01-01

    The old, red stars that constitute the bulges of galaxies, and the massive black holes at their centres, are the relics of a period in cosmic history when galaxies formed stars at remarkable rates and active galactic nuclei (AGN) shone brightly as a result of accretion onto black holes. It is widely suspected, but unproved, that the tight corre1ation between the mass of the black hole and the mas. of the stellar bulge results from the AGN quenching the surrounding star formation as it approaches its peak luminosity. X-rays trace emission from AGN unambiguously, whereas powerful star-forming ga1axies are usually dust-obscured and are brightest at infrared and submillimeter wavelengths. Here we report submillimetre and X-ray observations that show that rapid star formation was common in the host galaxies of AGN when the Universe was 2-6 billion years old, but that the most vigorous star formation is not observed around black holes above an X-ray luminosity of 10(exp 44) ergs per second. This suppression of star formation in the host galaxy of a powerful AGN is a key prediction of models in which the AGN drives an outflow, expe11ing the interstellar medium of its host and transforming the galaxy's properties in a brief period of cosmic time.

  19. An asymmetric mesoscopic model for single bulges in RNA

    NASA Astrophysics Data System (ADS)

    de Oliveira Martins, Erik; Weber, Gerald

    2017-10-01

    Simple one-dimensional DNA or RNA mesoscopic models are of interest for their computational efficiency while retaining the key elements of the molecular interactions. However, they only deal with perfectly formed DNA or RNA double helices and consider the intra-strand interactions to be the same on both strands. This makes it difficult to describe highly asymmetric structures such as bulges and loops and, for instance, prevents the application of mesoscopic models to determine RNA secondary structures. Here we derived the conditions for the Peyrard-Bishop mesoscopic model to overcome these limitations and applied it to the calculation of single bulges, the smallest and simplest of these asymmetric structures. We found that these theoretical conditions can indeed be applied to any situation where stacking asymmetry needs to be considered. The full set of parameters for group I RNA bulges was determined from experimental melting temperatures using an optimization procedure, and we also calculated average opening profiles for several RNA sequences. We found that guanosine bulges show the strongest perturbation on their neighboring base pairs, considerably reducing the on-site interactions of their neighboring base pairs.

  20. Spiral-arm instability: giant clump formation via fragmentation of a galactic spiral arm

    NASA Astrophysics Data System (ADS)

    Inoue, Shigeki; Yoshida, Naoki

    2018-03-01

    Fragmentation of a spiral arm is thought to drive the formation of giant clumps in galaxies. Using linear perturbation analysis for self-gravitating spiral arms, we derive an instability parameter and define the conditions for clump formation. We extend our analysis to multicomponent systems that consist of gas and stars in an external potential. We then perform numerical simulations of isolated disc galaxies with isothermal gas, and compare the results with the prediction of our analytic model. Our model describes accurately the evolution of the spiral arms in our simulations, even when spiral arms dynamically interact with one another. We show that most of the giant clumps formed in the simulated disc galaxies satisfy the instability condition. The clump masses predicted by our model are in agreement with the simulation results, but the growth time-scale of unstable perturbations is overestimated by a factor of a few. We also apply our instability analysis to derive scaling relations of clump properties. The expected scaling relation between the clump size, velocity dispersion, and circular velocity is slightly different from that given by the Toomre instability analyses, but neither is inconsistent with currently available observations. We argue that the spiral-arm instability is a viable formation mechanism of giant clumps in gas-rich disc galaxies.

  1. Complex organic molecules in the Galactic Centre: the N-bearing family

    NASA Astrophysics Data System (ADS)

    Zeng, S.; Jiménez-Serra, I.; Rivilla, V. M.; Martín, S.; Martín-Pintado, J.; Requena-Torres, M. A.; Armijos-Abendaño, J.; Riquelme, D.; Aladro, R.

    2018-05-01

    We present an unbiased spectral line survey toward the Galactic Centre (GC) quiescent giant molecular cloud (QGMC), G+0.693 using the GBT and IRAM 30 telescopes. Our study highlights an extremely rich organic inventory of abundant amounts of nitrogen (N)-bearing species in a source without signatures of star formation. We report the detection of 17 N-bearing species in this source, of which 8 are complex organic molecules (COMs). A comparison of the derived abundances relative to H2 is made across various galactic and extragalactic environments. We conclude that the unique chemistry in this source is likely to be dominated by low-velocity shocks with X-rays/cosmic rays also playing an important role in the chemistry. Like previous findings obtained for O-bearing molecules, our results for N-bearing species suggest a more efficient hydrogenation of these species on dust grains in G+0.693 than in hot cores in the Galactic disk, as a consequence of the low dust temperatures coupled with energetic processing by X-ray/cosmic ray radiation in the GC.

  2. Gamma-ray burst constraints on the galactic frequency of extrasolar Oort Clouds

    NASA Technical Reports Server (NTRS)

    Shull, J. Michael; Stern, S. Alan

    1995-01-01

    With the strong Compton Gamma-Ray Observatory/Burst and Transient Source Experiment (CGRO/BATSE) evidence that most gamma-ray bursts do not come from galactic neutron stars, models involving the accretion of a comet onto a neutron star (NS) no longer appear to be strong contenders for explaining the majority of bursts. If this is the case, then it is worth asking whether the lack of an observed galactic gamma-ray burst population provides a useful constraint on the number of comets and comet clouds in the galaxy. Owing to the previously unrecognized structural weakness of cometary nuclei, we find the capture cross sections for comet-NS events to be much higher than previously published estimates, with tidal breakup at distances R(sub b) approx. equals 4 x 10(exp 10) cm from the NS. As a result, impacts of comets onto field NSs penetrating the Oort Clouds of other stars are found to dominate all other galactic NS-comet capture rates by a factor of 100. This in turn predicts that if comet clouds are common, there should be a significant population of repeater sources with (1) a galactic distribution, (2) space-correlated repetition, and (3) a wide range of peak luminosities and luminosity time histories. If all main sequence stars have Oort Clouds like our own, we predict approximately 4000 such repeater sources in the Milky Way at any time, each repeating on time scales of months to years. Based on estimates of the sensitivity of the CGRO/BATSE instrument and assuming isotropic gamma-ray beaming from such events, we estimate that a population of approximately 20-200 of these galactic NS-Oort Cloud gamma-ray repeater sources should be detectable by CGRO. In addition, if giant planet formation is common in the galaxy, we estimate that the accretion of isolated comets injected to the interstellar medium by giant planet formation should produce an additional source of galactic, nonrepeating, events. Comparing these estimates to the 3-4 soft gamma-ray repeater sources

  3. On 7Li Enrichment by Low-Mass Metal-Poor Red Giant Branch Stars.

    PubMed

    de La Reza R; da Silva L; Drake; Terra

    2000-06-01

    First-ascent red giants with strong and very strong Li lines have just been discovered in globular clusters. Using the stellar internal prompt (7)Li enrichment-mass-loss scenario, we explore the possibility of (7)Li enrichment in the interstellar matter of the globular cluster M3 produced by these Li-rich giants. We found that enrichment as large as 70% or more compared to the initial (7)Li content of M3 can be obtained during the entire life of this cluster. However, because M3 will cross into the Galactic plane several times, the new (7)Li will be very probably removed by ram pressure into the disk. Globular clusters appear then as possible new sources of (7)Li in the Galactic disk. It is also suggested that the known Na/Al variations in stars of globular clusters could be somehow related to the (7)Li variations and that the cool bottom process mixing mechanism acting in the case of (7)Li could also play a role in the case of Na and Al surface enrichments.

  4. Masses, luminosities and dynamics of galactic molecular clouds

    NASA Technical Reports Server (NTRS)

    Solomon, P. M.; Rivolo, A. R.; Mooney, T. J.; Barrett, J. W.; Sage, L. J.

    1987-01-01

    Star formation in galaxies takes place in molecular clouds and the Milky Way is the only galaxy in which it is possible to resolve and study the physical properties and star formation activity of individual clouds. The masses, luminosities, dynamics, and distribution of molecular clouds, primarily giant molecular clouds in the Milky Way are described and analyzed. The observational data sets are the Massachusetts-Stony Brook CO Galactic Plane Survey and the IRAS far IR images. The molecular mass and infrared luminosities of glactic clouds are then compared with the molecular mass and infrared luminosities of external galaxies.

  5. AN OFF-CENTERED ACTIVE GALACTIC NUCLEUS IN NGC 3115

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Menezes, R. B.; Steiner, J. E.; Ricci, T. V., E-mail: robertobm@astro.iag.usp.br

    2014-11-20

    NGC 3115 is an S0 galaxy that has always been considered to have a pure absorption-line spectrum. Some recent studies have detected a compact radio-emitting nucleus in this object, coinciding with the photometric center and with a candidate for the X-ray nucleus. This is evidence of the existence of a low-luminosity active galactic nucleus (AGN) in the galaxy, although no emission line has ever been observed. We report the detection of an emission-line spectrum of a type 1 AGN in NGC 3115, with an Hα luminosity of L {sub Hα} = (4.2 ± 0.4) × 10{sup 37} erg s{sup –1}. Our analysismore » revealed that this AGN is located at a projected distance of ∼0.''29 ± 0.''05 (corresponding to ∼14.3 ± 2.5 pc) from the stellar bulge center, which is coincident with the kinematic center of this object's stellar velocity map. The black hole corresponding to the observed off-centered AGN may form a binary system with a black hole located at the stellar bulge center. However, it is also possible that the displaced black hole is the merged remnant of the binary system coalescence, after the ''kick'' caused by the asymmetric emission of gravitational waves. We propose that certain features in the stellar velocity dispersion map are the result of perturbations caused by the off-centered AGN.« less

  6. The wind speeds, dust content, and mass-loss rates of evolved AGB and RSG stars at varying metallicity

    NASA Astrophysics Data System (ADS)

    Goldman, Steven R.; van Loon, Jacco Th.; Zijlstra, Albert A.; Green, James A.; Wood, Peter R.; Nanni, Ambra; Imai, Hiroshi; Whitelock, Patricia A.; Matsuura, Mikako; Groenewegen, Martin A. T.; Gómez, José F.

    2017-02-01

    We present the results of our survey of 1612-MHz circumstellar OH maser emission from asymptotic giant branch (AGB) stars and red supergiants (RSGs) in the Large Magellanic Cloud (LMC). We have discovered four new circumstellar maser sources in the LMC, and increased the number of reliable wind speeds from infrared (IR) stars in the LMC from 5 to 13. Using our new wind speeds, as well as those from Galactic sources, we have derived an updated relation for dust-driven winds: vexp ∝ ZL0.4. We compare the subsolar metallicity LMC OH/IR stars with carefully selected samples of more metal-rich OH/IR stars, also at known distances, in the Galactic Centre and Galactic bulge. We derive pulsation periods for eight of the bulge stars for the first time by using near-IR photometry from the Vista Variables in the Via Lactea survey. We have modelled our LMC OH/IR stars and developed an empirical method of deriving gas-to-dust ratios and mass-loss rates by scaling the models to the results from maser profiles. We have done this also for samples in the Galactic Centre and bulge and derived a new mass-loss prescription which includes luminosity, pulsation period, and gas-to-dust ratio dot{M} = 1.06^{+3.5}_{-0.8} × }10^{-5 (L/10^4 L_{⊙})^{0.9± 0.1}(P/500 {d})^{0.75± 0.3} (r_gd/200)^{-0.03± 0.07} M⊙ yr-1. The tightest correlation is found between mass-loss rate and luminosity. We find that the gas-to-dust ratio has little effect on the mass-loss of oxygen-rich AGB stars and RSGs within the Galaxy and the LMC. This suggests that the mass-loss of oxygen-rich AGB stars and RSGs is (nearly) independent of metallicity between a half and twice solar.

  7. Environment of the Gamma-Ray Burst GRB 971214: A Giant H ii Region Surrounded by a Galactic Supershell.

    PubMed

    Ahn

    2000-02-10

    Among a number of gamma-ray bursts whose host galaxies are known, GRB 971214 stands out for its high redshift (z>/=3) and the Lyalpha emission line having a P Cygni-type profile, which is interpreted to be a direct consequence of the expanding supershell. From a profile-fitting analysis, we estimate the expansion velocity of the supershell (vexp=1500 km s-1) and the neutral column density (NHi=1020 cm -2). The redshift z=3.418 of the host galaxy proposed by Kulkarni et al. in 1998 has been revised to be z=3.425 from our profile analysis. The observed Lyalpha profile is fitted well by a Gaussian curve, which yields the Lyalpha luminosity LLyalpha=&parl0;1.8+/-0.8&parr0;x1042 ergs s-1. Assuming that the photon source is a giant H ii region, we deduce the electron number density in the H ii region ne=&parl0;40+/-10&parr0;&parl0;L/LLyalpha&parr0;0.5&parl0;R/100 pc&parr0;-1.5 cm-3, which corresponds to the illumination by about 104 O5 stars. We estimate the star formation rate to be RSF=7+/-3 M middle dot in circle yr-1 with the internal and the Galactic extinction corrected. The theory on the evolution of supernova remnants is used to propose that the supershell is at the adiabatic phase, with its radius R=18E1&solm0;253 pc, its age t=4.7x103E1&solm0;253 yr, and the density of the ambient medium n1=5.4E-1&solm0;253 cm-3, where E53=E&solm0;1053 ergs; we estimate the kinetic energy of the supershell to be Ek=7.3x1052E53 ergs. These values are consistent with the hypothesis that the supershell is the remnant of a gamma-ray burst. We note similarities between supershells found in nearby galaxies and remote primeval galaxies and propose that the gamma-ray burst may have occurred in a giant H ii region whose environment is similar to that in star-forming galaxies.

  8. Galactic gamma-ray sources, SNOBs, and giant H2 regions

    NASA Technical Reports Server (NTRS)

    Montmerle, T.

    1985-01-01

    Progress towards understanding the nature of the COS-B galactic gamma-ray sources was made by two recent developments. The developments are: (1) the existence of extensive wide-latitude CO surveys, from the Northern Hemisphere, and from the Southern Hemisphere which give more precise information on molecular cloud population of the Perseus, Sagittarius, and Carina spiral arms; (2) the study of the time variability of gamma-ray sources in gamma-rays but also at other wavelengths, leading to the discovery of four new variable sources in addition to the already known Crab and Vela pulsars. Three classes of gamma-ray sources are found; invariable sources, active sources, and passive sources.

  9. Dynamics of Gas Near the Galactic Centre

    NASA Astrophysics Data System (ADS)

    Jenkins, A.; Binney, J.

    1994-10-01

    We simulate the flow of gas in the Binney et al. model of the bar at the centre of the Milky Way. We argue that the flow of a clumpy interstellar medium is most realistically simulated by a sticky-particle scheme, and investigate two such schemes. In both schemes orbits close to the cusped orbit rapidly become depopulated. This depopulation places a lower limit on the pattern speed since it implies that in the (1, v) plane the cusped orbit lies significantly inside the peak of the Hi terminal-velocity envelope at 1 20. We find that the size of the central molecular disc and the magnitudes of the observed forbidden velocities constrain the eccentricity of the Galactic bar to values similar to that arbitrarily assumed by Binney et al. We study the accretion by the nuclear disc of matter shed by dying bulge stars. We estimate that mass loss by the bulge can replenish the Hi in the nuclear disc within two bar rotation periods, in good agreement with the predictions of the simulations. When accretion of gas from the bulge is included, fine-scale irregular structure persists in the nuclear disc. This structure gives rise to features in longitude-velocity plots which depend significantly on viewing angle, and consequently give rise to asymmetries in longitude. These asymmetries are, however, much less pronounced than those in the observational plots. We conclude that the addition of hydrodynamics to the Binney et al. model does not resolve some important discrepancies between theory and observation. The model's basic idea does, however, have high a priori probability and has enjoyed some significant successes, while a number of potentially important physical processes - most notably the self-gravity of interstellar gas - are neglected in the present simulations. In view of the deficiencies of our simulations and interesting parallels we do observe between simulated and observational longitude-velocity plots, we believe it would be premature to reject the Binney et al

  10. Starburst-Driven Winds May Have Created Giant "Lobe" in Galactic Center

    NASA Astrophysics Data System (ADS)

    2004-06-01

    An astronomer using the National Science Foundation's Robert C. Byrd Green Bank Telescope (GBT) has discovered that two prominent features rising out of the center of the Milky Way Galaxy are actually the distant edges of the same superstructure. This object, which has the appearance of a "lobe," may have been formed during an epoch of furious star formation. Lobe Galactic center radio image with lobe feature shown in outline. CREDIT: NRAO/AUI/NSF Yusef-Zadeh, et.al. (Click for Image w/o lines) Astronomer Casey Law of Northwestern University presented his results at the Denver, Colorado, meeting of the American Astronomical Society. "The center of our Galaxy is an incredibly dynamic place and morphologically very difficult to untangle" said Law. "Among the many features we see there, including supernova remnants, hot star-forming regions, and massive molecular clouds, are two very prominent columns of radio-emitting material that seem to erupt out of the plane of the Galaxy. The nature and origin of these features have been the subjects of much speculation, but with the new data from the Green Bank Telescope we're finally able to discern that they are in fact part of the same superstructure." Much of what we know about the center of our Galaxy has come from studies conducted on radio telescopes. The center of the Milky Way is, in fact, hidden from view to optical telescopes due to intervening clouds of dust and gas. Radio waves, however, are able to pass through the obscuring material and reveal details about the core of our Galaxy. Astronomers now know that this area of the Milky Way -- approximately 26,000 light-years from Earth -- is a densely packed region brimming with hot , young stars, supernova remnants, and more esoteric features -- like long radio-emitting filaments. At the center of it all is a remarkably radio-bright region known as Sagittarius A* (pronounced A-star), which is known to contain a supermassive black hole. Deciphering what all these

  11. Numerical Simulation of Bulging Deformation for Wide-Thick Slab Under Uneven Cooling Conditions

    NASA Astrophysics Data System (ADS)

    Wu, Chenhui; Ji, Cheng; Zhu, Miaoyong

    2018-06-01

    In the present work, the bulging deformation of a wide-thick slab under uneven cooling conditions was studied using finite element method. The non-uniform solidification was first calculated using a 2D heat transfer model. The thermal material properties were derived based on a microsegregation model, and the water flux distribution was measured and applied to calculate the cooling boundary conditions. Based on the solidification results, a 3D bulging model was established. The 2D heat transfer model was verified by the measured shell thickness and the slab surface temperature, and the 3D bulging model was verified by the calculated maximum bulging deflections using formulas. The bulging deformation behavior of the wide-thick slab under uneven cooling condition was then determined, and the effect of uneven solidification, casting speed, and roll misalignment were investigated.

  12. Numerical Simulation of Bulging Deformation for Wide-Thick Slab Under Uneven Cooling Conditions

    NASA Astrophysics Data System (ADS)

    Wu, Chenhui; Ji, Cheng; Zhu, Miaoyong

    2018-02-01

    In the present work, the bulging deformation of a wide-thick slab under uneven cooling conditions was studied using finite element method. The non-uniform solidification was first calculated using a 2D heat transfer model. The thermal material properties were derived based on a microsegregation model, and the water flux distribution was measured and applied to calculate the cooling boundary conditions. Based on the solidification results, a 3D bulging model was established. The 2D heat transfer model was verified by the measured shell thickness and the slab surface temperature, and the 3D bulging model was verified by the calculated maximum bulging deflections using formulas. The bulging deformation behavior of the wide-thick slab under uneven cooling condition was then determined, and the effect of uneven solidification, casting speed, and roll misalignment were investigated.

  13. ISOGAL: A deep survey of the obscured inner Milky Way with ISO at 7 mu m and 15 mu m and with DENIS in the near-infrared

    NASA Astrophysics Data System (ADS)

    Omont, A.; Gilmore, G. F.; Alard, C.; Aracil, B.; August, T.; Baliyan, K.; Beaulieu, S.; Bégon, S.; Bertou, X.; Blommaert, J. A. D. L.; Borsenberger, J.; Burgdorf, M.; Caillaud, B.; Cesarsky, C.; Chitre, A.; Copet, E.; de Batz, B.; Egan, M. P.; Egret, D.; Epchtein, N.; Felli, M.; Fouqué, P.; Ganesh, S.; Genzel, R.; Glass, I. S.; Gredel, R.; Groenewegen, M. A. T.; Guglielmo, F.; Habing, H. J.; Hennebelle, P.; Jiang, B.; Joshi, U. C.; Kimeswenger, S.; Messineo, M.; Miville-Deschênes, M. A.; Moneti, A.; Morris, M.; Ojha, D. K.; Ortiz, R.; Ott, S.; Parthasarathy, M.; Pérault, M.; Price, S. D.; Robin, A. C.; Schultheis, M.; Schuller, F.; Simon, G.; Soive, A.; Testi, L.; Teyssier, D.; Tiphène, D.; Unavane, M.; van Loon, J. T.; Wyse, R.

    2003-06-01

    The ISOGAL project is an infrared survey of specific regions sampling the Galactic Plane selected to provide information on Galactic structure, stellar populations, stellar mass-loss and the recent star formation history of the inner disk and Bulge of the Galaxy. ISOGAL combines 7 and 15 μm ISOCAM observations -- with a resolution of 6 arcsec at worst -- with DENIS IJKs data to determine the nature of the sources and the interstellar extinction. We have observed about 16 square degrees with a sensitivity approaching 10-20 mJy, detecting ˜105 sources, mostly AGB stars, red giants and young stars. The main features of the ISOGAL survey and the observations are summarized in this paper, together with a brief discussion of data processing and quality. The primary ISOGAL products are described briefly (a full desciption is given in Schuller et al. 2003): viz. the images and the ISOGAL-DENIS five-wavelength point source catalogue. The main scientific results already derived or in progress are summarized. These include astrometrically calibrated 7 and 15 μm images, determining structures of resolved sources; identification and properties of interstellar dark clouds; quantification of the infrared extinction law and source dereddening; analysis of red giant and (especially) AGB stellar populations in the central Bulge, determining luminosity, presence of circumstellar dust and mass-loss rate, and source classification, supplemented in some cases by ISO/CVF spectroscopy; detection of young stellar objects of diverse types, especially in the inner Bulge with information about the present and recent star formation rate; identification of foreground sources with mid-IR excess. These results are the subject of about 25 refereed papers published or in preparation. This is paper No. 20 in a refereed journal based on data from the ISOGAL project. Based on observations with ISO, an ESA project with instruments funded by ESA Member States (especially the PI countries: France

  14. Black holes in binary stellar systems and galactic nuclei

    NASA Astrophysics Data System (ADS)

    Cherepashchuk, A. M.

    2014-04-01

    In the last 40 years, following pioneering papers by Ya B Zeldovich and E E Salpeter, in which a powerful energy release from nonspherical accretion of matter onto a black hole (BH) was predicted, many observational studies of black holes in the Universe have been carried out. To date, the masses of several dozen stellar-mass black holes (M_BH = (4{-}20) M_\\odot) in X-ray binary systems and of several hundred supermassive black holes (M_BH = (10^{6}{-}10^{10}) M_\\odot) in galactic nuclei have been measured. The estimated radii of these massive and compact objects do not exceed several gravitational radii. For about ten stellar-mass black holes and several dozen supermassive black holes, the values of the dimensionless angular momentum a_* have been estimated, which, in agreement with theoretical predictions, do not exceed the limiting value a_* = 0.998. A new field of astrophysics, so-called black hole demography, which studies the birth and growth of black holes and their evolutionary connection to other objects in the Universe, namely stars, galaxies, etc., is rapidly developing. In addition to supermassive black holes, massive stellar clusters are observed in galactic nuclei, and their evolution is distinct from that of supermassive black holes. The evolutionary relations between supermassive black holes in galactic centers and spheroidal stellar components (bulges) of galaxies, as well as dark-matter galactic haloes are brought out. The launch into Earth's orbit of the space radio interferometer RadioAstron opened up the real possibility of finally proving that numerous discovered massive and highly compact objects with properties very similar to those of black holes make up real black holes in the sense of Albert Einstein's General Relativity. Similar proofs of the existence of black holes in the Universe can be obtained by intercontinental radio interferometry at short wavelengths \\lambda \\lesssim 1 mm (the international program, Event Horizon Telescope).

  15. Finding A Planet Through the Dust

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2018-05-01

    Finding planets in the crowded galactic center is a difficult task, but infrared microlensing surveys give us a fighting chance! Preliminary results from such a study have already revealed a new exoplanet lurking in the dust of the galactic bulge.Detection BiasesUKIRT-2017 microlensing survey fields (blue), plotted over a map showing the galactic-plane dust extinction. The location of the newly discovered giant planet is marked with blue crosshairs. [Shvartzvald et al. 2018]Most exoplanets weve uncovered thus far were found either via transits dips in a stars light as the planet passes in front of its host star or via radial velocity wobbles of the star as the orbiting planet tugs on it. These techniques, while highly effective, introduce a selection bias in the types of exoplanets we detect: both methods tend to favor discovery of close-in, large planets orbiting small stars; these systems produce the most easily measurable signals on short timescales.For this reason, microlensing surveys for exoplanets have something new to add to the field.Search for a LensIn gravitational microlensing, we observe a background star as it is briefly magnified by a passing foreground star acting as a lens. If that foreground star hosts a planet, we observe a characteristic shape in the observed brightening of the background star, and the properties of that shape can reveal information about the foreground planet.A diagram of how planets are detected via gravitational microlensing. The detectable planet is in orbit around the foreground lens star. [NASA]This technique for planet detection is unique in its ability to explore untapped regions of exoplanet parameter space with microlensing, we can survey for planets around all different types of stars (rather than primarily small, dim ones), planets of all masses near the further-out snowlines where gas and ice giants are likely to form, and even free-floating planets.In a new study led by a Yossi Shvartzvald, a NASA postdoctoral

  16. Unveiling the past of the Galactic nucleus with X-ray echoes

    NASA Astrophysics Data System (ADS)

    Chuard, D.; Terrier, R.; Goldwurm, A.; Clavel, M.; Soldi, S.; Morris, M. R.; Ponti, G.; Walls, M.; Chernyakova, M.

    2017-12-01

    Giant molecular clouds populating the central molecular zone have a high enough column density to reflect X-rays coming from strong compact sources in their neighbourhood, including possible powerful outbursts from the Galactic supermassive black hole SgrA. From observations of the molecular complex Sgr C made with the X-ray observatories XMM and Chandra between 2000 and 2014, we confirm this reflection scenario, even though the region hosts several objects (including two PWN candidates) that may be responsible for intense cosmic-ray production. By comparing data to Monte Carlo simulated reflection spectra, we are able to put the best constraints to date on the line-of-sight positions of the main bright clumps of the molecular complex. Ultimately, extending this approach by the inclusion of other molecular complexes allows us to partially reconstruct the past lightcurve of the Galactic supermassive black hole.

  17. Structure and hydrodynamics of a DNA G-quadruplex with a cytosine bulge.

    PubMed

    Meier, Markus; Moya-Torres, Aniel; Krahn, Natalie J; McDougall, Matthew D; Orriss, George L; McRae, Ewan K S; Booy, Evan P; McEleney, Kevin; Patel, Trushar R; McKenna, Sean A; Stetefeld, Jörg

    2018-06-01

    The identification of four-stranded G-quadruplexes (G4s) has highlighted the fact that DNA has additional spatial organisations at its disposal other than double-stranded helices. Recently, it became clear that the formation of G4s is not limited to the traditional G3+NL1G3+NL2G3+NL3G3+ sequence motif. Instead, the G3 triplets can be interrupted by deoxythymidylate (DNA) or uridylate (RNA) where the base forms a bulge that loops out from the G-quadruplex core. Here, we report the first high-resolution X-ray structure of a unique unimolecular DNA G4 with a cytosine bulge. The G4 forms a dimer that is stacked via its 5'-tetrads. Analytical ultracentrifugation, static light scattering and small angle X-ray scattering confirmed that the G4 adapts a predominantly dimeric structure in solution. We provide a comprehensive comparison of previously published G4 structures containing bulges and report a special γ torsion angle range preferentially populated by the G4 core guanylates adjacent to bulges. Since the penalty for introducing bulges appears to be negligible, it should be possible to functionalize G4s by introducing artificial or modified nucleotides at such positions. The presence of the bulge alters the surface of the DNA, providing an opportunity to develop drugs that can specifically target individual G4s.

  18. Gamma-ray burst constraints on the galactic frequency of extra-solar Oort clouds

    NASA Technical Reports Server (NTRS)

    Shull, J. Michael; Stern, S. Alan

    1994-01-01

    With the strong CGRO/BATSE evidence that most gamma-ray bursts do not come from galactic neutron stars, models involving the accretion of a comet onto a neutron star (NS) no longer appear to be strong contenders for explaining the majority of bursts. If this is the case, then it is worth asking whether the lack of an observed galactic gamma-ray burst population provides a useful constraint on the number of comets and comet clouds in the galaxy. Owing to the previously unrecognized structural weakness of cometary nuclei, we find the capture cross sections for comet-NS events to be much higher than previously published estimates, with tidal breakup at distances R(sub b) approximately equals to 4 x 10(exp 10) cm from the NS. As a result, impacts of comets onto field NS's penetrating the Oort Clouds of other stars are found to dominate all other galactic NS-comet capture rates by a factor of 100. This in turn predicts that if comet clouds are common, there should be a significant population of repeater sources with (1) a galactic distribution, (2) space-correlated repetition, and (3) a wide range of peak luminosities and luminosity time histories. If all main sequences stars have Oort Clouds like our own, we predict approximately 4000 such repeater sources in the Milky Way at any time, each repeating on timescales of months to years. Based on estimates of the sensitivity of the CGRO/BATSE instrument and assuming isotropic gamma-ray beaming from such events, we estimate that a population of approximately 20-200 of these galactic NS-Oort Cloud gamma-ray repeater sources should be detectable by CGRO. In addition, if giant planet formation is common in the galaxy, we estimate that the accretion of isolated comets injected to the interstellar medium by giant planet formation should produce an additional source of galactic, nonrepeating events. Comparing these estimates to the three to four soft gamma-ray repeater sources detected by BATSE, one is forced to conclude that (1

  19. YOUNG STARS IN AN OLD BULGE: A NATURAL OUTCOME OF INTERNAL EVOLUTION IN THE MILKY WAY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ness, M.; Debattista, Victor P.; Cole, D. R.

    2014-06-01

    The center of our disk galaxy, the Milky Way, is dominated by a boxy/peanut-shaped bulge. Numerous studies of the bulge based on stellar photometry have concluded that the bulge stars are exclusively old. The perceived lack of young stars in the bulge strongly constrains its likely formation scenarios, providing evidence that the bulge is a unique population that formed early and separately from the disk. However, recent studies of individual bulge stars using the microlensing technique have reported that they span a range of ages, emphasizing that the bulge may not be a monolithic structure. In this Letter we demonstratemore » that the presence of young stars that are located predominantly nearer to the plane is expected for a bulge that has formed from the disk via dynamical instabilities. Using an N-body+ smoothed particle hydrodynamics simulation of a disk galaxy forming out of gas cooling inside a dark matter halo and forming stars, we find a qualitative agreement between our model and the observations of younger metal-rich stars in the bulge. We are also able to partially resolve the apparent contradiction in the literature between results that argue for a purely old bulge population and those that show a population comprised of a range in ages; the key is where to look.« less

  20. Infrared colours and inferred masses of metal-poor giant stars in the Keplerfield

    NASA Astrophysics Data System (ADS)

    Casey, A. R.; Kennedy, G. M.; Hartle, T. R.; Schlaufman, Kevin C.

    2018-05-01

    Intrinsically luminous giant stars in the Milky Way are the only potential volume-complete tracers of the distant disk, bulge, and halo. The chemical abundances of metal-poor giants also reflect the compositions of the earliest star-forming regions, providing the initial conditions for the chemical evolution of the Galaxy. However, the intrinsic rarity of metal-poor giants combined with the difficulty of efficiently identifying them with broad-band optical photometry has made it difficult to exploit them for studies of the Milky Way. One long-standing problem is that photometric selections for giant and/or metal-poor stars frequently include a large fraction of metal-rich dwarf contaminants. We re-derive a giant star photometric selection using existing public g-band and narrow-band DDO51photometry obtained in the Keplerfield. Our selection is simple and yields a contamination rate of main-sequence stars of ≲1% and a completeness of about 80 % for giant stars with Teff ≲ 5250 K - subject to the selection function of the spectroscopic surveys used to estimate these rates, and the magnitude range considered (11 ≲ g ≲ 15). While the DDO51filter is known to be sensitive to stellar surface gravity, we further show that the mid-infrared colours of DDO51-selected giants are strongly correlated with spectroscopic metallicity. This extends the infrared metal-poor selection developed by Schlaufman & Casey, demonstrating that the principal contaminants in their selection can be efficiently removed by the photometric separation of dwarfs and giants. This implies that any similarly efficient dwarf/giant discriminant (e.g., Gaiaparallaxes) can be used in conjunction with WISEcolours to select samples of giant stars with high completeness and low contamination. We employ our photometric selection to identify three metal-poor giant candidates in the Keplerfield with global asteroseismic parameters and find that masses inferred for these three stars using standard

  1. The Profile of the Galactic Halo from Pan-STARRS1 3π RR Lyrae

    NASA Astrophysics Data System (ADS)

    Hernitschek, Nina; Cohen, Judith G.; Rix, Hans-Walter; Sesar, Branimir; Martin, Nicolas F.; Magnier, Eugene; Wainscoat, Richard; Kaiser, Nick; Tonry, John L.; Kudritzki, Rolf-Peter; Hodapp, Klaus; Chambers, Ken; Flewelling, Heather; Burgett, William

    2018-05-01

    We characterize the spatial density of the Pan-STARRS1 (PS1) sample of Rrab stars to study the properties of the old Galactic stellar halo. This sample, containing 44,403 sources, spans galactocentric radii of 0.55 kpc ≤ R gc ≤ 141 kpc with a distance precision of 3% and thus is able to trace the halo out to larger distances than most previous studies. After excising stars that are attributed to dense regions such as stellar streams, the Galactic disk and bulge, and halo globular clusters, the sample contains ∼11,000 sources within 20 kpc ≤ R gc ≤ 131 kpc. We then apply forward modeling using Galactic halo profile models with a sample selection function. Specifically, we use ellipsoidal stellar density models ρ(l, b, R gc) with a constant and a radius-dependent halo flattening q(R gc). Assuming constant flattening q, the distribution of the sources is reasonably well fit by a single power law with n={4.40}-0.04+0.05 and q={0.918}-0.014+0.016 and comparably well fit by an Einasto profile with n={9.53}-0.28+0.27, an effective radius r eff = 1.07 ± 0.10 kpc, and a halo flattening of q = 0.923 ± 0.007. If we allow for a radius-dependent flattening q(R gc), we find evidence for a distinct flattening of q ∼ 0.8 of the inner halo at ∼25 kpc. Additionally, we find that the south Galactic hemisphere is more flattened than the north Galactic hemisphere. The results of our work are largely consistent with many earlier results (e.g., Watkins et al.; Iorio et al.). We find that the stellar halo, as traced in RR Lyrae stars, exhibits a substantial number of further significant over- and underdensities, even after masking all known overdensities.

  2. A combined photometric and kinematic recipe for evaluating the nature of bulges using the CALIFA sample

    NASA Astrophysics Data System (ADS)

    Neumann, J.; Wisotzki, L.; Choudhury, O. S.; Gadotti, D. A.; Walcher, C. J.; Bland-Hawthorn, J.; García-Benito, R.; González Delgado, R. M.; Husemann, B.; Marino, R. A.; Márquez, I.; Sánchez, S. F.; Ziegler, B.; Califa Collaboration

    2017-07-01

    Understanding the nature of bulges in disc galaxies can provide important insights into the formation and evolution of galaxies. For instance, the presence of a classical bulge suggests a relatively violent history. In contrast, the presence of an inner disc instead (also referred to as a "pseudobulge") indicates the occurrence of secular evolution processes in the main disc. However, we still lack criteria to effectively categorise bulges, limiting our ability to study their impact on the evolution of the host galaxies. Here we present a recipe to separate inner discs from classical bulges by combining four different parameters from photometric and kinematic analyses: the bulge Sérsic index nb, the concentration index C20,50, the Kormendy (1977, ApJ, 217, 406) relation and the inner slope of the radial velocity dispersion profile ∇σ. With that recipe we provide a detailed bulge classification for a sample of 45 galaxies from the integral-field spectroscopic survey CALIFA. To aid in categorising bulges within these galaxies, we perform 2D image decomposition to determine bulge Sérsic index, bulge-to-total light ratio, surface brightness and effective radius of the bulge and use growth curve analysis to derive a new concentration index, C20,50. We further extract the stellar kinematics from CALIFA data cubes and analyse the radial velocity dispersion profile. The results of the different approaches are in good agreement and allow a safe classification for approximately 95% of the galaxies. In particular, we show that our new "inner" concentration index performs considerably better than the traditionally used C50,90 when yielding the nature of bulges. We also found that a combined use of this index and the Kormendy relation gives a very robust indication of the physical nature of the bulge.

