Sample records for galactic centre black

  1. Event-horizon-scale structure in the supermassive black hole candidate at the Galactic Centre.

    PubMed

    Doeleman, Sheperd S; Weintroub, Jonathan; Rogers, Alan E E; Plambeck, Richard; Freund, Robert; Tilanus, Remo P J; Friberg, Per; Ziurys, Lucy M; Moran, James M; Corey, Brian; Young, Ken H; Smythe, Daniel L; Titus, Michael; Marrone, Daniel P; Cappallo, Roger J; Bock, Douglas C-J; Bower, Geoffrey C; Chamberlin, Richard; Davis, Gary R; Krichbaum, Thomas P; Lamb, James; Maness, Holly; Niell, Arthur E; Roy, Alan; Strittmatter, Peter; Werthimer, Daniel; Whitney, Alan R; Woody, David

    2008-09-04

    The cores of most galaxies are thought to harbour supermassive black holes, which power galactic nuclei by converting the gravitational energy of accreting matter into radiation. Sagittarius A* (Sgr A*), the compact source of radio, infrared and X-ray emission at the centre of the Milky Way, is the closest example of this phenomenon, with an estimated black hole mass that is 4,000,000 times that of the Sun. A long-standing astronomical goal is to resolve structures in the innermost accretion flow surrounding Sgr A*, where strong gravitational fields will distort the appearance of radiation emitted near the black hole. Radio observations at wavelengths of 3.5 mm and 7 mm have detected intrinsic structure in Sgr A*, but the spatial resolution of observations at these wavelengths is limited by interstellar scattering. Here we report observations at a wavelength of 1.3 mm that set a size of 37(+16)(-10) microarcseconds on the intrinsic diameter of Sgr A*. This is less than the expected apparent size of the event horizon of the presumed black hole, suggesting that the bulk of Sgr A* emission may not be centred on the black hole, but arises in the surrounding accretion flow.

  2. Near-infrared flares from accreting gas around the supermassive black hole at the Galactic Centre.

    PubMed

    Genzel, R; Schödel, R; Ott, T; Eckart, A; Alexander, T; Lacombe, F; Rouan, D; Aschenbach, B

    2003-10-30

    Recent measurements of stellar orbits provide compelling evidence that the compact radio source Sagittarius A* (refs 4, 5) at the Galactic Centre is a 3.6-million-solar-mass black hole. Sgr A* is remarkably faint in all wavebands other than the radio region, however, which challenges current theories of matter accretion and radiation surrounding black holes. The black hole's rotation rate is not known, and therefore neither is the structure of space-time around it. Here we report high-resolution infrared observations of Sgr A* that reveal 'quiescent' emission and several flares. The infrared emission originates from within a few milliarcseconds of the black hole, and traces very energetic electrons or moderately hot gas within the innermost accretion region. Two flares exhibit a 17-minute quasi-periodic variability. If the periodicity arises from relativistic modulation of orbiting gas, the emission must come from just outside the event horizon, and the black hole must be rotating at about half of the maximum possible rate.

  3. Acceleration of petaelectronvolt protons in the Galactic Centre

    NASA Astrophysics Data System (ADS)

    HESS Collaboration; Abramowski, A.; Aharonian, F.; Benkhali, F. Ait; Akhperjanian, A. G.; Angüner, E. O.; Backes, M.; Balzer, A.; Becherini, Y.; Tjus, J. Becker; Berge, D.; Bernhard, S.; Bernlöhr, K.; Birsin, E.; Blackwell, R.; Böttcher, M.; Boisson, C.; Bolmont, J.; Bordas, P.; Bregeon, J.; Brun, F.; Brun, P.; Bryan, M.; Bulik, T.; Carr, J.; Casanova, S.; Chakraborty, N.; Chalme-Calvet, R.; Chaves, R. C. G.; Chen, A.; Chrétien, M.; Colafrancesco, S.; Cologna, G.; Conrad, J.; Couturier, C.; Cui, Y.; Davids, I. D.; Degrange, B.; Deil, C.; Dewilt, P.; Djannati-Ataï, A.; Domainko, W.; Donath, A.; Drury, L. O'C.; Dubus, G.; Dutson, K.; Dyks, J.; Dyrda, M.; Edwards, T.; Egberts, K.; Eger, P.; Ernenwein, J.-P.; Espigat, P.; Farnier, C.; Fegan, S.; Feinstein, F.; Fernandes, M. V.; Fernandez, D.; Fiasson, A.; Fontaine, G.; Förster, A.; Füßling, M.; Gabici, S.; Gajdus, M.; Gallant, Y. A.; Garrigoux, T.; Giavitto, G.; Giebels, B.; Glicenstein, J. F.; Gottschall, D.; Goyal, A.; Grondin, M.-H.; Grudzińska, M.; Hadasch, D.; Häffner, S.; Hahn, J.; Hawkes, J.; Heinzelmann, G.; Henri, G.; Hermann, G.; Hervet, O.; Hillert, A.; Hinton, J. A.; Hofmann, W.; Hofverberg, P.; Hoischen, C.; Holler, M.; Horns, D.; Ivascenko, A.; Jacholkowska, A.; Jamrozy, M.; Janiak, M.; Jankowsky, F.; Jung-Richardt, I.; Kastendieck, M. A.; Katarzyński, K.; Katz, U.; Kerszberg, D.; Khélifi, B.; Kieffer, M.; Klepser, S.; Klochkov, D.; Kluźniak, W.; Kolitzus, D.; Komin, Nu.; Kosack, K.; Krakau, S.; Krayzel, F.; Krüger, P. P.; Laffon, H.; Lamanna, G.; Lau, J.; Lefaucheur, J.; Lefranc, V.; Lemiére, A.; Lemoine-Goumard, M.; Lenain, J.-P.; Lohse, T.; Lopatin, A.; Lu, C.-C.; Lui, R.; Marandon, V.; Marcowith, A.; Mariaud, C.; Marx, R.; Maurin, G.; Maxted, N.; Mayer, M.; Meintjes, P. J.; Menzler, U.; Meyer, M.; Mitchell, A. M. W.; Moderski, R.; Mohamed, M.; Morå, K.; Moulin, E.; Murach, T.; de Naurois, M.; Niemiec, J.; Oakes, L.; Odaka, H.; Öttl, S.; Ohm, S.; Opitz, B.; Ostrowski, M.; Oya, I.; Panter, M.; Parsons, R. D.; Arribas, M. Paz; Pekeur, N. W.; Pelletier, G.; Petrucci, P.-O.; Peyaud, B.; Pita, S.; Poon, H.; Prokoph, H.; Pühlhofer, G.; Punch, M.; Quirrenbach, A.; Raab, S.; Reichardt, I.; Reimer, A.; Reimer, O.; Renaud, M.; de Los Reyes, R.; Rieger, F.; Romoli, C.; Rosier-Lees, S.; Rowell, G.; Rudak, B.; Rulten, C. B.; Sahakian, V.; Salek, D.; Sanchez, D. A.; Santangelo, A.; Sasaki, M.; Schlickeiser, R.; Schüssler, F.; Schulz, A.; Schwanke, U.; Schwemmer, S.; Seyffert, A. S.; Simoni, R.; Sol, H.; Spanier, F.; Spengler, G.; Spies, F.; Stawarz, Ł.; Steenkamp, R.; Stegmann, C.; Stinzing, F.; Stycz, K.; Sushch, I.; Tavernet, J.-P.; Tavernier, T.; Taylor, A. M.; Terrier, R.; Tluczykont, M.; Trichard, C.; Tuffs, R.; Valerius, K.; van der Walt, J.; van Eldik, C.; van Soelen, B.; Vasileiadis, G.; Veh, J.; Venter, C.; Viana, A.; Vincent, P.; Vink, J.; Voisin, F.; Völk, H. J.; Vuillaume, T.; Wagner, S. J.; Wagner, P.; Wagner, R. M.; Weidinger, M.; Weitzel, Q.; White, R.; Wierzcholska, A.; Willmann, P.; Wörnlein, A.; Wouters, D.; Yang, R.; Zabalza, V.; Zaborov, D.; Zacharias, M.; Zdziarski, A. A.; Zech, A.; Zefi, F.; Żywucka, N.

    2016-03-01

    Galactic cosmic rays reach energies of at least a few petaelectronvolts (of the order of 1015 electronvolts). This implies that our Galaxy contains petaelectronvolt accelerators (‘PeVatrons’), but all proposed models of Galactic cosmic-ray accelerators encounter difficulties at exactly these energies. Dozens of Galactic accelerators capable of accelerating particles to energies of tens of teraelectronvolts (of the order of 1013 electronvolts) were inferred from recent γ-ray observations. However, none of the currently known accelerators—not even the handful of shell-type supernova remnants commonly believed to supply most Galactic cosmic rays—has shown the characteristic tracers of petaelectronvolt particles, namely, power-law spectra of γ-rays extending without a cut-off or a spectral break to tens of teraelectronvolts. Here we report deep γ-ray observations with arcminute angular resolution of the region surrounding the Galactic Centre, which show the expected tracer of the presence of petaelectronvolt protons within the central 10 parsecs of the Galaxy. We propose that the supermassive black hole Sagittarius A* is linked to this PeVatron. Sagittarius A* went through active phases in the past, as demonstrated by X-ray outburstsand an outflow from the Galactic Centre. Although its current rate of particle acceleration is not sufficient to provide a substantial contribution to Galactic cosmic rays, Sagittarius A* could have plausibly been more active over the last 106-107 years, and therefore should be considered as a viable alternative to supernova remnants as a source of petaelectronvolt Galactic cosmic rays.

  4. Galactic bulge preferred over dark matter for the Galactic centre gamma-ray excess

    NASA Astrophysics Data System (ADS)

    Macias, Oscar; Gordon, Chris; Crocker, Roland M.; Coleman, Brendan; Paterson, Dylan; Horiuchi, Shunsaku; Pohl, Martin

    2018-05-01

    An anomalous gamma-ray excess emission has been found in the Fermi Large Area Telescope data1 covering the centre of the Galaxy2,3. Several theories have been proposed for this `Galactic centre excess'. They include self-annihilation of dark-matter particles4, an unresolved population of millisecond pulsars5, an unresolved population of young pulsars6, or a series of burst events7. Here, we report on an analysis that exploits hydrodynamical modelling to register the position of interstellar gas associated with diffuse Galactic gamma-ray emission. We find evidence that the Galactic centre excess gamma rays are statistically better described by the stellar over-density in the Galactic bulge and the nuclear stellar bulge, rather than a spherical excess. Given its non-spherical nature, we argue that the Galactic centre excess is not a dark-matter phenomenon but rather associated with the stellar population of the Galactic bulge and the nuclear bulge.

  5. Dynamics of supernova remnants in the Galactic centre.

    NASA Astrophysics Data System (ADS)

    Bortolas, E.; Mapelli, M.; Spera, M.

    The Galactic centre (GC) is a unique place to study the extreme dynamical processes occurring near a super-massive black hole (SMBH). Here we simulate a large set of binaries orbiting the SMBH while the primary member undergoes a supernova (SN) explosion, in order to study the impact of SN kicks on the orbits of stars and dark remnants in the GC. We find that SN explosions are efficient in scattering neutron stars and other light stars on new (mostly eccentric) orbits, while black holes (BHs) tend to retain memory of the orbit of their progenitor star. SN kicks are thus unable to eject BHs from the GC: a cusp of dark remnants may be lurking in the central parsec of our Galaxy.

  6. Unrecognized astrometric confusion in the Galactic Centre

    NASA Astrophysics Data System (ADS)

    Plewa, P. M.; Sari, R.

    2018-06-01

    The Galactic Centre is a crowded stellar field and frequent unrecognized events of source confusion, which involve undetected faint stars, are expected to introduce astrometric noise on a sub-mas level. This confusion noise is the main non-instrumental effect limiting the astrometric accuracy and precision of current near-infrared imaging observations and the long-term monitoring of individual stellar orbits in the vicinity of the central supermassive black hole. We self-consistently simulate the motions of the known and the yet unidentified stars to characterize this noise component and show that a likely consequence of source confusion is a bias in estimates of the stellar orbital elements, as well as the inferred mass and distance of the black hole, in particular if stars are being observed at small projected separations from it, such as the star S2 during pericentre passage. Furthermore, we investigate modelling the effect of source confusion as an additional noise component that is time-correlated, demonstrating a need for improved noise models to obtain trustworthy estimates of the parameters of interest (and their uncertainties) in future astrometric studies.

  7. Probing the formation history of the nuclear star cluster at the Galactic Centre with millisecond pulsars

    NASA Astrophysics Data System (ADS)

    Abbate, F.; Mastrobuono-Battisti, A.; Colpi, M.; Possenti, A.; Sippel, A. C.; Dotti, M.

    2018-01-01

    The origin of the nuclear star cluster in the centre of our Galaxy is still unknown. One possibility is that it formed after the disruption of stellar clusters that spiralled into the Galactic Centre due to dynamical friction. We trace the formation of the nuclear star cluster around the central black hole, using state-of-the-art N-body simulations, and follow the dynamics of the neutron stars born in the clusters. We then estimate the number of millisecond pulsars (MSPs) that are released in the nuclear star cluster during its formation. The assembly and tidal dismemberment of globular clusters lead to a population of MSPs distributed over a radius of about 20 pc, with a peak near 3 pc. No clustering is found on the subparsec scale. We simulate the detectability of this population with future radio telescopes like the MeerKAT radio telescope and SKA1, and find that about an order of 10 MSPs can be observed over this large volume, with a paucity of MSPs within the central parsec. This helps discriminating this scenario from the in situ formation model for the nuclear star cluster that would predict an overabundance of MSPs closer to the black hole. We then discuss the potential contribution of our MSP population to the gamma-ray excess at the Galactic Centre.

  8. Flares from Galactic Centre pulsars: a new class of X-ray transients?

    NASA Astrophysics Data System (ADS)

    Giannios, Dimitrios; Lorimer, Duncan R.

    2016-06-01

    Despite intensive searches, the only pulsar within 0.1 pc of the central black hole in our Galaxy, Sgr A*, is a radio-loud magnetar. Since magnetars are rare among the Galactic neutron star population, and a large number of massive stars are already known in this region, the Galactic Centre (GC) should harbour a large number of neutron stars. Population syntheses suggest several thousand neutron stars may be present in the GC. Many of these could be highly energetic millisecond pulsars which are also proposed to be responsible for the GC gamma-ray excess. We propose that the presence of a neutron star within 0.03 pc from Sgr A* can be revealed by the shock interactions with the disc around the central black hole. As we demonstrate, these interactions result in observable transient non-thermal X-ray and gamma-ray emission over time-scales of months, provided that the spin-down luminosity of the neutron star is Lsd ˜ 1035 erg s-1. Current limits on the population of normal and millisecond pulsars in the GC region suggest that a number of such pulsars are present with such luminosities.

  9. What can Fermi LAT observation of the Galactic Centre tell us about its active past?

    NASA Astrophysics Data System (ADS)

    Zaharijas, Gabrijela; Petrović, Jovana; Serpico, Pasquale

    The Fermi-LAT gamma-ray data in the inner Galaxy region show several prominent features possibly related to the past activity of the Milky Way's super massive black hole. At a large, 50 deg scale, the Fermi LAT revealed symmetric hour glass structures with hard energy spectra extending up to 100 GeV (and dubbed `the Fermi bubbles'). More recently and closer to the Galactic centre, at the 10 deg scale, several groups have claimed evidence for excess gamma-ray emission that appears symmetric around the Galactic center and has an energy spectrum peaking at few GeVs. We explore here the possibility that this emission originates in inverse Compton emission from high-energy electrons produced in a short duration, burst-like event injecting 1052 - 1053 erg, roughly 106 yrs ago. Several lines of evidence suggest that a series of `burst like' events happened in the vicinity of our black hole in the past and gamma-ray observations may offer a new view of that scenario.

  10. Black holes in binary stellar systems and galactic nuclei

    NASA Astrophysics Data System (ADS)

    Cherepashchuk, A. M.

    2014-04-01

    In the last 40 years, following pioneering papers by Ya B Zeldovich and E E Salpeter, in which a powerful energy release from nonspherical accretion of matter onto a black hole (BH) was predicted, many observational studies of black holes in the Universe have been carried out. To date, the masses of several dozen stellar-mass black holes (M_BH = (4{-}20) M_\\odot) in X-ray binary systems and of several hundred supermassive black holes (M_BH = (10^{6}{-}10^{10}) M_\\odot) in galactic nuclei have been measured. The estimated radii of these massive and compact objects do not exceed several gravitational radii. For about ten stellar-mass black holes and several dozen supermassive black holes, the values of the dimensionless angular momentum a_* have been estimated, which, in agreement with theoretical predictions, do not exceed the limiting value a_* = 0.998. A new field of astrophysics, so-called black hole demography, which studies the birth and growth of black holes and their evolutionary connection to other objects in the Universe, namely stars, galaxies, etc., is rapidly developing. In addition to supermassive black holes, massive stellar clusters are observed in galactic nuclei, and their evolution is distinct from that of supermassive black holes. The evolutionary relations between supermassive black holes in galactic centers and spheroidal stellar components (bulges) of galaxies, as well as dark-matter galactic haloes are brought out. The launch into Earth's orbit of the space radio interferometer RadioAstron opened up the real possibility of finally proving that numerous discovered massive and highly compact objects with properties very similar to those of black holes make up real black holes in the sense of Albert Einstein's General Relativity. Similar proofs of the existence of black holes in the Universe can be obtained by intercontinental radio interferometry at short wavelengths \\lambda \\lesssim 1 mm (the international program, Event Horizon Telescope).

  11. A strong magnetic field around the supermassive black hole at the centre of the Galaxy.

    PubMed

    Eatough, R P; Falcke, H; Karuppusamy, R; Lee, K J; Champion, D J; Keane, E F; Desvignes, G; Schnitzeler, D H F M; Spitler, L G; Kramer, M; Klein, B; Bassa, C; Bower, G C; Brunthaler, A; Cognard, I; Deller, A T; Demorest, P B; Freire, P C C; Kraus, A; Lyne, A G; Noutsos, A; Stappers, B; Wex, N

    2013-09-19

    Earth's nearest candidate supermassive black hole lies at the centre of the Milky Way. Its electromagnetic emission is thought to be powered by radiatively inefficient accretion of gas from its environment, which is a standard mode of energy supply for most galactic nuclei. X-ray measurements have already resolved a tenuous hot gas component from which the black hole can be fed. The magnetization of the gas, however, which is a crucial parameter determining the structure of the accretion flow, remains unknown. Strong magnetic fields can influence the dynamics of accretion, remove angular momentum from the infalling gas, expel matter through relativistic jets and lead to synchrotron emission such as that previously observed. Here we report multi-frequency radio measurements of a newly discovered pulsar close to the Galactic Centre and show that the pulsar's unusually large Faraday rotation (the rotation of the plane of polarization of the emission in the presence of an external magnetic field) indicates that there is a dynamically important magnetic field near the black hole. If this field is accreted down to the event horizon it provides enough magnetic flux to explain the observed emission--from radio to X-ray wavelengths--from the black hole.

  12. A strong magnetic field around the supermassive black hole at the centre of the Galaxy

    NASA Astrophysics Data System (ADS)

    Eatough, R. P.; Falcke, H.; Karuppusamy, R.; Lee, K. J.; Champion, D. J.; Keane, E. F.; Desvignes, G.; Schnitzeler, D. H. F. M.; Spitler, L. G.; Kramer, M.; Klein, B.; Bassa, C.; Bower, G. C.; Brunthaler, A.; Cognard, I.; Deller, A. T.; Demorest, P. B.; Freire, P. C. C.; Kraus, A.; Lyne, A. G.; Noutsos, A.; Stappers, B.; Wex, N.

    2013-09-01

    Earth's nearest candidate supermassive black hole lies at the centre of the Milky Way. Its electromagnetic emission is thought to be powered by radiatively inefficient accretion of gas from its environment, which is a standard mode of energy supply for most galactic nuclei. X-ray measurements have already resolved a tenuous hot gas component from which the black hole can be fed. The magnetization of the gas, however, which is a crucial parameter determining the structure of the accretion flow, remains unknown. Strong magnetic fields can influence the dynamics of accretion, remove angular momentum from the infalling gas, expel matter through relativistic jets and lead to synchrotron emission such as that previously observed. Here we report multi-frequency radio measurements of a newly discovered pulsar close to the Galactic Centre and show that the pulsar's unusually large Faraday rotation (the rotation of the plane of polarization of the emission in the presence of an external magnetic field) indicates that there is a dynamically important magnetic field near the black hole. If this field is accreted down to the event horizon it provides enough magnetic flux to explain the observed emission--from radio to X-ray wavelengths--from the black hole.

  13. A high-velocity black hole on a Galactic-halo orbit in the solar neighbourhood.

    PubMed

    Mirabel, I F; Dhawan, V; Mignani, R P; Rodrigues, I; Guglielmetti, F

    2001-09-13

    Only a few of the dozen or so known stellar-mass black holes have been observed away from the plane of the Galaxy. Those few could have been ejected from the plane as a result of a 'kick' received during a supernova explosion, or they could be remnants of the population of massive stars formed in the early stages of evolution of the Galaxy. Determining their orbital motion should help to distinguish between these options. Here we report the transverse motion (in the plane of the sky) for the black-hole X-ray nova XTE J1118+480 (refs 2, 3, 4, 5), from which we derive a large space velocity. This X-ray binary system has an eccentric orbit around the Galactic Centre, like most objects in the halo of the Galaxy, such as ancient stars and globular clusters. The properties of the system suggest that its age is comparable to or greater than the age of the Galactic disk. Only an extraordinary 'kick' from a supernova could have launched the black hole into an orbit like this from a birthplace in the disk of the Galaxy.

  14. Gamma-ray and X-ray emission from the Galactic centre: hints on the nuclear star cluster formation history

    NASA Astrophysics Data System (ADS)

    Arca-Sedda, Manuel; Kocsis, Bence; Brandt, Timothy D.

    2018-06-01

    The Milky Way centre exhibits an intense flux in the gamma and X-ray bands, whose origin is partly ascribed to the possible presence of a large population of millisecond pulsars (MSPs) and cataclysmic variables (CVs), respectively. However, the number of sources required to generate such an excess is much larger than what is expected from in situ star formation and evolution, opening a series of questions about the formation history of the Galactic nucleus. In this paper we make use of direct N-body simulations to investigate whether these sources could have been brought to the Galactic centre by a population of star clusters that underwent orbital decay and formed the Galactic nuclear star cluster (NSC). Our results suggest that the gamma ray emission is compatible with a population of MSPs that were mass segregated in their parent clusters, while the X-ray emission is consistent with a population of CVs born via dynamical interactions in dense star clusters. Combining observations with our modelling, we explore how the observed γ ray flux can be related to different NSC formation scenarios. Finally, we show that the high-energy emission coming from the galactic central regions can be used to detect black holes heavier than 105M⊙ in nearby dwarf galaxies.

  15. The role of electron heating physics in images and variability of the Galactic Centre black hole Sagittarius A*

    NASA Astrophysics Data System (ADS)

    Chael, Andrew; Rowan, Michael; Narayan, Ramesh; Johnson, Michael; Sironi, Lorenzo

    2018-05-01

    The accretion flow around the Galactic Centre black hole Sagittarius A* (Sgr A*) is expected to have an electron temperature that is distinct from the ion temperature, due to weak Coulomb coupling in the low-density plasma. We present four two-temperature general relativistic radiative magnetohydrodynamic (GRRMHD) simulations of Sgr A* performed with the code KORAL. These simulations use different electron heating prescriptions, motivated by different models of the underlying plasma microphysics. We compare the Landau-damped turbulent cascade model used in previous work with a new prescription we introduce based on the results of particle-in-cell simulations of magnetic reconnection. With the turbulent heating model, electrons are preferentially heated in the polar outflow, whereas with the reconnection model electrons are heated by nearly the same fraction everywhere in the accretion flow. The spectra of the two models are similar around the submillimetre synchrotron peak, but the models heated by magnetic reconnection produce variability more consistent with the level observed from Sgr A*. All models produce 230 GHz images with distinct black hole shadows which are consistent with the image size measured by the Event Horizon Telescope, but only the turbulent heating produces an anisotropic `disc-jet' structure where the image is dominated by a polar outflow or jet at frequencies below the synchrotron peak. None of our models can reproduce the observed radio spectral slope, the large near-infrared and X-ray flares, or the near-infrared spectral index, all of which suggest non-thermal electrons are needed to fully explain the emission from Sgr A*.

  16. Galactic nuclei evolution with spinning black holes: method and implementation

    NASA Astrophysics Data System (ADS)

    Fiacconi, Davide; Sijacki, Debora; Pringle, J. E.

    2018-04-01

    Supermassive black holes at the centre of galactic nuclei mostly grow in mass through gas accretion over cosmic time. This process also modifies the angular momentum (or spin) of black holes, both in magnitude and in orientation. Despite being often neglected in galaxy formation simulations, spin plays a crucial role in modulating accretion power, driving jet feedback, and determining recoil velocity of coalescing black hole binaries. We present a new accretion model for the moving-mesh code AREPO that incorporates (i) mass accretion through a thin α-disc, and (ii) spin evolution through the Bardeen-Petterson effect. We use a diverse suite of idealised simulations to explore the physical connection between spin evolution and larger scale environment. We find that black holes with mass ≲ 107 M⊙ experience quick alignment with the accretion disc. This favours prolonged phases of spin-up, and the spin direction evolves according to the gas inflow on timescales as short as ≲ 100 Myr, which might explain the observed jet direction distribution in Seyfert galaxies. Heavier black holes (≳ 108 M⊙) are instead more sensitive to the local gas kinematic. Here we find a wider distribution in spin magnitudes: spin-ups are favoured if gas inflow maintains a preferential direction, and spin-downs occur for nearly isotropic infall, while the spin direction does not change much over short timescales ˜100 Myr. We therefore conclude that supermassive black holes with masses ≳ 5 × 108 M⊙ may be the ideal testbed to determine the main mode of black hole fuelling over cosmic time.

  17. Massive black holes in galactic halos?

    NASA Technical Reports Server (NTRS)

    Lacey, C. G.; Ostriker, J. P.

    1985-01-01

    In the present attempt to resolve the problems posed by the composition of dark halos and the heating of stellar disks, under the assumption that galaxy halos are composed of massive black holes, it is noted that the black holes must have masses of the order of one million solar masses. The heating mechanism proposed yields predictions for the dependence of the velocity dispersion on time, and for the shape of the velocity ellipsoid, which are in good agreement with observations. Attention is given to the constraints set by dynamical friction causing black holes to spiral to the Galactic center, by the possible presence of dark matter in dwarf spheroidal galaxies, and by the accretion of interstellar gas by the black holes that produce luminous objects in the Galaxy.

  18. Can black hole superradiance be induced by galactic plasmas?

    NASA Astrophysics Data System (ADS)

    Conlon, Joseph P.; Herdeiro, Carlos A. R.

    2018-05-01

    Highly spinning Kerr black holes with masses M = 1- 100M⊙ are subject to an efficient superradiant instability in the presence of bosons with masses μ ∼10-10-10-12eV. We observe that this matches the effective plasma-induced photon mass in diffuse galactic or intracluster environments (ωpl ∼10-10-10-12eV). This suggests that bare Kerr black holes within galactic or intracluster environments, possibly even including the ones produced in recently observed gravitational wave events, are unstable to formation of a photon cloud that may contain a significant fraction of the mass of the original black hole. At maximal efficiency, the instability timescale for a massive vector is milliseconds, potentially leading to a transient rate of energy extraction from a black hole in principle as large as ∼1055ergs-1. We discuss possible astrophysical effects this could give rise to, including a speculative connection to Fast Radio Bursts.

  19. Very high energy observations of the Galactic Centre: recent results and perspectives with CTA

    NASA Astrophysics Data System (ADS)

    Terrier, Regis

    2016-07-01

    The central 300 pc of our Galaxy are a major laboratory for high energy astrophysics. They harbor the closest supermassive black hole (SMBH) and are the site of a sustained star formation activity. The energy released by the supernovae on the ambient medium must be very strong. Similarly, albeit extremely faint nowadays, the SMBH must have experienced episodes of intense activity in the past which can influence significantly the central regions and beyond, e.g. powering the Fermi bubbles. I review observational results at very high energies from the central region and discuss their implications and the questions they leave open. I discuss the perspectives CTA offers for Galactic Centre astrophysics.

  20. Black hole binaries in galactic nuclei and gravitational wave sources

    NASA Astrophysics Data System (ADS)

    Hong, Jongsuk; Lee, Hyung Mok

    2015-03-01

    Stellar black hole (BH) binaries are one of the most promising gravitational wave (GW) sources for GW detection by the ground-based detectors. Nuclear star clusters (NCs) located at the centre of galaxies are known to harbour massive black holes (MBHs) and to be bounded by a gravitational potential by other galactic components such as the galactic bulge. Such an environment of NCs provides a favourable conditions for the BH-BH binary formation by the gravitational radiation capture due to the high BH number density and velocity dispersion. We carried out detailed numerical study of the formation of BH binaries in the NCs using a series of N-body simulations for equal-mass cases. There is no mass segregation introduced. We have derived scaling relations of the binary formation rate with the velocity dispersion of the stellar system beyond the radius of influence and made estimates of the rate of formation of BH binaries per unit comoving volume and thus expected detection rate by integrating the binary formation rate over galaxy population within the detection distance of the advanced detectors. We find that the overall formation rates for BH-BH binaries per NC is ˜10-10 yr-1 for the Milky Way-like galaxies and weakly dependent on the mass of MBH as Γ ∝ M_MBH^{3/28}. We estimate the detection rate of 0.02-14 yr-1 for advanced LIGO/Virgo considering several factors such as the dynamical evolution of NCs, the variance of the number density of stars and the mass range of MBH giving uncertainties.

  1. Deformation of the Galactic Centre stellar cusp due to the gravity of a growing gas disc

    NASA Astrophysics Data System (ADS)

    Kaur, Karamveer; Sridhar, S.

    2018-06-01

    The nuclear star cluster surrounding the massive black hole at the Galactic Centre consists of young and old stars, with most of the stellar mass in an extended, cuspy distribution of old stars. The compact cluster of young stars was probably born in situ in a massive accretion disc around the black hole. We investigate the effect of the growing gravity of the disc on the orbits of the old stars, using an integrable model of the deformation of a spherical star cluster with anisotropic velocity dispersions. A formula for the perturbed phase-space distribution function is derived using linear theory, and new density and surface density profiles are computed. The cusp undergoes a spheroidal deformation with the flattening increasing strongly at smaller distances from the black hole; the intrinsic axis ratio ˜0.8 at ˜0.15 pc. Stellar orbits are deformed such that they spend more time near the disc plane and sample the dense inner parts of the disc; this could result in enhanced stripping of the envelopes of red giant stars. Linear theory accounts only for orbits whose apsides circulate. The non-linear theory of adiabatic capture into resonance is needed to understand orbits whose apsides librate. The mechanism is a generic dynamical process, and it may be common in galactic nuclei.

  2. The Observed Galactic Annihilation Line: Possible Signature of Accreting Small Mass Black Holes in the Galactic Center

    NASA Technical Reports Server (NTRS)

    Titarchuk, Lev; Chardonnet, Pascal

    2006-01-01

    Various balloon and satellite observatories have revealed what appears to be an extended source of 0.511 MeV annihilation radiation with flux of approx. 10(exp -3) photons/sq cm/s centered on the Galactic Center. Positrons from radioactive products of stellar explosions can account for a significant fraction of the emission. We discuss an additional source for this emission: namely e(+)e(-) pairs produced when X-rays generated from the approx. 2.6 x 10(exp 6) solar mass Galactic Center Black Hole interact with approx. 10 MeV temperature blackbody emission from 10(exp 17) g black holes within 10(exp 14-l5) cm of the center. The number of such Small Mass Black Holes (SMMBHs) can account for the production of the 10(exp 42) e(+)/s that produces the observed annihilation in the inner Galaxy when transport effects are taken into account. We consider the possibility for confirming the presence of these SMMBHs in the Galactic Center region with future generations of gamma-ray instruments if a blackbody like emission of approx. 10 MeV temperature would be detected by them. Small Mass Black Hole can be a potential candidate for dark (invisible) matter hal

  3. Hot, metastable hydronium ion in the Galactic centre: formation pumping in X-ray-irradiated gas?

    PubMed

    Lis, Dariusz C; Schilke, Peter; Bergin, Edwin A; Emprechtinger, Martin

    2012-11-13

    With a 3.5 m diameter telescope passively cooled to approximately 80 K, and a science payload comprising two direct detection cameras/medium resolution imaging spectrometers (PACS and SPIRE) and a very high spectral resolution heterodyne spectrometer (HIFI), the Herschel Space Observatory is providing extraordinary observational opportunities in the 55-670 μm spectral range. HIFI has opened for the first time to high-resolution spectroscopy the submillimetre band that includes the fundamental rotational transitions of interstellar hydrides, the basic building blocks of astrochemistry. We discuss a recent HIFI discovery of metastable rotational transitions of the hydronium ion (protonated water, H(3)O(+)), with rotational level energies up to 1200 K above the ground state, in absorption towards Sagittarius B2(N) in the Galactic centre. Hydronium is an important molecular ion in the oxygen chemical network. Earlier HIFI observations have indicated a general deficiency of H(3)O(+) in the diffuse gas in the Galactic disc. The presence of hot H(3)O(+) towards Sagittarius B2(N) thus appears to be related to the unique physical conditions in the central molecular zone, manifested, for example, by the widespread presence of abundant H(3)(+). One intriguing theory for the high rotational temperature characterizing the population of the H(3)O(+) metastable levels may be formation pumping in molecular gas irradiated by X-rays emitted by the Galactic centre black hole. Alternatively, the pervasive presence of enhanced turbulence in the central molecular zone may give rise to shocks in the lower-density medium that is exposed to energetic radiation.

  4. Ram-pressure feeding of supermassive black holes

    NASA Astrophysics Data System (ADS)

    Poggianti, Bianca M.; Jaffé, Yara L.; Moretti, Alessia; Gullieuszik, Marco; Radovich, Mario; Tonnesen, Stephanie; Fritz, Jacopo; Bettoni, Daniela; Vulcani, Benedetta; Fasano, Giovanni; Bellhouse, Callum; Hau, George; Omizzolo, Alessandro

    2017-08-01

    When a supermassive black hole at the centre of a galaxy accretes matter, it gives rise to a highly energetic phenomenon: an active galactic nucleus. Numerous physical processes have been proposed to account for the funnelling of gas towards the galactic centre to feed the black hole. There are also several physical processes that can remove gas from a galaxy, one of which is ram-pressure stripping by the hot gas that fills the space between galaxies in galaxy clusters. Here we report that six out of a sample of seven ‘jellyfish’ galaxies—galaxies with long ‘tentacles’ of material that extend for dozens of kiloparsecs beyond the galactic disks—host an active nucleus, and two of them also have galactic-scale ionization cones. The high incidence of nuclear activity among heavily stripped jellyfish galaxies may be due to ram pressure causing gas to flow towards the centre and triggering the activity, or to an enhancement of the stripping caused by energy injection from the active nucleus, or both. Our analysis of the galactic position and velocity relative to the cluster strongly supports the first hypothesis, and puts forward ram pressure as another possible mechanism for feeding the central supermassive black hole with gas.

  5. Ram-pressure feeding of supermassive black holes.

    PubMed

    Poggianti, Bianca M; Jaffé, Yara L; Moretti, Alessia; Gullieuszik, Marco; Radovich, Mario; Tonnesen, Stephanie; Fritz, Jacopo; Bettoni, Daniela; Vulcani, Benedetta; Fasano, Giovanni; Bellhouse, Callum; Hau, George; Omizzolo, Alessandro

    2017-08-16

    When a supermassive black hole at the centre of a galaxy accretes matter, it gives rise to a highly energetic phenomenon: an active galactic nucleus. Numerous physical processes have been proposed to account for the funnelling of gas towards the galactic centre to feed the black hole. There are also several physical processes that can remove gas from a galaxy, one of which is ram-pressure stripping by the hot gas that fills the space between galaxies in galaxy clusters. Here we report that six out of a sample of seven 'jellyfish' galaxies-galaxies with long 'tentacles' of material that extend for dozens of kiloparsecs beyond the galactic disks-host an active nucleus, and two of them also have galactic-scale ionization cones. The high incidence of nuclear activity among heavily stripped jellyfish galaxies may be due to ram pressure causing gas to flow towards the centre and triggering the activity, or to an enhancement of the stripping caused by energy injection from the active nucleus, or both. Our analysis of the galactic position and velocity relative to the cluster strongly supports the first hypothesis, and puts forward ram pressure as another possible mechanism for feeding the central supermassive black hole with gas.

  6. The black hole at the Galactic Center: observations and models in a nutshell

    NASA Astrophysics Data System (ADS)

    Zakharov, Alexander

    2017-12-01

    The Galactic Center (Sgr A*) is a peculiar place in our Galaxy (Milky Way). Our Solar system is located at a distance around 8 kpc from the Galactic Center (GC). There were a number of different including exotic ones such as boson stars, fermion balls, neutrino balls, a cluster of neutron stars. Some of these models are significantly constrained with consequent observations and now supermassive black hole with mass around 4 × 106 M ⊙ is the preferable model for GC. Moreover, one can test alternative theories of gravity with observations of bright stars near the Galactic Center and and observations of bright structures near the black hole at the Galactic Center to reconstruct shadow structure around the black hole with current and future observational VLBI facilities such as the Event Horizon Telescope. In particular, we got a graviton mass constraint which is comparable and consistent with constraints obtained recently by the LIGO-Virgo collaboration.

  7. Tidal breakup of triple stars in the Galactic Centre

    NASA Astrophysics Data System (ADS)

    Fragione, Giacomo; Gualandris, Alessia

    2018-04-01

    The last decade has seen the detection of fast moving stars in the Galactic halo, the so-called hypervelocity stars (HVSs). While the bulk of this population is likely the result of a close encounter between a stellar binary and the supermassive black hole (MBH) in the Galactic Centre (GC), other mechanims may contribute fast stars to the sample. Few observed HVSs show apparent ages, which are shorter than the flight time from the GC, thereby making the binary disruption scenario unlikely. These stars may be the result of the breakup of a stellar triple in the GC, which led to the ejection of a hypervelocity binary (HVB). If such binary evolves into a blue straggler star due to internal processes after ejection, a rejuvenation is possible that make the star appear younger once detected in the halo. A triple disruption may also be responsible for the presence of HVBs, of which one candidate has now been observed. We present a numerical study of triple disruptions by the MBH in the GC and find that the most likely outcomes are the production of single HVSs and single/binary stars bound to the MBH, while the production of HVBs has a probability ≲ 1 per cent regardless of the initial parameters. Assuming a triple fraction of ≈ 10 per cent results in an ejection rate of ≲ 1 Gyr - 1, insufficient to explain the sample of HVSs with lifetimes shorter than their flight time. We conclude that alternative mechanisms are responsible for the origin of such objects and HVBs in general.

  8. Star motion around rotating black hole in the Galactic Center in real time

    NASA Astrophysics Data System (ADS)

    Dokuchaev, Vyacheslav; Nazarova, Natalia

    2017-12-01

    The Event Horizon Telescope team intends by the 2020 to resolve the shadow of supermassive black hole SgrA* in the Galactic Center. It would be the first attempt for direct identification of the enigmatic black hole. In other words, it would be the first experimental verification of the General Relativity in the strong field limit. There is a chance to find a star moving on the relativistic orbit close to this black hole. We present the animated numerical model of the gravitational lensing of a star (or any other lighting probe), moving around rotating Kerr black hole in the Galactic Center and viewed by the distant observer.

  9. Polarization properties of bow shock sources close to the Galactic centre

    NASA Astrophysics Data System (ADS)

    Zajaček, M.; Karas, V.; Hosseini, E.; Eckart, A.; Shahzamanian, B.; Valencia-S., M.; Peissker, F.; Busch, G.; Britzen, S.; Zensus, J. A.

    2017-12-01

    Several bow shock sources were detected and resolved in the innermost parsec from the supermassive black hole in the Galactic centre. They show several distinct characteristics, including an excess towards mid-infrared wavelengths and a significant linear polarization as well as a characteristic prolonged bow-shock shape. These features give hints about the presence of a non-spherical dusty envelope generated by the bow shock. The Dusty S-cluster Object (also denoted as G2) shows similar characteristics and it is a candidate for the closest bow shock with a detected proper motion in the vicinity of Sgr A*, with the pericentre distance of only approx. 2000 Schwarzschild radii. However, in the continuum emission it is a point-like source and hence we use Monte Carlo radiative transfer modeling to reveal its possible three-dimensional structure. Alongside the spectral energy distribution, the detection of polarized continuum emission in the near-infrared Ks-band (2.2 micrometers) puts additional constraints on the geometry of the source.

  10. Establishing the Galactic Centre distance using VVV Bulge RR Lyrae variables

    NASA Astrophysics Data System (ADS)

    Majaess, D.; Dékány, I.; Hajdu, G.; Minniti, D.; Turner, D.; Gieren, W.

    2018-06-01

    This study's objective was to exploit infrared VVV (VISTA Variables in the Via Lactea) photometry for high latitude RRab stars to establish an accurate Galactic Centre distance. RRab candidates were discovered and reaffirmed (n=4194) by matching Ks photometry with templates via χ 2 minimization, and contaminants were reduced by ensuring targets adhered to a strict period-amplitude (Δ Ks) trend and passed the Elorietta et al. classifier. The distance to the Galactic Centre was determined from a high latitude Bulge subsample (|b|>4°, R_{GC}=8.30 ± 0.36 kpc, random uncertainty is relatively negligible), and importantly, the comparatively low color-excess and uncrowded location mitigated uncertainties tied to the extinction law, the magnitude-limited nature of the analysis, and photometric contamination. Circumventing those problems resulted in a key uncertainty being the M_{Ks} relation, which was derived using LMC RRab stars (M_{Ks}=-(2.66± 0.06) log {P}-(1.03± 0.06), (J-Ks)0=(0.31± 0.04) log {P} + (0.35± 0.02), assuming μ _{0,LMC}=18.43). The Galactic Centre distance was not corrected for the cone-effect. Lastly, a new distance indicator emerged as brighter overdensities in the period-magnitude-amplitude diagrams analyzed, which arise from blended RRab and red clump stars. Blending may thrust faint extragalactic variables into the range of detectability.

  11. Gas cloud G2 can illuminate the black hole population near the galactic center.

    PubMed

    Bartos, Imre; Haiman, Zoltán; Kocsis, Bence; Márka, Szabolcs

    2013-05-31

    Galactic nuclei are expected to be densely populated with stellar- and intermediate-mass black holes. Exploring this population will have important consequences for the observation prospects of gravitational waves as well as understanding galactic evolution. The gas cloud G2 currently approaching Sgr A* provides an unprecedented opportunity to probe the black hole and neutron star population of the Galactic nucleus. We examine the possibility of a G2-cloud-black-hole encounter and its detectability with current x-ray satellites, such as Chandra and NuSTAR. We find that multiple encounters are likely to occur close to the pericenter, which may be detectable upon favorable circumstances. This opportunity provides an additional important science case for leading x-ray observatories to closely follow G2 on its way to the nucleus.

  12. Galactic bulge population II Cepheids in the VVV survey: period-luminosity relations and a distance to the Galactic centre

    NASA Astrophysics Data System (ADS)

    Bhardwaj, A.; Rejkuba, M.; Minniti, D.; Surot, F.; Valenti, E.; Zoccali, M.; Gonzalez, O. A.; Romaniello, M.; Kanbur, S. M.; Singh, H. P.

    2017-09-01

    Context. Multiple stellar populations of different ages and metallicities reside in the Galactic bulge that trace its structure and provide clues to its formation and evolution. Aims: We present the near-infrared observations of population II Cepheids in the Galactic bulge from VISTA Variables in the Vía Láctea (VVV) survey. The JHKs photometry together with optical data from Optical Gravitational Lensing Experiment (OGLE) survey provide an independent estimate of the distance to the Galactic centre. The old, metal-poor and low-mass population II Cepheids are also investigated as useful tracers for the structure of the Galactic bulge. Methods: We identify 340 population II Cepheids in the VVV survey Galactic bulge catalogue based on their match with the OGLE-III Catalogue. The single-epoch JH and multi-epoch Ks observations complement the accurate periods and optical (VI) mean-magnitudes from OGLE. The sample consisting of BL Herculis and W Virginis subtypes is used to derive period-luminosity relations after correcting mean-magnitudes for the extinction. Our Ks-band period-luminosity relation, Ks = -2.189(0.056) [log (P)-1] + 11.187(0.032), is consistent with published work for BL Herculis and W Virginis variables in the Large Magellanic Cloud. Results: We present a combined OGLE-III and VVV catalogue with periods, classification, mean magnitudes, and extinction for 264 Galactic bulge population II Cepheids that have good-quality Ks-band light curves. The absolute magnitudes for population II Cepheids and RR Lyraes calibrated using Gaia and Hubble Space Telescope parallaxes, together with calibrated magnitudes for Large Magellanic Cloud population II Cepheids, are used to obtain a distance to the Galactic centre, R0 = 8.34 ± 0.03(stat.) ± 0.41(syst.), which changes by with different extinction laws. While noting the limitation of small number statistics, we find that the present sample of population II Cepheids in the Galactic bulge shows a nearly spheroidal

  13. The black hole at the Galactic Center: Observations and models

    NASA Astrophysics Data System (ADS)

    Zakharov, Alexander F.

    One of the most interesting astronomical objects is the Galactic Center. It is a subject of intensive astronomical observations in different spectral bands in recent years. We concentrate our discussion on a theoretical analysis of observational data of bright stars in the IR-band obtained with large telescopes. We also discuss the importance of VLBI observations of bright structures which could characterize the shadow at the Galactic Center. If we adopt general relativity (GR), there are a number of theoretical models for the Galactic Center, such as a cluster of neutron stars, boson stars, neutrino balls, etc. Some of these models were rejected or the range of their parameters is significantly constrained with consequent observations and theoretical analysis. In recent years, a number of alternative theories of gravity have been proposed because there are dark matter (DM) and dark energy (DE) problems. An alternative theory of gravity may be considered as one possible solution for such problems. Some of these theories have black hole solutions, while other theories have no such solutions. There are attempts to describe the Galactic Center with alternative theories of gravity and in this case one can constrain parameters of such theories with observational data for the Galactic Center. In particular, theories of massive gravity are intensively developing and theorists have overcome pathologies presented in the initial versions of these theories. In theories of massive gravity, a graviton is massive in contrast with GR where a graviton is massless. Now these theories are considered as an alternative to GR. For example, the LIGO-Virgo collaboration obtained the graviton mass constraint of about 1.2 × 10‑22 eV in their first publication about the discovery of the first gravitational wave detection event that resulted of the merger of two massive black holes. Surprisingly, one could obtain a consistent and comparable constraint of graviton mass at a level around mg

  14. The Galactic Centre Mini-Spiral with CARMA

    NASA Technical Reports Server (NTRS)

    Kunneriath, D.; Eckart, A.; Vogel, S. N.; Teuben, P.; Muzic, K.; Schodel. R.; Garcia-Marin, M.; Moultaka, J.; Staguhn, J.; Straubmeier, C.; hide

    2012-01-01

    The Galactic centre mini-spiral region is a mixture of gas and dust with temperatures ranging from a few hundred K to 10(exp 4) K. We report results from 1.3 and 3mm radio interferometric observations of this region with CARMA, and present a spectral index map of this region. We find a range of emission mechanisms in the region, including the inverted synchrotron spectrum of Sgr A*, free-free emission from the mini-spiral arms, and a possible dust emission contribution indicated by a positive spectral index.

  15. Space telescope searches for black holes in galactic nuclei

    NASA Technical Reports Server (NTRS)

    Harms, Richard J.

    1989-01-01

    The Hubble Space Telescope (HST) will allow astronomers to obtain luminosity profiles, rotation curves, and velocity dispersions at angular scales that are an order of magnitude superior to those obtained previously. This enhanced spatial resolution will greatly improve the sensitivity for detecting centrally condensed matter in nearby galactic nuclei including, possibly, black holes.

  16. The population of planetary nebulae near the Galactic Centre: chemical abundances

    NASA Astrophysics Data System (ADS)

    Mollá, M.; Cavichia, O.; Costa, R. D. D.; Maciel, W. J.

    2017-10-01

    In this work, we report physical parameters and abundances derived for a sample of 15 high extinction planetary nebulae located in the inner 2° of the Galactic bulge, based on low dispersion spectroscopy secured at the SOAR telescope using the Goodman spectrograph. The new data allow us to extend our database including older, weaker objects that are at the faint end of the planetary nebulae luminosity function. The data provide chemical compositions for PNe located in this region of the bulge to explore the chemical enrichment history of the central region of the Galactic bulge. The results show that the abundances of our sample are skewed to higher metallicities than previous data in the outer regions of the bulge. This can indicate a faster chemical enrichment taking place at the Galactic centre.

  17. Chandra Finds Evidence for Swarm of Black Holes Near the Galactic Center

    NASA Astrophysics Data System (ADS)

    2005-01-01

    A swarm of 10,000 or more black holes may be orbiting the Milky Way's supermassive black hole, according to new results from NASA's Chandra X-ray Observatory. This would represent the highest concentration of black holes anywhere in the Galaxy. These relatively small, stellar-mass black holes, along with neutron stars, appear to have migrated into the Galactic Center over the course of several billion years. Such a dense stellar graveyard has been predicted for years, and this represents the best evidence to date of its existence. The Chandra data may also help astronomers better understand how the supermassive black hole at the center of the Milky Way grows. The discovery was made as part of Chandra's ongoing program of monitoring the region around Sagittarius A* (Sgr A*), the supermassive black hole at the center of the Milky Way. It was announced today by Michael Muno of the University of California, Los Angeles (UCLA) at a meeting of the American Astronomical Society in San Diego, CA. Animation: Sequence Showing Evidence of Black Hole Swarm in Context Animation: Sequence Showing Evidence of Black Hole Swarm in Context Among the thousands of X-ray sources detected within 70 light years of Sgr A*, Muno and his colleagues searched for those most likely to be active black holes and neutron stars by selecting only the brightest sources that also exhibited large variations in their X-ray output. These characteristics identify black holes and neutron stars that are in binary star systems and are pulling matter from nearby companion stars. Of the seven sources that met these criteria, four are within three light years of Sgr A*. "Although the region around Sgr A* is crowded with stars, we expected that there was only a 20 percent chance that we would find even one X-ray binary within a three-light-year radius," said Muno. "The observed high concentration of these sources implies that a huge number of black holes and neutron stars have gathered in the center of the

  18. Shaping the relation between the mass of supermassive black holes and the velocity dispersion of galactic bulges

    NASA Astrophysics Data System (ADS)

    Chan, M. H.

    2013-05-01

    I use the fact that the radiation emitted by the accretion disk of supermassive black hole can heat up the surrounding gas in the protogalaxy to achieve hydrostatic equilibrium during the galaxy formation. The correlation between the black hole mass M BH and velocity dispersion σ thus naturally arises. The result generally agrees with empirical fittings from observational data, even with M BH ≤106 M ⊙. This model provides a clear picture on how the properties of the galactic supermassive black holes are connected with the kinetic properties of the galactic bulges.

  19. What stellar orbit is needed to measure the spin of the Galactic centre black hole from astrometric data?

    NASA Astrophysics Data System (ADS)

    Waisberg, Idel; Dexter, Jason; Gillessen, Stefan; Pfuhl, Oliver; Eisenhauer, Frank; Plewa, Phillip M.; Bauböck, Michi; Jimenez-Rosales, Alejandra; Habibi, Maryam; Ott, Thomas; von Fellenberg, Sebastiano; Gao, Feng; Widmann, Felix; Genzel, Reinhard

    2018-05-01

    Astrometric and spectroscopic monitoring of individual stars orbiting the supermassive black hole in the Galactic Center offer a promising way to detect general relativistic effects. While low-order effects are expected to be detected following the periastron passage of S2 in Spring 2018, detecting higher order effects due to black hole spin will require the discovery of closer stars. In this paper, we set out to determine the requirements such a star would have to satisfy to allow the detection of black hole spin. We focus on the instrument GRAVITY, which saw first light in 2016 and which is expected to achieve astrometric accuracies 10-100 μas. For an observing campaign with duration T years, total observations Nobs, astrometric precision σx, and normalized black hole spin χ, we find that a_orb(1-e^2)^{3/4} ≲ 300 R_S √{T/4 {yr}} (N_obs/120)^{0.25} √{10 μ as/σ _x} √{χ /0.9} is needed. For χ = 0.9 and a potential observing campaign with σ _x = 10 μas, 30 observations yr-1 and duration 4-10 yr, we expect ˜0.1 star with K < 19 satisfying this constraint based on the current knowledge about the stellar population in the central 1 arcsec. We also propose a method through which GRAVITY could potentially measure radial velocities with precision ˜50 km s-1. If the astrometric precision can be maintained, adding radial velocity information increases the expected number of stars by roughly a factor of 2. While we focus on GRAVITY, the results can also be scaled to parameters relevant for future extremely large telescopes.

  20. Tidal breakup of quadruple stars in the Galactic Centre

    NASA Astrophysics Data System (ADS)

    Fragione, Giacomo

    2018-06-01

    The most likely origin of hypervelocity stars (HVSs) is the tidal disruption of a binary star by the supermassive black hole (MBH) in the Galactic Centre (GC). However, HE0437-5439, a 9 M_⊙ B-type main-sequence star moving with a heliocentric radial velocity of about 720 km s^{-1} at a distance of ˜ 60{ kpc}, and the recent discovered hypervelocity binary candidate (HVB), traveling at ˜ 570 km s^{-1}, challenge this standard scenario. Recently, Fragione & Gualandris (2018) have demonstrated that the tidal breakup of a triple star leads to an insufficient rate. Observations show that quadruple stars made up of two binaries orbiting their common center of mass (the so-called 2+2 quadruples) are ≈4% of the stars in the solar neighborhood. Although rarer than triples, 2+2 quadruple stars may have a role in ejecting HVBs as due to their larger energy reservoir. We present a numerical study of 2+2 quadruple disruptions by the MBH in the GC and find that the production of HVBs has a probability ≲ 2 - 4%, which translates into an ejection rate of ≲ 1{ Gyr}^{-1}, comparable to the triple disruption scenario. Given the low ejection rate, we suggest that alternative mechanisms are responsible for the origin of HVBs, as the ejection from the interaction of a young star cluster with the MBH in the GC and the origin in the Large Magellanic Cloud.

  1. Exploring Black Hole Accretion in Active Galactic Nuclei with Simbol-X

    NASA Astrophysics Data System (ADS)

    Goosmann, R. W.; Dovčiak, M.; Mouchet, M.; Czerny, B.; Karas, V.; Gonçalves, A.

    2009-05-01

    A major goal of the Simbol-X mission is to improve our knowledge about black hole accretion. By opening up the X-ray window above 10 keV with unprecedented sensitivity and resolution we obtain new constraints on the X-ray spectral and variability properties of active galactic nuclei. To interpret the future data, detailed X-ray modeling of the dynamics and radiation processes in the black hole vicinity is required. Relativistic effects must be taken into account, which then allow to constrain the fundamental black hole parameters and the emission pattern of the accretion disk from the spectra that will be obtained with Simbol-X.

  2. Supernova kicks and dynamics of compact remnants in the Galactic Centre

    NASA Astrophysics Data System (ADS)

    Bortolas, Elisa; Mapelli, Michela; Spera, Mario

    2017-08-01

    The Galactic Centre (GC) is a unique place to study the extreme dynamical processes occurring near a supermassive black hole (SMBH). Here, we investigate the role of supernova (SN) explosions occurring in massive binary systems lying in a disc-like structure within the innermost parsec. We use a regularized algorithm to simulate 3 × 104 isolated three-body systems composed of a stellar binary orbiting the SMBH. We start the integration when the primary member undergoes an SN explosion and analyse the impact of SN kicks on the orbits of stars and compact remnants. We find that SN explosions scatter the lighter stars in the pair on completely different orbits, with higher eccentricity and inclination. In contrast, stellar-mass black holes (BHs) and massive stars retain memory of the orbit of their progenitor star. Our results suggest that SN kicks are not sufficient to eject BHs from the GC. We thus predict that all BHs that form in situ in the central parsec of our Galaxy remain in the GC, building up a cluster of dark remnants. In addition, the change of neutron star (NS) orbits induced by SNe may partially account for the observed dearth of NSs in the GC. About 40 per cent of remnants stay bound to the stellar companion after the kick; we expect up to 70 per cent of them might become X-ray binaries through Roche lobe filling. Finally, the eccentricity of some light stars becomes >0.7 as an effect of the SN kick, producing orbits similar to those of the G1 and G2 dusty objects.

  3. A magnetic torsional wave near the Galactic Centre traced by a 'double helix' nebula.

    PubMed

    Morris, Mark; Uchida, Keven; Do, Tuan

    2006-03-16

    The magnetic field in the central few hundred parsecs of the Milky Way has a dipolar geometry and is substantially stronger than elsewhere in the Galaxy, with estimates ranging up to a milligauss (refs 1-6). Characterization of the magnetic field at the Galactic Centre is important because it can affect the orbits of molecular clouds by exerting a drag on them, inhibit star formation, and could guide a wind of hot gas or cosmic rays away from the central region. Here we report observations of an infrared nebula having the morphology of an intertwined double helix about 100 parsecs from the Galaxy's dynamical centre, with its axis oriented perpendicular to the Galactic plane. The observed segment is about 25 parsecs in length, and contains about 1.25 full turns of each of the two continuous, helically wound strands. We interpret this feature as a torsional Alfvén wave propagating vertically away from the Galactic disk, driven by rotation of the magnetized circumnuclear gas disk. The direct connection between the circumnuclear disk and the double helix is ambiguous, but the images show a possible meandering channel that warrants further investigation.

  4. Intermediate-mass Black Holes and Dark Matter at the Galactic Center

    NASA Astrophysics Data System (ADS)

    Lacroix, Thomas; Silk, Joseph

    2018-01-01

    Could there be a large population of intermediate-mass black holes (IMBHs) formed in the early universe? Whether primordial or formed in Population III, these are likely to be very subdominant compared to the dark matter density, but could seed early dwarf galaxy/globular cluster and supermassive black hole formation. Via survival of dark matter density spikes, we show here that a centrally concentrated relic population of IMBHs, along with ambient dark matter, could account for the Fermi gamma-ray “excess” in the Galactic center because of dark matter particle annihilations.

  5. Complex organic molecules in the Galactic Centre: the N-bearing family

    NASA Astrophysics Data System (ADS)

    Zeng, S.; Jiménez-Serra, I.; Rivilla, V. M.; Martín, S.; Martín-Pintado, J.; Requena-Torres, M. A.; Armijos-Abendaño, J.; Riquelme, D.; Aladro, R.

    2018-05-01

    We present an unbiased spectral line survey toward the Galactic Centre (GC) quiescent giant molecular cloud (QGMC), G+0.693 using the GBT and IRAM 30 telescopes. Our study highlights an extremely rich organic inventory of abundant amounts of nitrogen (N)-bearing species in a source without signatures of star formation. We report the detection of 17 N-bearing species in this source, of which 8 are complex organic molecules (COMs). A comparison of the derived abundances relative to H2 is made across various galactic and extragalactic environments. We conclude that the unique chemistry in this source is likely to be dominated by low-velocity shocks with X-rays/cosmic rays also playing an important role in the chemistry. Like previous findings obtained for O-bearing molecules, our results for N-bearing species suggest a more efficient hydrogenation of these species on dust grains in G+0.693 than in hot cores in the Galactic disk, as a consequence of the low dust temperatures coupled with energetic processing by X-ray/cosmic ray radiation in the GC.

  6. Possible Alternatives to the Supermassive Black Hole at the Galactic Center

    NASA Astrophysics Data System (ADS)

    Zakharov, A. F.

    2015-12-01

    Now there are two basic observational techniques to investigate a gravitational potential at the Galactic Center, namely, (a) monitoring the orbits of bright stars near the Galactic Center to reconstruct a gravitational potential; (b) measuring the size and shape of shadows around black hole giving an alternative possibility to evaluate black hole parameters in mm-band with VLBI-technique. At the moment, one can use a small relativistic correction approach for stellar orbit analysis (however, in the future the approximation will not be precise enough due to enormous progress of observational facilities) while for smallest structure analysis in VLBI observations one really needs a strong gravitational field approximation. We discuss results of observations, their conventional interpretations, tensions between observations and models and possible hints for a new physics from the observational data and tensions between observations and interpretations. We discuss an opportunity to use a Schwarzschild metric for data interpretation or we have to use more exotic models such as Reissner-Nordstrom or Schwarzschild-de-Sitter metrics for better fits.

  7. Is there an ordinary supermassive black hole at the Galactic Center?

    NASA Astrophysics Data System (ADS)

    Zakharov, A. F.

    Now there are two basic observational techniques to investigate a gravitational potential at the Galactic Center, namely, a) monitoring the orbits of bright stars near the Galactic Center to reconstruct a gravitational potential; b) measuring a size and a shape of shadows around black hole giving an alternative possibility to evaluate black hole parameters in mm-band with VLBI-technique. At the moment one can use a small relativistic correction approach for stellar orbit analysis (however, in the future the approximation will not be not precise enough due to enormous progress of observational facilities) while now for smallest structure analysis in VLBI observations one really needs a strong gravitational field approximation. We discuss results of observations, their conventional interpretations, tensions between observations and models and possible hints for a new physics from the observational data and tensions between observations and interpretations. We will discuss an opportunity to use a Schwarzschild metric for data interpretation or we have to use more exotic models such as Reissner - Nordström or Schwarzschild - de-Sitter metrics for better fits.

  8. Gravitational lensing by a massive black hole at the Galactic center

    NASA Technical Reports Server (NTRS)

    Wardle, Mark; Yusef-Zadeh, Farhad

    1992-01-01

    The manifestations of gravitational lensing by a massive black hole at the Galactic center, with particular attention given to lensing of stars in the stellar cluster that lie behind Sgr A*, and of Sgr A east, a nonthermal extended radio source which is known with certainty to lie behind the Galactic center. Lensing of the stellar cluster produces a deficit of stellar images within 10 mas of the center, and a surplus between 30 and 300 mas. The results suggest that the proper motion of the stars will produce brightness variations of stellar images on a time scale of a few years or less. Both images of such a source should be visible, and will rise and fall in luminosity together.

  9. Probing the Galactic Binary Black Hole Spin with Photon Timing

    NASA Technical Reports Server (NTRS)

    Kazanas, Demos

    2007-01-01

    It is generally considered that the X-ray emission in AGN and Galactic Black Hole Candidates is produced by flares above the surface of a geometrically thin optically thick accretion disk, which extends down to the Innermost Stable Circular Orbit (ISCO) of the black hole. We consider the influence of the black hole geometry on the light curves of these flares. To this end we follow a large number of photon orbits emitted impulsively in a locally isotropic fashion, at any phase of the disk orbit and examine their arrival times at infinity by an observer near the plane of the disk. We find out that the presence of the black hole spin induces a certain delay in the photon arrivals, as prograde photon orbits reach the observer on shorter (on the average) times than the retrograde ones. We form a histogram of the differences in photon time arrivals and we find that it exhibits several well defined peaks depending on the flare position and the black hole spin separated by $\\Delta t\\slmeq 30 M$, where M is the black hole mass. The peaks disappear as the spin parameter goes to zero, implying that one could in principle measure the value of the black hole spin with timing measurements of sufficiently high signal to noise ratio.

  10. Probing the Galactic Binary Black Hole Spin with Photon Timing

    NASA Technical Reports Server (NTRS)

    Kazanas, Demosthenes

    2007-01-01

    It is generally considered that the X-ray emission in AGN and Galactic Black Hole Candidates is produced by flares above the surface of a geometrically thin optically thick accretion disk, which extends down to the Innermost Stable Circular Orbit (ISCO) of the black hole. We consider the influence of the black hole geometry on the light curves of these flares. To this end we follow a large number of photon orbits emitted impulsively in a locally isotropic fashion, at any phase of the disk orbit and examine their arrival times at infinity by an observer near the plane of the disk. We find out that the presence of the black hole spin induces a certain delay in the photon arrivals, as prograde photon orbits reach the observer on shorter (on the average) times than the retrograde ones. We form a histogram of the differences in photon time arrivals and we find that it exhibits several well defined peaks depending on the flare position and the black hole spin separated by $\\Delta t \\simeq 30 M$, where M is the black hole mass. The peaks disappear as the spin parameter goes to zero, implying that one could in principle measure the value of the black hole spin with timing measurements of sufficiently high signal to noise ratio.

  11. An ordinary supermassive black hole at the Galactic Center: pro and contra

    NASA Astrophysics Data System (ADS)

    Zakharov, Alexander

    2016-07-01

    Now there are two basic observational techniques to investigate a gravitational potential at the Galactic Center, namely, a) monitoring the orbits of bright stars near the Galactic Center to reconstruct a gravitational potential; b) measuring a size and a shape of shadows around black hole giving an alternative possibility to evaluate black hole parameters in mm-band with VLBI-technique. At the moment one can use a small relativistic correction approach for stellar orbit analysis (however, in the future the approximation will not be not precise enough due to enormous progress of observational facilities) while now for smallest structure analysis in VLBI observations one really needs a strong gravitational field approximation. We discuss results of observations, their conventional interpretations, tensions between observations and models and possible hints for a new physics from the observational data and tensions between observations and interpretations. We will discuss an opportunity to use a Schwarzschild metric for data interpretation or we have to use more exotic models such as Yukawa potential, Reissner -- Nordstrom or Schwarzschild -- de-Sitter metrics for better fits.

  12. Gamma-ray evidence for a stellar-mass black hole near the Galactic center

    NASA Technical Reports Server (NTRS)

    Ramaty, Reuven; Lingenfelter, Richard E.

    1989-01-01

    An analysis of the time variability of the observed 511-keV line emission from the direction of the Galactic center and the correlation of its variations in the continuum emission above 511 keV from the same direction suggest the existence of a compact object at or near the Galactic center. A possible mechanism of the observed positron annihilation is consistent with a compact interaction region of the order of 10 to the 8th cm. A black hole of several hundred solar masses is favored as a candidate for this compact object; arguments in support of this suggestion are presented.

  13. WATCHDOG: A COMPREHENSIVE ALL-SKY DATABASE OF GALACTIC BLACK HOLE X-RAY BINARIES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tetarenko, B. E.; Sivakoff, G. R.; Heinke, C. O.

    With the advent of more sensitive all-sky instruments, the transient universe is being probed in greater depth than ever before. Taking advantage of available resources, we have established a comprehensive database of black hole (and black hole candidate) X-ray binary (BHXB) activity between 1996 and 2015 as revealed by all-sky instruments, scanning surveys, and select narrow-field X-ray instruments on board the INTErnational Gamma-Ray Astrophysics Laboratory, Monitor of All-Sky X-ray Image, Rossi X-ray Timing Explorer, and Swift telescopes; the Whole-sky Alberta Time-resolved Comprehensive black-Hole Database Of the Galaxy or WATCHDOG. Over the past two decades, we have detected 132 transient outbursts, trackedmore » and classified behavior occurring in 47 transient and 10 persistently accreting BHs, and performed a statistical study on a number of outburst properties across the Galactic population. We find that outbursts undergone by BHXBs that do not reach the thermally dominant accretion state make up a substantial fraction (∼40%) of the Galactic transient BHXB outburst sample over the past ∼20 years. Our findings suggest that this “hard-only” behavior, observed in transient and persistently accreting BHXBs, is neither a rare nor recent phenomenon and may be indicative of an underlying physical process, relatively common among binary BHs, involving the mass-transfer rate onto the BH remaining at a low level rather than increasing as the outburst evolves. We discuss how the larger number of these “hard-only” outbursts and detected outbursts in general have significant implications for both the luminosity function and mass-transfer history of the Galactic BHXB population.« less

  14. WATCHDOG: A Comprehensive All-sky Database of Galactic Black Hole X-ray Binaries

    NASA Astrophysics Data System (ADS)

    Tetarenko, B. E.; Sivakoff, G. R.; Heinke, C. O.; Gladstone, J. C.

    2016-02-01

    With the advent of more sensitive all-sky instruments, the transient universe is being probed in greater depth than ever before. Taking advantage of available resources, we have established a comprehensive database of black hole (and black hole candidate) X-ray binary (BHXB) activity between 1996 and 2015 as revealed by all-sky instruments, scanning surveys, and select narrow-field X-ray instruments on board the INTErnational Gamma-Ray Astrophysics Laboratory, Monitor of All-Sky X-ray Image, Rossi X-ray Timing Explorer, and Swift telescopes; the Whole-sky Alberta Time-resolved Comprehensive black-Hole Database Of the Galaxy or WATCHDOG. Over the past two decades, we have detected 132 transient outbursts, tracked and classified behavior occurring in 47 transient and 10 persistently accreting BHs, and performed a statistical study on a number of outburst properties across the Galactic population. We find that outbursts undergone by BHXBs that do not reach the thermally dominant accretion state make up a substantial fraction (∼40%) of the Galactic transient BHXB outburst sample over the past ∼20 years. Our findings suggest that this “hard-only” behavior, observed in transient and persistently accreting BHXBs, is neither a rare nor recent phenomenon and may be indicative of an underlying physical process, relatively common among binary BHs, involving the mass-transfer rate onto the BH remaining at a low level rather than increasing as the outburst evolves. We discuss how the larger number of these “hard-only” outbursts and detected outbursts in general have significant implications for both the luminosity function and mass-transfer history of the Galactic BHXB population.

  15. MOCCA-SURVEY Database I: Galactic Globular Clusters Harbouring a Black Hole Subsystem

    NASA Astrophysics Data System (ADS)

    Askar, Abbas; Sedda, Manuel Arca; Giersz, Mirek

    2018-05-01

    There have been increasing theoretical speculations and observational indications that certain globular clusters (GCs) could contain a sizeable population of stellar mass black holes (BHs). In this paper, we shortlist at least 29 Galactic GCs that could be hosting a subsystem of BHs (BHS). In a companion paper, we analysed results from a wide array of GC models (simulated with the MOCCA code for cluster simulations) that retained few tens to several hundreds of BHs at 12 Gyr and showed that the properties of the BHS in those GCs correlate with the GC's observable properties. Building on those results, we use available observational properties of 140 Galactic GCs to identify 29 GCs that could potentially be harbouring up to a few hundreds of BHs. Utilizing observational properties and theoretical scaling relations, we estimate the density, size and mass of the BHS in these GCs. We also calculate the total number of BHs and the fraction of BHs contained in a binary system for our shortlisted Galactic GCs. Additionally, we mention other Galactic GCs that could also contain significant number of single BHs or BHs in binary systems.

  16. The selection function of the LAMOST Spectroscopic Survey of the Galactic Anti-centre

    NASA Astrophysics Data System (ADS)

    Chen, B.-Q.; Liu, X.-W.; Yuan, H.-B.; Xiang, M.-S.; Huang, Y.; Wang, C.; Zhang, H.-W.; Tian, Z.-J.

    2018-05-01

    We present a detailed analysis of the selection function of the LAMOST Spectroscopic Survey of the Galactic Anti-centre (LSS-GAC). LSS-GAC was designed to obtain low-resolution optical spectra for a sample of more than 3 million stars in the Galactic anti-centre. The second release of value-added catalogues of the LSS-GAC (LSS-GAC DR2) contains stellar parameters, including radial velocity, atmospheric parameters, elemental abundances, and absolute magnitudes deduced from 1.8 million spectra of 1.4 million unique stars targeted by the LSS-GAC between 2011 and 2014. For many studies using this data base, such as those investigating the chemodynamical structure of the Milky Way, a detailed understanding of the selection function of the survey is indispensable. In this paper, we describe how the selection function of the LSS-GAC can be evaluated to sufficient detail and provide selection function corrections for all spectroscopic measurements with reliable parameters released in LSS-GAC DR2. The results, to be released as new entries in the LSS-GAC value-added catalogues, can be used to correct the selection effects of the catalogue for scientific studies of various purposes.

  17. [Predicting Spectra of Accretion Disks Around Galactic Black Holes

    NASA Technical Reports Server (NTRS)

    Krolik, Julian H.

    2004-01-01

    The purpose of this grant was to construct detailed atmosphere solutions in order to predict the spectra of accretion disks around Galactic black holes. Our plan of action was to take an existing disk atmosphere code (TLUSTY, created by Ivan Hubeny) and introduce those additional physical processes necessary to make it applicable to disks of this variety. These modifications include: treating Comptonization; introducing continuous opacity due to heavy elements; incorporating line opacity due to heavy elements; adopting a disk structure that reflects readjustments due to radiation pressure effects; and injecting heat via a physically-plausible vertical distribution.

  18. HST/NICMOS Paschen-α Survey of the Galactic Centre: Overview

    NASA Astrophysics Data System (ADS)

    Wang, Q. D.; Dong, H.; Cotera, A.; Stolovy, S.; Morris, M.; Lang, C. C.; Muno, M. P.; Schneider, G.; Calzetti, D.

    2010-02-01

    We have recently carried out the first wide-field hydrogen Paschen-α line imaging survey of the Galactic Centre using the Near Infrared Camera and Multi-Object Spectrometer (NICMOS) instrument aboard the Hubble Space Telescope. The survey maps out a region of ) around the central supermassive black hole (Sgr A*) in the 1.87 and 1.90μm narrow bands with a spatial resolution of ~0.01pc (0.2arcsec full width at half-maximum) at a distance of 8kpc. Here, we present an overview of the observations, data reduction, preliminary results and potential scientific implications, as well as a description of the rationale and design of the survey. We have produced mosaic maps of the Paschen-α line and continuum emission, giving an unprecedentedly high-resolution and high-sensitivity panoramic view of stars and photoionized gas in the nuclear environment of the Galaxy. We detect a significant number of previously undetected stars with Paschen-α in emission. They are most likely massive stars with strong winds, as confirmed by our initial follow-up spectroscopic observations. About half of the newly detected massive stars are found outside the known clusters (Arches, Quintuplet and Central). Many previously known diffuse thermal features are now resolved into arrays of intriguingly fine linear filaments indicating a profound role of magnetic fields in sculpting the gas. The bright spiral-like Paschen-α emission around Sgr A* is seen to be well confined within the known dusty torus. In the directions roughly perpendicular to it, we further detect faint, diffuse Paschen-α emission features, which, like earlier radio images, suggest an outflow from the structure. In addition, we detect various compact Paschen-α nebulae, probably tracing the accretion and/or ejection of stars at various evolutionary stages. Multiwavelength comparisons together with follow-up observations are helping us to address such questions as where and how massive stars form, how stellar clusters are

  19. Cosmological evolution of supermassive black holes in galactic centers unveiled by hard X-ray observations.

    PubMed

    Ueda, Yoshihiro

    2015-01-01

    We review the current understanding of the cosmological evolution of supermassive black holes in galactic centers elucidated by X-ray surveys of active galactic nuclei (AGNs). Hard X-ray observations at energies above 2 keV are the most efficient and complete tools to find "obscured" AGNs, which are dominant populations among all AGNs. Combinations of surveys with various flux limits and survey area have enabled us to determine the space number density and obscuration properties of AGNs as a function of luminosity and redshift. The results have essentially solved the origin of the X-ray background in the energy band below ∼10 keV. The downsizing (or anti-hierarchical) evolution that more luminous AGNs have the space-density peak at higher redshifts has been discovered, challenging theories of galaxy and black hole formation. Finally, we summarize unresolved issues on AGN evolution and prospects for future X-ray missions.

  20. Dynamical Processes Near the Super Massive Black Hole at the Galactic Center

    NASA Astrophysics Data System (ADS)

    Antonini, Fabio

    2011-01-01

    Observations of the stellar environment near the Galactic center provide the strongest empirical evidence for the existence of massive black holes in the Universe. Theoretical models of the Milky Way nuclear star cluster fail to explain numerous properties of such environment, including the presence of very young stars close to the super massive black hole (SMBH) and the more recent discovery of a parsec-scale core in the central distribution of the bright late-type (old) stars. In this thesis we present a theoretical study of dynamical processes near the Galactic center, strongly related to these issues. Using different numerical techniques we explore the close environment of a SMBH as catalyst for stellar collisions and mergers. We study binary stars that remain bound for several revolutions around the SMBH, finding that in the case of highly inclined binaries the Kozai resonance can lead to large periodic oscillations in the internal binary eccentricity and inclination. Collisions and mergers of the binary elements are found to increase significantly for multiple orbits around the SMBH. In collisions involving a low-mass and a high-mass star, the merger product acquires a high core hydrogen abundance from the smaller star, effectively resetting the nuclear evolution clock to a younger age. This process could serve as an important source of young stars at the Galactic center. We then show that a core in the old stars can be naturally explained in a scenario in which the Milky Way nuclear star cluster (NSC) is formed via repeated inspiral of globular clusters into the Galactic center. We present results from a set of N -body simulations of this process, which show that the fundamental properties of the NSC, including its mass, outer density profile and velocity structure, are also reproduced. Chandrasekhar's dynamical friction formula predicts no frictional force on a test body in a low-density core, regardless of its density, due to the absence of stars moving

  1. Viewing the Shadow of the Black Hole at the Galactic Center

    NASA Astrophysics Data System (ADS)

    Falcke, Heino; Melia, Fulvio; Agol, Eric

    2000-01-01

    In recent years, evidence for the existence of an ultracompact concentration of dark mass associated with the radio source Sagittarius A* in the Galactic center has become very strong. However, unambiguous proof that this object is indeed a black hole is still lacking. A defining characteristic of a black hole is the event horizon. To a distant observer, the event horizon casts a relatively large ``shadow'' with an apparent diameter of ~10 gravitational radii that is due to the bending of light by the black hole, and this shadow is nearly independent of the black hole spin or orientation. The predicted size (~30 μas) of this shadow for Sgr A* approaches the resolution of current radio interferometers. If the black hole is maximally spinning and viewed edge-on, then the shadow will be offset by ~8 μas from the center of mass and will be slightly flattened on one side. Taking into account the scatter broadening of the image in the interstellar medium and the finite achievable telescope resolution, we show that the shadow of Sgr A* may be observable with very long baseline interferometry at submillimeter wavelengths, assuming that the accretion flow is optically thin in this region of the spectrum. Hence, there exists a realistic expectation of imaging the event horizon of a black hole within the next few years.

  2. Detecting pulsars in the Galactic Centre

    NASA Astrophysics Data System (ADS)

    Rajwade, K. M.; Lorimer, D. R.; Anderson, L. D.

    2017-10-01

    Although high-sensitivity surveys have revealed a number of highly dispersed pulsars in the inner Galaxy, none have so far been found in the Galactic Centre (GC) region, which we define to be within a projected distance of 1 pc from Sgr A*. This null result is surprising given that several independent lines of evidence predict a sizable population of neutron stars in the region. Here, we present a detailed analysis of both the canonical and millisecond pulsar populations in the GC and consider free-free absorption and multipath scattering to be the two main sources of flux density mitigation. We demonstrate that the sensitivity limits of previous surveys are not sufficient to detect GC pulsar population, and investigate the optimum observing frequency for future surveys. Depending on the degree of scattering and free-free absorption in the GC, current surveys constrain the size of the potentially observable population (I.e. those beaming towards us) to be up to 52 canonical pulsars and 10 000 millisecond pulsars. We find that the optimum frequency for future surveys is in the range of 9-13 GHz. We also predict that future deeper surveys with the Square Kilometre array will probe a significant portion of the existing radio pulsar population in the GC.

  3. Cosmological evolution of supermassive black holes in galactic centers unveiled by hard X-ray observations

    PubMed Central

    UEDA, Yoshihiro

    2015-01-01

    We review the current understanding of the cosmological evolution of supermassive black holes in galactic centers elucidated by X-ray surveys of active galactic nuclei (AGNs). Hard X-ray observations at energies above 2 keV are the most efficient and complete tools to find “obscured” AGNs, which are dominant populations among all AGNs. Combinations of surveys with various flux limits and survey area have enabled us to determine the space number density and obscuration properties of AGNs as a function of luminosity and redshift. The results have essentially solved the origin of the X-ray background in the energy band below ∼10 keV. The downsizing (or anti-hierarchical) evolution that more luminous AGNs have the space-density peak at higher redshifts has been discovered, challenging theories of galaxy and black hole formation. Finally, we summarize unresolved issues on AGN evolution and prospects for future X-ray missions. PMID:25971656

  4. Spin and mass of the supermassive black hole in the Galactic Center

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dokuchaev, V. I., E-mail: dokuchaev@inr.ac.ru

    2015-12-15

    A new method for exact determination of the masses and spins of black holes from the observations of quasi-periodic oscillations is discussed. The detected signal from the hot clumps in the accretion plasma must contain modulations with two characteristic frequencies: the frequency of rotation of the black hole event horizon and the frequency of the latitudinal precession of the clump’s orbit. Application of the method of two characteristic frequencies for interpretation of the observed quasi-periodic oscillations from the supermassive black hole in the Galactic center in the X-rays and in the near IR region yields the most exact, for themore » present, values of the mass and the spin (Kerr parameter) of the Sgr A* black hole: M = (4.2 ± 0.2) × 10{sup 6}M{sub ⊙} and a = 0.65 ± 0.05. The observed quasi-periodic oscillations with a period of about 11.5 min are identified as the black hole event horizon rotation period and those with a period of about 19 min are identified as the latitudinal oscillation period of the hot spot orbits in the accretion disk.« less

  5. Black-hole model of galactic nuclei

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Norman, C.A.; ter Haar, D.

