Sample records for galactic diffuse clouds

  1. A Herschel [C ii] Galactic plane survey. II. CO-dark H2 in clouds

    NASA Astrophysics Data System (ADS)

    Langer, W. D.; Velusamy, T.; Pineda, J. L.; Willacy, K.; Goldsmith, P. F.

    2014-01-01

    Context. H i and CO large scale surveys of the Milky Way trace the diffuse atomic clouds and the dense shielded regions of molecular hydrogen clouds, respectively. However, until recently, we have not had spectrally resolved C+ surveys in sufficient lines of sight to characterize the ionized and photon dominated components of the interstellar medium, in particular, the H2 gas without CO, referred to as CO-dark H2, in a large sample of interstellar clouds. Aims: We use a sparse Galactic plane survey of the 1.9 THz (158 μm) [C ii] spectral line from the Herschel open time key programme, Galactic Observations of Terahertz C+ (GOT C+), to characterize the H2 gas without CO in a statistically significant sample of interstellar clouds. Methods: We identify individual clouds in the inner Galaxy by fitting the [C ii] and CO isotopologue spectra along each line of sight. We then combine these spectra with those of H i and use them along with excitation models and cloud models of C+ to determine the column densities and fractional mass of CO-dark H2 clouds. Results: We identify1804 narrow velocity [C ii] components corresponding to interstellar clouds in different categories and evolutionary states. About 840 are diffuse molecular clouds with no CO, ~510 are transition clouds containing [C ii] and 12CO, but no 13CO, and the remainder are dense molecular clouds containing 13CO emission. The CO-dark H2 clouds are concentrated between Galactic radii of ~3.5 to 7.5 kpc and the column density of the CO-dark H2 layer varies significantly from cloud to cloud with a global average of 9 × 1020 cm-2. These clouds contain a significant fraction by mass of CO-dark H2, that varies from ~75% for diffuse molecular clouds to ~20% for dense molecular clouds. Conclusions: We find a significant fraction of the warm molecular ISM gas is invisible in H i and CO, but is detected in [C ii]. The fraction of CO-dark H2 is greatest in the diffuse clouds and decreases with increasing total column

  2. Clouds Dominate the Galactic Halo

    NASA Astrophysics Data System (ADS)

    2003-01-01

    Using the exquisite sensitivity of the National Science Foundation's Robert C. Byrd Green Bank Telescope (GBT), astronomer Jay Lockman of the National Radio Astronomy Observatory (NRAO) in Green Bank, W. Va., has produced the best cross-section ever of the Milky Way Galaxy's diffuse halo of hydrogen gas. This image confirms the presence of discrete hydrogen clouds in the halo, and could help astronomers understand the origin and evolution of the rarefied atmosphere that surrounds our Galaxy. Lockman presented his findings at the American Astronomical Society meeting in Seattle, WA. Hydrogen Clouds Graphic Artist's Rendering of the Milky Way (background) with insert showing GBT image of cross-section of neutral atomic Hydrogen Credit: Kirk Woellert/National Science Foundation Patricia Smiley, NRAO. "The first observations with the Green Bank Telescope suggested that the hydrogen in the lower halo, the transition zone between the Milky Way and intergalactic space, is very clumpy," said Lockman. "The latest data confirm these results and show that instead of trailing away smoothly from the Galactic plane, a significant fraction of the hydrogen gas in the halo is concentrated in discrete clouds. There are even some filaments." Beyond the star-filled disk of the Milky Way, there exists an extensive yet diffuse halo of hydrogen gas. For years, astronomers have speculated about the origin and structure of this gas. "Even the existence of neutral hydrogen in the halo has been somewhat of a puzzle," Lockman remarked. "Unlike the Earth's atmosphere, which is hot enough to hold itself up against the force of gravity, the hydrogen in the halo is too cool to support itself against the gravitational pull of the Milky Way." Lockman points out that some additional factor has to be involved to get neutral hydrogen to such large distances from the Galactic plane. "This force could be cosmic rays, a supersonic wind, the blast waves from supernovae, or something we have not thought of

  3. IRAS and the Boston University Arecibo Galactic H I Survey: A catalog of cloud properties

    NASA Technical Reports Server (NTRS)

    Bania, Thomas M.

    1992-01-01

    The Infrared Astronomy Satellite (IRAS) Galactic Plane Surface Brightness Images were used to identify infrared emission associated with cool, diffuse H I clouds detected by the Boston University-Arecibo Galactic H I Survey. These clouds are associated with galactic star clusters, H II regions, and molecular clouds. Using emission-absorption experiments toward galactic H II regions, we determined the H I properties of cool H I clouds seen in absorption against the thermal continuum, including their kinematic distances. Correlations were then made between IRAS sources and these H II regions, thus some of the spatial confusion associated with the IRAS fields near the galactic plane was resolved since the distances to these sources was known. Because we can also correlate the BU-Arecibo clouds with existing CO surveys, these results will allow us to determine the intrinsic properties of the gas (neutral and ionized atomic as well as molecular) and dust for interstellar clouds in the inner galaxy. For the IRAS-identified H II region sample, we have established the far infrared (FIR) luminosities and galactic distribution of these sources.

  4. High-energy radiation from collisions of high-velocity clouds and the Galactic disc

    NASA Astrophysics Data System (ADS)

    del Valle, Maria V.; Müller, A. L.; Romero, G. E.

    2018-04-01

    High-velocity clouds (HVCs) are interstellar clouds of atomic hydrogen that do not follow normal Galactic rotation and have velocities of a several hundred kilometres per second. A considerable number of these clouds are falling down towards the Galactic disc. HVCs form large and massive complexes, so if they collide with the disc a great amount of energy would be released into the interstellar medium. The cloud-disc interaction produces two shocks: one propagates through the cloud and the other through the disc. The properties of these shocks depend mainly on the cloud velocity and the disc-cloud density ratio. In this work, we study the conditions necessary for these shocks to accelerate particles by diffusive shock acceleration and we study the non-thermal radiation that is produced. We analyse particle acceleration in both the cloud and disc shocks. Solving a time-dependent two-dimensional transport equation for both relativistic electrons and protons, we obtain particle distributions and non-thermal spectral energy distributions. In a shocked cloud, significant synchrotron radio emission is produced along with soft gamma rays. In the case of acceleration in the shocked disc, the non-thermal radiation is stronger; the gamma rays, of leptonic origin, might be detectable with current instruments. A large number of protons are injected into the Galactic interstellar medium, and locally exceed the cosmic ray background. We conclude that under adequate conditions the contribution from HVC-disc collisions to the galactic population of relativistic particles and the associated extended non-thermal radiation might be important.

  5. NuSTAR monitoring of the Galactic center diffuse emission

    NASA Astrophysics Data System (ADS)

    Clavel, Maïca; Krivonos, Roman; Mori, Kaya; Tomsick, John; Zhang, Shuo

    2017-08-01

    Over the past two decades, the intense X-ray monitoring of the Molecular clouds in the inner region of our Galaxy has revealed a large number of reflection features, characterized by both a strong iron line at 6.4keV and associated non-thermal continuum emission. The correlated variations of these structures observed within the whole central molecular zone, along with their surface brightness, are strong evidence that a significant fraction of this diffuse emission is created by past outbursts from the supermassive black hole at the Galactic center, Sagittarius A*. The variability and the intensity of the fluorescent iron line derived from XMM-Newton and Chandra campaigns have demonstrated that the past events were short (few-year duration) but intense (more than 1039 erg/s in luminosity). However, reconstructing the detailed properties of these past events is not straightforward since it also depends on the density and the line of sight distances of the reflecting clouds, which are poorly known. By better constraining the diffuse continuum emission up to several tens of keV, NuSTAR now provides spectral information needed to better understand both the spectral shape of the emission produced during these past events and the geometry of the reflecting clouds. I will present the up-to-date NuSTAR results on the past activity of Sgr A*, including a detailed comparison of the latest 2016 deep observation with the original 2012 survey of the Galactic center and a complete spectral analysis of the Arches cloud and of an other key cloud which has been brightening.

  6. Origin and z-distribution of Galactic diffuse [C II] emission

    NASA Astrophysics Data System (ADS)

    Velusamy, T.; Langer, W. D.

    2014-12-01

    Context. The [C ii] emission is an important probe of star formation in the Galaxy and in external galaxies. The GOT C+ survey and its follow up observations of spectrally resolved 1.9 THz [C ii] emission using Herschel HIFI provides the data needed to quantify the Galactic interstellar [C ii] gas components as tracers of star formation. Aims: We determine the source of the diffuse [C ii] emission by studying its spatial (radial and vertical) distributions by separating and evaluating the fractions of [C ii] and CO emissions in the Galactic ISM gas components. Methods: We used the HIFI [C ii] Galactic survey (GOT C+), along with ancillary H i, 12CO, 13CO, and C18O data toward 354 lines of sight, and several HIFI [C ii] and [C i] position-velocity maps. We quantified the emission in each spectral line profile by evaluating the intensities in 3 km s-1 wide velocity bins, "spaxels". Using the detection of [C ii] with CO or [C i], we separated the dense and diffuse gas components. We derived 2D Galactic disk maps using the spaxel velocities for kinematic distances. We separated the warm and cold H2 gases by comparing CO emissions with and without associated [C ii]. Results: We find evidence of widespread diffuse [C ii] emission with a z-scale distribution larger than that for the total [C ii] or CO. The diffuse [C ii] emission consists of (i) diffuse molecular (CO-faint) H2 clouds and (ii) diffuse H i clouds and/or WIM. In the inner Galaxy we find a lack of [C ii] detections in a majority (~62%) of H i spaxels and show that the diffuse component primarily comes from the WIM (~21%) and that the H i gas is not a major contributor to the diffuse component (~6%). The warm-H2 radial profile shows an excess in the range 4 to 7 kpc, consistent with enhanced star formation there. Conclusions: We derive, for the first time, the 2D [C ii] spatial distribution in the plane and the z-distributions of the individual [C ii] gas component. From the GOT C+ detections we estimate the

  7. Evolution of the Oort Cloud under Galactic Perturbations

    NASA Astrophysics Data System (ADS)

    Higuchi, A.; Kokubo, E.; Mukai, T.

    2005-08-01

    The Oort cloud is a spherical comet reservoir surrounding the solar system. There is general agreement that the Oort cloud comets are the residual planetesimals of planet formation. The standard scenario of the Oort cloud formation consists of two dynamical stages: (1) giant planets raise the aphelia of planetesimals to the outer region of the solar system and (2) the galactic tide, passing stars, and giant molecular clouds pull up their perihelia out of the planetary region and randomize their inclinations. Here we show the orbital evolution of planetesimals due to the galactic tide. Planetesimals with large aphelion distances change their perihelion distances toward the outside of the planetary region by the galactic tide and become members of the Oort cloud. We consider only the vertical component of the galactic tide because it is dominant compared to other components. Then, under such an axi-symmetric assumption, some planetesimals may show the librations around ω (argument of perihelion)=π /2 or 3π /2 (the Kozai mechanism). The alternate increases of eccentricity and inclination of the Kozai mechanism are effective to form the Oort cloud. Using the secular perturbation theory, we can understand the motion of the planetesimals analytically. We applied the Kozai mechanism to the galactic tide and found that the galactic tide raise perihelia and randomize inclinations of planetesimals with semimajor axes larger than ˜ 103 AU in 5Gyr. We take into account time evolution of the local galactic density, which is thought to be denser in the early stage of the sun than the current one. This work was supported by the 21st Century COE Program Origin and Evolution of Planetary Systems of the Ministry of Education, Culture, Sports, Science, and Technology, Japan, and JSPS Research Fellowship for Young Scientists.

  8. Molecular clouds and galactic spiral structure

    NASA Technical Reports Server (NTRS)

    Dame, T. M.

    1984-01-01

    Galactic CO line emission at 115 GHz was surveyed in order to study the distribution of molecular clouds in the inner galaxy. Comparison of this survey with similar H1 data reveals a detailed correlation with the most intense 21 cm features. To each of the classical 21 cm H1 spiral arms of the inner galaxy there corresponds a CO molecular arm which is generally more clearly defined and of higher contrast. A simple model is devised for the galactic distribution of molecular clouds. The modeling results suggest that molecular clouds are essentially transient objects, existing for 15 to 40 million years after their formation in a spiral arm, and are largely confined to spiral features about 300 pc wide.

  9. A Discovery of a Compact High Velocity Cloud-Galactic Supershell System

    NASA Astrophysics Data System (ADS)

    Park, Geumsook; Koo, Bon-Chul; Kang, Ji-hyun; Gibson, Steven J.; Peek, Joshua Eli Goldston; Douglas, Kevin A.; Korpela, Eric J.; Heiles, Carl E.

    2017-01-01

    High velocity clouds (HVCs) are neutral hydrogen (HI) gas clouds having very different radial velocities from those of the Galactic disk material. While some large HVC complexes are known to be gas streams tidally stripped from satellite galaxies of the Milky Way, there are relatively isolated and small angular-sized HVCs, so called “compact HVCs (CHVCs)”, the origin of which remains controversial. There are about 300 known CHVCs in the Milky Way, and many of them show a head-tail structure, implying a ram pressure interaction with the diffuse Galactic halo gas. It is, however, not clear whether CHVCs are completely dissipated in the Galactic halo to feed the multi-phase circumgalactic medium or they can survive their trip through the halo and collide with the Galactic disk. The colliding CHVCs may leave a gigantic trail in the disk, and it had been suggested that some of HI supershells that require ≧ 3 x 1052 erg may be produced by the collision of such HVCs.Here we report the detection of a kiloparsec (kpc)-size supershell in the outskirts of the Milky Way with the compact HVC 040+01-282 (hereafter, CHVC040) at its geometrical center using the “Inner-Galaxy Arecibo L-band Feed Array” HI 21 cm survey data. The morphological and physical properties of both objects suggest that CHVC040, which is either a fragment of a nearby disrupted galaxy or a cloud that originated from an intergalactic accreting flow, collided with the disk ˜5 Myr ago to form the supershell. Our results show that some compact HVCs can survive their trip through the Galactic halo and inject energy and momentum into the Milky Way disk.

  10. Cloud-cloud collision in the Galactic center 50 km s-1 molecular cloud

    NASA Astrophysics Data System (ADS)

    Tsuboi, Masato; Miyazaki, Atsushi; Uehara, Kenta

    2015-12-01

    We performed a search of star-forming sites influenced by external factors, such as SNRs, H II regions, and cloud-cloud collisions (CCCs), to understand the star-forming activity in the Galactic center region using the NRO Galactic Center Survey in SiO v = 0, J = 2-1, H13CO+J = 1-0, and CS J = 1-0 emission lines obtained with the Nobeyama 45 m telescope. We found a half-shell-like feature (HSF) with a high integrated line intensity ratio of ∫TB(SiO v = 0, J = 2-1)dv/∫TB(H13CO+J = 1-0)dv ˜ 6-8 in the 50 km s-1 molecular cloud; the HSF is a most conspicuous molecular cloud in the region and harbors an active star-forming site where several compact H II regions can be seen. The high ratio in the HSF indicates that the cloud contains huge shocked molecular gas. The HSF can be also seen as a half-shell feature in the position-velocity diagram. A hypothesis explaining the chemical and kinetic properties of the HSF is that the feature originates from a CCC. We analyzed the CS J = 1-0 emission line data obtained with the Nobeyama Millimeter Array to reveal the relation between the HSF and the molecular cloud cores in the cloud. We made a cumulative core mass function (CMF) of the molecular cloud cores within the HSF. The CMF in the CCC region is not truncated at least up to ˜2500 M⊙, although the CMF of the non-CCC region reaches the upper limit of ˜1500 M⊙. Most massive molecular cores with Mgas > 750 M⊙ are located only around the ridge of the HSF and adjoin the compact H II region. These may be a sign of massive star formation induced by CCCs in the Galactic center region.

  11. Star formation induced by cloud-cloud collisions and galactic giant molecular cloud evolution

    NASA Astrophysics Data System (ADS)

    Kobayashi, Masato I. N.; Kobayashi, Hiroshi; Inutsuka, Shu-ichiro; Fukui, Yasuo

    2018-05-01

    Recent millimeter/submillimeter observations towards nearby galaxies have started to map the whole disk and to identify giant molecular clouds (GMCs) even in the regions between galactic spiral structures. Observed variations of GMC mass functions in different galactic environments indicates that massive GMCs preferentially reside along galactic spiral structures whereas inter-arm regions have many small GMCs. Based on the phase transition dynamics from magnetized warm neutral medium to molecular clouds, Kobayashi et al. (2017, ApJ, 836, 175) proposes a semi-analytical evolutionary description for GMC mass functions including a cloud-cloud collision (CCC) process. Their results show that CCC is less dominant in shaping the mass function of GMCs than the accretion of dense H I gas driven by the propagation of supersonic shock waves. However, their formulation does not take into account the possible enhancement of star formation by CCC. Millimeter/submillimeter observations within the Milky Way indicate the importance of CCC in the formation of star clusters and massive stars. In this article, we reformulate the time-evolution equation largely modified from Kobayashi et al. (2017, ApJ, 836, 175) so that we additionally compute star formation subsequently taking place in CCC clouds. Our results suggest that, although CCC events between smaller clouds are more frequent than the ones between massive GMCs, CCC-driven star formation is mostly driven by massive GMCs ≳ 10^{5.5} M_{⊙} (where M⊙ is the solar mass). The resultant cumulative CCC-driven star formation may amount to a few 10 percent of the total star formation in the Milky Way and nearby galaxies.

  12. Quiescent Giant Molecular Cloud Cores in the Galactic Center

    NASA Technical Reports Server (NTRS)

    Lis, D. C.; Serabyn, E.; Zylka, R.; Li, Y.

    2000-01-01

    We have used the Long Wavelength Spectrometer (LWS) aboard the Infrared Space Observatory (ISO) to map the far-infrared continuum emission (45-175 micrometer) toward several massive Giant Molecular Cloud (GMC) cores located near the Galactic center. The observed far-infrared and submillimeter spectral energy distributions imply low temperatures (approx. 15 - 22 K) for the bulk of the dust in all the sources, consistent with external heating by the diffuse ISRF and suggest that these GMCs do not harbor high- mass star-formation sites, in spite of their large molecular mass. Observations of FIR atomic fine structure lines of C(sub II) and O(sub I) indicate an ISRF enhancement of approx. 10(exp 3) in the region. Through continuum radiative transfer modeling we show that this radiation field strength is in agreement with the observed FIR and submillimeter spectral energy distributions, assuming primarily external heating of the dust with only limited internal luminosity (approx. 2 x 10(exp 5) solar luminosity). Spectroscopic observations of millimeter-wave transitions of H2CO, CS, and C-34S carried out with the Caltech Submillimeter Observatory (CSO) and the Institut de Radio Astronomie Millimetrique (IRAM) 30-meter telescope indicate a gas temperature of approx. 80 K, significantly higher than the dust temperatures, and density of approx. 1 x 10(exp 5)/cc in GCM0.25 + 0.01, the brightest submillimeter source in the region. We suggest that shocks caused by cloud collisions in the turbulent interstellar medium in the Galactic center region are responsible for heating the molecular gas. This conclusion is supported by the presence of wide-spread emission from molecules such as SiO, SO, and CH3OH, which are considered good shock tracers. We also suggest that the GMCs studied here are representative of the "typical", pre-starforming cloud population in the Galactic center.

  13. HI Clouds Near the Galactic Center: Possible Tracers of the Nuclear Wind

    NASA Astrophysics Data System (ADS)

    Lockman, Felix J.; McClure-Griffiths, Naomi; DiTeodoro, Enrico

    2017-01-01

    We have used the Green Bank Telescope to discover more than one hundred neutral hydrogen clouds that appear to be embedded in the Fermi Bubble -- the Milky Way’s nuclear wind. With the other members of this population that were previously found with the Australia Telescope Compact Array, we now have a sample of about 200 such clouds. They are identified by their peculiar velocities. The cloud kinematics show no trace of Galactic rotation or association with the Galactic bar. Near longitude zero the clouds can have values of VLSR = +-200 km/s. No clouds have been detected with |VLSR| > 350 km/s. The clouds are concentrated toward the Galactic plane, but some are still found to |b|=10 degrees, or z > 1 kpc at the Galactic Center, where the current surveys end. These clouds are important tracers of conditions in the nuclear wind of the Milky Way.

  14. C+ detection of warm dark gas in diffuse clouds

    NASA Astrophysics Data System (ADS)

    Langer, W. D.; Velusamy, T.; Pineda, J. L.; Goldsmith, P. F.; Li, D.; Yorke, H. W.

    2010-10-01

    We present the first results of the Herschel open time key program, Galactic Observations of Terahertz C+ (GOT C+) survey of the [CII] 2P3/2-2P1/2 fine-structure line at 1.9 THz (158 μm) using the HIFI instrument on Herschel. We detected 146 interstellar clouds along sixteen lines-of-sight towards the inner Galaxy. We also acquired HI and CO isotopologue data along each line-of-sight for analysis of the physical conditions in these clouds. Here we analyze 29 diffuse clouds (AV < 1.3 mag) in this sample characterized by having [CII] and HI emission, but no detectable CO. We find that [CII] emission is generally stronger than expected for diffuse atomic clouds, and in a number of sources is much stronger than anticipated based on their HI column density. We show that excess [CII] emission in these clouds is best explained by the presence of a significant diffuse warm H2, dark gas, component. This first [CII] 158 μm detection of warm dark gas demonstrates the value of this tracer for mapping this gas throughout the Milky Way and in galaxies. Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA.

  15. OT1_tvelusam_2: HIFI studies of the small-scale structures in the Galactic diffuse clouds with [CII] and [CI

    NASA Astrophysics Data System (ADS)

    Velusamy, T.

    2010-07-01

    The 1.9 THz [CII] observations provide a powerful probe of warm diffuse clouds, because they can observe them in emission and are useful as a tracer of their molecular H2 not directly traced by CO or other means. HIFI observations of [CII] provide a high resolution of 12 arcsec, better than that for single dish CO (> 30 arcsec) maps, and much better than HI (>30 arcsec). Thus with HIFI we have an opportunity probe the small scale structures in diffuse clouds in the inner Galaxy at distances > 3 kpc. To study the structure of diffuse ISM gas at small scales we propose HIFI maps of 1.9 THz (158 micron) [CII] line emission in a selection of 16 lines of sight (LOSs) towards the inner Galaxy, which are also being observed as part of the GOT C+ survey of [CII] in the Galactic plane. GOT C+ provides mainly single point spectra without any spatial data. Maps of [CII] will constrain better the cloud properties and models when combining [CII] and HI data. The proposed OTF X map will be along the longitude and latitude centered on 18 selected GOT C+ LOS over a length of 3 arcmin in each direction, which is adequate enough to provide sufficient spatial information on the small scale structures at larger distances (>3 kpc) and to characterize the CII filling factor in the larger beams of the ancillary (HI, CO, and CI data). The [CI] 609 & 370micron and the 12CO(7-6) (which lies within the CI band) are excellent diagnostics of the physical conditions of transition clouds and PDRs. We will use the ratio of the [CI] lines to constrain the kinetic temperature and volume density of the CII/CI/CO transition zones in molecular clouds using radiative transfer codes. We also propose OTF X maps in both the [CI] lines for all CII target LOSs. We anticipate fully resolved structural data in [CII] on at least 300 velocity resolved clouds along with their [CI] emissions. We request a total of 33.2 hrs of HIFI observing time.

  16. COLLISIONS BETWEEN DARK MATTER CONFINED HIGH VELOCITY CLOUDS AND MAGNETIZED GALACTIC DISKS: THE SMITH CLOUD

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Galyardt, Jason; Shelton, Robin L., E-mail: jeg@uga.edu, E-mail: rls@physast.uga.edu

    2016-01-01

    The Galaxy’s population of High Velocity Clouds (HVCs) may include a subpopulation that is confined by dark matter minihalos and falling toward the Galactic disk. We present the first magnetohydrodynamic simulational study of dark-matter-dominated HVCs colliding with a weakly magnetized galactic disk. Our HVCs have baryonic masses of 5 × 10{sup 6}M{sub ⊙} and dark matter minihalo masses of 0, 3 × 10{sup 8}, or 1 × 10{sup 9} M{sub ⊙}. They are modeled on the Smith Cloud, which is said to have collided with the disk 70 Myr ago. We find that, in all cases, the cloud’s collision with the galactic disk creates a hole inmore » the disk, completely disperses the cloud, and forms a bubble-shaped structure on the far side of the disk. In contrast, when present, the dark matter minihalo continues unimpeded along its trajectory. Later, as the minihalo passes through the bubble structure and galactic halo, it accretes up to 6.0 × 10{sup 5} M{sub ⊙} in baryonic material, depending on the strengths of the magnetic field and minihalo gravity. These simulations suggest that if the Smith Cloud is associated with a dark matter minihalo and collided with the Galactic disk, the minihalo has accreted the observed gas. However, if the Smith Cloud is dark-matter-free, it is on its first approach toward the disk. These simulations also suggest that the dark matter is most concentrated either at the head of the cloud or near the cloud, depending upon the strength of the magnetic field, a point that could inform indirect dark matter searches.« less

  17. KPOT_wlanger_1: State of the Diffuse ISM: Galactic Observations of the Terahertz CII Line (GOT CPlus)

    NASA Astrophysics Data System (ADS)

    Langer, W.

    2007-10-01

    Star formation activity throughout the Galactic disk depends on the thermal and dynamical state of the interstellar gas, which in turn depends on heating and cooling rates, modulated by the gravitational potential and shock and turbulent pressures. Molecular cloud formation, and thus the star formation, may be regulated by pressures in the interstellar medium (ISM). To understand these processes we need information about the properties of the diffuse atomic and diffuse molecular gas clouds, and Photon Dominated Regions (PDR). An important tracer of these regions is the CII line at 158 microns (1900.5 GHz). We propose a "pencil-beam" survey of CII with HIFI band 7b, based on deep integrations and systematic sparse sampling of the Galactic disk plus selected targets, totaling over 900 lines of sight. We will detect both emission and, against the bright inner Galaxy and selected continuum sources, absorption lines. These spectra will provide the astronomical community with a large rich statistical database of the diffuse cloud properties throughout the Galaxy for understanding the Milky Way ISM and, by extension, other galaxies. It will be extremely valuable for determining the properties of the atomic gas, the role of barometric pressure and turbulence in cloud evolution, and the properties of the interface between the atomic and molecular clouds. The CII line is one of the major ISM cooling lines and is present throughout the Galactic plane. It is the strongest far-IR emission line in the Galaxy, with a total luminosity about a 1000 times that of the CO J=1-0 line. Combined with other data, it can be used to determine density, pressure, and radiation environment in gas clouds, and PDRs, and their dynamics via velocity fields. HSO is the best opportunity over the next several years to probe the ISM in this tracer and will provide a template for large-scale surveys with dedicated small telescopes and future surveys of other important ISM tracers.

  18. SDP_wlanger_3: State of the Diffuse ISM: Galactic Observations of the Terahertz CII Line (GOT CPlus)

    NASA Astrophysics Data System (ADS)

    Langer, W.

    2011-09-01

    Star formation activity throughout the Galactic disk depends on the thermal and dynamical state of the interstellar gas, which in turn depends on heating and cooling rates, modulated by the gravitational potential and shock and turbulent pressures. Molecular cloud formation, and thus the star formation, may be regulated by pressures in the interstellar medium (ISM). To understand these processes we need information about the properties of the diffuse atomic and diffuse molecular gas clouds, and Photon Dominated Regions (PDR). An important tracer of these regions is the CII line at 158 microns (1900.5 GHz). We propose a "pencil-beam" survey of CII with HIFI band 7b, based on deep integrations and systematic sparse sampling of the Galactic disk plus selected targets, totaling over 900 lines of sight. We will detect both emission and, against the bright inner Galaxy and selected continuum sources, absorption lines. These spectra will provide the astronomical community with a large rich statistical database of the diffuse cloud properties throughout the Galaxy for understanding the Milky Way ISM and, by extension, other galaxies. It will be extremely valuable for determining the properties of the atomic gas, the role of barometric pressure and turbulence in cloud evolution, and the properties of the interface between the atomic and molecular clouds. The CII line is one of the major ISM cooling lines and is present throughout the Galactic plane. It is the strongest far-IR emission line in the Galaxy, with a total luminosity about a 1000 times that of the CO J=1-0 line. Combined with other data, it can be used to determine density, pressure, and radiation environment in gas clouds, and PDRs, and their dynamics via velocity fields. HSO is the best opportunity over the next several years to probe the ISM in this tracer and will provide a template for large-scale surveys with dedicated small telescopes and future surveys of other important ISM tracers.

  19. Diffuse Gamma Rays Galactic and Extragalactic Diffuse Emission

    NASA Technical Reports Server (NTRS)

    Moskalenko, Igor V.; Strong, Andrew W.; Reimer, Olaf

    2004-01-01

    Diffuse gamma rays consist of several components: truly diffuse emission from the interstellar medium, the extragalactic background, whose origin is not firmly established yet, and the contribution from unresolved and faint Galactic point sources. One approach to unravel these components is to study the diffuse emission from the interstellar medium, which traces the interactions of high energy particles with interstellar gas and radiation fields. Because of its origin such emission is potentially able to reveal much about the sources and propagation of cosmic rays. The extragalactic background, if reliably determined, can be used in cosmological and blazar studies. Studying the derived average spectrum of faint Galactic sources may be able to give a clue to the nature of the emitting objects.

  20. A Low-metallicity Molecular Cloud in the Lower Galactic Halo

    NASA Astrophysics Data System (ADS)

    Hernandez, Audra K.; Wakker, Bart P.; Benjamin, Robert A.; French, David; Kerp, Juergen; Lockman, Felix J.; O'Toole, Simon; Winkel, Benjamin

    2013-11-01

    We find evidence for the impact of infalling, low-metallicity gas on the Galactic disk. This is based on FUV absorption line spectra, 21 cm emission line spectra, and far-infrared (FIR) mapping to estimate the abundance and physical properties of IV21 (IVC135+54-45), a galactic intermediate-velocity molecular cloud that lies ~300 pc above the disk. The metallicity of IV21 was estimated using observations toward the subdwarf B star PG1144+615, located at a projected distance of 16 pc from the cloud's densest core, by measuring ion and H I column densities for comparison with known solar abundances. Despite the cloud's bright FIR emission and large column densities of molecular gas as traced by CO, we find that it has a sub-solar metallicity of log (Z/Z ⊙) = -0.43 ± 0.12 dex. IV21 is thus the first known sub-solar metallicity cloud in the solar neighborhood. In contrast, most intermediate-velocity clouds (IVC) have near-solar metallicities and are believed to originate in the Galactic Fountain. The cloud's low metallicity is also atypical for Galactic molecular clouds, especially in light of the bright FIR emission which suggest a substantial dust content. The measured I 100 μm/N(H I) ratio is a factor of three below the average found in high latitude H I clouds within the solar neighborhood. We argue that IV21 represents the impact of an infalling, low-metallicity high-velocity cloud that is mixing with disk gas in the lower Galactic halo. Based on observations made with the NASA/ESA Hubble Space Telescope, obtained from MAST at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555. These observations are associated with program No. 12275. The Green Bank Telescope is part of the National Radio Astronomy Observatory which is a Facility of the National Science Foundation, operated by Associated Universities, Inc.

  1. Tiny, Dusty, Galactic HI Clouds: The GALFA-HI Compact Cloud Catalog

    NASA Astrophysics Data System (ADS)

    Saul, Destry R.; Putman, M. E.; Peek, J. G.

    2013-01-01

    The recently published GALFA-HI Compact Cloud Catalog contains 2000 nearby neutral hydrogen clouds under 20' in angular size detected with a machine-vision algorithm in the Galactic Arecibo L-Band Feed Array HI survey (GALFA-HI). At a distance of 1kpc, the compact clouds would typically be 1 solar mass and 1pc in size. We observe that nearly all of the compact clouds that are classified as high velocity (> 90 km/s) are near previously-identified high velocity complexes. We separate the compact clouds into populations based on velocity, linewidth, and position. We have begun to search for evidence of dust in these clouds using IRIS and have detections in several populations.

  2. NuSTAR results from the Galactic Center - diffuse emission

    NASA Astrophysics Data System (ADS)

    Hailey, Charles

    2016-03-01

    The Nuclear Spectroscopic Telescope Array (NuSTAR) was launched in June 2012. It carried the first true, hard X-ray (>~10 keV-79 keV) focusing telescopes into orbit. Its twin telescopes provide 10 times better angular resolution and 100 times better sensitivity than previously obtainable in the hard X-ray band. Consequently NuSTAR is able to resolve faint diffuse structures whose hard X-rays offer insight into some of the most energetic processes in the Galactic Center. One of the surprising discoveries that NuSTAR made in the Galactic Center is the central hard X-ray emission (CHXE). The CHXE is a diffuse emission detected from ~10 keV to beyond 50 keV in X-ray energy, and extending spatially over a region ~8 parsecs x ~4 parsecs in and out of the plane of the galaxy respectively, and centered on the supermassive black hole Sgr A*. The CHXE was speculated to be due to a large population of unresolved black hole X-ray binaries, millisecond pulsars (MSP), a class of highly magnetized white dwarf binaries called intermediate polars, or to particle outflows from Sgr A*. The presence of an unexpectedly large population of MSP in the Galactic Center would be particularly interesting, since MSP emitting at higher energies and over a much larger region have been posited to be the origin of the gamma-ray emission that is also ascribed to dark matter annihilation in the galaxy. In addition, the connection of the CHXE to the ~9000 unidentified X-ray sources in the central the the ~100 pc detected by the Chandra Observatory, to the soft X-ray emission detected by the Chandra and XMM/Newton observatories in the Galactic Center, and to the hard X-ray emission detected by both the RXTE and INTEGRAL observatories in the Galactic Ridge, is unclear. I review these results and present recent NuSTAR observations that potentially resolve the origin of the CHXE and point to a unified origin for all these X-ray emissions. Two other noteworthy classes of diffuse structures in the

  3. RE-EXAMINING LARSON'S SCALING RELATIONSHIPS IN GALACTIC MOLECULAR CLOUDS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heyer, Mark; Krawczyk, Coleman; Duval, Julia

    The properties of Galactic molecular clouds tabulated by Solomon et al. (SRBY) are re-examined using the Boston University-FCRAO Galactic Ring Survey of {sup 13}CO J = 1-0 emission. These new data provide a lower opacity tracer of molecular clouds and improved angular and spectral resolution compared with previous surveys of molecular line emission along the Galactic Plane. We calculate giant molecular cloud (GMC) masses within the SRBY cloud boundaries assuming local thermodynamic equilibrium (LTE) conditions throughout the cloud and a constant H{sub 2} to {sup 13}CO abundance, while accounting for the variation of the {sup 12}C/{sup 13}C with galactocentric radius.more » The LTE-derived masses are typically five times smaller than the SRBY virial masses. The corresponding median mass surface density of molecular hydrogen for this sample is 42 M{sub sun} pc{sup -2}, which is significantly lower than the value derived by SRBY (median 206 M{sub sun} pc{sup -2}) that has been widely adopted by most models of cloud evolution and star formation. This discrepancy arises from both the extrapolation by SRBY of velocity dispersion, size, and CO luminosity to the 1 K antenna temperature isophote that likely overestimates the GMC masses and our assumption of constant {sup 13}CO abundance over the projected area of each cloud. Owing to the uncertainty of molecular abundances in the envelopes of clouds, the mass surface density of GMCs could be larger than the values derived from our {sup 13}CO measurements. From velocity dispersions derived from the {sup 13}CO data, we find that the coefficient of the cloud structure functions, v{sup 0} = {sigma}{sub v}/R {sup 1/2}, is not constant, as required to satisfy Larson's scaling relationships, but rather systematically varies with the surface density of the cloud as {approx}{sigma}{sup 0.5} as expected for clouds in self-gravitational equilibrium.« less

  4. Galactic gamma-ray observations and galactic structure

    NASA Technical Reports Server (NTRS)

    Stecker, F. W.

    1975-01-01

    Recent observations of gamma-rays originating in the galactic disk together with radio observations, support an emerging picture of the overall structure of our galaxy with higher interstellar gas densities and star formation rates in a region which corresponds to that of the inner arms. The emerging picture is one where molecular clouds make up the dominant constituent of the interstellar gas in the inner galaxy and play a key role in accounting for the gamma-rays and phenomena associated with the production of young stars and other population 1 objects. In this picture, cosmic rays are associated with supernovae and are primarily of galactic origin. These newly observed phenomena can be understood as consequences of the density wave theories of spiral structure. Based on these new developments, the suggestion is made that a new galactic population class, Population O, be added to the standard Populations 1 and 2 in order to recognize important differences in dynamics and distribution between diffuse galactic H1 and interstellar molecular clouds.

  5. Masses, luminosities and dynamics of galactic molecular clouds

    NASA Technical Reports Server (NTRS)

    Solomon, P. M.; Rivolo, A. R.; Mooney, T. J.; Barrett, J. W.; Sage, L. J.

    1987-01-01

    Star formation in galaxies takes place in molecular clouds and the Milky Way is the only galaxy in which it is possible to resolve and study the physical properties and star formation activity of individual clouds. The masses, luminosities, dynamics, and distribution of molecular clouds, primarily giant molecular clouds in the Milky Way are described and analyzed. The observational data sets are the Massachusetts-Stony Brook CO Galactic Plane Survey and the IRAS far IR images. The molecular mass and infrared luminosities of glactic clouds are then compared with the molecular mass and infrared luminosities of external galaxies.

  6. Propagation of Galactic cosmic rays: the influence of anisotropic diffusion

    NASA Astrophysics Data System (ADS)

    AL-Zetoun, A.; Achterberg, A.

    2018-06-01

    We consider the anisotropic diffusion of cosmic rays in the large-scale Galactic magnetic field, where diffusion along the field and diffusion across the field proceeds at different rates. To calculate this diffusion, we use stochastic differential equations to describe the cosmic ray propagation, solving these numerically. The Galactic magnetic field is described using the Jansson-Farrar model for the Galactic magnetic field. In this paper, we study the influence of perpendicular diffusion on the residence time of cosmic rays in the Galaxy. This provides an estimate for the influence of anisotropic diffusion on the residence time and the amount of matter (grammage) that a typical cosmic ray traverses during its residence in the Galaxy.

  7. MIRIS observation of near-infrared diffuse Galactic light

    NASA Astrophysics Data System (ADS)

    Onishi, Yosuke; Sano, Kei; Matsuura, Shuji; Jeong, Woong-Seob; Pyo, Jeonghyun; Kim, Il-Jong; Seo, Hyun Jong; Han, Wonyong; Lee, DaeHee; Moon, Bongkon; Park, Wonkee; Park, Younsik; Kim, MinGyu; Matsumoto, Toshio; Matsuhara, Hideo; Nakagawa, Takao; Tsumura, Kohji; Shirahata, Mai; Arai, Toshiaki; Ienaka, Nobuyuki

    2018-06-01

    We report near-infrared (IR) observations of high Galactic latitude clouds to investigate diffuse Galactic light (DGL), which is starlight scattered by interstellar dust grains. The observations were performed at 1.1 and 1.6 μm with a wide-field camera instrument, the Multi-purpose Infra-Red Imaging System (MIRIS) onboard the Korean satellite STSAT-3. The DGL brightness is measured by correlating the near-IR images with a far-IR 100 μm map of interstellar dust thermal emission. The wide-field observation of DGL provides the most accurate DGL measurement achieved to-date. We also find a linear correlation between optical and near-IR DGL in the MBM32 field. To study interstellar dust properties in MBM32, we adopt recent dust models with and without μm-sized very large grains and predict the DGL spectra, taking into account the reddening effect of the interstellar radiation field. The result shows that the observed color of the near-IR DGL is closer to the model spectra without very large grains. This may imply that dust growth in the observed MBM32 field is not active owing to the low density of its interstellar medium.

  8. A general theory for the lifetimes of giant molecular clouds under the influence of galactic dynamics

    NASA Astrophysics Data System (ADS)

    Jeffreson, Sarah M. R.; Kruijssen, J. M. Diederik

    2018-05-01

    We propose a simple analytic theory for environmentally dependent molecular cloud lifetimes, based on the large-scale (galactic) dynamics of the interstellar medium. Within this theory, the cloud lifetime is set by the time-scales for gravitational collapse, galactic shear, spiral arm interactions, epicyclic perturbations, and cloud-cloud collisions. It is dependent on five observable quantities, accessible through measurements of the galactic rotation curve, the gas and stellar surface densities, and the gas and stellar velocity dispersions of the host galaxy. We determine how the relative importance of each dynamical mechanism varies throughout the space of observable galactic properties, and conclude that gravitational collapse and galactic shear play the greatest role in setting the cloud lifetime for the considered range of galaxy properties, while cloud-cloud collisions exert a much lesser influence. All five environmental mechanisms are nevertheless required to obtain a complete picture of cloud evolution. We apply our theory to the galaxies M31, M51, M83, and the Milky Way, and find a strong dependence of the cloud lifetime upon galactocentric radius in each case, with a typical cloud lifetime between 10 and 50 Myr. Our theory is ideally suited for systematic observational tests with the Atacama Large Millimetre/submillimetre array.

  9. HIREGS observations of the Galactic center and Galactic plane: Separation of the diffuse Galactic hard X-ray continuum from the point source spectra

    NASA Technical Reports Server (NTRS)

    Boggs, S. E.; Lin, R. P.; Coburn, W.; Feffer, P.; Pelling, R. M.; Schroeder, P.; Slassi-Sennou, S.

    1997-01-01

    The balloon-borne high resolution gamma ray and X-ray germanium spectrometer (HIREGS) was used to observe the Galactic center and two positions along the Galactic plane from Antarctica in January 1995. For its flight, the collimators were configured to measure the Galactic diffuse hard X-ray continuum between 20 and 200 keV by directly measuring the point source contributions to the wide field of view flux for subtraction. The hard X-ray spectra of GX 1+4 and GRO J1655-40 were measured with the diffuse continuum subtracted off. The analysis technique for source separation is discussed and the preliminary separated spectra for these point sources and the Galactic diffuse emission are presented.

  10. Modulating terrestrial impacts from Oort cloud comets by the adiabatically changing galactic tides

    NASA Astrophysics Data System (ADS)

    Matese, J. J.; Whitman, P. G.; Innanen, K. A.; Valtonen, M. J.

    Time modulation of the flux of new Jupiter-dominated Oort cloud comets is the subject of interest here. The major perturbation of these comets during the present epoch is due to the tidal field of the relatively smooth distribution of matter in the galactic disk. A secondary source of the near-parabolic comet flux are stars penetrating the inner Oort cloud and providing impulses that create brief comet showers. Substantial stellar-induced showers occur approximately every 100 m.y. Less frequent (but stronger) impulses due to giant molecular clouds can also perturb comets from the inner cloud. These occur on timescales of approximately equal to 500 m.y. In contrast to these infrequent stochastic shower phenomena is the continuously varying tidal-induced flux due to the galaxy. As the Sun orbits the galactic center it undergoes quasiharmonic motion about the galactic midplane, which is superimposed on the small eccentricity, near-Keplerian motion in the plane having epicycle period approximately equal to 150 m.y. In the process the galactic tidal field on the Sun/cloud system will vary causing a modulation of the observable Oort cloud flux. We have created a model of the galactic matter distribution as it affects the solar motion over a time interval ranging from 300 m.y. in the past to 100 m.y. into the future. As constraints on the disk's compact dark matter component we require consistency with the following: (1) the observed galactic rotation curve, (2) today's flux distribution of new comets, (3) the studies of K-giant distributions, and (4) the periodicity found in the terrestrial cratering record. The adiabatically varying galactic tidal torque is then determined and used to predict the time dependence of the flux. We find that a model in which approximately half the disk matter is compact is consistent with these constraints. Under such circumstances the peak-to-trough flux variation will be approx. equal to 5:1 with a full width of 9 m.y. This variability

  11. Galactic civilizations - Population dynamics and interstellar diffusion

    NASA Technical Reports Server (NTRS)

    Newman, W. I.; Sagan, C.

    1981-01-01

    A model is developed of the interstellar diffusion of galactic civilizations which takes into account the population dynamics of such civilizations. The problem is formulated in terms of potential theory, with a family of nonlinear partial differential and difference equations specifying population growth and diffusion for an organism with advantageous genes that undergoes random dispersal while increasing in population locally, and a population at zero population growth. In the case of nonlinear diffusion with growth and saturation, it is found that the colonization wavefront from the nearest independently arisen galactic civilization can have reached the earth only if its lifetime exceeds 2.6 million years, or 20 million years if discretization can be neglected. For zero population growth, the corresponding lifetime is 13 billion years. It is concluded that the earth is uncolonized not because interstellar spacefaring civilizations are rare, but because there are too many worlds to be colonized in the plausible colonization lifetime of nearby civilizations, and that there exist no very old galactic civilizations with a consistent policy of the conquest of inhabited worlds.

  12. Diffuse X-ray sky in the Galactic center

    NASA Astrophysics Data System (ADS)

    Koyama, Katsuji

    2018-01-01

    The Galactic diffuse X-ray emission (GDXE) in the Milky Way Galaxy is spatially and spectrally decomposed into the Galactic center X-ray emission (GCXE), the Galactic ridge X-ray emission (GRXE), and the Galactic bulge X-ray emission (GBXE). The X-ray spectra of the GDXE are characterized by the strong K-shell lines of the highly ionized atoms, and the brightest lines are the K-shell transition (principal quantum number transition of n = 2 → 1) of neutral iron (Fe I-Kα), He-like iron (Fe XXV-Heα), and He-like sulfur (S XV-Heα). Accordingly, the GDXE is composed of a high-temperature plasma of ˜7 keV (HTP) and a low-temperature plasma of ˜1 keV, which emit the Fe XXV-Heα and S XV-Heα lines, respectively. The Fe I-Kα line is emitted from nearly neutral irons, and hence the third component of the GDXE is a cool gas (CG). The Fe I-Kα distribution in the GCXE region is clumpy (Fe I-Kα clump), associated with giant molecular cloud (MC) complexes (Sagittarius A, B, C, D, and E) in the central molecular zone. The origin of the Fe I-Kα clumps is the fluorescence and Thomson scattering from the MCs irradiated by past big flares of the supermassive black hole Sagittarius A*. The scale heights and equivalent widths of the Fe I-Kα, Fe XXV-Heα, and Fe XXVI-Lyα (n = 2 → 1 transition of H-like iron) lines are different among the GCXE, GBXE, and GRXE. Therefore, their structures and origins are separately examined. This paper gives an overview of the research history and the present understandings of the GDXE, while in particular focusing on the origin of the HTP and CG in the GCXE.

  13. Polarization of the diffuse galactic light.

    NASA Technical Reports Server (NTRS)

    Sparrow, J. G.; Ney, E. P.

    1972-01-01

    Polarization measurements made from the satellite OSO-5 show that the polarized intensity in the direction of the Scutum arm of the Galaxy is different in intensity and direction of the polarization from that observed due to the zodiacal light. The observations are consistent with polarized diffuse galactic light superposed on the zodiacal light. The results are interpreted in terms of a model in which the galactic starlight is scattered by interstellar dust.

  14. Millimeter-wave Absorption Studies of Molecules in Diffuse Clouds

    NASA Astrophysics Data System (ADS)

    Lucas, Robert; Liszt, Harvey S.

    1999-10-01

    With IRAM instruments in the last few years, we have been using compact extragalactic millimeter wave radio sources as background objects to study the absorption spectrum of diffuse interstellar gas at millimeter wavelengths. The molecular content of interstellar gas has turned out to be unexpectedly rich. Simple polyatomic molecules such as HCO+, C2H are quite ubiquitous near the Galactic plane (beta < 15o), and many species are detected in some directions (CO, HCO+, H2CO, HCN, HNC, CN, C2H, C3H2, H2S, CS, HCS+, SO, SiO). Remarkable proportionality relations are found between related species such as HCO+ and OH, or CN, HCN and HNC. The high abundance of some species is still a challenge for current models of diffuse cloud chemistry. A factor of 10 increase in the sensitivity will make such studies achievable in denser clouds, where the chemistry is still more active and where abundances are nowadays only available by emission measurements, and thus subject to uncertainties due to sometimes poorly understood line formation and excitation conditions.

  15. Planck early results. XXIV. Dust in the diffuse interstellar medium and the Galactic halo

    NASA Astrophysics Data System (ADS)

    Planck Collaboration; Abergel, A.; Ade, P. A. R.; Aghanim, N.; Arnaud, M.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Balbi, A.; Banday, A. J.; Barreiro, R. B.; Bartlett, J. G.; Battaner, E.; Benabed, K.; Benoît, A.; Bernard, J.-P.; Bersanelli, M.; Bhatia, R.; Blagrave, K.; Bock, J. J.; Bonaldi, A.; Bond, J. R.; Borrill, J.; Bouchet, F. R.; Boulanger, F.; Bucher, M.; Burigana, C.; Cabella, P.; Cantalupo, C. M.; Cardoso, J.-F.; Catalano, A.; Cayón, L.; Challinor, A.; Chamballu, A.; Chiang, L.-Y.; Chiang, C.; Christensen, P. R.; Clements, D. L.; Colombi, S.; Couchot, F.; Coulais, A.; Crill, B. P.; Cuttaia, F.; Danese, L.; Davies, R. D.; Davis, R. J.; de Bernardis, P.; de Gasperis, G.; de Rosa, A.; de Zotti, G.; Delabrouille, J.; Delouis, J.-M.; Désert, F.-X.; Dickinson, C.; Donzelli, S.; Doré, O.; Dörl, U.; Douspis, M.; Dupac, X.; Efstathiou, G.; Enßlin, T. A.; Eriksen, H. K.; Finelli, F.; Forni, O.; Frailis, M.; Franceschi, E.; Galeotta, S.; Ganga, K.; Giard, M.; Giardino, G.; Giraud-Héraud, Y.; González-Nuevo, J.; Górski, K. M.; Gratton, S.; Gregorio, A.; Gruppuso, A.; Hansen, F. K.; Harrison, D.; Helou, G.; Henrot-Versillé, S.; Herranz, D.; Hildebrandt, S. R.; Hivon, E.; Hobson, M.; Holmes, W. A.; Hovest, W.; Hoyland, R. J.; Huffenberger, K. M.; Jaffe, A. H.; Joncas, G.; Jones, A.; Jones, W. C.; Juvela, M.; Keihänen, E.; Keskitalo, R.; Kisner, T. S.; Kneissl, R.; Knox, L.; Kurki-Suonio, H.; Lagache, G.; Lamarre, J.-M.; Lasenby, A.; Laureijs, R. J.; Lawrence, C. R.; Leach, S.; Leonardi, R.; Leroy, C.; Linden-Vørnle, M.; Lockman, F. J.; López-Caniego, M.; Lubin, P. M.; Macías-Pérez, J. F.; MacTavish, C. J.; Maffei, B.; Maino, D.; Mandolesi, N.; Mann, R.; Maris, M.; Marshall, D. J.; Martin, P.; Martínez-González, E.; Masi, S.; Matarrese, S.; Matthai, F.; Mazzotta, P.; McGehee, P.; Meinhold, P. R.; Melchiorri, A.; Mendes, L.; Mennella, A.; Miville-Deschênes, M.-A.; Moneti, A.; Montier, L.; Morgante, G.; Mortlock, D.; Munshi, D.; Murphy, A.; Naselsky, P.; Nati, F.; Natoli, P.; Netterfield, C. B.; Nørgaard-Nielsen, H. U.; Noviello, F.; Novikov, D.; Novikov, I.; O'Dwyer, I. J.; Osborne, S.; Pajot, F.; Paladini, R.; Pasian, F.; Patanchon, G.; Perdereau, O.; Perotto, L.; Perrotta, F.; Piacentini, F.; Piat, M.; Pinheiro Gonçalves, D.; Plaszczynski, S.; Pointecouteau, E.; Polenta, G.; Ponthieu, N.; Poutanen, T.; Prézeau, G.; Prunet, S.; Puget, J.-L.; Rachen, J. P.; Reach, W. T.; Reinecke, M.; Renault, C.; Ricciardi, S.; Riller, T.; Ristorcelli, I.; Rocha, G.; Rosset, C.; Rowan-Robinson, M.; Rubiño-Martín, J. A.; Rusholme, B.; Sandri, M.; Santos, D.; Savini, G.; Scott, D.; Seiffert, M. D.; Shellard, P.; Smoot, G. F.; Starck, J.-L.; Stivoli, F.; Stolyarov, V.; Stompor, R.; Sudiwala, R.; Sygnet, J.-F.; Tauber, J. A.; Terenzi, L.; Toffolatti, L.; Tomasi, M.; Torre, J.-P.; Tristram, M.; Tuovinen, J.; Umana, G.; Valenziano, L.; Vielva, P.; Villa, F.; Vittorio, N.; Wade, L. A.; Wandelt, B. D.; Wilkinson, A.; Yvon, D.; Zacchei, A.; Zonca, A.

    2011-12-01

    This paper presents the first results from a comparison of Planck dust maps at 353, 545 and 857GHz, along with IRAS data at 3000 (100 μm) and 5000GHz (60 μm), with Green Bank Telescope 21-cm observations of Hi in 14 fields covering more than 800 deg2 at high Galactic latitude. The main goal of this study is to estimate the far-infrared to sub-millimeter (submm) emissivity of dust in the diffuse local interstellar medium (ISM) and in the intermediate-velocity (IVC) and high-velocity clouds (HVC) of the Galactic halo. Galactic dust emission for fields with average Hi column density lower than 2 × 1020 cm-2 is well correlated with 21-cm emission because in such diffuse areas the hydrogen is predominantly in the neutral atomic phase. The residual emission in these fields, once the Hi-correlated emission is removed, is consistent with the expected statistical properties of the cosmic infrared background fluctuations. The brighter fields in our sample, with an average Hi column density greater than 2 × 1020 cm-2, show significant excess dust emission compared to the Hi column density. Regions of excess lie in organized structures that suggest the presence of hydrogen in molecular form, though they are not always correlated with CO emission. In the higher Hi column density fields the excess emission at 857 GHz is about 40% of that coming from the Hi, but over all the high latitude fields surveyed the molecular mass faction is about 10%. Dust emission from IVCs is detected with high significance by this correlation analysis. Its spectral properties are consistent with, compared to the local ISM values, significantly hotter dust (T ~ 20K), lower submm dust opacity normalized per H-atom, and a relative abundance of very small grains to large grains about four times higher. These results are compatible with expectations for clouds that are part of the Galactic fountain in which there is dust shattering and fragmentation. Correlated dust emission in HVCs is not detected

  16. Diffuse cloud chemistry. [in interstellar matter

    NASA Technical Reports Server (NTRS)

    Van Dishoeck, Ewine F.; Black, John H.

    1988-01-01

    The current status of models of diffuse interstellar clouds is reviewed. A detailed comparison of recent gas-phase steady-state models shows that both the physical conditions and the molecular abundances in diffuse clouds are still not fully understood. Alternative mechanisms are discussed and observational tests which may discriminate between the various models are suggested. Recent developments regarding the velocity structure of diffuse clouds are mentioned. Similarities and differences between the chemistries in diffuse clouds and those in translucent and high latitude clouds are pointed out.

  17. Interacting Cosmic Rays with Molecular Clouds: A Bremsstrahlung Origin of Diffuse High-energy Emission from the Inner 2°×1° of the Galactic Center

    NASA Astrophysics Data System (ADS)

    Yusef-Zadeh, F.; Hewitt, J. W.; Wardle, M.; Tatischeff, V.; Roberts, D. A.; Cotton, W.; Uchiyama, H.; Nobukawa, M.; Tsuru, T. G.; Heinke, C.; Royster, M.

    2013-01-01

    The high-energy activity in the inner few degrees of the Galactic center is traced by diffuse radio, X-ray, and γ-ray emission. The physical relationship between different components of diffuse gas emitting at multiple wavelengths is a focus of this work. We first present radio continuum observations using the Green Bank Telescope and model the nonthermal spectrum in terms of a broken power-law distribution of ~GeV electrons emitting synchrotron radiation. We show that the emission detected by Fermi is primarily due to nonthermal bremsstrahlung produced by the population of synchrotron emitting electrons in the GeV energy range interacting with neutral gas. The extrapolation of the electron population measured from radio data to low and high energies can also explain the origin of Fe I 6.4 keV line and diffuse TeV emission, as observed with Suzaku, XMM-Newton, Chandra, and the H.E.S.S. observatories. The inferred physical quantities from modeling multiwavelength emission in the context of bremsstrahlung emission from the inner ~300 × 120 pc of the Galactic center are constrained to have the cosmic-ray ionization rate ~1-10 × 10-15 s-1, molecular gas heating rate elevating the gas temperature to 75-200 K, fractional ionization of molecular gas 10-6-10-5, large-scale magnetic field 10-20 μG, the density of diffuse and dense molecular gas ~100 and ~103 cm-3 over 300 pc and 50 pc path lengths, and the variability of Fe I Kα 6.4 keV line emission on yearly timescales. Important implications of our study are that GeV electrons emitting in radio can explain the GeV γ-rays detected by Fermi and that the cosmic-ray irradiation model, like the model of the X-ray irradiation triggered by past activity of Sgr A*, can also explain the origin of the variable 6.4 keV emission from Galactic center molecular clouds.

  18. Variation of z-height of the molecular clouds on the Galactic Plane

    NASA Astrophysics Data System (ADS)

    Lee, Y.; Stark, A. A.

    2002-12-01

    Using the Bell Laboratories Galactic plane in the J=1-0 transition of 13CO, (l, b) = (-5o to 117o, -1o to +1o), and cloud identification code, 13CO clouds have been identified and cataloged as a function of threshold temperature. Distance estimates to the identified clouds have been made with several criteria. Minimum and maximum distances to each identified cloud are determined from a set of all the possible distances of a cloud. Several physical parameters can be determined with distances, such as z-height [D sin (b)], CO luminosity, virial mass and so forth. We select the clouds with a ratio of maximum and minimum of CO luminosities less than 3. The number of selected clouds is 281 out of 1400 identified clouds with 1 K threshold temperature. These clouds are mostly located on the tangential positions in the inner Galaxy, and some are in the Outer Galaxy. It is found that the z-height of lower luminosity clouds (less massive clouds) is systimatically larger than that of high-luminosity clouds (more massive clouds). We claim that this is the first observational evidence of the z-height variation depending on the luminosities (or masses) of molecular clouds on the Galactic plane. Our results could be a basis explaining the formation mechanism of massive clouds, such as giant molecular clouds.

  19. Blowing in the Milky Way Wind: Neutral Hydrogen Clouds Tracing the Galactic Nuclear Outflow

    NASA Astrophysics Data System (ADS)

    Di Teodoro, Enrico M.; McClure-Griffiths, N. M.; Lockman, Felix J.; Denbo, Sara R.; Endsley, Ryan; Ford, H. Alyson; Harrington, Kevin

    2018-03-01

    We present the results of a new sensitive survey of neutral hydrogen above and below the Galactic Center with the Green Bank Telescope. The observations extend up to Galactic latitude | b| < 10^\\circ with an effective angular resolution of 9.‧5 and an average rms brightness temperature noise of 40 mK in a 1 {km} {{{s}}}-1 channel. The survey reveals the existence of a population of anomalous high-velocity clouds extending up to heights of about 1.5 kpc from the Galactic plane and showing no signature of Galactic rotation. These clouds have local standard of rest velocities | {V}LSR}| ≲ 360 {km} {{{s}}}-1, and assuming a Galactic Center origin, they have sizes of a few tens of parsec and neutral hydrogen masses spanning 10{--}{10}5 {M}ȯ . Accounting for selection effects, the cloud population is symmetric in longitude, latitude, and V LSR. We model the cloud kinematics in terms of an outflow expanding from the Galactic Center and find the population consistent with being material moving with radial velocity {V}{{w}}≃ 330 {km} {{{s}}}-1 distributed throughout a bicone with opening angle α > 140^\\circ . This simple model implies an outflow luminosity {L}{{w}}> 3× {10}40 erg s‑1 over the past 10 Myr, consistent with star formation feedback in the inner region of the Milky Way, with a cold gas mass-loss rate ≲ 0.1 {{M}ȯ {yr}}-1. These clouds may represent the cold gas component accelerated in the nuclear wind driven by our Galaxy, although some of the derived properties challenge current theoretical models of the entrainment process.

  20. Galactic kinematics of molecuar clouds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stark, A.A.

    1979-01-01

    The kinematics of molecular clouds in the galactic disk are studied to determine the magnitude of cloud-to-coud velocity dispersions and systematic streaming motions. Three observational programs are reported: (i) a strip map of 1 = 180/sup 0/ from b = -9/sup 0/ to +8/sup 0/ observed in CO J = 1 greater than or equal to 0 to an rms noise level of 0.1 K in 250 kHz filters; (ii) a 20-point map of the minor axis of M31, observed in CO J = 1 greater than or equal to 0 to an rms noise level of 20 mK inmore » 1 MHz filters; (iii) three maps in the molecular ring, centered at 1 = 34/sup 0/, 1 = 36/sup 0/ and 1 = 51/sup 0/, each about one degree square, sampled every 0.05/sup 0/ in /sup 13/CO J = 1 greater than or equal to 0 to an rms noise level of 0.1 K in 250 kHz filters. Molecular clouds typically have one dimensional cloud-to-cloud velocity dispersions of about 8 km s/sup -1/. This dispersion is independent of cloud mass over a range of 10/sup 2/M /sub solar/ < M/sub C < 10/sup 5/ /sup 5/M /sub solar/. Clouds more massive than about 10 /sup 5/ /sup 5/M /sub solar/ have a markedly smaller dispersion. These most massive clouds occur preferentially in spiral arms, and result in spiral arm CO emissivities several times that of interarm regions. Also associated with spiral arms are large-scale streaming motions, which amount to 100 km s/sup -1/ in one arm in M31.« less

  1. Gamma-ray burst constraints on the galactic frequency of extrasolar Oort Clouds

    NASA Technical Reports Server (NTRS)

    Shull, J. Michael; Stern, S. Alan

    1995-01-01

    With the strong Compton Gamma-Ray Observatory/Burst and Transient Source Experiment (CGRO/BATSE) evidence that most gamma-ray bursts do not come from galactic neutron stars, models involving the accretion of a comet onto a neutron star (NS) no longer appear to be strong contenders for explaining the majority of bursts. If this is the case, then it is worth asking whether the lack of an observed galactic gamma-ray burst population provides a useful constraint on the number of comets and comet clouds in the galaxy. Owing to the previously unrecognized structural weakness of cometary nuclei, we find the capture cross sections for comet-NS events to be much higher than previously published estimates, with tidal breakup at distances R(sub b) approx. equals 4 x 10(exp 10) cm from the NS. As a result, impacts of comets onto field NSs penetrating the Oort Clouds of other stars are found to dominate all other galactic NS-comet capture rates by a factor of 100. This in turn predicts that if comet clouds are common, there should be a significant population of repeater sources with (1) a galactic distribution, (2) space-correlated repetition, and (3) a wide range of peak luminosities and luminosity time histories. If all main sequence stars have Oort Clouds like our own, we predict approximately 4000 such repeater sources in the Milky Way at any time, each repeating on time scales of months to years. Based on estimates of the sensitivity of the CGRO/BATSE instrument and assuming isotropic gamma-ray beaming from such events, we estimate that a population of approximately 20-200 of these galactic NS-Oort Cloud gamma-ray repeater sources should be detectable by CGRO. In addition, if giant planet formation is common in the galaxy, we estimate that the accretion of isolated comets injected to the interstellar medium by giant planet formation should produce an additional source of galactic, nonrepeating, events. Comparing these estimates to the 3-4 soft gamma-ray repeater sources

  2. The Galactic fountain as an origin for the Smith Cloud

    NASA Astrophysics Data System (ADS)

    Marasco, A.; Fraternali, F.

    2017-01-01

    The recent discovery of an enriched metallicity for the Smith high-velocity H I Cloud (SC) lends support to a Galactic origin for this system. We use a dynamical model of the galactic fountain to reproduce the observed properties of the SC. In our model, fountain clouds are ejected from the region of the disc spiral arms and move through the halo interacting with a pre-existing hot corona. We find that a simple model where cold gas outflows vertically from the Perseus spiral arm reproduces the kinematics and the distance of the SC, but is in disagreement with the cloud's cometary morphology, if this is produced by ram-pressure stripping by the ambient gas. To explain the cloud morphology, we explore two scenarios: (I) the outflow is inclined with respect to the vertical direction and (II) the cloud is entrained by a fast wind that escapes an underlying superbubble. Solutions in agreement with all observational constraints can be found for both cases, the former requires outflow angles >40° while the latter requires ≳1000 km s-1 winds. All scenarios predict that the SC is in the ascending phase of its trajectory and has large - but not implausible - energy requirements.

  3. Global dynamics and diffusion in triaxial galactic models

    NASA Astrophysics Data System (ADS)

    Papaphilippou, Y.

    We apply the Frequency Map Analysis method to the 3--dimensional logarithmic galactic potential in order to clarify the dynamical behaviour of triaxial power--law galactic models. All the fine dynamical details are displayed in the complete frequency map, a direct representation of the system's Arnol'd web. The influence of resonant lines and the extent of the chaotic zones are directly associated with the physical space of the system. Some new results related with the diffusion of galactic orbits are also discussed. This approach reveals many unknown dynamical features of triaxial galactic potentials and provides strong indications that chaos should be an innate characteristic of triaxial configurations.

  4. STABILITY OF GAS CLOUDS IN GALACTIC NUCLEI: AN EXTENDED VIRIAL THEOREM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Xian; Cuadra, Jorge; Amaro-Seoane, Pau, E-mail: xchen@astro.puc.cl, E-mail: jcuadra@astro.puc.cl, E-mail: Pau.Amaro-Seoane@aei.mpg.de

    2016-03-10

    Cold gas entering the central 1–10{sup 2} pc of a galaxy fragments and condenses into clouds. The stability of the clouds determines whether they will be turned into stars or can be delivered to the central supermassive black hole (SMBH) to turn on an active galactic nucleus (AGN). The conventional criteria to assess the stability of these clouds, such as the Jeans criterion and Roche (or tidal) limit, are insufficient here, because they assume the dominance of self-gravity in binding a cloud, and neglect external agents, such as pressure and tidal forces, which are common in galactic nuclei. We formulatemore » a new scheme for judging this stability. We first revisit the conventional Virial theorem, taking into account an external pressure, to identify the correct range of masses that lead to stable clouds. We then extend the theorem to further include an external tidal field, which is equally crucial for the stability in the region of our interest—in dense star clusters, around SMBHs. We apply our extended Virial theorem to find new solutions to controversial problems, namely, the stability of the gas clumps in AGN tori, the circum-nuclear disk in the Galactic Center, and the central molecular zone of the Milky Way. The masses we derive for these structures are orders of magnitude smaller than the commonly used Virial masses (equivalent to the Jeans mass). Moreover, we prove that these clumps are stable, contrary to what one would naively deduce from the Roche (tidal) limit.« less

  5. Carbon Chemistry in Transitional Clouds from the GOT C+ Survey of CII 158 micron Emission in the Galactic Plane

    NASA Astrophysics Data System (ADS)

    Langer, W. D.; Velusamy, T.; Pineda, J.; Willacy, K.; Goldsmith, P. F.

    2011-05-01

    In understanding the lifecycle and chemistry of the interstellar gas, the transition from diffuse atomic to molecular gas clouds is a very important stage. The evolution of carbon from C+ to C0 and CO is a fundamental part of this transition, and C+ along with its carbon chemistry is a key diagnostic. Until now our knowledge of interstellar gas has been limited primarily to the diffuse atomic phase traced by HI and the dense molecular H2 phase traced by CO. However, we have generally been missing an important layer in diffuse and transition clouds, which is denoted by the warm "dark gas'', that is mostly H2 and little HI and CO, and is best traced with C+. Here, we discuss the chemistry in the transition from C+ to C0 and CO in these clouds as understood by a survey of the CII 1.9 THz (158 micron) line from a sparse survey of the inner galaxy over about 40 degrees in longitude as part of the Galactic Observations of Terahertz C+ (GOT C+) program, a Herschel Space Observatory Open Time Key Program to study interstellar clouds by sampling ionized carbon. Using the first results from GOT C+ along 11 LOSs, in a sample of 53 transition clouds, Velusamy, Langer et al. (A&A 521, L18, 2010) detected an excess of CII intensities indicative of a thick H2 layer (a significant warm H2, "dark gas'' component) around the 12CO core. Here we present a much larger, statistically significant sample of a few hundred diffuse and transition clouds traced by CII, along with auxiliary HI and CO data in the inner Galaxy between l=-30° and +30°. Our new and more extensive sample of transition clouds is used to elucidate the time dependent physical and carbon chemical evolution of diffuse to transition clouds, and transition layers. We consider the C+ to CO conversion pathways such as H++ O and C+ + H2 chemistry for CO production to constrain the physical parameters such as the FUV intensity and cosmic ray ionization rate that drive the CO chemistry in the diffuse transition clouds.

  6. Gamma-ray burst constraints on the galactic frequency of extra-solar Oort clouds

    NASA Technical Reports Server (NTRS)

    Shull, J. Michael; Stern, S. Alan

    1994-01-01

    With the strong CGRO/BATSE evidence that most gamma-ray bursts do not come from galactic neutron stars, models involving the accretion of a comet onto a neutron star (NS) no longer appear to be strong contenders for explaining the majority of bursts. If this is the case, then it is worth asking whether the lack of an observed galactic gamma-ray burst population provides a useful constraint on the number of comets and comet clouds in the galaxy. Owing to the previously unrecognized structural weakness of cometary nuclei, we find the capture cross sections for comet-NS events to be much higher than previously published estimates, with tidal breakup at distances R(sub b) approximately equals to 4 x 10(exp 10) cm from the NS. As a result, impacts of comets onto field NS's penetrating the Oort Clouds of other stars are found to dominate all other galactic NS-comet capture rates by a factor of 100. This in turn predicts that if comet clouds are common, there should be a significant population of repeater sources with (1) a galactic distribution, (2) space-correlated repetition, and (3) a wide range of peak luminosities and luminosity time histories. If all main sequences stars have Oort Clouds like our own, we predict approximately 4000 such repeater sources in the Milky Way at any time, each repeating on timescales of months to years. Based on estimates of the sensitivity of the CGRO/BATSE instrument and assuming isotropic gamma-ray beaming from such events, we estimate that a population of approximately 20-200 of these galactic NS-Oort Cloud gamma-ray repeater sources should be detectable by CGRO. In addition, if giant planet formation is common in the galaxy, we estimate that the accretion of isolated comets injected to the interstellar medium by giant planet formation should produce an additional source of galactic, nonrepeating events. Comparing these estimates to the three to four soft gamma-ray repeater sources detected by BATSE, one is forced to conclude that (1

  7. Dusty Disks, Diffuse Clouds, and Dim Suns: Galactic Science with the Infrared Spectrograph on the Spitzer Space Telescope

    NASA Technical Reports Server (NTRS)

    Roellig, T. L.; Watson, D. M.; Uchida, K. I.; Forrest, W. J.; VanCleve, J. E.; Herter, T. L.; Sloan, G. C.; Furlan, E.; Wilson, J. C.; Bernard-Salas, J.

    2004-01-01

    The Infrared Spectrograph (IRS) on the Spitzer Space Telescope has now been in routine science operations since Dec. 14,2003. The IRS Science Team has used a portion of their guaranteed time to pursue three major science themes in galactic astronomy: the evolution of protostellar disks and debris disks; the composition and evolution of diffuse matter and clouds in the interstellar medium; and the composition and structure of brown dwarfs and low-mass main-sequence stars. We report here on the results from the first five months of IRS observations in these programs. Full IRS Spectra have already been obtained for large samples of YSO/protoplanetary disks in the Taurus and TW Hya associations, and or debris disks around main-sequence stars, in which many aspects of the evolution of planetary systems can be addressed for the first time. As anticipated, the mid-infrared IRS observations of brown dwarfs have yielded important new information about their atmospheres, including the identification of NH3 and measurements of new methane features. This work is based on observations made with the Spitzer Space Telescope, which is operated by the Jet Propulsion Laboratory, California Institute of Technology under NASA contract 1407. Support for this work was provided by NASA's Office of Space Science.

  8. Dusty Disks, Diffuse Clouds, and Dim Suns - Galactic Science with the Infrared Spectrograph on the Spitzer Space Telescope

    NASA Astrophysics Data System (ADS)

    Roellig, T. L.; Watson, D. M.; Uchida, K. I.; Forrest, W. J.; Van Cleve, J. E.; Herter, T. L.; Sloan, G. C.; Furlan, E.; Wilson, J. C.; Bernard-Salas, J.; Saumon, D.; Leggett, S.; Chen, C.; Kemper, F.; Hartmann, L.; Marley, M.; Cushing, M.; Mainzer, A. K.; Kirkpatrick, D.; Jura, M.; Houck, J. R.

    2004-05-01

    The Infrared Spectrograph (IRS) on the Spitzer Space Telescope has now been in routine science operations since Dec. 14, 2003. The IRS Science Team has used a portion of their guaranteed time to pursue three major science themes in galactic astronomy: the evolution of protostellar disks and debris disks; the composition and evolution of diffuse matter and clouds in the interstellar medium; and the composition and structure of brown dwarfs and low-mass main-sequence stars. We report here on the results from the first five months of IRS observations in these programs. Full IRS Spectra have already been obtained for large samples of YSO/protoplanetary disks in the Taurus and TW Hya associations, and of debris disks around main-sequence stars, in which many aspects of the evolution of planetary systems can be addressed for the first time. As anticipated, the mid-infrared IRS observations of brown dwarfs have yielded important new information about their atmospheres, including the identification of NH3 and measurements of new methane features. This work is based on observations made with the Spitzer Space Telescope, which is operated by the Jet Propulsion Laboratory, California Institute of Technology under NASA contract 1407. Support for this work was provided by NASA's Office of Space Science.

  9. The Smith Cloud: surviving a high-speed transit of the Galactic disc

    NASA Astrophysics Data System (ADS)

    Tepper-García, Thor; Bland-Hawthorn, Joss

    2018-02-01

    The origin and survival of the Smith high-velocity H I cloud has so far defied explanation. This object has several remarkable properties: (i) its prograde orbit is ≈100 km s-1 faster than the underlying Galactic rotation; (ii) its total gas mass (≳ 4 × 106 M⊙) exceeds the mass of all other high-velocity clouds (HVCs) outside of the Magellanic Stream; (iii) its head-tail morphology extends to the Galactic H I disc, indicating some sort of interaction. The Smith Cloud's kinetic energy rules out models based on ejection from the disc. We construct a dynamically self-consistent, multi-phase model of the Galaxy with a view to exploring whether the Smith Cloud can be understood in terms of an infalling, compact HVC that has transited the Galactic disc. We show that while a dark-matter (DM) free HVC of sufficient mass and density can reach the disc, it does not survive the transit. The most important ingredient to survival during a transit is a confining DM subhalo around the cloud; radiative gas cooling and high spatial resolution (≲ 10pc) are also essential. In our model, the cloud develops a head-tail morphology within ∼10 Myr before and after its first disc crossing; after the event, the tail is left behind and accretes on to the disc within ∼400 Myr. In our interpretation, the Smith Cloud corresponds to a gas 'streamer' that detaches, falls back and fades after the DM subhalo, distorted by the disc passage, has moved on. We conclude that subhaloes with MDM ≲ 109 M⊙ have accreted ∼109 M⊙ of gas into the Galaxy over cosmic time - a small fraction of the total baryon budget.

  10. The Galactic Distribution of OB Associations in Molecular Clouds

    NASA Astrophysics Data System (ADS)

    Williams, Jonathan P.; McKee, Christopher F.

    1997-02-01

    Molecular clouds account for half of the mass of the interstellar medium interior to the solar circle and for all current star formation. Using cloud catalogs of two CO surveys of the first quadrant, we have fitted the mass distribution of molecular clouds to a truncated power law in a similar manner as the luminosity function of OB associations in the companion paper to this work. After extrapolating from the first quadrant to the entire inner Galaxy, we find that the mass of cataloged clouds amounts to only 40% of current estimates of the total Galactic molecular mass. Following Solomon & Rivolo, we have assumed that the remaining molecular gas is in cold clouds, and we normalize the distribution accordingly. The predicted total number of clouds is then shown to be consistent with that observed in the solar neighborhood where cloud catalogs should be more complete. Within the solar circle, the cumulative form of the distribution is \\Nscrc(>M)=105[(Mu/M)0.6-1], where \\Nscrc is the number of clouds, and Mu = 6 × 106 M⊙ is the upper mass limit. The large number of clouds near the upper cutoff to the distribution indicates an underlying physical limit to cloud formation or destruction processes. The slope of the distribution corresponds to d\\Nscrc/dM~M-1.6, implying that although numerically most clouds are of low mass, most of the molecular gas is contained within the most massive clouds. The distribution of cloud masses is then compared to the Galactic distribution of OB association luminosities to obtain statistical estimates of the number of massive stars expected in any given cloud. The likelihood of massive star formation in a cloud is determined, and it is found that the median cloud mass that contains at least one O star is ~105 M⊙. The average star formation efficiency over the lifetime of an association is about 5% but varies by more than 2 orders of magnitude from cloud to cloud and is predicted to increase with cloud mass. O stars photoevaporate

  11. MOLECULAR CLOUDS AND CLUMPS IN THE BOSTON UNIVERSITY-FIVE COLLEGE RADIO ASTRONOMY OBSERVATORY GALACTIC RING SURVEY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rathborne, J. M.; Johnson, A. M.; Jackson, J. M.

    2009-05-15

    The Boston University-Five College Radio Astronomy Observatory (BU-FCRAO) Galactic Ring Survey (GRS) of {sup 13}CO J = 1 {yields} 0 emission covers Galactic longitudes 18{sup 0} < l < 55.{sup 0}7 and Galactic latitudes |b| {<=} 1{sup 0}. Using the SEQUOIA array on the FCRAO 14 m telescope, the GRS fully sampled the {sup 13}CO Galactic emission (46'' angular resolution on a 22'' grid) and achieved a spectral resolution of 0.21 km s{sup -1}. Because the GRS uses {sup 13}CO, an optically thin tracer, rather than {sup 12}CO, an optically thick tracer, the GRS allows a much better determination ofmore » column density and also a cleaner separation of velocity components along a line of sight. With this homogeneous, fully sampled survey of {sup 13}CO emission, we have identified 829 molecular clouds and 6124 clumps throughout the inner Galaxy using the CLUMPFIND algorithm. Here we present details of the catalog and a preliminary analysis of the properties of the molecular clouds and their clumps. Moreover, we compare clouds inside and outside of the 5 kpc ring and find that clouds within the ring typically have warmer temperatures, higher column densities, larger areas, and more clumps compared with clouds located outside the ring. This is expected if these clouds are actively forming stars. This catalog provides a useful tool for the study of molecular clouds and their embedded young stellar objects.« less

  12. Observational evidence of dust evolution in galactic extinction curves

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cecchi-Pestellini, Cesare; Casu, Silvia; Mulas, Giacomo

    Although structural and optical properties of hydrogenated amorphous carbons are known to respond to varying physical conditions, most conventional extinction models are basically curve fits with modest predictive power. We compare an evolutionary model of the physical properties of carbonaceous grain mantles with their determination by homogeneously fitting observationally derived Galactic extinction curves with the same physically well-defined dust model. We find that a large sample of observed Galactic extinction curves are compatible with the evolutionary scenario underlying such a model, requiring physical conditions fully consistent with standard density, temperature, radiation field intensity, and average age of diffuse interstellar clouds.more » Hence, through the study of interstellar extinction we may, in principle, understand the evolutionary history of the diffuse interstellar clouds.« less

  13. A cloud/particle model of the interstellar medium - Galactic spiral structure

    NASA Technical Reports Server (NTRS)

    Levinson, F. H.; Roberts, W. W., Jr.