  3. MACHO RR Lyrae in the Inner Halo and Bulge

    NASA Astrophysics Data System (ADS)

    Minniti, Dante; Alcock, Charles; Allsman, Robyn A.; Alves, David; Axelrod, Tim S.; Becker, Andrew C.; Bennett, David; Cook, Kem H.; Drake, Andrew J.; Freeman, Ken C.; Griest, Kim; Lehner, Matt; Marshall, Stuart; Peterson, Bruce; Pratt, Mark; Quinn, Peter; Rodgers, Alex; Stubbs, Chris; Sutherland, Will; Tomaney, Austin; Vandehei, Thor; Welch, Doug L.

    The RR Lyrae in the bulge have been proposed to be the oldest populations in the Milky Way, tracers of how the galaxy formed. We study here the distribution of ~1600 bulge RR Lyrae stars found by the MACHO Project. The RR Lyrae with Galactocentric radius 0.4

  4. Chemical trends in the Galactic halo from APOGEE data

    NASA Astrophysics Data System (ADS)

    Fernández-Alvar, E.; Carigi, L.; Allende Prieto, C.; Hayden, M. R.; Beers, T. C.; Fernández-Trincado, J. G.; Meza, A.; Schultheis, M.; Santiago, B. X.; Queiroz, A. B.; Anders, F.; da Costa, L. N.; Chiappini, C.

    2017-02-01

    The galaxy formation process in the Λ cold dark matter scenario can be constrained from the analysis of stars in the Milky Way's halo system. We examine the variation of chemical abundances in distant halo stars observed by the Apache Point Observatory Galactic Evolution Experiment (APOGEE), as a function of distance from the Galactic Centre (r) and iron abundance ([M/H]), in the range 5 ≲ r ≲ 30 kpc and -2.5 < [M/H] < 0.0. We perform a statistical analysis of the abundance ratios derived by the APOGEE pipeline (ASPCAP) and distances calculated by several approaches. Our analysis reveals signatures of a different chemical enrichment between the inner and outer regions of the halo, with a transition at about 15 kpc. The derived metallicity distribution function exhibits two peaks, at [M/H] ˜ -1.5 and ˜-2.1, consistent with previously reported halo metallicity distributions. We obtain a difference of ˜0.1 dex for α-element-to-iron ratios for stars at r > 15 kpc and [M/H] > -1.1 (larger in the case of O, Mg, and S) with respect to the nearest halo stars. This result confirms previous claims for low-α stars found at larger distances. Chemical differences in elements with other nucleosynthetic origins (Ni, K, Na, and Al) are also detected. C and N do not provide reliable information about the interstellar medium from which stars formed because our sample comprises red giant branch and asymptotic giant branch stars and can experience mixing of material to their surfaces.

  5. Towards realistic modelling of spectral line formation - lessons learnt from red giants

    NASA Astrophysics Data System (ADS)

    Lind, Karin

    2015-08-01

    Many decades of quantitative spectroscopic studies of red giants have revealed much about the formation histories and interlinks between the main components of the Galaxy and its satellites. Telescopes and instrumentation are now able to deliver high-resolution data of superb quality for large stellar samples and Galactic archaeology has entered a new era. At the same time, we have learnt how simplifying physical assumptions in the modelling of spectroscopic data can bias the interpretations, in particular one-dimensional homogeneity and local thermodynamic equilibrium (LTE). I will present lessons learnt so far from non-LTE spectral line formation in 3D radiation-hydrodynamic atmospheres of red giants, the smaller siblings of red supergiants.

  6. Review of the fermionic dark matter model applied to galactic structures

    NASA Astrophysics Data System (ADS)

    Krut, A.; Argüelles, C. R.; Rueda, J.; Ruffini, R.

    2015-12-01

    Baryonic components (e.g. bulge and disk) of galactic structures are assumed to be embedded in an isothermal dark matter halo of fermionic nature. Besides the Pauli principle only gravitational interaction is considered. Using the underlying Fermi-Dirac phase space distribution, typical of collisionless relaxation processes, it yields an one-parameter family of scaled solutions which reproduces the observed flat rotation curves in galaxies, and additionally predicts a degenerate core through their centers. In order to provide the right DM halo properties of galaxies a set of four parameters (particle mass, degeneracy parameter at the galactic center, central density and the velocity dispersion) is necessary. The more general density profile shows three regimes depending on radius: an almost uniform very dense quantum core followed by a steep fall, a plateau in the diluted regime and a Boltzmannian tail representing the halo. In contrast to purely Boltzmannian configurations the fermionic DM model containing a quantum core allows to determine the particle mass. We show that the quantum core can be well approximated by a polytrope of index n = 3/2, while the halo can be perfectly described by an isothermal sphere with a halo scale length radius equal to approximately 3/4 of the King-radius.

  7. Review of the fermionic dark matter model applied to galactic structures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krut, A.; Argüelles, C. R.; Rueda, J.

    2015-12-17

    Baryonic components (e.g. bulge and disk) of galactic structures are assumed to be embedded in an isothermal dark matter halo of fermionic nature. Besides the Pauli principle only gravitational interaction is considered. Using the underlying Fermi-Dirac phase space distribution, typical of collisionless relaxation processes, it yields an one-parameter family of scaled solutions which reproduces the observed flat rotation curves in galaxies, and additionally predicts a degenerate core through their centers. In order to provide the right DM halo properties of galaxies a set of four parameters (particle mass, degeneracy parameter at the galactic center, central density and the velocity dispersion)more » is necessary. The more general density profile shows three regimes depending on radius: an almost uniform very dense quantum core followed by a steep fall, a plateau in the diluted regime and a Boltzmannian tail representing the halo. In contrast to purely Boltzmannian configurations the fermionic DM model containing a quantum core allows to determine the particle mass. We show that the quantum core can be well approximated by a polytrope of index n = 3/2, while the halo can be perfectly described by an isothermal sphere with a halo scale length radius equal to approximately 3/4 of the King-radius.« less

  8. THE NUMBER OF TIDAL DWARF SATELLITE GALAXIES IN DEPENDENCE OF BULGE INDEX

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    López-Corredoira, Martín; Kroupa, Pavel, E-mail: martinlc@iac.es, E-mail: pavel@astro.uni-bonn.de

    We show that a significant correlation (up to 5σ) emerges between the bulge index, defined to be larger for a larger bulge/disk ratio, in spiral galaxies with similar luminosities in the Galaxy Zoo 2 of the Sloan Digital Sky Survey and the number of tidal-dwarf galaxies in the catalog by Kaviraj et al. In the standard cold or warm dark matter cosmological models, the number of satellite galaxies correlates with the circular velocity of the dark matter host halo. In generalized gravity models without cold or warm dark matter, such a correlation does not exist, because host galaxies cannot capture infalling dwarfmore » galaxies due to the absence of dark-matter-induced dynamical friction. However, in such models, a correlation is expected to exist between the bulge mass and the number of satellite galaxies because bulges and tidal-dwarf satellite galaxies form in encounters between host galaxies. This is not predicted by dark matter models in which bulge mass and the number of satellites are a priori uncorrelated because higher bulge/disk ratios do not imply higher dark/luminous ratios. Hence, our correlation reproduces the prediction of scenarios without dark matter, whereas an explanation is not found readily from the a priori predictions of the standard scenario with dark matter. Further research is needed to explore whether some application of the standard theory may explain this correlation.« less

  9. DEMOGRAPHICS OF BULGE TYPES WITHIN 11 Mpc AND IMPLICATIONS FOR GALAXY EVOLUTION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fisher, David B.; Drory, Niv, E-mail: dbfisher@astro.umd.edu

    2011-06-01

    We present an inventory of galaxy bulge types (elliptical galaxy, classical bulge, pseudobulge, and bulgeless galaxy) in a volume-limited sample within the local 11 Mpc sphere using Spitzer 3.6 {mu}m and Hubble Space Telescope data. We find that whether counting by number, star formation rate, or stellar mass, the dominant galaxy type in the local universe has pure disk characteristics (either hosting a pseudobulge or being bulgeless). Galaxies that contain either a pseudobulge or no bulge combine to account for over 80% of the number of galaxies above a stellar mass of 10{sup 9} M{sub sun}. Classical bulges and ellipticalmore » galaxies account for {approx}1/4, and disks for {approx}3/4 of the stellar mass in the local 11 Mpc. About 2/3 of all star formation in the local volume takes place in galaxies with pseudobulges. Looking at the fraction of galaxies with different bulge types as a function of stellar mass, we find that the frequency of classical bulges strongly increases with stellar mass, and comes to dominate above 10{sup 10.5} M{sub sun}. Galaxies with pseudobulges dominate at 10{sup 9.5}-10{sup 10.5} M{sub sun}. Yet lower-mass galaxies are most likely to be bulgeless. If pseudobulges are not a product of mergers, then the frequency of pseudobulges in the local universe poses a challenge for galaxy evolution models.« less

  10. Clues to the Formation of Lenticular Galaxies Using Spectroscopic Bulge-Disk Decomposition

    NASA Astrophysics Data System (ADS)

    Johnston, E. J.; Aragón-Salamanca, A.; Merrifield, M. R.; Bedregal, A. G.

    2014-03-01

    Lenticular galaxies have long been thought of as evolved spirals, but the processes involved to quench the star formation are still unclear. By studying the individual star formation histories of the bulges and disks of lenticulars, it is possible to look for clues to the processes that triggered their transformation from spirals. To accomplish this feat, we present a new method for spectroscopic bulge-disk decomposition, in which a long-slit spectrum is decomposed into two one-dimensional spectra representing purely the bulge and disk light. We present preliminary results from applying this method to lenticular galaxies in the Virgo and Fornax Clusters, in which we show that the most recent star formation activity in these galaxies occurred within the bulges. We also find that the star formation timescales of the bulges are longer than the disks, and that more massive galaxies take longer to lose their gas during the transformation. These results point towards slow processes, such as ram-pressure stripping or harassment, being the mechanism responsible for the quenching of star formation in spirals, followed by a burst of star formation in the central regions from the gas that has been funnelled inwards through the disk.

  11. Globular Cluster Contributions to the Galactic Halo

    NASA Astrophysics Data System (ADS)

    Martell, Sarah; Grebel, Eva; Lai, David

    2010-08-01

    The goal of this project is to confirm chemically that globular clusters are the source of as much as half the population of the Galactic halo. Using moderate-resolution spectroscopy from the SEGUE survey, we have identified a previously unknown population of halo field giants with distinctly strong CN features. CN variations are typically only observed in globular clusters, so these stars are interpreted as immigrants to the halo that originally formed in globular clusters. In one night of Keck/HIRES time, we will obtain high-quality, high- resolution spectra for five such stars, and determine abundances of O, Na, Mg, Al, alpha, iron-peak and neutron-capture elements. With this information we can state clearly whether these unusual CN-strong halo stars carry the full abundance pattern seen in CN-strong globular cluster stars, with depleted C, O, and Mg and enhanced N, Na, and Al. This type of coarse ``chemical tagging'' will allow a clearer division of the Galactic halo into contributions from globular clusters and from dwarf galaxies, and will place constraints on theoretical models of globular cluster formation and evolution.

  12. OGLE-2016-BLG-1190Lb: The First Spitzer Bulge Planet Lies Near the Planet/Brown-dwarf Boundary

    NASA Astrophysics Data System (ADS)

    Ryu, Y.-H.; Yee, J. C.; Udalski, A.; Bond, I. A.; Shvartzvald, Y.; Zang, W.; Figuera Jaimes, R.; Jørgensen, U. G.; Zhu, W.; Huang, C. X.; Jung, Y. K.; Albrow, M. D.; Chung, S.-J.; Gould, A.; Han, C.; Hwang, K.-H.; Shin, I.-G.; Cha, S.-M.; Kim, D.-J.; Kim, H.-W.; Kim, S.-L.; Lee, C.-U.; Lee, D.-J.; Lee, Y.; Park, B.-G.; Pogge, R. W.; KMTNet Collaboration; Calchi Novati, S.; Carey, S.; Henderson, C. B.; Beichman, C.; Gaudi, B. S.; Spitzer team; Mróz, P.; Poleski, R.; Skowron, J.; Szymański, M. K.; Soszyński, I.; Kozłowski, S.; Pietrukowicz, P.; Ulaczyk, K.; Pawlak, M.; OGLE Collaboration; Abe, F.; Asakura, Y.; Barry, R.; Bennett, D. P.; Bhattacharya, A.; Donachie, M.; Evans, P.; Fukui, A.; Hirao, Y.; Itow, Y.; Kawasaki, K.; Koshimoto, N.; Li, M. C. A.; Ling, C. H.; Masuda, K.; Matsubara, Y.; Miyazaki, S.; Muraki, Y.; Nagakane, M.; Ohnishi, K.; Ranc, C.; Rattenbury, N. J.; Saito, To.; Sharan, A.; Sullivan, D. J.; Sumi, T.; Suzuki, D.; Tristram, P. J.; Yamada, T.; Yamada, T.; Yonehara, A.; MOA Collaboration; Bryden, G.; Howell, S. B.; Jacklin, S.; UKIRT Microlensing Team; Penny, M. T.; Mao, S.; Fouqué, Pascal; Wang, T.; CFHT-K2C9 Microlensing Survey group; Street, R. A.; Tsapras, Y.; Hundertmark, M.; Bachelet, E.; Dominik, M.; Li, Z.; Cross, S.; Cassan, A.; Horne, K.; Schmidt, R.; Wambsganss, J.; Ment, S. K.; Maoz, D.; Snodgrass, C.; Steele, I. A.; RoboNet Team; Bozza, V.; Burgdorf, M. J.; Ciceri, S.; D’Ago, G.; Evans, D. F.; Hinse, T. C.; Kerins, E.; Kokotanekova, R.; Longa, P.; MacKenzie, J.; Popovas, A.; Rabus, M.; Rahvar, S.; Sajadian, S.; Skottfelt, J.; Southworth, J.; von Essen, C.; MiNDSTEp Team

    2018-01-01

    We report the discovery of OGLE-2016-BLG-1190Lb, which is likely to be the first Spitzer microlensing planet in the Galactic bulge/bar, an assignation that can be confirmed by two epochs of high-resolution imaging of the combined source–lens baseline object. The planet’s mass, M p = 13.4 ± 0.9 M J , places it right at the deuterium-burning limit, i.e., the conventional boundary between “planets” and “brown dwarfs.” Its existence raises the question of whether such objects are really “planets” (formed within the disks of their hosts) or “failed stars” (low-mass objects formed by gas fragmentation). This question may ultimately be addressed by comparing disk and bulge/bar planets, which is a goal of the Spitzer microlens program. The host is a G dwarf, M host = 0.89 ± 0.07 M ⊙, and the planet has a semimajor axis a ∼ 2.0 au. We use Kepler K2 Campaign 9 microlensing data to break the lens-mass degeneracy that generically impacts parallax solutions from Earth–Spitzer observations alone, which is the first successful application of this approach. The microlensing data, derived primarily from near-continuous, ultradense survey observations from OGLE, MOA, and three KMTNet telescopes, contain more orbital information than for any previous microlensing planet, but not quite enough to accurately specify the full orbit. However, these data do permit the first rigorous test of microlensing orbital-motion measurements, which are typically derived from data taken over <1% of an orbital period.

  13. The dwarf spheroidal galaxy in Draco. I - New BV photometry. II - Galactic foreground reddening

    NASA Technical Reports Server (NTRS)

    Stetson, P. B.

    1979-01-01

    BV photoelectric photometry for 39 stars and BV photographic photometry for 514 stars in the field of the Draco dwarf spheroidal galaxy are presented. The color-magnitude diagram for 512 of these field stars is found to display a well-defined red horizontal branch as well as a red giant branch whose observed width is comparable to the accidental photometric error. The results also indicate that a more diffuse sequence of stars lies about 0.1 mag to the blue of the giant branch and that an upper horizontal branch of more massive core helium-burning stars may also be present. The foreground reddening toward Draco is then determined by narrow-band uvby-beta photometry of galactic B-A-F stars.

  14. Formation of the bulge of Iapetus through long-wavelength folding of the lithosphere

    NASA Astrophysics Data System (ADS)

    Kay, Jonathan P.; Dombard, Andrew J.

    2018-03-01

    Previous models that attempted to explain the formation of the pronounced oblate shape of Iapetus suggested that it was a preserved rotational bulge. These models found that heating was provided by short-lived radioactive isotopes that decayed rapidly and allowed the excess flattening of the lithosphere to be locked in by a thickening lithosphere, but placed severe timing constraints on the formation of Iapetus and its bulge. Here, we show that finite element simulations with an elastic-viscous-plastic rheology indicate it is possible to form the bulge through long-wavelength folding of the lithosphere of Iapetus during an epoch of contraction combined with a latitudinal surface temperature gradient. In contrast to models of a frozen rotational bulge, heat generated by long-lived radioactive isotopes warms the interior, which causes porosity loss and forces Iapetus to compact by ∼10%. Our simulations are most successful when there is a 30 K temperature difference between the pole and the equator. Tectonic growth of the bulge is not sensitive to the time scale over which the moon contracts, and lithospheric thickness primarily controls whether a fold can form, not fold wavelength. In addition, long term simulations show that when no stress is applied, the mechanical lithosphere is strong enough to support the bulge, with negligible relaxation over billion year time scales.

  15. Hair Follicle Bulge Stem Cells Appear Dispensable for the Acute Phase of Wound Re‐epithelialization

    PubMed Central

    Garcin, Clare L.; Ansell, David M.; Headon, Denis J.; Paus, Ralf

    2016-01-01

    Abstract The cutaneous healing response has evolved to occur rapidly, in order to minimize infection and to re‐establish epithelial homeostasis. Rapid healing is achieved through complex coordination of multiple cell types, which importantly includes specific cell populations within the hair follicle (HF). Under physiological conditions, the epithelial compartments of HF and interfollicular epidermis remain discrete, with K15+ve bulge stem cells contributing progeny for HF reconstruction during the hair cycle and as a basis for hair shaft production during anagen. Only upon wounding do HF cells migrate from the follicle to contribute to the neo‐epidermis. However, the identity of the first‐responding cells, and in particular whether this process involves a direct contribution of K15+ve bulge cells to the early stage of epidermal wound repair remains unclear. Here we demonstrate that epidermal injury in murine skin does not induce bulge activation during early epidermal wound repair. Specifically, bulge cells of uninjured HFs neither proliferate nor appear to migrate out of the bulge niche upon epidermal wounding. In support of these observations, Diphtheria toxin‐mediated partial ablation of K15+ve bulge cells fails to delay wound healing. Our data suggest that bulge cells only respond to epidermal wounding during later stages of repair. We discuss that this response may have evolved as a protective safeguarding mechanism against bulge stem cell exhaust and tumorigenesis. Stem Cells 2016;34:1377–1385 PMID:26756547

  16. Using 3D Spectroscopy to Probe the Orbital Structure of Composite Bulges

    NASA Astrophysics Data System (ADS)

    Erwin, Peter; Saglia, Roberto; Thomas, Jens; Fabricius, Maximilian; Bender, Ralf; Rusli, Stephanie; Nowak, Nina; Beckman, John E.; Vega Beltrán, Juan Carlos

    2015-02-01

    Detailed imaging and spectroscopic analysis of the centers of nearby S0 and spiral galaxies shows the existence of ``composite bulges'', where both classical bulges and disky pseudobulges coexist in the same galaxy. As part of a search for supermassive black holes in nearby galaxy nuclei, we obtained VLT-SINFONI observations in adaptive-optics mode of several of these galaxies. Schwarzschild dynamical modeling enables us to disentangle the stellar orbital structure of the different central components, and to distinguish the differing contributions of kinematically hot (classical bulge) and kinematically cool (pseudobulge) components in the same galaxy.

  17. Bulge Growth and Quenching Since Z=2.5 in Candels/3D-HST

    NASA Technical Reports Server (NTRS)

    Lang, Phillip; Wuyts, Stijn; Somerville, Rachel S.; Schreiber, Natascha M. Foerster; Genzel, Reinhard; Bell, Eric F.; Brammer, Gabe; Dekel, Avishai; Faber, Sandra M.; Ferguson, Henry C.; hide

    2014-01-01

    Exploiting the deep high-resolution imaging of all 5 CANDELS fields, and accurate redshift informationprovided by 3D-HST, we investigate the relation between structure and stellar populations fora mass-selected sample of 6764 galaxies above 1010 M, spanning the redshift range 0.5 z 2.5.For the first time, we fit 2-dimensional models comprising a single Sersic fit and two-component (i.e.,bulge + disk) decompositions not only to the H-band light distributions, but also to the stellar massmaps reconstructed from resolved stellar population modeling. We confirm that the increased bulgeprominence among quiescent galaxies, as reported previously based on rest-optical observations, remainsin place when considering the distributions of stellar mass. Moreover, we observe an increaseof the typical Sersic index and bulge-to-total ratio (with median BT reaching 40-50) among starforminggalaxies above 1011 M. Given that quenching for these most massive systems is likely tobe imminent, our findings suggest that significant bulge growth precedes a departure from the starformingmain sequence. We demonstrate that the bulge mass (and ideally knowledge of the bulge andtotal mass) is a more reliable predictor of the star-forming versus quiescent state of a galaxy thanthe total stellar mass. The same trends are predicted by the state-of-the-art semi-analytic model bySomerville et al. In the latter, bulges and black holes grow hand in hand through merging andordisk instabilities, and AGN-feedback shuts off star formation. Further observations will be requiredto pin down star formation quenching mechanisms, but our results imply they must be internal to thegalaxies and closely associated with bulge growth.

  18. Effect of an upstream bulge configuration on film cooling with and without mist injection.

    PubMed

    Wang, Jin; Li, Qianqian; Sundén, Bengt; Ma, Ting; Cui, Pei

    2017-12-01

    To meet the economic requirements of power output, the increased inlet temperature of modern gas turbines is above the melting point of the material. Therefore, high-efficient cooling technology is needed to protect the blades from the hot mainstream. In this study, film cooling was investigated in a simplified channel. A bulge located upstream of the film hole was numerically investigated by analysis of the film cooling effectiveness distribution downstream of the wall. The flow distribution in the plate channel is first presented. Comparing with a case without bulge, different cases with bulge heights of 0.1d, 0.3d and 0.5d were examined with blowing ratios of 0.5 and 1.0. Cases with 1% mist injection were also included in order to obtain better cooling performance. Results show that the bulge configuration located upstream the film hole makes the cooling film more uniform, and enhanceslateral cooling effectiveness. Unlike other cases, the configuration with a 0.3d-height bulge shows a good balance in improving the downstream and lateral cooling effectiveness. Compared with the case without mist at M = 0.5, the 0.3d-height bulge with 1% mist injection increases lateral average effectiveness by 559% at x/d = 55. In addition, a reduction of the thermal stress concentration can be obtained by increasing the height of the bulge configuration. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Using asteroseismology to probe the structure and evolution of the Galaxy

    NASA Astrophysics Data System (ADS)

    Stello, Dennis

    2015-08-01

    Recent space missions have transformed our ability to use asteroseismology on vast numbers of stars. This advance has opened up for exploration of the structure and evolution of the Galaxy using oscillating red giant stars as distant tracers of stellar populations including the halo, the bulge and the thin and thick disks. Asteroseismology provides a powerful way to obtain precise estimates of stellar bulk properties such as radius, mass, and age. The radius, and hence distance, places a star accurately in the Galaxy, the mass reveals the mass function and, in combination with composition, provide ages for red giants. Initial results from the CoRoT and Kepler missions have demonstrated the enormous potential there is in the marriage between asteroseismology and contemporary Galactic Archaeology based on single-epoch spectroscopy, photometry, and parallax measurements. The scope for this research received a significant boost last year on several fronts. The re-purposed Kepler telescope, K2, started observing tens of thousands of red giants along the ecliptic covering all main constituents of the Galaxy, and in a few years time NASA's TESS mission will stars observing up to 1 mio red giants full sky. Finally, ESA's decision to fund PLATO guaranties that high quality seismic measurements will continue to flow beyond the nextdecade. In this talk I will give an overview of how seismology can aid the study of the structure and evolution of the Galaxy. I will include the most recent results that we have obtained with our K2 Galactic Archaeology Program.

  20. A galactic maelstrom

    NASA Image and Video Library

    2015-08-31

    This new NASA/ESA Hubble Space Telescope shows Messier 96, a spiral galaxy just over 35 million light-years away in the constellation of Leo (The Lion). It is of about the same mass and size as the Milky Way. It was first discovered by astronomer Pierre Méchain in 1781, and added to Charles Messier’s famous catalogue of astronomical objects just four days later. The galaxy resembles a giant maelstrom of glowing gas, rippled with dark dust that swirls inwards towards the nucleus. Messier 96 is a very asymmetric galaxy; its dust and gas is unevenly spread throughout its weak spiral arms, and its core is not exactly at the galactic centre. Its arms are also asymmetrical, thought to have been influenced by the gravitational pull of other galaxies within the same group as Messier 96. This group, named the M96 Group, also includes the bright galaxies Messier 105 and Messier 95, as well as a number of smaller and fainter galaxies. It is the nearest group containing both bright spirals and a bright elliptical galaxy (Messier 105).

  1. A galactic sunflower

    NASA Image and Video Library

    2015-09-07

    The arrangement of the spiral arms in the galaxy Messier 63, seen here in a new image from the NASA/ESA Hubble Space Telescope, recall the pattern at the centre of a sunflower. So the nickname for this cosmic object — the Sunflower Galaxy — is no coincidence. Discovered by Pierre Mechain in 1779, the galaxy later made it as the 63rd entry into fellow French astronomer Charles Messier’s famous catalogue, published in 1781. The two astronomers spotted the Sunflower Galaxy’s glow in the small, northern constellation Canes Venatici (the Hunting Dogs). We now know this galaxy is about 27 million light-years away and belongs to the M51 Group — a group of galaxies, named after its brightest member, Messier 51, another spiral-shaped galaxy dubbed the Whirlpool Galaxy. Galactic arms, sunflowers and whirlpools are only a few examples of nature’s apparent preference for spirals. For galaxies like Messier 63 the winding arms shine bright because of the presence of recently formed, blue–white giant stars, readily seen in this Hubble image.

  2. Hair Follicle Bulge Stem Cells Appear Dispensable for the Acute Phase of Wound Re-epithelialization.

    PubMed

    Garcin, Clare L; Ansell, David M; Headon, Denis J; Paus, Ralf; Hardman, Matthew J

    2016-05-01

    The cutaneous healing response has evolved to occur rapidly, in order to minimize infection and to re-establish epithelial homeostasis. Rapid healing is achieved through complex coordination of multiple cell types, which importantly includes specific cell populations within the hair follicle (HF). Under physiological conditions, the epithelial compartments of HF and interfollicular epidermis remain discrete, with K15(+ve) bulge stem cells contributing progeny for HF reconstruction during the hair cycle and as a basis for hair shaft production during anagen. Only upon wounding do HF cells migrate from the follicle to contribute to the neo-epidermis. However, the identity of the first-responding cells, and in particular whether this process involves a direct contribution of K15(+ve) bulge cells to the early stage of epidermal wound repair remains unclear. Here we demonstrate that epidermal injury in murine skin does not induce bulge activation during early epidermal wound repair. Specifically, bulge cells of uninjured HFs neither proliferate nor appear to migrate out of the bulge niche upon epidermal wounding. In support of these observations, Diphtheria toxin-mediated partial ablation of K15(+ve) bulge cells fails to delay wound healing. Our data suggest that bulge cells only respond to epidermal wounding during later stages of repair. We discuss that this response may have evolved as a protective safeguarding mechanism against bulge stem cell exhaust and tumorigenesis. Stem Cells 2016;34:1377-1385. © 2016 The Authors. Stem Cells published by Wiley Periodicals, Inc. on behalf of AlphaMed Press.

  3. Unusual Metals in Galactic Center Stars

    NASA Astrophysics Data System (ADS)

    Hensley, Kerry

    2018-03-01

    Far from the galactic suburbs where the Sun resides, a cluster of stars in the nucleus of the Milky Way orbits a supermassive black hole. Can chemical abundance measurements help us understand the formation history of the galactic center nuclear star cluster?Studying Stellar PopulationsMetallicity distributions for stars in the inner two degrees of the Milky Way (blue) and the central parsec (orange). [Do et al. 2018]While many galaxies host nuclear star clusters, most are too distant for us to study in detail; only in the Milky Way can we resolve individual stars within one parsec of a supermassive black hole. The nucleus of our galaxy is an exotic and dangerous place, and its not yet clear how these stars came to be where they are were they siphoned off from other parts of the galaxy, or did they form in place, in an environment rocked by tidal forces?Studying the chemical abundances of stars provides a way to separate distinct stellar populations and discern when and where these stars formed. Previous studies using medium-resolution spectroscopy have revealed that many stars within the central parsec of our galaxy have very high metallicities possibly higher than any other region of the Milky Way. Can high-resolution spectroscopy tell us more about this unusual population of stars?Spectral Lines on DisplayTuan Do (University of California, Los Angeles, Galactic Center Group) and collaborators performed high-resolution spectroscopic observations of two late-type giant starslocated half a parsec from the Milky Ways supermassive black hole.Comparison of the observed spectra of the two galactic center stars (black) with synthetic spectra with low (blue) and high (orange) [Sc/Fe] values. Click to enlarge. [Do et al. 2018]In order to constrain the metallicities of these stars, Do and collaborators compared the observed spectra to a grid of synthetic spectra and used a spectral synthesis technique to determine the abundances of individual elements. They found that

  4. Diffraction and Smith-Purcell radiation on the hemispherical bulges in a metal plate

    NASA Astrophysics Data System (ADS)

    Syshchenko, V. V.; Larikova, E. A.; Gladkih, Yu. P.

    2017-12-01

    The radiation resulting from the uniform motion of a charged particle near a hemispheric bulge on a metal plane is considered. The description of the radiation process based on the method of images is developed for the case of non-relativistic particle and a perfectly conducting target. The spectral-angular and spectral densities of the diffraction radiation on the single bulge (as well as the Smith-Purcell radiation on the periodic string of bulges) are computed. The possibility of application of the developed approach to the case of relativistic incident particle is discussed.

  5. Toward a Galactic Distribution of Planets. I. Methodology and Planet Sensitivities of the 2015 High-cadence Spitzer Microlens Sample

    NASA Astrophysics Data System (ADS)

    Zhu, Wei; Udalski, A.; Calchi Novati, S.; Chung, S.-J.; Jung, Y. K.; Ryu, Y.-H.; Shin, I.-G.; Gould, A.; Lee, C.-U.; Albrow, M. D.; Yee, J. C.; Han, C.; Hwang, K.-H.; Cha, S.-M.; Kim, D.-J.; Kim, H.-W.; Kim, S.-L.; Kim, Y.-H.; Lee, Y.; Park, B.-G.; Pogge, R. W.; KMTNet Collaboration; Poleski, R.; Mróz, P.; Pietrukowicz, P.; Skowron, J.; Szymański, M. K.; KozLowski, S.; Ulaczyk, K.; Pawlak, M.; OGLE Collaboration; Beichman, C.; Bryden, G.; Carey, S.; Fausnaugh, M.; Gaudi, B. S.; Henderson, C. B.; Shvartzvald, Y.; Wibking, B.; Spitzer Team

    2017-11-01

    We analyze an ensemble of microlensing events from the 2015 Spitzer microlensing campaign, all of which were densely monitored by ground-based high-cadence survey teams. The simultaneous observations from Spitzer and the ground yield measurements of the microlensing parallax vector {{\\boldsymbol{π }}}{{E}}, from which compact constraints on the microlens properties are derived, including ≲25% uncertainties on the lens mass and distance. With the current sample, we demonstrate that the majority of microlenses are indeed in the mass range of M dwarfs. The planet sensitivities of all 41 events in the sample are calculated, from which we provide constraints on the planet distribution function. In particular, assuming a planet distribution function that is uniform in {log}q, where q is the planet-to-star mass ratio, we find a 95% upper limit on the fraction of stars that host typical microlensing planets of 49%, which is consistent with previous studies. Based on this planet-free sample, we develop the methodology to statistically study the Galactic distribution of planets using microlensing parallax measurements. Under the assumption that the planet distributions are the same in the bulge as in the disk, we predict that ∼1/3 of all planet detections from the microlensing campaigns with Spitzer should be in the bulge. This prediction will be tested with a much larger sample, and deviations from it can be used to constrain the abundance of planets in the bulge relative to the disk.

  6. The bulge-disc decomposed evolution of massive galaxies at 1 < z < 3 in CANDELS

    NASA Astrophysics Data System (ADS)

    Bruce, V. A.; Dunlop, J. S.; McLure, R. J.; Cirasuolo, M.; Buitrago, F.; Bowler, R. A. A.; Targett, T. A.; Bell, E. F.; McIntosh, D. H.; Dekel, A.; Faber, S. M.; Ferguson, H. C.; Grogin, N. A.; Hartley, W.; Kocevski, D. D.; Koekemoer, A. M.; Koo, D. C.; McGrath, E. J.

    2014-10-01

    We present the results of a new and improved study of the morphological and spectral evolution of massive galaxies over the redshift range 1 < z < 3. Our analysis is based on a bulge-disc decomposition of 396 galaxies with M* > 1011 M⊙ uncovered from the Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey (CANDELS) Wide Field Camera 3 (WFC3)/IR imaging within the Cosmological Evolution Survey (COSMOS) and UKIRT Infrared Deep Sky Survey (UKIDSS) UDS survey fields. We find that, by modelling the H160 image of each galaxy with a combination of a de Vaucouleurs bulge (Sérsic index n = 4) and an exponential disc (n = 1), we can then lock all derived morphological parameters for the bulge and disc components, and successfully reproduce the shorter-wavelength J125, i814, v606 HST images simply by floating the magnitudes of the two components. This then yields sub-divided four-band HST photometry for the bulge and disc components which, with no additional priors, is well described by spectrophotometric models of galaxy evolution. Armed with this information, we are able to properly determine the masses and star formation rates for the bulge and disc components, and find that: (i) from z = 3 to 1 the galaxies move from disc dominated to increasingly bulge dominated, but very few galaxies are pure bulges/ellipticals by z = 1; (ii) while most passive galaxies are bulge dominated, and most star-forming galaxies disc dominated, 18 ± 5 per cent of passive galaxies are disc dominated, and 11 ± 3 per cent of star-forming galaxies are bulge dominated, a result which needs to be explained by any model purporting to connect star formation quenching with morphological transformations; (iii) there exists a small but significant population of pure passive discs, which are generally flatter than their star-forming counterparts (whose axial ratio distribution peaks at b/a ≃ 0.7); (iv) flatter/larger discs re-emerge at the highest star formation rates, consistent with

  7. The Bulging Behavior of Thick-Walled 6063 Aluminum Alloy Tubes Under Double-Sided Pressures

    NASA Astrophysics Data System (ADS)

    Cui, Xiao-Lei; Wang, Xiao-Song; Yuan, Shi-Jian

    2015-05-01

    To make further exploration on the deformation behavior of tube under double-sided pressures, the thick-walled 6063 aluminum alloy tubes with an outer diameter of 65 mm and an average thickness of 7.86 mm have been used to be bulged under the combined action of internal and external pressures. In the experiment, two ends of the thick-walled tubes were fixed using the tooth and groove match. Three levels of external pressure (0 MPa, 40 MPa, and 80 MPa), in conjunction with the internal pressure, were applied on the tube outside and inside simultaneously. The effect of external pressure on the bulging behavior of the thick-walled tubes, such as the limiting expansion ratio, the bulging zone profile, and the thickness distribution, has been investigated. It is shown that the limiting expansion ratio, the bulging zone profile, and the thickness distribution in the homogeneous bulging area are all insensitive to the external pressure. However, the external pressure can make the thick-walled tube achieve a thinner wall at the fracture area. It reveals that the external pressure can only improve the fracture limit of the thick-walled 6063 tubes, but it has very little effect on their homogeneous bulging behavior. It might be because the external pressure can only increase the magnitude of the hydrostatic pressure for the tube but has no effect on the Lode parameter.