    1973-04-01

    It is shown that the observed large infrared emission from some galactic nuclei finds a natural explanation, if one takes plasma turbulence into account in Lynden-Bell and Rees' blackhole model of galactic nuclei. (auth)

  6. Wandering off the centre: a characterization of the random motion of intermediate-mass black holes in star clusters

    NASA Astrophysics Data System (ADS)

    de Vita, Ruggero; Trenti, Michele; MacLeod, Morgan

    2018-04-01

    Despite recent observational efforts, unequivocal signs for the presence of intermediate-mass black holes (IMBHs) in globular clusters (GCs) have not been found yet. Especially when the presence of IMBHs is constrained through dynamical modelling of stellar kinematics, it is fundamental to account for the displacement that the IMBH might have with respect to the GC centre. In this paper, we analyse the IMBH wandering around the stellar density centre using a set of realistic direct N-body simulations of star cluster evolution. Guided by the simulation results, we develop a basic yet accurate model that can be used to estimate the average IMBH radial displacement (〈rbh〉) in terms of structural quantities as the core radius (rc), mass (Mc), and velocity dispersion (σc), in addition to the average stellar mass (mc) and the IMBH mass (Mbh). The model can be expressed by the equation < r_bh > /r_c=A(m_c/M_bh)^α [σ _c^2r_c/(GM_c)]^β, in which the free parameters A, α, and β are calculated through comparison with the numerical results on the IMBH displacement. The model is then applied to Galactic GCs, finding that for an IMBH mass equal to 0.1 per cent of the GC mass, the typical expected displacement of a putative IMBH is around 1 arcsec for most Galactic GCs, but IMBHs can wander to larger angular distances in some objects, including a prediction of a 2.5 arcsec displacement for NGC 5139 (ω Cen), and >10 arcsec for NGC5053, NGC6366, and ARP2.

  7. Star-disc interaction in galactic nuclei: orbits and rates of accreted stars

    NASA Astrophysics Data System (ADS)

    Kennedy, Gareth F.; Meiron, Yohai; Shukirgaliyev, Bekdaulet; Panamarev, Taras; Berczik, Peter; Just, Andreas; Spurzem, Rainer

    2016-07-01

    We examine the effect of an accretion disc on the orbits of stars in the central star cluster surrounding a central massive black hole by performing a suite of 39 high-accuracy direct N-body simulations using state-of-the art software and accelerator hardware, with particle numbers up to 128k. The primary focus is on the accretion rate of stars by the black hole (equivalent to their tidal disruption rate for black holes in the small to medium mass range) and the eccentricity distribution of these stars. Our simulations vary not only the particle number, but disc model (two models examined), spatial resolution at the centre (characterized by the numerical accretion radius) and softening length. The large parameter range and physically realistic modelling allow us for the first time to confidently extrapolate these results to real galactic centres. While in a real galactic centre both particle number and accretion radius differ by a few orders of magnitude from our models, which are constrained by numerical capability, we find that the stellar accretion rate converges for models with N ≥ 32k. The eccentricity distribution of accreted stars, however, does not converge. We find that there are two competing effects at work when improving the resolution: larger particle number leads to a smaller fraction of stars accreted on nearly circular orbits, while higher spatial resolution increases this fraction. We scale our simulations to some nearby galaxies and find that the expected boost in stellar accretion (or tidal disruption, which could be observed as X-ray flares) in the presence of a gas disc is about a factor of 10. Even with this boost, the accretion of mass from stars is still a factor of ˜100 slower than the accretion of gas from the disc. Thus, it seems accretion of stars is not a major contributor to black hole mass growth.

  8. Active galactic nuclei

    PubMed Central

    Fabian, Andrew C.

    1999-01-01

    Active galactic nuclei are the most powerful, long-lived objects in the Universe. Recent data confirm the theoretical idea that the power source is accretion into a massive black hole. The common occurrence of obscuration and outflows probably means that the contribution of active galactic nuclei to the power density of the Universe has been generally underestimated. PMID:10220363

  9. Backflows by active galactic nuclei jets: global properties and influence on supermassive black hole accretion

    NASA Astrophysics Data System (ADS)

    Cielo, S.; Antonuccio-Delogu, V.; Silk, J.; Romeo, A. D.

    2017-06-01

    Jets from active galactic nuclei (AGN) inflate large cavities in the hot gas environment around galaxies and galaxy clusters. The large-scale gas circulation promoted within such cavities by the jet itself gives rise to backflows that propagate back to the centre of the jet-cocoon system, spanning all the physical scales relevant for the AGN. Using an adaptive mesh refinement code, we study these backflows through a series of numerical experiments, aiming at understanding how their global properties depend on jet parameters. We are able to characterize their mass flux down to a scale of a few kiloparsecs to about 0.5 M⊙ yr-1 for as long as 15 or 20 Myr, depending on jet power. We find that backflows are both spatially coherent and temporally intermittent, independently of jet power in the range 1043-1045 erg s-1. Using the mass flux thus measured, we model analytically the effect of backflows on the central accretion region, where a magnetically arrested disc lies at the centre of a thin circumnuclear disc. Backflow accretion on to the disc modifies its density profile, producing a flat core and tail. We use this analytic model to predict how accretion beyond the black hole magnetopause is modified, and thus how the jet power is temporally modulated. Under the assumption that the magnetic flux stays frozen in the accreting matter, and that the jets are always launched via the Blandford-Znajek mechanism, we find that backflows are capable of boosting the jet power up to tenfold during relatively short time episodes (a few Myr).

  10. Merging Black Hole Binaries in Galactic Nuclei: Implications for Advanced-LIGO Detections

    NASA Astrophysics Data System (ADS)

    Antonini, Fabio; Rasio, Frederic A.

    2016-11-01

    Motivated by the recent detection of gravitational waves from the black hole binary merger GW150914, we study the dynamical evolution of (stellar-mass) black holes in galactic nuclei, where massive star clusters reside. With masses of ˜ {10}7 {M}⊙ and sizes of only a few parsecs, nuclear star clusters (NSCs) are the densest stellar systems observed in the local universe and represent a robust environment where black hole binaries can dynamically form, harden, and merge. We show that due to their large escape speeds, NSCs can retain a large fraction of their merger remnants. Successive mergers can then lead to significant growth and produce black hole mergers of several tens of solar masses similar to GW150914 and up to a few hundreds of solar masses, without the need to invoke extremely low metallicity environments. We use a semi-analytical approach to describe the dynamics of black holes in massive star clusters. Our models give a black hole binary merger rate of ≈ 1.5 {{Gpc}}-3 {{yr}}-1 from NSCs, implying up to a few tens of possible detections per year with Advanced LIGO. Moreover, we find a local merger rate of ˜ 1 {{Gpc}}-3 {{yr}}-1 for high mass black hole binaries similar to GW150914; a merger rate comparable to or higher than that of similar binaries assembled dynamically in globular clusters (GCs). Finally, we show that if all black holes receive high natal kicks, ≳ 50 {km} {{{s}}}-1, then NSCs will dominate the local merger rate of binary black holes compared to either GCs or isolated binary evolution.

  11. Testing General Relativity with Stellar Orbits around the Supermassive Black Hole in Our Galactic Center.

    PubMed

    Hees, A; Do, T; Ghez, A M; Martinez, G D; Naoz, S; Becklin, E E; Boehle, A; Chappell, S; Chu, D; Dehghanfar, A; Kosmo, K; Lu, J R; Matthews, K; Morris, M R; Sakai, S; Schödel, R; Witzel, G

    2017-05-26

    We demonstrate that short-period stars orbiting around the supermassive black hole in our Galactic center can successfully be used to probe the gravitational theory in a strong regime. We use 19 years of observations of the two best measured short-period stars orbiting our Galactic center to constrain a hypothetical fifth force that arises in various scenarios motivated by the development of a unification theory or in some models of dark matter and dark energy. No deviation from general relativity is reported and the fifth force strength is restricted to an upper 95% confidence limit of |α|<0.016 at a length scale of λ=150 astronomical units. We also derive a 95% confidence upper limit on a linear drift of the argument of periastron of the short-period star S0-2 of |ω[over ˙]_{S0-2}|<1.6×10^{-3}  rad/yr, which can be used to constrain various gravitational and astrophysical theories. This analysis provides the first fully self-consistent test of the gravitational theory using orbital dynamic in a strong gravitational regime, that of a supermassive black hole. A sensitivity analysis for future measurements is also presented.

  12. A near-infrared relationship for estimating black hole masses in active galactic nuclei

    NASA Astrophysics Data System (ADS)

    Landt, Hermine; Ward, Martin J.; Peterson, Bradley M.; Bentz, Misty C.; Elvis, Martin; Korista, Kirk T.; Karovska, Margarita

    2013-06-01

    Black hole masses for samples of active galactic nuclei (AGN) are currently estimated from single-epoch optical spectra using scaling relations anchored in reverberation mapping results. In particular, the two quantities needed for calculating black hole masses, namely the velocity and the radial distance of the orbiting gas are derived from the widths of the Balmer hydrogen broad emission lines and the optical continuum luminosity, respectively. We have recently presented a near-infrared (near-IR) relationship for estimating AGN black hole masses based on the widths of the Paschen hydrogen broad emission lines and the total 1 μm continuum luminosity. The near-IR offers several advantages over the optical: it suffers less from dust extinction, the AGN continuum is observed only weakly contaminated by the host galaxy and the strongest Paschen broad emission lines Paα and Paβ are unblended. Here, we improve the calibration of the near-IR black hole mass relationship by increasing the sample from 14 to 23 reverberation-mapped AGN using additional spectroscopy obtained with the Gemini Near-Infrared Spectrograph. The additional sample improves the number statistics in particular at the high-luminosity end.

  13. A New Black Hole Mass Estimate for Obscured Active Galactic Nuclei

    NASA Astrophysics Data System (ADS)

    Minezaki, Takeo; Matsushita, Kyoko

    2015-04-01

    We propose a new method for estimating the mass of a supermassive black hole, applicable to obscured active galactic nuclei (AGNs). This method estimates the black hole mass using the width of the narrow core of the neutral FeKα emission line in X-rays and the distance of its emitting region from the black hole based on the isotropic luminosity indicator via the luminosity scaling relation. Assuming the virial relation between the locations and the velocity widths of the neutral FeKα line core and the broad Hβ emission line, the luminosity scaling relation of the neutral FeKα line core emitting region is estimated. We find that the velocity width of the neutral FeKα line core falls between that of the broad Balmer emission lines and the corresponding value at the dust reverberation radius for most of the target AGNs. The black hole mass {{M}BH,FeKα } estimated with this method is then compared with other black hole mass estimates, such as the broad emission-line reverberation mass {{M}BH,rev} for type 1 AGNs, the mass {{M}BH,{{H2}O}} based on the H2O maser, and the single-epoch mass estimate {{M}BH,pol} based on the polarized broad Balmer lines for type 2 AGNs. We find that {{M}BH,FeKα } is consistent with {{M}BH,rev} and {{M}BH,pol}, and find that {{M}BH,FeKα } correlates well with {{M}BH,{{H2}O}}. These results suggest that {{M}BH,FeKα } is a potential indicator of the black hole mass for obscured AGNs. In contrast, {{M}BH,FeKα } is systematically larger than {{M}BH,{{H2}O}} by about a factor of 5, and the possible origins are discussed.

  14. Dynamically important magnetic fields near accreting supermassive black holes.

    PubMed

    Zamaninasab, M; Clausen-Brown, E; Savolainen, T; Tchekhovskoy, A

    2014-06-05

    Accreting supermassive black holes at the centres of active galaxies often produce 'jets'--collimated bipolar outflows of relativistic particles. Magnetic fields probably play a critical role in jet formation and in accretion disk physics. A dynamically important magnetic field was recently found near the Galactic Centre black hole. If this is common and if the field continues to near the black hole event horizon, disk structures will be affected, invalidating assumptions made in standard models. Here we report that jet magnetic field and accretion disk luminosity are tightly correlated over seven orders of magnitude for a sample of 76 radio-loud active galaxies. We conclude that the jet-launching regions of these radio-loud galaxies are threaded by dynamically important fields, which will affect the disk properties. These fields obstruct gas infall, compress the accretion disk vertically, slow down the disk rotation by carrying away its angular momentum in an outflow and determine the directionality of jets.

  15. Galactic center gamma-ray excess from dark matter annihilation: is there a black hole spike?

    PubMed

    Fields, Brian D; Shapiro, Stuart L; Shelton, Jessie

    2014-10-10

    If the supermassive black hole Sgr A* at the center of the Milky Way grew adiabatically from an initial seed embedded in a Navarro-Frenk-White dark matter (DM) halo, then the DM profile near the hole has steepened into a spike. We calculate the dramatic enhancement to the gamma-ray flux from the Galactic center (GC) from such a spike if the 1-3 GeV excess observed in Fermi data is due to DM annihilations. We find that for the parameter values favored in recent fits, the point-source-like flux from the spike is 35 times greater than the flux from the inner 1° of the halo, far exceeding all Fermi point source detections near the GC. We consider the dependence of the spike signal on astrophysical and particle parameters and conclude that if the GC excess is due to DM, then a canonical adiabatic spike is disfavored by the data. We discuss alternative Galactic histories that predict different spike signals, including (i) the nonadiabatic growth of the black hole, possibly associated with halo and/or black hole mergers, (ii) gravitational interaction of DM with baryons in the dense core, such as heating by stars, or (iii) DM self-interactions. We emphasize that the spike signal is sensitive to a different combination of particle parameters than the halo signal and that the inclusion of a spike component to any DM signal in future analyses would provide novel information about both the history of the GC and the particle physics of DM annihilations.

  16. The link between ejected stars, hardening and eccentricity growth of super massive black holes in galactic nuclei

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Long; Berczik, Peter; Spurzem, Rainer

    2014-01-10

    The hierarchical galaxy formation picture suggests that supermassive black holes (SMBHs) observed in galactic nuclei today have grown from coalescence of massive black hole binaries (MBHB) after galaxy merging. Once the components of an MBHB become gravitationally bound, strong three-body encounters between the MBHB and stars dominate its evolution in a 'dry' gas-free environment and change the MBHB's energy and angular momentum (semimajor axis, eccentricity, and orientation). Here we present high-accuracy direct N-body simulations of spherical and axisymmetric (rotating) galactic nuclei with order of 10{sup 6} stars and two MBHs that are initially unbound. We analyze the properties of themore » ejected stars due to slingshot effects from three-body encounters with the MBHB in detail. Previous studies have investigated the eccentricity and energy changes of MBHs using approximate models or Monte Carlo three-body scatterings. We find general agreement with the average results of previous semi-analytic models for spherical galactic nuclei, but our results show a large statistical variation. Our new results show many more phase space details of how the process works, and also show the influence of stellar system rotation on the process. We detect that the angle between the orbital plane of the MBHBs and that of the stellar system (when it rotates) influences the phase-space properties of the ejected stars. We also find that MBHBs tend to switch stars with counter-rotating orbits into corotating orbits during their interactions.« less

  17. Super Massive Black Hole in Galactic Nuclei with Tidal Disruption of Stars

    NASA Astrophysics Data System (ADS)

    Zhong, Shiyan; Berczik, Peter; Spurzem, Rainer

    2014-09-01

    Tidal disruption of stars by super massive central black holes from dense star clusters is modeled by high-accuracy direct N-body simulation. The time evolution of the stellar tidal disruption rate, the effect of tidal disruption on the stellar density profile, and, for the first time, the detailed origin of tidally disrupted stars are carefully examined and compared with classic papers in the field. Up to 128k particles are used in simulation to model the star cluster around a super massive black hole, and we use the particle number and the tidal radius of the black hole as free parameters for a scaling analysis. The transition from full to empty loss-cone is analyzed in our data, and the tidal disruption rate scales with the particle number, N, in the expected way for both cases. For the first time in numerical simulations (under certain conditions) we can support the concept of a critical radius of Frank & Rees, which claims that most stars are tidally accreted on highly eccentric orbits originating from regions far outside the tidal radius. Due to the consumption of stars moving on radial orbits, a velocity anisotropy is found inside the cluster. Finally we estimate the real galactic center based on our simulation results and the scaling analysis.

  18. Dynamics of Gas Near the Galactic Centre

    NASA Astrophysics Data System (ADS)

    Jenkins, A.; Binney, J.

    1994-10-01

    We simulate the flow of gas in the Binney et al. model of the bar at the centre of the Milky Way. We argue that the flow of a clumpy interstellar medium is most realistically simulated by a sticky-particle scheme, and investigate two such schemes. In both schemes orbits close to the cusped orbit rapidly become depopulated. This depopulation places a lower limit on the pattern speed since it implies that in the (1, v) plane the cusped orbit lies significantly inside the peak of the Hi terminal-velocity envelope at 1 20. We find that the size of the central molecular disc and the magnitudes of the observed forbidden velocities constrain the eccentricity of the Galactic bar to values similar to that arbitrarily assumed by Binney et al. We study the accretion by the nuclear disc of matter shed by dying bulge stars. We estimate that mass loss by the bulge can replenish the Hi in the nuclear disc within two bar rotation periods, in good agreement with the predictions of the simulations. When accretion of gas from the bulge is included, fine-scale irregular structure persists in the nuclear disc. This structure gives rise to features in longitude-velocity plots which depend significantly on viewing angle, and consequently give rise to asymmetries in longitude. These asymmetries are, however, much less pronounced than those in the observational plots. We conclude that the addition of hydrodynamics to the Binney et al. model does not resolve some important discrepancies between theory and observation. The model's basic idea does, however, have high a priori probability and has enjoyed some significant successes, while a number of potentially important physical processes - most notably the self-gravity of interstellar gas - are neglected in the present simulations. In view of the deficiencies of our simulations and interesting parallels we do observe between simulated and observational longitude-velocity plots, we believe it would be premature to reject the Binney et al

  19. Formation of massive black holes in galactic nuclei: runaway tidal encounters

    NASA Astrophysics Data System (ADS)

    Stone, Nicholas C.; Küpper, Andreas H. W.; Ostriker, Jeremiah P.

    2017-06-01

    Nuclear star clusters (NSCs) and supermassive black holes (SMBHs) both inhabit galactic nuclei, coexisting in a range of bulge masses, but excluding each other in the largest or smallest galaxies. We propose that the transformation of NSCs into SMBHs occurs via runaway tidal captures, once NSCs exceed a certain critical central density and velocity dispersion. The bottleneck in this process is growing the first e-fold in black hole mass. The growth of a stellar mass black hole past this bottleneck occurs as tidally captured stars are consumed in repeated episodes of mass transfer at pericentre. Tidal captures may deactivate as a growth channel once the black hole mass ≳102-3 M⊙, but tidal disruption events will continue and can grow the seed SMBH to larger sizes. The runaway slows (becomes subexponential) once the seed SMBH consumes the core of its host NSC. While most of the cosmic mass density in SMBHs is ultimately produced by episodic gaseous accretion in very massive galaxies, the smallest SMBHs have probably grown from strong tidal encounters with NSC stars. SMBH seeds that grow for a time t entirely through this channel will follow simple power-law relations with the velocity dispersion, σ, of their host galaxy. In the simplest regime, it is M_\\bullet ˜ σ ^{3/2}√{M_\\star t / G} ˜ 106 M_{⊙} (σ / 50 {km s}^{-1})^{3/2}(t/10^{10} yr)^{1/2}, but the exponents and pre-factor can differ slightly depending on the details of loss cone refilling. Current tidal disruption event rates predicted from this mechanism are consistent with observations.

  20. Intermediate-mass black holes from Population III remnants in the first galactic nuclei

    NASA Astrophysics Data System (ADS)

    Ryu, Taeho; Tanaka, Takamitsu L.; Perna, Rosalba; Haiman, Zoltán

    2016-08-01

    We report the formation of intermediate-mass black holes (IMBHs) in suites of numerical N-body simulations of Population III remnant black holes (BHs) embedded in gas-rich protogalaxies at redshifts z ≳ 10. We model the effects of gas drag on the BHs' orbits, and allow BHs to grow via gas accretion, including a mode of hyper-Eddington accretion in which photon trapping and rapid gas inflow suppress any negative radiative feedback. Most initial BH configurations lead to the formation of one (but never more than one) IMBH in the centre of the protogalaxy, reaching a mass of 103-5 M⊙ through hyper-Eddington growth. Our results suggest a viable pathway to forming the earliest massive BHs in the centres of early galaxies. We also find that the nuclear IMBH typically captures a stellar-mass BH companion, making these systems observable in gravitational waves as extreme mass-ratio inspirals with eLISA.

  1. The early dynamical evolution of star clusters near the Galactic Centre

    NASA Astrophysics Data System (ADS)

    Park, So-Myoung; Goodwin, Simon P.; Kim, Sungsoo S.

    2018-07-01

    We examine the dynamical evolution of both Plummer sphere and substructured (fractal) star-forming regions in Galactic Centre (GC) strong tidal fields to see what initial conditions could give rise to an Arches-like massive star cluster by ˜2 Myr. We find that any initial distribution has to be contained within its initial tidal radius to survive, which sets a lower limit of the initial density of the Arches of ˜600 M⊙ pc-3 if the Arches is at 30 pc from the GC, or ˜200 M⊙ pc-3 if the Arches is at 100 pc from the GC. Plummer spheres that survive change little other than to dynamically mass segregate, but initially fractal distributions rapidly erase substructure, dynamically mass segregate and by 2 Myr look extremely similar to initial Plummer spheres, therefore it is almost impossible to determine the initial conditions of clusters in strong tidal fields.

  2. The early dynamical evolution of star clusters near the Galactic Centre

    NASA Astrophysics Data System (ADS)

    Park, So-Myoung; Goodwin, Simon P.; Kim, Sungsoo S.

    2018-04-01

    We examine the dynamical evolution of both Plummer sphere and substructured (fractal) star forming regions in Galactic Centre (GC) strong tidal fields to see what initial conditions could give rise to an Arches-like massive star cluster by ˜2 Myr. We find that any initial distribution has to be contained within its initial tidal radius to survive, which sets a lower limit of the initial density of the Arches of ˜ 600 M⊙ pc-3 if the Arches is at 30 pc from the GC, or ˜ 200 M⊙ pc-3 if the Arches is at 100 pc from the GC. Plummer spheres that survive change little other than to dynamically mass segregate, but initially fractal distributions rapidly erase substructure, dynamically mass segregate and by 2 Myr look extremely similar to initial Plummer spheres, therefore it is almost impossible to determine the initial conditions of clusters in strong tidal fields.

  3. The Second Galactic Center Black Hole? A Possible Detection of Ionized Gas Orbiting around an IMBH Embedded in the Galactic Center IRS13E Complex

    NASA Astrophysics Data System (ADS)

    Tsuboi, Masato; Kitamura, Yoshimi; Tsutsumi, Takahiro; Uehara, Kenta; Miyoshi, Makoto; Miyawaki, Ryosuke; Miyazaki, Atsushi

    2017-11-01

    The Galactic Center is the nuclear region of the nearest spiral galaxy, the Milky Way, and contains the supermassive black hole with M˜ 4× {10}6 {M}⊙ , Sagittarius A* (Sgr A*). One of the basic questions about the Galactic Center is whether or not Sgr A* is the only “massive” black hole in the region. The IRS13E complex is a very intriguing infrared (IR) object that contains a large dark mass comparable to the mass of an intermediate mass black hole (IMBH) from the proper motions of the main member stars. However, the existence of the IMBH remains controversial. There are some objections to accepting the existence of the IMBH. In this study, we detected ionized gas with a very large velocity width ({{Δ }}{v}{FWZI}˜ 650 km s-1) and a very compact size (r˜ 400 au) in the complex using the Atacama Large Millimeter/submillimeter Array (ALMA). We also found an extended component connecting with the compact ionized gas. The properties suggest that this is an ionized gas flow on the Keplerian orbit with high eccentricity. The enclosed mass is estimated to be {10}4 {M}⊙ by the analysis of the orbit. The mass does not conflict with the upper limit mass of the IMBH around Sgr A*, which is derived by the long-term astrometry with the Very Long Baseline Array (VLBA). In addition, the object probably has an X-ray counterpart. Consequently, a very fascinating possibility is that the detected ionized gas is rotating around an IMBH embedded in the IRS13E complex.

  4. A Nonthermal Radio Filament Connected to the Galactic Black Hole?

    NASA Astrophysics Data System (ADS)

    Morris, Mark R.; Zhao, Jun-Hui; Goss, W. M.

    2017-12-01

    Using the Very Large Array, we have investigated a nonthermal radio filament (NTF) recently found very near the Galactic black hole and its radio counterpart, Sgr A*. While this NTF—the Sgr A West Filament (SgrAWF)—shares many characteristics with the population of NTFs occupying the central few hundred parsecs of the Galaxy, the SgrAWF has the distinction of having an orientation and sky location that suggest an intimate physical connection to Sgr A*. We present 3.3 and 5.5 cm images constructed using an innovative methodology that yields a very high dynamic range, providing an unprecedentedly clear picture of the SgrAWF. While the physical association of the SgrAWF with Sgr A* is not unambiguous, the images decidedly evoke this interesting possibility. Assuming that the SgrAWF bears a physical relationship to Sgr A*, we examine the potential implications. One is that Sgr A* is a source of relativistic particles constrained to diffuse along ordered local field lines. The relativistic particles could also be fed into the local field by a collimated outflow from Sgr A*, perhaps driven by the Poynting flux accompanying the black hole spin in the presence of a magnetic field threading the event horizon. Second, we consider the possibility that the SgrAWF is the manifestation of a low-mass-density cosmic string that has become anchored to the black hole. The simplest form of these hypotheses would predict that the filament be bi-directional, whereas the SgrAWF is only seen on one side of Sgr A*, perhaps because of the dynamics of the local medium.

  5. Super massive black hole in galactic nuclei with tidal disruption of stars

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhong, Shiyan; Berczik, Peter; Spurzem, Rainer

    Tidal disruption of stars by super massive central black holes from dense star clusters is modeled by high-accuracy direct N-body simulation. The time evolution of the stellar tidal disruption rate, the effect of tidal disruption on the stellar density profile, and, for the first time, the detailed origin of tidally disrupted stars are carefully examined and compared with classic papers in the field. Up to 128k particles are used in simulation to model the star cluster around a super massive black hole, and we use the particle number and the tidal radius of the black hole as free parameters formore » a scaling analysis. The transition from full to empty loss-cone is analyzed in our data, and the tidal disruption rate scales with the particle number, N, in the expected way for both cases. For the first time in numerical simulations (under certain conditions) we can support the concept of a critical radius of Frank and Rees, which claims that most stars are tidally accreted on highly eccentric orbits originating from regions far outside the tidal radius. Due to the consumption of stars moving on radial orbits, a velocity anisotropy is found inside the cluster. Finally we estimate the real galactic center based on our simulation results and the scaling analysis.« less

  6. Probing the Interstellar Dust towards the Galactic Centre using X-ray Dust Scattering Halos

    NASA Astrophysics Data System (ADS)

    Jin, C.; Ponti, G.; Haberl, F.; Smith, R.

    2017-10-01

    Dust scattering creates an X-ray halo that contains abundant information about the interstellar dust along the source's line-of-sight (LOS), and is most prominent when the LOS nH is high. In this talk, I will present results from our latest study of a bright dust scattering halo around an eclipsing X-ray binary at 1.45 arcmin away from Sgr A*, namely AX J1745.6-2901. This study is based on a large set of XMM-Newton and Chandra observations, and is so-far the best dust scattering halo study of a X-ray transient in the Galactic centre (GC). I will show that the foreground dust of AX J1745.6-2901 can be decomposed into two major thick dust layers. One layer contains (66-81)% of the total LOS dust and is several kpc away from the source, and so is most likely to reside in the Galactic disc. The other layer is local to the source. I will also show that the dust scattering halo can cause the source spectrum to severely depend on the source extraction region. Such spectral bias can be corrected by our new Xspec model, which is likely to be applicable to Sgr A* and other GC sources as well.

  7. Observing the Super-Massive Black Hole of the Galactic center with Simbol-X .

    NASA Astrophysics Data System (ADS)

    Goldwurm, A.

    The Center of our Galaxy is one of the prime objective of the Simbol-X mission. This region of several square degrees around the dynamical center of the galaxy hosts a large variety of high energy sources and violent phenomena that involve different non-thermal processes contributing to the hard X-ray emission from the region. Here we present in detail the case for the observation of Sgr A*, the super-massive black hole of the galactic nucleus, with Simbol-X, stressing on the presently open questions and on the crucial measurements that will be performed in the hard X-ray domain with this formation-flying hard X-ray focussing telescope expected to flight in the next decade.

  8. Gamma ray monitoring of a AGN and galactic black hole candidates by the Compton Gamma Ray Observatory

    NASA Technical Reports Server (NTRS)

    Skelton, R. T.; Ling, James C.; Wheaton, William A.; Harmon, Alan; Fishman, G. J.; Meegan, C. A.; Paciesas, William S.; Gruber, Duane E.; Rubin, Brad; Wilson, R. B.

    1992-01-01

    The Compton Gamma-Ray Observatory's Burst and Transient Source Experiment (BATSE) has a powerful capability to provide nearly uninterrupted monitoring in the 25 keV-10 MeV range of both active galactic nuclei (AGN) and galactic black hole candidates (GBHC) such as Cygnus X-1, using the occultation of cosmic sources by the Earth. Since the Crab is detected by the BATSE Large Area Detectors with roughly 25(sigma) significance in the 15-125 keV range in a single rise or set, a variation by a factor of two of a source having one-tenth the strength of Cygnus X-1 should be detectable within a day. Methods of modeling the background are discussed which will increase the accuracy, sensitivity, and reliability of the results beyond those obtainable from a linear background fit with a single rise or set discontinuity.

  9. Millimetre-wave emission from an intermediate-mass black hole candidate in the Milky Way

    NASA Astrophysics Data System (ADS)

    Oka, Tomoharu; Tsujimoto, Shiho; Iwata, Yuhei; Nomura, Mariko; Takekawa, Shunya

    2017-10-01

    It is widely accepted that black holes with masses greater than a million solar masses (M⊙) lurk at the centres of massive galaxies. The origins of such `supermassive' black holes (SMBHs) remain unknown1, although those of stellar-mass black holes are well understood. One possible scenario is that intermediate-mass black holes (IMBHs), which are formed by the runaway coalescence of stars in young compact star clusters2, merge at the centre of a galaxy to form a SMBH3. Although many candidates for IMBHs have been proposed, none is accepted as definitive. Recently, we discovered a peculiar molecular cloud, CO-0.40-0.22, with an extremely broad velocity width, near the centre of our Milky Way galaxy. Based on the careful analysis of gas kinematics, we concluded that a compact object with a mass of about 105M⊙ is lurking in this cloud4. Here we report the detection of a point-like continuum source as well as a compact gas clump near the centre of CO-0.40-0.22. This point-like continuum source (CO-0.40-0.22*) has a wide-band spectrum consistent with 1/500 of the Galactic SMBH (Sgr A*) in luminosity. Numerical simulations around a point-like massive object reproduce the kinematics of dense molecular gas well, which suggests that CO-0.40-0.22* is one of the most promising candidates for an intermediate-mass black hole.

  10. Black holes on FIRE: stellar feedback limits early feeding of galactic nuclei

    NASA Astrophysics Data System (ADS)

    Anglés-Alcázar, Daniel; Faucher-Giguère, Claude-André; Quataert, Eliot; Hopkins, Philip F.; Feldmann, Robert; Torrey, Paul; Wetzel, Andrew; Kereš, Dušan

    2017-11-01

    We introduce massive black holes (BHs) in the Feedback In Realistic Environments (FIRE) project and perform high-resolution cosmological hydrodynamic simulations of quasar-mass haloes [Mhalo(z = 2) ≈ 1012.5 M⊙] down to z = 1. These simulations model stellar feedback by supernovae, stellar winds and radiation, and BH growth using a gravitational torque-based prescription tied to the resolved properties of galactic nuclei. We do not include BH feedback. We show that early BH growth occurs through short (≲1 Myr) accretion episodes that can reach or even exceed the Eddington rate. In this regime, BH growth is limited by bursty stellar feedback continuously evacuating gas from galactic nuclei, and BHs remain undermassive in low-mass galaxies relative to the local MBH-Mbulgerelation. BH growth is more efficient at later times, when the nuclear stellar potential retains a significant gas reservoir, star formation becomes less bursty and galaxies settle into a more ordered state. BHs rapidly converge on to the observed scaling relations when the host reaches Mbulge ∼ 1010 M⊙. We show that resolving the effects of stellar feedback on the gas supply in the inner ∼100 pc of galaxies is necessary to accurately capture the growth of central BHs. Our simulations imply that bursty stellar feedback has important implications for BH-galaxy relations, AGN demographics and time variability, the formation of early quasars and massive BH mergers.

  11. The suppression of star formation by powerful active galactic nuclei.

    PubMed

    Page, M J; Symeonidis, M; Vieira, J D; Altieri, B; Amblard, A; Arumugam, V; Aussel, H; Babbedge, T; Blain, A; Bock, J; Boselli, A; Buat, V; Castro-Rodríguez, N; Cava, A; Chanial, P; Clements, D L; Conley, A; Conversi, L; Cooray, A; Dowell, C D; Dubois, E N; Dunlop, J S; Dwek, E; Dye, S; Eales, S; Elbaz, D; Farrah, D; Fox, M; Franceschini, A; Gear, W; Glenn, J; Griffin, M; Halpern, M; Hatziminaoglou, E; Ibar, E; Isaak, K; Ivison, R J; Lagache, G; Levenson, L; Lu, N; Madden, S; Maffei, B; Mainetti, G; Marchetti, L; Nguyen, H T; O'Halloran, B; Oliver, S J; Omont, A; Panuzzo, P; Papageorgiou, A; Pearson, C P; Pérez-Fournon, I; Pohlen, M; Rawlings, J I; Rigopoulou, D; Riguccini, L; Rizzo, D; Rodighiero, G; Roseboom, I G; Rowan-Robinson, M; Sánchez Portal, M; Schulz, B; Scott, D; Seymour, N; Shupe, D L; Smith, A J; Stevens, J A; Trichas, M; Tugwell, K E; Vaccari, M; Valtchanov, I; Viero, M; Vigroux, L; Wang, L; Ward, R; Wright, G; Xu, C K; Zemcov, M

    2012-05-09

    The old, red stars that constitute the bulges of galaxies, and the massive black holes at their centres, are the relics of a period in cosmic history when galaxies formed stars at remarkable rates and active galactic nuclei (AGN) shone brightly as a result of accretion onto black holes. It is widely suspected, but unproved, that the tight correlation between the mass of the black hole and the mass of the stellar bulge results from the AGN quenching the surrounding star formation as it approaches its peak luminosity. X-rays trace emission from AGN unambiguously, whereas powerful star-forming galaxies are usually dust-obscured and are brightest at infrared and submillimetre wavelengths. Here we report submillimetre and X-ray observations that show that rapid star formation was common in the host galaxies of AGN when the Universe was 2-6 billion years old, but that the most vigorous star formation is not observed around black holes above an X-ray luminosity of 10(44) ergs per second. This suppression of star formation in the host galaxy of a powerful AGN is a key prediction of models in which the AGN drives an outflow, expelling the interstellar medium of its host and transforming the galaxy's properties in a brief period of cosmic time.

  12. Gravitational wave sources from inspiralling globular clusters in the Galactic Centre and similar environments

    NASA Astrophysics Data System (ADS)

    Arca-Sedda, Manuel; Gualandris, Alessia

    2018-07-01

    We model the inspiral of globular clusters (GCs) towards a galactic nucleus harbouring a supermassive black hole (SMBH), a leading scenario for the formation of nuclear star clusters. We consider the case of GCs containing either an intermediate-mass black hole (IMBH) or a population of stellar-mass black holes (BHs), and study the formation of gravitational wave (GW) sources. We perform direct summation N-body simulations of the infall of GCs with different orbital eccentricities in the live background of a galaxy with either a shallow or steep density profile. We find that the GC acts as an efficient carrier for the IMBH, facilitating the formation of a bound pair. The hardening and evolution of the binary depends sensitively on the galaxy's density profile. If the host galaxy has a shallow profile, the hardening is too slow to allow for coalescence within a Hubble time, unless the initial cluster orbit is highly eccentric. If the galaxy hosts a nuclear star cluster, the hardening leads to coalescence by emission of GWs within 3-4 Gyr. In this case, we find an IMBH-SMBH merger rate of ΓIMBH-SMBH = 2.8 × 10-3 yr-1 Gpc3. If the GC hosts a population of stellar BHs, these are deposited close enough to the SMBH to form extreme mass ratio inspirals with a merger rate of ΓEMRI = 0.25 yr-1 Gpc3. Finally, the SMBH tidal field can boost the coalescence of stellar black hole binaries delivered from the infalling GCs. The merger rate for this merging channel is ΓBHB = 0.4-4 yr-1 Gpc3.

  13. Active Galactic Nucleus

    NASA Image and Video Library

    2017-09-14

    SCI2017_0007: Artist illustration of the thick ring of dust that can obscure the energetic processes that occur near the supermassive black hole of an active galactic nuclei. The SOFIA studies suggest that the dust distribution is about 30 percent smaller than previously thought. Credit: NASA/SOFIA/Lynette Cook

  14. Black hole masses in active galactic nuclei

    NASA Astrophysics Data System (ADS)

    Denney, Kelly D.

    2010-11-01

    We present the complete results from two, high sampling-rate, multi-month, spectrophotometric reverberation mapping campaigns undertaken to obtain either new or improved Hbeta reverberation lag measurements for several relatively low-luminosity active galactic nuclei (AGNs). We have reliably measured the time delay between variations in the continuum and Hbeta emission line in seven local Seyfert 1 galaxies. These measurements are used to calculate the mass of the supermassive black hole at the center of each of these AGNs. We place our results in context to the most current calibration of the broad-line region (BLR) RBLR-L relationship, where our results remove many outliers and significantly reduce the scatter at the low-luminosity end of this relationship. A detailed analysis of the data from our high sampling rate, multi-month reverberation mapping campaign in 2007 reveals that the Hbeta emission region within the BLRs of several nearby AGNs exhibit a variety of kinematic behaviors. Through a velocity-resolved reverberation analysis of the broad Hbeta emission-line flux variations in our sample, we reconstruct velocity-resolved kinematic signals for our entire sample and clearly see evidence for outflowing, infalling, and virialized BLR gas motions in NGC 3227, NGC 3516, and NGC 5548, respectively. Finally, we explore the nature of systematic errors that can arise in measurements of black hole masses from single-epoch spectra of AGNs by utilizing the many epochs available for NGC 5548 and PG1229+204 from reverberation mapping databases. In particular, we examine systematics due to AGN variability, contamination due to constant spectral components (i.e., narrow lines and host galaxy flux), data quality (i.e., signal-to-noise ratio, S/N), and blending of spectral features. We investigate the effect that each of these systematics has on the precision and accuracy of single-epoch masses calculated from two commonly-used line-width measures by comparing these

  15. Test-particle dynamics in general spherically symmetric black hole spacetimes

    NASA Astrophysics Data System (ADS)

    De Laurentis, Mariafelicia; Younsi, Ziri; Porth, Oliver; Mizuno, Yosuke; Rezzolla, Luciano

    2018-05-01

    To date, the most precise tests of general relativity have been achieved through pulsar timing, albeit in the weak-field regime. Since pulsars are some of the most precise and stable "clocks" in the Universe, present observational efforts are focused on detecting pulsars in the vicinity of supermassive black holes (most notably in the Galactic Centre), enabling pulsar timing to be used as an extremely precise probe of strong-field gravity. In this paper, a mathematical framework to describe test-particle dynamics in general black-hole spacetimes is presented and subsequently used to study a binary system comprising a pulsar orbiting a black hole. In particular, taking into account the parameterization of a general spherically symmetric black-hole metric, general analytic expressions for both the advance of the periastron and for the orbital period of a massive test particle are derived. Furthermore, these expressions are applied to four representative cases of solutions arising in both general relativity and in alternative theories of gravity. Finally, this framework is applied to the Galactic center S -stars and four distinct pulsar toy models. It is shown that by adopting a fully general-relativistic description of test-particle motion which is independent of any particular theory of gravity, observations of pulsars can help impose better constraints on alternative theories of gravity than is presently possible.

  16. Smallest Black Hole in Galactic Nucleus Detected

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2015-08-01

    A team of astronomers have reported the detection of the smallest black hole (BH) ever observed in a galactic nucleus. The BH is hosted in the center of dwarf galaxy RGG 118, and it weighs in at 50,000 solar masses, according to observations made by Vivienne Baldassare of University of Michigan and her collaborators. Small Discoveries: Why is the discovery of a small nuclear BH important? Some open questions that this could help answer are: - Do the very smallest dwarf galaxies have BHs at their centers too? Though we believe that there's a giant BH at the center of every galaxy, we aren't sure how far down the size scale this holds true. - What is the formation mechanism for BHs at the center of galaxies? - What's the behavior of the M-sigma relation at the low-mass end? The M-sigma relation is an observed correlation between the mass of a galaxy's central BH and the velocity dispersion of the stars in the galaxy. This relation is incredibly useful for determining properties of distant BHs and their galaxies empirically, but little data is available to constrain the low-mass end of the relation. M-sigma relation, plotting systems with dynamically-measured black hole masses. RGG 118 is plotted as the pink star. The solid and dashed lines represent various determinations of scaling relations. Credit: Baldassare et al. 2015. Identifying a Black Hole: RGG 118 was identified as a candidate host for an accreting, nuclear BH from the catalog of dwarf galaxies observed in the Sloan Digital Sky Survey. Baldassare and her team followed up with high-resolution spectroscopy from the Clay telescope in Chile and Chandra x-ray observations. Using these observations, the team determined that RGG 118 plays host to a massive BH at its center based on three clues: 1) narrow emission line ratios, which is a signature of accretion onto a massive BH, 2) the presence of broad emission lines, indicating that gas is rotating around a central BH, and 3) the existence of an X-ray point

  17. Spectral and Temporal Properties of Galactic Black Hole Systems

    NASA Technical Reports Server (NTRS)

    Wheeler, J. Craig

    1997-01-01

    Kusunose, Mineshige & Yamada (1996; hereafter KMY) extended the model of Kusunose & Mineshige (1995) to the Galactic black hole candidates by considering nonthermal electron injection with gamma(EQ\\0(,\\s\\up2(less than),\\s\\do-l(_))) 10. The effects of pair escape and advection on the disk structure and general relativistic effects on the emission spectrum were also examined. They found that the energy spectral index (alpha)(sub x) of the power law X-rays is about-0.8 and-2.0 when 1(sub soft)/1 = 0.2 and 2, respectively, where 1(sub soft)/1 is the ratio of the compactness of the injected soft photons to that of the gravitational energy. The power law index was found to be nearly independent of the mass accretion which is consistent with the observed luminosity independence. The model with small 1(sub soft)/1 (less than 1) shows promise for explaining the low state observed in Galactic black hole candidates. Model fits were provided for GX339-4 and Cyg X- 1 data from COMPTEL and OSSE on the Compton Gamma Ray Observatory. The difference in emission spectra between thermal disks and the model of KMY appears only in the energy range greater than 100 keV. Li, Kusunose and Liang (1996) studied stochastic particle acceleration to produce nonthermal particle distributions which then were used in the model of Kusunose & Mineshige (1995) to model the spectrum above 1 Mev from GBHC's. Under certain conditions, stochastic electron acceleration overcame Coulomb and Compton losses resulting in a suprathermal electron population. Good fits were obtained by COMPTEL and OSSE observations of Cyg X-1 and GRO J0422+23. Kusunose & Mineshige (1996a) examined the role of electron-positron pairs in advection-dominated disks. They found that the results for advection-dominated disks without pairs are not qualitatively changed by including pairs. Summaries of work sponsored by this grant are given in Wheeler, Kim, Moscoso, Kusunose & Mineshige (1996) and Kusunose (1996) Work was also

  18. On the rate of black hole binary mergers in galactic nuclei due to dynamical hardening

    NASA Astrophysics Data System (ADS)

    Leigh, N. W. C.; Geller, A. M.; McKernan, B.; Ford, K. E. S.; Mac Low, M.-M.; Bellovary, J.; Haiman, Z.; Lyra, W.; Samsing, J.; O'Dowd, M.; Kocsis, B.; Endlich, S.

    2018-03-01

    We assess the contribution of dynamical hardening by direct three-body scattering interactions to the rate of stellar-mass black hole binary (BHB) mergers in galactic nuclei. We derive an analytic model for the single-binary encounter rate in a nucleus with spherical and disc components hosting a super-massive black hole (SMBH). We determine the total number of encounters NGW needed to harden a BHB to the point that inspiral due to gravitational wave emission occurs before the next three-body scattering event. This is done independently for both the spherical and disc components. Using a Monte Carlo approach, we refine our calculations for NGW to include gravitational wave emission between scattering events. For astrophysically plausible models, we find that typically NGW ≲ 10. We find two separate regimes for the efficient dynamical hardening of BHBs: (1) spherical star clusters with high central densities, low-velocity dispersions, and no significant Keplerian component and (2) migration traps in discs around SMBHs lacking any significant spherical stellar component in the vicinity of the migration trap, which is expected due to effective orbital inclination reduction of any spherical population by the disc. We also find a weak correlation between the ratio of the second-order velocity moment to velocity dispersion in galactic nuclei and the rate of BHB mergers, where this ratio is a proxy for the ratio between the rotation- and dispersion-supported components. Because discs enforce planar interactions that are efficient in hardening BHBs, particularly in migration traps, they have high merger rates that can contribute significantly to the rate of BHB mergers detected by the advanced Laser Interferometer Gravitational-Wave Observatory.

  19. The Suppression of Star Formation by Powerful Active Galactic Nuclei

    NASA Technical Reports Server (NTRS)

    Dwek, E.

    2012-01-01

    The old, red stars that constitute the bulges of galaxies, and the massive black holes at their centres, are the relics of a period in cosmic history when galaxies formed stars at remarkable rates and active galactic nuclei (AGN) shone brightly as a result of accretion onto black holes. It is widely suspected, but unproved, that the tight corre1ation between the mass of the black hole and the mas. of the stellar bulge results from the AGN quenching the surrounding star formation as it approaches its peak luminosity. X-rays trace emission from AGN unambiguously, whereas powerful star-forming ga1axies are usually dust-obscured and are brightest at infrared and submillimeter wavelengths. Here we report submillimetre and X-ray observations that show that rapid star formation was common in the host galaxies of AGN when the Universe was 2-6 billion years old, but that the most vigorous star formation is not observed around black holes above an X-ray luminosity of 10(exp 44) ergs per second. This suppression of star formation in the host galaxy of a powerful AGN is a key prediction of models in which the AGN drives an outflow, expe11ing the interstellar medium of its host and transforming the galaxy's properties in a brief period of cosmic time.

  20. Penrose pair production as a power source of quasars and active galactic nuclei. [black hole mechanisms

    NASA Technical Reports Server (NTRS)

    Kafatos, M.; Leiter, D.

    1979-01-01

    Penrose pair production in massive canonical Kerr black holes (those with a/M equal to 0.998) is proposed as a way to explain the nature of the vast fluctuating energy production associated with active galactic nuclei and quasars. It is assumed that a Kerr black hole with a mass of the order of 100 million solar masses lies at the center of an active nucleus and that an accretion disk is formed. Penrose pair production in the inner ergosphere of such a massive canonical Kerr black hole is analyzed. The results indicate that: (1) particle pairs are ejected within a 40 deg angle relative to the equator; (2) the particle energy is of the order of 1 GeV per pair; (3) the pressure of the electron-positron relativistic gas is proportional to the electron-positron number density; (4) pair production may occur in bursts; and (5) the overall lifetime of an active nucleus would depend on the time required to exhaust the disk of its matter content. A test of the theory is suggested which involves observation of the 0.5-MeV pair-annihilation gamma rays that would be generated by annihilating particle pairs.

  1. Eccentric Black Hole Gravitational-wave Capture Sources in Galactic Nuclei: Distribution of Binary Parameters

    NASA Astrophysics Data System (ADS)

    Gondán, László; Kocsis, Bence; Raffai, Péter; Frei, Zsolt

    2018-06-01

    Mergers of binary black holes on eccentric orbits are among the targets for second-generation ground-based gravitational-wave detectors. These sources may commonly form in galactic nuclei due to gravitational-wave emission during close flyby events of single objects. We determine the distributions of initial orbital parameters for a population of these gravitational-wave sources. Our results show that the initial dimensionless pericenter distance systematically decreases with the binary component masses and the mass of the central supermassive black hole, and its distribution depends sensitively on the highest possible black hole mass in the nuclear star cluster. For a multi-mass black hole population with masses between 5 {M}ȯ and 80 {M}ȯ , we find that between ∼43–69% (68–94%) of 30 {M}ȯ –30 {M}ȯ (10 M ⊙–10 M ⊙) sources have an eccentricity greater than 0.1 when the gravitational-wave signal reaches 10 Hz, but less than ∼10% of the sources with binary component masses less than 30 {M}ȯ remain eccentric at this level near the last stable orbit (LSO). The eccentricity at LSO is typically between 0.005–0.05 for the lower-mass BHs, and 0.1–0.2 for the highest-mass BHs. Thus, due to the limited low-frequency sensitivity, the six currently known quasicircular LIGO/Virgo sources could still be compatible with this originally highly eccentric source population. However, at the design sensitivity of these instruments, the measurement of the eccentricity and mass distribution of merger events may be a useful diagnostic to identify the fraction of GW sources formed in this channel.

  2. A transient, flat spectrum radio pulsar near the Galactic Centre

    NASA Astrophysics Data System (ADS)

    Dexter, J.; Degenaar, N.; Kerr, M.; Deller, A.; Deneva, J.; Lazarus, P.; Kramer, M.; Champion, D.; Karuppusamy, R.

    2017-06-01

    Recent studies have shown possible connections between highly magnetized neutron stars ('magnetars'), whose X-ray emission is too bright to be powered by rotational energy, and ordinary radio pulsars. In addition to the magnetar SGR J1745-2900, one of the radio pulsars in the Galactic Centre (GC) region, PSR J1746-2850, had timing properties implying a large magnetic field strength and young age, as well as a flat spectrum. All characteristics are similar to those of rare, transient, radio-loud magnetars. Using several deep non-detections from the literature and two new detections, we show that this pulsar is also transient in the radio. Both the flat spectrum and large amplitude variability are inconsistent with the light curves and spectral indices of three radio pulsars with high magnetic field strengths. We further use frequent, deep archival imaging observations of the GC in the past 15 yr to rule out a possible X-ray outburst with a luminosity exceeding the rotational spin-down rate. This source, either a transient magnetar without any detected X-ray counterpart or a young, strongly magnetized radio pulsar producing magnetar-like radio emission, further blurs the line between the two categories. We discuss the implications of this object for the radio emission mechanism in magnetars and for star and compact object formation in the GC.

  3. X-Ray Emission from Active Galactic Nuclei with Intermediate-Mass Black Holes

    NASA Astrophysics Data System (ADS)

    Dewangan, G. C.; Mathur, S.; Griffiths, R. E.; Rao, A. R.

    2008-12-01

    We present a systematic X-ray study of eight active galactic nuclei (AGNs) with intermediate-mass black holes (MBH ~ 8-95 × 104 M⊙) based on 12 XMM-Newton observations. The sample includes the two prototype AGNs in this class—NGC 4395 and POX 52 and six other AGNs discovered with the Sloan Digitized Sky Survey. These AGNs show some of the strongest X-ray variability, with the normalized excess variances being the largest and the power density break timescales being the shortest observed among radio-quiet AGNs. The excess-variance-luminosity correlation appears to depend on both the BH mass and the Eddington luminosity ratio. The break timescale-black hole mass relations for AGN with IMBHs are consistent with that observed for massive AGNs. We find that the FWHM of the Hβ/Hα line is uncorrelated with the BH mass, but shows strong anticorrelation with the Eddington luminosity ratio. Four AGNs show clear evidence for soft X-ray excess emission (kTin ~ 150-200 eV). X-ray spectra of three other AGNs are consistent with the presence of the soft excess emission. NGC 4395 with lowest L/LEdd lacks the soft excess emission. Evidently small black mass is not the primary driver of strong soft X-ray excess emission from AGNs. The X-ray spectral properties and optical-to-X-ray spectral energy distributions of these AGNs are similar to those of Seyfert 1 galaxies. The observed X-ray/UV properties of AGNs with IMBHs are consistent with these AGNs being low-mass extensions of more massive AGNs, those with high Eddington luminosity ratio looking more like narrow-line Seyfert 1 s and those with low L/LEdd looking more like broad-line Seyfert 1 galaxies.

  4. The great galactic centre mystery

    NASA Technical Reports Server (NTRS)

    Riegler, G. R.

    1982-01-01

    Gamma-ray observations of the center of the Galaxy show a varying positron-electron annihilation radiation emission, while at radio wavelengths a non-thermal compact source surrounded by ionized gas moving at high velocities can be seen. Line emission maps for atomic and ionized hydrogen and molecular gas suggest gas expulsion and a massive collapsed object. IR observations show that ionized gas in the central few parsecs of the Galactic center is concentrated in at least 14 small clouds. Charge-coupled device images show a pair of faint, very red sources within a few arc seconds of IRS 16 and the compact non-thermal radio source. The positron-electron annihilation line emission implies an annihilation rate of 10 to the 43rd per sec, compared with an observed luminosity at IR wavelengths of 10 to the 40 erg per sec. Some models are briefly discussed.

  5. Ancient Black Hole Speeds Through Sun's Galactic Neighborhood, Devouring Companion Star

    NASA Astrophysics Data System (ADS)

    2001-09-01

    Astronomers using the National Science Foundation's Very Long Baseline Array (VLBA) radio telescope have found an ancient black hole speeding through the Sun's Galactic neighborhood, devouring a small companion star as the pair travels in an eccentric orbit looping to the outer reaches of our Milky Way Galaxy. The scientists believe the black hole is the remnant of a massive star that lived out its brief life billions of years ago and later was gravitationally kicked from its home star cluster to wander the Galaxy with its companion. "This discovery is the first step toward filling in a missing chapter in the history of our Galaxy," said Felix Mirabel, an astrophysicist at the Institute for Astronomy and Space Physics of Argentina and French Atomic Energy Commission. "We believe that hundreds of thousands of very massive stars formed early in the history of our Galaxy, but this is the first black hole remnant of one of those huge primeval stars that we've found." "This also is the first time that a black hole's motion through space has been measured," Mirabel added. A black hole is a dense concentration of mass with a gravitational pull so strong that not even light can escape it. The research is reported in the Sept. 13 issue of the scientific journal Nature. XTE J1118+480 The object is called XTE J1118+480 and was discovered by the Rossi X-Ray satellite on March 29, 2000. Later observations with optical and radio telescopes showed that it is about 6,000 light-years from Earth and that it is a "microquasar" in which material sucked by the black hole from its companion star forms a hot, spinning disk that spits out "jets" of subatomic particles that emit radio waves. Most of the stars in our Milky Way Galaxy are within a thin disk, called the plane of the Galaxy. However, there also are globular clusters, each containing hundreds of thousands of the oldest stars in the Galaxy which orbit the Galaxy's center in paths that take them far from the Galaxy's plane. XTE J

  6. An elevation of 0.1 light-seconds for the optical jet base in an accreting Galactic black hole system

    NASA Astrophysics Data System (ADS)

    Gandhi, P.; Bachetti, M.; Dhillon, V. S.; Fender, R. P.; Hardy, L. K.; Harrison, F. A.; Littlefair, S. P.; Malzac, J.; Markoff, S.; Marsh, T. R.; Mooley, K.; Stern, D.; Tomsick, J. A.; Walton, D. J.; Casella, P.; Vincentelli, F.; Altamirano, D.; Casares, J.; Ceccobello, C.; Charles, P. A.; Ferrigno, C.; Hynes, R. I.; Knigge, C.; Kuulkers, E.; Pahari, M.; Rahoui, F.; Russell, D. M.; Shaw, A. W.

    2017-12-01

    Relativistic plasma jets are observed in many systems that host accreting black holes. According to theory, coiled magnetic fields close to the black hole accelerate and collimate the plasma, leading to a jet being launched1-3. Isolating emission from this acceleration and collimation zone is key to measuring its size and understanding jet formation physics. But this is challenging because emission from the jet base cannot easily be disentangled from other accreting components. Here, we show that rapid optical flux variations from an accreting Galactic black-hole binary are delayed with respect to X-rays radiated from close to the black hole by about 0.1 seconds, and that this delayed signal appears together with a brightening radio jet. The origin of these subsecond optical variations has hitherto been controversial4-8. Not only does our work strongly support a jet origin for the optical variations but it also sets a characteristic elevation of ≲103 Schwarzschild radii for the main inner optical emission zone above the black hole9, constraining both internal shock10 and magnetohydrodynamic11 models. Similarities with blazars12,13 suggest that jet structure and launching physics could potentially be unified under mass-invariant models. Two of the best-studied jetted black-hole binaries show very similar optical lags8,14,15, so this size scale may be a defining feature of such systems.

  7. A dynamical model for gas flows, star formation and nuclear winds in galactic centres

    NASA Astrophysics Data System (ADS)

    Krumholz, Mark R.; Kruijssen, J. M. Diederik; Crocker, Roland M.

    2017-04-01

    We present a dynamical model for gas transport, star formation and winds in the nuclear regions of galaxies, focusing on the Milky Way's Central Molecular Zone (CMZ). In our model angular momentum and mass are transported by a combination of gravitational and bar-driven acoustic instabilities. In gravitationally unstable regions the gas can form stars, and the resulting feedback drives both turbulence and a wind that ejects mass from the CMZ. We show that the CMZ is in a quasi-steady state where mass deposited at large radii by the bar is transported inwards to a star-forming, ring-shaped region at ˜100 pc from the Galactic Centre, where the shear reaches a minimum. This ring undergoes episodic starbursts, with bursts lasting ˜5-10 Myr occurring at ˜20-40 Myr intervals. During quiescence the gas in the ring is not fully cleared, but is driven out of a self-gravitating state by the momentum injected by expanding supernova remnants. Starbursts also drive a wind off the star-forming ring, with a time-averaged mass flux comparable to the star formation rate. We show that our model agrees well with the observed properties of the CMZ, and places it near a star formation minimum within the evolutionary cycle. We argue that such cycles of bursty star formation and winds should be ubiquitous in the nuclei of barred spiral galaxies, and show that the resulting distribution of galactic nuclei on the Kennicutt-Schmidt relation is in good agreement with that observed in nearby galaxies.

  8. A dynamical model for the formation of gas rings and episodic starbursts near galactic centres

    NASA Astrophysics Data System (ADS)

    Krumholz, Mark R.; Kruijssen, J. M. Diederik

    2015-10-01

    We develop a simple dynamical model for the evolution of gas in the centres of barred spiral galaxies, using the Milky Way's Central Molecular Zone (CMZ, i.e. the central few hundred pc) as a case study. We show that, in the presence of a galactic bar, gas in a disc in the central regions of a galaxy will be driven inwards by angular momentum transport induced by acoustic instabilities within the bar's inner Lindblad resonance. This transport process drives turbulence within the gas that temporarily keeps it strongly gravitationally stable and prevents the onset of rapid star formation. However, at some point the rotation curve must transition from approximately flat to approximately solid body, and the resulting reduction in shear reduces the transport rates and causes gas to build up, eventually producing a gravitationally unstable region that is subject to rapid and violent star formation. For the observed rotation curve of the Milky Way, the accumulation happens ˜100 pc from the centre of the Galaxy, in good agreement with the observed location of gas clouds and young star clusters in the CMZ. The characteristic time-scale for gas accumulation and star formation is of the order of 10-20 Myr. We argue that similar phenomena should be ubiquitous in other barred spiral galaxies.

  9. Dynamics of massive black holes as a possible candidate of Galactic dark matter

    NASA Technical Reports Server (NTRS)

    Xu, Guohong; Ostriker, Jeremiah P.

    1994-01-01

    If the dark halo of the Galaxy is comprised of massive black holes (MBHs), then those within approximately 1 kpc will spiral to the center, where they will interact with one another, forming binaries which contract, owing to further dynamical friction, and then possibly merge to become more massive objects by emission of gravitational radiation. If successive mergers would invariably lead, as has been proposed by various authors, to the formation of a very massive nucleus of 10(exp 8) solar mass, then the idea of MBHs as a dark matter candidate could be excluded on observational grounds, since the observed limit (or value) for a Galactic central black hole is approximately 10(exp 6.5) solar mass. But, if successive mergers are delayed or prevented by other processes, such as the gravitational slingshot or rocket effect of gravitational radiation, then a large mass accumulation will not occur. In order to resolve this issue, we perform detailed N-body simulations using a modfied Aarseth code to explore the dynamical behavior of the MBHs, and we find that for a 'best estimate' model of the Galaxy a runaway does not occur. The code treates the MBHs as subject to the primary gravitational forces of one another and to the smooth stellar distribution, as well as the secondary perturbations in their orbits due to another and to the smooth stellar distribution, as well as the secondary perturbations in their orbits due to dynamical friction and gravitational radiation. Instead of a runaway, three-body interactions between hard binaries and single MBHs eject massive objects before accumulation of more than a few units, so that typically the center will contain zero, one, or two MBHs. We study how the situation depends in detail on the mass per MBH, the rotation of the halo, the mass distribution within the Galaxy, and other parameters. A runaway will most sensitively depend on the ratio of initial (spheroid/halo) central mass densities and secondarily on the typical values

  10. Two ten-billion-solar-mass black holes at the centres of giant elliptical galaxies.

    PubMed

    McConnell, Nicholas J; Ma, Chung-Pei; Gebhardt, Karl; Wright, Shelley A; Murphy, Jeremy D; Lauer, Tod R; Graham, James R; Richstone, Douglas O

    2011-12-08

    Observational work conducted over the past few decades indicates that all massive galaxies have supermassive black holes at their centres. Although the luminosities and brightness fluctuations of quasars in the early Universe suggest that some were powered by black holes with masses greater than 10 billion solar masses, the remnants of these objects have not been found in the nearby Universe. The giant elliptical galaxy Messier 87 hosts the hitherto most massive known black hole, which has a mass of 6.3 billion solar masses. Here we report that NGC 3842, the brightest galaxy in a cluster at a distance from Earth of 98 megaparsecs, has a central black hole with a mass of 9.7 billion solar masses, and that a black hole of comparable or greater mass is present in NGC 4889, the brightest galaxy in the Coma cluster (at a distance of 103 megaparsecs). These two black holes are significantly more massive than predicted by linearly extrapolating the widely used correlations between black-hole mass and the stellar velocity dispersion or bulge luminosity of the host galaxy. Although these correlations remain useful for predicting black-hole masses in less massive elliptical galaxies, our measurements suggest that different evolutionary processes influence the growth of the largest galaxies and their black holes.

  11. Disrupted globular clusters and the gamma-ray excess in the Galactic Centre

    NASA Astrophysics Data System (ADS)

    Fragione, Giacomo; Antonini, Fabio; Gnedin, Oleg Y.

    2018-04-01

    The Fermi Large Area Telescope has provided the most detailed view towards the Galactic Centre (GC) in high-energy gamma-rays. Besides the interstellar emission and point source contributions, the data suggest a residual diffuse gamma-ray excess. The similarity of its spatial distribution with the expected profile of dark matter has led to claims that this may be evidence for dark matter particle annihilation. Here, we investigate an alternative explanation that the signal originates from millisecond pulsars (MSPs) formed in dense globular clusters and deposited at the GC as a consequence of cluster inspiral and tidal disruption. We use a semi-analytical model to calculate the formation, migration, and disruption of globular clusters in the Galaxy. Our model reproduces the mass of the nuclear star cluster and the present-day radial and mass distribution of globular clusters. For the first time, we calculate the evolution of MSPs from disrupted globular clusters throughout the age of the Galaxy and consistently include the effect of the MSP spin-down due to magnetic-dipole braking. The final gamma-ray amplitude and spatial distribution are in good agreement with the Fermi observations and provide a natural astrophysical explanation for the GC excess.

  12. Black Hole Mergers in Galactic Nuclei Induced by the Eccentric Kozai–Lidov Effect

    NASA Astrophysics Data System (ADS)

    Hoang, Bao-Minh; Naoz, Smadar; Kocsis, Bence; Rasio, Frederic A.; Dosopoulou, Fani

    2018-04-01

    Nuclear star clusters around a central massive black hole (MBH) are expected to be abundant in stellar black hole (BH) remnants and BH–BH binaries. These binaries form a hierarchical triple system with the central MBH, and gravitational perturbations from the MBH can cause high-eccentricity excitation in the BH–BH binary orbit. During this process, the eccentricity may approach unity, and the pericenter distance may become sufficiently small so that gravitational-wave emission drives the BH–BH binary to merge. In this work, we construct a simple proof-of-concept model for this process, and specifically, we study the eccentric Kozai–Lidov mechanism in unequal-mass, soft BH–BH binaries. Our model is based on a set of Monte Carlo simulations for BH–BH binaries in galactic nuclei, taking into account quadrupole- and octupole-level secular perturbations, general relativistic precession, and gravitational-wave emission. For a typical steady-state number of BH–BH binaries, our model predicts a total merger rate of ∼1–3 {Gpc} ‑3 {yr} ‑1, depending on the assumed density profile in the nucleus. Thus, our mechanism could potentially compete with other dynamical formation processes for merging BH–BH binaries, such as the interactions of stellar BHs in globular clusters or in nuclear star clusters without an MBH.

  13. Making Sense of Black Holes: Modeling the Galactic Center and Other Low-power AGN

    NASA Astrophysics Data System (ADS)

    Falcke, Heino; Moscibrodzka, Monika

    2018-06-01

    The Galactic center host a well-known flat-spectrum radio source, Sgr A*, that is akin to the radio nuclei of quasars and radio galaxies. It is the main target of the Event Horizon Telescope to image the shadow of the black hole. There is, however, still considerable discussion on where the near-horizon emission originates from. Does it come from an accretion flow or is it produced in a relativistic jet-like outflow? Using advanced three-dimensional general relativistic magnetohydrodynamics simulations coupled to general relativistic ray tracing simulations, we now model the dynamics and emission of the plasma around starving black holes in great detail out to several thousand Schwarzschild radii. Jets appear almost naturally in theses simulations. A crucial parameter is the heating of radiating electrons and we argue that electron-proton coupling is low in the accretion flow and high in the magnetized region of the jets, making the jet an important ingredient for the overall appearance of the source. This comprehensive model is able to predict the radio size and appearance, the spectral energy distribution from radio to X-rays, the variability, and the time lags of Sgr A* surprisingly well. Interestingly, the same model can be easily generalized to other low-power AGN like M87, suggesting that GRMHD models for AGN are finally becoming predictive. With upcoming submm-VLBI experiment on the ground and in space, we will be able to further test these models in great detail and see black holes in action.

  14. A Black Hole in Our Galactic Center

    ERIC Educational Resources Information Center

    Ruiz, Michael J.

    2008-01-01

    An introductory approach to black holes is presented along with astronomical observational data pertaining to the presence of a supermassive black hole at the center of our galaxy. Concepts of conservation of energy and Kepler's third law are employed so students can apply formulas from their physics class to determine the mass of the black hole…

  15. PREFACE: Galactic Center Workshop 2006

    NASA Astrophysics Data System (ADS)

    Schödel, Rainer; Bower, Geoffrey C.; Muno, Michael P.; Nayakshin, Sergei; Ott, Thomas

    2006-12-01

    We are pleased to present the proceedings from the Galactic Center Workshop 2006—From the Center of the Milky Way to Nearby Low-Luminosity Galactic Nuclei. The conference took place in the Physikzentrum, Bad Honnef, Germany, on 18 to 22 April 2006. It is the third workshop of this kind, following the Galactic Center Workshops held 1998 in Tucson, Arizona, and 2002 in Kona, Hawaii. The center of the Milky Way is the only galactic nucleus of a fairly common spiral galaxy that can be observed in great detail. With a distance of roughly 8 kpc, the resolution that can currently be achieved is of the order 40 mpc/8000 AU in the X-ray domain, 2 mpc/400 AU in the near-infrared, and 0.01 mpc/1 AU with VLBI in the millimeter domain. This is two to three orders of magnitude better than for any comparable nearby galaxy, making thus the center of the Milky Way thetemplate object for the general physical interpretation of the phenomena that can be observed in galactic nuclei. We recommend the summary article News from the year 2006 Galactic Centre workshopby Mark Morris and Sergei Nayakshin—who also gave the summary talk of the conference—to the reader in order to obtain a first, concise overview of the results presented at the workshop and some of the currently most exciting—and debated—developments in recent GC research. While the workshops held in 1998 and 2002 were dedicated solely to the center of the Milky Way, the field of view was widened in Bad Honnef to include nearby low-luminosity nuclei. This new feature followed the realization that not only the GC serves as a template for understanding extragalactic nuclei, but that the latter can also provide the context and broader statistical base for understanding the center of our Milky Way. This concerns especially the accretion and emission processes related to the Sagittarius A*, the manifestation of the super massive black hole in the GC, but also the surprising observation of great numbers of massive, young

  16. GALACTICNUCLEUS: A high angular resolution JHKs imaging survey of the Galactic centre. I. Methodology, performance, and near-infrared extinction towards the Galactic centre

    NASA Astrophysics Data System (ADS)

    Nogueras-Lara, F.; Gallego-Calvente, A. T.; Dong, H.; Gallego-Cano, E.; Girard, J. H. V.; Hilker, M.; de Zeeuw, P. T.; Feldmeier-Krause, A.; Nishiyama, S.; Najarro, F.; Neumayer, N.; Schödel, R.

    2018-03-01

    Context. The Galactic centre (GC) is of fundamental astrophysical interest, but existing near-infrared surveys fall short covering it adequately, either in terms of angular resolution, multi-wavelength coverage, or both. Here we introduce the GALACTICNUCLEUS survey, a JHKs imaging survey of the centre of the Milky Way with a 0.2″ angular resolution. Aim. The purpose of this paper is to present the observations of Field 1 of our survey, centred approximately on SgrA* with an approximate size of 7.95' × 3.43'. We describe the observational set-up and data reduction pipeline and discuss the quality of the data. Finally, we present the analysis of the data. Methods: The data were acquired with the near-infrared camera High Acuity Wide field K-band Imager (HAWK-I) at the ESO Very Large Telescope (VLT). Short readout times in combination with the speckle holography algorithm allowed us to produce final images with a stable, Gaussian PSF (point spread function) of 0.2″ FWHM (full width at half maximum). Astrometric calibration is achieved via the VISTA Variables in the Via Lactea (VVV) survey and photometric calibration is based on the SIRIUS/Infrared Survey Facility telescope (IRSF) survey. The quality of the data is assessed by comparison between observations of the same field with different detectors of HAWK-I and at different times. Results: We reach 5σ detection limits of approximately J = 22, H = 21, and Ks = 20. The photometric uncertainties are less than 0.05 at J ≲ 20, H ≲ 17, and Ks ≲ 16. We can distinguish five stellar populations in the colour-magnitude diagrams; three of them appear to belong to foreground spiral arms, and the other two correspond to high- and low-extinction star groups at the GC. We use our data to analyse the near-infrared extinction curve and find some evidence for a possible difference between the extinction index between J - H and H - Ks. However, we conclude that it can be described very well by a power law with an index of

  17. Conversion of gas into stars in the Galactic center

    NASA Astrophysics Data System (ADS)

    Longmore, S. N.

    2014-05-01

    The star formation rate in the central 500 pc of the Milky Way is lower by a factor of > 10 than expected for the substantial amount of dense gas it contains, which challenges current star formation theories. I discuss which physical mechanisms could be causing this observation and put forward a self-consistent cycle of star formation in the Galactic center, in which the plausible star formation inhibitors are combined. Their ubiquity suggests that the perception of a lowered central SFR should be a common phenomenon in other galaxies with direct implications for galactic star formation and also potentially supermassive black hole growth. I then describe a scenario to explain the presence of super star clusters in the Galactic center environment, in which their formation is triggered by gas streams passing close to the minimum of the global Galactic gravitational potential at the location of the central supermassive black hole, Sgr A*. If this triggering mechanism can be verified, we can use the known time interval since closest approach to Sgr A* to study the physics of stellar mass assembly in an extreme environment as a function of absolute time. I outline the first results from detailed numerical simulations testing this scenario. Finally, I describe a study showing that in terms of the baryonic composition, kinematics, and densities, the gas in the Galactic center is indistinguishable from high-redshift clouds and galaxies. As such, the Galactic center clouds may be used as a template to understand the evolution (and possibly the life cycle) of high-redshift clouds and galaxies.

  18. An intermediate-mass black hole in the centre of the globular cluster 47 Tucanae.

    PubMed

    Kızıltan, Bülent; Baumgardt, Holger; Loeb, Abraham

    2017-02-08

    Intermediate-mass black holes should help us to understand the evolutionary connection between stellar-mass and super-massive black holes. However, the existence of intermediate-mass black holes is still uncertain, and their formation process is therefore unknown. It has long been suspected that black holes with masses 100 to 10,000 times that of the Sun should form and reside in dense stellar systems. Therefore, dedicated observational campaigns have targeted globular clusters for many decades, searching for signatures of these elusive objects. All candidate signatures appear radio-dim and do not have the X-ray to radio flux ratios required for accreting black holes. Based on the lack of an electromagnetic counterpart, upper limits of 2,060 and 470 solar masses have been placed on the mass of a putative black hole in 47 Tucanae (NGC 104) from radio and X-ray observations, respectively. Here we show there is evidence for a central black hole in 47 Tucanae with a mass of solar masses when the dynamical state of the globular cluster is probed with pulsars. The existence of an intermediate-mass black hole in the centre of one of the densest clusters with no detectable electromagnetic counterpart suggests that the black hole is not accreting at a sufficient rate to make it electromagnetically bright and therefore, contrary to expectations, is gas-starved. This intermediate-mass black hole might be a member of an electromagnetically invisible population of black holes that grow into supermassive black holes in galaxies.

  19. X-raying the Galactic centre

    NASA Astrophysics Data System (ADS)

    Ponti, G.

    2017-10-01

    The advent of XMM-Newton and Chandra led to major advancements in our comprehension of the physics at heart of the Milky Way. I will discuss some of the most recent findings related to the present activity of Sgr A* (the supermassive black hole at the Milky Way center), the signatures of its glorious past and the traces of powerful energy releases within the central degrees of the Galaxy.

  20. Gamma-ray monitoring of AGN and galactic black hole candidates by the Gamma-Ray Observatory

    NASA Technical Reports Server (NTRS)

    Wheaton, Wm. A.; Ling, James C.; Skelton, R. T.; Harmon, Alan; Fishman, Gerald J.; Meegan, Charles A.; Paciesas, William S.; Rubin, Brad; Wilson, Robert B.; Gruber, Duane E.

    1992-01-01

    The Burst and Transient Spectroscopy Experiment (BATSE) on the Compton Gamma-Ray Observatory has a powerful capability to provide nearly uninterrupted monitoring in the 25 keV-10 MeV range of both AGN and Galactic black hole candidates such as Cygnus X-1, using the occultation of cosmic sources by the Earth. Progress in background modeling indicates that the data accept region, or fit window tau, around the occultation step can be substantially increased over that conservatively assumed in earlier estimates of BATSE's Earth occultation sensitivity. We show samples of large-tau fits to background and source edges. As a result we expect to be able to perform long-term monitoring of Cygnus X-1 and many of the brighter AGN for the duration of the CGRO mission.

  1. The current ability to test theories of gravity with black hole shadows

    NASA Astrophysics Data System (ADS)

    Mizuno, Yosuke; Younsi, Ziri; Fromm, Christian M.; Porth, Oliver; De Laurentis, Mariafelicia; Olivares, Hector; Falcke, Heino; Kramer, Michael; Rezzolla, Luciano

    2018-04-01

    Our Galactic Centre, Sagittarius A*, is believed to harbour a supermassive black hole, as suggested by observations tracking individual orbiting stars1,2. Upcoming submillimetre very-long baseline interferometry images of Sagittarius A* carried out by the Event Horizon Telescope collaboration (EHTC)3,4 are expected to provide critical evidence for the existence of this supermassive black hole5,6. We assess our present ability to use EHTC images to determine whether they correspond to a Kerr black hole as predicted by Einstein's theory of general relativity or to a black hole in alternative theories of gravity. To this end, we perform general-relativistic magnetohydrodynamical simulations and use general-relativistic radiative-transfer calculations to generate synthetic shadow images of a magnetized accretion flow onto a Kerr black hole. In addition, we perform these simulations and calculations for a dilaton black hole, which we take as a representative solution of an alternative theory of gravity. Adopting the very-long baseline interferometry configuration from the 2017 EHTC campaign, we find that it could be extremely difficult to distinguish between black holes from different theories of gravity, thus highlighting that great caution is needed when interpreting black hole images as tests of general relativity.

  2. Evidence of Spin and Energy Extraction in a Galactic Black Hole Candidate: The XMM-NEWTON/EPIC SPECTRUM of XTE 11650-500

    NASA Technical Reports Server (NTRS)

    Miller, J. M.; Fabian, A. C.; Wunands, R.; Reynolds, C. S.; Ehle, M.; Freyberg, M. J.; VanDerKlis, M.; Lewin, W. H. G.; Sanchez-Fernandez, C.; Castro-Tirado, A. J.

    2002-01-01

    We observed the Galactic black hole candidate XTE J1650-500 early in its fall of 2001 outburst with the XMM-Newton European Photon Imaging pn Camera (EPIC-pn). The observed spectrum is consistent with the source having been in the very high state. We h d a broad, skewed Fe Kar emission line that suggests the primary in this system may be a Kerr black hole and that indicates a steep disk emissivity profile that is hard to explain in terms of a standard accretion disk model. These results are quantitatively and qualitatively similar to those from an XMM-Newton observation of the Seyfert galaxy MCG -6-30-15. The steep emissivity in MCG -6-30-15 may be explained by the extraction and dissipation of rotational energy from a black hole with nearly maximal angular momentum or from material in the plunging region via magnetic connections to the inner accretion disk. If this process is at work in both sources, an exotic but fundamental general relativistic prediction may be confirmed across a factor of l0(exp 6) in black hole mass. We discuss these results in terms of the accretion flow geometry in stellar-mass black holes and the variety of enigmatic phenomena often observed in the very high state.

  3. Gravitational-wave localization alone can probe origin of stellar-mass black hole mergers.

    PubMed

    Bartos, I; Haiman, Z; Marka, Z; Metzger, B D; Stone, N C; Marka, S

    2017-10-10

    The recent discovery of gravitational waves from stellar-mass binary black hole mergers by the Laser Interferometer Gravitational-wave Observatory opened the door to alternative probes of stellar and galactic evolution, cosmology and fundamental physics. Probing the origin of binary black hole mergers will be difficult due to the expected lack of electromagnetic emission and limited localization accuracy. Associations with rare host galaxy types-such as active galactic nuclei-can nevertheless be identified statistically through spatial correlation. Here we establish the feasibility of statistically proving the connection between binary black hole mergers and active galactic nuclei as hosts, even if only a sub-population of mergers originate from active galactic nuclei. Our results are the demonstration that the limited localization of gravitational waves, previously written off as not useful to distinguish progenitor channels, can in fact contribute key information, broadening the range of astrophysical questions probed by binary black hole observations.Binary black hole mergers have recently been observed through the detection of gravitational wave signatures. The authors demonstrate that their association with active galactic nuclei can be made through a statistical spatial correlation.

  4. A luminous X-ray outburst from an intermediate-mass black hole in an off-centre star cluster

    NASA Astrophysics Data System (ADS)

    Lin, Dacheng; Strader, Jay; Carrasco, Eleazar R.; Page, Dany; Romanowsky, Aaron J.; Homan, Jeroen; Irwin, Jimmy A.; Remillard, Ronald A.; Godet, Olivier; Webb, Natalie A.; Baumgardt, Holger; Wijnands, Rudy; Barret, Didier; Duc, Pierre-Alain; Brodie, Jean P.; Gwyn, Stephen D. J.

    2018-06-01

    A unique signature for the presence of massive black holes in very dense stellar regions is occasional giant-amplitude outbursts of multi-wavelength radiation from tidal disruption and subsequent accretion of stars that make a close approach to the black holes1. Previous strong tidal disruption event (TDE) candidates were all associated with the centres of largely isolated galaxies2-6. Here, we report the discovery of a luminous X-ray outburst from a massive star cluster at a projected distance of 12.5 kpc from the centre of a large lenticular galaxy. The luminosity peaked at 1043 erg s-1 and decayed systematically over 10 years, approximately following a trend that supports the identification of the event as a TDE. The X-ray spectra were all very soft, with emission confined to be ≲3.0 keV, and could be described with a standard thermal disk. The disk cooled significantly as the luminosity decreased—a key thermal-state signature often observed in accreting stellar-mass black holes. This thermal-state signature, coupled with very high luminosities, ultrasoft X-ray spectra and the characteristic power-law evolution of the light curve, provides strong evidence that the source contains an intermediate-mass black hole with a mass tens of thousand times that of the solar mass. This event demonstrates that one of the most effective means of detecting intermediate-mass black holes is through X-ray flares from TDEs in star clusters.