    1981-01-01

    A cloud/particle model for gas flow in galaxies is developed that incorporates cloud-cloud collisions and supernovae as dominant local processes. Cloud-cloud collisions are the main means of dissipation. To counter this dissipation and maintain local dispersion, supernova explosions in the medium administer radial snowplow pushes to all nearby clouds. The causal link between these processes is that cloud-cloud collisions will form stars and that these stars will rapidly become supernovae. The cloud/particle model is tested and used to investigate the gas dynamics and spiral structures in galaxies where these assumptions may be reasonable. Particular attention is given to whether large-scale galactic shock waves, which are thought to underlie the regular well-delineated spiral structure in some galaxies, form and persist in a cloud-supernova dominated interstellar medium; this question is answered in the affirmative.

  14. The Gas-Grain Chemistry of Galactic Translucent Clouds

    NASA Astrophysics Data System (ADS)

    Maffucci, Dominique M.; Herbst, Eric

    2016-01-01

    We employ a combination of traditional and modified rate equation approaches to simulate the time-dependent gas-grain chemistry that pertains to molecular species observed in absorption in Galactic translucent clouds towards Sgr B2(N). We solve the kinetic rate laws over a range of relevant physical conditions (gas and grain temperatures, particle density, visual extinction, cosmic ray ionization rate) characteristic of translucent clouds by implementing a new grid module that allows for parallelization of the astrochemical simulations. Gas-phase and grain-surface synthetic pathways, chemical timescales, and associated physical sensitivities are discussed for selected classes of species including the cyanopolyynes, complex cyanides, and simple aldehydes.

  15. C+/CO Transitions in the Diffuse ISM: Transitional Cloud Sample from the GOT C+ Survey of [CII] in the inner Galaxy at l = -30deg to 30deg

    NASA Astrophysics Data System (ADS)

    Velusamy, T.; Pineda, J. L.; Langer, W. D.; Willacy, K.; Goldsmith, P. F.

    2011-05-01

    Our knowledge of interstellar gas has been limited primarily to the diffuse atomic phase traced by HI and the well-shielded molecular phase traced by CO. Recently, using the first results of the Herschel Key Project GOT C+, a HIFI C+ survey of the Galactic plane, Velusamy, Langer, Pineda et al. (A&A 521, L18, 2010) have shown that in the diffuse interstellar transition clouds a significant fraction of the carbon exists primarily as C^+ with little C^0 and CO in a warm 'dark gas' layer in which hydrogen is mostly H_2 with little atomic H, surrounding a modest 12CO-emitting core. The [CII] fine structure transition, at 1.9 THz (158 μm) is the best tracer of this component of the interstellar medium, which is critical to our understanding of the atomic to molecular cloud transitions. The Herschel Key Project GOT C+ is designed to study such clouds by observing with HIFI the [CII] line emission along 500 lines of sight (LOSs) throughout the Galactic disk. Here we present the identification and chemical status of a few hundred diffuse and transition clouds traced by [CII], along with auxiliary HI and CO data covering ~100 LOSs in the inner Galaxy between l= -30° and 30°. We identify transition clouds as [CII] components that are characterized by the presence of both HI and 12CO, but no 13CO emission. The intensities, I(CII) and I(HI), are used as measures of the visual extinction, AV, in the cloud up to the C^+/C^0/CO transition layer and a comparison with I(12CO) yields a more complete H_2 molecular inventory. Our results show that [CII] emission is an excellent tool to study transition clouds and their carbon chemistry in the ISM, in particular as a unique tracer of molecular H_2, which is not easily observed by other means. The large sample presented here will serve as a resource to study the chemical and physical status of diffuse transition clouds in a wide range of Galactic environments and constrain the physical parameters such as the FUV intensity and cosmic

  16. GOT C+: A Herschel Space Observatory Key Program to Study the Diffuse ISM

    NASA Astrophysics Data System (ADS)

    Langer, William; Goldsmith, P. F.; Li, D.; Velusamy, T.; Yorke, H. W.

    2009-01-01

    Galactic Observations of the Terahertz C+ Line (GOT C+) is a Herschel Space Observatory (HSO) Key Program to study the diffuse interstellar medium by sampling the C+ fine structure line emission at 1.9 THz (158 microns) in the Galactic disk. Star formation activity is regulated by pressures in the interstellar medium, which in turn depend on heating and cooling rates, modulated by the gravitational potential, and shock and turbulent pressures. To understand these processes we need information about properties of the diffuse atomic and diffuse molecular gas clouds. The 158-micron CII line is an important tracer of diffuse regions, and C+ is a major ISM coolant, the Galaxy's strongest emission line virtually unobscured by dust, with a total luminosity about a 1000 times that of CO J=1-0. The GOT C+ program will obtain high spectral resolution CII spectra using the Heterodyne Instrument for the Far Infrared (HIFI) receiver. It will employ deep integrations, wide velocity coverage (350 km/s) with 0.22 km/s resolution, and systematic sparse sampling of the Galactic disk together with observations of selected targets, of over 900 lines of sight. It will be a resource to determine the properties of the atomic gas, in the (a) overall Galactic disk, (b) central 300pc of the Galactic center, (c) Galactic warp, (d) high latitude HI clouds, and (e) Photon Dominated Regions (PDRs). These spectra will provide the astronomical community with a rich statistical database of diffuse cloud properties, especially those of the atomic gas, sampled throughout the Galaxy for understanding the role of barometric pressure and turbulence in cloud evolution in the Galactic ISM and, by extension, other galaxies. The GOT C+ project will provide a template for future even larger-scale Galactic C+ surveys. This research was conducted at the Jet Propulsion Laboratory and is supported by a NASA grant.

  17. Gas cloud G2 can illuminate the black hole population near the galactic center.

    PubMed

    Bartos, Imre; Haiman, Zoltán; Kocsis, Bence; Márka, Szabolcs

    2013-05-31

    Galactic nuclei are expected to be densely populated with stellar- and intermediate-mass black holes. Exploring this population will have important consequences for the observation prospects of gravitational waves as well as understanding galactic evolution. The gas cloud G2 currently approaching Sgr A* provides an unprecedented opportunity to probe the black hole and neutron star population of the Galactic nucleus. We examine the possibility of a G2-cloud-black-hole encounter and its detectability with current x-ray satellites, such as Chandra and NuSTAR. We find that multiple encounters are likely to occur close to the pericenter, which may be detectable upon favorable circumstances. This opportunity provides an additional important science case for leading x-ray observatories to closely follow G2 on its way to the nucleus.

  18. GOT C+: A Herschel Space Observatory Key Program to Study the Diffuse ISM

    NASA Astrophysics Data System (ADS)

    Langer, William; Velusamy, T.; Goldsmith, P. F.; Li, D.; Pineda, J.; Yorke, H.

    2010-01-01

    Star formation activity is regulated by pressures in the interstellar medium, which in turn depend on heating and cooling rates, modulated by the gravitational potential, and shock and turbulent pressures. To understand these processes we need information about the diffuse atomic and diffuse molecular gas cloud properties. The ionized carbon CII fine structure line at 1.9 THz is an important tracer of the atomic gas in the diffuse regions and the atomic to molecular cloud transformation. Furthermore, C+ is a major ISM coolant, the Galaxy's strongest emission line, with a total luminosity about a 1000 times that of CO J=1-0. Galactic Observations of the Terahertz C+ Line (GOT C+) is a Herschel Space Observatory Open Time Key Program to study the diffuse interstellar medium by sampling CII line emission throughout the Galactic disk. GOT C+ will obtain high spectral resolution CII using the Heterodyne Instrument for the Far Infrared (HIFI) instrument. It employees deep integrations, wide velocity coverage (350 km s-1) with 0.22 km s-1 resolution, and systematic sparse sampling of the Galactic disk together with observations of selected targets, of over 900 lines of sight. It will be a resource of the atomic gas properties, in the (a) Galactic disk, (b) Galaxy's central 300pc, (c) Galactic warp, (d) high latitude HI clouds, and (e) Photon Dominated Regions (PDRs). Along with HI, CO isotopes, and CI spectra, our C+ data will provide the astronomical community with a rich statistical database of diffuse cloud properties, for understanding the role of barometric pressure and turbulence in cloud evolution in the Galactic ISM and, by extension, other galaxies. The GOT C+ project will provide a template for future even larger-scale CII surveys. This research was conducted at the Jet Propulsion Laboratory, California Institute of Technology and is supported by a NASA grant.

  19. Photoevaporation of Dusty Clouds near Active Galactic Nuclei

    NASA Astrophysics Data System (ADS)

    Pier, Edward A.; Voit, G. Mark

    1995-09-01

    We investigate the hydrodynamic and line-emitting properties of dusty clouds exposed to an active galactic nucleus (AGN) continuum. Such clouds may be found on the inner edges of the tori commonly implicated in AGN unification schemes. An X-ray-heated wind will be driven off the surface of such a cloud, eventually destroying it. Dust grains are carried along with the flow and are destroyed by sputtering as the wind heats. In smaller clouds, sputtering regulates the outflow by reducing the radiation force opposing the flow. Cloud evaporation may be fast enough to determine the location of the inner edge of the torus. However, since the evaporation time is much longer than the orbital time, clouds on eccentric orbits can penetrate well inside the inner edge of the torus. Therefore, the ionization structure of the cloud is determined only by the incipient continuum shape. The inner faces of exposed clouds are pressurized primarily by the incident radiation. Radiation pressure on dust grains regulates how gas pressure increases with optical depth. Ionization levels decrease inward, and the bulk of the cloud is molecular and neutral. The effects of dust extinction and high density suppress the hydrogen recombination lines and the forbidden lines from C, N, and 0 ions below observed levels despite the high covering factor expected for the torus. However, the inner edge of the torus is a natural place for producing the iron coronal lines often seen in the spectra of AGNs (i.e., [Fe VII] λ6087, [Fe X] λ6375, [Fe XI] λ7892, and [Fe XIV] λ5303).

  20. Oort's cloud evolution under the influence of the galactic field.

    NASA Astrophysics Data System (ADS)

    Kiryushenkova, N. V.; Chepurova, V. M.; Shershkina, S. L.

    By numerical integration (Everhart's method) of the differential equations of cometary movement in Oort's cloud an attempt was made to observe how the galactic gravitational field changes the orbital elements of these comets during three solar revolutions in the Galaxy. It is shown that the cometary orbits are more elongated, even the initially circular orbits become strongly elliptical, in the outer layers of Oort's cloud it is possible for comets to turn into hyperbolic orbits and to leave the solar system. The boundaries of the solar system have been precised.

  1. INTERACTING COSMIC RAYS WITH MOLECULAR CLOUDS: A BREMSSTRAHLUNG ORIGIN OF DIFFUSE HIGH-ENERGY EMISSION FROM THE INNER 2 Degree-Sign Multiplication-Sign 1 Degree-Sign OF THE GALACTIC CENTER

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yusef-Zadeh, F.; Roberts, D. A.; Royster, M.

    2013-01-01

    The high-energy activity in the inner few degrees of the Galactic center is traced by diffuse radio, X-ray, and {gamma}-ray emission. The physical relationship between different components of diffuse gas emitting at multiple wavelengths is a focus of this work. We first present radio continuum observations using the Green Bank Telescope and model the nonthermal spectrum in terms of a broken power-law distribution of {approx}GeV electrons emitting synchrotron radiation. We show that the emission detected by Fermi is primarily due to nonthermal bremsstrahlung produced by the population of synchrotron emitting electrons in the GeV energy range interacting with neutral gas.more » The extrapolation of the electron population measured from radio data to low and high energies can also explain the origin of Fe I 6.4 keV line and diffuse TeV emission, as observed with Suzaku, XMM-Newton, Chandra, and the H.E.S.S. observatories. The inferred physical quantities from modeling multiwavelength emission in the context of bremsstrahlung emission from the inner {approx}300 Multiplication-Sign 120 pc of the Galactic center are constrained to have the cosmic-ray ionization rate {approx}1-10 Multiplication-Sign 10{sup -15} s{sup -1}, molecular gas heating rate elevating the gas temperature to 75-200 K, fractional ionization of molecular gas 10{sup -6}-10{sup -5}, large-scale magnetic field 10-20 {mu}G, the density of diffuse and dense molecular gas {approx}100 and {approx}10{sup 3} cm{sup -3} over 300 pc and 50 pc path lengths, and the variability of Fe I K{alpha} 6.4 keV line emission on yearly timescales. Important implications of our study are that GeV electrons emitting in radio can explain the GeV {gamma}-rays detected by Fermi and that the cosmic-ray irradiation model, like the model of the X-ray irradiation triggered by past activity of Sgr A*, can also explain the origin of the variable 6.4 keV emission from Galactic center molecular clouds.« less

  2. New constraints on all flavor Galactic diffuse neutrino emission with the ANTARES telescope

    NASA Astrophysics Data System (ADS)

    Albert, A.; André, M.; Anghinolfi, M.; Anton, G.; Ardid, M.; Aubert, J.-J.; Avgitas, T.; Baret, B.; Barrios-Martí, J.; Basa, S.; Belhorma, B.; Bertin, V.; Biagi, S.; Bormuth, R.; Bourret, S.; Bouwhuis, M. C.; Bruijn, R.; Brunner, J.; Busto, J.; Capone, A.; Caramete, L.; Carr, J.; Celli, S.; Cherkaoui El Moursli, R.; Chiarusi, T.; Circella, M.; Coelho, J. A. B.; Coleiro, A.; Coniglione, R.; Costantini, H.; Coyle, P.; Creusot, A.; Díaz, A. F.; Deschamps, A.; de Bonis, G.; Distefano, C.; di Palma, I.; Domi, A.; Donzaud, C.; Dornic, D.; Drouhin, D.; Eberl, T.; El Bojaddaini, I.; El Khayati, N.; Elsässer, D.; Enzenhöfer, A.; Ettahiri, A.; Fassi, F.; Felis, I.; Fusco, L. A.; Galatà, S.; Gay, P.; Giordano, V.; Glotin, H.; Grégoire, T.; Gracia Ruiz, R.; Graf, K.; Hallmann, S.; van Haren, H.; Heijboer, A. J.; Hello, Y.; Hernández-Rey, J. J.; Hößl, J.; Hofestädt, J.; Hugon, C.; Illuminati, G.; James, C. W.; de Jong, M.; Jongen, M.; Kadler, M.; Kalekin, O.; Katz, U.; Kießling, D.; Kouchner, A.; Kreter, M.; Kreykenbohm, I.; Kulikovskiy, V.; Lachaud, C.; Lahmann, R.; Lefèvre, D.; Leonora, E.; Lotze, M.; Loucatos, S.; Marcelin, M.; Margiotta, A.; Marinelli, A.; Martínez-Mora, J. A.; Mele, R.; Melis, K.; Michael, T.; Migliozzi, P.; Moussa, A.; Navas, S.; Nezri, E.; Organokov, M.; Pǎvǎlaş, G. E.; Pellegrino, C.; Perrina, C.; Piattelli, P.; Popa, V.; Pradier, T.; Quinn, L.; Racca, C.; Riccobene, G.; Sánchez-Losa, A.; Saldaña, M.; Salvadori, I.; Samtleben, D. F. E.; Sanguineti, M.; Sapienza, P.; Schüssler, F.; Sieger, C.; Spurio, M.; Stolarczyk, Th.; Taiuti, M.; Tayalati, Y.; Trovato, A.; Turpin, D.; Tönnis, C.; Vallage, B.; van Elewyck, V.; Versari, F.; Vivolo, D.; Vizzoca, A.; Wilms, J.; Zornoza, J. D.; Zúñiga, J.; Gaggero, D.; Grasso, D.; ANTARES Collaboration

    2017-09-01

    The flux of very high-energy neutrinos produced in our Galaxy by the interaction of accelerated cosmic rays with the interstellar medium is not yet determined. The characterization of this flux will shed light on Galactic accelerator features, gas distribution morphology and Galactic cosmic ray transport. The central Galactic plane can be the site of an enhanced neutrino production, thus leading to anisotropies in the extraterrestrial neutrino signal as measured by the IceCube Collaboration. The ANTARES neutrino telescope, located in the Mediterranean Sea, offers a favorable view of this part of the sky, thereby allowing for a contribution to the determination of this flux. The expected diffuse Galactic neutrino emission can be obtained, linking a model of generation and propagation of cosmic rays with the morphology of the gas distribution in the Milky Way. In this paper, the so-called "gamma model" introduced recently to explain the high-energy gamma-ray diffuse Galactic emission is assumed as reference. The neutrino flux predicted by the "gamma model" depends on the assumed primary cosmic ray spectrum cutoff. Considering a radially dependent diffusion coefficient, this proposed scenario is able to account for the local cosmic ray measurements, as well as for the Galactic gamma-ray observations. Nine years of ANTARES data are used in this work to search for a possible Galactic contribution according to this scenario. All flavor neutrino interactions are considered. No excess of events is observed, and an upper limit is set on the neutrino flux of 1.1 (1.2) times the prediction of the "gamma model," assuming the primary cosmic ray spectrum cutoff at 5 (50) PeV. This limit excludes the diffuse Galactic neutrino emission as the major cause of the "spectral anomaly" between the two hemispheres measured by IceCube.

  3. The impact of galactic disc environment on star-forming clouds

    NASA Astrophysics Data System (ADS)

    Nguyen, Ngan K.; Pettitt, Alex R.; Tasker, Elizabeth J.; Okamoto, Takashi

    2018-03-01

    We explore the effect of different galactic disc environments on the properties of star-forming clouds through variations in the background potential in a set of isolated galaxy simulations. Rising, falling, and flat rotation curves expected in halo-dominated, disc-dominated, and Milky Way-like galaxies were considered, with and without an additional two-arm spiral potential. The evolution of each disc displayed notable variations that are attributed to different regimes of stability, determined by shear and gravitational collapse. The properties of a typical cloud were largely unaffected by the changes in rotation curve, but the production of small and large cloud associations was strongly dependent on this environment. This suggests that while differing rotation curves can influence where clouds are initially formed, the average bulk properties are effectively independent of the global environment. The addition of a spiral perturbation made the greatest difference to cloud properties, successfully sweeping the gas into larger, seemingly unbound, extended structures and creating large arm-interarm contrasts.

  4. Galactic civilizations: Population dynamics and interstellar diffusion

    NASA Technical Reports Server (NTRS)

    Newman, W. I.; Sagan, C.

    1978-01-01

    The interstellar diffusion of galactic civilizations is reexamined by potential theory; both numerical and analytical solutions are derived for the nonlinear partial differential equations which specify a range of relevant models, drawn from blast wave physics, soil science, and, especially, population biology. An essential feature of these models is that, for all civilizations, population growth must be limited by the carrying capacity of the environment. Dispersal is fundamentally a diffusion process; a density-dependent diffusivity describes interstellar emigration. Two models are considered: the first describing zero population growth (ZPG), and the second which also includes local growth and saturation of a planetary population, and for which an asymptotic traveling wave solution is found.

  5. The Surprising Complexity of Diffuse and Translucent Clouds Toward SGR B2: Diatomics and COMs from 4 GHz to 1.2 THz

    NASA Astrophysics Data System (ADS)

    McGuire, Brett A.; Corby, Joanna F.; Martin-Drumel, Marie-Aline; Schilke, P.; McCarthy, Michael C.; Remijan, Anthony

    2017-06-01

    Many diffuse and translucent clouds lie along the line of sight between Earth and the Galactic Center that can be probed through molecular absorption at characteristic velocities. We highlight results of a study of diffuse and translucent clouds along the line of sight to Sgr B2, including SOFIA observations of SH near 1.4 THz and GBT PRIMOS observations from 4 to 50 GHz. We find significant variation in the chemical conditions within these clouds, and the abundances do not appear to correlate with the total optical depth. Additionally, from the GBT observations, we report the first detections of multiple complex organic molecules (COMs) in diffuse and translucent clouds, including CH_3CN, HC_3N, CH_3CHO, and NH_2CHO. We compare the GBT results to complementary observations of SH, H_2S, and others at mm, sub-mm, and THz frequencies from the NRAO 12m, Herschel HIFI, and SOFIA facilities, and comment on the insights into interstellar sulfur chemistry which is currently not well constrained.

  6. Fermi Large Area Telescope Measurements of the Diffuse Gamma-Ray Emission at Intermediate Galactic Latitudes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abdo, A.A.; /Naval Research Lab, Wash., D.C.; Ackermann, M.

    The diffuse galactic {gamma}-ray emission is produced by cosmic rays (CRs) interacting with the interstellar gas and radiation field. Measurements by the Energetic Gamma-Ray Experiment Telescope (EGRET) instrument on the Compton Gamma-Ray Observatory indicated excess {gamma}-ray emission {ge}1 GeV relative to diffuse galactic {gamma}-ray emission models consistent with directly measured CR spectra (the so-called 'EGRET GeV excess'). The Large Area Telescope (LAT) instrument on the Fermi Gamma-Ray Space Telescope has measured the diffuse {gamma}-ray emission with improved sensitivity and resolution compared to EGRET. We report on LAT measurements for energies 100 MeV to 10 GeV and galactic latitudes 10{sup o}more » {le} |b| {le} 20{sup o}. The LAT spectrum for this region of the sky is well reproduced by a diffuse galactic {gamma}-ray emission model that is consistent with local CR spectra and inconsistent with the EGRET GeV excess.« less

  7. Fermi Large Area Telescope Measurements of the Diffuse Gamma-Ray Emission at Intermediate Galactic Latitudes

    DOE PAGES

    Abdo, A. A.; Ackermann, M.; Ajello, M.; ...

    2009-12-16

    We report that the diffuse galactic γ-ray emission is produced by cosmic rays (CRs) interacting with the interstellar gas and radiation field. Measurements by the Energetic Gamma-Ray Experiment Telescope (EGRET) instrument on the Compton Gamma-Ray Observatory indicated excess γ-ray emission ≳1 GeV relative to diffuse galactic γ-ray emission models consistent with directly measured CR spectra (the so-called “EGRET GeV excess”). The Large Area Telescope (LAT) instrument on the Fermi Gamma-Ray Space Telescope has measured the diffuse γ -ray emission with improved sensitivity and resolution compared to EGRET. We report on LAT measurements for energies 100 MeV to 10 GeV andmore » galactic latitudes 10° ≤ | b | ≤ 20°. Finally, the LAT spectrum for this region of the sky is well reproduced by a diffuse galactic γ-ray emission model that is consistent with local CR spectra and inconsistent with the EGRET GeV excess.« less

  8. Fermi large area telescope measurements of the diffuse gamma-ray emission at intermediate galactic latitudes.

    PubMed

    Abdo, A A; Ackermann, M; Ajello, M; Anderson, B; Atwood, W B; Axelsson, M; Baldini, L; Ballet, J; Barbiellini, G; Bastieri, D; Baughman, B M; Bechtol, K; Bellazzini, R; Berenji, B; Blandford, R D; Bloom, E D; Bonamente, E; Borgland, A W; Bregeon, J; Brez, A; Brigida, M; Bruel, P; Burnett, T H; Caliandro, G A; Cameron, R A; Caraveo, P A; Casandjian, J M; Cecchi, C; Charles, E; Chekhtman, A; Cheung, C C; Chiang, J; Ciprini, S; Claus, R; Cohen-Tanugi, J; Conrad, J; Dereli, H; Dermer, C D; de Angelis, A; de Palma, F; Digel, S W; Di Bernardo, G; Dormody, M; do Couto e Silva, E; Drell, P S; Dubois, R; Dumora, D; Edmonds, Y; Farnier, C; Favuzzi, C; Fegan, S J; Focke, W B; Frailis, M; Fukazawa, Y; Funk, S; Fusco, P; Gaggero, D; Gargano, F; Gehrels, N; Germani, S; Giebels, B; Giglietto, N; Giordano, F; Glanzman, T; Godfrey, G; Grenier, I A; Grondin, M-H; Grove, J E; Guillemot, L; Guiriec, S; Hanabata, Y; Harding, A K; Hayashida, M; Hays, E; Hughes, R E; Jóhannesson, G; Johnson, A S; Johnson, R P; Johnson, T J; Johnson, W N; Kamae, T; Katagiri, H; Kataoka, J; Kawai, N; Kerr, M; Knödlseder, J; Kocian, M L; Kuehn, F; Kuss, M; Lande, J; Latronico, L; Longo, F; Loparco, F; Lott, B; Lovellette, M N; Lubrano, P; Madejski, G M; Makeev, A; Mazziotta, M N; McConville, W; McEnery, J E; Meurer, C; Michelson, P F; Mitthumsiri, W; Mizuno, T; Moiseev, A A; Monte, C; Monzani, M E; Morselli, A; Moskalenko, I V; Murgia, S; Nolan, P L; Nuss, E; Ohsugi, T; Okumura, A; Omodei, N; Orlando, E; Ormes, J F; Paneque, D; Panetta, J H; Parent, D; Pelassa, V; Pepe, M; Pesce-Rollins, M; Piron, F; Porter, T A; Rainò, S; Rando, R; Razzano, M; Reimer, A; Reimer, O; Reposeur, T; Ritz, S; Rodriguez, A Y; Roth, M; Ryde, F; Sadrozinski, H F-W; Sanchez, D; Sander, A; Saz Parkinson, P M; Scargle, J D; Sellerholm, A; Sgrò, C; Smith, D A; Smith, P D; Spandre, G; Spinelli, P; Starck, J-L; Stecker, F W; Striani, E; Strickman, M S; Strong, A W; Suson, D J; Tajima, H; Takahashi, H; Tanaka, T; Thayer, J B; Thayer, J G; Thompson, D J; Tibaldo, L; Torres, D F; Tosti, G; Tramacere, A; Uchiyama, Y; Usher, T L; Vasileiou, V; Vilchez, N; Vitale, V; Waite, A P; Wang, P; Winer, B L; Wood, K S; Ylinen, T; Ziegler, M

    2009-12-18

    The diffuse galactic gamma-ray emission is produced by cosmic rays (CRs) interacting with the interstellar gas and radiation field. Measurements by the Energetic Gamma-Ray Experiment Telescope (EGRET) instrument on the Compton Gamma-Ray Observatory indicated excess gamma-ray emission greater, > or approximately equal to 1 GeV relative to diffuse galactic gamma-ray emission models consistent with directly measured CR spectra (the so-called "EGRET GeV excess"). The Large Area Telescope (LAT) instrument on the Fermi Gamma-Ray Space Telescope has measured the diffuse gamma-ray emission with improved sensitivity and resolution compared to EGRET. We report on LAT measurements for energies 100 MeV to 10 GeV and galactic latitudes 10 degrees < or = |b| < or = 20 degrees. The LAT spectrum for this region of the sky is well reproduced by a diffuse galactic gamma-ray emission model that is consistent with local CR spectra and inconsistent with the EGRET GeV excess.

  9. Interaction of the 100-year old X-Ray flare produced by a central black hole with diffuse gas in the Galactic center

    NASA Astrophysics Data System (ADS)

    Chernyshov, D.; Cheng, K.; Dogiel, V.; Kong, A.; Ko, C.; Tatischeff, V.; Terrier, R.

    2017-10-01

    We investigate an old X-Ray flare produced by a central black hole which is most likely responsible for the transient X-Ray emission from massive molecular clouds in the Galactic center. This flare should ionize diffuse molecular gas and also excite fluorescence lines e.g. neutral iron line at 6.4 keV. It turns out that the observed diffuse 6.4 keV line can be explained by the same X-Ray flare which illuminates dense molecular clouds. The diffuse emission can also be considered as a tool to limit potential duration and intensity of the primary X-Ray flare. We show that charged particles cannot provide necessary iron ionization rate to reproduce the observed emission. On the other hand ionization of neutral hydrogen cannot be provided by a primary flare and should be done by other mechanisms like for example charged particles. We also claim that recently found afterglow from Swift J1644+57 can be produced by similar event and can be a nice example of a Compton echo observed in a distant galaxy.

  10. Evolutionary Description of Giant Molecular Cloud Mass Functions on Galactic Disks

    NASA Astrophysics Data System (ADS)

    Kobayashi, Masato I. N.; Inutsuka, Shu-ichiro; Kobayashi, Hiroshi; Hasegawa, Kenji

    2017-02-01

    Recent radio observations show that giant molecular cloud (GMC) mass functions noticeably vary across galactic disks. High-resolution magnetohydrodynamics simulations show that multiple episodes of compression are required for creating a molecular cloud in the magnetized interstellar medium. In this article, we formulate the evolution equation for the GMC mass function to reproduce the observed profiles, for which multiple compressions are driven by a network of expanding shells due to H II regions and supernova remnants. We introduce the cloud-cloud collision (CCC) terms in the evolution equation in contrast to previous work (Inutsuka et al.). The computed time evolution suggests that the GMC mass function slope is governed by the ratio of GMC formation timescale to its dispersal timescale, and that the CCC effect is limited only in the massive end of the mass function. In addition, we identify a gas resurrection channel that allows the gas dispersed by massive stars to regenerate GMC populations or to accrete onto pre-existing GMCs. Our results show that almost all of the dispersed gas contributes to the mass growth of pre-existing GMCs in arm regions whereas less than 60% contributes in inter-arm regions. Our results also predict that GMC mass functions have a single power-law exponent in the mass range <105.5 {M}⊙ (where {M}⊙ represents the solar mass), which is well characterized by GMC self-growth and dispersal timescales. Measurement of the GMC mass function slope provides a powerful method to constrain those GMC timescales and the gas resurrecting factor in various environments across galactic disks.

  11. Expectations for high energy diffuse galactic neutrinos for different cosmic ray distributions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pagliaroli, Giulia; Evoli, Carmelo; Villante, Francesco Lorenzo, E-mail: giulia.pagliaroli@gssi.infn.it, E-mail: carmelo.evoli@gssi.infn.it, E-mail: francesco.villante@lngs.infn.it

    2016-11-01

    The interaction of cosmic rays with the gas contained in our Galaxy is a guaranteed source of diffuse high energy neutrinos. We provide expectations for this component by considering different assumptions for the cosmic ray distribution in the Galaxy which are intended to cover the large uncertainty in cosmic ray propagation models. We calculate the angular dependence of the diffuse galactic neutrino flux and the corresponding rate of High Energy Starting Events in IceCube by including the effect of detector angular resolution. Moreover we discuss the possibility to discriminate the galactic component from an isotropic astrophysical flux. We show thatmore » a statistically significant excess of events from the galactic plane in present IceCube data would disfavour models in which the cosmic ray density is uniform , thus bringing relevant information on the cosmic ray radial distribution.« less

  12. 74 MHz nonthermal emission from molecular clouds: evidence for a cosmic ray dominated region at the galactic center.

    PubMed

    Yusef-Zadeh, F; Wardle, M; Lis, D; Viti, S; Brogan, C; Chambers, E; Pound, M; Rickert, M

    2013-10-03

    We present 74 MHz radio continuum observations of the Galactic center region. These measurements show nonthermal radio emission arising from molecular clouds that is unaffected by free–free absorption along the line of sight. We focus on one cloud, G0.13-0.13, representative of the population of molecular clouds that are spatially correlated with steep spectrum (α(327MHz)(74MHz) = 1.3 ± 0.3) nonthermal emission from the Galactic center region. This cloud lies adjacent to the nonthermal radio filaments of the Arc near l 0.2° and is a strong source of 74 MHz continuum, SiO (2-1), and Fe I Kα 6.4 keV line emission. This three-way correlation provides the most compelling evidence yet that relativistic electrons, here traced by 74 MHz emission, are physically associated with the G0.13-0.13 molecular cloud and that low-energy cosmic ray electrons are responsible for the Fe I Kα line emission. The high cosmic ray ionization rate 10(–1)3 s(–1) H(–1) is responsible for heating the molecular gas to high temperatures and allows the disturbed gas to maintain a high-velocity dispersion. Large velocity gradient (LVG) modeling of multitransition SiO observations of this cloud implies H2 densities 10(4–5) cm(–3) and high temperatures. The lower limit to the temperature of G0.13-0.13 is 100 K, whereas the upper limit is as high as 1000 K. Lastly, we used a time-dependent chemical model in which cosmic rays drive the chemistry of the gas to investigate for molecular line diagnostics of cosmic ray heating. When the cloud reaches chemical equilibrium, the abundance ratios of HCN/HNC and N2H+/HCO+ are consistent with measured values. In addition, significant abundance of SiO is predicted in the cosmic ray dominated region of the Galactic center. We discuss different possibilities to account for the origin of widespread SiO emission detected from Galactic center molecular clouds.

  13. The molecular chemistry of diffuse and translucent clouds in the line-of-sight to Sgr B2: Absorption by simple organic and inorganic molecules in the GBT PRIMOS survey

    NASA Astrophysics Data System (ADS)

    Corby, J. F.; McGuire, B. A.; Herbst, E.; Remijan, A. J.

    2018-02-01

    The 1-50 GHz PRebiotic Interstellar MOlecular Survey (PRIMOS) contains 50 molecular absorption lines observed in clouds located in the line-of-sight to Sgr B2(N). The line-of-sight material is associated with diffuse and translucent clouds located in the Galactic center, bar, and spiral arms in the disk. We measured the column densities and estimate abundances, relative to H2, of 11 molecules and additional isotopologues observed in this material. We used absorption by optically thin transitions of c-C3H2 to estimate the molecular hydrogen columns, and argue that this method is preferable to more commonly used methods. We discuss the kinematic structure and abundance patterns of small molecules including the sulfur-bearing species CS, SO, CCS, H2CS, and HCS+; oxygen-bearing molecules OH, SiO, and H2CO; and simple hydrocarbon molecules c-C3H2, l-C3H, and l-C3H+. Finally, we discuss the implications of the observed chemistry for the structure of the gas and dust in the ISM. Highlighted results include the following. First, whereas gas in the disk has a molecular hydrogen fraction of 0.65, clouds on the outer edge of the Galactic bar and in or near the Galactic center have molecular fractions of 0.85 and >0.9, respectively. Second, we observe trends in isotope ratios with Galactocentric distance; while carbon and silicon show enhancement of the rare isotopes at low Galactocentric distances, sulfur exhibits no trend with Galactocentric distance. We also determine that the ratio of c-C3H2/c-H13CCCH provides a good estimate of the 12C/13C ratio, whereas H2CO/H213CO exhibits fractionation. Third, we report the presence of l-C3H+ in diffuse clouds for the first time. Finally, we suggest that CS has an enhanced abundance within higher density clumps of material in the disk, and therefore may be diagnostic of cloud conditions. If this holds, the diffuse clouds in the Galactic disk contain multiple embedded hyperdensities in a clumpy structure, and the density profile is not

  14. The 15 273 Å diffuse interstellar band in the dark cloud Barnard 68

    NASA Astrophysics Data System (ADS)

    Elyajouri, Meriem; Cox, Nick L. J.; Lallement, Rosine

    2017-09-01

    High obscuration of background stars behind dark clouds precludes the detection of optical diffuse interstellar bands (DIBs) and hence our knowledge of DIB carriers in these environments. Taking advantage of the reduced obscuration of starlight in the near-infrared (NIR) we used one of the strongest NIR DIBs at 15 273 Å to probe the presence and properties of its carrier throughout the nearby interstellar dark cloud Barnard 68. We measured equivalent widths (EW) for different ranges of visual extinction AV, using VLT/KMOS H-band (1.46-1.85 μm) moderate-resolution (R 4000) spectra of 43 stars situated behind the cloud. To do so, we fitted the data with synthetic stellar spectra from the APOGEE project and TAPAS synthetic telluric transmissions appropriate for the observing site and time period. The results show an increase of DIB EW with increasing AV. However, the rate of increase is much flatter than expected from the EW-AV quasi-proportionality established for this DIB in the Galactic diffuse interstellar medium. Based on a simplified inversion assuming sphericity, it is found that the volume density of the DIB carrier is 2.7 and 7.9 times lower than this expected average value in the external and central regions of the cloud, which have nH≃ 0.4 and 3.5 × 105 cm-3, respectively. Further measurements with multiplex NIR spectrographs should allow detailed modeling of such an edge effect of this DIB and other bands and help clarify its actual origin. Based on observations collected at the European Organisation for Astronomical Research in the Southern Hemisphere under ESO programme 096.C-0931(A).

  15. Diffuse Galactic gamma rays from shock-accelerated cosmic rays.

    PubMed

    Dermer, Charles D

    2012-08-31

    A shock-accelerated particle flux is proportional to p(-s), where p is the particle momentum, follows from simple theoretical considerations of cosmic-ray acceleration at nonrelativistic shocks followed by rigidity-dependent escape into the Galactic halo. A flux of shock-accelerated cosmic-ray protons with s≈2.8 provides an adequate fit to the Fermi Large Area Telescope γ-ray emission spectra of high-latitude and molecular cloud gas when uncertainties in nuclear production models are considered. A break in the spectrum of cosmic-ray protons claimed by Neronov, Semikoz, and Taylor [Phys. Rev. Lett. 108, 051105 (2012)] when fitting the γ-ray spectra of high-latitude molecular clouds is a consequence of using a cosmic-ray proton flux described by a power law in kinetic energy.

  16. GOT C+: Galactic Plane Survey of the 1.9 THz [CII] Line

    NASA Astrophysics Data System (ADS)

    Langer, William

    2012-01-01

    The ionized carbon [CII] 1.9 THz fine structure line is a major gas coolant in the interstellar medium (ISM) and controls the thermal conditions in diffuse gas clouds and Photodissociation Regions (PDRs). The [CII] line is also an important tracer of the atomic gas and atomic to molecular transition in diffuse clouds throughout the Galaxy. I will review some of the results from the recently completed Galactic Observations of Terahertz C+ (GOT C+) survey. This Herschel Open Time Key Project is a sparse, but uniform volume sample survey of [CII] line emission throughout the Galactic disk using the HIFI heterodyne receiver. HIFI observations, with their high spectral resolution, isolate and locate individual clouds in the Galaxy and provide excitation information on the gas. I will present [CII] position-velocity maps that reveal the distribution and motion of the clouds in the inner Galaxy and discuss results on the physical properties of the gas using spectral observations of [CII] and ancillary HI and 12CO, 13CO, and C18O J=1-0 data. The [CII] emission is also a useful tracer of the "Dark H2 Gas", and I will discuss its distribution in a sample of interstellar clouds. This research was conducted at the Jet Propulsion Laboratory, California Institute of Technology under contract with the National Aeronautics and Space Administration.

  17. The Diffuse Radiation Field at High Galactic Latitudes

    NASA Astrophysics Data System (ADS)

    Akshaya, M. S.; Murthy, Jayant; Ravichandran, S.; Henry, R. C.; Overduin, James

    2018-05-01

    We have used GALEX observations of the north and south Galactic poles to study the diffuse ultraviolet background at locations where the Galactic light is expected to be at a minimum. We find offsets of 230–290 photon units in the far-UV (1531 Å) and 480–580 photon units in the near-UV (2361 Å). Of this, approximately 120 photon units can be ascribed to dust-scattered light and another 110 photon units (190 in the near-UV) to extragalactic radiation. The remaining radiation is, as yet, unidentified and amounts to 120–180 photon units in the far-UV and 300–400 photon units in the near-UV. We find that molecular hydrogen fluorescence contributes to the far-UV when the 100 μm surface brightness is greater than 1.08 MJy sr‑1.

  18. Understanding uncertainties in modeling the galactic diffuse gamma-ray emission

    NASA Astrophysics Data System (ADS)

    Storm, Emma; Calore, Francesca; Weniger, Christoph

    2017-01-01

    The nature of the Galactic diffuse gamma-ray emission as measured by the Fermi Gamma-ray Space Telescope has remained an active area of research for the last several years. A standard technique to disentangle the origins of the diffuse emission is the template fitting approach, where predictions for various diffuse components, such as emission from cosmic rays derived from Galprop or Dragon, are compared to the data. However, this method always results in an overall bad fit to the data, with strong residuals that are difficult to interpret. Additionally, there are instrinsic uncertainties in the predicted templates that are not accounted for naturally with this method. We therefore introduce a new template fitting approach to study the various components of the Galactic diffuse gamma-ray emission, and their correlations and uncertainties. We call this approach Sky Factorization with Adaptive Constrained Templates (SkyFACT). Rather than using fixed predictions from cosmic-ray propagation codes and examining the residuals to evaluate the quality of fits and the presence of excesses, we introduce additional fine-grained variations in the templates that account for uncertainties in the predictions, such as uncertainties in the gas tracers and from small scale variations in the density of cosmic rays. We show that fits to the gamma-ray diffuse emission can be dramatically improved by including an appropriate level of uncertainty in the initial spatial templates from cosmic-ray propagation codes. We further show that we can recover the morphology of the Fermi Bubbles from its spectrum alone with SkyFACT.

  19. 3D ADAPTIVE MESH REFINEMENT SIMULATIONS OF THE GAS CLOUD G2 BORN WITHIN THE DISKS OF YOUNG STARS IN THE GALACTIC CENTER

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schartmann, M.; Ballone, A.; Burkert, A.

    The dusty, ionized gas cloud G2 is currently passing the massive black hole in the Galactic Center at a distance of roughly 2400 Schwarzschild radii. We explore the possibility of a starting point of the cloud within the disks of young stars. We make use of the large amount of new observations in order to put constraints on G2's origin. Interpreting the observations as a diffuse cloud of gas, we employ three-dimensional hydrodynamical adaptive mesh refinement (AMR) simulations with the PLUTO code and do a detailed comparison with observational data. The simulations presented in this work update our previously obtainedmore » results in multiple ways: (1) high resolution three-dimensional hydrodynamical AMR simulations are used, (2) the cloud follows the updated orbit based on the Brackett-γ data, (3) a detailed comparison to the observed high-quality position–velocity (PV) diagrams and the evolution of the total Brackett-γ luminosity is done. We concentrate on two unsolved problems of the diffuse cloud scenario: the unphysical formation epoch only shortly before the first detection and the too steep Brackett-γ light curve obtained in simulations, whereas the observations indicate a constant Brackett-γ luminosity between 2004 and 2013. For a given atmosphere and cloud mass, we find a consistent model that can explain both, the observed Brackett-γ light curve and the PV diagrams of all epochs. Assuming initial pressure equilibrium with the atmosphere, this can be reached for a starting date earlier than roughly 1900, which is close to apo-center and well within the disks of young stars.« less

  20. Galactic Observations of Terahertz C+ (GOT C+): Inner Galaxy Survey

    NASA Astrophysics Data System (ADS)

    Yorke, Harold; Langer, William; Velusamy, T.; Pineda, J. L.; Goldsmith, P. F.; Li, D.

    To understand the lifecycle of the interstellar gas and star formation we need detailed information about the diffuse atomic and diffuse molecular gas cloud properties. The ionized carbon [CII] 1.9 THz fine structure line is an important tracer of the atomic gas in the diffuse regions and the interface regions of atomic gas to molecular clouds. Furthermore, C+ is a major ISM coolant and among the Galaxy's strongest far-IR emission lines, and thus controls the thermal conditions throughout large parts of the Galaxy. Until now our knowledge of interstellar gas has been limited to the diffuse atomic phase traced by HI and to the dense molecular H2 phase traced by CO. However, we are missing an important phase of the ISM, called "dark gas" in which there is no or little, HI, and mostly molecular hydrogen but with insufficient shielding of UV to allow CO to form. C+ emission and absorption lines at 1.9 THz have the potential to trace such cloud transitions and evolution. Galactic Observations of the Terahertz C+ Line (GOT C+) is a Herschel Space Observatory Open Time Key Program to study the diffuse interstellar medium by sampling [CII] 1.9 THz line emission throughout the Galactic disk. We discuss the broader perspective of this survey and the first results of GOT C+ obtained during the Science Demonstration Phase (SDP) and Priority Science Phase (PSP) of HIFI, which focus on approximately 100 lines of sight in the inner galaxy. These observations are being carried out with the Herschel Space Observatory, which is an ESA cornerstone mission, with contributions from NASA. This research was conducted at the Jet Propulsion Laboratory, California Institute of Technology under contract with the National Aeronautics and Space Administration. JLP is a Caltech-JPL Postdoctoral Associate.

  1. Secondary production of neutral pi-mesons and the diffuse galactic gamma radiation

    NASA Technical Reports Server (NTRS)

    Dermer, C. D.

    1986-01-01

    Isobaric and scaling model predictions of the secondary spectra of neutral pi-mesons produced in proton-proton collisions, at energies between threshold and a few GeV, are compared on the basis of accelerator data and found to show the isobaric model to be superior. This model is accordingly used, in conjuction with a scaling model representation at high energies, in a recalculation of the pi exp (0) gamma-radiation's contribution to the diffuse galactic gamma background; the cosmic ray-induced production of photons (whose energy exceeds 100 MeV) by such radiation occurs at a rate of 1.53 x 10 to the -25 photons/(s-H atom). These results are compared with previous calculations of this process as well as with COS-B observations of the diffuse galactic gamma-radiation.

  2. A New Outer Galaxy Molecular Cloud Catalog: Applications to Galactic Structure

    NASA Astrophysics Data System (ADS)

    Kerton, C. R.; Brunt, C. M.; Pomerleau, C.

    2001-12-01

    We have generated a new molecular cloud catalog from a reprocessed version of the Five College Radio Astronomy (FCRAO) Observatory Outer Galaxy Survey (OGS) of 12CO (J=1--0) emission. The catalog has been used to develop a technique that uses the observed angular size-linewidth relation (ASLWR) as a distance indicator to molecular cloud ensembles. The new technique is a promising means to map out the large-scale structure of our Galaxy using the new high spatial dynamic range CO surveys currently available. The catalog was created using a two-stage object-identification algorithm. We first identified contiguous emission structures of a specified minimum number of pixels above a specified temperature threshold. Each structure so defined was then examined and localized emission enhancements within each structure were identified as separate objects. The resulting cloud catalog, contains basic data on 14595 objects. From the OGS we identified twenty-three cloud ensembles. For each, bisector fits to angular size vs. linewidth plots were made. The fits vary in a systematic way that allows a calibration of the fit parameters with distance to be made. Our derived distances to the ensembles are consistent with the distance to the Perseus Arm, and the accurate radial velocity measurements available from the same data are in accord with the known non-circular motions at the location of the Perseus Arm. The ASLWR method was also successfully applied to data from the Boston University/FCRAO Galactic Ring Survey (GRS) of 13CO(J=1--0) emission. Based upon our experience with the GRS and OGS, the ASLWR technique should be usable in any data set with sufficient spatial dynamic range to allow it to be properly calibrated. C.P. participated in this study through the Women in Engineering and Science (WES) program of NRC Canada. The Dominion Radio Astrophysical Observatory is a National Facility operated by the National Research Council. The Canadian Galactic Plane Survey is a Canadian

  3. Global Studies of Molecular Clouds in the Galaxy, the Magellanic Cloud and M31

    NASA Technical Reports Server (NTRS)

    Thaddeus, Patrick

    1998-01-01

    Over the past five years we have used our extensive CO surveys of the Galaxy and M31 in conjunction with spacecraft observations to address central problems in galactic structure and the astrophysics of molecular clouds. These problems included the nature of the molecular ring and its relation to the spiral arms and central bar, the cosmic ray distribution, the origin of the diffuse X-ray background, the distribution and properties of x-ray sources and supernova remnants, and the Galactic stellar mass distribution. For many of these problems, the nearby spiral M31 provided an important complementary perspective.

  4. Cloud Structure of Galactic OB Cluster-forming Regions from Combining Ground- and Space-based Bolometric Observations

    NASA Astrophysics Data System (ADS)

    Lin, Yuxin; Liu, Hauyu Baobab; Li, Di; Zhang, Zhi-Yu; Ginsburg, Adam; Pineda, Jaime E.; Qian, Lei; Galván-Madrid, Roberto; McLeod, Anna Faye; Rosolowsky, Erik; Dale, James E.; Immer, Katharina; Koch, Eric; Longmore, Steve; Walker, Daniel; Testi, Leonardo

    2016-09-01

    We have developed an iterative procedure to systematically combine the millimeter and submillimeter images of OB cluster-forming molecular clouds, which were taken by ground-based (CSO, JCMT, APEX, and IRAM-30 m) and space telescopes (Herschel and Planck). For the seven luminous (L\\gt {10}6 L ⊙) Galactic OB cluster-forming molecular clouds selected for our analyses, namely W49A, W43-Main, W43-South, W33, G10.6-0.4, G10.2-0.3, and G10.3-0.1, we have performed single-component, modified blackbody fits to each pixel of the combined (sub)millimeter images, and the Herschel PACS and SPIRE images at shorter wavelengths. The ˜10″ resolution dust column density and temperature maps of these sources revealed dramatically different morphologies, indicating very different modes of OB cluster-formation, or parent molecular cloud structures in different evolutionary stages. The molecular clouds W49A, W33, and G10.6-0.4 show centrally concentrated massive molecular clumps that are connected with approximately radially orientated molecular gas filaments. The W43-Main and W43-South molecular cloud complexes, which are located at the intersection of the Galactic near 3 kpc (or Scutum) arm and the Galactic bar, show a widely scattered distribution of dense molecular clumps/cores over the observed ˜10 pc spatial scale. The relatively evolved sources G10.2-0.3 and G10.3-0.1 appear to be affected by stellar feedback, and show a complicated cloud morphology embedded with abundant dense molecular clumps/cores. We find that with the high angular resolution we achieved, our visual classification of cloud morphology can be linked to the systematically derived statistical quantities (I.e., the enclosed mass profile, the column density probability distribution function (N-PDF), the two-point correlation function of column density, and the probability distribution function of clump/core separations). In particular, the massive molecular gas clumps located at the center of G10.6-0.4 and

  5. Modeling the Diffuse Cloud-Top Optical Emissions from Ground and Cloud Flashes

    NASA Technical Reports Server (NTRS)

    Solakiewicz, Richard; Koshak, William

    2008-01-01

    A number of studies have indicated that the diffuse cloud-top optical emissions from intra-cloud (IC) lightning are brighter than that from normal negative cloud-to-ground (CG) lightning, and hence would be easier to detect from a space-based sensor. The primary reason provided to substantiate this claim has been that the IC is at a higher altitude within the cloud and therefore is less obscured by the cloud multiple scattering medium. CGs at lower altitudes embedded deep within the cloud are more obscured, so CG detection is thought to be more difficult. However, other authors claim that because the CG source current (and hence luminosity) is typically substantially larger than IC currents, the greater CG source luminosity is large enough to overcome the effects of multiple scattering. These investigators suggest that the diffuse cloud top emissions from CGs are brighter than from ICs, and hence are easier to detect from space. Still other investigators claim that the detection efficiency of CGs and ICs is about the same because modern detector sensitivity is good enough to "see" either flash type no matter which produces a brighter cloud top emission. To better assess which of these opinions should be accepted, we introduce an extension of a Boltzmann lightning radiative transfer model previously developed. It considers characteristics of the cloud (geometry, dimensions, scattering properties) and specific lightning channel properties (length, geometry, location, current, optical wave front propagation speed/direction). As such, it represents the most detailed modeling effort to date. At least in the few cases studied thus far, it was found that IC flashes appear brighter at cloud top than the lower altitude negative ground flashes, but additional model runs are to be examined before finalizing our general conclusions.

  6. Diffuse gamma-ray emission from pulsars in the Large Magellanic Cloud

    NASA Technical Reports Server (NTRS)

    Hartmann, Dieter H.; Brown, Lawrence E.; Schnepf, Neil

    1993-01-01

    We investigate the contribution of pulsars to the diffuse gamma-ray emission from the LMC. The pulsar birth rate in the LMC is a factor of about 10 lower than that of the Galaxy and the distance to pulsars in the LMC is about 5-10 times larger than to Galactic pulsars. The resulting total integrated photon flux from LMC pulsars is thus reduced by a factor of about 100 to 1000. However, the surface brightness is not reduced by the same amount because of the much smaller angular extent of the LMC in comparison to the diffuse glow from the Galactic plane. We show that gamma-ray emission due to pulsars born in the LMC could produce gamma-ray fluxes that are larger than the inverse Compton component from relativistic cosmic-ray electrons and a significant fraction of the extragalactic isotropic background or the diffuse Galactic background in that direction. The diffuse pulsar glow above 100 MeV should therefore be included in models of high-energy emission from the LMC. For a gamma-ray beaming fraction of order unity the detected emissions from the LMC constrain the pulsar birth rate to less than one per 50 yr. This limit is about one order of magnitude above the supernova rate inferred from the historic record or from the star-formation rate.

  7. The diffusion approximation. An application to radiative transfer in clouds

    NASA Technical Reports Server (NTRS)

    Arduini, R. F.; Barkstrom, B. R.

    1976-01-01

    It is shown how the radiative transfer equation reduces to the diffusion equation. To keep the mathematics as simple as possible, the approximation is applied to a cylindrical cloud of radius R and height h. The diffusion equation separates in cylindrical coordinates and, in a sample calculation, the solution is evaluated for a range of cloud radii with cloud heights of 0.5 km and 1.0 km. The simplicity of the method and the speed with which solutions are obtained give it potential as a tool with which to study the effects of finite-sized clouds on the albedo of the earth-atmosphere system.

  8. Uncovering the hidden iceberg structure of the Galactic halo

    NASA Astrophysics Data System (ADS)

    Moss, Vanessa A.; Di Teodoro, Enrico M.; McClure-Griffiths, Naomi M.; Lockman, Felix; Pisano, D. J.; Price, Daniel; Rees, Glen

    2018-01-01

    How the Milky Way gets its gas and keeps its measured star formation rate going are both long-standing mysteries in Galactic studies, with important implications for galaxy evolution across the Universe. I will present our recent discovery of two populations of neutral hydrogen (HI) in the halo of the Milky Way: 1) a narrow line-width dense population typical of the majority of bright high velocity cloud (HVC) components, and 2) a fainter, broad line-width diffuse population that aligns well with the population found in very sensitive pointings such as in Lockman et al. (2002). From our existing data, we concluded that the diffuse population likely outweighs the dense HI by a factor of 3. This discovery of diffuse HI, which appears to be prevalent throughout the halo, takes us closer to solving the Galactic mystery of accretion and reveals a gaseous neutral halo hidden from the view of most large-scale surveys. We are currently carrying out deep Parkes observations to investigate these results further, in order to truly uncover the nature of the diffuse HI and determine whether our 3:1 ratio (based on the limited existing data) is consistent with what is seen when Parkes and the 140 ft Green Bank telescope are employed at comparable sensitivity. With these data, through a combination of both known and new sightline measurements, we aim to reveal the structure of the Galactic halo in more detail than ever before.

  9. Molecular clouds in galaxies with different Z - Fragmentation of diffuse clouds driven by opacity

    NASA Technical Reports Server (NTRS)

    Franco, Jose; Cox, Donald P.

    1986-01-01

    Molecular clouds are formed from diffuse interstellar clouds when the external ultraviolet radiation field is prevented from penetrating into the cloud. The opacity is provided mainly by dust grains and the required column density to the cloud center is larger than about 5 x 10 to the 20th (solar Z/Z)/sq cm. This high-opacity criterion could have a significant impact on the radial trends observed in spiral galaxies, and on the distinctions between spiral and dwarf irregular galaxies.

  10. Global Studies of Molecular Clouds in the Galaxy, The Magellanic Clouds, and M31

    NASA Technical Reports Server (NTRS)

    Thaddeus, Patrick

    1999-01-01

    Over the course of this grant we used various spacecraft surveys of the Galaxy and M31 in conjunction with our extensive CO spectral line surveys to address central problems in galactic structure and the astrophysics of molecular clouds. These problems included the nature of the molecular ring and its relation to the spiral arms and central bar, the cosmic ray distribution, the origin of the diffuse X-ray background, the distribution and properties of x-ray sources and supernova remnants, and the Galactic stellar mass distribution. For many of these problems, the nearby spiral M31 provided an important complementary perspective. Our CO surveys of GMCs (Galactic Molecular Clouds) were crucial for interpreting Galactic continuum surveys from satellites such as GRO (Gamma Ray Observatory), ROSAT (Roentgen Satellite), IRAS (Infrared Astronomy Satellite), and COBE (Cosmic Background Explorer Satellite) because they provided the missing dimension of velocity or kinematic distance. GMCs are a well-defined and widespread population of objects whose velocities we could readily measure throughout the Galaxy. Through various emission and absorption mechanisms involving their gas, dust, or associated Population I objects, GMCs modulate the galactic emission in virtually every major wavelength band. Furthermore, the visibility. of GMCs at so many wavelengths provided various methods of resolving the kinematic distance ambiguity for these objects in the inner Galaxy. Summaries of our accomplishments in each of the major wavelength bands discussed in our original proposal are given

  11. The interstellar medium and star formation of galactic disks. I. Interstellar medium and giant molecular cloud properties with diffuse far-ultraviolet and cosmic-ray backgrounds

    NASA Astrophysics Data System (ADS)

    Li, Qi; Tan, Jonathan C.; Christie, Duncan; Bisbas, Thomas G.; Wu, Benjamin

    2018-05-01

    We present a series of adaptive mesh refinement hydrodynamic simulations of flat rotation curve galactic gas disks, with a detailed treatment of the interstellar medium (ISM) physics of the atomic to molecular phase transition under the influence of diffuse far-ultraviolet (FUV) radiation fields and cosmic-ray backgrounds. We explore the effects of different FUV intensities, including a model with a radial gradient designed to mimic the Milky Way. The effects of cosmic rays, including radial gradients in their heating and ionization rates, are also explored. The final simulations in this series achieve 4 pc resolution across the ˜20 kpc global disk diameter, with heating and cooling followed down to temperatures of ˜10 K. The disks are evolved for 300 Myr, which is enough time for the ISM to achieve a quasi-statistical equilibrium. In particular, the mass fraction of molecular gas is stabilized by ˜200 Myr. Additional global ISM properties are analyzed. Giant molecular clouds (GMCs) are also identified and the statistical properties of their populations are examined. GMCs are tracked as the disks evolve. GMC collisions, which may be a means of triggering star cluster formation, are counted and their rates are compared with analytic models. Relatively frequent GMC collision rates are seen in these simulations, and their implications for understanding GMC properties, including the driving of internal turbulence, are discussed.

  12. HIGH-VELOCITY CLOUDS IN THE GALACTIC ALL SKY SURVEY. I. CATALOG

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moss, V. A.; Kummerfeld, J. K.; McClure-Griffiths, N. M.

    2013-11-01

    We present a catalog of high-velocity clouds (HVCs) from the Galactic All Sky Survey (GASS) of southern sky neutral hydrogen, which has 57 mK sensitivity and 1 km s{sup –1} velocity resolution and was obtained with the Parkes Telescope. Our catalog has been derived from the stray-radiation-corrected second release of GASS. We describe the data and our method of identifying HVCs and analyze the overall properties of the GASS population. We catalog a total of 1693 HVCs at declinations <0°, including 1111 positive velocity HVCs and 582 negative velocity HVCs. Our catalog also includes 295 anomalous velocity clouds (AVCs). Themore » cloud line-widths of our HVC population have a median FWHM of ∼19 km s{sup –1}, which is lower than that found in previous surveys. The completeness of our catalog is above 95% based on comparison with the HIPASS catalog of HVCs upon which we improve by an order of magnitude in spectral resolution. We find 758 new HVCs and AVCs with no HIPASS counterpart. The GASS catalog will shed unprecedented light on the distribution and kinematic structure of southern sky HVCs, as well as delve further into the cloud populations that make up the anomalous velocity gas of the Milky Way.« less

  13. Influence of galactic arm scale dynamics on the molecular composition of the cold and dense ISM. I. Observed abundance gradients in dense clouds

    NASA Astrophysics Data System (ADS)

    Ruaud, M.; Wakelam, V.; Gratier, P.; Bonnell, I. A.

    2018-04-01

    Aim. We study the effect of large scale dynamics on the molecular composition of the dense interstellar medium during the transition between diffuse to dense clouds. Methods: We followed the formation of dense clouds (on sub-parsec scales) through the dynamics of the interstellar medium at galactic scales. We used results from smoothed particle hydrodynamics (SPH) simulations from which we extracted physical parameters that are used as inputs for our full gas-grain chemical model. In these simulations, the evolution of the interstellar matter is followed for 50 Myr. The warm low-density interstellar medium gas flows into spiral arms where orbit crowding produces the shock formation of dense clouds, which are held together temporarily by the external pressure. Results: We show that depending on the physical history of each SPH particle, the molecular composition of the modeled dense clouds presents a high dispersion in the computed abundances even if the local physical properties are similar. We find that carbon chains are the most affected species and show that these differences are directly connected to differences in (1) the electronic fraction, (2) the C/O ratio, and (3) the local physical conditions. We argue that differences in the dynamical evolution of the gas that formed dense clouds could account for the molecular diversity observed between and within these clouds. Conclusions: This study shows the importance of past physical conditions in establishing the chemical composition of the dense medium.

  14. Diffuse Galactic Continuum Gamma Rays. A Model Compatible with EGRET Data and Cosmic-ray Measurements

    NASA Technical Reports Server (NTRS)

    Strong, Andrew W.; Moskalenko, Igor V.; Reimer, Olaf

    2004-01-01

    We present a study of the compatibility of some current models of the diffuse Galactic continuum gamma-rays with EGRET data. A set of regions sampling the whole sky is chosen to provide a comprehensive range of tests. The range of EGRET data used is extended to 100 GeV. The models are computed with our GALPROP cosmic-ray propagation and gamma-ray production code. We confirm that the "conventional model" based on the locally observed electron and nucleon spectra is inadequate, for all sky regions. A conventional model plus hard sources in the inner Galaxy is also inadequate, since this cannot explain the GeV excess away from the Galactic plane. Models with a hard electron injection spectrum are inconsistent with the local spectrum even considering the expected fluctuations; they are also inconsistent with the EGRET data above 10 GeV. We present a new model which fits the spectrum in all sky regions adequately. Secondary antiproton data were used to fix the Galactic average proton spectrum, while the electron spectrum is adjusted using the spectrum of diffuse emission it- self. The derived electron and proton spectra are compatible with those measured locally considering fluctuations due to energy losses, propagation, or possibly de- tails of Galactic structure. This model requires a much less dramatic variation in the electron spectrum than models with a hard electron injection spectrum, and moreover it fits the y-ray spectrum better and to the highest EGRET energies. It gives a good representation of the latitude distribution of the y-ray emission from the plane to the poles, and of the longitude distribution. We show that secondary positrons and electrons make an essential contribution to Galactic diffuse y-ray emission.

  15. THE BOLOCAM GALACTIC PLANE SURVEY. XII. DISTANCE CATALOG EXPANSION USING KINEMATIC ISOLATION OF DENSE MOLECULAR CLOUD STRUCTURES WITH {sup 13}CO(1-0)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ellsworth-Bowers, Timothy P.; Glenn, Jason; Rosolowsky, Erik

    2015-01-20

    We present an expanded distance catalog for 1710 molecular cloud structures identified in the Bolocam Galactic Plane Survey (BGPS) version 2, representing a nearly threefold increase over the previous BGPS distance catalog. We additionally present a new method for incorporating extant data sets into our Bayesian distance probability density function (DPDF) methodology. To augment the dense-gas tracers (e.g., HCO{sup +}(3-2), NH{sub 3}(1,1)) used to derive line-of-sight velocities for kinematic distances, we utilize the Galactic Ring Survey (GRS) {sup 13}CO(1-0) data to morphologically extract velocities for BGPS sources. The outline of a BGPS source is used to select a region ofmore » the GRS {sup 13}CO data, along with a reference region to subtract enveloping diffuse emission, to produce a line profile of {sup 13}CO matched to the BGPS source. For objects with a HCO{sup +}(3-2) velocity, ≈95% of the new {sup 13}CO(1-0) velocities agree with that of the dense gas. A new prior DPDF for kinematic distance ambiguity (KDA) resolution, based on a validated formalism for associating molecular cloud structures with known objects from the literature, is presented. We demonstrate this prior using catalogs of masers with trigonometric parallaxes and H II regions with robust KDA resolutions. The distance catalog presented here contains well-constrained distance estimates for 20% of BGPS V2 sources, with typical distance uncertainties ≲ 0.5 kpc. Approximately 75% of the well-constrained sources lie within 6 kpc of the Sun, concentrated in the Scutum-Centaurus arm. Galactocentric positions of objects additionally trace out portions of the Sagittarius, Perseus, and Outer arms in the first and second Galactic quadrants, and we also find evidence for significant regions of interarm dense gas.« less

  16. Orbital Evolution of Planetesimals by the Galactic Tide

    NASA Astrophysics Data System (ADS)

    Higuchi, A.; Kokubo, E.; Mukai, T.

    2005-05-01

    The Oort cloud is a spherical comet reservoir surrounding the solar system. There is general agreement that the Oort cloud comets are the residual planetesimals of planet formation. The standard scenario of the Oort cloud formation consists of two dynamical stages: (1) giant planets raise the aphelia of planetesimals to the outer region of the solar system and (2) the galactic tide, passing stars, and giant molecular clouds pull up their perihelia out of the planetary region. Here we show the orbital evolution of planetesimals by the galactic tide. Planetesimals with large aphelion distances change their perihelion distances toward the outside of the planetary region by the galactic tide and become members of the Oort cloud. The effect of the galactic tide on the planetesimals with semimajor axes of ˜ 104AU is about 10-3 of the solar gravity. The timescale of the orbital evolution is ˜ 108 years. We consider only the vertical component of the galactic tide. Under the axisymmetric potential, some planetesimals may show the librations around ω (argument of perihelion)=π /2 and 3π /2 (the Kozai mechanism). The alternate increases of eccentricity and inclination of the Kozai mechanism are effective to form the Oort cloud. The secular perturbation theory demonstrates the Kozai mechanism and we can understand the motion of the planetesimals analytically. We apply the Kozai mechanism to the galactic tide and discuss the property of the Oort cloud formed by the Kozai mechanizm. This work was supported by the 21st Century COE Program Origin and Evolution of Planetary Systems of the Ministry of Education, Culture, Sports, Science, and Technology, Japan, and JSPS Research Fellowship for Young Scientists.

  17. TEMPERATURE DISTRIBUTION IN A DIFFUSION CLOUD CHAMBER

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Slavic, I.; Szymakowski, J.; Stachorska, D.

    1961-03-01

    A diffusion cloud chamber with working conditions within a pressure range from 10 mm Hg to 2 atmospheres and at variable boundary surface temperatures in a wide interval is described. A simple procedure is described for cooling and thermoregulating the bottom of the chamber by means of vapor flow of liquid air which makes possible the achievement of temperature up to -120 deg C with stability better that plus or minus 1 deg C. A method for the measurement of temperature distribution by means of a thermistor is described, and a number of curves of the observed temperature gradient, dependentmore » on the boundary surface temperature is given. Analysis of other factors influencing the stable work of the diffusion cloud chamber was made. (auth)« less

  18. FERMI BUBBLE γ-RAYS AS A RESULT OF DIFFUSIVE INJECTION OF GALACTIC COSMIC RAYS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thoudam, Satyendra, E-mail: s.thoudam@astro.ru.nl

    2013-11-20

    Recently, the Fermi Space Telescope discovered two large γ-ray emission regions, the so-called Fermi bubbles, that extend up to ∼50° above and below the Galactic center (GC). The γ-ray emission from the bubbles is found to follow a hard spectrum with no significant spatial variation in intensity and spectral shape. The origin of the emission is still not clearly understood. Suggested explanations include the injection of cosmic-ray (CR) nuclei from the GC by high-speed Galactic winds, electron acceleration by multiple shocks, and stochastic electron acceleration inside the bubbles. In this Letter, it is proposed that the γ-rays may be themore » result of diffusive injection of Galactic CR protons during their propagation through the Galaxy. Considering that the bubbles are slowly expanding, and CRs undergo much slower diffusion inside the bubbles than in the average Galaxy and at the same time suffer losses due to adiabatic expansion and inelastic collisions with the bubble plasma, this model can explain the observed intensity profile, the emission spectrum and the measured luminosity without invoking any additional particle production processes, unlike other existing models.« less

  19. An Infrared Survey of the Diffuse Emission within 5 deg of the Galactic Plane.

    DTIC Science & Technology

    1980-06-05

    t O ±60. Over the region of 100 to 3 0 oi longitude along the galactic equator, this emission can be fit by 500( K black -body emission with a dilution...from the AFGL catalog, which they classify as stars. The assumed background is, therefore, composed of black -body radiators with a characteristic...SUPPLEMENTARY NOTES 19 KEY WORDS (c-nIIl, ,l IY ,I. AIIId-1, hI MI’< A III-15SI, Infra red Diffuse emission Galactic structure 1111 regions yI 40

  20. Interpreting high time resolution galactic cosmic ray observations in a diffusive context

    NASA Astrophysics Data System (ADS)

    Jordan, A.; Spence, H. E.; Blake, J. B.; Shaul, D. A.

    2009-12-01

    We interpret galactic cosmic ray (GCR) variations near Earth within a diffusive context. The variations occur on time-/size-scales ranging from Forbush decreases (Fds), to substructure embedded within Fds, to smaller amplitude and shorter duration variations during relatively benign interplanetary conditions. We use high time resolution GCR observations from the High Sensitivity Telescope (HIST) on Polar and from the Spectrometer for INTEGRAL (SPI) and also use solar wind plasma and magnetic field observations from ACE and/or Wind. To calculate the coefficient of diffusion, we combine these datasets with a simple convection-diffusion model for relativistic charged particles in a magnetic field. We find reasonable agreement between our and previous estimates of the coefficient. We also show whether changes in the coefficient of diffusion are sufficient to explain the above GCR variations.

  1. Present-day Galactic Evolution: Low-metallicity, Warm, Ionized Gas Inflow Associated with High-velocity Cloud Complex A

    NASA Astrophysics Data System (ADS)

    Barger, K. A.; Haffner, L. M.; Wakker, B. P.; Hill, Alex. S.; Madsen, G. J.; Duncan, A. K.

    2012-12-01

    The high-velocity cloud Complex A is a probe of the physical conditions in the Galactic halo. The kinematics, morphology, distance, and metallicity of Complex A indicate that it represents new material that is accreting onto the Galaxy. We present Wisconsin Hα Mapper kinematically resolved observations of Complex A over the velocity range of -250 to -50 km s-1 in the local standard of rest reference frame. These observations include the first full Hα intensity map of Complex A across (\\mathit {l, b}) = (124{^\\circ }, 18{^\\circ }) to (171°, 53°) and deep targeted observations in Hα, [S II] λ6716, [N II] λ6584, and [O I] λ6300 toward regions with high H I column densities, background quasars, and stars. The Hα data imply that the masses of neutral and ionized material in the cloud are similar, both being greater than 106 M ⊙. We find that the Bland-Hawthorn & Maloney model for the intensity of the ionizing radiation near the Milky Way is consistent with the known distance of the high-latitude part of Complex A and an assumed cloud geometry that puts the lower-latitude parts of the cloud at a distance of 7-8 kpc. This compatibility implies a 5% ionizing photon escape fraction from the Galactic disk. We also provide the nitrogen and sulfur upper abundance solutions for a series of temperatures, metallicities, and cloud configurations for purely photoionized gas; these solutions are consistent with the sub-solar abundances found by previous studies, especially for temperatures above 104 K or for gas with a high fraction of singly ionized nitrogen and sulfur.

  2. Galactic Observations of Terahertz C+ (GOT C+): First Results: Inner Galaxy Survey

    NASA Astrophysics Data System (ADS)

    Langer, William; Velusamy, T.; Pineda, J. L.; Goldsmith, P. F.; Li, D.; Yorke, H. W.

    2010-05-01

    To understand the lifecycle of the interstellar gas and star formation we need detailed information about the diffuse atomic and diffuse molecular gas cloud properties. The ionized carbon [CII] 1.9 THz fine structure line is an important tracer of the atomic gas in the diffuse regions and the interface regions of atomic gas to molecular clouds. Furthermore, C+ is a major ISM coolant and among the Galaxy's strongest far-IR emission lines, and thus controls the thermal conditions throughout large parts of the Galaxy. Until now our knowledge of interstellar gas has been limited to the diffuse atomic phase traced by HI and to the dense molecular H2 phase traced by CO. However, we are missing an important phase of the ISM called "dark gas” in which there is no or little, HI, and mostly molecular hydrogen but with insufficient shielding of UV to allow CO to form. C+ emission and absorption lines at 1.9 THz have the potential to trace this gas. Galactic Observations of the Terahertz C+ Line (GOT C+) is a Herschel Space Observatory Open Time Key Program to study the diffuse interstellar medium by sampling [CII] 1.9 THz line emission throughout the Galactic disk. We discuss the broader perspective of this survey and the first results of GOT C+ obtained during the Science Demonstration Phase (SDP) and Priority Science Phase (PSP) of HIFI, which focus on approximately 100 lines of sight in the inner galaxy. This research was conducted at the Jet Propulsion Laboratory, California Institute of Technology under contract with the National Aeronautics and Space Administration.

  3. The North Galactic Pole Rift and the Local Hot Bubble

    NASA Technical Reports Server (NTRS)

    Snowden, S. L.; Koutroumpa, D.; Kuntz, K. D.; Lallement, R.; Puspitarini, L.

    2015-01-01

    The North Galactic Pole Rift (NGPR) is one of the few distinct neutral hydrogen clouds at high Galactic latitudes that have well-defined distances. It is located at the edge of the Local Cavity (LC) and provides an important test case for understanding the Local Hot Bubble (LHB), the presumed location for the hot diffuse plasma responsible for much of the observed 1/4 keV emission originating in the solar neighborhood. Using data from the ROSAT All- Sky Survey and the Planck reddening map, we find the path length within the LC (LHB plus Complex of Local Interstellar Clouds) to be 98 plus or minus 27 pc, in excellent agreement with the distance to the NGPR of 98 +/- 6 pc. In addition, we examine another 14 directions that are distributed over the sky where the LC wall is apparently optically thick at 1/4 keV. We find that the data in these directions are also consistent with the LHB model and a uniform emissivity plasma filling most of the LC.

  4. The Optical-Mid-infrared Extinction Law of the l = 165° Sightline in the Galactic Plane: Diversity of the Extinction Law in the Diffuse Interstellar Medium

    NASA Astrophysics Data System (ADS)

    Wang, Shu; Jiang, B. W.; Zhao, He; Chen, Xiaodian; de Grijs, Richard

    2017-10-01

    Understanding the effects of dust extinction is important to properly interpret observations. The optical total-to-selective extinction ratio, {R}V={A}V/E(B-V), is widely used to describe extinction variations in ultraviolet and optical bands. Since the {R}V=3.1 extinction curve adequately represents the average extinction law of diffuse regions in the Milky Way, it is commonly used to correct observational measurements along sightlines toward diffuse regions in the interstellar medium. However, the {R}V value may vary even along different diffuse interstellar medium sightlines. In this paper, we investigate the optical-mid-infrared (mid-IR) extinction law toward a very diffuse region at l=165^\\circ in the Galactic plane, which was selected based on a CO emission map. Adopting red clump stars as extinction tracers, we determine the optical-mid-IR extinction law for our diffuse region in two APASS bands (B,V), three XSTPS-GAC bands (g,r,I), three 2MASS bands (J,H,{K}s), and two WISE bands (W1,W2). Specifically, 18 red clump stars were selected from the APOGEE-RC catalog based on spectroscopic data in order to explore the diversity of the extinction law. We find that the optical extinction curves exhibit appreciable diversity. The corresponding {R}V ranges from 1.7 to 3.8, while the mean {R}V value of 2.8 is consistent with the widely adopted average value of 3.1 for Galactic diffuse clouds. There is no apparent correlation between {R}V value and color excess E(B-V) in the range of interest, from 0.2 to 0.6 mag, or with specific visual extinction per kiloparsec, {A}V/d.

  5. Cosmic ray injection spectrum at the galactic sources

    NASA Astrophysics Data System (ADS)

    Lagutin, Anatoly; Tyumentsev, Alexander; Volkov, Nikolay

    The spectra of cosmic rays measured at Earth are different from their source spectra. A key to understanding this difference, being crucial for solving the problem of cosmic-ray origin, is the determination of how cosmic-ray (CR) particles propagate through the turbulent interstellar medium (ISM). If the medium is a quasi-homogeneous the propagation process can be described by a normal diffusion model. However, during a last few decades many evidences, both from theory and observations, of the existence of multiscale structures in the Galaxy have been found. Filaments, shells, clouds are entities widely spread in the ISM. In such a highly non-homogeneous (fractal-like) ISM the normal diffusion model certainly is not kept valid. Generalization of this model leads to what is known as "anomalous diffusion". The main goal of the report is to retrieve the cosmic ray injection spectrum at the galactic sources in the framework of the anomalous diffusion (AD) model. The anomaly in this model results from large free paths ("Levy flights") of particles between galactic inhomogeneities. In order to evaluate the CR spectrum at the sources, we carried out new calculation of the CR spectra at Earth. AD equation in terms of fractional derivatives have been used to describe CR propagation from the nearby (r≤1 kpc) young (t≤ 1 Myr) and multiple old distant (r > 1 kpc) sources. The assessment of the key model parameters have been based on the results of the particles diffusion in the cosmic and laboratory plasma. We show that in the framework of the anomalous diffusion model the locally observed basic features of the cosmic rays (difference between spectral exponents of proton, He and other nuclei, "knee" problem, positron to electron ratio) can be explained if the injection spectrum at the main galactic sources of cosmic rays has spectral exponent p˜ 2.85. The authors acknowledge support from The Russian Foundation for Basic Research grant No. 14-02-31524.

  6. SAS-2 observations of the diffuse gamma radiation in the galactic latitude interval from 10 to 90 deg in both hemispheres

    NASA Technical Reports Server (NTRS)

    Fichtel, C. E.; Hartman, R. C.; Kniffen, D. A.; Thompson, D. J.; Ogelman, H. B.; Ozel, M. E.; Tumer, T.

    1977-01-01

    An analysis of all the second Small Astronomy Satellite (SAS-2) gamma-ray data for galactic latitudes higher than 10 deg in both hemispheres has shown that the intensity varies with galactic latitude, being larger near 10 deg than 90 deg. For energies above 100 MeV the gamma-ray data are consistent with a latitude distribution of the form I(b) = C1 + C2/sin b, with the second term being dominant. This result suggests that the radiation above 100 MeV is coming largely from local regions of the galactic disk. Between 35 and 100 MeV, a similar equation is also a good representation of the data, but here the two terms are comparable. These results indicate that the diffuse radiation above 35 MeV consists of two parts, one with a relatively hard galactic component and the other an isotropic steep spectral component which extrapolates back well to the low-energy (less than 10 MeV) diffuse radiation. The steepness of the diffuse isotropic component places significant constraints on possible theoretical models of this radiation.

  7. HST/COS OBSERVATIONS OF GALACTIC HIGH-VELOCITY CLOUDS: FOUR ACTIVE GALACTIC NUCLEUS SIGHT LINES THROUGH COMPLEX C

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shull, J. Michael; Stevans, Matthew; Danforth, Charles

    2011-10-01

    We report ultraviolet spectra of Galactic high-velocity clouds (HVCs) in Complex C, taken by the Cosmic Origins Spectrograph (COS) on the Hubble Space Telescope (HST), together with new 21 cm spectra from the Green Bank Telescope. The wide spectral coverage and higher signal-to-noise ratio, compared to previous HST spectra, provide better velocity definition of the HVC absorption, additional ionization species (including high ions), and improved abundances in this halo gas. Complex C has a metallicity of 10%-30% solar and a wide range of ions, suggesting dynamical and thermal interactions with hot gas in the Galactic halo. Spectra in the COSmore » medium-resolution G130M (1133-1468 A) and G160M (1383-1796 A) gratings detect ultraviolet absorption lines from eight elements in low-ionization states (O I, N I, C II, S II, Si II, Al II, Fe II, P II) and three elements in intermediate- and high-ionization states (Si III, Si IV, C IV, N V). Our four active galactic nucleus sight lines toward Mrk 817, Mrk 290, Mrk 876, and PG 1259+593 have high-velocity H I and O VI column densities, log N{sub Hi}= 19.39-20.05 and log N{sub Ovi}= 13.58-14.10, with substantial amounts of kinematically associated photoionized gas. The high-ion abundance ratios are consistent with cooling interfaces between photoionized and collisionally ionized gas: N(C IV)/N(O VI) {approx} 0.3-0.5, N(Si IV)/N(O VI) {approx} 0.05-0.11, N(N V)/N(O VI) {approx} 0.07-0.13, and N(Si IV)/N(Si III) {approx}0.2.« less

  8. Propagation of Cosmic Rays and Diffuse Galactic Gamma Rays

    NASA Technical Reports Server (NTRS)

    Moskalenko, Igor V.