  8. Spectroscopic decomposition of NGC 3521: unveiling the properties of the bulge and disc

    NASA Astrophysics Data System (ADS)

    Coccato, Lodovico; Fabricius, Maximilian H.; Saglia, Roberto P.; Bender, Ralf; Erwin, Peter; Drory, Niv; Morelli, Lorenzo

    2018-06-01

    We study the kinematics and the stellar populations of the bulge and disc of the spiral galaxy NGC 3521. At each position in the field of view, we separate the contributions of the bulge and the disc from the total observed spectrum and study their kinematics, age, and metallicities independently. Their properties are clearly distinct: the bulge rotates more slowly, has a higher velocity dispersion, and is less luminous than the disc. We identify three main populations of stars in NGC 3521: old (≥7 Gyr), intermediate (≈3 Gyr), and young (≤1 Gyr). The mass and light of NGC 3521 are dominated by the intermediate stellar population. The youngest population contributes mostly to the disc component and its contribution increases with radius. We also study the luminosity-weighed properties of the stars in NGC 3521. Along the photometric major axis, we find (i) no age gradient for the stars in the bulge, and a negative age gradient for the stars in the disc; (ii) negative metallicity gradients and subsolar α-enhancement for both the bulge and the disc. We propose the following picture for the formation of NGC 3521: initial formation a long time ago (≥7 Gyr), followed by a second burst of star formation or a merger (≈3 Gyr ago), which contributed predominantly to the mass build-up of the bulge. Recently (≤1 Gyr), the disc of NGC 3521 experienced an additional episode of star formation that started in the innermost regions.

  9. BULGES OF NEARBY GALAXIES WITH SPITZER: THE GROWTH OF PSEUDOBULGES IN DISK GALAXIES AND ITS CONNECTION TO OUTER DISKS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fisher, David B.; Drory, Niv; Fabricius, Maximilian H.

    2009-05-20

    We study star formation rates (SFRs) and stellar masses in bulges of nearby disk galaxies. For this we construct a new SFR indicator that linearly combines data from the Spitzer Space Telescope and the Galaxy Evolution Explorer. All bulges are found to be forming stars irrespective of bulge type (pseudobulge or classical bulge). At present-day SFR the median pseudobulge could have grown the present-day stellar mass in 8 Gyr. Classical bulges have the lowest specific SFR implying a growth times that are longer than a Hubble time, and thus the present-day SFR does not likely play a major role inmore » the evolution of classical bulges. In almost all galaxies in our sample the specific SFR (SFR per unit stellar mass) of the bulge is higher than that of the outer disk. This suggests that almost all galaxies are increasing their B/T through internal star formation. The SFR in pseudobulges correlates with their structure. More massive pseudobulges have higher SFR density, this is consistent with that stellar mass being formed by moderate, extended star formation. Bulges in late-type galaxies have similar SFRs as pseudobulges in intermediate-type galaxies, and are similar in radial size. However, they are deficient in mass; thus, they have much shorter growth times, {approx}2 Gyr. We identify a class of bulges that have nuclear morphology similar to pseudobulges, significantly lower specific SFR than pseudobulges, and are closer to classical bulges in structural parameter correlations. These are possibly composite objects, evolved pseudobulges or classical bulges experiencing transient, enhanced nuclear star formation. Our results are consistent with a scenario in which bulge growth via internal star formation is a natural, and near ubiquitous phenomenon in disk galaxies. Those galaxies with large classical bulges are not affected by the in situ bulge growth, likely because the majority of their stellar mass comes from some other phenomenon. Yet, those galaxies without

  10. WFIRST: Searching for Microlens Planets in Very Wide Orbits and the MOA Microlensing Data Release

    NASA Astrophysics Data System (ADS)

    Hirao, Yuki; Bennett, David; Sumi, Takahiro; MOA Collaboration

    2018-01-01

    Gravitational microlensing is an unique technique to detect exoplanets down to low mass planets beyond the snow line because it is sensitive to planets orbiting near the Einstein ring radius of a few AU away from its host star, which is complementary to the other methods. Detecting such planets are important for understanding the formation of our solar system because gas giants and ice giants planets are believed to be formed beyond the snow line, where the protoplanetary disk is cold enough for ice to condense, in the core accretion theory. Microlensing Observations in Astrophysics (MOA) group has conducted high cadence survey observations towards the Galactic bulge to detect exoplanets since 2006 at Mt.John University Observatory in NZ using MOA-II 1.8 meter telescope equipped with a very wide field-of-view MOA-cam3 CCD camera. MOA has alerted about 600 microlensing events every year and detected dozens of exoplanets in wide orbits. Future space telescope, WFIRST will conduct survey observations towards the Galactic bulge and is expected to detect thousands of planets in wide orbit via microlensing to complete the census of exoplanets begun by Kepler Space telescope which found planets in close orbits via transit method. To contribute to the WFIRST and make the microlensing community larger, MOA will open its data from 2006 to 2014 to the public. Through the off-line analysis, we have found some short binary events which were not detected in the real time analysis. Short-timescale microlensing events are important because they are candidates of free-floating or wide-separation planets. The poster will present the data release and some results of the analysis of short-timescale binary events.

  11. Stellar Photometric Structures of the Host Galaxies of Nearby Type 1 Active Galactic Nuclei

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Minjin; Ho, Luis C.; Peng, Chien Y.

    2017-10-01

    We present detailed image analysis of rest-frame optical images of 235 low-redshift ( z ≲ 0.35) Type 1 active galactic nuclei (AGNs) observed with the Hubble Space Telescope . The high-resolution images enable us to perform rigorous two-dimensional image modeling to decouple the luminous central point source from the host galaxy, which, when warranted, is further decomposed into its principal structural components (bulge, bar, and disk). In many cases, care must be taken to account for structural complexities such as spiral arms, tidal features, and overlapping or interacting companion galaxies. We employ Fourier modes to characterize the degree of asymmetrymore » of the light distribution of the stars as a quantitative measure of morphological distortion due to interactions or mergers. We examine the dependence of the physical parameters of the host galaxies on the properties of the AGNs, namely, radio-loudness and the width of the broad emission lines. In accordance with previous studies, narrow-line (H β FWHM ≤ 2000 km s{sup −1}) Type 1 AGNs, in contrast to their broad-line (H β FWHM > 2000 km s{sup −1}) counterparts, are preferentially hosted in later-type, lower-luminosity galaxies, which have a higher incidence of pseudo-bulges, are more frequently barred, and are less morphologically disturbed. This suggests that narrow-line Type 1 AGNs experienced a more quiescent evolutionary history driven primarily by internal secular evolution instead of external dynamical perturbations. The fraction of AGN hosts showing merger signatures is larger for more luminous sources. Radio-loud AGNs generally preferentially live in earlier-type (bulge-dominated), more massive hosts, although a minority of them appear to contain a significant disk component. We do not find convincing evidence for enhanced merger signatures in the radio-loud population.« less

  12. REVIEWS OF TOPICAL PROBLEMS: Gravitational microlensing

    NASA Astrophysics Data System (ADS)

    Zakharov, Aleksandr F.; Sazhin, Mikhail V.

    1998-10-01

    The foundations of standard microlensing theory are discussed as applied to stars in the Galactic bulge, Magellanic Clouds or other nearby galaxies and gravitational microlenses assumed to lie in-between these stars and the terrestrial observer. In contrast to the review article by Gurevich et al. [48], microlensing by compact objects is mainly considered. Criteria for the identification of microlensing events are discussed as also are microlensing events not satisfying these criteria, such as non-symmetrical light curves and chromatic and polarization effects. The Large Magellanic Cloud (LMC) and Galactic bulge microlensing data of the MACHO group are discussed in detail and also the LMC data of EROS and the Galactic bulge data of OGLE are presented. A detailed comparison of theoretical predictions and observations is given.

  13. Structure/cleavage-based insights into helical perturbations at bulge sites within T. thermophilus Argonaute silencing complexes

    PubMed Central

    Sheng, Gang; Gogakos, Tasos; Wang, Jiuyu; Zhao, Hongtu; Serganov, Artem; Juranek, Stefan

    2017-01-01

    Abstract We have undertaken a systematic structural study of Thermus thermophilus Argonaute (TtAgo) ternary complexes containing single-base bulges positioned either within the seed segment of the guide or target strands and at the cleavage site. Our studies establish that single-base bulges 7T8, 5A6 and 4A5 on the guide strand are stacked-into the duplex, with conformational changes localized to the bulge site, thereby having minimal impact on the cleavage site. By contrast, single-base bulges 6’U7’ and 6’A7’ on the target strand are looped-out of the duplex, with the resulting conformational transitions shifting the cleavable phosphate by one step. We observe a stable alignment for the looped-out 6’N7’ bulge base, which stacks on the unpaired first base of the guide strand, with the looped-out alignment facilitated by weakened Watson–Crick and reversed non-canonical flanking pairs. These structural studies are complemented by cleavage assays that independently monitor the impact of bulges on TtAgo-mediated cleavage reaction. PMID:28911094

  14. Formation of the Lunar Fossil Bulges and Its Implication for the Early Earth and Moon

    NASA Astrophysics Data System (ADS)

    Qin, Chuan; Zhong, Shijie; Phillips, Roger

    2018-02-01

    First recognized by Laplace over two centuries ago, the Moon's present tidal-rotational bulges are significantly larger than hydrostatic predictions. They are likely relics of a former hydrostatic state when the Moon was closer to the Earth and had larger bulges, and they were established when stresses in a thickening lunar lithosphere could maintain the bulges against hydrostatic adjustment. We formulate the first dynamically self-consistent model of this process and show that bulge formation is controlled by the relative timing of lithosphere thickening and lunar orbit recession. Viable solutions indicate that lunar bulge formation was a geologically slow process lasting several hundred million years, that the process was complete about 4 Ga when the Moon-Earth distance was less than 32 Earth radii, and that the Earth in Hadean was significantly less dissipative to lunar tides than during the last 4 Gyr, possibly implying a frozen hydrosphere due to the fainter young Sun.

  15. Binding of pixantrone to DNA at CpA dinucleotide sequences and bulge structures.

    PubMed

    Konda, Shyam K; Wang, Haiqiang; Cutts, Suzanne M; Phillips, Don R; Collins, J Grant

    2015-06-07

    The binding of the anti-cancer drug pixantrone to three oligonucleotide sequences, d(TCATATGA)2, d(CCGAGAATTCCGG)2 {double bulge = DB} and the non-self complementary d(TACGATGAGTA) : d(TACCATCGTA) {single bulge = SB}, has been studied by NMR spectroscopy and molecular modelling. The upfield shifts observed for the aromatic resonances of pixantrone upon addition of the drug to each oligonucleotide confirmed the drug bound by intercalation. For the duplex sequence d(TCATATGA)2, NOEs were observed from the pixantrone aromatic H7/8 and aliphatic Ha/Hb protons to the H6/H8 and H1' protons of the C2, A3, T6 and G7 nucleotides, demonstrating that pixantrone preferentially binds at the symmetric CpA sites. However, weaker NOEs observed to various protons from the T4 and A5 residues indicated alternative minor binding sites. NOEs from the H7/H8 and Ha/Hb protons to both major (H6/H8) and minor groove (H1') protons indicated approximately equal proportions of intercalation was from the major and minor groove at the CpA sites. Intermolecular NOEs were observed between the H7/H8 and H4 protons of pixantrone and the A4H1' and G3H1' protons of the oligonucleotide that contains two symmetrically related bulge sites (DB), indicative of binding at the adenine bulge sites. For the oligonucleotide that only contains a single bulge site (SB), NOEs were observed from pixantrone protons to the SB G7H1', A8H1' and G9H1' protons, confirming that the drug bound selectively at the adenine bulge site. A molecular model of pixantrone-bound SB could be constructed with the drug bound from the minor groove at the A8pG9 site that was consistent with the observed NMR data. The results demonstrate that pixantrone preferentially intercalates at adenine bulge sites, compared to duplex DNA, and predominantly from the minor groove.

  16. A new look at the kinematics of the bulge from an N-body model

    NASA Astrophysics Data System (ADS)

    Gómez, A.; Di Matteo, P.; Stefanovitch, N.; Haywood, M.; Combes, F.; Katz, D.; Babusiaux, C.

    2016-05-01

    By using an N-body simulation of a bulge that was formed via a bar instability mechanism, we analyse the imprints of the initial (I.e. before bar formation) location of stars on the bulge kinematics, in particular on the heliocentric radial velocity distribution of bulge stars. Four different latitudes were considered: b = -4°, -6°, -8°, and -10°, along the bulge minor axis as well as outside it, at l = ± 5° and l = ± 10°. The bulge X-shaped structure comprises stars that formed in the disk at different locations. Stars formed in the outer disk, beyond the end of the bar, which are part of the boxy peanut-bulge structure may show peaks in the velocity distributions at positive and negative heliocentric radial velocities with high absolute values that can be larger than 100 km s-1, depending on the observed direction. In some cases the structure of the velocity field is more complex and several peaks are observed. Stars formed in the inner disk, the most numerous, contribute predominantly to the X-shaped structure and present different kinematic characteristics. They display a rather symmetric velocity distribution and a smaller fraction of high-velocity stars. The stellar stream motion, which is induced by the bar changes with the star initial position, can reach more than 40 km s-1 for stars that originated in the external disk, depending on the observed direction. Otherwise it is smaller than approximately 20 km s-1. In all cases, it decreases from b = -4° to -10°. Our results may enable us to interpret the cold high-velocity peak observed in the APOGEE commissioning data, as well as the excess of high-velocity stars in the near and far arms of the X-shaped structure at l = 0° and b = -6°. When compared with real data, the kinematic picture becomes more complex due to the possible presence in the observed samples of classical bulge and/or thick disk stars. Overall, our results point to the existence of complex patterns and structures in the bulge

  17. A case against an X-shaped structure in the Milky Way young bulge

    NASA Astrophysics Data System (ADS)

    López-Corredoira, Martín

    2016-09-01

    Context. A number of recent papers have claimed the discovery of an X-shape structure in the bulge of our Galaxy in the population of the red clumps. Aims: We endeavor to analyze the stellar density of bulge stars in the same regions using a different stellar population that is characteristic of the young bulge (≲ 5 Gyr). Particularly, we use F0-F5 main-sequence stars with distances derived through photometric parallax. Methods: We extract these stars from extinction-corrected color-magnitude diagrams in the near-infrared of VISTA-VVV data in some bulge regions and calculate the densities along the line of sight. We take the uncertaintity in the photometric parallax and the contamination of other sources into account, and we see that these errors do not avoid the detection of a possible double peak along some lines of sight as expected for a X-shape bulge if it existed. Results: Only a single peak in the density distribution along the line of sight is observed, so apparently there is no X-shape structure for this population of stars. Nonetheless, the effects of the dispersion of absolute magnitudes in the selected population might be an alternative explanation, although in principle these effects are insufficient to explain this lack of double peak according to our calculations. Conclusions: The results of the present paper do not demonstrate that previous claims of X-shaped bulge using only red clump stars are incorrect, but there are apparently some puzzling questions if we want to maintain the validity of both the red-clump results and the results of this paper.

  18. A catalog of polychromatic bulge-disc decompositions of ˜17.600 galaxies in CANDELS

    NASA Astrophysics Data System (ADS)

    Dimauro, Paola; Huertas-Company, Marc; Daddi, Emanuele; Pérez-González, Pablo G.; Bernardi, Mariangela; Barro, Guillermo; Buitrago, Fernando; Caro, Fernando; Cattaneo, Andrea; Dominguez-Sánchez, Helena; Faber, Sandra M.; Häußler, Boris; Kocevski, Dale D.; Koekemoer, Anton M.; Koo, David C.; Lee, Christoph T.; Mei, Simona; Margalef-Bentabol, Berta; Primack, Joel; Rodriguez-Puebla, Aldo; Salvato, Mara; Shankar, Francesco; Tuccillo, Diego

    2018-05-01

    Understanding how bulges grow in galaxies is critical step towards unveiling the link between galaxy morphology and star-formation. To do so, it is necessary to decompose large sample of galaxies at different epochs into their main components (bulges and discs). This is particularly challenging, especially at high redshifts, where galaxies are poorly resolved. This work presents a catalog of bulge-disc decompositions of the surface brightness profiles of ˜17.600 H-band selected galaxies in the CANDELS fields (F160W < 23, 0 < z < 2) in 4 to 7 filters covering a spectral range of 430 - 1600nm. This is the largest available catalog of this kind up to z = 2. By using a novel approach based on deep-learning to select the best model to fit, we manage to control systematics arising from wrong model selection and obtain less contaminated samples than previous works. We show that the derived structural properties are within ˜10 - 20% of random uncertainties. We then fit stellar population models to the decomposed SEDs (Spectral Energy Distribution) of bulges and discs and derive stellar masses (and stellar mass bulge-to-total ratios) as well as rest-frame colors (U,V,J) for bulges and discs separately. All data products are publicly released with this paper and through the web page https://lerma.obspm.fr/huertas/form_CANDELS and will be used for scientific analysis in forthcoming works.

  19. CARBON ABUNDANCES FOR RED GIANTS IN THE DRACO DWARF SPHEROIDAL GALAXY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shetrone, Matthew D.; Stanford, Laura M.; Smith, Graeme H.

    2013-05-15

    Measurements of [C/Fe], [Ca/H], and [Fe/H] have been derived from Keck I LRISb spectra of 35 giants in the Draco dwarf spheroidal galaxy. The iron abundances are derived by a spectrum synthesis modeling of the wavelength region from 4850 to 5375 A, while calcium and carbon abundances are obtained by fitting the Ca II H and K lines and the CH G band, respectively. A range in metallicity of -2.9 {<=} [Fe/H] {<=} -1.6 is found within the giants sampled, with a good correlation between [Fe/H] and [Ca/H]. The great majority of stars in the sample would be classified asmore » having weak absorption in the {lambda}3883 CN band, with only a small scatter in band strengths at a given luminosity on the red giant branch. In this sense the behavior of CN among the Draco giants is consistent with the predominantly weak CN bands found among red giants in globular clusters of metallicity [Fe/H] < -1.8. Over half of the giants in the Draco sample have [Fe/H] > -2.25, and among these there is a trend for the [C/Fe] abundance to decrease with increasing luminosity on the red giant branch. This is a phenomenon that is also seen among both field and globular cluster giants of the Galactic halo, where it has been interpreted as a consequence of deep mixing of material between the base of the convective envelope and the outer limits of the hydrogen-burning shell. However, among the six Draco giants observed that turn out to have metallicities -2.65 < [Fe/H] < -2.25 there is no such trend seen in the carbon abundance. This may be due to small sample statistics or primordial inhomogeneities in carbon abundance among the most metal-poor Draco stars. We identify a potential carbon-rich extremely metal-poor star in our sample. This candidate will require follow-up observations for confirmation.« less

  20. Bulge RR Lyrae stars in the VVV tile b201

    NASA Astrophysics Data System (ADS)

    Gran, F.; Minniti, D.; Saito, R. K.; Navarrete, C.; Dékány, I.; McDonald, I.; Contreras Ramos, R.; Catelan, M.

    2015-03-01

    Context. The VISTA Variables in the Vía Láctea (VVV) Survey is one of the six ESO public surveys currently ongoing at the VISTA telescope on Cerro Paranal, Chile. VVV uses near-IR (ZYJHKs) filters that at present provide photometry to a depth of Ks ~ 17.0 mag in up to 36 epochs spanning over four years, and aim at discovering more than 106 variable sources as well as trace the structure of the Galactic bulge and part of the southern disk. Aims: A variability search was performed to find RR Lyrae variable stars. The low stellar density of the VVV tile b201, which is centered at (ℓ,b) ~ (-9°, -9°), makes it suitable to search for variable stars. Previous studies have identified some RR Lyrae stars using optical bands that served to test our search procedure. The main goal is to measure the reddening, interstellar extinction, and distances of the RR Lyrae stars and to study their distribution on the Milky Way bulge. Methods: For each star in the tile with more than 25 epochs (~90% of the objects down to Ks ~ 17.0 mag), the standard deviation and χ2 test were calculated to identify variable candidates. Periods were determined using the analysis of variance. Objects with periods in the RR Lyrae range of 0.2 ≤ P ≤ 1.2 days were selected as candidate RR Lyrae. They were individually examined to exclude false positives. Results: A total of 1.5 sq deg were analyzed, and we found 39 RR Lyr stars, 27 of which belong to the ab-type and 12 to the c-type. Our analysis recovers all the previously identified RR Lyrae variables in the field and discovers 29 new RR Lyr stars. The reddening and extinction toward all the RRab stars in this tile were derived, and distance estimations were obtained through the period-luminosity relation. Despite the limited amount of RR Lyrae stars studied, our results are consistent with a spheroidal or central distribution around ~8.1 and ~8.5 kpc. for either the Cardelli or Nishiyama extinction law. Our analysis does not reveal a stream

  1. Supermassive dark-matter Q-balls in galactic centers?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Troitsky, Sergey; Moscow Institute for Physics and Technology,Institutskii per. 9, 141700, Dolgoprudny, Moscow Region

    2016-11-11

    Though widely accepted, it is not proven that supermassive compact objects (SMCOs) residing in galactic centers are black holes. In particular, the Milky Way’s SMCO can be a giant nontopological soliton, Q-ball, made of a scalar field: this fits perfectly all observational data. Similar but tiny Q-balls produced in the early Universe may constitute, partly or fully, the dark matter. This picture explains in a natural way, why our SMCO has very low accretion rate and why the observed angular size of the corresponding radio source is much smaller than expected. Interactions between dark-matter Q-balls may explain how SMCOs weremore » seeded in galaxies and resolve well-known problems of standard (non-interacting) dark matter.« less

  2. Particle Dark Matter constraints: the effect of Galactic uncertainties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Benito, Maria; Bernal, Nicolás; Iocco, Fabio

    2017-02-01

    Collider, space, and Earth based experiments are now able to probe several extensions of the Standard Model of particle physics which provide viable dark matter candidates. Direct and indirect dark matter searches rely on inputs of astrophysical nature, such as the local dark matter density or the shape of the dark matter density profile in the target in object. The determination of these quantities is highly affected by astrophysical uncertainties. The latter, especially those for our own Galaxy, are ill-known, and often not fully accounted for when analyzing the phenomenology of particle physics models. In this paper we present amore » systematic, quantitative estimate of how astrophysical uncertainties on Galactic quantities (such as the local galactocentric distance, circular velocity, or the morphology of the stellar disk and bulge) propagate to the determination of the phenomenology of particle physics models, thus eventually affecting the determination of new physics parameters. We present results in the context of two specific extensions of the Standard Model (the Singlet Scalar and the Inert Doublet) that we adopt as case studies for their simplicity in illustrating the magnitude and impact of such uncertainties on the parameter space of the particle physics model itself. Our findings point toward very relevant effects of current Galactic uncertainties on the determination of particle physics parameters, and urge a systematic estimate of such uncertainties in more complex scenarios, in order to achieve constraints on the determination of new physics that realistically include all known uncertainties.« less

  3. PROBING THE DEEP END OF THE MILKY WAY WITH KEPLER : ASTEROSEISMIC ANALYSIS OF 854 FAINT RED GIANTS MISCLASSIFIED AS COOL DWARFS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mathur, S.; García, R. A.; Beck, P. G.

    Asteroseismology has proven to be an excellent tool to determine not only global stellar properties with good precision, but also to infer the stellar structure, dynamics, and evolution for a large sample of Kepler stars. Prior to the launch of the mission, the properties of Kepler targets were inferred from broadband photometry, leading to the Kepler Input Catalog (KIC). The KIC was later revised in the Kepler Star Properties Catalog, based on literature values and an asteroseismic analysis of stars that were unclassified in the KIC. Here, we present an asteroseismic analysis of 45,400 stars that were classified as dwarfsmore » in the Kepler Star Properties Catalog. We found that around 2% of the sample shows acoustic modes in the typical frequency range that put them in the red-giant category rather than the cool dwarf category. We analyze the asteroseismic properties of these stars, derive their surface gravities, masses, and radii, and present updated effective temperatures and distances. We show that the sample is significantly fainter than the previously known oscillating giants in the Kepler field, with the faintest stars reaching down to a Kepler magnitude of Kp ∼ 16. We demonstrate that 404 stars are at distances beyond 5 kpc and that the stars are significantly less massive than for the original Kepler red-giant sample, consistent with a population of distant halo giants. A comparison with a galactic population model shows that up to 40 stars might be genuine halo giants, which would increase the number of known asteroseismic halo stars by a factor of 4. The detections presented here will provide a valuable sample for galactic archeology studies.« less

  4. Improved Model for Predicting the Free Energy Contribution of Dinucleotide Bulges to RNA Duplex Stability.

    PubMed

    Tomcho, Jeremy C; Tillman, Magdalena R; Znosko, Brent M

    2015-09-01

    Predicting the secondary structure of RNA is an intermediate in predicting RNA three-dimensional structure. Commonly, determining RNA secondary structure from sequence uses free energy minimization and nearest neighbor parameters. Current algorithms utilize a sequence-independent model to predict free energy contributions of dinucleotide bulges. To determine if a sequence-dependent model would be more accurate, short RNA duplexes containing dinucleotide bulges with different sequences and nearest neighbor combinations were optically melted to derive thermodynamic parameters. These data suggested energy contributions of dinucleotide bulges were sequence-dependent, and a sequence-dependent model was derived. This model assigns free energy penalties based on the identity of nucleotides in the bulge (3.06 kcal/mol for two purines, 2.93 kcal/mol for two pyrimidines, 2.71 kcal/mol for 5'-purine-pyrimidine-3', and 2.41 kcal/mol for 5'-pyrimidine-purine-3'). The predictive model also includes a 0.45 kcal/mol penalty for an A-U pair adjacent to the bulge and a -0.28 kcal/mol bonus for a G-U pair adjacent to the bulge. The new sequence-dependent model results in predicted values within, on average, 0.17 kcal/mol of experimental values, a significant improvement over the sequence-independent model. This model and new experimental values can be incorporated into algorithms that predict RNA stability and secondary structure from sequence.

  5. Role of the CCA bulge of prohead RNA of bacteriophage ø29 in DNA packaging.

    PubMed

    Zhao, Wei; Morais, Marc C; Anderson, Dwight L; Jardine, Paul J; Grimes, Shelley

    2008-11-14

    The oligomeric ring of prohead RNA (pRNA) is an essential component of the ATP-driven DNA packaging motor of bacteriophage ø29. The A-helix of pRNA binds the DNA translocating ATPase gp16 (gene product 16) and the CCA bulge in this helix is essential for DNA packaging in vitro. Mutation of the bulge by base substitution or deletion showed that the size of the bulge, rather than its sequence, is primary in DNA packaging activity. Proheads reconstituted with CCA bulge mutant pRNAs bound the packaging ATPase gp16 and the packaging substrate DNA-gp3, although DNA translocation was not detected with several mutants. Prohead/bulge-mutant pRNA complexes with low packaging activity had a higher rate of ATP hydrolysis per base pair of DNA packaged than proheads with wild-type pRNA. Cryoelectron microscopy three-dimensional reconstruction of proheads reconstituted with a CCA deletion pRNA showed that the protruding pRNA spokes of the motor occupy a different position relative to the head when compared to particles with wild-type pRNA. Therefore, the CCA bulge seems to dictate the orientation of the pRNA spokes. The conformational changes observed for this mutant pRNA may affect gp16 conformation and/or subsequent ATPase-DNA interaction and, consequently, explain the decreased packaging activity observed for CCA mutants.

  6. The UK Infrared Telescope M33 monitoring project - IV. Variable red giant stars across the galactic disc

    NASA Astrophysics Data System (ADS)

    Javadi, Atefeh; Saberi, Maryam; van Loon, Jacco Th.; Khosroshahi, Habib; Golabatooni, Najmeh; Mirtorabi, Mohammad Taghi

    2015-03-01

    We have conducted a near-infrared monitoring campaign at the UK InfraRed Telescope, of the Local Group spiral galaxy M33 (Triangulum). The main aim was to identify stars in the very final stage of their evolution, and for which the luminosity is more directly related to the birth mass than the more numerous less-evolved giant stars that continue to increase in luminosity. In this fourth paper of the series, we present a search for variable red giant stars in an almost square degree region comprising most of the galaxy's disc, carried out with the WFCAM (Wide Field CAMera) instrument in the K band. These data, taken during the period 2005-2007, were complemented by J- and H-band images. Photometry was obtained for 403 734 stars in this region; of these, 4643 stars were found to be variable, most of which are asymptotic giant branch (AGB) stars. The variable stars are concentrated towards the centre of M33, more so than low-mass, less-evolved red giants. Our data were matched to optical catalogues of variable stars and carbon stars and to mid-infrared photometry from the Spitzer Space Telescope. Most dusty AGB stars had not been previously identified in optical variability surveys, and our survey is also more complete for these types of stars than the Spitzer survey. The photometric catalogue is made publicly available at the Centre de Données astronomiques de Strasbourg.

  7. ORIGIN OF THE GALACTIC DIFFUSE X-RAY EMISSION: IRON K-SHELL LINE DIAGNOSTICS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nobukawa, Masayoshi; Uchiyama, Hideki; Nobukawa, Kumiko K.

    This paper reports detailed K-shell line profiles of iron (Fe) and nickel (Ni) of the Galactic Center X-ray Emission (GCXE), Galactic Bulge X-ray Emission (GBXE), Galactic Ridge X-ray Emission (GRXE), magnetic Cataclysmic Variables (mCVs), non-magnetic Cataclysmic Variables (non-mCVs), and coronally Active Binaries (ABs). For the study of the origin of the GCXE, GBXE, and GRXE, the spectral analysis is focused on equivalent widths of the Fe i-K α , Fe xxv-He α , and Fe xxvi-Ly α  lines. The global spectrum of the GBXE is reproduced by a combination of the mCVs, non-mCVs, and ABs spectra. On the other hand,more » the GRXE spectrum shows significant data excesses at the Fe i-K α and Fe xxv-He α  line energies. This means that additional components other than mCVs, non-mCVs, and ABs are required, which have symbiotic phenomena of cold gas and very high-temperature plasma. The GCXE spectrum shows larger excesses than those found in the GRXE spectrum at all the K-shell lines of iron and nickel. Among them the largest ones are the Fe i-K α , Fe xxv-He α , Fe xxvi-Ly α , and Fe xxvi-Ly β  lines. Together with the fact that the scale heights of the Fe i-K α , Fe xxv-He α , and Fe xxvi-Ly α lines are similar to that of the central molecular zone (CMZ), the excess components would be related to high-energy activity in the extreme envelopment of the CMZ.« less

  8. Chemical abundance analysis of 13 southern symbiotic giants from high-resolution spectra at ˜1.56 μm

    NASA Astrophysics Data System (ADS)

    Gałan, Cezary; Mikołajewska, Joanna; Hinkle, Kenneth H.; Joyce, Richard R.

    2017-04-01

    Symbiotic stars (SySt) are binaries composed of a star in the later stages of evolution and a stellar remnant. The enhanced mass-loss from the giant drives interacting mass exchange and makes these systems laboratories for understanding binary evolution. Studies of the chemical compositions are particularly useful since this parameter has strong impact on the evolutionary path. The previous paper in this series presented photospheric abundances for 24 giants in S-type SySt enabling a first statistical analysis. Here, we present results for an additional sample of 13 giants. The aims are to improve statistics of chemical composition involved in the evolution of SySt, to study evolutionary status, mass transfer and to interpret this in terms of Galactic populations. High-resolution, near-IR spectra are used, employing the spectrum synthesis method in a classical approach, to obtain abundances of CNO and elements around the iron peak (Fe, Ti, Ni). Low-resolution spectra in the region around the Ca II triplet were used for spectral classification. The metallicities obtained cover a wide range with a maximum around ˜- 0.2 dex. The enrichment in the 14N isotope indicates that these giants have experienced the first dredge-up. Relative O and Fe abundances indicate that most SySt belong to the Galactic disc; however, in a few cases, the extended thick-disc/halo is suggested. Difficult to explain, relatively high Ti abundances can indicate that adopted microturbulent velocities were too small by ˜0.2-0.3 km s-1. The revised spectral types for V2905 Sgr, and WRAY 17-89 are M3 and M6.5, respectively.

  9. Strömgren survey for asteroseismology and galactic archaeology: Let the saga begin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Casagrande, L.; Dotter, A.; Milone, A. P.

    2014-06-01

    Asteroseismology has the capability of precisely determining stellar properties that would otherwise be inaccessible, such as radii, masses, and thus ages of stars. When coupling this information with classical determinations of stellar parameters, such as metallicities, effective temperatures, and angular diameters, powerful new diagnostics for Galactic studies can be obtained. The ongoing Strömgren survey for Asteroseismology and Galactic Archaeology has the goal of transforming the Kepler field into a new benchmark for Galactic studies, similar to the solar neighborhood. Here we present the first results from a stripe centered at a Galactic longitude of 74° and covering latitude from aboutmore » 8° to 20°, which includes almost 1000 K giants with seismic information and the benchmark open cluster NGC 6819. We describe the coupling of classical and seismic parameters, the accuracy as well as the caveats of the derived effective temperatures, metallicities, distances, surface gravities, masses, and radii. Confidence in the achieved precision is corroborated by the detection of the first and secondary clumps in a population of field stars with a ratio of 2 to 1 and by the negligible scatter in the seismic distances among NGC 6819 member stars. An assessment of the reliability of stellar parameters in the Kepler Input Catalog is also performed, and the impact of our results for population studies in the Milky Way is discussed, along with the importance of an all-sky Strömgren survey.« less

  10. Near-infrared reddening of extra-galactic giant molecular clouds in a face-on geometry

    NASA Astrophysics Data System (ADS)

    Kainulainen, J.; Juvela, M.; Alves, J.