  5. Particle Acceleration in Active Galactic Nuclei

    NASA Technical Reports Server (NTRS)

    Miller, James A.

    1997-01-01

    The high efficiency of energy generation inferred from radio observations of quasars and X-ray observations of Seyfert active galactic nuclei (AGNs) is apparently achieved only by the gravitational conversion of the rest mass energy of accreting matter onto supermassive black holes. Evidence for the acceleration of particles to high energies by a central engine is also inferred from observations of apparent superluminal motion in flat spectrum, core-dominated radio sources. This phenomenon is widely attributed to the ejection of relativistic bulk plasma from the nuclei of active galaxies, and accounts for the existence of large scale radio jets and lobes at large distances from the central regions of radio galaxies. Reports of radio jets and superluminal motion from galactic black hole candidate X-ray sources indicate that similar processes are operating in these sources. Observations of luminous, rapidly variable high-energy radiation from active galactic nuclei (AGNs) with the Compton Gamma Ray Observatory show directly that particles are accelerated to high energies in a compact environment. The mechanisms which transform the gravitational potential energy of the infalling matter into nonthermal particle energy in galactic black hole candidates and AGNs are not conclusively identified, although several have been proposed. These include direct acceleration by static electric fields (resulting from, for example, magnetic reconnection), shock acceleration, and energy extraction from the rotational energy of Kerr black holes. The dominant acceleration mechanism(s) operating in the black hole environment can only be determined, of course, by a comparison of model predictions with observations. The purpose of the work proposed for this grant was to investigate stochastic particle acceleration through resonant interactions with plasma waves that populate the magnetosphere surrounding an accreting black hole. Stochastic acceleration has been successfully applied to the

  6. Nature of the Galactic centre NIR-excess sources. I. What can we learn from the continuum observations of the DSO/G2 source?

    NASA Astrophysics Data System (ADS)

    Zajaček, Michal; Britzen, Silke; Eckart, Andreas; Shahzamanian, Banafsheh; Busch, Gerold; Karas, Vladimír; Parsa, Marzieh; Peissker, Florian; Dovčiak, Michal; Subroweit, Matthias; Dinnbier, František; Zensus, J. Anton

    2017-06-01

    Context. The Dusty S-cluster Object (DSO/G2) orbiting the supermassive black hole (Sgr A*) in the Galactic centre has been monitored in both near-infrared continuum and line emission. There has been a dispute about the character and the compactness of the object: it being interpreted as either a gas cloud or a dust-enshrouded star. A recent analysis of polarimetry data in Ks-band (2.2 μm) allows us to put further constraints on the geometry of the DSO. Aims: The purpose of this paper is to constrain the nature and the geometry of the DSO. Methods: We compared 3D radiative transfer models of the DSO with the near-infrared (NIR) continuum data including polarimetry. In the analysis, we used basic dust continuum radiative transfer theory implemented in the 3D Monte Carlo code Hyperion. Moreover, we implemented analytical results of the two-body problem mechanics and the theory of non-thermal processes. Results: We present a composite model of the DSO - a dust-enshrouded star that consists of a stellar source, dusty, optically thick envelope, bipolar cavities, and a bow shock. This scheme can match the NIR total as well as polarized properties of the observed spectral energy distribution (SED). The SED may be also explained in theory by a young pulsar wind nebula that typically exhibits a large linear polarization degree due to magnetospheric synchrotron emission. Conclusions: The analysis of NIR polarimetry data combined with the radiative transfer modelling shows that the DSO is a peculiar source of compact nature in the S cluster (r ≲ 0.04 pc). It is most probably a young stellar object embedded in a non-spherical dusty envelope, whose components include optically thick dusty envelope, bipolar cavities, and a bow shock. Alternatively, the continuum emission could be of a non-thermal origin due to the presence of a young neutron star and its wind nebula. Although there has been so far no detection of X-ray and radio counterparts of the DSO, the analysis of the

  7. An Infrared Survey of the Diffuse Emission within 5 deg of the Galactic Plane.

    DTIC Science & Technology

    1980-06-05

    t O ±60. Over the region of 100 to 3 0 oi longitude along the galactic equator, this emission can be fit by 500( K black -body emission with a dilution...from the AFGL catalog, which they classify as stars. The assumed background is, therefore, composed of black -body radiators with a characteristic...SUPPLEMENTARY NOTES 19 KEY WORDS (c-nIIl, ,l IY ,I. AIIId-1, hI MI’< A III-15SI, Infra red Diffuse emission Galactic structure 1111 regions yI 40

  8. Gamma-ray emission from black holes

    NASA Technical Reports Server (NTRS)

    Ling, James C.

    1991-01-01

    Strong continuum gamma-ray emission at about 1 MeV possibly correlated with a narrow annihilation line at 511 keV has been observed from both Cygnus X-1 and the Galactic center. Such correlated emission has been interpreted as a unique gamma-ray signature for theoretically predicted relativistic, positron-electron pair-dominated plasma in regions surrounding the black holes. In this paper, the Cygnus X-1 results, which have provided important new insights about the source, are reviewed. Cygnus X-1 may be considered a canonical reference stellar black hole whose spectral and temporal characteristics can be used for comparison with those of other black-hole candidates including the Galactic center and AGN.

  9. From the sun to the Galactic Center: dust, stars and black hole(s)

    NASA Astrophysics Data System (ADS)

    Fritz, Tobias

    2013-07-01

    The centers of galaxies are their own ultimate gravitational sinks. Massive black holes and star clusters as well as gas are especially likely to fall into the centers of galaxies by dynamical friction or dissipation. Many galactic centers harbor supermassive black holes (SMBH) and dense nuclear (star) clusters which possibly arrived there by these processes. Nuclear clusters can be formed in situ from gas, or from smaller star clusters which fall to the center. Since the Milky Way harbors both an SMBH and a nuclear cluster, both can be studied best in the Galactic Center (GC), which is the closest galactic nucleus to us. In Chapter 1, I introduce the different components of the Milky Way, and put these into the context of the GC. I then give an overview of relevant properties (e.g. star content and distribution) of the GC. Afterwards, I report the results of four different studies about the GC. In Chapter 2, I analyze the limitations of astrometry, one of the most useful methods for the study of the GC. Thanks to the high density of stars and its relatively small distance from us it is possible to measure the motions of thousands of stars in the GC with images, separated by few years only. I find two main limitations to this method: (1) for bright stars the not perfectly correctable distortion of the camera limits the accuracy, and (2) for the majority of the fainter stars, the main limitation is crowding from the other stars in the GC. The position uncertainty of faint stars is mainly caused by the seeing halos of bright stars. In the very center faint unresolvable stars are also important for the position uncertainty. In Chapter 3, I evaluate the evidence for an intermediate mass black hole in the small candidate cluster IRS13E within the GC. Intermediate mass black holes (IMBHs) have a mass between the two types of confirmed black hole: the stellar remnants and the supermassive black holes in the centers of galaxies. One possibility for! their formation is the

  10. Aspects of Supermassive Black Hole Growth in Nearby Active Galactic Nuclei

    NASA Astrophysics Data System (ADS)

    Lena, Davide

    Super-massive black holes (SBHs) have long been identified as the engines of active galactic nuclei (AGNs) and are now considered to play a key role in galaxy evolution. In this dissertation I present results from two observational studies conducted on nearby AGNs with the aim of furthering our understanding of SBH growth and their interplay with the host galaxies. The first study is an observational search for SBHs spatially offset from the center of their host galaxies. Such offsets can be considered signatures of gravitational recoil following the coalescence of an SBH binary system (formed in the aftermath of a galaxy merger) due to emission of gravitational waves. The study is based on a photometric analysis of fourteen nearby elliptical galaxies observed with the Hubble Space Telescope. I find that parsec-scale offsets are common. However, while these are individually consistent with residual gravitational recoil oscillations, there is a high probability that larger offsets than those actually observed should have been found in the sample as a whole. There are a number of possible explanations for this result: the galaxy merger rate may be lower than current estimates; SBH-binaries may reach the merger stage with a configuration which minimizes recoil velocities; or the SBH oscillations are more quickly damped than predicted. In the second study I use integral field spectroscopy obtained with the Gemini South telescope to investigate the kinematics of the circum-nuclear ionized gas in two active galaxies: NGC 1386, a Seyfert 2, and NGC 1365, a Seyfert 1. The goal of the study is to investigate outflows in low-luminosity AGNs, and the mechanisms channeling gas (the SBH fuel) from the inner kiloparsec down to a few tens of parsecs from the SBH. I find that the dominant kinematic components can be explained as a combination of rotation in the large-scale galactic disk and compact outflows along the axis of the AGN "radiation cone". However, in the case of NGC

  11. Near-infrared variability study of the central 2.3 arcmin × 2.3 arcmin of the Galactic Centre - I. Catalogue of variable sources

    NASA Astrophysics Data System (ADS)

    Dong, Hui; Schödel, Rainer; Williams, Benjamin F.; Nogueras-Lara, Francisco; Gallego-Cano, Eulalia; Gallego-Calvente, Teresa; Wang, Q. Daniel; Morris, Mark R.; Do, Tuan; Ghez, Andrea

    2017-09-01

    We used 4-yr baseline Hubble Space Telescope/Wide Field Camera 3 IR observations of the Galactic Centre in the F153M band (1.53 μm) to identify variable stars in the central ∼2.3 arcmin × 2.3 arcmin field. We classified 3845 long-term (periods from months to years) and 76 short-term (periods of a few days or less) variables among a total sample of 33 070 stars. For 36 of the latter ones, we also derived their periods (<3 d). Our catalogue not only confirms bright long period variables and massive eclipsing binaries identified in previous works but also contains many newly recognized dim variable stars. For example, we found δ Scuti and RR Lyrae stars towards the Galactic Centre for the first time, as well as one BL Her star (period < 1.3 d). We cross-correlated our catalogue with previous spectroscopic studies and found that 319 variables have well-defined stellar types, such as Wolf-Rayet, OB main sequence, supergiants and asymptotic giant branch stars. We used colours and magnitudes to infer the probable variable types for those stars without accurately measured periods or spectroscopic information. We conclude that the majority of unclassified variables could potentially be eclipsing/ellipsoidal binaries and Type II Cepheids. Our source catalogue will be valuable for future studies aimed at constraining the distance, star formation history and massive binary fraction of the Milky Way nuclear star cluster.

  12. Gas Flow and Star Formation in the Centre of the Milky Way : Investigations with Smoothed Particle Hydrodynamics

    NASA Astrophysics Data System (ADS)

    Lucas, William Evan

    2015-06-01

    The centre of the Milky Way, commonly referred to as the Galactic Centre, is roughly that region within 500 pc of the central black hole, Sagittarius A*. Within the innermost parsec around the supermassive black hole Sagittarius A* are more than a hundred massive young stars whose orbits align to form one or possibly two discs. At about 100 pc is a ring containing more than ten million solar masses of molecular gas which could be the origin of some of the most massive star clusters in the Galaxy. I have performed a number of numerical simulations to help us understand how it is that these structures may have been formed. I firstly describe and test an improvement to the smoothed particle hydrodynamics code I used. This improves conservation of energy and momentum in certain situations such as in strong shocks from supernovae, which were to be included in a later chapter. The discs of massive stars around Sagittarius A* are believed to have been born there within fragmenting gaseous discs. This is problematic, as the formation of two stellar discs would require two gaseous counterparts. A method is described of forming multiple discs around a black hole from a single cloud's infall and subsequent tidal destruction. This is due to its prolate shape providing a naturally large distribution in the direction of the angular momentum vectors within the cloud. The resulting discs may then go on to form stars. Energetically, it would appear that a sequence of supernovae could potentially cause a giant molecular cloud to fall inwards towards the central black hole from an originally large orbit around the Galactic Centre. I simulate the impact on a giant molecular cloud of supernovae originating from a massive stellar cluster located a parsec away. Ultimately, the supernovae are found to have little effect. Finally, I simulate the formation of the dense ring of clouds observed in the Central Molecular Zone at a distance of about 100 pc from Sgr A*. Infalling gas is shown to

  13. The Growth of Stellar Mass Black Hole Binaries Trapped in the Accretion Disks of Active Galactic Nuclei

    NASA Astrophysics Data System (ADS)

    Yi, Shu-Xu; Cheng, K. S.; Taam, Ronald E.

    2018-06-01

    Among the four black hole (BH) binary merger events detected by the Laser Interferometer Gravitational-Wave Observatory (LIGO), six progenitor BHs have masses greater than 20 M ⊙. The existence of such massive BHs suggests that extreme metal-poor stars are the progenitors. An alternative possibility, that a pair of stellar mass BHs each with mass ∼7 M ⊙ increases to >20 M ⊙ via accretion from a disk surrounding a supermassive BH (SMBH) in an active galactic nucleus (AGN), is considered. The growth of mass of the binary and the transfer of orbital angular momentum to the disk accelerates the merger. Based on the recent numerical work of Tang et al., it is found that, in the disk of a low-mass AGN with mass ∼106 M ⊙ and Eddington ratio >0.01, the mass of an individual BH in the binary can grow to >20 M ⊙ before coalescence, provided that accretion takes place at a rate more than 10 times the Eddington value. This mechanism predicts a new class of gravitational wave (GW) sources involving the merger of two extreme Kerr black holes associated with AGNs and a possible electromagnetic wave counterpart.

  14. Probing Black Holes With Gravitational Radiation

    NASA Astrophysics Data System (ADS)

    Cornish, Neil J.

    2006-09-01

    Gravitational radiation can provide unique insights into the dynamics and evolution of black holes. Gravitational waveforms encode detailed information about the spacetime geometry, much as the sounds made by a musical instrument reflect the geometry of the instrument. The LISA gravitational wave observatory will be able to record black holes colliding out to the edge of the visible Universe, with an expected event rate of tens to thousands per year. LISA has unmatched capabilities for studying the role of black holes in galactic evolution, in particular, by studying the mergers of seed black holes at very high redshift, z > 5. Merger events at lower redshift will be detected at extremely high signal-to-noise, allowing for precision tests of the black hole paradigm. Below z=1 LISA will be able to record stellar remnants falling into supermassive black holes. These extreme mass ratio inspiral events will yield insights into the dynamics of galactic cusps, and the brighter events will provide incredibly precise tests of strong field, dynamical gravity.

  15. NuSTAR results from the Galactic Center - diffuse emission

    NASA Astrophysics Data System (ADS)

    Hailey, Charles

    2016-03-01

    The Nuclear Spectroscopic Telescope Array (NuSTAR) was launched in June 2012. It carried the first true, hard X-ray (>~10 keV-79 keV) focusing telescopes into orbit. Its twin telescopes provide 10 times better angular resolution and 100 times better sensitivity than previously obtainable in the hard X-ray band. Consequently NuSTAR is able to resolve faint diffuse structures whose hard X-rays offer insight into some of the most energetic processes in the Galactic Center. One of the surprising discoveries that NuSTAR made in the Galactic Center is the central hard X-ray emission (CHXE). The CHXE is a diffuse emission detected from ~10 keV to beyond 50 keV in X-ray energy, and extending spatially over a region ~8 parsecs x ~4 parsecs in and out of the plane of the galaxy respectively, and centered on the supermassive black hole Sgr A*. The CHXE was speculated to be due to a large population of unresolved black hole X-ray binaries, millisecond pulsars (MSP), a class of highly magnetized white dwarf binaries called intermediate polars, or to particle outflows from Sgr A*. The presence of an unexpectedly large population of MSP in the Galactic Center would be particularly interesting, since MSP emitting at higher energies and over a much larger region have been posited to be the origin of the gamma-ray emission that is also ascribed to dark matter annihilation in the galaxy. In addition, the connection of the CHXE to the ~9000 unidentified X-ray sources in the central the the ~100 pc detected by the Chandra Observatory, to the soft X-ray emission detected by the Chandra and XMM/Newton observatories in the Galactic Center, and to the hard X-ray emission detected by both the RXTE and INTEGRAL observatories in the Galactic Ridge, is unclear. I review these results and present recent NuSTAR observations that potentially resolve the origin of the CHXE and point to a unified origin for all these X-ray emissions. Two other noteworthy classes of diffuse structures in the

  16. The fate of close encounters between binary stars and binary supermassive black holes

    NASA Astrophysics Data System (ADS)

    Wang, Yi-Han; Leigh, Nathan; Yuan, Ye-Fei; Perna, Rosalba

    2018-04-01

    The evolution of main-sequence binaries that reside in the Galactic Centre can be heavily influenced by the central supermassive black hole (SMBH). Due to these perturbative effects, the stellar binaries in dense environments are likely to experience mergers, collisions, or ejections through secular and/or non-secular interactions. More direct interactions with the central SMBH are thought to produce hypervelocity stars (HVSs) and tidal disruption events (TDEs). In this paper, we use N-body simulations to study the dynamics of stellar binaries orbiting a central SMBH primary with an outer SMBH secondary orbiting this inner triple. The effects of the secondary SMBH on the event rates of HVSs, TDEs, and stellar mergers are investigated, as a function of the SMBH-SMBH binary mass ratio. Our numerical experiments reveal that, relative to the isolated SMBH case, the TDE and HVS rates are enhanced for, respectively, the smallest and largest mass ratio SMBH-SMBH binaries. This suggests that the observed event rates of TDEs and HVSs have the potential to serve as a diagnostic of the mass ratio of a central SMBH-SMBH binary. The presence of a secondary SMBH also allows for the creation of hypervelocity binaries. Observations of these systems could thus constrain the presence of a secondary SMBH in the Galactic Centre.

  17. When Supermassive Black Holes Wander

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2018-05-01

    Are supermassive black holes found only at the centers of galaxies? Definitely not, according to a new study in fact, galaxies like the Milky Way may harbor several such monsters wandering through their midst.Collecting Black Holes Through MergersIts generally believed that galaxies are built up hierarchically, growing in size through repeated mergers over time. Each galaxy in a major merger likely hosts a supermassive black hole a black hole of millions to billions of times the mass of the Sun at its center. When a pair of galaxies merges, their supermassive black holes will often sink to the center of the merger via a process known as dynamical friction. There the supermassive black holes themselves will eventually merge in a burst of gravitational waves.Spatial distribution and velocities of wandering supermassive black holes in three of the authors simulated galaxies, shown in edge-on (left) and face-on (right) views of the galaxy disks. Click for a closer look. [Tremmel et al. 2018]But if a galaxy the size of the Milky Way was built through a history of many major galactic mergers, are we sure that all its accumulated supermassive black holes eventually merged at the galactic center? A new study suggests that some of these giants might have escaped such a fate and they now wander unseen on wide orbits through their galaxies.Black Holes in an Evolving UniverseLed by Michael Tremmel (Yale Center for Astronomy Astrophysics), a team of scientists has used data from a large-scale cosmological simulation, Romulus25, to explore the possibility of wandering supermassive black holes. The Romulus simulations are uniquely suited to track the formation and subsequent orbital motion of supermassive black holes as galactic halos are built up through mergers over the history of the universe.From these simulations, Tremmel and collaborators find an end total of 316 supermassive black holes residing within the bounds of 26 Milky-Way-mass halos. Of these, roughly a third are

  18. Two separate outflows in the dual supermassive black hole system NGC 6240

    NASA Astrophysics Data System (ADS)

    Müller-Sánchez, F.; Nevin, R.; Comerford, J. M.; Davies, R. I.; Privon, G. C.; Treister, E.

    2018-04-01

    Theoretical models and numerical simulations have established a framework of galaxy evolution in which galaxies merge and create dual supermassive black holes (with separations of one to ten kiloparsecs), which eventually sink into the centre of the merger remnant, emit gravitational waves and coalesce. The merger also triggers star formation and supermassive black hole growth, and gas outflows regulate the stellar content1-3. Although this theoretical picture is supported by recent observations of starburst-driven and supermassive black hole-driven outflows4-6, it remains unclear how these outflows interact with the interstellar medium. Furthermore, the relative contributions of star formation and black hole activity to galactic feedback remain unknown7-9. Here we report observations of dual outflows in the central region of the prototypical merger NGC 6240. We find a black-hole-driven outflow of [O iii] to the northeast and a starburst-driven outflow of Hα to the northwest. The orientations and positions of the outflows allow us to isolate them spatially and study their properties independently. We estimate mass outflow rates of 10 and 75 solar masses per year for the Hα bubble and the [O iii] cone, respectively. Their combined mass outflow is comparable to the star formation rate10, suggesting that negative feedback on star formation is occurring.

  19. Two separate outflows in the dual supermassive black hole system NGC 6240.

    PubMed

    Müller-Sánchez, F; Nevin, R; Comerford, J M; Davies, R I; Privon, G C; Treister, E

    2018-04-01

    Theoretical models and numerical simulations have established a framework of galaxy evolution in which galaxies merge and create dual supermassive black holes (with separations of one to ten kiloparsecs), which eventually sink into the centre of the merger remnant, emit gravitational waves and coalesce. The merger also triggers star formation and supermassive black hole growth, and gas outflows regulate the stellar content 1-3 . Although this theoretical picture is supported by recent observations of starburst-driven and supermassive black hole-driven outflows 4-6 , it remains unclear how these outflows interact with the interstellar medium. Furthermore, the relative contributions of star formation and black hole activity to galactic feedback remain unknown 7-9 . Here we report observations of dual outflows in the central region of the prototypical merger NGC 6240. We find a black-hole-driven outflow of [O III] to the northeast and a starburst-driven outflow of Hα to the northwest. The orientations and positions of the outflows allow us to isolate them spatially and study their properties independently. We estimate mass outflow rates of 10 and 75 solar masses per year for the Hα bubble and the [O III] cone, respectively. Their combined mass outflow is comparable to the star formation rate 10 , suggesting that negative feedback on star formation is occurring.

  20. Mass Distributions Implying Flat Galactic Rotation Curves

    ERIC Educational Resources Information Center

    Keeports, David

    2010-01-01

    The rotational speeds of stars in the disc of a spiral galaxy are virtually independent of the distances of the stars from the centre of the galaxy. In common parlance, the stellar speed versus distance plot known as a galactic rotation curve is by observation typically nearly flat. This observation provides strong evidence that most galactic…

  1. Criteria for retrograde rotation of accreting black holes

    NASA Astrophysics Data System (ADS)

    Mikhailov, A. G.; Piotrovich, M. Yu; Gnedin, Yu N.; Natsvlishvili, T. M.; Buliga, S. D.

    2018-06-01

    Rotating supermassive black holes produce jets and their origin is connected to the magnetic field that is generated by accreting matter flow. There is a point of view that electromagnetic fields around rotating black holes are brought to the hole by accretion. In this situation the prograde accreting discs produce weaker large-scale black hole threading magnetic fields, implying weaker jets than in retrograde regimes. The basic goal of this paper is to find the best candidates for retrograde accreting systems in observed active galactic nuclei. We show that active galactic nuclei with low Eddington ratio are really the best candidates for retrograde systems. This conclusion is obtained for kinetically dominated Fanaroff-Riley class II radio galaxies, flat-spectrum radio-loud narrow-line Seyfert I galaxies and a number of nearby galaxies. Our conclusion is that the best candidates for retrograde systems are the noticeable population of active galactic nuclei in the Universe. This result corresponds to the conclusion that in the merging process the interaction of merging black holes with a retrograde circumbinary disc is considerably more effective for shrinking the binary system.

  2. BlackHoleCam: Fundamental physics of the galactic center

    NASA Astrophysics Data System (ADS)

    Goddi, C.; Falcke, H.; Kramer, M.; Rezzolla, L.; Brinkerink, C.; Bronzwaer, T.; Davelaar, J. R. J.; Deane, R.; de Laurentis, M.; Desvignes, G.; Eatough, R. P.; Eisenhauer, F.; Fraga-Encinas, R.; Fromm, C. M.; Gillessen, S.; Grenzebach, A.; Issaoun, S.; Janßen, M.; Konoplya, R.; Krichbaum, T. P.; Laing, R.; Liu, K.; Lu, R.-S.; Mizuno, Y.; Moscibrodzka, M.; Müller, C.; Olivares, H.; Pfuhl, O.; Porth, O.; Roelofs, F.; Ros, E.; Schuster, K.; Tilanus, R.; Torne, P.; van Bemmel, I.; van Langevelde, H. J.; Wex, N.; Younsi, Z.; Zhidenko, A.

    Einstein’s General theory of relativity (GR) successfully describes gravity. Although GR has been accurately tested in weak gravitational fields, it remains largely untested in the general strong field cases. One of the most fundamental predictions of GR is the existence of black holes (BHs). After the recent direct detection of gravitational waves by LIGO, there is now near conclusive evidence for the existence of stellar-mass BHs. In spite of this exciting discovery, there is not yet direct evidence of the existence of BHs using astronomical observations in the electromagnetic spectrum. Are BHs observable astrophysical objects? Does GR hold in its most extreme limit or are alternatives needed? The prime target to address these fundamental questions is in the center of our own Milky Way, which hosts the closest and best-constrained supermassive BH candidate in the universe, Sagittarius A* (Sgr A*). Three different types of experiments hold the promise to test GR in a strong-field regime using observations of Sgr A* with new-generation instruments. The first experiment consists of making a standard astronomical image of the synchrotron emission from the relativistic plasma accreting onto Sgr A*. This emission forms a “shadow” around the event horizon cast against the background, whose predicted size (˜50μas) can now be resolved by upcoming very long baseline radio interferometry experiments at mm-waves such as the event horizon telescope (EHT). The second experiment aims to monitor stars orbiting Sgr A* with the next-generation near-infrared (NIR) interferometer GRAVITY at the very large telescope (VLT). The third experiment aims to detect and study a radio pulsar in tight orbit about Sgr A* using radio telescopes (including the Atacama large millimeter array or ALMA). The BlackHoleCam project exploits the synergy between these three different techniques and contributes directly to them at different levels. These efforts will eventually enable us to measure

  3. A Speeding Binary in the Galactic Halo

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2016-04-01

    The recent discovery of a hyper-velocity binary star system in the halo of the Milky Way poses a mystery: how was this system accelerated to its high speed?Accelerating StarsUnlike the uniform motion in the Galactic disk, stars in the Milky Ways halo exhibit a huge diversity of orbits that are usually tilted relative to the disk and have a variety of speeds. One type of halo star, so-called hyper-velocity stars, travel with speeds that can approach the escape velocity of the Galaxy.How do these hyper-velocity stars come about? Assuming they form in the Galactic disk, there are multiple proposed scenarios through which they could be accelerated and injected into the halo, such as:Ejection after a close encounter with the supermassive black hole at the Galactic centerEjection due to a nearby supernova explosionEjection as the result of a dynamical interaction in a dense stellar population.Further observations of hyper-velocity stars are necessary to identify the mechanism responsible for their acceleration.J1211s SurpriseModels of J1211s orbit show it did not originate from the Galactic center (black dot). The solar symbol shows the position of the Sun and the star shows the current position of J1211. The bottom two panels show two depictions(x-y plane and r-z plane) of estimated orbits of J1211 over the past 10 Gyr. [Nmeth et al. 2016]To this end, a team of scientists led by Pter Nmeth (Friedrich Alexander University, Erlangen-Nrnberg) recently studied the candidate halo hyper-velocity star SDSS J121150.27+143716.2. The scientists obtained spectroscopy of J1211 using spectrographs at the Keck Telescope in Hawaii and ESOs Very Large Telescope in Chile. To their surprise, they discovered the signature of a companion in the spectra: J1211 is actually a binary!Nmeth and collaborators found that J1211, located roughly 18,000 light-years away, is moving at a rapid ~570 km/s relative to the galactic rest frame. The binary system consists of a hot (30,600 K) subdwarf and a

  4. Star formation around supermassive black holes.

    PubMed

    Bonnell, I A; Rice, W K M

    2008-08-22

    The presence of young massive stars orbiting on eccentric rings within a few tenths of a parsec of the supermassive black hole in the galactic center is challenging for theories of star formation. The high tidal shear from the black hole should tear apart the molecular clouds that form stars elsewhere in the Galaxy, and transport of stars to the galactic center also appears unlikely during their lifetimes. We conducted numerical simulations of the infall of a giant molecular cloud that interacts with the black hole. The transfer of energy during closest approach allows part of the cloud to become bound to the black hole, forming an eccentric disk that quickly fragments to form stars. Compressional heating due to the black hole raises the temperature of the gas up to several hundred to several thousand kelvin, ensuring that the fragmentation produces relatively high stellar masses. These stars retain the eccentricity of the disk and, for a sufficiently massive initial cloud, produce an extremely top-heavy distribution of stellar masses. This potentially repetitive process may explain the presence of multiple eccentric rings of young stars in the presence of a supermassive black hole.

  5. On the possibility that ultra-light boson haloes host and form supermassive black holes

    NASA Astrophysics Data System (ADS)

    Avilez, Ana A.; Bernal, Tula; Padilla, Luis E.; Matos, Tonatiuh

    2018-07-01

    Several observations suggest the existence of supermassive black holes (SMBH) at the centres of galaxies. However, the mechanism under which these objects form remains non-completely understood. In this work, we review an alternative mechanism of formation of galactic SMBHs from the collapse of a fraction of a dark matter (DM) halo made of an ultra-light scalar field (SF) whose critical mass of collapse is ˜1013 M⊙. Once the BH is formed, a long-living quasi-resonant SF configuration survives and plays the role of a central fraction of the galactic DM halo. In this work, we construct a model with an ultra-light SF configuration laying in a Schwarzschild space-time to describe the centre of the DM halo hosting an SMBH in equilibrium, in the limit where self-gravitating effects can be neglected. We compute the induced stellar velocity dispersion in order to investigate the influence of the BH on to the velocity field of visible matter at the central galactic regions. We fit the empirical correlation between stellar velocity dispersions and masses of SMBHs considering two instances: the idealized case of DM-dominated (DMD) systems, where the gravitational influence of baryons is neglected, and cases of real luminous galaxies (LGAL). In the DMD case, we found it is possible to reproduce the observed stellar velocity dispersions at the effective radius of systems hosting SMBHs of at most 108 M⊙. In the LGAL case, we found that the baryons are crucial to reproduce the observed velocity dispersion.

  6. An analysis of infrared emission spectra from the regions near the Galactic Centre

    NASA Astrophysics Data System (ADS)

    Contini, Marcella

    2009-11-01

    We present consistent modelling of line and continuum infrared (IR) spectra in the region close to the Galactic Centre. The models account for the coupled effect of shocks and photoionization from an external source. The results show that the shock velocities range between ~65 and 80kms-1 and the pre-shock densities between 1cm-3 in the interstellar medium (ISM) to 200cm-3 in the filamentary structures. The pre-shock magnetic field increases from 5 × 10-6G in the surrounding ISM to ~8 × 10-5G in the arched filaments. The stellar temperatures are ~38000K in the Quintuplet cluster and ~27000K in the Arches Cluster. The ionization parameter is relatively low (<0.01) with the highest values near the clusters, reaching a maximum >0.01 near the Arches Cluster. Depletion from the gaseous phase of Si is found throughout the whole observed region, indicating the presence of silicate dust. Grains including iron are concentrated throughout the arched filaments. The modelling of the continuum spectral energy distribution in the IR range indicates that a component of dust at temperatures of ~100-200K is present in the central region of the Galaxy. Radio emission appears to be thermal bremsstrahlung in the E2-W1 filaments crossing strip; however, a synchrotron component is not excluded. More data are necessary to resolve these questions.

  7. Launching of Active Galactic Nuclei Jets

    NASA Astrophysics Data System (ADS)

    Tchekhovskoy, Alexander

    As black holes accrete gas, they often produce relativistic, collimated outflows, or jets. Jets are expected to form in the vicinity of a black hole, making them powerful probes of strong-field gravity. However, how jet properties (e.g., jet power) connect to those of the accretion flow (e.g., mass accretion rate) and the black hole (e.g., black hole spin) remains an area of active research. This is because what determines a crucial parameter that controls jet properties—the strength of large-scale magnetic flux threading the black hole—remains largely unknown. First-principles computer simulations show that due to this, even if black hole spin and mass accretion rate are held constant, the simulated jet powers span a wide range, with no clear winner. This limits our ability to use jets as a quantitative diagnostic tool of accreting black holes. Recent advances in computer simulations demonstrated that accretion disks can accumulate large-scale magnetic flux on the black hole, until the magnetic flux becomes so strong that it obstructs gas infall and leads to a magnetically-arrested disk (MAD). Recent evidence suggests that central black holes in jetted active galactic nuclei and tidal disruptions are surrounded by MADs. Since in MADs both the black hole magnetic flux and the jet power are at their maximum, well-defined values, this opens up a new vista in the measurements of black hole masses and spins and quantitative tests of accretion and jet theory.

  8. Opening the black-box of person-centred care: An arts-informed narrative inquiry into mental health education and practice.

    PubMed

    Schwind, Jasna K; Lindsay, Gail M; Coffey, Sue; Morrison, Debbie; Mildon, Barb

    2014-08-01

    Nursing education has a history of encouraging students to know their patients and to negotiate the in-between of art/science, person/profession, and intuition/evidence. Nurse-teachers know that students may abandon some values and practices when they encounter practice environments that are complex and have competing agendas. We are concerned that nursing knowledge is black-boxed, invisible and taken-for-granted, in healthcare settings. Our research explores how nursing students and nurses are constructing and enacting person-centred care in mental health education and practice. We want to understand the nursing standpoint on this significant ontological issue and to make nursing knowledge construction and utilization visible; illuminating how person-centred theory emerges from practice. The process involved four 3-hour group meetings and an individual follow-up telephone conversation. Students and nurses met at a tertiary-care mental health organization. Fourteen nurses (Registered Nurses and Registered Practical Nurses) and nursing students (Bachelor of Science in Nursing and Practical Nursing) participated in our inquiry. We used arts-informed narrative inquiry to explore experience through the arts such as metaphor, collage, poems, letters, and group conversations. The black-box is opened as the inquiry reveals how nursing knowledge is constructed, assumptions are challenged and new practices emerge. Our research is significant for education and for practice and is transferable to other populations and settings. Nurses are affirmed in person-centred values and practices that include partnership with those in their care, role modeling for colleagues and mentoring students and new nurses. Students participate in transferring their learning from school to practice, in the company of experienced colleagues; together they open the black-box to show how nurses conceptualize and enact person-centred care. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Single-pulse observations of the Galactic centre magnetar PSR J1745-2900 at 3.1 GHz

    NASA Astrophysics Data System (ADS)

    Yan, W. M.; Wang, N.; Manchester, R. N.; Wen, Z. G.; Yuan, J. P.

    2018-05-01

    We report on single-pulse observations of the Galactic centre magnetar PSR J1745-2900 that were made using the Parkes 64-m radio telescope with a central frequency of 3.1 GHz at five observing epochs between 2013 July and August. The shape of the integrated pulse profiles was relatively stable across the five observations, indicating that the pulsar was in a stable state between MJDs 56475 and 56514. This extends the known stable state of this pulsar to 6.8 months. Short-term pulse shape variations were also detected. It is shown that this pulsar switches between two emission modes frequently and that the typical duration of each mode is about 10 min. No giant pulses or subpulse drifting were observed. Apparent nulls in the pulse emission were detected on MJD 56500. Although there are many differences between the radio emissions of magnetars and normal radio pulsars, they also share some properties. The detection of mode changing and pulse nulling in PSR J1745-2900 suggests that the basic radio emission process for magnetars and normal pulsars is the same.

  10. Event Rate for LISA Gravitational Wave Signals from Black Hole-Massive Black Hole Coalescences

    NASA Technical Reports Server (NTRS)

    Bender, Peter L.; Salamon, Michael H. (Technical Monitor)

    2002-01-01

    Earlier work under a previous grant had been mainly on investigating the event rate for coalescences of white dwarfs or neutron stars with massive black holes (MBHs) in galactic nuclei. Under the new grant, two studies were undertaken. One was an approximate extension of the earlier study to stellar mass black holes as the lighter object, with masses in the range of roughly 3 to 20 M_sun, rather than about 1 M_sun. The other was an improved estimate of the confusion noise due to galactic binaries against which the signals from BH-MDH coalescences would have to be detected. In the earlier work, the mass of the white dwarfs (WDs) and neutron stars (NSs) was assumed to be about the same as that of the unevolved stars in the density cusp around the galactic center MBH. However, with the BH mass being substantially larger, the sinking down of BHs toward the center (mass segregation) became important and was included in the model. A single representative mass of 7 M_sun was used.

  11. Evidence for accreted component in the Galactic discs

    NASA Astrophysics Data System (ADS)

    Xing, Q. F.; Zhao, G.

    2018-06-01

    We analyse the distribution of [Mg/Fe] abundance in the Galactic discs with F- and G-type dwarf stars selected from the Large Sky Area Multi-Object Fibre Spectroscopic Telescope (LAMOST) archive. The sample stars are assigned into different stellar populations by using kinematic criteria. Our analysis reveals the chemical inhomogeneities in the Galactic thick disc. A few of metal-poor stars in the thick disc exhibit relatively low [Mg/Fe] abundance in respect to the standard thick-disc sample. The orbital eccentricities and maximum Galactocentric radii of low-α metal-poor stars are apparently greater than that of high-α thick-disc stars. The orbital parameters and chemical components of low-α stars in the thick disc suggest that they may have been formed in regions with low star formation rate that were located at large distances from the Galactic centre, such as infalling dwarf spheroidal galaxies.

  12. Echo Mapping of Active Galactic Nuclei

    NASA Technical Reports Server (NTRS)

    Peterson, B. M.; Horne, K.

    2004-01-01

    Echo mapping makes use of the intrinsic variability of the continuum source in active galactic nuclei to map out the distribution and kinematics of line-emitting gas from its light travel time-delayed response to continuum changes. Echo mapping experiments have yielded sizes for the broad line-emitting region in about three dozen AGNs. The dynamics of the line-emitting gas seem to be dominated by the gravity of the central black hole, enabling measurement of the black-hole masses in AGNs. We discuss requirements for future echo-mapping experiments that will yield the high quality velocity-delay maps of the broad-line region that are needed to determine its physical nature.

  13. Masses of Black Holes in Active Galactic Nuclei

    NASA Technical Reports Server (NTRS)

    Peterson, Bradley M.

    2003-01-01

    We present a progress report on a project whose goal is to improve both the precision and accuracy of reverberation-based black-hole masses. Reverberation masses appear to be accurate to a factor of about three, and the black-hole mass/bulge velocity dispersion (M-sigma) relationship appears to be the same in active and quiescent galaxies.

  14. Unveiling the past of the Galactic nucleus with X-ray echoes

    NASA Astrophysics Data System (ADS)

    Chuard, D.; Terrier, R.; Goldwurm, A.; Clavel, M.; Soldi, S.; Morris, M. R.; Ponti, G.; Walls, M.; Chernyakova, M.

    2017-12-01

    Giant molecular clouds populating the central molecular zone have a high enough column density to reflect X-rays coming from strong compact sources in their neighbourhood, including possible powerful outbursts from the Galactic supermassive black hole SgrA. From observations of the molecular complex Sgr C made with the X-ray observatories XMM and Chandra between 2000 and 2014, we confirm this reflection scenario, even though the region hosts several objects (including two PWN candidates) that may be responsible for intense cosmic-ray production. By comparing data to Monte Carlo simulated reflection spectra, we are able to put the best constraints to date on the line-of-sight positions of the main bright clumps of the molecular complex. Ultimately, extending this approach by the inclusion of other molecular complexes allows us to partially reconstruct the past lightcurve of the Galactic supermassive black hole.

  15. Galaxy NGC 1448 with Active Galactic Nucleus

    NASA Image and Video Library

    2017-01-07

    NGC 1448, a galaxy with an active galactic nucleus, is seen in this image combining data from the Carnegie-Irvine Galaxy Survey in the optical range and NuSTAR in the X-ray range. This galaxy contains an example of a supermassive black hole hidden by gas and dust. X-ray emissions from NGC 1448, as seen by NuSTAR and Chandra, suggests for the first time that, like IC 3639 in PIA21087, there must be a thick layer of gas and dust hiding the active black hole in this galaxy from our line of sight. http://photojournal.jpl.nasa.gov/catalog/PIA21086

  16. Unusual Metals in Galactic Center Stars

    NASA Astrophysics Data System (ADS)

    Hensley, Kerry

    2018-03-01

    Far from the galactic suburbs where the Sun resides, a cluster of stars in the nucleus of the Milky Way orbits a supermassive black hole. Can chemical abundance measurements help us understand the formation history of the galactic center nuclear star cluster?Studying Stellar PopulationsMetallicity distributions for stars in the inner two degrees of the Milky Way (blue) and the central parsec (orange). [Do et al. 2018]While many galaxies host nuclear star clusters, most are too distant for us to study in detail; only in the Milky Way can we resolve individual stars within one parsec of a supermassive black hole. The nucleus of our galaxy is an exotic and dangerous place, and its not yet clear how these stars came to be where they are were they siphoned off from other parts of the galaxy, or did they form in place, in an environment rocked by tidal forces?Studying the chemical abundances of stars provides a way to separate distinct stellar populations and discern when and where these stars formed. Previous studies using medium-resolution spectroscopy have revealed that many stars within the central parsec of our galaxy have very high metallicities possibly higher than any other region of the Milky Way. Can high-resolution spectroscopy tell us more about this unusual population of stars?Spectral Lines on DisplayTuan Do (University of California, Los Angeles, Galactic Center Group) and collaborators performed high-resolution spectroscopic observations of two late-type giant starslocated half a parsec from the Milky Ways supermassive black hole.Comparison of the observed spectra of the two galactic center stars (black) with synthetic spectra with low (blue) and high (orange) [Sc/Fe] values. Click to enlarge. [Do et al. 2018]In order to constrain the metallicities of these stars, Do and collaborators compared the observed spectra to a grid of synthetic spectra and used a spectral synthesis technique to determine the abundances of individual elements. They found that

  17. Galaxy IC 3639 with Obscured Active Galactic Nucleus

    NASA Image and Video Library

    2017-01-07

    IC 3639, a galaxy with an active galactic nucleus, is seen in this image combining data from the Hubble Space Telescope and the European Southern Observatory. This galaxy contains an example of a supermassive black hole hidden by gas and dust. Researchers analyzed NuSTAR data from this object and compared them with previous observations from NASA's Chandra X-Ray Observatory and the Japanese-led Suzaku satellite. The findings from NuSTAR, which is more sensitive to higher energy X-rays than these observatories, confirm the nature of IC 3639 as an active galactic nucleus that is heavily obscured, and intrinsically much brighter than observed. http://photojournal.jpl.nasa.gov/catalog/PIA21087

  18. The physics of galactic winds driven by active galactic nuclei

    NASA Astrophysics Data System (ADS)

    Faucher-Giguère, Claude-André; Quataert, Eliot

    2012-09-01

    Active galactic nuclei (AGN) drive fast winds in the interstellar medium of their host galaxies. It is commonly assumed that the high ambient densities and intense radiation fields in galactic nuclei imply short cooling times, thus making the outflows momentum conserving. We show that cooling of high-velocity shocked winds in AGN is in fact inefficient in a wide range of circumstances, including conditions relevant to ultraluminous infrared galaxies (ULIRGs), resulting in energy-conserving outflows. We further show that fast energy-conserving outflows can tolerate a large amount of mixing with cooler gas before radiative losses become important. For winds with initial velocity vin ≳ 10 000 km s-1, as observed in ultraviolet and X-ray absorption, the shocked wind develops a two-temperature structure. While most of the thermal pressure support is provided by the protons, the cooling processes operate directly only on the electrons. This significantly slows down inverse Compton cooling, while free-free cooling is negligible. Slower winds with vin ˜ 1000 km s-1, such as may be driven by radiation pressure on dust, can also experience energy-conserving phases but under more restrictive conditions. During the energy-conserving phase, the momentum flux of an outflow is boosted by a factor ˜vin/2vs by work done by the hot post-shock gas, where vs is the velocity of the swept-up material. Energy-conserving outflows driven by fast AGN winds (vin ˜ 0.1c) may therefore explain the momentum fluxes Ṗ≫LAGN/c of galaxy-scale outflows recently measured in luminous quasars and ULIRGs. Shocked wind bubbles expanding normal to galactic discs may also explain the large-scale bipolar structures observed in some systems, including around the Galactic Centre, and can produce significant radio, X-ray and γ-ray emission. The analytic solutions presented here will inform implementations of AGN feedback in numerical simulations, which typically do not include all the important

  19. Radio Telescopes Reveal Unseen Galactic Cannibalism

    NASA Astrophysics Data System (ADS)

    2008-06-01

    Radio-telescope images have revealed previously-unseen galactic cannibalism -- a triggering event that leads to feeding frenzies by gigantic black holes at the cores of galaxies. Astronomers have long suspected that the extra-bright cores of spiral galaxies called Seyfert galaxies are powered by supermassive black holes consuming material. However, they could not see how the material is started on its journey toward the black hole. Optical/Radio Comparison Visible-light (left) and radio (right) image of galaxy pair: Radio image shows gas streaming between galaxies. CREDIT: Kuo et al., NRAO/AUI/NSF Click on image for more graphics. One leading theory said that Seyfert galaxies have been disturbed by close encounters with neighboring galaxies, thus stirring up their gas and bringing more of it within the gravitational reach of the black hole. However, when astronomers looked at Seyferts with visible-light telescopes, only a small fraction showed any evidence of such an encounter. Now, new images of hydrogen gas in Seyferts made using the National Science Foundation's Very Large Array (VLA) radio telescope show the majority of them are, in fact, disturbed by ongoing encounters with neighbor galaxies. "The VLA lifted the veil on what's really happening with these galaxies," said Cheng-Yu Kuo, a graduate student at the University of Virginia. "Looking at the gas in these galaxies clearly showed that they are snacking on their neighbors. This is a dramatic contrast with their appearance in visible starlight," he added. The effect of the galactic encounters is to send gas and dust toward the black hole and produce energy as the material ultimately is consumed. Black holes, concentrations of matter so dense that not even light can escape their gravitational pull, reside at the cores of many galaxies. Depending on how rapidly the black hole is eating, the galaxy can show a wide range of energetic activity. Seyfert galaxies have the mildest version of this activity, while

  20. An Electron-positron Jet Model for the Galactic Center

    NASA Technical Reports Server (NTRS)

    Burns, M. L.

    1983-01-01

    High energy observations of the galactic center on the subparsec scale seem to be consistent with electron-positron production in the form of relativistic jets. These jets could be produced by an approximately 1,000,000 solar mass black hole dynamo transportating pairs away from the massive core. An electromagnetic cascade shower would develop first from ambient soft protons and then nonlinearly; the shower using itself as a scattering medium. This is suited to producing, cooling and transporting pairs to the observed annihilation region. It is possible the center of our galaxy is a miniature version of more powerful active galactic nuclei that exhibit jet activity.

  1. An electron-positron jet model for the Galactic center

    NASA Technical Reports Server (NTRS)

    Burns, M. L.

    1983-01-01

    High energy observations of the galactic center on the subparsec scale seem to be consistent with electron-positron production in the form of relativistic jets. These jets could be produced by an approximately 1,000,000 solar mass black hole dynamo transporting pairs away from the massive core. An electomagnetic cascade shower would develop first from ambient soft protons and then nonlinearly, the shower using itself as a scattering medium. This is suited to producing, cooling and transporting pairs to the observed annihilation region. It is possible the center of our galaxy is a miniature version of more powerful active galactic nuclei that exhibit jet activity.

  2. An electron-positron jet model for the Galactic center

    NASA Astrophysics Data System (ADS)

    Burns, M. L.

    1983-07-01

    High energy observations of the galactic center on the subparsec scale seem to be consistent with electron-positron production in the form of relativistic jets. These jets could be produced by an approximately 1,000,000 solar mass black hole dynamo transporting pairs away from the massive core. An electomagnetic cascade shower would develop first from ambient soft protons and then nonlinearly, the shower using itself as a scattering medium. This is suited to producing, cooling and transporting pairs to the observed annihilation region. It is possible the center of our galaxy is a miniature version of more powerful active galactic nuclei that exhibit jet activity.

  3. An electron-positron jet model for the galactic center

    NASA Astrophysics Data System (ADS)

    Burns, M. L.

    1983-03-01

    High energy observations of the galactic center on the subparsec scale seem to be consistent with electron-positron production in the form of relativistic jets. These jets could be produced by an approximately 1,000,000 solar mass black hole dynamo transportating pairs away from the massive core. An electromagnetic cascade shower would develop first from ambient soft protons and then nonlinearly; the shower using itself as a scattering medium. This is suited to producing, cooling and transporting pairs to the observed annihilation region. It is possible the center of our galaxy is a miniature version of more powerful active galactic nuclei that exhibit jet activity.

  4. REVIEWS OF TOPICAL PROBLEMS: Search for black holes

    NASA Astrophysics Data System (ADS)

    Cherepashchuk, Anatolii M.

    2003-04-01

    Methods and results of searching for stellar mass black holes in binary systems and for supermassive black holes in galactic nuclei of different types are described. As of now (June 2002), a total of 100 black hole candidates are known. All the necessary conditions Einstein's General Relativity imposes on the observational properties of black holes are satisfied for candidate objects available, thus further assuring the existence of black holes in the Universe. Prospects for obtaining sufficient criteria for reliably distinguishing candidate black holes from real black holes are discussed.

  5. Demographics and Case Studies of Galactic Outflows in the Local Universe

    NASA Astrophysics Data System (ADS)

    Rupke, David

    2017-07-01

    Galactic outflows driven by both star formation and active black holes are an important driver of galaxy evolution. The local universe is a sensitive laboratory for understanding the scaling relations that characterize these winds and the physics that govern them. I will review what we know from statistical studies about the prevalance and properties of nearby galactic winds and how these properties depend on those of the host galaxy or power source. I will also highlight detailed case studies of key objects that illustrate the multiphase structure of these winds.

  6. The secular tidal disruption of stars by low-mass Super Massive Black Holes secondaries in galactic nuclei

    NASA Astrophysics Data System (ADS)

    Fragione, Giacomo; Leigh, Nathan

    2018-06-01

    Stars passing too close to a super massive black hole (SMBH) can produce tidal disruption events (TDEs). Since the resulting stellar debris can produce an electromagnetic flare, TDEs are believed to probe the presence of single SMBHs in galactic nuclei, which otherwise remain dark. In this paper, we show how stars orbiting an IMBH secondary are perturbed by an SMBH primary. We find that the evolution of the stellar orbits are severely affected by the primary SMBH due to secular effects and stars orbiting with high inclinations with respect to the SMBH-IMBH orbital plane end their lives as TDEs due to Kozai-Lidov oscillations, hence illuminating the secondary SMBH/IMBH. Above a critical SMBH mass of ≈1.15 × 108 M⊙, no TDE can occur for typical stars in an old stellar population since the Schwarzschild radius exceeds the tidal disruption radius. Consequently, any TDEs due to such massive SMBHs will remain dark. It follows that no TDEs should be observed in galaxies more massive than ≈4.15 × 1010 M⊙, unless a lower-mass secondary SMBH or IMBH is also present. The secular mechanism for producing TDEs considered here therefore offers a useful probe of SMBH-SMBH/IMBH binarity in the most massive galaxies. We further show that the TDE rate can be ≈10-4 - 10-3 yr-1, and that most TDEs occur on ≈0.5 Myr. Finally, we show that stars may be ejected with velocities up to thousands of km s-1, which could contribute to the observed population of Galactic hypervelocity stars.

  7. A star in a 15.2-year orbit around the supermassive black hole at the centre of the Milky Way.

    PubMed

    Schödel, R; Ott, T; Genzel, R; Hofmann, R; Lehnert, M; Eckart, A; Mouawad, N; Alexander, T; Reid, M J; Lenzen, R; Hartung, M; Lacombe, F; Rouan, D; Gendron, E; Rousset, G; Lagrange, A-M; Brandner, W; Ageorges, N; Lidman, C; Moorwood, A F M; Spyromilio, J; Hubin, N; Menten, K M

    2002-10-17

    Many galaxies are thought to have supermassive black holes at their centres-more than a million times the mass of the Sun. Measurements of stellar velocities and the discovery of variable X-ray emission have provided strong evidence in favour of such a black hole at the centre of the Milky Way, but have hitherto been unable to rule out conclusively the presence of alternative concentrations of mass. Here we report ten years of high-resolution astrometric imaging that allows us to trace two-thirds of the orbit of the star currently closest to the compact radio source (and massive black-hole candidate) Sagittarius A*. The observations, which include both pericentre and apocentre passages, show that the star is on a bound, highly elliptical keplerian orbit around Sgr A*, with an orbital period of 15.2 years and a pericentre distance of only 17 light hours. The orbit with the best fit to the observations requires a central point mass of (3.7 +/- 1.5) x 10(6) solar masses (M(*)). The data no longer allow for a central mass composed of a dense cluster of dark stellar objects or a ball of massive, degenerate fermions.

  8. Visibility of Active Galactic Nuclei in the Illustris Simulation

    NASA Astrophysics Data System (ADS)

    Hutchinson-Smith, Tenley; Kelley, Luke; Moreno, Jorge; Hernquist, Lars; Illustris Collaboration

    2018-01-01

    Active galactic nuclei (AGN) are the very bright, luminous regions surrounding supermassive black holes (SMBH) located at the centers of galaxies. Supermassive black holes are the source of AGN feedback, which occurs once the SMBH reaches a certain critical mass. Almost all large galaxies contain a SMBH, but SMBH binaries are extremely rare. Finding these binary systems are important because it can be a source of gravitational waves if the two SMBH collide. In order to study supermassive black holes, astronomers will often rely on the AGN’s light in order to locate them, but this can be difficult due to the extinction of light caused by the dust and gas surrounding the AGN. My research project focuses on determining the fraction of light we can observe from galactic centers using the Illustris simulation, one of the most advanced cosmological simulations of the universe which was created using a hydrodynamic code and consists of a moving mesh. Measuring the fraction of light observable from galactic centers will help us know what fraction of the time we can observe dual and binary AGN in different galaxies, which would also imply a binary SMBH system. In order to find how much light is being blocked or scattered by the gas and dust surrounding the AGN, we calculated the density of the gas and dust along the lines of sight. I present results including the density of gas along different lines of sight and how it correlates with the image of the galaxy. Future steps include taking an average of the column densities for all the galaxies in Illustris and studying them as a function of galaxy type (before merger, during merger, and post-merger), which will give us information on how this can also affect the AGN luminosity.

  9. The Galactic Center observed with H.E.S.S.

    NASA Astrophysics Data System (ADS)

    Jouvin, Lea

    2017-08-01

    The Galactic Center region has been a prime target region for the H.E.S.S. Imaging Atmospheric Cherenkov Telescope Array observations since da ta taking started in 2003. H.E.S.S. has revealed the presence of a very high energy gamma-ray diffuse emission in the central 200 pc, in addition to the detection of a point like source coincident with the supermassive black hole SgrA*. With more than 250 hours of H.E.S.S. data and the continuous improvement of the analysis techniques, a detailed morphology and spectral analysis of the region is now possible. We will report on the new characterisation of the spectrum of the central source down to 100 GeV energies taking advantage of the H.E.S.S. II data, obtained after the inclusion of the large 28-meter CT5 telescope in the array centre. We will present the recent discovery of a powerful cosmic PeVatron accelerator at the center of our Galaxy as well as a new characterization of the diffuse gamma-ray emission in the central 200 pc of our Galaxy through a detailed morphology study. By analysing the nature of the various components of this emission, the existence of a strong cosmic-ray gradient and thus the presence of a strong cosmic-ray accelerator at the very centre of our Galaxy was found. We will also report on the discovery of an additional point-like source HESS J1746-285 in this region possibly associated with the pulsar wind nebula candidate G0.13-0.11.

  10. Ring Around the Black Hole

    NASA Technical Reports Server (NTRS)

    Wanjek, Christopher

    2003-01-01

    Regardless of size, black holes easily acquire accretion disks. Supermassive black holes can feast on the bountiful interstellar gas in galactic nuclei. Small black holes formed from collapsing stars often belong to binary systems in which a bulging companion star can spill some of its gas into the black hole s reach. In the chaotic mess of the accretion disk, atoms collide with one another. Swirling plasma reaches speeds upward of 10% that of light and glows brightly in many wavebands, particularly in X-rays. Gas gets blown back by a wind of radiation from the inner disk. New material enters the disks from different directions.

  11. Active galactic nuclei. II - The acceleration of relativistic particles in a cluster of accreting black holes

    NASA Technical Reports Server (NTRS)

    Pacholczyk, A. G.; Stepinski, T. F.

    1988-01-01

    An accreting cluster of black holes in an active galactic nucleus is a natural site for a system of shock structures with a hierarchy of sizes, corresponding to the distribution of masses in the cluster. Accreted gas containing some magnetic fields and supersonically falling onto the core forms shocks on the outside of each hole and these shocks are capable of accelerating relativistic particles. The energies reached in a single shock are size rather than acceleration time limited and are proportional to the mass of the hole with a proportionality constant being a function of the position of the hole within a cluster and the model of the cluster and the shock formation. These energies are adequate to explain the observed properties of synchrotron and inverse-Compton radiation from these objects. The resulting energy spectrum of particles in the cluster in 'zeroth' approximation has the form of a doubly broken power law with indices of two and three on both extremes of the energy domain respectively, bridged by an index of about 2.5.

  12. High-Resolution Millimeter-VLBI Imaging of the super-massive black hole candidate at the Galactic center - Sgr A*

    NASA Astrophysics Data System (ADS)

    Shen, Zqs

    Sagittarius A* (Sgr A*), the extremely compact radio source at the Galactic center (GC), is the best candidate for the single super-massive black hole (SMBH). The accurate measurements of its mass (as a gravitational source) and size (as a radiative source) are of great importance in testing its SMBH hypothesis. Great progress has been made on determining its central dark mass of 3.7 million solar masses. Here, we will present the highest resolution VLBI imaging observations of Sgr A* made at both 7.0 and 3.5 millimeters with the Very Long Baseline Array (VLBA) plus the Green Bank Telescope (GBT) and the VLBA, respectively. Both the imaging and the model-fitting with the closure amplitudes show a consistent East-West elongated elliptical Gaussian emission. The inferred possible intrinsic emitting region is less than 1 AU at the distance of 8 kpc to GC.

  13. Investigating the Relativistic Motion of the Stars Near the Supermassive Black Hole in the Galactic Center

    NASA Astrophysics Data System (ADS)

    Parsa, M.; Eckart, A.; Shahzamanian, B.; Karas, V.; Zajaček, M.; Zensus, J. A.; Straubmeier, C.

    2017-08-01

    The S-star cluster in the Galactic center allows us to study the physics close to a supermassive black hole, including distinctive dynamical tests of general relativity. Our best estimates for the mass of and the distance to Sgr A* using the three stars with the shortest period (S2, S38, and S55/S0-102) and Newtonian models are M BH = (4.15 ± 0.13 ± 0.57) × 106 M ⊙ and R 0 = 8.19 ± 0.11 ± 0.34 kpc. Additionally, we aim at a new and practical method to investigate the relativistic orbits of stars in the gravitational field near Sgr A*. We use a first-order post-Newtonian approximation to calculate the stellar orbits with a broad range of periapse distance r p . We present a method that employs the changes in orbital elements derived from elliptical fits to different sections of the orbit. These changes are correlated with the relativistic parameter defined as ϒ ≡ r s /r p (with r s being the Schwarzschild radius) and can be used to derive ϒ from observational data. For S2 we find a value of ϒ = 0.00088 ± 0.00080, which is consistent, within the uncertainty, with the expected value of ϒ = 0.00065 derived from M BH and the orbit of S2. We argue that the derived quantity is unlikely to be dominated by perturbing influences such as noise on the derived stellar positions, field rotation, and drifts in black hole mass.

  14. The Potential for Cubesats to Determine Black Holes Masses in Nearby Active Galactic Nuclei and Contribute to Other Time Domain Science

    NASA Astrophysics Data System (ADS)

    Gorjian, Varoujan; Ardila, David R.; Barth, Aaron J.; Janson, Siegfried; Kochanek, Christopher S.; Malkan, Matthew Arnold; Peterson, Bradley M.; Rowen, Darren; Seager, Sara; Shkolnik, Evgenya L.

    2016-01-01

    A 3U (30cmx10cmx10cm) CubeSat with a 9cm diameter aperture telescope can deliver unprecedented time domain coverage in the ultraviolet (UV) for the purposes of Active Galactic Nucleus (AGN) reverberation mapping to determine supermassive black hole (SMBH) masses. SMBH's reside at the centers of most, if not all, massive galaxies and accretion onto those black holes generates a great deal of emission peaking in the UV. These accretion disks are also surrounded by a nearby, fast moving gas region called the Broad Line Region (BLR). As light pulses generated near the black hole spread out, they first illuminate the accretion disk, and then the BLR. For a sample of bright AGN, a dedicated cubesat can follow these changes in brightness on a daily basis for up to 100 days from low Earth orbit. With such monitoring of changes in the accretion disk and then the BLR, an accurate distance between the two regions can be determined. Combining this UV coverage with optical emission-line spectroscopy from the ground allows for a direct measurement of the mass of the central black hole. This exchange of time resolution for spatial resolution can also be used to determine the structure of the central region of the AGN. Ground-based photometric and spectroscopic measurements will complement the UV by tracing the optically emitting and hence cooler regions of the AGN to provide one of the best measurements of supermassive black hole masses.In addition to the primary science mission, the long observing campaigns and the large field of view required to get comparison stars for relative photometry allow for other competitive science. We have identified UV activity in M dwarfs as ancillary science that can be addressed with such a cubesat. This activity will have a strong impact on the habitability of any possible planet around the star.

  15. Black holes and local dark matter

    NASA Technical Reports Server (NTRS)

    Hegyi, D. J.; Kolb, E. W.; Olive, K. A.

    1986-01-01

    Two independent constraints are placed on the amount of dark matter in black holes contained in the galactic disk. First, gas accretion by black holes leads to X-ray emission which cannot exceed the observed soft X-ray background. Second, metals produced in stellar processes that lead to black hole formation cannot exceed the observed disk metal abundance. Based on these constraints, it appears unlikely that the missing disk mass could be contained in black holes. A consequence of this conclusion is that at least two different types of dark matter are needed to solve the various missing mass problems.

  16. X-ray and gamma-ray emission of Sagittarius A* as a wind-accreting black hole

    NASA Technical Reports Server (NTRS)

    Mastichiadis, A.; Ozernoy, L. M.

    1994-01-01

    If, as many believe, Sgr A* is a massive black hole at the Galactic center, one should expect it to be a source of X-ray and gamma-ray activity, behaving basically as a scaled-down active galactic nucleus. An unavoidable source of accretion is the wind from IRS 16, a nearby group of hot, massive stars. Since the density and velocity of the accreting matter are known from observations, the accretion rate is basically a function of the putative black hole mass, M(sub h), only; this value represents a reliable lower limit to a real rate, given the other possible sources of accreting matter. Based on this and on the theories about shock acceleration in active galactic nuclei, we have estimated the expected production of relativistic particles and their hard radiation. These values turn out to be a function of M(sub h) as well. Comparing our results with available X-ray and gamma-ray observations which show Sgr A* to have a relatively low activity level, we conclude tentatively that the putative black hole in the Galactic center cannot have a mass greater than approximately 6 x 10(exp 3) solar mass. This conclusion is consistent with the upper limits to the black hole mass found by different methods earlier, although much more work is needed to make calculations of shock acceleration around black holes more reliable.

  17. Dual Active Galactic Nuclei in Nearby Galaxies

    NASA Astrophysics Data System (ADS)

    Das, Mousumi; Rubinur, Khatun; Karb, Preeti; Varghese, Ashlin; Novakkuni, Navyasree; James, Atul

    2018-04-01

    Galaxy mergers play a crucial role in the formation of massive galaxies and the buildup of their bulges. An important aspect of the merging process is the in-spiral of the supermassive black-holes (SMBHs) to the centre of the merger remnant and the eventual formation of a SMBH binary. If both the SMBHs are accreting they will form a dual or binary active galactic nucleus (DAGN). The final merger remnant is usually very bright and shows enhanced star formation. In this paper we summarise the current sample of DAGN from previous studies and describe methods that can be used to identify strong DAGN candidates from optical and spectroscopic surveys. These methods depend on the Doppler separation of the double peaked AGN emission lines, the nuclear velocity dispersion of the galaxies and their optical/UV colours. We describe two high resolution, radio observations of DAGN candidates that have been selected based on their double peaked optical emission lines (DPAGN). We also examine whether DAGN host galaxies have higher star formation rates (SFRs) compared to merging galaxies that do not appear to have DAGN. We find that the SFR is not higher for DAGN host galaxies. This suggests that the SFRs in DAGN host galaxies is due to the merging process itself and not related to the presence of two AGN in the system.

  18. The Galactic Center S-stars and the Hypervelocity Stars in the Galactic Halo: Two Faces of the Tidal Breakup of Stellar Binaries by the Central Massive Black Hole?

    NASA Astrophysics Data System (ADS)

    Zhang, Fupeng; Lu, Youjun; Yu, Qingjuan

    2013-05-01

    In this paper, we investigate the link between the hypervelocity stars (HVSs) discovered in the Galactic halo and the Galactic center (GC) S-stars, under the hypothesis that they are both the products of the tidal breakup of the same population of stellar binaries by the central massive black hole (MBH). By adopting several hypothetical models for binaries to be injected into the vicinity of the MBH and doing numerical simulations, we realize the tidal breakup processes of the binaries and their follow-up dynamical evolution. We find that many statistical properties of the detected HVSs and GC S-stars could be reproduced under some binary injecting models, and their number ratio can be reproduced if the stellar initial mass function is top-heavy (e.g., with slope ~ - 1.6). The total number of the captured companions is ~50 that have masses in the range ~3-7 M ⊙ and semimajor axes <~ 4000 AU and survive to the present within their main-sequence lifetime. The innermost one is expected to have a semimajor axis ~300-1500 AU and a pericenter distance ~10-200 AU, with a significant probability of being closer to the MBH than S2. Future detection of such a close star would offer an important test to general relativity. The majority of the surviving ejected companions of the GC S-stars are expected to be located at Galactocentric distances <~ 20 kpc, and have heliocentric radial velocities ~ - 500-1500 km s-1 and proper motions up to ~5-20 mas yr-1. Future detection of these HVSs may provide evidence for the tidal breakup formation mechanism of the GC S-stars.

  19. Impact of the galactic acceleration on the terrestrial reference frame and the scale factor in VLBI

    NASA Astrophysics Data System (ADS)

    Krásná, Hana; Titov, Oleg

    2017-04-01

    The relative motion of the solar system barycentre around the galactic centre can also be described as an acceleration of the solar system directed towards the centre of the Galaxy. So far, this effect has been omitted in the a priori modelling of the Very Long Baseline Interferometry (VLBI) observable. Therefore, it results in a systematic dipole proper motion (Secular Aberration Drift, SAD) of extragalactic radio sources building the celestial reference frame with a theoretical maximum magnitude of 5-7 microarcsec/year. In this work, we present our estimation of the SAD vector obtained within a global adjustment of the VLBI measurements (1979.0 - 2016.5) using the software VieVS. We focus on the influence of the observed radio sources with the maximum SAD effect on the terrestrial reference frame. We show that the scale factor from the VLBI measurements estimated for each source individually discloses a clear systematic aligned with the direction to the Galactic centre-anticentre. Therefore, the radio sources located near Galactic anticentre may cause a strong systematic effect, especially, in early VLBI years. For instance, radio source 0552+398 causes a difference up to 1 mm in the estimated baseline length. Furthermore, we discuss the scale factor estimated for each radio source after removal of the SAD systematic.

  20. Post-Newtonian Dynamical Modeling of Supermassive Black Holes in Galactic-scale Simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rantala, Antti; Pihajoki, Pauli; Johansson, Peter H.

    We present KETJU, a new extension of the widely used smoothed particle hydrodynamics simulation code GADGET-3. The key feature of the code is the inclusion of algorithmically regularized regions around every supermassive black hole (SMBH). This allows for simultaneously following global galactic-scale dynamical and astrophysical processes, while solving the dynamics of SMBHs, SMBH binaries, and surrounding stellar systems at subparsec scales. The KETJU code includes post-Newtonian terms in the equations of motions of the SMBHs, which enables a new SMBH merger criterion based on the gravitational wave coalescence timescale, pushing the merger separation of SMBHs down to ∼0.005 pc. Wemore » test the performance of our code by comparison to NBODY7 and rVINE. We set up dynamically stable multicomponent merger progenitor galaxies to study the SMBH binary evolution during galaxy mergers. In our simulation sample the SMBH binaries do not suffer from the final-parsec problem, which we attribute to the nonspherical shape of the merger remnants. For bulge-only models, the hardening rate decreases with increasing resolution, whereas for models that in addition include massive dark matter halos, the SMBH binary hardening rate becomes practically independent of the mass resolution of the stellar bulge. The SMBHs coalesce on average 200 Myr after the formation of the SMBH binary. However, small differences in the initial SMBH binary eccentricities can result in large differences in the SMBH coalescence times. Finally, we discuss the future prospects of KETJU, which allows for a straightforward inclusion of gas physics in the simulations.« less

  1. The Penrose photoproduction scenario for NGC 4151: A black hole gamma-ray emission mechanism for active galactic nuclei and Seyfert galaxies. [Compton scattering and pair production

    NASA Technical Reports Server (NTRS)

    Leiter, D.

    1979-01-01

    A consistent theoretical interpretation is given for the suggestion that a steepening of the spectrum between X-ray and gamma ray energies may be a general, gamma-ray characteristic of Seyfert galaxies, if the diffuse gamma ray spectrum is considered to be a superposition of unresolved contributions, from one or more classes of extragalactic objects. In the case of NGC 4151, the dominant process is shown to be Penrose Compton scattering in the ergosphere of a Kerr black hole, assumed to exist in the Seyfert's active galactic nucleus.

  2. The 3 Ms Chandra campaign on Sgr A*: a census of X-ray flaring activity from the Galactic center

    NASA Astrophysics Data System (ADS)

    Neilsen, J.; Nowak, M. A.; Gammie, C.; Dexter, J.; Markoff, S.; Haggard, D.; Nayakshin, S.; Wang, Q. D.; Grosso, N.; Porquet, D.; Tomsick, J. A.; Degenaar, N.; Fragile, P. C.; Houck, J. C.; Wijnands, R.; Miller, J. M.; Baganoff, F. K.

    2014-05-01

    Over the last decade, X-ray observations of Sgr A* have revealed a black hole in a deep sleep, punctuated roughly once per day by brief flares. The extreme X-ray faintness of this supermassive black hole has been a long-standing puzzle in black hole accretion. To study the accretion processes in the Galactic center, Chandra (in concert with numerous ground- and space-based observatories) undertook a 3 Ms campaign on Sgr A* in 2012. With its excellent observing cadence, sensitivity, and spectral resolution, this Chandra X-ray Visionary Project (XVP) provides an unprecedented opportunity to study the behavior of the closest supermassive black hole. We present a progress report from our ongoing study of X-ray flares, including the brightest flare ever seen from Sgr A*. Focusing on the statistics of the flares and the quiescent emission, we discuss the physical implications of X-ray variability in the Galactic center.

  3. The 3 megasecond Chandra campaign on Sgr A*: a census of x-ray flaring activity from the galactic center

    NASA Astrophysics Data System (ADS)

    Neilsen, Joey

    Over the last decade, X-ray observations of Sgr A* have revealed a black hole in a deep sleep, punctuated roughly once per day by brief flares. The extreme X-ray faintness of this supermassive black hole has been a long-standing puzzle in black hole accretion. To study the accretion processes in the Galactic Center, Chandra (in concert with numerous ground- and space-based observatories) undertook a 3 Ms campaign on Sgr A* in 2012. With its excellent observing cadence, sensitivity, and spectral resolution, this Chandra X-ray Visionary Project (XVP) provides an unprecedented opportunity to study the behavior of our closest supermassive black hole. We present a progress report from our ongoing study of X-ray flares, including the brightest flare ever seen from Sgr A*. Focusing on the statistics of the flares, the quiescent emission, and the relationship between the X-ray and the infrared, we discuss the physical implications of X-ray variability in the Galactic Center.

  4. The 3 Megasecond Chandra Campaign on Sgr A*: A Census of X-ray Flaring Activity from the Galactic Center

    NASA Astrophysics Data System (ADS)

    Neilsen, Joseph; Nowak, Michael; Gammie, Charles F.; Dexter, Jason; Markoff, Sera; Haggard, Daryl; Nayakshin, Sergei; Wang, Q. Daniel; Grosso, N.; Porquet, D.; Tomsick, John; Degenaar, Nathalie; Fragile, P. Christopher; Houck, John C.; Wijnands, Rudy; Miller, Jon M.; Baganoff, Frederick K.

    2014-08-01

    Over the last decade, X-ray observations of Sgr A* have revealed a black hole in a deep sleep, punctuated roughly once per day by brief ares. The extreme X-ray faintness of this supermassive black hole has been a long-standing puzzle in black hole accretion. To study the accretion processes in the Galactic Center, Chandra (in concert with numerous ground- and space-based observatories) undertook a 3 Ms campaign on Sgr A* in 2012. With its excellent observing cadence, sensitivity, and spectral resolution, this Chandra X-ray Visionary Project (XVP) provides an unprecedented opportunity to study the behavior of our closest supermassive black hole. We present a progress report from our ongoing study of X-ray flares, including one of the brightest flares ever seen from Sgr A*. Focusing on the statistics of the flares, the quiescent emission, and the relationship between the X-ray and the infrared, we discuss the physical implications of X-ray variability in the Galactic Center.

  5. Investigating the Relativistic Motion of the Stars Near the Supermassive Black Hole in the Galactic Center

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parsa, M.; Eckart, A.; Shahzamanian, B.

    The S-star cluster in the Galactic center allows us to study the physics close to a supermassive black hole, including distinctive dynamical tests of general relativity. Our best estimates for the mass of and the distance to Sgr A* using the three stars with the shortest period (S2, S38, and S55/S0-102) and Newtonian models are M {sub BH} = (4.15 ± 0.13 ± 0.57) × 10{sup 6} M {sub ⊙} and R {sub 0} = 8.19 ± 0.11 ± 0.34 kpc. Additionally, we aim at a new and practical method to investigate the relativistic orbits of stars in the gravitationalmore » field near Sgr A*. We use a first-order post-Newtonian approximation to calculate the stellar orbits with a broad range of periapse distance r {sub p} . We present a method that employs the changes in orbital elements derived from elliptical fits to different sections of the orbit. These changes are correlated with the relativistic parameter defined as ϒ ≡ r {sub s} / r {sub p} (with r {sub s} being the Schwarzschild radius) and can be used to derive ϒ from observational data. For S2 we find a value of ϒ = 0.00088 ± 0.00080, which is consistent, within the uncertainty, with the expected value of ϒ = 0.00065 derived from M {sub BH} and the orbit of S2. We argue that the derived quantity is unlikely to be dominated by perturbing influences such as noise on the derived stellar positions, field rotation, and drifts in black hole mass.« less

  6. Gamma ray astronomy and black hole astrophysics

    NASA Technical Reports Server (NTRS)

    Liang, Edison P.

    1990-01-01

    The study of soft gamma emissions from black-hole candidates is identified as an important element in understanding black-hole phenomena ranging from stellar-mass black holes to AGNs. The spectra of Cyg X-1 and observations of the Galactic Center are emphasized, since thermal origins and MeV gamma-ray bumps are evident and suggest a thermal-pair cloud picture. MeV gamma-ray observations are suggested for studying black hole astrophysics such as the theorized escaping pair wind, the anticorrelation between the MeV gamma bump and the soft continuum, and the relationship between source compactness and temperature.

  7. Evaluation of parameters of Black Hole, stellar cluster and dark matter distribution from bright star orbits in the Galactic Center

    NASA Astrophysics Data System (ADS)

    Zakharov, Alexander

    It is well-known that one can evaluate black hole (BH) parameters (including spin) analyz-ing trajectories of stars around BH. A bulk distribution of matter (dark matter (DM)+stellar cluster) inside stellar orbits modifies trajectories of stars, namely, generally there is a apoas-tron shift in direction which opposite to GR one, even now one could put constraints on DM distribution and BH parameters and constraints will more stringent in the future. Therefore, an analyze of bright star trajectories provides a relativistic test in a weak gravitational field approximation, but in the future one can test a strong gravitational field near the BH at the Galactic Center with the same technique due to a rapid progress in observational facilities. References A. Zakharov et al., Phys. Rev. D76, 062001 (2007). A.F. Zakharov et al., Space Sci. Rev. 148, 301313(2009).

  8. [Centre of the state sanitary and epidemiological surveillance of Black Sea Fleet celebrates 75 years].

    PubMed

    Goncharov, G V; Brashkov, A A

    2010-08-01

    The history of the Centre of the state sanitary and epidemiological surveillance of Black Sea Fleet begun in the 1 April 1935 when the sanitary-epidemiological laboratory was founded. The article is concerned with the different stages of vivid development of this institute during 75 years. During this period organization, establishment and the name were changed many times. Since 2002 it got the current name and represents the scientific-methods institution which can solve the issues of sanitary-hygienic and antiepidemic supply of military personnel of the navy. Special attention is given to the high-readiness force.

  9. Black Hole Masses for Type I Active Galactic Nuclei in the Chandra Cosmos Legacy Survey

    NASA Astrophysics Data System (ADS)

    Nagaraj, Gautam; Fornasini, Francesca; Civano, Francesca Maria

    2018-01-01

    Tight local relations between SMBH masses and galaxy properties have established the fundamental connection between SMBHs and their host galaxies. However, in order to better understand the coevolution of SMBHs and their host galaxies over cosmic time, we need measurements of black hole masses, AGN luminosities, and galaxy stellar masses from sizable samples of AGN covering lower luminosities than the brightest quasars spanning a wide redshift range. In this study, we report masses of the SMBHs of 224 Type I AGNs from the Chandra COSMOS Legacy Survey as determined by the line widths of Mg II 2798, Hb 4862, and Ha 6564 via scaling relations derived from reverberation mapping. Preliminary comparison with host galaxy luminosities and stellar masses suggests an increase in Eddington ratio with redshift, consistent with previous studies. In addition, our derived SMBH masses fall above the local AGN MBH--M* (galactic stellar mass) relation from Reines & Volonteri (2015), but it is still not clear whether this results from redshift evolution of the MBH--M* relation or from the incompleteness of the spectroscopic surveys available. The SAO REU program is funded by the National Science Foundation REU and Department of Defense ASSURE programs under NSF Grant AST-1659473, and by the Smithsonian Institution.

  10. X-ray detectability of accreting isolated black holes in our Galaxy

    NASA Astrophysics Data System (ADS)

    Tsuna, Daichi; Kawanaka, Norita; Totani, Tomonori

    2018-06-01

    Detectability of isolated black holes (IBHs) without a companion star but emitting X-rays by accretion from dense interstellar medium (ISM) or molecular cloud gas is investigated. We calculate orbits of IBHs in the Galaxy to derive a realistic spatial distribution of IBHs for various mean values of kick velocity at their birth υavg. X-ray luminosities of these IBHs are then calculated considering various phases of ISM and molecular clouds for a wide range of the accretion efficiency λ (a ratio of the actual accretion rate to the Bondi rate) that is rather uncertain. It is found that detectable IBHs mostly reside near the Galactic Centre (GC), and hence taking the Galactic structure into account is essential. In the hard X-ray band, where identification of IBHs from other contaminating X-ray sources may be easier, the expected number of IBHs detectable by the past survey by NuSTAR towards GC is at most order unity. However, 30-100 IBHs may be detected by the future survey by FORCE with an optimistic parameter set of υavg = 50 km s-1 and λ = 0.1, implying that it may be possible to detect IBHs or constrain the model parameters.

  11. Probing the gas density in our Galactic Centre: moving mesh simulations of G2

    NASA Astrophysics Data System (ADS)

    Steinberg, Elad; Sari, Re'em; Gnat, Orly; Gillessen, Stefan; Plewa, Philipp; Genzel, Reinhard; Eisenhauer, Frank; Ott, Thomas; Pfuhl, Oliver; Habibi, Maryam; Waisberg, Idel; von Fellenberg, Sebastiano; Dexter, Jason; Bauböck, Michi; Rosales, Alejandra Jimenez

    2018-01-01

    The G2 object has recently passed its pericentre passage in our Galactic Centre. While the Brγ emission shows clear signs of tidal interaction, the change in the observed luminosity is only of about a factor of 2, in contention with all previous predictions. We present high-resolution simulations performed with the moving mesh code, RICH, together with simple analytical arguments that reproduce the observed Brγ emission. In our model, G2 is a gas cloud that undergoes tidal disruption in a dilute ambient medium. We find that during pericentre passage, the efficient cooling of the cloud results in a vertical collapse, compressing the cloud by a factor of ∼5000. By properly taking into account the ionization state of the gas, we find that the cloud is UV starved and are able to reproduce the observed Brγ luminosity. For densities larger than ≈500 cm-3 at pericentre, the cloud fragments due to cooling instabilities and the emitted radiation is inconsistent with observations. For lower densities, the cloud survives the pericentre passage intact and its emitted radiation matches the observed light curve. From the duration of Brγ emission that contains both redshifted and blueshifted components, we show that the cloud is not spherical but rather elongated with a size ratio of 4 at year 2001. The simulated cloud's elongation grows as it travels towards pericentre and is consistent with observations, due to viewing angles. The simulation is also consistent with having a spherical shape at apocentre.