    2004-01-01

    This paper presents an introduction to the astrophysics of cosmic rays and diffuse gamma-rays and discusses some of the puzzles that have emerged recently due to more precise data and improved propagation models: the excesses in Galactic diffuse gamma-ray emission, secondary antiprotons and positrons, and the flatter than expected gradient of cosmic rays in the Galaxy. These also involve the dark matter, a challenge to modern physics, through its indirect searches in cosmic rays. Though the final solutions are yet to be found, I discuss some ideas and results obtained mostly with the numerical propagation model GALPROP. A fleet of spacecraft and balloon experiments targeting these specific issues is set to lift off in a few years, imparting a feeling of optimism that a new era of exciting discoveries is just around the corner. A complete and comprehensive discussion of all the recent results is not attempted here due to the space limitations.

  9. PRESENT-DAY GALACTIC EVOLUTION: LOW-METALLICITY, WARM, IONIZED GAS INFLOW ASSOCIATED WITH HIGH-VELOCITY CLOUD COMPLEX A

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barger, K. A.; Haffner, L. M.; Wakker, B. P.

    2012-12-20

    The high-velocity cloud Complex A is a probe of the physical conditions in the Galactic halo. The kinematics, morphology, distance, and metallicity of Complex A indicate that it represents new material that is accreting onto the Galaxy. We present Wisconsin H{alpha} Mapper kinematically resolved observations of Complex A over the velocity range of -250 to -50 km s{sup -1} in the local standard of rest reference frame. These observations include the first full H{alpha} intensity map of Complex A across (l, b) = (124 Degree-Sign , 18 Degree-Sign ) to (171 Degree-Sign , 53 Degree-Sign ) and deep targeted observationsmore » in H{alpha}, [S II] {lambda}6716, [N II] {lambda}6584, and [O I] {lambda}6300 toward regions with high H I column densities, background quasars, and stars. The H{alpha} data imply that the masses of neutral and ionized material in the cloud are similar, both being greater than 10{sup 6} M{sub Sun }. We find that the Bland-Hawthorn and Maloney model for the intensity of the ionizing radiation near the Milky Way is consistent with the known distance of the high-latitude part of Complex A and an assumed cloud geometry that puts the lower-latitude parts of the cloud at a distance of 7-8 kpc. This compatibility implies a 5% ionizing photon escape fraction from the Galactic disk. We also provide the nitrogen and sulfur upper abundance solutions for a series of temperatures, metallicities, and cloud configurations for purely photoionized gas; these solutions are consistent with the sub-solar abundances found by previous studies, especially for temperatures above 10{sup 4} K or for gas with a high fraction of singly ionized nitrogen and sulfur.« less

  10. Local Interactions of Hydrometeors by Diffusion in Mixed-Phase Clouds

    NASA Astrophysics Data System (ADS)

    Baumgartner, Manuel; Spichtinger, Peter

    2017-04-01

    Mixed-phase clouds, containing both ice particles and liquid droplets, are important for the Earth-Atmosphere system. They modulate the radiation budget by a combination of albedo effect and greenhouse effect. In contrast to liquid water clouds, the radiative impact of clouds containing ice particles is still uncertain. Scattering and absorption highly depends in microphysical properties of ice crystals, e.g. size and shape. In addition, most precipitation on Earth forms via the ice phase. Thus, better understanding of ice processes as well as their representation in models is required. A key process for determining shape and size of ice crystals is diffusional growth. Diffusion processes in mixed-phase clouds are highly uncertain; in addition they are usually highly simplified in cloud models, especially in bulk microphysics parameterizations. The direct interaction between cloud droplets and ice particles, due to spatial inhomogeneities, is ignored; the particles can only interact via their environmental conditions. Local effects as supply of supersaturation due to clusters of droplets around ice particles are usually not represented, although they form the physical basis of the Wegener-Bergeron-Findeisen process. We present direct numerical simulations of the interaction of single ice particles and droplets, especially their local competition for the available water vapor. In addition, we show an approach to parameterize local interactions by diffusion. The suggested parameterization uses local steady-state solutions of the diffusion equations for water vapor for an ice particle as well as a droplet. The individual solutions are coupled together to obtain the desired interaction. We show some results of the scheme as implemented in a parcel model.

  11. On the formation and confinement of dense clouds in QSOs and active galactic nuclei

    NASA Technical Reports Server (NTRS)

    Marscher, A. P.; Weaver, R. P.

    1979-01-01

    A model for the formation and confinement of dense (at least about 1 billion per cu cm) clouds in QSOs and active galactic nuclei is presented wherein thermal instabilities behind radiative shocks cause the collapse of regions where the preshock density is enhanced over that of the surrounding medium. Such shocks (of total energy around 10 to the 51st ergs) are likely to occur if the frequent optical outbursts observed in many of these objects are accompanied by mass ejections of comparable energy. It is found that clouds quite similar to those thought to exist in QSOs etc. can be created in this manner at radii of the order of 10 to the 17th cm. The clouds can be subsequently accelerated to observed bulk velocities by either radiation pressure or a collision with a much stronger (total energy around 10 to the 53 ergs) shock. Alternatively, their high observed velocities could be caused by gravitational infall or rotation. The mass production required at inner radii by the outflow models can be supplied through a mechanism previously discussed by Shields (1977).

  12. FOREST Unbiased Galactic plane Imaging survey with the Nobeyama 45 m telescope (FUGIN): Molecular clouds toward W ; possible evidence for a cloud-cloud collision triggering O star formation

    NASA Astrophysics Data System (ADS)

    Kohno, Mikito; Torii, Kazufumi; Tachihara, Kengo; Umemoto, Tomofumi; Minamidani, Tetsuhiro; Nishimura, Atsushi; Fujita, Shinji; Matsuo, Mitsuhiro; Yamagishi, Mitsuyoshi; Tsuda, Yuya; Kuriki, Mika; Kuno, Nario; Ohama, Akio; Hattori, Yusuke; Sano, Hidetoshi; Yamamoto, Hiroaki; Fukui, Yasuo

    2018-05-01

    We observed molecular clouds in the W 33 high-mass star-forming region associated with compact and extended H II regions using the NANTEN2 telescope as well as the Nobeyama 45 m telescope in the J = 1-0 transitions of 12CO, 13CO, and C18O as part of the FOREST Unbiased Galactic plane Imaging survey with the Nobeyama 45 m telescope (FUGIN) legacy survey. We detected three velocity components at 35 km s-1, 45 km s-1, and 58 km s-1. The 35 km s-1 and 58 km s-1 clouds are likely to be physically associated with W 33 because of the enhanced 12CO J = 3-2 to J = 1-0 intensity ratio as R_3-2/1-0 > 1.0 due to the ultraviolet irradiation by OB stars, and morphological correspondence between the distributions of molecular gas and the infrared and radio continuum emissions excited by high-mass stars. The two clouds show complementary distributions around W 33. The velocity separation is too large to be gravitationally bound, and yet not explained by expanding motion by stellar feedback. Therefore, we discuss whether a cloud-cloud collision scenario likely explains the high-mass star formation in W 33.

  13. SAS-2 observations of the diffuse gamma radiation in the galactic latitude interval 10 deg absolute b or equal to 90 deg

    NASA Technical Reports Server (NTRS)

    Fichtel, C. E.; Hartman, R. C.; Kniffen, D. A.; Thompson, D. J.; Oegelman, H. B.; Oezel, M. E.; Tuemer, T.

    1977-01-01

    An analysis of all of the second small astronomy satellite gamma-ray data for galactic latitudes with the absolute value of b 10 deg has shown that the intensity varies with galactic latitude, being larger near 10 deg than 90 deg. For energies above 100 MeV the gamma-ray data are consistent with a latitude distribution of the form I(b) = C sub 1 + C sub 2/sin b, with the second term being dominant. This result suggests that the radiation above 100 MeV is coming largely from local regions of the galactic disk. Between 35 and 100 MeV, a similar equation is also a good representation of the data, but here the two terms are comparable. These results indicate that the diffuse radiation above 35 MeV consists of two parts, one with a relatively hard galactic component and the other an isotropic, steep spectral component which extrapolates back well to the low energy diffuse radiation. The steepness of the diffuse isotropic component places significant constraints on possible theoretical models of this radiation.

  14. THE GALACTIC CENTER CLOUD G2 AND ITS GAS STREAMER

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pfuhl, Oliver; Gillessen, Stefan; Eisenhauer, Frank

    2015-01-10

    We present new, deep near-infrared SINFONI @ VLT integral field spectroscopy of the gas cloud G2 in the Galactic Center, from late 2013 August, 2014 April, and 2014 July. G2 is visible in recombination line emission. The spatially resolved kinematic data track the ongoing tidal disruption. The cloud reached minimum distance to the MBH of 1950 Schwarzschild radii. As expected for an observation near the pericenter passage, roughly half of the gas in 2014 is found at the redshifted, pre-pericenter side of the orbit, while the other half is at the post-pericenter, blueshifted side. We also present an orbital solutionmore » for the gas cloud G1, which was discovered a decade ago in L'-band images when it was spatially almost coincident with Sgr A*. The orientation of the G1 orbit in the three angles is almost identical to that of G2, but it has a lower eccentricity and smaller semi-major axis. We show that the observed astrometric positions and radial velocities of G1 are compatible with the G2 orbit, assuming that (1) G1 was originally on the G2 orbit preceding G2 by 13 yr, and (2) a simple drag force acted on it during pericenter passage. Taken together with the previously described tail of G2, which we detect in recombination line emission and thermal broadband emission, we propose that G2 may be a bright knot in a much more extensive gas streamer. This matches purely gaseous models for G2, such as a stellar wind clump or the tidal debris from a partial disruption of a star.« less

  15. Optical observations related to the molecular chemistry in diffuse interstellar clouds

    NASA Technical Reports Server (NTRS)

    Federman, S. R.

    1987-01-01

    Observations, which have been published since 1979, of molecular species in diffuse clouds are discussed. Particular attention is given to the ultraviolet measurements of CO with the Copernicus and IUE satellites and to ground-based optical measurements of CH, CH(+), CN, and 02. These data encompass large enough samples to test the chemical schemes expected to occur in diffuse clouds. Upper limits for other species (e.g., H2O, H2O(+), and C3) place restrictions on the pathways for molecular production. Moreover, analysis of the rotational distribution of the C2 molecule results in the determination of the physical conditions of the cloud. These parameters, including density, temperature, and the intensity of the radiation field, are necessary for modeling the chemistry.

  16. Penetration of Cosmic Rays into Dense Molecular Clouds: Role of Diffuse Envelopes

    NASA Astrophysics Data System (ADS)

    Ivlev, A. V.; Dogiel, V. A.; Chernyshov, D. O.; Caselli, P.; Ko, C.-M.; Cheng, K. S.

    2018-03-01

    A flux of cosmic rays (CRs) propagating through a diffuse ionized gas can excite MHD waves, thus generating magnetic disturbances. We propose a generic model of CR penetration into molecular clouds through their diffuse envelopes, and identify the leading physical processes controlling their transport on the way from a highly ionized interstellar medium to the dense interior of the cloud. The model allows us to describe a transition between a free streaming of CRs and their diffusive propagation, determined by the scattering on the self-generated disturbances. A self-consistent set of equations, governing the diffusive transport regime in an envelope and the MHD turbulence generated by the modulated CR flux, is characterized by two dimensionless numbers. We demonstrate a remarkable mutual complementarity of different mechanisms leading to the onset of the diffusive regime, which results in a universal energy spectrum of the modulated CRs. In conclusion, we briefly discuss implications of our results for several fundamental astrophysical problems, such as the spatial distribution of CRs in the Galaxy as well as the ionization, heating, and chemistry in dense molecular clouds. This paper is dedicated to the memory of Prof. Vadim Tsytovich.

  17. Galactic plane gamma-radiation

    NASA Technical Reports Server (NTRS)

    Hartman, R. C.; Kniffen, D. A.; Thompson, D. J.; Fichtel, C. E.; Ogelman, H. B.; Tumer, T.; Ozel, M. E.

    1979-01-01

    Analysis of the SAS 2 data together with the COS B results shows that the distribution of galactic gamma-radiation has several similarities to that of other large-scale tracers of galactic structure. The radiation is primarily confined to a thin disc which exhibits offsets from b = 0 degrees similar to warping at radio frequencies. The principal distinction of the gamma-radiation is a stronger contrast in intensity between the region from 310 to 45 degrees in longitude and the regions away from the center that can be attributed to a variation in cosmic-ray density as a function of position in Galaxy. The diffuse galactic gamma-ray energy spectrum shows no significant variation in direction, and the spectrum seen along the plane is the same as that for the galactic component of the gamma-radiation at high altitudes. The uniformity of the galactic gamma-ray spectrum, the smooth decrease in intensity as a function of altitude, and the absence of any galactic gamma-ray sources at high altitudes indicate a diffuse origin for bulk of the galactic gamma-radiation rather than a collection of localized sources.

  18. FOREST Unbiased Galactic plane Imaging survey with the Nobeyama 45 m telescope (FUGIN): Molecular clouds toward W 33; possible evidence for a cloud-cloud collision triggering O star formation

    NASA Astrophysics Data System (ADS)

    Kohno, Mikito; Torii, Kazufumi; Tachihara, Kengo; Umemoto, Tomofumi; Minamidani, Tetsuhiro; Nishimura, Atsushi; Fujita, Shinji; Matsuo, Mitsuhiro; Yamagishi, Mitsuyoshi; Tsuda, Yuya; Kuriki, Mika; Kuno, Nario; Ohama, Akio; Hattori, Yusuke; Sano, Hidetoshi; Yamamoto, Hiroaki; Fukui, Yasuo

    2018-01-01

    We observed molecular clouds in the W 33 high-mass star-forming region associated with compact and extended H II regions using the NANTEN2 telescope as well as the Nobeyama 45 m telescope in the J = 1-0 transitions of 12CO, 13CO, and C18O as part of the FOREST Unbiased Galactic plane Imaging survey with the Nobeyama 45 m telescope (FUGIN) legacy survey. We detected three velocity components at 35 km s-1, 45 km s-1, and 58 km s-1. The 35 km s-1 and 58 km s-1 clouds are likely to be physically associated with W 33 because of the enhanced 12CO J = 3-2 to J = 1-0 intensity ratio as R3-2/1-0 > 1.0 due to the ultraviolet irradiation by OB stars, and morphological correspondence between the distributions of molecular gas and the infrared and radio continuum emissions excited by high-mass stars. The two clouds show complementary distributions around W 33. The velocity separation is too large to be gravitationally bound, and yet not explained by expanding motion by stellar feedback. Therefore, we discuss whether a cloud-cloud collision scenario likely explains the high-mass star formation in W 33.

  19. FOREST Unbiased Galactic plane Imaging survey with the Nobeyama 45 m telescope (FUGIN): Molecular clouds toward W 33; possible evidence for a cloud-cloud collision triggering O star formation

    NASA Astrophysics Data System (ADS)

    Kohno, Mikito; Torii, Kazufumi; Tachihara, Kengo; Umemoto, Tomofumi; Minamidani, Tetsuhiro; Nishimura, Atsushi; Fujita, Shinji; Matsuo, Mitsuhiro; Yamagishi, Mitsuyoshi; Tsuda, Yuya; Kuriki, Mika; Kuno, Nario; Ohama, Akio; Hattori, Yusuke; Sano, Hidetoshi; Yamamoto, Hiroaki; Fukui, Yasuo

    2018-05-01

    We observed molecular clouds in the W 33 high-mass star-forming region associated with compact and extended H II regions using the NANTEN2 telescope as well as the Nobeyama 45 m telescope in the J = 1-0 transitions of 12CO, 13CO, and C18O as part of the FOREST Unbiased Galactic plane Imaging survey with the Nobeyama 45 m telescope (FUGIN) legacy survey. We detected three velocity components at 35 km s-1, 45 km s-1, and 58 km s-1. The 35 km s-1 and 58 km s-1 clouds are likely to be physically associated with W 33 because of the enhanced 12CO J = 3-2 to J = 1-0 intensity ratio as R_3-2/1-0} > 1.0 due to the ultraviolet irradiation by OB stars, and morphological correspondence between the distributions of molecular gas and the infrared and radio continuum emissions excited by high-mass stars. The two clouds show complementary distributions around W 33. The velocity separation is too large to be gravitationally bound, and yet not explained by expanding motion by stellar feedback. Therefore, we discuss whether a cloud-cloud collision scenario likely explains the high-mass star formation in W 33.

  20. A Model for the Onset of Self-gravitation and Star Formation in Molecular Gas Governed by Galactic Forces. I. Cloud-scale Gas Motions

    NASA Astrophysics Data System (ADS)

    Meidt, Sharon E.; Leroy, Adam K.; Rosolowsky, Erik; Kruijssen, J. M. Diederik; Schinnerer, Eva; Schruba, Andreas; Pety, Jerome; Blanc, Guillermo; Bigiel, Frank; Chevance, Melanie; Hughes, Annie; Querejeta, Miguel; Usero, Antonio

    2018-02-01

    Modern extragalactic molecular gas surveys now reach the scales of star-forming giant molecular clouds (GMCs; 20–50 pc). Systematic variations in GMC properties with galaxy environment imply that clouds are not universally self-gravitating objects, decoupled from their surroundings. Here we re-examine the coupling of clouds to their environment and develop a model for 3D gas motions generated by forces arising with the galaxy gravitational potential defined by the background disk of stars and dark matter. We show that these motions can resemble or even exceed the motions needed to support gas against its own self-gravity throughout typical galactic disks. The importance of the galactic potential in spiral arms and galactic centers suggests that the response to self-gravity does not always dominate the motions of gas at GMC scales, with implications for observed gas kinematics, virial equilibrium, and cloud morphology. We describe how a uniform treatment of gas motions in the plane and in the vertical direction synthesizes the two main mechanisms proposed to regulate star formation: vertical pressure equilibrium and shear/Coriolis forces as parameterized by Toomre Q ≈ 1. As the modeled motions are coherent and continually driven by the external potential, they represent support for the gas that is distinct from that conventionally attributed to turbulence, which decays rapidly and thus requires maintenance, e.g., via feedback from star formation. Thus, our model suggests that the galaxy itself can impose an important limit on star formation, as we explore in a second paper in this series.

  1. Red Fluorescent Line Emission from Hydrogen Molecules in Diffuse Molecular Clouds

    NASA Technical Reports Server (NTRS)

    Neufeld, David A.; Spaans, Marco

    1996-01-01

    We have modeled the fluorescent pumping of electronic and vibrational emissions of molecular hydrogen (H2) within diffuse molecular clouds that are illuminated by ultraviolet continuum radiation. Fluorescent line intensities are predicted for transitions at ultraviolet, infrared, and red visible wavelengths as functions of the gas density, the visual extinction through the cloud, and the intensity of the incident UV continuum radiation. The observed intensity in each fluorescent transition is roughly proportional to the integrated rate of H2 photodissociation along the line of sight. Although the most luminous fluorescent emissions detectable from ground-based observatories lie at near-infrared wavelengths, we argue that the lower sky brightness at visible wavelengths makes the red fluorescent transitions a particularly sensitive probe. Fabry-Perot spectrographs of the type that have been designed to observe very faint diffuse Ha emissions are soon expected to yield sensitivities that will be adequate to detect H2 vibrational emissions from molecular clouds that are exposed to ultraviolet radiation no stronger than the mean radiation field within the Galaxy. Observations of red H2 fluorescent emission together with cospatial 21 cm H I observations could serve as a valuable probe of the gas density in diffuse molecular clouds.

  2. Molecular clouds in the NGC 6334 and NGC 6357 region: Evidence for a 100 pc-scale cloud-cloud collision triggering the Galactic mini-starbursts

    NASA Astrophysics Data System (ADS)

    Fukui, Yasuo; Kohno, Mikito; Yokoyama, Keiko; Torii, Kazufumi; Hattori, Yusuke; Sano, Hidetoshi; Nishimura, Atsushi; Ohama, Akio; Yamamoto, Hiroaki; Tachihara, Kengo

    2018-03-01

    We carried out new CO (J = 1-0, 2-1, and 3-2) observations with NANTEN2 and ASTE in the region of the twin Galactic mini-starbursts NGC 6334 and NGC 6357. We detected two velocity molecular components of 12 km s-1 velocity separation, which is continuous over 3° along the plane. In NGC 6334 the two components show similar two-peaked intensity distributions toward the young H II regions and are linked by a bridge feature. In NGC 6357 we found spatially complementary distribution between the two velocity components as well as a bridge feature in velocity. Based on these results we hypothesize that the two clouds in the two regions collided with each other in the past few Myr and triggered the formation of the starbursts over ˜ 100 pc. We suggest that the formation of the starbursts happened toward the collisional region of extent ˜ 10 pc with initial high molecular column densities. For NGC 6334 we present a scenario which includes spatial variation of the colliding epoch due to non-uniform cloud separation. The scenario possibly explains the apparent age differences among the young O stars in NGC 6334, which range from 104 yr to 106 yr; the latest collision happened within 105 yr toward the youngest stars in NGC 6334 I(N) and I which exhibit molecular outflows without H II regions. For NGC 6357 the O stars were formed a few Myr ago, and the cloud dispersal by the O stars is significant. We conclude that cloud-cloud collision offers a possible explanation of the mini-starburst over a 100 pc scale.

  3. Molecular clouds in the NGC 6334 and NGC 6357 region; Evidence for a 100-pc-scale cloud-cloud collision triggering the Galactic mini-starbursts

    NASA Astrophysics Data System (ADS)

    Fukui, Yasuo; Kohno, Mikito; Yokoyama, Keiko; Torii, Kazufumi; Hattori, Yusuke; Sano, Hidetoshi; Nishimura, Atsushi; Ohama, Akio; Yamamoto, Hiroaki; Tachihara, Kengo

    2018-03-01

    We carried out new CO (J = 1-0, 2-1, and 3-2) observations with NANTEN2 and ASTE in the region of the twin Galactic mini-starbursts NGC 6334 and NGC 6357. We detected two velocity molecular components of 12 km s-1 velocity separation, which is continuous over 3° along the plane. In NGC 6334 the two components show similar two-peaked intensity distributions toward the young H II regions and are linked by a bridge feature. In NGC 6357 we found spatially complementary distribution between the two velocity components as well as a bridge feature in velocity. Based on these results we hypothesize that the two clouds in the two regions collided with each other in the past few Myr and triggered the formation of the starbursts over ˜ 100 pc. We suggest that the formation of the starbursts happened toward the collisional region of extent ˜ 10 pc with initial high molecular column densities. For NGC 6334 we present a scenario which includes spatial variation of the colliding epoch due to non-uniform cloud separation. The scenario possibly explains the apparent age differences among the young O stars in NGC 6334, which range from 104 yr to 106 yr; the latest collision happened within 105 yr toward the youngest stars in NGC 6334 I(N) and I which exhibit molecular outflows without H II regions. For NGC 6357 the O stars were formed a few Myr ago, and the cloud dispersal by the O stars is significant. We conclude that cloud-cloud collision offers a possible explanation of the mini-starburst over a 100-pc scale.

  4. Molecular clouds in the NGC 6334 and NGC 6357 region: Evidence for a 100 pc-scale cloud-cloud collision triggering the Galactic mini-starbursts

    NASA Astrophysics Data System (ADS)

    Fukui, Yasuo; Kohno, Mikito; Yokoyama, Keiko; Torii, Kazufumi; Hattori, Yusuke; Sano, Hidetoshi; Nishimura, Atsushi; Ohama, Akio; Yamamoto, Hiroaki; Tachihara, Kengo

    2018-05-01

    We carried out new CO (J = 1-0, 2-1, and 3-2) observations with NANTEN2 and ASTE in the region of the twin Galactic mini-starbursts NGC 6334 and NGC 6357. We detected two velocity molecular components of 12 km s-1 velocity separation, which is continuous over 3° along the plane. In NGC 6334 the two components show similar two-peaked intensity distributions toward the young H II regions and are linked by a bridge feature. In NGC 6357 we found spatially complementary distribution between the two velocity components as well as a bridge feature in velocity. Based on these results we hypothesize that the two clouds in the two regions collided with each other in the past few Myr and triggered the formation of the starbursts over ˜ 100 pc. We suggest that the formation of the starbursts happened toward the collisional region of extent ˜ 10 pc with initial high molecular column densities. For NGC 6334 we present a scenario which includes spatial variation of the colliding epoch due to non-uniform cloud separation. The scenario possibly explains the apparent age differences among the young O stars in NGC 6334, which range from 104 yr to 106 yr; the latest collision happened within 105 yr toward the youngest stars in NGC 6334 I(N) and I which exhibit molecular outflows without H II regions. For NGC 6357 the O stars were formed a few Myr ago, and the cloud dispersal by the O stars is significant. We conclude that cloud-cloud collision offers a possible explanation of the mini-starburst over a 100 pc scale.

  5. Photoionization of the diffuse interstellar medium and galactic halo by OB associtations

    NASA Technical Reports Server (NTRS)

    Dove, James B.; Shull, J. Michael

    1994-01-01

    Assuming smoothly varying H I distributions in te Galactic disk, we have calculated the geometry of diffuse II regions due to OB associations in the Galactic plane. Near the solar circle, OB associations with a Lyman continuum (Lyc) photon luminosity Psi(sub Lyc) = 3.3 x 10(exp 7) cm(exp -2) s(exp -1), produce H II regions that are density bounded in the vertical direction (H II chimneys) allowing Lyc to escape the gaseous disk and penetrate into the Galactic halo. We provide analytic formulae for the Lyc escape fraction as functions of S(sub 0) O-star catalog of Garmany and a new Lyc stellar stellar Lyc stellar flux calibration, we find a production rate of Lyc photons by OB associations within 2.5 kpc of Psi(sub Lyc) = 3.3 x 10(exp 7) cm(exp -2) s(exp -1). Integrating the fraction of Lyc photons that escape the disk over our adopted luminosity function of OB associations, we estimate that approximately 7% of the ionizing photons, or Phi(sub Lyc) = 2.3 x 10(exp 6) cm(exp -2) s(exp -1), escape each side of the H I disk layer and penetrate the diffuse ionized medium ('Reynolds layer'). This flux is sufficient to explain the potoionization of this, although we have not constructed a model for the observed H-alpha emission and pulsar dispersion measures that is fully consistent with the absorption rate of Lyc in the H II layer. Since our quiescent model does not account for the effects of dynamic chimneys and superbubbles, which should enhance Lyc escape, we conclude the O stars are the probable source of ionizing radiation for the Reynolds layer. For a random distribution of OB associations throughout the disk, the Lyc flux is nearly uniform for heights Z is greater than approximately 0.8 kpc above the midplane.

  6. Diffuse Cosmic Rays Shining in the Galactic Center: A Novel Interpretation of H.E.S.S. and Fermi-LAT γ-Ray Data.

    PubMed

    Gaggero, D; Grasso, D; Marinelli, A; Taoso, M; Urbano, A

    2017-07-21

    We present a novel interpretation of the γ-ray diffuse emission measured by Fermi-LAT and H.E.S.S. in the Galactic center (GC) region and the Galactic ridge (GR). In the first part we perform a data-driven analysis based on PASS8 Fermi-LAT data: We extend down to a few GeV the spectra measured by H.E.S.S. and infer the primary cosmic-ray (CR) radial distribution between 0.1 and 3 TeV. In the second part we adopt a CR transport model based on a position-dependent diffusion coefficient. Such behavior reproduces the radial dependence of the CR spectral index recently inferred from the Fermi-LAT observations. We find that the bulk of the GR emission can be naturally explained by the interaction of the diffuse steady-state Galactic CR sea with the gas present in the central molecular zone. Although we confirm the presence of a residual radial-dependent emission associated with a central source, the relevance of the large-scale diffuse component prevents to claim a solid evidence of GC pevatrons.

  7. Planck 2015 results. XXV. Diffuse low-frequency Galactic foregrounds

    NASA Astrophysics Data System (ADS)

    Planck Collaboration; Ade, P. A. R.; Aghanim, N.; Alves, M. I. R.; Arnaud, M.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Banday, A. J.; Barreiro, R. B.; Bartlett, J. G.; Bartolo, N.; Battaner, E.; Benabed, K.; Benoît, A.; Benoit-Lévy, A.; Bernard, J.-P.; Bersanelli, M.; Bielewicz, P.; Bock, J. J.; Bonaldi, A.; Bonavera, L.; Bond, J. R.; Borrill, J.; Bouchet, F. R.; Boulanger, F.; Bucher, M.; Burigana, C.; Butler, R. C.; Calabrese, E.; Cardoso, J.-F.; Catalano, A.; Challinor, A.; Chamballu, A.; Chary, R.-R.; Chiang, H. C.; Christensen, P. R.; Colombi, S.; Colombo, L. P. L.; Combet, C.; Couchot, F.; Coulais, A.; Crill, B. P.; Curto, A.; Cuttaia, F.; Danese, L.; Davies, R. D.; Davis, R. J.; de Bernardis, P.; de Rosa, A.; de Zotti, G.; Delabrouille, J.; Delouis, J.-M.; Désert, F.-X.; Dickinson, C.; Diego, J. M.; Dole, H.; Donzelli, S.; Doré, O.; Douspis, M.; Ducout, A.; Dupac, X.; Efstathiou, G.; Elsner, F.; Enßlin, T. A.; Eriksen, H. K.; Falgarone, E.; Fergusson, J.; Finelli, F.; Forni, O.; Frailis, M.; Fraisse, A. A.; Franceschi, E.; Frejsel, A.; Galeotta, S.; Galli, S.; Ganga, K.; Ghosh, T.; Giard, M.; Giraud-Héraud, Y.; Gjerløw, E.; González-Nuevo, J.; Górski, K. M.; Gratton, S.; Gregorio, A.; Gruppuso, A.; Gudmundsson, J. E.; Hansen, F. K.; Hanson, D.; Harrison, D. L.; Helou, G.; Henrot-Versillé, S.; Hernández-Monteagudo, C.; Herranz, D.; Hildebrandt, S. R.; Hivon, E.; Hobson, M.; Holmes, W. A.; Hornstrup, A.; Hovest, W.; Huffenberger, K. M.; Hurier, G.; Jaffe, A. H.; Jaffe, T. R.; Jones, W. C.; Juvela, M.; Keihänen, E.; Keskitalo, R.; Kisner, T. S.; Kneissl, R.; Knoche, J.; Kunz, M.; Kurki-Suonio, H.; Lagache, G.; Lähteenmäki, A.; Lamarre, J.-M.; Lasenby, A.; Lattanzi, M.; Lawrence, C. R.; Leahy, J. P.; Leonardi, R.; Lesgourgues, J.; Levrier, F.; Liguori, M.; Lilje, P. B.; Linden-Vørnle, M.; López-Caniego, M.; Lubin, P. M.; Macías-Pérez, J. F.; Maggio, G.; Maino, D.; Mandolesi, N.; Mangilli, A.; Maris, M.; Marshall, D. J.; Martin, P. G.; Martínez-González, E.; Masi, S.; Matarrese, S.; McGehee, P.; Meinhold, P. R.; Melchiorri, A.; Mendes, L.; Mennella, A.; Migliaccio, M.; Mitra, S.; Miville-Deschênes, M.-A.; Moneti, A.; Montier, L.; Morgante, G.; Mortlock, D.; Moss, A.; Munshi, D.; Murphy, J. A.; Nati, F.; Natoli, P.; Netterfield, C. B.; Nørgaard-Nielsen, H. U.; Noviello, F.; Novikov, D.; Novikov, I.; Orlando, E.; Oxborrow, C. A.; Paci, F.; Pagano, L.; Pajot, F.; Paladini, R.; Paoletti, D.; Partridge, B.; Pasian, F.; Patanchon, G.; Pearson, T. J.; Peel, M.; Perdereau, O.; Perotto, L.; Perrotta, F.; Pettorino, V.; Piacentini, F.; Piat, M.; Pierpaoli, E.; Pietrobon, D.; Plaszczynski, S.; Pointecouteau, E.; Polenta, G.; Pratt, G. W.; Prézeau, G.; Prunet, S.; Puget, J.-L.; Rachen, J. P.; Reach, W. T.; Rebolo, R.; Reinecke, M.; Remazeilles, M.; Renault, C.; Renzi, A.; Ristorcelli, I.; Rocha, G.; Rosset, C.; Rossetti, M.; Roudier, G.; Rubiño-Martín, J. A.; Rusholme, B.; Sandri, M.; Santos, D.; Savelainen, M.; Savini, G.; Scott, D.; Seiffert, M. D.; Shellard, E. P. S.; Spencer, L. D.; Stolyarov, V.; Stompor, R.; Strong, A. W.; Sudiwala, R.; Sunyaev, R.; Sutton, D.; Suur-Uski, A.-S.; Sygnet, J.-F.; Tauber, J. A.; Terenzi, L.; Toffolatti, L.; Tomasi, M.; Tristram, M.; Tucci, M.; Tuovinen, J.; Umana, G.; Valenziano, L.; Valiviita, J.; Van Tent, F.; Vidal, M.; Vielva, P.; Villa, F.; Wade, L. A.; Wandelt, B. D.; Watson, R.; Wehus, I. K.; Wilkinson, A.; Yvon, D.; Zacchei, A.; Zonca, A.

    2016-09-01

    We discuss the Galactic foreground emission between 20 and 100 GHz based on observations by Planck and WMAP. The total intensity in this part of the spectrum is dominated by free-free and spinning dust emission, whereas the polarized intensity is dominated by synchrotron emission. The Commander component-separation tool has been used to separate the various astrophysical processes in total intensity. Comparison with radio recombination line templates verifies the recovery of the free-free emission along the Galactic plane. Comparison of the high-latitude Hα emission with our free-free map shows residuals that correlate with dust optical depth, consistent with a fraction (≈30%) of Hα having been scattered by high-latitude dust. We highlight a number of diffuse spinning dust morphological features at high latitude. There is substantial spatial variation in the spinning dust spectrum, with the emission peak (in Iν) ranging from below 20 GHz to more than 50 GHz. There is a strong tendency for the spinning dust component near many prominent H II regions to have a higher peak frequency, suggesting that this increase in peak frequency is associated with dust in the photo-dissociation regions around the nebulae. The emissivity of spinning dust in these diffuse regions is of the same order as previous detections in the literature. Over the entire sky, the Commander solution finds more anomalous microwave emission (AME) than the WMAP component maps, at the expense of synchrotron and free-free emission. This can be explained by the difficulty in separating multiple broadband components with a limited number of frequency maps. Future surveys, particularly at 5-20 GHz, will greatly improve the separation by constraining the synchrotron spectrum. We combine Planck and WMAP data to make the highest signal-to-noise ratio maps yet of the intensity of the all-sky polarized synchrotron emission at frequencies above a few GHz. Most of the high-latitude polarized emission is

  8. Planck 2015 results: XXV. Diffuse low-frequency Galactic foregrounds

    DOE PAGES

    Ade, P. A. R.; Aghanim, N.; Alves, M. I. R.; ...

    2016-09-20

    In this paper, we discuss the Galactic foreground emission between 20 and 100 GHz based on observations by Planck and WMAP. The total intensity in this part of the spectrum is dominated by free-free and spinning dust emission, whereas the polarized intensity is dominated by synchrotron emission. The Commander component-separation tool has been used to separate the various astrophysical processes in total intensity. Comparison with radio recombination line templates verifies the recovery of the free-free emission along the Galactic plane. Comparison of the high-latitude Hα emission with our free-free map shows residuals that correlate with dust optical depth, consistent withmore » a fraction (≈30%) of Hα having been scattered by high-latitude dust. We highlight a number of diffuse spinning dust morphological features at high latitude. There is substantial spatial variation in the spinning dust spectrum, with the emission peak (in I ν) ranging from below 20 GHz to more than 50 GHz. There is a strong tendency for the spinning dust component near many prominent H ii regions to have a higher peak frequency, suggesting that this increase in peak frequency is associated with dust in the photo-dissociation regions around the nebulae. The emissivity of spinning dust in these diffuse regions is of the same order as previous detections in the literature. Over the entire sky, the Commander solution finds more anomalous microwave emission (AME) than the WMAP component maps, at the expense of synchrotron and free-free emission. This can be explained by the difficulty in separating multiple broadband components with a limited number of frequency maps. Future surveys, particularly at 5–20 GHz, will greatly improve the separation by constraining the synchrotron spectrum. We combine Planck and WMAP data to make the highest signal-to-noise ratio maps yet of the intensity of the all-sky polarized synchrotron emission at frequencies above a few GHz. Most of the high

  9. Planck 2015 results: XXV. Diffuse low-frequency Galactic foregrounds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ade, P. A. R.; Aghanim, N.; Alves, M. I. R.

    In this paper, we discuss the Galactic foreground emission between 20 and 100 GHz based on observations by Planck and WMAP. The total intensity in this part of the spectrum is dominated by free-free and spinning dust emission, whereas the polarized intensity is dominated by synchrotron emission. The Commander component-separation tool has been used to separate the various astrophysical processes in total intensity. Comparison with radio recombination line templates verifies the recovery of the free-free emission along the Galactic plane. Comparison of the high-latitude Hα emission with our free-free map shows residuals that correlate with dust optical depth, consistent withmore » a fraction (≈30%) of Hα having been scattered by high-latitude dust. We highlight a number of diffuse spinning dust morphological features at high latitude. There is substantial spatial variation in the spinning dust spectrum, with the emission peak (in I ν) ranging from below 20 GHz to more than 50 GHz. There is a strong tendency for the spinning dust component near many prominent H ii regions to have a higher peak frequency, suggesting that this increase in peak frequency is associated with dust in the photo-dissociation regions around the nebulae. The emissivity of spinning dust in these diffuse regions is of the same order as previous detections in the literature. Over the entire sky, the Commander solution finds more anomalous microwave emission (AME) than the WMAP component maps, at the expense of synchrotron and free-free emission. This can be explained by the difficulty in separating multiple broadband components with a limited number of frequency maps. Future surveys, particularly at 5–20 GHz, will greatly improve the separation by constraining the synchrotron spectrum. We combine Planck and WMAP data to make the highest signal-to-noise ratio maps yet of the intensity of the all-sky polarized synchrotron emission at frequencies above a few GHz. Most of the high

  10. Multiple Scattering in Clouds: Insights from Three-Dimensional Diffusion/P{sub 1} Theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davis, Anthony B.; Marshak, Alexander

    2001-03-15

    In the atmosphere, multiple scattering matters nowhere more than in clouds, and being a product of its turbulence, clouds are highly variable environments. This challenges three-dimensional (3D) radiative transfer theory in a way that easily swamps any available computational resources. Fortunately, the far simpler diffusion (or P{sub 1}) theory becomes more accurate as the scattering intensifies, and allows for some analytical progress as well as computational efficiency. After surveying current approaches to 3D solar cloud-radiation problems from the diffusion standpoint, a general 3D result in steady-state diffusive transport is derived relating the variability-induced change in domain-average flux (i.e., diffuse transmittance)more » to the one-point covariance of internal fluctuations in particle density and in radiative flux. These flux variations follow specific spatial patterns in deliberately hydrodynamical language: radiative channeling. The P{sub 1} theory proves even more powerful when the photon diffusion process unfolds in time as well as space. For slab geometry, characteristic times and lengths that describe normal and transverse transport phenomena are derived. This phenomenology is used to (a) explain persistent features in satellite images of dense stratocumulus as radiative channeling, (b) set limits on current cloud remote-sensing techniques, and (c) propose new ones both active and passive.« less

  11. Large-scale gas dynamical processes affecting the origin and evolution of gaseous galactic halos

    NASA Technical Reports Server (NTRS)

    Shapiro, Paul R.

    1991-01-01

    Observations of galactic halo gas are consistent with an interpretation in terms of the galactic fountain model in which supernova heated gas in the galactic disk escapes into the halo, radiatively cools and forms clouds which fall back to the disk. The results of a new study of several large-scale gas dynamical effects which are expected to occur in such a model for the origin and evolution of galactic halo gas will be summarized, including the following: (1) nonequilibrium absorption line and emission spectrum diagnostics for radiatively cooling halo gas in our own galaxy, as well the implications of such absorption line diagnostics for the origin of quasar absorption lines in galactic halo clouds of high redshift galaxies; (2) numerical MHD simulations and analytical analysis of large-scale explosions ad superbubbles in the galactic disk and halo; (3) numerical MHD simulations of halo cloud formation by thermal instability, with and without magnetic field; and (4) the effect of the galactic fountain on the galactic dynamo.

  12. ASCA Observation of an "X-Ray Shadow" in the Galactic Plane

    NASA Technical Reports Server (NTRS)

    Park, Sangwook; Ebisawa, Ken

    2001-01-01

    The diffuse X-ray background (DXB) emission near the Galactic plane (l,b approximately 25.6 degrees, 0.78 degrees) has been observed with ASCA (Advanced Satellite for Cosmology and Astrophysics). The observed region is toward a Galactic molecular cloud which was recently reported to cast a deep X-ray shadow in the 0.5 - 2.0 keV band DXB. The selection of this particular region is intended to provide a constraint on the spatial distribution of the DXB emission along the line of sight: i.e., the molecular cloud is optically thick at <2 keV and so the bulk of the observed soft X-rays must originate in the foreground of the cloud, which is at approximately 3 kpc from the Sun. In the 0.8 - 9.0 keV band, the observed spectrum is primarily from multiple components of thermal plasmas. We here report a detection of soft X-ray (0.5 - 2 keV) emission from an approximately 10(exp 7) K thermal plasma. Comparisons with the ROSAT (Roentgen Satellite) data suggest that this soft X-ray emission is absorbed by N(sub H) = 1 - 3 x 10(exp 21) cm(exp -2), which implies a path-length through the soft X-ray emitting regions of approximately less than 1 kpc from the Sun.

  13. Magnetization of Cloud Cores and Envelopes and Other Observational Consequences of Reconnection Diffusion

    NASA Astrophysics Data System (ADS)

    Lazarian, A.; Esquivel, A.; Crutcher, R.

    2012-10-01

    Recent observational results for magnetic fields in molecular clouds reviewed by Crutcher seem to be inconsistent with the predictions of the ambipolar diffusion theory of star formation. These include the measured decrease in mass to flux ratio between envelopes and cores, the failure to detect any self-gravitating magnetically subcritical clouds, the determination of the flat probability distribution function (PDF) of the total magnetic field strengths implying that there are many clouds with very weak magnetic fields, and the observed scaling Bvpropρ2/3 that implies gravitational contraction with weak magnetic fields. We consider the problem of magnetic field evolution in turbulent molecular clouds and discuss the process of magnetic field diffusion mediated by magnetic reconnection. For this process that we termed "reconnection diffusion," we provide a simple physical model and explain that this process is inevitable in view of the present-day understanding of MHD turbulence. We address the issue of the expected magnetization of cores and envelopes in the process of star formation and show that reconnection diffusion provides an efficient removal of magnetic flux that depends only on the properties of MHD turbulence in the core and the envelope. We show that as the amplitude of turbulence as well as the scale of turbulent motions decrease from the envelope to the core of the cloud, the diffusion of the magnetic field is faster in the envelope. As a result, the magnetic flux trapped during the collapse in the envelope is being released faster than the flux trapped in the core, resulting in much weaker fields in envelopes than in cores, as observed. We provide simple semi-analytical model calculations which support this conclusion and qualitatively agree with the observational results. Magnetic reconnection is also consistent with the lack of subcritical self-gravitating clouds, with the observed flat PDF of field strengths, and with the scaling of field

  14. XMM-NEWTON MEASUREMENT OF THE GALACTIC HALO X-RAY EMISSION USING A COMPACT SHADOWING CLOUD

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Henley, David B.; Shelton, Robin L.; Cumbee, Renata S.

    2015-02-01

    Observations of interstellar clouds that cast shadows in the soft X-ray background can be used to separate the background Galactic halo emission from the local emission due to solar wind charge exchange (SWCX) and/or the Local Bubble (LB). We present an XMM-Newton observation of a shadowing cloud, G225.60–66.40, that is sufficiently compact that the on- and off-shadow spectra can be extracted from a single field of view (unlike previous shadowing observations of the halo with CCD-resolution spectrometers, which consisted of separate on- and off-shadow pointings). We analyzed the spectra using a variety of foreground models: one representing LB emission, andmore » two representing SWCX emission. We found that the resulting halo model parameters (temperature T {sub h} ≈ 2 × 10{sup 6} K, emission measure E{sub h}≈4×10{sup −3} cm{sup −6} pc) were not sensitive to the foreground model used. This is likely due to the relative faintness of the foreground emission in this observation. However, the data do favor the existence of a foreground. The halo parameters derived from this observation are in good agreement with those from previous shadowing observations, and from an XMM-Newton survey of the Galactic halo emission. This supports the conclusion that the latter results are not subject to systematic errors, and can confidently be used to test models of the halo emission.« less

  15. A relationship between galactic cosmic radiation and tree rings.

    PubMed

    Dengel, Sigrid; Aeby, Dominik; Grace, John

    2009-11-01

    Here, we investigated the interannual variation in the growth rings formed by Sitka spruce (Picea sitchensis) trees in northern Britain (55 degrees N, 3 degrees W) over the period 1961-2005 in an attempt to disentangle the influence of atmospheric variables acting at different times of year. Annual growth rings, measured along the north radius of freshly cut (frozen) tree discs and climatological data recorded at an adjacent site were used in the study. Correlations were based on Pearson product-moment correlation coefficients between the annual growth anomaly and these climatic and atmospheric factors. Rather weak correlations between these variables and growth were found. However, there was a consistent and statistically significant relationship between growth of the trees and the flux density of galactic cosmic radiation. Moreover, there was an underlying periodicity in growth, with four minima since 1961, resembling the period cycle of galactic cosmic radiation. * We discuss the hypotheses that might explain this correlation: the tendency of galactic cosmic radiation to produce cloud condensation nuclei, which in turn increases the diffuse component of solar radiation, and thus increases the photosynthesis of the forest canopy.

  16. Understanding the spectral hardenings and radial distribution of Galactic cosmic rays and Fermi diffuse γ rays with spatially-dependent propagation

    NASA Astrophysics Data System (ADS)

    Guo, Yi-Qing; Yuan, Qiang

    2018-03-01

    Recent direct measurements of Galactic cosmic ray spectra by balloon/space-borne detectors reveal spectral hardenings of all major nucleus species at rigidities of a few hundred GV. The all-sky diffuse γ -ray emissions measured by the Fermi Large Area Telescope also show spatial variations of the intensities and spectral indices of cosmic rays. These new observations challenge the traditional simple acceleration and/or propagation scenario of Galactic cosmic rays. In this work, we propose a spatially dependent diffusion scenario to explain all these phenomena. The diffusion coefficient is assumed to be anticorrelated with the source distribution, which is a natural expectation from the charged particle transportation in a turbulent magnetic field. The spatially dependent diffusion model also gives a lower level of anisotropies of cosmic rays, which are consistent with observations by underground muons and air shower experiments. The spectral variations of cosmic rays across the Galaxy can be properly reproduced by this model.

  17. HD 62542: Probing the Bare, Dense Core of an Interstellar Cloud

    NASA Astrophysics Data System (ADS)

    Welty, Daniel; Sonnentrucker, Paule G.; Rachford, Brian; Snow, Theodore; York, Donald G.

    2018-01-01

    We discuss the interstellar absorption from many atomic and molecular species seen in high-resolution HST/STIS UV spectra of the moderately reddened B3-5 V star HD 62542 [E(B-V) ~ 0.35; AV ~ 1.2]. This remarkable sight line exhibits both very steep far-UV extinction and a high fraction of hydrogen in molecular form -- with strong absorption from CH, C2, CN, and CO but weak absorption from CH+ and most of the commonly observed diffuse interstellar bands. Most of the material appears to reside in a single narrow velocity component -- thus offering a rare opportunity to probe the relatively dense, primarily molecular core of a single interstellar cloud, with little associated diffuse atomic gas.Detailed analyses of the absorption-line profiles seen in the UV spectra reveal a number of properties of the main diffuse molecular cloud toward HD 62542:1) The depletions of Mg, Si, and Fe are more severe than those seen in any other sight line, but the depletions of Cl and Kr are very mild; the overall pattern of depletions differs somewhat from those derived from larger samples of Galactic sight lines.2) The rotational excitation of H2 and C2 indicates that the gas is fairly cold (Tk = 40-45 K) and moderately dense (nH > 420 cm-3) somewhat higher densities are suggested by the fine-structure excitation of neutral carbon.3) The excitation temperatures characterizing the rotational populations of both 12CO (11.7 K) and 13CO (7.7 K) are higher than those typically found for Galactic diffuse molecular clouds.4) Carbon is primarily singly ionized -- N(C+) > N(CO) > N(C).5) The relative abundances of various trace neutral atomic species reflect the effects of both the steep far-UV extinction and the severe depletions of some elements.6) Differences in line widths for the various atomic and molecular species are suggestive of differences in spatial distribution within the main cloud.Support for this study was provided by NASA, via STScI grant GO-12277.008-A.

  18. Diffuse γ-ray emission from misaligned active galactic nuclei

    DOE PAGES

    Di Mauro, M.; Calore, F.; Donato, F.; ...

    2013-12-20

    Active galactic nuclei (AGNs) with jets seen at small viewing angles are the most luminous and abundant objects in the γ-ray sky. AGNs with jets misaligned along the line of sight appear fainter in the sky but are more numerous than the brighter blazars. Here, we calculate the diffuse γ-ray emission due to the population of misaligned AGNs (MAGNs) unresolved by the Large Area Telescope (LAT) on the Fermi Gamma-ray Space Telescope (Fermi). Furthermore, a correlation between the γ-ray luminosity and the radio-core luminosity is established and demonstrated to be physical by statistical tests, as well as compatible with uppermore » limits based on Fermi-LAT data for a large sample of radio-loud MAGNs. We constrain the derived γ-ray luminosity function by means of the source-count distribution of the radio galaxies detected by the Fermi-LAT. We finally calculate the diffuse γ-ray flux due to the whole MAGN population. These results demonstrate that MAGNs can contribute from 10% up to nearly the entire measured isotropic gamma-ray background. We evaluate a theoretical uncertainty on the flux of almost an order of magnitude.« less

  19. Can black hole superradiance be induced by galactic plasmas?

    NASA Astrophysics Data System (ADS)

    Conlon, Joseph P.; Herdeiro, Carlos A. R.

    2018-05-01

    Highly spinning Kerr black holes with masses M = 1- 100M⊙ are subject to an efficient superradiant instability in the presence of bosons with masses μ ∼10-10-10-12eV. We observe that this matches the effective plasma-induced photon mass in diffuse galactic or intracluster environments (ωpl ∼10-10-10-12eV). This suggests that bare Kerr black holes within galactic or intracluster environments, possibly even including the ones produced in recently observed gravitational wave events, are unstable to formation of a photon cloud that may contain a significant fraction of the mass of the original black hole. At maximal efficiency, the instability timescale for a massive vector is milliseconds, potentially leading to a transient rate of energy extraction from a black hole in principle as large as ∼1055ergs-1. We discuss possible astrophysical effects this could give rise to, including a speculative connection to Fast Radio Bursts.

  20. Far-infrared, submillimeter, and millimeter spectroscopy of the Galactic center - Radio ARC and +20/+50 kilometer per second clouds

    NASA Technical Reports Server (NTRS)

    Genzel, R.; Harris, A. I.; Geis, N.; Stacey, G. J.; Townes, C. H.

    1990-01-01

    Results are presented from FIR, sub-mm, and mm spectroscopic observations of the radio arc and the +20/+50 km/s molecular clouds in the Galactic center. The results for the radio arc are analyzed, including the spatial distribution of C II forbidden line emission, the spatial distribution of CO emission, the luminosity and mass of C(+) regions, and the CO 7 - 6 emission and line profiles. Model calculations are used to study molecular gas in the radio arc. In addition, forbidden C II, CO 7 - 6, and C(O-18) mapping is presented for the +20/+50 km/x clouds. Consideration is given to the impact of the results on the interpretation of the physical conditions, excitation, and heating of the gas clouds in the arc and near the center.

  1. GALACTIC WINDS DRIVEN BY ISOTROPIC AND ANISOTROPIC COSMIC-RAY DIFFUSION IN DISK GALAXIES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pakmor, R.; Pfrommer, C.; Simpson, C. M.

    2016-06-20

    The physics of cosmic rays (CRs) is a promising candidate for explaining the driving of galactic winds and outflows. Recent galaxy formation simulations have demonstrated the need for active CR transport either in the form of diffusion or streaming to successfully launch winds in galaxies. However, due to computational limitations, most previous simulations have modeled CR transport isotropically. Here, we discuss high-resolution simulations of isolated disk galaxies in a 10{sup 11} M {sub ⊙} halo with the moving-mesh code Arepo that include injection of CRs from supernovae, advective transport, CR cooling, and CR transport through isotropic or anisotropic diffusion. Wemore » show that either mode of diffusion leads to the formation of strong bipolar outflows. However, they develop significantly later in the simulation with anisotropic diffusion compared to the simulation with isotropic diffusion. Moreover, we find that isotropic diffusion allows most of the CRs to quickly diffuse out of the disk, while in the simulation with anisotropic diffusion, most CRs remain in the disk once the magnetic field becomes dominated by its azimuthal component, which occurs after ∼300 Myr. This has important consequences for the gas dynamics in the disk. In particular, we show that isotropic diffusion strongly suppresses the amplification of the magnetic field in the disk compared to anisotropic or no diffusion models. We therefore conclude that reliable simulations which include CR transport inevitably need to account for anisotropic diffusion.« less

  2. [CII] observations of H2 molecular layers in transition clouds

    NASA Astrophysics Data System (ADS)

    Velusamy, T.; Langer, W. D.; Pineda, J. L.; Goldsmith, P. F.; Li, D.; Yorke, H. W.

    2010-10-01

    We present the first results on the diffuse transition clouds observed in [CII] line emission at 158 μm (1.9 THz) towards Galactic longitudes near 340° (5 LOSs) & 20° (11 LOSs) as part of the HIFI tests and GOT C+ survey. Out of the total 146 [CII] velocity components detected by profile fitting we identify 53 as diffuse molecular clouds with associated 12CO emission but without 13CO emission and characterized by AV < 5 mag. We estimate the fraction of the [CII] emission in the diffuse HI layer in each cloud and then determine the [CII] emitted from the molecular layers in the cloud. We show that the excess [CII] intensities detected in a few clouds is indicative of a thick H2 layer around the CO core. The wide range of clouds in our sample with thin to thick H2 layers suggests that these are at various evolutionary states characterized by the formation of H2 and CO layers from HI and C+, respectively. In about 30% of the clouds the H2 column densities (“dark gas”) traced by the [CII] is 50% or more than that traced by 12CO emission. On the average ~25% of the total H2 in these clouds is in an H2 layer which is not traced by CO. We use the HI, [CII], and 12CO intensities in each cloud along with simple chemical models to obtain constraints on the FUV fields and cosmic ray ionization rates. Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA.

  3. Reflection features in the Galactic Center and past activity of Sagittarius A*

    NASA Astrophysics Data System (ADS)

    Clavel, Maïca; Terrier, Regis; Goldwurm, Andrea; Morris, Mark; Jin, Chichuan; Ponti, Gabriele; Chuard, Dimitri

    2016-07-01

    X-ray observations carried out over the past two decades have captured an increasing number of reflection features within the molecular clouds located in the inner regions of our Galaxy. The intensity of these structures along with the correlated variations which are detected over the entire central molecular zone are strong evidence that this diffuse emission is created by the past activity of the supermassive black hole at the Galactic center, Sagittarius A*. In particular, within the last centuries, Sgr A* is likely to have experienced several short outbursts during which the black hole was at least a million times brighter than today. However, the precise description of the corresponding past catastrophic events is difficult to assess, mainly because the properties of the reflection features that they create while propagating away from Sgr A* depend on the line-of-sight distance, the geometry, and the size of the reflecting clouds, all of which are poorly known. I will review the different attempts to reconstruct Sgr A*'s past activity from the constraints obtained through the observation of the reflection features in the Galactic center, including the current Chandra monitoring.

  4. EGRET excess of diffuse galactic gamma rays as tracer of dark matter

    NASA Astrophysics Data System (ADS)

    de Boer, W.; Sander, C.; Zhukov, V.; Gladyshev, A. V.; Kazakov, D. I.

    2005-12-01

    The public data from the EGRET space telescope on diffuse Galactic gamma rays in the energy range from 0.1 to 10 GeV are reanalyzed with the purpose of searching for signals of Dark Matter annihilation (DMA). The analysis confirms the previously observed excess for energies above 1 GeV in comparison with the expectations from conventional Galactic models. In addition, the excess was found to show all the key features of a signal from Dark Matter Annihilation (DMA): a) the excess is observable in all sky directions and has the same shape everywhere, thus pointing to a common source; b) the shape corresponds to the expected spectrum of the annihilation of non-relativistic massive particles into - among others - neutral π0 mesons, which decay into photons. From the energy spectrum of the excess we deduce a WIMP mass between 50 and 100 GeV, while from the intensity of the excess in all sky directions the shape of the halo could be reconstructed. The DM halo is consistent with an almost spherical isothermal profile with substructure in the Galactic plane in the form of toroidal rings at 4 and 14 kpc from the center. These rings lead to a peculiar shape of the rotation curve, in agreement with the data, which proves that the EGRET excess traces the Dark Matter.

  5. Galactic Cosmic Ray Intensity Response to Interplanetary Coronal Mass Ejections/Magnetic Clouds in 1995-2009

    NASA Technical Reports Server (NTRS)

    Richardson, I. G.; Cane, H. V.

    2011-01-01

    We summarize the response of the galactic cosmic ray (CGR) intensity to the passage of the more than 300 interplanetary coronal mass ejections (ICMEs) and their associated shocks that passed the Earth during 1995-2009, a period that encompasses the whole of Solar Cycle 23. In approx.80% of cases, the GCR intensity decreased during the passage of these structures, i.e., a "Forbush decrease" occurred, while in approx.10% there was no significant change. In the remaining cases, the GCR intensity increased. Where there was an intensity decrease, minimum intensity was observed inside the ICME in approx.90% of these events. The observations confirm the role of both post-shock regions and ICMEs in the generation of these decreases, consistent with many previous studies, but contrary to the conclusion of Reames, Kahler, and Tylka (Astrophys. 1. Lett. 700, L199, 2009) who, from examining a subset of ICMEs with flux-rope-like magnetic fields (magnetic clouds) argued that these are "open structures" that allow free access of particles including GCRs to their interior. In fact, we find that magnetic clouds are more likely to participate in the deepest GCR decreases than ICMEs that are not magnetic clouds.

  6. GIANT MOLECULAR CLOUD FORMATION IN DISK GALAXIES: CHARACTERIZING SIMULATED VERSUS OBSERVED CLOUD CATALOGS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Benincasa, Samantha M.; Pudritz, Ralph E.; Wadsley, James

    We present the results of a study of simulated giant molecular clouds (GMCs) formed in a Milky Way-type galactic disk with a flat rotation curve. This simulation, which does not include star formation or feedback, produces clouds with masses ranging between 10{sup 4} M{sub ☉} and 10{sup 7} M{sub ☉}. We compare our simulated cloud population to two observational surveys: the Boston University-Five College Radio Astronomy Observatory Galactic Ring Survey and the BIMA All-Disk Survey of M33. An analysis of the global cloud properties as well as a comparison of Larson's scaling relations is carried out. We find that simulatedmore » cloud properties agree well with the observed cloud properties, with the closest agreement occurring between the clouds at comparable resolution in M33. Our clouds are highly filamentary—a property that derives both from their formation due to gravitational instability in the sheared galactic environment, as well as to cloud-cloud gravitational encounters. We also find that the rate at which potentially star-forming gas accumulates within dense regions—wherein n{sub thresh} ≥ 10{sup 4} cm{sup –3}—is 3% per 10 Myr, in clouds of roughly 10{sup 6} M{sub ☉}. This suggests that star formation rates in observed clouds are related to the rates at which gas can be accumulated into dense subregions within GMCs via filamentary flows. The most internally well-resolved clouds are chosen for listing in a catalog of simulated GMCs—the first of its kind. The cataloged clouds are available as an extracted data set from the global simulation.« less

  7. A new all-sky map of Galactic high-velocity clouds from the 21-cm HI4PI survey

    NASA Astrophysics Data System (ADS)

    Westmeier, Tobias

    2018-02-01

    High-velocity clouds (HVCs) are neutral or ionized gas clouds in the vicinity of the Milky Way that are characterized by high radial velocities inconsistent with participation in the regular rotation of the Galactic disc. Previous attempts to create a homogeneous all-sky H I map of HVCs have been hampered by a combination of poor angular resolution, limited surface brightness sensitivity and suboptimal sampling. Here, a new and improved H I map of Galactic HVCs based on the all-sky HI4PI survey is presented. The new map is fully sampled and provides significantly better angular resolution (16.2 versus 36 arcmin) and column density sensitivity (2.3 versus 3.7 × 1018 cm-2 at the native resolution) than the previously available LAB survey. The new HVC map resolves many of the major HVC complexes in the sky into an intricate network of narrow H I filaments and clumps that were not previously resolved by the LAB survey. The resulting sky coverage fraction of high-velocity H I emission above a column density level of 2 × 1018 cm-2 is approximately 15 per cent, which reduces to about 13 per cent when the Magellanic Clouds and other non-HVC emission are removed. The differential sky coverage fraction as a function of column density obeys a truncated power law with an exponent of -0.93 and a turnover point at about 5 × 1019 cm-2. H I column density and velocity maps of the HVC sky are made publicly available as FITS images for scientific use by the community.

  8. Diffuse flux of galactic neutrinos and gamma rays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carceller, J.M.; Masip, M., E-mail: jmcarcell@correo.ugr.es, E-mail: masip@ugr.es

    We calculate the fluxes of neutrinos and gamma rays from interactions of cosmic rays with interstellar matter in our galaxy. We use EPOS-LHC, SIBYLL and GHEISHA to parametrize the yield of these particles in proton, helium and iron collisions at kinetic energies between 1 and 10{sup 8} GeV, and we correlate the cosmic ray density with the mean magnetic field strength in the disk and the halo of our galaxy. We find that at E > 1 PeV the fluxes depend very strongly on the cosmic-ray composition, whereas at 1–5 GeV the main source of uncertainty is the cosmic-ray spectrummore » out of the heliosphere. We show that the diffuse flux of galactic neutrinos becomes larger than the conventional atmospheric one at E >1 PeV, but that at all IceCube energies it is 4 times smaller than the atmospheric flux from forward-charm decays.« less

  9. Modeling the chemistry of the dense interstellar clouds. I - Observational constraints for the chemistry

    NASA Technical Reports Server (NTRS)

    Federman, S. R.; Huntress, W. T., Jr.; Prasad, S. S.

    1990-01-01

    A search for correlations arising from molecular line data is made in order to place constraints on the chemical models of interstellar clouds. At 10 to the 21st H2/sq cm, N(CO) for dark clouds is a factor of six greater than the value for diffuse clouds. This implies that the strength of the UV radiation field where CO shields itself from dissociation is about one-half the strength of the average Galactic field. The dark cloud data indicate that the abundance of CO continues to increase with A(V) for directions with A(V) of 4 mag or less, although less steeply with N(H2) than for diffuse clouds. For H2CO, a quadratic relationship is obtained in plots versus H2 column density. The data suggest a possible turnover at the highest values for A(V). NH3 shows no correlation with H2, C(O-18), HC3N, or HC5N; a strong correlation is found between HC5N and HC3N, indicating a chemical link between the cyanopolyynes.

  10. FERMI BUBBLES AND BUBBLE-LIKE EMISSION FROM THE GALACTIC PLANE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    De Boer, Wim; Weber, Markus, E-mail: wim.de.boer@kit.edu, E-mail: markus.weber2@kit.edu

    2014-10-10

    The diffuse gamma-ray sky revealed ''bubbles'' of emission above and below the Galactic plane, symmetric around the center of the Milky Way, with a height of 10 kpc in both directions. At present, there is no convincing explanation for the origin. To understand the role of the Galactic center, one has to study the bubble spectrum inside the disk, a region that has been excluded from previous analyses because of the large foreground. From a novel template fit, which allows a simultaneous determination of the signal and foreground in any direction, we find that bubble-like emission is not only found inmore » the halo, but in the Galactic plane as well, with a width in latitude coinciding with the molecular clouds. The longitude distribution has a width corresponding to the Galactic bar with an additional contribution from the Scutum-Centaurus arm. The energy spectrum of the bubbles coincides with the predicted contribution from CRs trapped in sources (SCRs). Also, the energetics fits well. Hence, we conclude that the bubble-like emission has a hadronic origin that arises from SCRs, and the bubbles in the halo arise from hadronic interactions in advected gas. Evidence for advection is provided by the ROSAT X-rays of hot gas in the bubble region.« less

  11. Imaging diffuse clouds: bright and dark gas mapped in CO

    NASA Astrophysics Data System (ADS)

    Liszt, H. S.; Pety, J.

    2012-05-01

    Aims: We wish to relate the degree scale structure of galactic diffuse clouds to sub-arcsecond atomic and molecular absorption spectra obtained against extragalactic continuum background sources. Methods: We used the ARO 12 m telescope to map J = 1-0 CO emission at 1' resolution over 30' fields around the positions of 11 background sources occulted by 20 molecular absorption line components, of which 11 had CO emission counterparts. We compared maps of CO emission to sub-arcsec atomic and molecular absorption spectra and to the large-scale distribution of interstellar reddening. Results: 1) The same clouds, identified by their velocity, were seen in absorption and emission and atomic and molecular phases, not necessarily in the same direction. Sub-arcsecond absorption spectra are a preview of what is seen in CO emission away from the continuum. 2) The CO emission structure was amorphous in 9 cases, quasi-periodic or wave-like around B0528+134 and tangled and filamentary around BL Lac. 3) Strong emission, typically 4-5 K at EB - V ≤ 0.15 mag and up to 10-12 K at EB - V ≲ 0.3 mag was found, much brighter than toward the background targets. Typical covering factors of individual features at the 1 K km s-1 level were 20%. 4) CO-H2 conversion factors as much as 4-5 times below the mean value N(H2)/WCO = 2 × 1020 H2 cm-2 (K km s-1)-1 are required to explain the luminosity of CO emission at/above the level of 1 K km s-1. Small conversion factors and sharp variability of the conversion factor on arcminute scales are due primarily to CO chemistry and need not represent unresolved variations in reddening or total column density. Conclusions: Like Fermi and Planck we see some gas that is dark in CO and other gas in which CO is overluminous per H2. A standard CO-H2 conversion factor applies overall owing to balance between the luminosities per H2 and surface covering factors of bright and dark CO, but with wide variations between sightlines and across the faces of

  12. Vapor Transport Within the Thermal Diffusion Cloud Chamber

    NASA Technical Reports Server (NTRS)

    Ferguson, Frank T.; Heist, Richard H.; Nuth, Joseph A., III

    2000-01-01

    A review of the equations used to determine the 1-D vapor transport in the thermal diffusion cloud chamber (TDCC) is presented. These equations closely follow those of the classical Stefan tube problem in which there is transport of a volatile species through a noncondensible, carrier gas. In both cases, the very plausible assumption is made that the background gas is stagnant. Unfortunately, this assumption results in a convective flux which is inconsistent with the momentum and continuity equations for both systems. The approximation permits derivation of an analytical solution for the concentration profile in the Stefan tube, but there is no computational advantage in the case of the TDCC. Furthermore, the degree of supersaturation is a sensitive function of the concentration profile in the TD CC and the stagnant background gas approximation can make a dramatic difference in the calculated supersaturation. In this work, the equations typically used with a TDCC are compared with very general transport equations describing the 1-D diffusion of the volatile species. Whereas no pressure dependence is predicted with the typical equations, a strong pressure dependence is present with the more general equations given in this work. The predicted behavior is consistent with observations in diffusion cloud experiments. It appears that the new equations may account for much of the pressure dependence noted in TDCC experiments, but a comparison between the new equations and previously obtained experimental data are needed for verification.

  13. Emission from small dust particles in diffuse and molecular cloud medium

    NASA Technical Reports Server (NTRS)

    Bernard, J. P.; Desert, X.

    1990-01-01

    Infrared Astronomy Satellite (IRAS) observations of the whole galaxy has shown that long wavelength emission (100 and 60 micron bands) can be explained by thermal emission from big grains (approx 0.1 micron) radiating at their equilibrium temperature when heated by the InterStellar Radiation Field (ISRF). This conclusion has been confirmed by continuum sub-millimeter observations of the galactic plane made by the EMILIE experiment at 870 microns (Pajot et al. 1986). Nevertheless, shorter wavelength observations like 12 and 25 micron IRAS bands, show an emission from the galactic plane in excess with the long wavelength measurements which can only be explained by a much hotter particles population. Because dust at equilibrium cannot easily reach high temperatures required to explain this excess, this component is thought to be composed of very small dust grains or big molecules encompassing thermal fluctuations. Researchers present here a numerical model that computes emission, from Near Infrared Radiation (NIR) to Sub-mm wavelengths, from a non-homogeneous spherical cloud heated by the ISRF. This model fully takes into account the heating of dust by multi-photon processes and back-heating of dust in the Visual/Infrared Radiation (VIS-IR) so that it is likely to describe correctly emission from molecular clouds up to large A sub v and emission from dust experiencing temperature fluctuations. The dust is a three component mixture of polycyclic aromatic hydrocarbons, very small grains, and classical big grains with independent size distributions (cut-off and power law index) and abundances.

  14. Formaldehyde in the Diffuse Interstellar Cloud MBM40

    NASA Astrophysics Data System (ADS)

    Joy, Mackenzie; Magnani, Loris A.

    2018-06-01

    MBM40, a high-latitude molecular cloud, has been extensively studied using different molecular tracers. It appears that MBM40 is composed of a relatively dense, helical filament embedded in a more diffuse substrate of low density molecular gas. In order to study the transition between the two regimes, this project presents the first high-resolution mapping of MBM40 using the 110-111 hyperfine transition of formaldehyde (H2CO) at 4.83 GHz. We used H2CO spectra obtained with the Arecibo telescope more than a decade ago to construct this map. The results can be compared to previous maps made from the CO(1-0) transition to gain further understanding of the structure of the cloud. The intensity of the H2CO emission was compared to the CO emission. Although a correlation exists between the H2CO and CO emissivity, there seems to be a saturation of H2CO line strength for stronger CO emissivity. This is probably a radiative transfer effect of the CO emission. We have also found that the velocity dispersion of H2CO in the lower ridge of the cloud is significantly lower than in the rest of the cloud. This may indicate that this portion of the cloud is a coherent structure (analogous to an eddy) in a turbulent flow.

  15. Millimeter and submillimeter spectra of hot cores and diffuse clouds: comparing IRAM and Herschel spectra with CASSIS simulations.

    NASA Astrophysics Data System (ADS)

    de Luca, Massimo

    The primary goal of the PRISMAS Herschel key program is the spectroscopic study of key molecular lines towards bright Galactic star-forming regions and the diffuse interstellar clouds distributed along the lines of sight. Models of the source emission and absorption spectra have been constructed with CASSIS, based on 1) observational evidence in comparable environments, 2) warm-up chemical models with gas-grain networks, and 3) ground-based spectra of various molecules in the target sources obtained at the IRAM 30m telescope. These models include contributions from the hot core, its parental molecular cloud and the foreground diffuse inter-stellar matter. The considerable complexity of the hot core chemistry, together with the huge amount of information buried in the spectra, often prevents a straightforward interpretation of the data without the help simulations. This is particularly true for the largely unexplored wavelength range of HIFI. In this contribution, we compare HIFI and IRAM observations to our models, in order to either consolidate present day assumptions and knowledge of these environments, or to highlight the model limitations, poorly understood physical and chemical conditions or unexpected abundances. We pay particular attention to the ground state tran-sitions of the most important hydrides, which the PRISMAS program has been designed for, though the HIFI spectra are expected to be rich in other molecules as well. List of Authors De Luca, M., Observatoire de Paris, Ecole Normale Supérieure and CNRS, FRANCE; Bell, T., CalTech, UNITED STATES; Coutens, A., CESR, FRANCE; Godard, B., IAS, FRANCE; Gupta, H., JPL, UNITED STATES; Mook-erjea, B., Tata Institute for Fundamental Research, INDIA; and the PRISMAS consortium, PRISMAS, FRANCE

  16. A Catalog of Molecular Clouds in the Milky Way Galaxy

    NASA Astrophysics Data System (ADS)

    Wahl, Matthew; Koda, J.

    2010-01-01

    We have created a complete catalog of molecular clouds in the Milky Way Galaxy. This is an extension of our previous study (Koda et al. 2006) which used a preliminary data set from The Boston University Five College Radio Astronomy Observatory Galactic Ring Survey (BUFCRAO GRS). This work is of the complete data set from this GRS. The data covers the inner part of the northern Galactic disk between galactic longitudes 15 to 56 degrees, galactic latitudes -1.1 to 1.1 degrees, and the entire Galactic velocities. We used the standard cloud identification method. This method searches the data cube for a peak in temperature above a specified value, and then searches around that peak in all directions until the extents of the cloud are found. This method is iterated until all clouds are found. We prefer this method over other methods, because of its simplicity. The properties of our molecular clouds are very similar to those based on a more evolved method (Rathborne et al. 2009).

  17. OT2_tvelusam_4: Probing Galactic Spiral Arm Tangencies with [CII

    NASA Astrophysics Data System (ADS)

    Velusamy, T.

    2011-09-01

    We propose to use the unique viewing geometry of the Galactic spiral arm tangents , which provide an ideal environment for studying the effects of density waves on spiral structure. We propose a well-sampled map of the[C II] 1.9 THz line emission along a 15-degree longitude region across the Norma-3kpc arm tangential, which includes the edge of the Perseus Arm. The COBE-FIRAS instrument observed the strongest [C II] and [N II] emission along these spiral arm tangencies.. The Herschel Open Time Key Project Galactic Observations of Terahertz C+ (GOT C+), also detects the strongest [CII] emission near these spiral arm tangential directions in its sparsely sampled HIFI survey of [CII] in the Galactic plane survey. The [C II] 158-micron line is the strongest infrared line emitted by the ISM and is an excellent tracer and probe of both the diffuse gases in the cold neutral medium (CNM) and the warm ionized medium (WIM). Furthermore, as demonstrated in the GOTC+ results, [C II] is an efficient tracer of the dark H2 gas in the ISM that is not traced by CO or HI observations. Thus, taking advantage of the long path lengths through the spiral arm across the tangencies, we can use the [C II] emission to trace and characterize the diffuse atomic and ionized gas as well as the diffuse H2 molecular gas in cloud transitions from HI to H2 and C+ to C and CO, throughout the ISM. The main goal of our proposal is to use the well sampled (at arcmin scale) [C II] to study these gas components of the ISM in the spiral-arm, and inter-arm regions, to constrain models of the spiral structure and to understand the influence of spiral density waves on the Galactic gas and the dynamical interaction between the different components. The proposed HIFI observations will consist of OTF 15 degree longitude scans and one 2-degree latitude scan sampled every 40arcsec across the Norma- 3kpc Perseus Spiral tangency.

  18. Conversion of gas into stars in the Galactic center

    NASA Astrophysics Data System (ADS)

    Longmore, S. N.

    2014-05-01

    The star formation rate in the central 500 pc of the Milky Way is lower by a factor of > 10 than expected for the substantial amount of dense gas it contains, which challenges current star formation theories. I discuss which physical mechanisms could be causing this observation and put forward a self-consistent cycle of star formation in the Galactic center, in which the plausible star formation inhibitors are combined. Their ubiquity suggests that the perception of a lowered central SFR should be a common phenomenon in other galaxies with direct implications for galactic star formation and also potentially supermassive black hole growth. I then describe a scenario to explain the presence of super star clusters in the Galactic center environment, in which their formation is triggered by gas streams passing close to the minimum of the global Galactic gravitational potential at the location of the central supermassive black hole, Sgr A*. If this triggering mechanism can be verified, we can use the known time interval since closest approach to Sgr A* to study the physics of stellar mass assembly in an extreme environment as a function of absolute time. I outline the first results from detailed numerical simulations testing this scenario. Finally, I describe a study showing that in terms of the baryonic composition, kinematics, and densities, the gas in the Galactic center is indistinguishable from high-redshift clouds and galaxies. As such, the Galactic center clouds may be used as a template to understand the evolution (and possibly the life cycle) of high-redshift clouds and galaxies.

  19. An experimental study of the role of particle diffusive convection on the residence time of volcanic ash clouds

    NASA Astrophysics Data System (ADS)

    Deal, E.; Carazzo, G.; Jellinek, M.

    2013-12-01

    The longevity of volcanic ash clouds generated by explosive volcanic plumes is difficult to predict. Diffusive convective instabilities leading to the production of internal layering are known to affect the stability and longevity of these clouds, but the detailed mechanisms controlling particle dynamics and sedimentation are poorly understood. We present results from a series of analog experiments reproducing diffusive convection in a 2D (Hele-Shaw) geometry, which allow us to constrain conditions for layer formation, sedimentation regime and cloud residence time as a function of only the source conditions. We inject a turbulent particle-laden jet sideways into a tank containing a basal layer of salt water and an upper layer of fresh water, which ultimately spreads as a gravity current. After the injection is stopped, particles in suspension settle through the cloud to form particle boundary layers (PBL) at the cloud base. We vary the initial particle concentration of the plume and the injection velocity over a wide range of conditions to identify and characterize distinct regimes of sedimentation. Our experiments show that convective instabilities driven as a result of differing diffusivities of salt and particles lead to periodic layering over a wide range of conditions expected in nature. The flux of particles from layered clouds and the thicknesses of the layers are understood using classical theory for double diffusive convection adjusted for the hydrodynamic diffusion of particles. Although diffusive convection increases sedimentation rates for the smallest particles (<30 μm) its overall effect is to extend the cloud residence time to several hours by maintaining larger particles in suspension within the layers, which is several orders of magnitude longer than expected when considering individual settling rates.

  20. Hydroxyl as a Tracer of Dark Gas in a Diffuse Molecular Cloud

    NASA Astrophysics Data System (ADS)

    White, Josh; Donate, Emmanuel; Magnani, Loris A.

    2017-06-01

    In an attempt to determine the extent of dark molecular gas at high Galactic latitudes, we have conducted a survey of OH at 18 cm in a region containing the diffuse molecular cloud MBM 53. Dark molecular gas is a term that refers to molecular hydrogen that is either difficult or impossible to detect by conventional spectroscopic means. While models of photo-dissociation regions predict that some molecular hydrogen is found under conditions where other species are too low in abundance to be detected by radio spectroscopy, recent estimates have predicted that as much dark molecular gas exists as that normally detected by CO(1-0) surveys. However, more sensitive surveys either in the CO(1-0) line or other tracers should detect some of this gas. We observed 44 lines of sight at 18 cm to see if very sensitive OH observations could detect some of the dark molecular gas in the Pegasus-Pisces region. Our data were taken with the 305 m Arecibo radiotelescope and have typical rms values of 6-7 mK. We compared our OH observations with the Georgia/Harvard-Smithsonian CfA high-latitude CO(1-0) survey. Of 8 OH detections at 1667 MHz, 5 were not detected by the CO survey and indicate that at least some of the dark molecular gas may be traced by sensitive OH observations.