    2008-04-01

    Aims: We describe the near-infrared reddening signature of giant molecular clouds (GMCs) in external galaxies. In particular, we examine the EJ-H and EH-K color excesses and the effective extinction law observed in discrete GMC regions. We also study the effect of the relative scale height of the GMC distribution to the color excesses, and to the observed mass function of GMCs when the masses are derived using color excess as a linear estimator of mass. Methods: We performed Monte Carlo radiative transfer simulations with 3D models of stellar radiation and clumpy dust distributions, resembling a face-on geometry. The scattered light is included in the models, and near-infrared color maps were calculated from the simulated data. We performed the simulations with different scale heights of GMCs and compared the color excesses and attenuation of light in different geometries. We extracted GMCs from the simulated color maps and compared the mass functions to the input mass functions. Results: The effective near-infrared reddening law, i.e. the ratio EJ-H/EH-K, has a value close to unity in GMC regions. The ratio depends significantly on the relative scale height of GMCs, ξ, and for ξ values 0.1...0.75, we find the typical ratios of 0.6...1.1. The effective extinction law turns out to be very flat in GMC regions. We find the ratios of apparent extinctions of AH^a/AKa = 1.35...1.55 and AJ^a/AHa = 1.15. The effect of the scattered flux on the effective reddening law, as well as on the effective extinction law, is significant. Regarding the GMC mass function, we find no correlation between the input and observed slopes of the mass functions. Instead, the observed slope reflects the parameter ξ and the dynamical range of the mass function. As the observed slope depends on the geometric parameters, which are not known, it is not possible to constrain the slope of the mass function using this technique. We estimate that only a fraction of 10...20% of the total mass of GMCs

  11. Supermassive black holes and their host galaxies. I. Bulge luminosities from dedicated near-infrared data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Läsker, Ronald; Van de Ven, Glenn; Ferrarese, Laura, E-mail: laesker@mpia.de

    2014-01-01

    In an effort to secure, refine, and supplement the relation between central supermassive black hole masses, M {sub •}, and the bulge luminosities of their host galaxies, L {sub bul}, we obtained deep, high spatial resolution K-band images of 35 nearby galaxies with securely measured M {sub •}, using the wide-field WIRCam imager at the Canada-France-Hawaii-Telescope. A dedicated data reduction and sky subtraction strategy was adopted to estimate the brightness and structure of the sky, a critical step when tracing the light distribution of extended objects in the near-infrared. From the final image product, bulge and total magnitudes were extractedmore » via two-dimensional profile fitting. As a first order approximation, all galaxies were modeled using a simple Sérsic-bulge+exponential-disk decomposition. However, we found that such models did not adequately describe the structure that we observed in a large fraction of our sample galaxies which often include cores, bars, nuclei, inner disks, spiral arms, rings, and envelopes. In such cases, we adopted profile modifications and/or more complex models with additional components. The derived bulge magnitudes are very sensitive to the details and number of components used in the models, although total magnitudes remain almost unaffected. Usually, but not always, the luminosities and sizes of the bulges are overestimated when a simple bulge+disk decomposition is adopted in lieu of a more complex model. Furthermore, we found that some spheroids are not well fit when the ellipticity of the Sérsic model is held fixed. This paper presents the details of the image processing and analysis, while we discuss how model-induced biases and systematics in bulge magnitudes impact the M {sub •}-L {sub bul} relation in a companion paper.« less

  12. Supermassive Black Holes and Their Host Galaxies. I. Bulge Luminosities from Dedicated Near-infrared Data

    NASA Astrophysics Data System (ADS)

    Läsker, Ronald; Ferrarese, Laura; van de Ven, Glenn

    2014-01-01

    In an effort to secure, refine, and supplement the relation between central supermassive black hole masses, M •, and the bulge luminosities of their host galaxies, L bul, we obtained deep, high spatial resolution K-band images of 35 nearby galaxies with securely measured M •, using the wide-field WIRCam imager at the Canada-France-Hawaii-Telescope. A dedicated data reduction and sky subtraction strategy was adopted to estimate the brightness and structure of the sky, a critical step when tracing the light distribution of extended objects in the near-infrared. From the final image product, bulge and total magnitudes were extracted via two-dimensional profile fitting. As a first order approximation, all galaxies were modeled using a simple Sérsic-bulge+exponential-disk decomposition. However, we found that such models did not adequately describe the structure that we observed in a large fraction of our sample galaxies which often include cores, bars, nuclei, inner disks, spiral arms, rings, and envelopes. In such cases, we adopted profile modifications and/or more complex models with additional components. The derived bulge magnitudes are very sensitive to the details and number of components used in the models, although total magnitudes remain almost unaffected. Usually, but not always, the luminosities and sizes of the bulges are overestimated when a simple bulge+disk decomposition is adopted in lieu of a more complex model. Furthermore, we found that some spheroids are not well fit when the ellipticity of the Sérsic model is held fixed. This paper presents the details of the image processing and analysis, while we discuss how model-induced biases and systematics in bulge magnitudes impact the M •-L bul relation in a companion paper.

  13. C II forbidden-line 158 micron mapping in Sagittarius A Rotation curve and mass distribution in the galactic center

    NASA Technical Reports Server (NTRS)

    Lugten, J. B.; Genzel, R.; Crawford, M. K.; Townes, C. H.

    1986-01-01

    Based on data obtained with the NASA Kuiper Airborne Observatory 91.4 cm telescope, the 158-micron fine structure line emission of C(+) is mapped near the galactic center. The strongest emission comes from a 10-pc FWHM diameter disk centered on Sgr A West whose dominant motion is rotation. Extended C(+) emission is also found from the +50 km/s galactic center molecular cloud, and a second cloud at v(LSR) of about -35 km/s. The rotation curve and mass distribution within 10 pc of the galactic center are derived, and the C(+) profiles show a drop-off of rotation velocity between 2 and 10 pc. A mass model is suggested with 2-4 million solar masses in a central point mass, and a M/L ratio of the central stellar cluster of 0.5 solar masses/solar luminosities, suggesting a large abundance of giants and relatively recent star formation in the center.

  14. Bulge-Formed Cooling Channels In A Wall

    NASA Technical Reports Server (NTRS)

    Mcaninch, Michael D.; Holbrook, Richard L.; Lacount, Dale F.; Kawashige, Chester M.; Crapuchettes, John M.; Scala, James

    1996-01-01

    Vessels bounded by walls shaped as surfaces of revolution and contain integral cooling channels fabricated by improved method involving combination of welding and bulge forming. Devised to make rocket nozzles; also useful in fabrication of heat exchangers, stationary combustion chambers, and chemical-reactor vessels. Advantages include easier fabrication and greater flexibility of design.

  15. VVV Survey Microlensing Events in the Galactic Center Region

    NASA Astrophysics Data System (ADS)

    Navarro, María Gabriela; Minniti, Dante; Contreras Ramos, Rodrigo

    2017-12-01

    We search for microlensing events in the highly reddened areas surrounding the Galactic center using the near-IR observations with the VISTA Variables in the Vía Láctea Survey (VVV). We report the discovery of 182 new microlensing events, based on observations acquired between 2010 and 2015. We present the color-magnitude diagrams of the microlensing sources for the VVV tiles b332, b333, and b334, which were independently analyzed, and show good qualitative agreement among themselves. We detect an excess of microlensing events in the central tile b333 in comparison with the other two tiles, suggesting that the microlensing optical depth keeps rising all the way to the Galactic center. We derive the Einstein radius crossing time for all of the observed events. The observed event timescales range from t E = 5 to 200 days. The resulting timescale distribution shows a mean timescale of < {t}{{E}}> =30.91 days for the complete sample (N = 182 events), and < {t}{{E}}> =29.93 days if restricted only for the red clump (RC) giant sources (N = 96 RC events). There are 20 long timescale events ({t}{{E}}≥slant 100 days) that suggest the presence of massive lenses (black holes) or disk-disk event. This work demonstrates that the VVV Survey is a powerful tool to detect intermediate/long timescale microlensing events in highly reddened areas, and it enables a number of future applications, from analyzing individual events to computing the statistics for the inner Galactic mass and kinematic distributions, in aid of future ground- and space-based experiments.

  16. A novel 3D deformation measurement method under optical microscope for micro-scale bulge-test

    NASA Astrophysics Data System (ADS)

    Wu, Dan; Xie, Huimin

    2017-11-01

    A micro-scale 3D deformation measurement method combined with optical microscope is proposed in this paper. The method is based on gratings and phase shifting algorithm. By recording the grating images before and after deformation from two symmetrical angles and calculating the phases of the grating patterns, the 3D deformation field of the specimen can be extracted from the phases of the grating patterns. The proposed method was applied to the micro-scale bulge test. A micro-scale thermal/mechanical coupling bulge-test apparatus matched with the super-depth microscope was exploited. With the gratings fabricated onto the film, the deformed morphology of the bulged film was measured reliably. The experimental results show that the proposed method and the exploited bulge-test apparatus can be used to characterize the thermal/mechanical properties of the films at micro-scale successfully.

  17. Magnetic activity in the Galactic Centre region - fast downflows along rising magnetic loops

    NASA Astrophysics Data System (ADS)

    Kakiuchi, Kensuke; Suzuki, Takeru K.; Fukui, Yasuo; Torii, Kazufumi; Enokiya, Rei; Machida, Mami; Matsumoto, Ryoji

    2018-06-01

    We studied roles of the magnetic field on the gas dynamics in the Galactic bulge by a three-dimensional global magnetohydrodynamical simulation data, particularly focusing on vertical flows that are ubiquitously excited by magnetic activity. In local regions where the magnetic field is stronger, it is frequently seen that fast downflows slide along inclined magnetic field lines that are associated with buoyantly rising magnetic loops. The vertical velocity of these downflows reaches ˜100 km s-1 near the footpoint of the loops by the gravitational acceleration towards the Galactic plane. The two footpoints of rising magnetic loops are generally located at different radial locations and the field lines are deformed by the differential rotation. The angular momentum is transported along the field lines, and the radial force balance breaks down. As a result, a fast downflow is often observed only at the one footpoint located at the inner radial position. The fast downflow compresses the gas to form a dense region near the footpoint, which will be important in star formation afterwards. Furthermore, the horizontal components of the velocity are also fast near the footpoint because the downflow is accelerated along the magnetic sliding slope. As a result, the high-velocity flow creates various characteristic features in a simulated position-velocity diagram, depending on the viewing angle.

  18. Post-Newtonian Dynamical Modeling of Supermassive Black Holes in Galactic-scale Simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rantala, Antti; Pihajoki, Pauli; Johansson, Peter H.

    We present KETJU, a new extension of the widely used smoothed particle hydrodynamics simulation code GADGET-3. The key feature of the code is the inclusion of algorithmically regularized regions around every supermassive black hole (SMBH). This allows for simultaneously following global galactic-scale dynamical and astrophysical processes, while solving the dynamics of SMBHs, SMBH binaries, and surrounding stellar systems at subparsec scales. The KETJU code includes post-Newtonian terms in the equations of motions of the SMBHs, which enables a new SMBH merger criterion based on the gravitational wave coalescence timescale, pushing the merger separation of SMBHs down to ∼0.005 pc. Wemore » test the performance of our code by comparison to NBODY7 and rVINE. We set up dynamically stable multicomponent merger progenitor galaxies to study the SMBH binary evolution during galaxy mergers. In our simulation sample the SMBH binaries do not suffer from the final-parsec problem, which we attribute to the nonspherical shape of the merger remnants. For bulge-only models, the hardening rate decreases with increasing resolution, whereas for models that in addition include massive dark matter halos, the SMBH binary hardening rate becomes practically independent of the mass resolution of the stellar bulge. The SMBHs coalesce on average 200 Myr after the formation of the SMBH binary. However, small differences in the initial SMBH binary eccentricities can result in large differences in the SMBH coalescence times. Finally, we discuss the future prospects of KETJU, which allows for a straightforward inclusion of gas physics in the simulations.« less

  19. Galactic Distribution of Planets from Spitzer Microlens Parallaxes

    NASA Astrophysics Data System (ADS)

    Gould, Andrew; Carey, Sean; Yee, Jennifer

    2014-12-01

    We will measure the 'microlens parallaxes' of about 120 microlensing events that peak during Spitzer's 'bulge window' (2015 Jun 09 - Jul 19), by comparing simultaneous Spitzer and ground-based microlensing lightcurves, making use of Spitzer's location about 1 AU from Earth. These measurements will enable mass and distance measurements of about 4 microlensing planets. The ensemble of planet and non-planet distance measurements will yield the first probe of the Galactic distribution of planets Microlens planet mass measurements are very rare and have proved extremely interesting in every case. Microlensing identifies planets at and beyond the snowline, probing unique parameter space and providing vital information to constrain planet formation and migration theories. But the sample of ground-based microlens-parallax measurements is highly biased toward special systems. Spitzer would provide the first unbiased study. The same survey would provide a unique probe of brown dwarf binaries, and yield the first mass-based (not light-based) measurement of the stellar mass function (i.e., including dark objects such as black holes). A very successful 2014 'Pilot Program' demonstrates that this project is technically and scientifically viable. (As in the previous 'Pilot Program', we request zero day proprietary period.)

  20. Black hole binaries in galactic nuclei and gravitational wave sources

    NASA Astrophysics Data System (ADS)

    Hong, Jongsuk; Lee, Hyung Mok

    2015-03-01

    Stellar black hole (BH) binaries are one of the most promising gravitational wave (GW) sources for GW detection by the ground-based detectors. Nuclear star clusters (NCs) located at the centre of galaxies are known to harbour massive black holes (MBHs) and to be bounded by a gravitational potential by other galactic components such as the galactic bulge. Such an environment of NCs provides a favourable conditions for the BH-BH binary formation by the gravitational radiation capture due to the high BH number density and velocity dispersion. We carried out detailed numerical study of the formation of BH binaries in the NCs using a series of N-body simulations for equal-mass cases. There is no mass segregation introduced. We have derived scaling relations of the binary formation rate with the velocity dispersion of the stellar system beyond the radius of influence and made estimates of the rate of formation of BH binaries per unit comoving volume and thus expected detection rate by integrating the binary formation rate over galaxy population within the detection distance of the advanced detectors. We find that the overall formation rates for BH-BH binaries per NC is ˜10-10 yr-1 for the Milky Way-like galaxies and weakly dependent on the mass of MBH as Γ ∝ M_MBH^{3/28}. We estimate the detection rate of 0.02-14 yr-1 for advanced LIGO/Virgo considering several factors such as the dynamical evolution of NCs, the variance of the number density of stars and the mass range of MBH giving uncertainties.

  1. Spiral Galaxy Central Bulge Tangential Speed of Revolution Curves

    NASA Astrophysics Data System (ADS)

    Taff, Laurence

    2013-03-01

    The objective was to, for the first time in a century, scientifically analyze the ``rotation curves'' (sic) of the central bulges of scores of spiral galaxies. I commenced with a methodological, rational, geometrical, arithmetic, and statistical examination--none of them carried through before--of the radial velocity data. The requirement for such a thorough treatment is the paucity of data typically available for the central bulge: fewer than 10 observations and frequently only five. The most must be made of these. A consequence of this logical handling is the discovery of a unique model for the central bulge volume mass density resting on the positive slope, linear, rise of its tangential speed of revolution curve and hence--for the first time--a reliable mass estimate. The deduction comes from a known physics-based, mathematically valid, derivation (not assertion). It rests on the full (not partial) equations of motion plus Poisson's equation. Following that is a prediction for the gravitational potential energy and thence the gravitational force. From this comes a forecast for the tangential speed of revolution curve. It was analyzed in a fashion identical to that of the data thereby closing the circle and demonstrating internal self-consistency. This is a hallmark of a scientific method-informed approach to an experimental problem. Multiple plots of the relevant quantities and measures of goodness of fit will be shown. Astronomy related

  2. CHROMOSPHERIC MODELS AND THE OXYGEN ABUNDANCE IN GIANT STARS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dupree, A. K.; Avrett, E. H.; Kurucz, R. L., E-mail: dupree@cfa.harvard.edu

    Realistic stellar atmospheric models of two typical metal-poor giant stars in Omega Centauri, which include a chromosphere (CHR), influence the formation of optical lines of O i: the forbidden lines (λ6300, λ6363) and the infrared triplet (λλ7771−7775). One-dimensional semi-empirical non-local thermodynamic equilibrium (LTE) models are constructed based on observed Balmer lines. A full non-LTE formulation is applied for evaluating the line strengths of O i, including photoionization by the Lyman continuum and photoexcitation by Lyα and Lyβ. Chromospheric models (CHR) yield forbidden oxygen transitions that are stronger than those in radiative/convective equilibrium (RCE) models. The triplet oxygen lines from highmore » levels also appear stronger than those produced in an RCE model. The inferred oxygen abundance from realistic CHR models for these two stars is decreased by factors of ∼3 as compared to values derived from RCE models. A lower oxygen abundance suggests that intermediate-mass AGB stars contribute to the observed abundance pattern in globular clusters. A change in the oxygen abundance of metal-poor field giants could affect models of deep mixing episodes on the red giant branch. Changes in the oxygen abundance can impact other abundance determinations that are critical to astrophysics, including chemical tagging techniques and galactic chemical evolution.« less

  3. What the Milky Way bulge reveals about the initial metallicity gradients in the disc

    NASA Astrophysics Data System (ADS)

    Fragkoudi, F.; Di Matteo, P.; Haywood, M.; Khoperskov, S.; Gomez, A.; Schultheis, M.; Combes, F.; Semelin, B.

    2017-11-01

    We use APOGEE DR13 data to examine the metallicity trends in the Milky Way (MW) bulge and we explore their origin by comparing two N-body models of isolated galaxies that develop a bar and a boxy/peanut (b/p) bulge. Both models have been proposed as scenarios for reconciling a disc origin of the MW bulge with a negative vertical metallicity gradient. The first model is a superposition of co-spatial, I.e. overlapping, disc populations with different scale heights, kinematics, and metallicities. In this model the thick, metal-poor, and centrally concentrated disc populations contribute significantly to the stellar mass budget in the inner galaxy. The second model is a single disc with an initial steep radial metallicity gradient; this disc is mapped by the bar into the b/p bulge in such a way that the vertical metallicity gradient of the MW bulge is reproduced, as has been shown already in previous works in the literature. However, as we show here, the latter model does not reproduce the positive longitudinal metallicity gradient of the inner disc, nor the metal-poor innermost regions seen in the data. On the other hand, the model with co-spatial thin and thick disc populations reproduces all the aforementioned trends. We therefore see that it is possible to reconcile a (primarily) disc origin for the MW bulge with the observed trends in metallicity by mapping the inner thin and thick discs of the MW into a b/p. For this scenario to reproduce the observations, the α-enhanced, metal-poor, thick disc populations must have a significant mass contribution in the inner regions, as has been suggested for the Milky Way.

  4. Active Galactic Nuclei in Dwarf Galaxies

    NASA Astrophysics Data System (ADS)

    Hein, Megan; Secrest, N.; Satyapal, S.

    2014-01-01

    Supermassive black holes (SMBHs) one million to a few billion times the mass of our sun are thought to reside in the center of most, if not all, bulge-dominated galaxies. It has been observed that the mass of these SMBHs is strongly correlated with the mass of these bulges, leading to the popular view that these central black holes are formed by galaxy mergers, which induce the growth of the galaxy's bulge and provide matter with which to feed the black hole. Although these properties and their possible consequences have been studied extensively in high mass galaxies and galaxies with large bulges, there is very little research on the possible existence and subsequent properties of SMBHs in low mass galaxies or galaxies with small or no central bulges. This is a significant weakness in the research of these objects as the study of this population of galaxies would allow us to gain valuable insight into SMBH seeds, black holes thought to have formed in the early universe. Strong X-rays are a good indicator of an accreting black hole, because they require more energy to produce and SMBHs are highly energetic, as well as being easier to see due to their ability to penetrate matter more easily than other forms of radiation. In this poster, I will present the results from an X-ray investigation using data matched from the Chandra X-ray observatory to a sample of low mass galaxies (with a mass of log(M) < 9).

  5. SiO maser emission as a density tracer of circumstellar envelopes

    NASA Astrophysics Data System (ADS)

    Stroh, Michael; Pihlstrom, Ylva; Sjouwerman, Lorant

    2018-06-01

    The circumstellar envelopes (CSEs) of evolved stars offer a method to construct a sample of point-masses along the full Galactic plane, which can be used to test models of the gravitational potential. In the CSEs of red giants, SiO maser emission is frequently observed at 43 and 86 GHz, providing line-of-sight velocities. The Bulge Asymmetries and Dynamical Evolution (BAaDE) project aims to explore the complex structure of the inner Galaxy and Galactic Bulge, by observing 43 GHz SiO at the Very Large Array and 86 GHz SiO at the Atacama Large Millimeter/submillimeter Array, with an expected final sample of about 20,000 line-of-sight velocities and positions. We observed the 43 GHz and 86 GHz transitions near-simultaneously in a subsample of the sources using the Australia Telescope Compact Array and found that on average the 43 GHz v=1 line is 1.3 times stronger than the 86 GHz v=1 line. The presence of a detectable 43 GHz v=3 line alters the statistics, consistent with the SiO masers displaying 43 GHz v=3 emission arising in a denser regime in the circumstellar shell compared to those without. Comparing our results with radiative models implies that the 43 GHz v=3 line is a tracer of density variations caused by stellar pulsations. We will discuss these results in the context of the BAaDE project.

  6. Mechanics of membrane bulging during cell-wall disruption in Gram-negative bacteria

    NASA Astrophysics Data System (ADS)

    Daly, Kristopher E.; Huang, Kerwyn Casey; Wingreen, Ned S.; Mukhopadhyay, Ranjan

    2011-04-01

    The bacterial cell wall is a network of sugar strands crosslinked by peptides that serve as the primary structure for bearing osmotic stress. Despite its importance in cellular survival, the robustness of the cell wall to network defects has been relatively unexplored. Treatment of the Gram-negative bacterium Escherichia coli with the antibiotic vancomycin, which disrupts the crosslinking of new material during growth, leads to the development of pronounced bulges and eventually of cell lysis. Here, we model the mechanics of the bulging of the cytoplasmic membrane through pores in the cell wall. We find that the membrane undergoes a transition between a nearly flat state and a spherical bulge at a critical pore radius of ~20 nm. This critical pore size is large compared to the typical distance between neighboring peptides and glycan strands, and hence pore size acts as a constraint on network integrity. We also discuss the general implications of our model to membrane deformations in eukaryotic blebbing and vesiculation in red blood cells.

  7. Formation of the Lunar Fossil Bulges and its Implication for the Early Earth and Moon

    NASA Astrophysics Data System (ADS)

    Qin, C.; Zhong, S.; Phillips, R. J.

    2017-12-01

    First recognized by Laplace more than two centuries ago, the lunar gravitational and shape anomalies associated with rotational and tidal bulges are significantly larger than predicted from the hydrostatic theory. The harmonic degree-2 gravitational coefficients of the Moon, C20 and C22 (measuring the size of the rotational and tidal bulges), are 17 and 14 times of their hydrostatic counterparts, respectively, after removal of the effect from large impact basins. The bulges are commonly considered as remnant hydrostatic features, "frozen-in" when the Moon was closer to the Earth, experiencing larger tidal-rotational forces. The extant hypothesis is that as the Moon cooled and migrated outwards, a strong outer layer (lithosphere) thickened and reached a stress state that supported the bulges, which no longer tracked the hydrostatic ellipticity. However, this process is poorly understood and an appropriate dynamical model has not been engaged. Here we present the first dynamically self-consistent model of lunar bulge formation that couples a lunar interior thermal evolution model to the tidal-rotational forcing of the Moon. The forcing magnitude decreases with time as the Moon despins on the receding orbit, while the recession rate is controlled by the Earth's tidal dissipation factor Q. Assuming a viscoelastic rheology, the cooling of the Moon is described by a model with high viscosity lithosphere thickening with time. While conventional methods are not suitable for models with time-dependent viscoelastic structure, a semi-analytical method has been developed to address this problem. We show that the bulge formation is controlled by the relative timing of lithosphere thickening and lunar orbit recession. Based on our calculations, we conclude that the development of the fossil bulges may have taken as long as 400 million years after the formation of lunar lithosphere and was complete when the lunar orbit semi-major axis, a, was 32 Earth's radius, RE. We find a

  8. Galactic gamma-ray observations and galactic structure

    NASA Technical Reports Server (NTRS)

    Stecker, F. W.

    1975-01-01

    Recent observations of gamma-rays originating in the galactic disk together with radio observations, support an emerging picture of the overall structure of our galaxy with higher interstellar gas densities and star formation rates in a region which corresponds to that of the inner arms. The emerging picture is one where molecular clouds make up the dominant constituent of the interstellar gas in the inner galaxy and play a key role in accounting for the gamma-rays and phenomena associated with the production of young stars and other population 1 objects. In this picture, cosmic rays are associated with supernovae and are primarily of galactic origin. These newly observed phenomena can be understood as consequences of the density wave theories of spiral structure. Based on these new developments, the suggestion is made that a new galactic population class, Population O, be added to the standard Populations 1 and 2 in order to recognize important differences in dynamics and distribution between diffuse galactic H1 and interstellar molecular clouds.

  9. Stellar Photometric Structures of the Host Galaxies of Nearby Type 1 Active Galactic Nuclei

    NASA Astrophysics Data System (ADS)

    Kim, Minjin; Ho, Luis C.; Peng, Chien Y.; Barth, Aaron J.; Im, Myungshin

    2017-10-01

    We present detailed image analysis of rest-frame optical images of 235 low-redshift (z ≲ 0.35) Type 1 active galactic nuclei (AGNs) observed with the Hubble Space Telescope. The high-resolution images enable us to perform rigorous two-dimensional image modeling to decouple the luminous central point source from the host galaxy, which, when warranted, is further decomposed into its principal structural components (bulge, bar, and disk). In many cases, care must be taken to account for structural complexities such as spiral arms, tidal features, and overlapping or interacting companion galaxies. We employ Fourier modes to characterize the degree of asymmetry of the light distribution of the stars as a quantitative measure of morphological distortion due to interactions or mergers. We examine the dependence of the physical parameters of the host galaxies on the properties of the AGNs, namely, radio-loudness and the width of the broad emission lines. In accordance with previous studies, narrow-line (Hβ FWHM ≤ 2000 km s-1) Type 1 AGNs, in contrast to their broad-line (Hβ FWHM > 2000 km s-1) counterparts, are preferentially hosted in later-type, lower-luminosity galaxies, which have a higher incidence of pseudo-bulges, are more frequently barred, and are less morphologically disturbed. This suggests that narrow-line Type 1 AGNs experienced a more quiescent evolutionary history driven primarily by internal secular evolution instead of external dynamical perturbations. The fraction of AGN hosts showing merger signatures is larger for more luminous sources. Radio-loud AGNs generally preferentially live in earlier-type (bulge-dominated), more massive hosts, although a minority of them appear to contain a significant disk component. We do not find convincing evidence for enhanced merger signatures in the radio-loud population. Based on observations made with the NASA/ESA Hubble Space Telescope, obtained from the Data Archive at the Space Telescope Science Institute

  10. Effect of Explosion Bulge Test Parameters on the Measurement of Deformation Resistance for Steel

    DTIC Science & Technology

    2014-02-01

    UNCLASSIFIED UNCLASSIFIED Effect of Explosion Bulge Test Parameters on the Measurement of Deformation Resistance for Steel C...Measurement of Deformation Resistance for Steel Executive Summary The Explosion Bulge Test has been used for over 60 years as a standard test for...the assessment of steel toughness and deformation resistance under blast loading conditions [1-3]. However, details of the test conditions vary

  11. Was the Milky Way Bulge Formed from the Buckling Disk Instability, Hierarchical Collapse, Accretion of Clumps, or All of the Above?

    NASA Astrophysics Data System (ADS)

    Nataf, David M.

    2017-09-01

    The assembly of the Milky Way bulge is an old topic in astronomy, one now in a period of renewed and rapid development. That is due to tremendous advances in observations of bulge stars, motivating observations of both local and high-redshift galaxies, and increasingly sophisticated simulations. The dominant scenario for bulge formation is that of the Milky Way as a nearly pure disk galaxy, with the inner disk having formed a bar and buckled. This can potentially explain virtually all bulge stars with [Fe/H] ≳ -1.0, which comprise 95% of the stellar population. The evidence is the incredible success in N-body models of this type in making non-trivial, non-generic predictions, such as the rotation curve and velocity dispersion measured from radial velocities, and the spatial morphologies of the peanut/X-shape and the long bar. The classical bulge scenario, whereby the bulge formed from early dissipative collapse and mergers, remains viable for stars with [Fe/H] ≲ -1.0 and potentially a minority of the other stars. A classical bulge is expected from Λ-CDM cosmological simulations, can accentuate the properties of an existing bar in a hybrid system, and is most consistent with the bulge abundance trends such as [Mg/Fe], which are elevated relative to both the thin and thick disks. Finally, the clumpy-galaxy scenario is considered, as it is the correct description of most Milky Way precursors given observations of high-redshift galaxies. Simulations predict that these star-forming clumps will sometimes migrate to the centres of galaxies where they may form a bulge, and galaxies often include a bulge clump as well. They will possibly form a bar with properties consistent with those of the Milky Way, such as the exponential profile and metallicity gradient. Given the relative successes of these scenarios, the Milky Way bulge is plausibly of composite origin, with a classical bulge and/or inner halo numerically dominant for stars with [Fe/H] ≲ -1.0, a buckling

  12. VizieR Online Data Catalog: SDSS bulge, disk and total stellar mass estimates (Mendel+, 2014)

    NASA Astrophysics Data System (ADS)

    Mendel, J. T.; Simard, L.; Palmer, M.; Ellison, S. L.; Patton, D. R.

    2014-01-01

    We present a catalog of bulge, disk, and total stellar mass estimates for ~660000 galaxies in the Legacy area of the Sloan Digital Sky Survey Data (SDSS) Release 7. These masses are based on a homogeneous catalog of g- and r-band photometry described by Simard et al. (2011, Cat. J/ApJS/196/11), which we extend here with bulge+disk and Sersic profile photometric decompositions in the SDSS u, i, and z bands. We discuss the methodology used to derive stellar masses from these data via fitting to broadband spectral energy distributions (SEDs), and show that the typical statistical uncertainty on total, bulge, and disk stellar mass is ~0.15 dex. Despite relatively small formal uncertainties, we argue that SED modeling assumptions, including the choice of synthesis model, extinction law, initial mass function, and details of stellar evolution likely contribute an additional 60% systematic uncertainty in any mass estimate based on broadband SED fitting. We discuss several approaches for identifying genuine bulge+disk systems based on both their statistical likelihood and an analysis of their one-dimensional surface-brightness profiles, and include these metrics in the catalogs. Estimates of the total, bulge and disk stellar masses for both normal and dust-free models and their uncertainties are made publicly available here. (4 data files).

  13. THE ROLES OF RADIATION AND RAM PRESSURE IN DRIVING GALACTIC WINDS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sharma, Mahavir; Nath, Biman B., E-mail: mahavir@rri.res.in, E-mail: biman@rri.res.in

    We study gaseous outflows from disk galaxies driven by the combined effects of ram pressure on cold gas clouds and radiation pressure on dust grains. Taking into account the gravity due to disk, bulge, and dark matter halo, and assuming continuous star formation in the disk, we show that radiation or ram pressure alone is not sufficient to drive escaping winds from disk galaxies and that both processes contribute. We show that in the parameter space of star formation rate (SFR) and rotation speed of galaxies the wind speed in galaxies with rotation speeds v{sub c} {<=} 200 km s{supmore » -1} and SFR {<=} 100 M{sub Sun} yr{sup -1} has a larger contribution from ram pressure, and that in high-mass galaxies with large SFR radiation from the disk has a greater role in driving galactic winds. The ratio of wind speed to circular speed can be approximated as v{sub w} / v{sub c} {approx} 10{sup 0.7}, [SFR/50{sub Sun }yr{sup -1}]{sup 0.4} [v{sub c}/120 km s{sup -1}]{sup -1.25}. We show that this conclusion is borne out by observations of galactic winds at low and high redshift and also of circumgalactic gas. We also estimate the mass loading factors under the combined effect of ram and radiation pressure, and show that the ratio of mass-loss rate to SFR scales roughly as v{sup -1}{sub c}{Sigma}{sub g}{sup -1}, where {Sigma}{sub g} is the gas column density in the disk.« less

  14. River bulge evolution and dynamics in a non-tidal sea - Daugava River plume in the Gulf of Riga, Baltic Sea

    NASA Astrophysics Data System (ADS)

    Soosaar, Edith; Maljutenko, Ilja; Uiboupin, Rivo; Skudra, Maris; Raudsepp, Urmas

    2016-03-01

    Satellite remote sensing imagery and numerical modelling were used for the study of river bulge evolution and dynamics in a non-tidal sea, the Gulf of Riga (GoR) in the Baltic Sea. Total suspended matter (TSM) images showed a clearly formed anti-cyclonically rotating river bulge from Daugava River discharge during the studied low wind period. In about 7-8 days the bulge grew up to 20 km in diameter, before being diluted. A high-resolution (horizontal grid step of 125 m) General Estuarine Transport Model (GETM) was used for detailed description of the development of the river plume in the southern GoR over the period when satellite images were acquired. In the model simulation, the bulge growth rate was estimated as rb ˜ t0.5 ± 0.04 (R2 = 0.90). Both the model simulation and the satellite images showed that river water was mainly contained in the bulge and there were numerous intrusions at the outer perimeter of the bulge. We performed numerical sensitivity tests with actual bathymetry and measured river runoff without wind forcing (1) having an initial three-dimensional density distribution, and (2) using initially a homogeneous ambient density field. In the first case, the anti-cyclonic bulge did not develop within the course of the model simulation and the coastal current was kept offshore due to ambient density-driven circulation. In the second case, the river plume developed steadily into an anti-cyclonically recirculating bulge, with rb ˜ t0.28 ± 0.01 (R2 = 0.98), and a coastal current. Additional simulations with constant cross-shore and alongshore winds showed a significant effect of the wind in the evolution of the river bulge, even if the wind speed was moderate (3-4 m s-1). While previous studies conclude that the mid-field bulge region is governed by a balance between centrifugal, Coriolis and pressure gradient terms, our study showed that geostrophic balance is valid for the entire mid-field of the bulge, except during the 1-1.5 rotation period at

  15. JASMINE: Infrared Space Astrometry Mission

    NASA Astrophysics Data System (ADS)

    Gouda, Naoteru; Working Group, Jasmine

    JASMINE is an astrometry satellite mission that measures in an infrared band annual parallaxes, positions on the celestial sphere, and proper motions of stars in the bulge of the Milky Way (the Galaxy) with high accuracies. These measurements give us 3-dimensional positions and 2-dimensional velocities (tangential velocities) of many stars in the Galactic bulge. A completely new “map” of the Galactic bulge given by JASMINE will bring us many exciting scientific results. A target launch date is the first half of the 2020s. Before the launch of JASMINE, we are planning two other missions; Nano-JASMINE and Small-JASMINE. Nano-JASMINE uses a very small nano-satellite and it is determined to be launched in 2011. Small-JASMINE is a downsized version of JASMINE satellite which observes toward restricted small regions of the Galactic bulge. These satellite missions need severe stability of the pointing of telescopes and furthermore high stability of telescope structures to measure stellar positions with high accuracies. This fact requires severe control of the pointing of telescopes and thermal control in payload modules. The control systems are very important keys for success of space astrometry missions including the series of JASMINE missions.

  16. Radial Stellar Population Gradients in the Galactic Globular Cluster 47 Tucanae

    NASA Astrophysics Data System (ADS)

    de Grijs, Richard; Li, Chengyuan; Deng, Licai

    2015-01-01

    We present a deep near-infrared color-magnitude diagram of the Galactic globular cluster 47 Tucanae, obtained with the Visible and Infrared Survey Telescope for Astronomy (VISTA) as part of the VISTA near-infrared Y, J, Ks survey of the Magellanic System (VMC). The cluster stars comprising both the subgiant and red-giant branches exhibit apparent, continuous variations in color-magnitude space as a function of radius. Subgiant-branch stars at larger radii are systematically brighter than their counterparts closer to the cluster core; similarly, red-giant-branch stars in the cluster's periphery are bluer than their more centrally located cousins. The observations can very well be described by adopting an age spread of ~0.5 Gyr as well as radial gradients in both the cluster's helium abundance (Y) and metallicity (Z), which change gradually from Y = 0.28, Z = 0.005 in the cluster core to Y = 0.25, Z = 0.003 in its periphery. We conclude that the cluster's inner regions host a significant fraction of second-generation stars, which decreases with increasing radius; the stellar population in the 47 Tuc periphery is well approximated by a simple stellar population.

  17. River bulge evolution and dynamics in a non-tidal sea - Daugava River plume in the Gulf of Riga, Baltic Sea

    NASA Astrophysics Data System (ADS)

    Soosaar, E.; Maljutenko, I.; Uiboupin, R.; Skudra, M.; Raudsepp, U.