  12. Supermassive Black Holes and Galaxy Evolution

    NASA Technical Reports Server (NTRS)

    Merritt, D.

    2004-01-01

    Supermassive black holes appear to be generic components of galactic nuclei. The formation and growth of black holes is intimately connected with the evolution of galaxies on a wide range of scales. For instance, mergers between galaxies containing nuclear black holes would produce supermassive binaries which eventually coalesce via the emission of gravitational radiation. The formation and decay of these binaries is expected to produce a number of observable signatures in the stellar distribution. Black holes can also affect the large-scale structure of galaxies by perturbing the orbits of stars that pass through the nucleus. Large-scale N-body simulations are beginning to generate testable predictions about these processes which will allow us to draw inferences about the formation history of supermassive black holes.

  13. 3D AMR hydrosimulations of a compact source scenario for the Galactic Centre cloud G2

    NASA Astrophysics Data System (ADS)

    Ballone, A.; Schartmann, M.; Burkert, A.; Gillessen, S.; Plewa, P. M.; Genzel, R.; Pfuhl, O.; Eisenhauer, F.; Habibi, M.; Ott, T.; George, E. M.

    2018-06-01

    The nature of the gaseous and dusty cloud G2 in the Galactic Centre is still under debate. We present three-dimensional hydrodynamical adaptive mesh refinement (AMR) simulations of G2, modeled as an outflow from a "compact source" moving on the observed orbit. The construction of mock position-velocity (PV) diagrams enables a direct comparison with observations and allow us to conclude that the observational properties of the gaseous component of G2 could be matched by a massive (\\dot{M}_w=5× 10^{-7} M_{⊙} yr^{-1}) and slow (50 km s-1) outflow, as observed for T Tauri stars. In order for this to be true, only the material at larger (>100 AU) distances from the source must be actually emitting, otherwise G2 would appear too compact compared to the observed PV diagrams. On the other hand, the presence of a central dusty source might be able to explain the compactness of G2's dust component. In the present scenario, 5-10 years after pericentre the compact source should decouple from the previously ejected material, due to the hydrodynamic interaction of the latter with the surrounding hot and dense atmosphere. In this case, a new outflow should form, ahead of the previous one, which would be the smoking gun evidence for an outflow scenario.

  14. Revisiting Black Holes as Dark Matter

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2017-02-01

    Could dark matter be made of intermediate-mass black holes formed in the beginning of the universe? A recent study takes a renewed look at this question.Galactic LurkersThe nature of dark matter has long been questioned, but the recent discovery of gravitational waves by the Laser Interferometer Gravitational-Wave Observatory (LIGO) has renewed interest in the possibility that dark matter could consist of primordial black holes in the mass range of 101000 solar masses.The relative amounts of the different constituents of the universe. Dark matter makes up roughly 27%. [ESA/Planck]According to this model, the extreme density of matter present during the universes early expansion led to the formation of a large number of intermediate-mass black holes. These black holes now hide in the halos of galaxies, constituting the mass that weve measured dynamically but remains unseen.LIGOs first gravitational-wave detection revealed the merger of two black holes that were both tens of solar masses in size. If primordial black holes are indeed a major constituent of dark matter, then LIGOs detection is consistent with what we would expect to find: occasional mergers of the intermediate-mass black holes that formed in the early universe and now lurk in galactic halos.Quasar MicrolensingTheres a catch, however. If there truly were a large number of intermediate-mass primordial black holes hiding in galactic halos, they wouldnt go completely unnoticed: we would see signs of their presence in the gravitational microlensing of background quasars. Unseen primordial black holes in a foreground galaxy could cause an image of a background quasar to briefly brighten which would provide us with clear evidence of such black holes despite our not being able to detect them directly.A depiction of quasar microlensing (click for a closer look!). The microlensing object in the foreground galaxy could be a star (as depicted), a primordial black hole, or any other compact object. [NASA

  15. Low-mass black holes as the remnants of primordial black hole formation.

    PubMed

    Greene, Jenny E

    2012-01-01

    Bridging the gap between the approximately ten solar mass 'stellar mass' black holes and the 'supermassive' black holes of millions to billions of solar masses are the elusive 'intermediate-mass' black holes. Their discovery is key to understanding whether supermassive black holes can grow from stellar-mass black holes or whether a more exotic process accelerated their growth soon after the Big Bang. Currently, tentative evidence suggests that the progenitors of supermassive black holes were formed as ∼10(4)-10(5) M(⊙) black holes via the direct collapse of gas. Ongoing searches for intermediate-mass black holes at galaxy centres will help shed light on this formation mechanism.

  16. Star-disc interaction in galactic nuclei: formation of a central stellar disc

    NASA Astrophysics Data System (ADS)

    Panamarev, Taras; Shukirgaliyev, Bekdaulet; Meiron, Yohai; Berczik, Peter; Just, Andreas; Spurzem, Rainer; Omarov, Chingis; Vilkoviskij, Emmanuil

    2018-05-01

    We perform high-resolution direct N-body simulations to study the effect of an accretion disc on stellar dynamics in an active galactic nucleus (AGN). We show that the interaction of the nuclear stellar cluster (NSC) with the gaseous accretion disc (AD) leads to formation of a stellar disc in the central part of the NSC. The accretion of stars from the stellar disc on to the super-massive black hole is balanced by the capture of stars from the NSC into the stellar disc, yielding a stationary density profile. We derive the migration time through the AD to be 3 per cent of the half-mass relaxation time of the NSC. The mass and size of the stellar disc are 0.7 per cent of the mass and 5 per cent of the influence radius of the super-massive black hole. An AD lifetime shorter than the migration time would result in a less massive nuclear stellar disc. The detection of such a stellar disc could point to past activity of the hosting galactic nucleus.

  17. The response of relativistic outflowing gas to the inner accretion disk of a black hole.

    PubMed

    Parker, Michael L; Pinto, Ciro; Fabian, Andrew C; Lohfink, Anne; Buisson, Douglas J K; Alston, William N; Kara, Erin; Cackett, Edward M; Chiang, Chia-Ying; Dauser, Thomas; De Marco, Barbara; Gallo, Luigi C; Garcia, Javier; Harrison, Fiona A; King, Ashley L; Middleton, Matthew J; Miller, Jon M; Miniutti, Giovanni; Reynolds, Christopher S; Uttley, Phil; Vasudevan, Ranjan; Walton, Dominic J; Wilkins, Daniel R; Zoghbi, Abderahmen

    2017-03-01

    The brightness of an active galactic nucleus is set by the gas falling onto it from the galaxy, and the gas infall rate is regulated by the brightness of the active galactic nucleus; this feedback loop is the process by which supermassive black holes in the centres of galaxies may moderate the growth of their hosts. Gas outflows (in the form of disk winds) release huge quantities of energy into the interstellar medium, potentially clearing the surrounding gas. The most extreme (in terms of speed and energy) of these-the ultrafast outflows-are the subset of X-ray-detected outflows with velocities higher than 10,000 kilometres per second, believed to originate in relativistic (that is, near the speed of light) disk winds a few hundred gravitational radii from the black hole. The absorption features produced by these outflows are variable, but no clear link has been found between the behaviour of the X-ray continuum and the velocity or optical depth of the outflows, owing to the long timescales of quasar variability. Here we report the observation of multiple absorption lines from an extreme ultrafast gas flow in the X-ray spectrum of the active galactic nucleus IRAS 13224-3809, at 0.236 ± 0.006 times the speed of light (71,000 kilometres per second), where the absorption is strongly anti-correlated with the emission of X-rays from the inner regions of the accretion disk. If the gas flow is identified as a genuine outflow then it is in the fastest five per cent of such winds, and its variability is hundreds of times faster than in other variable winds, allowing us to observe in hours what would take months in a quasar. We find X-ray spectral signatures of the wind simultaneously in both low- and high-energy detectors, suggesting a single ionized outflow, linking the low- and high-energy absorption lines. That this disk wind is responding to the emission from the inner accretion disk demonstrates a connection between accretion processes occurring on very different

  18. Detecting dark matter with imploding pulsars in the galactic center.

    PubMed

    Bramante, Joseph; Linden, Tim

    2014-11-07

    The paucity of old millisecond pulsars observed at the galactic center of the Milky Way could be the result of dark matter accumulating in and destroying neutron stars. In regions of high dark matter density, dark matter clumped in a pulsar can exceed the Schwarzschild limit and collapse into a natal black hole which destroys the pulsar. We examine what dark matter models are consistent with this hypothesis and find regions of parameter space where dark matter accumulation can significantly degrade the neutron star population within the galactic center while remaining consistent with observations of old millisecond pulsars in globular clusters and near the solar position. We identify what dark matter couplings and masses might cause a young pulsar at the galactic center to unexpectedly extinguish. Finally, we find that pulsar collapse age scales inversely with the dark matter density and linearly with the dark matter velocity dispersion. This implies that maximum pulsar age is spatially dependent on position within the dark matter halo of the Milky Way. In turn, this pulsar age spatial dependence will be dark matter model dependent.

  19. Circumnuclear media of quiescent supermassive black holes

    NASA Astrophysics Data System (ADS)

    Generozov, Aleksey; Stone, Nicholas C.; Metzger, Brian D.

    2015-10-01

    We calculate steady-state, one-dimensional hydrodynamic profiles of hot gas in slowly accreting (`quiescent') galactic nuclei for a range of central black hole masses M•, parametrized gas heating rates, and observationally motivated stellar density profiles. Mass is supplied to the circumnuclear medium by stellar winds, while energy is injected primarily by stellar winds, supernovae, and black hole feedback. Analytic estimates are derived for the stagnation radius (where the radial velocity of the gas passes through zero) and the large-scale gas inflow rate, dot{M}, as a function of M• and the gas heating efficiency, the latter being related to the star formation history. We assess the conditions under which radiative instabilities develop in the hydrostatic region near the stagnation radius, both in the case of a single burst of star formation and for the average star formation history predicted by cosmological simulations. By combining a sample of measured nuclear X-ray luminosities, LX, of nearby quiescent galactic nuclei with our results for dot{M}(M_{bullet }), we address whether the nuclei are consistent with accreting in a steady state, thermally stable manner for radiative efficiencies predicted for radiatively inefficiency accretion flows. We find thermally stable accretion cannot explain the short average growth times of low-mass black holes in the local Universe, which must instead result from gas being fed in from large radii, due either to gas inflows or thermal instabilities acting on larger, galactic scales. Our results have implications for attempts to constrain the occupation fraction of upermassive black holes in low-mass galaxies using the mean LX-M• correlation, as well as the predicted diversity of the circumnuclear densities encountered by relativistic outflows from tidal disruption events.

  20. Accretion-induced variability links young stellar objects, white dwarfs, and black holes.

    PubMed

    Scaringi, Simone; Maccarone, Thomas J; Körding, Elmar; Knigge, Christian; Vaughan, Simon; Marsh, Thomas R; Aranzana, Ester; Dhillon, Vikram S; Barros, Susana C C

    2015-10-01

    The central engines of disc-accreting stellar-mass black holes appear to be scaled down versions of the supermassive black holes that power active galactic nuclei. However, if the physics of accretion is universal, it should also be possible to extend this scaling to other types of accreting systems, irrespective of accretor mass, size, or type. We examine new observations, obtained with Kepler/K2 and ULTRACAM, regarding accreting white dwarfs and young stellar objects. Every object in the sample displays the same linear correlation between the brightness of the source and its amplitude of variability (rms-flux relation) and obeys the same quantitative scaling relation as stellar-mass black holes and active galactic nuclei. We also show that the most important parameter in this scaling relation is the physical size of the accreting object. This establishes the universality of accretion physics from proto-stars still in the star-forming process to the supermassive black holes at the centers of galaxies.

  1. Accretion-induced variability links young stellar objects, white dwarfs, and black holes

    PubMed Central

    Scaringi, Simone; Maccarone, Thomas J.; Körding, Elmar; Knigge, Christian; Vaughan, Simon; Marsh, Thomas R.; Aranzana, Ester; Dhillon, Vikram S.; Barros, Susana C. C.

    2015-01-01

    The central engines of disc-accreting stellar-mass black holes appear to be scaled down versions of the supermassive black holes that power active galactic nuclei. However, if the physics of accretion is universal, it should also be possible to extend this scaling to other types of accreting systems, irrespective of accretor mass, size, or type. We examine new observations, obtained with Kepler/K2 and ULTRACAM, regarding accreting white dwarfs and young stellar objects. Every object in the sample displays the same linear correlation between the brightness of the source and its amplitude of variability (rms-flux relation) and obeys the same quantitative scaling relation as stellar-mass black holes and active galactic nuclei. We also show that the most important parameter in this scaling relation is the physical size of the accreting object. This establishes the universality of accretion physics from proto-stars still in the star-forming process to the supermassive black holes at the centers of galaxies. PMID:26601307

  2. Probing the interstellar dust towards the Galactic Centre: dust-scattering halo around AX J1745.6-2901

    NASA Astrophysics Data System (ADS)

    Jin, Chichuan; Ponti, Gabriele; Haberl, Frank; Smith, Randall

    2017-07-01

    AX J1745.6-2901 is an X-ray binary located at only 1.45 arcmin from Sgr A⋆, showcasing a strong X-ray dust-scattering halo. We combine Chandra and XMM-Newton observations to study the halo around this X-ray binary. Our study shows two major thick dust layers along the line of sight (LOS) towards AX J1745.6-2901. The LOS position and NH of these two layers depend on the dust grain models with different grain size distributions and abundances. But for all the 19 dust grain models considered, dust layer-1 is consistently found to be within a fractional distance of 0.11 (mean value: 0.05) to AX J1745.6-2901 and contains only (19-34) per cent (mean value: 26 per cent) of the total LOS dust. The remaining dust is contained in layer-2, which is distributed from the Earth up to a mean fractional distance of 0.64. A significant separation between the two layers is found for all the dust grain models, with a mean fractional distance of 0.31. Besides, an extended wing component is discovered in the halo, which implies a higher fraction of dust grains with typical sizes ≲590 Å than considered in current dust grain models. Assuming AX J1745.6-2901 is 8 kpc away, dust layer-2 would be located in the Galactic disc several kpc away from the Galactic Centre (GC). The dust scattering halo biases the observed spectrum of AX J1745.6-2901 severely in both spectral shape and flux, and also introduces a strong dependence on the size of the instrumental point spread function and the source extraction region. We build xspec models to account for this spectral bias, which allow us to recover the intrinsic spectrum of AX J1745.6-2901 free from dust-scattering opacity. If dust layer-2 also intervenes along the LOS to Sgr A⋆ and other nearby GC sources, a significant spectral correction for the dust-scattering opacity would be necessary for all these GC sources.

  3. The distribution of stars around the Milky Way's central black hole. III. Comparison with simulations

    NASA Astrophysics Data System (ADS)

    Baumgardt, H.; Amaro-Seoane, P.; Schödel, R.

    2018-01-01

    Context. The distribution of stars around a massive black hole (MBH) has been addressed in stellar dynamics for the last four decades by a number of authors. Because of its proximity, the centre of the Milky Way is the only observational test case where the stellar distribution can be accurately tested. Past observational work indicated that the brightest giants in the Galactic centre (GC) may show a density deficit around the central black hole, not a cusp-like distribution, while we theoretically expect the presence of a stellar cusp. Aims: We here present a solution to this long-standing problem. Methods: We performed direct-summation N-body simulations of star clusters around massive black holes and compared the results of our simulations with new observational data of the GC's nuclear cluster. Results: We find that after a Hubble time, the distribution of bright stars as well as the diffuse light follow power-law distributions in projection with slopes of Γ ≈ 0.3 in our simulations. This is in excellent agreement with what is seen in star counts and in the distribution of the diffuse stellar light extracted from adaptive-optics (AO) assisted near-infrared observations of the GC. Conclusions: Our simulations also confirm that there exists a missing giant star population within a projected radius of a few arcsec around Sgr A*. Such a depletion of giant stars in the innermost 0.1 pc could be explained by a previously present gaseous disc and collisions, which means that a stellar cusp would also be present at the innermost radii, but in the form of degenerate compact cores.

  4. Shrinking of Binaries in a WIMPY Background at the Galactic Center

    NASA Astrophysics Data System (ADS)

    Hills, J. G.

    2001-12-01

    The nature of the dark matter in the Galactic Halo is still not clear. Constraints can be placed on it; e.g., it cannot be in baryons less massive than about 1022 grams (Hills, 1986, Astron. J. 92, 595). It may be in elementary weakly interacting massive particles, WIMPS. Apart from providing most of the mass of the Galaxy, the only known significant dynamical effect of WIMPS is to cause a gradual shrinking of tightly bound binaries (Hills 1983, Astron. J. 88, 1269) as they interact with the background soup of WIMPS. This effect may be observable in binaries close to the Galactic Center if a significant fraction of the mass density near the central black hole is from WIMPS. The requisite binaries would have to have orbital velocities greater than the local velocity dispersion of the WIMPS relative to the binary. The velocity dispersion increases near the black hole. The binary cannot be too close to the black hole or its tidal field will breakup the binary. If the local WIMP density is 107 g/cm3, the fractional rate of reduction in the binary orbital period is about 5 x 10-10/yr for a binary having a semimajor axis equal to 3 solar radii in a soup of WIMPS having a velocity dispersion of 200 km/s relative to the binary. This gradual erosion of the binary period may be detectable, particularly, if one of the binary components is a pulsar.

  5. The Galactic Black Hole Transient H1743-322 During Outburst Decay Connections Between Timing Noise, State Transitions, And Radio Emission

    NASA Technical Reports Server (NTRS)

    Kalemci, E.; Tomsick, J. A.; Corbel; Kaaret, P.; Rothschild, R. E.; Pottschmidt, K.

    2006-01-01

    Multiwavelength observations of Galactic black hole transients during outburst decay are instrumental for our understanding of the accretion geometry and the formation of outflows around black hole systems. H1743-322, a black hole transient observed intensely in X-rays and also covered in the radio band during its 2003 decay, provides clues about the changes in accretion geometry during state transitions and also the general properties of X-ray emission during the intermediate and low-hard states. In this work, we report on the evolution of spectral and temporal properties in X-rays and the flux in the radio band, with the goal of understanding the nature of state transitions observed in this source. We concentrate on the transition from the thermal dominant state to the intermediate state that occurs on a timescale of 1 day. We show that the state transition is associated with a sudden increase in power-law flux. We determine that the ratio of the power-law flux to the overall flux in the 3-25 keV band must exceed 0.6 for us to observe strong timing noise. Even after the state transition, once this ratio was below 0.6, the system transited back to the thermal dominant state for 1 day. We show that the emission from the compact radio core does not turn on during the transition from the thermal dominant state to the intermediate state but does turn on when the source reaches the low-hard state, as seen in 4U 1543-47 and GX 339-4. We find that the photon index correlates strongly with the QPO frequency and anticorrelates with the rms amplitude of variability. We also show that the variability is more likely to be associated with the power-law emission than the disk emission.

  6. Forming Stars Near Our Supermassive Black Hole

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2018-01-01

    Is it possible to form stars in the immediate vicinity of the hostile supermassive black hole at the center of our galaxy? New evidence suggests that nature has found a way.Infrared view of the central 300 light-years of our galaxy. [Hubble: NASA/ESA/Q.D. Wang; Spitzer: NASA/JPL/S. Stolovy]Too Hostile for Stellar Birth?Around Sgr A*, the supermassive black hole lurking at the Milky Ways center, lies a population of 200 massive, young, bright stars. Their very tight orbits around the black hole pose a mystery: did these intrepid stars somehow manage to form in situ, or did they instead migrate to their current locations from further out?For a star to be born out of a molecular cloud, the self-gravity of the cloud clump must be stronger than the other forces its subject to. Close to a supermassive black hole, the brutal tidal forces of the black hole dominate over all else. For this reason, it was thought that stars couldnt form in the hostile environment near a supermassive black hole until clues came along suggesting otherwise.Science as an Iterative ProcessVery Large Array observations of candidate photoevaporative protoplanetary disks discovered in 2015. [Yusef-Zadeh et al. 2015]Longtime AAS Nova readers might recall that one of our very first highlights on the site, back in August of 2015, was of a study led by Farhad Yusef-Zadeh of Northwestern University. In this study, the authors presented observations of candidate proplyds photoevaporative protoplanetary disks suggestive of star formation within a few light-years of the galactic center.While these observations seemed to indicate that stars might, even now, be actively forming near Sgr A*, they werent conclusive evidence. Follow-up observations of these and other signs of possible star formation were hindered by the challenges of observing the distant and crowded galactic center.Two and a half years later, Yusef-Zadeh and collaborators are back now aided by high-resolution and high-sensitivity observations

  7. TEV GAMMA-RAY OBSERVATIONS OF THE GALACTIC CENTER RIDGE BY VERITAS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Archer, A.; Buckley, J. H.; Bugaev, V.

    2016-04-20

    The Galactic Center ridge has been observed extensively in the past by both GeV and TeV gamma-ray instruments revealing a wealth of structure, including a diffuse component and the point sources G0.9+0.1 (a composite supernova remnant) and Sgr A* (believed to be associated with the supermassive black hole located at the center of our Galaxy). Previous very high energy (VHE) gamma-ray observations with the H.E.S.S. experiment have also detected an extended TeV gamma-ray component along the Galactic plane in the >300 GeV gamma-ray regime. Here we report on observations of the Galactic Center ridge from 2010 to 2014 by themore » VERITAS telescope array in the >2 TeV energy range. From these observations we (1) provide improved measurements of the differential energy spectrum for Sgr A* in the >2 TeV gamma-ray regime, (2) provide a detection in the >2 TeV gamma-ray emission from the composite SNR G0.9+0.1 and an improved determination of its multi-TeV gamma-ray energy spectrum, and (3) report on the detection of VER J1746-289, a localized enhancement of >2 TeV gamma-ray emission along the Galactic plane.« less

  8. Accretion States of the Galactic Micro Quasar GRS 1758-258

    NASA Technical Reports Server (NTRS)

    Soria, Roberto; Mehdipour, Missagh; Broderick, Jess W.; Hao, JingFang; Hannikainen, Diana C.; Pottschmidt, Katja; Zhang, Shuang-Nan

    2011-01-01

    We present the results of a radio and X-ray study of the Galactic micro quasar GRS 1758-258, using unpublished archival data and new observations. We focus in particular on the 2000-2002 state transitions, and on its more quiet behaviour in 2008-2009. Our spectral and timing analysis of the XMM-Newton data shows that the source was in the canonical intermediate, soft and hard states in 2000 September 19,2001 March 22 and 2002 September 28, respectively. We estimate the disk size, luminosity and temperature, which are consistent with a black hole mass approx.10 Solar Mass, There is much overlap between the range of total X-ray luminosities (on average approx. 0.02L(sub Edd)) in the hard and soft states, and probably between the corresponding mass accretion rates; in fact, the hard state is often more luminous. The extended radio lobes seen in 1992 and 1997 are still present in 2008-2009. The 5-GHz radio core flux density has shown variability between approx. 0.1-0.5 mJy over the last two decades. This firmly places GRS 1758-258 in the radio-quiet sequence of Galactic black holes, in the radio/X-ray plane. We note that this dichotomy is similar to the dichotomy between the radio/X-ray sequences of Seyfert and radio galaxies. We propose that the different radio efficiency of the two sequences is due to relativistic electron/positron jets in radio-loud black holes, and sub-relativistic, thermally dominated outflows in radio-quiet sources.

  9. Galactic Center Fly-in

    NASA Astrophysics Data System (ADS)

    Hanson, A.; Fu, C.-W.; Li, Y.; Frisch, P. C.

    2006-06-01

    Beginning with the familiar constellations of the night sky, we present a multispectral zoom into the core of the Milky Way Galaxy. After traveling over seven orders of magnitude in spatial scale, we discover the violent phenomena occurring within one light year of the Black Hole at the Galactic Core. This animated zoom includes data with wavelengths from radio to X-ray, and is based entirely on data or models that have been aligned at all spatial scales in order to provide a single continuous visual trip into the Center of the Milky Way Galaxy. The visualization challenge has been to align and choreograph data acquired over a wide range of wavelength and spatial scales, and obtain a new scientific as well as educational perspective of the dense core of our Galaxy.

  10. Low-mass Active Galactic Nuclei on the Fundamental Plane of Black Hole Activity

    NASA Astrophysics Data System (ADS)

    Qian, Lei; Dong, Xiao-Bo; Xie, Fu-Guo; Liu, Wenjuan; Li, Di

    2018-06-01

    It is widely known that in active galactic nuclei (AGNs) and black hole X-ray binaries (BHXBs), there is a tight correlation among their radio luminosity (L R ), X-ray luminosity (L X), and BH mass ({M}BH}), the so-called “fundamental plane” (FP) of BH activity. Yet the supporting data are very limited in the {M}BH} regime between stellar mass (i.e., BHXBs) and 106.5 {M}ȯ (namely, the lower bound of supermassive BHs in common AGNs). In this work, we developed a new method to measure the 1.4 GHz flux directly from the images of the VLA FIRST survey, and apply it to the type-1 low-mass AGNs in the Dong et al. sample. As a result, we obtained 19 new low-mass AGNs for FP research with both {M}BH} estimates ({M}BH} ≈ 105.5–6.5 {M}ȯ ), reliable X-ray measurements, and (candidate) radio detections, tripling the number of such candidate sources in the literature. Most (if not all) of the low-mass AGNs follow the standard radio/X-ray correlation and the universal FP relation fitted with the combined data set of BHXBs and supermassive AGNs by Gültekin et al.; the consistency in the radio/X-ray correlation slope among those accretion systems supports the picture that the accretion and ejection (jet) processes are quite similar in all accretion systems of different {M}BH}. In view of the FP relation, we speculate that the radio loudness { \\mathcal R } (i.e., the luminosity ratio of the jet to the accretion disk) of AGNs depends not only on Eddington ratio, but probably also on {M}BH}.

  11. A 3.5-million Solar Masses Black Hole in the Centre of the Ultracompact Dwarf Galaxy Fornax UCD3

    NASA Astrophysics Data System (ADS)

    Afanasiev, Anton V.; Chilingarian, Igor V.; Mieske, Steffen; Voggel, Karina T.; Picotti, Arianna; Hilker, Michael; Seth, Anil; Neumayer, Nadine; Frank, Matthias; Romanowsky, Aaron J.; Hau, George; Baumgardt, Holger; Ahn, Christopher; Strader, Jay; den Brok, Mark; McDermid, Richard; Spitler, Lee; Brodie, Jean; Walsh, Jonelle L.

    2018-04-01

    The origin of ultracompact dwarfs (UCDs), a class of compact stellar systems discovered two decades ago, still remains a matter of debate. Recent discoveries of central supermassive black holes in UCDs likely inherited from their massive progenitor galaxies provide support for the tidal stripping hypothesis. At the same time, on statistical grounds, some massive UCDs might be representatives of the high luminosity tail of the globular cluster luminosity function. Here we present a detection of a 3.3^{+1.4}_{-1.2}× 10^6 M_{⊙} black hole (1σ uncertainty) in the centre of the UCD3 galaxy in the Fornax cluster, that corresponds to 4 per cent of its stellar mass. We performed isotropic Jeans dynamical modelling of UCD3 using internal kinematics derived from adaptive optics assisted observations with the SINFONI spectrograph and seeing limited data collected with the FLAMES spectrograph at the ESO VLT. We rule out the zero black hole mass at the 3σ confidence level when adopting a mass-to-light ratio inferred from stellar populations. This is the fourth supermassive black hole found in a UCD and the first one in the Fornax cluster. Similarly to other known UCDs that harbour black holes, UCD3 hosts metal rich stars enhanced in α-elements that supports the tidal stripping of a massive progenitor as its likely formation scenario. We estimate that up to 80 per cent of luminous UCDs in galaxy clusters host central black holes. This fraction should be lower for UCDs in groups, because their progenitors are more likely to be dwarf galaxies, which do not tend to host central black holes.

  12. A 3.5 million Solar masses black hole in the centre of the ultracompact dwarf galaxy fornax UCD3

    NASA Astrophysics Data System (ADS)

    Afanasiev, Anton V.; Chilingarian, Igor V.; Mieske, Steffen; Voggel, Karina T.; Picotti, Arianna; Hilker, Michael; Seth, Anil; Neumayer, Nadine; Frank, Matthias; Romanowsky, Aaron J.; Hau, George; Baumgardt, Holger; Ahn, Christopher; Strader, Jay; den Brok, Mark; McDermid, Richard; Spitler, Lee; Brodie, Jean; Walsh, Jonelle L.

    2018-07-01

    The origin of ultracompact dwarfs (UCDs), a class of compact stellar systems discovered two decades ago, still remains a matter of debate. Recent discoveries of central supermassive black holes in UCDs likely inherited from their massive progenitor galaxies provide support for the tidal stripping hypothesis. At the same time, on statistical grounds, some massive UCDs might be representatives of the high luminosity tail of the globular cluster luminosity function. Here we present a detection of a 3.3^{+1.4}_{-1.2}× 10^6 M_{⊙} black hole (1σ uncertainty) in the centre of the UCD3 galaxy in the Fornax cluster, which corresponds to 4 per cent of its stellar mass. We performed isotropic Jeans dynamical modelling of UCD3 using internal kinematics derived from adaptive optics-assisted observations with the SINFONI spectrograph and seeing limited data collected with the FLAMES spectrograph at the ESO VLT. We rule out the zero black hole mass at the 3σ confidence level when adopting a mass-to-light ratio inferred from stellar populations. This is the fourth supermassive black hole found in a UCD and the first one in the Fornax cluster. Similarly to other known UCDs that harbour black holes, UCD3 hosts metal rich stars enhanced in α-elements that support the tidal stripping of a massive progenitor as its likely formation scenario. We estimate that up to 80 per cent of luminous UCDs in galaxy clusters host central black holes. This fraction should be lower for UCDs in groups, because their progenitors are more likely to be dwarf galaxies, which do not usually host black holes massive enough to be detected.

  13. A close nuclear black-hole pair in the spiral galaxy NGC 3393.

    PubMed

    Fabbiano, G; Wang, Junfeng; Elvis, M; Risaliti, G

    2011-08-31

    The current picture of galaxy evolution advocates co-evolution of galaxies and their nuclear massive black holes, through accretion and galactic merging. Pairs of quasars, each with a massive black hole at the centre of its galaxy, have separations of 6,000 to 300,000 light years (refs 2 and 3; 1 parsec = 3.26 light years) and exemplify the first stages of this gravitational interaction. The final stages of the black-hole merging process, through binary black holes and final collapse into a single black hole with gravitational wave emission, are consistent with the sub-light-year separation inferred from the optical spectra and light-variability of two such quasars. The double active nuclei of a few nearby galaxies with disrupted morphology and intense star formation (such as NGC 6240 with a separation of about 2,600 light years and Mrk 463 with a separation of about 13,000 light years between the nuclei) demonstrate the importance of major mergers of equal-mass spiral galaxies in this evolution; such mergers lead to an elliptical galaxy, as in the case of the double-radio-nucleus elliptical galaxy 0402+379 (with a separation of about 24 light years between the nuclei). Minor mergers of a spiral galaxy with a smaller companion should be a more common occurrence, evolving into spiral galaxies with active massive black-hole pairs, but have hitherto not been seen. Here we report the presence of two active massive black holes, separated by about 490 light years, in the Seyfert galaxy NGC 3393 (50 Mpc, about 160 million light years). The regular spiral morphology and predominantly old circum-nuclear stellar population of this galaxy, and the closeness of the black holes embedded in the bulge, provide a hitherto missing observational point to the study of galaxy/black hole evolution. Comparison of our observations with current theoretical models of mergers suggests that they are the result of minor merger evolution. © 2011 Macmillan Publishers Limited. All rights

  14. Supermassive and super-hungry

    NASA Image and Video Library

    2016-01-04

    This NASA/ESA Hubble Space Telescope image shows the spiral galaxy NGC 4845, located over 65 million light-years away in the constellation of Virgo (The Virgin). The galaxy’s orientation clearly reveals the galaxy’s striking spiral structure: a flat and dust-mottled disc surrounding a bright galactic bulge. NGC 4845’s glowing centre hosts a gigantic version of a black hole, known as a supermassive black hole. The presence of a black hole in a distant galaxy like NGC 4845 can be inferred from its effect on the galaxy’s innermost stars; these stars experience a strong gravitational pull from the black hole and whizz around the galaxy’s centre much faster than otherwise. From investigating the motion of these central stars, astronomers can estimate the mass of the central black hole — for NGC 4845 this is estimated to be hundreds of thousands times heavier than the Sun. This same technique was also used to discover the supermassive black hole at the centre of our own Milky Way — Sagittarius A* — which hits some four million times the mass of the Sun (potw1340a). The galactic core of NGC 4845 is not just supermassive, but also super-hungry. In 2013 researchers were observing another galaxy when they noticed a violent flare at the centre of NGC 4845. The flare came from the central black hole tearing up and feeding off an object many times more massive than Jupiter. A brown dwarf or a large planet simply strayed too close and was devoured by the hungry core of NGC 4845.

  15. Building black holes: supercomputer cinema.

    PubMed

    Shapiro, S L; Teukolsky, S A

    1988-07-22

    A new computer code can solve Einstein's equations of general relativity for the dynamical evolution of a relativistic star cluster. The cluster may contain a large number of stars that move in a strong gravitational field at speeds approaching the speed of light. Unstable star clusters undergo catastrophic collapse to black holes. The collapse of an unstable cluster to a supermassive black hole at the center of a galaxy may explain the origin of quasars and active galactic nuclei. By means of a supercomputer simulation and color graphics, the whole process can be viewed in real time on a movie screen.

  16. Reflection features in the Galactic Center and past activity of Sagittarius A*

    NASA Astrophysics Data System (ADS)

    Clavel, Maïca; Terrier, Regis; Goldwurm, Andrea; Morris, Mark; Jin, Chichuan; Ponti, Gabriele; Chuard, Dimitri

    2016-07-01

    X-ray observations carried out over the past two decades have captured an increasing number of reflection features within the molecular clouds located in the inner regions of our Galaxy. The intensity of these structures along with the correlated variations which are detected over the entire central molecular zone are strong evidence that this diffuse emission is created by the past activity of the supermassive black hole at the Galactic center, Sagittarius A*. In particular, within the last centuries, Sgr A* is likely to have experienced several short outbursts during which the black hole was at least a million times brighter than today. However, the precise description of the corresponding past catastrophic events is difficult to assess, mainly because the properties of the reflection features that they create while propagating away from Sgr A* depend on the line-of-sight distance, the geometry, and the size of the reflecting clouds, all of which are poorly known. I will review the different attempts to reconstruct Sgr A*'s past activity from the constraints obtained through the observation of the reflection features in the Galactic center, including the current Chandra monitoring.

  17. CHARACTERIZATION OF A SAMPLE OF INTERMEDIATE-TYPE ACTIVE GALACTIC NUCLEI. II. HOST BULGE PROPERTIES AND BLACK HOLE MASS ESTIMATES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Benitez, Erika; Cruz-Gonzalez, Irene; Martinez, Benoni

    2013-02-15

    We present a study of the host bulge properties and their relations with the black hole mass for a sample of 10 intermediate-type active galactic nuclei (AGNs). Our sample consists mainly of early-type spirals, four of them hosting a bar. For 70{sup +10} {sub -17}% of the galaxies, we have been able to determine the type of the bulge, and find that these objects probably harbor a pseudobulge or a combination of classical bulge/pseudobulge, suggesting that pseudobulges might be frequent in intermediate-type AGNs. In our sample, 50% {+-} 14% of the objects show double-peaked emission lines. Therefore, narrow double-peaked emissionmore » lines seem to be frequent in galaxies harboring a pseudobulge or a combination of classical bulge/pseudobulge. Depending on the bulge type, we estimated the black hole mass using the corresponding M {sub BH}-{sigma}* relation and found them within a range of 5.69 {+-} 0.21 < log M {sup {sigma}}*{sub BH} < 8.09 {+-} 0.24. Comparing these M {sup {sigma}}*{sub BH} values with masses derived from the FWHM of H{beta} and the continuum luminosity at 5100 A from their SDSS-DR7 spectra (M {sub BH}), we find that 8 out of 10 (80{sup +7} {sub -17}%) galaxies have black hole masses that are compatible within a factor of 3. This result would support that M {sub BH} and M {sup {sigma}}*{sub BH} are the same for intermediate-type AGNs, as has been found for type 1 AGNs. However, when the type of the bulge is taken into account, only three out of the seven (43{sup +18} {sub -15}%) objects of the sample have their M {sup {sigma}}*{sub BH} and M {sub BH} compatible within 3{sigma} errors. We also find that estimations based on the M {sub BH}-{sigma}* relation for pseudobulges are not compatible in 50% {+-} 20% of the objects.« less

  18. VizieR Online Data Catalog: WATCHDOG: an all-sky database of Galactic BHXBs (Tetarenko+, 2016)

    NASA Astrophysics Data System (ADS)

    Tetarenko, B. E.; Sivakoff, G. R.; Heinke, C. O.; Gladstone, J. C.

    2016-03-01

    With the advent of more sensitive all-sky instruments, the transient universe is being probed in greater depth than ever before. Taking advantage of available resources, we have established a comprehensive database of black hole (and black hole candidate) X-ray binary (BHXB) activity between 1996 and 2015 as revealed by all-sky instruments, scanning surveys, and select narrow-field X-ray instruments on board the INTErnational Gamma-Ray Astrophysics Laboratory (INTEGRAL), Monitor of All-Sky X-ray Image (MAXI), Rossi X-ray Timing Explorer (RXTE), and Swift telescopes; the Whole-sky Alberta Time-resolved Comprehensive black-Hole Database Of the Galaxy or WATCHDOG. Over the past two decades, we have detected 132 transient outbursts, tracked and classified behavior occurring in 47 transient and 10 persistently accreting BHs, and performed a statistical study on a number of outburst properties across the Galactic population. We find that outbursts undergone by BHXBs that do not reach the thermally dominant accretion state make up a substantial fraction (~40%) of the Galactic transient BHXB outburst sample over the past ~20 years. Our findings suggest that this "hard-only" behavior, observed in transient and persistently accreting BHXBs, is neither a rare nor recent phenomenon and may be indicative of an underlying physical process, relatively common among binary BHs, involving the mass-transfer rate onto the BH remaining at a low level rather than increasing as the outburst evolves. We discuss how the larger number of these "hard-only" outbursts and detected outbursts in general have significant implications for both the luminosity function and mass-transfer history of the Galactic BHXB population. (9 data files).

  19. Active galactic nucleus outflows in galaxy discs

    NASA Astrophysics Data System (ADS)

    Hartwig, Tilman; Volonteri, Marta; Dashyan, Gohar

    2018-05-01

    Galactic outflows, driven by active galactic nuclei (AGNs), play a crucial role in galaxy formation and in the self-regulated growth of supermassive black holes (BHs). AGN feedback couples to and affects gas, rather than stars, and in many, if not most, gas-rich galaxies cold gas is rotationally supported and settles in a disc. We present a 2D analytical model for AGN-driven outflows in a gaseous disc and demonstrate the main improvements, compared to existing 1D solutions. We find significant differences for the outflow dynamics and wind efficiency. The outflow is energy-driven due to inefficient cooling up to a certain AGN luminosity (˜1043 erg s-1 in our fiducial model), above which the outflow remains momentum-driven in the disc up to galactic scales. We reproduce results of 3D simulations that gas is preferentially ejected perpendicular to the disc and find that the fraction of ejected interstellar medium is lower than in 1D models. The recovery time of gas in the disc, defined as the free-fall time from the radius to which the AGN pushes the ISM at most, is remarkably short, of the order 1 Myr. This indicates that AGN-driven winds cannot suppress BH growth for long. Without the inclusion of supernova feedback, we find a scaling of the BH mass with the halo velocity dispersion of MBH ∝ σ4.8.

  20. NuSTAR Observations of Two New Black Hole X-ray Binary Candidates within 1 pc of Sgr A*

    NASA Astrophysics Data System (ADS)

    Hord, Benjamin; Hailey, Charles; Mori, Kaya; Mandel, Shifra

    2018-01-01

    Remarkably, two new X-ray transients were discovered in outburst within ~1 pc of the Galactic Center by the Swift X-ray Telescope in the first half of 2016. A few weeks after each outburst began, NuSTAR ToO observations were triggered for both of the objects. These sources have no known counterparts at other energies. Both objects exhibit relativistically broadened Fe lines in their spectra and possible quasi-periodic oscillations (QPO) in their power spectra, which are features seen in many black hole X-ray binaries. Combined with the fact that there have been no previously observed large outbursts at these positions over the decade of the Swift X-ray Telescope galactic center monitoring campaign, these sources make for prime black hole binary candidates (BHC) rather than neutron star low-mass X-ray binaries (NS-LMXB), which have a known short (<~5 year) recurrence time. We will present 3-79 keV NuSTAR spectra and timing analysis of these sources that supports a black hole binary interpretation over a neutron star scenario. These new BHC, combined with at least one other previously discovered BHC near the Galactic Center, hint at a potentially substantive black hole population in the vicinity of the supermassive black hole at Sgr A*.

  1. Habitable Evaporated Cores and the Occurrence of Panspermia Near the Galactic Center

    NASA Astrophysics Data System (ADS)

    Chen, Howard; Forbes, John C.; Loeb, Abraham

    2018-03-01

    Black holes growing via the accretion of gas emit radiation that can photoevaporate the atmospheres of nearby planets. Here, we couple planetary structural evolution models of sub-Neptune-mass planets to the growth of the Milky Way’s central supermassive black hole, Sgr A*, and investigate how planetary evolution is influenced by quasar activity. We find that, out to ∼20 pc from Sgr A*, the XUV flux emitted during its quasar phase can remove several percent of a planet’s H/He envelope by mass; in many cases, this removal results in bare rocky cores, many of which are situated in the habitable zones of G-type stars. Near the Galactic Center, the erosion of sub-Neptune-sized planets may be one of the most prevalent channels by which terrestrial super-Earths are created. As such, the planet population demographics may be quite different close to Sgr A* than in the galactic outskirts. The high stellar densities in this region (about seven orders of magnitude greater than the solar neighborhood) imply that the distance between neighboring rocky worlds is short (500–5000 au). The proximity between potentially habitable terrestrial planets may enable the onset of widespread interstellar panspermia near the nuclei of our galaxy. More generally, we predict these phenomena to be ubiquitous for planets in nuclear star clusters and ultra-compact dwarfs. Globular clusters, on the other hand, are less affected by the central black holes.

  2. A polarized fast radio burst at low Galactic latitude

    NASA Astrophysics Data System (ADS)

    Petroff, E.; Burke-Spolaor, S.; Keane, E. F.; McLaughlin, M. A.; Miller, R.; Andreoni, I.; Bailes, M.; Barr, E. D.; Bernard, S. R.; Bhandari, S.; Bhat, N. D. R.; Burgay, M.; Caleb, M.; Champion, D.; Chandra, P.; Cooke, J.; Dhillon, V. S.; Farnes, J. S.; Hardy, L. K.; Jaroenjittichai, P.; Johnston, S.; Kasliwal, M.; Kramer, M.; Littlefair, S. P.; Macquart, J. P.; Mickaliger, M.; Possenti, A.; Pritchard, T.; Ravi, V.; Rest, A.; Rowlinson, A.; Sawangwit, U.; Stappers, B.; Sullivan, M.; Tiburzi, C.; van Straten, W.; ANTARES Collaboration; Albert, A.; André, M.; Anghinolfi, M.; Anton, G.; Ardid, M.; Aubert, J.-J.; Avgitas, T.; Baret, B.; Barrios-Martí, J.; Basa, S.; Bertin, V.; Biagi, S.; Bormuth, R.; Bourret, S.; Bouwhuis, M. C.; Bruijn, R.; Brunner, J.; Busto, J.; Capone, A.; Caramete, L.; Carr, J.; Celli, S.; Chiarusi, T.; Circella, M.; Coelho, J. A. B.; Coleiro, A.; Coniglione, R.; Costantini, H.; Coyle, P.; Creusot, A.; Deschamps, A.; de Bonis, G.; Distefano, C.; di Palma, I.; Donzaud, C.; Dornic, D.; Drouhin, D.; Eberl, T.; El Bojaddaini, I.; Elsässer, D.; Enzenhöfer, A.; Felis, I.; Fusco, L. A.; Galatà, S.; Gay, P.; Geißelsöder, S.; Geyer, K.; Giordano, V.; Gleixner, A.; Glotin, H.; Grégoire, T.; Gracia-Ruiz, R.; Graf, K.; Hallmann, S.; van Haren, H.; Heijboer, A. J.; Hello, Y.; Hernández-Rey, J. J.; Hößl, J.; Hofestädt, J.; Hugon, C.; Illuminati, G.; James, C. W.; de Jong, M.; Jongen, M.; Kadler, M.; Kalekin, O.; Katz, U.; Kießling, D.; Kouchner, A.; Kreter, M.; Kreykenbohm, I.; Kulikovskiy, V.; Lachaud, C.; Lahmann, R.; Lefèvre, D.; Leonora, E.; Lotze, M.; Loucatos, S.; Marcelin, M.; Margiotta, A.; Marinelli, A.; Martínez-Mora, J. A.; Mathieu, A.; Mele, R.; Melis, K.; Michael, T.; Migliozzi, P.; Moussa, A.; Mueller, C.; Nezri, E.; Pǎvǎlaş, G. E.; Pellegrino, C.; Perrina, C.; Piattelli, P.; Popa, V.; Pradier, T.; Quinn, L.; Racca, C.; Riccobene, G.; Roensch, K.; Sánchez-Losa, A.; Saldaña, M.; Salvadori, I.; Samtleben, D. F. E.; Sanguineti, M.; Sapienza, P.; Schnabel, J.; Seitz, T.; Sieger, C.; Spurio, M.; Stolarczyk, Th.; Taiuti, M.; Tayalati, Y.; Trovato, A.; Tselengidou, M.; Turpin, D.; Tönnis, C.; Vallage, B.; Vallée, C.; van Elewyck, V.; Vivolo, D.; Vizzoca, A.; Wagner, S.; Wilms, J.; Zornoza, J. D.; Zúñiga, J.; H.E.S.S. Collaboration; Abdalla, H.; Abramowski, A.; Aharonian, F.; Ait Benkhali, F.; Akhperjanian, A. G.; Andersson, T.; Angüner, E. O.; Arrieta, M.; Aubert, P.; Backes, M.; Balzer, A.; Barnard, M.; Becherini, Y.; Tjus, J. Becker; Berge, D.; Bernhard, S.; Bernlöhr, K.; Blackwell, R.; Böttcher, M.; Boisson, C.; Bolmont, J.; Bordas, P.; Bregeon, J.; Brun, F.; Brun, P.; Bryan, M.; Bulik, T.; Capasso, M.; Casanova, S.; Cerruti, M.; Chakraborty, N.; Chalme-Calvet, R.; Chaves, R. C. G.; Chen, A.; Chevalier, J.; Chrétien, M.; Colafrancesco, S.; Cologna, G.; Condon, B.; Conrad, J.; Cui, Y.; Davids, I. D.; Decock, J.; Degrange, B.; Deil, C.; Devin, J.; Dewilt, P.; Dirson, L.; Djannati-Ataï, A.; Domainko, W.; Donath, A.; Drury, L. O'c.; Dubus, G.; Dutson, K.; Dyks, J.; Edwards, T.; Egberts, K.; Eger, P.; Ernenwein, J.-P.; Eschbach, S.; Farnier, C.; Fegan, S.; Fernandes, M. V.; Fiasson, A.; Fontaine, G.; Förster, A.; Funk, S.; Füßling, M.; Gabici, S.; Gajdus, M.; Gallant, Y. A.; Garrigoux, T.; Giavitto, G.; Giebels, B.; Glicenstein, J. F.; Gottschall, D.; Goyal, A.; Grondin, M.-H.; Hadasch, D.; Hahn, J.; Haupt, M.; Hawkes, J.; Heinzelmann, G.; Henri, G.; Hermann, G.; Hervet, O.; Hinton, J. A.; Hofmann, W.; Hoischen, C.; Holler, M.; Horns, D.; Ivascenko, A.; Jacholkowska, A.; Jamrozy, M.; Janiak, M.; Jankowsky, D.; Jankowsky, F.; Jingo, M.; Jogler, T.; Jouvin, L.; Jung-Richardt, I.; Kastendieck, M. A.; Katarzyński, K.; Kerszberg, D.; Khélifi, B.; Kieffer, M.; King, J.; Klepser, S.; Klochkov, D.; Kluźniak, W.; Kolitzus, D.; Komin, Nu.; Kosack, K.; Krakau, S.; Kraus, M.; Krayzel, F.; Krüger, P. P.; Laffon, H.; Lamanna, G.; Lau, J.; Lees, J.-P.; Lefaucheur, J.; Lefranc, V.; Lemière, A.; Lemoine-Goumard, M.; Lenain, J.-P.; Leser, E.; Lohse, T.; Lorentz, M.; Liu, R.; López-Coto, R.; Lypova, I.; Marandon, V.; Marcowith, A.; Mariaud, C.; Marx, R.; Maurin, G.; Maxted, N.; Mayer, M.; Meintjes, P. J.; Meyer, M.; Mitchell, A. M. W.; Moderski, R.; Mohamed, M.; Mohrmann, L.; Morâ, K.; Moulin, E.; Murach, T.; de Naurois, M.; Niederwanger, F.; Niemiec, J.; Oakes, L.; O'Brien, P.; Odaka, H.; Öttl, S.; Ohm, S.; Ostrowski, M.; Oya, I.; Padovani, M.; Panter, M.; Parsons, R. D.; Pekeur, N. W.; Pelletier, G.; Perennes, C.; Petrucci, P.-O.; Peyaud, B.; Piel, Q.; Pita, S.; Poon, H.; Prokhorov, D.; Prokoph, H.; Pühlhofer, G.; Punch, M.; Quirrenbach, A.; Raab, S.; Reimer, A.; Reimer, O.; Renaud, M.; Reyes, R. De Los; Rieger, F.; Romoli, C.; Rosier-Lees, S.; Rowell, G.; Rudak, B.; Rulten, C. B.; Sahakian, V.; Salek, D.; Sanchez, D. A.; Santangelo, A.; Sasaki, M.; Schlickeiser, R.; Schulz, A.; Schüssler, F.; Schwanke, U.; Schwemmer, S.; Settimo, M.; Seyffert, A. S.; Shafi, N.; Shilon, I.; Simoni, R.; Sol, H.; Spanier, F.; Spengler, G.; Spies, F.; Stawarz, Ł.; Steenkamp, R.; Stegmann, C.; Stinzing, F.; Stycz, K.; Sushch, I.; Tavernet, J.-P.; Tavernier, T.; Taylor, A. M.; Terrier, R.; Tibaldo, L.; Tiziani, D.; Tluczykont, M.; Trichard, C.; Tuffs, R.; Uchiyama, Y.; Walt, D. J. Van Der; van Eldik, C.; van Rensburg, C.; van Soelen, B.; Vasileiadis, G.; Veh, J.; Venter, C.; Viana, A.; Vincent, P.; Vink, J.; Voisin, F.; Völk, H. J.; Vuillaume, T.; Wadiasingh, Z.; Wagner, S. J.; Wagner, P.; Wagner, R. M.; White, R.; Wierzcholska, A.; Willmann, P.; Wörnlein, A.; Wouters, D.; Yang, R.; Zabalza, V.; Zaborov, D.; Zacharias, M.; Zanin, R.; Zdziarski, A. A.; Zech, A.; Zefi, F.; Ziegler, A.; Żywucka, N.

    2017-08-01

    We report on the discovery of a new fast radio burst (FRB), FRB 150215, with the Parkes radio telescope on 2015 February 15. The burst was detected in real time with a dispersion measure (DM) of 1105.6 ± 0.8 pc cm-3, a pulse duration of 2.8^{+1.2}_{-0.5} ms, and a measured peak flux density assuming that the burst was at beam centre of 0.7^{+0.2}_{-0.1} Jy. The FRB originated at a Galactic longitude and latitude of 24.66°, 5.28° and 25° away from the Galactic Center. The burst was found to be 43 ± 5 per cent linearly polarized with a rotation measure (RM) in the range -9 < RM < 12 rad m-2 (95 per cent confidence level), consistent with zero. The burst was followed up with 11 telescopes to search for radio, optical, X-ray, γ-ray and neutrino emission. Neither transient nor variable emission was found to be associated with the burst and no repeat pulses have been observed in 17.25 h of observing. The sightline to the burst is close to the Galactic plane and the observed physical properties of FRB 150215 demonstrate the existence of sight lines of anomalously low RM for a given electron column density. The Galactic RM foreground may approach a null value due to magnetic field reversals along the line of sight, a decreased total electron column density from the Milky Way, or some combination of these effects. A lower Galactic DM contribution might explain why this burst was detectable whereas previous searches at low latitude have had lower detection rates than those out of the plane.

  3. Lilienfeld Prize Talk: How do massive black holes grow?

    NASA Astrophysics Data System (ADS)

    Rees, Martin

    2017-01-01

    The supermassive black holes in galactic nuclei evolve in symbiosis with their hosts. This paper will review how they grow, with particular emphasis on mergers, and on the complex phenomena associated with the tidal capture and disruption of stars.

  4. Messages from the Abyss

    NASA Astrophysics Data System (ADS)

    2003-10-01

    VLT Observes Infrared Flares from Black Hole at Galactic Centre [1] Summary An international team of astronomers led by researchers at the Max-Planck Institute for Extraterrestrial Physics (MPE) in Garching (Germany) [2] has discovered powerful infrared flares from the supermassive black hole at the heart of the Milky Way . The signals, rapidly flickering on a scale of minutes, must come from hot gas falling into the black hole, just before it disappears below the "event horizon" of the monster. The new observations strongly suggest that the Galactic Centre black hole rotates rapidly . Never before have scientists been able to study phenomena in the immediate neighbourhood of a black hole in such a detail. The new result is based on observations obtained with the NACO Adaptive Optics instrument on the 8.2-m VLT YEPUN telescope and is published in this week's edition of the research journal Nature. PR Photo 29a/03 : A powerful flare from the black hole at the galactic centre. PR Photo 29b/03 : Light curve of the flare . PR Video 01/03 : A powerful flare from the black hole at the galactic centre . Flashes of light from disappearing matter ESO PR Photo 29a/03 ESO PR Photo 29a/03 [Preview - JPEG: 650 x 400 pix - 118k [Normal - JPEG: 1300 x 800 pix - 370k] ESO PR Video Clip 01/03 [MPEG] ESO PR Video Clip 01/03 [MPEG Video; 29X k] Captions : PR Photo 29a/03 and PR Video Clip 01/03 show the detection of a powerful flare from the centre of the Milky Way galaxy. These and other adaptive optics (AO) images (with resolution 0.040 arcsec in the near-infrared H-band at wavelength 1.65 µm) of the central region of the Milky Way were obtained with the NACO imager on the 8.2-m VLT YEPUN telescope at the ESO Paranal Observatory on May 9, 2003. The image covers a sky area of about 1 x 1 arcsec, corresponding to about 45 light-days at the distance of the Galactic Centre. The time (in minutes from the beginning of the data set at 6h59m24s (UT) on May 9, 2003) is shown at the upper

  5. Graviton mass bounds from an analysis of bright star trajectories at the Galactic Center

    NASA Astrophysics Data System (ADS)

    Zakharov, Alexander; Jovanović, Predrag; Borka, Dusko; Jovanović, Vesna Borka

    2017-03-01

    In February 2016 the LIGO & VIRGO collaboration reported the discovery of gravitational waves in merging black holes, therefore, the team confirmed GR predictions about an existence of black holes and gravitational waves in the strong gravitational field limit. Moreover, in their papers the joint LIGO & VIRGO team presented an upper limit on graviton mass such as mg < 1.2 × 10-22 eV (Abbott et al. 2016). So, the authors concluded that their observational data do not show any violation of classical general relativity. We show that an analysis of bright star trajectories could constrain graviton mass with a comparable accuracy with accuracies reached with gravitational wave interferometers and the estimate is consistent with the one obtained by the LIGO & VIRGO collaboration. This analysis gives an opportunity to treat observations of bright stars near the Galactic Center as a useful tool to obtain constraints on the fundamental gravity law such as modifications of the Newton gravity law in a weak field approximation. In that way, based on a potential reconstruction at the Galactic Center we obtain bounds on a graviton mass.

  6. Revisiting galactic black hole binary GX 339-4 by using 2007 – 2014 Swift XRT observations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Azizi, Febrie Ahmad; Vierdayanti, Kiki; Putra, Mahasena

    2015-09-30

    This work aims to study the X-ray properties of the galactic black hole binary GX 339-4. Focus of the study is on exploration of data from Swift-XRT in exclusively photon-counting mode. We use data from 2007 up to August 2014, which contain about 40 pointing observations with level 1 data. The flux of GX 339-4 varies in a factor of 100 during this period of observations. For the purpose of this work, we also try to develop a system to conduct standard SWIFT XRT data reduction automatically, in order to greatly reduce time when working with data bulk, which producesmore » images, lightcurves as well as spectra. We also develop another system to conduct fitting of bulk spectral data with a two-component model, disk blackbody and power-law. The fitting results show that no data have a reduced chi-squared > 2. The fraction of the disk to total flux and the power-law to total flux range from 0.00389 – 0.994 and 0.00605 – 0.996, respectively. From the analysis of the disk component, we obtain the value of the innermost disk radius that does not show any large scale truncation which is in a good agreement with a previous study that used 2007 – 2011 Swift-XRT data, indicating that the systems we developed work properly.« less

  7. Super-massive binary black holes and emission lines in active galactic nuclei

    NASA Astrophysics Data System (ADS)

    Popović, Luka Č.

    2012-02-01

    It is now agreed that mergers play an essential role in the evolution of galaxies and therefore that mergers of supermassive black holes (SMBHs) must have been common. We see the consequences of past supermassive binary black holes (SMBs) in the light profiles of so-called 'core ellipticals' and a small number of SMBs have been detected. However, the evolution of SMBs is poorly understood. Theory predicts that SMBs should spend a substantial amount of time orbiting at velocities of a few thousand kilometers per second. If the SMBs are surrounded by gas observational effects might be expected from accretion onto one or both of the SMBHs. This could result in a binary Active Galactic Nucleus (AGN) system. Like a single AGN, such a system would emit a broad band electromagnetic spectrum and broad and narrow emission lines. The broad emission spectral lines emitted from AGNs are our main probe of the geometry and physics of the broad line region (BLR) close to the SMBH. There is a group of AGNs that emit very broad and complex line profiles, showing two displaced peaks, one blueshifted and one redshifted from the systemic velocity defined by the narrow lines, or a single such peak. It has been proposed that such line shapes could indicate an SMB system. We discuss here how the presence of an SMB will affect the BLRs of AGNs and what the observational consequences might be. We review previous claims of SMBs based on broad line profiles and find that they may have non-SMB explanations as a consequence of a complex BLR structure. Because of these effects it is very hard to put limits on the number of SMBs from broad line profiles. It is still possible, however, that unusual broad line profiles in combination with other observational effects (line ratios, quasi-periodical oscillations, spectropolarimetry, etc.) could be used for SMBs detection. Some narrow lines (e.g., [O III]) in some AGNs show a double-peaked profile. Such profiles can be caused by streams in the Narrow

  8. Galactic gamma-ray observations and galactic structure

    NASA Technical Reports Server (NTRS)

    Stecker, F. W.

    1975-01-01

    Recent observations of gamma-rays originating in the galactic disk together with radio observations, support an emerging picture of the overall structure of our galaxy with higher interstellar gas densities and star formation rates in a region which corresponds to that of the inner arms. The emerging picture is one where molecular clouds make up the dominant constituent of the interstellar gas in the inner galaxy and play a key role in accounting for the gamma-rays and phenomena associated with the production of young stars and other population 1 objects. In this picture, cosmic rays are associated with supernovae and are primarily of galactic origin. These newly observed phenomena can be understood as consequences of the density wave theories of spiral structure. Based on these new developments, the suggestion is made that a new galactic population class, Population O, be added to the standard Populations 1 and 2 in order to recognize important differences in dynamics and distribution between diffuse galactic H1 and interstellar molecular clouds.

  9. Magnetic fields threading black holes: restrictions from general relativity and implications for astrophysical black holes

    NASA Astrophysics Data System (ADS)

    Garofalo, David

    2017-07-01

    The idea that black hole spin is instrumental in the generation of powerful jets in active galactic nuclei and X-ray binaries is arguably the most contentious claim in black hole astrophysics. Because jets are thought to originate in the context of electromagnetism, and the modeling of Maxwell fields in curved spacetime around black holes is challenging, various approximations are made in numerical simulations that fall under the guise of `ideal magnetohydrodynamics'. But the simplifications of this framework may struggle to capture relevant details of real astrophysical environments near black holes. In this work, we highlight tension between analytic and numerical results, specifically between the analytically derived conserved Noether currents for rotating black hole spacetimes and the results of general relativistic numerical simulations (GRMHD). While we cannot definitively attribute the issue to any specific approximation used in the numerical schemes, there seem to be natural candidates, which we explore. GRMHD notwithstanding, if electromagnetic fields around rotating black holes are brought to the hole by accretion, we show from first principles that prograde accreting disks likely experience weaker large-scale black hole-threading fields, implying weaker jets than in retrograde configurations.

  10. Hypervelocity stars from young stellar clusters in the Galactic Centre

    NASA Astrophysics Data System (ADS)

    Fragione, G.; Capuzzo-Dolcetta, R.; Kroupa, P.

    2017-05-01

    The enormous velocities of the so-called hypervelocity stars (HVSs) derive, likely, from close interactions with massive black holes, binary stars encounters or supernova explosions. In this paper, we investigate the origin of HVSs as consequence of the close interaction between the Milky Way central massive black hole and a passing-by young stellar cluster. We found that both single and binary HVSs may be generated in a burst-like event, as the cluster passes near the orbital pericentre. High-velocity stars will move close to the initial cluster orbital plane and in the direction of the cluster orbital motion at the pericentre. The binary fraction of these HVS jets depends on the primordial binary fraction in the young cluster. The level of initial mass segregation determines the value of the average mass of the ejected stars. Some binary stars will merge, continuing their travel across and out of the Galaxy as blue stragglers.

  11. General-relativistic rotation: Self-gravitating fluid tori in motion around black holes

    NASA Astrophysics Data System (ADS)

    Karkowski, Janusz; Kulczycki, Wojciech; Mach, Patryk; Malec, Edward; Odrzywołek, Andrzej; Piróg, Michał

    2018-05-01

    We obtain from the first principles a general-relativistic Keplerian rotation law for self-gravitating disks around spinning black holes. This is an extension of a former rotation law that was designed mainly for toroids around spinless black holes. We integrate numerically axial stationary Einstein equations with self-gravitating disks around spinless or spinning black holes; that includes the first ever integration of the Keplerian selfgravitating tori. This construction can be used for the description of tight black hole-torus systems produced during coalescences of two neutron stars or modelling of compact active galactic nuclei.

  12. Adiabatic growth of a black hole in a rotating stellar system

    NASA Technical Reports Server (NTRS)

    Lee, Man Hoi; Goodman, Jeremy

    1989-01-01

    The consequences of slowly adding a massive black hole to the center of a rotating stellar system are considered. Although both the rotation velocity V and the velocity dispersion sigma increase when the black hole is added, the rotation velocity increases faster. The effect goes in the right direction but is too gradual to explain the V/sigma profiles recently observed in several galactic nuclei.

  13. Magnetic activity in the Galactic Centre region - fast downflows along rising magnetic loops

    NASA Astrophysics Data System (ADS)

    Kakiuchi, Kensuke; Suzuki, Takeru K.; Fukui, Yasuo; Torii, Kazufumi; Enokiya, Rei; Machida, Mami; Matsumoto, Ryoji

    2018-06-01

    We studied roles of the magnetic field on the gas dynamics in the Galactic bulge by a three-dimensional global magnetohydrodynamical simulation data, particularly focusing on vertical flows that are ubiquitously excited by magnetic activity. In local regions where the magnetic field is stronger, it is frequently seen that fast downflows slide along inclined magnetic field lines that are associated with buoyantly rising magnetic loops. The vertical velocity of these downflows reaches ˜100 km s-1 near the footpoint of the loops by the gravitational acceleration towards the Galactic plane. The two footpoints of rising magnetic loops are generally located at different radial locations and the field lines are deformed by the differential rotation. The angular momentum is transported along the field lines, and the radial force balance breaks down. As a result, a fast downflow is often observed only at the one footpoint located at the inner radial position. The fast downflow compresses the gas to form a dense region near the footpoint, which will be important in star formation afterwards. Furthermore, the horizontal components of the velocity are also fast near the footpoint because the downflow is accelerated along the magnetic sliding slope. As a result, the high-velocity flow creates various characteristic features in a simulated position-velocity diagram, depending on the viewing angle.

  14. REVIEWS OF TOPICAL PROBLEMS: Birth and life of massive black holes

    NASA Astrophysics Data System (ADS)

    Dokuchaev, V. I.

    1991-06-01

    The problems of massive black holes in galactic nuclei of different types are reviewed. The dynamical evolution of compact star systems ends naturally in a gigantic concentrated mass of gas, containing an admixture of surviving stars, that unavoidably collapses into a black hole. The subsequent joint evolution of the remnant star system with a massive black hole at the center leads either to the phenomenon of a bright central source in the nuclei of active galaxies and quasars or to the opposite case of a "dead" frozen black hole in the nucleus of a normal galaxy.

  15. Few and far between

    NASA Astrophysics Data System (ADS)

    Liu, Kuo; Eatough, Ralph

    2017-12-01

    Pulsars — fast-spinning neutron stars — are precision clocks provided by nature. Finding pulsars in the Galactic Centre orbiting Sagittarius A*, the closest supermassive black hole to the Earth, will offer unprecedented opportunities to test general relativity and its alternatives.

  16. Offset active galactic nuclei as tracers of galaxy mergers and supermassive black hole growth

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Comerford, Julia M.; Greene, Jenny E.

    2014-07-10

    Offset active galactic nuclei (AGNs) are AGNs that are in ongoing galaxy mergers, which produce kinematic offsets in the AGNs relative to their host galaxies. Offset AGNs are also close relatives of dual AGNs. We conduct a systematic search for offset AGNs in the Sloan Digital Sky Survey by selecting AGN emission lines that exhibit statistically significant line-of-sight velocity offsets relative to systemic. From a parent sample of 18,314 Type 2 AGNs at z < 0.21, we identify 351 offset AGN candidates with velocity offsets of 50 km s{sup –1} < |Δv| < 410 km s{sup –1}. When we accountmore » for projection effects in the observed velocities, we estimate that 4%-8% of AGNs are offset AGNs. We designed our selection criteria to bypass velocity offsets produced by rotating gas disks, AGN outflows, and gravitational recoil of supermassive black holes, but follow-up observations are still required to confirm our candidates as offset AGNs. We find that the fraction of AGNs that are offset candidates increases with AGN bolometric luminosity, from 0.7% to 6% over the luminosity range 43 < log (L{sub bol}) [erg s{sup –1}] <46. If these candidates are shown to be bona fide offset AGNs, then this would be direct observational evidence that galaxy mergers preferentially trigger high-luminosity AGNs. Finally, we find that the fraction of AGNs that are offset AGN candidates increases from 1.9% at z = 0.1 to 32% at z = 0.7, in step with the growth in the galaxy merger fraction over the same redshift range.« less

  17. Effects of interstellar dust scattering on the X-ray eclipses of the LMXB AX J1745.6-2901 in the Galactic Centre

    NASA Astrophysics Data System (ADS)

    Jin, Chichuan; Ponti, Gabriele; Haberl, Frank; Smith, Randall; Valencic, Lynne

    2018-07-01

    AX J1745.6-2901 is an eclipsing low-mass X-ray binary in the Galactic Centre (GC). It shows significant X-ray excess emission during the eclipse phase, and its eclipse light curve shows an asymmetric shape. We use archival XMM-Newton and Chandra observations to study the origin of these peculiar X-ray eclipsing phenomena. We find that the shape of the observed X-ray eclipse light curves depends on both photon energy and the shape of the source extraction region, and also shows differences between the two instruments. By performing detailed simulations for the time-dependent X-ray dust-scattering halo, as well as directly modelling the observed eclipse and non-eclipse halo profiles of AX J1745.6-2901, we obtained solid evidence that its peculiar eclipse phenomena are indeed caused by the X-ray dust scattering in multiple foreground dust layers along the line of sight (LOS). The apparent dependence on the instruments is caused by different instrumental point spread functions. Our results can be used to assess the influence of dust-scattering in other eclipsing X-ray sources, and raise the importance of considering the timing effects of dust-scattering halo when studying the variability of other X-ray sources in the GC, such as Sgr A⋆. Moreover, our study of halo eclipse reinforces the existence of a dust layer local to AX J1745.6-2901 as reported by Jin et al. (2017), as well as identifying another dust layer within a few hundred parsecs to the Earth, containing up to several tens of percent LOS dust, which is likely to be associated with the molecular clouds in the Solar neighbourhood. The remaining LOS dust is likely to be associated with the molecular clouds located in the Galactic disc in-between.

  18. Flows of X-ray gas reveal the disruption of a star by a massive black hole.

    PubMed

    Miller, Jon M; Kaastra, Jelle S; Miller, M Coleman; Reynolds, Mark T; Brown, Gregory; Cenko, S Bradley; Drake, Jeremy J; Gezari, Suvi; Guillochon, James; Gultekin, Kayhan; Irwin, Jimmy; Levan, Andrew; Maitra, Dipankar; Maksym, W Peter; Mushotzky, Richard; O'Brien, Paul; Paerels, Frits; de Plaa, Jelle; Ramirez-Ruiz, Enrico; Strohmayer, Tod; Tanvir, Nial

    2015-10-22

    Tidal forces close to massive black holes can violently disrupt stars that make a close approach. These extreme events are discovered via bright X-ray and optical/ultraviolet flares in galactic centres. Prior studies based on modelling decaying flux trends have been able to estimate broad properties, such as the mass accretion rate. Here we report the detection of flows of hot, ionized gas in high-resolution X-ray spectra of a nearby tidal disruption event, ASASSN-14li in the galaxy PGC 043234. Variability within the absorption-dominated spectra indicates that the gas is relatively close to the black hole. Narrow linewidths indicate that the gas does not stretch over a large range of radii, giving a low volume filling factor. Modest outflow speeds of a few hundred kilometres per second are observed; these are below the escape speed from the radius set by variability. The gas flow is consistent with a rotating wind from the inner, super-Eddington region of a nascent accretion disk, or with a filament of disrupted stellar gas near to the apocentre of an elliptical orbit. Flows of this sort are predicted by fundamental analytical theory and more recent numerical simulations.

  19. Diffuse X-ray sky in the Galactic center

    NASA Astrophysics Data System (ADS)

    Koyama, Katsuji

    2018-01-01

    The Galactic diffuse X-ray emission (GDXE) in the Milky Way Galaxy is spatially and spectrally decomposed into the Galactic center X-ray emission (GCXE), the Galactic ridge X-ray emission (GRXE), and the Galactic bulge X-ray emission (GBXE). The X-ray spectra of the GDXE are characterized by the strong K-shell lines of the highly ionized atoms, and the brightest lines are the K-shell transition (principal quantum number transition of n = 2 → 1) of neutral iron (Fe I-Kα), He-like iron (Fe XXV-Heα), and He-like sulfur (S XV-Heα). Accordingly, the GDXE is composed of a high-temperature plasma of ˜7 keV (HTP) and a low-temperature plasma of ˜1 keV, which emit the Fe XXV-Heα and S XV-Heα lines, respectively. The Fe I-Kα line is emitted from nearly neutral irons, and hence the third component of the GDXE is a cool gas (CG). The Fe I-Kα distribution in the GCXE region is clumpy (Fe I-Kα clump), associated with giant molecular cloud (MC) complexes (Sagittarius A, B, C, D, and E) in the central molecular zone. The origin of the Fe I-Kα clumps is the fluorescence and Thomson scattering from the MCs irradiated by past big flares of the supermassive black hole Sagittarius A*. The scale heights and equivalent widths of the Fe I-Kα, Fe XXV-Heα, and Fe XXVI-Lyα (n = 2 → 1 transition of H-like iron) lines are different among the GCXE, GBXE, and GRXE. Therefore, their structures and origins are separately examined. This paper gives an overview of the research history and the present understandings of the GDXE, while in particular focusing on the origin of the HTP and CG in the GCXE.

  20. Supermassive Black Holes with High Accretion Rates in Active Galactic Nuclei. IX. 10 New Observations of Reverberation Mapping and Shortened Hβ Lags

    NASA Astrophysics Data System (ADS)

    Du, Pu; Zhang, Zhi-Xiang; Wang, Kai; Huang, Ying-Ke; Zhang, Yue; Lu, Kai-Xing; Hu, Chen; Li, Yan-Rong; Bai, Jin-Ming; Bian, Wei-Hao; Yuan, Ye-Fei; Ho, Luis C.; Wang, Jian-Min; SEAMBH collaboration

    2018-03-01

    As one paper in a series reporting on a large reverberation mapping campaign of super-Eddington accreting massive black holes (SEAMBHs) in active galactic nuclei (AGNs), we present the results of 10 SEAMBHs monitored spectroscopically during 2015–2017. Six of them are observed for the first time, and have generally higher 5100 Å luminosities than the SEAMBHs monitored in our campaign from 2012 to 2015; the remaining four are repeat observations to check if their previous lags change. Similar to the previous SEAMBHs, the Hβ time lags of the newly observed objects are shorter than the values predicted by the canonical R Hβ –L 5100 relation of sub-Eddington AGNs, by factors of ∼2–6, depending on the accretion rate. The four previously observed objects have lags consistent with previous measurements. We provide linear regressions for the R Hβ –L 5100 relation, solely for the SEAMBH sample and for low-accretion AGNs. We find that the relative strength of Fe II and the profile of the Hβ emission line can be used as proxies of accretion rate, showing that the shortening of Hβ lags depends on accretion rates. The recent SDSS-RM discovery of shortened Hβ lags in AGNs with low accretion rates provides compelling evidence for retrograde accretion onto the black hole. These evidences show that the canonical R Hβ –L 5100 relation holds only in AGNs with moderate accretion rates. At low accretion rates, it should be revised to include the effects of black hole spin, whereas the accretion rate itself becomes a key factor in the regime of high accretion rates.

  1. A Census of Broad-line Active Galactic Nuclei in Nearby Galaxies: Coeval Star Formation and Rapid Black Hole Growth

    NASA Astrophysics Data System (ADS)

    Trump, Jonathan R.; Hsu, Alexander D.; Fang, Jerome J.; Faber, S. M.; Koo, David C.; Kocevski, Dale D.

    2013-02-01

    We present the first quantified, statistical map of broad-line active galactic nucleus (AGN) frequency with host galaxy color and stellar mass in nearby (0.01 < z < 0.11) galaxies. Aperture photometry and z-band concentration measurements from the Sloan Digital Sky Survey are used to disentangle AGN and galaxy emission, resulting in estimates of uncontaminated galaxy rest-frame color, luminosity, and stellar mass. Broad-line AGNs are distributed throughout the blue cloud and green valley at a given stellar mass, and are much rarer in quiescent (red sequence) galaxies. This is in contrast to the published host galaxy properties of weaker narrow-line AGNs, indicating that broad-line AGNs occur during a different phase in galaxy evolution. More luminous broad-line AGNs have bluer host galaxies, even at fixed mass, suggesting that the same processes that fuel nuclear activity also efficiently form stars. The data favor processes that simultaneously fuel both star formation activity and rapid supermassive black hole accretion. If AGNs cause feedback on their host galaxies in the nearby universe, the evidence of galaxy-wide quenching must be delayed until after the broad-line AGN phase.

  2. The role of environment in the observed Fundamental Plane of radio Active Galactic Nuclei

    NASA Astrophysics Data System (ADS)

    Shabala, Stanislav S.

    2018-05-01

    The optical Fundamental Plane of black hole activity relates radio continuum luminosity of Active Galactic Nuclei to [O III] luminosity and black hole mass. We examine the environments of low redshift (z < 0.2) radio-selected AGN, quantified through galaxy clustering, and find that halo mass provides similar mass scalings to black hole mass in the Fundamental Plane relations. AGN properties are strongly environment-dependent: massive haloes are more likely to host radiatively inefficient (low-excitation) radio AGN, as well as a higher fraction of radio luminous, extended sources. These AGN populations have different radio - optical luminosity scaling relations, and the observed mass scalings in the parent AGN sample are built up by combining populations preferentially residing in different environments. Accounting for environment-driven selection effects, the optical Fundamental Plane of supermassive black holes is likely to be mass-independent, as predicted by models.

  3. Iron lines in model disk spectra of Galactic black hole binaries

    NASA Astrophysics Data System (ADS)

    Różańska, A.; Madej, J.; Konorski, P.; SaḐowski, A.

    2011-03-01

    Context. We present angle-dependent, broad-band intensity spectra from accretion disks around black holes of 10 M⊙. In our computations disks are assumed to be slim, which means that the radial advection is taken into account while computing the effective temperature of the disk. Aims: We attempt to reconstruct continuum and line spectra of X-ray binaries in soft state, i.e. dominated by the disk component of multitemperature shape. We follow how the iron-line complex depends on the external irradiation, an accretion rate, and a black hole spin. Methods: Full radiative transfer is solved including effects of Compton scattering, free-free and all important bound-free transitions of 10 main elements. We assume the LTE equation of state. Moreover, we include here the fundamental series of iron lines from helium-like and hydrogen-like ions, and fluorescent Kα and Kβ lines from low ionized iron. We consider two cases: nonrotating black hole, and black hole rotating with almost maximum spin a = 0.98, and obtain spectra for five accretion disks from hard X-rays to the infrared. Results: In nonirradiated disks, resonance lines from He-like and H-like iron appear mostly in absorption. Such disk spectra exhibit limb darkening in the whole energy range. External irradiation causes that iron resonance lines appear in emission. Furthermore, depending on disk effective temperature, fluorescent iron Kα and Kβ lines are present in disk emitting spectra. All models with irradiation exhibit limb brightening in their X-ray reflected continua. Conclusions: We show that the disk around stellar black hole itself is hot enough to produce strong-absorption resonance lines of iron. Emission lines can only be observed if heating by external X-rays dominates thermal processess in a hot disk atmosphere. Irradiated disks are usually brighter in X-ray continuum when seen edge on, and fainter when seen face on.

  4. Submillimeter evidence for the coeval growth of massive black holes and galaxy bulges.

    PubMed

    Page, M J; Stevens, J A; Mittaz, J P; Carrera, F J

    2001-12-21

    The correlation, found in nearby galaxies, between black hole mass and stellar bulge mass implies that the formation of these two components must be related. Here we report submillimeter photometry of eight x-ray-absorbed active galactic nuclei that have luminosities and redshifts characteristic of the sources that produce the bulk of the accretion luminosity in the universe. The four sources with the highest redshifts are detected at 850 micrometers, with flux densities between 5.9 and 10.1 millijanskies, and hence are ultraluminous infrared galaxies. If the emission is from dust heated by starbursts, then the majority of stars in spheroids were formed at the same time as their central black holes built up most of their mass by accretion. This would account for the observed demography of massive black holes in the local universe. The skewed rate of submillimeter detection with redshift is consistent with a high redshift epoch of star formation in radio-quiet active galactic nuclei, similar to that seen in radio galaxies.

  5. X-Ray Reprocessing in Active Galactic Nuclei

    NASA Technical Reports Server (NTRS)

    Begelman, Mitchell C.

    2004-01-01

    This is the final report for research entitled "X-ray reprocessing in active galactic nuclei," into X-ray absorption and emission in various classes of active galaxy via X-ray spectral signatures. The fundamental goal of the research was to use these signatures as probes of the central engine structure and circumnuclear environment of active galactic nuclei. The most important accomplishment supported by this grant involved the detailed analysis and interpretation of the XMM data for the bright Seyfert 1 galaxy MCG-6-30-15. This work was performed by Drs. Christopher Reynolds and Mitchell Begelman in collaboration with Dr. Jorn Wilms (University of Tubingen, Germany; PI of the XMM observation) and other European scientists. With XMM we obtained medium resolution X-ray spectra of unprecedented quality for this Seyfert galaxy. Modeling the X-ray spectrum within the framework of accretion disk reflection models produced the first evidence for energy extraction from the spin of a black hole. Specifically, we found that the extreme gravitational redshifts required to explain the X-ray spectrum suggests that the bulk of the energy dissipation is concentrated very close to the black hole, in contrast with the expectations of any pure accretion disk model. In a second paper we addressed the low- energy spectral complexity and used RXTE specta to pin down the high-energy spectral index, thus firming up our initial interpretation. Additionally, we carried out detailed spectral and variability analyses of a number of Seyfert and radio galaxies (e.g., NGC 5548 and 3C 111) and developed general techniques that will be useful in performing X-ray reverberation mapping of accretion disks in AGN, once adequate data becomes available. A list of papers supported by this research is included.