  1. The fuelling of active galactic nuclei

    NASA Technical Reports Server (NTRS)

    Shlosman, Isaac; Begelman, Mitchell C.; Frank, Julian

    1990-01-01

    Accretion mechanisms for powering the central engines of active galactic nuclei (AGN) and possible sources of fuel are reviewed. It is a argued that the interstellar matter in the main body of the host galaxy is channeled toward the center, and the problem of angular momentum transport is addressed. Thin accretion disks are not a viable means of delivering fuel to luminous AGN on scales much larger than a parsec because of the long inflow time and effects of self-gravity. There are also serious obstacles to maintaining and regulating geometrically thick, hot accretion flows. The role of nonaxisymmetric perturbations of the gravitational potential on galactic scales and their triggers is emphasized. A unified model is outlined for fueling AGN, in which the inflow on large scales is driven by gravitational torques, and on small scales forms a mildly self-gravitating disk of clouds with inflow driven by magnetic torques or cloud-cloud collisions.

  2. Galactic cold cores. V. Dust opacity

    NASA Astrophysics Data System (ADS)

    Juvela, M.; Ristorcelli, I.; Marshall, D. J.; Montillaud, J.; Pelkonen, V.-M.; Ysard, N.; McGehee, P.; Paladini, R.; Pagani, L.; Malinen, J.; Rivera-Ingraham, A.; Lefèvre, C.; Tóth, L. V.; Montier, L. A.; Bernard, J.-P.; Martin, P.

    2015-12-01

    Context. The project Galactic Cold Cores has carried out Herschel photometric observations of interstellar clouds where the Planck satellite survey has located cold and compact clumps. The sources represent different stages of cloud evolution from starless clumps to protostellar cores and are located in different Galactic environments. Aims: We examine this sample of 116 Herschel fields to estimate the submillimetre dust opacity and to search for variations that might be attributed to the evolutionary stage of the sources or to environmental factors, including the location within the Galaxy. Methods: The submillimetre dust opacity was derived from Herschel data, and near-infrared observations of the reddening of background stars are converted into near-infrared optical depth. We investigated the systematic errors affecting these parameters and used modelling to correct for the expected biases. The ratio of 250 μm and J band opacities is correlated with the Galactic location and the star formation activity. We searched for local variations in the ratio τ(250 μm)/τ(J) using the correlation plots and opacity ratio maps. Results: We find a median ratio of τ(250 μm) /τ(J) = (1.6 ± 0.2) × 10-3, which is more than three times the mean value reported for the diffuse medium. Assuming an opacity spectral index β = 1.8 instead of β = 2.0, the value would be lower by ~ 30%. No significant systematic variation is detected with Galactocentric distance or with Galactic height. Examination of the τ(250 μm) /τ(J) maps reveals six fields with clear indications of a local increase of submillimetre opacity of up to τ(250 μm) /τ(J) ~ 4 × 10-3 towards the densest clumps. These are all nearby fields with spatially resolved clumps of high column density. Conclusions: We interpret the increase in the far-infrared opacity as a sign of grain growth in the densest and coldest regions of interstellar clouds. Planck (http://www.esa.int/Planck) is a project of the European

  3. Gamma-ray spectroscopy: The diffuse galactic glow

    NASA Technical Reports Server (NTRS)

    Hartmann, Dieter H.

    1991-01-01

    The goal of this project is the development of a numerical code that provides statistical models of the sky distribution of gamma-ray lines due to the production of radioactive isotopes by ongoing Galactic nucleosynthesis. We are particularly interested in quasi-steady emission from novae, supernovae, and stellar winds, but continuum radiation and transient sources must also be considered. We have made significant progress during the first half period of this project and expect the timely completion of a code that can be applied to Oriented Scintillation Spectrometer Experiment (OSSE) Galactic plane survey data.

  4. Observational Constraints for Modeling Diffuse Molecular Clouds

    NASA Astrophysics Data System (ADS)

    Federman, S. R.

    2014-02-01

    Ground-based and space-borne observations of diffuse molecular clouds suggest a number of areas where further improvements to modeling efforts is warranted. I will highlight those that have the widest applicability. The range in CO fractionation caused by selective isotope photodissociation, in particular the large 12C16O/13C16O ratios observed toward stars in Ophiuchus, is not reproduced well by current models. Our ongoing laboratory measurements of oscillator strengths and predissociation rates for Rydberg transitions in CO isotopologues may help clarify the situtation. The CH+ abundance continues to draw attention. Small scale structure seen toward ζ Per may provide additional constraints on the possible synthesis routes. The connection between results from optical transitions and those from radio and sub-millimeter wave transitions requires further effort. A study of OH+ and OH toward background stars reveals that these species favor different environments. This brings to focus the need to model each cloud along the line of sight separately, and to allow the physical conditions to vary within an individual cloud, in order to gain further insight into the chemistry. Now that an extensive set of data on molecular excitation is available, the models should seek to reproduce these data to place further constraints on the modeling results.

  5. Formation of the young compact cluster GM 24 triggered by a cloud-cloud collision

    NASA Astrophysics Data System (ADS)

    Fukui, Yasuo; Kohno, Mikito; Yokoyama, Keiko; Nishimura, Atsushi; Torii, Kazufumi; Hattori, Yusuke; Sano, Hidetoshi; Ohama, Akio; Yamamoto, Hiroaki; Tachihara, Kengo

    2018-05-01

    High-mass star formation is an important step which controls galactic evolution. GM 24 is a heavily obscured star cluster including a single O9 star with more than ˜100 lower-mass stars within a 0.3 pc radius toward (l, b) ˜ (350.5°, 0.96°), close to the Galactic mini-starburst NGC 6334. We found two velocity components associated with the cluster by new observations of 12CO J =2-1 emission, whereas the cloud was previously considered to be single. We found that the distribution of the two components of 5 {km}s-1 separation shows complementary distribution; the two fit well with each other if a relative displacement of 3 pc is applied along the Galactic plane. A position-velocity diagram of the GM 24 cloud is explained by a model based on numerical simulations of two colliding clouds, where an intermediate velocity component created by the collision is taken into account. We estimate the collision time scale to be ˜Myr in projection of a relative motion tilted to the line of sight by 45°. The results lend further support for cloud-cloud collision as an important mechanism of high-mass star formation in the Carina-Sagittarius Arm.

  6. Water Absorption in Galactic Translucent Clouds: Conditions and History of the Gas Derived from Herschel/HIFI PRISMAS Observations

    NASA Astrophysics Data System (ADS)

    Flagey, N.; Goldsmith, P. F.; Lis, D. C.; Gerin, M.; Neufeld, D.; Sonnentrucker, P.; De Luca, M.; Godard, B.; Goicoechea, J. R.; Monje, R.; Phillips, T. G.

    2013-01-01

    We present Herschel/HIFI observations of the three ground state transitions of H2O (556, 1669, and 1113 GHz) and H218O (547, 1655, and 1101 GHz)—as well as the first few excited transitions of H2O (987, 752, and 1661 GHz)—toward six high-mass star-forming regions, obtained as part of the PRISMAS (PRobing InterStellar Molecules with Absorption line Studies) Guaranteed Time Key Program. Water vapor associated with the translucent clouds in Galactic arms is detected in absorption along every line of sight in all the ground state transitions. The continuum sources all exhibit broad water features in emission in the excited and ground state transitions. Strong absorption features associated with the source are also observed at all frequencies except 752 GHz. We model the background continuum and line emission to infer the optical depth of each translucent cloud along the lines of sight. We derive the column density of H2O or H218O for the lower energy level of each transition observed. The total column density of water in translucent clouds is usually about a few 1013 cm-2. We find that the abundance of water relative to hydrogen nuclei is 1 × 10-8 in agreement with models for oxygen chemistry in which high cosmic ray ionization rates are assumed. Relative to molecular hydrogen, the abundance of water is remarkably constant through the Galactic plane with X(H2O) =5 × 10-8, which makes water a good traced of H2 in translucent clouds. Observations of the excited transitions of H2O enable us to constrain the abundance of water in excited levels to be at most 15%, implying that the excitation temperature, T ex, in the ground state transitions is below 10 K. Further analysis of the column densities derived from the two ortho ground state transitions indicates that T ex ~= 5 K and that the density n(H2) in the translucent clouds is below 104 cm-3. We derive the water ortho-to-para ratio for each absorption feature along the line of sight and find that most of the clouds

  7. Low-frequency Carbon Radio Recombination Lines. II. The Diffuse Interstellar Medium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Salgado, F.; Morabito, L. K.; Oonk, J. B. R.

    In the second paper of the series, we have modeled low-frequency carbon radio recombination lines (CRRLs) from the interstellar medium. Anticipating the Low Frequency Array survey of Galactic CRRLs, we focus our study on the physical conditions of the diffuse, cold neutral medium. We have used the improved departure coefficients computed in the first paper of the series to calculate line-to-continuum ratios. The results show that the line width and integrated optical depths of CRRLs are sensitive probes of the electron density, gas temperature, and emission measure of the cloud. Furthermore, the ratio of CRRL to the [C ii] atmore » the 158 μ m line is a strong function of the temperature and density of diffuse clouds. Guided by our calculations, we analyze CRRL observations and illustrate their use with data from the literature.« less

  8. The abundance of CO in diffuse interstellar clouds - An ultraviolet survey

    NASA Technical Reports Server (NTRS)

    Federman, S. R.; Glassgold, A. E.; Jenkins, E. B.; Shaya, E. J.

    1980-01-01

    CO was detected in 17 directions and its upper limits were estimated in 21 directions by a UV survey carried out with the Copernicus satellite in the C-X 1088 A and E-X 1076 A lines toward 48 bright stars. The CO column densities range from 10 to the 12th to 10 to the 17th/sq cm and correlate with C I and H2. The tendency of the C I/CO ratio to be about 10 follows the ratio of particular atomic and molecular cross-sections and the physical parameters of interstellar clouds. Finally, the connection between UV observations in diffuse clouds and radio observations of (C-13)O in dark clouds is discussed.

  9. Galactic bulge preferred over dark matter for the Galactic centre gamma-ray excess

    NASA Astrophysics Data System (ADS)

    Macias, Oscar; Gordon, Chris; Crocker, Roland M.; Coleman, Brendan; Paterson, Dylan; Horiuchi, Shunsaku; Pohl, Martin

    2018-05-01

    An anomalous gamma-ray excess emission has been found in the Fermi Large Area Telescope data1 covering the centre of the Galaxy2,3. Several theories have been proposed for this `Galactic centre excess'. They include self-annihilation of dark-matter particles4, an unresolved population of millisecond pulsars5, an unresolved population of young pulsars6, or a series of burst events7. Here, we report on an analysis that exploits hydrodynamical modelling to register the position of interstellar gas associated with diffuse Galactic gamma-ray emission. We find evidence that the Galactic centre excess gamma rays are statistically better described by the stellar over-density in the Galactic bulge and the nuclear stellar bulge, rather than a spherical excess. Given its non-spherical nature, we argue that the Galactic centre excess is not a dark-matter phenomenon but rather associated with the stellar population of the Galactic bulge and the nuclear bulge.

  10. Resolving Star Formation, Multiphase ISM Structure, and Wind Driving with MHD and RHD Models of Galactic Disks

    NASA Astrophysics Data System (ADS)

    Ostriker, Eve

    potentials and galactic rotation rates. Our simulations follow all thermal phases of the gas, the driving of turbulence, and the expulsion of material in high-velocity galactic winds as well as the circulation of lowervelocity material in galactic ``fountains.'' We resolve gravitational collapse and apply stellar population modeling to determine radiation emitted by star cluster particles, and both in situ and runaway O-star SN events. With time-dependent chemistry, we will be able to follow C+/C/CO transitions and assess the relationship between the observed molecular component and self-gravitating or diffuse clouds in varying galactic environments, also determining how cloud properties (e.g. distributions of mass, size, virial parameter, internal/external pressure, magnetization) and lifetimes depend on environment. We will also investigate the dependence on local galactic environment of: * mass and volume fractions, and turbulent and magnetic state, of each thermal and chemical ISM phase * star formation rate, and galactic wind mass loss rate in each ISM phase * metrics of ISM energy gain/loss, large-scale force balance, wind acceleration * roles of SN and radiation feedback in setting cloud SFEs, overall SFRs, and wind massloss rates Our models will be valuable for interpreting a wide range of observations with Chandra, Hubble, Spitzer, Herschel, Planck, and ground-based telescopes. Obtaining self-consistent solutions for the dynamical, thermal, magnetic, chemical, and radiative state of the star-forming ISM is a long-sought goal of galactic theory. Understanding why ISM and star formation properties vary among and within galaxies is essential for interpreting new multiwavelength extragalactic surveys. Connecting galactic winds to star formation via resolved physical mechanisms will provide a missing link in contemporary galaxy formation models. With our planned research program, we are in a position to achieve all of these advances.

  11. Implications of the IRAS data for galactic gamma-ray astronomy and EGRET

    NASA Technical Reports Server (NTRS)

    Stecker, F. W.

    1990-01-01

    Using the results of gamma-ray, millimeter wave and far infrared surveys of the galaxy, one can derive a logically consistent picture of the large scale distribution of galactic gas and cosmic rays, one tied to the overall processes of stellar birth and destruction on a galactic scale. Using the results of the IRAS far-infrared survey of the galaxy, the large scale radial distribution of galactic far-infrared emission were obtained independently for both the Northern and Southern Hemisphere sides of the Galaxy. It was found that the dominant feature in these distributions to be a broad peak coincident with the 5 kpc molecular gas cloud ring. Also found was evidence of spiral arm features. Strong correlations are evident between the large scale galactic distributions of far infrared emission, gamma-ray emission and total CO emission. There is a particularly tight correlation between the distribution of warm molecular clouds and far-infrared emission on a galactic scale.

  12. Diffuse gamma-ray emission from self-confined cosmic rays around Galactic sources

    NASA Astrophysics Data System (ADS)

    D'Angelo, Marta; Morlino, Giovanni; Amato, Elena; Blasi, Pasquale

    2018-02-01

    The propagation of particles accelerated at supernova remnant shocks and escaping the parent remnants is likely to proceed in a strongly non-linear regime, due to the efficient self-generation of Alfvén waves excited through streaming instability near the sources. Depending on the amount of neutral hydrogen present in the regions around the sites of supernova explosions, cosmic rays may accumulate an appreciable grammage in the same regions and get self-confined for non-negligible times, which in turn results in an enhanced rate of production of secondaries. Here we calculate the contribution to the diffuse gamma-ray background due to the overlap along lines of sight of several of these extended haloes as due to pion production induced by self-confined cosmic rays. We find that if the density of neutrals is low, the haloes can account for a substantial fraction of the diffuse emission observed by Fermi-Large Area Telescope (LAT), depending on the orientation of the line of sight with respect to the direction of the Galactic Centre.

  13. Cosmic-rays, gas, and dust in nearby anticentre clouds. II. Interstellar phase transitions and the dark neutral medium

    NASA Astrophysics Data System (ADS)

    Remy, Q.; Grenier, I. A.; Marshall, D. J.; Casandjian, J. M.

    2018-03-01

    Aim. H I 21-cm and 12CO 2.6-mm line emissions trace the atomic and molecular gas phases, respectively, but they miss most of the opaque H I and diffuse H2 present in the dark neutral medium (DNM) at the transition between the H I-bright and CO-bright regions. Jointly probing H I, CO, and DNM gas, we aim to constrain the threshold of the H I-H2 transition in visual extinction, AV, and in total hydrogen column densities, NHtot. We also aim to measure gas mass fractions in the different phases and to test their relation to cloud properties. Methods: We have used dust optical depth measurements at 353 GHz, γ-ray maps at GeV energies, and H I and CO line data to trace the gas column densities and map the DNM in nearby clouds toward the Galactic anticentre and Chamaeleon regions. We have selected a subset of 15 individual clouds, from diffuse to star-forming structures, in order to study the different phases across each cloud and to probe changes from cloud to cloud. Results: The atomic fraction of the total hydrogen column density is observed to decrease in the (0.6-1) × 1021 cm-2 range in NHtot (AV ≈ 0.4 mag) because of the formation of H2 molecules. The onset of detectable CO intensities varies by only a factor of 4 from cloud to cloud, between 0.6 × 1021 cm-2 and 2.5 × 1021 cm-2 in total gas column density. We observe larger H2 column densities than linearly inferred from the CO intensities at AV > 3 mag because of the large CO optical thickness; the additional H2 mass in this regime represents on average 20% of the CO-inferred molecular mass. In the DNM envelopes, we find that the fraction of diffuse CO-dark H2 in the molecular column densities decreases with increasing AV in a cloud. For a half molecular DNM, the fraction decreases from more than 80% at 0.4 mag to less than 20% beyond 2 mag. In mass, the DNM fraction varies with the cloud properties. Clouds with low peak CO intensities exhibit large CO-dark H2 fractions in molecular mass, in particular the

  14. Searching for dark clouds in the outer galactic plane. I. A statistical approach for identifying extended red(dened) regions in 2MASS

    NASA Astrophysics Data System (ADS)

    Frieswijk, W. W. F.; Shipman, R. F.

    2010-06-01

    Context. Most of what is known about clustered star formation to date comes from well studied star forming regions located relatively nearby, such as Rho-Ophiuchus, Serpens and Perseus. However, the recent discovery of infrared dark clouds may give new insights in our understanding of this dominant mode of star formation in the Galaxy. Though the exact role of infrared dark clouds in the formation process is still somewhat unclear, they seem to provide useful laboratories to study the very early stages of clustered star formation. Infrared dark clouds have been identified predominantly toward the bright inner parts of the galactic plane. The low background emission makes it more difficult to identify similar objects in mid-infrared absorption in the outer parts. This is unfortunate, because the outer Galaxy represents the only nearby region where we can study effects of different (external) conditions on the star formation process. Aims: The aim of this paper is to identify extended red regions in the outer galactic plane based on reddening of stars in the near-infrared. We argue that these regions appear reddened mainly due to extinction caused by molecular clouds and young stellar objects. The work presented here is used as a basis for identifying star forming regions and in particular the very early stages. An accompanying paper describes the cross-identification of the identified regions with existing data, uncovering more on the nature of the reddening. Methods: We use the Mann-Whitney U-test, in combination with a friends-of-friends algorithm, to identify extended reddened regions in the 2MASS all-sky JHK survey. We process the data on a regular grid using two different resolutions, 60´´ and 90´´. The two resolutions have been chosen because the stellar surface density varies between the crowded spiral arm regions and the sparsely populated galactic anti-center region. Results: We identify 1320 extended red regions at the higher resolution and 1589 in the

  15. Scrutiny of the Core of the Galactic Center by H_3^+ and Co: Gcirs 3 and Gcirs 1W

    NASA Astrophysics Data System (ADS)

    Goto, M.; Usuda, T.; Geballe, T. R.; Indriolo, N.; McCall, B. J.; Oka, T.

    2011-06-01

    Out of the over two dozen sightlines toward the Central Molecular Zone of the Galactic center so far observed by infrared spectra of H_3^+ and CO, sightlines toward GCIRS 3 and Iota stand out as exceptional since they show cloud components with clear R(2,2)^l absorption indicating that their unstable (J,K) = (2,2) levels are well populated. Those two sightlines toward the Galactic core and Sgr B, respectively, must pass through hot and dense gas. The cloud component at ˜ 60 km S-1 toward GCIRS 3 is particularly intriguing since GCIRS 1W, which is separated from it only by 5".8 (0.23 pc if the same distance to the Galactic center of 8 k pc is assumed), barely shows the R(2,2)^l absorption. The cloud must be compact and this calls for a high ionization rate. To further study this problem the sightlines toward GCIRS 3 and GCIRS 1W have been observed by VLT under high spectral resolution. The observed R(3,3)^l absorption is extraordinarily deep and the R(2,2)^l absorption is clearly observable at ˜ 60 km S-1 for GCIRS 3 indicating unusually high temperature and high density of the cloud. In contrast, toward GCIRS 1W, the R(3,3)^l absorption is of ordinary depth and the R(2,2)^l absorptions is marginal if any indicating the well known warm and diffuse gas observed toward other regions of the Central Molecular Zone. Their analysis and comparison with radio HCN emission observed in the area will be discussed. M. Goto, T. Usuda, T. Nagata, T. R. Geballe, B. J. McCall, N. Indriolo, H. Suto, Th. Henning, C. P. Morong, and T. Oka, ApJ, 688, 306 (2008). Goto, Usuda, Geballe, Indriolo, McCall, Henning, Oka, PASJ (2011) in press.

  16. Toward Measuring Galactic Dense Molecular Gas Properties and 3D Distribution with Hi-GAL

    NASA Astrophysics Data System (ADS)

    Zetterlund, Erika; Glenn, Jason; Maloney, Phil

    2016-01-01

    The Herschel Space Observatory's submillimeter dust continuum survey Hi-GAL provides a powerful new dataset for characterizing the structure of the dense interstellar medium of the Milky Way. Hi-GAL observed a 2° wide strip covering the entire 360° of the Galactic plane in broad bands centered at 70, 160, 250, 350, and 500 μm, with angular resolution ranging from 10 to 40 arcseconds. We are adapting a molecular cloud clump-finding algorithm and a distance probability density function distance-determination method developed for the Bolocam Galactic Plane Survey (BGPS) to the Hi-GAL data. Using these methods we expect to generate a database of 105 cloud clumps, derive distance information for roughly half the clumps, and derive precise distances for approximately 20% of them. With five-color photometry and distances, we will measure the cloud clump properties, such as luminosities, physical sizes, and masses, and construct a three-dimensional map of the Milky Way's dense molecular gas distribution.The cloud clump properties and the dense gas distribution will provide critical ground truths for comparison to theoretical models of molecular cloud structure formation and galaxy evolution models that seek to emulate spiral galaxies. For example, such models cannot resolve star formation and use prescriptive recipes, such as converting a fixed fraction of interstellar gas to stars at a specified interstellar medium density threshold. The models should be compared to observed dense molecular gas properties and galactic distributions.As a pilot survey to refine the clump-finding and distance measurement algorithms developed for BGPS, we have identified molecular cloud clumps in six 2° × 2° patches of the Galactic plane, including one in the inner Galaxy along the line of sight through the Molecular Ring and the termination of the Galactic bar and one toward the outer Galaxy. Distances have been derived for the inner Galaxy clumps and compared to Bolocam Galactic Plane

  17. RADIO SYNCHROTRON EMISSION FROM A BOW SHOCK AROUND THE GAS CLOUD G2 HEADING TOWARD THE GALACTIC CENTER

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Narayan, Ramesh; Sironi, Lorenzo; Oezel, Feryal

    2012-10-01

    A dense ionized cloud of gas has been recently discovered to be moving directly toward the supermassive black hole, Sgr A*, at the Galactic center. In 2013 June, at the pericenter of its highly eccentric orbit, the cloud will be approximately 3100 Schwarzschild radii from the black hole and will move supersonically through the ambient hot gas with a velocity of v{sub p} Almost-Equal-To 5400 km s{sup -1}. A bow shock is likely to form in front of the cloud and could accelerate electrons to relativistic energies. We estimate via particle-in-cell simulations the energy distribution of the accelerated electrons andmore » show that the non-thermal synchrotron emission from these electrons might exceed the quiescent radio emission from Sgr A* by a factor of several. The enhanced radio emission should be detectable at GHz and higher frequencies around the time of pericentric passage and in the following months. The bow shock emission is expected to be displaced from the quiescent radio emission of Sgr A* by {approx}33 mas. Interferometric observations could resolve potential changes in the radio image of Sgr A* at wavelengths {approx}< 6 cm.« less

  18. X-Ray Shadowing Experiments Toward Infrared Dark Clouds

    NASA Technical Reports Server (NTRS)

    Anderson, L. E.; Snowden, S.; Bania, T. M.

    2009-01-01

    We searched for X-ray shadowing toward two infrared dark clouds (IRDCs) using the MOS detectors on XMM-Newton to learn about the Galactic distribution of X-ray emitting plasma. IRDCs make ideal X-ray shadowing targets of 3/4 keY photons due to their high column densities, relatively large angular sizes, and known kinematic distances. Here we focus on two clouds near 30 deg Galactic longitude at distances of 2 and 5 kpc from the Sun. We derive the foreground and background column densities of molecular and atomic gas in the direction of the clouds. We find that the 3/4 ke V emission must be distributed throughout the Galactic disk. It is therefore linked to the structure of the cooler material of the ISM, and to the birth of stars.

  19. Large Interstellar Polarisation Survey. II. UV/optical study of cloud-to-cloud variations of dust in the diffuse ISM

    NASA Astrophysics Data System (ADS)

    Siebenmorgen, R.; Voshchinnikov, N. V.; Bagnulo, S.; Cox, N. L. J.; Cami, J.; Peest, C.

    2018-03-01

    It is well known that the dust properties of the diffuse interstellar medium exhibit variations towards different sight-lines on a large scale. We have investigated the variability of the dust characteristics on a small scale, and from cloud-to-cloud. We use low-resolution spectro-polarimetric data obtained in the context of the Large Interstellar Polarisation Survey (LIPS) towards 59 sight-lines in the Southern Hemisphere, and we fit these data using a dust model composed of silicate and carbon particles with sizes from the molecular to the sub-micrometre domain. Large (≥6 nm) silicates of prolate shape account for the observed polarisation. For 32 sight-lines we complement our data set with UVES archive high-resolution spectra, which enable us to establish the presence of single-cloud or multiple-clouds towards individual sight-lines. We find that the majority of these 35 sight-lines intersect two or more clouds, while eight of them are dominated by a single absorbing cloud. We confirm several correlations between extinction and parameters of the Serkowski law with dust parameters, but we also find previously undetected correlations between these parameters that are valid only in single-cloud sight-lines. We find that interstellar polarisation from multiple-clouds is smaller than from single-cloud sight-lines, showing that the presence of a second or more clouds depolarises the incoming radiation. We find large variations of the dust characteristics from cloud-to-cloud. However, when we average a sufficiently large number of clouds in single-cloud or multiple-cloud sight-lines, we always retrieve similar mean dust parameters. The typical dust abundances of the single-cloud cases are [C]/[H] = 92 ppm and [Si]/[H] = 20 ppm.

  20. Planck 2015 results. XXVIII. The Planck Catalogue of Galactic cold clumps

    NASA Astrophysics Data System (ADS)

    Planck Collaboration; Ade, P. A. R.; Aghanim, N.; Arnaud, M.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Banday, A. J.; Barreiro, R. B.; Bartolo, N.; Battaner, E.; Benabed, K.; Benoît, A.; Benoit-Lévy, A.; Bernard, J.-P.; Bersanelli, M.; Bielewicz, P.; Bonaldi, A.; Bonavera, L.; Bond, J. R.; Borrill, J.; Bouchet, F. R.; Boulanger, F.; Bucher, M.; Burigana, C.; Butler, R. C.; Calabrese, E.; Catalano, A.; Chamballu, A.; Chiang, H. C.; Christensen, P. R.; Clements, D. L.; Colombi, S.; Colombo, L. P. L.; Combet, C.; Couchot, F.; Coulais, A.; Crill, B. P.; Curto, A.; Cuttaia, F.; Danese, L.; Davies, R. D.; Davis, R. J.; de Bernardis, P.; de Rosa, A.; de Zotti, G.; Delabrouille, J.; Désert, F.-X.; Dickinson, C.; Diego, J. M.; Dole, H.; Donzelli, S.; Doré, O.; Douspis, M.; Ducout, A.; Dupac, X.; Efstathiou, G.; Elsner, F.; Enßlin, T. A.; Eriksen, H. K.; Falgarone, E.; Fergusson, J.; Finelli, F.; Forni, O.; Frailis, M.; Fraisse, A. A.; Franceschi, E.; Frejsel, A.; Galeotta, S.; Galli, S.; Ganga, K.; Giard, M.; Giraud-Héraud, Y.; Gjerløw, E.; González-Nuevo, J.; Górski, K. M.; Gratton, S.; Gregorio, A.; Gruppuso, A.; Gudmundsson, J. E.; Hansen, F. K.; Hanson, D.; Harrison, D. L.; Helou, G.; Henrot-Versillé, S.; Hernández-Monteagudo, C.; Herranz, D.; Hildebrandt, S. R.; Hivon, E.; Hobson, M.; Holmes, W. A.; Hornstrup, A.; Hovest, W.; Huffenberger, K. M.; Hurier, G.; Jaffe, A. H.; Jaffe, T. R.; Jones, W. C.; Juvela, M.; Keihänen, E.; Keskitalo, R.; Kisner, T. S.; Knoche, J.; Kunz, M.; Kurki-Suonio, H.; Lagache, G.; Lamarre, J.-M.; Lasenby, A.; Lattanzi, M.; Lawrence, C. R.; Leonardi, R.; Lesgourgues, J.; Levrier, F.; Liguori, M.; Lilje, P. B.; Linden-Vørnle, M.; López-Caniego, M.; Lubin, P. M.; Macías-Pérez, J. F.; Maggio, G.; Maino, D.; Mandolesi, N.; Mangilli, A.; Marshall, D. J.; Martin, P. G.; Martínez-González, E.; Masi, S.; Matarrese, S.; Mazzotta, P.; McGehee, P.; Melchiorri, A.; Mendes, L.; Mennella, A.; Migliaccio, M.; Mitra, S.; Miville-Deschênes, M.-A.; Moneti, A.; Montier, L.; Morgante, G.; Mortlock, D.; Moss, A.; Munshi, D.; Murphy, J. A.; Naselsky, P.; Nati, F.; Natoli, P.; Netterfield, C. B.; Nørgaard-Nielsen, H. U.; Noviello, F.; Novikov, D.; Novikov, I.; Oxborrow, C. A.; Paci, F.; Pagano, L.; Pajot, F.; Paladini, R.; Paoletti, D.; Pasian, F.; Patanchon, G.; Pearson, T. J.; Pelkonen, V.-M.; Perdereau, O.; Perotto, L.; Perrotta, F.; Pettorino, V.; Piacentini, F.; Piat, M.; Pierpaoli, E.; Pietrobon, D.; Plaszczynski, S.; Pointecouteau, E.; Polenta, G.; Pratt, G. W.; Prézeau, G.; Prunet, S.; Puget, J.-L.; Rachen, J. P.; Reach, W. T.; Rebolo, R.; Reinecke, M.; Remazeilles, M.; Renault, C.; Renzi, A.; Ristorcelli, I.; Rocha, G.; Rosset, C.; Rossetti, M.; Roudier, G.; Rubiño-Martín, J. A.; Rusholme, B.; Sandri, M.; Santos, D.; Savelainen, M.; Savini, G.; Scott, D.; Seiffert, M. D.; Shellard, E. P. S.; Spencer, L. D.; Stolyarov, V.; Sudiwala, R.; Sunyaev, R.; Sutton, D.; Suur-Uski, A.-S.; Sygnet, J.-F.; Tauber, J. A.; Terenzi, L.; Toffolatti, L.; Tomasi, M.; Tristram, M.; Tucci, M.; Tuovinen, J.; Umana, G.; Valenziano, L.; Valiviita, J.; Van Tent, B.; Vielva, P.; Villa, F.; Wade, L. A.; Wandelt, B. D.; Wehus, I. K.; Yvon, D.; Zacchei, A.; Zonca, A.

    2016-09-01

    We present the Planck Catalogue of Galactic Cold Clumps (PGCC), an all-sky catalogue of Galactic cold clump candidates detected by Planck. This catalogue is the full version of the Early Cold Core (ECC) catalogue, which was made available in 2011 with the Early Release Compact Source Catalogue (ERCSC) and which contained 915 high signal-to-noise sources. It is based on the Planck 48-month mission data that are currently being released to the astronomical community. The PGCC catalogue is an observational catalogue consisting exclusively of Galactic cold sources. The three highest Planck bands (857, 454, and 353 GHz) have been combined with IRAS data at 3 THz to perform a multi-frequency detection of sources colder than their local environment. After rejection of possible extragalactic contaminants, the PGCC catalogue contains 13188 Galactic sources spread across the whole sky, I.e., from the Galactic plane to high latitudes, following the spatial distribution of the main molecular cloud complexes. The median temperature of PGCC sources lies between 13 and 14.5 K, depending on the quality of the flux density measurements, with a temperature ranging from 5.8 to 20 K after removing the sources with the top 1% highest temperature estimates. Using seven independent methods, reliable distance estimates have been obtained for 5574 sources, which allows us to derive their physical properties such as their mass, physical size, mean density, and luminosity.The PGCC sources are located mainly in the solar neighbourhood, but also up to a distance of 10.5 kpc in the direction of the Galactic centre, and range from low-mass cores to large molecular clouds. Because of this diversity and because the PGCC catalogue contains sources in very different environments, the catalogue is useful for investigating the evolution from molecular clouds to cores. Finally, it also includes 54 additional sources located in the Small and Large Magellanic Clouds.

  1. Planck 2015 results: XXVIII. The Planck Catalogue of Galactic cold clumps

    DOE PAGES

    Ade, P. A. R.; Aghanim, N.; Arnaud, M.; ...

    2016-09-20

    Here, we present the Planck Catalogue of Galactic Cold Clumps (PGCC), an all-sky catalogue of Galactic cold clump candidates detected by Planck. This catalogue is the full version of the Early Cold Core (ECC) catalogue, which was made available in 2011 with the Early Release Compact Source Catalogue (ERCSC) and which contained 915 high signal-to-noise sources. It is based on the Planck 48-month mission data that are currently being released to the astronomical community. The PGCC catalogue is an observational catalogue consisting exclusively of Galactic cold sources. The three highest Planck bands (857, 454, and 353 GHz) have been combinedmore » with IRAS data at 3 THz to perform a multi-frequency detection of sources colder than their local environment. After rejection of possible extragalactic contaminants, the PGCC catalogue contains 13188 Galactic sources spread across the whole sky, i.e., from the Galactic plane to high latitudes, following the spatial distribution of the main molecular cloud complexes. The median temperature of PGCC sources lies between 13 and 14.5 K, depending on the quality of the flux density measurements, with a temperature ranging from 5.8 to 20 K after removing the sources with the top 1% highest temperature estimates. Using seven independent methods, reliable distance estimates have been obtained for 5574 sources, which allows us to derive their physical properties such as their mass, physical size, mean density, and luminosity.The PGCC sources are located mainly in the solar neighbourhood, but also up to a distance of 10.5 kpc in the direction of the Galactic centre, and range from low-mass cores to large molecular clouds. Because of this diversity and because the PGCC catalogue contains sources in very different environments, the catalogue is useful for investigating the evolution from molecular clouds to cores. Finally, it also includes 54 additional sources located in the Small and Large Magellanic Clouds.« less

  2. Implications of the IRAS data for galactic gamma ray astronomy and EGRET

    NASA Technical Reports Server (NTRS)

    Stecker, Floyd W.

    1990-01-01

    Using the results of gamma-ray, millimeter wave and far surveys of the galaxy, logically consistent picture of the large scale distribution of galactic gas and cosmic rays was derived, tied to the overall processes of stellar birth and destruction on a galactic scale. Using the results of the IRAS far-infrared survey of te galaxy, the large scale radial distributions of galactic far-infrared emission independently was obtained for both the Northern and Southern Hemisphere sides of the Galaxy. The dominant feature in these distributions was found to be a broad peak coincident with the 5 kpc molecular gas cloud ring. Evidence was found for spiral arm features. Strong correlations are evident between the large scale galactic distributions of far-infrared emission, gamma-ray emission and total CO emission. There is particularly tight correlation between the distribution of warm molecular clouds and far-infrared emission on a galactic scale. The 5 kpc ring was evident in existing galactic gamma-ray data. The extent to which the more detailed spiral arm features are evident in the more resolved EGRET (Energetic Gamma-Ray Experimental Telescope) data will help to determine more precisely the propagation characteristics of cosmic rays.

  3. SEDIGISM: Structure, excitation, and dynamics of the inner Galactic interstellar medium

    NASA Astrophysics Data System (ADS)

    Schuller, F.; Csengeri, T.; Urquhart, J. S.; Duarte-Cabral, A.; Barnes, P. J.; Giannetti, A.; Hernandez, A. K.; Leurini, S.; Mattern, M.; Medina, S.-N. X.; Agurto, C.; Azagra, F.; Anderson, L. D.; Beltrán, M. T.; Beuther, H.; Bontemps, S.; Bronfman, L.; Dobbs, C. L.; Dumke, M.; Finger, R.; Ginsburg, A.; Gonzalez, E.; Henning, T.; Kauffmann, J.; Mac-Auliffe, F.; Menten, K. M.; Montenegro-Montes, F. M.; Moore, T. J. T.; Muller, E.; Parra, R.; Perez-Beaupuits, J.-P.; Pettitt, A.; Russeil, D.; Sánchez-Monge, Á.; Schilke, P.; Schisano, E.; Suri, S.; Testi, L.; Torstensson, K.; Venegas, P.; Wang, K.; Wienen, M.; Wyrowski, F.; Zavagno, A.

    2017-05-01

    Context. The origin and life-cycle of molecular clouds are still poorly constrained, despite their importance for understanding the evolution of the interstellar medium. Many large-scale surveys of the Galactic plane have been conducted recently, allowing for rapid progress in this field. Nevertheless, a sub-arcminute resolution global view of the large-scale distribution of molecular gas, from the diffuse medium to dense clouds and clumps, and of their relationshipto the spiral structure, is still missing. Aims: We have carried out a systematic, homogeneous, spectroscopic survey of the inner Galactic plane, in order to complement the many continuum Galactic surveys available with crucial distance and gas-kinematic information. Our aim is to combine this data set with recent infrared to sub-millimetre surveys at similar angular resolutions. Methods: The SEDIGISM survey covers 78 deg2 of the inner Galaxy (-60°≤ℓ≤ 18°, |b|≤ 0.5°) in the J = 2-1 rotational transition of 13CO. This isotopologue of CO is less abundant than 12CO by factors up to 100. Therefore, its emission has low to moderate optical depths, and higher critical density, making it an ideal tracer of the cold, dense interstellar medium. The data have been observed with the SHFI single-pixel instrument at APEX. The observational setup covers the 13CO(2-1) and C18O(2-1) lines, plus several transitions from other molecules. Results: The observations have been completed. Data reduction is in progress, and the final data products will be made available in the near future. Here we give a detailed description of the survey and the dedicated data reduction pipeline. To illustrate the scientific potential of this survey, preliminary results based on a science demonstration field covering -20°≤ℓ ≤ -18.5° are presented. Analysis of the 13CO(2-1) data in this field reveals compact clumps, diffuse clouds, and filamentary structures at a range of heliocentric distances. By combining our data with

  4. SMM detection of diffuse Galactic 511 keV annihilation radiation

    NASA Technical Reports Server (NTRS)

    Share, G. H.; Kinzer, R. L.; Kurfess, J. D.; Messina, D. C.; Purcell, W. R.

    1988-01-01

    Observations of the 511 keV annihilation line from the vicinity of the Galactic center from October to February for 1980/1981, 1981/1982, 1982/1983, 1984/1985, and 1985/1986 are presented. The measurements were made with the gamma-ray spectrometer on the SMM. The design of the instrument and some of its properties used in the analysis are described, and the methods used for accumulating, fitting, and analyzing the data are outlined. It is shown how the Galactic 511 keV line was separated from the intense and variable background observed in orbit. The SMM observations are compared with previous measurements of annihilation radiation from the Galactic center region, and the astrophysical implications are discussed. It is argued that most of the measurements made to date suggest the presence of an extended Galactic source of annihilation radiation.

  5. Gamma ray constraints on the Galactic supernova rate

    NASA Technical Reports Server (NTRS)

    Hartmann, D.; The, L.-S.; Clayton, Donald D.; Leising, M.; Mathews, G.; Woosley, S. E.

    1991-01-01

    We perform Monte Carlo simulations of the expected gamma ray signatures of Galactic supernovae of all types to estimate the significance of the lack of a gamma ray signal due to supernovae occurring during the last millenium. Using recent estimates of the nuclear yields, we determine mean Galactic supernova rates consistent with the historic supernova record and the gamma ray limits. Another objective of these calculations of Galactic supernova histories is their application to surveys of diffuse Galactic gamma ray line emission.

  6. Gamma ray constraints on the galactic supernova rate

    NASA Technical Reports Server (NTRS)

    Hartmann, D.; The, L.-S.; Clayton, D. D.; Leising, M.; Mathews, G.; Woosley, S. E.

    1992-01-01

    Monte Carlo simulations of the expected gamma-ray signatures of galactic supernovae of all types are performed in order to estimate the significance of the lack of a gamma-ray signal due to supernovae occurring during the last millenium. Using recent estimates of nuclear yields, we determine galactic supernova rates consistent with the historic supernova record and the gamma-ray limits. Another objective of these calculations of galactic supernova histories is their application to surveys of diffuse galactic gamma-ray line emission.

  7. Diffuse interstellar clouds as a chemical laboratory - The chemistry of diatomic carbon species

    NASA Technical Reports Server (NTRS)

    Federman, S. R.; Huntress, W. T., Jr.

    1989-01-01

    The chemistry of C2, CH, and CO in diffuse interstellar clouds is analyzed and compared to absorption line measurements toward background stars. Analytical expressions in terms of column densities are derived for the rate equations. The results indicate that in clouds with 4 mag of visual extinction, the abundance of C+ has to decrease by a factor of about 15 from the value traditionally used for clouds with 1 mag of extinction. The rate coefficients for the reactions C+ + CH - C2+ + H and C+ + H2 - CH2+ + h-nu need to be reduced from previous estimates. Chemical arguments are presented for the revised rate coefficients.

  8. Revealing the Physics of Galactic Winds Through Massively-Parallel Hydrodynamics Simulations

    NASA Astrophysics Data System (ADS)

    Schneider, Evan Elizabeth

    This thesis documents the hydrodynamics code Cholla and a numerical study of multiphase galactic winds. Cholla is a massively-parallel, GPU-based code designed for astrophysical simulations that is freely available to the astrophysics community. A static-mesh Eulerian code, Cholla is ideally suited to carrying out massive simulations (> 20483 cells) that require very high resolution. The code incorporates state-of-the-art hydrodynamics algorithms including third-order spatial reconstruction, exact and linearized Riemann solvers, and unsplit integration algorithms that account for transverse fluxes on multidimensional grids. Operator-split radiative cooling and a dual-energy formalism for high mach number flows are also included. An extensive test suite demonstrates Cholla's superior ability to model shocks and discontinuities, while the GPU-native design makes the code extremely computationally efficient - speeds of 5-10 million cell updates per GPU-second are typical on current hardware for 3D simulations with all of the aforementioned physics. The latter half of this work comprises a comprehensive study of the mixing between a hot, supernova-driven wind and cooler clouds representative of those observed in multiphase galactic winds. Both adiabatic and radiatively-cooling clouds are investigated. The analytic theory of cloud-crushing is applied to the problem, and adiabatic turbulent clouds are found to be mixed with the hot wind on similar timescales as the classic spherical case (4-5 t cc) with an appropriate rescaling of the cloud-crushing time. Radiatively cooling clouds survive considerably longer, and the differences in evolution between turbulent and spherical clouds cannot be reconciled with a simple rescaling. The rapid incorporation of low-density material into the hot wind implies efficient mass-loading of hot phases of galactic winds. At the same time, the extreme compression of high-density cloud material leads to long-lived but slow-moving clumps

  9. THE BOLOCAM GALACTIC PLANE SURVEY. VIII. A MID-INFRARED KINEMATIC DISTANCE DISCRIMINATION METHOD

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ellsworth-Bowers, Timothy P.; Glenn, Jason; Battersby, Cara

    2013-06-10

    We present a new distance estimation method for dust-continuum-identified molecular cloud clumps. Recent (sub-)millimeter Galactic plane surveys have cataloged tens of thousands of these objects, plausible precursors to stellar clusters, but detailed study of their physical properties requires robust distance determinations. We derive Bayesian distance probability density functions (DPDFs) for 770 objects from the Bolocam Galactic Plane Survey in the Galactic longitude range 7. Degree-Sign 5 {<=} l {<=} 65 Degree-Sign . The DPDF formalism is based on kinematic distances, and uses any number of external data sets to place prior distance probabilities to resolve the kinematic distance ambiguity (KDA)more » for objects in the inner Galaxy. We present here priors related to the mid-infrared absorption of dust in dense molecular regions and the distribution of molecular gas in the Galactic disk. By assuming a numerical model of Galactic mid-infrared emission and simple radiative transfer, we match the morphology of (sub-)millimeter thermal dust emission with mid-infrared absorption to compute a prior DPDF for distance discrimination. Selecting objects first from (sub-)millimeter source catalogs avoids a bias towards the darkest infrared dark clouds (IRDCs) and extends the range of heliocentric distance probed by mid-infrared extinction and includes lower-contrast sources. We derive well-constrained KDA resolutions for 618 molecular cloud clumps, with approximately 15% placed at or beyond the tangent distance. Objects with mid-infrared contrast sufficient to be cataloged as IRDCs are generally placed at the near kinematic distance. Distance comparisons with Galactic Ring Survey KDA resolutions yield a 92% agreement. A face-on view of the Milky Way using resolved distances reveals sections of the Sagittarius and Scutum-Centaurus Arms. This KDA-resolution method for large catalogs of sources through the combination of (sub-)millimeter and mid-infrared observations of

  10. A Herschel [C ii] Galactic plane survey. I. The global distribution of ISM gas components

    NASA Astrophysics Data System (ADS)

    Pineda, J. L.; Langer, W. D.; Velusamy, T.; Goldsmith, P. F.

    2013-06-01

    Context. The [C ii] 158 μm line is an important tool for understanding the life cycle of interstellar matter. Ionized carbon is present in a variety of phases of the interstellar medium (ISM), including the diffuse ionized medium, warm and cold atomic clouds, clouds in transition from atomic to molecular, and dense and warm photon dominated regions. Aims: Velocity-resolved observations of [C ii] are the most powerful technique available to disentangle the emission produced by these components. These observations can also be used to trace CO-dark H2 gas and determine the total mass of the ISM. Methods: The Galactic Observations of Terahertz C+ (GOT C+) project surveys the [C ii] 158 μm line over the entire Galactic disk with velocity-resolved observations using the Herschel/HIFI instrument. We present the first longitude-velocity maps of the [C ii] emission for Galactic latitudes b = 0°, ±0.5°, and ±1.0°. We combine these maps with those of H i, 12CO, and 13CO to separate the different phases of the ISM and study their properties and distribution in the Galactic plane. Results: [C ii] emission is mostly associated with spiral arms, mainly emerging from Galactocentric distances between 4 and 10 kpc. It traces the envelopes of evolved clouds as well as clouds that are in the transition between atomic and molecular. We estimate that most of the observed [C ii] emission is produced by dense photon dominated regions (~47%), with smaller contributions from CO-dark H2 gas (~28%), cold atomic gas (~21%), and ionized gas (~4%). Atomic gas inside the Solar radius is mostly in the form of cold neutral medium (CNM), while the warm neutral medium gas dominates the outer galaxy. The average fraction of CNM relative to total atomic gas is ~43%. We find that the warm and diffuse CO-dark H2 is distributed over a larger range of Galactocentric distances (4-11 kpc) than the cold and dense H2 gas traced by 12CO and 13CO (4-8 kpc). The fraction of CO-dark H2 to total H2 increases

  11. Effects of interplanetary magnetic clouds, interaction regions, and high-speed streams on the transient modulation of galactic cosmic rays

    NASA Astrophysics Data System (ADS)

    Singh, Y. P.; Badruddin

    2007-02-01

    Interplanetary manifestations of coronal mass ejections (CMEs) with specific plasma and field properties, called ``interplanetary magnetic clouds,'' have been observed in the heliosphere since the mid-1960s. Depending on their associated features, a set of observed magnetic clouds identified at 1 AU were grouped in four different classes using data over 4 decades: (1) interplanetary magnetic clouds moving with the ambient solar wind (MC structure), (2) magnetic clouds moving faster than the ambient solar wind and forming a shock/sheath structure of compressed plasma and field ahead of it (SMC structure), (3) magnetic clouds ``pushed'' by the high-speed streams from behind, forming an interaction region between the two (MIH structure), and (4) shock-associated magnetic clouds followed by high-speed streams (SMH structure). This classification into different groups led us to study the role, effect, and the relative importance of (1) closed field magnetic cloud structure with low field variance, (2) interplanetary shock and magnetically turbulent sheath region, (3) interaction region with large field variance, and (4) the high-speed solar wind stream coming from the open field regions, in modulating the galactic cosmic rays (GCRs). MC structures are responsible for transient decrease with fast recovery. SMC structures are responsible for fast decrease and slow recovery, MIH structures produce depression with slow decrease and slow recovery, and SMH structures are responsible for fast decrease with very slow recovery. Simultaneous variations of GCR intensity, solar plasma velocity, interplanetary magnetic field strength, and its variance led us to study the relative effectiveness of different structures as well as interplanetary plasma/field parameters. Possible role of the magnetic field, its topology, field turbulence, and the high-speed streams in influencing the amplitude and time profile of resulting decreases in GCR intensity have also been discussed.

  12. The diffuse molecular component in the nuclear bulge of the Milky Way

    NASA Astrophysics Data System (ADS)

    Riquelme, D.; Bronfman, L.; Mauersberger, R.; Finger, R.; Henkel, C.; Wilson, T. L.; Cortés-Zuleta, P.

    2018-02-01

    Context. The bulk of the molecular gas in the central molecular zone (CMZ) of the Galactic center region shows warm kinetic temperatures, ranging from >20 K in the coldest and densest regions (n 104-5 cm-3) up to more than 100 K for densities of about n 103 cm-3. Recently, a more diffuse, hotter (n 100 cm-3, T 250 K) gas component was discovered through absorption observations of H3+. This component may be widespread in the Galactic center, and low density gas detectable in absorption may be present even outside the CMZ along sightlines crossing the extended bulge of the Galaxy. Aim. We aim to observe and characterize diffuse and low density gas using observations of 3-mm molecular transitions seen in absorption. Methods: Using the Atacama Large (sub)Millimeter Array (ALMA) we observed the absorption against the quasar J1744-312, which is located toward the Galactic bulge region at (l, b) = (-2̊.13, -1̊.0), but outside the main molecular complexes. Results: ALMA observations in absorption against the J1744-312 quasar reveal a rich and complex chemistry in low density molecular and presumably diffuse clouds. We detected three velocity components at 0, -153, and -192 km s-1. The component at 0 km s-1 could represent gas in the Galactic disk while the velocity components at -153, and -192 km s-1 likely originate from the Galactic bulge. We detected 12 molecules in the survey, but only 7 in the Galactic bulge gas. This paper makes use of the following ALMA data: ADS/JAO.ALMA#2012.1.00119.S. ALMA is a partnership of ESO (representing its member states), NSF (USA) and NINS (Japan), together with NRC (Canada), NSC and ASIAA (Taiwan), and KASI (Republic of Korea), in cooperation with the Republic of Chile. The Joint ALMA Observatory is operated by ESO, AUI/NRAO, and NAOJ.

  13. An Eddy-Diffusivity Mass-flux (EDMF) closure for the unified representation of cloud and convective processes

    NASA Astrophysics Data System (ADS)

    Tan, Z.; Schneider, T.; Teixeira, J.; Lam, R.; Pressel, K. G.

    2014-12-01

    Sub-grid scale (SGS) closures in current climate models are usually decomposed into several largely independent parameterization schemes for different cloud and convective processes, such as boundary layer turbulence, shallow convection, and deep convection. These separate parameterizations usually do not converge as the resolution is increased or as physical limits are taken. This makes it difficult to represent the interactions and smooth transition among different cloud and convective regimes. Here we present an eddy-diffusivity mass-flux (EDMF) closure that represents all sub-grid scale turbulent, convective, and cloud processes in a unified parameterization scheme. The buoyant updrafts and precipitative downdrafts are parameterized with a prognostic multiple-plume mass-flux (MF) scheme. The prognostic term for the mass flux is kept so that the life cycles of convective plumes are better represented. The interaction between updrafts and downdrafts are parameterized with the buoyancy-sorting model. The turbulent mixing outside plumes is represented by eddy diffusion, in which eddy diffusivity (ED) is determined from a turbulent kinetic energy (TKE) calculated from a TKE balance that couples the environment with updrafts and downdrafts. Similarly, tracer variances are decomposed consistently between updrafts, downdrafts and the environment. The closure is internally coupled with a probabilistic cloud scheme and a simple precipitation scheme. We have also developed a relatively simple two-stream radiative scheme that includes the longwave (LW) and shortwave (SW) effects of clouds, and the LW effect of water vapor. We have tested this closure in a single-column model for various regimes spanning stratocumulus, shallow cumulus, and deep convection. The model is also run towards statistical equilibrium with climatologically relevant large-scale forcings. These model tests are validated against large-eddy simulation (LES) with the same forcings. The comparison of

  14. The Galactic interstellar medium: foregrounds and star formation

    NASA Astrophysics Data System (ADS)

    Miville-Deschênes, Marc-Antoine

    2018-05-01

    This review presents briefly two aspects of Galactic interstellar medium science that seem relevant for studying EoR. First, we give some statistical properties of the Galactic foreground emission in the diffuse regions of the sky. The properties of the emission observed in projection on the plane of the sky are then related to how matter is organised along the line of sight. The diffuse atomic gas is multi-phase, with dense filamentary structures occupying only about 1% of the volume but contributing to about 50% of the emission. The second part of the review presents aspect of structure formation in the Galactic interstellar medium that could be relevant for the subgrid physics used to model the formation of the first stars.

  15. Ambiguities in the identification of giant molecular cloud complexes from longitude-velocity diagrams

    NASA Technical Reports Server (NTRS)

    Adler, David S.; Roberts, William W., Jr.

    1992-01-01

    Techniques which use longitude-velocity diagrams to identify molecular cloud complexes in the disk of the Galaxy are investigated by means of model Galactic disks generated from N-body cloud-particle simulations. A procedure similar to the method used to reduce the low-level emission in Galactic l-v diagrams is employed to isolate complexes of emission in the model l-v diagram (LVCs) from the 'background'clouds. The LVCs produced in this manner yield a size-line-width relationship with a slope of 0.58 and a mass spectrum with a slope of 1.55, consistent with Galactic observations. It is demonstrated that associations identified as LVCs are often chance superpositions of clouds spread out along the line of sight in the disk of the model system. This indicates that the l-v diagram cannot be used to unambiguously determine the location of molecular cloud complexes in the model Galactic disk. The modeling results also indicate that the existence of a size-line-width relationship is not a reliable indicator of the physical nature of cloud complexes, in particular, whether the complexes are gravitationally bound objects.

  16. A sample of [C II] clouds tracing dense clouds in weak FUV fields observed by Herschel

    NASA Astrophysics Data System (ADS)

    Pineda, J. L.; Velusamy, T.; Langer, W. D.; Goldsmith, P. F.; Li, D.; Yorke, H. W.

    2010-10-01

    The [C ii] fine-structure line at 158 μm is an excellent tracer of the warm diffuse gas in the ISM and the interfaces between molecular clouds and their surrounding atomic and ionized envelopes. Here we present the initial results from Galactic observations of terahertz C+ (GOT C+), a Herschel key project devoted to studying the [C ii] emission in the Galactic plane using the HIFI instrument. We used the [C ii] emission, together with observations of CO, as a probe to understand the effects of newly formed stars on their interstellar environment and characterize the physical and chemical state of the star-forming gas. We collected data along 16 lines-of-sight passing near star-forming regions in the inner Galaxy near longitudes 330° and 20°. We identified fifty-eight [C ii] components that are associated with high-column density molecular clouds as traced by 13CO emission. We combined [C ii], 12CO, and 13CO observations to derive the physical conditions of the [C ii]-emitting regions in our sample of high-column density clouds based on comparing results from a grid of photon dominated region (PDR) models. From this unbiased sample, our results suggest that most of the [C ii] emission originates in clouds with H2 volume densities between 103.5 and 105.5 cm-3 and weak FUV strength (χ0 = 1-10). We find two regions where our analysis suggest high densities >105 cm-3 and strong FUV fields (χ0 = 104-106), likely associated with massive star formation. We suggest that [C ii] emission in conjunction with CO isotopes is a good tool for differentiating regions of massive star formation (high densities/strong FUV fields) and regions that are distant from massive stars (lower densities/weaker FUV fields) along the line-of-sight. Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA.

  17. Surveying the H I Content of the Galactic Halo via Lyman Series Absorption

    NASA Astrophysics Data System (ADS)

    Fox, Andrew

    The halo of the Milky Way is home to a population of gaseous high-velocity clouds (HVCs) that trace the exchange of matter between the Galaxy and its surroundings. HVCs have been studied extensively via H I 21 cm emission and UV metal-line absorption. Here we propose a third, complementary approach for studying HVCs: surveying them in UV Lyman series H I absorption using all AGN spectra in the FarUltraviolet Spectroscopic Explorer (FUSE) archive. This H I survey will constitute a metal-independent view of the baryons in the Galactic halo at a level over 1000 times more sensitive than 21 cm surveys, and it can be conducted with archival data alone. 67 AGN are available in the FUSE archives with suitable properties (S/N>4 at 977 A), and the data are reduced and ready for analysis. With these data, we will calculate HVC sky covering fractions in H I absorption and conduct HVC metallicity measurements in sightlines with UV metal absorption in HST/COS or HST/STIS spectra. We will calculate the Galactic H I column density distribution function (CDDF), the incidence of H I clouds per unit column density that encodes underlying density and ionization variations and is sensitive to the escaping ionization radiation field. The CDDF has been measured at high redshifts over eight orders of magnitude of H I column density via quasar-absorption line experiments. However, the Galactic H I CDDF has until now only been constrained at high H I column density where HVCs can be seen in 21cm emission. Our detailed work plan will involve identifying and modeling HVC absorption in ten Lyman series lines from Ly gamma 972 to Ly mu 917 in each sight line in the FUSE sample. This will constrain the H I CDDF in the column density range log N(H I) 14 to 18. By combining with the existing H I CDDF in 21 cm HVCs in the range log N(H I) 18 to 21 from the all-sky GASS survey, we will produce a global Galactic CDDF complete over seven orders of magnitude, providing key new information on the

  18. A Search for Binary Systems in the Magellanic Clouds

    NASA Astrophysics Data System (ADS)

    Brown, Cody; Nidever, David L.

    2018-06-01

    The Large and Small Magellanic Clouds are two of the closest dwarf galaxies to our Milky Way and offer an excellent laboratory to study the evolution of galaxies. The close proximity of these galaxies provide a chance to study individual stars in detail and learn about stellar properties and galactic formation of the Clouds. The Apache Point Observatory Galactic Evolution Experiment (APOGEE), part of the SDSS-IV, has gathered high quality, multi-epoch, spectroscopic data on a multitude of stars in the Magellanic Clouds. The time-series data can be used to detect and characterize binary stars and make the first spectroscopic measurements of the field binary fraction of the Clouds. I will present preliminary results from this project.

  19. A search with Copernicus for interstellar N2 in diffuse clouds

    NASA Technical Reports Server (NTRS)

    Lutz, B. L.; Snow, T. P., Jr.; Owen, T.

    1979-01-01

    Multiple Copernicus scans of two N2 band regions (near 958.5 and 960.2A) of Delta Sco and Epsilon Per are reported. The observations indicate upper limits for the number of N2 molecules equal to 1.0-3.8 times 10 to the -12th/sq cm and 1.2-4.4 times 10 to the -12th/sq cm, respectively; the limits depend on the cloud temperature. It is suggested that the limits are consistent with the column densities predicted by chemical models for diffuse interstellar clouds, and the predicted relative abundances are presented in terms of the ratio of N(N2)/(2N(H2) + N(Hl)).

  20. FOREST unbiased Galactic plane imaging survey with the Nobeyama 45 m telescope (FUGIN). I. Project overview and initial results

    NASA Astrophysics Data System (ADS)

    Umemoto, Tomofumi; Minamidani, Tetsuhiro; Kuno, Nario; Fujita, Shinji; Matsuo, Mitsuhiro; Nishimura, Atsushi; Torii, Kazufumi; Tosaki, Tomoka; Kohno, Mikito; Kuriki, Mika; Tsuda, Yuya; Hirota, Akihiko; Ohashi, Satoshi; Yamagishi, Mitsuyoshi; Handa, Toshihiro; Nakanishi, Hiroyuki; Omodaka, Toshihiro; Koide, Nagito; Matsumoto, Naoko; Onishi, Toshikazu; Tokuda, Kazuki; Seta, Masumichi; Kobayashi, Yukinori; Tachihara, Kengo; Sano, Hidetoshi; Hattori, Yusuke; Onodera, Sachiko; Oasa, Yumiko; Kamegai, Kazuhisa; Tsuboi, Masato; Sofue, Yoshiaki; Higuchi, Aya E.; Chibueze, James O.; Mizuno, Norikazu; Honma, Mareki; Muller, Erik; Inoue, Tsuyoshi; Morokuma-Matsui, Kana; Shinnaga, Hiroko; Ozawa, Takeaki; Takahashi, Ryo; Yoshiike, Satoshi; Costes, Jean; Kuwahara, Sho

    2017-10-01

    The FUGIN project is one of legacy projects using a new multi-beam FOREST (four-beam receiver system on the 45 m telescope). This project aims to simultaneously investigate the distribution, kinematics, and physical properties of both diffuse and dense molecular gases in the Galaxy by observing 12CO, 13CO, and C18O J = 1-0 lines simultaneously. Mapping regions are parts of the first quadrant (10° ≤ l ≤ 50°, |b| ≤ 1°) and the third quadrant (198° ≤ l ≤ 236°, |b| ≤ 1°) of the Galaxy, where spiral arms, bar structure, and the molecular gas ring are included. This survey achieves the highest angular resolution to date (˜20″) for the Galactic plane survey in the CO J = 1-0 lines, which makes it possible to find dense clumps located farther away than the previous surveys. FUGIN will provide us an invaluable dataset for investigating the physics of the Galactic interstellar medium (ISM), particularly the evolution of interstellar gas covering galactic-scale structures to the internal structures of giant molecular clouds, such as small filaments/clumps/cores. We present an overview of the FUGIN project, the observation plan and initial results. These results reveal wide-field and detailed structures of molecular clouds, such as entangled filaments that have not been obvious in previous surveys, and large-scale kinematics of molecular gas, such as spiral arms.

  1. FOREST Unbiased Galactic plane Imaging survey with the Nobeyama 45 m telescope (FUGIN). III. Possible evidence for formation of NGC 6618 cluster in M 17 by cloud-cloud collision

    NASA Astrophysics Data System (ADS)

    Nishimura, Atsushi; Minamidani, Tetsuhiro; Umemoto, Tomofumi; Fujita, Shinji; Matsuo, Mitsuhiro; Hattori, Yusuke; Kohno, Mikito; Yamagishi, Mitsuyoshi; Tsuda, Yuya; Kuriki, Mika; Kuno, Nario; Torii, Kazufumi; Tsutsumi, Daichi; Okawa, Kazuki; Sano, Hidetoshi; Tachihara, Kengo; Ohama, Akio; Fukui, Yasuo

    2018-05-01

    We present 12CO (J = 1-0), 13CO (J = 1-0), and C18O (J = 1-0) images of the M 17 giant molecular clouds obtained as part of the FUGIN (FOREST Ultra-wide Galactic Plane Survey In Nobeyama) project. The observations cover the entire area of the M 17 SW and M 17 N clouds at the highest angular resolution (˜19″) to date, which corresponds to ˜0.18 pc at the distance of 2.0 kpc. We find that the region consists of four different velocity components: a very low velocity (VLV) clump, a low velocity component (LVC), a main velocity component (MVC), and a high velocity component (HVC). The LVC and the HVC have cavities. Ultraviolet photons radiated from NGC 6618 cluster penetrate into the N cloud up to ˜5 pc through the cavities and interact with molecular gas. This interaction is correlated with the distribution of young stellar objects in the N cloud. The LVC and the HVC are distributed complementarily after the HVC is displaced by 0.8 pc toward the east-southeast direction, suggesting that collision of the LVC and the HVC created the cavities in both clouds. The collision velocity and timescale are estimated to be 9.9 km s-1 and 1.1 × 105 yr, respectively. The high collision velocity can provide a mass accretion rate of up to 10^{-3} M_{⊙} yr-1, and the high column density (4 × 1023 cm-2) might result in massive cluster formation. The scenario of cloud-cloud collision likely explains well the stellar population and the formation history of the NGC 6618 cluster proposed by Hoffmeister et al. (2008, ApJ, 686, 310).

  2. FOREST Unbiased Galactic plane Imaging survey with the Nobeyama 45 m telescope (FUGIN). III. Possible evidence for formation of NGC 6618 cluster in M 17 by cloud-cloud collision

    NASA Astrophysics Data System (ADS)

    Nishimura, Atsushi; Minamidani, Tetsuhiro; Umemoto, Tomofumi; Fujita, Shinji; Matsuo, Mitsuhiro; Hattori, Yusuke; Kohno, Mikito; Yamagishi, Mitsuyoshi; Tsuda, Yuya; Kuriki, Mika; Kuno, Nario; Torii, Kazufumi; Tsutsumi, Daichi; Okawa, Kazuki; Sano, Hidetoshi; Tachihara, Kengo; Ohama, Akio; Fukui, Yasuo

    2018-05-01

    We present 12CO (J = 1-0), 13CO (J = 1-0), and C18O (J = 1-0) images of the M 17 giant molecular clouds obtained as part of the FUGIN (FOREST Ultra-wide Galactic Plane Survey In Nobeyama) project. The observations cover the entire area of the M 17 SW and M 17 N clouds at the highest angular resolution (˜19″) to date, which corresponds to ˜0.18 pc at the distance of 2.0 kpc. We find that the region consists of four different velocity components: a very low velocity (VLV) clump, a low velocity component (LVC), a main velocity component (MVC), and a high velocity component (HVC). The LVC and the HVC have cavities. Ultraviolet photons radiated from NGC 6618 cluster penetrate into the N cloud up to ˜5 pc through the cavities and interact with molecular gas. This interaction is correlated with the distribution of young stellar objects in the N cloud. The LVC and the HVC are distributed complementarily after the HVC is displaced by 0.8 pc toward the east-southeast direction, suggesting that collision of the LVC and the HVC created the cavities in both clouds. The collision velocity and timescale are estimated to be 9.9 km s-1 and 1.1 × 105 yr, respectively. The high collision velocity can provide a mass accretion rate of up to 10^{-3} M_{⊙}yr-1, and the high column density (4 × 1023 cm-2) might result in massive cluster formation. The scenario of cloud-cloud collision likely explains well the stellar population and the formation history of the NGC 6618 cluster proposed by Hoffmeister et al. (2008, ApJ, 686, 310).

  3. Evolutionary Models of Cold, Magnetized, Interstellar Clouds

    NASA Technical Reports Server (NTRS)

    Gammie, Charles F.; Ostriker, Eve; Stone, James M.

    2004-01-01

    We modeled the long-term and small-scale evolution of molecular clouds using direct 2D and 3D magnetohydrodynamic (MHD) simulations. This work followed up on previous research by our group under auspices of the ATP in which we studied the energetics of turbulent, magnetized clouds and their internal structure on intermediate scales. Our new work focused on both global and smallscale aspects of the evolution of turbulent, magnetized clouds, and in particular studied the response of turbulent proto-cloud material to passage through the Galactic spiral potential, and the dynamical collapse of turbulent, magnetized (supercritical) clouds into fragments to initiate the formation of a stellar cluster. Technical advances under this program include developing an adaptive-mesh MHD code as a successor to ZEUS (ATHENA) in order to follow cloud fragmentation, developing a shearing-sheet MHD code which includes self-gravity and externally-imposed gravity to follow the evolution of clouds in the Galactic potential, and developing radiative transfer models to evaluate the internal ionization of clumpy clouds exposed to external photoionizing UV and CR radiation. Gammie's work at UIUC focused on the radiative transfer aspects of this program.

  4. PHYSICAL CONTACT BETWEEN THE +20 km s{sup −1} CLOUD AND THE GALACTIC CIRCUMNUCLEAR DISK

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Takekawa, Shunya; Oka, Tomoharu; Tanaka, Kunihiko, E-mail: shunya@aysheaia.phys.keio.ac.jp

    This paper reports the discovery of evidence for physical contact between the Galactic circumnuclear disk (CND) and an exterior giant molecular cloud. The central 10 pc of our Galaxy has been imaged in the HCN J  = 1–0, HCO{sup +} J  = 1–0, CS J  = 2–1, H{sup 13}CN J  = 1–0, SiO J  = 2–1, SO N{sub J}  = 2{sub 3}–1{sub 2}, and HC{sub 3}N J  = 11–10 lines using the Nobeyama Radio Observatory 45 m radio telescope. Based on our examination of the position–velocity maps of several high-density probe lines, we have found that an emission “bridge” may be connecting the +20 km s{sup −1} cloudmore » (M–0.13–0.08) and the negative-longitude extension of the CND. Analyses of line intensity ratios imply that the chemical property of the bridge is located between the +20 km s{sup −1} cloud and the CND. We introduce a new interpretation that a part of the CND may be colliding with the 20 km s{sup −1} cloud and the collision may be responsible for the formation of the bridge. Such collisional events could promote mass accretion onto the CND or into the inner ionized cavity, which may be further tested by proper motion studies.« less

  5. The Fossil Nuclear Outflow in the Central 30 pc of the Galactic Center

    NASA Astrophysics Data System (ADS)

    Hsieh, Pei-Ying; Ho, Paul T. P.; Hwang, Chorng-Yuan; Shimajiri, Yoshito; Matsushita, Satoki; Koch, Patrick M.; Iono, Daisuke

    2016-11-01

    We report a new 1 pc (30″) resolution CS(J=2-1) line map of the central 30 pc of the Galactic center (GC), made with the Nobeyama 45 m telescope. We revisit our previous study of an extraplanar feature called the polar arc (PA), which is a molecular cloud located above SgrA*, with a velocity gradient perpendicular to the galactic plane. We find that the PA can be traced back to the galactic disk. This provides clues to the launching point of the PA, roughly 6 × 106 years ago. Implications of the dynamical timescale of the PA might be related to the Galactic center lobe at parsec scale. Our results suggest that, in the central 30 pc of the GC, the feedback from past explosions could alter the orbital path of molecular gas down to the central tenth of a parsec. In the follow-up work of our new CS(J=2-1) map, we also find that, near systemic velocity, the molecular gas shows an extraplanar hourglass-shaped feature (HG-feature) with a size of ˜13 pc. The latitude-velocity diagrams show that the eastern edge of the HG-feature is associated with an expanding bubble B1, ˜7 pc away from SgrA*. The dynamical timescale of this bubble is ˜3 × 105 years. This bubble is interacting with the 50 km s-1 cloud. Part of the molecular gas from the 50 km s-1 cloud was swept away by the bubble to b=-0\\buildrel{\\circ}\\over{.} 2. The western edge of the HG-feature seems to be molecular gas entrained from the 20 km s-1 cloud toward the north of the galactic disk. Our results suggest a fossil explosion in the central 30 pc of the GC, a few 105 years ago.

  6. A composite large-scale CO survey at high galactic latitudes in the second quadrant

    NASA Technical Reports Server (NTRS)

    Heithausen, A.; Stacy, J. G.; De Vries, H. W.; Mebold, U.; Thaddeus, P.

    1993-01-01

    Surveys undertaken in the 2nd quadrant of the Galaxy with the CfA 1.2 m telescope have been combined to produce a map covering about 620 sq deg in the 2.6 mm CO(J = 1 - 0) line at high galactic latitudes. There is CO emission from molecular 'cirrus' clouds in about 13 percent of the region surveyed. The CO clouds are grouped together into three major cloud complexes with 29 individual members. All clouds are associated with infrared emission at 100 micron, although there is no one-to-one correlation between the corresponding intensities. CO emission is detected in all bright and dark Lynds' nebulae cataloged in that region; however not all CO clouds are visible on optical photographs as reflection or absorption features. The clouds are probably local. At an adopted distance of 240 pc cloud sizes range from O.1 to 30 pc and cloud masses from 1 to 1600 solar masses. The molecular cirrus clouds contribute between 0.4 and 0.8 M solar mass/sq pc to the surface density of molecular gas in the galactic plane. Only 26 percent of the 'infrared-excess clouds' in the area surveyed actually show CO and about 2/3 of the clouds detected in CO do not show an infrared excess.

  7. Diffuse galactic gamma rays at intermediate and high latitudes. I. Constraints on the ISM properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cholis, Ilias; Tavakoli, Maryam; Evoli, Carmelo

    2012-05-01

    We study the high latitude (|b| > 10°) diffuse γ-ray emission in the Galaxy in light of the recently published data from the Fermi collaboration at energies between 100 MeV and 100 GeV. The unprecedented accuracy in these measurements allows to probe and constrain the properties of sources and propagation of cosmic rays (CRs) in the Galaxy, as well as confirming conventional assumptions made on the interstellar medium (ISM). Using the publicly available DRAGON code, that has been shown to reproduce local measurements of CRs, we study assumptions made in the literature on atomic (HI) and molecular hydrogen (H2) gasmore » distributions in the ISM, and non spatially uniform models of diffusion in the Galaxy. By performing a combined analysis of CR and γ-ray spectra, we derive constraints on the properties of the ISM gas distribution and the vertical scale height of galactic CR diffusion, which may have implications also on indirect Dark Matter detection. We also discuss some of the possible interpretations of the break at high rigidity in CR protons and helium spectra, recently observed by PAMELA and their impact on γ-rays.« less

  8. Giant Molecular Clouds with High Abundance of Atomic Carbon and Cyano Radical in the Milky Way's Central Molecular Zone

    NASA Astrophysics Data System (ADS)

    Tanaka, Kunihiko; Oka, Tomoharu; Nagai, Makoto; Kamegai, Kazuhisa

    2015-08-01

    The central 400 pc region of the Milky Way Galaxy is the closest galactic central region to us, providing a unique opportunity to detailedly investigate gas dynamics, star formation activity, and chemistry under the extreme environment of galactic centers, where the presence of bar, intense UV/cosmic-ray fluxes, high degree of turbulence may significantly affect those processes. We report the results of molecular line surveys toward the Milky Way's central molecular zone (CMZ) performed with the ASTE 10m telescope, the Mopra 22m telescope, and the Nobeyama 45 m telescope. With the observations of the 500 GHz [CI] fine structure line of atomic carbon (C0), we have found a molecular cloud structure with remarkably bright [CI] emission in the Sgr A comlex in the innermost 20 pc region. The [CI] cloud is more extended than the GMCs in the region, and appears to connect the northern part of the 50 kms-1 (M-0.02-0.07) and the circumnuclear disk (CND), though no corresponding structures are visible in other molecular lines. The [C0]/[CO] abundance ratio is measured to be 0.5-2, which is 2-10 times those measured to the clouds at larger Galactic radii. This high ratio is close to the values measured toward centers of galaxies with starburst and AGN, suggesting that the chemical state of the cloud is similar to that in those active galaxies. We have also found a large scale gradient of the cyano radical (CN) abundance toward the Galactic center in the innermost 100 pc radius, showing near the Sgr A complex. We suggest that the cloud with high C0 and CN abundance is a feature formed as a result of inward transfer of diffuse molecular gas by the bar potential in the inner Galaxy, in which PDR-like chemical composition remains preserved, and that thus the [CI] cloud could be deeply related to formation of the GMCs and star formation in the CMZ. We also discuss other possible mechanisms to enhance C0 and CN abundances, including the enhanced cosmic-ray dissociation ratio.

  9. The dependence of stellar age distributions on giant molecular cloud environment

    NASA Astrophysics Data System (ADS)

    Dobbs, C. L.; Pringle, J. E.; Naylor, T.

    2014-01-01

    In this Letter, we analyse the distributions of stellar ages in giant molecular clouds (GMCs) in spiral arms, interarm spurs and at large galactic radii, where the spiral arms are relatively weak. We use the results of numerical simulations of galaxies, which follow the evolution of GMCs and include star particles where star formation events occur. We find that GMCs in spiral arms tend to have predominantly young (<10 Myr) stars. By contrast, clouds which are the remainders of spiral arm giant molecular asssociations that have been sheared into interarm GMCs contain fewer young (<10 Myr) stars and more ˜20 Myr stars. We also show that clouds which form in the absence of spiral arms, due to local gravitational and thermal instabilities, contain preferentially young stars. We propose that the age distributions of stars in GMCs will be a useful diagnostic to test different cloud evolution scenarios, the origin of spiral arms and the success of numerical models of galactic star formation. We discuss the implications of our results in the context of Galactic and extragalactic molecular clouds.

  10. Gravitational instability of filamentary molecular clouds, including ambipolar diffusion; non-isothermal filament

    NASA Astrophysics Data System (ADS)

    Hosseinirad, Mohammad; Abbassi, Shahram; Roshan, Mahmood; Naficy, Kazem

    2018-04-01

    Recent observations of the filamentary molecular clouds show that their properties deviate from the isothermal equation of state. Theoretical investigations proposed that the logatropic and the polytropic equations of state with negative indexes can provide a better description for these filamentary structures. Here, we aim to compare the effects of these softer non-isothermal equations of state with their isothermal counterpart on the global gravitational instability of a filamentary molecular cloud. By incorporating the ambipolar diffusion, we use the non-ideal magnetohydrodynamics framework for a filament that is threaded by a uniform axial magnetic field. We perturb the fluid and obtain the dispersion relation both for the logatropic and polytropic equations of state by taking the effects of magnetic field and ambipolar diffusion into account. Our results suggest that, in absence of the magnetic field, a softer equation of state makes the system more prone to gravitational instability. We also observed that a moderate magnetic field is able to enhance the stability of the filament in a way that is sensitive to the equation of state in general. However, when the magnetic field is strong, this effect is suppressed and all the equations of state have almost the same stability properties. Moreover, we find that for all the considered equations of state, the ambipolar diffusion has destabilizing effects on the filament.

  11. The Galactic Center: A Petaelectronvolt Cosmic-ray Acceleration Factory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guo, Yi-Qing; Tian, Zhen; Wang, Zhen

    2017-02-20

    The multiteraelectronvolt γ -rays from the galactic center (GC) have a cutoff at tens of teraelectronvolts, whereas the diffuse emission has no such cutoff, which is regarded as an indication of petaelectronvolt proton acceleration by the HESS experiment. It is important to understand the inconsistency and study the possibility that petaelectronvolt cosmic-ray acceleration could account for the apparently contradictory point and diffuse γ -ray spectra. In this work, we propose that the cosmic rays are accelerated up to greater than petaelectronvolts in the GC. The interaction between cosmic rays and molecular clouds is responsible for the multiteraelectronvolt γ -ray emissionsmore » from both the point and diffuse sources today. Enhanced by the small volume filling factor (VFF) of the clumpy structure, the absorption of the γ -rays leads to a sharp cutoff spectrum at tens of teraelectronvolts produced in the GC. Away from the GC, the VFF grows, and the absorption enhancement becomes negligible. As a result, the spectra of γ -ray emissions for both point and diffuse sources can be successfully reproduced under such a self-consistent picture. In addition, a “surviving tail” at ∼100 TeV is expected from the point source, which can be observed by future projects CTA and LHAASO. Neutrinos are simultaneously produced during proton-proton (PP) collision. With 5–10 years of observations, the KM3Net experiment will be able to detect the petaelectronvolt source according to our calculation.« less

  12. Probing Galactic Center Cosmic-Rays in the X-ray Regime

    NASA Astrophysics Data System (ADS)

    Zhang, Shuo; Baganoff, Frederick K.; Bulbul, Esra; Miller, Eric D.; Bautz, Mark W.