    2015-10-01

    Satellite remote sensing imagery and numerical modelling were used for the study of river bulge evolution and dynamics in a non-tidal sea, the Gulf of Riga (GoR) in the Baltic Sea. Total suspended matter (TSM) images showed a clearly formed anti-cyclonically rotating river bulge from Daugava River discharge during the studied low wind period. In about 7-8 days the bulge grew up to 20 km in diameter, before being diluted. Bulge growth rate was estimated as rb ~ t 0.31± 0.23 (R2 = 0.87). A high resolution (horizontal grid step of 125 m) General Estuarine Transport Model (GETM) was used for detailed description of the development of the river plume in the southern GoR over the period when satellite images were acquired. In the model simulation, the rb ~ t 0.5± 0.04 (R2 = 0.90). Both the model simulation and the satellite images showed that river water was mainly contained in the bulge and there were numerous intrusions at the outer perimeter of the bulge. We made numerical sensitivity tests with actual bathymetry and measured river runoff without wind forcing: (1) having initial 3-dimensional density distribution, (2) using initially a homogeneous ambient density field. In the first case, the anti-cyclonic bulge did not develop within the course of the model simulation and coastal current was kept offshore due to ambient density-driven circulation. In the second case, the river plume developed steadily into an anti-cyclonically recirculating bulge and a coastal current. This showed a significant effect of the wind in the evolution of the river bulge, even if the wind speed was moderate (3-4 m s-1). In the second case, rb ~ t 0.28± 0.01 (R2 = 0.98). While previous studies conclude that mid-field bulge region is governed by balance between centrifugal, Coriolis and pressure gradient terms, our study showed that geostrophic balance is valid for the entire mid-field of the bulge. In addition, while there is discharge into the homogenous GoR in case of high inflow

  18. JASMINE data analysis

    NASA Astrophysics Data System (ADS)

    Yamada, Y.; Gouda, N.; Yano, T.; Kobayashi, Y.; Niwa, Y.; Niwa

    2008-07-01

    Japan Astrometry Satellite Mission for Infrared Exploration (JASMINE) aims to construct a map of the Galactic bulge with a 10 μas accuracy. We use z-band CCD or K-band array detector to avoid dust absorption, and observe about 10 × 20 degrees area around the Galactic bulge region. In this poster, we show the observation strategy, reduction scheme, and error budget. We also show the basic design of the software for the end-to-end simulation of JASMINE, named JASMINE Simulator.

  19. An Optimal Strategy for Accurate Bulge-to-disk Decomposition of Disk Galaxies

    NASA Astrophysics Data System (ADS)

    Gao, Hua; Ho, Luis C.

    2017-08-01

    The development of two-dimensional (2D) bulge-to-disk decomposition techniques has shown their advantages over traditional one-dimensional (1D) techniques, especially for galaxies with non-axisymmetric features. However, the full potential of 2D techniques has yet to be fully exploited. Secondary morphological features in nearby disk galaxies, such as bars, lenses, rings, disk breaks, and spiral arms, are seldom accounted for in 2D image decompositions, even though some image-fitting codes, such as GALFIT, are capable of handling them. We present detailed, 2D multi-model and multi-component decomposition of high-quality R-band images of a representative sample of nearby disk galaxies selected from the Carnegie-Irvine Galaxy Survey, using the latest version of GALFIT. The sample consists of five barred and five unbarred galaxies, spanning Hubble types from S0 to Sc. Traditional 1D decomposition is also presented for comparison. In detailed case studies of the 10 galaxies, we successfully model the secondary morphological features. Through a comparison of best-fit parameters obtained from different input surface brightness models, we identify morphological features that significantly impact bulge measurements. We show that nuclear and inner lenses/rings and disk breaks must be properly taken into account to obtain accurate bulge parameters, whereas outer lenses/rings and spiral arms have a negligible effect. We provide an optimal strategy to measure bulge parameters of typical disk galaxies, as well as prescriptions to estimate realistic uncertainties of them, which will benefit subsequent decomposition of a larger galaxy sample.

  20. An Optimal Strategy for Accurate Bulge-to-disk Decomposition of Disk Galaxies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gao Hua; Ho, Luis C.

    The development of two-dimensional (2D) bulge-to-disk decomposition techniques has shown their advantages over traditional one-dimensional (1D) techniques, especially for galaxies with non-axisymmetric features. However, the full potential of 2D techniques has yet to be fully exploited. Secondary morphological features in nearby disk galaxies, such as bars, lenses, rings, disk breaks, and spiral arms, are seldom accounted for in 2D image decompositions, even though some image-fitting codes, such as GALFIT, are capable of handling them. We present detailed, 2D multi-model and multi-component decomposition of high-quality R -band images of a representative sample of nearby disk galaxies selected from the Carnegie-Irvine Galaxymore » Survey, using the latest version of GALFIT. The sample consists of five barred and five unbarred galaxies, spanning Hubble types from S0 to Sc. Traditional 1D decomposition is also presented for comparison. In detailed case studies of the 10 galaxies, we successfully model the secondary morphological features. Through a comparison of best-fit parameters obtained from different input surface brightness models, we identify morphological features that significantly impact bulge measurements. We show that nuclear and inner lenses/rings and disk breaks must be properly taken into account to obtain accurate bulge parameters, whereas outer lenses/rings and spiral arms have a negligible effect. We provide an optimal strategy to measure bulge parameters of typical disk galaxies, as well as prescriptions to estimate realistic uncertainties of them, which will benefit subsequent decomposition of a larger galaxy sample.« less

  1. A Formation Timescale of the Galactic Halo from Mg Isotopes in Dwarf Stars

    NASA Astrophysics Data System (ADS)

    Carlos, Marília; Karakas, Amanda I.; Cohen, Judith G.; Kobayashi, Chiaki; Meléndez, Jorge

    2018-04-01

    We determine magnesium isotopic abundances of metal-poor dwarf stars from the galactic halo, to shed light on the onset of asymptotic giant branch (AGB) star nucleosynthesis in the galactic halo and constrain the timescale of its formation. We observed a sample of eight new halo K dwarfs in a metallicity range of ‑1.9 < [Fe/H] < ‑0.9 and 4200 < T eff(K) < 4950, using the HIRES spectrograph at the Keck Observatory (R ≈ 105 and 200 ≤ S/N ≤ 300). We obtain magnesium isotopic abundances by spectral synthesis on three MgH features and compare our results with galactic chemical evolution models. With the current sample, we almost double the number of metal-poor stars with Mg isotopes determined from the literature. The new data allow us to determine the metallicity when the 26Mg abundances start to become important, [Fe/H] ∼ ‑1.4 ± 0.1. The data with [Fe/H] > ‑1.4 are somewhat higher (1–3σ) than previous chemical evolution model predictions, indicating perhaps higher yields of the neutron-rich isotopes. Our results using only AGB star enrichment suggest a timescale for formation for the galactic halo of about 0.3 Gyr, but considering also supernova enrichment, the upper limit for the timescale formation is about 1.5 Gyr. The data presented herein were obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W. M. Keck Foundation.

  2. 12C/13C isotopic ratios in red-giant stars of the open cluster NGC 6791

    NASA Astrophysics Data System (ADS)

    Szigeti, László; Mészáros, Szabolcs; Smith, Verne V.; Cunha, Katia; Lagarde, Nadège; Charbonnel, Corinne; García-Hernández, D. A.; Shetrone, Matthew; Pinsonneault, Marc; Allende Prieto, Carlos; Fernández-Trincado, J. G.; Kovács, József; Villanova, Sandro

    2018-03-01

    Carbon isotope ratios, along with carbon and nitrogen abundances, are derived in a sample of 11 red-giant members of one of the most metal-rich clusters in the Milky Way, NGC 6791. The selected red-giants have a mean metallicity and standard deviation of [Fe/H] = +0.39 ± 0.06 (Cunha et al. 2015). We used high-resolution H-band spectra obtained by the SDSS-IV Apache Point Observatory Galactic Evolution Experiment. The advantage of using high-resolution spectra in the H band is that lines of CO are well represented and their line profiles are sensitive to the variation of 12C/13C. Values of the 12C/13C ratio were obtained from a spectrum synthesis analysis. The derived 12C/13C ratios varied between 6.3 and 10.6 in NGC 6791, in agreement with the final isotopic ratios from thermohaline-induced mixing models. The ratios derived here are combined with those obtained for more metal poor red-giants from the literature to examine the correlation between 12C/13C, mass, metallicity, and evolutionary status.

  3. Miniature bulge test and energy release rate in HIPed aluminum/aluminum interfacial fracture

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, C.; Lovato, M. L.; Clarke, K. D.

    We summarize the development of a technique of using miniature bulge test combined with three-dimensional digital image correlation (3D-DIC) for measuring energy release rate or fracture toughness of bimaterial interface of thin metal foils. Furthermore, the energy release rate associated with the HIPed aluminum/aluminum interfacial delamination is determined experimentally using the proposed technique. Detailed discussions of the schemes of preparing and conducting the bulge test, and computing various quantities required for the determination of the energy release rate are presented.

  4. Miniature bulge test and energy release rate in HIPed aluminum/aluminum interfacial fracture

    DOE PAGES

    Liu, C.; Lovato, M. L.; Clarke, K. D.; ...

    2017-10-13

    We summarize the development of a technique of using miniature bulge test combined with three-dimensional digital image correlation (3D-DIC) for measuring energy release rate or fracture toughness of bimaterial interface of thin metal foils. Furthermore, the energy release rate associated with the HIPed aluminum/aluminum interfacial delamination is determined experimentally using the proposed technique. Detailed discussions of the schemes of preparing and conducting the bulge test, and computing various quantities required for the determination of the energy release rate are presented.

  5. The mechanics of decompressive craniectomy: Bulging in idealized geometries

    NASA Astrophysics Data System (ADS)

    Weickenmeier, Johannes; Kuhl, Ellen; Goriely, Alain

    2016-11-01

    In extreme cases of traumatic brain injury or a stroke, the resulting uncontrollable swelling of the brain may lead to a harmful increase of the intracranial pressure. As a common measure for immediate release of pressure on the brain, part of the skull is surgically removed allowing for the brain to bulge outwards, a procedure known as a decompressive craniectomy. During this excessive brain swelling, the affected tissue typically undergoes large deformations resulting in a complex three-dimensional mechanical loading state with several important implications on optimal treatment strategies and outcome. Here, as a first step towards a better understanding of the mechanics of a decompressive craniectomy, we consider simple models for the bulging of elastic solids under geometric constraints representative of the surgical intervention. In small deformations and simple geometries, the exact solution of this problem is derived from the theory of contact mechanics. The analysis of these solutions reveals a number of interesting generic features relevant for the mechanics of craniectomy.

  6. LBSizeCleav: improved support vector machine (SVM)-based prediction of Dicer cleavage sites using loop/bulge length.

    PubMed

    Bao, Yu; Hayashida, Morihiro; Akutsu, Tatsuya

    2016-11-25

    Dicer is necessary for the process of mature microRNA (miRNA) formation because the Dicer enzyme cleaves pre-miRNA correctly to generate miRNA with correct seed regions. Nonetheless, the mechanism underlying the selection of a Dicer cleavage site is still not fully understood. To date, several studies have been conducted to solve this problem, for example, a recent discovery indicates that the loop/bulge structure plays a central role in the selection of Dicer cleavage sites. In accordance with this breakthrough, a support vector machine (SVM)-based method called PHDCleav was developed to predict Dicer cleavage sites which outperforms other methods based on random forest and naive Bayes. PHDCleav, however, tests only whether a position in the shift window belongs to a loop/bulge structure. In this paper, we used the length of loop/bulge structures (in addition to their presence or absence) to develop an improved method, LBSizeCleav, for predicting Dicer cleavage sites. To evaluate our method, we used 810 empirically validated sequences of human pre-miRNAs and performed fivefold cross-validation. In both 5p and 3p arms of pre-miRNAs, LBSizeCleav showed greater prediction accuracy than PHDCleav did. This result suggests that the length of loop/bulge structures is useful for prediction of Dicer cleavage sites. We developed a novel algorithm for feature space mapping based on the length of a loop/bulge for predicting Dicer cleavage sites. The better performance of our method indicates the usefulness of the length of loop/bulge structures for such predictions.

  7. Dual Active Galactic Nuclei in Nearby Galaxies

    NASA Astrophysics Data System (ADS)

    Das, Mousumi; Rubinur, Khatun; Karb, Preeti; Varghese, Ashlin; Novakkuni, Navyasree; James, Atul

    2018-04-01

    Galaxy mergers play a crucial role in the formation of massive galaxies and the buildup of their bulges. An important aspect of the merging process is the in-spiral of the supermassive black-holes (SMBHs) to the centre of the merger remnant and the eventual formation of a SMBH binary. If both the SMBHs are accreting they will form a dual or binary active galactic nucleus (DAGN). The final merger remnant is usually very bright and shows enhanced star formation. In this paper we summarise the current sample of DAGN from previous studies and describe methods that can be used to identify strong DAGN candidates from optical and spectroscopic surveys. These methods depend on the Doppler separation of the double peaked AGN emission lines, the nuclear velocity dispersion of the galaxies and their optical/UV colours. We describe two high resolution, radio observations of DAGN candidates that have been selected based on their double peaked optical emission lines (DPAGN). We also examine whether DAGN host galaxies have higher star formation rates (SFRs) compared to merging galaxies that do not appear to have DAGN. We find that the SFR is not higher for DAGN host galaxies. This suggests that the SFRs in DAGN host galaxies is due to the merging process itself and not related to the presence of two AGN in the system.

  8. Galactic plane gamma-radiation

    NASA Technical Reports Server (NTRS)

    Hartman, R. C.; Kniffen, D. A.; Thompson, D. J.; Fichtel, C. E.; Ogelman, H. B.; Tumer, T.; Ozel, M. E.

    1979-01-01

    Analysis of the SAS 2 data together with the COS B results shows that the distribution of galactic gamma-radiation has several similarities to that of other large-scale tracers of galactic structure. The radiation is primarily confined to a thin disc which exhibits offsets from b = 0 degrees similar to warping at radio frequencies. The principal distinction of the gamma-radiation is a stronger contrast in intensity between the region from 310 to 45 degrees in longitude and the regions away from the center that can be attributed to a variation in cosmic-ray density as a function of position in Galaxy. The diffuse galactic gamma-ray energy spectrum shows no significant variation in direction, and the spectrum seen along the plane is the same as that for the galactic component of the gamma-radiation at high altitudes. The uniformity of the galactic gamma-ray spectrum, the smooth decrease in intensity as a function of altitude, and the absence of any galactic gamma-ray sources at high altitudes indicate a diffuse origin for bulk of the galactic gamma-radiation rather than a collection of localized sources.

  9. The interstellar medium and star formation of galactic disks. I. Interstellar medium and giant molecular cloud properties with diffuse far-ultraviolet and cosmic-ray backgrounds

    NASA Astrophysics Data System (ADS)

    Li, Qi; Tan, Jonathan C.; Christie, Duncan; Bisbas, Thomas G.; Wu, Benjamin

    2018-05-01

    We present a series of adaptive mesh refinement hydrodynamic simulations of flat rotation curve galactic gas disks, with a detailed treatment of the interstellar medium (ISM) physics of the atomic to molecular phase transition under the influence of diffuse far-ultraviolet (FUV) radiation fields and cosmic-ray backgrounds. We explore the effects of different FUV intensities, including a model with a radial gradient designed to mimic the Milky Way. The effects of cosmic rays, including radial gradients in their heating and ionization rates, are also explored. The final simulations in this series achieve 4 pc resolution across the ˜20 kpc global disk diameter, with heating and cooling followed down to temperatures of ˜10 K. The disks are evolved for 300 Myr, which is enough time for the ISM to achieve a quasi-statistical equilibrium. In particular, the mass fraction of molecular gas is stabilized by ˜200 Myr. Additional global ISM properties are analyzed. Giant molecular clouds (GMCs) are also identified and the statistical properties of their populations are examined. GMCs are tracked as the disks evolve. GMC collisions, which may be a means of triggering star cluster formation, are counted and their rates are compared with analytic models. Relatively frequent GMC collision rates are seen in these simulations, and their implications for understanding GMC properties, including the driving of internal turbulence, are discussed.

  10. Genetically induced cell death in bulge stem cells reveals their redundancy for hair and epidermal regeneration.

    PubMed

    Driskell, Iwona; Oeztuerk-Winder, Feride; Humphreys, Peter; Frye, Michaela

    2015-03-01

    Adult mammalian epidermis contains multiple stem cell populations in which quiescent and more proliferative stem and progenitor populations coexist. However, the precise interrelation of these populations in homeostasis remains unclear. Here, we blocked the contribution of quiescent keratin 19 (K19)-expressing bulge stem cells to hair follicle formation through genetic ablation of the essential histone methyltransferase Setd8 that is required for the maintenance of adult skin. Deletion of Setd8 eliminated the contribution of bulge cells to hair follicle regeneration through inhibition of cell division and induction of cell death, but the growth and morphology of hair follicles were unaffected. Furthermore, ablation of Setd8 in the hair follicle bulge blocked the contribution of K19-postive stem cells to wounded epidermis, but the wound healing process was unaltered. Our data indicate that quiescent bulge stem cells are dispensable for hair follicle regeneration and epidermal injury in the short term and support the hypothesis that quiescent and cycling stem cell populations are equipotent. © 2014 AlphaMed Press.

  11. From a structural average to the conformational ensemble of a DNA bulge

    PubMed Central

    Shi, Xuesong; Beauchamp, Kyle A.; Harbury, Pehr B.; Herschlag, Daniel

    2014-01-01

    Direct experimental measurements of conformational ensembles are critical for understanding macromolecular function, but traditional biophysical methods do not directly report the solution ensemble of a macromolecule. Small-angle X-ray scattering interferometry has the potential to overcome this limitation by providing the instantaneous distance distribution between pairs of gold-nanocrystal probes conjugated to a macromolecule in solution. Our X-ray interferometry experiments reveal an increasing bend angle of DNA duplexes with bulges of one, three, and five adenosine residues, consistent with previous FRET measurements, and further reveal an increasingly broad conformational ensemble with increasing bulge length. The distance distributions for the AAA bulge duplex (3A-DNA) with six different Au-Au pairs provide strong evidence against a simple elastic model in which fluctuations occur about a single conformational state. Instead, the measured distance distributions suggest a 3A-DNA ensemble with multiple conformational states predominantly across a region of conformational space with bend angles between 24 and 85 degrees and characteristic bend directions and helical twists and displacements. Additional X-ray interferometry experiments revealed perturbations to the ensemble from changes in ionic conditions and the bulge sequence, effects that can be understood in terms of electrostatic and stacking contributions to the ensemble and that demonstrate the sensitivity of X-ray interferometry. Combining X-ray interferometry ensemble data with molecular dynamics simulations gave atomic-level models of representative conformational states and of the molecular interactions that may shape the ensemble, and fluorescence measurements with 2-aminopurine-substituted 3A-DNA provided initial tests of these atomistic models. More generally, X-ray interferometry will provide powerful benchmarks for testing and developing computational methods. PMID:24706812

  12. SDSS-IV MaNGA: bulge-disc decomposition of IFU data cubes (BUDDI)

    NASA Astrophysics Data System (ADS)

    Johnston, Evelyn J.; Häußler, Boris; Aragón-Salamanca, Alfonso; Merrifield, Michael R.; Bamford, Steven; Bershady, Matthew A.; Bundy, Kevin; Drory, Niv; Fu, Hai; Law, David; Nitschelm, Christian; Thomas, Daniel; Roman Lopes, Alexandre; Wake, David; Yan, Renbin

    2017-02-01

    With the availability of large integral field unit (IFU) spectral surveys of nearby galaxies, there is now the potential to extract spectral information from across the bulges and discs of galaxies in a systematic way. This information can address questions such as how these components built up with time, how galaxies evolve and whether their evolution depends on other properties of the galaxy such as its mass or environment. We present bulge-disc decomposition of IFU data cubes (BUDDI), a new approach to fit the two-dimensional light profiles of galaxies as a function of wavelength to extract the spectral properties of these galaxies' discs and bulges. The fitting is carried out using GALFITM, a modified form of GALFIT which can fit multiwaveband images simultaneously. The benefit of this technique over traditional multiwaveband fits is that the stellar populations of each component can be constrained using knowledge over the whole image and spectrum available. The decomposition has been developed using commissioning data from the Sloan Digital Sky Survey-IV Mapping Nearby Galaxies at APO (MaNGA) survey with redshifts z < 0.14 and coverage of at least 1.5 effective radii for a spatial resolution of 2.5 arcsec full width at half-maximum and field of view of > 22 arcsec, but can be applied to any IFU data of a nearby galaxy with similar or better spatial resolution and coverage. We present an overview of the fitting process, the results from our tests, and we finish with example stellar population analyses of early-type galaxies from the MaNGA survey to give an indication of the scientific potential of applying bulge-disc decomposition to IFU data.

  13. CHEMICAL ABUNDANCES IN A SAMPLE OF RED GIANTS IN THE OPEN CLUSTER NGC 2420 FROM APOGEE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Souto, Diogo; Cunha, K.; Smith, V.

    NGC 2420 is a ∼2 Gyr old well-populated open cluster that lies about 2 kpc beyond the solar circle, in the general direction of the Galactic anti-center. Most previous abundance studies have found this cluster to be mildly metal-poor, but with a large scatter in the obtained metallicities. Detailed chemical abundance distributions are derived for 12 red-giant members of NGC 2420 via a manual abundance analysis of high-resolution ( R = 22,500) near-infrared ( λ 1.5–1.7 μ m) spectra obtained from the Apache Point Observatory Galactic Evolution Experiment (APOGEE) survey. The sample analyzed contains six stars that are identified asmore » members of the first-ascent red giant branch (RGB), as well as six members of the red clump (RC). We find small scatter in the star-to-star abundances in NGC 2420, with a mean cluster abundance of [Fe/H] = −0.16 ± 0.04 for the 12 red giants. The internal abundance dispersion for all elements (C, N, O, Na, Mg, Al, Si, K, Ca, Ti, V, Cr, Mn, Co and Ni) is also very small (∼0.03–0.06 dex), indicating a uniform cluster abundance distribution within the uncertainties. NGC 2420 is one of the clusters used to calibrate the APOGEE Stellar Parameter and Chemical Abundance Pipeline (ASPCAP). The results from this manual analysis compare well with ASPCAP abundances for most of the elements studied, although for Na, Al, and V there are more significant offsets. No evidence of extra-mixing at the RGB luminosity bump is found in the {sup 12}C and {sup 14}N abundances from the pre-luminosity-bump RGB stars in comparison to the post-He core-flash RC stars.« less

  14. Entire Sky

    NASA Image and Video Library

    1999-12-01

    Aitoff projection of the three-color composite JHKs source count map of the entire sky, based on 95,851,173 stars with Ks 13.5. What appears most prominently are the Galactic plane and the Galactic bulge.

  15. POWERFUL RADIO EMISSION FROM LOW-MASS SUPERMASSIVE BLACK HOLES FAVORS DISK-LIKE BULGES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, J.; Xu, Y.; Xu, D. W.

    The origin of spin of low-mass supermassive black holes (SMBHs) is still a puzzle at present. We report here a study on the host galaxies of a sample of radio-selected nearby ( z < 0.05) Seyfert 2 galaxies with a BH mass of 10{sup 6–7} M{sub ⊙}. By modeling the SDSS r -band images of these galaxies through a two-dimensional bulge+disk decomposition, we identify a new dependence of SMBH's radio power on host bulge surface brightness profiles, in which more powerful radio emission comes from an SMBH associated with a more disk-like bulge. This result means low-mass and high-mass SMBHsmore » are spun up by two entirely different modes that correspond to two different evolutionary paths. A low-mass SMBH is spun up by a gas accretion with significant disk-like rotational dynamics of the host galaxy in the secular evolution, while a high-mass one by a BH–BH merger in the merger evolution.« less

  16. Localized bulging in an inflated cylindrical tube of arbitrary thickness - the effect of bending stiffness

    NASA Astrophysics Data System (ADS)

    Fu, Y. B.; Liu, J. L.; Francisco, G. S.

    2016-05-01

    We study localized bulging of a cylindrical hyperelastic tube of arbitrary thickness when it is subjected to the combined action of inflation and axial extension. It is shown that with the internal pressure P and resultant axial force F viewed as functions of the azimuthal stretch on the inner surface and the axial stretch, the bifurcation condition for the initiation of a localized bulge is that the Jacobian of the vector function (P , F) should vanish. This is established using the dynamical systems theory by first computing the eigenvalues of a certain eigenvalue problem governing incremental deformations, and then deriving the bifurcation condition explicitly. The bifurcation condition is valid for all loading conditions, and in the special case of fixed resultant axial force it gives the expected result that the initiation pressure for localized bulging is precisely the maximum pressure in uniform inflation. It is shown that even if localized bulging cannot take place when the axial force is fixed, it is still possible if the axial stretch is fixed instead. The explicit bifurcation condition also provides a means to quantify precisely the effect of bending stiffness on the initiation pressure. It is shown that the (approximate) membrane theory gives good predictions for the initiation pressure, with a relative error less than 5%, for thickness/radius ratios up to 0.67. A two-term asymptotic bifurcation condition for localized bulging that incorporates the effect of bending stiffness is proposed, and is shown to be capable of giving extremely accurate predictions for the initiation pressure for thickness/radius ratios up to as large as 1.2.

  17. Chemical Abundances of Planetary Nebulae in the Bulge and Disk of M31

    NASA Technical Reports Server (NTRS)

    Jacoby, George H.; Ciardullo, Robin

    1998-01-01

    We derive abundances and central star parameters for 15 planetary nebulae (PNe) in M31: 12 in the bulge and 3 in a disk field 14 kpc from the nucleus. No single abundance value characterizes the bulge stars: although the median abundances of the sample are similar to those seen for PNe in the LMC, the distribution of abundances is several times broader, spanning over 1 decade. None of the PNe in our sample approach the super metal-rich ([Fe/H] approximately 0.25) expectations for the bulge of M31, although a few PNe in the sample of Stasinska, Richer, & Mc Call (1998) come close. This [O/H] vs [Fe/H] discrepancy is likely due to a combination of factors, including an inability of metal-rich stars to produce bright PNe, a luminosity selection effect, and an abundance gradient in the bulge of M31. We show that PNe that are near the bright limit of the [O III] lambda.5007 planetary nebula luminosity function (PNLF) span nearly a decade in oxygen abundance, and thus, support the use of the PNLF for deriving distances to galaxies (Jacoby 1996) with differing metallicities. We also identify a correlation between central star mass and PN dust formation that partially alleviates any dependence of the PNLF maximum magnitude on population age. Additionally, we identify a spatially compact group of 5 PNe having unusually high O/H; this subgroup may arise from a recent merger, but velocity information is needed to assess the true nature of the objects.

  18. Dust & Abundances of Metal-Poor Planetary Nebulae in the Galactic Anti-Center

    NASA Astrophysics Data System (ADS)

    Pagomenos, George J. S.; Bernard-Salas, Jeronimo; Sloan, G. C.

    2017-10-01

    Much of the new dust in the local ISM is produced in the last phases of stellar evolution of low- and intermediate-mass stars on the Asymptotic Giant Branch (AGB). Despite its importance, our knowledge of how dust properties depend on metallicity is limited. Studies of planetary nebulae in irregular galaxies in the Local Group (mostly focused on the LMC and SMC) have revealed a diverse spectral zoo and shown that low metallicity favours carbon-rich dust production by AGB stars. However, at ~1/3 and ~1/5 times the solar metallicity respectively, they provide two snapshots of dust composition at low metallicity, emphasising the need to investigate a region with a range of metallicity values. With its abundance gradient, the Milky Way fits this criterion and provides a good opportunity to observe the dust composition over a large metallicity range. In particular the Galactic anti-center, which is largely unexplored beyond galactocentric distances of 10 kpc, allows us to study the AGB dust a priori assumed to be metal-poor as well as exploring the extent of the Galactic abundance gradient. We analyse a Spitzer spectroscopic sample of 23 planetary nebulae towards the anti-center in order to understand how the metallicity gradient extends beyond 10 kpc from the Galactic center and to observe the dust composition in this region of our Galaxy. We find that the abundance gradients of Ne, S and Ar continue to distances of around 20 kpc (albeit with a large scatter) and the dust emission shows a carbon-rich chemistry similar to that in the Magellanic Clouds.

  19. Peanut-shaped metallicity distributions in bulges of edge-on galaxies: the case of NGC 4710

    NASA Astrophysics Data System (ADS)

    Gonzalez, Oscar A.; Debattista, Victor P.; Ness, Melissa; Erwin, Peter; Gadotti, Dimitri A.

    2017-03-01

    Bulges of edge-on galaxies are often boxy/peanut-shaped (B/PS), and unsharp masks reveal the presence of an X shape. Simulations show that these shapes can be produced by dynamical processes driven by a bar which vertically thickens the centre. In the Milky Way, which contains such a B/PS bulge, the X-shaped structure is traced by the metal-rich stars but not by the metal-poor ones. Recently, Debattista et al. interpreted this property as a result of the varying effect of the bar on stellar populations with different starting kinematics. This kinematic fractionation model predicts that cooler populations at the time of bar formation go on to trace the X shape, whereas hotter populations are more uniformly distributed. As this prediction is not specific to the Milky Way, we test it with Multi Unit Spectroscopic Explorer (MUSE) observations of the B/PS bulge in the nearby galaxy NGC 4710. We show that the metallicity map is more peanut-shaped than the density distribution itself, in good agreement with the prediction. This result indicates that the X-shaped structure in B/PS bulges is formed of relatively metal-rich stars that have been vertically redistributed by the bar, whereas the metal-poor stars have a more uniform, box-shaped distribution.

  20. Research on Al-alloy sheet forming formability during warm/hot sheet hydroforming based on elliptical warm bulging test

    NASA Astrophysics Data System (ADS)

    Cai, Gaoshen; Wu, Chuanyu; Gao, Zepu; Lang, Lihui; Alexandrov, Sergei

    2018-05-01

    An elliptical warm/hot sheet bulging test under different temperatures and pressure rates was carried out to predict Al-alloy sheet forming limit during warm/hot sheet hydroforming. Using relevant formulas of ultimate strain to calculate and dispose experimental data, forming limit curves (FLCS) in tension-tension state of strain (TTSS) area are obtained. Combining with the basic experimental data obtained by uniaxial tensile test under the equivalent condition with bulging test, complete forming limit diagrams (FLDS) of Al-alloy are established. Using a quadratic polynomial curve fitting method, material constants of fitting function are calculated and a prediction model equation for sheet metal forming limit is established, by which the corresponding forming limit curves in TTSS area can be obtained. The bulging test and fitting results indicated that the sheet metal FLCS obtained were very accurate. Also, the model equation can be used to instruct warm/hot sheet bulging test.

  1. Galactic Disk Winds Driven by Cosmic Ray Pressure

    NASA Astrophysics Data System (ADS)

    Mao, S. Alwin; Ostriker, Eve C.

    2018-02-01

    Cosmic ray pressure gradients transfer energy and momentum to extraplanar gas in disk galaxies, potentially driving significant mass loss as galactic winds. This may be particularly important for launching high-velocity outflows of “cool” (T ≲ 104 K) gas. We study cosmic ray-driven disk winds using a simplified semi-analytic model assuming streamlines follow the large-scale gravitational potential gradient. We consider scaled Milky Way–like potentials including a disk, bulge, and halo with a range of halo velocities V H = 50–300 km s-1 and streamline footpoints with radii in the disk R 0 = 1–16 kpc at a height of 1 kpc. Our solutions cover a wide range of footpoint gas velocity u 0, magnetic–to–cosmic ray pressure ratio, gas–to–cosmic ray pressure ratio, and angular momentum. Cosmic ray streaming at the Alfvén speed enables the effective sound speed C eff to increase from the footpoint to a critical point where C eff,c = u c ∼ V H; this differs from thermal winds, in which C eff decreases outward. The critical point is typically at a height of 1–6 kpc from the disk, increasing with V H, and the asymptotic wind velocity exceeds the escape speed of the halo. Mass-loss rates are insensitive to the footpoint values of the magnetic field and angular momentum. In addition to numerical parameter space exploration, we develop and compare to analytic scaling relations. We show that winds have mass-loss rates per unit area up to \\dot{Σ}∼ Π0VH-5/3u02/3, where Π0 is the footpoint cosmic ray pressure and u 0 is set by the upwelling of galactic fountains. The predicted wind mass-loss rate exceeds the star formation rate for V H ≲ 200 km s-1 and u 0 = 50 km s-1, a typical fountain velocity.

  2. The Evolution of the Galactic Thick Disk with the LAMOST Survey

    NASA Astrophysics Data System (ADS)

    Li, Chengdong; Zhao, Gang

    2017-11-01

    We select giant stars from LAMOST data release 3 (hereafter DR3) based on their spectral properties and atmospheric parameters in order to detect the structure and kinematic properties of the Galactic thick disk. The spatial motions of our sample stars are calculated. We obtain 2035 thick-disk giant stars by using a kinematic criterion. We confirm the existence of the metal-weak thick disk. The most metal-deficient star in our sample has [{Fe}/{{H}}]=-2.34. We derive the radial and vertical metallicity gradients, which are +0.035 ± 0.010 and -0.164 ± 0.010 dex kpc-1respectively. Then we estimate the scale length and scale height of the thick disk using the Jeans equation, and the results are {h}R=3.0+/- 0.1 {kpc} and {h}Z=0.9+/- 0.1 {kpc}. The scale length of the thick disk is approximately equal to that of the thin disk from several previous works. Finally, we calculate the orbital parameters of our sample stars, and discuss the formation scenario of the thick disk. Our result for the distribution of stellar orbital eccentricity excludes the accretion scenario. We conclude that the thick disk stars are mainly born inside the Milky Way.

  3. Galactic Winds

    NASA Astrophysics Data System (ADS)

    Veilleux, Sylvain

    Galactic winds have become arguably one of the hottest topics in extragalactic astronomy. This enthusiasm for galactic winds is due in part to the detection of winds in many, if not most, high-redshift galaxies. Galactic winds have also been invoked by theorists to (1) suppress the number of visible dwarf galaxies and avoid the "cooling catastrophe" at high redshift that results in the overproduction of massive luminous galaxies, (2) remove material with low specific angular momentum early on and help enlarge gas disks in CDM + baryons simulations, (3) reduce the dark mass concentrations in galaxies, (4) explain the mass-metallicity relation of galaxies from selective loss of metal-enriched gas from smaller galaxies, (5) enrich and "preheat" the ICM, (6) enrich the IGM without disturbing the Lyαforest significantly, and (7) inhibit cooling flows in galaxy clusters with active cD galaxies. The present paper highlights a few key aspects of galactic winds taken from a recent ARAA review by Veilleux, Cecil, &Bland-Hawthorn (2005; herafter VCBH). Readers interested in a more detailed discussion of this topic are encouraged to refer to the original ARAA article.

  4. New variable stars discovered in the fields of three Galactic open clusters using the VVV survey

    NASA Astrophysics Data System (ADS)

    Palma, T.; Minniti, D.; Dékány, I.; Clariá, J. J.; Alonso-García, J.; Gramajo, L. V.; Ramírez Alegría, S.; Bonatto, C.

    2016-11-01

    This project is a massive near-infrared (NIR) search for variable stars in highly reddened and obscured open cluster (OC) fields projected on regions of the Galactic bulge and disk. The search is performed using photometric NIR data in the J-, H- and Ks- bands obtained from the Vista Variables in the Vía Láctea (VVV) Survey. We performed in each cluster field a variability search using Stetson's variability statistics to select the variable candidates. Later, those candidates were subjected to a frequency analysis using the Generalized Lomb-Scargle and the Phase Dispersion Minimization algorithms. The number of independent observations range between 63 and 73. The newly discovered variables in this study, 157 in total in three different known OCs, are classified based on their light curve shapes, periods, amplitudes and their location in the corresponding color-magnitude (J -Ks ,Ks) and color-color (H -Ks , J - H) diagrams. We found 5 possible Cepheid stars which, based on the period-luminosity relation, are very likely type II Cepheids located behind the bulge. Among the newly discovered variables, there are eclipsing binaries, δ Scuti, as well as background RR Lyrae stars. Using the new version of the Wilson & Devinney code as well as the "Physics Of Eclipsing Binaries" (PHOEBE) code, we analyzed some of the best eclipsing binaries we discovered. Our results show that these studied systems turn out to be ranging from detached to double-contact binaries, with low eccentricities and high inclinations of approximately 80°. Their surface temperatures range between 3500 K and 8000 K.

  5. Kinematic Evaluation of Association between Disc Bulge Migration, Lumbar Segmental Mobility, and Disc Degeneration in the Lumbar Spine Using Positional Magnetic Resonance Imaging

    PubMed Central

    Hu, Jonathan K.; Morishita, Yuichiro; Montgomery, Scott R.; Hymanson, Henry; Taghavi, Cyrus E.; Do, Duc; Wang, Jeff C.