  6. Wandering Supermassive Black Holes in Milky-Way-mass Halos

    NASA Astrophysics Data System (ADS)

    Tremmel, Michael; Governato, Fabio; Volonteri, Marta; Pontzen, Andrew; Quinn, Thomas R.

    2018-04-01

    We present a self-consistent prediction from a large-scale cosmological simulation for the population of “wandering” supermassive black holes (SMBHs) of mass greater than 106 M ⊙ on long-lived, kpc-scale orbits within Milky Way (MW)-mass galaxies. We extract a sample of MW-mass halos from the ROMULUS25 cosmological simulation, which is uniquely able to capture the orbital evolution of SMBHs during and following galaxy mergers. We predict that such halos, regardless of recent merger history or morphology, host an average of 5.1 ± 3.3 SMBHs, including their central black hole, within 10 kpc from the galactic center and an average of 12.2 ± 8.4 SMBHs total within their virial radius, not counting those in satellite halos. Wandering SMBHs exist within their host galaxies for several Gyr, often accreted by their host halo in the early Universe. We find, with >4σ significance, that wandering SMBHs are preferentially found outside of galactic disks.

  7. Mass-loss from advective accretion disc around rotating black holes

    NASA Astrophysics Data System (ADS)

    Aktar, Ramiz; Das, Santabrata; Nandi, Anuj

    2015-11-01

    We examine the properties of the outflowing matter from an advective accretion disc around a spinning black hole. During accretion, rotating matter experiences centrifugal pressure-supported shock transition that effectively produces a virtual barrier around the black hole in the form of post-shock corona (hereafter PSC). Due to shock compression, PSC becomes hot and dense that eventually deflects a part of the inflowing matter as bipolar outflows because of the presence of extra thermal gradient force. In our approach, we study the outflow properties in terms of the inflow parameters, namely specific energy (E) and specific angular momentum (λ) considering the realistic outflow geometry around the rotating black holes. We find that spin of the black hole (ak) plays an important role in deciding the outflow rate R_{dot{m}} (ratio of mass flux of outflow to inflow); in particular, R_{dot{m}} is directly correlated with ak for the same set of inflow parameters. It is found that a large range of the inflow parameters allows global accretion-ejection solutions, and the effective area of the parameter space (E, λ) with and without outflow decreases with black hole spin (ak). We compute the maximum outflow rate (R^{max}_{dot{m}}) as a function of black hole spin (ak) and observe that R^{max}_{dot{m}} weakly depends on ak that lies in the range ˜10-18 per cent of the inflow rate for the adiabatic index (γ) with 1.5 ≥ γ ≥ 4/3. We present the observational implication of our approach while studying the steady/persistent jet activities based on the accretion states of black holes. We discuss that our formalism seems to have the potential to explain the observed jet kinetic power for several Galactic black hole sources and active galactic nuclei.

  8. A RADIAL VELOCITY TEST FOR SUPERMASSIVE BLACK HOLE BINARIES AS AN EXPLANATION FOR BROAD, DOUBLE-PEAKED EMISSION LINES IN ACTIVE GALACTIC NUCLEI

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Jia; Halpern, Jules P.; Eracleous, Michael

    2016-01-20

    One of the proposed explanations for the broad, double-peaked Balmer emission lines observed in the spectra of some active galactic nuclei (AGNs) is that they are associated with sub-parsec supermassive black hole (SMBH) binaries. Here, we test the binary broad-line region hypothesis through several decades of monitoring of the velocity structure of double-peaked Hα emission lines in 13 low-redshift, mostly radio-loud AGNs. This is a much larger set of objects compared to an earlier test by Eracleous et al. and we use much longer time series for the three objects studied in that paper. Although systematic changes in radial velocitymore » can be traced in many of their lines, they are demonstrably not like those of a spectroscopic binary in a circular orbit. Any spectroscopic binary period must therefore be much longer than the span of the monitoring (assuming a circular orbit), which in turn would require black hole masses that exceed by 1–2 orders of magnitude the values obtained for these objects using techniques such as reverberation mapping and stellar velocity dispersion. Moreover, the response of the double-peaked Balmer line profiles to fluctuations of the ionizing continuum and the shape of the Lyα profiles are incompatible with an SMBH binary. The binary broad-line region hypothesis is therefore disfavored. Other processes evidently shape these line profiles and cause the long-term velocity variations of the double peaks.« less

  9. REVIEWS OF TOPICAL PROBLEMS: "Magnetized" black holes

    NASA Astrophysics Data System (ADS)

    Aliev, A. N.; Gal'tsov, D. V.

    1989-01-01

    Physical aspects of the theory of black holes in an external electromagnetic field are reviewed. The "magnetized" black hole model is currently widely discussed in astrophysics because it provides a basis for the explanation of the high energy activity of galactic cores and quasars. The particular feature of this model is that it predicts unusual "gravimagnetic" phenomena that arise as a result of a natural combination of effects in electrodynamics and gravitation, namely, the appearance of an inductive potential difference during the rotation of a black hole in a magnetic field, the drift of a black hole in an external electromagnetic field, the change in the chemical potential of the event horizon, the creation of an effective ergosphere of a black hole in a magnetic field, and so on. Questions relating to the description of electromagnetic fields in Kerr space-time are examined, including their influence on the space-time metric, the interaction between a rotating charged black hole and an external electromagnetic field, the motion of charged particles near "magnetized" black holes, including their spontaneous and stimulated emission, and the influence of magnetic fields on quantum-mechanical processes in black holes.

  10. Twelve Years of Spectroscopic Monitoring in the Galactic Center: The Closest Look at S-stars near the Black Hole

    NASA Astrophysics Data System (ADS)

    Habibi, M.; Gillessen, S.; Martins, F.; Eisenhauer, F.; Plewa, P. M.; Pfuhl, O.; George, E.; Dexter, J.; Waisberg, I.; Ott, T.; von Fellenberg, S.; Bauböck, M.; Jimenez-Rosales, A.; Genzel, R.

    2017-10-01

    We study the young S-stars within a distance of 0.04 pc from the supermassive black hole in the center of our Galaxy. Given how inhospitable the region is for star formation, their presence is more puzzling the younger we estimate their ages. In this study, we analyze the result of 12 years of high-resolution spectroscopy within the central arcsecond of the Galactic Center (GC). By co-adding between 55 and 105 hr of spectra we have obtained high signal-to-noise H- and K-band spectra of eight stars orbiting the central supermassive black hole. Using deep H-band spectra, we show that these stars must be high surface gravity (dwarf) stars. We compare these deep spectra to detailed model atmospheres and stellar evolution models to infer the stellar parameters. Our analysis reveals an effective temperature of 21,000-28,500 K, a rotational velocity of 60-170 km s-1, and a surface gravity of 4.1-4.2. These parameters imply a spectral type of B0-B3V for these stars. The inferred masses lie within 8-14 {M}⊙ . We derive an age of {6.6}-4.7+3.4 Myr for the star S2, which is compatible with the age of the clockwise-rotating young stellar disk in the GC. We estimate the ages of all other studied S-stars to be less than 15 Myr, which is compatible with the age of S2 within the uncertainties. The relatively low ages for these S-stars favor a scenario in which the stars formed in a local disk rather than a field binary-disruption scenario that occurred over a longer period of time.

  11. Microlensing Signature of Binary Black Holes

    NASA Technical Reports Server (NTRS)

    Schnittman, Jeremy; Sahu, Kailash; Littenberg, Tyson

    2012-01-01

    We calculate the light curves of galactic bulge stars magnified via microlensing by stellar-mass binary black holes along the line-of-sight. We show the sensitivity to measuring various lens parameters for a range of survey cadences and photometric precision. Using public data from the OGLE collaboration, we identify two candidates for massive binary systems, and discuss implications for theories of star formation and binary evolution.

  12. Galactic plane gamma-radiation

    NASA Technical Reports Server (NTRS)

    Hartman, R. C.; Kniffen, D. A.; Thompson, D. J.; Fichtel, C. E.; Ogelman, H. B.; Tumer, T.; Ozel, M. E.

    1979-01-01

    Analysis of the SAS 2 data together with the COS B results shows that the distribution of galactic gamma-radiation has several similarities to that of other large-scale tracers of galactic structure. The radiation is primarily confined to a thin disc which exhibits offsets from b = 0 degrees similar to warping at radio frequencies. The principal distinction of the gamma-radiation is a stronger contrast in intensity between the region from 310 to 45 degrees in longitude and the regions away from the center that can be attributed to a variation in cosmic-ray density as a function of position in Galaxy. The diffuse galactic gamma-ray energy spectrum shows no significant variation in direction, and the spectrum seen along the plane is the same as that for the galactic component of the gamma-radiation at high altitudes. The uniformity of the galactic gamma-ray spectrum, the smooth decrease in intensity as a function of altitude, and the absence of any galactic gamma-ray sources at high altitudes indicate a diffuse origin for bulk of the galactic gamma-radiation rather than a collection of localized sources.

  13. The black tide model of QSOs

    NASA Technical Reports Server (NTRS)

    Young, P. J.; Shields, G. A.; Wheeler, J. C.

    1977-01-01

    The paper develops certain aspects of a model wherein a QSO is a massive black hole located in a dense galactic nucleus, with its growth and luminosity fueled by tidal disruption of passing stars. Cross sections for tidal disruptions are calculated, taking into account the thermal energy of stars, relativistic effects, and partial disruption removing only the outer layers of a star. Accretion rates are computed for a realistic distribution of stellar masses and evolutionary phases, the effect of the black hole on the cluster distribution is examined, and the red-giant disruption rate is evaluated for hole mass of at least 300 million solar masses, the cutoff of disruption of main-sequence stars. The results show that this black-tide model can explain QSO luminosities of at least 1 trillion suns if the black hole remains almost maximally Kerr as it grows above 100 million solar masses and if 'loss-cone' depletion of the number of stars in disruptive orbits is unimportant.

  14. Active galactic nucleus feedback in clusters of galaxies

    PubMed Central

    Blanton, Elizabeth L.; Clarke, T. E.; Sarazin, Craig L.; Randall, Scott W.; McNamara, Brian R.

    2010-01-01

    Observations made during the last ten years with the Chandra X-ray Observatory have shed much light on the cooling gas in the centers of clusters of galaxies and the role of active galactic nucleus (AGN) heating. Cooling of the hot intracluster medium in cluster centers can feed the supermassive black holes found in the nuclei of the dominant cluster galaxies leading to AGN outbursts which can reheat the gas, suppressing cooling and large amounts of star formation. AGN heating can come in the form of shocks, buoyantly rising bubbles that have been inflated by radio lobes, and the dissipation of sound waves. PMID:20351250

  15. The habitability of the Milky Way during the active phase of its central supermassive black hole.

    PubMed

    Balbi, Amedeo; Tombesi, Francesco

    2017-11-30

    During the peak of their accretion phase, supermassive black holes in galactic cores are known to emit very high levels of ionizing radiation, becoming visible over intergalactic distances as quasars or active galactic nuclei (AGN). Here, we quantify the extent to which the activity of the supermassive black hole at the center of the Milky Way, known as Sagittarius A* (Sgr A*), may have affected the habitability of Earth-like planets in our Galaxy. We focus on the amount of atmospheric loss and on the possible biological damage suffered by planets exposed to X-ray and extreme ultraviolet (XUV) radiation produced during the peak of the active phase of Sgr A*. We find that terrestrial planets could lose a total atmospheric mass comparable to that of present day Earth even at large distances (~1 kiloparsec) from the galactic center. Furthermore, we find that the direct biological damage caused by Sgr A* to surface life on planets not properly screened by an atmosphere was probably significant during the AGN phase, possibly hindering the development of complex life within a few kiloparsecs from the galactic center.

  16. The secular evolution of discrete quasi-Keplerian systems. II. Application to a multi-mass axisymmetric disc around a supermassive black hole

    NASA Astrophysics Data System (ADS)

    Fouvry, J.-B.; Pichon, C.; Chavanis, P.-H.

    2018-01-01

    A discrete self-gravitating quasi-Keplerian razor-thin axisymmetric stellar disc orbiting a massive black hole sees its orbital structure diffuse on secular timescales as a result of a self-induced resonant relaxation. In the absence of collective effects, such a process is described by the recently derived inhomogeneous multi-mass degenerate Landau equation. Relying on Gauss' method, we computed the associated drift and diffusion coefficients to characterise the properties of the resonant relaxation of razor-thin discs. For a disc-like configuration in our Galactic centre, we showed how this secular diffusion induces an adiabatic distortion of orbits and estimate the typical timescale of resonant relaxation. When considering a disc composed of multiple masses similarly distributed, we have illustrated how the population of lighter stars will gain eccentricity, driving it closer to the central black hole, provided the distribution function increases with angular momentum. The kinetic equation recovers as well the quenching of the resonant diffusion of a test star in the vicinity of the black hole (the "Schwarzschild barrier") as a result of the divergence of the relativistic precessions. The dual stochastic Langevin formulation yields consistent results and offers a versatile framework in which to incorporate other stochastic processes.

  17. A galactic maelstrom

    NASA Image and Video Library

    2015-08-31

    This new NASA/ESA Hubble Space Telescope shows Messier 96, a spiral galaxy just over 35 million light-years away in the constellation of Leo (The Lion). It is of about the same mass and size as the Milky Way. It was first discovered by astronomer Pierre Méchain in 1781, and added to Charles Messier’s famous catalogue of astronomical objects just four days later. The galaxy resembles a giant maelstrom of glowing gas, rippled with dark dust that swirls inwards towards the nucleus. Messier 96 is a very asymmetric galaxy; its dust and gas is unevenly spread throughout its weak spiral arms, and its core is not exactly at the galactic centre. Its arms are also asymmetrical, thought to have been influenced by the gravitational pull of other galaxies within the same group as Messier 96. This group, named the M96 Group, also includes the bright galaxies Messier 105 and Messier 95, as well as a number of smaller and fainter galaxies. It is the nearest group containing both bright spirals and a bright elliptical galaxy (Messier 105).

  18. A galactic sunflower

    NASA Image and Video Library

    2015-09-07

    The arrangement of the spiral arms in the galaxy Messier 63, seen here in a new image from the NASA/ESA Hubble Space Telescope, recall the pattern at the centre of a sunflower. So the nickname for this cosmic object — the Sunflower Galaxy — is no coincidence. Discovered by Pierre Mechain in 1779, the galaxy later made it as the 63rd entry into fellow French astronomer Charles Messier’s famous catalogue, published in 1781. The two astronomers spotted the Sunflower Galaxy’s glow in the small, northern constellation Canes Venatici (the Hunting Dogs). We now know this galaxy is about 27 million light-years away and belongs to the M51 Group — a group of galaxies, named after its brightest member, Messier 51, another spiral-shaped galaxy dubbed the Whirlpool Galaxy. Galactic arms, sunflowers and whirlpools are only a few examples of nature’s apparent preference for spirals. For galaxies like Messier 63 the winding arms shine bright because of the presence of recently formed, blue–white giant stars, readily seen in this Hubble image.

  19. Planck 2015 results. XXVIII. The Planck Catalogue of Galactic cold clumps

    NASA Astrophysics Data System (ADS)

    Planck Collaboration; Ade, P. A. R.; Aghanim, N.; Arnaud, M.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Banday, A. J.; Barreiro, R. B.; Bartolo, N.; Battaner, E.; Benabed, K.; Benoît, A.; Benoit-Lévy, A.; Bernard, J.-P.; Bersanelli, M.; Bielewicz, P.; Bonaldi, A.; Bonavera, L.; Bond, J. R.; Borrill, J.; Bouchet, F. R.; Boulanger, F.; Bucher, M.; Burigana, C.; Butler, R. C.; Calabrese, E.; Catalano, A.; Chamballu, A.; Chiang, H. C.; Christensen, P. R.; Clements, D. L.; Colombi, S.; Colombo, L. P. L.; Combet, C.; Couchot, F.; Coulais, A.; Crill, B. P.; Curto, A.; Cuttaia, F.; Danese, L.; Davies, R. D.; Davis, R. J.; de Bernardis, P.; de Rosa, A.; de Zotti, G.; Delabrouille, J.; Désert, F.-X.; Dickinson, C.; Diego, J. M.; Dole, H.; Donzelli, S.; Doré, O.; Douspis, M.; Ducout, A.; Dupac, X.; Efstathiou, G.; Elsner, F.; Enßlin, T. A.; Eriksen, H. K.; Falgarone, E.; Fergusson, J.; Finelli, F.; Forni, O.; Frailis, M.; Fraisse, A. A.; Franceschi, E.; Frejsel, A.; Galeotta, S.; Galli, S.; Ganga, K.; Giard, M.; Giraud-Héraud, Y.; Gjerløw, E.; González-Nuevo, J.; Górski, K. M.; Gratton, S.; Gregorio, A.; Gruppuso, A.; Gudmundsson, J. E.; Hansen, F. K.; Hanson, D.; Harrison, D. L.; Helou, G.; Henrot-Versillé, S.; Hernández-Monteagudo, C.; Herranz, D.; Hildebrandt, S. R.; Hivon, E.; Hobson, M.; Holmes, W. A.; Hornstrup, A.; Hovest, W.; Huffenberger, K. M.; Hurier, G.; Jaffe, A. H.; Jaffe, T. R.; Jones, W. C.; Juvela, M.; Keihänen, E.; Keskitalo, R.; Kisner, T. S.; Knoche, J.; Kunz, M.; Kurki-Suonio, H.; Lagache, G.; Lamarre, J.-M.; Lasenby, A.; Lattanzi, M.; Lawrence, C. R.; Leonardi, R.; Lesgourgues, J.; Levrier, F.; Liguori, M.; Lilje, P. B.; Linden-Vørnle, M.; López-Caniego, M.; Lubin, P. M.; Macías-Pérez, J. F.; Maggio, G.; Maino, D.; Mandolesi, N.; Mangilli, A.; Marshall, D. J.; Martin, P. G.; Martínez-González, E.; Masi, S.; Matarrese, S.; Mazzotta, P.; McGehee, P.; Melchiorri, A.; Mendes, L.; Mennella, A.; Migliaccio, M.; Mitra, S.; Miville-Deschênes, M.-A.; Moneti, A.; Montier, L.; Morgante, G.; Mortlock, D.; Moss, A.; Munshi, D.; Murphy, J. A.; Naselsky, P.; Nati, F.; Natoli, P.; Netterfield, C. B.; Nørgaard-Nielsen, H. U.; Noviello, F.; Novikov, D.; Novikov, I.; Oxborrow, C. A.; Paci, F.; Pagano, L.; Pajot, F.; Paladini, R.; Paoletti, D.; Pasian, F.; Patanchon, G.; Pearson, T. J.; Pelkonen, V.-M.; Perdereau, O.; Perotto, L.; Perrotta, F.; Pettorino, V.; Piacentini, F.; Piat, M.; Pierpaoli, E.; Pietrobon, D.; Plaszczynski, S.; Pointecouteau, E.; Polenta, G.; Pratt, G. W.; Prézeau, G.; Prunet, S.; Puget, J.-L.; Rachen, J. P.; Reach, W. T.; Rebolo, R.; Reinecke, M.; Remazeilles, M.; Renault, C.; Renzi, A.; Ristorcelli, I.; Rocha, G.; Rosset, C.; Rossetti, M.; Roudier, G.; Rubiño-Martín, J. A.; Rusholme, B.; Sandri, M.; Santos, D.; Savelainen, M.; Savini, G.; Scott, D.; Seiffert, M. D.; Shellard, E. P. S.; Spencer, L. D.; Stolyarov, V.; Sudiwala, R.; Sunyaev, R.; Sutton, D.; Suur-Uski, A.-S.; Sygnet, J.-F.; Tauber, J. A.; Terenzi, L.; Toffolatti, L.; Tomasi, M.; Tristram, M.; Tucci, M.; Tuovinen, J.; Umana, G.; Valenziano, L.; Valiviita, J.; Van Tent, B.; Vielva, P.; Villa, F.; Wade, L. A.; Wandelt, B. D.; Wehus, I. K.; Yvon, D.; Zacchei, A.; Zonca, A.

    2016-09-01

    We present the Planck Catalogue of Galactic Cold Clumps (PGCC), an all-sky catalogue of Galactic cold clump candidates detected by Planck. This catalogue is the full version of the Early Cold Core (ECC) catalogue, which was made available in 2011 with the Early Release Compact Source Catalogue (ERCSC) and which contained 915 high signal-to-noise sources. It is based on the Planck 48-month mission data that are currently being released to the astronomical community. The PGCC catalogue is an observational catalogue consisting exclusively of Galactic cold sources. The three highest Planck bands (857, 454, and 353 GHz) have been combined with IRAS data at 3 THz to perform a multi-frequency detection of sources colder than their local environment. After rejection of possible extragalactic contaminants, the PGCC catalogue contains 13188 Galactic sources spread across the whole sky, I.e., from the Galactic plane to high latitudes, following the spatial distribution of the main molecular cloud complexes. The median temperature of PGCC sources lies between 13 and 14.5 K, depending on the quality of the flux density measurements, with a temperature ranging from 5.8 to 20 K after removing the sources with the top 1% highest temperature estimates. Using seven independent methods, reliable distance estimates have been obtained for 5574 sources, which allows us to derive their physical properties such as their mass, physical size, mean density, and luminosity.The PGCC sources are located mainly in the solar neighbourhood, but also up to a distance of 10.5 kpc in the direction of the Galactic centre, and range from low-mass cores to large molecular clouds. Because of this diversity and because the PGCC catalogue contains sources in very different environments, the catalogue is useful for investigating the evolution from molecular clouds to cores. Finally, it also includes 54 additional sources located in the Small and Large Magellanic Clouds.

  20. Planck 2015 results: XXVIII. The Planck Catalogue of Galactic cold clumps

    DOE PAGES

    Ade, P. A. R.; Aghanim, N.; Arnaud, M.; ...

    2016-09-20

    Here, we present the Planck Catalogue of Galactic Cold Clumps (PGCC), an all-sky catalogue of Galactic cold clump candidates detected by Planck. This catalogue is the full version of the Early Cold Core (ECC) catalogue, which was made available in 2011 with the Early Release Compact Source Catalogue (ERCSC) and which contained 915 high signal-to-noise sources. It is based on the Planck 48-month mission data that are currently being released to the astronomical community. The PGCC catalogue is an observational catalogue consisting exclusively of Galactic cold sources. The three highest Planck bands (857, 454, and 353 GHz) have been combinedmore » with IRAS data at 3 THz to perform a multi-frequency detection of sources colder than their local environment. After rejection of possible extragalactic contaminants, the PGCC catalogue contains 13188 Galactic sources spread across the whole sky, i.e., from the Galactic plane to high latitudes, following the spatial distribution of the main molecular cloud complexes. The median temperature of PGCC sources lies between 13 and 14.5 K, depending on the quality of the flux density measurements, with a temperature ranging from 5.8 to 20 K after removing the sources with the top 1% highest temperature estimates. Using seven independent methods, reliable distance estimates have been obtained for 5574 sources, which allows us to derive their physical properties such as their mass, physical size, mean density, and luminosity.The PGCC sources are located mainly in the solar neighbourhood, but also up to a distance of 10.5 kpc in the direction of the Galactic centre, and range from low-mass cores to large molecular clouds. Because of this diversity and because the PGCC catalogue contains sources in very different environments, the catalogue is useful for investigating the evolution from molecular clouds to cores. Finally, it also includes 54 additional sources located in the Small and Large Magellanic Clouds.« less

  1. X-ray Reverberation Mapping in Active Galactic Nuclei

    NASA Astrophysics Data System (ADS)

    Kara, Erin

    2018-01-01

    Active Galactic Nuclei can produce as much or more electromagnetic and kinetic luminosities than the combined stellar luminosity of an entire galaxy. The energy output from AGN comes from the gravitational potential energy of the infalling material and the rotational energy of the black hole, both of which are released very close to the black hole. Therefore, probing the relativistic region of the inner accretion flow is essential to understanding how AGN work and effect their environments. In this talk, I will present a new technique for probing these relativistic environments: X-ray reverberation mapping. Similar to Optical reverberation mapping, where time delays of days or weeks between the continuum and Broad Line Region lines map out centiparsec scales, X-ray reverberation reveals time delays of tens of seconds, which map out microparsec scales in the accretion flow—well beyond the spatial resolution power of any instrument. This technique has been discovered in the past decade, so I will give a brief overview of how the measurements are made, and highlight some recent discoveries, which allow us to map the gas falling on to the black hole and measure the effects of strongly curved spacetime close to the event horizon.

  2. The Halo Occupation Distribution of Active Galactic Nuclei

    NASA Astrophysics Data System (ADS)

    Chatterjee, Suchetana; Nagai, D.; Richardson, J.; Zheng, Z.; Degraf, C.; DiMatteo, T.

    2011-05-01

    We investigate the halo occupation distribution of active galactic nuclei (AGN) using a state-of-the-art cosmological hydrodynamic simulation that self-consistently incorporates the growth and feedback of supermassive black holes and the physics of galaxy formation (DiMatteo et al. 2008). We show that the mean occupation function can be modeled as a softened step function for central AGN and a power law for the satellite population. The satellite occupation is consistent with weak redshift evolution and a power law index of unity. The number of satellite black holes at a given halo mass follows a Poisson distribution. We show that at low redshifts (z=1.0) feedback from AGN is responsible for higher suppression of black hole growth in higher mass halos. This effect introduces a bias in the correlation between instantaneous AGN luminosity and the host halo mass, making AGN clustering depend weakly on luminosity at low redshifts. We show that the radial distribution of AGN follows a power law which is fundamentally different from those of galaxies and dark matter. The best-fit power law index is -2.26 ± 0.23. The power law exponent do not show any evolution with redshift, host halo mass and AGN luminosity within statistical limits. Incorporating the environmental dependence of supermassive black hole accretion and feedback, our formalism provides the most complete theoretical tool for interpreting current and future measurements of AGN clustering.

  3. Supermassive Black Holes with High Accretion Rates in Active Galactic Nuclei. VI. Velocity-resolved Reverberation Mapping of the Hβ Line

    NASA Astrophysics Data System (ADS)

    Du, Pu; Lu, Kai-Xing; Hu, Chen; Qiu, Jie; Li, Yan-Rong; Huang, Ying-Ke; Wang, Fang; Bai, Jin-Ming; Bian, Wei-Hao; Yuan, Ye-Fei; Ho, Luis C.; Wang, Jian-Min; SEAMBH Collaboration

    2016-03-01

    In the sixth of a series of papers reporting on a large reverberation mapping (RM) campaign of active galactic nuclei (AGNs) with high accretion rates, we present velocity-resolved time lags of Hβ emission lines for nine objects observed in the campaign during 2012-2013. In order to correct the line broadening caused by seeing and instruments before analyzing the velocity-resolved RM, we adopt the Richardson-Lucy deconvolution to reconstruct their Hβ profiles. The validity and effectiveness of the deconvolution are checked using Monte Carlo simulation. Five among the nine objects show clear dependence of the time delay on velocity. Mrk 335 and Mrk 486 show signatures of gas inflow whereas the clouds in the broad-line regions (BLRs) of Mrk 142 and MCG +06-26-012 tend to be radial outflowing. Mrk 1044 is consistent with having virialized motions. The lags of the remaining four are not velocity-resolvable. The velocity-resolved RM of super-Eddington accreting massive black holes (SEAMBHs) shows that they have diverse kinematics in their BLRs. Comparing with the AGNs with sub-Eddington accretion rates, we do not find significant differences in the BLR kinematics of SEAMBHs.

  4. SUPERMASSIVE BLACK HOLES WITH HIGH ACCRETION RATES IN ACTIVE GALACTIC NUCLEI. VI. VELOCITY-RESOLVED REVERBERATION MAPPING OF THE Hβ LINE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Du, Pu; Lu, Kai-Xing; Hu, Chen

    In the sixth of a series of papers reporting on a large reverberation mapping (RM) campaign of active galactic nuclei (AGNs) with high accretion rates, we present velocity-resolved time lags of Hβ emission lines for nine objects observed in the campaign during 2012–2013. In order to correct the line broadening caused by seeing and instruments before analyzing the velocity-resolved RM, we adopt the Richardson–Lucy deconvolution to reconstruct their Hβ profiles. The validity and effectiveness of the deconvolution are checked using Monte Carlo simulation. Five among the nine objects show clear dependence of the time delay on velocity. Mrk 335 andmore » Mrk 486 show signatures of gas inflow whereas the clouds in the broad-line regions (BLRs) of Mrk 142 and MCG +06-26-012 tend to be radial outflowing. Mrk 1044 is consistent with having virialized motions. The lags of the remaining four are not velocity-resolvable. The velocity-resolved RM of super-Eddington accreting massive black holes (SEAMBHs) shows that they have diverse kinematics in their BLRs. Comparing with the AGNs with sub-Eddington accretion rates, we do not find significant differences in the BLR kinematics of SEAMBHs.« less

  5. Mira variables in the Galactic Bulge .

    NASA Astrophysics Data System (ADS)

    Groenewegen, M. A. T.; Blommaert, J. A. D. L.

    The 222 000 I-band light curves of variable stars detected by the OGLE-II survey in the direction of the Galactic Bulge have been fitted and have been correlated with the DENIS and 2MASS databases. Results are presented for 2691 objects with I-band semi-amplitude larger than 0.45 magnitude, corresponding to classical Mira variables. The Mira period distribution of 5 fields at similar longitude but spanning latitudes from -1.2 to -5.8 are statistically indistinguisable indicating similar populations with initial masses of 1.5-2 M⊙ (corresponding to ages of 1-3 Gyr). A field at similar longitude at b = -0.05 from Glass et al. (2001) does show a significantly different period distribution, indicating the presence of a younger population of 2.5-3 M⊙ and ages below 1 Gyr. The K-band period-luminosity relation is presented for the whole sample, and for sub-fields. Simulations are carried out to show that the observations are naturally explained using the model of disk and bulge stars of Binney et al. (1997), for a viewing angle (major-axis Bar - axis perpendicular to the line-of-sight to the Galactic Centre) of 43 ± 17 degrees. A comparison is made with similar objects in the Magellanic Clouds, studied in a previous paper. The slope of the PL-relation in the Bulge and the MCs agree within the errorbars. Assuming the zero point does not depend on metallicity, a distance modulus difference of 3.72 between Bulge and LMC is derived. This implies a LMC DM of 18.21 for an assumed distance to the Galactic Centre (GC) of 7.9 kpc, or, assuming a LMC DM of 18.50, a distance to the GC of 9.0 kpc. From the results in Groenewegen (2004) it is found for carbon-rich Miras that the PL-relation implies a relative SMC-LMC DM of 0.38, assuming no metallicity dependence. This is somewhat smaller than the often quoted value near 0.50. Following theoretical work by Wood (1990) a metallicity term of the form M_K ˜ beta log Z is introduced. If a relative SMC-LMC DM of 0.50 is imposed

  6. The XMM-Newton SSC survey of the Galactic plane

    NASA Astrophysics Data System (ADS)

    Nebot Gómez-Morán, A.; Motch, C.; Barcons, X.; Carrera, F. J.; Ceballos, M. T.; Cropper, M.; Grosso, N.; Guillout, P.; Hérent, O.; Mateos, S.; Michel, L.; Osborne, J. P.; Pakull, M.; Pineau, F.-X.; Pye, J. P.; Roberts, T. P.; Rosen, S. R.; Schwope, A. D.; Watson, M. G.; Webb, N.

    2013-05-01

    Many different classes of X-ray sources contribute to the Galactic landscape at high energies. Although the nature of the most luminous X-ray emitters is now fairly well understood, the population of low-to-medium X-ray luminosity (LX = 1027-34 erg s-1) sources remains much less studied, our knowledge being mostly based on the observation of local members. The advent of wide field and high sensitivity X-ray telescopes such as XMM-Newton now offers the opportunity to observe this low-to-medium LX population at large distances. We report on the results of a Galactic plane survey conducted by the XMM-Newton Survey Science Centre (SSC). Beyond its astrophysical goals, this survey aims at gathering a representative sample of identified X-ray sources at low latitude that can be used later on to statistically identify the rest of the serendipitous sources discovered in the Milky Way. The survey is based on 26 XMM-Newton observations, obtained at | b | < 20 deg, distributed over a large range in Galactic longitudes and covering a summed area of 4 deg2. The flux limit of our survey is 2 × 10-15 erg cm-2 s-1 in the soft (0.5-2 keV) band and 1 × 10-14 erg cm-2 s-1 in the hard (2-12 keV) band. We detect a total of 1319 individual X-ray sources. Using optical follow-up observations supplemented by cross-correlation with a large range of multi-wavelength archival catalogues we identify 316 X-ray sources. This constitutes the largest group of spectroscopically identified low latitude X-ray sources at this flux level. The majority of the identified X-ray sources are active coronae with spectral types in the range A-M at maximum distances of ~1 kpc. The number of identified active starsincreases towards late spectral types, reaching a maximum at K. Using infrared colours we classify 18% of the stars as giants. The observed distributions of FX/FV, X-ray and infrared colours indicates that our sample is dominated by a young (100 Myr) to intermediate (600 Myr) age population with a

  7. Risk factors associated with repetition of self-harm in black and minority ethnic (BME) groups: a multi-centre cohort study.

    PubMed

    Cooper, Jayne; Steeg, Sarah; Webb, Roger; Stewart, Suzanne L K; Applegate, Eve; Hawton, Keith; Bergen, Helen; Waters, Keith; Kapur, Navneet

    2013-06-01

    Little information is available to inform clinical assessments on risk of self-harm repetition in ethnic minority groups. In a prospective cohort study, using data collected from six hospitals in England for self-harm presentations occurring between 2000 and 2007, we investigated risk factors for repeat self-harm in South Asian and Black people in comparison to Whites. During the study period, 751 South Asian, 468 Black and 15,705 White people presented with self-harm in the study centres. Repeat self-harm occurred in 4379 individuals, which included 229 suicides (with eight of these fatalities being in the ethnic minority groups). The risk ratios for repetition in the South Asian and Black groups compared to the White group were 0.6, 95% CI 0.5-0.7 and 0.7, 95% CI 0.5-0.8, respectively. Risk factors for repetition were similar across all three groups, although excess risk versus Whites was seen in Black people presenting with mental health symptoms, and South Asian people reporting alcohol use and not having a partner. Additional modelling of repeat self-harm count data showed that alcohol misuse was especially strongly linked with multiple repetitions in both BME groups. Ethnicity was not recorded in a third of cases which may introduce selection bias. Differences may exist due to cultural diversity within the broad ethnic groups. Known social and psychological features that infer risk were present in South Asian and Black people who repeated self-harm. Clinical assessment in these ethnic groups should ensure recognition and treatment of mental illness and alcohol misuse. Copyright © 2012 Elsevier B.V. All rights reserved.

  8. Black holes, quasars, and the universe /2nd edition/

    NASA Technical Reports Server (NTRS)

    Shipman, H. L.

    1980-01-01

    Topics of astronomy are discussed in terms of black holes, galaxies, quasars, and models of the universe. Black holes are approached through consideration of stellar evolution, white dwarfs, supernovae, neutron stars, pulsars, the event horizon, Cygnus X-1, white holes, and worm holes. Attention is also given to radio waves from high speed electrons, the radiation emitted by quasars, active galaxies, galactic energy sources, and interpretations of the redshift. Finally, the life cycle of the universe is deliberated, along with the cosmic time scale, evidence for the Big Bang, and the future of the universe.

  9. Formation of black hole x-ray binaries in globular clusters

    NASA Astrophysics Data System (ADS)

    Kremer, Kyle; Chatterjee, Sourav; Rodriguez, Carl; Rasio, Frederic

    2018-01-01

    We explore the formation of mass-transferring binary systems containing black holes within globular clusters. We show that it is possible to form mass-transferring binaries with main sequence, giant, and white dwarf companions with a variety of orbital parameters in globular clusters spanning a large range in present-day properties. We show that the presence of mass-transferring black hole systems has little correlation with the total number of black holes within the cluster at any time. In addition to mass-transferring binaries retained within their host clusters at late times, we also examine the black hole and neutron star binaries that are ejected from their host clusters. These ejected systems may contribute to the low-mass x-ray binary population in the galactic field.

  10. Galactic Winds

    NASA Astrophysics Data System (ADS)

    Veilleux, Sylvain

    Galactic winds have become arguably one of the hottest topics in extragalactic astronomy. This enthusiasm for galactic winds is due in part to the detection of winds in many, if not most, high-redshift galaxies. Galactic winds have also been invoked by theorists to (1) suppress the number of visible dwarf galaxies and avoid the "cooling catastrophe" at high redshift that results in the overproduction of massive luminous galaxies, (2) remove material with low specific angular momentum early on and help enlarge gas disks in CDM + baryons simulations, (3) reduce the dark mass concentrations in galaxies, (4) explain the mass-metallicity relation of galaxies from selective loss of metal-enriched gas from smaller galaxies, (5) enrich and "preheat" the ICM, (6) enrich the IGM without disturbing the Lyαforest significantly, and (7) inhibit cooling flows in galaxy clusters with active cD galaxies. The present paper highlights a few key aspects of galactic winds taken from a recent ARAA review by Veilleux, Cecil, &Bland-Hawthorn (2005; herafter VCBH). Readers interested in a more detailed discussion of this topic are encouraged to refer to the original ARAA article.

  11. Supermassive Black Hole Fueling and Feedback in Galaxies

    NASA Astrophysics Data System (ADS)

    Comerford, Julia M.

    2018-06-01

    Over the last few decades, observations have revealed surprisingly tight correlations between the properties of galaxies and their supermassive black holes. Active galactic nuclei (AGN) have emerged as key drivers of this coevolution of galaxies and supermassive black holes, by two primary mechanisms: AGN fueling and AGN feedback. Supermassive black holes build up mass by accreting gas during AGN fueling, while AGN feedback is a crucial regulator of star formation that controls the mass growth of the galaxies. In this talk, I will present multiwavelength studies of both AGN fueling and feedback. I will discuss results that address AGN fueling in galaxy mergers, the connection between AGN and star formation, and the effect of AGN outflows on their host galaxies.

  12. VizieR Online Data Catalog: Catalogue of Galactic Planetary Nebulae (Kohoutek, 2001)

    NASA Astrophysics Data System (ADS)

    Kohoutek, L.

    2001-05-01

    The "Catalogue of Galactic Planetary Nebulae (Version 2000)" appears in Abhandlungen aus der Hamburger Sternwarte, Band XII in the year 2001. It is a continuation of CGPN(1967) and contains 1510 objects classified as galactic PNe up to the end of 1999. The lists of possible pre-PNe and possible post-PNe are also given. The catalogue is restricted only to the data belonging to the location and identification of the objects. It gives identification charts of PNe discovered since 1965 (published in the supplements to CGPN) and those charts of objects discovered earlier, which have wrong or uncertain identification. The question "what is a planetary nebula" is discussed and the typical values of PNe and of their central stars are summarized. Short statistics about the discoveries of PNe are given. The catalogue is also available in the Centre de Donnees, Strasbourg and at Hamburg Observatory via internet. (15 data files).

  13. Spectrum and variation of gamma-ray emission from the galactic center region

    NASA Technical Reports Server (NTRS)

    Riegler, G. R.; Ling, J. C.; Mahoney, W. A.; Wheaton, W. A.; Jacobson, A. S.

    1982-01-01

    Continuum emission at 60-300 keV from the galactic center region was observed to decrease in intensity by 45 percent and to show a spectrum steepening between fall 1979 and spring 1980. At the same time 511 keV positron annihilation radiation decreased by a comparable fraction. No variations over shorter time scales were detected. The observations are consistent with a model where positrons and hard X-rays are produced in an electromagnetic cascade near a massive black hole.

  14. Hydrodynamical simulations of the tidal stripping of binary stars by massive black holes

    NASA Astrophysics Data System (ADS)

    Mainetti, Deborah; Lupi, Alessandro; Campana, Sergio; Colpi, Monica

    2016-04-01

    In a galactic nucleus, a star on a low angular momentum orbit around the central massive black hole can be fully or partially disrupted by the black hole tidal field, lighting up the compact object via gas accretion. This phenomenon can repeat if the star, not fully disrupted, is on a closed orbit. Because of the multiplicity of stars in binary systems, also binary stars may experience in pairs such a fate, immediately after being tidally separated. The consumption of both the binary components by the black hole is expected to power a double-peaked flare. In this paper, we perform for the first time, with GADGET2, a suite of smoothed particle hydrodynamics simulations of binary stars around a galactic central black hole in the Newtonian regime. We show that accretion luminosity light curves from double tidal disruptions reveal a more prominent knee, rather than a double peak, when decreasing the impact parameter of the encounter and when elevating the difference between the mass of the star which leaves the system after binary separation and the mass of the companion. The detection of a knee can anticipate the onset of periodic accretion luminosity flares if one of the stars, only partially disrupted, remains bound to the black hole after binary separation. Thus knees could be precursors of periodic flares, which can then be predicted, followed up and better modelled. Analytical estimates in the black hole mass range 105-108 M⊙ show that the knee signature is enhanced in the case of black holes of mass 106-107 M⊙.

  15. Interaction of the 100-year old X-Ray flare produced by a central black hole with diffuse gas in the Galactic center

    NASA Astrophysics Data System (ADS)

    Chernyshov, D.; Cheng, K.; Dogiel, V.; Kong, A.; Ko, C.; Tatischeff, V.; Terrier, R.

    2017-10-01

    We investigate an old X-Ray flare produced by a central black hole which is most likely responsible for the transient X-Ray emission from massive molecular clouds in the Galactic center. This flare should ionize diffuse molecular gas and also excite fluorescence lines e.g. neutral iron line at 6.4 keV. It turns out that the observed diffuse 6.4 keV line can be explained by the same X-Ray flare which illuminates dense molecular clouds. The diffuse emission can also be considered as a tool to limit potential duration and intensity of the primary X-Ray flare. We show that charged particles cannot provide necessary iron ionization rate to reproduce the observed emission. On the other hand ionization of neutral hydrogen cannot be provided by a primary flare and should be done by other mechanisms like for example charged particles. We also claim that recently found afterglow from Swift J1644+57 can be produced by similar event and can be a nice example of a Compton echo observed in a distant galaxy.

  16. The effects of baryon physics, black holes and active galactic nucleus feedback on the mass distribution in clusters of galaxies

    NASA Astrophysics Data System (ADS)

    Martizzi, Davide; Teyssier, Romain; Moore, Ben; Wentz, Tina

    2012-06-01

    The spatial distribution of matter in clusters of galaxies is mainly determined by the dominant dark matter component; however, physical processes involving baryonic matter are able to modify it significantly. We analyse a set of 500 pc resolution cosmological simulations of a cluster of galaxies with mass comparable to Virgo, performed with the AMR code RAMSES. We compare the mass density profiles of the dark, stellar and gaseous matter components of the cluster that result from different assumptions for the subgrid baryonic physics and galaxy formation processes. First, the prediction of a gravity-only N-body simulation is compared to that of a hydrodynamical simulation with standard galaxy formation recipes, and then all results are compared to a hydrodynamical simulation which includes thermal active galactic nucleus (AGN) feedback from supermassive black holes (SMBHs). We find the usual effects of overcooling and adiabatic contraction in the run with standard galaxy formation physics, but very different results are found when implementing SMBHs and AGN feedback. Star formation is strongly quenched, producing lower stellar densities throughout the cluster, and much less cold gas is available for star formation at low redshifts. At redshift z= 0 we find a flat density core of radius 10 kpc in both the dark and stellar matter density profiles. We speculate on the possible formation mechanisms able to produce such cores and we conclude that they can be produced through the coupling of different processes: (I) dynamical friction from the decay of black hole orbits during galaxy mergers; (II) AGN-driven gas outflows producing fluctuations of the gravitational potential causing the removal of collisionless matter from the central region of the cluster; (III) adiabatic expansion in response to the slow expulsion of gas from the central region of the cluster during the quiescent mode of AGN activity.

  17. Explaining low energy γ-ray excess from the galactic centre using a two-component dark matter model

    NASA Astrophysics Data System (ADS)

    Biswas, Anirban

    2016-06-01

    Over the past few years, there has been a hint of the γ-ray excess observed by the Fermi-LAT satellite-borne telescope from the regions surrounding the galactic centre (GC) at an energy range of ˜1-3 GeV. The nature of this excess γ-ray spectrum is found to be consistent with the γ-ray emission expected from dark matter (DM) annihilation at the GC while disfavouring other known astrophysical sources as the possible origin of this phenomena. It is also reported that the spectrum and morphology of this excess γ-rays can well be explained by the DM particles having mass in the range 30{--}40 {{GeV}} annihilating significantly into b\\bar{b} final state with an annihilation cross section σ v˜ (1.4-2.0)× {10}-26 cm{}3 {{{s}}}-1 at the GC. In this work, we propose a two-component DM model where two different types of DM particles, namely a complex scalar and a Dirac fermion are considered. The stability of both the dark sector particles are maintained by virtue of an additional local {{U}}{(1)}X gauge symmetry. We find that our proposed scenario can provide a viable explanation for this anomalous excess γ-rays besides satisfying all the existing relevant theoretical as well as experimental and observational bounds from LHC, PLANCK and LUX collaborations. The allowed range of ‘effective annihilation cross section’ of lighter DM particle for the b\\bar{b} annihilation channel thus obtained is finally compared with the limits reported by the Fermi-LAT and DES collaborations using data from various dwarf spheroidal galaxies.

  18. Supermassive Black Hole Binaries in High Performance Massively Parallel Direct N-body Simulations on Large GPU Clusters

    NASA Astrophysics Data System (ADS)

    Spurzem, R.; Berczik, P.; Zhong, S.; Nitadori, K.; Hamada, T.; Berentzen, I.; Veles, A.

    2012-07-01

    Astrophysical Computer Simulations of Dense Star Clusters in Galactic Nuclei with Supermassive Black Holes are presented using new cost-efficient supercomputers in China accelerated by graphical processing cards (GPU). We use large high-accuracy direct N-body simulations with Hermite scheme and block-time steps, parallelised across a large number of nodes on the large scale and across many GPU thread processors on each node on the small scale. A sustained performance of more than 350 Tflop/s for a science run on using simultaneously 1600 Fermi C2050 GPUs is reached; a detailed performance model is presented and studies for the largest GPU clusters in China with up to Petaflop/s performance and 7000 Fermi GPU cards. In our case study we look at two supermassive black holes with equal and unequal masses embedded in a dense stellar cluster in a galactic nucleus. The hardening processes due to interactions between black holes and stars, effects of rotation in the stellar system and relativistic forces between the black holes are simultaneously taken into account. The simulation stops at the complete relativistic merger of the black holes.

  19. The Galactic Tango: The Elegant Dance of Galaxies and their Supermassive Black Holes

    NASA Astrophysics Data System (ADS)

    Sherman, Sydney; Li, Yuexing; Zhu, Qirong

    2015-01-01

    For well over a decade, it has been known that a supermassive black hole resides in the center of almost every galaxy, and that these black holes strongly correlate with the stellar velocity dispersion (the MBH-σ correlation) and stellar mass (the MBH-Mhost correlation) of their hosts. The origins of these correlations, however, have yet to be determined. To explore the interplay between black holes and galaxies, we have utilized a sample of nearby spiral and elliptical galaxies as well as a sample of AGN in the redshift range z = 0-3. By examining galaxy properties such as mass, kinematics, and growth history, we have determined that these two correlations have distinct origins: the MBH-σ relation may be the result of virial equilibrium, whereas the MBH-Mhost relation may be the result of self-regulated black hole growth and star formation in galaxies. These results confirm the predictions of our previous theoretical model.

  20. Relativistically Skewed Iron Emission and Disk Reflection in Galactic Microquasar XTE J1748-288

    NASA Technical Reports Server (NTRS)

    Miller, J. M.; Fox, D. W.; DiMatteo, T.; Wijnands, R.; Belloni, T.; Kouveliotou, C.; Lewin, W. H. G.

    2000-01-01

    We report evidence for an Fe K-alpha fluorescence line feature in the Very High, High, and Low state X-ray spectra of the galactic microquasar XTE JI748-288 during its June 1998 outburst. Spectral analyses were made on observations spread across the outburst, gathered with the Rossi X-ray Timing Explorer. Gaussian line. disk emission line, relativistic disk emission line, and disk reflection models are fit to the data. In the Very High State, the line profile is strongly redshifted and consistent with emission from the innermost radius of a maximally rotating Kerr black hole, 1.235 R(sub g). The line profile is less redshifted in the High State, but increasingly prominent. In the Low State, the line profile is very strong and centered af approx. 6.7 keV; disk line emission models constrain the inner edge of the disk to fluctuate between approx.20 and approx.59 R(sub g). We trace the disk reflection fraction across the full outburst of this source, and find well-constrained fractions below those observed in AGN in the Very High and High States, but consistent with other galactic sources in the Low State. We discuss the possible implications for black hole X-ray binary system dynamics and accretion flow geometry.

  1. A High Resolution View of Galactic Centers: Arp 220 and M31

    NASA Astrophysics Data System (ADS)

    Lockhart, Kelly E.

    The centers of galaxy are small in size and yet incredibly complex. They play host to supermassive black holes and nuclear star clusters (NSCs) and are subject to large gas inows, nuclear starbursts, and active galactic nuclear (AGN) activity. They can also be the launching site for large-scale galactic outows. However, though these systems are quite important to galactic evolution, observations are quite difficult due to their small size. Using high spatial resolution narrowband imaging with HST/WFC3 of Arp 220, a latestage galaxy merger, I discover an ionized gas bubble feature ( r = 600 pc) just off the nucleus. The bubble is aligned with both the western nucleus and with the large-scale galactic outflow. Using energetics arguments, I link the bubble with a young, obscured AGN or with an intense nuclear starburst. Given its alignment along the large-scale outflow axis, I argue that the bubble presents evidence for a link between the galactic center and the large-scale outflow. I also present new observations of the NSC in M31, the closest large spiral galaxy to our own. Using the OSIRIS near-infrared integral field spectrograph (IFS) on Keck, I map the kinematics of the old stellar population in the eccentric disk of the NSC. I compare the observations to models to derive a precession speed of the disk of 0+/-5 km s-1 pc-1 , and hence confirm that winds from the old stellar population may be the source of gas needed to form the young stellar population in the NSC. Studies of galactic centers are dependent on high spatial resolution observations. In particular, IFSs are ideal instruments for these studies as they provide two-dimensional spectroscopy of the field of view, enabling 2D kinematic studies. I report on work to characterize and improve the data reduction pipeline of the OSIRIS IFS, and discuss implications for future generations of IFS instrumentation.

  2. Does the Galactic Bulge Have Fewer Planets?

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2016-12-01

    distribution of host distances from a simulated microlensing survey, correcting for dominant selection effects. They then compared the distribution of distances in this model sample to the distribution of distances measured for the actual, observed systems.Histogram and cumulative distribution (black lines) of distance estimates for microlensing planet hosts. Red lines show the distributions predicted by the model if the disk and bulge abundances were the same. [Penny et al. 2016]Intriguingly, the two distributions dont match when you assume that the planet abundances in the disk and the bulge are the same. The relative abundances appear to be higher in the disk than in the bulge, according to the teams results: the observations agree with a model in which the bulge/disk abundance ratio is less than 0.54.Whats to Blame?There are a few ways to interpret this result: 1) distance measurements for the sample of planets discovered by microlensing have errors, 2) the model is too simplified; it needs to also include dependence of planet abundance and detection sensitivity on properties like host mass and metallicity, or 3) the galactic bulge actually has fewer planets than the disk.Penny and collaboratorssuspect some combination of the first two interpretations is most likely, but an actual paucity of planets in the galactic bulge cant be ruled out. Performing similar analysis on a larger sample of microlensing planets expected from upcoming, second-generation microlensing searches and obtaining more accurate distance measurements will help us to address this puzzlemore definitively in the future.CitationMatthew T. Penny et al 2016 ApJ 830 150. doi:10.3847/0004-637X/830/2/150

  3. Very-high energy observations of the galactic center region by VERITAS in 2010-2012

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Archer, A.; Beilicke, M.; Buckley, J. H.

    2014-08-01

    The Galactic center is an interesting region for high-energy (0.1-100 GeV) and very-high-energy (E > 100 GeV) γ-ray observations. Potential sources of GeV/TeV γ-ray emission have been suggested, e.g., the accretion of matter onto the supermassive black hole, cosmic rays from a nearby supernova remnant (e.g., Sgr A East), particle acceleration in a plerion, or the annihilation of dark matter particles. The Galactic center has been detected by EGRET and by Fermi/LAT in the MeV/GeV energy band. At TeV energies, the Galactic center was detected with moderate significance by the CANGAROO and Whipple 10 m telescopes and with high significancemore » by H.E.S.S., MAGIC, and VERITAS. We present the results from three years of VERITAS observations conducted at large zenith angles resulting in a detection of the Galactic center on the level of 18 standard deviations at energies above ∼2.5 TeV. The energy spectrum is derived and is found to be compatible with hadronic, leptonic, and hybrid emission models discussed in the literature. Future, more detailed measurements of the high-energy cutoff and better constraints on the high-energy flux variability will help to refine and/or disentangle the individual models.« less

  4. X-ray emission from galaxies - The distribution of low-luminosity X-ray sources in the Galactic Centre region

    NASA Astrophysics Data System (ADS)

    Heard, Victoria; Warwick, Robert

    2012-09-01

    We report a study of the extended X-ray emission observed in the Galactic Centre (GC) region based on archival XMM-Newton data. The GC diffuse emission can be decomposed into three distinct components: the emission from low-luminosity point sources; the fluorescence of (and reflection from) dense molecular material; and soft (kT ~1 keV), diffuse thermal plasma emission most likely energised by supernova explosions. Here, we examine the emission due to unresolved point sources. We show that this source component accounts for the bulk of the 6.7-keV and 6.9-keV line emission. We fit the surface brightness distribution evident in these lines with an empirical 2-d model, which we then compare with a prediction derived from a 3-d mass model for the old stellar population in the GC region. We find that the X-ray surface brightness declines more rapidly with angular offset from Sgr A* than the mass-model prediction. One interpretation is that the X-ray luminosity per solar mass characterising the GC source population is increasing towards the GC. Alternatively, some refinement of the mass-distribution within the nuclear stellar disc may be required. The unresolved X-ray source population is most likely dominated by magnetic CVs. We use the X-ray observations to set constraints on the number density of such sources in the GC region. Our analysis does not support the premise that the GC is pervaded by very hot (~ 7.5 keV) thermal plasma, which is truly diffuse in nature.

  5. The near-infrared radius-luminosity relationship for active galactic nuclei

    NASA Astrophysics Data System (ADS)

    Landt, Hermine; Bentz, Misty C.; Peterson, Bradley M.; Elvis, Martin; Ward, Martin J.; Korista, Kirk T.; Karovska, Margarita

    2011-05-01

    Black hole masses for samples of active galactic nuclei (AGNs) are currently estimated from single-epoch optical spectra. In particular, the size of the broad-line emitting region needed to compute the black hole mass is derived from the optical or ultraviolet continuum luminosity. Here we consider the relationship between the broad-line region size, R, and the near-infrared (near-IR) AGN continuum luminosity, L, as the near-IR continuum suffers less dust extinction than at shorter wavelengths and the prospects for separating the AGN continuum from host-galaxy starlight are better in the near-IR than in the optical. For a relationship of the form R∝Lα, we obtain for a sample of 14 reverberation-mapped AGN a best-fitting slope of α= 0.5 ± 0.1, which is consistent with the slope of the relationship in the optical band and with the value of 0.5 naïvely expected from photoionization theory. Black hole masses can then be estimated from the near-IR virial product, which is calculated using the strong and unblended Paschen broad emission lines (Paα or Paβ).

  6. Black hole demographics from the M•-σ relation

    NASA Astrophysics Data System (ADS)

    Merritt, David; Ferrarese, Laura

    2001-01-01

    We analyse a sample of 32 galaxies for which a dynamical estimate of the mass of the hot stellar component, Mbulge, is available. For each of these galaxies, we calculate the mass of the central black hole, M•, using the tight empirical correlation between M• and bulge stellar velocity dispersion. The frequency function N[log(M•Mbulge)] is reasonably well described as a Gaussian with ~-2.90 and standard deviation ~0.45 the implied mean ratio of black hole mass to bulge mass is a factor of ~5 smaller than generally quoted in the literature. We present marginal evidence for a lower, average black hole mass fraction in more massive galaxies. The total mass density in black holes in the local Universe is estimated to be ~ 5×105MsolarMpc-3, consistent with that inferred from high-redshift (z~2) active galactic nuclei.

  7. QSO Emission Lines and the Black Hole-Galaxy Bulge Relation

    NASA Astrophysics Data System (ADS)

    Shields, G. A.; Gebhardt, K.; Salviander, S.; Wills, B. J.; Yuan, M.; Xie, B.; Dietrich, M.

    2002-05-01

    Supermassive black holes in galactic nuclei have masses closely related to the properties of the host galaxy bulge. In particular, MBH varies as the fourth power of σ , the stellar velocity dispersion (Tremaine et al. 2002, ApJ in press, and references therein). The origin of the black hole-bulge relation is unknown, although theoretical suggestions abound. An important clue would be provided by knowledge of how the relation has evolved over cosmic time. This requires measurement of black hole masses and galactic potentials at large look-back times, which is difficult to do directly. However, black hole masses may be derived from the continuum luminosity and the widths of the broad Balmer lines of QSOs (e.g., Kaspi et al. 2000, ApJ 533, 631), and σ may be derived from the widths of the narrow [O III] lines (Nelson 2000, ApJ, 544, L91). We have carried out this program for a set of published and unpublished observations of Seyfert galaxies and QSOs. Results for low redshift objects support the use of this method to derive MBH and σ . The few available measurements of high redshift QSOs are consistent little or no change in the MBH-σ relation between the present and redshifts up to z = 3.3, when the universe was only two billion years old. This material is based in part upon work supported by the Texas Advanced Research Program under Grant No. 003658-0177-2001.

  8. Galactic cluster winds in presence of a dark energy

    NASA Astrophysics Data System (ADS)

    Bisnovatyi-Kogan, G. S.; Merafina, M.

    2013-10-01

    We obtain a solution for the hydrodynamic outflow of the polytropic gas from the gravitating centre, in the presence of the uniform dark energy (DE). The antigravity of DE is enlightening the outflow and makes the outflow possible at smaller initial temperature, at the same density. The main property of the wind in the presence of DE is its unlimited acceleration after passing the critical point. In application of this solution to the winds from galaxy clusters, we suggest that collision of the strongly accelerated wind with another galaxy cluster, or with another galactic cluster wind, could lead to the formation of a highest energy cosmic rays.

  9. Nearby Quasars Result From Galactic Encounters, VLA Studies Indicate

    NASA Astrophysics Data System (ADS)

    1998-12-01

    Astronomers using the National Science Foundation's Very Large Array (VLA) radio telescope have found previously unseen evidence that galaxy collisions trigger energetic quasar activity in relatively nearby galaxies. New radio images of galaxies with bright quasar cores show that, though the galaxies appear normal in visible-light images, their gas has been disrupted by encounters with other galaxies. "This is what theorists have believed for years, but even the best images from optical telescopes, including the Hubble Space Telescope, failed to show any direct evidence of interactions with other galaxies in many cases," said Jeremy Lim, of the Academia Sinica Institute of Astronomy & Astrophysics in Taipei, Taiwan. Lim, along with Paul Ho of the Harvard-Smithsonian Center for Astrophysics in Cambridge, MA, reported their findings in the January 1 issue of Astrophysical Journal Letters. Quasars are among the most luminous objects in the universe, and generally are believed to be powered by material being drawn into a supermassive black hole at the center of a galaxy, releasing large amounts of energy. Many quasars are found at extremely great distances from Earth, billions of light-years away. Because the light from these quasars took billions of years to reach our telescopes, we see them as they were when they were much younger objects. These distant quasars are thought to "turn on" when the host galaxy's central black hole is "fueled" by material drawn in during an early stage of the galaxy's development, before the galaxy "settles down" to a more sedate life. However, other galaxies with quasar cores are much closer, and thus are older, more mature galaxies. Their quasar activity has been attributed to encounters with nearby galaxies -- encounters that disrupt material and provide new "fuel" to the black hole. The problem for this scenario was the lack of evidence for such galactic encounters in optical images of many nearby quasars. "Our VLA studies are the

  10. Monitoring the Black Hole Binary GRS 1758-258 with INTEGRAL and RXTE

    NASA Technical Reports Server (NTRS)

    Pottschmidt, Katja; Chernyakova, Masha; Lubinski, Piotr; Migliari, Simone; Smith, David M.; Zdziarski, Andrzej A.; Tomsick, John A.; Bezayiff, N.; Kreykenbohm, Ingo; Kretschmar, Peter; hide

    2008-01-01

    The microquasar GRS 1758-258 is one of only three persistent black hole binaries that spend most of their time in the hard spectral state, the other two being Cyg X-l and 1E 1741.7-2942. It therefore provides the rare opportunity for an extensive long term study of this important black hole state which is associated with strong variability and radio jet emission. INTEGRAL has been monitoring the source since the first Galactic Center Deep Exposure season in spring 2003 during two 2-3 months long Galactic Center viewing epochs each year, amounting to 11 epochs including spring of 2008. With the exception of the last epoch quasi-simultaneous RXTE monitoring observations are available as well. Here we present an analysis of the epoch averaged broad band spectra which display considerable long term variability, most notably the occurrence of two soft/off states, extreme examples for the hysteretic behavior of black hole binaries. The hard source spectrum and long exposures allow us to extend the analysis for several epochs to approximately 800 keV using PICsIT data and address the question of the presence of a non-thermal Comptonization component.

  11. Version 2000 of the Catalogue of Galactic Planetary Nebulae

    NASA Astrophysics Data System (ADS)

    Kohoutek, L.

    2001-11-01

    The ``Catalogue of Galactic Planetary Nebulae (Version 2000)'' appears in Abhandlungen aus der Hamburger Sternwarte, Band XII in the year 2001. It is a continuation of CGPN(1967) and contains 1510 objects classified as galactic PNe up to the end of 1999. The lists of possible pre-PNe and possible post-PNe are also given. The catalogue is restricted only to the data belonging to the location and identification of the objects. It gives identification charts of PNe discovered since 1965 (published in the supplements to CGPN) and those charts of objects discovered earlier, which have wrong or uncertain identification. The question ``what is a planetary nebula'' is discussed and the typical values of PNe and of their central stars are summarized. Short statistics about the discoveries of PNe are given. The catalogue is also available in the Centre de Données, Strasbourg and at Hamburg Observatory via internet. The Catalogue is only available in electronic form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/378/843

  12. VVV Survey Microlensing Events in the Galactic Center Region

    NASA Astrophysics Data System (ADS)

    Navarro, María Gabriela; Minniti, Dante; Contreras Ramos, Rodrigo

    2017-12-01

    We search for microlensing events in the highly reddened areas surrounding the Galactic center using the near-IR observations with the VISTA Variables in the Vía Láctea Survey (VVV). We report the discovery of 182 new microlensing events, based on observations acquired between 2010 and 2015. We present the color-magnitude diagrams of the microlensing sources for the VVV tiles b332, b333, and b334, which were independently analyzed, and show good qualitative agreement among themselves. We detect an excess of microlensing events in the central tile b333 in comparison with the other two tiles, suggesting that the microlensing optical depth keeps rising all the way to the Galactic center. We derive the Einstein radius crossing time for all of the observed events. The observed event timescales range from t E = 5 to 200 days. The resulting timescale distribution shows a mean timescale of < {t}{{E}}> =30.91 days for the complete sample (N = 182 events), and < {t}{{E}}> =29.93 days if restricted only for the red clump (RC) giant sources (N = 96 RC events). There are 20 long timescale events ({t}{{E}}≥slant 100 days) that suggest the presence of massive lenses (black holes) or disk-disk event. This work demonstrates that the VVV Survey is a powerful tool to detect intermediate/long timescale microlensing events in highly reddened areas, and it enables a number of future applications, from analyzing individual events to computing the statistics for the inner Galactic mass and kinematic distributions, in aid of future ground- and space-based experiments.

  13. The Galactic Distribution of Planets via Spitzer Microlensing Parallax

    NASA Astrophysics Data System (ADS)

    Gould, Andrew; Yee, Jennifer; Carey, Sean; Shvartzvald, Yossi

    2018-05-01

    We will measure the Galactic distribution of planets by obtaining 'microlens parallaxes' of about 200 events, including 3 planetary events, from the comparison of microlens lightcurves observed from Spitzer and Earth, which are separated by >1.5 AU in projection. The proposed observations are part of a campaign that we have conducted with Spitzer since 2014. The planets expected to be identified in this campaign when combined with previous work will yield a first statistically significant measurement of the frequency of planets in the Galactic bulge versus the Galactic disk. As we have demonstrated in three previous programs, the difference in these lightcurves yields both the 'microlens parallax' (ratio of the lens-source relative parallax) to the Einstein radius, and the direction of lens-source relative motion. For planetary events, this measurement directly yields the mass and distance of the planet. This proposal is significantly more sensitive to planets than previous work because it takes advantage of the KMTNet observing strategy that covers >85 sq.deg t >0.4/hr cadence, 24/7 from 3 southern observatories and a alert system KMTNet is implementing for 2019. This same observing program also provides a unique probe of dark objects. It will yield an improved measurement of the isolated-brown-dwarf mass function. Thirteen percent of the observations will specifically target binaries, which will probe systems with dark components (brown dwarfs, neutron stars, black holes) that are difficult or impossible to investigate by other methods. The observations and methods from this work are a test bed for WFIRST microlensing.

  14. Chandra Catches "Piranha" Black Holes

    NASA Astrophysics Data System (ADS)

    2007-07-01

    Supermassive black holes have been discovered to grow more rapidly in young galaxy clusters, according to new results from NASA's Chandra X-ray Observatory. These "fast-track" supermassive black holes can have a big influence on the galaxies and clusters that they live in. Using Chandra, scientists surveyed a sample of clusters and counted the fraction of galaxies with rapidly growing supermassive black holes, known as active galactic nuclei (or AGN). The data show, for the first time, that younger, more distant galaxy clusters contained far more AGN than older, nearby ones. Galaxy clusters are some of the largest structures in the Universe, consisting of many individual galaxies, a few of which contain AGN. Earlier in the history of the universe, these galaxies contained a lot more gas for star formation and black hole growth than galaxies in clusters do today. This fuel allows the young cluster black holes to grow much more rapidly than their counterparts in nearby clusters. Illustration of Active Galactic Nucleus Illustration of Active Galactic Nucleus "The black holes in these early clusters are like piranha in a very well-fed aquarium," said Jason Eastman of Ohio State University (OSU) and first author of this study. "It's not that they beat out each other for food, rather there was so much that all of the piranha were able to really thrive and grow quickly." The team used Chandra to determine the fraction of AGN in four different galaxy clusters at large distances, when the Universe was about 58% of its current age. Then they compared this value to the fraction found in more nearby clusters, those about 82% of the Universe's current age. The result was the more distant clusters contained about 20 times more AGN than the less distant sample. AGN outside clusters are also more common when the Universe is younger, but only by factors of two or three over the same age span. "It's been predicted that there would be fast-track black holes in clusters, but we never

  15. Gravitational Waves and Intermediate-mass Black Hole Retention in Globular Clusters

    NASA Astrophysics Data System (ADS)

    Fragione, Giacomo; Ginsburg, Idan; Kocsis, Bence

    2018-04-01

    The recent discovery of gravitational waves (GWs) has opened new horizons for physics. Current and upcoming missions, such as LIGO, VIRGO, KAGRA, and LISA, promise to shed light on black holes of every size from stellar mass (SBH) sizes up to supermassive black holes. The intermediate-mass black hole (IMBH) family has not been detected beyond any reasonable doubt. Recent analyses suggest observational evidence for the presence of IMBHs in the centers of two Galactic globular clusters (GCs). In this paper, we investigate the possibility that GCs were born with a central IMBH, which undergoes repeated merger events with SBHs in the cluster core. By means of a semi-analytical method, we follow the evolution of the primordial cluster population in the galactic potential and the mergers of the binary IMBH-SBH systems. Our models predict ≈1000 IMBHs within 1 kpc from the galactic center and show that the IMBH-SBH merger rate density changes from { \\mathcal R }≈ 1000 Gpc‑3 yr‑1 beyond z ≈ 2 to { \\mathcal R }≈ 1{--}10 Gpc‑3 yr‑1 at z ≈ 0. The rates at low redshifts may be significantly higher if young massive star clusters host IMBHs. The merger rates are dominated by IMBHs with masses between 103 and 104 M ⊙. Currently, there are no LIGO/VIRGO upper limits for GW sources in this mass range, but our results show that at design sensitivity, these instruments will detect IMBH-SBH mergers in the coming years. LISA and the Einstein Telescope will be best suited to detect these events. The inspirals of IMBH-SBH systems may also generate an unresolved GW background.

  16. Theory of active galactic nuclei

    NASA Technical Reports Server (NTRS)

    Shields, G. A.

    1986-01-01

    The involvement of accretion disks around supermassive black holes in the theory of active galactic nuclei (AGN) is discussed. The physics of thin and thick accretion disks is discussed and the partition between thermal and nonthermal energy production in supermassive disks is seen as uncertain. The thermal limit cycle may operate in supermassive disks (Shields, 1985), with accumulation of gas in the disk for periods of 10 to the 4th to 10 to the 7th years, punctuated by briefer outbursts during which the mass is rapidly transferred to smaller radii. An extended X-ray source in AGN is consistent with observations (Tennant and Mushotsky, 1983), and a large wind mass loss rate exceeding the central accretion rate means that only a fraction of the mass entering the disk will reach the central object; the rest being lost to the wind. Controversy in the relationship between the broad lines and the disk is also discussed.

  17. Origin of Enigmatic Galactic-center Filaments Revealed

    NASA Astrophysics Data System (ADS)

    2004-06-01

    Twenty years ago, astronomers discovered a number of enigmatic radio-emitting filaments concentrated near the center of the Milky Way Galaxy. These features initially defied explanation, but a new study of radio images of the Galactic center may point to their possible source. By combining data from the National Science Foundation's Very Large Array (VLA) and Robert C. Byrd Green Bank Telescope (GBT) astronomer Farhad Yusef-Zadeh of Northwestern University has found evidence that at least some of the filaments spring from the concentrated star-formation regions that populate the Galactic center. Galatic Center Combined VLA and GBT image (green) of the Galactic center, with red inset of GBT data only (red). Bright region on right is location of supermassive black hole. Linear filaments are visible above this area. CREDIT: NRAO/AUI/NSF Yusef-Zadeh, et.al. (Click on Image for Larger Version) Yusef-Zadeh presented his findings at the Denver, Colorado, meeting of the American Astronomical Society. William Cotton of the National Radio Astronomy Observatory (NRAO) in Charlottesville, Virginia, and William Hewitt of Northwestern University also contributed to this research. "Astronomers have long puzzled over the cause of these striking features," said Yusef-Zadeh, "and the turbulent nature of the Galactic center has made detailed analysis difficult. With new multi-wavelength radio images of the Galactic center, however, we can finally see a link between areas of starburst activity and these long-linear filaments." The filaments, which range from 10 to 100 light-years in length and are perhaps little more than 1 to 3 light-years across, occur only in a very narrow area, within approximately two degrees of the Galactic center (which translates to approximately 900 light-years across). Early theories about the origin of these filaments suggested that they were somehow related to the Milky Way’s own magnetic field. This was due to the fact that the first filaments detected

  18. Eclipsing Stellar Binaries in the Galactic Center

    NASA Astrophysics Data System (ADS)

    Li, Gongjie; Ginsburg, Idan; Naoz, Smadar; Loeb, Abraham

    2017-12-01

    Compact stellar binaries are expected to survive in the dense environment of the Galactic center. The stable binaries may undergo Kozai–Lidov oscillations due to perturbations from the central supermassive black hole (Sgr A*), yet the general relativistic precession can suppress the Kozai–Lidov oscillations and keep the stellar binaries from merging. However, it is challenging to resolve the binary sources and distinguish them from single stars. The close separations of the stable binaries allow higher eclipse probabilities. Here, we consider the massive star SO-2 as an example and calculate the probability of detecting eclipses, assuming it is a binary. We find that the eclipse probability is ∼30%–50%, reaching higher values when the stellar binary is more eccentric or highly inclined relative to its orbit around Sgr A*.

  19. Clarification of the formation process of the super massive black hole by Infrared astrometric satellite, Small-JASMINE

    NASA Astrophysics Data System (ADS)

    Yano, Taihei; JASMINE-WG

    2018-04-01

    Small-JASMINE (hearafter SJ), infrared astrometric satellite, will measure the positions and the proper motions which are located around the Galactic center, by operating at near infrared wave-lengths. SJ will clarify the formation process of the super massive black hole (hearafter SMBH) at the Galactic center. In particular, SJ will determine whether the SMBH was formed by a sequential merging of multiple black holes. The clarification of this formation process of the SMBH will contribute to a better understanding of merging process of satellite galaxies into the Galaxy, which is suggested by the standard galaxy formation scenario. A numerical simulation (Tanikawa and Umemura, 2014) suggests that if the SMBH was formed by the merging process, then the dynamical friction caused by the black holes have influenced the phase space distribution of stars. The phase space distribution measured by SJ will make it possible to determine the occurrences of the merging process.

  20. Primordial Black Holes as Generators of Cosmic Structures

    NASA Astrophysics Data System (ADS)

    Carr, Bernard; Silk, Joseph

    2018-05-01

    Primordial black holes (PBHs) could provide the dark matter in various mass windows below 102M⊙ and those of 30M⊙ might explain the LIGO events. PBHs much larger than this might have important consequences even if they provide only a small fraction of the dark matter. In particular, they could generate cosmological structure either individually through the `seed' effect or collectively through the `Poisson' effect, thereby alleviating some problems associated with the standard CDM scenario. If the PBHs all have a similar mass and make a small contribution to the dark matter, then the seed effect dominates on small scales, in which case PBHs could generate the supermassive black holes in galactic nuclei or even galaxies themselves. If they have a similar mass and provide the dark matter, the Poisson effect dominates on all scales and the first bound clouds would form earlier than in the usual scenario, with interesting observational consequences. If the PBHs have an extended mass spectrum, which is more likely, they could fulfill all three roles - providing the dark matter, binding the first bound clouds and generating galaxies. In this case, the galactic mass function naturally has the observed form, with the galaxy mass being simply related to the black hole mass. The stochastic gravitational wave background from the PBHs in this scenario would extend continuously from the LIGO frequency to the LISA frequency, offering a potential goal for future surveys.

  1. Dynamics and stellar population of the Galactic Center (French Title: Étude de la cinématique et de la population stellaire du Centre Galactique)

    NASA Astrophysics Data System (ADS)

    Paumard, Thibaut

    2003-09-01

    The central parsec of the Galaxy has been observed using BEAR spectroimagery at high spectral resolution (up to 21 km/s) and medium spatial resolution (0.5"), in Bracket gamma (2.16 microns) and He I (2.06 microns), and high resolution imaging. These data were used to study the young, massive stars of the central parsec, and the structure and dynamics of ionized gas in Sgr A West. The stellar population has been separated into two groups: the IRS 16 complex of 6 LBVs, and at least 20 Wolf-Rayets. The IRS 13E complex has been identified as a cluster of at least 6 massive stars. All this is consistent with the young stars being born in a massive cluster a few tens of parsecs from the Galactic Centre. Providing a deep insight into the morphology of Sgr A West, our data allowed us to derive a kinematic model for the Northern Arm. Our results are in agreement with the idea that the Minispiral is made of ionisation fronts of wider neutral clouds, gravitationally stretched, coming from the CND.

  2. Interaction of the accretion flows in corona and disk near the black hole in active galactic nuclei

    NASA Astrophysics Data System (ADS)

    Meyer-Hofmeister, E.; Liu, B. F.; Qiao, E.

    2017-11-01

    Context. Accretion flows toward black holes can be of a quite different nature, described as an optically thick cool gas flow in a disk for high accretion rates or as a hot coronal optically thin gas flow for low accretion rates, possibly affected by outflowing gas. Aims: The detection of broad iron emission lines in active galactic nuclei (AGN) indicates the coexistence of corona and disk. The appearance and relative strength of such flows essentially depends on their interaction. Liu et al. suggested that condensation of gas from the corona to the disk allows to understand accretion flows of comparable strength of emission. Matter inflow due to gravitational capture of gas is important for the condensation process. We discuss observational features predicted by the model. Methods: Data from simultaneous observations of AGN with Swift's X-ray and UV-optical telescopes are compared with the theoretical predictions. Results: The frequent detection of broad iron Kα emission lines and the dependence of the emitted spectra on the Eddington ratio, described by the values of the photon index Γ and the two-point spectral index αox are in approximate agreement with the predictions of the condensation model; the latter, however, with a large scatter. The model further yields a coronal emission concentrated in a narrow inner region as is also deduced from the analysis of emissivity profiles. Conclusions: The accretion flows in bright AGN could be described by the accretion of stellar wind or interstellar medium and its condensation into a thin disk.

  3. Gravitational instability of polytropic spheres containing region of trapped null geodesics: a possible explanation of central supermassive black holes in galactic halos

    NASA Astrophysics Data System (ADS)

    Stuchlík, Zdeněk; Schee, Jan; Toshmatov, Bobir; Hladík, Jan; Novotný, Jan

    2017-06-01

    We study behaviour of gravitational waves in the recently introduced general relativistic polytropic spheres containing a region of trapped null geodesics extended around radius of the stable null circular geodesic that can exist for the polytropic index N > 2.138 and the relativistic parameter, giving ratio of the central pressure pc to the central energy density ρc, higher than σ = 0.677. In the trapping zones of such polytropes, the effective potential of the axial gravitational wave perturbations resembles those related to the ultracompact uniform density objects, giving thus similar long-lived axial gravitational modes. These long-lived linear perturbations are related to the stable circular null geodesic and due to additional non-linear phenomena could lead to conversion of the trapping zone to a black hole. We give in the eikonal limit examples of the long-lived gravitational modes, their oscillatory frequencies and slow damping rates, for the trapping zones of the polytropes with N in (2.138,4). However, in the trapping polytropes the long-lived damped modes exist only for very large values of the multipole number l > 50, while for smaller values of l the numerical calculations indicate existence of fast growing unstable axial gravitational modes. We demonstrate that for polytropes with N >= 3.78, the trapping region is by many orders smaller than extension of the polytrope, and the mass contained in the trapping zone is about 10-3 of the total mass of the polytrope. Therefore, the gravitational instability of such trapping zones could serve as a model explaining creation of central supermassive black holes in galactic halos or galaxy clusters.

  4. A Three Dimensional Picture of Galactic Center Mass Flows From Kiloparsec to Subparsec Scales

    NASA Astrophysics Data System (ADS)

    Mills, Elisabeth A.

    2018-06-01

    The centers of galaxies host extreme and energetic phenomena, from the amassing of incredibly dense reservoirs of gas to nuclear starbursts producing tens to hundreds of solar masses per year to accreting supermassive black holes launching jets. All of these are found on compact scales from hundreds of parsecs to less than a microparsec. The nearest laboratory for examining these processes is the center of our own Milky Way Galaxy. Although the black hole is not currently active and the star formation rate is relatively low, it is still our best opportunity for detailed insight into the processes that regulate the growth of the central supermassive black hole. By providing access to mid and far infrared wavelengths, SOFIA plays a unique role in connecting large and small scales in the Galactic center and studying the cycling of gas through this region. In this talk I will highlight several key open questions and outline the role that SOFIA continues to play in answering them.

  5. Discovery of very-high-energy gamma-rays from the Galactic Centre ridge.

    PubMed

    Aharonian, F; Akhperjanian, A G; Bazer-Bachi, A R; Beilicke, M; Benbow, W; Berge, D; Bernlöhr, K; Boisson, C; Bolz, O; Borrel, V; Braun, I; Breitling, F; Brown, A M; Chadwick, P M; Chounet, L-M; Cornils, R; Costamante, L; Degrange, B; Dickinson, H J; Djannati-Ataï, A; Drury, L O'C; Dubus, G; Emmanoulopoulos, D; Espigat, P; Feinstein, F; Fontaine, G; Fuchs, Y; Funk, S; Gallant, Y A; Giebels, B; Gillessen, S; Glicenstein, J F; Goret, P; Hadjichristidis, C; Hauser, D; Hauser, M; Heinzelmann, G; Henri, G; Hermann, G; Hinton, J A; Hofmann, W; Holleran, M; Horns, D; Jacholkowska, A; de Jager, O C; Khélifi, B; Klages, S; Komin, Nu; Konopelko, A; Latham, I J; Le Gallou, R; Lemière, A; Lemoine-Goumard, M; Leroy, N; Lohse, T; Marcowith, A; Martin, J M; Martineau-Huynh, O; Masterson, C; McComb, T J L; de Naurois, M; Nolan, S J; Noutsos, A; Orford, K J; Osborne, J L; Ouchrif, M; Panter, M; Pelletier, G; Pita, S; Pühlhofer, G; Punch, M; Raubenheimer, B C; Raue, M; Raux, J; Rayner, S M; Reimer, A; Reimer, O; Ripken, J; Rob, L; Rolland, L; Rowell, G; Sahakian, V; Saugé, L; Schlenker, S; Schlickeiser, R; Schuster, C; Schwanke, U; Siewert, M; Sol, H; Spangler, D; Steenkamp, R; Stegmann, C; Tavernet, J-P; Terrier, R; Théoret, C G; Tluczykont, M; van Eldik, C; Vasileiadis, G; Venter, C; Vincent, P; Völk, H J; Wagner, S J

    2006-02-09

    The source of Galactic cosmic rays (with energies up to 10(15) eV) remains unclear, although it is widely believed that they originate in the shock waves of expanding supernova remnants. At present the best way to investigate their acceleration and propagation is by observing the gamma-rays produced when cosmic rays interact with interstellar gas. Here we report observations of an extended region of very-high-energy (> 10(11) eV) gamma-ray emission correlated spatially with a complex of giant molecular clouds in the central 200 parsecs of the Milky Way. The hardness of the gamma-ray spectrum and the conditions in those molecular clouds indicate that the cosmic rays giving rise to the gamma-rays are likely to be protons and nuclei rather than electrons. The energy associated with the cosmic rays could have come from a single supernova explosion around 10(4) years ago.