    2017-08-01

    The central few hundred parsecs of the Galaxy harbors 5-10% of the molecular gas mass of the entire Milky Way. This central molecular zone exhibits 6.4 keV Fe Kα line and continuum X-ray emission with time-variability. The time-variable X-ray emission from the gas clouds is best explained by light echoes of past X-ray outbursts from the central supermassive black hole Sgr A*. However,MeV-GeV cosmic-ray particles may also contribute to a constant X-ray emission component from the clouds, through collisional ionization and bremsstrahlung. Sgr B2 is the densest and most massive cloud in the central molecular zone. It is the only known gas cloud whose X-ray emission has kept fading over the past decade and will soon reach a constant X-ray level in 2017/2018, and thus serves as the best probe for MeV-GeV particles in the central 100 pc of the Galaxy. At the same time, the Fe Kα emission has also been discovered from molecular structures beyond the central molecular zone, extening to ~1 kpc from the Galactic center. The X-ray reflection scenario meets challenges this far from the Galactic center, while the MeV-GeV cosmic-ray electrons serve as a more natural explanation. Our studies on Sgr B2 and the large-scale moleuclar structures will for the first time constrain the MeV-GeV particles in the Galactic center, and point to their origin: whether they rise from particle acceleration or dark matter annihilation.

  13. MAGNETIZED GAS IN THE SMITH HIGH VELOCITY CLOUD

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hill, Alex S.; McClure-Griffiths, Naomi M.; Mao, S. A.

    2013-11-01

    We report the first detection of magnetic fields associated with the Smith High Velocity Cloud. We use a catalog of Faraday rotation measures toward extragalactic radio sources behind the Smith Cloud, new H I observations from the Robert C. Byrd Green Bank Telescope, and a spectroscopic map of Hα from the Wisconsin H-Alpha Mapper Northern Sky Survey. There are enhancements in rotation measure (RM) of ≈100 rad m{sup –2} which are generally well correlated with decelerated Hα emission. We estimate a lower limit on the line-of-sight component of the field of ≈8 μG along a decelerated filament; this is amore » lower limit due to our assumptions about the geometry. No RM excess is evident in sightlines dominated by H I or Hα at the velocity of the Smith Cloud. The smooth Hα morphology of the emission at the Smith Cloud velocity suggests photoionization by the Galactic ionizing radiation field as the dominant ionization mechanism, while the filamentary morphology and high (≈1 Rayleigh) Hα intensity of the lower-velocity magnetized ionized gas suggests an ionization process associated with shocks due to interaction with the Galactic interstellar medium. The presence of the magnetic field may contribute to the survival of high velocity clouds like the Smith Cloud as they move from the Galactic halo to the disk. We expect these data to provide a test for magnetohydrodynamic simulations of infalling gas.« less

  14. Photoionization-regulated star formation and the structure of molecular clouds

    NASA Technical Reports Server (NTRS)

    Mckee, Christopher F.

    1989-01-01

    A model for the rate of low-mass star formation in Galactic molecular clouds and for the influence of this star formation on the structure and evolution of the clouds is presented. The rate of energy injection by newly formed stars is estimated, and the effect of this energy injection on the size of the cloud is determined. It is shown that the observed rate of star formation appears adequate to support the observed clouds against gravitational collapse. The rate of photoionization-regulated star formation is estimated and it is shown to be in agreement with estimates of the observed rate of star formation if the observed molecular cloud parameters are used. The mean cloud extinction and the Galactic star formation rate per unit mass of molecular gas are predicted theoretically from the condition that photionization-regulated star formation be in equilibrium. A simple model for the evolution of isolated molecular clouds is developed.

  15. Galactic Diffuse Gamma Ray Emission Is Greater than 10 Gev

    NASA Technical Reports Server (NTRS)

    Hunter, Stanley D.; White, Nicholas E. (Technical Monitor)

    2000-01-01

    AGILE and Gamma-ray Large Area Telescope (GLAST) are the next high-energy gamma-ray telescopes to be flown in space. These instruments will have angular resolution about 5 times better than Energetic Gamma-Ray Experiment Telescope (EGRET) above 10 GeV and much larger field of view. The on-axis effective area of AGILE will be about half that of EGRET, whereas GLAST will have about 6 times greater effective area than EGRET. The capabilities of ground based very high-energy telescopes are also improving, e.g. Whipple, and new telescopes, e.g. Solar Tower Atmospheric Cerenkov Effect Experiment (STACEE), Cerenkov Low Energy Sampling and Timing Experiment (CELESTE), and Mars Advanced Greenhouse Integrated Complex (MAGIC) are expected to have low-energy thresholds and sensitivities that will overlap the GLAST sensitivity above approximately 10 GeV. In anticipation of the results from these new telescopes, our current understanding of the galactic diffuse gamma-ray emission, including the matter and cosmic ray distributions is reviewed. The outstanding questions are discussed and the potential of future observations with these new instruments to resolve these questions is examined.

  16. Modelling CO emission - II. The physical characteristics that determine the X factor in Galactic molecular clouds

    NASA Astrophysics Data System (ADS)

    Shetty, Rahul; Glover, Simon C.; Dullemond, Cornelis P.; Ostriker, Eve C.; Harris, Andrew I.; Klessen, Ralf S.

    2011-08-01

    We investigate how the X factor, the ratio of the molecular hydrogen column density (?) to velocity-integrated CO intensity (W), is determined by the physical properties of gas in model molecular clouds (MCs). The synthetic MCs are results of magnetohydrodynamic simulations, including a treatment of chemistry. We perform radiative transfer calculations to determine the emergent CO intensity, using the large velocity gradient approximation for estimating the CO population levels. In order to understand why observations generally find cloud-averaged values of X = XGal˜ 2 × 1020 cm-2 K-1 km-1 s, we focus on a model representing a typical Milky Way MC. Using globally integrated ? and W reproduces the limited range in X found in observations and a mean value X = XGal= 2.2 × 1020 cm-2 K-1 km-1 s. However, we show that when considering limited velocity intervals, X can take on a much larger range of values due to CO line saturation. Thus, the X factor strongly depends on both the range in gas velocities and the volume densities. The temperature variations within individual MCs do not strongly affect X, as dense gas contributes most to setting the X factor. For fixed velocity and density structure, gas with higher temperatures T has higher W, yielding X ∝ T-1/2 for T ˜ 20-100 K. We demonstrate that the linewidth-size scaling relationship does not influence the X factor - only the range in velocities is important. Clouds with larger linewidths σ, regardless of the linewidth-size relationship, have a higher W, corresponding to a lower value of X, scaling roughly as X ∝σ-1/2. The 'mist' model, often invoked to explain a constant XGal consisting of optically thick cloudlets with well-separated velocities, does not accurately reflect the conditions in a turbulent MC. We propose that the observed cloud-averaged values of X ˜ XGal are simply a result of the limited range in ?, temperatures and velocities found in Galactic MCs - a nearly constant value of X therefore

  17. The role of orbital dynamics and cloud-cloud collisions in the formation of giant molecular clouds in global spiral structures

    NASA Technical Reports Server (NTRS)

    Roberts, William W., Jr.; Stewart, Glen R.

    1987-01-01

    The role of orbit crowding and cloud-cloud collisions in the formation of GMCs and their organization in global spiral structure is investigated. Both N-body simulations of the cloud system and a detailed analysis of individual particle orbits are used to develop a conceptual understanding of how individual clouds participate in the collective density response. Detailed comparisons are made between a representative cloud-particle simulation in which the cloud particles collide inelastically with one another and give birth to and subsequently interact with young star associations and stripped down simulations in which the cloud particles are allowed to follow ballistic orbits in the absence of cloud-cloud collisions or any star formation processes. Orbit crowding is then related to the behavior of individual particle trajectories in the galactic potential field. The conceptual picture of how GMCs are formed in the clumpy ISMs of spiral galaxies is formulated, and the results are compared in detail with those published by other authors.

  18. Diffuse radiation

    NASA Technical Reports Server (NTRS)

    1981-01-01

    A diffuse celestial radiation which is isotropic at least on a course scale were measured from the soft X-ray region to about 150 MeV, at which energy the intensity falls below that of the galactic emission for most galactic latitudes. The spectral shape, the intensity, and the established degree of isotropy of this diffuse radiation already place severe constraints on the possible explanations for this radiation. Among the extragalactic theories, the more promising explanations of the isotropic diffuse emission appear to be radiation from exceptional galaxies from matter antimatter annihilation at the boundaries of superclusters of galaxies of matter and antimatter in baryon symmetric big bang models. Other possible sources for extragalactic diffuse gamma radiation are discussed and include normal galaxies, clusters of galaxies, primordial cosmic rays interacting with intergalactic matter, primordial black holes, and cosmic ray leakage from galaxies.

  19. The influence of clouds and diffuse radiation on ecosystem-atmosphere CO2 and CO18O exhanges

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Still, C.J.; Riley, W.J.; Biraud, S.C.

    2009-05-01

    This study evaluates the potential impact of clouds on ecosystem CO{sub 2} and CO{sub 2} isotope fluxes ('isofluxes') in two contrasting ecosystems (a broadleaf deciduous forest and a C{sub 4} grassland), in a region for which cloud cover, meteorological, and isotope data are available for driving the isotope-enabled land surface model, ISOLSM. Our model results indicate a large impact of clouds on ecosystem CO{sub 2} fluxes and isofluxes. Despite lower irradiance on partly cloudy and cloudy days, predicted forest canopy photosynthesis was substantially higher than on clear, sunny days, and the highest carbon uptake was achieved on the cloudiest day.more » This effect was driven by a large increase in light-limited shade leaf photosynthesis following an increase in the diffuse fraction of irradiance. Photosynthetic isofluxes, by contrast, were largest on partly cloudy days, as leaf water isotopic composition was only slightly depleted and photosynthesis was enhanced, as compared to adjacent clear sky days. On the cloudiest day, the forest exhibited intermediate isofluxes: although photosynthesis was highest on this day, leaf-to-atmosphere isofluxes were reduced from a feedback of transpiration on canopy relative humidity and leaf water. Photosynthesis and isofluxes were both reduced in the C{sub 4} grass canopy with increasing cloud cover and diffuse fraction as a result of near-constant light limitation of photosynthesis. These results suggest that some of the unexplained variation in global mean {delta}{sup 18}O of CO{sub 2} may be driven by large-scale changes in clouds and aerosols and their impacts on diffuse radiation, photosynthesis, and relative humidity.« less

  20. Properties of the +70 kilometers per second cloud toward HD 203664

    NASA Technical Reports Server (NTRS)

    Sembach, Kenneth R.

    1995-01-01

    I present high-resolution International Ultraviolet Explorer (IUE) spectra of the ultraviolet absorption in an intermediate-velocity interstellar cloud (nu(sub LSR) approximately equal to +70 km/s) toward HD 203664. The combined, multiple IUE images result in spectra with S/N = 15-40 and resolutions of approximately 20-25 km/s. The intermediate-velocity cloud absorption is present in ultraviolet lines of C II, C II(sup *), C IV, N I, O I, Mg I, Mg II, Al II, Al III, Si II, Si III, Si IV, S II, Cr II, Mn II, Fe II, and Zn II. The relative abundances of low-ionization species suggest an electron density of 0.15-0.34/cu cm and a temperature of 5300-6100 K in the neutral and weakly ionized gas. Given the presence of high-ionization gas tracers such as Si IV and C IV, ionized portions of the cloud probably contribute to the relatively large values of n(sub e) derived from measurements of the lower ionization species. The high-ionization species in the cloud have an abundance ratio, N(C IV)/N(Si IV) approximately equal to 4.5, similar to that inferred for collisionally ionized cloud interfaces at temperatures near 10(exp 5) K along other sight lines. When referenced to sulfur, the abundances of most elements in the cloud are within a factor of 5 of their solar values, which suggests that the +70 km/s gas has a previous origin in the Galactic disk despite a recent determination by Little et al. that the cloud lies at a distance of 200-1500 pc below the Galactic plane. I have checked this result against a model of the ionization for the diffuse ionized gas layer of the Galaxy and find that this conclusion is essentially unchanged as long as the ionization parameter is low as implied by the abundances of adjoining ionization states of aluminum and silicon. The processes responsible for the production of highly ionized gas in the +70 km/s cloud appear to be able to account for the inferred dust grain destruction as well.

  1. GOT C+ Survey of [CII] 158 Micrometer Emission: Atomic to Molecular Cloud Transitions in the Inner Galaxy

    NASA Technical Reports Server (NTRS)

    Velusamy, T.; Langer, W. D.; Willacy, K.; Pineda, J. L.; Goldsmith, P. F.

    2012-01-01

    We present the results of the distribution of CO-dark H2 gas in a sample of 2200 interstellar clouds in the inner Galaxy (l = 90 deg to +57 deg) detected in the velocity resolved [CII] spectra observed in the GOT C+ survey using the Herschel HIFI. We analyze the [CII] intensities along with the ancillary HI, (12)CO and (13)CO data for each cloud to determine their evolutionary state and to derive the H2 column densities in the C(+) and C(+)/CO transition layers in the cloud. We discuss the overall Galactic distribution of the [CII] clouds and their properties as a function Galactic radius. GOT C+ results on the global distribution of [CII] clouds and CO-dark H2 gas traces the FUV and star formation rates in the Galactic disk.

  2. Polycyclic Aromatic Hydrocarbon Emission Toward the Galactic Bulge

    NASA Astrophysics Data System (ADS)

    Shannon, M. J.; Peeters, E.; Cami, J.; Blommaert, J. A. D. L.

    2018-03-01

    We examine polycyclic aromatic hydrocarbon (PAH), dust, and atomic/molecular emission toward the Galactic bulge using Spitzer Space Telescope observations of four fields: C32, C35, OGLE, and NGC 6522. These fields are approximately centered on (l, b) = (0.°0, 1.°0), (0.°0, ‑1.°0), (0.°4, ‑2.°4), and (1.°0, ‑3.°8), respectively. Far-infrared photometric observations complement the Spitzer/IRS spectroscopic data and are used to construct spectral energy distributions. We find that the dust and PAH emission are exceptionally similar between C32 and C35 overall, in part explained due to their locations—they reside on or near boundaries of a 7 Myr old Galactic outflow event and are partly shock-heated. Within the C32 and C35 fields, we identify a region of elevated Hα emission that is coincident with elevated fine-structure and [O IV] line emission and weak PAH feature strengths. We are likely tracing a transition zone of the outflow into the nascent environment. PAH abundances in these fields are slightly depressed relative to typical ISM values. In the OGLE and NGC 6522 fields, we observe weak features on a continuum dominated by zodiacal dust. SED fitting indicates that thermal dust grains in C32 and C35 have temperatures comparable to those of diffuse, high-latitude cirrus clouds. Little variability is detected in the PAH properties between C32 and C35, indicating that a stable population of PAHs dominates the overall spectral appearance. In fact, their PAH features are exceptionally similar to that of the M82 superwind, emphasizing that we are probing a local Galactic wind environment.

  3. Dusty Mass Loss from Galactic Asymptotic Giant Branch Stars

    NASA Astrophysics Data System (ADS)

    Sargent, Benjamin A.; Srinivasan, Sundar; Meixner, Margaret; Kastner, Joel H.

    2016-06-01

    We are probing how mass loss from Asymptotic Giant Branch (AGB) stars depends upon their metallicity. Asymptotic giant branch (AGB) stars are evolved stars that eject large parts of their mass in outflows of dust and gas in the final stages of their lives. Our previous studies focused on mass loss from AGB stars in lower metallicity galaxies: the Large Magellanic Cloud (LMC) and the Small Magellanic Cloud (SMC). In our present study, we analyze AGB star mass loss in the Galaxy, with special attention to the Bulge, to investigate how mass loss differs in an overall higher metallicity environment. We construct radiative transfer models of the spectral energy distributions (SEDs) of stars in the Galaxy identified as AGB stars from infrared and optical surveys. Our Magellanic Cloud studies found that the AGB stars with the highest mass loss rates tended to have outflows with carbon-rich dust, and that overall more carbon-rich (C-rich) dust than oxygen-rich (O-rich) was produced by AGB stars in both LMC and SMC. Our radiative transfer models have enabled us to determine reliably the dust chemistry of the AGB star from the best-fit model. For our Galactic sample, we are investigating both the dust chemistries of the AGB stars and their mass-loss rates, to compare the balance of C-rich dust to O-rich dust between the Galactic bulge and the Magellanic Clouds. We are also constructing detailed dust opacity models of AGB stars in the Galaxy for which we have infrared spectra; e.g., from the Spitzer Space Telescope Infrared Spectrograph (IRS). This detailed dust modeling of spectra informs our choice of dust properties to use in radiative transfer modeling of SEDs of Galactic AGB stars. BAS acknowledges funding from NASA ADAP grant NNX15AF15G.

  4. Sagittarius A* as an origin of the Galactic PeV cosmic rays?

    NASA Astrophysics Data System (ADS)

    Fujita, Yutaka; Murase, Kohta; Kimura, Shigeo S.

    2017-04-01

    Supernova remnants (SNRs) have commonly been considered as a source of the observed PeV cosmic rays (CRs) or a Galactic PeV particle accelerator ("Pevatron"). In this work, we study Sagittarius A* (Sgr A*), which is the low-luminosity active galactic nucleus of the Milky Way Galaxy, as another possible canditate of the Pevatron, because it sometimes became very active in the past. We assume that a large number of PeV CRs were injected by Sgr A* at the outburst about 107 yr ago when the Fermi bubbles were created. We constrain the diffusion coefficient for the CRs in the Galactic halo on the condition that the CRs have arrived on the Earth by now, while a fairly large fraction of them have escaped from the halo. Based on a diffusion-halo model, we solve a diffusion equation for the CRs and compare the results with the CR spectrum on the Earth. The observed small anisotropy of the arrival directions of CRs may be explained if the diffusion coefficient in the Galactic disk is smaller than that in the halo. Our model predicts that a boron-to-carbon ratio should be energy-independent around the knee, where the CRs from Sgr A* become dominant. It is unlikely that the spectrum of the CRs accelerated at the outburst is represented by a power-law similar to the one for those responsible for the gamma-ray emission from the central molecular zone (CMZ) around the Galactic center.

  5. Formation of Spiral-Arm Spurs and Bound Clouds in Vertically Stratified Galactic Gas Disks

    NASA Astrophysics Data System (ADS)

    Kim, Woong-Tae; Ostriker, Eve C.

    2006-07-01

    We investigate the growth of spiral-arm substructure in vertically stratified, self-gravitating, galactic gas disks, using local numerical MHD simulations. Our new models extend our previous two-dimensional studies, which showed that a magnetized spiral shock in a thin disk can undergo magneto-Jeans instability (MJI), resulting in regularly spaced interarm spur structures and massive gravitationally bound fragments. Similar spur (or ``feather'') features have recently been seen in high-resolution observations of several galaxies. Here we consider two sets of numerical models: two-dimensional simulations that use a ``thick-disk'' gravitational kernel, and three-dimensional simulations with explicit vertical stratification. Both models adopt an isothermal equation of state with cs=7 km s-1. When disks are sufficiently magnetized and self-gravitating, the result in both sorts of models is the growth of spiral-arm substructure similar to that in our previous razor-thin models. Reduced self-gravity due to nonzero disk thickness increases the spur spacing to ~10 times the Jeans length at the arm peak. Bound clouds that form from spur fragmentation have masses ~(1-3)×107 Msolar each, similar to the largest observed GMCs. The mass-to-flux ratios and specific angular momenta of the bound condensations are lower than large-scale galactic values, as is true for observed GMCs. We find that unmagnetized or weakly magnetized two-dimensional models are unstable to the ``wiggle instability'' previously identified by Wada & Koda. However, our fully three-dimensional models do not show this effect. Nonsteady motions and strong vertical shear prevent coherent vortical structures from forming, evidently suppressing the wiggle instability. We also find no clear traces of Parker instability in the nonlinear spiral arm substructures that emerge, although conceivably Parker modes may help seed the MJI at early stages since azimuthal wavelengths are similar.

  6. Galactic bulge population II Cepheids in the VVV survey: period-luminosity relations and a distance to the Galactic centre

    NASA Astrophysics Data System (ADS)

    Bhardwaj, A.; Rejkuba, M.; Minniti, D.; Surot, F.; Valenti, E.; Zoccali, M.; Gonzalez, O. A.; Romaniello, M.; Kanbur, S. M.; Singh, H. P.

    2017-09-01

    Context. Multiple stellar populations of different ages and metallicities reside in the Galactic bulge that trace its structure and provide clues to its formation and evolution. Aims: We present the near-infrared observations of population II Cepheids in the Galactic bulge from VISTA Variables in the Vía Láctea (VVV) survey. The JHKs photometry together with optical data from Optical Gravitational Lensing Experiment (OGLE) survey provide an independent estimate of the distance to the Galactic centre. The old, metal-poor and low-mass population II Cepheids are also investigated as useful tracers for the structure of the Galactic bulge. Methods: We identify 340 population II Cepheids in the VVV survey Galactic bulge catalogue based on their match with the OGLE-III Catalogue. The single-epoch JH and multi-epoch Ks observations complement the accurate periods and optical (VI) mean-magnitudes from OGLE. The sample consisting of BL Herculis and W Virginis subtypes is used to derive period-luminosity relations after correcting mean-magnitudes for the extinction. Our Ks-band period-luminosity relation, Ks = -2.189(0.056) [log (P)-1] + 11.187(0.032), is consistent with published work for BL Herculis and W Virginis variables in the Large Magellanic Cloud. Results: We present a combined OGLE-III and VVV catalogue with periods, classification, mean magnitudes, and extinction for 264 Galactic bulge population II Cepheids that have good-quality Ks-band light curves. The absolute magnitudes for population II Cepheids and RR Lyraes calibrated using Gaia and Hubble Space Telescope parallaxes, together with calibrated magnitudes for Large Magellanic Cloud population II Cepheids, are used to obtain a distance to the Galactic centre, R0 = 8.34 ± 0.03(stat.) ± 0.41(syst.), which changes by with different extinction laws. While noting the limitation of small number statistics, we find that the present sample of population II Cepheids in the Galactic bulge shows a nearly spheroidal

  7. Search for EeV protons of galactic origin

    NASA Astrophysics Data System (ADS)

    Abbasi, R. U.; Abe, M.; Abu-Zayyad, T.; Allen, M.; Azuma, R.; Barcikowski, E.; Belz, J. W.; Bergman, D. R.; Blake, S. A.; Cady, R.; Cheon, B. G.; Chiba, J.; Chikawa, M.; Fujii, T.; Fukushima, M.; Goto, T.; Hanlon, W.; Hayashi, Y.; Hayashi, M.; Hayashida, N.; Hibino, K.; Honda, K.; Ikeda, D.; Inoue, N.; Ishii, T.; Ishimori, R.; Ito, H.; Ivanov, D.; Jui, C. C. H.; Kadota, K.; Kakimoto, F.; Kalashev, O.; Kasahara, K.; Kawai, H.; Kawakami, S.; Kawana, S.; Kawata, K.; Kido, E.; Kim, H. B.; Kim, J. H.; Kim, J. H.; Kishigami, S.; Kitamura, S.; Kitamura, Y.; Kuzmin, V.; Kwon, Y. J.; Lan, J.; Lubsandorzhiev, B.; Lundquist, J. P.; Machida, K.; Martens, K.; Matsuda, T.; Matsuyama, T.; Matthews, J. N.; Minamino, M.; Mukai, K.; Myers, I.; Nagasawa, K.; Nagataki, S.; Nakamura, T.; Nonaka, T.; Nozato, A.; Ogio, S.; Ogura, J.; Ohnishi, M.; Ohoka, H.; Oki, K.; Okuda, T.; Ono, M.; Onogi, R.; Oshima, A.; Ozawa, S.; Park, I. H.; Pshirkov, M. S.; Rodriguez, D. C.; Rubtsov, G.; Ryu, D.; Sagawa, H.; Saito, K.; Saito, Y.; Sakaki, N.; Sakurai, N.; Scott, L. M.; Sekino, K.; Shah, P. D.; Shibata, T.; Shibata, F.; Shimodaira, H.; Shin, B. K.; Shin, H. S.; Smith, J. D.; Sokolsky, P.; Stokes, B. T.; Stratton, S. R.; Stroman, T. A.; Suzawa, T.; Takahashi, Y.; Takamura, M.; Takeda, M.; Takeishi, R.; Taketa, A.; Takita, M.; Tameda, Y.; Tanaka, M.; Tanaka, K.; Tanaka, H.; Thomas, S. B.; Thomson, G. B.; Tinyakov, P.; Tirone, A. H.; Tkachev, I.; Tokuno, H.; Tomida, T.; Troitsky, S.; Tsunesada, Y.; Tsutsumi, K.; Uchihori, Y.; Udo, S.; Urban, F.; Wong, T.; Yamane, R.; Yamaoka, H.; Yamazaki, K.; Yang, J.; Yashiro, K.; Yoneda, Y.; Yoshida, S.; Yoshii, H.; Zollinger, R.; Zundel, Z.

    2017-01-01

    Cosmic rays in the energy range 1018.0-1018.5 eV are thought to have a light, probably protonic, composition. To study their origin one can search for anisotropy in their arrival directions. Extragalactic cosmic rays should be isotropic, but galactic cosmic rays of this type should be seen mostly along the galactic plane, and there should be a shortage of events coming from directions near the galactic anticenter. This is due to the fact that, under the influence of the galactic magnetic field, the transition from ballistic to diffusive behavior is well advanced, and this qualitative picture persists over the whole energy range. Guided by models of the galactic magnetic field that indicate that the enhancement along the galactic plane should have a standard deviation of about 20° in galactic latitude, and the deficit in the galactic anticenter direction should have a standard deviation of about 50° in galactic longitude, we use the data of the Telescope Array surface detector in 1018.0 to 1018.5 eV energy range to search for these effects. The data are isotropic. Neither an enhancement along the galactic plane nor a deficit in the galactic anticenter direction is found. Using these data we place an upper limit on the fraction of EeV cosmic rays of galactic origin at 1.3% at 95% confidence level.

  8. New detections of embedded clusters in the Galactic halo

    NASA Astrophysics Data System (ADS)

    Camargo, D.; Bica, E.; Bonatto, C.

    2016-09-01

    Context. Until recently it was thought that high Galactic latitude clouds were a non-star-forming ensemble. However, in a previous study we reported the discovery of two embedded clusters (ECs) far away from the Galactic plane (~ 5 kpc). In our recent star cluster catalogue we provided additional high and intermediate latitude cluster candidates. Aims: This work aims to clarify whether our previous detection of star clusters far away from the disc represents just an episodic event or whether star cluster formation is currently a systematic phenomenon in the Galactic halo. We analyse the nature of four clusters found in our recent catalogue and report the discovery of three new ECs each with an unusually high latitude and distance from the Galactic disc midplane. Methods: The analysis is based on 2MASS and WISE colour-magnitude diagrams (CMDs), and stellar radial density profiles (RDPs). The CMDs are built by applying a field-star decontamination procedure, which uncovers the cluster's intrinsic CMD morphology. Results: All of these clusters are younger than 5 Myr. The high-latitude ECs C 932, C 934, and C 939 appear to be related to a cloud complex about 5 kpc below the Galactic disc, under the Local arm. The other clusters are above the disc, C 1074 and C 1100 with a vertical distance of ~3 kpc, C 1099 with ~ 2 kpc, and C 1101 with ~1.8 kpc. Conclusions: According to the derived parameters ECs located below and above the disc occur, which gives evidence of widespread star cluster formation throughout the Galactic halo. This study therefore represents a paradigm shift, by demonstrating that a sterile halo must now be understood as a host for ongoing star formation. The origin and fate of these ECs remain open. There are two possibilities for their origin, Galactic fountains or infall. The discovery of ECs far from the disc suggests that the Galactic halo is more actively forming stars than previously thought. Furthermore, since most ECs do not survive the infant

  9. Mass Loss at Higher Metallicity: Quantifying the Mass Return from Evolved Stars in the Galactic

    NASA Astrophysics Data System (ADS)

    Sargent, Benjamin

    Bulge Mass-losing evolved stars, and in particular asymptotic giant branch (AGB) stars and red supergiant (RSG) stars, are expected to be the major producers of dust in galaxies. This dust will help form planetary systems around future generations of stars. Our ADAP program to measure the mass loss from the AGB and RSG stars in the Magellanic Clouds is nearing completion, and we wish to extend this successful study to the Galactic bulge of the Milky Way Galaxy. Metallicity should determine the amount of elements available to condense dust in the star's outflow, so evolved stars of differing metallicities should have differing mass-loss rates. Building upon our work on evolved stars in the Magellanic Clouds, we will compare the mass-loss rates from AGB and RSG stars in the older and potentially more metal-rich Bulge to the mass-loss rates of AGB and RSG stars in the Magellanic Clouds, which have lower metallicity, making for an interesting contrast. In addition, the Galactic bulge, like the Clouds, is located at a well-determined distance ( 8 kpc), thereby removing the distance ambiguities that present a major uncertainty in determining mass-loss rates and luminosities for evolved stars. To model photometric observations of outflowing dust shells around evolved stars, we have constructed the Grid of Red supergiant and Asymptotic giant branch ModelS (GRAMS; Sargent et al 2011; Srinivasan et al 2011) using the radiative transfer code 2Dust (Ueta and Meixner 2003). Our study will apply these models to the large photometric database of sources identified in the Spitzer Space Telescope GLIMPSE survey of the Milky Way and also to the various infrared spectra of Bulge AGB and RSG stars from Spitzer, ISO, etc. We have already modeled a few Galactic bulge evolved stars with GRAMS, and we will use these results as the foundation for modeling a large and representative sample of Galactic bulge evolved stars identified and measured photometrically by GLIMPSE. We will use our

  10. The Origin of the Excess Near-Infrared Diffuse Sky Brightness: Population III Stars or Zodiacal Light?

    NASA Technical Reports Server (NTRS)

    Dwek, Eli

    2006-01-01

    The intensity of the diffuse 1 to 5 micron sky emission from which solar system and Galactic foregrounds have been subtracted is in excess of that expected from energy released by galaxies and stars that formed during the z < 5 redshift interval. The spectral signature of this excess near-infrared background light (NIRBL) component is almost identical to that of reflected sunlight from the interplanetary dust cloud, and could therefore be the result of the incomplete subtraction of this foreground emission component from the diffuse sky maps. Alternatively, this emission component could be extragalactic. Its spectral signature is consistent with that of redshifted continuum and recombination line emission from H-II regions formed by the first generation of very massive stars. In this talk I will present the implications of this excess emission for our understanding of the zodiacal dust cloud, the formation rate of Pop III stars, and the TeV gamma-ray opacity to nearby blazars.

  11. The structure and content of the galaxy and galactic gamma rays. [conferences

    NASA Technical Reports Server (NTRS)

    Fichtel, C. E.; Stecker, F. W.

    1976-01-01

    Papers are presented dealing with galactic structure drawing on all branches of galactic astronomy with emphasis on the implications of the new gamma ray observations. Topics discussed include: (1) results from the COS-B gamma ray satellite; (2) results from SAS-2 on gamma ray pulsar, Cygnus X-3, and maps of the galactic diffuse flux; (3) recent data from CO surveys of the galaxy; (4) high resolution radio surveys of external galaxies; (5) results on the galactic distribution of pulsars; and (6) theoretical work on galactic gamma ray emission.

  12. Chemistry in dynamically evolving clouds

    NASA Technical Reports Server (NTRS)

    Tarafdar, S. P.; Prasad, S. S.; Huntress, W. T., Jr.; Villere, K. R.; Black, D. C.

    1985-01-01

    A unified model of chemical and dynamical evolution of isolated, initially diffuse and quiescent interstellar clouds is presented. The model uses a semiempirically derived dependence of the observed cloud temperatures on the visual extinction and density. Even low-mass, low-density, diffuse clouds can collapse in this model, because the inward pressure gradient force assists gravitational contraction. In contrast, previous isothermal collapse models required the low-mass diffuse clouds to be unrealistically cold before gravitational contraction could start. Theoretically predicted dependences of the column densities of various atoms and molecules, such as C and CO, on visual extinction in diffuse clouds are in accord with observations. Similarly, the predicted dependences of the fractional abundances of various chemical species (e.g., CO, H2CO, HCN, HCO(+)) on the total hydrogen density in the core of the dense clouds also agree with observations reported to date in the literature. Compared with previous models of interstellar chemistry, the present model has the potential to explain the wide spectrum of chemical and physical properties of both diffuse and dense clouds with a common formalism employing only a few simple initial conditions.

  13. Comparison between SAGE II and ISCCP high-level clouds. 2: Locating clouds tops

    NASA Technical Reports Server (NTRS)

    Liao, Xiaohan; Rossow, William B.; Rind, David

    1995-01-01

    A comparison is made of the vertical distribution of high-level cloud tops derived from the Stratospheric Aerosol and Gas Experiment II (SAGE II) occultation measurements and from the International Satellite Cloud Climatology Project (ISCCP) for all Julys and Januarys in 1985 to 1990. The results suggest that ISCCP overestimates the pressure of high-level clouds by up to 50-150 mbar, particularly at low latitudes. This is caused by the frequent presence of clouds with diffuse tops (greater than 50% time when cloudy events are observed). The averaged vertical extent of the diffuse top is about 1.5 km. At midlatitudes where the SAGE II and ISCCP cloud top pressure agree best, clouds with distinct tops reach a maximum relative proportion of the total level cloud amount (about 30-40%), and diffuse-topped clouds are reduced to their minimum (30-40%). The ISCCP-defined cloud top pressure should be regarded not as the material physical height of the clouds but as the level which emits the same infrared radiance as observed. SAGE II and ISCCP cloud top pressures agree for clouds with distinct tops. There is also an indication that the cloud top pressures of optically thin clouds not overlying thicker clouds are poorly estimated by ISCCP at middle latitudes. The average vertical extent of these thin clouds is about 2.5 km.

  14. GOT C+ Survey of [CII] 158 μm Emission: Atomic to Molecular Cloud Transitions in the Inner Galaxy

    NASA Astrophysics Data System (ADS)

    Velusamy, T.; Langer, W. D.; Willacy, K.; Pineda, J. L.; Goldsmith, P. F.

    2013-03-01

    We present the results of the distribution of CO-dark H2 gas in a sample of 2223 interstellar clouds in the inner Galaxy (l=-90° to +57°) detected in the velocity resolved [CII] spectra observed in the GOT C+ survey using the Herschel HIFI. We analyze the [CII] intensities along with the ancillary HI, 12CO and 13CO data for each cloud to determine their evolutionary state and to derive the H2 column densities in the C+ and C+/CO transition layers in the cloud. We discuss the overall Galactic distribution of the [CII] clouds and their properties as a function Galactic radius. GOT C+ results on the global distribution of [CII] clouds and CO-dark H2 gas traces the FUV intensity and star formation rate in the Galactic disk.

  15. The alignment of molecular cloud magnetic fields with the spiral arms in M33.

    PubMed

    Li, Hua-bai; Henning, Thomas

    2011-11-16

    The formation of molecular clouds, which serve as stellar nurseries in galaxies, is poorly understood. A class of cloud formation models suggests that a large-scale galactic magnetic field is irrelevant at the scale of individual clouds, because the turbulence and rotation of a cloud may randomize the orientation of its magnetic field. Alternatively, galactic fields could be strong enough to impose their direction upon individual clouds, thereby regulating cloud accumulation and fragmentation, and affecting the rate and efficiency of star formation. Our location in the disk of the Galaxy makes an assessment of the situation difficult. Here we report observations of the magnetic field orientation of six giant molecular cloud complexes in the nearby, almost face-on, galaxy M33. The fields are aligned with the spiral arms, suggesting that the large-scale field in M33 anchors the clouds. ©2011 Macmillan Publishers Limited. All rights reserved

  16. A Green Bank Telescope 21cm survey of HI clouds in the Milky Way's nuclear wind

    NASA Astrophysics Data System (ADS)

    Denbo, Sara; Endsley, Ryan; Lockman, Felix J.; Ford, Alyson

    2015-01-01

    Feedback processes such as large-scale galactic winds are thought to be responsible for distributing enriched gas throughout a galaxy and even into the IGM. Such winds have been found in many galaxies with active star formation near their center, and the Fermi bubbles provide evidence for such a nuclear wind in our own Milky Way. A recent 21 cm HI survey by the Australia Telescope Compact Array discovered a population of compact, isolated clouds surrounding the Galactic Center that may be entrained in the Fermi bubble wind. We present data from a survey of 21cm HI over an extended region around the Galactic Center using the Green Bank Telescope. These observations provide more strict constraints on neutral clouds in the Fermi bubble wind, and a more robust description of the parameters of HI clouds (i.e., mass, column density, and lifetime) near the Galactic Center.

  17. Parametric studies with an atmospheric diffusion model that assesses toxic fuel hazards due to the ground clouds generated by rocket launches

    NASA Technical Reports Server (NTRS)

    Stewart, R. B.; Grose, W. L.

    1975-01-01

    Parametric studies were made with a multilayer atmospheric diffusion model to place quantitative limits on the uncertainty of predicting ground-level toxic rocket-fuel concentrations. Exhaust distributions in the ground cloud, cloud stabilized geometry, atmospheric coefficients, the effects of exhaust plume afterburning of carbon monoxide CO, assumed surface mixing-layer division in the model, and model sensitivity to different meteorological regimes were studied. Large-scale differences in ground-level predictions are quantitatively described. Cloud alongwind growth for several meteorological conditions is shown to be in error because of incorrect application of previous diffusion theory. In addition, rocket-plume calculations indicate that almost all of the rocket-motor carbon monoxide is afterburned to carbon dioxide CO2, thus reducing toxic hazards due to CO. The afterburning is also shown to have a significant effect on cloud stabilization height and on ground-level concentrations of exhaust products.

  18. Search with COPERNICUS for interstellar N/sub 2/ in diffuse clouds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lutz, B.L.; Owen, T.; Snow, T.P. Jr.

    1979-01-01

    Multiple Copernicus scans of the rho'/sup 1/..sigma../sub u//sup +/--X/sup 1/..sigma../sub g//sup +/(0--0) and l/sup 1/Pi/sub u/--X/sup 1/..sigma../sub g//sup +/(0--0) band regions of N/sub 2/ in the spectra of delta Sco and epsilon Per result in upper limits of N (N/sub 2/) < or =1.0--3.8 x 10/sup 12/ cm/sup -2/ and N (N/sub 2/) < or =1.2--4.4 x 10/sup 12/ cm/sup -2/, respectively, depending upon the cloud temperature. These limits are consistent with the column densities expected from current chemical models for diffuse interstellar clouds, representing relative abundances with respect to hydrogen nuclei of N (N/sub 2/)/2N (H/sub 2/)+N (H I)more » < or =0.69--2.6 x 10/sup -9/ for delta Sco and < or =0.31--1.1 x 10/sup -8/ for epsilon Per.« less

  19. STAR FORMATION LAWS: THE EFFECTS OF GAS CLOUD SAMPLING

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Calzetti, D.; Liu, G.; Koda, J., E-mail: calzetti@astro.umass.edu

    Recent observational results indicate that the functional shape of the spatially resolved star formation-molecular gas density relation depends on the spatial scale considered. These results may indicate a fundamental role of sampling effects on scales that are typically only a few times larger than those of the largest molecular clouds. To investigate the impact of this effect, we construct simple models for the distribution of molecular clouds in a typical star-forming spiral galaxy and, assuming a power-law relation between star formation rate (SFR) and cloud mass, explore a range of input parameters. We confirm that the slope and the scattermore » of the simulated SFR-molecular gas surface density relation depend on the size of the sub-galactic region considered, due to stochastic sampling of the molecular cloud mass function, and the effect is larger for steeper relations between SFR and molecular gas. There is a general trend for all slope values to tend to {approx}unity for region sizes larger than 1-2 kpc, irrespective of the input SFR-cloud relation. The region size of 1-2 kpc corresponds to the area where the cloud mass function becomes fully sampled. We quantify the effects of selection biases in data tracing the SFR, either as thresholds (i.e., clouds smaller than a given mass value do not form stars) or as backgrounds (e.g., diffuse emission unrelated to current star formation is counted toward the SFR). Apparently discordant observational results are brought into agreement via this simple model, and the comparison of our simulations with data for a few galaxies supports a steep (>1) power-law index between SFR and molecular gas.« less

  20. Supernovae-generated high-velocity compact clouds

    NASA Astrophysics Data System (ADS)

    Yalinewich, A.; Beniamini, P.

    2018-05-01

    Context. A previous study claimed the discovery of an intermediate-mass black hole (IMBH). This hypothetical black hole was invoked in order to explain the high-velocity dispersion in one of several dense molecular clouds near the Galactic center. The same study considered the possibility that this cloud was due to a supernova explosion, but disqualified this scenario because no X-rays were detected. Aims: We here check whether a supernova explosion could have produced that cloud, and whether this explanation is more likely than an IMBH. More specifically, we wish to determine whether a supernova inside a dense molecular cloud would emit in the X-rays. Methods: We have approached this problem from two different directions. First, we performed an analytic calculation to determine the cooling rate by thermal bremsstrahlung and compared this time to the lifetime of the cloud. Second, we estimated the creation rate of these dense clouds in the central molecular zone (CMZ) region near the Galactic center, where they were observed. Based on this rate, we can place lower bounds on the total mass of IMBHs and clouds and compare this to the masses of the components of the CMZ. Results: We find that the cooling time of the supernova remnant inside a molecular cloud is shorter than its dynamical time. This means that the temperature in such a remnant would be much lower than that of a typical supernova remnant. At such a low temperature, the remnant is not expected to emit in the X-rays. We also find that to explain the rate at which such dense clouds are created requires fine-tuning the number of IMBHs. Conclusions: We find the supernova model to be a more likely explanation for the formation of high-velocity compact clouds than an IMBH.

  1. TRACING THE MAGNETIC FIELD MORPHOLOGY OF THE LUPUS I MOLECULAR CLOUD

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Franco, G. A. P.; Alves, F. O., E-mail: franco@fisica.ufmg.br, E-mail: falves@mpe.mpg.de

    2015-07-01

    Deep R-band CCD linear polarimetry collected for fields with lines of sight toward the Lupus I molecular cloud is used to investigate the properties of the magnetic field within this molecular cloud. The observed sample contains about 7000 stars, almost 2000 of them with a polarization signal-to-noise ratio larger than 5. These data cover almost the entire main molecular cloud and also sample two diffuse infrared patches in the neighborhood of Lupus I. The large-scale pattern of the plane-of-sky projection of the magnetic field is perpendicular to the main axis of Lupus I, but parallel to the two diffuse infraredmore » patches. A detailed analysis of our polarization data combined with the Herschel/SPIRE 350 μm dust emission map shows that the principal filament of Lupus I is constituted by three main clumps that are acted on by magnetic fields that have different large-scale structural properties. These differences may be the reason for the observed distribution of pre- and protostellar objects along the molecular cloud and the cloud’s apparent evolutionary stage. On the other hand, assuming that the magnetic field is composed of large-scale and turbulent components, we find that the latter is rather similar in all three clumps. The estimated plane-of-sky component of the large-scale magnetic field ranges from about 70 to 200 μG in these clumps. The intensity increases toward the Galactic plane. The mass-to-magnetic flux ratio is much smaller than unity, implying that Lupus I is magnetically supported on large scales.« less

  2. Polarization of seven MBM clouds at high Galactic latitude

    NASA Astrophysics Data System (ADS)

    Neha, S.; Maheswar, G.; Soam, A.; Lee, C. W.

    2018-06-01

    We made R-band polarization measurements of 234 stars towards the direction of the MBM 33-39 cloud complex. The distance of the MBM 33-39 complex was determined as 120 ± 10 pc using polarization results and near-infrared photometry from the 2MASS survey. The magnetic field geometry of the individual clouds inferred from our polarimetric results reveals that the field lines are in general consistent with the global magnetic field geometry of the region obtained from previous studies. This implies that the clouds in the complex are permeated by the interstellar magnetic field. Multi-wavelength polarization measurements of a few stars projected on to the complex suggest that the size of the dust grains in these clouds is similar to those found in the normal interstellar medium of the Milky Way. We studied a possible formation scenario of the MBM 33-39 complex by combining the polarization results from our study with those from the literature and by identifying the distribution of ionized, atomic and molecular (dust) components of material in the region.

  3. On the physical mechanisms governing the cloud lifecycle in the Central Molecular Zone of the Milky Way

    NASA Astrophysics Data System (ADS)

    Jeffreson, S. M. R.; Kruijssen, J. M. D.; Krumholz, M. R.; Longmore, S. N.

    2018-05-01

    We apply an analytic theory for environmentally-dependent molecular cloud lifetimes to the Central Molecular Zone of the Milky Way. Within this theory, the cloud lifetime in the Galactic centre is obtained by combining the time-scales for gravitational instability, galactic shear, epicyclic perturbations and cloud-cloud collisions. We find that at galactocentric radii ˜45-120 pc, corresponding to the location of the `100-pc stream', cloud evolution is primarily dominated by gravitational collapse, with median cloud lifetimes between 1.4 and 3.9 Myr. At all other galactocentric radii, galactic shear dominates the cloud lifecycle, and we predict that molecular clouds are dispersed on time-scales between 3 and 9 Myr, without a significant degree of star formation. Along the outer edge of the 100-pc stream, between radii of 100 and 120 pc, the time-scales for epicyclic perturbations and gravitational free-fall are similar. This similarity of time-scales lends support to the hypothesis that, depending on the orbital geometry and timing of the orbital phase, cloud collapse and star formation in the 100-pc stream may be triggered by a tidal compression at pericentre. Based on the derived time-scales, this should happen in approximately 20 per cent of all accretion events onto the 100-pc stream.

  4. VizieR Online Data Catalog: Planck Catalogue of Galactic cold clumps (PGCC) (Planck+, 2016)

    NASA Astrophysics Data System (ADS)

    Planck Collaboration; Ade, P. A. R.; Aghanim, N.; Arnaud, M.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Banday, A. J.; Barreiro, R. B.; Bartolo, N.; Battaner, E.; Benabed, K.; Benoit, A.; Benoit-Levy, A.; Bernard, J.-P.; Bersanelli, M.; Bielewicz, P.; Bonaldi, A.; Bonavera, L.; Bond, J. R.; Borrill, J.; Bouchet, F. R.; Boulanger, F.; Bucher, M.; Burigana, C.; Butler, R. C.; Calabrese, E.; Catalano, A.; Chamballu, A.; Chiang, H. C.; Christensen, P. R.; Clements, D. L.; Colombi, S.; Colombo, L. P. L.; Combet, C.; Couchot, F.; Coulais, A.; Crill, B. P.; Curto, A.; Cuttaia, F.; Danese, L.; Davies, R. D.; Davis, R. J.; de Bernardis, P.; De Rosa, A.; de Zotti, G.; Delabrouille, J.; Desert, F.-X.; Dickinson, C.; Diego, J. M.; Dole, H.; Donzelli, S.; Dore, O.; Douspis, M.; Ducout, A.; Dupac, X.; Efstathiou, G.; Elsner, F.; Ensslin, T. A.; Eriksen, H. K.; Falgarone, E.; Fergusson, J.; Fergusson, J.; Finelli, F.; Forni, O.; Frailis, M.; Fraisse, A. A.; Franceschi, E.; Frejsel, A.; Galeotta, S.; Galli, S.; Ganga, K.; Giard, M.; Giraud-Heraud, Y.; Gjerlow, E.; Gonzalez-Nuevo, J.; Gorsk, I. K. M.; Gratton, S.; Gregorio, A.; Gruppuso, A.; Gudmundsson, J. E.; Hansen, F. K.; Hanson, D.; Harrison, D. L.; Helou, G.; Henrot-Versille, S.; Hernandez-Monteagudo, C.; Herranz, D.; Hildebrandt, S. R.; Hivon, E.; Hobson, M.; Holmes, W. A.; Hornstrup, A.; Hovest, W.; Huffenberger, K. M.; Hurier, G.; Jaffe, A. H.; Jaffe, T. R.; Jones, W. C.; Juvela, M.; Keihanen, E.; Keskitalo, R.; Kisner, T. S.; Knoche, J.; Kunz, M.; Kurki-Suonio, H.; Lagache, G.; Lamarre, J.-M.; Lasenby, A.; Lattanzi, M.; Lawrence, C. R.; Leonardi, R.; Lesgourgues, J.; Levrier, F.; Liguori, M.; Lilje, P. B.; Linden-Vornle, M.; Lopez-Caniego, M.; Lubin, P. M.; Macias-Perez, J. F.; Maggio, G.; Maino, D.; Mandolesi, N.; Mangilli, A.; Marshall, D. J.; Martin, P. G.; Martinez-Gonzalez, E.; Masi, S.; Matarrese, S.; Mazzotta, P.; McGehee, P.; Melchiorri, A.; Mendes, L.; Mennella, A.; Migliaccio, M.; Mitra, S.; Miville-Deschenes, M.-A.; Moneti, A.; Montier, L.; Morgante, G.; Mortlock, D.; Moss, A.; Munshi, D.; Murphy, J. A.; Naselsky, P.; Nati, F.; Natoli, P.; Netterfield, C. B.; Norgaard-Nielsen, H. U.; Noviello, F.; Novikov, D.; Novikov, I.; Oxborrow, C. A.; Paci, F.; Pagano, L.; Pajot, F.; Paladini, R.; Paoletti, D.; Pasian, F.; Patanchon, G.; Pearson, T. J.; Pelkonen, V.-M.; Perdereau, O.; Perotto, L.; Perrotta, F.; Pettorino, V.; Piacentini, F.; Piat, M.; Pierpaoli, E.; Pietrobon, D.; Plaszczynski, S.; Pointecouteau, E.; Polenta, G.; Pratt, G. W.; Prezeau, G.; Prunet, S.; Puget, J.-L.; Rachen, J. P.; Reach, W. T.; Rebolo, R.; Reinecke, M.; Remazeilles, M.; Renault, C.; Renzi, A.; Ristorcelli, I.; Rocha, G.; Rosset, C.; Rossetti, M.; Roudier, G.; Rubino-Martin, J. A.; Rusholme, B.; Sandri, M.; Santos, D.; Savelainen, M.; Savini, G.; Scott, D.; Seiffert, M. D.; Shellard, E. P. S.; Spencer, L. D.; Stolyarov, V.; Sudiwala, R.; Sunyaev, R.; Sutton, D.; Suur-Uski, A.-S.; Sygnet, J.-F.; Tauber, J. A.; Terenzi, L.; Toffolatti, L.; Tomasi, M.; Tristram, M.; Tucci, M.; Tuovinen, J.; Umana, G.; Valenziano, L.; Valiviita, J.; van Tent, B.; Vielva, P.; Villa, F.; Wade, L. A.; Wandelt, B. D.; Wehus, I. K.; Yvon, D.; Zacchei, A.; Zonca, A.

    2017-01-01

    The Planck Catalogue of Galactic Cold Clumps (PGCC) is a list of 13188 Galactic sources and 54 sources located in the Small and Large Magellanic Clouds. The sources have been identified in Planck data as sources colder than their environment. It has been built using the 48 months Planck data at 857, 545, and 353GHz combined with the 3THz IRAS data. (1 data file).

  5. The Impact Of Galactic Environment On Star Formation

    NASA Astrophysics Data System (ADS)

    Kreckel, Kathryn

    2016-09-01

    While spiral arms are the most prominent sites for star formation in disk galaxies, interarm star formation contributes significantly to the overall star formation budget. However, it is still an open question if the star formation proceeds differently in the arm and inter-arm environment. We use deep VLT/MUSE optical IFU spectroscopy to resolve and fully characterize the physical properties of 428 interarm and arm HII regions in the nearby grand design spiral galaxy NGC 628. Unlike molecular clouds (the fuel for star formation) which exhibit a clear dependence on galactic environment, we find that most HII region properties (luminosity, size, metallicity, ionization parameter) are independent of environment. One clear exception is the diffuse ionized gas (DIG) contribution to the arm and interarm flux (traced via the temperature sensitive [SII]/Halpha line ratio inside and outside of the HII region boundaries). We find a systematically higher DIG background within HII regions, particularly on the spiral arms. Correcting for this DIG contamination can result in significant (70%) changes to the star formation rate measured. We also show preliminary results comparing well@corrected star formation rates from our MUSE HII regions to ALMA CO(2-1) molecular gas observations at matched 1"=35pc resolution, tracing the Kennicutt-Schmidt star formation law at the scales relevant to the physics of star formation. We estimate the timescales relevant for GMC evolution using distance from the spiral arm as a proxy for age, and test whether star formation feedback or galactic@scale dynamical processes dominate GMC disruption.

  6. The impact of galactic environment on star formation

    NASA Astrophysics Data System (ADS)

    Kreckel, Kathryn; Blanc, Guillermo A.; Schinnerer, Eva; Groves, Brent; Adamo, Angela; Hughes, Annie; Meidt, Sharon; SFNG Collaboration

    2017-01-01

    While spiral arms are the most prominent sites for star formation in disk galaxies, interarm star formation contributes significantly to the overall star formation budget. However, it is still an open question if the star formation proceeds differently in the arm and inter-arm environment. We use deep VLT/MUSE optical IFU spectroscopy to resolve and fully characterize the physical properties of 428 interarm and arm HII regions in the nearby grand design spiral galaxy NGC 628. Unlike molecular clouds (the fuel for star formation) which exhibit a clear dependence on galactic environment, we find that most HII region properties (luminosity, size, metallicity, ionization parameter) are independent of environment. One clear exception is the diffuse ionized gas (DIG) contribution to the arm and interarm flux (traced via the temperature sensitive [SII]/Halpha line ratio inside and outside of the HII region boundaries). We find a systematically higher DIG background within HII regions, particularly on the spiral arms. Correcting for this DIG contamination can result in significant (70%) changes to the star formation rate measured. We also show preliminary results comparing well-corrected star formation rates from our MUSE HII regions to ALMA CO(2-1) molecular gas observations at matched 1"=50pc resolution, tracing the Kennicutt-Schmidt star formation law at the scales relevant to the physics of star formation. We estimate the timescales relevant for GMC evolution using distance from the spiral arm as a proxy for age, and test whether star formation feedback or galactic-scale dynamical processes dominate GMC disruption.

  7. Probing the magnetic topologies of magnetic clouds by means of solar energetic particles

    NASA Technical Reports Server (NTRS)

    Kahler, S. W.; Reames, D. V.

    1991-01-01

    Solar energetic particles (SEPs) have been used as probes of magnetic cloud topologies. The rapid access of SEPs to the interiors of many clouds indicates that the cloud field lines extend back to the sun and hence are not plasmoids. The small modulation of galactic cosmic rays associated with clouds also suggests that the magnetic fields of clouds are not closed.

  8. Molecular Clouds, Star Formation and Galactic Structure.

    ERIC Educational Resources Information Center

    Scoville, Nick; Young, Judith S.

    1984-01-01

    Radio observations show that the gigantic clouds of molecules where stars are born are distributed in various ways in spiral galaxies, perhaps accounting for the variation in their optical appearance. Research studies and findings in this area are reported and discussed. (JN)

  9. Isolating signatures of major cloud-cloud collisions using position-velocity diagrams

    NASA Astrophysics Data System (ADS)

    Haworth, T. J.; Tasker, E. J.; Fukui, Y.; Torii, K.; Dale, J. E.; Shima, K.; Takahira, K.; Habe, A.; Hasegawa, K.

    2015-06-01

    Collisions between giant molecular clouds are a potential mechanism for triggering the formation of massive stars, or even super star clusters. The trouble is identifying this process observationally and distinguishing it from other mechanisms. We produce synthetic position-velocity diagrams from models of cloud-cloud collisions, non-interacting clouds along the line of sight, clouds with internal radiative feedback and a more complex cloud evolving in a galactic disc, to try and identify unique signatures of collision. We find that a broad bridge feature connecting two intensity peaks, spatially correlated but separated in velocity, is a signature of a high-velocity cloud-cloud collision. We show that the broad bridge feature is resilient to the effects of radiative feedback, at least to around 2.5 Myr after the formation of the first massive (ionizing) star. However for a head-on 10 km s-1 collision, we find that this will only be observable from 20 to 30 per cent of viewing angles. Such broad-bridge features have been identified towards M20, a very young region of massive star formation that was concluded to be a site of cloud-cloud collision by Torii et al., and also towards star formation in the outer Milky Way by Izumi et al.

  10. Ablation from High Velocity Clouds: A Source for Low Velocity Ionized Gas

    NASA Astrophysics Data System (ADS)

    Shelton, Robin L.; Henley, D. B.; Kwak, K.

    2012-05-01

    High velocity clouds shed material as they move through the Galaxy. This material mixes with the Galactic interstellar medium, resulting in plasma whose temperature and ionization levels are intermediate between those of the cloud and those of the Galaxy. As time passes, the mixed material slows to the velocity of the ambient gas. This raises the possibility that initially warm (T 10^3 K), poorly ionized clouds moving through hot (T 10^6 K), very highly ionized ambient gas could lead to mixed gas that harbors significant numbers of high ions (O+5, N+4, and C+3) and thus helps to explain the large numbers of low-velocity high ions seen on high latitude lines of sight through the Galactic halo. We have used a series of detailed FLASH simulations in order to track the hydrodynamics of warm clouds embedded in hot Galactic halo gas. These simulations tracked the ablated material as it mixed and slowed to low velocities. By following the ionization levels of the gas in a time-dependent fashion, we determined that the mixed material is rich in O+5, N+4, and C+3 ions and continues to contain these ions for some time after slowing to low velocities. Combining our simulational results with estimates of the high velocity cloud infall rate leads to the finding that the mixed gas can account for 1/3 of the normal-velocity O+5 column density found on high latitude lines of sight. It accounts for lesser fractions of the N+4 and C+3 column densities. We will discuss our high velocity cloud results as part of a composite halo model that also includes cooling Galactic fountain gas, isolated supernova remnants, and ionizing photons.

  11. Galactic Building Blocks Seen Swarming Around Andromeda

    NASA Astrophysics Data System (ADS)

    2004-02-01

    Green Bank, WV - A team of astronomers using the National Science Foundation's Robert C. Byrd Green Bank Telescope (GBT) has made the first conclusive detection of what appear to be the leftover building blocks of galaxy formation -- neutral hydrogen clouds -- swarming around the Andromeda Galaxy, the nearest large spiral galaxy to the Milky Way. This discovery may help scientists understand the structure and evolution of the Milky Way and all spiral galaxies. It also may help explain why certain young stars in mature galaxies are surprisingly bereft of the heavy elements that their contemporaries contain. Andromeda Galaxy This image depicts several long-sought galactic "building blocks" in orbit of the Andromeda Galaxy (M31). The newfound hydrogen clouds are depicted in a shade of orange (GBT), while gas that comprises the massive hydrogen disk of Andromeda is shown at high-resolution in blue (Westerbork Sythesis Radio Telescope). CREDIT: NRAO/AUI/NSF, WSRT (Click on Image for Larger Version) "Giant galaxies, like Andromeda and our own Milky Way, are thought to form through repeated mergers with smaller galaxies and through the accretion of vast numbers of even lower mass 'clouds' -- dark objects that lack stars and even are too small to call galaxies," said David A. Thilker of the Johns Hopkins University in Baltimore, Maryland. "Theoretical studies predict that this process of galactic growth continues today, but astronomers have been unable to detect the expected low mass 'building blocks' falling into nearby galaxies, until now." Thilker's research is published in the Astrophysical Journal Letters. Other contributors include: Robert Braun of the Netherlands Foundation for Research in Astronomy; Rene A.M. Walterbos of New Mexico State University; Edvige Corbelli of the Osservatorio Astrofisico di Arcetri in Italy; Felix J. Lockman and Ronald Maddalena of the National Radio Astronomy Observatory (NRAO) in Green Bank, West Virginia; and Edward Murphy of the

  12. Global Sky Model (GSM): A Model of Diffuse Galactic Radio Emission from 10 MHz to 100 GHz

    NASA Astrophysics Data System (ADS)

    de Oliveira-Costa, Angelica; Tegmark, Max; Gaensler, B. M.; Jonas, Justin; Landecker, T. L.; Reich, Patricia

    2010-11-01

    Understanding diffuse Galactic radio emission is interesting both in its own right and for minimizing foreground contamination of cosmological measurements. Cosmic Microwave Background experiments have focused on frequencies > 10 GHz, whereas 21 cm tomography of the high redshift universe will mainly focus on < 0.2 GHz, for which less is currently known about Galactic emission. Motivated by this, we present a global sky model derived from all publicly available total power large-area radio surveys, digitized with optical character recognition when necessary and compiled into a uniform format, as well as the new Villa Elisa data extending the 1.4 GHz map to the entire sky. We quantify statistical and systematic uncertainties in these surveys by comparing them with various global multi-frequency model fits. We find that a principal component based model with only three components can fit the 11 most accurate data sets (at 10, 22, 45 & 408 MHz and 1.4, 2.3, 23, 33, 41, 61, 94 GHz) to an accuracy around 1%-10% depending on frequency and sky region. The data compilation and software returning a predicted all-sky map at any frequency from 10 MHz to 100 GHz are publicly available at the link below.

  13. The origin of the diffuse galactic IR/submm emission: Revisited after IRAS

    NASA Technical Reports Server (NTRS)

    Cox, P.; Mezger, P. G.

    1987-01-01

    Balloon observations are compared with Infrared Astronomy Satellite observations. There was good agreement for the longitudinal profiles. However, the dust emission observed by IRAS, contrary to the balloon observations which show dust emission only within the absolute value of b is equal to or less than 3 degrees, extends all the way to the galactic pole. The model fits were repeated using more recent parameters for the distribution of interstellar matter in the galactic disk and central region. The IR luminosities are derived for the revised galactic distance scale of solar radius - 8.5 Kpc. A total IR luminosity of 1.2 E10 solar luminosity is obtained, which is about one third of the estimated stellar luminosity of the Galaxy. The dust emission spectrum lambdaI(sub lambda) attains it maximum at 100 microns. A secondary maximum in the dust emission spectrum occurs at 10 microns, which contains 15% of the total IR luminosity of the Galaxy. The galactic dust emission spectrum was compared with the dust emission spectra of external IRAS galaxies. The warm dust luminosity relates to the present OB star formation rate, while flux densities observed at longer submm wavelengths are dominated by cold dust emission and thus can be used to estimate gas masses.

  14. The angular power spectrum measurement of the Galactic synchrotron emission using the TGSS survey

    NASA Astrophysics Data System (ADS)

    Choudhuri, Samir; Bharadwaj, Somnath; Ali, Sk. Saiyad; Roy, Nirupam; Intema, H. T.; Ghosh, Abhik

    2018-05-01

    Characterizing the diffuse Galactic synchrotron emission (DGSE) at arcminute angular scales is needed to remove this foregrounds in cosmological 21-cm measurements. Here, we present the angular power spectrum (Cl) measurement of the diffuse Galactic synchrotron emission using two fields observed by the TIFR GMRT Sky Survey (TGSS). We apply 2D Tapered Gridded Estimator (TGE) to estimate the Cl from the visibilities. We find that the residual data after subtracting the point sources is likely dominated by the diffuse Galactic synchrotron radiation across the angular multipole range 240 <= l <~ 500. We fit a power law to the measured Cl over this l range. We find that the slopes in both fields are consistent with earlier measurements. For the second field, however, we interpret the measured Cl as an upper limit for the DGSE as there is an indication of a significant residual point source contribution.

  15. Thermal Pressure in Diffuse H2 Gas Measured by Herschel [C II] Emission and FUSE UV H2 Absorption

    NASA Astrophysics Data System (ADS)

    Velusamy, T.; Langer, W. D.; Goldsmith, P. F.; Pineda, J. L.

    2017-04-01

    UV absorption studies with the Far Ultraviolet Spectroscopic Explorer (FUSE) satellite have made important observations of H2 molecular gas in Galactic interstellar translucent and diffuse clouds. Observations of the 158 μm [C II] fine-structure line with Herschel trace the same H2 molecular gas in emission. We present [C II] observations along 27 lines of sight (LOSs) toward target stars of which 25 have FUSE H2 UV absorption. Two stars have only HST STIS C II λ2325 absorption data. We detect [C II] 158 μm emission features in all but one target LOS. For three target LOSs that are close to the Galactic plane, | {\\text{}}b| < 1°, we also present position-velocity maps of [C II] emission observed by Herschel Heterodyne Instrument in the Far Infrared (HIFI) in on-the-fly spectral-line mapping. We use the velocity-resolved [C II] spectra observed by the HIFI instrument toward the target LOSs observed by FUSE to identify [C II] velocity components associated with the H2 clouds. We analyze the observed velocity integrated [C II] spectral-line intensities in terms of the densities and thermal pressures in the H2 gas using the H2 column densities and temperatures measured by the UV absorption data. We present the H2 gas densities and thermal pressures for 26 target LOSs and from the [C II] intensities derive a mean thermal pressure in the range of ˜6100-7700 K cm-3 in diffuse H2 clouds. We discuss the thermal pressures and densities toward 14 targets, comparing them to results obtained using the UV absorption data for two other tracers C I and CO. Our results demonstrate the richness of the far-IR [C II] spectral data which is a valuable complement to the UV H2 absorption data for studying diffuse H2 molecular clouds. While the UV absorption is restricted to the directions of the target star, far-IR [C II] line emission offers an opportunity to employ velocity-resolved spectral-line mapping capability to study in detail the clouds’ spatial and velocity structures.

  16. The Properties and Fate of the Galactic Center G2 Cloud

    NASA Astrophysics Data System (ADS)

    Shcherbakov, Roman V.

    2014-03-01

    The object G2 was recently discovered descending into the gravitational potential of the supermassive black hole (BH) Sgr A*. We test the photoionized cloud scenario, determine the cloud properties, and estimate the emission during the pericenter passage. The incident radiation is computed starting from the individual stars at the locations of G2. The radiative transfer calculations are conducted with CLOUDY code and 2011 broadband and line luminosities are fitted. The spherically symmetric, tidally distorted, and magnetically arrested cloud shapes are tested with both the interstellar medium dust and 10 nm graphite dust. The best-fitting magnetically arrested model has the initial density n init = 1.8 × 105 cm-3, initial radius R init = 2.2 × 1015 cm = 17 mas, mass m cloud = 4 M Earth, and dust relative abundance A = 0.072. It provides a good fit to 2011 data, is consistent with the luminosities in 2004 and 2008, and reaches an agreement with the observed size. We revise down the predicted radio and X-ray bow shock luminosities to be below the quiescent level of Sgr A*, which readily leads to non-detection in agreement to observations. The magnetic energy dissipation in the cloud at the pericenter coupled with more powerful irradiation may lead to an infrared source with an apparent magnitude m_{L^{\\prime }}\\approx 13.0. No shock into the cloud and no X-rays are expected from cloud squeezing by the ambient gas pressure. Larger than previously estimated cloud mass m cloud = (4-20) M Earth may produce a higher accretion rate and a brighter state of Sgr A* as the debris descend onto the BH.

  17. Peering into the heart of galactic star formation: A detailed characterization of infrared-dark clouds

    NASA Astrophysics Data System (ADS)

    Ragan, Sarah E.

    2009-09-01

    study of sub- structure in particular shows that IRDCs are undergoing fragmentation and are the precursors to star clusters, and thus we have placed IRDCs in context with Galactic star formation. The characterization presented here offers new constraints on theories of molecular cloud fragmentation and clustered star formation.

  18. The CO Transition from Diffuse Molecular Gas to Dense Clouds

    NASA Astrophysics Data System (ADS)

    Rice, Johnathan S.; Federman, Steven

    2017-06-01

    The atomic to molecular transitions occurring in diffuse interstellar gas surrounding molecular clouds are affected by the local physical conditions (density and temperature) and the radiation field penetrating the material. Our optical observations of CH, CH^{+}, and CN absorption from McDonald Observatory and the European Southern Observatory are useful tracers of this gas and provide the velocity structure needed for analyzing lower resolution ultraviolet observations of CO and H_{2} absorption from Far Ultraviolet Spectroscopic Explorer. We explore the changing environment between diffuse and dense gas by using the column densities and excitation temperatures from CO and H_{2} to determine the gas density. The resulting gas densities from this method are compared to densities inferred from other methods such as C_{2} and CN chemistry. The densities allow us to interpret the trends from the combined set of tracers. Groupings of sight lines, such as those toward h and χ Persei or Chameleon provide a chance for further characterization of the environment. The Chameleon region in particular helps illuminate CO-dark gas, which is not associated with emission from H I at 21 cm or from CO at 2.6 mm. Expanding this analysis to include emission data from the GOT C+ survey allows the further characterization of neutral diffuse gas, including CO-dark gas.

  19. Molecular clouds without detectable CO

    NASA Technical Reports Server (NTRS)

    Blitz, Leo; Bazell, David; Desert, F. Xavier

    1990-01-01

    The clouds identified by Desert, Bazell, and Boulanger (DBB clouds) in their search for high-latitude molecular clouds were observed in the CO (J = 1-0) line, but only 13 percent of the sample was detected. The remaining 87 percent are diffuse molecular clouds with CO abundances of about 10 to the -6th, a typical value for diffuse clouds. This hypothesis is shown to be consistent with Copernicus data. The DBB clouds are shown to ben an essentially complete catalog of diffuse molecular clouds in the solar vicinity. The total molecular surface density in the vicinity of the sun is then only about 20 percent greater than the 1.3 solar masses/sq pc determined by Dame et al. (1987). Analysis of the CO detections indicates that there is a sharp threshold in extinction of 0.25 mag before CO is detectable and is derived from the IRAS I(100) micron threshold of 4 MJy/sr. This threshold is presumably where the CO abundance exhibits a sharp increase

  20. Molecular clouds without detectable CO

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blitz, L.; Bazell, D.; Desert, F.X.

    1990-03-01

    The clouds identified by Desert, Bazell, and Boulanger (DBB clouds) in their search for high-latitude molecular clouds were observed in the CO (J = 1-0) line, but only 13 percent of the sample was detected. The remaining 87 percent are diffuse molecular clouds with CO abundances of about 10 to the -6th, a typical value for diffuse clouds. This hypothesis is shown to be consistent with Copernicus data. The DBB clouds are shown to be an essentially complete catalog of diffuse molecular clouds in the solar vicinity. The total molecular surface density in the vicinity of the sun is thenmore » only about 20 percent greater than the 1.3 solar masses/sq pc determined by Dame et al. (1987). Analysis of the CO detections indicates that there is a sharp threshold in extinction of 0.25 mag before CO is detectable and is derived from the IRAS I(100) micron threshold of 4 MJy/sr. This threshold is presumably where the CO abundance exhibits a sharp increase 18 refs.« less

  1. HOW GALACTIC ENVIRONMENT REGULATES STAR FORMATION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meidt, Sharon E.

    2016-02-10

    In a new simple model I reconcile two contradictory views on the factors that determine the rate at which molecular clouds form stars—internal structure versus external, environmental influences—providing a unified picture for the regulation of star formation in galaxies. In the presence of external pressure, the pressure gradient set up within a self-gravitating turbulent (isothermal) cloud leads to a non-uniform density distribution. Thus the local environment of a cloud influences its internal structure. In the simple equilibrium model, the fraction of gas at high density in the cloud interior is determined simply by the cloud surface density, which is itselfmore » inherited from the pressure in the immediate surroundings. This idea is tested using measurements of the properties of local clouds, which are found to show remarkable agreement with the simple equilibrium model. The model also naturally predicts the star formation relation observed on cloud scales and at the same time provides a mapping between this relation and the closer-to-linear molecular star formation relation measured on larger scales in galaxies. The key is that pressure regulates not only the molecular content of the ISM but also the cloud surface density. I provide a straightforward prescription for the pressure regulation of star formation that can be directly implemented in numerical models. Predictions for the dense gas fraction and star formation efficiency measured on large-scales within galaxies are also presented, establishing the basis for a new picture of star formation regulated by galactic environment.« less

  2. OT1_mputman_1: ASCII: All Sky observations of Galactic CII

    NASA Astrophysics Data System (ADS)

    Putman, M.

    2010-07-01

    The Milky Way and other galaxies require a significant source of ongoing star formation fuel to explain their star formation histories. A new ubiquitous population of discrete, cold clouds have recently been discovered at the disk-halo interface of our Galaxy that could potentially provide this source of fuel. We propose to observe a small sample of these disk-halo clouds with HIFI to determine if the level of [CII] emission detected suggests they represent the cooling of warm clouds at the interface between the star forming disk and halo. These cooling clouds are predicted by simulations of warm clouds moving into the disk-halo interface region. We target 5 clouds in this proposal for which we have high resolution HI maps and can observe the densest core of the cloud. The results of our observations will also be used to interpret the surprisingly high detections of [CII] for low HI column density clouds in the Galactic Plane by the GOT C+ Key Program by extending the clouds probed to high latitude environments.

  3. ASTE Surveys of Galactic Star-Forming Regions

    NASA Astrophysics Data System (ADS)

    Kohno, Kotaro

    2008-05-01

    We report some recent highlights on the observational studies of Galactic star formation based on surveys using the Atacama Submillimeter Telescope Experiment (ASTE), a new 10 m telescope in the Atacama desert in northern Chile (Kohno et al., 2008, ApSS, 313, 279). The highlights will include (1) a large scale CO(3-2) imaging survey of the Galactic Center, unveiling the presence of numerous compact high velocity clouds with high CO(3-2)/CO(1-0) ratios as a "fossil” of the recent burst of star formation in the Galactic Center region (Oka et al., 2007, PASJ, 59, 15; Nagai et al., 2007, PASJ, 59, 25; Tanaka et al., 2007, PASJ, 59, 323), (2) a large scale CO(3-2) imaging survey of the Sgr arm and inter-am regions, revealing the distinct difference on the morphology and physical property of molecular gas between the arm and inter-arm regions for the first time (Sawada, Koda, et al., in prep.), and (3) a wide area 1.1 mm imaging survey of Southern low mass star-forming regions such as Chamaeleon and Lupus molecular clouds using the bolometer camera AzTEC (Wilson et al., 2008, MNRAS, in press) mounted on ASTE, yielding detections of starless cores with a very low mass detection limist down to 0.1 solar masses (Hiramatsu, Tsukagoshi, Kawabe et al., in prep.). Related topics on the massive star-forming regions in very nearby galaxies such as LMC (Minamidani et al., 2008, ApJS, in press) and M 33 (Tosaki et al., 2007, ApJ, 664, L27; Onodera et al., in prep.; Komugi et al., in prep.) will also be reviewed.

  4. Searching for Galactic hidden gas through interstellar scintillation: results from a test with the NTT-SOFI detector

    NASA Astrophysics Data System (ADS)

    Habibi, F.; Moniez, M.; Ansari, R.; Rahvar, S.

    2011-01-01

    Aims: Stars twinkle because their light propagates through the atmosphere. The same phenomenon is expected at a longer time scale when the light of remote stars crosses an interstellar molecular cloud, but it has never been observed at optical wavelength. In a favorable case, the light of a background star can be subject to stochastic fluctuations on the order of a few percent at a characteristic time scale of a few minutes. Our ultimate aim is to discover or exclude these scintillation effects to estimate the contribution of molecular hydrogen to the Galactic baryonic hidden mass. This feasibility study is a pathfinder toward an observational strategy to search for scintillation, probing the sensitivity of future surveys and estimating the background level. Methods: We searched for scintillation induced by molecular gas in visible dark nebulae as well as by hypothetical halo clumpuscules of cool molecular hydrogen (H2-He) during two nights. We took long series of 10 s infrared exposures with the ESO-NTT telescope toward stellar populations located behind visible nebulae and toward the Small Magellanic Cloud (SMC). We therefore searched for stars exhibiting stochastic flux variations similar to what is expected from the scintillation effect. According to our simulations of the scintillation process, this search should allow one to detect (stochastic) transverse gradients of column density in cool Galactic molecular clouds of order of ~ 3 × 10-5 g/cm2/10 000 km. Results: We found one light-curve that is compatible with a strong scintillation effect through a turbulent structure characterized by a diffusion radius Rdiff < 100 km in the B68 nebula. Complementary observations are needed to clarify the status of this candidate, and no firm conclusion can be established from this single observation. We can also infer limits on the existence of turbulent dense cores (of number density n > 109 cm-3) within the dark nebulae. Because no candidate is found toward the SMC, we

  5. Anomalous Transport of High Energy Cosmic Rays in Galactic Superbubbles

    NASA Technical Reports Server (NTRS)

    Barghouty, Nasser F.

    2014-01-01

    High-energy cosmic rays may exhibit anomalous transport as they traverse and are accelerated by a collection of supernovae explosions in a galactic superbubble. Signatures of this anomalous transport can show up in the particles' evolution and their spectra. In a continuous-time-random- walk (CTRW) model assuming standard diffusive shock acceleration theory (DSA) for each shock encounter, and where the superbubble (an OB stars association) is idealized as a heterogeneous region of particle sources and sinks, acceleration and transport in the superbubble can be shown to be sub-diffusive. While the sub-diffusive transport can be attributed to the stochastic nature of the acceleration time according to DSA theory, the spectral break appears to be an artifact of transport in a finite medium. These CTRW simulations point to a new and intriguing phenomenon associated with the statistical nature of collective acceleration of high energy cosmic rays in galactic superbubbles.

  6. Green Bank Telescope Detection of HI Clouds in the Fermi Bubble Wind

    NASA Astrophysics Data System (ADS)

    Lockman, Felix; Di Teodoro, Enrico M.; McClure-Griffiths, Naomi M.

    2018-01-01

    We used the Robert C. Byrd Green Bank Telescope to map HI 21cm emission in two large regions around the Galactic Center in a search for HI clouds that might be entrained in the nuclear wind that created the Fermi bubbles. In a ~160 square degree region at |b|>4 deg. and |long|<10 deg we detect 106 HI clouds that have large non-circular velocities consistent with their acceleration by the nuclear wind. Rapidly moving clouds are found as far as 1.5 kpc from the center; there are no detectable asymmetries in the cloud populations above and below the Galactic Center. The cloud kinematics is modeled as a population with an outflow velocity of 330 km/s that fills a cone with an opening angle ~140 degrees. The total mass in the clouds is ~10^6 solar masses and we estimate cloud lifetimes to be between 2 and 8 Myr, implying a cold gas mass-loss rate of about 0.1 solar masses per year into the nuclear wind.The Green Bank Telescope is a facility of the National Science Foundation, operated under a cooperative agreement by Associated Universities, Inc.

  7. Hydrodynamic Simulations of the Central Molecular Zone with a Realistic Galactic Potential

    NASA Astrophysics Data System (ADS)

    Shin, Jihye; Kim, Sungsoo S.; Baba, Junichi; Saitoh, Takayuki R.; Hwang, Jeong-Sun; Chun, Kyungwon; Hozumi, Shunsuke

    2017-06-01

    We present hydrodynamic simulations of gas clouds inflowing from the disk to a few hundred parsec region of the Milky Way. A gravitational potential is generated to include realistic Galactic structures by using thousands of multipole expansions (MEs) that describe 6.4 million stellar particles of a self-consistent Galaxy simulation. We find that a hybrid ME model, with two different basis sets and a thick-disk correction, accurately reproduces the overall structures of the Milky Way. Through non-axisymmetric Galactic structures of an elongated bar and spiral arms, gas clouds in the disk inflow to the nuclear region and form a central molecular zone-like nuclear ring. We find that the size of the nuclear ring evolves into ˜ 240 {pc} at T˜ 1500 {Myr}, regardless of the initial size. For most simulation runs, the rate of gas inflow to the nuclear region is equilibrated to ˜ 0.02 {M}⊙ {{yr}}-1. The nuclear ring is off-centered, relative to the Galactic center, by the lopsided central mass distribution of the Galaxy model, and thus an asymmetric mass distribution of the nuclear ring arises accordingly. The vertical asymmetry of the Galaxy model also causes the nuclear ring to be tilted along the Galactic plane. During the first ˜100 Myr, the vertical frequency of the gas motion is twice that of the orbital frequency, thus the projected nuclear ring shows a twisted, ∞ -like shape.