    2011-01-01

    Degenerative disc disease and disc bulge in the lumbar spine are common sources of lower back pain. Little is known regarding disc bulge migration and lumbar segmental mobility as the lumbar spine moves from flexion to extension. In this study, 329 symptomatic (low back pain with or without neurological symptoms) patients with an average age of 43.5 years with varying degrees of disc degeneration were examined to characterize the kinematics of the lumbar intervertebral discs through flexion, neutral, and extension weight-bearing positions. In this population, disc bulge migration associated with dynamic motion of the lumbar spine significantly increased with increased grade of disk degeneration. Although no obvious trends relating the migration of disc bulge and angular segmental mobility were seen, translational segmental mobility tended to increase with disc bulge migration in all of the degenerative disc states. It appears that many factors, both static (intervertebral disc degeneration or disc height) and dynamic (lumbar segmental mobility), affect the mechanisms of lumbar disc bulge migration. PMID:24353937

  6. The abundance of Galactic planets from OGLE-III 2002 microlensing data

    NASA Astrophysics Data System (ADS)

    Snodgrass, Colin; Horne, Keith; Tsapras, Yiannis

    2004-07-01

    From the 389 OGLE-III 2002 observations of Galactic bulge microlensing events, we select 321 that are well described by a point-source point-lens light-curve model. From this sample we identify one event, 2002-BLG-055, that we regard as a strong planetary lensing candidate, and another, 2002-BLG-140, that is a possible candidate. If each of the 321 lens stars has one planet with a mass ratio q = m/M = 10-3 and orbit radius a = RE, the Einstein ring radius, analysis of detection efficiencies indicates that 14 planets should have been detectable with Δχ2 > 25. Assuming our candidate is due to planetary lensing, then the abundance of planets with q = 10-3 and a = RE is np ~ n/14 = 7 per cent. Conversion to physical units (Jupiter masses, MJup, and astronomical units, au) gives the abundance of `cool Jupiters' (m ~ MJup, a ~ 4 au) per lens star as np ~ n/5.5 = 18 per cent. The detection probability scales roughly with q and (Δχ2)-1/2, and drops off from a peak at a ~ 4 au like a Gaussian with a dispersion of 0.4 dex.

  7. The ISOGAL survey

    NASA Astrophysics Data System (ADS)

    Omont, A.; ISOGAL Collaboration

    1999-03-01

    ISOGAL is a 7-15 μm ISOCAM survey, with 6'' pixels and sensitivity below 10 mJy, of ~20 deg2, in the galactic plane mostly interior to |l| = 30o. In combination with KJI DENIS data, the ISO images allow detailed studies of cold stellar populations and galactic structures in regions highly obscured throughout the inner Galaxy, with a sensitivity and pixel surface two orders of magnitude better than IRAS. Data reduction is particularly difficult because of the high density of strong sources, of memory effects and of short integration times. However, an improved data reduction is almost complete for all the fields observed, with the use of CIA ISOCAM software and of a special source extraction. The data quality is acceptable, as concerns reliability, completeness and photometric accuracy of the sources, to allow a systematic scientific analysis. A few fields, in the bulge and in the galactic disk, exemplify the results expected from the ~200 fields observed. These results include: A complete census of mass-losing AGB stars in fields of the inner bulge. Even very weak mass-loss are very well characterised, down to the RGB tip. Such stars are by far the most numerous there. They form a very well defined sequence in ISOGAL-DENIS infrared colour-magnitude diagrams. The knowledge of Long Period Variables in two Baade's Window fields confirm that their luminosity is just above the tip of this sequence, and that the spectral type of the stars of the sequence is M6-9III. The same AGB sequence is also quite visible in 7-15 μm colour-magnitude diagrams in the galactic disk, even with a very large extinction. Such AGB stars are thus particularly numerous among the ~105 sources detected by ISOGAL. However, foreground red giants and dusty young stars are also quite numerous. The latter with a few solar masses are detectable through the galactic centre distance. A number of bright young stars are identified on lines of sight close to the Galactic Centre, The combination of ISOGAL

  8. The planetary nebulae populations in five galaxies: abundance patterns and evolution

    NASA Astrophysics Data System (ADS)

    Stasińska, G.; Richer, M. G.; McCall, M. L.

    1998-08-01

    We have collected photometric and spectroscopic data on planetary nebulae (PNe) in 5 galaxies: the Milky Way (bulge), M 31 (bulge), M 32, the LMC and the SMC. We have computed the abundances of O, Ne and N and compared them from one galaxy to another. In each Galaxy, the distribution of oxygen abundances has a large dispersion. The average O/H ratio is larger in the M 31 and the Galactic bulge PNe than in those in the Magellanic Clouds. In a given galaxy, it is also larger for PNe with [O III] luminosities greater than 100 L_⊙, which are likely to probe more recent epochs in the galaxy history. We find that the M 31 and the Galactic bulge PNe extend the very tight Ne/H-O/H correlation observed in the Galactic disk and Magellanic Clouds PNe towards higher metallicities. We note that the anticorrelation between N/O and O/H that was known to occur in the Magellanic Clouds and in the disk PNe is also marginally found in the PNe of the Galactic bulge. Furthermore, we find that high N/O ratios are higher for less luminous PNe. In M 32, all PNe have a large N/O ratio, indicating that the stellar nitrogen abundance is enhanced in this galaxy. We have also compared the PN evolution in the different galactic systems by constructing diagrams that are independent of abundances, and have found strikingly different behaviours of the various samples. In order to help in the interpretation of these data, we have constructed a grid of expanding, PN photoionization models in which the central stars evolve according to the evolutionary tracks of Bl{öcker (1995). These models show that the apparent spectroscopic properties of PNe are extremely dependent, not only on the central stars, but also on the masses and expansion velocities of the nebular envelopes. The main conclusion of the confrontation of the observed samples with the model grids is that the PN populations are indeed not the same in the various parent galaxies. Both stars and nebulae are different. In particular, the

  9. Si K EDGE STRUCTURE AND VARIABILITY IN GALACTIC X-RAY BINARIES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schulz, Norbert S.; Corrales, Lia; Canizares, Claude R.

    2016-08-10

    We survey the Si K edge structure in various absorbed Galactic low-mass X-ray binaries (LMXBs) to study states of silicon in the inter- and circum-stellar medium. The bulk of these LMXBs lie toward the Galactic bulge region and all have column densities above 10{sup 22} cm{sup −2}. The observations were performed using the Chandra High Energy Transmission Grating Spectrometer. The Si K edge in all sources appears at an energy value of 1844 ± 0.001 eV. The edge exhibits significant substructure that can be described by a near edge absorption feature at 1849 ± 0.002 eV and a far edgemore » absorption feature at 1865 ± 0.002 eV. Both of these absorption features appear variable with equivalent widths up to several mÅ. We can describe the edge structure using several components: multiple edge functions, near edge absorption excesses from silicates in dust form, signatures from X-ray scattering optical depths, and a variable warm absorber from ionized atomic silicon. The measured optical depths of the edges indicate much higher values than expected from atomic silicon cross sections and interstellar medium abundances, and they appear consistent with predictions from silicate X-ray absorption and scattering. A comparison with models also indicates a preference for larger dust grain sizes. In many cases, we identify Si xiii resonance absorption and determine ionization parameters between log ξ = 1.8 and 2.8 and turbulent velocities between 300 and 1000 km s{sup −1}. This places the warm absorber in close vicinity of the X-ray binaries. In some data, we observe a weak edge at 1.840 keV, potentially from a lesser contribution of neutral atomic silicon.« less

  10. Exploring Halo Substructure with Giant Stars. XV. Discovery of a Connection between the Monoceros Ring and the Triangulum–Andromeda Overdensity?

    DOE PAGES

    Li, Ting S.; Sheffield, Allyson A.; Johnston, Kathryn V.; ...

    2017-07-24

    Thanks to modern sky surveys, over twenty stellar streams and overdensity structures have been discovered in the halo of the Milky Way. Here, in this paper, we present an analysis of spectroscopic observations of individual stars from one such structure, "A13", first identified as an overdensity using the M giant catalog from the Two Micron All-Sky Survey. Our spectroscopic observations show that stars identified with A13 have a velocity dispersion ofmore » $$\\lesssim$$ 40 $$\\mathrm{km~s^{-1}}$$, implying that it is a genuine coherent structure rather than a chance super-position of random halo stars. From its position on the sky, distance ($$\\sim$$15 kpc heliocentric), and kinematical properties, A13 is likely to be an extension of another low Galactic latitude substructure -- the Galactic Anticenter Stellar Structure (also known as the Monoceros Ring) -- towards smaller Galactic longitude and farther distance. Furthermore, the kinematics of A13 also connect it with another structure in the southern Galactic hemisphere -- the Triangulum-Andromeda overdensity. Finally, we discuss these three connected structures within the context of a previously proposed scenario that one or all of these features originate from the disk of the Milky Way.« less

  11. Exploring Halo Substructure with Giant Stars. XV. Discovery of a Connection between the Monoceros Ring and the Triangulum–Andromeda Overdensity?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Ting S.; Sheffield, Allyson A.; Johnston, Kathryn V.

    Thanks to modern sky surveys, over twenty stellar streams and overdensity structures have been discovered in the halo of the Milky Way. Here, in this paper, we present an analysis of spectroscopic observations of individual stars from one such structure, "A13", first identified as an overdensity using the M giant catalog from the Two Micron All-Sky Survey. Our spectroscopic observations show that stars identified with A13 have a velocity dispersion ofmore » $$\\lesssim$$ 40 $$\\mathrm{km~s^{-1}}$$, implying that it is a genuine coherent structure rather than a chance super-position of random halo stars. From its position on the sky, distance ($$\\sim$$15 kpc heliocentric), and kinematical properties, A13 is likely to be an extension of another low Galactic latitude substructure -- the Galactic Anticenter Stellar Structure (also known as the Monoceros Ring) -- towards smaller Galactic longitude and farther distance. Furthermore, the kinematics of A13 also connect it with another structure in the southern Galactic hemisphere -- the Triangulum-Andromeda overdensity. Finally, we discuss these three connected structures within the context of a previously proposed scenario that one or all of these features originate from the disk of the Milky Way.« less

  12. DefenseLink.mil - Special Report: Battle of the Bulge

    Science.gov Websites

    World War II in a final desperate attempt to break and defeat Allied forces. The ensuing battle, fought the largest land battle involving American Forces in World War II. More than a million Allied troops lines of the Battle of the Bulge during World War II. The now 86-year-old returned to one of his former

  13. A galactic mega-merger

    NASA Image and Video Library

    2016-01-11

    The subject of this NASA/ESA Hubble Space Telescope image is known as NGC 3597. It is the product of a collision between two good-sized galaxies, and is slowly evolving to become a giant elliptical galaxy. This type of galaxy has grown more and more common as the Universe has evolved, with initially small galaxies merging and progressively building up into larger galactic structures over time. NGC 3597 is located approximately 150 million light-years away in the constellation of Crater (The Cup). Astronomers study NGC 3597 to learn more about how elliptical galaxies form — many ellipticals began their lives far earlier in the history of the Universe. Older ellipticals are nicknamed “red and dead” by astronomers because these bloated galaxies are not anymore producing new, bluer, stars in ages, and are thus packed full of old and redder stellar populations. Before infirmity sets in, some freshly formed elliptical galaxies experience a final flush of youth, as is the case with NGC 3597. Galaxies smashing together pool their available gas and dust, triggering new rounds of star birth. Some of this material ends up in dense pockets initially called proto-globular clusters, dozens of which festoon NGC 3597. These pockets will go on to collapse and form fully-fledged globular clusters, large spheres that orbit the centres of galaxies like satellites, packed tightly full of millions of stars.

  14. DETERMINING AGES OF APOGEE GIANTS WITH KNOWN DISTANCES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feuillet, Diane K.; Holtzman, Jon; Bovy, Jo

    2016-01-20

    We present a sample of 705 local giant stars observed using the New Mexico State University 1 m telescope with the Sloan Digital Sky Survey-III/Apache Point Observatory Galactic Evolution Experiment (APOGEE) spectrograph, for which we estimate stellar ages and the local star formation history (SFH). The high-resolution (R ∼ 22,500), near infrared (1.51–1.7 μm) APOGEE spectra provide measurements of stellar atmospheric parameters (temperature, surface gravity, [M/H], and [α/M]). Due to the smaller uncertainties in surface gravity possible with high-resolution spectra and accurate Hipparcos distance measurements, we are able to calculate the stellar masses to within 30%. For giants, the relativelymore » rapid evolution up the red giant branch allows the age to be constrained by the mass. We examine methods of estimating age using both the mass–age relation directly and a Bayesian isochrone matching of measured parameters, assuming a constant SFH. To improve the SFH prior, we use a hierarchical modeling approach to constrain the parameters of the model SFH using the age probability distribution functions of the data. The results of an α-dependent Gaussian SFH model show a clear age–[α/M] relation at all ages. Using this SFH model as the prior for an empirical Bayesian analysis, we determine ages for individual stars. The resulting age–metallicity relation is flat, with a slight decrease in [M/H] at the oldest ages and a ∼0.5 dex spread in metallicity across most ages. For stars with ages ≲1 Gyr we find a smaller spread, consistent with radial migration having a smaller effect on these young stars than on the older stars.« less

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gould, A.; Yee, J. C.; Pinsonneault, M. H.

    The Galactic bulge source MOA-2010-BLG-523S exhibited short-term deviations from a standard microlensing light curve near the peak of an A {sub max} {approx} 265 high-magnification microlensing event. The deviations originally seemed consistent with expectations for a planetary companion to the principal lens. We combine long-term photometric monitoring with a previously published high-resolution spectrum taken near peak to demonstrate that this is an RS CVn variable, so that planetary microlensing is not required to explain the light-curve deviations. This is the first spectroscopically confirmed RS CVn star discovered in the Galactic bulge.

  16. Laser-bulge based ultrasonic bonding method for fabricating multilayer thermoplastic microfluidic devices

    NASA Astrophysics Data System (ADS)

    Liang, Chao; Liu, Chong; Liu, Ziyang; Meng, Fanjian; Li, Jingmin

    2017-11-01

    Ultrasonic bonding is a commonly-used method for fabrication of thermoplastic microfluidic devices. However, due to the existence of the energy director (a convex structure to concentrate the ultrasonic energy), it is difficult to control its molten polymer flow, which may result in a small gap between the bonding interface or microchannel clogging. In this paper, we present an approach to address these issues. Firstly, the microchannels were patterned onto the PMMA sheets using hot embossing with the wire electrical discharge machined molds. Then, a small bulge, which was formed at the edge of the laser-ablated groove (LG), was generated around the microchannel using a CO2 laser ablation system. By using the bulge to concentrate the ultrasonic energy, there was no need for fabricating the complicated and customized energy director. When the bulge was melted, it was able to flow into the LG which overcame the ‘gap’ and ‘clogging’ problems. Here, two types of two-layer microfluidic devices and a five-layer micromixer were fabricated to validate its performance. Our results showed that these thermoplastic microdevices can be successfully bonded by using this method. The liquid leakage was not observed in both the capillary-driven flowing test and the pressure-driven mixing experiments. It is a potential method for bonding the thermoplastic microfluidic devices.

  17. RE-EXAMINING LARSON'S SCALING RELATIONSHIPS IN GALACTIC MOLECULAR CLOUDS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heyer, Mark; Krawczyk, Coleman; Duval, Julia

    The properties of Galactic molecular clouds tabulated by Solomon et al. (SRBY) are re-examined using the Boston University-FCRAO Galactic Ring Survey of {sup 13}CO J = 1-0 emission. These new data provide a lower opacity tracer of molecular clouds and improved angular and spectral resolution compared with previous surveys of molecular line emission along the Galactic Plane. We calculate giant molecular cloud (GMC) masses within the SRBY cloud boundaries assuming local thermodynamic equilibrium (LTE) conditions throughout the cloud and a constant H{sub 2} to {sup 13}CO abundance, while accounting for the variation of the {sup 12}C/{sup 13}C with galactocentric radius.more » The LTE-derived masses are typically five times smaller than the SRBY virial masses. The corresponding median mass surface density of molecular hydrogen for this sample is 42 M{sub sun} pc{sup -2}, which is significantly lower than the value derived by SRBY (median 206 M{sub sun} pc{sup -2}) that has been widely adopted by most models of cloud evolution and star formation. This discrepancy arises from both the extrapolation by SRBY of velocity dispersion, size, and CO luminosity to the 1 K antenna temperature isophote that likely overestimates the GMC masses and our assumption of constant {sup 13}CO abundance over the projected area of each cloud. Owing to the uncertainty of molecular abundances in the envelopes of clouds, the mass surface density of GMCs could be larger than the values derived from our {sup 13}CO measurements. From velocity dispersions derived from the {sup 13}CO data, we find that the coefficient of the cloud structure functions, v{sup 0} = {sigma}{sub v}/R {sup 1/2}, is not constant, as required to satisfy Larson's scaling relationships, but rather systematically varies with the surface density of the cloud as {approx}{sigma}{sup 0.5} as expected for clouds in self-gravitational equilibrium.« less

  18. Characterization of Friction Stir Welded Tubes by Means of Tube Bulge Test

    NASA Astrophysics Data System (ADS)

    D'Urso, G.; Longo, M.; Giardini, C.

    2011-05-01

    Mechanical properties of friction stir welded joints are generally evaluated by means of conventional tensile test. This testing method might provide insufficient information because maximum strain obtained in tensile test before necking is small; moreover, the application of tensile test is limited when the joint path is not linear or even when the welds are executed on curved surfaces. Therefore, in some cases, it would be preferable to obtain the joints properties from other testing methods. Tube bulge test can be a valid solution for testing circumferential or longitudinal welds executed on tubular workpieces. The present work investigates the mechanical properties and the formability of friction stir welded tubes by means of tube bulge tests. The experimental campaign was performed on tubular specimens having a thickness of 3 mm and an external diameter of 40 mm, obtained starting from two semi-tubes longitudinally friction stir welded. The first step, regarding the fabrication of tubes, was performed combining a conventional forming process and friction stir welding. Sheets in Al-Mg-Si-Cu alloy AA6060 T6 were adopted for this purpose. Plates having a dimension of 225×60 mm were bent (with a bending axis parallel to the main dimension) in order to obtain semi-tubes. A particular care was devoted to the fabrication of forming devices (punch and die) in order to minimize the springback effects. Semi-tubes were then friction stir welded by means of a CNC machine tool. Some preliminary tests were carried out by varying the welding parameters, namely feed rate and rotational speed. A very simple tool having flat shoulder and cylindrical pin was used. The second step of the research was based on testing the welded tubes by means of tube bulge test. A specific equipment having axial actuators with a conical shape was adopted for this study. Some analyses were carried out on the tubes bulged up to a certain pressure level. In particular, the burst pressure and the

  19. The Black Hole Mass-Bulge Luminosity Relationship for Reverberation- Mapped AGNs in the Near-IR

    NASA Astrophysics Data System (ADS)

    Manne-Nicholas, Emily R.; Bentz, Misty C.

    2013-02-01

    We propose to use WHIRC on WIYN to obtain high spatial resolution near-IR images of the remaining host galaxies in our sample of reverberation-mapped AGNs in order to study the effect of host-galaxy morphology on the M_BH-L_bulge scaling relationship. Recent studies of the M_BH-sigma_star relationship, which is based on the stellar and gas-dynamical sample of black hole masses, have uncovered a possible offset in the relationship due to the presence of a pseudobulge or bar in the host galaxy. This offset would adversely affect ones ability to use the M_BH-sigma_star relationship as a way to estimate black hole masses efficiently because it would require the detailed morphology of the galaxy to be known it a priori. Preliminary results based on optical HST data suggest that the M_BH-L_bulge is not plagued by this same offset. However, due to dust and on-going star formation, the optical data yield an M_BH-L_bulge relationship with a slightly higher scatter. WHIRC near-IR imaging is essential to minimize the effects of dust and star formation in order to confirm the M_BH-L_bulge relationship as a more accurate predictor of black hole masses and a potentially more fundamental relationship, thus informing our understanding of black hole and galaxy co-evolution across cosmic time. emphThe proposed observations will comprise a significant portion of the PI's PhD thesis.

  20. Search for Carbon-Rich Asymptotic Giant Branch Stars in Milky Way Globular Clusters

    NASA Astrophysics Data System (ADS)

    Indahl, Briana; Pessev, P.

    2014-01-01

    From our current understanding of stellar evolution, it would not be expected to find carbon rich asymptotic giant branch (AGB) stars in Milky Way globular clusters. Due to the low metallicity of the population II stars making up the globular clusters and their age, stars large enough to fuse carbon should have already evolved off of the asymptotic giant branch. Recently, however, there have been serendipitous discoveries of these types of stars. Matsunaga et al. (2006) discovered a Mira variable in the globular cluster Lynga 7. It was later confirmed by Feast et al. (2012) that the star is a member of the cluster and must be a product of a stellar merger. In the same year, Sharina et al. (2012) discovered a carbon star in the low metallicity globular cluster NGC6426 and reports it to be a CH star. Five more of these types of stars have been made as serendipitous discoveries and have been reported by Harding (1962), Dickens (1972), Cote et al. (1997), and Van Loon (2007). The abundance of these types of carbon stars in Milky Way globular clusters has been unknown because the discovery of these types of objects has only ever been a serendipitous discovery. These stars could have been easily overlooked in the past as they are outside the typical parameter space of galactic globular clusters. Also advances in near-infrared instruments and observing techniques have made it possible to detect the fainter carbon stars in binary systems. Having an understanding of the abundances of carbon stars in galactic globular clusters will aid in the modeling of globular cluster and galaxy formation leading to a better understanding of these processes. To get an understanding of the abundances of these stars we conducted the first comprehensive search for AGB carbon stars into all Milky Way globular clusters listed in the Harris Catalog (expect for Pyxis). I have found 128 carbon star candidates using methods of comparing color magnitude diagrams of the clusters with the carbon

  1. Positron annihilation in the nuclear outflows of the Milky Way

    NASA Astrophysics Data System (ADS)

    Panther, Fiona H.; Crocker, Roland M.; Birnboim, Yuval; Seitenzahl, Ivo R.; Ruiter, Ashley J.

    2018-02-01

    Observations of soft gamma rays emanating from the Milky Way from SPI/INTEGRAL reveal the annihilation of ˜2 × 1043 positrons every second in the Galactic bulge. The origin of these positrons, which annihilate to produce a prominent emission line centred at 511 keV, has remained mysterious since their discovery almost 50 yr ago. A plausible origin for the positrons is in association with the intense star formation ongoing in the Galactic centre. Moreover, there is strong evidence for a nuclear outflow in the Milky Way. We find that advective transport and subsequent annihilation of positrons in such an outflow cannot simultaneously replicate the observed morphology of positron annihilation in the Galactic bulge and satisfy the requirement that 90 per cent of positrons annihilate once the outflow has cooled to 104 K.

  2. Paired and interacting galaxies: Conference summary

    NASA Technical Reports Server (NTRS)

    Norman, Colin A.

    1990-01-01

    The author gives a summary of the conference proceedings. The conference began with the presentation of the basic data sets on pairs, groups, and interacting galaxies with the latter being further discussed with respect to both global properties and properties of the galactic nuclei. Then followed the theory, modelling and interpretation using analytic techniques, simulations and general modelling for spirals and ellipticals, starbursts and active galactic nuclei. Before the conference the author wrote down the three questions concerning pairs, groups and interacting galaxies that he hoped would be answered at the meeting: (1) How do they form, including the role of initial conditions, the importance of subclustering, the evolution of groups to compact groups, and the fate of compact groups; (2) How do they evolve, including issues such as relevant timescales, the role of halos and the problem of overmerging, the triggering and enhancement of star formation and activity in the galactic nuclei, and the relative importance of dwarf versus giant encounters; and (3) Are they important, including the frequency of pairs and interactions, whether merging and interactions are very important aspects of the life of a normal galaxy at formation, during its evolution, in forming bars, shells, rings, bulges, etc., and in the formation and evolution of active galaxies? Where possible he focuses on these three central issues in the summary.

  3. The formation of bulges and black holes: lessons from a census of active galaxies in the SDSS.

    PubMed

    Kauffmann, Guinevere; Heckman, Timothy M

    2005-03-15

    We examine the relationship between galaxies, supermassive black holes and AGN using a sample of 23,000 narrow-emission-line ('type 2') active galactic nuclei (AGN) drawn from a sample of 123,000 galaxies from the Sloan Digital Sky Survey. We have studied how AGN host properties compare with those of normal galaxies and how they depend on the luminosity of the active nucleus. We find that AGN reside in massive galaxies and have distributions of sizes and concentrations that are similar to those of the early-type galaxies in our sample. The host galaxies of low-luminosity AGN have stellar populations similar to normal early types. The hosts of high- luminosity AGN have much younger mean stellar ages, and a significant fraction have experienced recent starbursts. High-luminosity AGN are also found in lower-density environments. We then use the stellar velocity dispersions of the AGN hosts to estimate black hole masses and their [OIII]lambda5007 emission-line luminosities to estimate black hole accretion rates. We find that the volume averaged ratio of star formation to black hole accretion is approximately 1000 for the bulge-dominated galaxies in our sample. This is remarkably similar to the observed ratio of stellar mass to black hole mass in nearby bulges. Most of the present-day black hole growth is occurring in black holes with masses less than 3 x 10(7)M(3). Our estimated accretion rates imply that low-mass black holes are growing on a time-scale that is comparable with the age of the Universe. Around 50% this growth takes place in AGN that are radiating within a factor of five of the Eddington luminosity. Such systems are rare, making up only 0.2% of the low-mass black hole population at the present day. The remaining growth occurs in lower luminosity AGN. The growth time-scale increases by more than an order of magnitude for the most massive black holes in our sample. We conclude that the evolution of the AGN luminosity function documented in recent optical

  4. Active galactic nuclei

    PubMed Central

    Fabian, Andrew C.

    1999-01-01

    Active galactic nuclei are the most powerful, long-lived objects in the Universe. Recent data confirm the theoretical idea that the power source is accretion into a massive black hole. The common occurrence of obscuration and outflows probably means that the contribution of active galactic nuclei to the power density of the Universe has been generally underestimated. PMID:10220363

  5. HIREGS observations of the Galactic center and Galactic plane: Separation of the diffuse Galactic hard X-ray continuum from the point source spectra

    NASA Technical Reports Server (NTRS)

    Boggs, S. E.; Lin, R. P.; Coburn, W.; Feffer, P.; Pelling, R. M.; Schroeder, P.; Slassi-Sennou, S.

    1997-01-01

    The balloon-borne high resolution gamma ray and X-ray germanium spectrometer (HIREGS) was used to observe the Galactic center and two positions along the Galactic plane from Antarctica in January 1995. For its flight, the collimators were configured to measure the Galactic diffuse hard X-ray continuum between 20 and 200 keV by directly measuring the point source contributions to the wide field of view flux for subtraction. The hard X-ray spectra of GX 1+4 and GRO J1655-40 were measured with the diffuse continuum subtracted off. The analysis technique for source separation is discussed and the preliminary separated spectra for these point sources and the Galactic diffuse emission are presented.

  6. Observational constraints to boxy/peanut bulge formation time

    NASA Astrophysics Data System (ADS)

    Pérez, I.; Martínez-Valpuesta, I.; Ruiz-Lara, T.; de Lorenzo-Caceres, A.; Falcón-Barroso, J.; Florido, E.; González Delgado, R. M.; Lyubenova, M.; Marino, R. A.; Sánchez, S. F.; Sánchez-Blázquez, P.; van de Ven, G.; Zurita, A.

    2017-09-01

    Boxy/peanut bulges are considered to be part of the same stellar structure as bars and both could be linked through the buckling instability. The Milky Way is our closest example. The goal of this Letter is to determine if the mass assembly of the different components leaves an imprint in their stellar populations allowing the estimation the time of bar formation and its evolution. To this aim, we use integral field spectroscopy to derive the stellar age distributions, SADs, along the bar and disc of NGC 6032. The analysis clearly shows different SADs for the different bar areas. There is an underlying old (≥12 Gyr) stellar population for the whole galaxy. The bulge shows star formation happening at all times. The inner bar structure shows stars of ages older than 6 Gyr with a deficit of younger populations. The outer bar region presents an SAD similar to that of the disc. To interpret our results, we use a generic numerical simulation of a barred galaxy. Thus, we constrain, for the first time, the epoch of bar formation, the buckling instability period and the posterior growth from disc material. We establish that the bar of NGC 6032 is old, formed around 10 Gyr ago while the buckling phase possibly happened around 8 Gyr ago. All these results point towards bars being long-lasting even in the presence of gas.

  7. Featured Image: Globular Cluster Orbits

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2017-04-01

    This figure (click for the full view) shows the meridional galactic orbits of 12 globular clusters that orbit the Milky Way. The recent release of stellar parallax data from Gaia allowed a team of scientists at Dartmouth College to improve measurements of a number of galactic globular clusters very old clusters of stars that can either orbit within the galactic disk and bulge or more distantly in the galactic halo. In a recent publication led by Erin OMalley, the team presents their findings and combines their new measurements for the clusters with proper motions from past studies to calculate the orbits that these globulars take. These calculations show us whether the clusters reside in the galactic disk and bulge (as only NGC 104 does in the sample shown here, since its orbit is confined to 8 kpc radially and 4 kpc vertically of the galactic center), or if they are halo clusters. To learn more about the authors work, you can check out the paper below!CitationErin M. OMalley et al 2017 ApJ 838 162. doi:10.3847/1538-4357/aa6574

  8. Millisecond pulsars and the Galactic Center gamma-ray excess: the importance of luminosity function and secondary emission

    NASA Astrophysics Data System (ADS)

    Petrović, Jovana; Serpico, Pasquale D.; Zaharijas, Gabrijela

    2015-02-01

    Several groups of authors have analyzed Fermi LAT data in a region around the Galactic Center finding an unaccounted gamma-ray excess over diffuse backgrounds in the GeV energy range. It has been argued that it is difficult or even impossible to explain this diffuse emission by the leading astrophysical candidates—millisecond pulsars (MSPs). Here we provide a new estimate of the contribution to the excess by a population of yet unresolved MSP located in the bulge of the Milky Way. We simulate this population with the GALPLOT package by adopting a parametric approach, with the range of free parameters gauged on the MSP characteristics reported by the second pulsar catalogue (2PC). We find that the conclusions strongly depend on the details of the MSP luminosity function (in particular, its high luminosity end) and other explicit or tacit assumptions on the MSP statistical properties, which we discuss. Notably, for the first time we study the importance of the possible secondary emission of the MSPs in the Galactic Center, i.e. the emission via inverse Compton losses of electrons injected in the interstellar medium. Differently from a majority of other authors, we find that within current uncertainties a large if not dominant contribution of MSPs to the excess cannot be excluded. We also show that the sensitivities of future instruments or possibly already of the latest LAT data analysis (Pass 8) provide good perspectives to test this scenario by resolving a significant number of MSPs.

  9. Spherical accretion in giant elliptical galaxies: multi-transonicity, shocks, and implications on AGN feedback

    NASA Astrophysics Data System (ADS)

    Raychaudhuri, Sananda; Ghosh, Shubhrangshu; Joarder, Partha S.

    2018-06-01

    Isolated massive elliptical galaxies, or that are present at the center of cool-core clusters, are believed to be powered by hot gas accretion directly from their surrounding hot X-ray emitting gaseous medium. This leads to a giant Bondi-type spherical/quasi-spherical accretion flow onto their host SMBHs, with the accretion flow region extending well beyond the Bondi radius. In this work, we present a detailed study of Bondi-type spherical flow in the context of these massive ellipticals by incorporating the effect of entire gravitational potential of the host galaxy in the presence of cosmological constant Λ, considering a five-component galactic system (SMBH + stellar + dark matter + hot gas + Λ). The current work is an extension of Ghosh & Banik (2015), who studied only the cosmological aspect of the problem. The galactic contribution to the potential renders the (adiabatic) spherical flow to become multi-transonic in nature, with the flow topology and flow structure significantly deviating from that of classical Bondi solution. More notably, corresponding to moderate to higher values of galactic mass-to-light ratios, we obtain Rankine-Hugoniot shocks in spherical wind flows. Galactic potential enhances the Bondi accretion rate. Our study reveals that there is a strict lower limit of ambient temperature below which no Bondi accretion can be triggered; which is as high as ˜9 × 106 K for flows from hot ISM-phase, indicating that the hot phase tightly regulates the fueling of host nucleus. Our findings may have wider implications, particularly in the context of outflow/jet dynamics, and radio-AGN feedback, associated with these massive galaxies in the contemporary Universe.

  10. Microsecond-Scale MD Simulations of HIV-1 DIS Kissing-Loop Complexes Predict Bulged-In Conformation of the Bulged Bases and Reveal Interesting Differences between Available Variants of the AMBER RNA Force Fields.

    PubMed

    Havrila, Marek; Zgarbová, Marie; Jurečka, Petr; Banáš, Pavel; Krepl, Miroslav; Otyepka, Michal; Šponer, Jiří

    2015-12-10

    We report an extensive set of explicit solvent molecular dynamics (MD) simulations (∼25 μs of accumulated simulation time) of the RNA kissing-loop complex of the HIV-1 virus initiation dimerization site. Despite many structural investigations by X-ray, NMR, and MD techniques, the position of the bulged purines of the kissing complex has not been unambiguously resolved. The X-ray structures consistently show bulged-out positions of the unpaired bases, while several NMR studies show bulged-in conformations. The NMR studies are, however, mutually inconsistent regarding the exact orientations of the bases. The earlier simulation studies predicted the bulged-out conformation; however, this finding could have been biased by the short simulation time scales. Our microsecond-long simulations reveal that all unpaired bases of the kissing-loop complex stay preferably in the interior of the kissing-loop complex. The MD results are discussed in the context of the available experimental data and we suggest that both conformations are biochemically relevant. We also show that MD provides a quite satisfactory description of this RNA system, contrasting recent reports of unsatisfactory performance of the RNA force fields for smaller systems such as tetranucleotides and tetraloops. We explain this by the fact that the kissing complex is primarily stabilized by an extensive network of Watson-Crick interactions which are rather well described by the force fields. We tested several different sets of water/ion parameters but they all lead to consistent results. However, we demonstrate that a recently suggested modification of van der Waals interactions of the Cornell et al. force field deteriorates the description of the kissing complex by the loss of key stacking interactions stabilizing the interhelical junction and excessive hydrogen-bonding interactions.

  11. Observing multiple populations in globular clusters with the ESO archive: NGC 6388 reloaded

    NASA Astrophysics Data System (ADS)

    Carretta, Eugenio; Bragaglia, Angela

    2018-06-01

    The metal-rich and old bulge globular cluster (GC) NGC 6388 is one of the most massive Galactic GCs (M 106 M⊙). However, the spectroscopic properties of its multiple stellar populations rested only on 32 red giants (only 7 of which observed with UVES, the others with GIRAFFE), given the difficulties in observing a rather distant cluster, heavily contaminated by bulge and disc field stars. We bypassed the problem using the resources of the largest telescope facility ever: the European Southern Observatory (ESO) archive. By selecting member stars identified by other programmes, we derive atmospheric parameters and the full set of abundances for 15 species from high-resolution UVES spectra of another 17 red giant branch stars in NGC 6388. We confirm that no metallicity dispersion is detectable in this GC. About 30% of the stars show the primordial composition of first-generation stars, about 20% present an extremely modified second-generation composition, and 50% have an intermediate composition. The stars are clearly distributed in the Al-O and Na-O planes in three discrete groups. We find substantial hints that more than a single class of polluters is required to reproduce the composition of the intermediate component in NGC 6388. In the heavily polluted component the sum Mg+Al increases as Al increases. The sum Mg+Al+Si is constant, and is the fossil record of hot H-burning at temperatures higher than about 70 MK in the first-generation polluters that contributed to form multiple populations in this cluster. Based on observations collected at ESO telescopes under programmes 073.D-0211 (propr ietary), and 073.D-0760, 381.D-0329, 095.D-0834 (archival).

  12. The VMC Survey. XI. Radial Stellar Population Gradients in the Galactic Globular Cluster 47 Tucanae

    NASA Astrophysics Data System (ADS)

    Li, Chengyuan; de Grijs, Richard; Deng, Licai; Rubele, Stefano; Wang, Chuchu; Bekki, Kenji; Cioni, Maria-Rosa L.; Clementini, Gisella; Emerson, Jim; For, Bi-Qing; Girardi, Leo; Groenewegen, Martin A. T.; Guandalini, Roald; Gullieuszik, Marco; Marconi, Marcella; Piatti, Andrés E.; Ripepi, Vincenzo; van Loon, Jacco Th.