  6. Galactic-scale Feedback Observed in the 3C 298 Quasar Host Galaxy

    NASA Astrophysics Data System (ADS)

    Vayner, Andrey; Wright, Shelley A.; Murray, Norman; Armus, Lee; Larkin, James E.; Mieda, Etsuko

    2017-12-01

    We present high angular resolution multiwavelength data of the 3C 298 radio-loud quasar host galaxy (z = 1.439) taken using the W.M. Keck Observatory OSIRIS integral field spectrograph (IFS) with adaptive optics, the Atacama Large Millimeter/submillimeter Array (ALMA), the Hubble Space Telescope (HST) WFC3, and the Very Large Array (VLA). Extended emission is detected in the rest-frame optical nebular emission lines Hβ, [O III], Hα, [N II], and [S II], as well as in the molecular lines CO (J = 3‑2) and (J = 5‑4). Along the path of the relativistic jets of 3C 298, we detect conical outflows in ionized gas emission with velocities of up to 1700 {km} {{{s}}}-1 and an outflow rate of 450–1500 {M}ȯ {{yr}}-1 extended over 12 kpc. Near the spatial center of the conical outflow, CO (J = 3‑2) emission shows a molecular gas disk with a rotational velocity of ±150 {km} {{{s}}}-1 and total molecular mass ({M}{{{H}}2}) of 6.6+/- 0.36× {10}9 {M}ȯ . On the blueshifted side of the molecular disk, we observe broad extended emission that is due to a molecular outflow with a rate of 2300 {M}ȯ {{yr}}-1 and depletion timescale of 3 Myr. We detect no narrow Hα emission in the outflow regions, suggesting a limit on star formation of 0.3 {M}ȯ {{yr}}-1 {{kpc}}-2. Quasar-driven winds are evacuating the molecular gas reservoir, thereby directly impacting star formation in the host galaxy. The observed mass of the supermassive black hole is {10}9.37{--9.56} {M}ȯ , and we determine a dynamical bulge mass of {M}{bulge}=1{--}1.7× {10}10\\tfrac{R}{1.6 {kpc}} {M}ȯ . The bulge mass of 3C 298 lies 2–2.5 orders of magnitude below the expected value from the local galactic bulge—supermassive black hole mass ({M}{bulge}{--}{M}{BH}) relationship. A second galactic disk observed in nebular emission is offset from the quasar by 9 kpc, suggesting that the system is an intermediate-stage merger. These results show that galactic-scale negative feedback is occurring early in the merger

  7. Supermassive dark-matter Q-balls in galactic centers?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Troitsky, Sergey; Moscow Institute for Physics and Technology,Institutskii per. 9, 141700, Dolgoprudny, Moscow Region

    2016-11-11

    Though widely accepted, it is not proven that supermassive compact objects (SMCOs) residing in galactic centers are black holes. In particular, the Milky Way’s SMCO can be a giant nontopological soliton, Q-ball, made of a scalar field: this fits perfectly all observational data. Similar but tiny Q-balls produced in the early Universe may constitute, partly or fully, the dark matter. This picture explains in a natural way, why our SMCO has very low accretion rate and why the observed angular size of the corresponding radio source is much smaller than expected. Interactions between dark-matter Q-balls may explain how SMCOs weremore » seeded in galaxies and resolve well-known problems of standard (non-interacting) dark matter.« less

  8. Proper Motion of the Compact, Nonthermal Radio Source in the Galactic Center, Sagittarius A*

    NASA Astrophysics Data System (ADS)

    Backer, D. C.; Sramek, R. A.

    1999-10-01

    Proper motions and radial velocities of luminous infrared stars in the Galactic center have provided strong evidence for a dark mass of 2.5×106 Msolar in the central 0.05 pc of the Galaxy. The leading hypothesis for this mass is a black hole. High angular resolution measurements at radio wavelengths find a compact radio source, Sagittarius (Sgr) A*, that is either the faint glow from a small amount of material accreting onto the hole with low radiative efficiency or a miniature active galactic nucleus (AGN) core-jet system. This paper provides a full report on the first program that has measured the apparent proper motion of Sgr A* with respect to background extragalactic reference frame. Our current result isμl,*=[-6.18+/-0.19] mas yr-1 μb,*=[-0.65+/-0.17] mas yr-1 . The observations were obtained with the NRAO Very Large Array at 4.9 GHz over 16 yr. The proper motion of Sgr A* provides an estimate of its mass based on equipartition of kinetic energy between the hole and the surrounding stars. The measured motion is largest in galactic longitude. This component of the motion is consistent with the secular parallax that results from the rotation of the solar system about the center, which is a global measure of the difference between Oort's constants (A-B), with no additional peculiar motion of Sgr A*. The current uncertainty in Oort's galactic rotation constants limits the use of this component of the proper motion for a mass inference. In latitude, we find a small, and weakly significant, peculiar motion of Sgr A*, -19+/-7 km s-1 after correction for the motion of the solar system with respect to the local standard of rest. We consider sources of peculiar motion of Sgr A* ranging from unstable radio wave propagation through intervening turbulent plasma to the effects of asymmetric masses in the center. These fail to account for a significant peculiar motion. One can appeal to an m=1 dynamical instability that numerical simulations have revealed. However, the

  9. HIREGS observations of the Galactic center and Galactic plane: Separation of the diffuse Galactic hard X-ray continuum from the point source spectra

    NASA Technical Reports Server (NTRS)

    Boggs, S. E.; Lin, R. P.; Coburn, W.; Feffer, P.; Pelling, R. M.; Schroeder, P.; Slassi-Sennou, S.

    1997-01-01

    The balloon-borne high resolution gamma ray and X-ray germanium spectrometer (HIREGS) was used to observe the Galactic center and two positions along the Galactic plane from Antarctica in January 1995. For its flight, the collimators were configured to measure the Galactic diffuse hard X-ray continuum between 20 and 200 keV by directly measuring the point source contributions to the wide field of view flux for subtraction. The hard X-ray spectra of GX 1+4 and GRO J1655-40 were measured with the diffuse continuum subtracted off. The analysis technique for source separation is discussed and the preliminary separated spectra for these point sources and the Galactic diffuse emission are presented.

  10. Event Rate for LISA Gravitational Wave Signals from Black Hole-Massive Black Hole Coalescences

    NASA Technical Reports Server (NTRS)

    Bender, Peter L.

    2002-01-01

    Earlier work under a previous grant had been mainly on investigating the event rate for coalescences of white dwarfs or neutron stars with massive black holes (MBHs) in galactic nuclei. Under the new grant, two studies were undertaken. One was an approximate extension of the earlier study to stellar mass black holes as the lighter object, with masses in the range of roughly 3 to 20 solar mass rather than about 1 solar mass. The other was an improved estimate of the confusion noise due to galactic binaries against which the signals from BH-MBH coalescences would have to be detected. In the earlier work, the mass of the white dwarfs (WDs) and neutron stars (NSs) was assumed to be about the same as that of the evolved stars in the density cusp around the galactic center MBH. However, with the BH mass being substantially larger, the sinking down of pHs toward the center (mass segregation) became important, and was included in the model. A single representative mass of 7 solar mass was used. The other main difference involved what happened after the compact object got scattered in close enough to the MBH to start losing appreciable energy and angular momentum by gravitational radiation. For WDs or NSs, it had been found in most cases that the object would be perturbed considerably by other stars in the cusp before much energy had been lost. Thus the angular momentum would either increase enough so that gravitational radiation would be cut off, or would decrease enough so that the WD or NS would plunge into the MBH in just a few revolutions. The latter event would mean that the signal-to noise ratio would not have time to build up, and the event would not be detectable. The ratio of gradual energy loss events to plunges was found to be roughly one to a few percent, and thus substantially decreased the expected rate of detectable events.

  11. Flip-flopping binary black holes.

    PubMed

    Lousto, Carlos O; Healy, James

    2015-04-10

    We study binary spinning black holes to display the long term individual spin dynamics. We perform a full numerical simulation starting at an initial proper separation of d≈25M between equal mass holes and evolve them down to merger for nearly 48 orbits, 3 precession cycles, and half of a flip-flop cycle. The simulation lasts for t=20 000M and displays a total change in the orientation of the spin of one of the black holes from an initial alignment with the orbital angular momentum to a complete antialignment after half of a flip-flop cycle. We compare this evolution with an integration of the 3.5 post-Newtonian equations of motion and spin evolution to show that this process continuously flip flops the spin during the lifetime of the binary until merger. We also provide lower order analytic expressions for the maximum flip-flop angle and frequency. We discuss the effects this dynamics may have on spin growth in accreting binaries and on the observational consequences for galactic and supermassive binary black holes.

  12. OGLE16aaa - a signature of a hungry supermassive black hole

    NASA Astrophysics Data System (ADS)

    Wyrzykowski, Łukasz; Zieliński, M.; Kostrzewa-Rutkowska, Z.; Hamanowicz, A.; Jonker, P. G.; Arcavi, I.; Guillochon, J.; Brown, P. J.; Kozłowski, S.; Udalski, A.; Szymański, M. K.; Soszyński, I.; Poleski, R.; Pietrukowicz, P.; Skowron, J.; Mróz, P.; Ulaczyk, K.; Pawlak, M.; Rybicki, K. A.; Greiner, J.; Krühler, T.; Bolmer, J.; Smartt, S. J.; Maguire, K.; Smith, K.

    2017-02-01

    We present the discovery and first three months of follow-up observations of a currently on-going unusual transient detected by the Optical Gravitational Lensing Experiment (OGLE-IV) survey, located in the centre of a galaxy at redshift z = 0.1655. The long rise to absolute magnitude of -20.5 mag, slow decline, very broad He and H spectral features make OGLE16aaa similar to other optical/UV tidal disruption events (TDEs). Weak narrow emission lines in the spectrum and archival photometric observations suggest the host galaxy is a weak-line active galactic nucleus, which has been accreting at higher rate in the past. OGLE16aaa, along with SDSS J0748, seems to form a sub-class of TDEs by weakly or recently active supermassive black holes (SMBHs). This class might bridge the TDEs by quiescent SMBHs and flares observed as `changing-look quasars', if we interpret the latter as TDEs. If this picture is true, the previously applied requirement for identifying a flare as a TDE that it had to come from an inactive nucleus, could be leading to observational bias in TDE selection, thus affecting TDE-rate estimations.

  13. GRB 070610: A Curious Galactic Transient

    NASA Astrophysics Data System (ADS)

    Kasliwal, M. M.; Cenko, S. B.; Kulkarni, S. R.; Cameron, P. B.; Nakar, E.; Ofek, E. O.; Rau, A.; Soderberg, A. M.; Campana, S.; Bloom, J. S.; Perley, D. A.; Pollack, L. K.; Barthelmy, S.; Cummings, J.; Gehrels, N.; Krimm, H. A.; Markwardt, C. B.; Sato, G.; Chandra, P.; Frail, D.; Fox, D. B.; Price, P. A.; Berger, E.; Grebenev, S. A.; Krivonos, R. A.; Sunyaev, R. A.

    2008-05-01

    GRB 070610 is a typical high-energy event with a duration of 5 s. Yet within the burst localization we detect a highly unusual X-ray and optical transient, Swift J195509.6+261406. We see high-amplitude X-ray and optical variability on very short timescales even at late times. Using near-infrared imaging assisted by a laser guide star and adaptive optics, we identified the counterpart of Swift J195509.6+261406. Late-time optical and near-infrared imaging constrain the spectral type of the counterpart to be fainter than a K-dwarf, assuming it is of Galactic origin. It is possible that GRB 070610 and Swift J195509.6+261406 are unrelated sources. However, the absence of a typical X-ray afterglow from GRB 070610 in conjunction with the spatial and temporal coincidence of the two motivate us to suggest that the sources are related. The closest (imperfect) analog to Swift J195509.6+261406 is V4641 Sgr, an unusual black hole binary. We suggest that Swift J195509.6+261406 along with V4641 Sgr define a subclass of stellar black hole binaries—the fast X-ray novae. We further suggest that fast X-ray novae are associated with bursts of gamma rays. If so, GRB 070610 defines a new class of celestial gamma-ray bursts and these bursts dominate the long-duration GRB demographics.

  14. How big can a black hole grow?

    NASA Astrophysics Data System (ADS)

    King, Andrew

    2016-02-01

    I show that there is a physical limit to the mass of a black hole, above which it cannot grow through luminous accretion of gas, and so cannot appear as a quasar or active galactic nucleus (AGN). The limit is Mmax ≃ 5 × 1010 M⊙ for typical parameters, but can reach Mmax ≃ 2.7 × 1011 M⊙ in extreme cases (e.g. maximal prograde spin). The largest black hole masses so far found are close to but below the limit. The Eddington luminosity ≃6.5 × 1048 erg s-1 corresponding to Mmax is remarkably close to the largest AGN bolometric luminosity so far observed. The mass and luminosity limits both rely on a reasonable but currently untestable hypothesis about AGN disc formation, so future observations of extreme supermassive black hole masses can therefore probe fundamental disc physics. Black holes can in principle grow their masses above Mmax by non-luminous means such as mergers with other holes, but cannot become luminous accretors again. They might nevertheless be detectable in other ways, for example through gravitational lensing. I show further that black holes with masses ˜Mmax can probably grow above the values specified by the black-hole-host-galaxy scaling relations, in agreement with observation.

  15. Molecular Gas Feeding the Circumnuclear Disk of the Galactic Center

    NASA Astrophysics Data System (ADS)

    Hsieh, Pei-Ying; Koch, Patrick M.; Ho, Paul T. P.; Kim, Woong-Tae; Tang, Ya-Wen; Wang, Hsiang-Hsu; Yen, Hsi-Wei; Hwang, Chorng-Yuan

    2017-09-01

    The interaction between a supermassive black hole (SMBH) and the surrounding material is of primary importance in modern astrophysics. The detection of the molecular 2 pc circumnuclear disk (CND) immediately around the Milky Way SMBH, SgrA*, provides a unique opportunity to study SMBH accretion at subparsec scales. Our new wide-field CS(J = 2 - 1) map toward the Galactic center (GC) reveals multiple dense molecular streamers that originated from the ambient clouds 20 pc further out, and that are connected to the central 2 pc of the CND. These dense gas streamers appear to carry gas directly toward the nuclear region and might be captured by the central potential. Our phase-plot analysis indicates that these streamers show a signature of rotation and inward radial motion with progressively higher velocities as the gas approaches the CND and finally ends up corotating with the CND. Our results might suggest a possible mechanism of gas feeding the CND from 20 pc around 2 pc in the GC. In this paper, we discuss the morphology and the kinematics of these streamers. As the nearest observable Galactic nucleus, this feeding process may have implications for understanding the processes in extragalactic nuclei.

  16. Surfing a Black Hole

    NASA Astrophysics Data System (ADS)

    2002-10-01

    wavebands between 1.6 and 3.5 µm. The compact objects are stars and their colours indicate their temperature (blue = "hot", red = "cool"). There is also diffuse infrared emission from interstellar dust between the stars. The two yellow arrows mark the position of the black hole candidate "SgrA*" at the very centre of the Milky Way galaxy. The scale is indicated; the 1 light-year bar subtends an angle of 8 arcsec in the sky. The centre of our Milky Way galaxy is located in the southern constallation Sagittarius (The Archer) and is "only" 26,000 light-years away [5]. On high-resolution images, it is possible to discern thousands of individual stars within the central, one light-year wide region (this corresponds to about one-quarter of the distance to "Proxima Centauri", the star nearest to the solar system). Using the motions of these stars to probe the gravitational field, observations with the 3.5-m New Technology Telescope (NTT) at the ESO La Silla Observatory (Chile) (and subsequently at the 10-m Keck telescope , Hawaii, USA) over the last decade have shown that a mass of about 3 million times that of the Sun is concentrated within a radius of only 10 light-days [5] of the compact radio and X-ray source SgrA* ("Sagittarius A") at the center of the star cluster. This means that SgrA* is the most likely counterpart of the putative black hole and, at the same time, it makes the Galactic Center the best piece of evidence for the existence of such supermassive black holes . However, those earlier investigations could not exclude several other, non-black hole configurations. "We then needed even sharper images to settle the issue of whether any configuration other than a black hole is possible and we counted on the ESO VLT telescope to provide those" , explains Reinhard Genzel , Director at the Max-Planck Institute for Extraterrestrial Physics (MPE) in Garching near Munich (Germany) and member of the present team. "The new NAOS-CONICA (NACO) instrument, built in a close

  17. Corona accretion in active galactic nuclei and the observational test

    NASA Astrophysics Data System (ADS)

    Qiao, E.; Liu, B.; Taam, R.; Yuan, W.

    2017-10-01

    In this talk, we propose a new accretion model, in which the matter is accreted initially in the form of a vertically extended, hot gas (corona) to the central supermassive black hole by capturing the interstellar medium or the stellar wind in active galactic nuclei (AGNs). In this scenario, when the initial mass accretion rate is greater than about 0.01 \\dot M_{Edd}, at a critical radius r_{d}, part of the hot gas begins to condense on to the equatorial disc plane of the black hole, forming an inner cold accretion disc. Then, the matter is accreted in the form of a disc-corona structure extending down to the ISCO of the black hole. We calculate the theoretical structure and the corresponding emergent spectra of the model. It is shown that the model can naturally explain the origin of the X-ray emission in AGNs. Meanwhile the model predicts a new geometry of the accretion flow, which can very well explain some observations, such as the correlation between the hard X-ray slope Γ and the reflection scaling factor R found in AGNs. Finally, we discuss the potential applications of the model to high mass X-ray binaries.

  18. On the formation of black holes

    NASA Technical Reports Server (NTRS)

    Michel, F. Curtis

    1988-01-01

    The paper explores the consequences of the existence of a burning process beyond ordinary nuclear processes (which stop at iron), involving the 'strange' particles. In effect, this idea has already had considerable discussion within the high energy physics community in terms of 'quark' matter. A possible consequence is that neutron stars may explode rather than collapse to black holes. It should be evident that such a possibility suggests radically new scenarios for activity in galactic nuclei and gamma ray burst sources.

  19. The Galactic Centre source G2 was unlikely born in any of the known massive binaries

    NASA Astrophysics Data System (ADS)

    Calderón, D.; Cuadra, J.; Schartmann, M.; Burkert, A.; Plewa, P.; Eisenhauer, F.; Habibi, M.

    2018-05-01

    The source G2 has already completed its pericentre passage around Sgr A*, the super-massive black hole in the centre of our Galaxy. Although it has been monitored for 15 years, its astrophysical nature and origin still remain unknown. In this work, we aim to test the hypothesis of G2 being the result of a stellar wind collision. To do so, we study the motion and final fate of gas clumps formed as a result of collisions of stellar winds in massive binaries. Our approach is based on a test-particle model in order to describe the trajectories of such clumps. The model takes into account the gravitational field of Sgr A*, the interaction of the clumps with the interstellar medium as well as their finite lifetimes. Our analysis allows us to reject the hypothesis based on four arguments: i) if G2 has followed a purely Keplerian orbit since its formation, it cannot have been produced in any of the known massive binaries since their motions are not consistent; ii) in general, gas clumps are evaporated through thermal conduction on very short timescale (<100 yr) before getting close enough to Sgr A*; iii) IRS 16SW, the best candidate for the origin of G2, cannot generate clumps as massive as G2; and iv) clumps ejected from IRS 16SW describe trajectories significantly different to the observed motion of G2.

  20. Gravitational Theories near the Galactic Center

    NASA Astrophysics Data System (ADS)

    Kalita, Sanjeev

    2018-03-01

    Upcoming Extremely Large Telescopes (ELTs) are promising probes of gravity in or near the galactic center (GC). Effects of alternative theories of gravity, namely the Brans–Dicke theory (BDT) and f(R) gravity, are studied near the GC black hole by calculating departure from general relativity (GR) in periastron advance of the S stars and light deflection. For these estimations, black hole spin and quadrupole moments are taken in the ranges χ = 0.1–2.0 and {J}2={10}-6{--}2.0, respectively. Periastron advance ({\\dot{θ }}prec}) has been calculated for hypothetical S stars with orbital period one-fifth of S0-2 and eccentricity e = 0.8. The difference between BDT and GR ({{{Δ }}}th}{\\dot{θ }}prec}) lies in the range 10‑3–2.3 μas yr‑1, even for a large departure from GR. The difference between quadrupoles {J}2={10}-6 and J 2 = 2.0 lies in the range {{{Δ }}}{J2}{\\dot{θ }}prec}=0.268{--}0.281 μ {as} {yr}}-1. These ranges are not only outside the astrometric capability of the ELTs, but are also contaminated by stellar perturbations. Parameter degeneracy among χ, J 2, and {ω }BD} is discussed. For black hole–S-star distances, D LS = 100 and 50 au, the difference in light deflection between BDT and GR lies in the range d{(δ φ )}defl}={10}-5{--}{10}-1 μ {as}, making it difficult to distinguish them. From the relation between scalaron mass, {M}\\psi in f(R) gravity, and calculated d{(δ φ )}defl}, it is found that {M}\\psi ={10}-18{--}{10}-17 {eV} can form a stable “dark cloud” near the black hole. Scalarons with {10}-21 {eV} are found to bring d{(δ φ )}defl} close to the astrometric range of the ELTs. Prospects for these scalarons in the tests of gravity are discussed.

  1. Evaluating galactic habitability using high-resolution cosmological simulations of galaxy formation

    NASA Astrophysics Data System (ADS)

    Forgan, Duncan; Dayal, Pratika; Cockell, Charles; Libeskind, Noam

    2017-01-01

    We present the first model that couples high-resolution simulations of the formation of local group galaxies with calculations of the galactic habitable zone (GHZ), a region of space which has sufficient metallicity to form terrestrial planets without being subject to hazardous radiation. These simulations allow us to make substantial progress in mapping out the asymmetric three-dimensional GHZ and its time evolution for the Milky Way (MW) and Triangulum (M33) galaxies, as opposed to works that generally assume an azimuthally symmetric GHZ. Applying typical habitability metrics to MW and M33, we find that while a large number of habitable planets exist as close as a few kiloparsecs from the galactic centre, the probability of individual planetary systems being habitable rises as one approaches the edge of the stellar disc. Tidal streams and satellite galaxies also appear to be fertile grounds for habitable planet formation. In short, we find that both galaxies arrive at similar GHZs by different evolutionary paths, as measured by the first and third quartiles of surviving biospheres. For the MW, this interquartile range begins as a narrow band at large radii, expanding to encompass much of the Galaxy at intermediate times before settling at a range of 2-13 kpc. In the case of M33, the opposite behaviour occurs - the initial and final interquartile ranges are quite similar, showing gradual evolution. This suggests that Galaxy assembly history strongly influences the time evolution of the GHZ, which will affect the relative time lag between biospheres in different galactic locations. We end by noting the caveats involved in such studies and demonstrate that high-resolution cosmological simulations will play a vital role in understanding habitability on galactic scales, provided that these simulations accurately resolve chemical evolution.

  2. The role of black holes in galaxy formation and evolution.

    PubMed

    Cattaneo, A; Faber, S M; Binney, J; Dekel, A; Kormendy, J; Mushotzky, R; Babul, A; Best, P N; Brüggen, M; Fabian, A C; Frenk, C S; Khalatyan, A; Netzer, H; Mahdavi, A; Silk, J; Steinmetz, M; Wisotzki, L

    2009-07-09

    Virtually all massive galaxies, including our own, host central black holes ranging in mass from millions to billions of solar masses. The growth of these black holes releases vast amounts of energy that powers quasars and other weaker active galactic nuclei. A tiny fraction of this energy, if absorbed by the host galaxy, could halt star formation by heating and ejecting ambient gas. A central question in galaxy evolution is the degree to which this process has caused the decline of star formation in large elliptical galaxies, which typically have little cold gas and few young stars, unlike spiral galaxies.

  3. Modeling Kicks from the Merger of Generic Black-hole Binaries

    NASA Technical Reports Server (NTRS)

    Baker, John G.; Boggs, William D.; Centrella, Joan; Kelly, Bernard J.; McWilliams, Sean T.; Miller, M. Coleman; vanMeter, James R.

    2008-01-01

    Recent numerical relativistic results demonstrate that the merger of comparable-mass spinning black holes has a maximum "recoil kick" of up to approx. 4000 km/s. However the scaling of these recoil velocities with mass ratio is poorly understood. We present new runs showing that the maximum possible kick parallel to the orbital axis does not scale as approx. eta(sup 2) (where eta is the symmetric mass ratio), as previously proposed, but is more consistent with approx. eta(sup 3). We discuss the effect of this dependence on galactic ejection scenarios and retention of intermediate-mass black holes in globular clusters. S

  4. Probing Galactic Center Cosmic-Rays in the X-ray Regime

    NASA Astrophysics Data System (ADS)

    Zhang, Shuo; Baganoff, Frederick K.; Bulbul, Esra; Miller, Eric D.; Bautz, Mark W.

    2017-08-01

    The central few hundred parsecs of the Galaxy harbors 5-10% of the molecular gas mass of the entire Milky Way. This central molecular zone exhibits 6.4 keV Fe Kα line and continuum X-ray emission with time-variability. The time-variable X-ray emission from the gas clouds is best explained by light echoes of past X-ray outbursts from the central supermassive black hole Sgr A*. However,MeV-GeV cosmic-ray particles may also contribute to a constant X-ray emission component from the clouds, through collisional ionization and bremsstrahlung. Sgr B2 is the densest and most massive cloud in the central molecular zone. It is the only known gas cloud whose X-ray emission has kept fading over the past decade and will soon reach a constant X-ray level in 2017/2018, and thus serves as the best probe for MeV-GeV particles in the central 100 pc of the Galaxy. At the same time, the Fe Kα emission has also been discovered from molecular structures beyond the central molecular zone, extening to ~1 kpc from the Galactic center. The X-ray reflection scenario meets challenges this far from the Galactic center, while the MeV-GeV cosmic-ray electrons serve as a more natural explanation. Our studies on Sgr B2 and the large-scale moleuclar structures will for the first time constrain the MeV-GeV particles in the Galactic center, and point to their origin: whether they rise from particle acceleration or dark matter annihilation.

  5. A 17-billion-solar-mass black hole in a group galaxy with a diffuse core.

    PubMed

    Thomas, Jens; Ma, Chung-Pei; McConnell, Nicholas J; Greene, Jenny E; Blakeslee, John P; Janish, Ryan

    2016-04-21

    Quasars are associated with and powered by the accretion of material onto massive black holes; the detection of highly luminous quasars with redshifts greater than z = 6 suggests that black holes of up to ten billion solar masses already existed 13 billion years ago. Two possible present-day 'dormant' descendants of this population of 'active' black holes have been found in the galaxies NGC 3842 and NGC 4889 at the centres of the Leo and Coma galaxy clusters, which together form the central region of the Great Wall--the largest local structure of galaxies. The most luminous quasars, however, are not confined to such high-density regions of the early Universe; yet dormant black holes of this high mass have not yet been found outside of modern-day rich clusters. Here we report observations of the stellar velocity distribution in the galaxy NGC 1600--a relatively isolated elliptical galaxy near the centre of a galaxy group at a distance of 64 megaparsecs from Earth. We use orbit superposition models to determine that the black hole at the centre of NGC 1600 has a mass of 17 billion solar masses. The spatial distribution of stars near the centre of NGC 1600 is rather diffuse. We find that the region of depleted stellar density in the cores of massive elliptical galaxies extends over the same radius as the gravitational sphere of influence of the central black holes, and interpret this as the dynamical imprint of the black holes.

  6. The Galactic Centre Mini-Spiral in the MM-Regime

    NASA Technical Reports Server (NTRS)

    Kunneriath, D.; Eckart, A.; Vogel, S. N.; Teuben, P.; Muzic, I.; Schoedel, R.; Garcia-Marin, M.; Moultaka, J.; Staguhn, J.; Straubmeier, C.; hide

    2012-01-01

    Context: The mini-spiral is a feature of the interstellar medium in the central approx.2 pc of the Galactic center. It is composed of several streamers of dust and ionised and atomic gas with temperatures between a few 100 K to 10(exp 4) K. There is evidence that these streamers are related to the so-called circumnuclear disk of molecular gas and are ionized by photons from massive, hot stars in the central parsec. Aims: We attempt to constrain the emission mechanisms and physical properties of the ionized gas and dust of the mini-spiral region with the help of our multiwavelength data sets. Methods: Our observations were carried out at 1.3 mm and 3 mm with the mm interferometric array CARMA in California in March and April 2009, with the MIR instrument VISIR at ESO's VLT in June 2006, and the NIR Bry with VLT NACO in August 2009. Results: We present high resolution maps of the mini-spiral, and obtain a spectral index of 0.5 +/- 0.25 for Sgr A *, indicating an inverted synchrotron spectrum. We find electron densities within the range 0.8-1.5 x 10(exp 4)/cu cm for the mini-spiral from the radio continuum maps, along with a dust mass contribution of approx. 0.25 Mo from the MIR dust continuum. and extinctions ranging from 1.8-3 at 2.16 microns in the Bry line. Conclusions: We observe a mixture of negative and positive spectral indices in our 1.3 mm and 3 mm observations of the extended emission of the mini-spiral, which we interpret as evidence that there are a range of contributions to the thermal free-free emission by the ionized gas emission and by dust at 1.3 mm.

  7. Extended Hard-X-Ray Emission in the Inner Few Parsecs of the Galaxy

    NASA Technical Reports Server (NTRS)

    Perez, Kerstin; Hailey, Charles J.; Bauer, Franz E.; Krivonos, Roman A.; Mori, Kaya; Baganoff, Frederick K.; Barriere, Nicholas M.; Boggs, Steven E.; Christensen, Finn E.; Craig, William W.; hide

    2015-01-01

    The Galactic Centre hosts a puzzling stellar population in its inner few parsecs, with a high abundance of surprisingly young, relatively massive stars bound within the deep potential well of the central supermassive black hole, Sagittarius A* (ref. 1). Previous studies suggest that the population of objects emitting soft X-rays (less than 10 kiloelectronvolts) within the surrounding hundreds of parsecs, as well as the population responsible for unresolved X-ray emission extending along the Galactic plane, is dominated by accreting white dwarf systems2, 3, 4, 5.

  8. Classifying Black Hole States with Machine Learning

    NASA Astrophysics Data System (ADS)

    Huppenkothen, Daniela

    2018-01-01

    Galactic black hole binaries are known to go through different states with apparent signatures in both X-ray light curves and spectra, leading to important implications for accretion physics as well as our knowledge of General Relativity. Existing frameworks of classification are usually based on human interpretation of low-dimensional representations of the data, and generally only apply to fairly small data sets. Machine learning, in contrast, allows for rapid classification of large, high-dimensional data sets. In this talk, I will report on advances made in classification of states observed in Black Hole X-ray Binaries, focusing on the two sources GRS 1915+105 and Cygnus X-1, and show both the successes and limitations of using machine learning to derive physical constraints on these systems.

  9. A mass of less than 15 solar masses for the black hole in an ultraluminous X-ray source.

    PubMed

    Motch, C; Pakull, M W; Soria, R; Grisé, F; Pietrzyński, G

    2014-10-09

    Most ultraluminous X-ray sources have a typical set of properties not seen in Galactic stellar-mass black holes. They have luminosities of more than 3 × 10(39) ergs per second, unusually soft X-ray components (with a typical temperature of less than about 0.3 kiloelectronvolts) and a characteristic downturn in their spectra above about 5 kiloelectronvolts. Such puzzling properties have been interpreted either as evidence of intermediate-mass black holes or as emission from stellar-mass black holes accreting above their Eddington limit, analogous to some Galactic black holes at peak luminosity. Recently, a very soft X-ray spectrum was observed in a rare and transient stellar-mass black hole. Here we report that the X-ray source P13 in the galaxy NGC 7793 is in a binary system with a period of about 64 days and exhibits all three canonical properties of ultraluminous sources. By modelling the strong optical and ultraviolet modulations arising from X-ray heating of the B9Ia donor star, we constrain the black hole mass to be less than 15 solar masses. Our results demonstrate that in P13, soft thermal emission and spectral curvature are indeed signatures of supercritical accretion. By analogy, ultraluminous X-ray sources with similar X-ray spectra and luminosities of up to a few times 10(40) ergs per second can be explained by supercritical accretion onto massive stellar-mass black holes.

  10. Gravitational instability of polytropic spheres containing region of trapped null geodesics: a possible explanation of central supermassive black holes in galactic halos

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stuchlík, Zdeněk; Schee, Jan; Toshmatov, Bobir

    We study behaviour of gravitational waves in the recently introduced general relativistic polytropic spheres containing a region of trapped null geodesics extended around radius of the stable null circular geodesic that can exist for the polytropic index N > 2.138 and the relativistic parameter, giving ratio of the central pressure p {sub c} to the central energy density ρ{sub c}, higher than σ = 0.677. In the trapping zones of such polytropes, the effective potential of the axial gravitational wave perturbations resembles those related to the ultracompact uniform density objects, giving thus similar long-lived axial gravitational modes. These long-lived linearmore » perturbations are related to the stable circular null geodesic and due to additional non-linear phenomena could lead to conversion of the trapping zone to a black hole. We give in the eikonal limit examples of the long-lived gravitational modes, their oscillatory frequencies and slow damping rates, for the trapping zones of the polytropes with N element of (2.138,4). However, in the trapping polytropes the long-lived damped modes exist only for very large values of the multipole number ℓ > 50, while for smaller values of ℓ the numerical calculations indicate existence of fast growing unstable axial gravitational modes. We demonstrate that for polytropes with N ≥ 3.78, the trapping region is by many orders smaller than extension of the polytrope, and the mass contained in the trapping zone is about 10{sup −3} of the total mass of the polytrope. Therefore, the gravitational instability of such trapping zones could serve as a model explaining creation of central supermassive black holes in galactic halos or galaxy clusters.« less

  11. Binary Black Hole Mergers from Globular Clusters: Implications for Advanced LIGO.

    PubMed

    Rodriguez, Carl L; Morscher, Meagan; Pattabiraman, Bharath; Chatterjee, Sourav; Haster, Carl-Johan; Rasio, Frederic A

    2015-07-31

    The predicted rate of binary black hole mergers from galactic fields can vary over several orders of magnitude and is extremely sensitive to the assumptions of stellar evolution. But in dense stellar environments such as globular clusters, binary black holes form by well-understood gravitational interactions. In this Letter, we study the formation of black hole binaries in an extensive collection of realistic globular cluster models. By comparing these models to observed Milky Way and extragalactic globular clusters, we find that the mergers of dynamically formed binaries could be detected at a rate of ∼100 per year, potentially dominating the binary black hole merger rate. We also find that a majority of cluster-formed binaries are more massive than their field-formed counterparts, suggesting that Advanced LIGO could identify certain binaries as originating from dense stellar environments.

  12. Intermittent behavior of galactic dynamo activities

    NASA Technical Reports Server (NTRS)

    Ko, C. M.; Parker, E. N.

    1989-01-01

    Recent observations by Beck and Golla of far-infrared and radio continuum emission from nearby spiral galaxies suggest that the galactic magnetic field strength is connected to the current star formation rate. The role of star formation on the generation of large-scale galactic magnetic field is studied in this paper. Using a simple galactic model, it is shown how the galactic dynamo depends strongly on the turbulent velocity of the interstellar medium. When the star formation efficiency is high, the ISM is churned which in turn amplifies the galactic magnetic field. Between active star formation epochs, the magnetic field is in dormant state and decays at a negligible rate. If density waves trigger star formation, then they also turn on the otherwise dormant dynamo.

  13. High energy spectrum of spherically accreting black holes

    NASA Technical Reports Server (NTRS)

    Meszaros, P.; Ostriker, J. P.

    1983-01-01

    Spherically accreting black holes may sustain strong collisionless shocks, downstream of which the fluid approximation is not valid. The proton-electron Coulomb exchange provides for the downstream matter diffusion into the hole. Energy conversion efficiencies upward of 10-30 percent are obtained, with most of the luminosity in hard X-rays and gamma-rays. The whole spectrum and its application for radio-quiet QSO's and galactic X- and gamma-ray sources are discussed.

  14. Search for EeV protons of galactic origin

    NASA Astrophysics Data System (ADS)

    Abbasi, R. U.; Abe, M.; Abu-Zayyad, T.; Allen, M.; Azuma, R.; Barcikowski, E.; Belz, J. W.; Bergman, D. R.; Blake, S. A.; Cady, R.; Cheon, B. G.; Chiba, J.; Chikawa, M.; Fujii, T.; Fukushima, M.; Goto, T.; Hanlon, W.; Hayashi, Y.; Hayashi, M.; Hayashida, N.; Hibino, K.; Honda, K.; Ikeda, D.; Inoue, N.; Ishii, T.; Ishimori, R.; Ito, H.; Ivanov, D.; Jui, C. C. H.; Kadota, K.; Kakimoto, F.; Kalashev, O.; Kasahara, K.; Kawai, H.; Kawakami, S.; Kawana, S.; Kawata, K.; Kido, E.; Kim, H. B.; Kim, J. H.; Kim, J. H.; Kishigami, S.; Kitamura, S.; Kitamura, Y.; Kuzmin, V.; Kwon, Y. J.; Lan, J.; Lubsandorzhiev, B.; Lundquist, J. P.; Machida, K.; Martens, K.; Matsuda, T.; Matsuyama, T.; Matthews, J. N.; Minamino, M.; Mukai, K.; Myers, I.; Nagasawa, K.; Nagataki, S.; Nakamura, T.; Nonaka, T.; Nozato, A.; Ogio, S.; Ogura, J.; Ohnishi, M.; Ohoka, H.; Oki, K.; Okuda, T.; Ono, M.; Onogi, R.; Oshima, A.; Ozawa, S.; Park, I. H.; Pshirkov, M. S.; Rodriguez, D. C.; Rubtsov, G.; Ryu, D.; Sagawa, H.; Saito, K.; Saito, Y.; Sakaki, N.; Sakurai, N.; Scott, L. M.; Sekino, K.; Shah, P. D.; Shibata, T.; Shibata, F.; Shimodaira, H.; Shin, B. K.; Shin, H. S.; Smith, J. D.; Sokolsky, P.; Stokes, B. T.; Stratton, S. R.; Stroman, T. A.; Suzawa, T.; Takahashi, Y.; Takamura, M.; Takeda, M.; Takeishi, R.; Taketa, A.; Takita, M.; Tameda, Y.; Tanaka, M.; Tanaka, K.; Tanaka, H.; Thomas, S. B.; Thomson, G. B.; Tinyakov, P.; Tirone, A. H.; Tkachev, I.; Tokuno, H.; Tomida, T.; Troitsky, S.; Tsunesada, Y.; Tsutsumi, K.; Uchihori, Y.; Udo, S.; Urban, F.; Wong, T.; Yamane, R.; Yamaoka, H.; Yamazaki, K.; Yang, J.; Yashiro, K.; Yoneda, Y.; Yoshida, S.; Yoshii, H.; Zollinger, R.; Zundel, Z.

    2017-01-01

    Cosmic rays in the energy range 1018.0-1018.5 eV are thought to have a light, probably protonic, composition. To study their origin one can search for anisotropy in their arrival directions. Extragalactic cosmic rays should be isotropic, but galactic cosmic rays of this type should be seen mostly along the galactic plane, and there should be a shortage of events coming from directions near the galactic anticenter. This is due to the fact that, under the influence of the galactic magnetic field, the transition from ballistic to diffusive behavior is well advanced, and this qualitative picture persists over the whole energy range. Guided by models of the galactic magnetic field that indicate that the enhancement along the galactic plane should have a standard deviation of about 20° in galactic latitude, and the deficit in the galactic anticenter direction should have a standard deviation of about 50° in galactic longitude, we use the data of the Telescope Array surface detector in 1018.0 to 1018.5 eV energy range to search for these effects. The data are isotropic. Neither an enhancement along the galactic plane nor a deficit in the galactic anticenter direction is found. Using these data we place an upper limit on the fraction of EeV cosmic rays of galactic origin at 1.3% at 95% confidence level.

  15. A Galactic Binary Detection Pipeline

    NASA Technical Reports Server (NTRS)

    Littenberg, Tyson B.

    2011-01-01

    The Galaxy is suspected to contain hundreds of millions of binary white dwarf systems, a large fraction of which will have sufficiently small orbital period to emit gravitational radiation in band for space-based gravitational wave detectors such as the Laser Interferometer Space Antenna (LISA). LISA's main science goal is the detection of cosmological events (supermassive black hole mergers, etc.) however the gravitational signal from the galaxy will be the dominant contribution to the data - including instrumental noise over approximately two decades in frequency. The catalogue of detectable binary systems will serve as an unparalleled means of studying the Galaxy. Furthermore, to maximize the scientific return from the mission, the data must be "cleansed" of the galactic foreground. We will present an algorithm that can accurately resolve and subtract 2:: 10000 of these sources from simulated data supplied by the Mock LISA Data Challenge Task Force. Using the time evolution of the gravitational wave frequency, we will reconstruct the position of the recovered binaries and show how LISA will sample the entire compact binary population in the Galaxy.

  16. Quasistationary solutions of scalar fields around accreting black holes

    NASA Astrophysics Data System (ADS)

    Sanchis-Gual, Nicolas; Degollado, Juan Carlos; Izquierdo, Paula; Font, José A.; Montero, Pedro J.

    2016-08-01

    Massive scalar fields can form long-lived configurations around black holes. These configurations, dubbed quasibound states, have been studied both in the linear and nonlinear regimes. In this paper, we show that quasibound states can form in a dynamical scenario in which the mass of the black hole grows significantly due to the capture of infalling matter. We solve the Klein-Gordon equation numerically in spherical symmetry, mimicking the evolution of the spacetime through a sequence of analytic Schwarzschild black hole solutions of increasing mass. It is found that the frequency of oscillation of the quasibound states decreases as the mass of the black hole increases. In addition, accretion leads to an increase of the exponential decay of the scalar field energy. We compare the black hole mass growth rates used in our study with estimates from observational surveys and extrapolate our results to values of the scalar field masses consistent with models that propose scalar fields as dark matter in the universe. We show that, even for unrealistically large mass accretion rates, quasibound states around accreting black holes can survive for cosmological time scales. Our results provide further support to the intriguing possibility of the existence of dark matter halos based on (ultralight) scalar fields surrounding supermassive black holes in galactic centers.

  17. The standard model and some new directions. [for scientific theory of Active Galactic Nuclei

    NASA Technical Reports Server (NTRS)

    Blandford, R. D.; Rees, M. J.

    1992-01-01

    A 'standard' model of Active Galactic Nuclei (AGN), based upon a massive black hole surrounded by a thin accretion disk, is defined. It is argued that, although there is good evidence for the presence of black holes and orbiting gas, most of the details of this model are either inadequate or controversial. Magnetic field may be responsible for the confinement of continuum and line-emitting gas, for the dynamical evolution of accretion disks and for the formation of jets. It is further argued that gaseous fuel is supplied in molecular form and that this is responsible for thermal re-radiation, equatorial obscuration and, perhaps, the broad line gas clouds. Stars may also supply gas close to the black hole, especially in low power AGN and they may be observable in discrete orbits as probes of the gravitational field. Recent observations suggest that magnetic field, stars, dusty molecular gas and orientation effects must be essential components of a complete description of AGN. The discovery of quasars with redshifts approaching 5 is an important clue to the mechanism of galaxy formation.

  18. The annihilation of galactic positrons

    NASA Technical Reports Server (NTRS)

    Bussard, R.; Rematy, R.

    1978-01-01

    The probabilities of various channels of galactic positron annihilation were evaluated and the spectrum of the resulting radiation was calculated. The narrow width (FWHM less than 3.2 keV) of the 0.511 MeV line observed from the galactic center implies that a large fraction of positrons should annihilate in a medium of temperature less than 100,000 K and ionization fraction greater than 0.05. HII regions at the galactic center could be possible sites of annihilation.

  19. GRB070610: A Curious Galactic Transient

    NASA Technical Reports Server (NTRS)

    Kasliwal, M. M.; Kulkrarni. S. R.; Cameron, P. B.; Nakar, E.; Ofek, E. O.; Rau, A.; Soderberg, A. M.; Campana, S.; Bloom, J. S.; Perley, D. A.; hide

    2007-01-01

    GRB 070610 is a typical high-energy event with a duration of 5s.Yet within the burst localization we detect a highly unusual X-ray and optical transient, SwiftJ195509.6+261406. We see high amplitude X-ray and optical variability on very short time scares even at late times. Using near-infrared imaging assisted by a laser guide star and adaptive optics, we identified the counterpart of SwiftJl95509.6+261406. Late-time optical and near-infrared imaging constrain the spectral type of the counterpart to be fainter than a K-dwarf assuming it is of Galactic origin. It is possible that GRB 070610 and Swift J195509.6+261406 are unrelated sources. However, the absence of a typical X-ray afterglow from GRB 070610 in conjunction with the spatial and temporal coincidence of the two motivate us to suggest that the sources are related. The closest (imperfect) analog to Swift J195509.6+261406 is V4641 Sgr, an unusual black hole binary. We suggest that Swift J195509.6+261406 along with V4641 Sgr define a sub-class of stellar black hole binaries -- the fast X-ray novae. We further suggest that fast X-ray novae are associated with bursts of gamma-rays. If so, GRB 070610 defines a new class of celestial gamma-ray bursts and these bursts dominate the long-duration GRB demographics

  20. Polarized Gamma-Ray Emission from the Galactic Black Hole Cygnus X-1

    NASA Technical Reports Server (NTRS)

    Laurent, P.; Rodriquez, J.; Wilms, J.; Bel, M. Cadolle; Pottschmidt, K.; Grinberg, V.

    2011-01-01

    Because of their inherently high flux allowing the detection of clear signals, black hole X-ray binaries are interesting candidates for polarization studies, even if no polarization signals have been observed from them before. Such measurements would provide further detailed insight into these sources' emission mechanisms. We measured the polarization of the gamma-ray emission from the black hole binary system Cygnus X-I with the INTEGRAL/IBIS telescope. Spectral modeling ofthe data reveals two emission mechanisms: The 250-400 keY data are consistent with emission dominated by Compton scattering on thermal electrons and are weakly polarized. The second spectral component seen in the 400keV-2MeV band is by contrast strongly polarized, revealing that the MeV emission is probably related to the jet first detected in the radio band.

  1. STABILITY OF GAS CLOUDS IN GALACTIC NUCLEI: AN EXTENDED VIRIAL THEOREM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Xian; Cuadra, Jorge; Amaro-Seoane, Pau, E-mail: xchen@astro.puc.cl, E-mail: jcuadra@astro.puc.cl, E-mail: Pau.Amaro-Seoane@aei.mpg.de

    2016-03-10

    Cold gas entering the central 1–10{sup 2} pc of a galaxy fragments and condenses into clouds. The stability of the clouds determines whether they will be turned into stars or can be delivered to the central supermassive black hole (SMBH) to turn on an active galactic nucleus (AGN). The conventional criteria to assess the stability of these clouds, such as the Jeans criterion and Roche (or tidal) limit, are insufficient here, because they assume the dominance of self-gravity in binding a cloud, and neglect external agents, such as pressure and tidal forces, which are common in galactic nuclei. We formulatemore » a new scheme for judging this stability. We first revisit the conventional Virial theorem, taking into account an external pressure, to identify the correct range of masses that lead to stable clouds. We then extend the theorem to further include an external tidal field, which is equally crucial for the stability in the region of our interest—in dense star clusters, around SMBHs. We apply our extended Virial theorem to find new solutions to controversial problems, namely, the stability of the gas clumps in AGN tori, the circum-nuclear disk in the Galactic Center, and the central molecular zone of the Milky Way. The masses we derive for these structures are orders of magnitude smaller than the commonly used Virial masses (equivalent to the Jeans mass). Moreover, we prove that these clumps are stable, contrary to what one would naively deduce from the Roche (tidal) limit.« less

  2. Silicate Dust in Active Galactic Nuclei

    NASA Astrophysics Data System (ADS)

    Xie, Yanxia; Li, Aigen; Hao, Lei

    2017-01-01

    The unification theory of active galactic nuclei (AGNs) hypothesizes that all AGNs are surrounded by an anisotropic dust torus and are essentially the same objects but viewed from different angles. However, little is known about the dust that plays a central role in the unification theory. There are suggestions that the AGN dust extinction law appreciably differs from that of the Galaxy. Also, the silicate emission features observed in type 1 AGNs appear anomalous (I.e., their peak wavelengths and widths differ considerably from that of the Galaxy). In this work, we explore the dust properties of 147 AGNs of various types at redshifts z≲ 0.5, with special attention paid to 93 AGNs that exhibit the 9.7 and 18 μm silicate emission features. We model their silicate emission spectra obtained with the Infrared Spectrograph aboard the Spitzer Space Telescope. We find that 60/93 of the observed spectra can be well explained with “astronomical silicate,” while the remaining sources favor amorphous olivine or pyroxene. Most notably, all sources require the dust to be micron-sized (with a typical size of ˜1.5 ± 0.1 μm), much larger than submicron-sized Galactic interstellar grains, implying a flat or “gray” extinction law for AGNs. We also find that, while the 9.7 μm emission feature arises predominantly from warm silicate dust of temperature T ˜ 270 K, the ˜5-8 μm continuum emission is mostly from carbon dust of T ˜ 640 K. Finally, the correlations between the dust properties (e.g., mass, temperature) and the AGN properties (e.g., luminosity, black hole mass) have also been investigated.

  3. The Physical Nature of the Circum-Galactic Medium

    NASA Astrophysics Data System (ADS)

    Faucher-Giguere, Claude-Andre

    The installation of the Cosmic Origins Spectrograph (COS) on the Hubble Space Telescope (HST) as part of its last servicing mission has revolutionized the study of gas in and around galaxies through the study of ultra-violet (UV) diagnostics. These diagnostics are enabling studies of gas flows in and out of low-redshift, evolved galaxies that are not feasible from the ground. Despite the great observational advances made possible with COS, it is necessary to complement the high-quality spectra with theoretical modeling sufficiently accurate for robust and complete physical interpretation so that the full scientific potential of the mission can be realized. The clear correlation between O VI absorption in galactic halos and the specific star formation rate of central galaxies revealed by COS, in particular, highlights the close connection between circum-galactic gas and galaxies. It is now also appreciated that the gaseous halos of galaxies contain a total mass and a mass in metals that are at least comparable to (and likely significantly greater than) the total and metal masses in the interstellar medium of galaxies. The circum-galactic medium (CGM) is thus intimately related to galaxy evolution, including the transformation of blue star-forming disks into red passive ellipticals. However, the physical origin of observed galaxy-halo gas correlations and of halo gas in general is presently not understood. We will model the CGM of low-redshift galaxies probed by HST observations with cosmological simulations of unprecedented resolution and with much more physically predictive models of star formation and stellar and black hole feedback than previously available. Our simulations will also employ a numerical solver that resolves all the main historical differences between grid- and particle-based hydrodynamical codes. Importantly, we will process all of our simulations with radiative transfer calculations to faithfully map the simulations to observable quantities, a

  4. NASA puts JWST Back on Track, but ExoMars Collaboration Looks Unlikely; Marsquakes happening yesterday, geologically; UFOs from black holes control shape of galaxies

    NASA Astrophysics Data System (ADS)

    2012-04-01

    NASA's funding plans put the James Webb Space Telescope firmly on track for a launch in 2018, to widespread relief, but the essentially flat funding settlement for 2013 overall means something has to go. Planetary science seems hardest hit, with the especial blow for European planetary scientists of NASA pulling out of ExoMars, the ESA-led mission to look for signs of life on Mars. Images from the High Resolution Imaging Science Experiment have shown boulders displaced by seismic activity on Mars in the past few million years, and possibly much more recently than that. The bigger the supermassive black hole at the centre of a galaxy, the faster the stars in the galactic bulge rotate. Why this should be so has been something of a puzzle, but now a mechanism that is both powerful and common enough to do the job has been identified.

  5. Secular Dynamical Anti-friction in Galactic Nuclei

    NASA Astrophysics Data System (ADS)

    Madigan, Ann-Marie; Levin, Yuri

    2012-07-01

    We identify a gravitational-dynamical process in near-Keplerian potentials of galactic nuclei that occurs when an intermediate-mass black hole (IMBH) is migrating on an eccentric orbit through the stellar cluster towards the central supermassive black hole. We find that, apart from conventional dynamical friction, the IMBH experiences an often much stronger systematic torque due to the secular (i.e., orbit-averaged) interactions with the cluster's stars. The force which results in this torque is applied, counterintuitively, in the same direction as the IMBH's precession and we refer to its action as "secular dynamical anti-friction" (SDAF). We argue that SDAF, and not the gravitational ejection of stars, is responsible for the IMBH's eccentricity increase seen in the initial stages of previous N-body simulations. Our numerical experiments, supported by qualitative arguments, demonstrate that (1) when the IMBH's precession direction is artificially reversed, the torque changes sign as well, which decreases the orbital eccentricity; (2) the rate of eccentricity growth is sensitive to the IMBH migration rate, with zero systematic eccentricity growth for an IMBH whose orbit is artificially prevented from inward migration; and (3) SDAF is the strongest when the central star cluster is rapidly rotating. This leads to eccentricity growth/decrease for the clusters rotating in the opposite/same direction relative to the IMBH's orbital motion.

  6. The Galactic Center View with Simbol-X

    NASA Astrophysics Data System (ADS)

    Raimondi, L.; Malaguti, G.; Angelini, L.; Cappi, M.; Grandi, P.; Palumbo, G. G. C.; Puccetti, S.

    2009-05-01

    The nature of the hard X-ray emission above 3 keV of the Galactic Centre (GC) is still source of controversy. Recent observations with Chandra are consistent with either a population of discrete sources or with a diffuse non thermal emission or, most likely, a combination of the two. The Simbol-X mission will be equipped with a grazing incident telescope imaging up to ~80 keV, providing an improvement of three orders of magnitude in sensitivity and angular resolution compared with the instruments that have operated so far above 10 keV. This capability will enable to directly disentangle between the discrete source versus the diffuse emission scenarios. This is demonstrated by the Simbol-X simulations of the GC shown here, where the input model includes a list of both diffuse and point sources (both resolved and unresolved) using the input spectrum observed with presently operating X-ray telescopes.

  7. AN OFF-CENTERED ACTIVE GALACTIC NUCLEUS IN NGC 3115

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Menezes, R. B.; Steiner, J. E.; Ricci, T. V., E-mail: robertobm@astro.iag.usp.br

    2014-11-20

    NGC 3115 is an S0 galaxy that has always been considered to have a pure absorption-line spectrum. Some recent studies have detected a compact radio-emitting nucleus in this object, coinciding with the photometric center and with a candidate for the X-ray nucleus. This is evidence of the existence of a low-luminosity active galactic nucleus (AGN) in the galaxy, although no emission line has ever been observed. We report the detection of an emission-line spectrum of a type 1 AGN in NGC 3115, with an Hα luminosity of L {sub Hα} = (4.2 ± 0.4) × 10{sup 37} erg s{sup –1}. Our analysismore » revealed that this AGN is located at a projected distance of ∼0.''29 ± 0.''05 (corresponding to ∼14.3 ± 2.5 pc) from the stellar bulge center, which is coincident with the kinematic center of this object's stellar velocity map. The black hole corresponding to the observed off-centered AGN may form a binary system with a black hole located at the stellar bulge center. However, it is also possible that the displaced black hole is the merged remnant of the binary system coalescence, after the ''kick'' caused by the asymmetric emission of gravitational waves. We propose that certain features in the stellar velocity dispersion map are the result of perturbations caused by the off-centered AGN.« less

  8. Molecular Gas Feeding the Circumnuclear Disk of the Galactic Center

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hsieh, Pei-Ying; Koch, Patrick M.; Ho, Paul T. P.

    The interaction between a supermassive black hole (SMBH) and the surrounding material is of primary importance in modern astrophysics. The detection of the molecular 2 pc circumnuclear disk (CND) immediately around the Milky Way SMBH, SgrA*, provides a unique opportunity to study SMBH accretion at subparsec scales. Our new wide-field CS( J = 2 − 1) map toward the Galactic center (GC) reveals multiple dense molecular streamers that originated from the ambient clouds 20 pc further out, and that are connected to the central 2 pc of the CND. These dense gas streamers appear to carry gas directly toward themore » nuclear region and might be captured by the central potential. Our phase-plot analysis indicates that these streamers show a signature of rotation and inward radial motion with progressively higher velocities as the gas approaches the CND and finally ends up corotating with the CND. Our results might suggest a possible mechanism of gas feeding the CND from 20 pc around 2 pc in the GC. In this paper, we discuss the morphology and the kinematics of these streamers. As the nearest observable Galactic nucleus, this feeding process may have implications for understanding the processes in extragalactic nuclei.« less

  9. Extended hard-X-ray emission in the inner few parsecs of the Galaxy.

    PubMed

    Perez, Kerstin; Hailey, Charles J; Bauer, Franz E; Krivonos, Roman A; Mori, Kaya; Baganoff, Frederick K; Barrière, Nicolas M; Boggs, Steven E; Christensen, Finn E; Craig, William W; Grefenstette, Brian W; Grindlay, Jonathan E; Harrison, Fiona A; Hong, Jaesub; Madsen, Kristin K; Nynka, Melania; Stern, Daniel; Tomsick, John A; Wik, Daniel R; Zhang, Shuo; Zhang, William W; Zoglauer, Andreas

    2015-04-30

    The Galactic Centre hosts a puzzling stellar population in its inner few parsecs, with a high abundance of surprisingly young, relatively massive stars bound within the deep potential well of the central supermassive black hole, Sagittarius A* (ref. 1). Previous studies suggest that the population of objects emitting soft X-rays (less than 10 kiloelectronvolts) within the surrounding hundreds of parsecs, as well as the population responsible for unresolved X-ray emission extending along the Galactic plane, is dominated by accreting white dwarf systems. Observations of diffuse hard-X-ray (more than 10 kiloelectronvolts) emission in the inner 10 parsecs, however, have been hampered by the limited spatial resolution of previous instruments. Here we report the presence of a distinct hard-X-ray component within the central 4 × 8 parsecs, as revealed by subarcminute-resolution images in the 20-40 kiloelectronvolt range. This emission is more sharply peaked towards the Galactic Centre than is the surface brightness of the soft-X-ray population. This could indicate a significantly more massive population of accreting white dwarfs, large populations of low-mass X-ray binaries or millisecond pulsars, or particle outflows interacting with the surrounding radiation field, dense molecular material or magnetic fields. However, all these interpretations pose significant challenges to our understanding of stellar evolution, binary formation, and cosmic-ray production in the Galactic Centre.

  10. A systematic study of the condensation of the corona and the application for Γ 2-10 keV-Lbol/LEdd correlation in luminous active galactic nuclei

    NASA Astrophysics Data System (ADS)

    Qiao, Erlin; Liu, B. F.

    2018-06-01

    In this paper, we explained the observed Γ _2-10 keV-L_bol/L_Edd correlation in luminous active galactic nuclei within the framework of the condensation of the corona around a supermassive black hole (Liu et al.; Qiao & Liu). Specifically, we systemically test the effects of black hole mass M, the viscosity parameter α, and the magnetic parameter β (with magnetic pressure p_m=B^2/{8π }=(1-β )p_tot, ptot = pgas + pm) on the structure of the accretion disc and the corona, as well as the corresponding emergent spectra. It is found that the hard X-ray photon index Γ _2-10 keV nearly does not change with changing black hole mass M, or changing magnetic parameter β. Meanwhile, it is found that the geometry of the accretion flow, i.e. the relative configuration of the disc and corona, as well as the emergent spectra can be strongly affected by changing the value of α. By comparing with a sample composed of 29 luminous active galactic nuclei with well constrained X-ray spectra and Eddington ratios, it is found that the observed Γ _2-10 keV-L_bol/L_Edd correlation can be well matched with a relatively bigger value of α, i.e. α ˜ 1, as previously also suggested by Narayan for luminous accreting black holes.

  11. Finding Distant Galactic HII Regions

    NASA Astrophysics Data System (ADS)

    Anderson, L. D.; Armentrout, W. P.; Johnstone, B. M.; Bania, T. M.; Balser, Dana S.; Wenger, Trey V.; Cunningham, V.

    2015-12-01

    The WISE Catalog of Galactic H ii Regions contains ˜2000 H ii region candidates lacking ionized gas spectroscopic observations. All candidates have the characteristic H ii region mid-infrared morphology of WISE 12 μ {{m}} emission surrounding 22 μ {{m}} emission, and additionally have detected radio continuum emission. We here report Green Bank Telescope hydrogen radio recombination line and radio continuum detections in the X-band (9 GHz; 3 cm) of 302 WISE H ii region candidates (out of 324 targets observed) in the zone 225^\\circ ≥slant {\\ell }≥slant -20^\\circ , | {\\text{}}b| ≤slant 6^\\circ . Here we extend the sky coverage of our H ii region Discovery Survey, which now contains nearly 800 H ii regions distributed across the entire northern sky. We provide LSR velocities for the 302 detections and kinematic distances for 131 of these. Of the 302 new detections, 5 have ({\\ell },{\\text{}}b,v) coordinates consistent with the Outer Scutum-Centaurus Arm (OSC), the most distant molecular spiral arm of the Milky Way. Due to the Galactic warp, these nebulae are found at Galactic latitudes >1° in the first Galactic quadrant, and therefore were missed in previous surveys of the Galactic plane. One additional region has a longitude and velocity consistent with the OSC but lies at a negative Galactic latitude (G039.183-01.422 -54.9 {km} {{{s}}}-1). With Heliocentric distances >22 kpc and Galactocentric distances >16 kpc, the OSC H ii regions are the most distant known in the Galaxy. We detect an additional three H ii regions near {\\ell }≃ 150^\\circ whose LSR velocities place them at Galactocentric radii >19 kpc. If their distances are correct, these nebulae may represent the limit to Galactic massive star formation.

  12. The Post-periapsis Evolution of Galactic Center Source G1: The Second Case of a Resolved Tidal Interaction with a Supermassive Black Hole

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Witzel, G.; Sitarski, B. N.; Ghez, A. M.

    We present new adaptive optics (AO) imaging and spectroscopic measurements of Galactic center source G1 from W. M. Keck Observatory. Our goal is to understand its nature and relationship to G2, which is the first example of a spatially resolved object interacting with a supermassive black hole (SMBH). Both objects have been monitored with AO for the past decade (2003–2014) and are comparatively close to the black hole ( a {sub min} ∼ 200–300 au) on very eccentric orbits ( e {sub G1} ∼ 0.99; e {sub G2} ∼ 0.96). While G2 has been tracked before and during periapsis passagemore » ( T {sub 0} ∼ 2014.2), G1 has been followed since soon after emerging from periapsis ( T {sub 0} ∼ 2001.3). Our observations of G1 double the previously reported observational time baseline, which improves its orbital parameter determinations. G1's orbital trajectory appears to be in the same plane as that of G2 but with a significantly different argument of periapsis (Δ ω = 21° ± 4°). This suggests that G1 is an independent object and not part of a gas stream containing G2, as has been proposed. Furthermore, we show for the first time that (1) G1 is extended in the epochs closest to periapsis along the direction of orbital motion, and (2) it becomes significantly smaller over time (450 au in 2004 to less than 170 au in 2009). Based on these observations, G1 appears to be the second example of an object tidally interacting with an SMBH. G1's existence 14 yr after periapsis, along with its compactness in epochs further from the time of periapsis, suggest that this source is stellar in nature.« less

  13. The effects of redshifts and focusing on the spectrum of an accretion disk in the galactic center black hole candidate Sagittarius A(sup *)

    NASA Technical Reports Server (NTRS)

    Hollywood, J. M.; Melia, Fulvio

    1995-01-01

    There are firm indications that Sgr A(sup *), a compact, nonthermal radio source at the Galactic center, may be powered by the dissipation of gravitational energy as gas trapped from an ambient wind descends down the potential well, first through a quasi-spherical inflow (extending out to approximately 3 x 10(exp 16) cm) and then through a small accretion disk at less than or approximately = 5-10 Schwarzschild radii. Earlier three-dimensional Bondi-Hoyle numerical simulations have indicated that fluctuations in the accreted specific angular momentum can lead to a variability in the disk flux on a timescale of years. With greatly improved flux measurements at K and H, and the hint of a approximately 10 minute modulation in the IR luminosity, it is crucial to model the disk emission much more precisely than has been attempted thus far. In this Letter we take into account the effects of Doppler and gravitational redshifts, the light-travel time factor, and the light bending near the black hole to determine the measurable spectrum of Sgr A(sup *) in the increasingly important 10(exp 13) Hz less than or approximately = v less than or approximately = 10(exp 16) Hz frequency range. We find that the relativistic disk spectrum is much softer than its Newtonian counterpart, with a predicted UV flux roughly an order of magnitude smaller than had previously been anticipated. In addition, we find that when the physical conditions in the disk are taken to be consistent with the properties of the quasi-spherical infall (specifically, in terms of the accretion rate and disk size), only a slowly spinning or Schwarzschild black hole appears to fit the observations. Our calculations also reveal that the disk flux is much more weakly dependent on the observer's inclination angle than had been suspected on the basis of earlier Newtonian estimates.

  14. Gravity, black holes and the universe

    NASA Astrophysics Data System (ADS)

    Nicolson, I.

    The book treats current understandings of the nature and properties of gravity, with particular emphasis on its role in the physics of black holes and the structure and evolution of the universe as a whole. The development of modern ideas on force, motion and gravity is traced from the systems of Aristotle and Ptolemy through the work of Copernicus, Galileo and Kepler to Newton's law of universal gravitation and Einstein's general theory of relativity. Particular attention is then given to the role of gravity in stellar motions and to the phenomena determined by the immense gravitational forces associated with bodies of such great density, including relativistic effects, tidal forces, space-time effects, event horizons, rotation, mass and electrical charge, the existence of naked singularities and white holes, and black-hole thermodynamics. The existence of actual black holes in the universe is considered, and various black-hole candidates in the Galaxy, quasars and galactic nuclei are indicated. The role of gravity in cosmology is then examined, with attention given to the implications of general relativity, the Hubble law, the age of the universe, the density of the universe and its eventual fate. Possible alternative to general relativity as a theory of gravitation are considered, including theories of variable gravitational constant, grand unified theories, and quantum gravity.

  15. Searching for Super Massive Binary Black Holes in the VLBA Calibrator Survey

    NASA Astrophysics Data System (ADS)

    High, Brittney C.; Peck, Alison B.; Beasley, Anthony J.

    2016-01-01

    Due to its incredible resolving power, the Very Long Baseline Array (VLBA) allows astronomers to view radio emission from celestial objects in incredible detail. This makes the VLBA the best instrument for studying the dynamics of active galactic nuclei, or compact regions at the centers of galaxies where black holes are thought to reside. Since most galaxies harbor supermassive black holes at their centers, and some galaxies merge with others, supermassive binary black hole systems arise. Though a number of these systems have been found, only one system contains black holes within 10 pc apart. During the summer, we analyzed new observations from the VLBA Calibrator Survey (VCS) on approximately 2200 sources in the hopes of detecting more close supermassive binary black hole candidates. Here we present the results from reducing and categorizing these sources. We also discuss the importance of the VCS and its role in enabling observations of the most distant celestial objects.

  16. Black Hole Hunters Set New Distance Record

    NASA Astrophysics Data System (ADS)

    2010-01-01

    around each other in a diabolic waltz, with a period of about 32 hours. The astronomers also found that the black hole is stripping matter away from the star as they orbit each other. "This is indeed a very 'intimate' couple," notes collaborator Robin Barnard. "How such a tightly bound system has been formed is still a mystery." Only one other system of this type has previously been seen, but other systems comprising a black hole and a companion star are not unknown to astronomers. Based on these systems, the astronomers see a connection between black hole mass and galactic chemistry. "We have noticed that the most massive black holes tend to be found in smaller galaxies that contain less 'heavy' chemical elements," says Crowther [2]. "Bigger galaxies that are richer in heavy elements, such as the Milky Way, only succeed in producing black holes with smaller masses." Astronomers believe that a higher concentration of heavy chemical elements influences how a massive star evolves, increasing how much matter it sheds, resulting in a smaller black hole when the remnant finally collapses. In less than a million years, it will be the Wolf-Rayet star's turn to go supernova and become a black hole. "If the system survives this second explosion, the two black holes will merge, emitting copious amounts of energy in the form of gravitational waves as they combine [3]," concludes Crowther. However, it will take some few billion years until the actual merger, far longer than human timescales. "Our study does however show that such systems might exist, and those that have already evolved into a binary black hole might be detected by probes of gravitational waves, such as LIGO or Virgo [4]." Notes [1] Stellar-mass black holes are the extremely dense, final remnants of the collapse of very massive stars. These black holes have masses up to around twenty times the mass of the Sun, as opposed to supermassive black holes, found in the centre of most galaxies, which can weigh a million to a

  17. Black hole/pulsar binaries in the Galaxy

    NASA Astrophysics Data System (ADS)

    Shao, Yong; Li, Xiang-Dong

    2018-06-01

    We have performed population synthesis calculation on the formation of binaries containing a black hole (BH) and a neutron star (NS) in the Galactic disc. Some of important input parameters, especially for the treatment of common envelope evolution, are updated in the calculation. We have discussed the uncertainties from the star formation rate of the Galaxy and the velocity distribution of NS kicks on the birthrate (˜ 0.6-13 M yr^{-1}) of BH/NS binaries. From incident BH/NS binaries, by modelling the orbital evolution due to gravitational wave radiation and the NS evolution as radio pulsars, we obtain the distributions of the observable parameters such as the orbital period, eccentricity, and pulse period of the BH/pulsar binaries. We estimate that there may be ˜3-80 BH/pulsar binaries in the Galactic disc and around 10 per cent of them could be detected by the Five-hundred-metre Aperture Spherical radio Telescope.

  18. Observing the Next Galactic Supernova

    NASA Astrophysics Data System (ADS)

    Adams, Scott M.; Kochanek, C. S.; Beacom, John F.; Vagins, Mark R.; Stanek, K. Z.

    2013-12-01

    No supernova (SN) in the Milky Way has been observed since the invention of the optical telescope, instruments for other wavelengths, neutrino detectors, or gravitational wave observatories. It would be a tragedy to miss the opportunity to fully characterize the next one. To aid preparations for its observations, we model the distance, extinction, and magnitude probability distributions of a successful Galactic core-collapse supernova (ccSN), its shock breakout radiation, and its massive star progenitor. We find, at very high probability (sime 100%), that the next Galactic SN will easily be detectable in the near-IR and that near-IR photometry of the progenitor star very likely (sime 92%) already exists in the Two Micron All Sky Survey. Most ccSNe (98%) will be easily observed in the optical, but a significant fraction (43%) will lack observations of the progenitor due to a combination of survey sensitivity and confusion. If neutrino detection experiments can quickly disseminate a likely position (~3°), we show that a modestly priced IR camera system can probably detect the shock breakout radiation pulse even in daytime (64% for the cheapest design). Neutrino experiments should seriously consider adding such systems, both for their scientific return and as an added and internal layer of protection against false triggers. We find that shock breakouts from failed ccSNe of red supergiants may be more observable than those of successful SNe due to their lower radiation temperatures. We review the process by which neutrinos from a Galactic ccSN would be detected and announced. We provide new information on the EGADS system and its potential for providing instant neutrino alerts. We also discuss the distance, extinction, and magnitude probability distributions for the next Galactic Type Ia supernova (SN Ia). Based on our modeled observability, we find a Galactic ccSN rate of 3.2^{+7.3}_{-2.6} per century and a Galactic SN Ia rate of 1.4^{+1.4}_{-0.8} per century for a

  19. VizieR Online Data Catalog: Galactic Center old stars distribution (Gallego-Cano+, 2018)

    NASA Astrophysics Data System (ADS)

    Gallego-Cano, E.; Schoedel, R.; Nogueras-Lara, F.; Gallego-Calvente, A. T.; Amaro-Seoane, P.; Baumgardt, H.

    2017-09-01

    Photometric and astrometric parameters for the point source detections in the central parsec in the Galactic Centre. As we described in the manuscript, we work on four pointings which we do not combine to a final mosaic to avoid distortion issues. We analyse those four pointings in four different ways, applying different sets of StarFinder parameters. Therefore we present 16 tables, one for each pointing in the observations and StarFinder parameters. We present the extinction and completeness-corrected stellar density in three different magnitudes ranges. The tables are used to represent Figure 9 in the paper. (20 data files).

  20. The extended stellar substructures of four metal-poor globular clusters in the galactic bulge

    NASA Astrophysics Data System (ADS)

    Chun, Sang-Hyun; Sohn, Young-Jong

    2015-08-01

    We investigated stellar spatial density distribution around four metal-poor globular clusters (NGC 6266, NGC 6626, NGC 6642 and NGC 6723) in order to find extended stellar substructures. Wide-field deep J, H, and K imaging data were taken using the WFCAM near-infrared array on United Kingdom Infrared Telescope (UKIRT). The contamination of field stars around clusters was minimised by applying a statistical weighted filtering algorithm for the stars on the color-magnitude diagram. In two-dimensional isodensity contour map, we find that all four of the globular clusters shows tidal stripping stellar features in the form of tidal tails (NGC 6266 and NGC 6723) or small density lobes/chunk (NGC 6642 and NGC 6723). The stellar substructures extend toward the Galactic centre or anticancer, and the proper motion direction of the clusters. The radial density profiles of the clusters also depart from theoretical King and Wilson models and show overdensity feature with a break in a slope of profile at the outer region of clusters. The observed results indicate that four globular clusters in the Galactic bulge have experienced strong tidal force or bulge/disk shock effect of the Galaxy. These observational results provide us further constraints to understand the evolution of clusters in the Galactic bulge region as well as the formation of the Galaxy.

  1. Random forest classification of stars in the Galactic Centre

    NASA Astrophysics Data System (ADS)

    Plewa, P. M.

    2018-05-01

    Near-infrared high-angular resolution imaging observations of the Milky Way's nuclear star cluster have revealed all luminous members of the existing stellar population within the central parsec. Generally, these stars are either evolved late-type giants or massive young, early-type stars. We revisit the problem of stellar classification based on intermediate-band photometry in the K band, with the primary aim of identifying faint early-type candidate stars in the extended vicinity of the central massive black hole. A random forest classifier, trained on a subsample of spectroscopically identified stars, performs similarly well as competitive methods (F1 = 0.85), without involving any model of stellar spectral energy distributions. Advantages of using such a machine-trained classifier are a minimum of required calibration effort, a predictive accuracy expected to improve as more training data become available, and the ease of application to future, larger data sets. By applying this classifier to archive data, we are also able to reproduce the results of previous studies of the spatial distribution and the K-band luminosity function of both the early- and late-type stars.

  2. Evolution of Warped Accretion Disks in Active Galactic Nuclei. I. Roles of Feeding at the Outer Boundaries

    NASA Astrophysics Data System (ADS)

    Li, Yan-Rong; Wang, Jian-Min; Cheng, Cheng; Qiu, Jie

    2013-02-01

    We investigate the alignment processes of spinning black holes and their surrounding warped accretion disks in a frame of two different types of feeding at the outer boundaries. We consider (1) fixed flows in which gas is continually fed with a preferred angular momentum, and (2) free flows in which there is no gas supply and the disks diffuse freely at their outer edges. As expected, we find that for the cases of fixed flows the black hole disk systems always align on timescales of several 106 yr, irrespective of the initial inclinations. If the initial inclination angles are larger than π/2, the black hole accretion transits from retrograde to prograde fashion, and the accreted mass onto the black holes during these two phases is comparable. On the other hand, for the cases of free flows, both alignments and anti-alignments can occur, depending on the initial inclinations and the ratios of the angular momentum of the disks to that of the black holes. In such cases, the disks will be consumed within timescales of 106 yr by black holes accreting at the Eddington limit. We propose that there is a close connection between the black hole spin and the lifetime for which the feeding persists, which determines the observable episodic lifetimes of active galactic nuclei. We conclude that careful inclusion of the disk feeding at the outer boundaries is crucial for modeling the evolution of the black hole spin.

  3. How Complete is Mid-Infrared Selection of Active Galactic Nuclei?

    NASA Astrophysics Data System (ADS)

    Grae Short, Miona; Diamond-Stanic, Aleks

    2015-01-01

    Essentially every galaxy hosts a supermassive black hole, and roughly 10% of those black holes are currently growing as active galactic nuclei (AGNs). Given the compelling evidence that galaxies and black holes co-evolve, there is strong motivation to study how black holes assemble their mass through cosmic time. However, this is challenging because a large fraction of black hole growth is enshrouded by gas and dust. Deep and wide surveys at X-ray and infrared wavelengths offer a powerful way to study the obscured AGN population, but an important caveat is that X-ray surveys are not complete for the most highly absorbed sources and infrared surveys are not able to distinguish low-luminosity AGNs from normal galaxies. To help address these outstanding issues and to analyze the completeness of mid-infrared AGN selection, we use Spitzer and WISE photometry to study the mid-infrared colors of a complete sample of local AGNs. The sample is drawn from the revised Shapley-Ames galaxy catalog and includes every galaxy in the sky brighter than B=13 that is known to host Seyfert activity. This sample is unique in its sensitivity to low-luminosity and highly obscured sources. Our main result is that most of these known AGNs would be classified as normal galaxies on the basis of their mid-infrared colors, implying that analogs to local Seyfert galaxies would not be identified as AGNs in existing surveys. We find that this a strong function of AGN luminosity, and we also present trends as a function of AGN obscuration, galaxy luminosity, and stellar mass. These results provide important insights into the AGN population that is missing from our census of black hole growth in the distant universe. This work was supported by the National Science Foundation's REU program through NSF Award AST-1004881. We also acknowledge support from The Grainger Foundation and from gifts made to the Department of Astronomy at UW-Madison.

  4. Astrophysics: The MAD world of black holes

    NASA Astrophysics Data System (ADS)

    Gabuzda, Denise

    2014-06-01

    An analysis of optical and radio observations has revealed how powerful jets are launched from the centres of active galaxies, where supermassive black holes accrete matter through magnetically arrested disks, or MADs. See Letter p.126

  5. Accretion Disk Spectra of the Ultra-luminous X-ray Sources in Nearby Spiral Galaxies and Galactic Superluminal Jet Sources

    NASA Technical Reports Server (NTRS)

    White, Nicholas E. (Technical Monitor); Ebisawa, Ken; Zycki, Piotr; Kubota, Aya; Mizuno, Tsunefumi; Watarai, Ken-ya

    2003-01-01

    Ultra-luminous Compact X-ray Sources (ULXs) in nearby spiral galaxies and Galactic superluminal jet sources share the common spectral characteristic that they have unusually high disk temperatures which cannot be explained in the framework of the standard optically thick accretion disk in the Schwarzschild metric. On the other hand, the standard accretion disk around the Kerr black hole might explain the observed high disk temperature, as the inner radius of the Kerr disk gets smaller and the disk temperature can be consequently higher. However, we point out that the observable Kerr disk spectra becomes significantly harder than Schwarzschild disk spectra only when the disk is highly inclined. This is because the emission from the innermost part of the accretion disk is Doppler-boosted for an edge-on Kerr disk, while hardly seen for a face-on disk. The Galactic superluminal jet sources are known to be highly inclined systems, thus their energy spectra may be explained with the standard Kerr disk with known black hole masses. For ULXs, on the other hand, the standard Kerr disk model seems implausible, since it is highly unlikely that their accretion disks are preferentially inclined, and, if edge-on Kerr disk model is applied, the black hole mass becomes unreasonably large (greater than or approximately equal to 300 Solar Mass). Instead, the slim disk (advection dominated optically thick disk) model is likely to explain the observed super- Eddington luminosities, hard energy spectra, and spectral variations of ULXs. We suggest that ULXs are accreting black holes with a few tens of solar mass, which is not unexpected from the standard stellar evolution scenario, and their X-ray emission is from the slim disk shining at super-Eddington luminosities.