  8. The interplay between star formation and the nuclear environment of our Galaxy: deep X-ray observations of the Galactic centre Arches and Quintuplet clusters

    NASA Astrophysics Data System (ADS)

    Wang, Q. Daniel; Dong, Hui; Lang, Cornelia

    2006-09-01

    The Galactic centre (GC) provides a unique laboratory for a detailed examination of the interplay between massive star formation and the nuclear environment of our Galaxy. Here, we present a 100-ks Chandra Advanced CCD Imaging Spectrometer (ACIS) observation of the Arches and Quintuplet star clusters. We also report on a complementary mapping of the dense molecular gas near the Arches cluster made with the Owens Valley Millimeter Array. We present a catalogue of 244 point-like X-ray sources detected in the observation. Their number-flux relation indicates an overpopulation of relatively bright X-ray sources, which are apparently associated with the clusters. The sources in the core of the Arches and Quintuplet clusters are most likely extreme colliding wind massive star binaries. The diffuse X-ray emission from the core of the Arches cluster has a spectrum showing a 6.7-keV emission line and a surface intensity profile declining steeply with radius, indicating an origin in a cluster wind. In the outer regions near the Arches cluster, the overall diffuse X-ray enhancement demonstrates a bow shock morphology and is prominent in the Fe Kα 6.4-keV line emission with an equivalent width of ~1.4 keV. Much of this enhancement may result from an ongoing collision between the cluster and the adjacent molecular cloud, which have a relative velocity >~120km-1. The older and less-compact Quintuplet cluster contains much weaker X-ray sources and diffuse emission, probably originating from low-mass stellar objects as well as a cluster wind. However, the overall population of these objects, constrained by the observed total diffuse X-ray luminosities, is substantially smaller than expected for both clusters, if they have normal Miller & Scalo initial mass functions. This deficiency of low-mass objects may be a manifestation of the unique star formation environment of the GC, where high-velocity cloud-cloud and cloud-cluster collisions are frequent.

  9. Adolescent Interstellar Cloud Poised to Make Star-forming Debut

    NASA Astrophysics Data System (ADS)

    2001-06-01

    Astronomers using the National Science Foundation's (NSF) 140-foot radio telescope at the National Radio Astronomy Observatory (NRAO) in Green Bank, W.Va., have discovered a highly unusual, massive interstellar cloud that appears poised to begin a burst of star formation. The cloud may be the first ever to be detected in the transition between atomic and molecular states. NRAO scientists Felix J. Lockman and Anthony H. Minter presented their findings at the American Astronomical Society meeting in Pasadena, Calif. Radio Image of G28.17+0.05 The scientists discovered the cloud, identified as G28.17+0.05, lying along the inner plane of the Milky Way Galaxy, approximately 16,300 light-years from Earth. Observations of the cloud indicate that it is near one of the Galaxy's sweeping spiral arms, which are outlined by young stars and the massive clouds that form them. Lockman and Minter speculate that as the interstellar cloud slams into the Galactic arm, the resulting shock wave may be precipitating the conversion of the neutral hydrogen atoms into heavier molecules, which could herald the onset of star formation. "These may be the first observations of a cloud that is in the transition between the neutral atomic hydrogen and molecular phases," said Lockman. "This provides astronomers a unique opportunity to study the chemistry of very young interstellar clouds, which could give us significant insights into the early stages of star formation and the structure of the Galaxy." Interstellar clouds that contain neutral atomic hydrogen, called HI (H-one) clouds, are thought of as giant, cold blobs of gas. Researchers study these objects because they offer intriguing glimpses of the composition of our Galaxy and the cosmos, and reveal much about how stars and planets are born. Hydrogen atoms in these clouds give off natural signals (at the 21-cm wavelength), which can be detected only by radio telescopes. The scientists discovered that this HI cloud was unusual in many

  10. The simulation of molecular clouds formation in the Milky Way

    NASA Astrophysics Data System (ADS)

    Khoperskov, S. A.; Vasiliev, E. O.; Sobolev, A. M.; Khoperskov, A. V.

    2013-01-01

    Using 3D hydrodynamic calculations we simulate formation of molecular clouds in the Galaxy. The simulations take into account molecular hydrogen chemical kinetics, cooling and heating processes. Comprehensive gravitational potential accounts for contributions from the stellar bulge, two- and four-armed spiral structure, stellar disc, dark halo and takes into account self-gravitation of the gaseous component. Gas clouds in our model form in the spiral arms due to shear and wiggle instabilities and turn into molecular clouds after t ≳ 100 Myr. At the times t ˜ 100-300 Myr the clouds form hierarchical structures and agglomerations with the sizes of 100 pc and greater. We analyse physical properties of the simulated clouds and find that synthetic statistical distributions like mass spectrum, `mass-size' relation and velocity dispersion are close to those observed in the Galaxy. The synthetic l-v (galactic longitude-radial velocity) diagram of the simulated molecular gas distribution resembles observed one and displays a structure with appearance similar to molecular ring of the Galaxy. Existence of this structure in our modelling can be explained by superposition of emission from the galactic bar and the spiral arms at ˜3-4 kpc.

  11. Phosphorus-bearing molecules in the Galactic Center

    NASA Astrophysics Data System (ADS)

    Rivilla, V. M.; Jiménez-Serra, I.; Zeng, S.; Martín, S.; Martín-Pintado, J.; Armijos-Abendaño, J.; Viti, S.; Aladro, R.; Riquelme, D.; Requena-Torres, M.; Quénard, D.; Fontani, F.; Beltrán, M. T.

    2018-03-01

    Phosphorus (P) is one of the essential elements for life due to its central role in biochemical processes. Recent searches have shown that P-bearing molecules (in particular PN and PO) are present in star-forming regions, although their formation routes remain poorly understood. In this letter, we report observations of PN and PO towards seven molecular clouds located in the Galactic Center, which are characterized by different types of chemistry. PN is detected in five out of seven sources, whose chemistry is thought to be shock-dominated. The two sources with PN non-detections correspond to clouds exposed to intense UV/X-rays/cosmic ray (CR) radiation. PO is detected only towards the cloud G+0.693-0.03, with a PO/PN abundance ratio of ˜1.5. We conclude that P-bearing molecules likely form in shocked gas as a result of dust grain sputtering, while are destroyed by intense UV/X-ray/CR radiation.

  12. ARCADE 2 Observations of Galactic Radio Emission

    NASA Technical Reports Server (NTRS)

    Kogut, A.; Fixsen, D. J.; Levin, S. M.; Limon, M.; Lubin, P. M.; Mirel, P.; Seiffert, M.; Singal, J.; Villela, T.; Wollack, E.; hide

    2010-01-01

    We use absolutely calibrated data from the Absolute Radiometer for Cosmology, Astrophysics, and Diffuse Emission (ARCADE 2) flight in July 2006 to model Galactic emission at frequencies 3, 8, and 10 GHz. The spatial structure in the data is consistent with a superposition of free-free and synchrotron emission. Emission with spatial morphology traced by the Haslam 408 MHz survey has spectral index beta_synch = -2.5 +/- 0.1, with free-free emission contributing 0.10 +/- 0.01 of the total Galactic plane emission in the lowest ARCADE 2 band at 3.15 GHz. We estimate the total Galactic emission toward the polar caps using either a simple plane-parallel model with csc|b| dependence or a model of high-latitude radio emission traced by the COBE/FIRAS map of CII emission. Both methods are consistent with a single power-law over the frequency range 22 MHz to 10 GHz, with total Galactic emission towards the north polar cap T_Gal = 0.498 +/- 0.028 K and spectral index beta = -2.55 +/- 0.03 at reference frequency 0.31 GHz. The well calibrated ARCADE 2 maps provide a new test for spinning dust emission, based on the integrated intensity of emission from the Galactic plane instead of cross-correlations with the thermal dust spatial morphology. The Galactic plane intensity measured by ARCADE 2 is fainter than predicted by models without spinning dust, and is consistent with spinning dust contributing 0.4 +/- 0.1 of the Galactic plane emission at 23 GHz.

  13. Properties and rotation of molecular clouds in M 33

    NASA Astrophysics Data System (ADS)

    Braine, J.; Rosolowsky, E.; Gratier, P.; Corbelli, E.; Schuster, K.-F.

    2018-04-01

    The sample of 566 molecular clouds identified in the CO(2-1) IRAM survey covering the disk of M 33 is explored in detail. The clouds were found using CPROPS and were subsequently catalogued in terms of their star-forming properties as non-star-forming (A), with embedded star formation (B), or with exposed star formation (C, e.g., presence of Hα emission). We find that the size-linewidth relation among the M 33 clouds is quite weak but, when comparing with clouds in other nearby galaxies, the linewidth scales with average metallicity. The linewidth and particularly the line brightness decrease with galactocentric distance. The large number of clouds makes it possible to calculate well-sampled cloud mass spectra and mass spectra of subsamples. As noted earlier, but considerably better defined here, the mass spectrum steepens (i.e., higher fraction of small clouds) with galactocentric distance. A new finding is that the mass spectrum of A clouds is much steeper than that of the star-forming clouds. Further dividing the sample, this difference is strong at both large and small galactocentric distances and the A vs. C difference is a stronger effect than the inner vs. outer disk difference in mass spectra. Velocity gradients are identified in the clouds using standard techniques. The gradients are weak and are dominated by prograde rotation; the effect is stronger for the high signal-to-noise clouds. A discussion of the uncertainties is presented. The angular momenta are low but compatible with at least some simulations. Finally, the cloud velocity gradients are compared with the gradient of disk rotation. The cloud and galactic gradients are similar; the cloud rotation periods are much longer than cloud lifetimes and comparable to the galactic rotation period. The rotational kinetic energy is 1-2% of the gravitational potential energy and the cloud edge velocity is well below the escape velocity, such that cloud-scale rotation probably has little influence on the

  14. Ultraviolet Survey of CO and H2 in Diffuse Molecular Clouds: The Reflection of Two Photochemistry Regimes in Abundance Relationships

    NASA Astrophysics Data System (ADS)

    Sheffer, Y.; Rogers, M.; Federman, S. R.; Abel, N. P.; Gredel, R.; Lambert, D. L.; Shaw, G.

    2008-11-01

    We carried out a comprehensive far-UV survey of 12CO and H2 column densities along diffuse molecular Galactic sight lines. This sample includes new measurements of CO from HST spectra along 62 sight lines and new measurements of H2 from FUSE data along 58 sight lines. In addition, high-resolution optical data were obtained at the McDonald and European Southern Observatories, yielding new abundances for CH, CH+, and CN along 42 sight lines to aid in interpreting the CO results. These new sight lines were selected according to detectable amounts of CO in their spectra and provide information on both lower density (<=100 cm-3) and higher density diffuse clouds. A plot of log N(CO) versus log N(H2) shows that two power-law relationships are needed for a good fit of the entire sample, with a break located at log N(CO , cm -2) = 14.1 and log N(H2) = 20.4, corresponding to a change in production route for CO in higher density gas. Similar logarithmic plots among all five diatomic molecules reveal additional examples of dual slopes in the cases of CO versus CH (break at log N = 14.1, 13.0), CH+ versus H2 (13.1, 20.3), and CH+ versus CO (13.2, 14.1). We employ both analytical and numerical chemical schemes in order to derive details of the molecular environments. In the denser gas, where C2 and CN molecules also reside, reactions involving C+ and OH are the dominant factor leading to CO formation via equilibrium chemistry. In the low-density gas, where equilibrium chemistry studies have failed to reproduce the abundance of CH+, our numerical analysis shows that nonequilibrium chemistry must be employed for correctly predicting the abundances of both CH+ and CO.

  15. Giant molecular cloud scaling relations: the role of the cloud definition

    NASA Astrophysics Data System (ADS)

    Khoperskov, S. A.; Vasiliev, E. O.; Ladeyschikov, D. A.; Sobolev, A. M.; Khoperskov, A. V.

    2016-01-01

    We investigate the physical properties of molecular clouds in disc galaxies with different morphologies: a galaxy without prominent structure, a spiral barred galaxy and a galaxy with flocculent structure. Our N-body/hydrodynamical simulations take into account non-equilibrium H2 and CO chemical kinetics, self-gravity, star formation and feedback processes. For the simulated galaxies, the scaling relations of giant molecular clouds, or so-called Larson's relations, are studied for two types of cloud definition (or extraction method): the first is based on total column density position-position (PP) data sets and the second is indicated by the CO (1-0) line emission used in position-position-velocity (PPV) data. We find that the cloud populations obtained using both cloud extraction methods generally have similar physical parameters, except that for the CO data the mass spectrum of clouds has a tail with low-mass objects M ˜ 103-104 M⊙. Owing toa varying column density threshold, the power-law indices in the scaling relations are significantly changed. In contrast, the relations are invariant to the CO brightness temperature threshold. Finally, we find that the mass spectra of clouds for PPV data are almost insensitive to the galactic morphology, whereas the spectra for PP data demonstrate significant variation.

  16. Discovery of localized TeV gamma-ray sources and diffuse TeV gamma-ray emission from the galactic plane with Milagro using a new background rejection technique

    NASA Astrophysics Data System (ADS)

    Abdo, Aws Ahmad

    2007-08-01

    Very high energy gamma-rays can be used to probe some of the most powerful astrophysical objects in the universe, such as active galactic nuclei, supernova remnants and pulsar-powered nebulae. The diffuse gamma radiation arising from the interaction of cosmic-ray particles with matter and radiation in the Galaxy is one of the few probes available to study the origin of cosmic- rays. Milagro is a water Cherenkov detector that continuously views the entire overhead sky. The large field-of-view combined with the long observation time makes Milagro the most sensitive instrument available for the study of large, low surface brightness sources such as the diffuse gamma radiation arising from interactions of cosmic radiation with interstellar matter. In this thesis I present a new background rejection technique for the Milagro detector through the development of a new gamma hadron separation variable. The Abdo variable, A 4 , coupled with the weighting analysis technique significantly improves the sensitivity of the Milagro detector. This new analysis technique resulted in the first discoveries in Milagro. Four localized sources of TeV gamma-ray emission have been discovered, three of which are in the Cygnus region of the Galaxy and one closer to the Galactic center. In addition to these localized sources, a diffuse emission of TeV gamma-rays has been discovered from the Cygnus region of the Galaxy as well. However, the TeV gamma-ray flux as measured at ~12 TeV from the Cygnus region exceeds that predicted from a conventional model of cosmic-ray production and propagation. This observation indicates the existence of either hard-spectrum cosmic-ray sources and/or other sources of TeV gamma rays in the region. Other TeV gamma-ray source candidates with post-trial statistical significances of > 4s have also been observed in the Galactic plane.

  17. Time Evolution of the Giant Molecular Cloud Mass Functions across Galactic Disks

    NASA Astrophysics Data System (ADS)

    Kobayashi, Masato I. N.; Inutsuka, Shu-Ichiro; Kobayashi, Hiroshi; Hasegawa, Kenji

    2017-01-01

    We formulate and conduct the time-integration of time evolution equation for the giant molecular cloud mass function (GMCMF) including the cloud-cloud collision (CCC) effect. Our results show that the CCC effect is only limited in the massive-end of the GMCMF and indicate that future high resolution and sensitivity radio observations may constrain giant molecular cloud (GMC) timescales by observing the GMCMF slope in the lower mass regime.

  18. Origin and Evolution of Comet Clouds

    NASA Astrophysics Data System (ADS)

    Higuchi, Arika

    2007-01-01

    The Oort cloud (comet cloud) is a spherical comet reservoir surrounding a planetary system. We have investigated the comet cloud formation that consists of two dynamical stages of orbital evolution of planetesimals due to (1) planetary perturbation, and (2) the galactic tide. We investigated the first stage by using numerical calculations and obtained the probabilities of the fates of planetesimals as functions of the orbital parameters of the planets and planetesimals. We investigated the second stage by using the secular perturbation theory and showed the evolution of the structure of a comet cloud from a planetesimal disk. We found that (1) massive planets effectively produce comet cloud candidates by scattering and (2) many planetesimals with semimajor axes larger than 1,000 AU rise up their perihelion distances to the outside of the planetary region and become members of the Oort cloud in 5 Gyr.

  19. Dust and molecules in extra-galactic planetary nebulae

    NASA Astrophysics Data System (ADS)

    Garcia-Hernandez, Domingo Aníbal

    2015-08-01

    Extra-galactic planetary nebulae (PNe) permit the study of dust and molecules in metallicity environments other than the Galaxy. Their known distances lower the number of free parameters in the observations vs. models comparison, providing strong constraints on the gas-phase and solid-state astrochemistry models. Observations of PNe in the Galaxy and other Local Group galaxies such as the Magellanic Clouds (MC) provide evidence that metallicity affects the production of dust as well as the formation of complex organic molecules and inorganic solid-state compounds in their circumstellar envelopes. In particular, the lower metallicity MC environments seem to be less favorable to dust production and the frequency of carbonaceous dust features and complex fullerene molecules is generally higher with decreasing metallicity. Here, I present an observational review of the dust and molecular content in extra-galactic PNe as compared to their higher metallicity Galactic counterparts. A special attention is given to the level of dust processing and the formation of complex organic molecules (e.g., polycyclic aromatic hydrocarbons, fullerenes, and graphene precursors) depending on metallicity.

  20. Ultrafast Outflows: Galaxy-scale Active Galactic Nucleus Feedback

    NASA Astrophysics Data System (ADS)

    Wagner, A. Y.; Umemura, M.; Bicknell, G. V.

    2013-01-01

    We show, using global three-dimensional grid-based hydrodynamical simulations, that ultrafast outflows (UFOs) from active galactic nuclei (AGNs) result in considerable feedback of energy and momentum into the interstellar medium (ISM) of the host galaxy. The AGN wind interacts strongly with the inhomogeneous, two-phase ISM consisting of dense clouds embedded in a tenuous, hot, hydrostatic medium. The outflow floods through the intercloud channels, sweeps up the hot ISM, and ablates and disperses the dense clouds. The momentum of the UFO is primarily transferred to the dense clouds via the ram pressure in the channel flow, and the wind-blown bubble evolves in the energy-driven regime. Any dependence on UFO opening angle disappears after the first interaction with obstructing clouds. On kpc scales, therefore, feedback by UFOs operates similarly to feedback by relativistic AGN jets. Negative feedback is significantly stronger if clouds are distributed spherically rather than in a disk. In the latter case, the turbulent backflow of the wind drives mass inflow toward the central black hole. Considering the common occurrence of UFOs in AGNs, they are likely to be important in the cosmological feedback cycles of galaxy formation.

  1. ULTRAFAST OUTFLOWS: GALAXY-SCALE ACTIVE GALACTIC NUCLEUS FEEDBACK

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wagner, A. Y.; Umemura, M.; Bicknell, G. V., E-mail: ayw@ccs.tsukuba.ac.jp

    We show, using global three-dimensional grid-based hydrodynamical simulations, that ultrafast outflows (UFOs) from active galactic nuclei (AGNs) result in considerable feedback of energy and momentum into the interstellar medium (ISM) of the host galaxy. The AGN wind interacts strongly with the inhomogeneous, two-phase ISM consisting of dense clouds embedded in a tenuous, hot, hydrostatic medium. The outflow floods through the intercloud channels, sweeps up the hot ISM, and ablates and disperses the dense clouds. The momentum of the UFO is primarily transferred to the dense clouds via the ram pressure in the channel flow, and the wind-blown bubble evolves inmore » the energy-driven regime. Any dependence on UFO opening angle disappears after the first interaction with obstructing clouds. On kpc scales, therefore, feedback by UFOs operates similarly to feedback by relativistic AGN jets. Negative feedback is significantly stronger if clouds are distributed spherically rather than in a disk. In the latter case, the turbulent backflow of the wind drives mass inflow toward the central black hole. Considering the common occurrence of UFOs in AGNs, they are likely to be important in the cosmological feedback cycles of galaxy formation.« less

  2. STRUCTURED MOLECULAR GAS REVEALS GALACTIC SPIRAL ARMS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sawada, Tsuyoshi; Hasegawa, Tetsuo; Koda, Jin, E-mail: sawada.tsuyoshi@nao.ac.jp

    We explore the development of structures in molecular gas in the Milky Way by applying the analysis of the brightness distribution function and the brightness distribution index (BDI) in the archival data from the Boston University-Five College Radio Astronomy Observatory {sup 13}CO J = 1-0 Galactic Ring Survey. The BDI measures the fractional contribution of spatially confined bright molecular emission over faint emission extended over large areas. This relative quantity is largely independent of the amount of molecular gas and of any conventional, pre-conceived structures, such as cores, clumps, or giant molecular clouds. The structured molecular gas traced by highermore » BDI is located continuously along the spiral arms in the Milky Way in the longitude-velocity diagram. This clearly indicates that molecular gas changes its structure as it flows through the spiral arms. Although the high-BDI gas generally coincides with H II regions, there is also some high-BDI gas with no/little signature of ongoing star formation. These results support a possible evolutionary sequence in which unstructured, diffuse gas transforms itself into a structured state on encountering the spiral arms, followed by star formation and an eventual return to the unstructured state after the spiral arm passage.« less

  3. A Diffusion Cloud Chamber Study of Very Slow Mesons. II. Beta Decay of the Muon

    DOE R&D Accomplishments Database

    Lederman, L. M.; Sargent, C. P.; Rinehart, M.; Rogers, K.

    1955-03-01

    The spectrum of electrons arising from the decay of the negative mu meson has been determined. The muons are arrested in the gas of a high pressure hydrogen filled diffusion cloud chamber. The momenta of the decay electrons are determined from their curvature in a magnetic field of 7750 gauss. The spectrum of 415 electrons has been analyzed according to the theory of Michel.

  4. Galactic cold cores. IV. Cold submillimetre sources: catalogue and statistical analysis

    NASA Astrophysics Data System (ADS)

    Montillaud, J.; Juvela, M.; Rivera-Ingraham, A.; Malinen, J.; Pelkonen, V.-M.; Ristorcelli, I.; Montier, L.; Marshall, D. J.; Marton, G.; Pagani, L.; Toth, L. V.; Zahorecz, S.; Ysard, N.; McGehee, P.; Paladini, R.; Falgarone, E.; Bernard, J.-P.; Motte, F.; Zavagno, A.; Doi, Y.

    2015-12-01

    Context. For the project Galactic cold cores, Herschel photometric observations were carried out as a follow-up of cold regions of interstellar clouds previously identified with the Planck satellite. The aim of the project is to derive the physical properties of the population of cold sources and to study its connection to ongoing and future star formation. Aims: We build a catalogue of cold sources within the clouds in 116 fields observed with the Herschel PACS and SPIRE instruments. We wish to determine the general physical characteristics of the cold sources and to examine the correlations with their host cloud properties. Methods: From Herschel data, we computed colour temperature and column density maps of the fields. We estimated the distance to the target clouds and provide both uncertainties and reliability flags for the distances. The getsources multiwavelength source extraction algorithm was employed to build a catalogue of several thousand cold sources. Mid-infrared data were used, along with colour and position criteria, to separate starless and protostellar sources. We also propose another classification method based on submillimetre temperature profiles. We analysed the statistical distributions of the physical properties of the source samples. Results: We provide a catalogue of ~4000 cold sources within or near star forming clouds, most of which are located either in nearby molecular complexes (≲1 kpc) or in star forming regions of the nearby galactic arms (~2 kpc). About 70% of the sources have a size compatible with an individual core, and 35% of those sources are likely to be gravitationally bound. Significant statistical differences in physical properties are found between starless and protostellar sources, in column density versus dust temperature, mass versus size, and mass versus dust temperature diagrams. The core mass functions are very similar to those previously reported for other regions. On statistical grounds we find that

  5. The Bolocam Galactic Plane Survey

    NASA Technical Reports Server (NTRS)

    Glenn, Jason; Aguirre, James; Bally, John; Battersby, Cara; Bradley, Eric Todd; Cyganowski, Claudia; Dowell, Darren; Drosback, Meredith; Dunham, Miranda K.; Evans, Neal J., II; hide

    2009-01-01

    The Bolocam Galactic Plane Survey (BGPS) is a 1.1 millimeter continuum survey of the northern Galactic Plane made with Bolocam and the Caltech Submillimeter Observatory. The coverage totals 170 square degrees, comprised of a contiguous range from -10.5 deg is less than or equal to 90.5 deg, 0.5 deg is less than or equal to b is less than or equal to 0.5 deg, with extended coverage in b in selected regions, and four targeted regions in the outer Galaxy, including: IC1396, toward the Perseus arm at l is approximately 111 deg, W3/4/5, and Gem OB1. Depths of the maps range from 30 to 60 mJy beam (sup 1). Approximately 8,400 sources were detected and the maps and source catalog have been made publicly available. Millimeter-wave thermal dust emission reveals dense regions within molecular clouds, thus the BGPS serves as a database for studies of the dense interstellar medium and star formation within the Milky Way.

  6. GSFC Contributions to the NATO X-ray Astronomy Institute, Erice, July 1979. [X-ray spectra of supernova remants, galactic X-ray sources, active galactic nuclei, and clusters of galaxies

    NASA Technical Reports Server (NTRS)

    Holt, S. S.; Mushotzky, R. F.

    1979-01-01

    An overview of X-ray astronomical spectroscopy in general is presented and results obtained by HEAO 1 and 2 as well as earlier spacecraft are examined. Particular emphasis is given to the spectra of supernova remnants; galactic binary X-ray sources, cataclysmic variables, bulges, pulsars, and stars; the active nuclei of Seyfert 1 galaxy, BL Lac, and quasars; the diffuse X-ray background; and galactic clusters.

  7. MEASUREMENTS OF THE MEAN DIFFUSE GALACTIC LIGHT SPECTRUM IN THE 0.95–1.65 μm BAND FROM CIBER

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arai, T.; Matsuura, S.; Sano, K.

    2015-06-10

    We report measurements of the diffuse galactic light (DGL) spectrum in the near-infrared, spanning the wavelength range 0.95–1.65 μm by the Cosmic Infrared Background ExpeRiment. Using the low-resolution spectrometer calibrated for absolute spectro-photometry, we acquired long-slit spectral images of the total diffuse sky brightness toward six high-latitude fields spread over four sounding rocket flights. To separate the DGL spectrum from the total sky brightness, we correlated the spectral images with a 100 μm intensity map, which traces the dust column density in optically thin regions. The measured DGL spectrum shows no resolved features and is consistent with other DGL measurementsmore » in the optical and at near-infrared wavelengths longer than 1.8 μm. Our result implies that the continuum is consistently reproduced by models of scattered starlight in the Rayleigh scattering regime with a few large grains.« less

  8. Modification of the continuous flow diffusion chamber for use in zero-gravity. [atmospheric cloud physics lab

    NASA Technical Reports Server (NTRS)

    Keyser, G.

    1978-01-01

    The design philosophy and performance characteristics of the continuous flow diffusion chamber developed for use in ground-based simulation of some of the experiments planned for the atmospheric cloud physics laboratory during the first Spacelab flight are discussed. Topics covered include principle of operation, thermal control, temperature measurement, tem-powered heat exchangers, wettable metal surfaces, sample injection system, and control electronics.

  9. Discovery of a Vast Ionized Gas Cloud in the M51 System

    NASA Astrophysics Data System (ADS)

    Watkins, Aaron E.; Mihos, J. Christopher; Bershady, Matthew; Harding, Paul

    2018-05-01

    We present the discovery of a vast cloud of ionized gas (hereafter, the Cloud) 13‧ (32 kpc) north of the interacting system M51. We detected this cloud via deep narrowband imaging with the Burrell Schmidt Telescope, where it appears as an extended, diffuse Hα-emitting feature with no embedded compact regions. The Cloud spans ∼10‧ × 3‧ (25 × 7.5 kpc) in size and has no stellar counterpart; comparisons with our previous deep broadband imaging show no detected continuum light to a limit of μ lim,B ∼ 30 mag arcsec‑2. WIYN SparsePak observations confirm the Cloud’s kinematic association with M51, and the high [N II]/Hα, [S II]/Hα, and [O I]/Hα line ratios that we measure imply a hard ionization source such as active galactic nuclei (AGN) photoionization or shock heating rather than photoionization due to young stars. Given the strong [N II] emission, we infer roughly solar metallicity for the Cloud, ruling out an origin due to infall of primordial gas. Instead, we favor models where the gas has been expelled from the inner regions of the M51 system due to tidal stripping or starburst/AGN winds and has been subsequently ionized either by shocks or a fading AGN. This latter scenario raises the intriguing possibility that M51 may be the nearest example of an AGN fossil nebula or light echo, akin to the famous “Hanny’s Voorwerp” in the IC 2497 system.

  10. The physics and chemistry of small molecular clouds in the galactic plane. 3: NH3

    NASA Astrophysics Data System (ADS)

    Turner, B. E.

    1995-05-01

    We have made extensive observations of the (1, 1) and (2, 2) lines of NH3 in all 27 of the Clemens-Barvainis small molecular clouds for which several structural models including hydrostatic equilibrium polytropes were developed in an earlier paper based on CO-18 and (13)CO observations. As with the 11 cirrus cores earlier studied in CO-18, (13)CO, H2CO, and NH3, the NH3 lines in CB objects are well fitted by both polytropic models and ad hoc n is approximately 1/r models, using the external UV fields derived in the earlier papers. The reanalysis of the cirrus cores, which now includes the C-12/C-13 ratio as a variable, yields the same NH3 fractional abundances as the earlier analysis, and reaffirms a strong preference for centrally condensed abundance profiles. The same preference is found, but somewhat less decisively, for the CB objects. As before, the NH3 analyses give no clear preference for polytropic or 1/r structures. The large central NH3 abundances (0.4-3.2 x10-8 for cirrus cores; a factor 1.8 times smaller for CB objects) are much too large is these translucent objects to be explained by the standard gas-phase reaction N(+) + H2 approaches NH(+), but may be explained by the reaction N + H3(+) approaches NH2(+) provided it has no activation barrier. Various arguments are advanced against photcatalysis of NH3 on grains. By including consistently the effects of UV radiation fields and electron excitation, our models have now fitted accurately all four lines of CO-18 and (13)CO, three lines of H2CO, and two lines of NH3 so far observed. With the possible exception of the (average) NH3 abundances, the CB objects and cirrus cores are indistinguishable physically or chemically, and the properties we have found for them seem to represent the conditions in all small, low-mass moleculra clouds regardless of galactic latitude.

  11. C II forbidden-line 158 micron mapping in Sagittarius A Rotation curve and mass distribution in the galactic center

    NASA Technical Reports Server (NTRS)

    Lugten, J. B.; Genzel, R.; Crawford, M. K.; Townes, C. H.

    1986-01-01

    Based on data obtained with the NASA Kuiper Airborne Observatory 91.4 cm telescope, the 158-micron fine structure line emission of C(+) is mapped near the galactic center. The strongest emission comes from a 10-pc FWHM diameter disk centered on Sgr A West whose dominant motion is rotation. Extended C(+) emission is also found from the +50 km/s galactic center molecular cloud, and a second cloud at v(LSR) of about -35 km/s. The rotation curve and mass distribution within 10 pc of the galactic center are derived, and the C(+) profiles show a drop-off of rotation velocity between 2 and 10 pc. A mass model is suggested with 2-4 million solar masses in a central point mass, and a M/L ratio of the central stellar cluster of 0.5 solar masses/solar luminosities, suggesting a large abundance of giants and relatively recent star formation in the center.

  12. Herschel HIFI GOT C+ Survey: CII, HI, and CO Emissions in a Sample of Transition Clouds and Star-Forming regions in the Inner Galaxy

    NASA Astrophysics Data System (ADS)

    Pineda, Jorge; Velusamy, Thangasamy; Langer, William D.; Goldsmith, Paul; Li, Di; Yorke, Harold

    The GOT C+ a HIFI Herschel Key Project, studies the diffuse ISM throughout the Galactic Plane, using C+ as cloud tracer. The C+ line at 1.9 THz traces a so-far poorly studied stage in ISM cloud evolution -the transitional clouds going from atomic HI to molecular H2. This transition cloud phase, which is difficult to observe in HI and CO alone, may be best characterized via CII emission or absorption. The C+ line is also an excellent tracer of the warm diffuse gas and the warm, dense gas in the Photon Dominated Regions (PDRs). We can, therefore, use the CII emission as a probe to understand the effects of star formation on their interstellar environment. We present our first results on the transition between dense and hot gas (traced by CII) and dense and cold gas (traced by 12CO and 13CO) along a few representative lines of sight in the inner Galaxy from longitude 325 degrees to 25 degrees, taken during the HIFI Priority Science Phase. Comparisons of the high spectral resolution ( 1 km/s) HIFI data on C+ with HI, 12CO, and 13CO spectra allow us to separate out the different ISM components along each line of sight. Our results provide detailed information about the transition of diffuse atomic to molecular gas clouds needed to understand star formation and the lifecycle of the interstellar gas. These observations are being carried out with the Herschel Space Observatory, which is an ESA cornerstone mission, with contributions from NASA. This research was conducted at the Jet Propulsion Laboratory, California Institute of Technology under contract with the National Aeronautics and Space Administration. JLP was supported under the NASA Postdoctoral Program at JPL, Caltech, administered by Oak Ridge Associated Universities through a contract with NASA, and is currently supported as a Caltech-JPL Postdoctoral associate.

  13. Optical-NIR dust extinction towards Galactic O stars

    NASA Astrophysics Data System (ADS)

    Maíz Apellániz, J.; Barbá, R. H.

    2018-05-01

    Context. O stars are excellent tracers of the intervening ISM because of their high luminosity, blue intrinsic SED, and relatively featureless spectra. We are currently conducting the Galactic O-Star Spectroscopic Survey (GOSSS), which is generating a large sample of O stars with accurate spectral types within several kpc of the Sun. Aims: We aim to obtain a global picture of the properties of dust extinction in the solar neighborhood based on optical-NIR photometry of O stars with accurate spectral types. Methods: We have processed a carefully selected photometric set with the CHORIZOS code to measure the amount [E(4405 - 5495)] and type [R5495] of extinction towards 562 O-type stellar systems. We have tested three different families of extinction laws and analyzed our results with the help of additional archival data. Results: The Maíz Apellániz et al. (2014, A&A, 564, A63) family of extinction laws provides a better description of Galactic dust that either the Cardelli et al. (1989, ApJ, 345, 245) or Fitzpatrick (1999, PASP, 111, 63) families, so it should be preferentially used when analysing samples similar to the one in this paper. In many cases O stars and late-type stars experience similar amounts of extinction at similar distances but some O stars are located close to the molecular clouds left over from their births and have larger extinctions than the average for nearby late-type populations. In qualitative terms, O stars experience a more diverse extinction than late-type stars, as some are affected by the small-grain-size, low-R5495 effect of molecular clouds and others by the large-grain-size, high-R5495 effect of H II regions. Late-type stars experience a narrower range of grain sizes or R5495, as their extinction is predominantly caused by the average, diffuse ISM. We propose that the reason for the existence of large-grain-size, high-R5495 regions in the ISM in the form of H II regions and hot-gas bubbles is the selective destruction of small dust

  14. Identification Code of Interstellar Cloud within IRAF

    NASA Astrophysics Data System (ADS)

    Lee, Youngung; Jung, Jae Hoon; Kim, Hyun-Goo

    1997-12-01

    We present a code which identifies individual clouds in crowded region using IMFORT interface within Image Reduction and Analysis Facility(IRAF). We define a cloud as an object composed of all pixels in longitude, latitude, and velocity that are simply connected and that lie above some threshold temperature. The code searches the whole pixels of the data cube in efficient way to isolate individual clouds. Along with identification of clouds it is designed to estimate their mean values of longitudes, latitudes, and velocities. In addition, a function of generating individual images(or cube data) of identified clouds is added up. We also present identified individual clouds using a 12CO survey data cube of Galactic Anticenter Region(Lee et al. 1997) as a test example. We used a threshold temperature of 5 sigma rms noise level of the data. With a higher threshold temperature, we isolated subclouds of a huge cloud identified originally. As the most important parameter to identify clouds is the threshold value, its effect to the size and velocity dispersion is discussed rigorously.

  15. Herschel Survey of Galactic OH+, H2O+, and H3O+: Probing the Molecular Hydrogen Fraction and Cosmic-Ray Ionization Rate

    NASA Astrophysics Data System (ADS)

    Indriolo, Nick; Neufeld, D. A.; Gerin, M.; Schilke, P.; Benz, A. O.; Winkel, B.; Menten, K. M.; Chambers, E. T.; Black, John H.; Bruderer, S.; Falgarone, E.; Godard, B.; Goicoechea, J. R.; Gupta, H.; Lis, D. C.; Ossenkopf, V.; Persson, C. M.; Sonnentrucker, P.; van der Tak, F. F. S.; van Dishoeck, E. F.; Wolfire, Mark G.; Wyrowski, F.

    2015-02-01

    In diffuse interstellar clouds the chemistry that leads to the formation of the oxygen-bearing ions OH+, H2O+, and H3O+ begins with the ionization of atomic hydrogen by cosmic rays, and continues through subsequent hydrogen abstraction reactions involving H2. Given these reaction pathways, the observed abundances of these molecules are useful in constraining both the total cosmic-ray ionization rate of atomic hydrogen (ζH) and molecular hydrogen fraction (f_H_2). We present observations targeting transitions of OH+, H2O+, and H3O+ made with the Herschel Space Observatory along 20 Galactic sight lines toward bright submillimeter continuum sources. Both OH+ and H2O+ are detected in absorption in multiple velocity components along every sight line, but H3O+ is only detected along 7 sight lines. From the molecular abundances we compute f_H_2 in multiple distinct components along each line of sight, and find a Gaussian distribution with mean and standard deviation 0.042 ± 0.018. This confirms previous findings that OH+ and H2O+ primarily reside in gas with low H2 fractions. We also infer ζH throughout our sample, and find a lognormal distribution with mean log (ζH) = -15.75 (ζH = 1.78 × 10-16 s-1) and standard deviation 0.29 for gas within the Galactic disk, but outside of the Galactic center. This is in good agreement with the mean and distribution of cosmic-ray ionization rates previously inferred from H_3^+ observations. Ionization rates in the Galactic center tend to be 10-100 times larger than found in the Galactic disk, also in accord with prior studies. Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA.

  16. Diffuse gamma radiation

    NASA Technical Reports Server (NTRS)

    Fichtel, C. E.; Simpson, G. A.; Thompson, D. J.

    1977-01-01

    An examination of the intensity, energy spectrum, and spatial distribution of the diffuse gamma-radiation observed by SAS-2 satellite away from the galactic plane in the energy range above 35 MeV has shown that it consists of two components. One component is generally correlated with galactic latitudes, the atomic hydrogen column density was deduced from 21 cm measurements, and the continuum radio emission, believed to be synchrotron emission. It has an energy spectrum similar to that in the plane and joins smoothly to the intense radiation from the plane. It is therefore presumed to be of galactic origin. The other component is apparently isotropic, at least on a coarse scale, and has a steep energy spectrum. No evidence is found for a cosmic ray halo surrounding the galaxy in the shape of a sphere or oblate spheroid with galactic dimensions. Constraints for a halo model with significantly larger dimensions are set on the basis of an upper limit to the gamma-ray anisotropy.

  17. Chemistry in Magnetohydrodynamic Shock Waves in Diffuse Molecular Clouds

    NASA Astrophysics Data System (ADS)

    Peimbert, Antonio

    1998-09-01

    Absorption observations of the CH+ molecule with column densities of up to 1014 cm-2 in diffuse molecular clouds in many lines of sight are reviewed, and compared to the reddening and to abundances and velocity shifts of molecules like CH. Special attention is placed on the observations of the line of sight towards ς Ophiuchi where high quality observations of many chemical species are available. The problem of the required CH+ is described, and many formation mechanisms from the literature are reviewed, finding that none of them is particularly apt at describing the observations towards ς-Oph. Two fluid J-type shock models are studied as an alternative. The necessary conditions for their formation are discussed, and it is shown how they are expected to be present widely in the interstellar medium. Plane parallel numerical integrations, for the particular case in which the magnetic field is perpendicular to the shock velocity, are employed to study the region of phase-space of initial conditions that will produce 2 fluid shocks. A chemical network is developed and formation of key molecules like CH+, CH and OH, along with the excited roto-vibrational levels of H2, are studied under the shock dynamics. These models are then compared to the observations of the different lines of sight, showing they are capable of reproducing the features of the observations towards most of those clouds. An attempt to model the line of sight towards ς-Oph is done, finding that a shock with a shock speed vs = 9.0km/s going through a cloud with a density of nH = 14cm-3 with a magnetic field of B = 4.7μG does a reasonable job at satisfying most of the observations with the exception of the highest rotational excited states of molecular hydrogen for which observations are available. There is a small family of solutions capable of explaining the observed results which make specific predictions for the velocity profiles of the H2 lines of various excited levels. New observations with

  18. The Origin of Filamentary Star Forming Clouds in Magnetised Galaxies

    NASA Astrophysics Data System (ADS)

    Körtgen, Bastian; Banerjee, Robi; Pudritz, Ralph E.; Schmidt, Wolfram

    2018-05-01

    Observations show that galaxies and their interstellar media are pervaded by strong magnetic fields with energies in the diffuse component being at least comparable to the thermal and even as large or larger than the turbulent energy. Such strong magnetic fields prevent the formation of stars because patches of the interstellar medium are magnetically subcritical. Here we present the results from global numerical simulations of strongly magnetised and self-gravitating galactic discs, which show that the buoyancy of the magnetic field due to the Parker instability leads at first to the formation of giant filamentary regions. These filamentary structures become gravitationally unstable and fragment into ˜105M⊙ clouds that attract kpc long, coherent filamentary flows that build them into GMCs. Our results thus provide a solution to the long-standing problem of how the transition from sub- to supercritical regions in the interstellar medium proceeds.

  19. Calibrating the HISA temperature: Measuring the temperature of the Riegel-Crutcher cloud

    NASA Astrophysics Data System (ADS)

    Dénes, H.; McClure-Griffiths, N. M.; Dickey, J. M.; Dawson, J. R.; Murray, C. E.

    2018-06-01

    H I self absorption (HISA) clouds are clumps of cold neutral hydrogen (H I) visible in front of warm background gas, which makes them ideal places to study the properties of the cold atomic component of the interstellar medium (ISM). The Riegel-Crutcher (R-C) cloud is the most striking HISA feature in the Galaxy. It is one of the closest HISA clouds to us and is located in the direction of the Galactic Centre, which provides a bright background. High-resolution interferometric measurements have revealed the filamentary structure of this cloud, however it is difficult to accurately determine the temperature and the density of the gas without optical depth measurements. In this paper we present new H I absorption observations with the Australia Telescope Compact Array (ATCA) against 46 continuum sources behind the Riegel-Crutcher cloud to directly measure the optical depth of the cloud. We decompose the complex H I absorption spectra into Gaussian components using an automated machine learning algorithm. We find 300 Gaussian components, from which 67 are associated with the R-C cloud (0 < vLSR < 10 km s-1, FWHM <10 km s-1). Combining the new H I absorption data with H I emission data from previous surveys we calculate the spin temperature and find it to be between 20 and 80 K. Our measurements uncover a temperature gradient across the cloud with spin temperatures decreasing towards positive Galactic latitudes. We also find three new OH absorption lines associated with the cloud, which support the presence of molecular gas.

  20. Distribution of Si II in the Galactic center

    NASA Technical Reports Server (NTRS)

    Graf, P.; Herter, T.; Gull, G. E.; Houck, J. R.

    1988-01-01

    A map of the Galactic center region in the forbidden Si II 34.8-micron line is presented. The line emission arises from within the photodissociation region (PDR) associated with the neutral gas ring surrounding an ionized gas core confined within 2 pc of the Galactic center. Si II is a useful probe of the inner regions of the ring since it is always optically thin. The Si II data, when analyzed in conjunction with O I, C II, and molecular measurements, outlines the transition region between the PDR and the surrounding molecular cloud. The Si II emission is found to extend beyond that of the O II into the neutral gas ring. Although the interpretation is not unique, the data are consistent with a constant gas-phase abundance of silicon within the inner part of the PDR while the gaseous silicon is depleted by molecule formation in the transition region.

  1. HEAO 1 measurements of the galactic ridge

    NASA Technical Reports Server (NTRS)

    Worrall, D. M.; Marshall, F. E.; Boldt, E. A.; Swank, J. H.

    1981-01-01

    The HEAO A2 experiment data was systematically searched for unresolved galactic disc emission. Although there were suggestions of non-uniformities in the emission, the data were consistent with a disc of half-thickness 241 + 22 pc and surface emissivity (2-10 keV) at galactic radius R(kpc) of 2.2 10 to the minus 7th power exp(-R/3.5) erg/sq cm to the (-2)power/s (R 7.8 kpc). giving a luminosity of approximately 4.4 10 to the 37th power erg S to the (-1) power. If the model is extrapolated to radii less than 7.8 kpc, the unresolved disc emission is approximately 1.4 10 to the 38th power erg S to the (-1) power (2-10 keV) i.e., a few percent of the luminosity of the galaxy in resolved sources. the disc emission has a spectrum which is significantly softer than that of the high galactic latitude diffuse X-ray background and it is most probably of discrete source origin.

  2. Vertical Shear of the Galactic Interstellar Medium

    NASA Technical Reports Server (NTRS)

    Benjamin, Robert A.

    2000-01-01

    The detection of UV absorption, 21 cm, H alpha and other diffuse optical emission lines from gas up to ten kiloparsecs above the plane of the Milky Way and other galaxies provides the first, opportunity to probe the rotational properties of the ionized "atmospheres" of galaxies. This rotation has implications for our understanding of the Galactic gravitational potential, angular momentum transport in the Galactic disk, and the maintenance of a Galactic dynamo. The available evidence indicates that gas rotates nearly cylindrically up to a few kiloparsecs. This is in contrast to the expectation that there should be a significant gradient in rotation speed as a function of height assuming a reasonable mass model for the Galaxy. For example, for a vertical cut at galactocentric radius R = 5 kpc in NGC 891 by Rand, the rotation speed is observed to drop by approximately 30 kilometers per second from z = 1 to 5 kpc and is expected to drop by 80 kilometers per second. Magnetic tension forces may resolve this discrepancy. Other possibilities will be examined in the near future.

  3. DUST IN ACTIVE GALACTIC NUCLEI: ANOMALOUS SILICATE TO OPTICAL EXTINCTION RATIOS?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lyu, Jianwei; Hao, Lei; Li, Aigen, E-mail: haol@shao.ac.cn

    Dust plays a central role in the unification theory of active galactic nuclei (AGNs). However, little is known about the nature (e.g., size, composition) of the dust that forms a torus around the AGN. In this Letter, we report a systematic exploration of the optical extinction (A{sub V} ) and the silicate absorption optical depth (Δτ{sub 9.7}) of 110 type 2 AGNs. We derive A{sub V} from the Balmer decrement based on the Sloan Digital Sky Survey data, and Δτ{sub 9.7} from the Spitzer/InfraRed Spectrograph data. We find that with a mean ratio of (A{sub V} /Δτ{sub 9.7}) ≲ 5.5, themore » optical-to-silicate extinction ratios of these AGNs are substantially lower than that of the Galactic diffuse interstellar medium (ISM) for which A{sub V} /Δτ{sub 9.7} ≈ 18.5. We argue that the anomalously low A{sub V} /Δτ{sub 9.7} ratio could be due to the predominance of larger grains in the AGN torus compared to that in the Galactic diffuse ISM.« less

  4. Exploring the Galactic Cosmic Rays at the lowest energies

    NASA Astrophysics Data System (ADS)

    Shapiro, M. M.

    2001-08-01

    The solar wind prevents the lowest-energy Galactic cosmic rays (GCR) from entering the Heliosphere. Consequently, space probes have thus far been unable to sample them. We suggest that astrochemistry may provide a handle on these particles. Clouds in the interstellar medium (ISM) are sites of chemical-reaction networks that produce various molecular species detectable by their radioastronomical signatures. Highly ionizing low-energy cosmic rays are thought to be the principal agents of molecule production in clouds. Some anomalous abundances, e.g., of deuterium molecules, have been detected. Could studies of the foregoing networks of reactions and their products yield clues to the fluxes and energy spectra of the lowest-energy GCR in the ISM? Other approaches to this problem are also cited.

  5. The Properties of Planck Galactic Cold Clumps in the L1495 Dark Cloud

    NASA Astrophysics Data System (ADS)

    Tang, Mengyao; Liu, Tie; Qin, Sheng-Li; Kim, Kee-Tae; Wu, Yuefang; Tatematsu, Ken’ichi; Yuan, Jinghua; Wang, Ke; Parsons, Harriet; Koch, Patrick M.; Sanhueza, Patricio; Ward-Thompson, D.; Tóth, L. Viktor; Soam, Archana; Lee, Chang Won; Eden, David; Di Francesco, James; Rawlings, Jonathan; Rawlings, Mark G.; Montillaud, Julien; Zhang, Chuan-Peng; Cunningham, M. R.

    2018-04-01

    Planck Galactic Cold Clumps (PGCCs) possibly represent the early stages of star formation. To understand better the properties of PGCCs, we studied 16 PGCCs in the L1495 cloud with molecular lines and continuum data from Herschel, JCMT/SCUBA-2, and the PMO 13.7 m telescope. Thirty dense cores were identified in 16 PGCCs from 2D Gaussian fitting. The dense cores have dust temperatures of T d = 11–14 K, and H2 column densities of {N}{{{H}}2} = (0.36–2.5) × 1022 cm‑2. We found that not all PGCCs contain prestellar objects. In general, the dense cores in PGCCs are usually at their earliest evolutionary stages. All the dense cores have non-thermal velocity dispersions larger than the thermal velocity dispersions from molecular line data, suggesting that the dense cores may be turbulence-dominated. We have calculated the virial parameter α and found that 14 of the dense cores have α <2, while 16 of the dense cores have α >2. This suggests that some of the dense cores are not bound in the absence of external pressure and magnetic fields. The column density profiles of dense cores were fitted. The sizes of the flat regions and core radii decrease with the evolution of dense cores. CO depletion was found to occur in all the dense cores, but is more significant in prestellar core candidates than in protostellar or starless cores. The protostellar cores inside the PGCCs are still at a very early evolutionary stage, sharing similar physical and chemical properties with the prestellar core candidates.

  6. Precombination Cloud Collapse and Baryonic Dark Matter

    NASA Technical Reports Server (NTRS)

    Hogan, Craig J.

    1993-01-01

    A simple spherical model of dense baryon clouds in the hot big bang 'strongly nonlinear primordial isocurvature baryon fluctuations' is reviewed and used to describe the dependence of cloud behavior on the model parameters, baryon mass, and initial over-density. Gravitational collapse of clouds before and during recombination is considered including radiation diffusion and trapping, remnant type and mass, and effects on linear large-scale fluctuation modes. Sufficiently dense clouds collapse early into black holes with a minimum mass of approx. 1 solar mass, which behave dynamically like collisionless cold dark matter. Clouds below a critical over-density, however, delay collapse until recombination, remaining until then dynamically coupled to the radiation like ordinary diffuse baryons, and possibly producing remnants of other kinds and lower mass. The mean density in either type of baryonic remnant is unconstrained by observed element abundances. However, mixed or unmixed spatial variations in abundance may survive in the diffuse baryon and produce observable departures from standard predictions.

  7. Spitzer Digs Up Galactic Fossil

    NASA Image and Video Library

    2004-10-12

    This false-color image taken by NASA Spitzer Space Telescope shows a globular cluster previously hidden in the dusty plane of our Milky Way galaxy. Globular clusters are compact bundles of old stars that date back to the birth of our galaxy, 13 or so billion years ago. Astronomers use these galactic "fossils" as tools for studying the age and formation of the Milky Way. Most clusters orbit around the center of the galaxy well above its dust-enshrouded disc, or plane, while making brief, repeated passes through the plane that each last about a million years. Spitzer, with infrared eyes that can see into the dusty galactic plane, first spotted the newfound cluster during its current pass. A visible-light image (inset of Figure 1) shows only a dark patch of sky. The red streak behind the core of the cluster is a dust cloud, which may indicate the cluster's interaction with the Milky Way. Alternatively, this cloud may lie coincidentally along Spitzer's line of sight. Follow-up observations with the University of Wyoming Infrared Observatory helped set the distance of the new cluster at about 9,000 light-years from Earth - closer than most clusters - and set the mass at the equivalent of 300,000 Suns. The cluster's apparent size, as viewed from Earth, is comparable to a grain of rice held at arm's length. It is located in the constellation Aquila. Astronomers believe that this cluster may be one of the last in our galaxy to be uncovered. This image composite was taken on April 21, 2004, by Spitzer's infrared array camera. It is composed of images obtained at four wavelengths: 3.6 microns (blue), 4.5 microns (green), 5.8 microns (orange) and 8 microns (red). http://photojournal.jpl.nasa.gov/catalog/PIA06928

  8. Centrosymmetric molecules as possible carriers of diffuse interstellar bands

    NASA Astrophysics Data System (ADS)

    Kaźmierczak, M.; Schmidt, M. R.; Galazutdinov, G. A.; Musaev, F. A.; Betelesky, Y.; Krełowski, J.

    2010-11-01

    In this paper, we present new data with interstellar C2 (Phillips bands A 1 Πu-X1 Σ+g), from observations made with the Ultraviolet-Visual Echelle Spectrograph of the European Southern Observatory. We have determined the interstellar column densities and excitation temperatures of C2 for nine Galactic lines. For seven of these, C2 has never been observed before, so in this case the still small sample of interstellar clouds (26 lines of sight), where a detailed analysis of C2 excitation has been made, has increased significantly. This paper is a continuation of previous works where interstellar molecules (C2 and diffuse interstellar bands) have been analysed. Because the sample of interstellar clouds with C2 has increased, we can show that the width and shape of the profiles of some diffuse interstellar bands (6196 and 5797 Å) apparently depend on the gas kinetic and rotational temperatures of C2; the profiles are broader because of the higher values of the gas kinetic and rotational temperatures of C2. There are also diffuse interstellar bands (4964 and 5850 Å) for which this effect does not exist. Based on observations made with ESO telescopes at the Paranal Observatory under programme IDs 266.D-5655(A), 67.C-0281(A), 71.C-0513(C), 67.D-0439(A) and 082.C-0566(A) and at La Silla under programme IDs 078.C-0403(A), 076.C-0164(A) and 073.C-0337(A). Also based on observations made with the 1.8-m telescope in South Korea and the 2-m telescope at the International Centre for Astronomical and Medico-Ecological Research, Terskol, Russia. E-mail: kazmierczak@astri.uni.torun.pl (MK); schmidt@ncac.torun.pl (MRS); runizag@gmail.com (GAG); ybialets@eso.org (YB); jacek@astri.uni.torun.pl (JK)

  9. Peltier-based cloud chamber

    NASA Astrophysics Data System (ADS)

    Nar, Sevda Yeliz; Cakir, Altan

    2018-02-01

    Particles produced by nuclear decay, cosmic radiation and reactions can be identified through various methods. One of these methods that has been effective in the last century is the cloud chamber. The chamber makes visible cosmic particles that we are exposed to radiation per second. Diffusion cloud chamber is a kind of cloud chamber that is cooled by dry ice. This traditional model has some application difficulties. In this work, Peltier-based cloud chamber cooled by thermoelectric modules is studied. The new model provided uniformly cooled base of the chamber, moreover, it has longer lifetime than the traditional chamber in terms of observation time. This gain has reduced the costs which spent each time for cosmic particle observation. The chamber is an easy-to-use system according to traditional diffusion cloud chamber. The new model is portable, easier to make, and can be used in the nuclear physics experiments. In addition, it would be very useful to observe Muons which are the direct evidence for Lorentz contraction and time expansion predicted by Einsteins special relativity principle.

  10. Galactic Cosmic-ray Transport in the Global Heliosphere: A Four-Dimensional Stochastic Model

    NASA Astrophysics Data System (ADS)

    Florinski, V.

    2009-04-01

    We study galactic cosmic-ray transport in the outer heliosphere and heliosheath using a newly developed transport model based on stochastic integration of the phase-space trajectories of Parker's equation. The model employs backward integration of the diffusion-convection transport equation using Ito calculus and is four-dimensional in space+momentum. We apply the model to the problem of galactic proton transport in the heliosphere during a negative solar minimum. Model results are compared with the Voyager measurements of galactic proton radial gradients and spectra in the heliosheath. We show that the heliosheath is not as efficient in diverting cosmic rays during solar minima as predicted by earlier two-dimensional models.

  11. Hα line measurements from ten diffuse galactic sources using the DEFPOS facility

    NASA Astrophysics Data System (ADS)

    Sahan, M.; Oflaz, F. M.; Yegingil, I.; Tel, E.

    2015-08-01

    The hydrogen Balmer-α emission line spectrum of ten diffuse ionization sources in the Milk Way - NGC 40 (WC8), NGC 2022, NGC 6210, NGC 6618 (M17, Sh2-45), NGC 6720 (M57), NGC 6781, NGC 6888 (Sh2-105), NGC 6992 (Sh2-103), NGC 7635 (Sh2-162,) and IC 1848 (Sh2-199) - has been investigated using a dual etalon Fabry-Pérot optical spectrometer (DEFPOS) aatached to the 150 cm RTT150 telescope at TUBITAK National Observatory (TUG, Antalya, Turkey: 36° 51' N; 30° 20' E; elevation: 2547 m). All of our galactic Hα observations discussed in this paper were carried out during the nights of 2013 June 21-24 with exposure time of 3600 s. As main results the intensity, the full width at half maximum, and the radial velocity with respect to the LSR have been determined for each data set. The intensities, the radial velocities, and the line widths of the Hα emission line vary from 59.15 to 8923.44 R, -46.72 to +54.07 km s-1, and 31.4 to 48.01 km s-1, respectively. The radial velocities and the half-widths of the H II regions and planetary nebulae determined from our measurements are found to be consistent with values given in literature, especially with those in Schneider et al. (1983) and Fich et al. (1990).

  12. Chemical Complexity in Local Diffuse and Translucent Clouds: Ubiquitous Linear C3H and CH3CN, a Detection of HC3N and an Upper Limit on the Abundance of CH2CN

    NASA Astrophysics Data System (ADS)

    Liszt, Harvey; Gerin, Maryvonne; Beasley, Anthony; Pety, Jerome

    2018-04-01

    We present Jansky Very Large Array observations of 20–37 GHz absorption lines from nearby Galactic diffuse molecular gas seen against four cosmologically distant compact radio continuum sources. The main new observational results are that l-C3H and CH3CN are ubiqitous in the local diffuse molecular interstellar medium at {\\text{}}{A}{{V}} ≲ 1, while HC3N was seen only toward B0415 at {\\text{}}{A}{{V}} > 4 mag. The linear/cyclic ratio is much larger in C3H than in C3H2 and the ratio CH3CN/HCN is enhanced compared to TMC-1, although not as much as toward the Horsehead Nebula. More consequentially, this work completes a long-term program assessing the abundances of small hydrocarbons (CH, C2H, linear and cyclic C3H and C3 {{{H}}}2, and C4H and C4H‑) and the CN-bearing species (CN, HCN, HNC, HC3N, HC5N, and CH3CN): their systematics in diffuse molecular gas are presented in detail here. We also observed but did not strongly constrain the abundances of a few oxygen-bearing species, most prominently HNCO. We set limits on the column density of CH2CN, such that the anion CH2CN‑ is only viable as a carrier of diffuse interstellar bands if the N(CH2CN)/N(CH2CN‑) abundance ratio is much smaller in this species than in any others for which the anion has been observed. We argue that complex organic molecules (COMS) are not present in clouds meeting a reasonable definition of diffuse molecular gas, i.e., {\\text{}}{A}{{V}} ≲ 1 mag. Based on observations obtained with the NRAO Jansky Very Large Array (VLA).

  13. GRAVITATIONAL CONTRACTION VERSUS SUPERNOVA DRIVING AND THE ORIGIN OF THE VELOCITY DISPERSION–SIZE RELATION IN MOLECULAR CLOUDS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ibáñez-Mejía, Juan C.; Mac Low, Mordecai-Mark; Klessen, Ralf S.

    Molecular cloud (MC) observations show that clouds have non-thermal velocity dispersions that scale with the cloud size as σ ∝ R {sup 1/2} at a constant surface density, and for varying surface density scale with both the cloud’s size and surface density, σ {sup 2} ∝ R Σ. The energy source driving these chaotic motions remains poorly understood. We describe the velocity dispersions observed in a cloud population formed in a numerical simulation of a magnetized, stratified, supernova (SN)-driven, interstellar medium, including diffuse heating and radiative cooling, before and after we include the effects of the self-gravity of the gas.more » We compare the relationships between velocity dispersion, size, and surface density measured in the simulated cloud population to those found in observations of Galactic MCs. Our simulations prior to the onset of self-gravity suggest that external SN explosions alone do not drive turbulent motions of the observed magnitudes within dense clouds. On the other hand, self-gravity induces non-thermal motions as gravitationally bound clouds begin to collapse in our model, approaching the observed relations between velocity dispersion, size, and surface density. Energy conservation suggests that the observed behavior is consistent with the kinetic energy being proportional to the gravitational energy. However, the clouds in our model show no sign of reaching a stable equilibrium state at any time, even for strongly magnetized clouds. We conclude that gravitationally bound MCs are always in a state of gravitational contraction and their properties are a natural result of this chaotic collapse. In order to agree with observed star formation efficiencies, this process must be terminated by the early destruction of the clouds, presumably from internal stellar feedback.« less

  14. The Behavior of Selected Diffuse Interstellar Bands with Molecular Fraction in Diffuse Atomic and Molecular Clouds

    NASA Astrophysics Data System (ADS)

    Fan, Haoyu; Welty, Daniel E.; York, Donald G.; Sonnentrucker, Paule; Dahlstrom, Julie A.; Baskes, Noah; Friedman, Scott D.; Hobbs, Lewis M.; Jiang, Zihao; Rachford, Brian; Snow, Theodore P.; Sherman, Reid; Zhao, Gang

    2017-12-01

    We study the behavior of eight diffuse interstellar bands (DIBs) in different interstellar environments, as characterized by the fraction of hydrogen in molecular form (f H2), with comparisons to the corresponding behavior of various known atomic and molecular species. The equivalent widths of the five “normal” DIBs (λλ5780.5, 5797.1, 6196.0, 6283.8, and 6613.6), normalized to E B-V , show a “lambda-shaped” behavior: they increase at low f H2, peak at f H2 ˜ 0.3, and then decrease. The similarly normalized column densities of Ca, Ca+, Ti+, and CH+ also decline for f H2 > 0.3. In contrast, the normalized column densities of Na, K, CH, CN, and CO increase monotonically with f H2, and the trends exhibited by the three C2 DIBs (λλ4726.8, 4963.9, and 4984.8) lie between those two general behaviors. These trends with f H2 are accompanied by cosmic scatter, the dispersion at any given f H2 being significantly larger than the individual errors of measurement. The lambda-shaped trends suggest the balance between creation and destruction of the DIB carriers differs dramatically between diffuse atomic and diffuse molecular clouds; additional processes aside from ionization and shielding are needed to explain those observed trends. Except for several special cases, the highest W λ (5780)/W λ (5797) ratios, characterizing the so-called “sigma-zeta effect,” occur only at f H2 < 0.2. We propose a sequence of DIBs based on trends in their pair-wise strength ratios with increasing f H2. In order of increasing environmental density, we find the λ6283.8 and λ5780.5 DIBs, the λ6196.0 DIB, the λ6613.6 DIB, the λ5797.1 DIB, and the C2 DIBs.

  15. Newly Discovered Clouds Found Floating High Above Milky Way

    NASA Astrophysics Data System (ADS)

    2002-10-01

    GREEN BANK, WV -- New studies with the National Science Foundation's Robert C. Byrd Green Bank Telescope (GBT) have revealed a previously unknown population of discrete hydrogen clouds in the gaseous halo that surrounds the Milky Way Galaxy. These clouds were discovered in the transition zone between the Milky Way and intergalactic space, and provide tantalizing evidence that supernova-powered "galactic fountains" continually blast superheated hydrogen gas into our Galactic suburbs. Hydrogen Clouds Graphic Artist's Rendering of the Milky Way (background) with insert showing GBT image of newly-discovered clouds of Hydrogen gas above the plane of the Galaxy. Credit: Kirk Woellert/National Science Foundation. Extending far above the star-filled disk of the Milky Way is an atmosphere, or halo, of hydrogen gas. "By studying this halo, we can learn a great deal about the processes that are going on inside our Galaxy as well as beyond its borders," said Jay Lockman, an astronomer with the National Radio Astronomy Observatory (NRAO) in Green Bank, West Virginia. "It has remained a mystery, however, how this halo formed and what has prevented gravitational forces from collapsing the gas into a thin layer long ago." Some astronomers have speculated that this gas is distributed as a diffuse mist held up by either magnetic fields or cosmic rays streaming out of the plane of the Milky Way. Others believed that it is made of innumerable long-lived hydrogen clouds bobbing up and down like balls tossed by a juggler. Early observations with other telescopes discovered that there was some neutral hydrogen gas floating far above the Galaxy's plane, but these instruments were not sensitive enough to reveal any structure or resolve questions about its origin. Lockman's studies for the first time show a clear picture of the structure of the gas. Rather than a mist, the halo is in fact full of discrete clouds, each containing 50-to-100 solar masses of hydrogen and averaging about 100

  16. A Detailed Analysis of the Physical Conditions in the Infrared Dark Clouds in the Region IGGC 16/23

    NASA Astrophysics Data System (ADS)

    Scibelli, Samantha; Tolls, Volker

    2017-01-01

    There is an ongoing debate about why the star formation rate is low in the Galactic Center and Galactic Bar region of the Milky Way. Clump 2 is located at a distance of ~400 pc from the Galactic Center in the Galactic Bar region near the edge of the Central Molecular Zone (CMZ). Molecular clouds in this region are too distant to be influenced by the central black hole. However, despite of its location, Clump 2 is comprised of molecular clouds that show the same low star formation rate as those in the Galactic Center. Using Herschel PACS and SPIRE and APEX dust continuum emission data, our measurements indicate that cores in the IGGC 16/23 region have dust masses and densities comparable to those of more typical star-forming molecular clouds in the solar neighborhood. In addition, we analyzed Herschel HIFI high-J 12CO emission line observations supplemented by MOPRA molecular line observations. We find that the IGGC 16/23 region is composed of many smaller cores with different systemic velocities in the same line of sight advocating that additional analysis should be done to provide better constraints on the core sizes and masses to confirm that the core masses are below their virial masses and, thus, are not collapsing.The SAO REU program is funded in part by the National Science Foundation REU and Department of Defense ASSURE programs under NSF Grant no. 1262851, and by the Smithsonian Institution.

  17. Analyzing γ rays of the Galactic Center with deep learning

    NASA Astrophysics Data System (ADS)

    Caron, Sascha; Gómez-Vargas, Germán A.; Hendriks, Luc; Ruiz de Austri, Roberto

    2018-05-01

    We present the application of convolutional neural networks to a particular problem in gamma ray astronomy. Explicitly, we use this method to investigate the origin of an excess emission of GeV γ rays in the direction of the Galactic Center, reported by several groups by analyzing Fermi-LAT data. Interpretations of this excess include γ rays created by the annihilation of dark matter particles and γ rays originating from a collection of unresolved point sources, such as millisecond pulsars. We train and test convolutional neural networks with simulated Fermi-LAT images based on point and diffuse emission models of the Galactic Center tuned to measured γ ray data. Our new method allows precise measurements of the contribution and properties of an unresolved population of γ ray point sources in the interstellar diffuse emission model. The current model predicts the fraction of unresolved point sources with an error of up to 10% and this is expected to decrease with future work.

  18. 3D AMR hydrosimulations of a compact source scenario for the Galactic Centre cloud G2

    NASA Astrophysics Data System (ADS)

    Ballone, A.; Schartmann, M.; Burkert, A.; Gillessen, S.; Plewa, P. M.; Genzel, R.; Pfuhl, O.; Eisenhauer, F.; Habibi, M.; Ott, T.; George, E. M.

    2018-06-01

    The nature of the gaseous and dusty cloud G2 in the Galactic Centre is still under debate. We present three-dimensional hydrodynamical adaptive mesh refinement (AMR) simulations of G2, modeled as an outflow from a "compact source" moving on the observed orbit. The construction of mock position-velocity (PV) diagrams enables a direct comparison with observations and allow us to conclude that the observational properties of the gaseous component of G2 could be matched by a massive (\\dot{M}_w=5× 10^{-7} M_{⊙} yr^{-1}) and slow (50 km s-1) outflow, as observed for T Tauri stars. In order for this to be true, only the material at larger (>100 AU) distances from the source must be actually emitting, otherwise G2 would appear too compact compared to the observed PV diagrams. On the other hand, the presence of a central dusty source might be able to explain the compactness of G2's dust component. In the present scenario, 5-10 years after pericentre the compact source should decouple from the previously ejected material, due to the hydrodynamic interaction of the latter with the surrounding hot and dense atmosphere. In this case, a new outflow should form, ahead of the previous one, which would be the smoking gun evidence for an outflow scenario.

  19. On the origin of the Orion and Monoceros molecular cloud complexes

    NASA Technical Reports Server (NTRS)

    Franco, J.; Tenorio-Tagle, G.; Bodenheimer, P.; Rozyczka, M.; Mirabel, I. F.

    1988-01-01

    A detailed model for the origin of the Orion and Monoceros cloud complexes is presented, showing that a single high-velocity H I cloud-galaxy collision can explain their main observed features. The collision generates massive shocked layers, and self-gravity can then provide the conditions for the transformation of these layers into molecular clouds. The clouds formed by the collision maintain the motion of their parental shocked gas and reach positions located far away from the plane. According to this model, both the Orion and Monoceros complexes were formed some 60 million yr ago, when the original shocked layer was fragmented by Galactic tidal forces.

  20. Near-infrared reddening of extra-galactic giant molecular clouds in a face-on geometry

    NASA Astrophysics Data System (ADS)

    Kainulainen, J.; Juvela, M.; Alves, J.

    2008-04-01

    is recovered, if the observed color excess values are transformed to masses using the Galactic reddening law. In the case of individual clouds, the fraction can vary between ~0...50%.

  1. OSSOS. V. Diffusion in the Orbit of a High-perihelion Distant Solar System Object

    NASA Astrophysics Data System (ADS)

    Bannister, Michele T.; Shankman, Cory; Volk, Kathryn; Chen, Ying-Tung; Kaib, Nathan; Gladman, Brett J.; Jakubik, Marian; Kavelaars, J. J.; Fraser, Wesley C.; Schwamb, Megan E.; Petit, Jean-Marc; Wang, Shiang-Yu; Gwyn, Stephen D. J.; Alexandersen, Mike; Pike, Rosemary E.

    2017-06-01

    We report the discovery of the minor planet 2013 SY99 on an exceptionally distant, highly eccentric orbit. With a perihelion of 50.0 au, 2013 SY99’s orbit has a semimajor axis of 730 ± 40 au, the largest known for a high-perihelion trans-Neptunian object (TNO), and well beyond those of (90377) Sedna and 2012 VP113. Yet, with an aphelion of 1420 ± 90 au, 2013 SY99’s orbit is interior to the region influenced by Galactic tides. Such TNOs are not thought to be produced in the current known planetary architecture of the solar system, and they have informed the recent debate on the existence of a distant giant planet. Photometry from the Canada-France-Hawaii Telescope, Gemini North, and Subaru indicate 2013 SY99 is ˜250 km in diameter and moderately red in color, similar to other dynamically excited TNOs. Our dynamical simulations show that Neptune’s weak influence during 2013 SY99’s perihelia encounters drives diffusion in its semimajor axis of hundreds of astronomical units over 4 Gyr. The overall symmetry of random walks in the semimajor axis allows diffusion to populate 2013 SY99’s orbital parameter space from the 1000 to 2000 au inner fringe of the Oort cloud. Diffusion affects other known TNOs on orbits with perihelia of 45 to 49 au and semimajor axes beyond 250 au. This provides a formation mechanism that implies an extended population, gently cycling into and returning from the inner fringe of the Oort cloud.

  2. Constraints on the Cosmic-Ray Density Gradient beyond the Solar Circle from Fermi γ-ray Observations of the Third Galactic Quadrant

    DOE PAGES

    Ackermann, M.; Ajello, M.; Baldini, L.; ...

    2010-12-17

    Here,we report an analysis of the interstellar γ-ray emission in the third Galactic quadrant measured by the Fermi Large Area Telescope. The window encompassing the Galactic plane from longitude 210° to 250° has kinematically well-defined segments of the Local and the Perseus arms, suitable to study the cosmic-ray (CR) densities across the outer Galaxy. We measure no large gradient with Galactocentric distance of the γ-ray emissivities per interstellar H atom over the regions sampled in this study. The gradient depends, however, on the optical depth correction applied to derive the H I column densities. No significant variations are found inmore » the interstellar spectra in the outer Galaxy, indicating similar shapes of the CR spectrum up to the Perseus arm for particles with GeV to tens of GeV energies. The emissivity as a function of Galactocentric radius does not show a large enhancement in the spiral arms with respect to the interarm region. The measured emissivity gradient is flatter than expectations based on a CR propagation model using the radial distribution of supernova remnants and uniform diffusion properties. In this context, observations require a larger halo size and/or a flatter CR source distribution than usually assumed. The molecular mass calibrating ratio, X CO = N(H 2)/W CO, is found to be (2.08 ± 0.11) × 10 20 cm -2(K km s –1) –1 in the Local arm clouds and is not significantly sensitive to the choice of H I spin temperature. No significant variations are found for clouds in the interarm region.« less

  3. ALMA Reveals Molecular Cloud N55 in the Large Magellanic Cloud as a Site of Massive Star Formation

    NASA Astrophysics Data System (ADS)

    Naslim, N.; Tokuda, K.; Onishi, T.; Kemper, F.; Wong, T.; Morata, O.; Takada, S.; Harada, R.; Kawamura, A.; Saigo, K.; Indebetouw, R.; Madden, S. C.; Hony, S.; Meixner, M.

    2018-02-01

    We present the molecular cloud properties of N55 in the Large Magellanic Cloud using 12CO(1–0) and 13CO(1–0) observations obtained with Atacama Large Millimeter Array. We have done a detailed study of molecular gas properties, to understand how the cloud properties of N55 differ from Galactic clouds. Most CO emission appears clumpy in N55, and molecular cores that have young stellar objects (YSOs) show larger linewidths and masses. The massive clumps are associated with high and intermediate mass YSOs. The clump masses are determined by local thermodynamic equilibrium and virial analysis of the 12CO and 13CO emissions. These mass estimates lead to the conclusion that (a) the clumps are in self-gravitational virial equilibrium, and (b) the 12CO(1–0)-to-H2 conversion factor, {X}{CO}, is 6.5 × 1020 cm‑2 (K km s‑1)‑1. This CO-to-H2 conversion factor for N55 clumps is measured at a spatial scale of ∼0.67 pc, which is about two times higher than the {X}{CO} value of the Orion cloud at a similar spatial scale. The core mass function of N55 clearly show a turnover below 200 {M}ȯ , separating the low-mass end from the high-mass end. The low-mass end of the 12CO mass spectrum is fitted with a power law of index 0.5 ± 0.1, while for 13CO it is fitted with a power law index 0.6 ± 0.2. In the high-mass end, the core mass spectrum is fitted with a power index of 2.0 ± 0.3 for 12CO, and with 2.5 ± 0.4 for 13CO. This power law behavior of the core mass function in N55 is consistent with many Galactic clouds.

  4. High-Velocity Clouds in M 83 and M 51

    NASA Astrophysics Data System (ADS)

    Miller, E. D.; Bregman, J. N.

    2005-06-01

    Various scenarios have been proposed to explain the origin of the Galactic high-velocity clouds, predicting different distances and implying widely varying properties for the Galaxy's gaseous halo. To eliminate the difficulties of studying the Galactic halo from within, we have embarked on a program to study anomalous neutral gas in external galaxies, and here we present the results for two nearby, face-on spiral galaxies, M 83 and M 51. Significant amounts of anomalous-velocity H I are detected in deep VLA 21-cm observations, including an extended, slowly rotating disk and several discrete H I clouds. Our detection algorithm reaches a limiting H I source mass of 7×105 M⊙, and it allows for detailed statistical analysis of the false detection rate. We use this to place limits on the HVC mass distributions in these galaxies and the Milky Way; if the HVC populations are similar, then the Galacto-centric HVC distances must be less than about 25 kpc.

  5. Warm and Diffuse Gas and High Ionization Rate Near the Galactic Center

    NASA Astrophysics Data System (ADS)

    Oka, T.; Morong, C. P.; Geballe, T. R.; Indriolo, N.; McCall, B. J.; Goto, M.; Usuda, T.

    2011-06-01

    Using 12 newly found bright dust-embedded stars distributed from 140 pc West to 120 pc East of Sgr A*, we have observed spectra of H_3^+ and CO in the Central Molecular Zone of the Galactic center. Sightlines toward the 12 stars have been observed at the Gemini South Observatory on Cerro Pachon, Chile, and those for 2 of the stars at the Subaru Telescope on Mauna Kea Hawaii. This has extended our previous longitudinal coverage by a factor of 7. Although complete coverage of various transitions have yet to be made for some stars, almost all sightlines showed high total column densities of H_3^+ and highly populated (J, K) = (3, 3) metastable level, demonstrating the prevalence of the warm and diffuse gas previously observed from the center to 30 pc East and high ionization rate in the environment. A few sightlines did not show strong H_3^+ absorptions. It remains to be seen whether this is due to the radial and transverse location of the stars or lack of H_3^+. While the velocity profiles of H_3^+ toward stars from the center to 30 pc East are similar apart from subtle variations, the velocity profiles of the wider regions vary greatly ^a. A remarkable similarity has been noted between the velocity profile of H_3^+ toward a star nicknamed Iota and those of H_2O^+ and 13CH^+ observed toward Sgr B2 by the HIFI instrument of the Herschel Space Observatory. Although all these ions exist in diffuse environment, this is surprising since H_3^+ favors environments with high H_2 fraction f(H_2) while H_2O^+ and CH^+ favors low f(H_2). Also the peak of Sgr B2 and Iota are separated by 17 pc. Possible interpretations of this will be discussed. T. R. Geballe and T. Oka, ApJ, 709, L70 (2010). M. Goto, T. Usuda, T. R. Geballe, N. Indriolo, B. J. McCall, Th. Henning, and T. Oka, PASJ (2011) in press. P. Schilke, et al., A&A, 521, L11 (2010). E. Falgarone, private communication

  6. Complex organic molecules in the Galactic Centre: the N-bearing family

    NASA Astrophysics Data System (ADS)

    Zeng, S.; Jiménez-Serra, I.; Rivilla, V. M.; Martín, S.; Martín-Pintado, J.; Requena-Torres, M. A.; Armijos-Abendaño, J.; Riquelme, D.; Aladro, R.

    2018-05-01

    We present an unbiased spectral line survey toward the Galactic Centre (GC) quiescent giant molecular cloud (QGMC), G+0.693 using the GBT and IRAM 30 telescopes. Our study highlights an extremely rich organic inventory of abundant amounts of nitrogen (N)-bearing species in a source without signatures of star formation. We report the detection of 17 N-bearing species in this source, of which 8 are complex organic molecules (COMs). A comparison of the derived abundances relative to H2 is made across various galactic and extragalactic environments. We conclude that the unique chemistry in this source is likely to be dominated by low-velocity shocks with X-rays/cosmic rays also playing an important role in the chemistry. Like previous findings obtained for O-bearing molecules, our results for N-bearing species suggest a more efficient hydrogenation of these species on dust grains in G+0.693 than in hot cores in the Galactic disk, as a consequence of the low dust temperatures coupled with energetic processing by X-ray/cosmic ray radiation in the GC.

  7. Modulation of low-energy galactic electrons in the heliosphere

    NASA Astrophysics Data System (ADS)

    Sibusiso Nkosi, Godfrey; Potgieter, Marius; Nndanganeni, Rendanie

    The modulation of cosmic ray electrons in the heliosphere assists in improving our understand-ing and assessment of the diffusion tensor applicable to low-energy electrons from the inner to the outer heliosphere, in particular inside the heliosheath. A three-dimensional (3D) numerical model based on Parker's transport equation is used to study the modulation of 10 MeV galac-tic electrons. The emphasis is placed on the role that perpendicular diffusion plays in causing the observed extraordinary increase in the intensity of these electrons in the heliosheath. The model is compared to observations from the Voyager mission and conclusions are made about the role of the perpendicular diffusion in the heliosphere.