    2014-07-01

    We present a deep near-infrared color-magnitude diagram of the Galactic globular cluster 47 Tucanae, obtained with the Visible and Infrared Survey Telescope for Astronomy (VISTA) as part of the VISTA near-infrared Y, J, K s survey of the Magellanic System (VMC). The cluster stars comprising both the subgiant and red giant branches exhibit apparent, continuous variations in color-magnitude space as a function of radius. Subgiant branch stars at larger radii are systematically brighter than their counterparts closer to the cluster core; similarly, red-giant-branch stars in the cluster's periphery are bluer than their more centrally located cousins. The observations can very well be described by adopting an age spread of ~0.5 Gyr as well as radial gradients in both the cluster's helium abundance (Y) and metallicity (Z), which change gradually from (Y = 0.28, Z = 0.005) in the cluster core to (Y = 0.25, Z = 0.003) in its periphery. We conclude that the cluster's inner regions host a significant fraction of second-generation stars, which decreases with increasing radius; the stellar population in the 47 Tuc periphery is well approximated by a simple stellar population.

  13. Detection of the Galactic Warm Neutral Medium in HI 21cm absorption

    NASA Astrophysics Data System (ADS)

    Patra, Narendra Nath; Kanekar, Nissim; Chengalur, Jayaram N.; Roy, Nirupam

    2018-05-01

    We report a deep Giant Metrewave Radio Telescope (GMRT) search for Galactic HI 21cm absorption towards the quasar B0438-436, yielding the detection of wide, weak HI 21cm absorption, with a velocity-integrated HI 21cm optical depth of 0.0188 ± 0.0036 km s-1. Comparing this with the HI column density measured in the Parkes Galactic All-Sky Survey gives a column density-weighted harmonic mean spin temperature of 3760 ± 365 K, one of the highest measured in the Galaxy. This is consistent with most of the HI along the sightline arising in the stable warm neutral medium (WNM). The low peak HI 21cm optical depth towards B0438-436 implies negligible self-absorption, allowing a multi-Gaussian joint decomposition of the HI 21cm absorption and emission spectra. This yields a gas kinetic temperature of T_k ≤ (4910 ± 1900) K, and a spin temperature of T_s = (1000 ± 345) K for the gas that gives rise to the HI 21cm absorption. Our data are consistent with the HI 21cm absorption arising from either the stable WNM, with T_s ≪ T_k, T_k ≈ 5000 K, and little penetration of the background Lyman-α radiation field into the neutral hydrogen, or from the unstable neutral medium, with T_s ≈ T_k ≈ 1000K.

  14. Variation of z-height of the molecular clouds on the Galactic Plane

    NASA Astrophysics Data System (ADS)

    Lee, Y.; Stark, A. A.

    2002-12-01

    Using the Bell Laboratories Galactic plane in the J=1-0 transition of 13CO, (l, b) = (-5o to 117o, -1o to +1o), and cloud identification code, 13CO clouds have been identified and cataloged as a function of threshold temperature. Distance estimates to the identified clouds have been made with several criteria. Minimum and maximum distances to each identified cloud are determined from a set of all the possible distances of a cloud. Several physical parameters can be determined with distances, such as z-height [D sin (b)], CO luminosity, virial mass and so forth. We select the clouds with a ratio of maximum and minimum of CO luminosities less than 3. The number of selected clouds is 281 out of 1400 identified clouds with 1 K threshold temperature. These clouds are mostly located on the tangential positions in the inner Galaxy, and some are in the Outer Galaxy. It is found that the z-height of lower luminosity clouds (less massive clouds) is systimatically larger than that of high-luminosity clouds (more massive clouds). We claim that this is the first observational evidence of the z-height variation depending on the luminosities (or masses) of molecular clouds on the Galactic plane. Our results could be a basis explaining the formation mechanism of massive clouds, such as giant molecular clouds.

  15. Images in the rocket ultraviolet - The stellar population in the central bulge of M31

    NASA Technical Reports Server (NTRS)

    Bohlin, R. C.; Cornett, R. H.; Hill, J. K.; Hill, R. S.; Oconnell, R. W.; Stecher, T. P.

    1985-01-01

    Imagery of the bulge of M31 obtained with a rocket-borne telescope in two broad bands centered at 1460 A and 2380 A is discussed. The UV spatial profiles over a region about 200 arcsec wide are identical with those at visible wavelengths. The absence of detectable point sources indicates that main-sequence stars hotter than B0 V are not present in the bulge. It is suggested that the far-UV flux in old stellar populations originates in post-AGB stars. The UV flux from such stars is extremely sensitive to age and the physics of their previous mass loss.

  16. Barlenses and X-shaped features compared: two manifestations of boxy/peanut bulges

    NASA Astrophysics Data System (ADS)

    Laurikainen, E.; Salo, H.

    2017-02-01

    Aims: We study the morphological characteristics of boxy/peanut-shaped bulges. In particular, we are interested to determine whether most of the flux associated with bulges in galaxies with masses similar to those of the Milky Way at redshift z 0 might belong to the vertically thick inner part of the bar, in a similar manner as in the Milky Way itself. At high galaxy inclinations, these structures are observed as boxy/peanut/X-shaped features, and when the view is near to face-on, they are observed as barlenses. We also study the possibility that bulges in some fraction of unbarred galaxies might form in a similar manner as the bulges in barred galaxies. Methods: We used the Spitzer Survey of Stellar Structure in Galaxies (S4G) and the Near-IR S0 galaxy Survey (NIRS0S) to compile complete samples of galaxies with barlenses (N = 85) and X-shaped features (N = 88). A sample of unbarred galaxies (N = 41) is also selected. For all 214 galaxies unsharp mask images were created, used to recognize the X-shaped features and to measure their linear sizes. To detect possible boxy isophotes (using the B4-parameter), we also performed an isophotal analysis for the barlens galaxies. We use recently published N-body simulations: the models that exhibit boxy/peanut/X/barlens morphologies are viewed from isotropically chosen directions that cover the full range of galaxy inclinations in the sky. The synthetic images were analyzed in a similar manner as the observations. Results: This is the first time that the observed properties of barlenses and X-shaped features are directly compared across a wide range of galaxy inclinations. A comparison with the simulation models shows that the differences in their apparent sizes, a/rbar ≳ 0.5 for barlenses and a/rbar ≲ 0.5 for X-shapes, can be explained by projection effects. Observations at various inclinations are consistent with intrinsic abl ≈ aX ≈ 0.5rbar: here intrinsic size means the face-on semimajor axis length for bars and

  17. Estrellas variables en campos de cúmulos abiertos galácticos detectadas en el relevamiento VVV

    NASA Astrophysics Data System (ADS)

    Palma, T.; Dékany, I.; Clariá, J. J.; Minniti, D.; Alonso-García, J. A.; Ramírez Alegría, S.; Bonatto, C.

    2016-08-01

    The present project constitutes a massive search for variable stars in the field of open clusters projected on highly reddened regions of the galactic disk and bulge. This search is being performed using -, - and -band observations of the near-infrared variability Survey Vista variables in the Via Lactea. We present the first results obtained in four open clusters projected on the Galactic bulge. The new variables discovered in the current work, 182 in total, are classified on the basis of their light curves and their locations in the corresponding color-magnitude diagrams. Among the newly discovered variable stars, Cepheids, RR Lyrae, Scuti, eclipsing binaries and other types have been found.

  18. JASMINE design and method of data reduction

    NASA Astrophysics Data System (ADS)

    Yamada, Yoshiyuki; Gouda, Naoteru; Yano, Taihei; Kobayashi, Yukiyasu; Niwa, Yoshito

    2008-07-01

    Japan Astrometry Satellite Mission for Infrared Exploration (JASMINE) aims to construct a map of the Galactic bulge with 10 μ arc sec accuracy. We use z-band CCD for avoiding dust absorption, and observe about 10 × 20 degrees area around the Galactic bulge region. Because the stellar density is very high, each FOVs can be combined with high accuracy. With 5 years observation, we will construct 10 μ arc sec accurate map. In this poster, I will show the observation strategy, design of JASMINE hardware, reduction scheme, and error budget. We also construct simulation software named JASMINE Simulator. We also show the simulation results and design of software.

  19. Gravitational microlensing by double stars and planetary systems

    NASA Technical Reports Server (NTRS)

    Mao, Shunde; Paczynski, Bohdan

    1991-01-01

    Almost all stars are in binary systems. When the separation between the two components is comparable to the Einstein ring radius corresponding to the combined mass of the binary acting as a gravitational lens, then an extra pair of images can be created, and the light curve of a lensed source becomes complicated. It is estimated that about 10 percent of all lensing episodes of the Galactic bulge stars will strongly display the binary nature of the lens. The effect is strong even if the companion is a planet. A massive search for microlensing of the Galactic bulge stars may lead to a discovery of the first extrasolar planetary systems.

  20. The phase space of boxy-peanut and X-shaped bulges in galaxies - I. Properties of non-periodic orbits

    NASA Astrophysics Data System (ADS)

    Patsis, P. A.; Katsanikas, M.

    2014-12-01

    The investigation of the phase-space properties of structures encountered in a dynamical system is essential for understanding their formation and enhancement. In this paper, we explore the phase space in energy intervals where we have orbits that act as building blocks for boxy-peanut (b/p) and `X-shaped' structures in rotating potentials of galactic type. We underline the significance of the rotational tori around the 3D families x1v1 and x1v1' that have been bifurcated from the planar x1 family. These tori play a multiple role: (i) they belong to quasi-periodic orbits that reinforce the local density. (ii) They act as obstacles for the diffusion of chaotic orbits and (iii) they attract a large number of chaotic orbits that become sticky to them. There are also bifurcations of unstable families (x1v2, x1v2'). Their unstable asymptotic curves wind around the x1v1 and x1v1' tori generating orbits with hybrid morphologies between that of x1v1 and x1v2. In addition, a new family of multiplicity 2, called x1mul2, is found to be important for the peanut construction. This family produces stickiness phenomena in the critical area of the radial and vertical inner Lindblad resonances (ILRs) and reinforces b/p bulges. Our work shows also that there are peanut-supporting orbits before the vertical ILR. Non-periodic orbits associated with the x1 family secure this contribution as well as the support of b/p structures at several other energy intervals. Non-linear phenomena associated with complex instability of single and double multiplicity families of periodic orbits show that these structures are not interrupted in regions where such orbits prevail. Depending on the main mechanism behind their formation, boxy bulges exhibit different morphological features. Finally, our analysis indicates that `X' features shaped by orbits in the neighbourhood of x1v1 and x1v1' periodic orbits are pronounced only in side-on or nearly end-on views of the bar.

  1. Galactic evolution of copper in the light of NLTE computations

    NASA Astrophysics Data System (ADS)

    Andrievsky, S.; Bonifacio, P.; Caffau, E.; Korotin, S.; Spite, M.; Spite, F.; Sbordone, L.; Zhukova, A. V.

    2018-01-01

    We have developed a model atom for Cu with which we perform statistical equilibrium computations that allow us to compute the line formation of Cu I lines in stellar atmospheres without assuming local thermodynamic equilibrium (LTE). We validate this model atom by reproducing the observed line profiles of the Sun, Procyon and 11 metal-poor stars. Our sample of stars includes both dwarfs and giants. Over a wide range of stellar parameters, we obtain excellent agreement among different Cu I lines. The 11 metal-poor stars have iron abundances in the range - 4.2 ≤ [Fe/H] ≤ -1.4, the weighted mean of the [Cu/Fe] ratios is -0.22 dex, with a scatter of -0.15 dex. This is very different from the results from LTE analysis (the difference between NLTE and LTE abundances reaches 1 dex) and in spite of the small size of our sample, it prompts for a revision of the Galactic evolution of Cu.

  2. New PARSEC data base of α-enhanced stellar evolutionary tracks and isochrones - I. Calibration with 47 Tuc (NGC 104) and the improvement on RGB bump

    NASA Astrophysics Data System (ADS)

    Fu, Xiaoting; Bressan, Alessandro; Marigo, Paola; Girardi, Léo; Montalbán, Josefina; Chen, Yang; Nanni, Ambra

    2018-05-01

    Precise studies on the Galactic bulge, globular cluster, Galactic halo, and Galactic thick disc require stellar models with α enhancement and various values of helium content. These models are also important for extra-Galactic population synthesis studies. For this purpose, we complement the existing PARSEC models, which are based on the solar partition of heavy elements, with α-enhanced partitions. We collect detailed measurements on the metal mixture and helium abundance for the two populations of 47 Tuc (NGC 104) from the literature, and calculate stellar tracks and isochrones with these α-enhanced compositions. By fitting the precise colour-magnitude diagram with HST ACS/WFC data, from low main sequence till horizontal branch (HB), we calibrate some free parameters that are important for the evolution of low mass stars like the mixing at the bottom of the convective envelope. This new calibration significantly improves the prediction of the red giant branch bump (RGBB) brightness. Comparison with the observed RGB and HB luminosity functions also shows that the evolutionary lifetimes are correctly predicted. As a further result of this calibration process, we derive the age, distance modulus, reddening, and the RGB mass-loss for 47 Tuc. We apply the new calibration and α-enhanced mixtures of the two 47 Tuc populations ([α/Fe] ˜ 0.4 and 0.2) to other metallicities. The new models reproduce the RGB bump observations much better than previous models. This new PARSEC data base, with the newly updated α-enhanced stellar evolutionary tracks and isochrones, will also be a part of the new stellar products for Gaia.

  3. Plasmasphere dynamics in the duskside bulge region: A new look at old topic

    NASA Technical Reports Server (NTRS)

    Carpenter, D. L.; Giles, B. L.; Chappell, C. R.; Decreau, P. M. E.; Anderson, R. R.; Persoon, A. M.; Smith, A. J.; Corcuff, Y.; Canu, P.

    1993-01-01

    Data acquired during several multiday periods in 1982 at ground stations Siple, Halley, and Kerguelen and on satellites Dynamics Explorer 1, International Sun Earth Explorer 1, and GEOS 2 have been used to investigate thermal plasma structure and dynamics in the duskside plasmasphere bulge region of the Earth. The distribution of thermal plasma in the dusk bulge sector is difficult to describe realistically, in part because of the time integral manner in which the thermal plasma distribution depends upon on the effects of bulk cross-B flow and interchange plasma flows along B. While relatively simple MHD models can be useful for qualitatively predicting certain effects of enhanced convection on a quiet plasmasphere, such as an initial sunward entrainment of the outer regions, they are of limited value in predicting the duskside thermal plasma structures that are observed. Furthermore, use of such models can be misleading if one fails to realize that they do not address the question of the formation of the steep plasmapause profile or provide for a possible role of instabilities or other irreversible processes in plasmapause formation. Our specific findings, which are based both upon the present case studies and upon earlier work, include the following: (1) during active periods the plasmasphere appears to become divided into two entities, a main plasmasphere and a duskside bulge region. (2) in the aftermath of an increase in convection activity, the main plasmasphere tends (from a statistical point of view) to become roughly circular in equatorial cross section, with only a slight bulge at dusk; (3) the abrupt westward edge of the duskside bulge observed from whistlers represents a state in the evolution of sunward extending streamers; (4) in the aftermath of a weak magnetic storm, 10 to 30% of the plasma 'removed' from the outer plasmasphere appears to remain in the afternoon-dusk sector beyond the main plasmasphere. (5) outlying dense plasma structures may

  4. Intermittent behavior of galactic dynamo activities

    NASA Technical Reports Server (NTRS)

    Ko, C. M.; Parker, E. N.

    1989-01-01

    Recent observations by Beck and Golla of far-infrared and radio continuum emission from nearby spiral galaxies suggest that the galactic magnetic field strength is connected to the current star formation rate. The role of star formation on the generation of large-scale galactic magnetic field is studied in this paper. Using a simple galactic model, it is shown how the galactic dynamo depends strongly on the turbulent velocity of the interstellar medium. When the star formation efficiency is high, the ISM is churned which in turn amplifies the galactic magnetic field. Between active star formation epochs, the magnetic field is in dormant state and decays at a negligible rate. If density waves trigger star formation, then they also turn on the otherwise dormant dynamo.

  5. The formation of bulges, discs and two-component galaxies in the CANDELS Survey at z < 3

    NASA Astrophysics Data System (ADS)

    Margalef-Bentabol, Berta; Conselice, Christopher J.; Mortlock, Alice; Hartley, Will; Duncan, Kenneth; Ferguson, Harry C.; Dekel, Avishai; Primack, Joel R.

    2016-09-01

    We examine a sample of 1495 galaxies in the CANDELS fields to determine the evolution of two-component galaxies, including bulges and discs, within massive galaxies at the epoch 1 < z < 3 when the Hubble sequence forms. We fit all of our galaxies' light profiles with a single Sérsic fit, as well as with a combination of exponential and Sérsic profiles. The latter is done in order to describe a galaxy with an inner and an outer component, or bulge and disc component. We develop and use three classification methods (visual, F-test and the residual flux fraction) to separate our sample into one-component galaxies (disc/spheroids-like galaxies) and two-component galaxies (galaxies formed by an `inner part' or bulge and an `outer part' or disc). We then compare the results from using these three different ways to classify our galaxies. We find that the fraction of galaxies selected as two-component galaxies increases on average 50 per cent from the lowest mass bin to the most massive galaxies, and decreases with redshift by a factor of 4 from z = 1 to 3. We find that single Sérsic `disc-like' galaxies have the highest relative number densities at all redshifts, and that two-component galaxies have the greatest increase and become at par with Sérsic discs by z = 1. We also find that the systems we classify as two-component galaxies have an increase in the sizes of their outer components, or `discs', by about a factor of 3 from z = 3 to 1.5, while the inner components or `bulges' stay roughly the same size. This suggests that these systems are growing from the inside out, whilst the bulges or protobulges are in place early in the history of these galaxies. This is also seen to a lesser degree in the growth of single `disc-like' galaxies versus `spheroid-like' galaxies over the same epoch.

  6. Allometry indicates giant eyes of giant squid are not exceptional.

    PubMed

    Schmitz, Lars; Motani, Ryosuke; Oufiero, Christopher E; Martin, Christopher H; McGee, Matthew D; Gamarra, Ashlee R; Lee, Johanna J; Wainwright, Peter C

    2013-02-18

    The eyes of giant and colossal squid are among the largest eyes in the history of life. It was recently proposed that sperm whale predation is the main driver of eye size evolution in giant squid, on the basis of an optical model that suggested optimal performance in detecting large luminous visual targets such as whales in the deep sea. However, it is poorly understood how the eye size of giant and colossal squid compares to that of other aquatic organisms when scaling effects are considered. We performed a large-scale comparative study that included 87 squid species and 237 species of acanthomorph fish. While squid have larger eyes than most acanthomorphs, a comparison of relative eye size among squid suggests that giant and colossal squid do not have unusually large eyes. After revising constants used in a previous model we found that large eyes perform equally well in detecting point targets and large luminous targets in the deep sea. The eyes of giant and colossal squid do not appear exceptionally large when allometric effects are considered. It is probable that the giant eyes of giant squid result from a phylogenetically conserved developmental pattern manifested in very large animals. Whatever the cause of large eyes, they appear to have several advantages for vision in the reduced light of the deep mesopelagic zone.

  7. Search for EeV protons of galactic origin

    NASA Astrophysics Data System (ADS)

    Abbasi, R. U.; Abe, M.; Abu-Zayyad, T.; Allen, M.; Azuma, R.; Barcikowski, E.; Belz, J. W.; Bergman, D. R.; Blake, S. A.; Cady, R.; Cheon, B. G.; Chiba, J.; Chikawa, M.; Fujii, T.; Fukushima, M.; Goto, T.; Hanlon, W.; Hayashi, Y.; Hayashi, M.; Hayashida, N.; Hibino, K.; Honda, K.; Ikeda, D.; Inoue, N.; Ishii, T.; Ishimori, R.; Ito, H.; Ivanov, D.; Jui, C. C. H.; Kadota, K.; Kakimoto, F.; Kalashev, O.; Kasahara, K.; Kawai, H.; Kawakami, S.; Kawana, S.; Kawata, K.; Kido, E.; Kim, H. B.; Kim, J. H.; Kim, J. H.; Kishigami, S.; Kitamura, S.; Kitamura, Y.; Kuzmin, V.; Kwon, Y. J.; Lan, J.; Lubsandorzhiev, B.; Lundquist, J. P.; Machida, K.; Martens, K.; Matsuda, T.; Matsuyama, T.; Matthews, J. N.; Minamino, M.; Mukai, K.; Myers, I.; Nagasawa, K.; Nagataki, S.; Nakamura, T.; Nonaka, T.; Nozato, A.; Ogio, S.; Ogura, J.; Ohnishi, M.; Ohoka, H.; Oki, K.; Okuda, T.; Ono, M.; Onogi, R.; Oshima, A.; Ozawa, S.; Park, I. H.; Pshirkov, M. S.; Rodriguez, D. C.; Rubtsov, G.; Ryu, D.; Sagawa, H.; Saito, K.; Saito, Y.; Sakaki, N.; Sakurai, N.; Scott, L. M.; Sekino, K.; Shah, P. D.; Shibata, T.; Shibata, F.; Shimodaira, H.; Shin, B. K.; Shin, H. S.; Smith, J. D.; Sokolsky, P.; Stokes, B. T.; Stratton, S. R.; Stroman, T. A.; Suzawa, T.; Takahashi, Y.; Takamura, M.; Takeda, M.; Takeishi, R.; Taketa, A.; Takita, M.; Tameda, Y.; Tanaka, M.; Tanaka, K.; Tanaka, H.; Thomas, S. B.; Thomson, G. B.; Tinyakov, P.; Tirone, A. H.; Tkachev, I.; Tokuno, H.; Tomida, T.; Troitsky, S.; Tsunesada, Y.; Tsutsumi, K.; Uchihori, Y.; Udo, S.; Urban, F.; Wong, T.; Yamane, R.; Yamaoka, H.; Yamazaki, K.; Yang, J.; Yashiro, K.; Yoneda, Y.; Yoshida, S.; Yoshii, H.; Zollinger, R.; Zundel, Z.

    2017-01-01

    Cosmic rays in the energy range 1018.0-1018.5 eV are thought to have a light, probably protonic, composition. To study their origin one can search for anisotropy in their arrival directions. Extragalactic cosmic rays should be isotropic, but galactic cosmic rays of this type should be seen mostly along the galactic plane, and there should be a shortage of events coming from directions near the galactic anticenter. This is due to the fact that, under the influence of the galactic magnetic field, the transition from ballistic to diffusive behavior is well advanced, and this qualitative picture persists over the whole energy range. Guided by models of the galactic magnetic field that indicate that the enhancement along the galactic plane should have a standard deviation of about 20° in galactic latitude, and the deficit in the galactic anticenter direction should have a standard deviation of about 50° in galactic longitude, we use the data of the Telescope Array surface detector in 1018.0 to 1018.5 eV energy range to search for these effects. The data are isotropic. Neither an enhancement along the galactic plane nor a deficit in the galactic anticenter direction is found. Using these data we place an upper limit on the fraction of EeV cosmic rays of galactic origin at 1.3% at 95% confidence level.

  8. A starburst region at the tip of the Galactic bar around l=347-350

    NASA Astrophysics Data System (ADS)

    Marco, Amparo; Negueruela, Ignacio; González-Fernández, Carlos; Maíz-Apellániz, Jesús; Dorda, Ricardo; Clark, J. Simon

    2015-08-01

    In the past few years, several clusters of red supergiants have been discovered in a small region of the Milky Way, close to the base of the Scutum-Crux Arm and the tip of the Long Bar, between l=24º and l=29º. According to the number of observed red supergiants and using population synthesis models, they must contain very large stellar populations to harbour so many RSGs, some of them being candidates to the most massive young clusters in the Galaxy. These massive open clusters are part of a huge structure most likely containing hundreds of red supergiants. These results suggest that the Scutum complex represents a giant star formation region triggered by dynamical excitation by the Galactic bar, whose tip is believed to intersect the Scutum-Crux Arm close to this region. If this scenario is correct, a similar structure would be expected close to the opposite end of the Galactic long bar. We must find in an area between l=347º-350º (these sight lines include the expected location of the far tip of the Galactic bar in the model of González-Fernández et al. (2012)) likely candidates to very massive open clusters.We are carrying out a comprehensive optical and infrared photometric and spectroscopic study of this region containing the open clusters VdBH 222, Teutsch 85 and their surroundings. We have analyzed the population of VdBH 222 and we have found a large population of luminous supergiants and OB stars. The cluster lies behind ~7.5 mag of extinction and has a probable distance of ~ 10 kpc and an age of ~12 Ma. VdBH 222 is a young massive cluster with a likely mass > 20000 Msolar. Now, we are analyzing the population of the open cluster Teutsch 85 and surroundings, finding a numerous population of supergiants.In this work, we will discuss the possible role of the Galactic bar in triggering the formation of starburst clusters.

  9. Chemical abundances and kinematics of 257 G-, K-type field giants. Setting a base for further analysis of giant-planet properties orbiting evolved stars

    NASA Astrophysics Data System (ADS)

    Adibekyan, V. Zh.; Benamati, L.; Santos, N. C.; Alves, S.; Lovis, C.; Udry, S.; Israelian, G.; Sousa, S. G.; Tsantaki, M.; Mortier, A.; Sozzetti, A.; De Medeiros, J. R.

    2015-06-01

    We performed a uniform and detailed abundance analysis of 12 refractory elements (Na, Mg, Al, Si, Ca, Ti, Cr, Ni, Co, Sc, Mn, and V) for a sample of 257 G- and K-type evolved stars from the CORALIE planet search programme. To date, only one of these stars is known to harbour a planetary companion. We aimed to characterize this large sample of evolved stars in terms of chemical abundances and kinematics, thus setting a solid base for further analysis of planetary properties around giant stars. This sample, being homogeneously analysed, can be used as a comparison sample for other planet-related studies, as well as for different type of studies related to stellar and Galaxy astrophysics. The abundances of the chemical elements were determined using an local thermodynamic equilibrium (LTE) abundance analysis relative to the Sun, with the spectral synthesis code MOOG and a grid of Kurucz ATLAS9 atmospheres. To separate the Galactic stellar populations, both a purely kinematical approach and a chemical method were applied. We confirm the overabundance of Na in giant stars compared to the field FGK dwarfs. This enhancement might have a stellar evolutionary character, but departures from LTE may also produce a similar enhancement. Our chemical separation of stellar populations also suggests a `gap' in metallicity between the thick-disc and high-α metal-rich stars, as previously observed in dwarfs sample from HARPS. The present sample, as most of the giant star samples, also suffers from the B - V colour cut-off, which excludes low-log g stars with high metallicities, and high-log g star with low [Fe/H]. For future studies of planet occurrence dependence on stellar metallicity around these evolved stars, we suggest to use a subsample of stars in a `cut-rectangle' in the log g-[Fe/H] diagram to overcome the aforementioned issue.

  10. Determining the nature of faint X-ray sources from the ASCA Galactic center survey

    NASA Astrophysics Data System (ADS)

    Lutovinov, A. A.; Revnivtsev, M. G.; Karasev, D. I.; Shimansky, V. V.; Burenin, R. A.; Bikmaev, I. F.; Vorob'ev, V. S.; Tsygankov, S. S.; Pavlinsky, M. N.

    2015-05-01

    We present the results of the the identification of six objects from the ASCA Galactic center and Galactic plane surveys: AX J173548-3207, AX J173628-3141, AX J1739.5-2910, AX J1740.4-2856, AX J1740.5-2937, and AX J1743.9-2846. Chandra, XMM-Newton, and XRT/Swift X-ray data have been used to improve the positions of the optical counterparts to these sources. Thereafter, we have carried out a series of spectroscopic observations of the established optical counterparts at the RTT-150 telescope. Analysis of X-ray and optical spectra as well as photometric measurements in a wide wavelength range based on optical and infrared catalogs has allowed the nature of the program sources to be determined. Two X-ray objects have been detected in the error circle of AX J173628-3141: one is a coronally active G star and the other may be a symbiotic star, a red giant with an accreting white dwarf. Three sources (AX J1739.5-2910, AX J1740.5-2937, AX J1743.9-2846) have turned out to be active G-K stars, presumably RS CVn objects, one (AX J1740.4-2856) is an M dwarf, and another one (AX J173548-3207) most likely a low-mass X-ray binary in its low state. The distances and corresponding luminosities of the sources in the soft X-ray band (0.5-10 keV) have been estimated; analysis of deep INTEGRAL Galactic center observations has not revealed a statistically significant flux at energies >20 keV from any of them.

  11. Globular Clusters: Absolute Proper Motions and Galactic Orbits

    NASA Astrophysics Data System (ADS)

    Chemel, A. A.; Glushkova, E. V.; Dambis, A. K.; Rastorguev, A. S.; Yalyalieva, L. N.; Klinichev, A. D.

    2018-04-01

    We cross-match objects from several different astronomical catalogs to determine the absolute proper motions of stars within the 30-arcmin radius fields of 115 Milky-Way globular clusters with the accuracy of 1-2 mas yr-1. The proper motions are based on positional data recovered from the USNO-B1, 2MASS, URAT1, ALLWISE, UCAC5, and Gaia DR1 surveys with up to ten positions spanning an epoch difference of up to about 65 years, and reduced to Gaia DR1 TGAS frame using UCAC5 as the reference catalog. Cluster members are photometrically identified by selecting horizontal- and red-giant branch stars on color-magnitude diagrams, and the mean absolute proper motions of the clusters with a typical formal error of about 0.4 mas yr-1 are computed by averaging the proper motions of selected members. The inferred absolute proper motions of clusters are combined with available radial-velocity data and heliocentric distance estimates to compute the cluster orbits in terms of the Galactic potential models based on Miyamoto and Nagai disk, Hernquist spheroid, and modified isothermal dark-matter halo (axisymmetric model without a bar) and the same model + rotating Ferre's bar (non-axisymmetric). Five distant clusters have higher-than-escape velocities, most likely due to large errors of computed transversal velocities, whereas the computed orbits of all other clusters remain bound to the Galaxy. Unlike previously published results, we find the bar to affect substantially the orbits of most of the clusters, even those at large Galactocentric distances, bringing appreciable chaotization, especially in the portions of the orbits close to the Galactic center, and stretching out the orbits of some of the thick-disk clusters.

  12. Influence of Stellar Multiplicity On Planet Formation. III. Adaptive Optics Imaging of Kepler Stars With Gas Giant Planets

    NASA Astrophysics Data System (ADS)

    Wang, Ji; Fischer, Debra A.; Horch, Elliott P.; Xie, Ji-Wei

    2015-06-01

    As hundreds of gas giant planets have been discovered, we study how these planets form and evolve in different stellar environments, specifically in multiple stellar systems. In such systems, stellar companions may have a profound influence on gas giant planet formation and evolution via several dynamical effects such as truncation and perturbation. We select 84 Kepler Objects of Interest (KOIs) with gas giant planet candidates. We obtain high-angular resolution images using telescopes with adaptive optics (AO) systems. Together with the AO data, we use archival radial velocity data and dynamical analysis to constrain the presence of stellar companions. We detect 59 stellar companions around 40 KOIs for which we develop methods of testing their physical association. These methods are based on color information and galactic stellar population statistics. We find evidence of suppressive planet formation within 20 AU by comparing stellar multiplicity. The stellar multiplicity rate (MR) for planet host stars is {0}-0+5% within 20 AU. In comparison, the stellar MR is 18% ± 2% for the control sample, i.e., field stars in the solar neighborhood. The stellar MR for planet host stars is 34% ± 8% for separations between 20 and 200 AU, which is higher than the control sample at 12% ± 2%. Beyond 200 AU, stellar MRs are comparable between planet host stars and the control sample. We discuss the implications of the results on gas giant planet formation and evolution.

  13. Novel scanning electron microscope bulge test technique integrated with loading function

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Chuanwei; Xie, Huimin, E-mail: liuzw@bit.edu.cn, E-mail: xiehm@mail.tsinghua.edu.cn; Liu, Zhanwei, E-mail: liuzw@bit.edu.cn, E-mail: xiehm@mail.tsinghua.edu.cn

    2014-10-15

    Membranes and film-on-substrate structures are critical elements for some devices in electronics industry and for Micro Electro Mechanical Systems devices. These structures are normally at the scale of micrometer or even nanometer. Thus, the measurement for the mechanical property of these membranes poses a challenge over the conventional measurements at macro-scales. In this study, a novel bulge test method is presented for the evaluation of mechanical property of micro thin membranes. Three aspects are discussed in the study: (a) A novel bulge test with a Scanning Electron Microscope system realizing the function of loading and measuring simultaneously; (b) a simplifiedmore » Digital Image Correlation method for a height measurement; and (c) an imaging distortion correction by the introduction of a scanning Moiré method. Combined with the above techniques, biaxial modulus as well as Young's modulus of the polyimide film can be determined. Besides, a standard tensile test is conducted as an auxiliary experiment to validate the feasibility of the proposed method.« less

  14. The Illustris simulation: supermassive black hole-galaxy connection beyond the bulge

    NASA Astrophysics Data System (ADS)

    Mutlu-Pakdil, Burçin; Seigar, Marc S.; Hewitt, Ian B.; Treuthardt, Patrick; Berrier, Joel C.; Koval, Lauren E.

    2018-02-01

    We study the spiral arm morphology of a sample of the local spiral galaxies in the Illustris simulation and explore the supermassive black hole-galaxy connection beyond the bulge (e.g. spiral arm pitch angle, total stellar mass, dark matter mass, and total halo mass), finding good agreement with other theoretical studies and observational constraints. It is important to study the properties of supermassive black holes and their host galaxies through both observations and simulations and compare their results in order to understand their physics and formative histories. We find that Illustris prediction for supermassive black hole mass relative to pitch angle is in rather good agreement with observations and that barred and non-barred galaxies follow similar scaling relations. Our work shows that Illustris presents very tight correlations between supermassive black hole mass and large-scale properties of the host galaxy, not only for early-type galaxies but also for low-mass, blue and star-forming galaxies. These tight relations beyond the bulge suggest that halo properties determine those of a disc galaxy and its supermassive black hole.

  15. The annihilation of galactic positrons

    NASA Technical Reports Server (NTRS)

    Bussard, R.; Rematy, R.

    1978-01-01

    The probabilities of various channels of galactic positron annihilation were evaluated and the spectrum of the resulting radiation was calculated. The narrow width (FWHM less than 3.2 keV) of the 0.511 MeV line observed from the galactic center implies that a large fraction of positrons should annihilate in a medium of temperature less than 100,000 K and ionization fraction greater than 0.05. HII regions at the galactic center could be possible sites of annihilation.

  16. Calibration of the Tip of the Red Giant Branch Distance Method in IR

    NASA Astrophysics Data System (ADS)

    Sakai, Shoko

    1999-02-01

    We propose to investigate the feasibility of the tip of the red giant branch (TRGB) as a distance indicator in IR wavelength. The TRGB has been shown both observationally and theoretically to be an excellent distance indicator in I-band, mainly because of its insensitivity to both metallicity and age. Its accuracy is comparable to that of the Cepheid variable stars. The TRGB method in I-band is currently calibrated by Galactic globular clusters whose distances have been measured with RR Lyrae variables. The main objective of this proposal is to calibrate this method in IR by obtaining JHK photometry for a number of Galactic globular clusters. This is motivated by two related scientific goals: (1) It will be possible in the future to obtain direct distances to galaxies even in Coma cluster using the NGST, but only if the TRGB method has been calibrated accurately in IR filters. If the method is proven reliable, then it can be a powerful tool to map out the density and velocity fields of the local Universe in three dimensions. (2) A considerable amount of effort has been spent on obtaining accurate, direct distances to nearby galaxies. However, this has been difficult for a number of galaxies, including IC 342, because they are located at very low Galactic latitude. These galaxies could potentially have a tremendous effect on the dynamics of the Local Group, depending on their distances. Using the calibrated IR TRGB method, we could solve this uncertainty by measuring their distances directly.

  17. A CATALOG OF BULGE+DISK DECOMPOSITIONS AND UPDATED PHOTOMETRY FOR 1.12 MILLION GALAXIES IN THE SLOAN DIGITAL SKY SURVEY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Simard, Luc; McConnachie, Alan W.; Trevor Mendel, J.