  6. The Galactic Isotropic γ-ray Background and Implications for Dark Matter

    NASA Astrophysics Data System (ADS)

    Campbell, Sheldon S.; Kwa, Anna; Kaplinghat, Manoj

    2018-06-01

    We present an analysis of the radial angular profile of the galacto-isotropic (GI) γ-ray flux-the statistically uniform flux in angular annuli centred on the Galactic centre. Two different approaches are used to measure the GI flux profile in 85 months of Fermi-LAT data: the BDS statistical method which identifies spatial correlations, and a new Poisson ordered-pixel method which identifies non-Poisson contributions. Both methods produce similar GI flux profiles. The GI flux profile is well-described by an existing model of bremsstrahlung, π0 production, inverse Compton scattering, and the isotropic background. Discrepancies with data in our full-sky model are not present in the GI component, and are therefore due to mis-modelling of the non-GI emission. Dark matter annihilation constraints based solely on the observed GI profile are close to the thermal WIMP cross section below 100 GeV, for fixed models of the dark matter density profile and astrophysical γ-ray foregrounds. Refined measurements of the GI profile are expected to improve these constraints by a factor of a few.

  7. Relativistic particles and gamma-ray in quasars and active galactic nuclei

    NASA Technical Reports Server (NTRS)

    Protheroe, R. J.; Kazanas, D.

    1982-01-01

    A model for a class of quasars and active galactic nuclei is described in which a shock around a massive black hole randomizes the infall kinetic energy of spherically accreting matter producing a nonthermal spectrum of high energy protons. These protons may be responsible for the secondary production (via tau + or - decay) of the radio emitting high energy electrons and also of high energy gamma rays (via pi decay and inverse Compton interactions of the electrons). The correlation between radio and gamma ray emission implied by the model is in good agreement with observations of 3C273. Observation of the flux of high energy neutrinos from quasars may provide a test for the model.

  8. Relativistic particles and gamma-rays in quasars and active galactic nuclei

    NASA Technical Reports Server (NTRS)

    Protheroe, R. J.; Kazanas, D.

    1983-01-01

    A model for a class of quasars and active galactic nuclei is described in which a shock around a massive black hole randomizes the infall kinetic energy of spherically accreting matter producing a nonthermal spectrum of high energy protons. These protons may be responsible for the secondary production (via tau + or - decay) of the radio emitting high energy electrons and also of high energy gamma rays (via Pi decay and inverse Compton interactions of the electrons). The correlation between radio and gamma ray emission implied by the model is in good agreement with observations of 3C273. Observation of the flux of high energy neutrinos from quasars may provide a test for the model.

  9. Open star clusters and Galactic structure

    NASA Astrophysics Data System (ADS)

    Joshi, Yogesh C.

    2018-04-01

    In order to understand the Galactic structure, we perform a statistical analysis of the distribution of various cluster parameters based on an almost complete sample of Galactic open clusters yet available. The geometrical and physical characteristics of a large number of open clusters given in the MWSC catalogue are used to study the spatial distribution of clusters in the Galaxy and determine the scale height, solar offset, local mass density and distribution of reddening material in the solar neighbourhood. We also explored the mass-radius and mass-age relations in the Galactic open star clusters. We find that the estimated parameters of the Galactic disk are largely influenced by the choice of cluster sample.

  10. ILLUMINATING BLACK HOLE BINARY FORMATION CHANNELS WITH SPINS IN ADVANCED LIGO

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rodriguez, Carl L.; Zevin, Michael; Pankow, Chris

    The recent detections of the binary black hole mergers GW150914 and GW151226 have inaugurated the field of gravitational-wave astronomy. For the two main formation channels that have been proposed for these sources, isolated binary evolution in galactic fields and dynamical formation in dense star clusters, the predicted masses and merger rates overlap significantly, complicating any astrophysical claims that rely on measured masses alone. Here, we examine the distribution of spin–orbit misalignments expected for binaries from the field and from dense star clusters. Under standard assumptions for black hole natal kicks, we find that black hole binaries similar to GW150914 couldmore » be formed with significant spin–orbit misalignment only through dynamical processes. In particular, these heavy-black hole binaries can only form with a significant spin–orbit anti -alignment in the dynamical channel. Our results suggest that future detections of merging black hole binaries with measurable spins will allow us to identify the main formation channel for these systems.« less

  11. The "Black Women's Gathering Place": Reconceptualising a Curriculum of Place/Space

    ERIC Educational Resources Information Center

    Howard, Arianna; Patterson, Ashley; Kinloch, Valerie; Burkhard, Tanja; Randall, Ryann

    2016-01-01

    This article de-centres imperialist, capitalist, patriarchal traditions of critical approaches in Curriculum Studies via an examination of experiences shared at the "Black Women's Gathering Place" (BWGP), a non-traditional space where a diverse, intergenerational group of Black women engage with each other through the sharing of stories.…

  12. Jet precession in binary black holes

    NASA Astrophysics Data System (ADS)

    Abraham, Zulema

    2018-06-01

    Supermassive binary black holes are thought to lie at the centres of merging galaxies. The blazar OJ 287 is the poster child of such systems, showing strong and periodic variability across the electromagnetic spectrum. A new study questions the physical origin of this variability.

  13. Jet precession in binary black holes

    NASA Astrophysics Data System (ADS)

    Abraham, Zulema

    2018-05-01

    Supermassive binary black holes are thought to lie at the centres of merging galaxies. The blazar OJ 287 is the poster child of such systems, showing strong and periodic variability across the electromagnetic spectrum. A new study questions the physical origin of this variability.

  14. Galactic cosmic ray composition

    NASA Technical Reports Server (NTRS)

    Meyer, J. P.

    1986-01-01

    An assessment is given of the galactic cosmic ray source (GCRS) elemental composition and its correlation with first ionization potential. The isotopic composition of heavy nuclei; spallation cross sections; energy spectra of primary nuclei; electrons; positrons; local galactic reference abundances; comparison of solar energetic particles and solar coronal compositions; the hydrogen; lead; nitrogen; helium; and germanium deficiency problems; and the excess of elements are among the topics covered.

  15. STU black holes and SgrAstar

    NASA Astrophysics Data System (ADS)

    Cvetič, M.; Gibbons, G. W.; Pope, C. N.

    2017-08-01

    The equations of null geodesics in the STU family of rotating black hole solutions of supergravity theory, which may be considered as deformations of the vacuum Kerr metric, are completely integrable. We propose that they be used as a foil to test, for example, with what precision the gravitational field external to the black hole at the centre of our galaxy is given by the Kerr metric. By contrast with some metrics proposed in the literature, the STU metrics satisfy by construction the dominant and strong energy conditions. Our considerations may be extended to include the effects of a cosmological term. We show that these metrics permit a straightforward calculation of the properties of black hole shadows.

  16. A Universal Scaling for the Energetics of Relativistic Jets From Black Hole Systems

    NASA Technical Reports Server (NTRS)

    Nemmen, R. S.; Georganopoulos, M.; Guiriec, S.; Meyer, E. T.; Gehrels, N.; Sambruna, R. M.

    2013-01-01

    Black holes generate collimated, relativistic jets which have been observed in gamma-ray bursts (GRBs), microquasars, and at the center of some galaxies (active galactic nuclei; AGN). How jet physics scales from stellar black holes in GRBs to the supermassive ones in AGNs is still unknown. Here we show that jets produced by AGNs and GRBs exhibit the same correlation between the kinetic power carried by accelerated particles and the gamma-ray luminosity, with AGNs and GRBs lying at the low and high-luminosity ends, respectively, of the correlation. This result implies that the efficiency of energy dissipation in jets produced in black hole systems is similar over 10 orders of magnitude in jet power, establishing a physical analogy between AGN and GRBs.

  17. A universal scaling for the energetics of relativistic jets from black hole systems.

    PubMed

    Nemmen, R S; Georganopoulos, M; Guiriec, S; Meyer, E T; Gehrels, N; Sambruna, R M

    2012-12-14

    Black holes generate collimated, relativistic jets, which have been observed in gamma-ray bursts (GRBs), microquasars, and at the center of some galaxies [active galactic nuclei (AGN)]. How jet physics scales from stellar black holes in GRBs to the supermassive ones in AGN is still unknown. Here, we show that jets produced by AGN and GRBs exhibit the same correlation between the kinetic power carried by accelerated particles and the gamma-ray luminosity, with AGN and GRBs lying at the low- and high-luminosity ends, respectively, of the correlation. This result implies that the efficiency of energy dissipation in jets produced in black hole systems is similar over 10 orders of magnitude in jet power, establishing a physical analogy between AGN and GRBs.

  18. Developments of Si-PIN detectors for Continuous Spectro-photometry of Black Holes (CSPOB)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bhoumik, Debashis; Mondal, Shyamal; Chakrabarti, S. K.

    2008-10-08

    The goal of the proposed small-satellite mission named Continuous Spectro-Photometry of Black holes (CSPOB) is to observe a given galactic black hole candidate for several months continuously or almost continuously. In the former case, two identical satellites are required, while one satellite is sufficient if we employ one satellite. Such an observation from 0.5keV to 30keV should answer several questions regarding the spectral and timing properties of accretion processes. In particular, on the origin of the sub-Keplerian component of the accretion flow which is observed in many black hole candidates. We present preliminary results on the development of X-ray detectorsmore » based on Hamamatsu made Si-PIN Photodiodes at our laboratory.« less

  19. Supermassive Black Holes as the Regulators of Star Formation in Central Galaxies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Terrazas, Bryan A.; Bell, Eric F.; Woo, Joanna

    We present the relationship between the black hole mass, stellar mass, and star formation rate (SFR) of a diverse group of 91 galaxies with dynamically measured black hole masses. For our sample of galaxies with a variety of morphologies and other galactic properties, we find that the specific SFR is a smoothly decreasing function of the ratio between black hole mass and stellar mass, or what we call the specific black hole mass. In order to explain this relation, we propose a physical framework where the gradual suppression of a galaxy’s star formation activity results from the adjustment to anmore » increase in specific black hole mass, and accordingly, an increase in the amount of heating. From this framework, it follows that at least some galaxies with intermediate specific black hole masses are in a steady state of partial quiescence with intermediate specific SFRs, implying that both transitioning and steady-state galaxies live within this region that is known as the “green valley.” With respect to galaxy formation models, our results present an important diagnostic with which to test various prescriptions of black hole feedback and its effects on star formation activity.« less

  20. A Simple test for the existence of two accretion modes in active galactic nuclei

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jester, Sebastian; /Fermilab

    2005-02-01

    By analogy to the different accretion states observed in black-hole X-ray binaries (BHXBs), it appears plausible that accretion disks in active galactic nuclei (AGN) undergo a state transition between a radiatively efficient and inefficient accretion flow. If the radiative efficiency changes at some critical accretion rate, there will be a change in the distribution of black hole masses and bolometric luminosities at the corresponding transition luminosity. To test this prediction, the author considers the joint distribution of AGN black hole masses and bolometric luminosities for a sample taken from the literature. The small number of objects with low Eddington-scaled accretionmore » rates m < 0.01 and black hole masses M{sub BH} < 10{sup 9} M{sub {circle_dot}} constitutes tentative evidence for the existence of such a transition in AGN. Selection effects, in particular those associated with flux-limited samples, systematically exclude objects in particular regions of the (M{sub BH}, L{sub bol}) plane. Therefore, they require particular attention in the analysis of distributions of black hole mass, bolometric luminosity, and derived quantities like the accretion rate. The author suggests further observational tests of the BHXB-AGN unification scheme which are based on the jet domination of the energy output of BHXBs in the hard state, and on the possible equivalence of BHXB in the very high (or steep power-law) state showing ejections and efficiently accreting quasars and radio galaxies with powerful radio jets.« less

  1. Black Hole Universe Model for Explaining GRBs, X-Ray Flares, and Quasars as Emissions of Dynamic Star-like, Massive, and Supermassive Black Holes

    NASA Astrophysics Data System (ADS)

    Zhang, Tianxi

    2014-01-01

    Slightly modifying the standard big bang theory, the author has recently developed a new cosmological model called black hole universe, which is consistent with Mach’s principle, governed by Einstein’s general theory of relativity, and able to explain all observations of the universe. Previous studies accounted for the origin, structure, evolution, expansion, cosmic microwave background radiation, and acceleration of the black hole universe, which grew from a star-like black hole with several solar masses through a supermassive black hole with billions of solar masses to the present state with hundred billion-trillions of solar masses by accreting ambient matter and merging with other black holes. This study investigates the emissions of dynamic black holes according to the black hole universe model and provides a self-consistent explanation for the observations of gamma ray bursts (GRBs), X-ray flares, and quasars as emissions of dynamic star-like, massive, and supermassive black holes. It is shown that a black hole, when it accretes its ambient matter or merges with other black holes, becomes dynamic. Since the event horizon of a dynamic black hole is broken, the inside hot (or high-frequency) blackbody radiation leaks out. The leakage of the inside hot blackbody radiation leads to a GRB if it is a star-like black hole, an X-ray flare if it is a massive black hole like the one at the center of the Milky Way, or a quasar if it is a supermassive black hole like an active galactic nucleus (AGN). The energy spectra and amount of emissions produced by the dynamic star-like, massive, and supermassive black holes can be consistent with the measurements of GRBs, X-ray flares, and quasars.

  2. Anisotropy and corotation of galactic cosmic rays.

    PubMed

    Amenomori, M; Ayabe, S; Bi, X J; Chen, D; Cui, S W; Danzengluobu; Ding, L K; Ding, X H; Feng, C F; Feng, Zhaoyang; Feng, Z Y; Gao, X Y; Geng, Q X; Guo, H W; He, H H; He, M; Hibino, K; Hotta, N; Hu, Haibing; Hu, H B; Huang, J; Huang, Q; Jia, H Y; Kajino, F; Kasahara, K; Katayose, Y; Kato, C; Kawata, K; Labaciren; Le, G M; Li, A F; Li, J Y; Lou, Y-Q; Lu, H; Lu, S L; Meng, X R; Mizutani, K; Mu, J; Munakata, K; Nagai, A; Nanjo, H; Nishizawa, M; Ohnishi, M; Ohta, I; Onuma, H; Ouchi, T; Ozawa, S; Ren, J R; Saito, T; Saito, T Y; Sakata, M; Sako, T K; Sasaki, T; Shibata, M; Shiomi, A; Shirai, T; Sugimoto, H; Takita, M; Tan, Y H; Tateyama, N; Torii, S; Tsuchiya, H; Udo, S; Wang, B; Wang, H; Wang, X; Wang, Y G; Wu, H R; Xue, L; Yamamoto, Y; Yan, C T; Yang, X C; Yasue, S; Ye, Z H; Yu, G C; Yuan, A F; Yuda, T; Zhang, H M; Zhang, J L; Zhang, N J; Zhang, X Y; Zhang, Y; Zhang, Yi; Zhaxisangzhu; Zhou, X X

    2006-10-20

    The intensity of Galactic cosmic rays is nearly isotropic because of the influence of magnetic fields in the Milky Way. Here, we present two-dimensional high-precision anisotropy measurement for energies from a few to several hundred teraelectronvolts (TeV), using the large data sample of the Tibet Air Shower Arrays. Besides revealing finer details of the known anisotropies, a new component of Galactic cosmic ray anisotropy in sidereal time is uncovered around the Cygnus region direction. For cosmic-ray energies up to a few hundred TeV, all components of anisotropies fade away, showing a corotation of Galactic cosmic rays with the local Galactic magnetic environment. These results have broad implications for a comprehensive understanding of cosmic rays, supernovae, magnetic fields, and heliospheric and Galactic dynamic environments.

  3. News and Views: NASA puts JWST back on track, but ExoMars collaboration looks unlikely; Marsquakes happening yesterday, geologically; UFOs from black holes control shape of galaxies

    NASA Astrophysics Data System (ADS)

    2012-04-01

    NASA's funding plans put the James Webb Space Telescope firmly on track for a launch in 2018, to widespread relief, but the essentially flat funding settlement for 2013 overall means something has to go. Planetary science seems hardest hit, with the especial blow for European planetary scientists of NASA pulling out of ExoMars, the ESA-led mission to look for signs of life on Mars. Images from the High Resolution Imaging Science Experiment have shown boulders displaced by seismic activity on Mars in the past few million years, and possibly much more recently than that. The bigger the supermassive black hole at the centre of a galaxy, the faster the stars in the galactic bulge rotate. Why this should be so has been something of a puzzle, but now a mechanism that is both powerful and common enough to do the job has been identified.

  4. Testing Galactic Cosmic Ray Models

    NASA Technical Reports Server (NTRS)

    Adams, James H., Jr.

    2009-01-01

    Models of the Galactic Cosmic Ray Environment are used for designing and planning space missions. The existing models will be reviewed. Spectral representations from these models will be compared with measurements of galactic cosmic ray spectra made on balloon flights and satellite flights over a period of more than 50 years.

  5. Testing Galactic Cosmic Ray Models

    NASA Technical Reports Server (NTRS)

    Adams, James H., Jr.

    2010-01-01

    Models of the Galactic Cosmic Ray Environment are used for designing and planning space missions. The exising models will be reviewed. Spectral representations from these models will be compared with measurements of galactic cosmic ray spectra made on balloon flights and satellite flights over a period of more than 50 years.

  6. Black holes as bubble nucleation sites

    NASA Astrophysics Data System (ADS)

    Gregory, Ruth; Moss, Ian G.; Withers, Benjamin

    2014-03-01

    We consider the effect of inhomogeneities on the rate of false vacuum decay. Modelling the inhomogeneity by a black hole, we construct explicit Euclidean instantons which describe the nucleation of a bubble of true vacuum centred on the inhomogeneity. We find that inhomogeneity significantly enhances the nucleation rate over that of the Coleman-de Luccia instanton — the black hole acts as a nucleation site for the bubble. The effect is larger than previously believed due to the contributions to the action from conical singularities. For a sufficiently low initial mass, the original black hole is replaced by flat space during this process, as viewed by a single causal patch observer. Increasing the initial mass, we find a critical value above which a black hole remnant survives the process. This resulting black hole can have a higher mass than the original black hole, but always has a lower entropy. We compare the process to bubble-to-bubble transitions, where there is a semi-classical Lorentzian description in the WKB approximation.

  7. Gas Flows in Dual Active Galactic Nuclei

    NASA Astrophysics Data System (ADS)

    Mueller Sanchez, Francisco; Comerford, Julia M.; Davies, Richard; Treister, Ezequiel; Privon, George C.; Nevin, Becky

    2018-06-01

    Dual Active Galactic Nuclei (AGN) are the Rosetta stone to understand the role of galaxy mergers in triggering nuclear activity and regulating black hole (BH) and galaxy growth. But very little is known about the physical processes required to effectively trigger AGN activity and regulate the growth of the two BHs. The work I will present here characterizes for the first time the properties of the stars, gas (molecular, ionized, and highly-ionized) and dust in all the confirmed dual AGN at z < 0.05, using Keck/OSIRIS, VLT/SINFONI, SOFIA/FORCAST, and HST data. I will focus on the interplay between the several complex processes observed in dual AGN, using as an example the prototypical merger system NGC 6240: vigorous star formation, two AGNs, outflowing winds of ionized gas, rippling dust and gas lanes, and tidal tails. In this galaxy, we observe for the first time a dual outflow of different species of gas: an AGN-driven outflow of highly-ionized gas to the northeast and a starburst-driven outflow of ionized hydrogen to the northwest. This shows that stellar feedback and supermassive black hole feedback can work in tandem to regulate the stellar growth of a galaxy after a merger event. These results open a new door to studies of dual AGN and AGN pairs in general, and enable dual AGN to be used, for the first time, for studies of galaxy evolution.

  8. The Structure of Active Galactic Nuclei

    NASA Technical Reports Server (NTRS)

    Kriss, Gerard A.

    1997-01-01

    We are continuing our systematic investigation of the nuclear structure of nearby active galactic nuclei (AGN). Upon completion, our study will characterize hypothetical constructs such as narrow-line clouds, obscuring tori, nuclear gas disks. and central black holes with physical measurements for a complete sample of nearby AGN. The major scientific goals of our program are: (1) the morphology of the NLR; (2) the physical conditions and dynamics of individual clouds in the NLR; (3) the structure and physical conditions of the warm reflecting gas; (4) the structure of the obscuring torus; (5) the population and morphology of nuclear disks/tori in AGN; (6) the physical conditions in nuclear disks; and (7) the masses of central black holes in AGN. We will use the Hubble Space Telescope (HST) to obtain high-resolution images and spatially resolved spectra. Far-UV spectroscopy of emission and absorption in the nuclear regions using HST/FOS and the Hopkins Ultraviolet Telescope (HUT) will help establish physical conditions in the absorbing and emitting gas. By correlating the dynamics and physical conditions of the gas with the morphology revealed through our imaging program, we will be able to examine mechanisms for fueling the central engine and transporting angular momentum. The kinematics of the nuclear gas disks may enable us to measure the mass of the central black hole. Contemporaneous X-ray observations using ASCA will further constrain the ionization structure of any absorbing material. Monitoring of variability in the UV and X-ray absorption will be used to determine the location of the absorbing gas, possibly in the outflowing warm reflecting gas, or the broad-line region, or the atmosphere of the obscuring torus. Supporting ground-based observations in the optical, near-IR, imaging polarimetry, and the radio will complete our picture of the nuclear structures. With a comprehensive survey of these characteristics in a complete sample of nearby AGN, our

  9. MAXI/GSC detection of a new outburst from the black hole candidate H 1743-322

    NASA Astrophysics Data System (ADS)

    Shidatsu, M.; Nakahira, S.; Negoro, H.; Ueno, S.; Tomida, H.; Ishikawa, M.; Sugawara, Y.; Nakagawa, Y. E.; Mihara, T.; Sugizaki, M.; Serino, M.; Iwakiri, W.; Sugimoto, J.; Takagi, T.; Matsuoka, M.; Kawai, N.; Isobe, N.; Sugita, S.; Yoshii, T.; Tachibana, Y.; Ono, Y.; Fujiwara, T.; Harita, S.; Muraki, Y.; Yoshida, A.; Sakamoto, T.; Kawakubo, Y.; Kitaoka, Y.; Tsunemi, H.; Shomura, R.; Nakajima, M.; Tanaka, K.; Masumitsu, T.; Kawase, T.; Ueda, Y.; Kawamuro, T.; Hori, T.; Tanimoto, A.; Oda, S.; Tsuboi, Y.; Nakamura, Y.; Sasaki, R.; Yamauchi, M.; Furuya, K.; Yamaoka, K.

    2016-11-01

    The MAXI/GSC nova-alert system detected an X-ray brightening of the Galactic black hole candidate H 1743-322 in November 6, UT 03:01. The 2-20 keV flux increased from 12 +- 3 mCrab on November 4 (MJD 57696) to 37 +- 5 mCrab on November 6 (MJD 57698).

  10. Distinguishing Between Formation Channels for Binary Black Holes with LISA

    NASA Astrophysics Data System (ADS)

    Breivik, Katelyn; Rodriguez, Carl L.; Larson, Shane L.; Kalogera, Vassiliki; Rasio, Frederic A.

    2017-01-01

    The recent detections of GW150914 and GW151226 imply an abundance of stellar-mass binary-black-hole mergers in the local universe. While ground-based gravitational-wave detectors are limited to observing the final moments before a binary merges, space-based detectors, such as the Laser Interferometer Space Antenna (LISA), can observe binaries at lower orbital frequencies where such systems may still encode information about their formation histories. In particular, the orbital eccentricity and mass of binary black holes in the LISA frequency band can be used together to discriminate between binaries formed in isolation in galactic fields and those formed in dense stellar environments such as globular clusters. In this letter, we explore the orbital eccentricity and mass of binary-black-hole populations as they evolve through the LISA frequency band. Overall we find that there are two distinct populations discernible by LISA. We show that up to ~90% of binaries formed either dynamically or in isolation have eccentricities measurable by LISA. Finally, we note how measured eccentricities of low-mass binary black holes evolved in isolation could provide detailed constraints on the physics of black-hole natal kicks and common-envelope evolution.

  11. Black Hole as a Supercollider

    NASA Astrophysics Data System (ADS)

    Zaslavskii, O. B.

    Recently, it was found that in the vicinity of the black hole horizon of a rotating black hole two particles can collide in such a way that the energy in their centre of mass frame becomes infinite (so-called BSW effect). I give a brief review of basic features of this effect and show that this is a generic property of rotating black holes. In addition, there exists its counterpart for radial motion of charged particles in the charged black hole background. Simple kinematic explanation is suggested that is based on observation that all massive particles fall in two classes. In the first case (by definition, "usual particles"), the velocity approaches that of light on the horizon in the locally-nonrotating frame due to special relationship between the energy and the angular momentum. In the second case, it tends to some value less than speed of light. As a result, the relative velocity also tends to the speed of light with infinitely growing Lorentz factor.

  12. Black Hole as a Supercollider

    NASA Astrophysics Data System (ADS)

    Zaslavskii, O. B.

    2011-06-01

    Recently, it was found that in the vicinity of the black hole horizon of a rotating black hole two particles can collide in such a way that the energy in their centre of mass frame becomes infinite (so-called BSW effect). I give a brief review of basic features of this effect and show that this is a generic property of rotating black holes. In addition, there exists its counterpart for radial motion of charged particles in the charged black hole background. Simple kinematic explanation is suggested that is based on observation that all massive particles fall in two classes. In the first case (by definition, "usual particles"), the velocity approaches that of light on the horizon in the locally-nonrotating frame due to special relationship between the energy and the angular momentum. In the second case, it tends to some value less than speed of light. As a result, the relative velocity also tends to the speed of light with infinitely growing Lorentz factor.

  13. Gravity, black holes, and the universe

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nicolson, I.

    1981-01-01

    The book treats current understandings of the nature and properties of gravity, with particular emphasis on its role in the physics of black holes and the structure and evolution of the universe as a whole. The development of modern ideas on force, motion and gravity is traced from the systems of Aristotle and Ptolemy through the work of Copernicus, Galileo and Kepler to Newton's law of universal gravitation and Einstein's general theory of relativity. Particular attention is then given to the role of gravity in stellar motions and to the phenomena determined by the immense gravitational forces associated with bodiesmore » of such great density, including relativistic effects, tidal forces, space-time effects, event horizons, rotation, mass and electrical charge, the existence of naked singularities and white holes, and black-hole thermodynamics. The existence of actual black holes in the universe is considered, and various black-hole candidates in the Galaxy, quasars and galactic nuclei are indicated. The role of gravity in cosmology is then examined, with attention given to the implications of general relativity, the Hubble law, the age of the universe, the density of the universe and its eventual fate. Possible alternative to general relativity as a theory of gravitation are considered, including theories of variable gravitational constant, grand unified theories, and quantum gravity.« less

  14. Competition of supermassive black holes and galactic spheroids in the destruction of globular clusters

    NASA Technical Reports Server (NTRS)

    Charlton, Jane C.; Laguna, Pablo

    1995-01-01

    The globular clusters that we observe in galaxies may be only a fraction of the initial population. Among the evolutionary influences on the population is the destruction of globular clusters by tidal forces as the cluster moves through the field of influence of a disk, a bulge, and/or a putative nuclear component (black hole). We have conducted a series of N-body simulations of globular clusters on bound and marginally bound orbits through poetentials that include black hole and speroidal components. The degree of concentration of the spheroidal component can have a considerable impact on the extent to which a globular cluster is disrupted. If half the mass of a 10(exp 10) solar mass spheroid is concentrated within 800 pc, then only black holes with masses greater than 10(exp 9) solar mass can have a significant tidal influence over that already exerted by the bulge. However, if the matter in the spheroidal component is not so strongly concentrated toward the center of the galaxy, a more modest central black hole (down to 10(exp 8) solar mass) could have a dominant influence on the globular cluster distribution, particularly if many of the clusters were initially on highly radial orbits. Our simulations show that the stars that are stripped from a globular cluster follow orbits with roughly the same eccentricity as the initial cluster orbit, spreading out along the orbit like a 'string of pearls.' Since only clusters on close to radial orbits will suffer substantial disruption, the population of stripped stars will be on orbits of high eccentricity.

  15. An Extreme X-ray Disk Wind in the Black Hole Candidate IGR J17091-3624

    NASA Technical Reports Server (NTRS)

    King, A. L.; Miller, J. M.; Raymond, J.; Fabian, A. C.; Reynolds, C. S.; Kallman, T. R.; Maitra, D.; Cackett, E. M.; Rupen, M. P.

    2012-01-01

    Chandra spectroscopy of transient stellar-mass black holes in outburst has clearly revealed accretion disk winds in soft, disk-dominated states, in apparent anti-correlation with relativistic jets in low/hard states. These disk winds are observed to be highly ionized. dense. and to have typical velocities of approx 1000 km/s or less projected along our line of sight. Here. we present an analysis of two Chandra High Energy Transmission Grating spectra of the Galactic black hole candidate IGR J17091-3624 and contemporaneous EVLA radio observations. obtained in 2011. The second Chandra observation reveals an absorption line at 6.91+/-0.01 keV; associating this line with He-like Fe XXV requires a blue-shift of 9300(+500/-400) km/ s (0.03c. or the escape velocity at 1000 R(sub schw)). This projected outflow velocity is an order of magnitude higher than has previously been observed in stellar-mass black holes, and is broadly consistent with some of the fastest winds detected in active galactic nuclei. A potential feature at 7.32 keV, if due to Fe XXVI, would imply a velocity of approx 14600 km/s (0.05c), but this putative feature is marginal. Photoionization modeling suggests that the accretion disk wind in IGR J17091-3624 may originate within 43,300 Schwarzschild radii of the black hole, and may be expelling more gas than accretes. The contemporaneous EVLA observations strongly indicate that jet activity was indeed quenched at the time of our Chandra observations. We discuss the results in the context of disk winds, jets, and basic accretion disk physics in accreting black hole systems

  16. The Impact of a New Speckle Holography Analysis on the Galactic Center Orbits Initiative

    NASA Astrophysics Data System (ADS)

    Mangian, John; Ghez, Andrea; Gautam, Abhimat; Gallego, Laly; Schödel, Rainer; Lu, Jessica; Chen, Zhuo; UCLA Galactic Center Group; W.M. Keck Observatory Staff

    2018-01-01

    The Galactic Center Orbit Initiative has used two decades of high angular resolution imaging data from the W. M. Keck Observatory to make astrometric measurements of stellar motion around our Galaxy's central supermassive black hole. We present an analysis of a new approach to ten years of speckle imaging data (1995 - 2005) that has been processed with a new holography analysis. This analysis has (1) improved the image quality near the edge of the combined speckle frame and (2) increased the depth of the images and therefore increased the number of sources detected throughout the entire image. By directly comparing each holography analysis, we find a 41% increase in total detected sources and a 81% increase in sources further than 3" from the central black hole (SgrA*). Further, we find a 49% increase in sources of K-band magnitude greater than the old holography limiting magnitude due to the reduction of light halos surrounding bright sources.

  17. ACCRETION DISKS AROUND KICKED BLACK HOLES: POST-KICK DYNAMICS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ponce, Marcelo; Faber, Joshua A.; Lombardi, James C., E-mail: mponce@astro.rit.edu, E-mail: jafsma@rit.edu, E-mail: jalombar@allegheny.edu

    2012-01-20

    Numerical calculations of merging black hole binaries indicate that asymmetric emission of gravitational radiation can kick the merged black hole at up to thousands of km s{sup -1}, and a number of systems have been observed recently whose properties are consistent with an active galactic nucleus containing a supermassive black hole moving with substantial velocity with respect to its broader accretion disk. We study here the effect of an impulsive kick delivered to a black hole on the dynamical evolution of its accretion disk using a smoothed particle hydrodynamics code, focusing attention on the role played by the kick anglemore » with respect to the orbital angular momentum vector of the pre-kicked disk. We find that for more vertical kicks, for which the angle between the kick and the normal vector to the disk {theta} {approx}< 30 Degree-Sign , a gap remains present in the inner disk, in accordance with the prediction from an analytic collisionless Keplerian disk model, while for more oblique kicks with {theta} {approx}> 45 Degree-Sign , matter rapidly accretes toward the black hole. There is a systematic trend for higher potential luminosities for more oblique kick angles for a given black hole mass, disk mass, and kick velocity, and we find large amplitude oscillations in time in the case of a kick oriented 60 Degree-Sign from the vertical.« less

  18. THE LONGEST TIMESCALE X-RAY VARIABILITY REVEALS EVIDENCE FOR ACTIVE GALACTIC NUCLEI IN THE HIGH ACCRETION STATE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang Youhong, E-mail: youhong.zhang@mail.tsinghua.edu.cn

    2011-01-01

    The All Sky Monitor (ASM) on board the Rossi X-ray Timing Explorer has continuously monitored a number of active galactic nuclei (AGNs) with similar sampling rates for 14 years, from 1996 January to 2009 December. Utilizing the archival ASM data of 27 AGNs, we calculate the normalized excess variances of the 300-day binned X-ray light curves on the longest timescale (between 300 days and 14 years) explored so far. The observed variance appears to be independent of AGN black-hole mass and bolometric luminosity. According to the scaling relation of black-hole mass (and bolometric luminosity) from galactic black hole X-ray binariesmore » (GBHs) to AGNs, the break timescales that correspond to the break frequencies detected in the power spectral density (PSD) of our AGNs are larger than the binsize (300 days) of the ASM light curves. As a result, the singly broken power-law (soft-state) PSD predicts the variance to be independent of mass and luminosity. Nevertheless, the doubly broken power-law (hard-state) PSD predicts, with the widely accepted ratio of the two break frequencies, that the variance increases with increasing mass and decreases with increasing luminosity. Therefore, the independence of the observed variance on mass and luminosity suggests that AGNs should have soft-state PSDs. Taking into account the scaling of the break timescale with mass and luminosity synchronously, the observed variances are also more consistent with the soft-state than the hard-state PSD predictions. With the averaged variance of AGNs and the soft-state PSD assumption, we obtain a universal PSD amplitude of 0.030 {+-} 0.022. By analogy with the GBH PSDs in the high/soft state, the longest timescale variability supports the standpoint that AGNs are scaled-up GBHs in the high accretion state, as already implied by the direct PSD analysis.« less

  19. High-resolution VLBA imaging of the radio source Sgr A* at the Galactic Centre

    NASA Technical Reports Server (NTRS)

    Lo, K. Y.; Backer, D. C.; Kellermann, K. I.; Reid, M.; Zhao, J. H.; Goss, W. M.; Moran, J. M.

    1993-01-01

    Images of Sgr* A with milliarcsecond resolution obtained by using five telescopes of the partially completed Very Long Baseline Array (VLBA) in conjunction with a few additional telescopes are presented. The image of Sgr A* at a wavelength of 3.6 cm confirms almost exactly the elliptical Gaussian model that has been proposed on the basis of previous data. The source size at 1.34 cm wavelength is 2.4 +/- 0.2 mas, similar to previous results. At both wavelengths, the radio source is smooth, without detectable fine structure. These observations support the suggestion that the radio emission from Sgr A* is strongly scattered by electron-density fluctuations along the line of sight. On the assumption that the emission is due to a black hole accreting stellar winds from massive stars in the central 0.5 pc, the observations are consistent with a black hole mass of less than about 2 million solar masses.

  20. Black Holes across the Mass Spectrum-from Stellar Mass BH to ULXs and AGN

    NASA Technical Reports Server (NTRS)

    Mushotzky, Richard

    2006-01-01

    I will discuss the observational characteristics of black holes and how they compare across the 10^8 range in mass and as a function of luminosity and apparent Eddington ratio. I will concentrate on the broad band spectrum, the timing signatures and the energy budget of these objects. In particular I will stress the similarities and differences in the x-ray spectra and power density spectra of AGN, ultraluminous x-ray sources and galactic black holes as a function of 'state'. I will also discuss the nature of the Fe K line and other diagnostics of the regions near the event horizon.

  1. Modeling Gravitational Radiation Waveforms from Black Hole Mergers

    NASA Technical Reports Server (NTRS)

    Baker, J. G.; Centrelia, J. M.; Choi, D.; Koppitz, M.; VanMeter, J.

    2006-01-01

    Gravitational radiation from merging binary black hole systems is anticipated as a key source for gravitational wave observations. Ground-based instruments, such as the Laser Interferometer Gravitational-wave Observatory (LIGO) may observe mergers of stellar-scale black holes, while the space-based Laser Interferometer Space Antenna (LISA) observatory will be sensitive to mergers of massive galactic-center black holes over a broad range of mass scales. These cataclysmic events may emit an enormous amount of energy in a brief time. Gravitational waves from comparable mass mergers carry away a few percent of the system's mass-energy in just a few wave cycles, with peak gravitational wave luminosities on the order of 10^23 L_Sun. Optimal analysis and interpretation of merger observation data will depend on developing a detailed understanding, based on general relativistic modeling, of the radiation waveforms. We discuss recent progress in modeling radiation from equal mass mergers using numerical simulations of Einstein's gravitational field equations, known as numerical relativity. Our simulations utilize Adaptive Mesh Refinement (AMR) to allow high-resolution near the black holes while simultaneously keeping the outer boundary of the computational domain far from the black holes, and making it possible to read out gravitational radiation waveforms in the weak-field wave zone. We discuss the results from simulations beginning with the black holes orbiting near the system's innermost stable orbit, comparing the recent simulations with earlier "Lazarus" waveform estimates based on an approximate hybrid numerical/perturbative technique.

  2. Amuse-Virgo: Downsizing In Black Hole Accretion

    NASA Astrophysics Data System (ADS)

    Gallo, Elena

    2010-03-01

    An issue of fundamental importance in understanding the galaxy-black hole connection is the duty cycle of accretion. If black holes are indeed ubiquitous in galactic nuclei, little is known about the frequency and intensity of their activity, the more so at the low-mass/low-luminosity end. I will present new results from AMUSE-Virgo, a Chandra survey of (formally) inactive early type galaxies in the Virgo cluster. Out of 100 objects, 32 show a nuclear X-ray source, including 6 hybrid nuclei which also host a massive nuclear cluster as visible from archival HST images. After carefully accounting for contamination from nuclear low mass X-ray binaries based on the shape and normalization of their X-ray luminosity function, we conclude that between 24-34% of the galaxies in our sample host a X-ray active super-massive black hole. This sets a firm lower limit to the black hole occupation fraction in nearby bulges within a cluster environment. At face value, the active fraction is found to increase with host stellar mass. However, taking into account selection effects, we find that the average Eddington-scaled X-ray luminosity scales with black hole mass to the power -0.62, with an intrinsic scatter of 0.46 dex. This represents the first observational evidence for down-sizing of black hole accretion in local early types, that is, the fraction of active galaxies, defined as those above a fixed X-ray Eddington ratio, decreases with increasing host galaxy mass.

  3. Possible evolution of supermassive black holes from FRI quasars

    NASA Astrophysics Data System (ADS)

    Kim, Matthew I.; Christian, Damian J.; Garofalo, David; D'Avanzo, Jaclyn

    2016-08-01

    We explore the question of the rapid buildup of black hole mass in the early universe employing a growing black hole mass-based determination of both jet and disc powers predicted in recent theoretical work on black hole accretion and jet formation. Despite simplified, even artificial assumptions about accretion and mergers, we identify an interesting low probability channel for the growth of one billion solar mass black holes within hundreds of millions of years of the big bang without appealing to super Eddington accretion. This result is made more compelling by the recognition of a connection between this channel and an end product involving active galaxies with FRI radio morphology but weaker jet powers in mildly sub-Eddington accretion regimes. While FRI quasars have already been shown to occupy a small region of the available parameter space for black hole feedback in the paradigm, we further suggest that the observational dearth of FRI quasars is also related to their connection to the most massive black hole growth due to both these FRIs high redshifts and relative weakness. Our results also allow us to construct the AGN (active galactic nucleus) luminosity function at high redshift, that agree with recent studies. In short, we produce a connection between the unexplained paucity of a given family of AGNs and the rapid growth of supermassive black holes, two heretofore seemingly unrelated aspects of the physics of AGNs.

  4. Gamma ray constraints on the Galactic supernova rate

    NASA Technical Reports Server (NTRS)

    Hartmann, D.; The, L.-S.; Clayton, Donald D.; Leising, M.; Mathews, G.; Woosley, S. E.

    1991-01-01

    We perform Monte Carlo simulations of the expected gamma ray signatures of Galactic supernovae of all types to estimate the significance of the lack of a gamma ray signal due to supernovae occurring during the last millenium. Using recent estimates of the nuclear yields, we determine mean Galactic supernova rates consistent with the historic supernova record and the gamma ray limits. Another objective of these calculations of Galactic supernova histories is their application to surveys of diffuse Galactic gamma ray line emission.

  5. Gamma ray constraints on the galactic supernova rate

    NASA Technical Reports Server (NTRS)

    Hartmann, D.; The, L.-S.; Clayton, D. D.; Leising, M.; Mathews, G.; Woosley, S. E.

    1992-01-01

    Monte Carlo simulations of the expected gamma-ray signatures of galactic supernovae of all types are performed in order to estimate the significance of the lack of a gamma-ray signal due to supernovae occurring during the last millenium. Using recent estimates of nuclear yields, we determine galactic supernova rates consistent with the historic supernova record and the gamma-ray limits. Another objective of these calculations of galactic supernova histories is their application to surveys of diffuse galactic gamma-ray line emission.

  6. Strongly Magnetized Accretion Disks in Active Galactic Nuclei

    NASA Astrophysics Data System (ADS)

    Begelman, Mitchell

    Accretion disks likely provide the conduit for fueling active galactic nuclei (AGN), linking the black hole's immediate surroundings to the host galaxy's nuclear star cluster, and possibly beyond. Yet detailed AGN disk models fail to explain several of the most basic observational features of AGN: How do the outer regions of the disk avoid stalling as a result of wholesale gravitational fragmentation? What regulates the amount of star formation that is inferred to accompany accretion in some AGN? Why is the broad emission line region a ubiquitous feature of luminous AGN? What processes create and maintain the so-called "dusty torus"? Analytic work suggests that vertical pressure support of the disk primarily by a toroidal magnetic field, rather than by gas or radiation pressure, can readily resolve these problems. And recent numerical simulations have indicated that such a strong toroidal field is the inevitable consequence of the magnetorotational instability (MRI) when a disk accumulates a modest amount of net magnetic flux, thus providing a sound theoretical basis for strongly magnetized disks. We propose an analytic and computational study of such disks in the AGN context, focusing on: (1) The basic physical properties of strongly magnetized AGN disks. We will focus on the competition between field generation and buoyancy, improving on previous work by considering realistic equations of state, dissipative processes and radiative losses. We will use global simulations to test the limiting magnetic fields that can be produced by MRIdriven accretion disk dynamos and explore the driving mechanisms of disk winds and the resulting levels of mass, angular momentum and energy loss. (2) Gravitational fragmentation and star formation in strongly magnetized disks. We will determine how a strong field reduces and regulates gravitational fragmentation, by both lowering the disk density and creating a stratified structure in which star formation near the equator can co

  7. Passage of a star by a massive black hole

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Noltenius, R.A.; Katz, J.I.

    1982-12-01

    We have calculated the effects on a 1 M/sub sun/ star of passage by a 10/sup 4/ M/sub sun/ point mass (black hole) in an intially parabolic orbit with a variety of pericenter distances. Because this problem is three-dimensional, we use the gridless smoothed particle hydrodynamic method of Lucy, Gingold, and Monaghan. The tidal forces are found to induce rotation and radial and nonradial pulsations of the star. The loss of orbital energy to these internal motions leads to capture of the star by the black hole. For small pericenter distances, the outer layers of the star are disrupted, whilemore » at still smaller distances, the entire star is destroyed. These results may be applied to some X-ray sources, active galactic nuclei, and quasars.« less

  8. Chaotic cold accretion on to black holes

    NASA Astrophysics Data System (ADS)

    Gaspari, M.; Ruszkowski, M.; Oh, S. Peng

    2013-07-01

    Bondi theory is often assumed to adequately describe the mode of accretion in astrophysical environments. However, the Bondi flow must be adiabatic, spherically symmetric, steady, unperturbed, with constant boundary conditions. Using 3D adaptive mesh refinement simulations, linking the 50 kpc to the sub-parsec (sub-pc) scales over the course of 40 Myr, we systematically relax the classic assumptions in a typical galaxy hosting a supermassive black hole. In the more realistic scenario, where the hot gas is cooling, while heated and stirred on large scales, the accretion rate is boosted up to two orders of magnitude compared with the Bondi prediction. The cause is the non-linear growth of thermal instabilities, leading to the condensation of cold clouds and filaments when tcool/tff ≲ 10. The clouds decouple from the hot gas, `raining' on to the centre. Subsonic turbulence of just over 100 km s-1 (M > 0.2) induces the formation of thermal instabilities, even in the absence of heating, while in the transonic regime turbulent dissipation inhibits their growth (tturb/tcool ≲ 1). When heating restores global thermodynamic balance, the formation of the multiphase medium is violent, and the mode of accretion is fully cold and chaotic. The recurrent collisions and tidal forces between clouds, filaments and the central clumpy torus promote angular momentum cancellation, hence boosting accretion. On sub-pc scales the clouds are channelled to the very centre via a funnel. In this study, we do not inject a fixed initial angular momentum, though vorticity is later seeded by turbulence. A good approximation to the accretion rate is the cooling rate, which can be used as subgrid model, physically reproducing the boost factor of 100 required by cosmological simulations, while accounting for the frequent fluctuations. Since our modelling is fairly general (turbulence/heating due to AGN feedback, galaxy motions, mergers, stellar evolution), chaotic cold accretion may be common in

  9. On the Calculation of the Fe K-alpha Line Emissivity of Black Hole Accretion Disks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krawczynski, H.; Beheshtipour, B., E-mail: krawcz@wustl.edu

    Observations of the fluorescent Fe K α emission line from the inner accretion flows of stellar mass black holes in X-ray binaries and supermassive black holes in active galactic nuclei have become an important tool to study the magnitude and inclination of the black hole spin, and the structure of the accretion flow close to the event horizon of the black hole. Modeling spectral, timing, and soon also X-ray polarimetric observations of the Fe K α emission requires the calculation of the specific intensity in the rest frame of the emitting plasma. We revisit the derivation of the equation usedmore » for calculating the illumination of the accretion disk by the corona. We present an alternative derivation leading to a simpler equation, and discuss the relation to previously published results.« less

  10. The cosmic MeV neutrino background as a laboratory for black hole formation

    NASA Astrophysics Data System (ADS)

    Yüksel, Hasan; Kistler, Matthew D.

    2015-12-01

    Calculations of the cosmic rate of core collapses, and the associated neutrino flux, commonly assume that a fixed fraction of massive stars collapse to black holes. We argue that recent results suggest that this fraction instead increases with redshift. With relatively more stars vanishing as ;unnovae; in the distant universe, the detectability of the cosmic MeV neutrino background is improved due to their hotter neutrino spectrum, and expectations for supernova surveys are reduced. We conclude that neutrino detectors, after the flux from normal SNe is isolated via either improved modeling or the next Galactic SN, can probe the conditions and history of black hole formation.

  11. Extending the Calibration of C IV-based Single-epoch Black Hole Mass Estimators for Active Galactic Nuclei

    NASA Astrophysics Data System (ADS)

    Park, Daeseong; Barth, Aaron J.; Woo, Jong-Hak; Malkan, Matthew A.; Treu, Tommaso; Bennert, Vardha N.; Assef, Roberto J.; Pancoast, Anna

    2017-04-01

    We provide an updated calibration of C IV λ 1549 broad emission line–based single-epoch (SE) black hole (BH) mass estimators for active galactic nuclei (AGNs) using new data for six reverberation-mapped AGNs at redshift z=0.005{--}0.028 with BH masses (bolometric luminosities) in the range {10}6.5{--}{10}7.5 {M}ȯ ({10}41.7{--}{10}43.8 erg s‑1). New rest-frame UV-to-optical spectra covering 1150–5700 Å for the six AGNs were obtained with the Hubble Space Telescope (HST). Multicomponent spectral decompositions of the HST spectra were used to measure SE emission-line widths for the C IV, Mg II, and Hβ lines, as well as continuum luminosities in the spectral region around each line. We combine the new data with similar measurements for a previous archival sample of 25 AGNs to derive the most consistent and accurate calibrations of the C IV-based SE BH mass estimators against the Hβ reverberation-based masses, using three different measures of broad-line width: full width at half maximum (FWHM), line dispersion ({σ }line}), and mean absolute deviation (MAD). The newly expanded sample at redshift z=0.005{--}0.234 covers a dynamic range in BH mass (bolometric luminosity) of {log}{M}BH}/{M}ȯ =6.5{--}9.1 ({log}{L}bol}/ erg s‑1 = 41.7{--}46.9), and we derive the new C IV-based mass estimators using a Bayesian linear regression analysis over this range. We generally recommend the use of {σ }line} or MAD rather than FWHM to obtain a less biased velocity measurement of the C IV emission line, because its narrow-line component contribution is difficult to decompose from the broad-line profile. Based on observations made with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555. These observations are associated with program GO-12922.

  12. Dancing around the Black Hole

    NASA Astrophysics Data System (ADS)

    2001-08-01

    ISAAC Finds "Cool" Young Stellar Systems at the Centres of Active Galaxies Summary Supermassive Black Holes are present at the centres of many galaxies, some weighing hundreds of millions times more than the Sun. These extremely dense objects cannot be observed directly, but violently moving gas clouds and stars in their strong gravitational fields are responsible for the emission of energetic radiation from such "active galaxy nuclei" (AGN) . A heavy Black Hole feeds agressively on its surroundings . When the neighbouring gas and stars finally spiral into the Black Hole, a substantial fraction of the infalling mass is transformed into pure energy. However, it is not yet well understood how, long before this dramatic event takes place, all that material is moved from the outer regions of the galaxy towards the central region. So how is the food for the central Black Hole delivered to the table in the first place? To cast more light on this central question, a team of French and Swiss astronomers [1] has carried out a series of trailblazing observations with the VLT Infrared Spectrometer And Array Camera (ISAAC) on the VLT 8.2-m ANTU telescope at the ESO Paranal Observatory. The ISAAC instrument is particularly well suited to this type of observations. Visible light cannot penetrate the thick clouds of dust and gas in the innermost regions of active galaxies, but by recording the infrared light from the stars close to the Black Hole , their motions can be studied. By charting those motions in the central regions of three active galaxies (NGC 1097, NGC 1808 and NGC 5728), the astronomers were able to confirm the presence of "nuclear bars" in all three. These are dynamical structures that "open a road" for the flow of material towards the innermost region. Moreover, the team was surprised to discover signs of a young stellar population near the centres of these galaxies - stars that have apparently formed quite recently in a central gas disk. Such a system is unstable

  13. Cold, clumpy accretion onto an active supermassive black hole

    NASA Astrophysics Data System (ADS)

    Tremblay, Grant R.; Oonk, J. B. Raymond; Combes, Françoise; Salomé, Philippe; O'Dea, Christopher P.; Baum, Stefi A.; Voit, G. Mark; Donahue, Megan; McNamara, Brian R.; Davis, Timothy A.; McDonald, Michael A.; Edge, Alastair C.; Clarke, Tracy E.; Galván-Madrid, Roberto; Bremer, Malcolm N.; Edwards, Louise O. V.; Fabian, Andrew C.; Hamer, Stephen; Li, Yuan; Maury, Anaëlle; Russell, Helen R.; Quillen, Alice C.; Urry, C. Megan; Sanders, Jeremy S.; Wise, Michael W.

    2016-06-01

    Supermassive black holes in galaxy centres can grow by the accretion of gas, liberating energy that might regulate star formation on galaxy-wide scales. The nature of the gaseous fuel reservoirs that power black hole growth is nevertheless largely unconstrained by observations, and is instead routinely simplified as a smooth, spherical inflow of very hot gas. Recent theory and simulations instead predict that accretion can be dominated by a stochastic, clumpy distribution of very cold molecular clouds—a departure from the ‘hot mode’ accretion model—although unambiguous observational support for this prediction remains elusive. Here we report observations that reveal a cold, clumpy accretion flow towards a supermassive black hole fuel reservoir in the nucleus of the Abell 2597 Brightest Cluster Galaxy (BCG), a nearby (redshift z = 0.0821) giant elliptical galaxy surrounded by a dense halo of hot plasma. Under the right conditions, thermal instabilities produce a rain of cold clouds that fall towards the galaxy’s centre, sustaining star formation amid a kiloparsec-scale molecular nebula that is found at its core. The observations show that these cold clouds also fuel black hole accretion, revealing ‘shadows’ cast by the molecular clouds as they move inward at about 300 kilometres per second towards the active supermassive black hole, which serves as a bright backlight. Corroborating evidence from prior observations of warmer atomic gas at extremely high spatial resolution, along with simple arguments based on geometry and probability, indicate that these clouds are within the innermost hundred parsecs of the black hole, and falling closer towards it.

  14. Cold, clumpy accretion onto an active supermassive black hole.

    PubMed

    Tremblay, Grant R; Oonk, J B Raymond; Combes, Françoise; Salomé, Philippe; O'Dea, Christopher P; Baum, Stefi A; Voit, G Mark; Donahue, Megan; McNamara, Brian R; Davis, Timothy A; McDonald, Michael A; Edge, Alastair C; Clarke, Tracy E; Galván-Madrid, Roberto; Bremer, Malcolm N; Edwards, Louise O V; Fabian, Andrew C; Hamer, Stephen; Li, Yuan; Maury, Anaëlle; Russell, Helen R; Quillen, Alice C; Urry, C Megan; Sanders, Jeremy S; Wise, Michael W

    2016-06-09

    Supermassive black holes in galaxy centres can grow by the accretion of gas, liberating energy that might regulate star formation on galaxy-wide scales. The nature of the gaseous fuel reservoirs that power black hole growth is nevertheless largely unconstrained by observations, and is instead routinely simplified as a smooth, spherical inflow of very hot gas. Recent theory and simulations instead predict that accretion can be dominated by a stochastic, clumpy distribution of very cold molecular clouds--a departure from the 'hot mode' accretion model--although unambiguous observational support for this prediction remains elusive. Here we report observations that reveal a cold, clumpy accretion flow towards a supermassive black hole fuel reservoir in the nucleus of the Abell 2597 Brightest Cluster Galaxy (BCG), a nearby (redshift z = 0.0821) giant elliptical galaxy surrounded by a dense halo of hot plasma. Under the right conditions, thermal instabilities produce a rain of cold clouds that fall towards the galaxy's centre, sustaining star formation amid a kiloparsec-scale molecular nebula that is found at its core. The observations show that these cold clouds also fuel black hole accretion, revealing 'shadows' cast by the molecular clouds as they move inward at about 300 kilometres per second towards the active supermassive black hole, which serves as a bright backlight. Corroborating evidence from prior observations of warmer atomic gas at extremely high spatial resolution, along with simple arguments based on geometry and probability, indicate that these clouds are within the innermost hundred parsecs of the black hole, and falling closer towards it.

  15. ARCADE 2 Observations of Galactic Radio Emission

    NASA Technical Reports Server (NTRS)

    Kogut, A.; Fixsen, D. J.; Levin, S. M.; Limon, M.; Lubin, P. M.; Mirel, P.; Seiffert, M.; Singal, J.; Villela, T.; Wollack, E.; hide

    2010-01-01

    We use absolutely calibrated data from the Absolute Radiometer for Cosmology, Astrophysics, and Diffuse Emission (ARCADE 2) flight in July 2006 to model Galactic emission at frequencies 3, 8, and 10 GHz. The spatial structure in the data is consistent with a superposition of free-free and synchrotron emission. Emission with spatial morphology traced by the Haslam 408 MHz survey has spectral index beta_synch = -2.5 +/- 0.1, with free-free emission contributing 0.10 +/- 0.01 of the total Galactic plane emission in the lowest ARCADE 2 band at 3.15 GHz. We estimate the total Galactic emission toward the polar caps using either a simple plane-parallel model with csc|b| dependence or a model of high-latitude radio emission traced by the COBE/FIRAS map of CII emission. Both methods are consistent with a single power-law over the frequency range 22 MHz to 10 GHz, with total Galactic emission towards the north polar cap T_Gal = 0.498 +/- 0.028 K and spectral index beta = -2.55 +/- 0.03 at reference frequency 0.31 GHz. The well calibrated ARCADE 2 maps provide a new test for spinning dust emission, based on the integrated intensity of emission from the Galactic plane instead of cross-correlations with the thermal dust spatial morphology. The Galactic plane intensity measured by ARCADE 2 is fainter than predicted by models without spinning dust, and is consistent with spinning dust contributing 0.4 +/- 0.1 of the Galactic plane emission at 23 GHz.

  16. Hard X-ray imaging of the Galactic black hole candidate GX 339 - 4

    NASA Technical Reports Server (NTRS)

    Covault, C. E.; Grindlay, J. E.; Manandhar, R. P.

    1992-01-01

    Imaging and spectral observations in the energy range 25-250 keV of the black hole candidate GX 339 - 4 have been obtained with the Energetic X-ray Imaging Telescope Experiment. Observations were made during a balloon flight from Alice Springs, Australia on UT 1989 May 8-10. A single source of nearly 6-sigma significance is detected near the center of the 3.4-deg field of view with a position consistent with GX 339 - 4. This is the first imaging observation of GX 339 - 4 at hard X-ray energies. This result confirms previously reported results from nonimaging experiments showing significant hard X-ray flux up to greater than about 60 keV, with a power-law spectral fit similar to the other black hole candidates such as Cygnus X - 1. The source may have been in an outburst state similar to that recently detected with BATSE on GRO.

  17. Post-Newtonian evolution of massive black hole triplets in galactic nuclei - II. Survey of the parameter space

    NASA Astrophysics Data System (ADS)

    Bonetti, Matteo; Haardt, Francesco; Sesana, Alberto; Barausse, Enrico

    2018-04-01

    Massive black hole binaries (MBHBs) are expected to form at the centre of merging galaxies during the hierarchical assembly of the cosmic structure, and are expected to be the loudest sources of gravitational waves (GWs) in the low frequency domain. However, because of the dearth of energy exchanges with background stars and gas, many of these MBHBs may stall at separations too large for GW emission to drive them to coalescence in less than a Hubble time. Triple MBH systems are then bound to form after a further galaxy merger, triggering a complex and rich dynamics that can eventually lead to MBH coalescence. Here we report on the results of a large set of numerical simulations, where MBH triplets are set in spherical stellar potentials and MBH dynamics is followed through 2.5 post-Newtonian order in the equations of motion. From our full suite of simulated systems we find that a fraction ≃ 20 - 30 % of the MBH binaries that would otherwise stall are led to coalesce within a Hubble time. The corresponding coalescence timescale peaks around 300 Myr, while the eccentricity close to the plunge, albeit small, is non-negligible (≲ 0.1). We construct and discuss marginalised probability distributions of the main parameters involved and, in a companion paper of the series, we will use the results presented here to forecast the contribution of MBH triplets to the GW signal in the nHz regime probed by Pulsar Timing Array experiments.

  18. Relativistic dynamics and extreme mass ratio inspirals

    NASA Astrophysics Data System (ADS)

    Amaro-Seoane, Pau

    2018-05-01

    It is now well-established that a dark, compact object, very likely a massive black hole (MBH) of around four million solar masses is lurking at the centre of the Milky Way. While a consensus is emerging about the origin and growth of supermassive black holes (with masses larger than a billion solar masses), MBHs with smaller masses, such as the one in our galactic centre, remain understudied and enigmatic. The key to understanding these holes—how some of them grow by orders of magnitude in mass—lies in understanding the dynamics of the stars in the galactic neighbourhood. Stars interact with the central MBH primarily through their gradual inspiral due to the emission of gravitational radiation. Also stars produce gases which will subsequently be accreted by the MBH through collisions and disruptions brought about by the strong central tidal field. Such processes can contribute significantly to the mass of the MBH and progress in understanding them requires theoretical work in preparation for future gravitational radiation millihertz missions and X-ray observatories. In particular, a unique probe of these regions is the gravitational radiation that is emitted by some compact stars very close to the black holes and which could be surveyed by a millihertz gravitational-wave interferometer scrutinizing the range of masses fundamental to understanding the origin and growth of supermassive black holes. By extracting the information carried by the gravitational radiation, we can determine the mass and spin of the central MBH with unprecedented precision and we can determine how the holes "eat" stars that happen to be near them.

  19. Relativistic dynamics and extreme mass ratio inspirals.

    PubMed

    Amaro-Seoane, Pau

    2018-01-01

    It is now well-established that a dark, compact object, very likely a massive black hole (MBH) of around four million solar masses is lurking at the centre of the Milky Way. While a consensus is emerging about the origin and growth of supermassive black holes (with masses larger than a billion solar masses), MBHs with smaller masses, such as the one in our galactic centre, remain understudied and enigmatic. The key to understanding these holes-how some of them grow by orders of magnitude in mass-lies in understanding the dynamics of the stars in the galactic neighbourhood. Stars interact with the central MBH primarily through their gradual inspiral due to the emission of gravitational radiation. Also stars produce gases which will subsequently be accreted by the MBH through collisions and disruptions brought about by the strong central tidal field. Such processes can contribute significantly to the mass of the MBH and progress in understanding them requires theoretical work in preparation for future gravitational radiation millihertz missions and X-ray observatories. In particular, a unique probe of these regions is the gravitational radiation that is emitted by some compact stars very close to the black holes and which could be surveyed by a millihertz gravitational-wave interferometer scrutinizing the range of masses fundamental to understanding the origin and growth of supermassive black holes. By extracting the information carried by the gravitational radiation, we can determine the mass and spin of the central MBH with unprecedented precision and we can determine how the holes "eat" stars that happen to be near them.

  20. A galactic mega-merger

    NASA Image and Video Library

    2016-01-11

    The subject of this NASA/ESA Hubble Space Telescope image is known as NGC 3597. It is the product of a collision between two good-sized galaxies, and is slowly evolving to become a giant elliptical galaxy. This type of galaxy has grown more and more common as the Universe has evolved, with initially small galaxies merging and progressively building up into larger galactic structures over time. NGC 3597 is located approximately 150 million light-years away in the constellation of Crater (The Cup). Astronomers study NGC 3597 to learn more about how elliptical galaxies form — many ellipticals began their lives far earlier in the history of the Universe. Older ellipticals are nicknamed “red and dead” by astronomers because these bloated galaxies are not anymore producing new, bluer, stars in ages, and are thus packed full of old and redder stellar populations. Before infirmity sets in, some freshly formed elliptical galaxies experience a final flush of youth, as is the case with NGC 3597. Galaxies smashing together pool their available gas and dust, triggering new rounds of star birth. Some of this material ends up in dense pockets initially called proto-globular clusters, dozens of which festoon NGC 3597. These pockets will go on to collapse and form fully-fledged globular clusters, large spheres that orbit the centres of galaxies like satellites, packed tightly full of millions of stars.

  1. Proto Supermassive Binary Black Hole Detected in X-rays

    NASA Astrophysics Data System (ADS)

    2006-04-01

    An international team of astrophysicists, led by D. Hudson from the University of Bonn and including the U.S. Naval Research Laboratory and the University of Virginia, presents their X-ray detection of a proto supermassive binary black hole. Their results will be published in an upcoming issue of Astronomy & Astrophysics. The image of this proto binary black hole was obtained with NASA's Chandra X-ray Observatory. The two black holes have already been seen in radio images. The new X-ray images provide unique evidence that these two black holes are in the process of forming a binary system; that is, they are gravitationally bound and orbit each other. Chandra X-ray Image of 3C 75 Chandra X-ray Image of 3C 75 The two black holes are located in the nearby galaxy cluster Abell 400. With high-resolution Chandra data, the team was able to spatially resolve the two supermassive black holes (separated by 15") at the centre of the cluster. Each black hole is located at the centre of its respective host galaxy and the host galaxies appear to be merging. It is not, however, just the two host galaxies that are colliding - the whole cluster in which they live is merging into another neighbouring galaxy cluster. Using these new data, the team show that the two black holes are moving through the intracluster medium at the supersonic speed of about 1200 km/s. The wind from such a motion would cause the radio plasma emitted from these two black holes to bend backwards. Although this bending had been observed previously, the cause of it was still being debated. Since the bending of the jets due to this motion is in the same direction, it suggests that the two black holes are travelling along the same path within the cluster and are therefore gravitationally bound. Black Hole Merger Animation Black Hole Merger Animation These two black holes became gravitationally bound when their host galaxies collided. In several million years, the two black holes will probably coalesce causing a

  2. REVIEWS OF TOPICAL PROBLEMS: Cygnus X-3: a powerful galactic source of hard radiation

    NASA Astrophysics Data System (ADS)

    Vladimirskiĭ, B. M.; Gal'per, A. M.; Luchkov, B. I.; Stepanyan, A. A.

    1985-02-01

    A review is given of experimental and theoretical research on the galactic source Cyg X-3, whose electromagnetic spectrum extends from radio frequencies to ultrahigh-energy (Eγ ~ 1016 eV) γ-rays. Cyg X-3 also has a high x-ray luminosity (1038 erg/sec) and exhibits diversified sporadic and periodic variations, most notably occasional radio outbursts and a 4h.8 infrared, x-ray, and γ-ray cycle. Analysis of the observations indicates that Cyg X-3 is a close binary system comprising a compact relativistic object (neutron star, black hole) and a dwarf companion losing mass. Particles are accelerated to 1016 eV within the system.

  3. Hibernating black holes revealed by photometric mass functions

    NASA Astrophysics Data System (ADS)

    Casares, Jorge

    2018-02-01

    We present a novel strategy to uncover the Galactic population of quiescent black holes (BHs). This is based on a new concept, the photometric mass function (PMF), which opens up the possibility of an efficient identification of dynamical BHs in large fields-of-view. This exploits the width of the disc H α emission line, combined with orbital period information. We here show that H α widths can be recovered using a combination of customized H α filters. By setting a width cut-off at 2200 km s-1 we are able to cleanly remove other Galactic populations of H α emitters, including ∼99.9 per cent of cataclysmic variables (CVs). Only short-period (Porb <2.1 h) eclipsing CVs and AGNs will contaminate the sample but these can be easily flagged through photometric variability and, in the latter case, also mid-IR colours. We also describe the strategy of a deep (r = 22) Galactic plane survey based on the concept of PMFs: HAWKs, the HAlpha-Width Kilo-deg Survey. We estimate that ∼800 deg2 are required to unveil ∼50 new dynamical BHs, a three-fold improvement over the known population. For comparison, a century would be needed to produce an enlarged sample of 50 dynamical BHs from X-ray transients at the current discovery rate.

  4. The most luminous type 2 Active Galactic Nuclei of the Swift/ BAT catalog : Are they different?

    NASA Astrophysics Data System (ADS)

    Baer, Rudolf Erik; Oh, Kyuseok; Koss, Michael; Wong, Ivy; Schawinski, Kevin

    2018-01-01

    We present an analysis of the most luminous obscured AGN of the Swift/BAT 70 month catalog, which is based on an all-sky survey in the 14 – 195 keV energy range. This survey identified 838 AGN. Excluding Blazars and AGN close ( |gb| < 6o ) to the Galactic plane we select a sample of the 30 most luminous type 2 AGN. We analyze their emission line properties in the optical and infrared range and their radio properties using data in the 150 MHz to 22 GHz range. We obtained their black hole masses from the Swift/ BAT 70 month catalog and from a specific observation campaign in order to analyze the relationship of their luminosity to black hole mass and their Eddington ratios. We discuss whether these most luminous type 2 AGN have common characteristics, which differentiate them from all the type 2 AGN in the 70 month catalog.

  5. Magnetic fields around black holes

    NASA Astrophysics Data System (ADS)

    Garofalo, David A. G.

    Active Galactic Nuclei are the most powerful long-lived objects in the universe. They are thought to harbor supermassive black holes that range from 1 million solar masses to 1000 times that value and possibly greater. Theory and observation are converging on a model for these objects that involves the conversion of gravitational potential energy of accreting gas to radiation as well as Poynting flux produced by the interaction of the rotating spacetime and the electromagnetic fields originating in the ionized accretion flow. The presence of black holes in astrophysics is taking center stage, with the output from AGN in various forms such as winds and jets influencing the formation and evolution of the host galaxy. This dissertation addresses some of the basic unanswered questions that plague our current understanding of how rotating black holes interact with their surrounding magnetized accretion disks to produce the enormous observed energy. Two magnetic configurations are examined. The first involves magnetic fields connecting the black hole with the inner accretion disk and the other involves large scale magnetic fields threading the disk and the hole. We study the effects of the former type by establishing the consequences that magnetic torques between the black hole and the inner accretion disk have on the energy dissipation profile. We attempt a plausible explanation to the observed "Deep Minimum" state in the Seyfert galaxy MCG-6- 30-15. For the latter type of magnetic geometry, we study the effects of the strength of the magnetic field threading the black hole within the context of the cherished Blandford & Znajek mechanism for black hole spin energy extraction. We begin by addressing the problem in the non-relativistic regime where we find that the black hole-threading magnetic field is stronger for greater disk thickness, larger magnetic Prandtl number, and for a larger accretion disk. We then study the problem in full relativity where we show that our

  6. Secular Black Hole Growth and Feedback in Merger-Free Galaxies

    NASA Astrophysics Data System (ADS)

    Simmons, Brooke

    2016-10-01

    We will measure the merger-free galaxy-black hole mass relation for the first time, using a unique, newly-discovered sample of luminous active galactic nuclei (AGN) hosted in galaxies that have not grown via mergers. Our preliminary study has shown that supermassive black holes (SMBHs) in bulgeless galaxies - i.e., galaxies that have never undergone a significant merger - can have substantial growth: bulges are not required for the formation and growth of SMBHs. The proposed targets are broad-line AGN with black hole masses spanning a wide mass range (1e6 to >1e9 M_Sun) and hosted in strongly disk dominated galaxies (>80% light from a disk). This sample is an ideal laboratory for understanding merger-free black hole growth and its feedback on the host galaxy. HST imaging will allow us to disentangle bright nuclear emission from host galaxy, measure bulge type and strength, and identify bulgeless galaxies that have evolved under purely secular conditions. In addition, we will determine whether merger-free galaxies lie on the same SMBH-galaxy relation as galaxies with substantial past mergers, or whether merger-free growth results in a separate relation. The answer to this question has profound consequences for the role of baryon dynamics in driving black hole-galaxy co-evolution.

  7. The shortest-known-period star orbiting our Galaxy's supermassive black hole.

    PubMed

    Meyer, L; Ghez, A M; Schödel, R; Yelda, S; Boehle, A; Lu, J R; Do, T; Morris, M R; Becklin, E E; Matthews, K

    2012-10-05

    Stars with short orbital periods at the center of our Galaxy offer a powerful probe of a supermassive black hole. Over the past 17 years, the W. M. Keck Observatory has been used to image the galactic center at the highest angular resolution possible today. By adding to this data set and advancing methodologies, we have detected S0-102, a star orbiting our Galaxy's supermassive black hole with a period of just 11.5 years. S0-102 doubles the number of known stars with full phase coverage and periods of less than 20 years. It thereby provides the opportunity, with future measurements, to resolve degeneracies in the parameters describing the central gravitational potential and to test Einstein's theory of general relativity in an unexplored regime.

  8. NuSTAR monitoring of the Galactic center diffuse emission

    NASA Astrophysics Data System (ADS)

    Clavel, Maïca; Krivonos, Roman; Mori, Kaya; Tomsick, John; Zhang, Shuo

    2017-08-01

    Over the past two decades, the intense X-ray monitoring of the Molecular clouds in the inner region of our Galaxy has revealed a large number of reflection features, characterized by both a strong iron line at 6.4keV and associated non-thermal continuum emission. The correlated variations of these structures observed within the whole central molecular zone, along with their surface brightness, are strong evidence that a significant fraction of this diffuse emission is created by past outbursts from the supermassive black hole at the Galactic center, Sagittarius A*. The variability and the intensity of the fluorescent iron line derived from XMM-Newton and Chandra campaigns have demonstrated that the past events were short (few-year duration) but intense (more than 1039 erg/s in luminosity). However, reconstructing the detailed properties of these past events is not straightforward since it also depends on the density and the line of sight distances of the reflecting clouds, which are poorly known. By better constraining the diffuse continuum emission up to several tens of keV, NuSTAR now provides spectral information needed to better understand both the spectral shape of the emission produced during these past events and the geometry of the reflecting clouds. I will present the up-to-date NuSTAR results on the past activity of Sgr A*, including a detailed comparison of the latest 2016 deep observation with the original 2012 survey of the Galactic center and a complete spectral analysis of the Arches cloud and of an other key cloud which has been brightening.

  9. On the Newtonian and Spin-induced Perturbations Felt by the Stars Orbiting around the Massive Black Hole in the Galactic Center

    NASA Astrophysics Data System (ADS)

    Zhang, Fupeng; Iorio, Lorenzo

    2017-01-01

    The S-stars discovered in the Galactic center are expected to provide unique dynamical tests of the Kerr metric of the massive black hole (MBH) that they orbit. In order to obtain unbiased measurements of its spin and the related relativistic effects, a comprehensive understanding of the gravitational perturbations of the stars and stellar remnants around the MBH is quite essential. Here, we study the perturbations on the observables of a typical target star, I.e., the apparent orbital motion and the redshift, due to both the spin-induced relativistic effects and the Newtonian attractions of a single object or a cluster of disturbing objects. We find that, in most cases, the Newtonian perturbations on the observables are mainly attributed to the perturbed orbital period of the target star rather than the Newtonian orbital precessions. Looking at the currently detected star S2/S0-2, we find that its spin-induced effects are very likely obscured by the gravitational perturbations from the star S0-102 alone. We also investigate and discuss the Newtonian perturbations on a hypothetical S-star located inside the orbits of those currently detected. By considering a number of possible stellar distributions near the central MBH, we find that the spin-induced effects on the apparent position and redshift dominate over the stellar perturbations for target stars with orbital semimajor axis smaller than 100-400 au if the MBH is maximally spinning. Our results suggest that, in principle, the stellar perturbations can be removed because they have morphologies distinct from those of the relativistic Kerr-type signatures.

  10. STU black holes and SgrA{sup *}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cvetič, M.; Gibbons, G.W.; Pope, C.N., E-mail: cvetic@physics.upenn.edu, E-mail: gwg1@cam.ac.uk, E-mail: pope@physics.tamu.edu

    The equations of null geodesics in the STU family of rotating black hole solutions of supergravity theory, which may be considered as deformations of the vacuum Kerr metric, are completely integrable. We propose that they be used as a foil to test, for example, with what precision the gravitational field external to the black hole at the centre of our galaxy is given by the Kerr metric. By contrast with some metrics proposed in the literature, the STU metrics satisfy by construction the dominant and strong energy conditions. Our considerations may be extended to include the effects of a cosmologicalmore » term. We show that these metrics permit a straightforward calculation of the properties of black hole shadows.« less

  11. Chemical trends in the Galactic halo from APOGEE data

    NASA Astrophysics Data System (ADS)

    Fernández-Alvar, E.; Carigi, L.; Allende Prieto, C.; Hayden, M. R.; Beers, T. C.; Fernández-Trincado, J. G.; Meza, A.; Schultheis, M.; Santiago, B. X.; Queiroz, A. B.; Anders, F.; da Costa, L. N.; Chiappini, C.

    2017-02-01

    The galaxy formation process in the Λ cold dark matter scenario can be constrained from the analysis of stars in the Milky Way's halo system. We examine the variation of chemical abundances in distant halo stars observed by the Apache Point Observatory Galactic Evolution Experiment (APOGEE), as a function of distance from the Galactic Centre (r) and iron abundance ([M/H]), in the range 5 ≲ r ≲ 30 kpc and -2.5 < [M/H] < 0.0. We perform a statistical analysis of the abundance ratios derived by the APOGEE pipeline (ASPCAP) and distances calculated by several approaches. Our analysis reveals signatures of a different chemical enrichment between the inner and outer regions of the halo, with a transition at about 15 kpc. The derived metallicity distribution function exhibits two peaks, at [M/H] ˜ -1.5 and ˜-2.1, consistent with previously reported halo metallicity distributions. We obtain a difference of ˜0.1 dex for α-element-to-iron ratios for stars at r > 15 kpc and [M/H] > -1.1 (larger in the case of O, Mg, and S) with respect to the nearest halo stars. This result confirms previous claims for low-α stars found at larger distances. Chemical differences in elements with other nucleosynthetic origins (Ni, K, Na, and Al) are also detected. C and N do not provide reliable information about the interstellar medium from which stars formed because our sample comprises red giant branch and asymptotic giant branch stars and can experience mixing of material to their surfaces.

  12. Galactic Train Wrecks

    NASA Image and Video Library

    2011-05-25

    This montage combines observations from NASA Spitzer Space Telescope and NASA Galaxy Evolution Explorer GALEX spacecraft showing three examples of colliding galaxies from a new photo atlas of galactic train wrecks.

  13. Milky Way demographics with the VVV survey. I. The 84-million star colour-magnitude diagram of the Galactic bulge

    NASA Astrophysics Data System (ADS)

    Saito, R. K.; Minniti, D.; Dias, B.; Hempel, M.; Rejkuba, M.; Alonso-García, J.; Barbuy, B.; Catelan, M.; Emerson, J. P.; Gonzalez, O. A.; Lucas, P. W.; Zoccali, M.

    2012-08-01

    Context. The Milky Way (MW) bulge is a fundamental Galactic component for understanding the formation and evolution of galaxies, in particular our own. The ESO Public Survey VISTA Variables in the Vía Láctea is a deep near-IR survey mapping the Galactic bulge and southern plane. Particularly for the bulge area, VVV is covering ~315 deg2. Data taken during 2010 and 2011 covered the entire bulge area in the JHKs bands. Aims: We used VVV data for the whole bulge area as a single and homogeneous data set to build for the first time a single colour - magnitude diagram (CMD) for the entire Galactic bulge. Methods: Photometric data in the JHKs bands were combined to produce a single and huge data set containing 173 150 467 sources in the three bands, for the ~315 deg2 covered by VVV in the bulge. Selecting only the data points flagged as stellar, the total number of sources is 84 095 284. Results: We built the largest colour-magnitude diagrams published up to date, containing 173.1+ million sources for all data points, and more than 84.0 million sources accounting for the stellar sources only. The CMD has a complex shape, mostly owing to the complexity of the stellar population and the effects of extinction and reddening towards the Galactic centre. The red clump (RC) giants are seen double in magnitude at b ~ -8° -10°, while in the inner part (b ~ -3°) they appear to be spreading in colour, or even splitting into a secondary peak. Stellar population models show the predominance of main-sequence and giant stars. The analysis of the outermost bulge area reveals a well-defined sequence of late K and M dwarfs, seen at (J - Ks) ~ 0.7-0.9 mag and Ks ≳ 14 mag. Conclusions: The interpretation of the CMD yields important information about the MW bulge, showing the fingerprint of its structure and content. We report a well-defined red dwarf sequence in the outermost bulge, which is important for the planetary transit searches of VVV. The double RC in magnitude seen in the

  14. The gamma ray continuum spectrum from the galactic center disk and point sources

    NASA Technical Reports Server (NTRS)

    Gehrels, Neil; Tueller, Jack

    1992-01-01

    A light curve of gamma-ray continuum emission from point sources in the galactic center region is generated from balloon and satellite observations made over the past 25 years. The emphasis is on the wide field-of-view instruments which measure the combined flux from all sources within approximately 20 degrees of the center. These data have not been previously used for point-source analyses because of the unknown contribution from diffuse disk emission. In this study, the galactic disk component is estimated from observations made by the Gamma Ray Imaging Spectrometer (GRIS) instrument in Oct. 1988. Surprisingly, there are several times during the past 25 years when all gamma-ray sources (at 100 keV) within about 20 degrees of the galactic center are turned off or are in low emission states. This implies that the sources are all variable and few in number. The continuum gamma-ray emission below approximately 150 keV from the black hole candidate 1E1740.7-2942 is seen to turn off in May 1989 on a time scale of less than two weeks, significantly shorter than ever seen before. With the continuum below 150 keV turned off, the spectral shape derived from the HEXAGONE observation on 22 May 1989 is very peculiar with a peak near 200 keV. This source was probably in its normal state for more than half of all observations since the mid-1960's. There are only two observations (in 1977 and 1979) for which the sum flux from the point sources in the region significantly exceeds that from 1E1740.7-2942 in its normal state.

  15. Galactic Winds and the Role Played by Massive Stars

    NASA Astrophysics Data System (ADS)

    Heckman, Timothy M.; Thompson, Todd A.

    Galactic winds from star-forming galaxies play at key role in the evolution of galaxies and the intergalactic medium. They transport metals out of galaxies, chemically enriching the intergalactic medium and modifying the chemical evolution of galaxies. They affect the surrounding interstellar and circumgalactic media, thereby influencing the growth of galaxies though gas accretion and star formation. In this contribution we first summarize the physical mechanisms by which the momentum and energy output from a population of massive stars and associated supernovae can drive galactic winds. We use the prototypical example of M 82 to illustrate the multiphase nature of galactic winds. We then describe how the basic properties of galactic winds are derived from the data, and summarize how the properties of galactic winds vary systematically with the properties of the galaxies that launch them. We conclude with a brief discussion of the broad implications of galactic winds.