  8. Survey of the galactic disk from 1 = -150 deg to 1 = 82 deg in the submillimeter range

    NASA Technical Reports Server (NTRS)

    Caux, Emmanuel; Serra, Guy

    1987-01-01

    The first almost complete survey of the galactic disk from 1 = -150 deg to 1 = 82 deg in the submillimeter range (effective wavelength = 380 microns), performed with the AGLAE balloon-borne instrument modified to include a submillimeter channel, is reported. The instrumentation and observational procedures are described, as are the signal processing and calibration. The results are presented as a profile of the submillimeter brightness of the galactic disk displayed as a function of the galactic longitude. This profile exhibits diffuse emission all along the disk with bright peaks associated with resolved sources. The averaged galactic spectrum is in agreement with a temperature distribution of the interstellar cold dust.

  9. Chemistry and Evolution of Interstellar Clouds

    NASA Technical Reports Server (NTRS)

    Wooden, D. H.; Charnley, S. B.; Ehrenfreund, P.

    2003-01-01

    In this chapter we describe how elements have been and are still being formed in the galaxy and how they are transformed into the reservoir of materials present at the time of formation of our protosolar nebula. We discuss the global cycle of matter, beginning at its formation site in stars, where it is ejected through winds and explosions into the diffuse interstellar medium. In the next stage of the global cycle occurs in cold, dense molecular clouds, where the complexity of molecules and ices increases relative to the diffuse ISM.. When a protostar forms in a dense core within a molecular cloud, it heats the surrounding infalling matter warms and releases molecules from the solid phase into the gas phase in a warm, dense core, sponsoring a rich gas-phase chemistry. Some material from the cold and warm regions within molecular clouds probably survives as interstellar matter in the protostellar disk. For the diffuse ISM, for cold, dense clouds, and for dense-warm cores, the physio-chemical processes that occur within the gas and solid phases are discussed in detail.

  10. Ubiquitous Argonium, ArH^+, in the Diffuse Interstellar Medium

    NASA Astrophysics Data System (ADS)

    Schilke, P.; Müller, Holger S. P.; Comito, C.; Sanchez-Monge, A.; Neufeld, D. A.; Indriolo, Nick; Bergin, Edwin; Lis, D. C.; Gerin, Maryvonne; Black, J. H.; Wolfire, M. G.; Pearson, John; Menten, Karl; Winkel, B.

    2014-06-01

    ArH^+ is isoelectronic with HCl. The J = 1 - 0 and 2 - 1 transitions of 36ArH^+ near 617.5 and 1234.6 GHz, respectively, have been identified very recently as emission lines in spectra obtained with Herschel toward the Crab Nebula supernova remnant. On Earth, 40Ar is by far the most abundant isotope, being almost exclusively formed by the radioactive decay of 40K. However, 36Ar is the dominant isotope in the Universe. In the course of unbiased line surveys of the massive and very luminous Galactic Center star-forming regions Sagittarius B2(M) and (N) with the high-resolution instrument HIFI on board of Herschel, we detected the J = 1 - 0 transition of 36ArH^+ as a moderately strong absorption line initially associated with an unidentified carrier. In both cases, the absorption feature is unique in its appearance at all velocity components associated with diffuse foreground molecular clouds, together with its conspicuous absence at velocities related to the denser sources themselves. Model calculations are able to reproduce the derived ArH^+ column densities and suggest that argonium resides in the largely atomic, diffuse interstellar medium with a molecular fraction of no more than ˜10-4. The 38ArH^+ isotopolog was also detected. Subsequent observations toward the continuum sources W51, W49, W31C, and G34.3+0.1 resulted in unequivocal detections of 36ArH^+ absorption. Hence, argonium is a good probe of the transition zone between atomic and molecular gas, in particular in combination with OH^+ and H_2O^+, whose abundances peak at a molecular fraction of ˜0.1. Moreover, argonium is a good indicator of an enhanced cosmic ray ionization rate. Therefore, it may be prominent toward, e.g., active galactic nuclei (AGNs) in addition to supernova remnants. M. J. Barlow et al., Science 342 (2013) 1343. H. S. P. Müller et al., Proceedings of the IAU Symposium 297, 2013, "The Diffuse Interstellar Bands", Eds. J. Cami & N. Cox.

  11. STAR FORMATION IN DISK GALAXIES. III. DOES STELLAR FEEDBACK RESULT IN CLOUD DEATH?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tasker, Elizabeth J.; Wadsley, James; Pudritz, Ralph

    2015-03-01

    Stellar feedback, star formation, and gravitational interactions are major controlling forces in the evolution of giant molecular clouds (GMCs). To explore their relative roles, we examine the properties and evolution of GMCs forming in an isolated galactic disk simulation that includes both localized thermal feedback and photoelectric heating. The results are compared with the three previous simulations in this series, which consists of a model with no star formation, star formation but no form of feedback, and star formation with photoelectric heating in a set with steadily increasing physical effects. We find that the addition of localized thermal feedback greatlymore » suppresses star formation but does not destroy the surrounding GMC, giving cloud properties closely resembling the run in which no stellar physics is included. The outflows from the feedback reduce the mass of the cloud but do not destroy it, allowing the cloud to survive its stellar children. This suggests that weak thermal feedback such as the lower bound expected for a supernova may play a relatively minor role in the galactic structure of quiescent Milky-Way-type galaxies, compared to gravitational interactions and disk shear.« less

  12. Fresh clouds: A parameterized updraft method for calculating cloud densities in one-dimensional models

    NASA Astrophysics Data System (ADS)

    Wong, Michael H.; Atreya, Sushil K.; Kuhn, William R.; Romani, Paul N.; Mihalka, Kristen M.

    2015-01-01

    Models of cloud condensation under thermodynamic equilibrium in planetary atmospheres are useful for several reasons. These equilibrium cloud condensation models (ECCMs) calculate the wet adiabatic lapse rate, determine saturation-limited mixing ratios of condensing species, calculate the stabilizing effect of latent heat release and molecular weight stratification, and locate cloud base levels. Many ECCMs trace their heritage to Lewis (Lewis, J.S. [1969]. Icarus 10, 365-378) and Weidenschilling and Lewis (Weidenschilling, S.J., Lewis, J.S. [1973]. Icarus 20, 465-476). Calculation of atmospheric structure and gas mixing ratios are correct in these models. We resolve errors affecting the cloud density calculation in these models by first calculating a cloud density rate: the change in cloud density with updraft length scale. The updraft length scale parameterizes the strength of the cloud-forming updraft, and converts the cloud density rate from the ECCM into cloud density. The method is validated by comparison with terrestrial cloud data. Our parameterized updraft method gives a first-order prediction of cloud densities in a “fresh” cloud, where condensation is the dominant microphysical process. Older evolved clouds may be better approximated by another 1-D method, the diffusive-precipitative Ackerman and Marley (Ackerman, A.S., Marley, M.S. [2001]. Astrophys. J. 556, 872-884) model, which represents a steady-state equilibrium between precipitation and condensation of vapor delivered by turbulent diffusion. We re-evaluate observed cloud densities in the Galileo Probe entry site (Ragent, B. et al. [1998]. J. Geophys. Res. 103, 22891-22910), and show that the upper and lower observed clouds at ∼0.5 and ∼3 bars are consistent with weak (cirrus-like) updrafts under conditions of saturated ammonia and water vapor, respectively. The densest observed cloud, near 1.3 bar, requires unexpectedly strong updraft conditions, or higher cloud density rates. The cloud

  13. The Spectrum of Isotropic Diffuse Gamma-Ray Emission Between 100 Mev and 820 Gev

    NASA Technical Reports Server (NTRS)

    Ackermann, M.; Ajello, M.; Albert, A.; Atwood, W. B.; Baldini, L.; Ballet, J.; Barbiellini, G.; Bastieri, D.; Brandt, T. J.; Hays, E.; hide

    2014-01-01

    The gamma-ray sky can be decomposed into individually detected sources, diffuse emission attributed to the interactions of Galactic cosmic rays with gas and radiation fields, and a residual all-sky emission component commonly called the isotropic diffuse gamma-ray background (IGRB). The IGRB comprises all extragalactic emissions too faint or too diffuse to be resolved in a given survey, as well as any residual Galactic foregrounds that are approximately isotropic. The first IGRB measurement with the Large Area Telescope (LAT) on board the Fermi Gamma-ray Space Telescope (Fermi) used 10 months of sky-survey data and considered an energy range between 200 MeV and 100 GeV. Improvements in event selection and characterization of cosmic-ray backgrounds, better understanding of the diffuse Galactic emission, and a longer data accumulation of 50 months, allow for a refinement and extension of the IGRB measurement with the LAT, now covering the energy range from 100 MeV to 820 GeV. The IGRB spectrum shows a significant high-energy cutoff feature, and can be well described over nearly four decades in energy by a power law with exponential cutoff having a spectral index of 2.32 plus or minus 0.02 and a break energy of (279 plus or minus 52) GeV using our baseline diffuse Galactic emission model. The total intensity attributed to the IGRB is (7.2 plus or minus 0.6) x 10(exp -6) cm(exp -2) s(exp -1) sr(exp -1) above 100 MeV, with an additional +15%/-30% systematic uncertainty due to the Galactic diffuse foregrounds.

  14. Galactic and zodiacal light surface brightness measurements with the Atmosphere Explorer satellites

    NASA Technical Reports Server (NTRS)

    Abreu, V. J.; Hays, P. B.; Yee, J. H.

    1982-01-01

    Galactic and zodiacal light surface maps based on the Atmosphere Explorer-C, -D, and -E satellite data are presented at 7320, 6300, 5577, 5200, and 4278 A. A procedure used to generate these maps, which involves separation of the individual stars and diffuse starlight from the zodiacal light, is described in detail. The maps can be used in atmospheric emission studies to correct for galactic emissions which contaminate satellite as well as ground-based photometric observations. The zodiacal light maps show enhanced features which are important for understanding the nature of interplanetary dust.

  15. GREEN BANK TELESCOPE OBSERVATIONS OF THE NH{sub 3} (3, 3) AND (6, 6) TRANSITIONS TOWARD SAGITTARIUS A MOLECULAR CLOUDS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Minh, Young Chol; Liu, Hauyu Baobab; Ho, Paul T. P.

    2013-08-10

    Ammonia (3, 3) and (6, 6) transitions have been observed using the Green Bank Telescope toward the Sgr A region. The gas is mainly concentrated in 50 km s{sup -1} and 20 km s{sup -1} clouds located in a plane inclined to the galactic plane. These 'main' clouds appear to be virialized and influenced by the expansion of the supernova remnant Sgr A East. The observed emission shows very complicated features in the morphology and velocity structure. Gaussian multi-component fittings of the observed spectra revealed that various 'streaming' gas components exist all over the observed region. These components include thosemore » previously known as 'streamers' and 'ridges', but most of these components appear not to be directly connected to the major gas condensations (the 50 km s{sup -1} and 20 km s{sup -1} clouds). They are apparently located out of the galactic plane, and they may have a different origin than the major gas condensations. Some of the streaming components are expected to be sources that feed the circumnuclear disk of our Galactic center directly and episodically. They may also evolve differently than major gas condensations under the influence of the activities of the Galactic center.« less

  16. Scientific Verification of Faraday Rotation Modulators: Detection of Diffuse Polarized Galactic Emission

    NASA Technical Reports Server (NTRS)

    Moyerman, S.; Bierman, E.; Ade, P. A. R.; Aiken, R.; Barkats, D.; Bischoff, C.; Bock, J. J.; Chiang, H. C.; Dowell, C. D.; Duband, L.; hide

    2012-01-01

    The design and performance of a wide bandwidth linear polarization-modulator based on the Faraday effect is described. Faraday Rotation Modulators (FRMs) are solid-state polarization switches that are capable of modulation up to approx 10 kHz. Six FRMs were utilized during the 2006 observing season in the Background Imaging of Cosmic Extragalactic Polarization (BICEP) experiment; three FRMs were used at each of BICEP fs 100 and 150 GHz frequency bands. The technology was verified through high signal-to-noise detection of Galactic polarization using two of the six FRMs during four observing runs in 2006. The features exhibit strong agreement with BICEP fs measurements of the Galaxy using non-FRM pixels and with the Galactic polarization models. This marks the first detection of high signal-to-noise mm-wave celestial polarization using fast, active optical modulation. The performance of the FRMs during periods when they were not modulated was also analyzed and compared to results from BICEP fs 43 pixels without FRMs.

  17. Formation of compact HII regions possibly triggered by cloud-cloud collision

    NASA Astrophysics Data System (ADS)

    Ohama, Akio; Torii, Kazufumi; Hasegawa, Keisuke; Fukui, Yasuo

    2015-08-01

    Compact HII regions are ionized by young high-mass star(s) and ~1000 compact HII regions are cataloged in the Galaxy (Urquhart et al. MNRAS 443, 1555-1586 (2014)). Compact HII regions are one of the major populations of Galactic HII regions. The molecular environments around compact HII regions are however not well understood due to lack of extensive molecular surveys. In order to better understand formation of exciting stars and compact HII regions, we have carried out a systematic study of molecular clouds toward compact HII regions by using the 12CO datasets obtained with the JCMT and NANTEN2 telescopes for l = 10 - 56, and present here the first results.In one of the present samples, RCW166, we have discovered that the HII region is associated with two molecular clouds whose velocity separation is ~10 km s-1 the two clouds show complimentary spatial distributions, where one of the clouds have a cavity-like distribution apparently embracing the other. We present an interpretation that the two clouds collided with each other and the cavity-like distribution represents a hole created by the collision in the larger cloud as modeled by Habe and Ohta (1992). Similar molecular distributions are often found in the other compact HII regions in the present study.A recent study by Torii et al. (2015, arXiv:1503.00070) indicates that the Spitzer bubble RCW120 was formed by cloud-cloud collision where the inside of the cavity is fully ionized by the exiting stars. RCW166, on the other hand, shows that only a small part of the cavity, the compact HII region, is ionized. We thus suggest that RCW166 represents an evolutionary stage corresponding to an earlier phase of RCW120 in the collision scenario.

  18. Examining Sites of Recent Star Formation in the Galactic Center: A Closer Look at the Arched Filaments and H HII Regions

    NASA Astrophysics Data System (ADS)

    Hankins, Matthew; Herter, Terry; Lau, Ryan; Morris, Mark; Mills, Elisabeth

    2018-01-01

    In this dissertation presentation, we analyze mid-infrared imaging of the Arched Filaments and H HII regions in the Galactic center taken with the Faint Object Infrared Camera for the SOFIA Telescope (FORCAST). Examining these regions are of great interest because they provide insights on star formation in the Galactic center and the interactions massive stars have with the ISM. The Arched Filaments are a collection of molecular cloud ridges which are ionized by the nearby Arches star cluster, and give the appearance of large (~25 pc) arch-like structures. The H HII regions are a collection of HII regions just to the west of the Arches cluster (~5-15 pc). The origin of the stars powering the H HII regions is uncertain, as they may have formed in a nearby molecular cloud or could be ejected members of the Arches cluster. FORCAST observations of these regions were used to study the morphology and heating structure of the HII regions, as well as constrain their luminosities.Color-temperature maps of the Arched Filaments created with the FORCAST data reveals fairly uniform dust temperatures (~70-100 K) across the length filaments. The temperature uniformity of the clouds can be explained if they are heated by the Arches cluster but are located at a larger distance from the cluster than they appear. The density of the Arched Filaments clouds was estimated from the FORCAST data and was found to be below the threshold for tidal shearing, indicating that that the clouds will be destroyed by the strong tidal field near the Galactic center. To the west of the Arched Filaments, there is an interesting collection of HII regions, referred to as the H HII regions. These regions are likely heated by massive O/B type stars, and the morphology of the dust emission associated with these objects indicate a mixture of potential in situ formation mechanisms and interlopers. Interestingly, FORCAST imaging of the H HII regions also reveal several compact sources, which may be young

  19. The simulation of the outer Oort cloud formation. The first giga-year of the evolution

    NASA Astrophysics Data System (ADS)

    Dybczyński, P. A.; Leto, G.; Jakubík, M.; Paulech, T.; Neslušan, L.

    2008-08-01

    Aims: Considering a model of an initial disk of planetesimals that consists of 10 038 test particles, we simulate the formation of distant-comet reservoirs for the first 1 Gyr. Since only the outer part of the Oort cloud can be formed within this period, we analyse the efficiency of the formation process and describe approximately the structure of the part formed. Methods: The dynamical evolution of the particles is followed by numerical integration of their orbits. We consider the perturbations by four giant planets on their current orbits and with their current masses, in addition to perturbations by the Galactic tide and passing stars. Results: In our simulation, the population size of the outer Oort cloud reaches its maximum value at about 210 Myr. After a subsequent, rapid decrease, it becomes almost stable (with only a moderate decrease) from about 500 Myr. At 1 Gyr, the population size decreases to about 40% of its maximum value. The efficiency of the formation is low. Only about 0.3% of the particles studied still reside in the outer Oort cloud after 1 Gyr. The space density of particles in the comet cloud, beyond the heliocentric distance, r, of 25 000 AU is proportional to r-s, where s = 4.08 ± 0.34. From about 50 Myr to the end of the simulation, the orbits of the Oort cloud comets are not distributed randomly, but high galactic inclinations of the orbital planes are strongly dominant. Among all of the outer perturbers considered, this is most likely caused by the dominant, disk component of the Galactic tide. Movies (cf. caption to Fig. 1) are only available at http://www.aanda.org

  20. The Galactic Magnetic Field and its lensing of Ultrahigh Energy and Galactic Cosmic Rays

    NASA Astrophysics Data System (ADS)

    Farrar, Glennys

    2015-08-01

    It has long been recognized that magnetic fields play an important role in many astrophysical environments, but the magnetic field strength and structure has only been quantitatively determined for relatively few systems beyond our solar system.Our understanding of the Galactic magnetic field (GMF) has improved tremendously in recent years. The Jansson-Farrar (2012) (JF12) GMF model is the most realistic and comprehensive model available. It was constrained by fitting all-sky Faraday Rotation Measures of ~40k extragalactic sources, simultaneously with WMAP polarized (Q,U) and total synchrotron emission maps - together providing a total of more than 10,000 independent datapoints, each with measured astrophysical variance. In addition to disk and toroidal halo components, a previously overlooked coherent poloidal halo field proves to be necessary to account for the RM, Q and U data. Moreover a “striated” random component is needed in addition to a fully random component, in both disk and halo.The talk will give a concise review of the JF12 model and its derivation, with emphasis on which features of the GMF are well or poorly established. I will show that the data unambiguously demand a large scale coherent component to the halo field which is a diverging-spiral centered on the Galactic center, with field lines running from Southern to Northern hemispheres. The puzzles posed by the large scale coherent halo and disk magnetic fields, and their possible origins, will be discussed.Having a good model of the Galactic magnetic field is crucial for determining the sources of UHECRs, for modeling the transport of Galactic CRs (the halo field provides a heretofore-overlooked escape route for by diffusion along its field lines), and for calculating the background to dark matter and CMB-cosmology studies. I will present new results on the lensing effect of the GMF on UHECRs, which produces multiple images and dramatic magnification and demagnification that varies with

  1. Interstellar molecules and dense clouds.

    NASA Technical Reports Server (NTRS)

    Rank, D. M.; Townes, C. H.; Welch, W. J.

    1971-01-01

    Current knowledge of the interstellar medium is discussed on the basis of recent published studies. The subjects considered include optical identification of interstellar molecules, radio molecular lines, interstellar clouds, isotopic abundances, formation and disappearance of interstellar molecules, and interstellar probing techniques. Diagrams are plotted for the distribution of galactic sources exhibiting molecular lines, for hydrogen molecule, hydrogen atom and electron abundances due to ionization, for the densities, velocities and temperature of NH3 in the direction of Sagitarius B2, for the lower rotational energy levels of H2CO, and for temporal spectral variations in masing H2O clouds of the radio source W49. Future applications of the maser and of molecular microscopy in this field are visualized.

  2. The VLT-FLAMES Tarantula Survey. IX. The interstellar medium seen through diffuse interstellar bands and neutral sodium&

    NASA Astrophysics Data System (ADS)

    van Loon, J. Th.; Bailey, M.; Tatton, B. L.; Maíz Apellániz, J.; Crowther, P. A.; de Koter, A.; Evans, C. J.; Hénault-Brunet, V.; Howarth, I. D.; Richter, P.; Sana, H.; Simón-Díaz, S.; Taylor, W.; Walborn, N. R.

    2013-02-01

    Context. The Tarantula Nebula (a.k.a. 30 Dor) is a spectacular star-forming region in the Large Magellanic Cloud (LMC), seen through gas in the Galactic disc and halo. Diffuse interstellar bands (DIBs) offer a unique probe of the diffuse, cool-warm gas in these regions. Aims: The aim is to use DIBs as diagnostics of the local interstellar conditions, whilst at the same time deriving properties of the yet-unknown carriers of these enigmatic spectral features. Methods: Spectra of over 800 early-type stars from the Very Large Telescope Flames Tarantula Survey (VFTS) were analysed. Maps were created, separately, for the Galactic and LMC absorption in the DIBs at 4428 and 6614 Å and - in a smaller region near the central cluster R 136 - neutral sodium (the Na i D doublet); we also measured the DIBs at 5780 and 5797 Å. Results: The maps show strong 4428 and 6614 Å DIBs in the quiescent cloud complex to the south of 30 Dor but weak absorption in the harsher environments to the north (bubbles) and near the OB associations. The Na maps show at least five kinematic components in the LMC and a shell-like structure surrounding R 136, and small-scale structure in the Milky Way. The strengths of the 4428, 5780, 5797 and 6614 Å DIBs are correlated, also with Na absorption and visual extinction. The strong 4428 Å DIB is present already at low Na column density but the 6614, 5780 and 5797 Å DIBs start to be detectable at subsequently larger Na column densities. Conclusions: The carriers of the 4428, 6614, 5780 and 5797 Å DIBs are increasingly prone to removal from irradiated gas. The relative strength of the 5780 and 5797 Å DIBs clearly confirm the Tarantula Nebula as well as Galactic high-latitude gas to represent a harsh radiation environment. The resilience of the 4428 Å DIB suggests its carrier is large, compact and neutral. Structure is detected in the distribution of cool-warm gas on scales between one and >100 pc in the LMC and as little as 0.01 pc in the Sun

  3. Relativistic neutrons in active galactic nuclei

    NASA Technical Reports Server (NTRS)

    Sikora, Marek; Begelman, Mitchell C.; Rudak, Bronislaw

    1989-01-01

    The acceleration of protons to relativistic energies in active galactic nuclei leads to the creation of relativistic neutrons which escape from the central engine. The neutrons decay at distances of up to 1-100 pc, depositing their energies and momenta in situ. Energy deposition by decaying neutrons may inhibit spherical accretion and drive a wind, which could be responsible for the velocity fields in emission-line regions and the outflow of broad absorption line systems. Enhanced pressure in the neutron decay region may also help to confine emission line clouds. A fraction of the relativistic proton energy is radiated in gamma-rays with energies which may be as large as about 100,000 GeV.

  4. The spectral energy distribution of the scattered light from dark clouds

    NASA Technical Reports Server (NTRS)

    Mattila, Kalevi; Schnur, G. F. O.

    1989-01-01

    A dark cloud is exposed to the ambient radiation field of integrated starlight in the Galaxy. Scattering of starlight by the dust particles gives rise to a diffuse surface brightness of the dark nebula. The intensity and the spectrum of this diffuse radiation can be used to investigate, e.g., the scattering parameters of the dust, the optical thickness of the cloud, and as a probe of the ambient radiation field at the location of the cloud. An understanding of the scattering process is also a prerequisite for the isolation of broad spectral features due to fluorescence or to any other non-scattering origin of the diffuse light. Model calculations are presented for multiple scattering in a spherical cloud. These calculations show that the different spectral shapes of the observed diffuse light can be reproduced with standard dust parameters. The possibility to use the observed spectrum as a diagnostic tool for analyzing the thickness of the cloud and the dust particle is discussed.

  5. Observations of Galactic gamma-radiation with the SMM spectrometer

    NASA Technical Reports Server (NTRS)

    Share, G. H.; Kinzer, R. L.; Messina, D. C.; Purcell, W. R.; Chupp, E. L.

    1986-01-01

    Preliminary results from the SMM gamma-ray spectrometer are reported which indicate the detection of a constant source of 0.511-MeV annihilation radiation from the Galaxy. Year-to-year variability appears to be less than 30 percent. The radiation probably comes from a diffuse source and is not associated with the reported compact object at the Galactic center.

  6. The Galactic Center View with Simbol-X

    NASA Astrophysics Data System (ADS)

    Raimondi, L.; Malaguti, G.; Angelini, L.; Cappi, M.; Grandi, P.; Palumbo, G. G. C.; Puccetti, S.

    2009-05-01

    The nature of the hard X-ray emission above 3 keV of the Galactic Centre (GC) is still source of controversy. Recent observations with Chandra are consistent with either a population of discrete sources or with a diffuse non thermal emission or, most likely, a combination of the two. The Simbol-X mission will be equipped with a grazing incident telescope imaging up to ~80 keV, providing an improvement of three orders of magnitude in sensitivity and angular resolution compared with the instruments that have operated so far above 10 keV. This capability will enable to directly disentangle between the discrete source versus the diffuse emission scenarios. This is demonstrated by the Simbol-X simulations of the GC shown here, where the input model includes a list of both diffuse and point sources (both resolved and unresolved) using the input spectrum observed with presently operating X-ray telescopes.

  7. Characterizing the Hercules Thick Disk Cloud

    DTIC Science & Technology

    2009-01-01

    merger. Key Words: Astronomy , Hercules Thick Disk Cloud, Galaxy, Star Count, Color, Photometric Parallax 2 Contents Chapter 1... Astronomy : Structure and Kinematics, 2nd ed., New York: W. H. Freeman and Company, 1981, pp 4. 5 Henbest, Guide, pp 10. 6 Mihalas, Galactic, pp 209...studies of astronomy later in his life, he focused on binary star systems and concluded that not all stars have the same absolute magnitude, thus

  8. The diffuse galactic gamma radiation: The Compton contribution and component separation by energy interval and galactic coordinates

    NASA Technical Reports Server (NTRS)

    Kniffen, D. A.; Fichtel, C.

    1981-01-01

    The radiation to be expected from cosmic ray interactions with matter and photons was examined. Particular emphasis is placed on the Compton emission. Both the photon density in and near the visible region and that in the region are deduced from the estimates of the emission functions throughout the Galaxy. The blackbody radiation is also included in the estimate of the total Compton emission. The result suggests that the gamma ray Compton radiation from cosmic ray ineractions with galactic visible and infrared photons is substantially larger than previously believed.

  9. Using satellite-derived optical thickness to assess the influence of clouds on terrestrial carbon uptake

    Treesearch

    S.J. Cheng; A.L. Steiner; D.Y. Hollinger; G. Bohrer; K.J. Nadelhoffer

    2016-01-01

    Clouds scatter direct solar radiation, generating diffuse radiation and altering the ratio of direct to diffuse light. If diffuse light increases plant canopy CO2 uptake, clouds may indirectly influence climate by altering the terrestrial carbon cycle. However, past research primarily uses proxies or qualitative categories of clouds to connect...

  10. GLOBAL SIMULATIONS OF GALACTIC WINDS INCLUDING COSMIC-RAY STREAMING

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ruszkowski, Mateusz; Yang, H.-Y. Karen; Zweibel, Ellen, E-mail: mateuszr@umich.edu, E-mail: hsyang@astro.umd.edu, E-mail: zweibel@astro.wisc.edu

    2017-01-10

    Galactic outflows play an important role in galactic evolution. Despite their importance, a detailed understanding of the physical mechanisms responsible for the driving of these winds is lacking. In an effort to gain more insight into the nature of these flows, we perform global three-dimensional magnetohydrodynamical simulations of an isolated Milky Way-size starburst galaxy. We focus on the dynamical role of cosmic rays (CRs) injected by supernovae, and specifically on the impact of the streaming and anisotropic diffusion of CRs along the magnetic fields. We find that these microphysical effects can have a significant effect on the wind launching andmore » mass loading factors, depending on the details of the plasma physics. Due to the CR streaming instability, CRs propagating in the interstellar medium scatter on self-excited Alfvén waves and couple to the gas. When the wave growth due to the streaming instability is inhibited by some damping process, such as turbulent damping, the coupling of CRs to the gas is weaker and their effective propagation speed faster than the Alfvén speed. Alternatively, CRs could scatter from “extrinsic turbulence” that is driven by another mechanism. We demonstrate that the presence of moderately super-Alfvénic CR streaming enhances the efficiency of galactic wind driving. Cosmic rays stream away from denser regions near the galactic disk along partially ordered magnetic fields and in the process accelerate more tenuous gas away from the galaxy. For CR acceleration efficiencies broadly consistent with the observational constraints, CRs reduce the galactic star formation rates and significantly aid in launching galactic winds.« less

  11. Exploring the Excluded Galactic Cosmic Rays--those at the Lowest Energies.

    NASA Astrophysics Data System (ADS)

    Shapiro, Maurice M.

    2001-04-01

    The solar wind prevents the lowest- energy Galactic cosmic rays (GCR) from entering the heliosphere. Consequently, space probes have thus far been unable to sample them. We suggest that astrochemistry may provide a ``handle" on these particles. Clouds in the interstellar medium (ISM) are sites of chemical-reaction networks that produce various molecular species detectable by their radioastronomical signatures. Highly ionizing low-energy cosmic rays are thought to be the principal agents of molecule production in clouds. Some anomalous abundances, e.g., of deuterium molecules, have been detected. Could studies of the foregoing networks of reactions and their products yield clues to the fluxes and energy spectra of the lowest-energy GCR in the ISM? Other approaches to this problem are also cited.

  12. Study of the transport parameters of cloud lightning plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chang, Z. S.; Yuan, P.; Zhao, N.

    2010-11-15

    Three spectra of cloud lightning have been acquired in Tibet (China) using a slitless grating spectrograph. The electrical conductivity, the electron thermal conductivity, and the electron thermal diffusivity of the cloud lightning, for the first time, are calculated by applying the transport theory of air plasma. In addition, we investigate the change behaviors of parameters (the temperature, the electron density, the electrical conductivity, the electron thermal conductivity, and the electron thermal diffusivity) in one of the cloud lightning channels. The result shows that these parameters decrease slightly along developing direction of the cloud lightning channel. Moreover, they represent similar suddenmore » change behavior in tortuous positions and the branch of the cloud lightning channel.« less

  13. Chandra/ACIS Observations of Rosette: Diffuse X-rays Discovered in a Galactic H II Region

    NASA Astrophysics Data System (ADS)

    Townsley, L. K.; Feigelson, E. D.; Broos, P. S.; Chu, Y.-H.; Montmerle, T.

    2001-12-01

    We present the first high-spatial-resolution X-ray images of the Rosette Nebula and Rosette Molecular Cloud (RMC), obtained in a series of 4 20-ksec snapshots with the Advanced CCD Imaging Spectrometer aboard the Chandra X-ray Observatory in January 2001. These images form a striking 1-degree X-ray panorama of a rich high-mass star formation region. The OB association is resolved at the arcsecond level into >300 sources. The other 3 pointings step across the RMC, with >100 X-ray sources in each. Soft diffuse emission is seen at the center of the H II region and is resolved from the point source population. This extended emission is most likely from the fast O-star winds, which thermalize and shock the surrounding media. Support for this effort was provided by the Chandra X-ray Observatory GO2 grant G01-2008X.

  14. WISEGAL. WISE for the Galactic Plane

    NASA Astrophysics Data System (ADS)

    Noriega-Crespo, Alberto

    There is truly a community effort to study on a global scale the properties of the Milky Way, like its structure, its star formation and interstellar medium, and to use this knowledge to create accurate templates to understand the properties of extragalactic systems. A testimony of this effort are the multi-wavelength surveys of the Galactic Plane that have been recently carried out or are underway from both the ground (e.g. IPHAS, ATLASGAL, JCMT Galactic Plane Survey) or space (GLIMPSE, MIPSGAL, HiGAL). Adding to this wealth of data is the recent release of approximately 57 percent of the whole sky by the Wide-field Infrared Survey Explorer (WISE) team of their high angular resolution and sensitive mid-IR (3.4, 4.6, 12 and 22 micron) images and point source catalogs, encompassing nearly three quarters of the Galactic Plane, including the less studied regions of the Outer Galaxy. The WISE Atlas Images are spectacular, but to take full advantage of them, they need to be transformed from their default Data Number (DN) units into absolute surface brightness calibrated units. Furthermore, to mitigate the contamination effect of the point sources on the extended/diffuse emission, we will remove them and create residual images. This processing will enable a wide range of science projects using the Atlas Images, where measuring the spectral energy distribution of the extended emission is crucial. In this project we propose to transform the W3 (12 micron) and W4 (22 micron) images of the Galactic Plane, in particular of the Outer Galaxy where WISE provides an unique data set, into a background-calibrated, point-source subtracted images using IRIS (DIRBE IRAS Calibrated data). This transformation will allow us to carry out research projects on Massive star formation, the properties of dust in the diffuse ISM, the three dimensional distribution of the dust emission in the Galaxy and the mid/far infrared properties of Supernova Remnants, among others, and to perform a

  15. Copernicus observations of C I: pressures and carbon abundances in diffuse interstellar clouds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jenkins, E.B.; Jura, M.; Loewenstein, M.

    1983-07-01

    Using the Copernicus satellite, we observed ultraviolet absorption lines of interstellar neutral carbon atoms toward 27 stars. In addition to deriving column densities of C I (both in its ground state and the two excited fine-structure levels), we used our equivalent widths to revise the f-values of some of the C I transitions measured by other investigators. We also observed H/sub 2/ from the J = 4 level so that we could compare the rotational excitation of H/sub 2/ with the fine-structure excitation of C I. From the amount of fine-structure excitation of C I in each case, we havemore » derived information on the thermal gas pressures within the diffuse clouds. Most clouds have p/k between 10/sup 3/ cm/sup -3/ K and 10/sup 4/ cm/sup -3/ K, but we found that at least 6% of the C I-bearing material is at p/k>10/sup 4/ cm/sup -3/ K, and one-third of the gas has upper limits for pressure below 10/sup 3/ cm/sup -3/ K, assuming temperatures are not appreciably below 20 K. An analysis of radial velocities for the absorption lines showed no distinctive trends for the kinematics of high- or low-pressure gas components. From the apparent lack of acceleration of high-pressure clouds, we conclude that it is unlikely that streaming intercloud material is causing significant ram pressurization. We have compared our results with the predictions for pressure fluctuations caused by supernova explosions in the theory of McKee and Ostriker.« less

  16. DISTANCES TO DARK CLOUDS: COMPARING EXTINCTION DISTANCES TO MASER PARALLAX DISTANCES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Foster, Jonathan B.; Jackson, James M.; Stead, Joseph J.

    We test two different methods of using near-infrared extinction to estimate distances to dark clouds in the first quadrant of the Galaxy using large near-infrared (Two Micron All Sky Survey and UKIRT Infrared Deep Sky Survey) surveys. Very long baseline interferometry parallax measurements of masers around massive young stars provide the most direct and bias-free measurement of the distance to these dark clouds. We compare the extinction distance estimates to these maser parallax distances. We also compare these distances to kinematic distances, including recent re-calibrations of the Galactic rotation curve. The extinction distance methods agree with the maser parallax distancesmore » (within the errors) between 66% and 100% of the time (depending on method and input survey) and between 85% and 100% of the time outside of the crowded Galactic center. Although the sample size is small, extinction distance methods reproduce maser parallax distances better than kinematic distances; furthermore, extinction distance methods do not suffer from the kinematic distance ambiguity. This validation gives us confidence that these extinction methods may be extended to additional dark clouds where maser parallaxes are not available.« less

  17. Where Galactic Snakes Live

    NASA Image and Video Library

    2006-10-27

    This infrared image from NASA's Spitzer Space Telescope shows what astronomers are referring to as a "snake" (upper left) and its surrounding stormy environment. The sinuous object is actually the core of a thick, sooty cloud large enough to swallow dozens of solar systems. In fact, astronomers say the "snake's belly" may be harboring beastly stars in the process of forming. The galactic creepy crawler to the right of the snake is another thick cloud core, in which additional burgeoning massive stars might be lurking. The colorful regions below the two cloud cores are less dense cloud material, in which dust has been heated by starlight and glows with infrared light. Yellow and orange dots throughout the image are monstrous developing stars; the red star on the "belly" of the snake is 20 to 50 times as massive as our sun. The blue dots are foreground stars. The red ball at the bottom left is a "supernova remnant," the remains of massive star that died in a fiery blast. Astronomers speculate that radiation and winds from the star before it died, in addition to a shock wave created when it exploded, might have played a role in creating the snake. Spitzer was able to spot the two black cloud cores using its heat-seeking infrared vision. The objects are hiding in the dusty plane of our Milky Way galaxy, invisible to optical telescopes. Because their heat, or infrared light, can sneak through the dust, they first showed up in infrared images from past missions. The cloud cores are so thick with dust that if you were to somehow transport yourself into the middle of them, you would see nothing but black, not even a star in the sky. Now, that's spooky! Spitzer's view of the region provides the best look yet at the massive embryonic stars hiding inside the snake. Astronomers say these observations will ultimately help them better understand how massive stars form. By studying the clustering and range of masses of the stellar embryos, they hope to determine if the stars were

  18. Where Galactic Snakes Live

    NASA Technical Reports Server (NTRS)

    2006-01-01

    This infrared image from NASA's Spitzer Space Telescope shows what astronomers are referring to as a 'snake' (upper left) and its surrounding stormy environment. The sinuous object is actually the core of a thick, sooty cloud large enough to swallow dozens of solar systems. In fact, astronomers say the 'snake's belly' may be harboring beastly stars in the process of forming.

    The galactic creepy crawler to the right of the snake is another thick cloud core, in which additional burgeoning massive stars might be lurking. The colorful regions below the two cloud cores are less dense cloud material, in which dust has been heated by starlight and glows with infrared light. Yellow and orange dots throughout the image are monstrous developing stars; the red star on the 'belly' of the snake is 20 to 50 times as massive as our sun. The blue dots are foreground stars.

    The red ball at the bottom left is a 'supernova remnant,' the remains of massive star that died in a fiery blast. Astronomers speculate that radiation and winds from the star before it died, in addition to a shock wave created when it exploded, might have played a role in creating the snake.

    Spitzer was able to spot the two black cloud cores using its heat-seeking infrared vision. The objects are hiding in the dusty plane of our Milky Way galaxy, invisible to optical telescopes. Because their heat, or infrared light, can sneak through the dust, they first showed up in infrared images from past missions. The cloud cores are so thick with dust that if you were to somehow transport yourself into the middle of them, you would see nothing but black, not even a star in the sky. Now, that's spooky!

    Spitzer's new view of the region provides the best look yet at the massive embryonic stars hiding inside the snake. Astronomers say these observations will ultimately help them better understand how massive stars form. By studying the clustering and range of masses of the stellar embryos, they hope

  19. Velocity-resolved [{\\rm{C}}\\,{\\rm{II}}] Emission from Cold Diffuse Clouds in the Interstellar Medium

    NASA Astrophysics Data System (ADS)

    Goldsmith, Paul F.; Pineda, Jorge L.; Neufeld, David A.; Wolfire, Mark G.; Risacher, Christophe; Simon, Robert

    2018-04-01

    We have combined emission from the 158 μm fine structure transition of C+ observed with the GREAT and upGREAT instruments on SOFIA with 21 cm absorption spectra and visual extinction to characterize the diffuse interstellar clouds found along the lines of sight. The weak [C II] emission is consistent in velocity and line width with the strongest H I component produced by the cold neutral medium. The H I column density and kinetic temperature are known from the 21 cm data and, assuming a fractional abundance of ionized carbon, we calculate the volume density and thermal pressure of each source, which vary considerably, with 27 {cm}}-3≤slant n({{{H}}}0) ≤slant 210 cm‑3 considering only the atomic hydrogen along the lines of sight to be responsible for the C+, while 13 {cm}}-3≤slant n({{{H}}}0+{{{H}}}2)≤slant 190 cm‑3 including the hydrogen in both forms. The thermal pressure varies widely with 1970 cm‑3 K ≤slant {P}th}/k≤slant 10,440 cm‑3 K for H0 alone and 750 cm‑3 K ≤ P th/k ≤ 9360 cm‑3 K including both H0 and H2. The molecular hydrogen fraction varies between 0.10 and 0.67. Photoelectric heating is the dominant heating source, supplemented by a moderately enhanced cosmic ray ionization rate, constrained by the relatively low 45 K to 73 K gas temperatures of the clouds. The resulting thermal balance for the two lower-density clouds is satisfactory, but for the two higher-density clouds, the combined heating rate is insufficient to balance the observed C+ cooling.

  20. Physical properties and evolution of GMCs in the Galaxy and the Magellanic Clouds

    NASA Astrophysics Data System (ADS)

    Onishi, Toshikazu

    2015-08-01

    Most stars are born as clusters in Giant Molecular Clouds (hereafter GMCs), and therefore the understanding of the evolution of GMCs in a galaxy is one of the key issues to investigate the evolution of the galaxy. The recent state-of-the-art radio telescopes have been enabling us to reveal the distribution of GMCs extensively in the Galaxy as well as in the nearby galaxies, and the physical properties and the evolution of the GMCs leading to cluster formations are actively being investigated. Here we present a review of studies of spatially resolved GMCs in the Galaxy and in the Large Magellanic Cloud (LMC), aiming at providing a template of GMC properties. For the Galactic GMCs, we will focus on the recent extensive survey of GMCs along the Galactic plane; the recent studies suggest cloud-cloud collision as mechanism of massive star formation. For the extra galactic GMCs, we will present recent high-resolution observations of GMCs in the LMC.The LMC is among the nearest star-forming galaxy (distance ~ 50kpc) and is almost face-on. From these aspects, it is becoming the most popular region for studying interstellar medium over an entire galaxy. For molecular gas, the NANTEN covered the entire LMC with a spatial resolution of 40 pc, revealing 272 molecular clouds whose mass ranges from ~104 to ~107 M⊙, which is the first uniform sample of GMCs in a single galaxy. Our Spitzer SAGE and Herschel HERITAGE surveys show that the interstellar medium has much smaller scale structures; full of filamentary and shell-like structures. In order to resolve the filamentary distributions and pre-stellar cores we definitely need to resolve clouds at sub-pc resolutions with ALMA and to cover regions of active cluster formation which are to be selected based on the Spitzer and Hershel data. Our ALMA targets in Cycle 1 and Cycle 2 include N159, which is the most intense and concentrated molecular cloud as shown by the brightest CO J=3-2 source in the LMC, and GMCs with different

  1. HYDROGEN CHLORIDE IN DIFFUSE INTERSTELLAR CLOUDS ALONG THE LINE OF SIGHT TO W31C (G10.6-0.4)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Monje, R. R.; Lis, D. C.; Phillips, T. G.

    2013-04-10

    We report the detection of hydrogen chloride, HCl, in diffuse molecular clouds on the line of sight toward the star-forming region W31C (G10.6-0.4). The J = 1-0 lines of the two stable HCl isotopologues, H{sup 35}Cl and H{sup 37}Cl, are observed using the 1b receiver of the Heterodyne Instrument for the Far-Infrared (HIFI) on board the Herschel Space Observatory. The HCl line is detected in absorption, over a wide range of velocities associated with diffuse clouds along the line of sight to W31C. The analysis of the absorption strength yields a total HCl column density of a few 10{sup 13}more » cm{sup -2}, implying that HCl accounts for {approx}0.6% of the total gas-phase chlorine, which exceeds the theoretical model predictions by a factor of {approx}6. This result is comparable to those obtained from the chemically related species H{sub 2}Cl{sup +} and HCl{sup +}, for which large column densities have also been reported on the same line of sight. The source of discrepancy between models and observations is still unknown; however, the detection of these Cl-bearing molecules provides key constraints for the chlorine chemistry in the diffuse gas.« less

  2. Clouding tracing: Visualization of the mixing of fluid elements in convection-diffusion systems

    NASA Technical Reports Server (NTRS)

    Ma, Kwan-Liu; Smith, Philip J.

    1993-01-01

    This paper describes a highly interactive method for computer visualization of the basic physical process of dispersion and mixing of fluid elements in convection-diffusion systems. It is based on transforming the vector field from a traditionally Eulerian reference frame into a Lagrangian reference frame. Fluid elements are traced through the vector field for the mean path as well as the statistical dispersion of the fluid elements about the mean position by using added scalar information about the root mean square value of the vector field and its Lagrangian time scale. In this way, clouds of fluid elements are traced and are not just mean paths. We have used this method to visualize the simulation of an industrial incinerator to help identify mechanisms for poor mixing.

  3. Chandra Deep X-ray Observation of a Typical Galactic Plane Region and Near-Infrared Identification

    NASA Technical Reports Server (NTRS)

    Ebisawa, K.; Tsujimoto, M.; Paizis, A.; Hamaguichi, K.; Bamba, A.; Cutri, R.; Kaneda, H.; Maeda, Y.; Sato, G.; Senda, A.

    2004-01-01

    Using the Chandra Advanced CCD Imaging Spectrometer Imaging array (ACIS-I), we have carried out a deep hard X-ray observation of the Galactic plane region at (l,b) approx. (28.5 deg,0.0 deg), where no discrete X-ray source has been reported previously. We have detected 274 new point X-ray sources (4 sigma confidence) as well as strong Galactic diffuse emission within two partidly overlapping ACIS-I fields (approx. 250 sq arcmin in total). The point source sensitivity was approx. 3 x 10(exp -15)ergs/s/sq cm in the hard X-ray band (2-10 keV and approx. 2 x 10(exp -16) ergs/s/sq cm in the soft band (0.5-2 keV). Sum of all the detected point source fluxes account for only approx. 10 % of the total X-ray fluxes in the field of view. In order to explain the total X-ray fluxes by a superposition of fainter point sources, an extremely rapid increase of the source population is required below our sensitivity limit, which is hardly reconciled with any source distribution in the Galactic plane. Therefore, we conclude that X-ray emission from the Galactic plane has truly diffuse origin. Only 26 point sources were detected both in the soft and hard bands, indicating that there are two distinct classes of the X-ray sources distinguished by the spectral hardness ratio. Surface number density of the hard sources is only slightly higher than observed at the high Galactic latitude regions, strongly suggesting that majority of the hard X-ray sources are active galaxies seen through the Galactic plane. Following the Chandra observation, we have performed a near-infrared (NIR) survey with SOFI at ESO/NTT to identify these new X-ray sources. Since the Galactic plane is opaque in NIR, we did not see the background extragalactic sources in NIR. In fact, only 22 % of the hard sources had NIR counterparts which are most likely to be Galactic origin. Composite X-ray energy spectrum of those hard X-ray sources having NIR counterparts exhibits a narrow approx. 6.7 keV iron emission line, which

  4. Galactic fly-bys: New source of lithium production

    NASA Astrophysics Data System (ADS)

    Prodanović, Tijana; Bogdanović, Tamara; Urošević, Dejan

    2013-05-01

    Observations of low-metallicity halo stars have revealed a puzzling result: the abundance of Li7 in these stars is at least three times lower than their predicted primordial abundance. It is unclear whether the cause of this disagreement is a lack of understanding of lithium destruction mechanisms in stars or the non-standard physics behind the big bang nucleosynthesis (BBN). Uncertainties related to the destruction of lithium in stars can be circumvented if lithium abundance is measured in the “pristine” gas of the low metallicity systems. The first measurement in one such system, the small magellanic cloud (SMC), was found to be at the level of the pure expected primordial value, but is on the other hand, just barely consistent with the expected galactic abundance for the system at the SMC metallicity, where important lithium quantity was also produced in interactions of galactic cosmic rays and presents an addition to the already present primordial abundance. Because of the importance of the SMC lithium measurement for the resolution of the lithium problem, we here draw attention to the possibility of another post-BBN production channel of lithium, which could present an important addition to the observed SMC lithium abundance. Besides standard galactic cosmic rays, additional post-BBN production of lithium might come from cosmic rays accelerated in galaxy-galaxy interactions. This might be important for a system such is the SMC, which has experienced galaxy harassment in its history. Within a simplified but illustrative framework we demonstrate that large-scale tidal shocks from a few galactic fly-bys can possibly produce lithium in amounts comparable to those expected from the interactions of galactic cosmic-rays produced in supernovae over the entire history of a system. In case of the SMC, we find that only two such fly-bys could possibly account for as much lithium as the standard, galactic cosmic ray production channel. However, adding any a new

  5. Unveiling the past of the Galactic nucleus with X-ray echoes

    NASA Astrophysics Data System (ADS)

    Chuard, D.; Terrier, R.; Goldwurm, A.; Clavel, M.; Soldi, S.; Morris, M. R.; Ponti, G.; Walls, M.; Chernyakova, M.

    2017-12-01

    Giant molecular clouds populating the central molecular zone have a high enough column density to reflect X-rays coming from strong compact sources in their neighbourhood, including possible powerful outbursts from the Galactic supermassive black hole SgrA. From observations of the molecular complex Sgr C made with the X-ray observatories XMM and Chandra between 2000 and 2014, we confirm this reflection scenario, even though the region hosts several objects (including two PWN candidates) that may be responsible for intense cosmic-ray production. By comparing data to Monte Carlo simulated reflection spectra, we are able to put the best constraints to date on the line-of-sight positions of the main bright clumps of the molecular complex. Ultimately, extending this approach by the inclusion of other molecular complexes allows us to partially reconstruct the past lightcurve of the Galactic supermassive black hole.

  6. Impact of Cosmic-Ray Transport on Galactic Winds

    NASA Astrophysics Data System (ADS)

    Farber, R.; Ruszkowski, M.; Yang, H.-Y. K.; Zweibel, E. G.

    2018-04-01

    The role of cosmic rays generated by supernovae and young stars has very recently begun to receive significant attention in studies of galaxy formation and evolution due to the realization that cosmic rays can efficiently accelerate galactic winds. Microscopic cosmic-ray transport processes are fundamental for determining the efficiency of cosmic-ray wind driving. Previous studies modeled cosmic-ray transport either via a constant diffusion coefficient or via streaming proportional to the Alfvén speed. However, in predominantly cold, neutral gas, cosmic rays can propagate faster than in the ionized medium, and the effective transport can be substantially larger; i.e., cosmic rays can decouple from the gas. We perform three-dimensional magnetohydrodynamical simulations of patches of galactic disks including the effects of cosmic rays. Our simulations include the decoupling of cosmic rays in the cold, neutral interstellar medium. We find that, compared to the ordinary diffusive cosmic-ray transport case, accounting for the decoupling leads to significantly different wind properties, such as the gas density and temperature, significantly broader spatial distribution of cosmic rays, and higher wind speed. These results have implications for X-ray, γ-ray, and radio emission, and for the magnetization and pollution of the circumgalactic medium by cosmic rays.

  7. NuSTAR Hard X-Ray Survey of the Galactic Center Region I: Hard X-Ray Morphology and Spectroscopy of the Diffuse Emission

    NASA Astrophysics Data System (ADS)

    Mori, Kaya; Hailey, Charles J.; Krivonos, Roman; Hong, Jaesub; Ponti, Gabriele; Bauer, Franz; Perez, Kerstin; Nynka, Melania; Zhang, Shuo; Tomsick, John A.; Alexander, David M.; Baganoff, Frederick K.; Barret, Didier; Barrière, Nicolas; Boggs, Steven E.; Canipe, Alicia M.; Christensen, Finn E.; Craig, William W.; Forster, Karl; Giommi, Paolo; Grefenstette, Brian W.; Grindlay, Jonathan E.; Harrison, Fiona A.; Hornstrup, Allan; Kitaguchi, Takao; Koglin, Jason E.; Luu, Vy; Madsen, Kristen K.; Mao, Peter H.; Miyasaka, Hiromasa; Perri, Matteo; Pivovaroff, Michael J.; Puccetti, Simonetta; Rana, Vikram; Stern, Daniel; Westergaard, Niels J.; Zhang, William W.; Zoglauer, Andreas

    2015-12-01

    We present the first sub-arcminute images of the Galactic Center above 10 keV, obtained with NuSTAR. NuSTAR resolves the hard X-ray source IGR J17456-2901 into non-thermal X-ray filaments, molecular clouds, point sources, and a previously unknown central component of hard X-ray emission (CHXE). NuSTAR detects four non-thermal X-ray filaments, extending the detection of their power-law spectra with Γ ˜ 1.3-2.3 up to ˜50 keV. A morphological and spectral study of the filaments suggests that their origin may be heterogeneous, where previous studies suggested a common origin in young pulsar wind nebulae (PWNe). NuSTAR detects non-thermal X-ray continuum emission spatially correlated with the 6.4 keV Fe Kα fluorescence line emission associated with two Sgr A molecular clouds: MC1 and the Bridge. Broadband X-ray spectral analysis with a Monte-Carlo based X-ray reflection model self-consistently determined their intrinsic column density (˜1023 cm-2), primary X-ray spectra (power-laws with Γ ˜ 2) and set a lower limit of the X-ray luminosity of Sgr A* flare illuminating the Sgr A clouds to LX ≳ 1038 erg s-1. Above ˜20 keV, hard X-ray emission in the central 10 pc region around Sgr A* consists of the candidate PWN G359.95-0.04 and the CHXE, possibly resulting from an unresolved population of massive CVs with white dwarf masses MWD ˜ 0.9 M⊙. Spectral energy distribution analysis suggests that G359.95-0.04 is likely the hard X-ray counterpart of the ultra-high gamma-ray source HESS J1745-290, strongly favoring a leptonic origin of the GC TeV emission.

  8. Color excesses, intrinsic colors, and absolute magnitudes of Galactic and Large Magellanic Cloud Wolf-Rayet stars

    NASA Technical Reports Server (NTRS)

    Vacca, William D.; Torres-Dodgen, Ana V.

    1990-01-01

    A new method of determining the color excesses of WR stars in the Galaxy and the LMC has been developed and is used to determine the excesses for 44 Galactic and 32 LMC WR stars. The excesses are combined with line-free, narrow-band spectrophotometry to derive intrinsic colors of the WR stars of nearly all spectral subtypes. No correlation of UV spectral index or intrinsic colors with spectral subtype is found for the samples of single WN or WC stars. There is evidence that early WN stars in the LMC have flatter UV continua and redder intrinsic colors than early WN stars in the Galaxy. No separation is found between the values derived for Galactic WC stars and those obtained for LMC WC stars. The intrinsic colors are compared with those calculated from model atmospheres of WR stars and generally good agreement is found. Absolute magnitudes are derived for WR stars in the LMC and for those Galactic WR stars located in clusters and associations for which there are reliable distance estimates.

  9. Arcmimute scale HI and IRAS observations toward high latitude cloud G86.5+59.6

    NASA Technical Reports Server (NTRS)

    Martin, Peter G.; Rogers, C.; Reach, W. T.; Dewdney, P. E.; Heiles, C. E.

    1994-01-01

    G86.5+59.6 is a degree-sized high latitude cloud originally selected for investigation by Heiles, Reach, and Koo (1988) on the basis of its appearance on the IRAS Skyflux images at 60 and 100 micrometers. Because of the interesting possibility that this is an intermediate velocity cloud colliding with HI in the Galactic plane, we have examined this region further, both at low resolution over an extended field to provide some context and at higher (arcminute) resolution within the cloud.

  10. Indirect searches of Galactic diffuse dark matter in INO-MagICAL detector

    DOE PAGES

    Khatun, Amina; Laha, Ranjan; Agarwalla, Sanjib Kumar

    2017-06-12

    Here, the signatures for the existence of dark matter are revealed only through its gravitational interaction. Theoretical arguments support that the Weakly Interacting Massive Particle (WIMP) can be a class of dark matter and it can annihilate and/or decay to Standard Model particles, among which neutrino is a favorable candidate. We show that the proposed 50 kt Magnetized Iron CALorimeter (MagICAL) detector under the India-based Neutrino Observatory (INO) project can play an important role in the indirect searches of Galactic diffuse dark matter in the neutrino and antineutrino mode separately. We present the sensitivity of 500 kt·yr MagICAL detector to set limits on the velocity-averaged self-annihilation cross-section (more » $$\\langle$$σv$$\\rangle$$) and decay lifetime (τ) of dark matter having mass in the range of 2 GeV ≤ m χ ≤ 90 GeV and 4 GeV ≤ m χ ≤ 180 GeV respectively, assuming no excess over the conventional atmospheric neutrino and antineutrino fluxes at the INO site. Our limits for low mass dark matter constrain the parameter space which has not been explored before. We show that MagICAL will be able to set competitive constraints, $$\\langle$$σv$$\\rangle$$ ≤ 1.87 × 10 -24 cm 3 s -1 for χχ→$$ν\\overline{v}$$ χχ→$$ν\\overline{v}$$ and τ ≥ 4.8 × 10 24s for χ → $$ν\\overline{v}$$ χ → $$ν\\overline{v}$$ at 90% C.L. (1 d.o.f.) for m χ = 10 GeV assuming the NFW as dark matter density profile.« less

  11. Indirect searches of Galactic diffuse dark matter in INO-MagICAL detector

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khatun, Amina; Laha, Ranjan; Agarwalla, Sanjib Kumar

    Here, the signatures for the existence of dark matter are revealed only through its gravitational interaction. Theoretical arguments support that the Weakly Interacting Massive Particle (WIMP) can be a class of dark matter and it can annihilate and/or decay to Standard Model particles, among which neutrino is a favorable candidate. We show that the proposed 50 kt Magnetized Iron CALorimeter (MagICAL) detector under the India-based Neutrino Observatory (INO) project can play an important role in the indirect searches of Galactic diffuse dark matter in the neutrino and antineutrino mode separately. We present the sensitivity of 500 kt·yr MagICAL detector to set limits on the velocity-averaged self-annihilation cross-section (more » $$\\langle$$σv$$\\rangle$$) and decay lifetime (τ) of dark matter having mass in the range of 2 GeV ≤ m χ ≤ 90 GeV and 4 GeV ≤ m χ ≤ 180 GeV respectively, assuming no excess over the conventional atmospheric neutrino and antineutrino fluxes at the INO site. Our limits for low mass dark matter constrain the parameter space which has not been explored before. We show that MagICAL will be able to set competitive constraints, $$\\langle$$σv$$\\rangle$$ ≤ 1.87 × 10 -24 cm 3 s -1 for χχ→$$ν\\overline{v}$$ χχ→$$ν\\overline{v}$$ and τ ≥ 4.8 × 10 24s for χ → $$ν\\overline{v}$$ χ → $$ν\\overline{v}$$ at 90% C.L. (1 d.o.f.) for m χ = 10 GeV assuming the NFW as dark matter density profile.« less

  12. IUE observations of the Henize-Carlson sample of peculiar emission line supergiants: The galactic analogs of the Magellanic Zoo

    NASA Technical Reports Server (NTRS)

    Shore, Steven N.; Brown, Douglas N.; Sanduleak, N.

    1986-01-01

    Some 15 stars from the Carlson-Henize survey of southern peculiar emission line stars were studied. From both the optical and UV spectra, they appear to be galactic counterparts of the most extreme early-type emission line supergiants of the Magellanic Clouds.

  13. Deciphering the Dipole Anisotropy of Galactic Cosmic Rays.

    PubMed

    Ahlers, Markus

    2016-10-07

    Recent measurements of the dipole anisotropy in the arrival directions of Galactic cosmic rays (CRs) indicate a strong energy dependence of the dipole amplitude and phase in the TeV-PeV range. We argue here that these observations can be well understood within standard diffusion theory as a combined effect of (i) one or more local sources at Galactic longitude 120°≲l≲300° dominating the CR gradient below 0.1-0.3 PeV, (ii) the presence of a strong ordered magnetic field in our local environment, (iii) the relative motion of the solar system, and (iv) the limited reconstruction capabilities of ground-based observatories. We show that an excellent candidate of the local CR source responsible for the dipole anisotropy at 1-100 TeV is the Vela supernova remnant.

  14. Ammonia Ice Clouds on Jupiter

    NASA Technical Reports Server (NTRS)

    2007-01-01

    The top cloud layer on Jupiter is thought to consist of ammonia ice, but most of that ammonia 'hides' from spectrometers. It does not absorb light in the same way ammonia does. To many scientists, this implies that ammonia churned up from lower layers of the atmosphere 'ages' in some way after it condenses, possibly by being covered with a photochemically generated hydrocarbon mixture. The New Horizons Linear Etalon Imaging Spectral Array (LEISA), the half of the Ralph instrument that is able to 'see' in infrared wavelengths that are absorbed by ammonia ice, spotted these clouds and watched them evolve over five Jupiter days (about 40 Earth hours). In these images, spectroscopically identified fresh ammonia clouds are shown in bright blue. The largest cloud appeared as a localized source on day 1, intensified and broadened on day 2, became more diffuse on days 3 and 4, and disappeared on day 5. The diffusion seemed to follow the movement of a dark spot along the boundary of the oval region. Because the source of this ammonia lies deeper than the cloud, images like these can tell scientists much about the dynamics and heat conduction in Jupiter's lower atmosphere.

  15. Interstellar clouds - From a dynamical perspective on their chemistry

    NASA Technical Reports Server (NTRS)

    Prasad, S. S.

    1985-01-01

    The possibility is examined that in the course of its dynamical evolution, a single mass of interstellar gas would exhibit properties of diffuse clouds, dense clouds and finally also of clouds perturbed by shocks or intense UV or X-ray radiation generated by a star of its own creation. This concept provides a common thread through the bewildering diversity of physical and chemical compositional properties shown by interstellar clouds. From this perspective, instead of being static objects, interstellar clouds are possibly incessantly evolving from initially diffuse to later dense state and then to star formation which ultimately restructures or disperses the remaining cloud material to begin the whole evolutionary process once again. Based on a simplified study of interstellar chemistry from a dynamical perspective, the ideas are presented as an heuristic: to encourage thought on the future direction of molecular astrophysics and the need to consider the chemical behavior of interstellar clouds in conjunction with, rather than in isolation from, their dynamical behavior. A physical basis must be sought for the semiempirical temperature formula which has been given a critical role in the collapse of diffuse clouds. Self-shielding effects in the chemistry of CO were neglected and this drawback should be removed; the ability of the model to explain the fractional abundances of more complex molecules, such as cyanopolyynes, should be examined.

  16. Constraints on Galactic Neutrino Emission with Seven Years of IceCube Data

    NASA Astrophysics Data System (ADS)

    Aartsen, M. G.; Ackermann, M.; Adams, J.; Aguilar, J. A.; Ahlers, M.; Ahrens, M.; Samarai, I. Al; Altmann, D.; Andeen, K.; Anderson, T.; Ansseau, I.; Anton, G.; Argüelles, C.; Auffenberg, J.; Axani, S.; Bagherpour, H.; Bai, X.; Barron, J. P.; Barwick, S. W.; Baum, V.; Bay, R.; Beatty, J. J.; Becker Tjus, J.; Becker, K.-H.; BenZvi, S.; Berley, D.; Bernardini, E.; Besson, D. Z.; Binder, G.; Bindig, D.; Blaufuss, E.; Blot, S.; Bohm, C.; Börner, M.; Bos, F.; Bose, D.; Böser, S.; Botner, O.; Bourbeau, J.; Bradascio, F.; Braun, J.; Brayeur, L.; Brenzke, M.; Bretz, H.-P.; Bron, S.; Burgman, A.; Carver, T.; Casey, J.; Casier, M.; Cheung, E.; Chirkin, D.; Christov, A.; Clark, K.; Classen, L.; Coenders, S.; Collin, G. H.; Conrad, J. M.; Cowen, D. F.; Cross, R.; Day, M.; de André, J. P. A. M.; De Clercq, C.; DeLaunay, J. J.; Dembinski, H.; De Ridder, S.; Desiati, P.; de Vries, K. D.; de Wasseige, G.; de With, M.; DeYoung, T.; Díaz-Vélez, J. C.; di Lorenzo, V.; Dujmovic, H.; Dumm, J. P.; Dunkman, M.; Eberhardt, B.; Ehrhardt, T.; Eichmann, B.; Eller, P.; Evenson, P. A.; Fahey, S.; Fazely, A. R.; Felde, J.; Filimonov, K.; Finley, C.; Flis, S.; Franckowiak, A.; Friedman, E.; Fuchs, T.; Gaisser, T. K.; Gallagher, J.; Gerhardt, L.; Ghorbani, K.; Giang, W.; Glauch, T.; Glüsenkamp, T.; Goldschmidt, A.; Gonzalez, J. G.; Grant, D.; Griffith, Z.; Haack, C.; Hallgren, A.; Halzen, F.; Hanson, K.; Hebecker, D.; Heereman, D.; Helbing, K.; Hellauer, R.; Hickford, S.; Hignight, J.; Hill, G. C.; Hoffman, K. D.; Hoffmann, R.; Hokanson-Fasig, B.; Hoshina, K.; Huang, F.; Huber, M.; Hultqvist, K.; In, S.; Ishihara, A.; Jacobi, E.; Japaridze, G. S.; Jeong, M.; Jero, K.; Jones, B. J. P.; Kalacynski, P.; Kang, W.; Kappes, A.; Karg, T.; Karle, A.; Katz, U.; Kauer, M.; Keivani, A.; Kelley, J. L.; Kheirandish, A.; Kim, J.; Kim, M.; Kintscher, T.; Kiryluk, J.; Kittler, T.; Klein, S. R.; Kohnen, G.; Koirala, R.; Kolanoski, H.; Köpke, L.; Kopper, C.; Kopper, S.; Koschinsky, J. P.; Koskinen, D. J.; Kowalski, M.; Krings, K.; Kroll, M.; Krückl, G.; Kunnen, J.; Kunwar, S.; Kurahashi, N.; Kuwabara, T.; Kyriacou, A.; Labare, M.; Lanfranchi, J. L.; Larson, M. J.; Lauber, F.; Lennarz, D.; Lesiak-Bzdak, M.; Leuermann, M.; Liu, Q. R.; Lu, L.; Lünemann, J.; Luszczak, W.; Madsen, J.; Maggi, G.; Mahn, K. B. M.; Mancina, S.; Maruyama, R.; Mase, K.; Maunu, R.; McNally, F.; Meagher, K.; Medici, M.; Meier, M.; Menne, T.; Merino, G.; Meures, T.; Miarecki, S.; Micallef, J.; Momenté, G.; Montaruli, T.; Moore, R. W.; Moulai, M.; Nahnhauer, R.; Nakarmi, P.; Naumann, U.; Neer, G.; Niederhausen, H.; Nowicki, S. C.; Nygren, D. R.; Obertacke Pollmann, A.; Olivas, A.; O'Murchadha, A.; Palczewski, T.; Pandya, H.; Pankova, D. V.; Peiffer, P.; Pepper, J. A.; Pérez de los Heros, C.; Pieloth, D.; Pinat, E.; Plum, M.; Price, P. B.; Przybylski, G. T.; Raab, C.; Rädel, L.; Rameez, M.; Rawlins, K.; Reimann, R.; Relethford, B.; Relich, M.; Resconi, E.; Rhode, W.; Richman, M.; Robertson, S.; Rongen, M.; Rott, C.; Ruhe, T.; Ryckbosch, D.; Rysewyk, D.; Sälzer, T.; Sanchez Herrera, S. E.; Sandrock, A.; Sandroos, J.; Sarkar, S.; Sarkar, S.; Satalecka, K.; Schlunder, P.; Schmidt, T.; Schneider, A.; Schoenen, S.; Schöneberg, S.; Schumacher, L.; Seckel, D.; Seunarine, S.; Soldin, D.; Song, M.; Spiczak, G. M.; Spiering, C.; Stachurska, J.; Stanev, T.; Stasik, A.; Stettner, J.; Steuer, A.; Stezelberger, T.; Stokstad, R. G.; Stößl, A.; Strotjohann, N. L.; Sullivan, G. W.; Sutherland, M.; Taboada, I.; Tatar, J.; Tenholt, F.; Ter-Antonyan, S.; Terliuk, A.; Tešić, G.; Tilav, S.; Toale, P. A.; Tobin, M. N.; Toscano, S.; Tosi, D.; Tselengidou, M.; Tung, C. F.; Turcati, A.; Turley, C. F.; Ty, B.; Unger, E.; Usner, M.; Vandenbroucke, J.; Van Driessche, W.; van Eijndhoven, N.; Vanheule, S.; van Santen, J.; Vehring, M.; Vogel, E.; Vraeghe, M.; Walck, C.; Wallace, A.; Wallraff, M.; Wandler, F. D.; Wandkowsky, N.; Waza, A.; Weaver, C.; Weiss, M. J.; Wendt, C.; Westerhoff, S.; Whelan, B. J.; Wickmann, S.; Wiebe, K.; Wiebusch, C. H.; Wille, L.; Williams, D. R.; Wills, L.; Wolf, M.; Wood, J.; Wood, T. R.; Woolsey, E.; Woschnagg, K.; Xu, D. L.; Xu, X. W.; Xu, Y.; Yanez, J. P.; Yodh, G.; Yoshida, S.; Yuan, T.; Zoll, M.; IceCube Collaboration

    2017-11-01

    The origins of high-energy astrophysical neutrinos remain a mystery despite extensive searches for their sources. We present constraints from seven years of IceCube Neutrino Observatory muon data on the neutrino flux coming from the Galactic plane. This flux is expected from cosmic-ray interactions with the interstellar medium or near localized sources. Two methods were developed to test for a spatially extended flux from the entire plane, both of which are maximum likelihood fits but with different signal and background modeling techniques. We consider three templates for Galactic neutrino emission based primarily on gamma-ray observations and models that cover a wide range of possibilities. Based on these templates and in the benchmark case of an unbroken {E}-2.5 power-law energy spectrum, we set 90% confidence level upper limits, constraining the possible Galactic contribution to the diffuse neutrino flux to be relatively small, less than 14% of the flux reported in Aartsen et al. above 1 TeV. A stacking method is also used to test catalogs of known high-energy Galactic gamma-ray sources.

  17. The Star Formation Scenario in the Galactic Range from Ophiuchus to Chamaeleon

    NASA Astrophysics Data System (ADS)

    Sartori, Marília J.

    2000-07-01

    The molecular cloud complexes of Chamaeleon, Lupus and Ophiuchus, and the OB sub-groups of stars that form the Scorpius OB2 association are located at galactic longitudes in the interval 290° to 360°, all of them in a distance range from 100 to 200 pc. The distribution of known young stars in this region, both of low and of high mass, suggests that they belong to a single large structure. Moreover, a significant number of pre-main sequence (PMS) stars far from the star-forming clouds have been recently discovered. This scenario suggests that a global analysis of the star formation must be performed, especially of such nearby regions for which a large amount of data can be obtained. In order to test the models that intend to describe the history of star formation in these nearby star-forming regions, we collected information on the distribution of gas and dust and on the related young stellar populations. We mapped the molecular clouds of the complexes located in Chamaeleon, Lupus and Ophiuchus by means of an automatic method for star counting on plates of the Digitized Sky Survey. Another improvement with respect to the traditional star counts method is that we have adopted a relation between the extinction and the number of stars based on the predictions of the Galaxy's model by Ortiz & Lépine (1993, A&A 279, 90). Our maps confirm that there is an extended distribution of dust in the regions between the main clouds. We built a complete list of PMS and early-type stars from the literature, including all the available distance, radial velocity and proper motion data. We completed these data with our own determinations of proper motions of PMS stars, using positions obtained with the Valinhos Meridian Circle (IAG/USP, Brazil), photographic plates and public catalogs (Teixeira et al. 2000, A&A in press). Using these kinematical data and comparing the positions and spatial velocities of PMS stars to those of early-type stars, we verified that the kinematics of the

  18. A composite large-scale CO survey at high Galactic latitudes in the second quadrant

    NASA Technical Reports Server (NTRS)

    Heithausen, A.; Stacy, J. G.; Thaddeus, P.

    1990-01-01

    Surveys of the second quadrant of the Galaxy undertaken with the CfA 1.2-m telescope have been combined to produce a map of approximately 620 sq deg in the 2.6-mm CO (J = 1-0) line at high Galactic latitudes. CO was detected over about 13 percent of the region surveyed, an order of magnitude more gas by area than previously estimated. In contrast, only 26 percent of the area predicted by Desert et al. (1988) to contain molecular gas actually reveals CO, and about two-thirds of the clouds detected are not listed in their catalog of IR excess clouds.

  19. Triggered O Star Formation in M20 via Cloud-Cloud Collision: Comparisons between High-resolution CO Observations and Simulations

    NASA Astrophysics Data System (ADS)

    Torii, K.; Hattori, Y.; Hasegawa, K.; Ohama, A.; Haworth, T. J.; Shima, K.; Habe, A.; Tachihara, K.; Mizuno, N.; Onishi, T.; Mizuno, A.; Fukui, Y.

    2017-02-01

    Understanding high-mass star formation is one of the top-priority issues in astrophysics. Recent observational studies have revealed that cloud-cloud collisions may play a role in high-mass star formation in several places in the Milky Way and the Large Magellanic Cloud. The Trifid Nebula M20 is a well-known Galactic H II region ionized by a single O7.5 star. In 2011, based on the CO observations with NANTEN2, we reported that the O star was formed by the collision between two molecular clouds ˜0.3 Myr ago. Those observations identified two molecular clouds toward M20, traveling at a relative velocity of 7.5 {km} {{{s}}}-1. This velocity separation implies that the clouds cannot be gravitationally bound to M20, but since the clouds show signs of heating by the stars there they must be spatially coincident with it. A collision is therefore highly possible. In this paper we present the new CO J = 1-0 and J = 3-2 observations of the colliding clouds in M20 performed with the Mopra and ASTE telescopes. The high-resolution observations revealed that the two molecular clouds have peculiar spatial and velocity structures, I.e., a spatially complementary distribution between the two clouds and a bridge feature that connects the two clouds in velocity space. Based on a new comparison with numerical models, we find that this complementary distribution is an expected outcome of cloud-cloud collisions, and that the bridge feature can be interpreted as the turbulent gas excited at the interface of the collision. Our results reinforce the cloud-cloud collision scenario in M20.

  20. Dark matter and pulsar model constraints from Galactic center Fermi/LAT γ-ray observations

    NASA Astrophysics Data System (ADS)

    Gordon, Chris; Macias, Oscar

    2014-05-01

    Employing Fermi/LAT γ-ray observations, several independent groups have found excess extended γ-ray emission at the Galactic center (GC). Both, annihilating dark matter (DM) or a population of ~ 103 unresolved millisecond pulsars (MSPs) are regarded as well motivated possible explanations. However, there is significant uncertainties in the diffuse Galactic background at the GC. We have performed a revaluation of these two models for the extended γ-ray source at the GC by accounting for the systematic uncertainties of the Galactic diffuse emission model. We also marginalize over point source and diffuse background parameters in the region of interest. We show that the excess emission is significantly more extended than a point source. We find that the DM (or pulsar population) signal is larger than the systematic errors and therefore proceed to determine the sectors of parameter space that provide an acceptable fit to the data. We found that a population of several thousand MSPs with parameters consistent with the average spectral shape of Fermi/LAT measured MSPs was able to fit the GC excess emission. For DM, we found that a pure τ+τ- annihilation channel is not a good fit to the data. But a mixture of τ+τ- and bb with a <σ v> of order the thermal relic value and a DM mass of around 20 to 60 GeV provides an adequate fit.

  1. Dark matter and pulsar model constraints from Galactic Center Fermi-LAT gamma-ray observations

    NASA Astrophysics Data System (ADS)

    Gordon, Chris; Macías, Oscar

    2013-10-01

    Employing Fermi-LAT gamma-ray observations, several independent groups have found excess extended gamma-ray emission at the Galactic Center (GC). Both annihilating dark matter (DM) or a population of ˜103 unresolved millisecond pulsars (MSPs) are regarded as well-motivated possible explanations. However, there are significant uncertainties in the diffuse galactic background at the GC. We have performed a revaluation of these two models for the extended gamma-ray source at the GC by accounting for the systematic uncertainties of the Galactic diffuse emission model. We also marginalize over point-source and diffuse background parameters in the region of interest. We show that the excess emission is significantly more extended than a point source. We find that the DM (or pulsar-population) signal is larger than the systematic errors and therefore proceed to determine the sectors of parameter space that provide an acceptable fit to the data. We find that a population of 1000-2000 MSPs with parameters consistent with the average spectral shape of Fermi-LAT measured MSPs is able to fit the GC excess emission. For DM, we find that a pure τ+τ- annihilation channel is not a good fit to the data. But a mixture of τ+τ- and bb¯ with a ⟨σv⟩ of order the thermal relic value and a DM mass of around 20 to 60 GeV provides an adequate fit.

  2. The Buildup of a Tightly Bound Comet Cloud around an Early Sun Immersed in a Dense Galactic Environment: Numerical Experiments

    NASA Astrophysics Data System (ADS)

    Fernández, Julio A.; Brunini, Adrián

    2000-06-01

    We simulate numerically the buildup of a comet reservoir around the early Sun assumed to be still immersed in the placental molecular gas that gave birth to it, and to be gravitationally bound to other young stars formed out of the same gas. We show that under certain reasonable assumptions about the early galactic environment of the Sun, an inner core of the Oort cloud of radius from a few 10 2 AU to a few 10 3 AU forms on a time scale of a few million year. Jupiter and Saturn are the main scatterers of matter to this inner core, though a significant fraction of the matter scattered by these two planets (perhaps more than 50%) might originally come from the accretion zones of Uranus and Neptune. If the formation process of the jovian planets left unaccreted an amount of solid material of the same order of their own planet masses (the rock-icy cores for the cases of Jupiter and Saturn), then a few M ⊕ of the scattered solid material might have been trapped in the Oort reservoir, most of it in the inner core.

  3. Why Did the 2010 Eyjafjallajokull Volcanic Eruption Cloud Last So Long?

    NASA Astrophysics Data System (ADS)

    Jellinek, M.; Carazzo, G.

    2013-12-01

    The global economic consequences of the relatively small Eyjafjallajokull eruption in the spring of 2010 caught the world off guard. That the eruption cloud lasted for several months rather than weeks, efficiently disrupting air travel and the holiday plans of thousands of tourists, drew arguably more attention and a certainly garnered a highly emotional response. The longevity of this eruption cloud was touted to be "an anomaly". However, this anomaly nearly repeated itself the following year in the form of the 2011 Puyehue-Cordon Caulle eruption cloud. A major reason that the behavior of the 2010 Eyjafjallajokul cloud was surprising is that "standard" models for ash sedimentation (i.e., heavy particles fall out of the cloud faster than light particles) are incomplete. Observations of the 2010 Eyjafjallajokull, as well as the structure of atmospheric aerosol clouds from the 1991 Mt Pinatubo event, suggest that an additional key process in addition to particle settling is the production of internal layering. We use analog experiments on turbulent particle-laden umbrella clouds and simple models to show that this layering occurs where natural convection driven by particle sedimentation and the differential diffusion of primarily heat and fine particles give rise to a large scale instability leading to this layering. This 'particle diffusive convection' strongly influences cloud longevity where volcanic umbrella clouds are enriched in fine ash. More generally, volcanic cloud residence times will depend on ash fluxes related to both individual particle settling and diffusive convection. We discuss a new sedimentation model that includes both contributions to the particle flux and explains the the rate of change of particle concentration in the 1982 El Chichon, 1991 Mt Pinatubo and 1992 Mt Spurr ash-clouds. Examples of periodic layering in volcanic clouds compared with experiments in which periodic layering emerges as a result of buoyancy effects related to a particle

  4. Measurements of galactic plane gamma ray emission in the energy range from 10 - 80 MeV

    NASA Technical Reports Server (NTRS)

    Bertsch, D. L.; Kniffen, D. A.