    We perform two-dimensional, point-spread-function-convolved, bulge+disk decompositions in the g and r bandpasses on a sample of 1,123,718 galaxies from the Legacy area of the Sloan Digital Sky Survey Data Release Seven. Four different decomposition procedures are investigated which make improvements to sky background determinations and object deblending over the standard SDSS procedures that lead to more robust structural parameters and integrated galaxy magnitudes and colors, especially in crowded environments. We use a set of science-based quality assurance metrics, namely, the disk luminosity-size relation, the galaxy color-magnitude diagram, and the galaxy central (fiber) colors to show the robustness of our structuralmore » parameters. The best procedure utilizes simultaneous, two-bandpass decompositions. Bulge and disk photometric errors remain below 0.1 mag down to bulge and disk magnitudes of g {approx_equal} 19 and r {approx_equal} 18.5. We also use and compare three different galaxy fitting models: a pure Sersic model, an n{sub b} = 4 bulge + disk model, and a Sersic (free n{sub b}) bulge + disk model. The most appropriate model for a given galaxy is determined by the F-test probability. All three catalogs of measured structural parameters, rest-frame magnitudes, and colors are publicly released here. These catalogs should provide an extensive comparison set for a wide range of observational and theoretical studies of galaxies.« less

  18. Palomar 13: An Unusual Stellar System in the Galactic Halo

    NASA Astrophysics Data System (ADS)

    Côté, Patrick; Djorgovski, S. G.; Meylan, G.; Castro, Sandra; McCarthy, J. K.

    2002-08-01

    We report the first results of a program to study the internal kinematics of globular clusters in the outer halo of the Milky Way. Using the Keck telescope and High Resolution Echelle Spectrometer, we have measured precise radial velocities for 30 candidate red giants in the direction of Palomar 13, an object traditionally cataloged as a compact, low-luminosity globular cluster. We have combined these radial velocities with published proper motion membership probabilities and new CCD photometry from the Keck and Canada-France-Hawaii telescopes to isolate a sample of 21 probable members. We find a systemic velocity of s=24.1+/-0.5 km s-1 and a projected, intrinsic velocity dispersion of σp=2.2+/-0.4 km s-1. Although modest, this dispersion is nevertheless several times larger than that expected for a globular cluster of this luminosity and central concentration. Taken at face value, it implies a mass-to-light ratio of ΥV=40+24-17 based on the best-fit King-Michie model. The surface density profile of Palomar 13 also appears unusual compared to most Galactic globular clusters; depending upon the details of background subtraction and model-fitting, Palomar 13 either contains a substantial population of ``extratidal'' stars, or is considerably more spatially extended than previously suspected. The full surface density profile is equally well fitted by a King-Michie model having a high concentration and large tidal radius, or by a Navarro-Frenk-White model. We examine-and tentatively reject-a number of possible origins for the observed characteristics of Palomar 13 (e.g., velocity ``jitter'' among the red giant branch stars, spectroscopic binary stars, nonstandard mass functions, modified Newtonian dynamics) and conclude that the two leading explanations are either catastrophic heating during a recent perigalacticon passage or the presence of a dark matter halo. The available evidence therefore suggests that Palomar 13 is either a globular cluster that is now in

  19. Multiple populations in more metal-rich galactic globular clusters

    NASA Astrophysics Data System (ADS)

    Cordero, Maria J.

    In this thesis we present chemical abundances for bright stars in the intermediate metallicity globular cluster (GC) M5, and the relatively metal-rich GCs M71 and 47 Tuc with the goal of improving the understanding of chemical evolution in the metallicity regime sampled by these three GCs. The first chapter presents a brief historical overview in light element abundance variations in globular clusters. In the second chapter we present the results obtained for 47 Tuc, the most-metal rich cluster of my sample. 47 Tuc is an ideal target to study chemical evolution and GC formation in massive more metal-rich GCs since it is the closest massive GC. Chemical abundances for O, Na, Al, Si, Ca, Ti, Fe, Ni, La, and Eu were determined for 164 red giant branch (RGB) stars in 47 Tuc using spectra obtained with both the Hydra multi-fiber spectrograph at the Blanco 4-m telescope and the FLAMES multi-object spectrograph at the ESO Very Large Telescope. The average [Fe/H]= --0.79+/-0.09 dex is consistent with literature values, as well as over-abundances of alpha-elements ([alpha/Fe] ~ 0.3 dex). The n-capture process elements indicate that 47 Tuc is r-process dominated ([Eu/La]=+0.24), and the light elements O, Na, and Al exhibit star-to-star variations. The Na-O anti-correlation, a signature typically seen in Galactic GCs, is present in 47 Tuc, and extends to include a small number of stars with [O/Fe] ~ --0.5. Additionally, the [O/Na] ratios of our sample reveal that the cluster stars can be separated into three distinct populations. A KS-test demonstrates that the O-poor/Na-rich stars are more centrally concentrated than the O-rich/Na-poor stars. The observed number and radial distribution of 47 Tuc's stellar populations, as distinguished by their light element composition, agrees closely with the results obtained from photometric data. We do not find evidence supporting a strong Na-Al correlation in 47 Tuc, which is consistent with current models of AGB nucleosynthesis yields

  20. Series of JASMINE missions

    NASA Astrophysics Data System (ADS)

    Gouda, N.

    We are planning three space astrometry missions as a series of JASMINE missions; Nano-JASMINE, Small-JASMINE and (Medium-sized)JASMINE. JASMINE is an abbreviation of Japan Astrometry Satellite Mission of INfrared Exploration. The JASMINE mission will measure in an infrared band annual parallaxes, positions on the celestial sphere, and proper motions of many stars in the bulge of the Milky Way (the Galaxy) with high accuracies. A target launch date is the first half of the 2020s. Before the launch of JASMINE, we are planning Nano-JASMINE and Small-JASMINE. Nano-JASMINE uses a very small nano-satellite and it is determined to be launched in 2011. Small-JASMINE is a downsized version of the JASMINE satellite, which observes toward restricted small regions of the Galactic bulge. A target launch date is around 2016. A completely new "map" of the Galactic bulge given by Small-JASMINE and JASMINE will bring us many exciting scientific results.

  1. GMRT Galactic Plane Pulsar and Transient Survey and the Discovery of PSR J1838+1523

    NASA Astrophysics Data System (ADS)

    Surnis, Mayuresh P.; Joshi, Bhal Chandra; McLaughlin, Maura A.; Lorimer, Duncan R.; M A, Krishnakumar; Manoharan, P. K.; Naidu, Arun

    2018-05-01

    We report the results of a blind pulsar survey carried out with the Giant Metrewave Radio Telescope (GMRT) at 325 MHz. The survey covered about 10% of the region between Galactic longitude 45° < l < 135° and Galactic latitude 1°< |b| < 10° with a dwell time of 1800 s, resulting in the detection of 28 pulsars. One of these, PSR J1838+1523, was previously unknown and has a period of 549 ms and a dispersion measure of 68 pc cm-3. We also present the timing solution of this pulsar obtained from multi-frequency timing observations carried out with the GMRT and the Ooty Radio Telescope. The measured flux density of this pulsar is 4.3±1.8 and 1.2±0.7 mJy at 325 and 610 MHz, respectively. This implies a spectral index of -2 ±0.8, thus making the expected flux density at 1.4 GHz to be about 0.2 mJy, which would be just detectable in the high frequency pulsar surveys like the Northern High Time Resolution Universe pulsar survey. This discovery underlines the importance of low frequency pulsar surveys in detecting steep spectrum pulsars, thus providing complementary coverage of the pulsar population.

  2. Disc extrusions and bulges in nonspecific low back pain and sciatica: Exploratory randomised controlled trial comparing yoga therapy and normal medical treatment.

    PubMed

    Monro, Robin; Bhardwaj, Abhishek Kumar; Gupta, Ram Kumar; Telles, Shirley; Allen, Beth; Little, Paul

    2015-01-01

    Previous trials of yoga therapy for nonspecific low back pain (nsLBP) (without sciatica) showed beneficial effects. To test effects of yoga therapy on pain and disability associated with lumbar disc extrusions and bulges. Parallel-group, randomised, controlled trial. Sixty-one adults from rural population, aged 20-45, with nsLBP or sciatica, and disc extrusions or bulges. Randomised to yoga (n=30) and control (n=31). Yoga: 3-month yoga course of group classes and home practice, designed to ensure safety for disc extrusions. normal medical care. OUTCOME MEASURES (3-4 months) Primary: Roland Morris Disability Questionnaire (RMDQ); worst pain in past two weeks. Secondary: Aberdeen Low Back Pain Scale; straight leg raise test; structural changes. Disc projections per case ranged from one bulge or one extrusion to three bulges plus two extrusions. Sixty-two percent had sciatica. Intention-to-treat analysis of the RMDQ data, adjusted for age, sex and baseline RMDQ scores, gave a Yoga Group score 3.29 points lower than Control Group (0.98, 5.61; p=0.006) at 3 months. No other significant differences in the endpoints occurred. No adverse effects of yoga were reported. Yoga therapy can be safe and beneficial for patients with nsLBP or sciatica, accompanied by disc extrusions and bulges.

  3. Galactic Structure in the Outer Disk: The Field in the Line of Sight to the Intermediate-Age open Cluster Tombaugh 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carraro, Giovanni; Silva, Joao Victor Sales; Bidin, Christian Moni

    We employ optical photometry and high-resolution spectroscopy to study a field toward the open cluster Tombaugh 1, where we identify a complex population mixture that we describe in terms of young and old Galactic thin disks. Of particular interest is the spatial distribution of the young population, which consists of dwarfs with spectral types as early as B6 and is distributed in a blue plume feature in the color–magnitude diagram. For the first time, we confirm spectroscopically that most of these stars are early-type stars and not blue stragglers or halo/thick-disk subdwarfs. Moreover, they are not evenly distributed along the linemore » of sight but crowd at heliocentric distances between 6.6 and 8.2 kpc. We compare these results with present-day understanding of the spiral structure of the Galaxy and suggest that they trace the outer arm. This range of distances challenges current Galactic models adopting a disk cutoff at 14 kpc from the Galactic center. The young dwarfs overlap in space with an older component, which is identified as an old Galactic thin disk. Both young and old populations are confined in space since the disk is warped at the latitude and longitude of Tombaugh 1. The main effects of the warp are that the line of sight intersects the disk and entirely crosses it at the outer arm distance and that there are no traces of the closer Perseus arm, which would then be either unimportant in this sector or located much closer to the formal Galactic plane. Finally, we analyze a group of giant stars, which turn out to be located at very different distances and to possess very different chemical properties, with no obvious relation to the other populations.« less

  4. Finding Distant Galactic HII Regions

    NASA Astrophysics Data System (ADS)

    Anderson, L. D.; Armentrout, W. P.; Johnstone, B. M.; Bania, T. M.; Balser, Dana S.; Wenger, Trey V.; Cunningham, V.

    2015-12-01

    The WISE Catalog of Galactic H ii Regions contains ˜2000 H ii region candidates lacking ionized gas spectroscopic observations. All candidates have the characteristic H ii region mid-infrared morphology of WISE 12 μ {{m}} emission surrounding 22 μ {{m}} emission, and additionally have detected radio continuum emission. We here report Green Bank Telescope hydrogen radio recombination line and radio continuum detections in the X-band (9 GHz; 3 cm) of 302 WISE H ii region candidates (out of 324 targets observed) in the zone 225^\\circ ≥slant {\\ell }≥slant -20^\\circ , | {\\text{}}b| ≤slant 6^\\circ . Here we extend the sky coverage of our H ii region Discovery Survey, which now contains nearly 800 H ii regions distributed across the entire northern sky. We provide LSR velocities for the 302 detections and kinematic distances for 131 of these. Of the 302 new detections, 5 have ({\\ell },{\\text{}}b,v) coordinates consistent with the Outer Scutum-Centaurus Arm (OSC), the most distant molecular spiral arm of the Milky Way. Due to the Galactic warp, these nebulae are found at Galactic latitudes >1° in the first Galactic quadrant, and therefore were missed in previous surveys of the Galactic plane. One additional region has a longitude and velocity consistent with the OSC but lies at a negative Galactic latitude (G039.183-01.422 -54.9 {km} {{{s}}}-1). With Heliocentric distances >22 kpc and Galactocentric distances >16 kpc, the OSC H ii regions are the most distant known in the Galaxy. We detect an additional three H ii regions near {\\ell }≃ 150^\\circ whose LSR velocities place them at Galactocentric radii >19 kpc. If their distances are correct, these nebulae may represent the limit to Galactic massive star formation.

  5. 2D kinematic signatures of boxy/peanut bulges

    NASA Astrophysics Data System (ADS)

    Iannuzzi, Francesca; Athanassoula, E.

    2015-07-01

    We study the imprints of boxy/peanut structures on the 2D line-of-sight kinematics of simulated disc galaxies. The models under study belong to a family with varying initial gas fraction and halo triaxiality, plus few other control runs with different structural parameters; the kinematic information was extracted using the Voronoi-binning technique and parametrized up to the fourth order of a Gauss-Hermite series. Building on a previous work for the long-slit case, we investigate the 2D kinematic behaviour in the edge-on projection as a function of the boxy/peanut strength and position angle; we find that for the strongest structures the highest moments show characteristic features away from the mid-plane in a range of position angles. We also discuss the masking effect of a classical bulge and the ambiguity in discriminating kinematically this spherically symmetric component from a boxy/peanut bulge seen end-on. Regarding the face-on case, we extend existing results to encompass the effect of a second buckling and find that this phenomenon spurs an additional set of even deeper minima in the fourth moment. Finally, we show how the results evolve when inclining the disc away from perfectly edge-on and face-on. The behaviour of stars born during the course of the simulations is discussed and confronted to that of the pre-existing disc. The general aim of our study is providing a handle to identify boxy/peanut structures and their properties in latest generation Integral Field Unit observations of nearby disc galaxies.

  6. VizieR Online Data Catalog: Li enrichment histories of the thick/thin disc (Fu+, 2018)

    NASA Astrophysics Data System (ADS)

    Fu, X.; Romano, D.; Bragaglia, A.; Mucciarelli, A.; Lind, K.; Delgado Mena, E.; Sousa, S. G.; Randich, S.; Bressan, A.; Sbordone, L.; Martell, S.; Korn, A. J.; Abia, C.; Smiljanic, R.; Jofre, P.; Pancino, E.; Tautvaisiene, G.; Tang, B.; Lanzafame, A. C.; Magrini, L.; Carraro, G.; Bensby, T.; Damiani, F.; Alfaro, E. J.; Flaccomio, E.; Morbidelli, L.; Zaggia, S.; Lardo, C.; Monaco, L.; Frasca, A.; Donati, P.; Drazdauskas, A.; Chorniy, Y.; Bayo, A.; Kordopatis, G.

    2017-11-01

    To investigate the Galactic lithium enrichment history we se- lect well-measured main sequence field stars with UVES spectra from the GES iDR4 catalogue. In our selection, 1884 UVES stars are marked as field stars, including those of the Galactic disc and halo designated as MW (GEMW) fields, standard CoRoT (GES D_CR) field, standard radial velocity (GES DRV) field, and stars to the Galactic Bulge direction (GEMWBL). (1 data file).

  7. Abundances and Evolution of Lithium in the Galactic Halo and Disk

    NASA Astrophysics Data System (ADS)

    Ryan, Sean G.; Kajino, Toshitaka; Beers, Timothy C.; Suzuki, Takeru Ken; Romano, Donatella; Matteucci, Francesca; Rosolankova, Katarina

    2001-03-01

    We have measured the Li abundance of 18 stars with -2<~[Fe/H]<~-1 and 6000<~Teff<~6400 K, a parameter range that was poorly represented in previous studies. We examine the Galactic chemical evolution (GCE) of this element, combining these data with previous samples of turnoff stars over the full range of halo metallicities. We find that A(Li) increases from a level of ~2.10 at [Fe/H]=-3.5 to ~2.40 at [Fe/H]=-1.0, where A(Li)=log10(n(Li)/n(H))+12.00. We compare the observations with several GCE calculations, including existing one-zone models and a new model developed in the framework of inhomogeneous evolution of the Galactic halo. We show that Li evolved at a constant rate relative to iron throughout the halo and old disk epochs but that during the formation of young disk stars, the production of Li relative to iron increased significantly. These observations can be understood in the context of models in which postprimordial Li evolution during the halo and old disk epochs is dominated by Galactic cosmic-ray fusion and spallation reactions, with some contribution from the ν-process in supernovae. The onset of more efficient Li production (relative to iron) in the young disk coincides with the appearance of Li from novae and asymptotic giant branch (AGB) stars. The major challenge facing the models is to reconcile the mild evolution of Li during the halo and old disk phases with the more efficient production (relative to iron) at [Fe/H]>-0.5. We speculate that cool-bottom processing (production) of Li in low-mass stars may provide an important late-appearing source of Li, without attendant Fe production, that might explain the Li production in the young disk. Based on observations obtained with the University College London échelle spectrograph (UCLES) on the Anglo-Australian Telescope (AAT) and the Utrecht échelle spectrograph (UES) on the William Herschel Telescope (WHT).

  8. New Wolf-Rayet stars in Galactic open clusters - Sher 1 and the giant H II region core Westerlund 2

    NASA Technical Reports Server (NTRS)

    Moffat, Anthony F. J.; Shara, Michael M.; Potter, Michael

    1991-01-01

    Two new Galactic Wolf-Rayet stars were found in open clusters: a WN4 star in the O9 cluster Sher 1 and a WN7 star in the O7 cluster Westerlund 2. This confirms a previous trend, namely that fainter, hotter WN stars tend to be older than brighter, cooler WN stars. This may be a consequence of evolution via extreme mass loss.

  9. The Chemical Abundances of New Extremely Metal-Poor Giants with [Fe/H] < -3.0

    NASA Astrophysics Data System (ADS)

    Rhee, Jaehyon; Fink, M.; Rhee, W.

    2012-01-01

    Extremely metal-poor (EMP) stars with [Fe/H] < -3.0 observable in the Galactic halo and thick disk today are believed to be the second-generation stars born out of those materials that were slightly chemically polluted by the extinct, metal-free first stars. If true, these oldest surviving stars with the lowest metal abundances are astrophysical laboratories that may shed essential light on the origins and evolution of the chemical elements and on the formation of the Milky Way. In order to newly discover field metal-deficient stars in the inner halo of the Galaxy, the Purdue Ultra Metal-Poor Star Survey (PUMPSS) program was conducted. Candidate metal-poor stars were initially selected utilizing the photometric data of the GALEX and the 2MASS, and subsequent medium- and high-resolution spectroscopy were carried out for the identification of true metal-poor giant stars and detailed chemical abundance analyses, respectively. We present an overview of the PUMPSS program and the results of the abundance analysis for high-dispersion spectra of EMP giant stars taken at the KPNO 4m telescope. We acknowledge support for this work from NASA grants 07-ADP07-0080 and 05-GALEX05-27.

  10. Discovery of very-high-energy gamma-rays from the Galactic Centre ridge.

    PubMed

    Aharonian, F; Akhperjanian, A G; Bazer-Bachi, A R; Beilicke, M; Benbow, W; Berge, D; Bernlöhr, K; Boisson, C; Bolz, O; Borrel, V; Braun, I; Breitling, F; Brown, A M; Chadwick, P M; Chounet, L-M; Cornils, R; Costamante, L; Degrange, B; Dickinson, H J; Djannati-Ataï, A; Drury, L O'C; Dubus, G; Emmanoulopoulos, D; Espigat, P; Feinstein, F; Fontaine, G; Fuchs, Y; Funk, S; Gallant, Y A; Giebels, B; Gillessen, S; Glicenstein, J F; Goret, P; Hadjichristidis, C; Hauser, D; Hauser, M; Heinzelmann, G; Henri, G; Hermann, G; Hinton, J A; Hofmann, W; Holleran, M; Horns, D; Jacholkowska, A; de Jager, O C; Khélifi, B; Klages, S; Komin, Nu; Konopelko, A; Latham, I J; Le Gallou, R; Lemière, A; Lemoine-Goumard, M; Leroy, N; Lohse, T; Marcowith, A; Martin, J M; Martineau-Huynh, O; Masterson, C; McComb, T J L; de Naurois, M; Nolan, S J; Noutsos, A; Orford, K J; Osborne, J L; Ouchrif, M; Panter, M; Pelletier, G; Pita, S; Pühlhofer, G; Punch, M; Raubenheimer, B C; Raue, M; Raux, J; Rayner, S M; Reimer, A; Reimer, O; Ripken, J; Rob, L; Rolland, L; Rowell, G; Sahakian, V; Saugé, L; Schlenker, S; Schlickeiser, R; Schuster, C; Schwanke, U; Siewert, M; Sol, H; Spangler, D; Steenkamp, R; Stegmann, C; Tavernet, J-P; Terrier, R; Théoret, C G; Tluczykont, M; van Eldik, C; Vasileiadis, G; Venter, C; Vincent, P; Völk, H J; Wagner, S J

    2006-02-09

    The source of Galactic cosmic rays (with energies up to 10(15) eV) remains unclear, although it is widely believed that they originate in the shock waves of expanding supernova remnants. At present the best way to investigate their acceleration and propagation is by observing the gamma-rays produced when cosmic rays interact with interstellar gas. Here we report observations of an extended region of very-high-energy (> 10(11) eV) gamma-ray emission correlated spatially with a complex of giant molecular clouds in the central 200 parsecs of the Milky Way. The hardness of the gamma-ray spectrum and the conditions in those molecular clouds indicate that the cosmic rays giving rise to the gamma-rays are likely to be protons and nuclei rather than electrons. The energy associated with the cosmic rays could have come from a single supernova explosion around 10(4) years ago.

  11. Infrared studies of galactic center x-ray sources

    NASA Astrophysics Data System (ADS)

    DeWitt, Curtis

    -type supergiant at an distance of 3.7 kpc; and an O star at the Galactic Center distance. I also identified 3 foreground X-ray source counterparts within a distance of 1 kpc which do not show obvious emission features in their spectra. However, on the basis of the low surface density of unreddened sources along the line-of-sight to the Galactic Center and our previous statistical analysis (DeWitt et al., 2010), these can be securely identified as the true counterparts to their coincident X-ray point sources. Lastly, I used the results of my matching simulations to infer the presence of 7+/-2 true counterparts within a set of late type giants that I observed without detectable emission features. I conclude from this work that the probable excess in red giant X-ray counterparts without emission lines needs to be confirmed both with larger samples of spectroscopically surveyed counterparts and more advanced statistical simulations of the match authenticity. Also, the nature of the compact object in two of my counterpart discoveries, the Be HMXB and the symbiotic binary, can be strongly constrained with X-ray spectral fitting. Lastly, I conclude that spectroscopic surveys for new X-ray source counterparts in the GC may be able to increase their efficiency by specifically targeting photometric variables and very close astrometric matches of IR/X-ray sources.

  12. Measurement of occlusion of the spinal canal and intervertebral foramen by intervertebral disc bulge

    PubMed Central

    Cuchanski, Mathieu; Cook, Daniel; Whiting, Donald M.; Cheng, Boyle C.

    2011-01-01

    Background Disc protrusion has been proposed to be a possible cause of both pain and stenosis in the lower spine. No previous study has described the amount of disc occlusion of the spinal canal and intervertebral foramen that occurs under different loading conditions. The objective of this study was to quantitatively assess the percent occlusion of the spinal canal and intervertebral foramen by disc bulge under different loading conditions. Methods Spinal canal depth and foraminal width were measured on computed tomography–scanned images of 7 human lumbar spine specimens. In vitro disc bulge measurements were completed by use of a previously described method in which single functional spinal units were subjected to 3 separate load protocols in a spine test machine and disc bulge was recorded with an optoelectric motion system that tracked active light-emitting diodes placed on the posterior and posterolateral aspects of the intervertebral disc. Occlusion was defined as percentage of encroachment into area of interest by maximum measured disc bulge at corresponding point of interest (the spinal canal is at the posterior point; the intervertebral foramen is at the posterolateral point). Results The mean spinal canal depth and mean foraminal width were 19 4 ± mm and 5 ± 2 mm, respectively. Mean spinal canal occlusion under a 250-N axial load, ± 2.5 Nm of flexion/extension, and ± 2.5 Nm of lateral bend was 2.5% ± 1.9%, 2.5% ± 1.6%, and 1.5% ± 0.8%, respectively. Mean intervertebral foramen occlusion under a 250-N axial load, ± 2.5 Nm of flexion/extension, and ± 2.5 Nm of lateral bend was 7.8% ± 4.7%, 9.5% ± 5.7%, and 11.3% ± 6.2%, respectively. Conclusion Percent occlusion of the spinal canal and intervertebral foramen is dependent on magnitude and direction of load. Exiting neural elements at the location of the intervertebral foramen are the most vulnerable to impingement and generation of pain. PMID:25802663

  13. The VMC survey. XI. Radial stellar population gradients in the galactic globular cluster 47 Tucanae

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Chengyuan; De Grijs, Richard; Deng, Licai

    2014-07-20

    We present a deep near-infrared color-magnitude diagram of the Galactic globular cluster 47 Tucanae, obtained with the Visible and Infrared Survey Telescope for Astronomy (VISTA) as part of the VISTA near-infrared Y, J, K{sub s} survey of the Magellanic System (VMC). The cluster stars comprising both the subgiant and red giant branches exhibit apparent, continuous variations in color-magnitude space as a function of radius. Subgiant branch stars at larger radii are systematically brighter than their counterparts closer to the cluster core; similarly, red-giant-branch stars in the cluster's periphery are bluer than their more centrally located cousins. The observations can verymore » well be described by adopting an age spread of ∼0.5 Gyr as well as radial gradients in both the cluster's helium abundance (Y) and metallicity (Z), which change gradually from (Y = 0.28, Z = 0.005) in the cluster core to (Y = 0.25, Z = 0.003) in its periphery. We conclude that the cluster's inner regions host a significant fraction of second-generation stars, which decreases with increasing radius; the stellar population in the 47 Tuc periphery is well approximated by a simple stellar population.« less

  14. Observing the Next Galactic Supernova

    NASA Astrophysics Data System (ADS)

    Adams, Scott M.; Kochanek, C. S.; Beacom, John F.; Vagins, Mark R.; Stanek, K. Z.

    2013-12-01

    No supernova (SN) in the Milky Way has been observed since the invention of the optical telescope, instruments for other wavelengths, neutrino detectors, or gravitational wave observatories. It would be a tragedy to miss the opportunity to fully characterize the next one. To aid preparations for its observations, we model the distance, extinction, and magnitude probability distributions of a successful Galactic core-collapse supernova (ccSN), its shock breakout radiation, and its massive star progenitor. We find, at very high probability (sime 100%), that the next Galactic SN will easily be detectable in the near-IR and that near-IR photometry of the progenitor star very likely (sime 92%) already exists in the Two Micron All Sky Survey. Most ccSNe (98%) will be easily observed in the optical, but a significant fraction (43%) will lack observations of the progenitor due to a combination of survey sensitivity and confusion. If neutrino detection experiments can quickly disseminate a likely position (~3°), we show that a modestly priced IR camera system can probably detect the shock breakout radiation pulse even in daytime (64% for the cheapest design). Neutrino experiments should seriously consider adding such systems, both for their scientific return and as an added and internal layer of protection against false triggers. We find that shock breakouts from failed ccSNe of red supergiants may be more observable than those of successful SNe due to their lower radiation temperatures. We review the process by which neutrinos from a Galactic ccSN would be detected and announced. We provide new information on the EGADS system and its potential for providing instant neutrino alerts. We also discuss the distance, extinction, and magnitude probability distributions for the next Galactic Type Ia supernova (SN Ia). Based on our modeled observability, we find a Galactic ccSN rate of 3.2^{+7.3}_{-2.6} per century and a Galactic SN Ia rate of 1.4^{+1.4}_{-0.8} per century for a

  15. The Formation Of Bulges, Discs And Two Component Galaxies In The CANDELS Survey At z<3

    NASA Astrophysics Data System (ADS)

    Margaleff Bentabol, Berta; Conselice, Christopher; CANDELS Team

    2016-09-01

    The most massive galaxies in the local Universe can be classified as disk-dominated and spheroid-dominated (i.e. Hubble type). However, it is unclear how and when these dominant structures form and the possible connection between them. To address this issue we have investigated massive galaxies (logM>10) in the CANDELS fields at the epoch of 1bulge and an `outer part' or disc (2 components). I will show in this talk that the most massive galaxies are more likely to consist of a bulge and a disk compared to lower mass galaxies. The number of such 2-component systems decreases at higher redshift; by a factor of 3 from z=1 to z=3. We find that single `disc-like' galaxies have the highest relative number densities at all redshifts, and that 2-component galaxies have the greatest increase and become at par with discs by z = 1. We also find that the 2I component systems have an increase in the sizes of their outer components, or `discs' by about a factor of three from z = 3 to z = 1.5, while the inner components or `bulges' stay roughly the same size. This suggests that these systems are growing from the inside out, whilst the bulges or protobulges are in place early in the history of these galaxies.

  16. Galactic googly: the rotation-metallicity bias in the inner stellar halo of the Milky Way

    NASA Astrophysics Data System (ADS)

    Kafle, Prajwal R.; Sharma, Sanjib; Robotham, Aaron S. G.; Pradhan, Raj K.; Guglielmo, Magda; Davies, Luke J. M.; Driver, Simon P.

    2017-09-01

    The first and second moments of stellar velocities encode important information about the formation history of the Galactic halo. However, due to the lack of tangential motion and inaccurate distances of the halo stars, the velocity moments in the Galactic halo have largely remained 'known unknowns'. Fortunately, our off-centric position within the Galaxy allows us to estimate these moments in the galactocentric frame using the observed radial velocities of the stars alone. We use these velocities coupled with the hierarchical Bayesian scheme, which allows easy marginalization over the missing data (the proper motion, and uncertainty-free distance and line-of-sight velocity), to measure the velocity dispersions, orbital anisotropy (β) and streaming motion (vrot) of the halo main-sequence turn-off (MSTO) and K-giant (KG) stars in the inner stellar halo (r ≲ 15 kpc). We study the metallicity bias in kinematics of the halo stars and observe that the comparatively metal-rich ([Fe/H] > -1.4) and the metal-poor ([Fe/H] ≤ -1.4) MSTO samples show a clear systematic difference in vrot ˜ 20-40 km s - 1, depending on how restrictive the spatial cuts to cull the disc contamination are. The bias is also detected in KG samples but with less certainty. Both MSTO and KG populations suggest that the inner stellar halo of the Galaxy is radially biased I.e. σr > σθ or σϕ and β ≃ 0.5. The apparent metallicity contrariety in the rotation velocity among the halo sub-populations supports the co-existence of multiple populations in the galactic halo that may have formed through distinct formation scenarios, I.e. in situ versus accretion.

  17. Open star clusters and Galactic structure

    NASA Astrophysics Data System (ADS)

    Joshi, Yogesh C.

    2018-04-01

    In order to understand the Galactic structure, we perform a statistical analysis of the distribution of various cluster parameters based on an almost complete sample of Galactic open clusters yet available. The geometrical and physical characteristics of a large number of open clusters given in the MWSC catalogue are used to study the spatial distribution of clusters in the Galaxy and determine the scale height, solar offset, local mass density and distribution of reddening material in the solar neighbourhood. We also explored the mass-radius and mass-age relations in the Galactic open star clusters. We find that the estimated parameters of the Galactic disk are largely influenced by the choice of cluster sample.

  18. The GALAH survey: observational overview and Gaia DR1 companion

    NASA Astrophysics Data System (ADS)

    Martell, S. L.; Sharma, S.; Buder, S.; Duong, L.; Schlesinger, K. J.; Simpson, J.; Lind, K.; Ness, M.; Marshall, J. P.; Asplund, M.; Bland-Hawthorn, J.; Casey, A. R.; De Silva, G.; Freeman, K. C.; Kos, J.; Lin, J.; Zucker, D. B.; Zwitter, T.; Anguiano, B.; Bacigalupo, C.; Carollo, D.; Casagrande, L.; Da Costa, G. S.; Horner, J.; Huber, D.; Hyde, E. A.; Kafle, P. R.; Lewis, G. F.; Nataf, D.; Navin, C. A.; Stello, D.; Tinney, C. G.; Watson, F. G.; Wittenmyer, R.

    2017-03-01

    The Galactic Archaeology with HERMES (GALAH) survey is a massive observational project to trace the Milky Way's history of star formation, chemical enrichment, stellar migration and minor mergers. Using high-resolution (R ≃ 28 000) spectra, taken with the High Efficiency and Resolution Multi-Element Spectrograph (HERMES) instrument at the Anglo-Australian Telescope, GALAH will determine stellar parameters and abundances of up to 29 elements for up to one million stars. Selecting targets from a colour-unbiased catalogue built from 2MASS, APASS and UCAC4 data, we expect to observe dwarfs at 0.3-3 kpc and giants at 1-10 kpc. This enables a thorough local chemical inventory of the Galactic thin and thick discs, and also captures smaller samples of the bulge and halo. In this paper, we present the plan, process and progress as of early 2016 for GALAH survey observations. In our first two years of survey observing we have accumulated the largest high-quality spectroscopic data set at this resolution, over 200 000 stars. We also present the first public GALAH data catalogue: stellar parameters (Teff, log(g), [Fe/H], [α/Fe]), radial velocity, distance modulus and reddening for 10 680 observations of 9860 Tycho-2 stars, 7894 of which are included in the first Gaia data release.

  19. THERMAL PLASMA IN THE GIANT LOBES OF THE RADIO GALAXY CENTAURUS A

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    O'Sullivan, S. P.; Feain, I. J.; McClure-Griffiths, N. M.

    2013-02-20

    We present a Faraday rotation measure (RM) study of the diffuse, polarized, radio emission from the giant lobes of the nearest radio galaxy, Centaurus A. After removal of the smooth Galactic foreground RM component, using an ensemble of background source RMs located outside the giant lobes, we are left with a residual RM signal associated with the giant lobes. We find that the most likely origin of this residual RM is from thermal material mixed throughout the relativistic lobe plasma. The alternative possibility of a thin-skin/boundary layer of magnetoionic material swept up by the expansion of the lobes is highlymore » unlikely since it requires, at least, an order of magnitude enhancement of the swept-up gas over the expected intragroup density on these scales. Strong depolarization observed from 2.3 to 0.96 GHz also supports the presence of a significant amount of thermal gas within the lobes; although depolarization solely due to RM fluctuations in a foreground Faraday screen on scales smaller than the beam cannot be ruled out. Considering the internal Faraday rotation scenario, we find a thermal gas number density of {approx}10{sup -4} cm{sup -3}, implying a total gas mass of {approx}10{sup 10} M {sub Sun} within the lobes. The thermal pressure associated with this gas (with temperature kT {approx} 0.5 keV, obtained from recent X-ray results) is approximately equal to the non-thermal pressure, indicating that over the volume of the lobes, there is approximate equipartition between the thermal gas, radio-emitting electrons, and magnetic field (and potentially any relativistic protons present).« less

  20. STRUCTURED MOLECULAR GAS REVEALS GALACTIC SPIRAL ARMS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sawada, Tsuyoshi; Hasegawa, Tetsuo; Koda, Jin, E-mail: sawada.tsuyoshi@nao.ac.jp

    We explore the development of structures in molecular gas in the Milky Way by applying the analysis of the brightness distribution function and the brightness distribution index (BDI) in the archival data from the Boston University-Five College Radio Astronomy Observatory {sup 13}CO J = 1-0 Galactic Ring Survey. The BDI measures the fractional contribution of spatially confined bright molecular emission over faint emission extended over large areas. This relative quantity is largely independent of the amount of molecular gas and of any conventional, pre-conceived structures, such as cores, clumps, or giant molecular clouds. The structured molecular gas traced by highermore » BDI is located continuously along the spiral arms in the Milky Way in the longitude-velocity diagram. This clearly indicates that molecular gas changes its structure as it flows through the spiral arms. Although the high-BDI gas generally coincides with H II regions, there is also some high-BDI gas with no/little signature of ongoing star formation. These results support a possible evolutionary sequence in which unstructured, diffuse gas transforms itself into a structured state on encountering the spiral arms, followed by star formation and an eventual return to the unstructured state after the spiral arm passage.« less