  16. The galactic contribution to IceCube's astrophysical neutrino flux

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Denton, Peter B.; Marfatia, Danny; Weiler, Thomas J., E-mail: peterbd1@gmail.com, E-mail: dmarf8@hawaii.edu, E-mail: tom.weiler@vanderbilt.edu

    2017-08-01

    High energy neutrinos have been detected by IceCube, but their origin remains a mystery. Determining the sources of this flux is a crucial first step towards multi-messenger studies. In this work we systematically compare two classes of sources with the data: galactic and extragalactic. We assume that the neutrino sources are distributed according to a class of Galactic models. We build a likelihood function on an event by event basis including energy, event topology, absorption, and direction information. We present the probability that each high energy event with deposited energy E {sub dep}>60 TeV in the HESE sample is Galactic,more » extragalactic, or background. For Galactic models considered the Galactic fraction of the astrophysical flux has a best fit value of 1.3% and is <9.5% at 90% CL. A zero Galactic flux is allowed at <1σ.« less

  17. Black-hole-regulated star formation in massive galaxies.

    PubMed

    Martín-Navarro, Ignacio; Brodie, Jean P; Romanowsky, Aaron J; Ruiz-Lara, Tomás; van de Ven, Glenn

    2018-01-18

    Supermassive black holes, with masses more than a million times that of the Sun, seem to inhabit the centres of all massive galaxies. Cosmologically motivated theories of galaxy formation require feedback from these supermassive black holes to regulate star formation. In the absence of such feedback, state-of-the-art numerical simulations fail to reproduce the number density and properties of massive galaxies in the local Universe. There is, however, no observational evidence of this strongly coupled coevolution between supermassive black holes and star formation, impeding our understanding of baryonic processes within galaxies. Here we report that the star formation histories of nearby massive galaxies, as measured from their integrated optical spectra, depend on the mass of the central supermassive black hole. Our results indicate that the black-hole mass scales with the gas cooling rate in the early Universe. The subsequent quenching of star formation takes place earlier and more efficiently in galaxies that host higher-mass central black holes. The observed relation between black-hole mass and star formation efficiency applies to all generations of stars formed throughout the life of a galaxy, revealing a continuous interplay between black-hole activity and baryon cooling.

  18. Black-hole-regulated star formation in massive galaxies

    NASA Astrophysics Data System (ADS)

    Martín-Navarro, Ignacio; Brodie, Jean P.; Romanowsky, Aaron J.; Ruiz-Lara, Tomás; van de Ven, Glenn

    2018-01-01

    Supermassive black holes, with masses more than a million times that of the Sun, seem to inhabit the centres of all massive galaxies. Cosmologically motivated theories of galaxy formation require feedback from these supermassive black holes to regulate star formation. In the absence of such feedback, state-of-the-art numerical simulations fail to reproduce the number density and properties of massive galaxies in the local Universe. There is, however, no observational evidence of this strongly coupled coevolution between supermassive black holes and star formation, impeding our understanding of baryonic processes within galaxies. Here we report that the star formation histories of nearby massive galaxies, as measured from their integrated optical spectra, depend on the mass of the central supermassive black hole. Our results indicate that the black-hole mass scales with the gas cooling rate in the early Universe. The subsequent quenching of star formation takes place earlier and more efficiently in galaxies that host higher-mass central black holes. The observed relation between black-hole mass and star formation efficiency applies to all generations of stars formed throughout the life of a galaxy, revealing a continuous interplay between black-hole activity and baryon cooling.

  19. Leaving Home: The Challenges of Black-African International Students Prior to Studying Overseas

    ERIC Educational Resources Information Center

    Caldwell, Elizabeth Frances; Hyams-Ssekasi, Denis

    2016-01-01

    Much of the literature on international students centres on their experiences once they arrive in their host countries. This study explores the preparations of Black-African students for leaving their home countries to study abroad. Semi-structured interviews were carried out with 50 Black-African students studying at one British university. The…

  20. Global dynamics and diffusion in triaxial galactic models

    NASA Astrophysics Data System (ADS)

    Papaphilippou, Y.

    We apply the Frequency Map Analysis method to the 3--dimensional logarithmic galactic potential in order to clarify the dynamical behaviour of triaxial power--law galactic models. All the fine dynamical details are displayed in the complete frequency map, a direct representation of the system's Arnol'd web. The influence of resonant lines and the extent of the chaotic zones are directly associated with the physical space of the system. Some new results related with the diffusion of galactic orbits are also discussed. This approach reveals many unknown dynamical features of triaxial galactic potentials and provides strong indications that chaos should be an innate characteristic of triaxial configurations.

  1. The Planck Catalogue of Galactic Cold Clumps : PGCC

    NASA Astrophysics Data System (ADS)

    Montier, L.

    The Planck satellite has provided an unprecedented view of the submm sky, allowing us to search for the dust emission of Galactic cold sources. Combining Planck-HFI all-sky maps in the high frequency channels with the IRAS map at 100um, we built the Planck catalogue of Galactic Cold Clumps (PGCC, Planck 2015 results. XXVIII), counting 13188 sources distributed over the whole sky, and following mainly the Galactic structures at low and intermediate latitudes. This is the first all-sky catalogue of Galactic cold sources obtained with a single instrument at this resolution and sensitivity, which opens a new window on star-formation processes in our Galaxy.

  2. Homogeneous photometry and star counts in the field of 9 Galactic star clusters

    NASA Astrophysics Data System (ADS)

    Seleznev, A. F.; Carraro, G.; Costa, E.; Loktin, A. V.

    2010-01-01

    We present homogeneous V, I CCD photometry of nine stellar fields in the two inner quadrants of the Galactic plane. The lines-of-view to most of these fields aim in the direction of the very inner Galaxy, where the Galactic field is very dense, and extinction is high and patchy. Our nine fields are, according to several catalogs, centred on Galactic star clusters, namely Trumpler 13, Trumpler 20, Lynga 4, Hogg 19, Lynga 12, Trumpler 25, Trumpler 26, Ruprecht 128, and Trumpler 34. Apart from their coordinates, and in some cases additional basic data (mainly from the 2MASS archive), their properties are poorly known. By means of star count techniques and field star decontaminated Color Magnitude diagrams, the nature and size of these visual over-densities has been established; and, when possible, new cluster fundamental parameters have been derived. To strengthen our findings, we complement our data-set with JHKs photometry from the 2MASS archive, that we analyze using a suitably defined Q-parameter. Most clusters are projected towards the Carina-Sagittarium spiral arm. Because of that, we detect in the Color Magnitude diagrams of most of the other fields several distinctive sequences produced by young population within the arm. All the clusters are of intermediate or old age. The most interesting cases detected by our study are, perhaps, that of Trumpler 20, which seems to be much older than previously believed, as indicated by its prominent - and double - red clump; and that of Hogg 19, a previously overlooked old open cluster, whose existence in such regions of the Milky Way is puzzling.

  3. A population of relic intermediate-mass black holes in the halo of the Milky Way

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rashkov, Valery; Madau, Piero

    If 'seed' central black holes were common in the subgalactic building blocks that merged to form present-day massive galaxies, then relic intermediate-mass black holes (IMBHs) should be present in the Galactic bulge and halo. We use a particle tagging technique to dynamically populate the N-body Via Lactea II high-resolution simulation with black holes, and assess the size, properties, and detectability of the leftover population. The method assigns a black hole to the most tightly bound central particle of each subhalo at infall according to an extrapolation of the M {sub BH}-σ{sub *} relation, and self-consistently follows the accretion and disruptionmore » of Milky Way progenitor dwarfs and their holes in a cosmological 'live' host from high redshift to today. We show that, depending on the minimum stellar velocity dispersion, σ {sub m}, below which central black holes are assumed to be increasingly rare, as many as ∼2000 (σ {sub m} = 3 km s{sup –1}) or as few as ∼70 (σ {sub m} = 12 km s{sup –1}) IMBHs may be left wandering in the halo of the Milky Way today. The fraction of IMBHs forced from their hosts by gravitational recoil is ≲ 20%. We identify two main Galactic subpopulations, 'naked' IMBHs, whose host subhalos were totally destroyed after infall, and 'clothed' IMBHs residing in dark matter satellites that survived tidal stripping. Naked IMBHs typically constitute 40%-50% of the total and are more centrally concentrated. We show that, in the σ {sub m} = 12 km s{sup –1} scenario, the clusters of tightly bound stars that should accompany naked IMBHs would be fainter than m{sub V} = 16 mag, spatially resolvable, and have proper motions of 0.1-10 mas yr{sup –1}. Their detection may provide an observational tool to constrain the formation history of massive black holes in the early universe.« less

  4. Pitch angle of galactic spiral arms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Michikoshi, Shugo; Kokubo, Eiichiro, E-mail: michiko@mail.doshisha.ac.jp, E-mail: kokubo@th.nao.ac.jp

    2014-06-01

    One of the key parameters that characterizes spiral arms in disk galaxies is a pitch angle that measures the inclination of a spiral arm to the direction of galactic rotation. The pitch angle differs from galaxy to galaxy, which suggests that the rotation law of galactic disks determines it. In order to investigate the relation between the pitch angle of spiral arms and the shear rate of galactic differential rotation, we perform local N-body simulations of pure stellar disks. We find that the pitch angle increases with the epicycle frequency and decreases with the shear rate and obtain the fittingmore » formula. This dependence is explained by the swing amplification mechanism.« less

  5. The distances of the Galactic Novae

    NASA Astrophysics Data System (ADS)

    Ozdonmez, Aykut; Guver, Tolga; Cabrera-Lavers, Antonio; Ak, Tansel

    2016-07-01

    Using location of the RC stars on the CMDs obtained from the UKIDSS, VISTA and 2MASS photometry, we have derived the reddening-distance relations towards each Galactic nova for which at least one independent reddening measurement exists. We were able to determine the distances of 72 Galactic novae and set lower limits on the distances of 45 systems. The reddening curves of the systems are presented. These curves can be also used to estimate reddening or the distance of any source, whose location is close to the position of the nova in our sample. The distance measurement method in our study can be easily applicable to any source, especially for ones that concentrated along the Galactic plane.

  6. Interstellar scintillation as the origin of the rapid radio variability of the quasar J1819+3845.

    PubMed

    Dennett-Thorpe, J; de Bruyn, A G

    2002-01-03

    The liberation of gravitational energy as matter falls onto a supermassive black hole at the centre of a galaxy is believed to explain the high luminosity of quasars. The variability of this emission from quasars and other types of active galactic nuclei can provide information on the size of the emitting regions and the physical process of fuelling the black hole. Some active galactic nuclei are variable at optical (and shorter) wavelengths, and display radio outbursts over years and decades. These active galactic nuclei often also show faster intraday variability at radio wavelengths. The origin of this rapid variability has been extensively debated, but a correlation between optical and radio variations in some sources suggests that both are intrinsic. This would, however, require radiation brightness temperatures that seem physically implausible, leading to the suggestion that the rapid variations are caused by scattering of the emission by the interstellar medium inside our Galaxy. Here we show that the rapid variations in the extreme case of quasar J1819+3845 (ref. 10) indeed arise from interstellar scintillation. The transverse velocity of the scattering material reveals the presence of plasma with a surprisingly high velocity close to the Solar System.

  7. Mid-Infrared Properties of the Swift Burst Alert Telescope Active Galactic Nuclei Sample of the Local Universe. 1. Emission-Line Diagnostics

    DTIC Science & Technology

    2010-06-20

    reserved. Printed in the U.S.A. MID-INFRARED PROPERTIES OF THE SWIFT BURST ALERT TELESCOPE ACTIVE GALACTIC NUCLEI SAMPLE OF THE LOCAL UNIVERSE . I. EMISSION... the AGNs. We also compare the mid-infrared emission lines in the BAT AGNs with those from published studies of ULIRGs, Palomar- Green quasars, star...supermassive black holes (e.g., Rees 1984; Peterson et al. 2004). One way to approach the study of AGNs is to concentrate on those in the local universe

  8. Star Formation at the Galactic Center

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2015-08-01

    Could stars be forming in the inhospitable environment near Sagittarius A* in the heart of the Milky Way? A possible signature of low-mass star formation has recently been found just two light-years from the black hole at the center of our galaxy — a region that was previously thought to be too hostile for such activity. Searching for Signatures: Previous observations of the central few light-years of the Milky Way had focused on a population of about 200 massive, young and very bright stars in tight orbits around Sgr A*. These stars are only a few million years old and prompted scientists to wonder: have they somehow managed to form in situ, in spite of their close proximity to the black hole, or did they form further out and then migrate in? Motivated by this mystery, Farhad Yusef-Zadeh of Northwestern University and collaborators looked for evidence of even younger stars close to Sagittarius A*, which would demonstrate that star formation in the area is an ongoing process. Using the Very Large Array (VLA), the collaboration discovered several small sources in one arm of activity near Sgr A*. This 34-GHz image provides a close-up view of two protoplanetary disk candidates (labeled P26 and P8) located near Sgr A*. These objects are outlined on the right side by a bow shock caused by impacting stellar wind that streams from the young, hot stars closer to the Galactic center. The disks are thought to contain recently-formed, low-mass stars. (Credit: Yusef-Zadeh et al., 2015) Heated Disks: The team identified these sources as candidate photoevaporative protoplanetary disks, or “proplyds” — areas of dense, ionized gas and dust surrounding young, newly formed stars. The proplyd candidates are between 10,000 and 100,000 years old, and they lie along the edge of a large molecular cloud. It is likely that this cloud produced the disks by providing a reservoir of gas to feed the star-formation activity. The region surrounding these proplyds is blasted with harsh

  9. A Disturbed Galactic Duo

    NASA Astrophysics Data System (ADS)

    2011-04-01

    The galaxies in this cosmic pairing, captured by the Wide Field Imager on the MPG/ESO 2.2-metre telescope at the La Silla Observatory in Chile, display some curious features, demonstrating that each member of the duo is close enough to feel the distorting gravitational influence of the other. The gravitational tug of war has warped the spiral shape of one galaxy, NGC 3169, and fragmented the dust lanes in its companion NGC 3166. Meanwhile, a third, smaller galaxy to the lower right, NGC 3165, has a front-row seat to the gravitational twisting and pulling of its bigger neighbours. This galactic grouping, found about 70 million light-years away in the constellation Sextans (The Sextant), was discovered by the English astronomer William Herschel in 1783. Modern astronomers have gauged the distance between NGC 3169 (left) and NGC 3166 (right) as a mere 50 000 light-years, a separation that is only about half the diameter of the Milky Way galaxy. In such tight quarters, gravity can start to play havoc with galactic structure. Spiral galaxies like NGC 3169 and NGC 3166 tend to have orderly swirls of stars and dust pinwheeling about their glowing centres. Close encounters with other massive objects can jumble this classic configuration, often serving as a disfiguring prelude to the merging of galaxies into one larger galaxy. So far, the interactions of NGC 3169 and NGC 3166 have just lent a bit of character. NGC 3169's arms, shining bright with big, young, blue stars, have been teased apart, and lots of luminous gas has been drawn out from its disc. In NGC 3166's case, the dust lanes that also usually outline spiral arms are in disarray. Unlike its bluer counterpart, NGC 3166 is not forming many new stars. NGC 3169 has another distinction: the faint yellow dot beaming through a veil of dark dust just to the left of and close to the galaxy's centre [1]. This flash is the leftover of a supernova detected in 2003 and known accordingly as SN 2003cg. A supernova of this

  10. The Galactic Club or Galactic Cliques? Exploring the limits of interstellar hegemony and the Zoo Hypothesis

    NASA Astrophysics Data System (ADS)

    Forgan, Duncan H.

    2017-10-01

    The Zoo solution to Fermi's Paradox proposes that extraterrestrial intelligences (ETIs) have agreed to not contact the Earth. The strength of this solution depends on the ability for ETIs to come to agreement, and establish/police treaties as part of a so-called `Galactic Club'. These activities are principally limited by the causal connectivity of a civilization to its neighbours at its inception, i.e. whether it comes to prominence being aware of other ETIs and any treaties or agreements in place. If even one civilization is not causally connected to the other members of a treaty, then they are free to operate beyond it and contact the Earth if wished, which makes the Zoo solution `soft'. We should therefore consider how likely this scenario is, as this will give us a sense of the Zoo solution's softness, or general validity. We implement a simple toy model of ETIs arising in a Galactic Habitable Zone, and calculate the properties of the groups of culturally connected civilizations established therein. We show that for most choices of civilization parameters, the number of culturally connected groups is >1, meaning that the Galaxy is composed of multiple Galactic Cliques rather than a single Galactic Club. We find in our models for a single Galactic Club to establish interstellar hegemony, the number of civilizations must be relatively large, the mean civilization lifetime must be several millions of years, and the inter-arrival time between civilizations must be a few million years or less.

  11. Black Hole Event Horizons and Advection-Dominated Accretion

    NASA Technical Reports Server (NTRS)

    McClintock, Jeffrey; Mushotzky, Richard F. (Technical Monitor)

    2002-01-01

    The work supported in part by this grant is part of a larger program on the detection of black hole event horizons, which is also partially supported by NASA grant GO0-1105A. This work has been carried out primarily in collaboration with Dr. M. Garcia and Prof. R. Narayan at the Harvard-Smithsonian Center for Astrophysics and with D. Barret and J. Hameury at Centre d'Etude Spoliate des Rayonnements, France. Our purpose is to confirm the existence of black-hole event horizons by comparing accreting black holes to secreting neutron stars in quiescent X-ray novae. Such a comparison is feasible because black holes and neutron stars are both present in similar environments in X-ray novae. Our second purpose is to assess the nature of accretion flows onto black holes at very low mass transfer rates. Observations of some XMM targets are still pending, whereas most of the Chandra observations have been completed. We anticipate further publications on this work in the future.

  12. The Formation of Galactic Bulges

    NASA Astrophysics Data System (ADS)

    Carollo, C. Marcella; Ferguson, Henry C.; Wyse, Rosemary F. G.

    2000-03-01

    Part I. Introduction: What are galactic bulges?; Part II. The Epoch of Bulge Formation: Origin of bulges; Deep sub-mm surveys: High-z ULIRGs and the formation of spheroids; Ages and metallicities for stars in the galactic bulge; Integrated stellar populations of bulges: First results; HST-NICMOS observations of galactic bulges: Ages and dust; Inside-out bulge formation and the origin of the Hubble sequence; Part III. The Timescales of Bulge Formation: Constraints on the bulge formation timescale from stellar populations; Bulge building with mergers and winds; Role of winds, starbursts, and activity in bulge formation; Dynamical timescales of bulge formation; Part IV. Physical Processes in Bulge Formation: the role of bars for secular bulge formation; Bars and boxy/peanut-shaped bulges: an observational point of view; Boxy- and peanut-shaped bulges; A new class of bulges; The role of secondary bars in bulge formation; Radial transport of molecular gas to the nuclei of spiral galaxies; Dynamical evolution of bulge shapes; Two-component stellar systems: Phase-space constraints; Central NGC 2146 - a firehose-type bending instability?; Bulge formation: the role of the multi-phase ISM; Global evolution of a self-gravitating multi-phase ISM in the central kpc region of galaxies; Part V. Bulge Phenomenology: Bulge-disk decomposition of spiral galaxies in the near-infrared; The triaxial bulge of NGC 1371; The bulge-disk orthogonal decoupling in galaxies: NGC 4698 and NGC 4672; The kinematics and the origin of the ionized gas in NGC 4036; Optically thin thermal plasma in the galactic bulge; X-ray properties of bulges; The host galaxies of radio-loud AGN; The centers of radio-loud early-type galaxies with HST; Central UV spikes in two galactic spheroids; Conference summary: where do we stand?

  13. Hidden Pair of Supermassive Black Holes

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2015-08-01

    Could a pair of supermassive black holes (SMBHs) be lurking at the center of the galaxy Mrk 231? A recent study finds that this may be the case and the unique spectrum of this galaxy could be the key to discovering more hidden binary SMBH systems.Where Are the Binary Supermassive Black Holes?Its believed that most, if not all, galaxies have an SMBH at their centers. As two galaxies merge, the two SMBHs should evolve into a closely-bound binary system before they eventually merge. Given the abundance of galaxy mergers, we would expect to see the kinematic and visual signatures of these binary SMBHs among observed active galactic nuclei yet such evidence for sub-parsec binary SMBH systems remains scarce and ambiguous. This has led researchers to wonder: is there another way that we might detect these elusive systems?A collaboration led by Chang-Shuo Yan (National Astronomical Observatories, Chinese Academy of Sciences) thinks that there is. The group suggests that these systems might have distinct signatures in their optical-to-UV spectra, and they identify a system that might be just such a candidate: Mrk 231.A Binary CandidateProposed model of Mrk 231. Two supermassive black holes, each with their own mini-disk, orbit each other in the center of a circumbinary disk. The secondary black hole has cleared gap in the circumbinary disk as a result of its orbit around the primary black hole. [Yan et al. 2015]Mrk 231 is a galaxy with a disturbed morphology and tidal tails strong clues that it might be in the final stages of a galactic merger. In addition to these signs, Mrk 231 also has an unusual spectrum for a quasar: its continuum emission displays an unexpected drop in the near-UV band.Yan and her collaborators propose that the odd behavior of Mrk 231s spectrum can be explained if the center of the galaxy houses a pair of SMBHs each with its own mini accretion disk surrounded by a circumbinary accretion disk. As the secondary SMBH orbits the primary SMBH (with a

  14. Active galactic nuclei and galaxy interactions

    NASA Astrophysics Data System (ADS)

    Alonso, M. Sol; Lambas, Diego G.; Tissera, Patricia; Coldwell, Georgina

    2007-03-01

    We perform a statistical analysis of active galactic nucleus (AGN) host characteristics and nuclear activity for AGNs in pairs and without companions. Our study concerns a sample of AGNs derived from the Sloan Digital Sky Survey Data Release 4 data by Kauffmann et al. and pair galaxies obtained from the same data set by Alonso et al. An eye-ball classification of images of 1607 close pairs (rp < 25 kpc h-1,ΔV < 350 km s-1) according to the evidence of interaction through distorted morphologies and tidal features provides us with a more confident assessment of galaxy interactions from this sample. We notice that, at a given luminosity or stellar mass content, the fraction of AGNs is larger for pair galaxies exhibiting evidence for strong interaction and tidal features which also show signs of strong star formation activity. Nevertheless, this process accounts only for a ~10per cent increase of the fraction of AGNs. As in previous works, we find AGN hosts to be redder and with a larger concentration morphological index than non-AGN galaxies. This effect does not depend on whether AGN hosts are in pairs or in isolation. The OIII luminosity of AGNs with strong interaction features is found to be significantly larger than that of other AGNs, either in pairs or in isolation. Estimations of the accretion rate, L[OIII]/MBH, show that AGNs in merging pairs are actively feeding their black holes, regardless of their stellar masses. We also find that the luminosity of the companion galaxy seems to be a key parameter in the determination of the black hole activity. At a given host luminosity, both the OIII luminosity and the L[ OIII]/MBH are significantly larger in AGNs with a bright companion (Mr < -20) than otherwise.

  15. Post-Newtonian evolution of massive black hole triplets in galactic nuclei - II. Survey of the parameter space

    NASA Astrophysics Data System (ADS)

    Bonetti, Matteo; Haardt, Francesco; Sesana, Alberto; Barausse, Enrico

    2018-07-01

    Massive black hole binaries (MBHBs) are expected to form at the centre of merging galaxies during the hierarchical assembly of the cosmic structure, and are expected to be the loudest sources of gravitational waves (GWs) in the low-frequency domain. However, because of the dearth of energy exchanges with background stars and gas, many of these MBHBs may stall at separations that are too large for GW emission to drive them to coalescence in less than a Hubble time. Triple MBH systems are then bound to form after a further galaxy merger, triggering a complex and rich dynamics that can eventually lead to MBH coalescence. Here, we report on the results of a large set of numerical simulations, where MBH triplets are set in spherical stellar potentials and MBH dynamics is followed through 2.5 post-Newtonian orders in the equations of motion. From our full suite of simulated systems, we find that a fraction ( ≃ 20-30 per cent) of the MBH binaries that would otherwise stall is led to coalesce within a Hubble time. The corresponding coalescence time-scale peaks around 300 Myr, while the eccentricity close to the plunge, albeit small, is non-negligible (≲0.1). We construct and discuss marginalized probability distributions of the main parameters involved and, in a companion paper of the series, we will use the results presented here to forecast the contribution of MBH triplets to the GW signal in the nHz regime probed by Pulsar Timing Array experiments.

  16. Black hole candidates are not black holes, but engines for transforming old star matter to primordial matter

    NASA Astrophysics Data System (ADS)

    Brynjolfsson, Ari

    2009-10-01

    Plasma redshift is derived theoretically from conventional axioms of physics by using more accurate methods than those conventionally used; see: arXiv:astro-ph/0401420. It explains the solar redshifts, the intrinsic redshifts of stars, galaxies, and quasars. It explains the cosmological redshift, the cosmic microwave background, the X-ray back ground. It explains the magnitude-redshift relation for SNe Ia, and the surface brightness-redshift relation for galaxies as measured by Sandage and Lubin. The Universe is quasi-static, and can renew itself forever. There is no need for Big Bang, Inflation, Cosmic Time Dilation, Dark Energy, Dark Matter, and Black Holes. Redshifts of solar Fraunhofer lines (when evaluated in light of plasma redshift) show clearly that photons are weightless. thus contradicting the general believe that photons have weight; see: arXiv:astro-ph/0408312. This presentation helps explain why the super-massive black hole candidate (SMBHC) at the Galactic center is an engine for converting old star matter to primordial matter, and why we have star forming region around the SMBHCs.

  17. The Hubble Space Telescope UV Legacy Survey of Galactic globular clusters - XIII. ACS/WFC parallel-field catalogues

    NASA Astrophysics Data System (ADS)

    Simioni, M.; Bedin, L. R.; Aparicio, A.; Piotto, G.; Milone, A. P.; Nardiello, D.; Anderson, J.; Bellini, A.; Brown, T. M.; Cassisi, S.; Cunial, A.; Granata, V.; Ortolani, S.; van der Marel, R. P.; Vesperini, E.

    2018-05-01

    As part of the Hubble Space Telescope UV Legacy Survey of Galactic globular clusters, 110 parallel fields were observed with the Wide Field Channel of the Advanced Camera for Surveys, in the outskirts of 48 globular clusters, plus the open cluster NGC 6791. Totalling about 0.3 deg2 of observed sky, this is the largest homogeneous Hubble Space Telescope photometric survey of Galalctic globular clusters outskirts to date. In particular, two distinct pointings have been obtained for each target on average, all centred at about 6.5 arcmin from the cluster centre, thus covering a mean area of about 23 arcmin2 for each globular cluster. For each field, at least one exposure in both F475W and F814W filters was collected. In this work, we publicly release the astrometric and photometric catalogues and the astrometrized atlases for each of these fields.

  18. Wind from the black-hole accretion disk driving a molecular outflow in an active galaxy.

    PubMed

    Tombesi, F; Meléndez, M; Veilleux, S; Reeves, J N; González-Alfonso, E; Reynolds, C S

    2015-03-26

    Powerful winds driven by active galactic nuclei are often thought to affect the evolution of both supermassive black holes and their host galaxies, quenching star formation and explaining the close relationship between black holes and galaxies. Recent observations of large-scale molecular outflows in ultraluminous infrared galaxies support this quasar-feedback idea, because they directly trace the gas from which stars form. Theoretical models suggest that these outflows originate as energy-conserving flows driven by fast accretion-disk winds. Proposed connections between large-scale molecular outflows and accretion-disk activity in ultraluminous galaxies were incomplete because no accretion-disk wind had been detected. Conversely, studies of powerful accretion-disk winds have until now focused only on X-ray observations of local Seyfert galaxies and a few higher-redshift quasars. Here we report observations of a powerful accretion-disk wind with a mildly relativistic velocity (a quarter that of light) in the X-ray spectrum of IRAS F11119+3257, a nearby (redshift 0.189) optically classified type 1 ultraluminous infrared galaxy hosting a powerful molecular outflow. The active galactic nucleus is responsible for about 80 per cent of the emission, with a quasar-like luminosity of 1.5 × 10(46) ergs per second. The energetics of these two types of wide-angle outflows is consistent with the energy-conserving mechanism that is the basis of the quasar feedback in active galactic nuclei that lack powerful radio jets (such jets are an alternative way to drive molecular outflows).

  19. Single-epoch black hole mass estimators for broad-line active galactic nuclei: recalibrating Hβ with a new approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feng, Hua; Li, Hong; Shen, Yue

    2014-10-10

    Based on an updated Hβ reverberation mapping (RM) sample of 44 nearby active galactic nuclei (AGNs), we propose a novel approach for black hole (BH) mass estimation using two filtered luminosities computed from single-epoch (SE) AGN spectra around the Hβ region. We found that the two optimal-filter luminosities extract virial information (size and virial velocity of the broad-line region, BLR) from the spectra, justifying their usage in this empirical BH mass estimator. The major advantages of this new recipe over traditional SE BH mass estimators utilizing continuum luminosity and broad-line width are (1) it has a smaller intrinsic scatter ofmore » 0.28 dex calibrated against RM masses, (2) it is extremely simple to use in practice, without any need to decompose the spectrum, and (3) it produces unambiguous and highly repeatable results even with low signal-to-noise spectra. The combination of the two luminosities can also cancel out, to some extent, systematic luminosity errors potentially introduced by uncertainties in distance or flux calibration. In addition, we recalibrated the traditional SE mass estimators using broad Hβ FWHM and monochromatic continuum luminosity at 5100 Å (L {sub 5100}). We found that using the best-fit slopes on FWHM and L {sub 5100} (derived from fitting the BLR radius-luminosity relation and the correlation between rms line dispersion and SE FWHM, respectively) rather than simple assumptions (e.g., 0.5 for L {sub 5100} and 2 for FWHM) leads to more precise SE mass estimates, improving the intrinsic scatter from 0.41 dex to 0.36 dex with respect to the RM masses. We compared different estimators and discussed their applications to the Sloan Digital Sky Survey quasar sample. Due to the limitations of the current RM sample, application of any SE recipe calibrated against RM masses to distant quasars should be treated with caution.« less

  20. Galactic Haze seen by Planck and Galactic Bubbles seen by Fermi

    NASA Image and Video Library

    2012-02-13

    This all-sky image shows the distribution of the galactic haze seen by ESA Planck mission at microwave frequencies superimposed over the high-energy sky, as seen by NASA Fermi Gamma-ray Space Telescope.

  1. Black Hole Boldly Goes Where No Black Hole Has Gone Before

    NASA Astrophysics Data System (ADS)

    2007-01-01

    Astronomers have found a black hole where few thought they could ever exist, inside a globular star cluster. The finding has broad implications for the dynamics of stars clusters and also for the existence of a still-speculative new class of black holes called 'intermediate-mass' black holes. The discovery is reported in the current issue of Nature. Tom Maccarone of the University of Southampton in England leads an international team on the finding, made primarily with the European Space Agency's XMM-Newton satellite. Globular clusters are dense bundles of thousands to millions of old stars, and many scientists have doubted that black holes could survive in such an exclusive environment. Computer simulations show that a newly formed black hole would first sink towards the centre of the cluster but quickly get gravitationally slingshot out entirely when interacting with the cluster's myriad stars. Credit: ESA/Hubble Artist's impression of globular star cluster The new finding provides the first convincing evidence that some black hole might not only survive but grow and flourish in globular clusters. What has astonished astronomers is how quickly the black hole was found. "We were preparing for a long, systematic search of thousands of globular clusters with the hope of finding just one black hole," said Maccarone. "But bingo, we found one as soon as we started the search. It was only the second globular cluster we looked at." The search continues to find more, Maccarone said, yet only one black hole was needed to resolve the decades-old discussion about black holes and globular clusters. Scientists say there are two main classes of black holes. Supermassive black holes containing the mass of millions to billions of suns are found in the core of most galaxies, including our own. A quasar is one kind of supermassive black hole. Stellar-size black holes contain the mass of about ten suns. These are created from the collapsed core of massive stars. Our galaxy likely

  2. GALACTIC ANGULAR MOMENTUM IN THE ILLUSTRIS SIMULATION: FEEDBACK AND THE HUBBLE SEQUENCE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Genel, Shy; Fall, S. Michael; Snyder, Gregory F.

    We study the stellar angular momentum of thousands of galaxies in the Illustris cosmological simulation, which captures gravitational and gas dynamics within galaxies, as well as feedback from stars and black holes. We find that the angular momentum of the simulated galaxies matches observations well, and in particular two distinct relations are found for late-type versus early-type galaxies. The relation for late-type galaxies corresponds to the value expected from full conservation of the specific angular momentum generated by cosmological tidal torques. The relation for early-type galaxies corresponds to retention of only ∼30% of that, but we find that those early-typemore » galaxies with low angular momentum at z = 0 nevertheless reside at high redshift on the late-type relation. Some of them abruptly lose angular momentum during major mergers. To gain further insight, we explore the scaling relations in simulations where the galaxy formation physics is modified with respect to the fiducial model. We find that galactic winds with high mass-loading factors are essential for obtaining the high angular momentum relation typical for late-type galaxies, while active galactic nucleus feedback largely operates in the opposite direction. Hence, feedback controls the stellar angular momentum of galaxies, and appears to be instrumental for establishing the Hubble sequence.« less

  3. Giant black hole rips star apart

    NASA Astrophysics Data System (ADS)

    2004-02-01

    Astronomers believe that a doomed star came too close to a giant black hole after a close encounter with another star threw it off course. As it neared the enormous gravity of the black hole, the star was stretched by tidal forces until it was torn apart. This discovery provides crucial information on how these black holes grow and affect the surrounding stars and gas. "Stars can survive being stretched a small amount, as they are in binary star systems, but this star was stretched beyond its breaking point," said Dr Stefanie Komossa of the Max Planck Institute for Extraterrestrial Physics (MPE) in Germany, who led the international team of researchers. "This unlucky star just wandered into the wrong neighbourhood." While other observations have hinted that stars are destroyed by black holes (events known as ‘stellar tidal disruptions’), these new results are the first strong evidence. Observations with XMM-Newton and Chandra, combined with earlier images from the German Roentgensatellite (ROSAT), detected a powerful X-ray outburst from the centre of the galaxy RXJ1242-11. This outburst, one of the most extreme ever detected in a galaxy, was caused by gas from the destroyed star that was heated to millions of degrees before being swallowed by the black hole. The energy liberated in this process is equivalent to that of a supernova. "Now, with all of the data in hand, we have the smoking gun proof that this spectacular event has occurred," said co-author Prof. Guenther Hasinger, also of MPE. The black hole in the centre of RX J1242-11 is estimated to have a mass about 100 million times that of the Sun. By contrast, the destroyed star probably had a mass about equal to that of the Sun, making it a lopsided battle of gravity. "This is the ultimate ‘David versus Goliath’ battle, but here David loses," said Hasinger. The astronomers estimated that about one hundredth of the mass of the star was ultimately consumed, or accreted, by the black hole. This small

  4. Spectral and Timing States in Black Hole Binaries

    NASA Astrophysics Data System (ADS)

    Wilms, J.

    Results on the long term variability of galactic black hole candidates are reviewed. I mainly present the results of a > 2 year long campaign with RXTE to monitor the canonical soft state black hole candidates LMC X-1 and LMC X-3 using monthly observations. These observations are presented within the context of the RXTE-ASM long term quasi-periodic variability on timescales of about 150d. For LMC X-3, times of low ASM count rate are correlated with a significant hardening of the X-ray spectrum. The observation with the lowest flux during the whole monitoring campaign can be modeled with a simple γ=1.7 power law -- a hard state spectrum. Since these spectral hardenings occur on the 150 d timescale it is probable that they are associated with periodic changes in the accretion rate. Possible causes for this behavior are discussed, e.g. a wind driven limit-cycle or long-term variability of the donor star.

  5. An Accretion Model for the Growth of Black Hole in Quasars

    NASA Technical Reports Server (NTRS)

    Lu, Ye; Cheng, K. S.; Zhang, S. N.

    2003-01-01

    A possible accretion model associated with the ionization instability of quasar disks is proposed to address the growth of the central black hole harbored in the host galaxy. The evolution of quasars in cosmic time is assumed to change from a highly active state to a quiescent state triggered by the S-shaped ionization instability of the quasar accretion disk. For a given external mass transfer rate ionization instability can modify accretion rate in the disk and separates the accretion flows of the disk into three different phases like a S-shape. We suggest that the bright quasars observed today are those quasars with disks in the upper branch of S-shaped instability and the dormant quasars are the system in the lower branch. The disk is assumed to evolve as ADIOS configuration in the lower branch. The mass ratio between black hole and its host galactic bulge is a nature consequence of ADIOS. Our model also demonstrates that a seed black hole 2 x 10(exp 6) solar masses similar to those found in spiral galaxies today is needed to produce a black hole with a final mass 2 x 10(exp 8) solar masses.

  6. Gravitational waves from primordial black holes and new weak scale phenomena

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davoudiasl, Hooman; Giardino, Pier Paolo

    Here, we entertain the possibility that primordial black holes of mass ~ (10 26–10 29)g, with Schwarzschild radii of O(cm), constitute ~ 10% or more of cosmic dark matter, as allowed by various constraints. These black holes would typically originate from cosmological eras corresponding to temperatures O(10-100)GeV, and may be associated with first order phase transitions in the visible or hidden sectors. In case these small primordial black holes get captured in orbits around neutron stars or astrophysical black holes in our galactic neighborhood, gravitational waves from the resulting “David and Goliath (D&G)” binaries could be detectable at Advanced LIGOmore » or Advanced Virgo for hours or more, possibly over distances of O(10)Mpc encompassing the Local Supercluster of galaxies. The proposed Einstein Telescope would further expand the reach for these signals. A positive signal could be further corroborated by the discovery of new particles in the O(10-100)GeV mass range, and potentially also the detection of long wavelength gravitational waves originating from the first order phase transition era.« less

  7. Gravitational waves from primordial black holes and new weak scale phenomena

    DOE PAGES

    Davoudiasl, Hooman; Giardino, Pier Paolo

    2017-02-24

    Here, we entertain the possibility that primordial black holes of mass ~ (10 26–10 29)g, with Schwarzschild radii of O(cm), constitute ~ 10% or more of cosmic dark matter, as allowed by various constraints. These black holes would typically originate from cosmological eras corresponding to temperatures O(10-100)GeV, and may be associated with first order phase transitions in the visible or hidden sectors. In case these small primordial black holes get captured in orbits around neutron stars or astrophysical black holes in our galactic neighborhood, gravitational waves from the resulting “David and Goliath (D&G)” binaries could be detectable at Advanced LIGOmore » or Advanced Virgo for hours or more, possibly over distances of O(10)Mpc encompassing the Local Supercluster of galaxies. The proposed Einstein Telescope would further expand the reach for these signals. A positive signal could be further corroborated by the discovery of new particles in the O(10-100)GeV mass range, and potentially also the detection of long wavelength gravitational waves originating from the first order phase transition era.« less

  8. QUIESCENCE CORRELATES STRONGLY WITH DIRECTLY MEASURED BLACK HOLE MASS IN CENTRAL GALAXIES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Terrazas, Bryan A.; Bell, Eric F.; Henriques, Bruno M. B.

    Roughly half of all stars reside in galaxies without significant ongoing star formation. However, galaxy formation models indicate that it is energetically challenging to suppress the cooling of gas and the formation of stars in galaxies that lie at the centers of their dark matter halos. In this Letter, we show that the dependence of quiescence on black hole and stellar mass is a powerful discriminant between differing models for the mechanisms that suppress star formation. Using observations of 91 star-forming and quiescent central galaxies with directly measured black hole masses, we find that quiescent galaxies host more massive blackmore » holes than star-forming galaxies with similar stellar masses. This observational result is in qualitative agreement with models that assume that effective, more-or-less continuous active galactic nucleus feedback suppresses star formation, strongly suggesting the importance of the black hole in producing quiescence in central galaxies.« less

  9. Star formation around active galactic nuclei

    NASA Technical Reports Server (NTRS)

    Keel, William C.

    1987-01-01

    Active galactic nuclei (Seyfert nuclei and their relatives) and intense star formation can both deliver substantial amounts of energy to the vicinity of a galactic nucleus. Many luminous nuclei have energetics dominated by one of these mechanisms, but detailed observations show that some have a mixture. Seeing both phenomena at once raises several interesting questions: (1) Is this a general property of some kinds of nuclei? How many AGNs have surround starbursts, and vice versa? (2) As in 1, how many undiscovered AGNs or starbursts are hidden by a more luminous instance of the other? (3) Does one cause the other, and by what means, or do both reflect common influences such as potential well shape or level of gas flow? (4) Can surrounding star formation tell us anything about the central active nuclei, such as lifetimes, kinetic energy output, or mechanical disturbance of the ISM? These are important points in the understanding of activity and star formation in galactic nuclei. Unfortunately, the observational ways of addressing them are as yet not well formulated. Some preliminary studies are reported, aimed at clarifying the issues involved in study of the relationships between stellar and nonstellar excitement in galactic nuclei.

  10. The spectra of ten galactic X-ray sources in the southern sky

    NASA Technical Reports Server (NTRS)

    Cruddace, R.; Bowyer, S.; Lampton, M.; Mack, J. E., Jr.; Margon, B.

    1971-01-01

    Data on ten galactic X-ray sources were obtained during a rocket flight from Brazil in June 1969. Detailed spectra of these sources have been compared with bremsstrahlung, black body, and power law models, each including interstellar absorption. Six of the sources were fitted well by one or more of these models. In only one case were the data sufficient to distinguish the best model. Three of the sources were not fitted by any of the models, which suggests that more complex emission mechanisms are applicable. A comparison of our results with those of previous investigations provides evidence that five of the sources vary in intensity by a factor of 2 or more, and that three have variable spectra. New or substantially improved positions have been derived for four of the sources observed.

  11. Prospects for detection of intermediate-mass black holes in globular clusters using integrated-light spectroscopy

    NASA Astrophysics Data System (ADS)

    de Vita, R.; Trenti, M.; Bianchini, P.; Askar, A.; Giersz, M.; van de Ven, G.

    2017-06-01

    The detection of intermediate-mass black holes (IMBHs) in Galactic globular clusters (GCs) has so far been controversial. In order to characterize the effectiveness of integrated-light spectroscopy through integral field units, we analyse realistic mock data generated from state-of-the-art Monte Carlo simulations of GCs with a central IMBH, considering different setups and conditions varying IMBH mass, cluster distance and accuracy in determination of the centre. The mock observations are modelled with isotropic Jeans models to assess the success rate in identifying the IMBH presence, which we find to be primarily dependent on IMBH mass. However, even for an IMBH of considerable mass (3 per cent of the total GC mass), the analysis does not yield conclusive results in one out of five cases, because of shot noise due to bright stars close to the IMBH line of sight. This stochastic variability in the modelling outcome grows with decreasing BH mass, with approximately three failures out of four for IMBHs with 0.1 per cent of total GC mass. Finally, we find that our analysis is generally unable to exclude at 68 per cent confidence an IMBH with mass of 103 M⊙ in snapshots without a central BH. Interestingly, our results are not sensitive to GC distance within 5-20 kpc, nor to misidentification of the GC centre by less than 2 arcsec (<20 per cent of the core radius). These findings highlight the value of ground-based integral field spectroscopy for large GC surveys, where systematic failures can be accounted for, but stress the importance of discrete kinematic measurements that are less affected by stochasticity induced by bright stars.

  12. Magnetospheric Gamma-Ray Emission in Active Galactic Nuclei

    NASA Astrophysics Data System (ADS)

    Katsoulakos, Grigorios; Rieger, Frank M.

    2018-01-01

    The rapidly variable, very high-energy (VHE) gamma-ray emission from active galactic nuclei (AGNs) has been frequently associated with non-thermal processes occurring in the magnetospheres of their supermassive black holes. The present work aims to explore the adequacy of different gap-type (unscreened electric field) models to account for the observed characteristics. Based on a phenomenological description of the gap potential, we estimate the maximum extractable gap power L gap for different magnetospheric setups, and study its dependence on the accretion state of the source. L gap is found in general to be proportional to the Blandford–Znajek jet power L BZ and a sensitive function of gap size h, i.e., {L}{gap}∼ {L}{BZ}{(h/{r}g)}β , where the power index β ≥slant 1 is dependent on the respective gap setup. The transparency of the vicinity of the black hole to VHE photons generally requires a radiatively inefficient accretion environment and thereby imposes constraints on possible accretion rates, and correspondingly on L BZ. Similarly, rapid variability, if observed, may allow one to constrain the gap size h∼ c{{Δ }}t. Combining these constraints, we provide a general classification to assess the likelihood that the VHE gamma-ray emission observed from an AGN can be attributed to a magnetospheric origin. When applied to prominent candidate sources these considerations suggest that the variable (day-scale) VHE activity seen in the radio galaxy M87 could be compatible with a magnetospheric origin, while such an origin appears less likely for the (minute-scale) VHE activity in IC 310.

  13. Molecular diagnostics of Galactic star-formation regions

    NASA Astrophysics Data System (ADS)

    Loenen, Edo; Baan, Willem; Spaans, Marco

    2007-10-01

    We propose a sensitive spectral survey of Galactic star-formation regions. Using the broadband correlator at two different frequencies, we expect to detect the (1-0) transition of CO, CN, HNC, HCN, HCO+, and HCO and various of their isotopes lines, as well as the (12-11) and (10-9) transitions of HC3N. The purpose of these observations is to create a consistent (public) database of molecular emission from galactic star-formation regions. The data will be interpreted using extensive physical and chemical modeling of the whole ensemble of lines, in order to get an accurate description of the molecular environment of these regions. In particular, this diagnostic approach will describe the optical depths, the densities, and the radiation fields in the medium and will allow the establishment of dominant temperature gradients. These observations are part of a program to study molecular emission on all scales, going from individual Galactic star-formation regions, through resolved nearby galaxies, to unresolved extra-galactic emission.

  14. Parameters of Six Selected Galactic Potential Models

    NASA Astrophysics Data System (ADS)

    Bajkova, Anisa; Bobylev, Vadim

    2017-11-01

    This paper is devoted to the refinement of the parameters of the six three-component (bulge, disk, halo) axisymmetric Galactic gravitational potential models on the basis of modern data on circular velocities of Galactic objects located at distances up to 200 kpc from the Galactic center. In all models the bulge and disk are described by the Miyamoto-Nagai expressions. To describe the halo, the models of Allen-Santillán (I), Wilkinson-Evans (II), Navarro- Frenk-White (III), Binney (IV), Plummer (V), and Hernquist (VI) are used. The sought-for parameters of potential models are determined by fitting the model rotation curves to the measured velocities, taking into account restrictions on the local dynamical matter density p⊙ - 0.1M⊙ pc-3 and the vertical force |Kz=1.1|/2πG = 77M⊙ pc-2. A comparative analysis of the refined potential models is made and for each of the models the estimates of a number of the Galactic characteristics are presented.

  15. Integrated spectral properties of 22 small angular diameter galactic open clusters

    NASA Astrophysics Data System (ADS)

    Ahumada, A. V.; Clariá, J. J.; Bica, E.

    2007-10-01

    Aims:Flux-calibrated integrated spectra of a sample of 22 Galactic open clusters of small angular diameter are presented. With one exception (ESO 429-SC2), all objects have Galactic longitudes in the range 208° < l < 33°. The spectra cover the range ≈3600-6800 Å, with a resolution of ≈14 Å. The properties of the present cluster sample are compared with those of well-studied clusters located in two 90° sectors, centred at l = 257° and l = 347°. The dissolution rate of Galactic open clusters in these two sectors is examined. Methods: Using the equivalent widths of the Balmer lines and comparing line intensities and continuum distribution of the cluster spectra with those of template cluster spectra with known properties, we derive both foreground reddening values and ages. Thus, we provide information independent of that determined through colour-magnitude diagrams. Results: The derived E(B-V) values for the whole sample vary from 0.0 in ESO 445-SC74 to 1.90 in Pismis 24, while the ages range from ~3 Myr (NGC 6604 and BH 151) to ~3.5 Gyr (Ruprecht 2). For six clusters (Dolidze 34, ESO 429-SC2, ESO 445-SC74, Ruprecht 2, BH 151 and Hogg 9) the foreground E(B-V) colour excesses and ages are determined for the first time. The results obtained for the remaining clusters show, in general terms, good agreement with previous photometric results. Conclusions: The age and reddening distributions of the present sample match those of known clusters in the two selected Galactic sectors. The present results would favour a major dissolution rate of star clusters in these two sectors. Two new solar-metallicity templates are defined corresponding to the age groups of (4-5) Myr and 30 Myr among those of Piatti et al. (2002, MNRAS, 335, 233). The Piatti et al. templates of 20 Myr and (3-4) Gyr are here redefined. Based on observations made at Complejo Astronómico El Leoncito, which is operated under agreement between the Consejo Nacional de Investigaciones Científicas y T

  16. ON THE NEWTONIAN AND SPIN-INDUCED PERTURBATIONS FELT BY THE STARS ORBITING AROUND THE MASSIVE BLACK HOLE IN THE GALACTIC CENTER

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Fupeng; Iorio, Lorenzo, E-mail: zhangfp7@mail.sysu.edu.cn, E-mail: lorenzo.iorio@libero.it

    2017-01-10

    The S-stars discovered in the Galactic center are expected to provide unique dynamical tests of the Kerr metric of the massive black hole (MBH) that they orbit. In order to obtain unbiased measurements of its spin and the related relativistic effects, a comprehensive understanding of the gravitational perturbations of the stars and stellar remnants around the MBH is quite essential. Here, we study the perturbations on the observables of a typical target star, i.e., the apparent orbital motion and the redshift, due to both the spin-induced relativistic effects and the Newtonian attractions of a single object or a cluster ofmore » disturbing objects. We find that, in most cases, the Newtonian perturbations on the observables are mainly attributed to the perturbed orbital period of the target star rather than the Newtonian orbital precessions. Looking at the currently detected star S2/S0-2, we find that its spin-induced effects are very likely obscured by the gravitational perturbations from the star S0-102 alone. We also investigate and discuss the Newtonian perturbations on a hypothetical S-star located inside the orbits of those currently detected. By considering a number of possible stellar distributions near the central MBH, we find that the spin-induced effects on the apparent position and redshift dominate over the stellar perturbations for target stars with orbital semimajor axis smaller than 100–400 au if the MBH is maximally spinning. Our results suggest that, in principle, the stellar perturbations can be removed because they have morphologies distinct from those of the relativistic Kerr-type signatures.« less

  17. Molecular Abundances in the Disk of AN Active Galactic Nucleus

    NASA Astrophysics Data System (ADS)

    Harada, N.; Thompson, T. A.; Herbst, E.

    2011-06-01

    There are galactic nuclei that emit high luminosities L˜1044-46 erg S-1 including luminosity produced by X-rays from high mass accretion onto the central black holes. These nuclei are called active galactic nuclei (AGNs), and they are accompanied by molecular disks. Observations show high abundances of CN and HCN in the disks; the molecules are proposed to be probes of X-ray dominated regions (XDRs) created by the X-rays from AGNs. We have constructed a spatially-dependent chemical-abundance model of the molecular disk in NGC 1068, a typical AGN-dominated galaxy. Recently, new observations of CN and HCN have been made at much higher spatial resolution, and there are also detections of polyatomic molecules such as HC3N, c-C3H2, and C2H. We discuss how these observations and our simulations can help us to better understand the physical conditions, the disk structure, and conditions for star formation within molecular disks, which are still uncertain. We also include a comparison with other types of galaxies such as (ultra-) luminous infrared galaxies. Usero et al.Astronomy and Astrophysics. 419 (897), 2004. Initial results were presented at the International Symposium on Molecular Spectroscopy 2010, RF05 Garcia-Burillo et al. Astronomy and Astrophysics. 519 (2), 2010. Garcia-Burillo et al. Journal of Physics Conference Series, 131 (12031), 2008. Costagliola et al. ArXiv e-print arXiv:1101.2122, 2011. Nakajima et al. Astrophysical Journal Letters 728 (L38), 2008.

  18. Hubble Gazes Into a Black Hole of Puzzling Light

    NASA Image and Video Library

    2017-12-08

    The beautiful spiral galaxy visible in the center of the image is known as RX J1140.1+0307, a galaxy in the Virgo constellation imaged by the NASA/ESA Hubble Space Telescope, and it presents an interesting puzzle. At first glance, this galaxy appears to be a normal spiral galaxy, much like the Milky Way, but first appearances can be deceptive! The Milky Way galaxy, like most large galaxies, has a supermassive black hole at its center, but some galaxies are centered on lighter, intermediate-mass black holes. RX J1140.1+0307 is such a galaxy — in fact, it is centered on one of the lowest black hole masses known in any luminous galactic core. What puzzles scientists about this particular galaxy is that the calculations don’t add up. With such a relatively low mass for the central black hole, models for the emission from the object cannot explain the observed spectrum. There must be other mechanisms at play in the interactions between the inner and outer parts of the accretion disk surrounding the black hole. Credit: ESA/Hubble & NASA, Acknowledgement: Judy Schmidt NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  19. THE PROPERTIES OF HYPERVELOCITY STARS AND S-STARS ORIGINATING FROM AN ECCENTRIC DISK AROUND A SUPERMASSIVE BLACK HOLE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Šubr, Ladislav; Haas, Jaroslav, E-mail: subr@sirrah.troja.mff.cuni.cz, E-mail: haas@sirrah.troja.mff.cuni.cz

    2016-09-01

    Hypervelocity stars (HVSs), which are observed in the Galactic halo, are believed to be accelerated to large velocities by a process of tidal disruption of binary stars passing close to the supermassive black hole (SMBH) which resides in the center of the Galaxy. It is, however, still unclear where these relatively young stars were born and what dynamical process pushed them to nearly radial orbits around the SMBH. In this paper we investigate the possibility that the young binaries originated from a thin eccentric disk, similar to the one currently observed in the Galactic center. By means of direct Nmore » -body simulations, we follow the dynamical evolution of an initially thin and eccentric disk of stars with a 100% binary fraction orbiting around the SMBH. Such a configuration leads to Kozai–Lidov oscillations of orbital elements, bringing a considerable number of binaries to the close vicinity of the black hole. Subsequent tidal disruption of these binaries accelerates one of their components to velocities well above the escape velocity from the SMBH, while the second component becomes tightly bound to the SMBH. We describe the main kinematic properties of the escaping and tightly bound stars within our model, and compare them qualitatively to the properties of the observed HVSs and S-stars, respectively. The most prominent feature is strong anisotropy in the directions of the escaping stars, which is observed for Galactic HVSs but has not yet been explained.« less

  20. Intermediate mass black holes in AGN discs - I. Production and growth

    NASA Astrophysics Data System (ADS)

    McKernan, B.; Ford, K. E. S.; Lyra, W.; Perets, H. B.

    2012-09-01

    Here we propose a mechanism for efficiently growing intermediate mass black holes (IMBH) in discs around supermassive black holes. Stellar mass objects can efficiently agglomerate when facilitated by the gas disc. Stars, compact objects and binaries can migrate, accrete and merge within discs around supermassive black holes. While dynamical heating by cusp stars excites the velocity dispersion of nuclear cluster objects (NCOs) in the disc, gas in the disc damps NCO orbits. If gas damping dominates, NCOs remain in the disc with circularized orbits and large collision cross-sections. IMBH seeds can grow extremely rapidly by collisions with disc NCOs at low relative velocities, allowing for super-Eddington growth rates. Once an IMBH seed has cleared out its feeding zone of disc NCOs, growth of IMBH seeds can become dominated by gas accretion from the active galactic nucleus (AGN) disc. However, the IMBH can migrate in the disc and expand its feeding zone, permitting a super-Eddington accretion rate to continue. Growth of IMBH seeds via NCO collisions is enhanced by a pile-up of migrators. We highlight the remarkable parallel between the growth of IMBH in AGN discs with models of giant planet growth in protoplanetary discs. If an IMBH becomes massive enough it can open a gap in the AGN disc. IMBH migration in AGN discs may stall, allowing them to survive the end of the AGN phase and remain in galactic nuclei. Our proposed mechanisms should be more efficient at growing IMBH in AGN discs than the standard model of IMBH growth in stellar clusters. Dynamical heating of disc NCOs by cusp stars is transferred to the gas in an AGN disc helping to maintain the outer disc against gravitational instability. Model predictions, observational constraints and implications are discussed in a companion paper (Paper II).

  1. A New Population of Galactic Bulge Planetary Nebulas

    NASA Astrophysics Data System (ADS)

    Stenborg, T. N.

    A new population of Galactic bulge planetary nebulas is presented. Nebula candidates were discovered by systematically reviewing archival [OIII] on/off band survey imaging of the central -5° ≤ l ≤ 5°, -5° ≤ b ≤ 5° region around the Galactic centre. An image segmentation and interleaving scheme was developed to facilitate this review. The resultant candidates (> 200) were then double checked against complementary archival Hα sky survey data to screen for obvious planetary nebula (PN) mimics or spurious image artefacts. Confirmatory spectroscopy of the PN candidates was pursued with thin slit, fibre multiobject and wide field spectrographs. Custom software was built to streamline interfacing with third-party spectroscopic management tools and a parallel greedy set cover algorithm implemented for efficient field selection in constrained multi-object observations. The combined imaging and spectroscopic evidence yielded true (4), probable (31) and possible (83) PNs toward the bulge. Secondary discoveries such as new PN mimics and late type stars were by-products of the confirmatory spectroscopy. Instances of literature PN duplication encountered during the investigation were noticed and documented. Spectral analysis of new PNs, including those obtained with a new optimised sky subtraction technique devised and demonstrated here, provided diagnostic data allowing radial velocity and Balmer decrement determination. Using a combined diameter and radial velocity criterion, bona fide bulge PNs were distinguished from new foreground PNs. Where Balmer decrements were available for new bulge PNs, differential aperture photometry was used to provide a modest data increment to Galactic bulge planetary nebula luminosity function (PNLF). The PNLF was revised with data from some new bulge PNs, but more significantly, by a series of corrections to the data derived from previously known bulge PNs (~225), such as improved filter transmission effects, statistically

  2. How A Black Hole Lights Up Its Surroundings

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2017-10-01

    How do the supermassive black holes that live at the centers of galaxies influence their environments? New observations of a distant active galaxy offer clues about this interaction.Signs of CoevolutionPlot demonstrating the m-sigma relation, the empirical correlation between the stellar velocity dispersion of a galactic bulge and the mass of the supermassive black hole at its center. [Msigma]We know that the centers of active galaxies host supermassive black holes with masses of millions to billions of suns. One mystery surrounding these beasts is that they are observed to evolve simultaneously with their host galaxies for instance, an empirical relationship is seen between the growth of a black hole and the growth of its host galaxys bulge. This suggests that there must be a feedback mechanism through which the evolution of a black hole is linked to that of its host galaxy.One proposed source of this coupling is the powerful jets emitted from the poles of these supermassive black holes. These jets are thought to be produced as some of the material accreting onto the black hole is flung out, confined by surrounding gas and magnetic fields. Because the jets of hot gas and radiation extend outward through the host galaxy, they provide a means for the black hole to influence the gas and dust of its surroundings.In our current model of a radio-loud active galactic nuclei,a region of hot, ionized gas the narrow-line region lies beyond the sphere of influence of the supermassive black hole. [C.M. Urry and P. Padovani]Clues in the Narrow-Line RegionThe region of gas thought to sit just outside of the black holes sphere of influence (at a distance of perhaps a thousand to a few thousand light-years) is known as the narrow line region so named because we observe narrow emission lines from this gas. Given its hot, ionized state, this gas must somehow be being pummeled with energy. In the canonical picture, radiation from the black hole heats the gas directly in a process

  3. Black Holes Lead Galaxy Growth, New Research Shows

    NASA Astrophysics Data System (ADS)

    2009-01-01

    Astronomers may have solved a cosmic chicken-and-egg problem -- the question of which formed first in the early Universe -- galaxies or the supermassive black holes seen at their cores. "It looks like the black holes came first. The evidence is piling up," said Chris Carilli, of the National Radio Astronomy Observatory (NRAO). Carilli outlined the conclusions from recent research done by an international team studying conditions in the first billion years of the Universe's history in a lecture presented to the American Astronomical Society's meeting in Long Beach, California. Gas in Distant Galaxy VLA image (right) of gas in young galaxy seen as it was when the Universe was only 870 million years old. CREDIT: NRAO/AUI/NSF, SDSS Full-size JPEG, 323 KB PDF file, 180 KB Galaxy image, no annotation, JPEG 21 KB Earlier studies of galaxies and their central black holes in the nearby Universe revealed an intriguing linkage between the masses of the black holes and of the central "bulges" of stars and gas in the galaxies. The ratio of the black hole and the bulge mass is nearly the same for a wide range of galactic sizes and ages. For central black holes from a few million to many billions of times the mass of our Sun, the black hole's mass is about one one-thousandth of the mass of the surrounding galactic bulge. "This constant ratio indicates that the black hole and the bulge affect each others' growth in some sort of interactive relationship," said Dominik Riechers, of Caltech. "The big question has been whether one grows before the other or if they grow together, maintaining their mass ratio throughout the entire process." In the past few years, scientists have used the National Science Foundation's Very Large Array radio telescope and the Plateau de Bure Interferometer in France to peer far back in the 13.7 billion-year history of the Universe, to the dawn of the first galaxies. "We finally have been able to measure black-hole and bulge masses in several galaxies seen

  4. Trajectories of bright stars at the Galactic Center as a tool to evaluate a graviton mass

    NASA Astrophysics Data System (ADS)

    Zakharov, Alexander; Jovanović, Predrag; Borka, Dusko; Jovanović, Vesna Borka

    2016-10-01

    Scientists worked in Saint-Petersburg (Petrograd, Leningrad) played the extremely important role in creation of scientific school and development of general relativity in Russia. Very recently LIGO collaboration discovered gravitational waves [1] predicted 100 years ago by A. Einstein. In the papers reporting about this discovery, the joint LIGO & VIRGO team presented an upper limit on graviton mass such as mg < 1.2 × 10-22eV [1, 2]. The authors concluded that their observational data do not show violations of classical general relativity because the graviton mass limit is very small. We show that an analysis of bright star trajectories could bound graviton mass with a comparable accuracy with accuracies reached with gravitational wave interferometers and expected with forthcoming pulsar timing observations for gravitational wave detection. This analysis gives an opportunity to treat observations of bright stars near the Galactic Center as a tool for an evaluation specific parameters of the black hole and also to obtain constraints on the fundamental gravity law such as a modifications of Newton gravity law in a weak field approximation. In that way, based on a potential reconstruction at the Galactic Center we give a bounds on a graviton mass.

  5. Galactic-scale civilization

    NASA Technical Reports Server (NTRS)

    Kuiper, T. B. H.

    1980-01-01

    Evolutionary arguments are presented in favor of the existence of civilization on a galactic scale. Patterns of physical, chemical, biological, social and cultural evolution leading to increasing levels of complexity are pointed out and explained thermodynamically in terms of the maximization of free energy dissipation in the environment of the organized system. The possibility of the evolution of a global and then a galactic human civilization is considered, and probabilities that the galaxy is presently in its colonization state and that life could have evolved to its present state on earth are discussed. Fermi's paradox of the absence of extraterrestrials in light of the probability of their existence is noted, and a variety of possible explanations is indicated. Finally, it is argued that although mankind may be the first occurrence of intelligence in the galaxy, it is unjustified to presume that this is so.

  6. Observational aspects of outbursting black hole sources: Evolution of spectro-temporal features and X-ray variability

    NASA Astrophysics Data System (ADS)

    Sreehari, H.; Nandi, Anuj; Radhika, D.; Iyer, Nirmal; Mandal, Samir

    2018-02-01

    We report on our attempt to understand the outbursting profile of Galactic Black Hole sources, keeping in mind the evolution of temporal and spectral features during the outburst. We present results of evolution of quasi-periodic oscillations, spectral states and possible connection with jet ejections during the outburst phase. Further, we attempt to connect the observed X-ray variabilities (i.e., `class'/`structured' variabilities, similar to GRS 1915+105) with spectral states of black hole sources. Towards these studies, we consider three black hole sources that have undergone single (XTE J1859+226), a few (IGR J17091-3624) and many (GX 339-4) outbursts since the start of RXTE era. Finally, we model the broadband energy spectra (3-150 keV) of different spectral states using RXTE and NuSTAR observations. Results are discussed in the context of two-component advective flow model, while constraining the mass of the three black hole sources.

  7. Suzaku observations of 4U 1957+11: The most rapidly spinning black hole in the galaxy?

    NASA Astrophysics Data System (ADS)

    Nowak, Michael A.; Wilms, Jörn; Pottschmidt, Katja; Schulz, Norbert; Miller, Jon; Maitra, Dipankar

    2012-03-01

    We present three Suzaku observations of the black hole candidate 4U 1957+11-a source that exhibits some of the simplest and cleanest examples of soft, disk-dominated spectra. 4U 1957+11 also presents among the highest peak temperatures found fromdisk-dominated spectra. Such temperatures may be associated with rapid black hole spin. The 4U 1957+11 spectra also require a very low normalization, which can be explained by a combination of small inner disk radius and a large distance (> 10 kpc) which places 4U 1957+11 well into the Galactic halo. We perform joint fits to the Suzaku spectra with relativistic disk models. Assuming a low mass black hole and the nearest distance (3Msolar, 10 kpc), the dimensionless spin parameter a*≡Jc/GM2>~0.9. Higher masses and farther distances yield a* ~1. Low spin cannot be recovered unless 4U 1957+11 is a low mass black hole that is at the unusually large distance of >~ 40 kpc.

  8. Black hole formation from the gravitational collapse of a nonspherical network of structures

    NASA Astrophysics Data System (ADS)

    Delgado Gaspar, Ismael; Hidalgo, Juan Carlos; Sussman, Roberto A.; Quiros, Israel

    2018-05-01

    We examine the gravitational collapse and black hole formation of multiple nonspherical configurations constructed from Szekeres dust models with positive spatial curvature that smoothly match to a Schwarzschild exterior. These configurations are made of an almost spherical central core region surrounded by a network of "pancake-like" overdensities and voids with spatial positions prescribed through standard initial conditions. We show that a full collapse into a focusing singularity, without shell crossings appearing before the formation of an apparent horizon, is not possible unless the full configuration becomes exactly or almost spherical. Seeking for black hole formation, we demand that shell crossings are covered by the apparent horizon. This requires very special fine-tuned initial conditions that impose very strong and unrealistic constraints on the total black hole mass and full collapse time. As a consequence, nonspherical nonrotating dust sources cannot furnish even minimally realistic toy models of black hole formation at astrophysical scales: demanding realistic collapse time scales yields huge unrealistic black hole masses, while simulations of typical astrophysical black hole masses collapse in unrealistically small times. We note, however, that the resulting time-mass constraint is compatible with early Universe models of primordial black hole formation, suitable in early dust-like environments. Finally, we argue that the shell crossings appearing when nonspherical dust structures collapse are an indicator that such structures do not form galactic mass black holes but virialize into stable stationary objects.

  9. Searching for High-energy, Horizon-scale Emissions from Galactic Black Hole Transients during Quiescence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, L. C.-C.; Pu, Hung-Yi; Hirotani, Kouichi

    We search for the gamma-ray counterparts of stellar-mass black holes using the long-term Fermi archive to investigate the electrostatic acceleration of electrons and positrons in the vicinity of the event horizon. We achieve this by applying the pulsar outer-gap model to their magnetospheres. When a black hole transient (BHT) is in a low-hard or quiescent state, the radiatively inefficient accretion flow cannot emit enough MeV photons that are required to sustain the force-free magnetosphere in the polar funnel via two-photon collisions. In this charge-starved gap region, an electric field arises along the magnetic field lines to accelerate electrons and positronsmore » into ultra-relativistic energies. These relativistic leptons emit copious Gamma-rays via the curvature and inverse-Compton (IC) processes. It is found that these gamma-ray emissions exhibit a flaring activity when the plasma accretion rate typically stays between 0.01% and 0.005% of the Eddington value for rapidly rotating, stellar-mass black holes. By analyzing the detection limit determined from archival Fermi /Large Area Telescope data, we find that the 7-year averaged duty cycle of such flaring activities should be less than 5% and 10% for XTE J1118+480 and 1A 0620-00, respectively, and that the detection limit is comparable to the theoretical prediction for V404 Cyg. It is predicted that the gap emission can be discriminated from the jet emission if we investigate the high-energy spectral behavior or observe nearby BHTs during deep quiescence simultaneously in infrared wavelength and very-high energies.« less

  10. Evolution of the Oort Cloud under Galactic Perturbations

    NASA Astrophysics Data System (ADS)

    Higuchi, A.; Kokubo, E.; Mukai, T.

    2005-08-01

    The Oort cloud is a spherical comet reservoir surrounding the solar system. There is general agreement that the Oort cloud comets are the residual planetesimals of planet formation. The standard scenario of the Oort cloud formation consists of two dynamical stages: (1) giant planets raise the aphelia of planetesimals to the outer region of the solar system and (2) the galactic tide, passing stars, and giant molecular clouds pull up their perihelia out of the planetary region and randomize their inclinations. Here we show the orbital evolution of planetesimals due to the galactic tide. Planetesimals with large aphelion distances change their perihelion distances toward the outside of the planetary region by the galactic tide and become members of the Oort cloud. We consider only the vertical component of the galactic tide because it is dominant compared to other components. Then, under such an axi-symmetric assumption, some planetesimals may show the librations around ω (argument of perihelion)=π /2 or 3π /2 (the Kozai mechanism). The alternate increases of eccentricity and inclination of the Kozai mechanism are effective to form the Oort cloud. Using the secular perturbation theory, we can understand the motion of the planetesimals analytically. We applied the Kozai mechanism to the galactic tide and found that the galactic tide raise perihelia and randomize inclinations of planetesimals with semimajor axes larger than ˜ 103 AU in 5Gyr. We take into account time evolution of the local galactic density, which is thought to be denser in the early stage of the sun than the current one. This work was supported by the 21st Century COE Program Origin and Evolution of Planetary Systems of the Ministry of Education, Culture, Sports, Science, and Technology, Japan, and JSPS Research Fellowship for Young Scientists.

  11. The local nanohertz gravitational-wave landscape from supermassive black hole binaries

    NASA Astrophysics Data System (ADS)

    Mingarelli, Chiara M. F.; Lazio, T. Joseph W.; Sesana, Alberto; Greene, Jenny E.; Ellis, Justin A.; Ma, Chung-Pei; Croft, Steve; Burke-Spolaor, Sarah; Taylor, Stephen R.

    2017-12-01

    Supermassive black hole binary systems form in galaxy mergers and reside in galactic nuclei with large and poorly constrained concentrations of gas and stars. These systems emit nanohertz gravitational waves that will be detectable by pulsar timing arrays. Here we estimate the properties of the local nanohertz gravitational-wave landscape that includes individual supermassive black hole binaries emitting continuous gravitational waves and the gravitational-wave background that they generate. Using the 2 Micron All-Sky Survey, together with galaxy merger rates from the Illustris simulation project, we find that there are on average 91 ± 7 continuous nanohertz gravitational-wave sources, and 7 ± 2 binaries that will never merge, within 225 Mpc. These local unresolved gravitational-wave sources can generate a departure from an isotropic gravitational-wave background at a level of about 20 per cent, and if the cosmic gravitational-wave background can be successfully isolated, gravitational waves from at least one local supermassive black hole binary could be detected in 10 years with pulsar timing arrays.

  12. Dynamically important magnetic fields near supermassive black holes in radio-loud AGN

    NASA Astrophysics Data System (ADS)

    Savolainen, Tuomas; Zamaninasab, Mohammad; Clausen-Brown, Eric; Tchekhovskoy, Alexander

    The powerful radio jets ejected from the vicinity of accreting supermassive black holes in active galactic nuclei are thought to be formed by magnetic forces. However, there is little observational evidence of the actual strength of the magnetic fields in the jet-launching region, and in the accretion disks, of AGN. We have collected from the literature jet magnetic field estimates determined by very long baseline interferometry observations of the opacity-driven core-shift effect for 76 blazars and radio galaxies. We show that the jet magnetic flux of these radio-loud AGN tightly correlates with their accretion disk luminosity -- over seven orders of magnitude in accretion power. Moreover, the estimated magnetic flux threading the black hole quantitatively agrees with the saturation value expected in the magnetically arrested disk scenario. This implies that black holes in many, if not most, of the radio-loud AGN are surrounded by accretion disks that have dynamically important magnetic fields. Such disks behave very differently from the standard model disks with sub-equipartition magnetic fields, which may have important consequences for attempts to interpret disk spectral energy distributions or signatures of the possible black hole shadow in mm-VLBI images.

  13. Polarization of the diffuse galactic light.

    NASA Technical Reports Server (NTRS)

    Sparrow, J. G.; Ney, E. P.

    1972-01-01

    Polarization measurements made from the satellite OSO-5 show that the polarized intensity in the direction of the Scutum arm of the Galaxy is different in intensity and direction of the polarization from that observed due to the zodiacal light. The observations are consistent with polarized diffuse galactic light superposed on the zodiacal light. The results are interpreted in terms of a model in which the galactic starlight is scattered by interstellar dust.

  14. Cosmological Evolution of Massive Black Holes: Effects of Eddington Ratio Distribution and Quasar Lifetime

    NASA Astrophysics Data System (ADS)

    Cao, Xinwu

    2010-12-01

    A power-law time-dependent light curve for active galactic nuclei (AGNs) is expected by the self-regulated black hole growth scenario, in which the feedback of AGNs expels gas and shut down accretion. This is also supported by the observed power-law Eddington ratio distribution of AGNs. At high redshifts, the AGN life timescale is comparable with (or even shorter than) the age of the universe, which sets a constraint on the minimal Eddington ratio for AGNs on the assumption of a power-law AGN light curve. The black hole mass function (BHMF) of AGN relics is calculated by integrating the continuity equation of massive black hole number density on the assumption of the growth of massive black holes being dominated by mass accretion with a power-law Eddington ratio distribution for AGNs. The derived BHMF of AGN relics at z = 0 can fit the measured local mass function of the massive black holes in galaxies quite well, provided the radiative efficiency ~0.1 and a suitable power-law index for the Eddington ratio distribution are adopted. In our calculations of the black hole evolution, the duty cycle of AGN should be less than unity, which requires the quasar life timescale τQ >~ 5 × 108 years.

  15. Local Swift-BAT active galactic nuclei prefer circumnuclear star formation

    NASA Astrophysics Data System (ADS)

    Lutz, D.; Shimizu, T.; Davies, R. I.; Herrera-Camus, R.; Sturm, E.; Tacconi, L. J.; Veilleux, S.

    2018-01-01

    We use Herschel data to analyze the size of the far-infrared 70 μm emission for z < 0.06 local samples of 277 hosts of Swift-BAT selected active galactic nuclei (AGN), and 515 comparison galaxies that are not detected by BAT. For modest far-infrared luminosities 8.5 black hole and star formation are fed from the same gas reservoir, with more efficient black hole feeding if that reservoir is more concentrated. The significant scatter in the far-infrared sizes emphasizes that we are mostly probing spatial scales much larger than those of actual accretion, and that rapid accretion variations can smear the distinction between the AGN and comparison categories. Large samples are hence needed to detect structural differences that favor feeding of the black hole. No size difference between AGN host and comparison galaxies is observed at higher far-infrared luminosities log(LFIR [L⊙]) > 10.5 (star formation rates ≳6 M⊙ yr-1), possibly because these are typically reached in more compact regions. Full Table A.1 is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/609/A9

  16. A Growth-rate Indicator for Compton-thick Active Galactic Nuclei

    NASA Astrophysics Data System (ADS)

    Brightman, M.; Masini, A.; Ballantyne, D. R.; Baloković, M.; Brandt, W. N.; Chen, C.-T.; Comastri, A.; Farrah, D.; Gandhi, P.; Harrison, F. A.; Ricci, C.; Stern, D.; Walton, D. J.

    2016-07-01

    Due to their heavily obscured central engines, the growth rate of Compton-thick (CT) active galactic nuclei (AGNs) is difficult to measure. A statistically significant correlation between the Eddington ratio, λ Edd, and the X-ray power-law index, Γ, observed in unobscured AGNs offers an estimate of their growth rate from X-ray spectroscopy (albeit with large scatter). However, since X-rays undergo reprocessing by Compton scattering and photoelectric absorption when the line of sight to the central engine is heavily obscured, the recovery of the intrinsic Γ is challenging. Here we study a sample of local, predominantly CT megamaser AGNs, where the black hole mass, and thus Eddington luminosity, are well known. We compile results of the X-ray spectral fitting of these sources with sensitive high-energy (E > 10 keV) NuSTAR data, where X-ray torus models, which take into account the reprocessing effects have been used to recover the intrinsic Γ values and X-ray luminosities, L X. With a simple bolometric correction to L X to calculate λ Edd, we find a statistically significant correlation between Γ and λ Edd (p = 0.007). A linear fit to the data yields Γ = (0.41 ± 0.18)log10 λ Edd + (2.38 ± 0.20), which is statistically consistent with results for unobscured AGNs. This result implies that torus modeling successfully recovers the intrinsic AGN parameters. Since the megamasers have low-mass black holes (M BH ≈ 106-107 M ⊙) and are highly inclined, our results extend the Γ-λ Edd relationship to lower masses and argue against strong orientation effects in the corona, in support of AGN unification. Finally this result supports the use of Γ as a growth-rate indicator for accreting black holes, even for CT AGNs.

  17. Cosmic rays from primordial black holes

    NASA Technical Reports Server (NTRS)

    Macgibbon, Jane H.; Carr, B. J.

    1991-01-01

    The quark and gluon emission from primordial black holes (PBHs) which may have formed from initial density perturbations or phase transitions in the early universe are investigated. If the PBHs formed from scale-invariant initial density perturbations in the radiation dominated era, it is found that the emission can explain or contribute significantly to the extragalactic photon and interstellar cosmic-ray electron, positron, and antiproton spectra around 0.1-1 GeV. In particular, the PBH emission strongly resembles the cosmic-ray gamma-ray spectrum between 50 and 170 MeV. The upper limits on the PBH density today from the gamma-ray, e(+), e(-), and antiproton data are comparable, provided that the PBHs cluster to the same degree as the other matter in the Galactic halo.

  18. The Galactic Magnetic Field and its lensing of Ultrahigh Energy and Galactic Cosmic Rays

    NASA Astrophysics Data System (ADS)

    Farrar, Glennys

    2015-08-01

    It has long been recognized that magnetic fields play an important role in many astrophysical environments, but the magnetic field strength and structure has only been quantitatively determined for relatively few systems beyond our solar system.Our understanding of the Galactic magnetic field (GMF) has improved tremendously in recent years. The Jansson-Farrar (2012) (JF12) GMF model is the most realistic and comprehensive model available. It was constrained by fitting all-sky Faraday Rotation Measures of ~40k extragalactic sources, simultaneously with WMAP polarized (Q,U) and total synchrotron emission maps - together providing a total of more than 10,000 independent datapoints, each with measured astrophysical variance. In addition to disk and toroidal halo components, a previously overlooked coherent poloidal halo field proves to be necessary to account for the RM, Q and U data. Moreover a “striated” random component is needed in addition to a fully random component, in both disk and halo.The talk will give a concise review of the JF12 model and its derivation, with emphasis on which features of the GMF are well or poorly established. I will show that the data unambiguously demand a large scale coherent component to the halo field which is a diverging-spiral centered on the Galactic center, with field lines running from Southern to Northern hemispheres. The puzzles posed by the large scale coherent halo and disk magnetic fields, and their possible origins, will be discussed.Having a good model of the Galactic magnetic field is crucial for determining the sources of UHECRs, for modeling the transport of Galactic CRs (the halo field provides a heretofore-overlooked escape route for by diffusion along its field lines), and for calculating the background to dark matter and CMB-cosmology studies. I will present new results on the lensing effect of the GMF on UHECRs, which produces multiple images and dramatic magnification and demagnification that varies with

  19. VizieR Online Data Catalog: INTEGRAL 14-year Galactic hard X-ray sources (Krivonos+, 2017)

    NASA Astrophysics Data System (ADS)

    Krivonos, R. A.; Tsygankov, S. S.; Mereminskiy, I. A.; Lutovinov, A. A.; Sazonov, S. Y.; Sunyaev, R. A.

    2018-01-01

    For this work, we selected all publicly available INTEGRAL data from 2002 December to 2017 March (spacecraft revolutions 26-1790). In total, we obtained 124 727 ScW images covering the whole sky, comprising ~220Ms of the effective (dead time-corrected) exposure. For the purposes of this work we selected 79234 ScWs (~130Ms) within the GP (|b|<17.5°). Following Krivonos et al. (2012, Cat. J/A+A/545/A27) we constructed six overlapping 70°x35° Cartesian projections centred at the GP (|b|=0°) and Galactic longitudes l=0°, ±50°, ±115° and l=180°. (4 data files).

  20. Microlens Masses from Astrometry and Parallax in Space-based Surveys: From Planets to Black Holes

    NASA Astrophysics Data System (ADS)

    Gould, Andrew; Yee, Jennifer C.

    2014-03-01

    We show that space-based microlensing experiments can recover lens masses and distances for a large fraction of all events (those with individual photometric errors <~ 0.01 mag) using a combination of one-dimensional microlens parallaxes and astrometric microlensing. This will provide a powerful probe of the mass distributions of planets, black holes, and neutron stars, the distribution of planets as a function of Galactic environment, and the velocity distributions of black holes and neutron stars. While systematics are in principle a significant concern, we show that it is possible to vet against all systematics (known and unknown) using single-epoch precursor observations with the Hubble Space Telescope roughly 10 years before the space mission.