    1982-01-01

    A spark chamber gamma ray telescope was developed and flown to observe diffuse gamma ray emission from the central region of the galaxy. The extension of observations down to 10 MeV provides important new data indicating that the galactic diffuse gamma ray spectrum continues as a power law down to about 10 MeV, an observation in good agreement with recent theoretical predictions. Data from other experiments in the range from 100 keV to 10 MeV show a significant departure from the extension of the power-law fit to the medium energy observations reported here, possibly indicating that a different mechanism may be responsible for the emissions below and above a few MeV. The intensity of the spectrum above 10 MeV implies a galactic electron spectrum which is also very intense down to about 10 MeV. Electrons in this energy range cannot be observed in the solar cavity because of solar modulation effects. The galactic gamma ray data are compared with recent theoretical predictions.

  5. Cosmic Ray Acceleration by a Versatile Family of Galactic Wind Termination Shocks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bustard, Chad; Zweibel, Ellen G.; Cotter, Cory, E-mail: bustard@wisc.edu

    2017-01-20

    There are two distinct breaks in the cosmic ray (CR) spectrum: the so-called “knee” around 3 × 10{sup 15} eV and the so-called “ankle” around 10{sup 18} eV. Diffusive shock acceleration (DSA) at supernova remnant (SNR) shock fronts is thought to accelerate galactic CRs to energies below the knee, while an extragalactic origin is presumed for CRs with energies beyond the ankle. CRs with energies between 3 × 10{sup 15} and 10{sup 18} eV, which we dub the “shin,” have an unknown origin. It has been proposed that DSA at galactic wind termination shocks, rather than at SNR shocks, maymore » accelerate CRs to these energies. This paper uses the galactic wind model of Bustard et al. to analyze whether galactic wind termination shocks may accelerate CRs to shin energies within a reasonable acceleration time and whether such CRs can subsequently diffuse back to the Galaxy. We argue for acceleration times on the order of 100 Myr rather than a few billion years, as assumed in some previous works, and we discuss prospects for magnetic field amplification at the shock front. Ultimately, we generously assume that the magnetic field is amplified to equipartition. This formalism allows us to obtain analytic formulae, applicable to any wind model, for CR acceleration. Even with generous assumptions, we find that very high wind velocities are required to set up the necessary conditions for acceleration beyond 10{sup 17} eV. We also estimate the luminosities of CRs accelerated by outflow termination shocks, including estimates for the Milky Way wind.« less

  6. Precipitating Condensation Clouds in Substellar Atmospheres

    NASA Technical Reports Server (NTRS)

    Ackerman, Andrew S.; Marley, Mark S.; Gore, Warren J. (Technical Monitor)

    2000-01-01

    We present a method to calculate vertical profiles of particle size distributions in condensation clouds of giant planets and brown dwarfs. The method assumes a balance between turbulent diffusion and precipitation in horizontally uniform cloud decks. Calculations for the Jovian ammonia cloud are compared with previous methods. An adjustable parameter describing the efficiency of precipitation allows the new model to span the range of predictions from previous models. Calculations for the Jovian ammonia cloud are found to be consistent with observational constraints. Example calculations are provided for water, silicate, and iron clouds on brown dwarfs and on a cool extrasolar giant planet.

  7. IUE/IRAS studies of metal abundances and infrared cirrus

    NASA Technical Reports Server (NTRS)

    Vansteenberg, M. E.; Shull, J. M.

    1986-01-01

    A survey is reported of interstellar densities, abundances, and cloud structure in the Galaxy, using the IUE and IRAS satellites. Heavy element depletions are discussed along with their correlations with mean density, reddening, and galactic location. Interesting correlations between the Fe/Si abundance ratio and the infrared diffuse cirrus is also reported, which may provide information on the history and formation of grains in the galactic halo.

  8. ORIGINS OF SCATTER IN THE RELATIONSHIP BETWEEN HCN 1-0 AND DENSE GAS MASS IN THE GALACTIC CENTER

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mills, Elisabeth A. C.; Battersby, Cara, E-mail: elisabeth.mills@sjsu.edu

    We investigate the correlation of HCN 1-0 with gas mass in the central 300 pc of the Galaxy. We find that on the ∼10 pc size scale of individual cloud cores, HCN 1-0 is well correlated with dense gas mass when plotted as a log–log relationship. There is ∼0.75 dex of scatter in this relationship from clouds like Sgr B2, which has an integrated HCN 1-0 intensity of a cloud less than half its mass, and others that have HCN 1-0 enhanced by a factor of 2–3 relative to clouds of comparable mass. We identify the two primary sources ofmore » scatter to be self-absorption and variations in HCN abundance. We also find that the extended HCN 1-0 emission is more intense per unit mass than in individual cloud cores. In fact the majority (80%) of HCN 1-0 emission comes from extended gas with column densities below 7 × 10{sup 22} cm{sup −2}, accounting for 68% of the total mass. We find variations in the brightness of HCN 1-0 would only yield a ∼10% error in the dense gas mass inferred from this line in the Galactic center. However, the observed order of magnitude HCN abundance variations, and the systematic nature of these variations, warn of potential biases in the use of HCN as dense gas mass tracer in more extreme environments such as an active galactic nucleus and shock-dominated regions. We also investigate other 3 mm tracers, finding that HNCO is better correlated with mass than HCN, and might be a better tracer of cloud mass in this environment.« less

  9. Origin of CH+ in diffuse molecular clouds. Warm H2 and ion-neutral drift

    NASA Astrophysics Data System (ADS)

    Valdivia, Valeska; Godard, Benjamin; Hennebelle, Patrick; Gerin, Maryvonne; Lesaffre, Pierre; Le Bourlot, Jacques

    2017-04-01

    Context. Molecular clouds are known to be magnetised and to display a turbulent and complex structure where warm and cold phases are interwoven. The turbulent motions within molecular clouds transport molecules, and the presence of magnetic fields induces a relative velocity between neutrals and ions known as the ion-neutral drift (vd). These effects all together can influence the chemical evolution of the clouds. Aims: This paper assesses the roles of two physical phenomena which have previously been invoked to boost the production of CH+ under realistic physical conditions: the presence of warm H2 and the increased formation rate due to the ion-neutral drift. Methods: We performed ideal magnetohydrodynamical (MHD) simulations that include the heating and cooling of the multiphase interstellar medium (ISM), and where we treat dynamically the formation of the H2 molecule. In a post-processing step we compute the abundances of species at chemical equilibrium using a solver that we developed. The solver uses the physical conditions of the gas as input parameters, and can also prescribe the H2 fraction if needed. We validate our approach by showing that the H2 molecule generally has a much longer chemical evolution timescale compared to the other species. Results: We show that CH+ is efficiently formed at the edge of clumps, in regions where the H2 fraction is low (0.3-30%) but nevertheless higher than its equilibrium value, and where the gas temperature is high (≳ 300 K). We show that warm and out of equilibrium H2 increases the integrated column densities of CH+ by one order of magnitude up to values still 3-10 times lower than those observed in the diffuse ISM. We balance the Lorentz force with the ion-neutral drag to estimate the ion-drift velocities from our ideal MHD simulations. We find that the ion-neutral drift velocity distribution peaks around 0.04 km s-1, and that high drift velocities are too rare to have a significant statistical impact on the

  10. Low-frequency polarization measurements of the diffuse radio emission of the galaxy

    NASA Astrophysics Data System (ADS)

    Vinyaikin, E. N.; Paseka, A. M.

    2015-07-01

    Polarization measurements of diffuse Galactic radio emission at 151.5, 198, 217, 237, and 290 MHz have been carried out in the direction of the North Celestial Pole, North Galactic Pole, one region of the North Polar Spur, minimum radio brightness of the Northern sky ( l = 190°, b = 50°), and in the direction l = 147°, b = 9° in the so-called FAN region with enhanced polarization. The results obtained testify to the presence of low spatial frequencies in the angular distribution of the Stokes parameters Q and U of the diffuse Galactic synchrotron emission that are not detectable in interferometric observations. The spectra of the brightness temperature of the polarized component, rotation measures, and intrinsic polarization position angles of the radio emission in the studied regions are presented.

  11. Molecular clouds in the extreme outer galaxy

    NASA Technical Reports Server (NTRS)

    Digel, S.; De Geus, E.; Thaddeus, P.

    1994-01-01

    We present observation of 11 molecular clouds with kinematic Galactocentric distances of 18-28 kpc. The most distant is approximately 10 kpc farther from the Galactic center than any previously known and apparently lies beyond the edge of the optical disk. All are associated with much larger H I concentrations, with typical offsets of approximately 40 pc from the H I peaks. CO observations with the CfA 1.2 m and National Radio Astronomy Observatory (NRAO) 12 m telescopes indicate typical sizes of 20-40 pc, velocity widths of 1-3 km/s, and kinetic temperatures of 10-25 K. They apparently have lower CO luminosities than clouds near the solar circle with similar properties. Some may have associated infrared sources, but owing to the great distances of the clouds, the only general conclusion that can be made about star formation is that stars earlier than B1 are absent. The apparent scarcity of clouds like these indicates that their contribution to the mass of the ISM beyond R = 18 kpc is not significant.

  12. ORIGIN OF THE GALACTIC DIFFUSE X-RAY EMISSION: IRON K-SHELL LINE DIAGNOSTICS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nobukawa, Masayoshi; Uchiyama, Hideki; Nobukawa, Kumiko K.

    This paper reports detailed K-shell line profiles of iron (Fe) and nickel (Ni) of the Galactic Center X-ray Emission (GCXE), Galactic Bulge X-ray Emission (GBXE), Galactic Ridge X-ray Emission (GRXE), magnetic Cataclysmic Variables (mCVs), non-magnetic Cataclysmic Variables (non-mCVs), and coronally Active Binaries (ABs). For the study of the origin of the GCXE, GBXE, and GRXE, the spectral analysis is focused on equivalent widths of the Fe i-K α , Fe xxv-He α , and Fe xxvi-Ly α  lines. The global spectrum of the GBXE is reproduced by a combination of the mCVs, non-mCVs, and ABs spectra. On the other hand,more » the GRXE spectrum shows significant data excesses at the Fe i-K α and Fe xxv-He α  line energies. This means that additional components other than mCVs, non-mCVs, and ABs are required, which have symbiotic phenomena of cold gas and very high-temperature plasma. The GCXE spectrum shows larger excesses than those found in the GRXE spectrum at all the K-shell lines of iron and nickel. Among them the largest ones are the Fe i-K α , Fe xxv-He α , Fe xxvi-Ly α , and Fe xxvi-Ly β  lines. Together with the fact that the scale heights of the Fe i-K α , Fe xxv-He α , and Fe xxvi-Ly α lines are similar to that of the central molecular zone (CMZ), the excess components would be related to high-energy activity in the extreme envelopment of the CMZ.« less

  13. Rocket exhaust ground cloud/atmospheric interactions

    NASA Technical Reports Server (NTRS)

    Hwang, B.; Gould, R. K.

    1978-01-01

    An attempt to identify and minimize the uncertainties and potential inaccuracies of the NASA Multilayer Diffusion Model (MDM) is performed using data from selected Titan 3 launches. The study is based on detailed parametric calculations using the MDM code and a comparative study of several other diffusion models, the NASA measurements, and the MDM. The results are discussed and evaluated. In addition, the physical/chemical processes taking place during the rocket cloud rise are analyzed. The exhaust properties and the deluge water effects are evaluated. A time-dependent model for two aerosol coagulations is developed and documented. Calculations using this model for dry deposition during cloud rise are made. A simple model for calculating physical properties such as temperature and air mass entrainment during cloud rise is also developed and incorporated with the aerosol model.

  14. On the impact of the magnitude of interstellar pressure on physical properties of molecular cloud

    NASA Astrophysics Data System (ADS)

    Anathpindika, S.; Burkert, A.; Kuiper, R.

    2017-04-01

    Recently reported variations in the typical physical properties of Galactic and extra-Galactic molecular clouds (MCs), and, in their star-forming ability, have been attributed to local variations in the magnitude of interstellar pressure. Inferences from these surveys have called into question two long-standing beliefs that: (1) MCs are virialized and (2) they obey the Larson's third law. Here we invoked the framework of cloud formation via collision between warm gas-flows to examine if these latest observational inferences can be reconciled. To this end, we traced the temporal evolution of the gas surface density, the fraction of dense gas, the distribution of gas column density (N-PDF) and the virial nature of the assembled clouds. We conclude that these physical properties exhibit temporal variation and their respective peak magnitude also increases in proportion with the magnitude of external pressure, Pext. The velocity dispersion in assembled clouds appears to follow the power law, σ _{gas}∝ P_{ext}^{0.23}. The power-law tail of the N-PDFs at higher densities becomes shallower with increasing magnitude of external pressure for Pext/kB ≲ 107 K cm-3; at higher magnitudes such as those typically found in the Galactic Central Molecular Zone (Pext/kB > 107 K cm-3), the power-law shows significant steepening. While our results are broadly consistent with inferences from various recent observational surveys, it appears that MCs do not exhibit a unique set of properties, but rather a wide variety that can be reconciled with a range of magnitudes of pressure between 104 and 108 K cm-3.

  15. Computation of shear-induced collective-diffusivity in emulsions

    NASA Astrophysics Data System (ADS)

    Malipeddi, Abhilash Reddy; Sarkar, Kausik

    2017-11-01

    The shear-induced collective-diffusivity of drops in an emulsion is calculated through simulation. A front-tracking finite difference method is used to integrate the Navier-Stokes equations. When a cloud of drops is subjected to shear flow, after a certain time, the width of the cloud increases with the 1/3 power of time. This scaling of drop-cloud-width with time is characteristic of (sub-)diffusion that arises from irreversible two-drop interactions. The collective diffusivity is calculated from this relationship. A feature of the procedure adopted here is the modest computational requirement, wherein, a few drops ( 70) in shear for short time ( 70 strain) is found to be sufficient to get a good estimate. As far as we know, collective-diffusivity has not been calculated for drops through simulation till now. The computed values match with experimental measurements reported in the literature. The diffusivity in emulsions is calculated for a range of Capillary (Ca) and Reynolds (Re) numbers. It is found to be a unimodal function of Ca , similar to self-diffusivity. A sub-linear increase of the diffusivity with Re is seen for Re < 5 . This work has been limited to a viscosity matched case.

  16. Study of the Fine-Scale Structure of Cumulus Clouds.

    NASA Astrophysics Data System (ADS)

    Rodi, Alfred R.

    Small cumulus clouds are studied using data from an instrumented aircraft. Two aspects of the role of turbulence and mixing in these couds are examined: (1) the effect of mixing on the droplet size distribution, and (2) the effect of turbulence on the spread of ice crystal plumes artificially generated with cloud seeding agents. The data were collected in the course of the Bureau of Reclamation's High Plains Cooperative Experiment (HIPLEX) in Montana in the summers of 1978-80 by the University of Wyoming King Air aircraft. The shape of the cloud droplet spectrum as measured by the Particle Measuring Systems (PMS) Forward Scattering Spectrometer Probe (FSSP) is found to be very sensitive to entrainment of dry environmental air into the cloud. The narrowest cloud droplet spectra, the highest droplet concentrations, and the largest sized droplets are found in the cloud parcels which are least affected by entrainment. The most dilute regions of cloud exhibit the broadest spectra which are frequently bimodal. A procedure for measuring cloud inhomogeneity from FSSP is developed. The data shows that the clouds are extremely inhomogeneous in structure. Current models of inhomogeneous mixing are shown to be inadequate in explaining droplet spectrum effects. However, the inhomogeneous models characterize the data far better than classical models of droplet spectrum evolution. High resolution measurements of ice crystals from the PMS two dimensional imaging probe are used to characterize the spread of the ice crystal plume in seeded clouds. Plume spread is found to be a very complicated process which is in some cases dominated by organized motions in the cloud. As a result, classical diffusion theory is often inadequate to predict plume growth. The turbulent diffusion that occurs is shown to be best modeled using the relative diffusion concept of Richardson. Procedures for adapting aircraft data to the relative diffusion model are developed, including techniques for

  17. Present-day Galaxy Evolution through Baryon Flows in the Circumgalactic Medium of the Galactic-Magellanic System

    NASA Astrophysics Data System (ADS)

    Barger, Kathleen Ann

    Galaxy evolution is governed by an intricate ballet of gas flows. To sustain star formation over many billions of years, more gas must inflow than outflow. Although numerous gas clouds surround the Milky Way, their attributes, origins, destinations, and responses to their surroundings need thorough investigation on an individual basis to realize how the entire population affects Galactic evolution. This dissertation hones in on two circumgalactic gas structures near the Milky Way: Complex A and the Magellanic Bridge. Complex A is an elongated gas structure that is traversing the hot Halo of the Milky Way, plummeting towards the Galaxy's disk. The Magellanic Bridge is a bridge of gas and stars that connects the Magellanic Clouds, created by galaxy interactions. In this thesis, I present the results of the highest sensitivity and kinematically resolved Halpha emission-line survey of Complex A and Halpha, [S II], and [N II] surveys of the Magellanic Bridge using the Wisconsin Halpha Mapper to explore their properties, surroundings, origins, and fates to unravel how circumgalactic structures influence galaxy evolution. I find that the observational properties of Complex A closely match with radiative transfer model predictions of a cloud ionized by the Milky Way and extragalactic background, implying a 5% escape fraction of ionizing photons from the Galactic disk. The multiline observations and modeling place the cloud's metallicity below solar. These results combined with other studies suggests the cloud has an intergalactic medium origin. I find that the global distribution of the warm ionized gas traces the neutral gas in the Magellanic Bridge. These observations place the ionized gas mass between (0.7 -- 1.6) x 108 solar masses, implying an ionization fraction of 25 -- 33% and a 5% maximum escape fraction of ionizing photons from the Magellanic Clouds. The line ratios reveal that the physical state of the the SMC-Tail and the LMC-Bridge interface regions differ

  18. A determination of the spectra of Galactic components observed by the Wilkinson Microwave Anisotropy Probe

    NASA Astrophysics Data System (ADS)

    Davies, R. D.; Dickinson, C.; Banday, A. J.; Jaffe, T. R.; Górski, K. M.; Davis, R. J.

    2006-08-01

    Wilkinson Microwave Anisotropy Probe (WMAP) data when combined with ancillary data on free-free, synchrotron and dust allow an improved understanding of the spectrum of emission from each of these components. Here, we examine the sky variation at intermediate latitudes using a cross-correlation technique. In particular, we compare the observed emission in 15 selected sky regions to three `standard' templates. The free-free emission of the diffuse ionized gas is fitted by a well-known spectrum at K and Ka band, but the derived emissivity corresponds to a mean electron temperature of ~4000-5000 K. This is inconsistent with estimates from Galactic HII regions although a variation in the derived ratio of Hα to free-free intensity by a factor of ~2 is also found from region to region. The origin of the discrepancy is unclear. The anomalous emission associated with dust is clearly detected in most of the 15 fields studied. The anomalous emission correlates well with the Finkbeiner, Davis & Schlegel model 8 predictions (FDS8) at 94 GHz, with an effective spectral index between 20 and 60 GHz, of β ~ -2.85. Furthermore, the emissivity varies by a factor of ~2 from cloud to cloud. A modestly improved fit to the anomalous dust at K band is provided by modulating the template by an estimate of the dust colour temperature, specifically FDS8 × Tn. We find a preferred value n ~ 1.6, although there is a scatter from region to region. Nevertheless, the preferred index drops to zero at higher frequencies where the thermal dust emission dominates. The synchrotron emission steepens between GHz frequencies and the WMAP bands. There are indications of spectral index variations across the sky but the current data are not precise enough to accurately quantify this from region to region. Our analysis of the WMAP data indicates strongly that the dust-correlated emission at the low WMAP frequencies has a spectrum which is compatible with spinning dust; we find no evidence for a

  19. Neutrino-heated stars and broad-line emission from active galactic nuclei

    NASA Technical Reports Server (NTRS)

    Macdonald, James; Stanev, Todor; Biermann, Peter L.

    1991-01-01

    Nonthermal radiation from active galactic nuclei indicates the presence of highly relativistic particles. The interaction of these high-energy particles with matter and photons gives rise to a flux of high-energy neutrinos. In this paper, the influence of the expected high neutrino fluxes on the structure and evolution of single, main-sequence stars is investigated. Sequences of models of neutrino-heated stars in thermal equilibrium are presented for masses 0.25, 0.5, 0.8, and 1.0 solar mass. In addition, a set of evolutionary sequences for mass 0.5 solar mass have been computed for different assumed values for the incident neutrino energy flux. It is found that winds driven by the heating due to high-energy particles and hard electromagnetic radiation of the outer layers of neutrino-bloated stars may satisfy the requirements of the model of Kazanas (1989) for the broad-line emission clouds in active galactic nuclei.

  20. TEV GAMMA-RAY OBSERVATIONS OF THE GALACTIC CENTER RIDGE BY VERITAS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Archer, A.; Buckley, J. H.; Bugaev, V.

    2016-04-20

    The Galactic Center ridge has been observed extensively in the past by both GeV and TeV gamma-ray instruments revealing a wealth of structure, including a diffuse component and the point sources G0.9+0.1 (a composite supernova remnant) and Sgr A* (believed to be associated with the supermassive black hole located at the center of our Galaxy). Previous very high energy (VHE) gamma-ray observations with the H.E.S.S. experiment have also detected an extended TeV gamma-ray component along the Galactic plane in the >300 GeV gamma-ray regime. Here we report on observations of the Galactic Center ridge from 2010 to 2014 by themore » VERITAS telescope array in the >2 TeV energy range. From these observations we (1) provide improved measurements of the differential energy spectrum for Sgr A* in the >2 TeV gamma-ray regime, (2) provide a detection in the >2 TeV gamma-ray emission from the composite SNR G0.9+0.1 and an improved determination of its multi-TeV gamma-ray energy spectrum, and (3) report on the detection of VER J1746-289, a localized enhancement of >2 TeV gamma-ray emission along the Galactic plane.« less

  1. Clouds and the Near-Earth Environment: Possible Links

    NASA Astrophysics Data System (ADS)

    Condurache-Bota, Simona; Voiculescu, Mirela; Dragomir, Carmelia

    2015-12-01

    Climate variability is a hot topic not only for scientists and policy-makers, but also for each and every one of us. The anthropogenic activities are considered to be responsible for most climate change, however there are large uncertainties about the magnitude of effects of solar variability and other extraterrestrial influences, such as galactic cosmic rays on terrestrial climate. Clouds play an important role due to feedbacks of the radiation budget: variation of cloud cover/composition affects climate, which, in turn, affects cloud cover via atmospheric dynamics and sea temperature variations. Cloud formation and evolution are still under scientific scrutiny, since their microphysics is still not understood. Besides atmospheric dynamics and other internal climatic parameters, extraterrestrial sources of cloud cover variation are considered. One of these is the solar wind, whose effect on cloud cover might be modulated by the global atmospheric electrical circuit. Clouds height and composition, their seasonal variation and latitudinal distribution should be considered when trying to identify possible mechanisms by which solar energy is transferred to clouds. The influence of the solar wind on cloud formation can be assessed also through the ap index - the geomagnetic storm index, which can be readily connected with interplanetary magnetic field, IMF structure. This paper proposes to assess the possible relationship between both cloud cover and solar wind proxies, as the ap index, function of cloud height and composition and also through seasonal studies. The data covers almost three solar cycles (1984-2009). Mechanisms are looked for by investigating observed trends or correlation at local/seasonal scale

  2. Atomic Oxygen Abundance in Molecular Clouds: Absorption Toward Sagittarius B2

    NASA Technical Reports Server (NTRS)

    Lis, D. C.; Keene, Jocelyn; Phillips, T. G.; Schilke, P.; Werner, M. W.; Zmuidzinas, J.

    2001-01-01

    We have obtained high-resolution (approximately 35 km/s) spectra toward the molecular cloud Sgr B2 at 63 micrometers, the wavelength of the ground-state fine-structure line of atomic oxygen (O(I)), using the ISO-LWS instrument. Four separate velocity components are seen in the deconvolved spectrum, in absorption against the dust continuum emission of Sgr B2. Three of these components, corresponding to foreground clouds, are used to study the O(I) content of the cool molecular gas along the line of sight. In principle, the atomic oxygen that produces a particular velocity component could exist in any, or all, of three physically distinct regions: inside a dense molecular cloud, in the UV illuminated surface layer (PDR) of a cloud, and in an atomic (H(I)) gas halo. For each of the three foreground clouds, we estimate, and subtract from the observed O(I) column density, the oxygen content of the H(I) halo gas, by scaling from a published high-resolution 21 cm spectrum. We find that the remaining O(I) column density is correlated with the observed (13)CO column density. From the slope of this correlation, an average [O(I)]/[(13)CO] ratio of 270 +/- 120 (3-sigma) is derived, which corresponds to [O(I)]/[(13)CO] = 9 for a CO to (13)CO abundance ratio of 30. Assuming a (13)CO abundance of 1x10(exp -6) with respect to H nuclei, we derive an atomic oxygen abundance of 2.7x10(exp -4) in the dense gas phase, corresponding to a 15% oxygen depletion compared to the diffuse ISM in our Galactic neighborhood. The presence of multiple, spectrally resolved velocity components in the Sgr B2 absorption spectrum allows, for the first time, a direct determination of the PDR contribution to the O(I) column density. The PDR regions should contain O(I) but not (13)CO, and would thus be expected to produce an offset in the O(I)-(13)CO correlation. Our data do not show such an offset, suggesting that within our beam O(I) is spatially coexistent with the molecular gas, as traced by (13)CO

  3. Cosmic Ray Acceleration from Multiple Galactic Wind Shocks

    NASA Astrophysics Data System (ADS)

    Cotter, Cory; Bustard, Chad; Zweibel, Ellen

    2018-01-01

    Cosmic rays still have an unknown origin. Many mechanisms have been suggested for their acceleration including quasars, pulsars, magnetars, supernovae, supernova remnants, and galactic termination shocks. The source of acceleration may be a mixture of these and a different mixture in different energy regimes. Using numerical simulations, we investigate multiple shocks in galactic winds as potential cosmic rays sources. By having shocks closer to the parent galaxy, more particles may diffuse back to the disk instead of being blown out in the wind, as found in Bustard, Zweibel, and Cotter (2017, ApJ) and also Merten, Bustard, Zweibel, and Tjus (to be submitted to ApJ). Specifically, this flux of cosmic rays could contribute to the unexplained "shin" region between the well-known "knee" and "ankle" of the cosmic ray spectrum. We would like to acknowledge support from the National Science Foundation (NSF) Graduate Research Fellowship Program under grant No. DGE-125625 and NSF grant No. AST-1616037.

  4. Interstellar Matters: Neutral Hydrogen and the Galactic Magnetic Field

    NASA Astrophysics Data System (ADS)

    Verschuur, Gerrit; Schmelz, Joan T.; Asgari-Targhi asgari-Targhi, M.

    2018-01-01

    The physics of the interstellar medium was revolutionized by the observations of the Galactic Arecibo L-Band Feed Array (GALFA) HI survey done at the Arecibo Observatory. The high-resolution, high-sensitivity, high-dynamic- range images show complex, tangled, extended filaments, and reveal that the fabric of the neutral interstellar medium is deeply tied to the structure of the ambient magnetic field. This discovery prompts an obvious question – how exactly is the interstellar {\\it neutral} hydrogen being affected by the galactic magnetic field? We look into this question by examining a set of GALFA-HI data in great detail. We have chosen a long, straight filament in the southern galactic sky. This structure is both close by and isolated in velocity space. Gaussian analysis of profiles both along and across the filament reveal internal structure – braided strands that can be traced through the simplest part, but become tangled in more complex segments. These braids do not resemble in any way the old spherical HI clouds and rudimentary pressure balance models that were used to explain the pre-GALFA- HI interstellar medium. It is clear that these structures are created, constrained, and dominated by magnetic fields. Like many subfields of astronomy before it, e.g., physics of the solar coronal, extragalactic radio jets, and pulsar environment, scientists are confronted with observations that simply cannot be explained by simple hydrodynamics and are forced to consider magneto-hydrodynamics.

  5. Cloud effects on ultraviolet photoclimatology

    NASA Technical Reports Server (NTRS)

    Green, A. E. S.; Spinhirne, J. D.

    1978-01-01

    The purpose of this study is to quantify for the needs of photobiology the influence of clouds upon the ultraviolet spectral irradiance reaching the ground. Towards this end, analytic formulas are developed which approximately characterize the influence of clouds upon total solar radiation. These may be used in conjunction with a solar pyranometer to assign an effective visual optical depth for the cloud cover. A formula is also developed which characterizes the influence of the optical depth of clouds upon the UV spectral irradiance in the 280-340 nm region. Thus total solar energy observations to assign cloud optical properties can be used to calculate the UV spectral irradiance at the ground in the presence of these clouds. As incidental by-products of this effort, convenient formulas are found for the direct and diffuse components of total solar energy.

  6. The great galactic centre mystery

    NASA Technical Reports Server (NTRS)

    Riegler, G. R.

    1982-01-01

    Gamma-ray observations of the center of the Galaxy show a varying positron-electron annihilation radiation emission, while at radio wavelengths a non-thermal compact source surrounded by ionized gas moving at high velocities can be seen. Line emission maps for atomic and ionized hydrogen and molecular gas suggest gas expulsion and a massive collapsed object. IR observations show that ionized gas in the central few parsecs of the Galactic center is concentrated in at least 14 small clouds. Charge-coupled device images show a pair of faint, very red sources within a few arc seconds of IRS 16 and the compact non-thermal radio source. The positron-electron annihilation line emission implies an annihilation rate of 10 to the 43rd per sec, compared with an observed luminosity at IR wavelengths of 10 to the 40 erg per sec. Some models are briefly discussed.

  7. Mg II Absorbers: Metallicity Evolution and Cloud Morphology

    NASA Astrophysics Data System (ADS)

    Lan, Ting-Wen; Fukugita, Masataka

    2017-12-01

    Metal abundance and its evolution are studied for Mg II quasar absorption line systems from their weak, unsaturated spectral lines using stacked spectra from the archived data of the Sloan Digital Sky Survey. They show an abundance pattern that resembles that of the Galactic halo or Small Magellanic Cloud, with metallicity [Z/H] showing an evolution from redshift z = 2 to 0.5: metallicity becomes approximately solar or even larger at z≈ 0. We show that the evolution of the metal abundance traces the cumulative amount of the hydrogen fuel consumed in star formation in galaxies. With the aid of a spectroscopic simulation code, we infer the median gas density of the cloud to be roughly 0.3 {{cm}}-3, with which the elemental abundance in various ionization stages, in particular C I, is consistently explained. This gas density implies that the size of the Mg II clouds is of the order of 0.03 kpc, which suggests that individual Mg II clouds around a galaxy are of a baryonic mass typically {10}3 {M}⊙ . This means that Mg II clouds are numerous and “foamy,” rather than a large entity that covers a sizable fraction of galaxies with a single cloud.

  8. NuSTAR HARD X-RAY SURVEY OF THE GALACTIC CENTER REGION. I. HARD X-RAY MORPHOLOGY AND SPECTROSCOPY OF THE DIFFUSE EMISSION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mori, Kaya; Hailey, Charles J.; Perez, Kerstin

    2015-12-01

    We present the first sub-arcminute images of the Galactic Center above 10 keV, obtained with NuSTAR. NuSTAR resolves the hard X-ray source IGR J17456–2901 into non-thermal X-ray filaments, molecular clouds, point sources, and a previously unknown central component of hard X-ray emission (CHXE). NuSTAR detects four non-thermal X-ray filaments, extending the detection of their power-law spectra with Γ ∼ 1.3–2.3 up to ∼50 keV. A morphological and spectral study of the filaments suggests that their origin may be heterogeneous, where previous studies suggested a common origin in young pulsar wind nebulae (PWNe). NuSTAR detects non-thermal X-ray continuum emission spatially correlated with the 6.4more » keV Fe Kα fluorescence line emission associated with two Sgr A molecular clouds: MC1 and the Bridge. Broadband X-ray spectral analysis with a Monte-Carlo based X-ray reflection model self-consistently determined their intrinsic column density (∼10{sup 23} cm{sup −2}), primary X-ray spectra (power-laws with Γ ∼ 2) and set a lower limit of the X-ray luminosity of Sgr A* flare illuminating the Sgr A clouds to L{sub X} ≳ 10{sup 38} erg s{sup −1}. Above ∼20 keV, hard X-ray emission in the central 10 pc region around Sgr A* consists of the candidate PWN G359.95–0.04 and the CHXE, possibly resulting from an unresolved population of massive CVs with white dwarf masses M{sub WD} ∼ 0.9 M{sub ⊙}. Spectral energy distribution analysis suggests that G359.95–0.04 is likely the hard X-ray counterpart of the ultra-high gamma-ray source HESS J1745–290, strongly favoring a leptonic origin of the GC TeV emission.« less

  9. Galactic Spiral Shocks with Thermal Instability in Vertically Stratified Galactic Disks

    NASA Astrophysics Data System (ADS)

    Kim, Chang-Goo; Kim, Woong-Tae; Ostriker, Eve C.

    2010-09-01

    Galactic spiral shocks are dominant morphological features and believed to be responsible for substructure formation within spiral arms in disk galaxies. They can also contribute a substantial amount of kinetic energy to the interstellar gas by tapping the (differential) rotational motion. We use numerical hydrodynamic simulations to investigate dynamics and structure of spiral shocks with thermal instability (TI) in vertically stratified galactic disks, focusing on environmental conditions (of heating and the galactic potential) similar to the Solar neighborhood. We initially consider an isothermal disk in vertical hydrostatic equilibrium and let it evolve subject to interstellar cooling and heating as well as a stellar spiral potential. Due to TI, a disk with surface density Σ0 >= 6.7 M sun pc-2 rapidly turns to a thin dense slab near the midplane sandwiched between layers of rarefied gas. The imposed spiral potential leads to a vertically curved shock that exhibits strong flapping motions in the plane perpendicular to the arm. The overall flow structure at saturation is comprised of the arm, postshock expansion zone, and interarm regions that occupy typically 10%, 20%, and 70% of the arm-to-arm distance, in which the gas resides for 15%, 30%, and 55% of the arm-to-arm crossing time, respectively. The flows are characterized by transitions from rarefied to dense phases at the shock and from dense to rarefied phases in the postshock expansion zone, although gas with too-large postshock-density does not undergo this return phase transition, instead forming dense condensations. If self-gravity is omitted, the shock flapping drives random motions in the gas, but only up to ~2-3 km s-1 in the in-plane direction and less than 2 km s-1 in the vertical direction. Time-averaged shock profiles show that the spiral arms in stratified disks are broader and less dense compared to those in unstratified models, and that the vertical density distribution is overall consistent

  10. Galactic neutral hydrogen and the magnetic ISM foreground

    NASA Astrophysics Data System (ADS)

    Clark, S. E.

    2018-05-01

    The interstellar medium is suffused with magnetic fields, which inform the shape of structures in the diffuse gas. Recent high-dynamic range observations of Galactic neutral hydrogen, combined with novel data analysis techniques, have revealed a deep link between the morphology of neutral gas and the ambient magnetic field. At the same time, an observational revolution is underway in low-frequency radio polarimetry, driven in part by the need to characterize foregrounds to the cosmological 21-cm signal. A new generation of experiments, capable of high angular and Faraday depth resolution, are revealing complex filamentary structures in diffuse polarization. The relationship between filamentary structures observed in radio-polarimetric data and those observed in atomic hydrogen is not yet well understood. Multiwavelength observations will enable new insights into the magnetic interstellar medium across phases.

  11. Cosmic rays, gas and dust in nearby anticentre clouds. I. CO-to-H2 conversion factors and dust opacities

    NASA Astrophysics Data System (ADS)

    Remy, Q.; Grenier, I. A.; Marshall, D. J.; Casandjian, J. M.

    2017-05-01

    Aims: We aim to explore the capabilities of dust emission and γ rays for probing the properties of the interstellar medium in the nearby anti-centre region, using γ-ray observations with the Fermi Large Area Telescope (LAT), and the thermal dust optical depth inferred from Planck and IRAS observations. We also aim to study massive star-forming clouds including the well known Taurus, Auriga, Perseus, and California molecular clouds, as well as a more diffuse structure which we refer to as Cetus. In particular, we aim at quantifying potential variations in cosmic-ray density and dust properties per gas nucleon across the different gas phases and different clouds, and at measuring the CO-to-H2 conversion factor, XCO, in different environments. Methods: We have separated six nearby anti-centre clouds that are coherent in velocities and distances, from the Galactic-disc background in H I 21-cm and 12CO 2.6-mm line emission. We have jointly modelled the γ-ray intensity recorded between 0.4 and 100 GeV, and the dust optical depth τ353 at 353 GHz as a combination of H I-bright, CO-bright, and ionised gas components. The complementary information from dust emission and γ rays was used to reveal the gas not seen, or poorly traced, by H I, free-free, and 12CO emissions, namely (I) the opaque H iand diffuse H2 present in the Dark Neutral Medium at the atomic-molecular transition, and (II) the dense H2 to be added where 12CO lines saturate. Results: The measured interstellar γ-ray spectra support a uniform penetration of the cosmic rays with energies above a few GeV through the clouds, from the atomic envelopes to the 12CO-bright cores, and with a small ± 9% cloud-to-cloud dispersion in particle flux. We detect the ionised gas from the H iiregion NGC 1499 in the dust and γ-ray emissions and measure its mean electron density and temperature. We find a gradual increase in grain opacity as the gas (atomic or molecular) becomes more dense. The increase reaches a factor of

  12. Galactic hydrostatic equilibrium with magnetic tension and cosmic-ray diffusion

    NASA Technical Reports Server (NTRS)

    Boulares, Ahmed; Cox, Donald P.

    1990-01-01

    Three gravitational potentials differing in the content of dark matter in the Galactic plane are used to study the structure of the z-distribution of mass and pressure in the solar neighborhood. A P(0) of roughly (3.9 + or - 0.6) x 10 to the -12th dyn/sq cm is obtained, with roughly equal contributions from magnetic field, cosmic ray, and kinetic terms. This boundary condition restricts both the magnitude of gravity and the high z-pressure. It favors lower gravity and higher values for the cosmic ray, magnetic field, and probably the kinetic pressures than have been popular in the past. Inclusion of the warm H(+) distribution carries a significant mass component into the z about 1 kpc regime.

  13. The Planck Catalogue of Galactic Cold Clumps : Looking at the early stages of star-formation

    NASA Astrophysics Data System (ADS)

    Montier, Ludovic

    2015-08-01

    The Planck satellite has provided an unprecedented view of the submm sky, allowing us to search for the dust emission of Galactic cold sources. Combining Planck-HFI all-sky maps in the high frequency channels with the IRAS map at 100um, we built the Planck catalogue of Galactic Cold Clumps (PGCC, Planck 2015 results XXVIII 2015), counting 13188 sources distributed over the whole sky, and following mainly the Galactic structures at low and intermediate latitudes. This is the first all-sky catalogue of Galactic cold sources obtained with a single instrument at this resolution and sensitivity, which opens a new window on star-formation processes in our Galaxy.I will briefly describe the colour detection method used to extract the Galactic cold sources, i.e., the Cold Core Colour Detection Tool (CoCoCoDeT, Montier et al. 2010), and its application to the Planck data. I will discuss the statistical distribution of the properties of the PGCC sources (in terms of dust temperature, distance, mass, density and luminosity), which illustrates that the PGCC catalogue spans a large variety of environments and objects, from molecular clouds to cold cores, and covers various stages of evolution. The Planck catalogue is a very powerful tool to study the formation and the evolution of prestellar objects and star-forming regions.I will finally present an overview of the Herschel Key Program Galactic Cold Cores (PI. M.Juvela), which allowed us to follow-up about 350 Planck Galactic Cold Clumps, in various stages of evolution and environments. With this program, the nature and the composition of the 5' Planck sources have been revealed at a sub-arcmin resolution, showing very different configurations, such as starless cold cores or multiple Young Stellar objects still embedded in their cold envelope.

  14. Demonstrating Diffusion: Why the Confusion?

    ERIC Educational Resources Information Center

    Panizzon, Debra Lee

    1998-01-01

    Examines the principles of diffusion and how it may be confused with convection. Suggests that educators may be misleading students and clouding their understanding of the process. Provides two contemporary examples to explain the process of diffusion and how it differs from convection. (Author/CCM)

  15. Is Molecular Cloud Turbulence Driven by External Supernova Explosions?

    NASA Astrophysics Data System (ADS)

    Seifried, Daniel; Walch, Stefanie; Haid, Sebastian; Girichidis, Philipp; Naab, Thorsten

    2018-03-01

    We present high-resolution (∼0.1 pc), hydrodynamical and magnetohydrodynamical simulations to investigate whether the observed level of molecular cloud (MC) turbulence can be generated and maintained by external supernova (SN) explosions. The MCs are formed self-consistently within their large-scale galactic environment following the non-equilibrium formation of H2 and CO, including (self-) shielding and important heating and cooling processes. The MCs inherit their initial level of turbulence from the diffuse ISM, where turbulence is injected by SN explosions. However, by systematically exploring the effect of individual SNe going off outside the clouds, we show that at later stages the importance of SN-driven turbulence is decreased significantly. This holds for different MC masses as well as for MCs with and without magnetic fields. The SN impact also decreases rapidly with larger distances. Nearby SNe (d ∼ 25 pc) boost the turbulent velocity dispersions of the MC by up to 70% (up to a few km s‑1). For d > 50 pc, however, their impact decreases fast with increasing d and is almost negligible. For all probed distances the gain in velocity dispersion decays rapidly within a few 100 kyr. This is significantly shorter than the average timescale for an MC to be hit by a nearby SN under solar neighborhood conditions (∼2 Myr). Hence, at these conditions SNe are not able to sustain the observed level of MC turbulence. However, in environments with high gas surface densities and SN rates, like the Central Molecular Zone, observed elevated MC dispersions could be triggered by external SNe.

  16. Limits on diffuse X-ray emission from M101

    NASA Technical Reports Server (NTRS)

    Mccammon, D.; Sanders, W. T.

    1984-01-01

    Observed limits on diffuse X-ray emission from M101 require that the temperature of any coronal or matrix hot gas which is radiating an appreciable part ( 10%) of the average supernova power be less than 10(5.7)K. Furthermore, the fraction of the galactic plane occupied by hot buttles similar to the one which apparently surrounds the Sun is at most 25% in the region between 10 kpc and 20 kpc from the galactic center.

  17. The Explorer of Diffuse Galactic Emission (EDGE): Determination of Large-Scale Structure Evolution from Measurement of the Anisotropy of the Cosmic Infrared Background

    NASA Technical Reports Server (NTRS)

    Silverberg, R. F.; Cheng, E. S.; Cottingham, D. A.; Fixsen, D. J.; Meyer, S. S.; Wilson, G. W.

    2004-01-01

    The formation of the first objects, stars and galaxies and their subsequent evolution remain a cosmological unknown. Few observational probes of these processes exist. The Cosmic Infrared Background (CIB) originates from this era, and can provide information to test models of both galaxy evolution and the growth of primordial structure. The Explorer of Diffuse Galactic Emission (EDGE) is a proposed balloon-borne mission designed to measure the spatial fluctuations in the CIB from 200 micrometers to 1 millimeter on 6' to 3 degree scales with 2 microKelvin sensitivity/resolution element. Such measurements would provide a sensitive probe of the large-scale variation in protogalaxy density at redshifts approximately 0.5-3. In this paper, we present the scientific justification for the mission and show a concept for the instrument and observations.

  18. GALACTIC COSMIC RAYS IN THE LOCAL INTERSTELLAR MEDIUM: VOYAGER 1 OBSERVATIONS AND MODEL RESULTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cummings, A. C.; Stone, E. C.; Heikkila, B. C.

    Since 2012 August Voyager 1 has been observing the local interstellar energy spectra of Galactic cosmic-ray nuclei down to 3 MeV nuc{sup -1} and electrons down to 2.7 MeV. The H and He spectra have the same energy dependence between 3 and 346 MeV nuc{sup -1}, with a broad maximum in the 10–50 MeV nuc{sup -1} range and a H/He ratio of 12.2 ± 0.9. The peak H intensity is ∼15 times that observed at 1 AU, and the observed local interstellar gradient of 3–346 MeV H is -0.009 ± 0.055% AU{sup -1}, consistent with models having no local interstellarmore » gradient. The energy spectrum of electrons ( e {sup -} + e {sup +}) with 2.7–74 MeV is consistent with E {sup -1.30±0.05} and exceeds the H intensity at energies below ∼50 MeV. Propagation model fits to the observed spectra indicate that the energy density of cosmic-ray nuclei with >3 MeV nuc{sup -1} and electrons with >3 MeV is 0.83–1.02 eV cm{sup -3} and the ionization rate of atomic H is in the range of 1.51–1.64 × 10{sup -17} s{sup -1}. This rate is a factor >10 lower than the ionization rate in diffuse interstellar clouds, suggesting significant spatial inhomogeneity in low-energy cosmic rays or the presence of a suprathermal tail on the energy spectrum at much lower energies. The propagation model fits also provide improved estimates of the elemental abundances in the source of Galactic cosmic rays.« less

  19. DHIGLS: DRAO H I Intermediate Galactic Latitude Survey

    NASA Astrophysics Data System (ADS)

    Blagrave, K.; Martin, P. G.; Joncas, G.; Kothes, R.; Stil, J. M.; Miville-Deschênes, M. A.; Lockman, Felix J.; Taylor, A. R.

    2017-01-01

    Observations of Galactic H I gas for seven targeted regions at intermediate Galactic latitude are presented at 1\\prime angular resolution using data from the DRAO Synthesis Telescope (ST) and the Green Bank Telescope (GBT). The DHIGLS data are the most extensive arcminute-resolution measurements of the diffuse atomic interstellar medium beyond those in the Galactic plane. The acquisition, reduction, calibration, and mosaicking of the DRAO ST data and the cross calibration and incorporation of the short-spacing information from the GBT are described. The high quality of the resulting DHIGLS products enables a variety of new studies in directions of low Galactic column density. We analyze the angular power spectra of maps of the integrated H I emission (column density) from the data cubes for several distinct velocity ranges. In fitting power-spectrum models based on a power law, but including the effects of the synthesized beam and noise at high spatial frequencies, we find exponents ranging from -2.5 to -3.0. Power spectra of maps of the centroid velocity for these components give similar results. These exponents are interpreted as being representative of the three-dimensional density and velocity fields of the atomic gas, respectively. We find evidence for dramatic changes in the H I structures in channel maps over even small changes in velocity. This narrow line emission has counterparts in absorption spectra against bright background radio sources, quantifying that the gas is cold and dense and can be identified as the cold neutral medium phase. Fully reduced DHIGLS H I data cubes and other data products are available at www.cita.utoronto.ca/DHIGLS.

  20. THOR: Cloud Thickness from Off beam Lidar Returns

    NASA Technical Reports Server (NTRS)

    Cahalan, Robert F.; McGill, Matthew; Kolasinski, John; Varnai, Tamas; Yetzer, Ken

    2004-01-01

    Conventional wisdom is that lidar pulses do not significantly penetrate clouds having optical thickness exceeding about tau = 2, and that no returns are detectable from more than a shallow skin depth. Yet optically thicker clouds of tau much greater than 2 reflect a larger fraction of visible photons, and account for much of Earth s global average albedo. As cloud layer thickness grows, an increasing fraction of reflected photons are scattered multiple times within the cloud, and return from a diffuse concentric halo that grows around the incident pulse, increasing in horizontal area with layer physical thickness. The reflected halo is largely undetected by narrow field-of-view (FoV) receivers commonly used in lidar applications. THOR - Thickness from Off-beam Returns - is an airborne wide-angle detection system with multiple FoVs, capable of observing the diffuse halo, detecting wide-angle signal from which physical thickness of optically thick clouds can be retrieved. In this paper we describe the THOR system, demonstrate that the halo signal is stronger for thicker clouds, and validate physical thickness retrievals for clouds having z > 20, from NASA P-3B flights over the Department of Energy/Atmospheric Radiation Measurement/Southern Great Plains site, using the lidar, radar and other ancillary ground-based data.

  1. Prospects of Measuring the Angular Power Spectrum of the Diffuse Galactic Synchrotron Emission with SKA1 Low

    NASA Astrophysics Data System (ADS)

    Ali, Sk. Saiyad; Bharadwaj, Somnath; Choudhuri, Samir; Ghosh, Abhik; Roy, Nirupam

    2016-12-01

    The Diffuse Galactic Syncrotron Emission (DGSE) is the most important diffuse foreground component for future cosmological 21-cm observations. The DGSE is also an important probe of the cosmic ray electron and magnetic field distributions in the turbulent interstellar medium (ISM) of our galaxy. In this paper we briefly review the Tapered Gridded Estimator (TGE) which can be used to quantify the angular power spectrum C ℓ of the sky signal directly from the visibilities measured in radio-interferometric observations. The salient features of the TGE are: (1) it deals with the gridded data which makes it computationally very fast, (2) it avoids a positive noise bias which normally arises from the system noise inherent to the visibility data, and (3) it allows us to taper the sky response and thereby suppresses the contribution from unsubtracted point sources in the outer parts and the side lobes of the antenna beam pattern. We also summarize earlier work where the TGE was used to measure the C ℓ of the DGSE using 150 MHz GMRT data. Earlier measurements of C ℓ are restricted to ℓ ≤ ℓ _{max } ˜ 103 for the DGSE, the signal at the larger ℓ values is dominated by the residual point sources after source subtraction. The higher sensitivity of the upcoming SKA1 Low will allow the point sources to be subtracted to a fainter level than possible with existing telescopes. We predict that it will be possible to measure the C ℓ of the DGSE to larger values of ℓ _{max } with SKA1 Low. Our results show that it should be possible to achieve ℓ _{max }˜ 104 and ˜105 with 2 minutes and 10 hours of observations respectively.

  2. Structure and extent of the giant molecular cloud near M17

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Elmegreen, B.G.; Lada, C.J.; Dickinson, D.F.

    1979-06-01

    Carbon monoxide emission at ..nu../sub LSR/ = 20 +- 2 km s/sup -1/ is found to extend 4/sup 0/ (approx.170 pc) southwest of M17, and is studied in an attempt to understand the internal structure and dynamics of a giant molecular cloud complex. The region contains two primary clouds. The first has at least 2 x 10/sup 5/ M/sub sun/ of molecular gas and extends for 1./sup 0/8 (72 pc) parallel to, but below the galactic plane southwest of M17. The second, located above the plane approximately 2./sup 0/5 southwest of M17, is about 1./sup 0/7 in extent, but containsmore » considerably less molecular mass (> or approx. =3 x 10/sup 4/ M/sub sun/). Between these two clouds is a 1/sup 0/ long region of relatively low intensity, clumpy CO emission which appears to bridge the two main clouds. The molecular mass within this bridge is estimated to be 2 x 10/sup 4/ M/sub sun/. The cloud associated with M17 is itself divided into four discrete fragments of approximately equal mass (4 x 10/sup 4/ M/sub sun/). The /sup 12/CO and /sup 13/CO line widths are higher in these four fragments than they are between the fragments. OB star formation is active only in the northeastern two of these fragments. The /sup 13/CO line widths in the discrete fragments satisfy the virial theorem for the derived masses. (b) The /sup 13/CO velocity structure in the large complex containing M17 shows a gradual change from regularity in the northeast to irregularity and occasionally multipeaked profiles in the southwest. This change corresponds to a gradient in the degree of compactness and intensity of star formation in the four fragments. A massive (10/sup 5/ M/sub sun/) molecular cloud complex associated with M16, 2/sup 0/ north of M17, and the two clouds southwest of M17, form a pattern of equally spaced star-forming clouds whose positions alternate above and below the galactic plane. Patchy CO emission is found between these three objects. The entire region of molecular emission is approx.250 pc

  3. Sound, infrasound, and sonic boom absorption by atmospheric clouds.

    PubMed

    Baudoin, Michaël; Coulouvrat, François; Thomas, Jean-Louis

    2011-09-01

    This study quantifies the influence of atmospheric clouds on propagation of sound and infrasound, based on an existing model [Gubaidulin and Nigmatulin, Int. J. Multiphase Flow 26, 207-228 (2000)]. Clouds are considered as a dilute and polydisperse suspension of liquid water droplets within a mixture of dry air and water vapor, both considered as perfect gases. The model is limited to low and medium altitude clouds, with a small ice content. Four physical mechanisms are taken into account: viscoinertial effects, heat transfer, water phase changes (evaporation and condensation), and vapor diffusion. Physical properties of atmospheric clouds (altitude, thickness, water content and droplet size distribution) are collected, along with values of the thermodynamical coefficients. Different types of clouds have been selected. Quantitative evaluation shows that, for low audible and infrasound frequencies, absorption within clouds is several orders of magnitude larger than classical absorption. The importance of phase changes and vapor diffusion is outlined. Finally, numerical simulations for nonlinear propagation of sonic booms indicate that, for thick clouds, attenuation can lead to a very large decay of the boom at the ground level. © 2011 Acoustical Society of America

  4. Gamma-Ray Observations of the Orion Molecular Clouds with the Fermi Large Area Telescope

    NASA Technical Reports Server (NTRS)

    Ackermann, M.; Ajello, M.; Allafort, A.; Antolini, E.; Baldini, L.; Ballet, J.; Barbiellini, G.; Bastieri, D.; Bechtol, K.; Bellazzini, R.; hide

    2012-01-01

    We report on the gamma-ray observations of giant molecular clouds Orion A and B with the Large Area Telescope (LAT) on board the Fermi Gamma-ray Space Telescope. The gamma-ray emission in the energy band between approx 100 MeV and approx 100 GeV is predicted to trace the gas mass distribution in the clouds through nuclear interactions between the Galactic cosmic rays (CRs) and interstellar gas. The gamma-ray production cross-section for the nuclear interaction is known to approx 10% precision which makes the LAT a powerful tool to measure the gas mass column density distribution of molecular clouds for a known CR intensity. We present here such distributions for Orion A and B, and correlate them with those of the velocity-integrated CO intensity (W(sub CO)) at a 1 deg 1 deg pixel level. The correlation is found to be linear over a W(sub CO) range of approx 10-fold when divided in three regions, suggesting penetration of nuclear CRs to most of the cloud volumes. The W(sub CO)-to-mass conversion factor, X(sub CO), is found to be approx 2.3 10(exp 20) / sq cm (K km/s)(exp -1) for the high-longitude part of Orion A (l > 212 deg), approx 1.7 times higher than approx 1.3 10(exp 20) found for the rest of Orion A and B. We interpret the apparent high X(sub CO) in the high-longitude region of Orion A in the light of recent works proposing a nonlinear relation between H2 and CO densities in the diffuse molecular gas.W(sub CO) decreases faster than the H2 column density in the region making the gas "darker" to W(sub CO).

  5. Gamma-ray observations of the Orion Molecular Clouds with the Fermi Large Area Telescope

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ackermann, M.; Ajello, M.; Allafort, A.

    We report on the gamma-ray observations of giant molecular clouds Orion A and B with the Large Area Telescope (LAT) on board the Fermi Gamma-ray Space Telescope. The gamma-ray emission in the energy band between ~100 MeV and ~100 GeV is predicted to trace the gas mass distribution in the clouds through nuclear interactions between the Galactic cosmic rays (CRs) and interstellar gas. The gamma-ray production cross-section for the nuclear interaction is known to ~10% precision which makes the LAT a powerful tool to measure the gas mass column density distribution of molecular clouds for a known CR intensity. Wemore » present here such distributions for Orion A and B, and correlate them with those of the velocity-integrated CO intensity (W CO) at a 1° × 1° pixel level. The correlation is found to be linear over a W CO range of ~10-fold when divided in three regions, suggesting penetration of nuclear CRs to most of the cloud volumes. The W CO-to-mass conversion factor, X CO, is found to be ~2.3 × 10 20 cm -2(K km s –1) –1 for the high-longitude part of Orion A (l > 212°), ~1.7 times higher than ~1.3 × 10 20 found for the rest of Orion A and B. We interpret the apparent high X CO in the high-longitude region of Orion A in the light of recent works proposing a nonlinear relation between H2 and CO densities in the diffuse molecular gas. W CO decreases faster than the H 2 column density in the region making the gas "darker" to W CO.« less

  6. Planck 2013 results. XIII. Galactic CO emission

    NASA Astrophysics Data System (ADS)

    Planck Collaboration; Ade, P. A. R.; Aghanim, N.; Alves, M. I. R.; Armitage-Caplan, C.; Arnaud, M.; Ashdown, M.; Atrio-Barandela, F.; Aumont, J.; Baccigalupi, C.; Banday, A. J.; Barreiro, R. B.; Bartlett, J. G.; Battaner, E.; Benabed, K.; Benoît, A.; Benoit-Lévy, A.; Bernard, J.-P.; Bersanelli, M.; Bielewicz, P.; Bobin, J.; Bock, J. J.; Bonaldi, A.; Bond, J. R.; Borrill, J.; Bouchet, F. R.; Boulanger, F.; Bridges, M.; Bucher, M.; Burigana, C.; Butler, R. C.; Cardoso, J.-F.; Catalano, A.; Chamballu, A.; Chary, R.-R.; Chen, X.; Chiang, H. C.; Chiang, L.-Y.; Christensen, P. R.; Church, S.; Clements, D. L.; Colombi, S.; Colombo, L. P. L.; Combet, C.; Couchot, F.; Coulais, A.; Crill, B. P.; Curto, A.; Cuttaia, F.; Danese, L.; Davies, R. D.; de Bernardis, P.; de Rosa, A.; de Zotti, G.; Delabrouille, J.; Delouis, J.-M.; Dempsey, J. T.; Désert, F.-X.; Dickinson, C.; Diego, J. M.; Dole, H.; Donzelli, S.; Doré, O.; Douspis, M.; Dupac, X.; Efstathiou, G.; Enßlin, T. A.; Eriksen, H. K.; Falgarone, E.; Finelli, F.; Forni, O.; Frailis, M.; Franceschi, E.; Fukui, Y.; Galeotta, S.; Ganga, K.; Giard, M.; Giraud-Héraud, Y.; González-Nuevo, J.; Górski, K. M.; Gratton, S.; Gregorio, A.; Gruppuso, A.; Handa, T.; Hansen, F. K.; Hanson, D.; Harrison, D.; Henrot-Versillé, S.; Hernández-Monteagudo, C.; Herranz, D.; Hildebrandt, S. R.; Hily-Blant, P.; Hivon, E.; Hobson, M.; Holmes, W. A.; Hornstrup, A.; Hovest, W.; Huffenberger, K. M.; Hurier, G.; Jaffe, A. H.; Jaffe, T. R.; Jewell, J.; Jones, W. C.; Juvela, M.; Keihänen, E.; Keskitalo, R.; Kisner, T. S.; Knoche, J.; Knox, L.; Kunz, M.; Kurki-Suonio, H.; Lagache, G.; Lähteenmäki, A.; Lamarre, J.-M.; Lasenby, A.; Laureijs, R. J.; Lawrence, C. R.; Leonardi, R.; León-Tavares, J.; Lesgourgues, J.; Liguori, M.; Lilje, P. B.; Linden-Vørnle, M.; López-Caniego, M.; Lubin, P. M.; Macías-Pérez, J. F.; Maffei, B.; Mandolesi, N.; Maris, M.; Marshall, D. J.; Martin, P. G.; Martínez-González, E.; Masi, S.; Massardi, M.; Matarrese, S.; Matthai, F.; Mazzotta, P.; McGehee, P.; Melchiorri, A.; Mendes, L.; Mennella, A.; Migliaccio, M.; Mitra, S.; Miville-Deschênes, M.-A.; Moneti, A.; Montier, L.; Moore, T. J. T.; Morgante, G.; Morino, J.; Mortlock, D.; Munshi, D.; Murphy, J. A.; Nakajima, T.; Naselsky, P.; Nati, F.; Natoli, P.; Netterfield, C. B.; Nørgaard-Nielsen, H. U.; Noviello, F.; Novikov, D.; Novikov, I.; Okuda, T.; Osborne, S.; Oxborrow, C. A.; Paci, F.; Pagano, L.; Pajot, F.; Paladini, R.; Paoletti, D.; Pasian, F.; Patanchon, G.; Perdereau, O.; Perotto, L.; Perrotta, F.; Piacentini, F.; Piat, M.; Pierpaoli, E.; Pietrobon, D.; Plaszczynski, S.; Pointecouteau, E.; Polenta, G.; Ponthieu, N.; Popa, L.; Poutanen, T.; Pratt, G. W.; Prézeau, G.; Prunet, S.; Puget, J.-L.; Rachen, J. P.; Reach, W. T.; Rebolo, R.; Reinecke, M.; Remazeilles, M.; Renault, C.; Ricciardi, S.; Riller, T.; Ristorcelli, I.; Rocha, G.; Rosset, C.; Roudier, G.; Rowan-Robinson, M.; Rubiño-Martín, J. A.; Rusholme, B.; Sandri, M.; Santos, D.; Savini, G.; Scott, D.; Seiffert, M. D.; Shellard, E. P. S.; Spencer, L. D.; Starck, J.-L.; Stolyarov, V.; Stompor, R.; Sudiwala, R.; Sunyaev, R.; Sureau, F.; Sutton, D.; Suur-Uski, A.-S.; Sygnet, J.-F.; Tauber, J. A.; Tavagnacco, D.; Terenzi, L.; Thomas, H. S.; Toffolatti, L.; Tomasi, M.; Torii, K.; Tristram, M.; Tucci, M.; Tuovinen, J.; Umana, G.; Valenziano, L.; Valiviita, J.; Van Tent, B.; Vielva, P.; Villa, F.; Vittorio, N.; Wade, L. A.; Wandelt, B. D.; Wehus, I. K.; Yamamoto, H.; Yoda, T.; Yvon, D.; Zacchei, A.; Zonca, A.

    2014-11-01

    Rotational transition lines of CO play a major role in molecular radio astronomy as a mass tracer and in particular in the study of star formation and Galactic structure. Although a wealth of data exists for the Galactic plane and some well-known molecular clouds, there is no available high sensitivity all-sky survey of CO emission to date. Such all-sky surveys can be constructed using the Planck HFI data because the three lowest CO rotational transition lines at 115, 230 and 345 GHz significantly contribute to the signal of the 100, 217 and 353 GHz HFI channels, respectively. Two different component separation methods are used to extract the CO maps from Planck HFI data. The maps obtained are then compared to one another and to existing external CO surveys. From these quality checks the best CO maps, in terms of signal to noise ratio and/or residual contamination by other emission, are selected. Three different sets of velocity-integrated CO emission maps are produced with different trade-offs between signal-to-noise, angular resolution, and reliability. Maps for the CO J = 1 → 0, J = 2 → 1, and J = 3 → 2 rotational transitions are presented and described in detail. They are shown to be fully compatible with previous surveys of parts of the Galactic plane as well as with undersampled surveys of the high latitude sky. The Planck HFI velocity-integrated CO maps for the J = 1 → 0, J = 2 → 1, and J = 3 →2 rotational transitions provide an unprecedented all-sky CO view of the Galaxy. These maps are also of great interest to monitor potential CO contamination of the Planck studies of the cosmological microwave background.

  7. Structure formation in a colliding flow: The Herschel view of the Draco nebula

    NASA Astrophysics Data System (ADS)

    Miville-Deschênes, M.-A.; Salomé, Q.; Martin, P. G.; Joncas, G.; Blagrave, K.; Dassas, K.; Abergel, A.; Beelen, A.; Boulanger, F.; Lagache, G.; Lockman, F. J.; Marshall, D. J.

    2017-03-01

    Context. The Draco nebula is a high Galactic latitude interstellar cloud observed at velocities corresponding to the intermediate velocity cloud regime. This nebula shows unusually strong CO emission and remarkably high-contrast small-scale structures for such a diffuse high Galactic latitude cloud. The 21 cm emission of the Draco nebula reveals that it is likely to have been formed by the collision of a cloud entering the disk of the Milky Way. Such physical conditions are ideal to study the formation of cold and dense gas in colliding flows of diffuse and warm gas. Aims: The objective of this study is to better understand the process of structure formation in a colliding flow and to describe the effects of matter entering the disk on the interstellar medium. Methods: We conducted Herschel-SPIRE observations of the Draco nebula. The clumpfind algorithm was used to identify and characterize the small-scale structures of the cloud. Results: The high-resolution SPIRE map reveals the fragmented structure of the interface between the infalling cloud and the Galactic layer. This front is characterized by a Rayleigh-Taylor (RT) instability structure. From the determination of the typical length of the periodic structure (2.2 pc) we estimated the gas kinematic viscosity. This allowed us to estimate the dissipation scale of the warm neutral medium (0.1 pc), which was found to be compatible with that expected if ambipolar diffusion were the main mechanism of turbulent energy dissipation. The statistical properties of the small-scale structures identified with clumpfind are found to be typical of that seen in molecular clouds and hydrodynamical turbulence in general. The density of the gas has a log-normal distribution with an average value of 103 cm-3. The typical size of the structures is 0.1-0.2 pc, but this estimate is limited by the resolution of the observations. The mass of these structures ranges from 0.2 to 20 M⊙ and the distribution of the more massive structures

  8. Dynamical lifetime of the new Oort Cloud comets under planetary perturbations

    NASA Astrophysics Data System (ADS)

    Ito, T.; Higuchi, A.

    2014-07-01

    Nearly-isotropic comets with very long orbital period are supposed to come from the Oort Cloud. Recent observational and theoretical studies have greatly revealed the dynamical nature of this cloud and its evolutional history, but many issues are yet to be known. Our goal is to trace the dynamical evolution of the Oort Cloud new comets (OCNCs) produced by an evolving comet cloud, hopefully estimating the fraction of OCNCs embedded in the current populations of the solar system small bodies. We combine two models to follow the dynamical evolution of OCNCs beginning from their production until their ejection out of the solar system, obtaining statistics of the dynamical lifetime of OCNCs: The first model is a semi-analytical one about the OCNC production in an evolving comet cloud under the perturbation of the galactic tide and stellar encounters. The second model numerically deals with planetary perturbation over OCNCs' dynamics in planetary region. The main results of the present study are: (1) Typical dynamical lifetime of OCNCs in our models turned out to be O(10^7) years. Once entering into the planetary region, most OCNCs stay there just for this timespan, then get ejected out of the solar system on hyperbolic orbits. (2) While average orbital inclination of OCNCs is small, the so-called ''planet barrier'' works rather effectively, preventing some OCNCs from penetrating into the terrestrial planetary region. Models. Recently a series of detailed dynamical studies with similar scientific objects to ours are published [1-3]. Our present study is an extension of our own independent project [4], using a pair of dynamical models. The first model is for the evolving Oort Cloud that produces OCNCs along its evolution [5,6]. The model initially starts from a planar planetesimal disk, which evolves into a three- dimensional, nearly isotropic shape over a timespan of Gyr under the perturbation by the galactic tide and stellar encounters. This model is largely analytical

  9. Islands in the Sky: Ecophysiological Cloud-Vegetation Linkages in Southern Appalachian Mountain Cloud Forests

    NASA Astrophysics Data System (ADS)

    Reinhardt, K.; Emanuel, R. E.; Johnson, D. M.

    2013-12-01

    -compensation points (can photosynthesize even at low light levels), and maximum photosynthesis occurs during high-light, diffuse-light conditions such as occurs during diffuse 'sunflecks' inside the cloud fog. Additionally, the capacity to respond to brief, intermittent sunflecks ('photosynthetic induction', e.g., time to maximum photosynthesis) was high in our MCF species. 3) Data quantifying limitations to photosynthesis were contradictory, underscoring complex relationships among photosynthesis, light, carbon and water relations. While stomatal response to atmospheric moisture demand was sensitive (e.g., 80% drop in stomatal conductance in a <1 kPa drop in vapor-pressure-deficit in conifer species), stem xylem hydraulic conductivity suggested strong drought tolerance capabilities. CONCLUSIONS: Clouds and cloud-fog exert strong influence on canopy-tree and ecosystem carbon relations. MCF are dynamic light environments. In these highly variable but ultimately light-limited ecosystems, vegetation must be able to both fix carbon when cloudy and dark but also be able to capitalize on saturating sunlight when possible.

  10. Unveiling the Diffuse, Neutral Interstellar Medium: Absorption Spectroscopy of Galactic Hydrogen

    NASA Astrophysics Data System (ADS)

    Murray, Claire Elizabeth

    The formation of stars and evolution of galaxies depends on the cycle of interstellar matter between supernova-expelled plasma and molecule-rich gas. At the center of this cycle is multiphase neutral hydrogen (HI), whose physical conditions provide key ingredients to theoretical models. However, constraints for HI properties require measurements of gas emission and absorption which have been severely limited by previous observational capabilities. In this thesis, I present the largest survey of Galactic HI absorption ever undertaken with the Karl G. Jansky Very Large Array (VLA). The survey, 21 cm Spectral Line Observations of Neutral Gas with the VLA (21-SPONGE), is a statistical study of HI in all phases using direct absorption measurements. Leveraging novel calibration techniques, I demonstrate the capability of the VLA to detect a significant sample of 21 cm absorption lines from warm, diffuse HI. To maximize observational sensitivity, I stack the 21-SPONGE spectra and detect a pervasive signature of the warm neutral medium in absorption. The inferred excitation (or spin) temperature is consistent with existing estimates, yet higher than predictions from theoretical models of collisional HI excitation. This suggests that radiative feedback via resonant scattering of Lyalpha photons, known as the Wouthuysen-Field effect, is influential with important implications for cosmological 21 cm observations. Next, I compare 21-SPONGE with synthetic HI spectra from 3D numerical simulations using a new, objective decomposition and radiative transfer tool. I quantify the recovery of HI structures and their properties by Gaussian-fitted 21 cm spectral lines for the first time. I find that 21 cm absorption line shapes are sensitive to simulated physics, and demonstrate that my analysis method is a powerful tool for diagnosing neutral ISM conditions. Finally, I compare properties inferred from synthetic spectra with "true" simulation results to construct a bias correction

  11. Diffuse low-ionization gas in the galactic halo casts doubts on z ≃ 0.03 WHIM detections

    NASA Astrophysics Data System (ADS)

    Nicastro, F.; Senatore, F.; Gupta, A.; Mathur, S.; Krongold, Y.; Elvis, M.; Piro, L.

    2016-05-01

    In this Letter, we demonstrate that the two claims of z ≃ 0.03 O VII K α absorption lines from Warm Hot Intergalactic Medium (WHIM) along the lines of sight to the blazars H 2356-309 (Buote et al.; Fang et al.) and Mkn 501 (Ren, Fang & Buote) are likely misidentifications of the z = 0 O II K β line produced by a diffuse Low-Ionization Metal Medium in the Galaxy's interstellar and circum-galactic mediums. We perform detailed modelling of all the available high signal-to-noise Chandra Low Energy Transmission Grating (LETG) and XMM-Newton Reflection Grating Spectrometer (RGS) spectra of H 2356-309 and Mkn 501 and demonstrate that the z ≃ 0.03 WHIM absorption along these two sightlines is statistically not required. Our results, however, do not rule out a small contribution from the z ≃ 0.03 O VII K α absorber along the line of sight to H 2356-309. In our model the temperature of the putative z = 0.031 WHIM filament is T = 3 × 105 K and the O VII column density is N_{O VII} ≲ 4× 10^{15} cm-2, twenty times smaller than the O VIIcolumn density previously reported, and now more consistent with the expectations from cosmological hydrodynamical simulations.

  12. Diffusion of Magnetic Field and Removal of Magnetic Flux from Clouds Via Turbulent Reconnection

    NASA Astrophysics Data System (ADS)

    Santos-Lima, R.; Lazarian, A.; de Gouveia Dal Pino, E. M.; Cho, J.

    2010-05-01

    The diffusion of astrophysical magnetic fields in conducting fluids in the presence of turbulence depends on whether magnetic fields can change their topology via reconnection in highly conducting media. Recent progress in understanding fast magnetic reconnection in the presence of turbulence reassures that the magnetic field behavior in computer simulations and turbulent astrophysical environments is similar, as far as magnetic reconnection is concerned. This makes it meaningful to perform MHD simulations of turbulent flows in order to understand the diffusion of magnetic field in astrophysical environments. Our studies of magnetic field diffusion in turbulent medium reveal interesting new phenomena. First of all, our three-dimensional MHD simulations initiated with anti-correlating magnetic field and gaseous density exhibit at later times a de-correlation of the magnetic field and density, which corresponds well to the observations of the interstellar media. While earlier studies stressed the role of either ambipolar diffusion or time-dependent turbulent fluctuations for de-correlating magnetic field and density, we get the effect of permanent de-correlation with one fluid code, i.e., without invoking ambipolar diffusion. In addition, in the presence of gravity and turbulence, our three-dimensional simulations show the decrease of the magnetic flux-to-mass ratio as the gaseous density at the center of the gravitational potential increases. We observe this effect both in the situations when we start with equilibrium distributions of gas and magnetic field and when we follow the evolution of collapsing dynamically unstable configurations. Thus, the process of turbulent magnetic field removal should be applicable both to quasi-static subcritical molecular clouds and cores and violently collapsing supercritical entities. The increase of the gravitational potential as well as the magnetization of the gas increases the segregation of the mass and magnetic flux in the

  13. A magnetic torsional wave near the Galactic Centre traced by a 'double helix' nebula.

    PubMed

    Morris, Mark; Uchida, Keven; Do, Tuan

    2006-03-16

    The magnetic field in the central few hundred parsecs of the Milky Way has a dipolar geometry and is substantially stronger than elsewhere in the Galaxy, with estimates ranging up to a milligauss (refs 1-6). Characterization of the magnetic field at the Galactic Centre is important because it can affect the orbits of molecular clouds by exerting a drag on them, inhibit star formation, and could guide a wind of hot gas or cosmic rays away from the central region. Here we report observations of an infrared nebula having the morphology of an intertwined double helix about 100 parsecs from the Galaxy's dynamical centre, with its axis oriented perpendicular to the Galactic plane. The observed segment is about 25 parsecs in length, and contains about 1.25 full turns of each of the two continuous, helically wound strands. We interpret this feature as a torsional Alfvén wave propagating vertically away from the Galactic disk, driven by rotation of the magnetized circumnuclear gas disk. The direct connection between the circumnuclear disk and the double helix is ambiguous, but the images show a possible meandering channel that warrants further investigation.

  14. Cloud Induced Enhancement of Ground Level Solar Radiation

    NASA Astrophysics Data System (ADS)

    Inman, R.; Chu, Y.; Coimbra, C.

    2013-12-01

    Atmospheric aerosol and cloud cover are typically associated with long and short-term variability of all three solar radiation components at the ground level. Although aerosol attenuation can be a substantial factor for Direct Normal Irradiance (DNI) in some microclimates, the strongest factor for ground level irradiance attenuation is cloud cover which acts on time-scales associated with strong solar power generation fluctuations. Furthermore, the driving effects of clouds on radiative energy budgets include shortwave cooling, as a result of absorption of incoming solar radiation, and longwave heating, due to reduced emission of thermal radiation by relatively cool cloud tops. Under special circumstances, the presence of clouds in the circumsolar region may lead to the reverse; a local increase in the diffuse downwelling solar radiation due to directional scattering from clouds. This solar beam effect exceed the losses resulting from the backscattering of radiation into space. Such conditions result in radiation levels that temporarily exceed the localized clear sky values. These phenomena are referred to as Cloud Enhancement Events (CEEs). There are currently two fundamental CEE mechanisms discussed in the literature. The first involves well-defined, and optically thick cloud edges close to, but not obscuring, the solar disk. The effect here is of producing little or no change in the normal beam radiation. In this case, cloud edges in the vicinity of the sun create a non-isotropic increase in the local diffuse radiation field with respect to the isotropic scattering of a clear-sky atmosphere. The second type of CEE allows for partial or full obstruction of the solar disk by an optically thin diffuser such as fine clouds, haze or fog; which results in an enhanced but still nearly isotropic diffuse radiation field. In this study, an entire year of solar radiation data and total sky images taken at 30 second resolution at the University of California, Merced (UCM

  15. Dust and Gas in Different Galactic Environments

    NASA Astrophysics Data System (ADS)

    Goncalves, Daniela Catarina Pinheiro

    2014-01-01

    This thesis encompasses the study of the mid-infrared (IR) dust properties in diffuse high latitude cirrus and in the dense environments of supernova remnants (SNRs) in the plane of our Galaxy. Unlike the well known emission properties of dust grains in the diffuse ISM in the far-IR and submillimeter, the mid-IR spectrum is still relatively unconstrained. We extend the correlation of dust emission with H I column densities to mid-IR wavelengths and look for evidence of variations in the emissivity of dust associated with local and halo gas. This is accomplished by spatially correlating the IR maps from the IRIS/IRAS survey at 12, 25, 60 and 100 μm with H I column density maps inferred from 21-cm line emission observations obtained with the GBT (at a 9' resolution). We find that IVCs (halo clouds thought to be part of the Galactic fountain) show color ratios consistent with a dust evolution scenario in which large dust grains are shattered into smaller ones (VSGs). The low 12 μm emission found suggests a reduced abundance of PAHs in IVCs. We also address the IR extragalactic emission seen in our residual maps and quantify its power spectrum behaviour. Continuing with the mid-IR theme, we conducted a comprehensive study of the morphology and energetics of SNRs in the plane of our Galaxy. We make use of the Spitzer MIPSGAL (at 24 and 70 μm) and GLIMPSE (at 8 μm) surveys to detected infrared counterparts to SNR candidates in Green's catalog. We find that a third of the sample shows IR emission and calculate the corresponding fluxes. We explore the relation between IR colors to place constraints on the different IR SNRs emission mechanisms. Aided by archival radio data, we find that most candidates detected show IR-to-radio ratios consistent with SNRs with a few exceptions displaying ratios seen in H II regions. Finally, we explore the connection between the IR and the high-energy X-ray emission of SNRs and find a good morphological association between the 24

  16. Investigating Galactic Structure with COBE/DIRBE and Simulation

    NASA Technical Reports Server (NTRS)

    Cohen, Martin

    1999-01-01

    In this work I applied the current version of the SKY model of the point source sky to the interpretation of the diffuse all-sky emission observed by COBE/DIRBE (Cosmic Background Explorer Satellite/Diffuse Infrared Background Experiment). The goal was to refine the SKY model using the all-sky DIRBE maps of the Galaxy, in order that a search could be made for an isotropic cosmic background."Faint Source Model" [FSM] was constructed to remove Galactic fore ground stars from the ZSMA products. The FSM mimics SKY version 1 but it was inadequate to seek cosmic background emission because of the sizeable residual emission in the ZSMA products after this starlight subtraction. At this point I can only support that such models are currently inadequate to reveal a cosmic background. Even SKY5 yields the same disappointing result.

  17. Probing the gas density in our Galactic Centre: moving mesh simulations of G2

    NASA Astrophysics Data System (ADS)

    Steinberg, Elad; Sari, Re'em; Gnat, Orly; Gillessen, Stefan; Plewa, Philipp; Genzel, Reinhard; Eisenhauer, Frank; Ott, Thomas; Pfuhl, Oliver; Habibi, Maryam; Waisberg, Idel; von Fellenberg, Sebastiano; Dexter, Jason; Bauböck, Michi; Rosales, Alejandra Jimenez

    2018-01-01

    The G2 object has recently passed its pericentre passage in our Galactic Centre. While the Brγ emission shows clear signs of tidal interaction, the change in the observed luminosity is only of about a factor of 2, in contention with all previous predictions. We present high-resolution simulations performed with the moving mesh code, RICH, together with simple analytical arguments that reproduce the observed Brγ emission. In our model, G2 is a gas cloud that undergoes tidal disruption in a dilute ambient medium. We find that during pericentre passage, the efficient cooling of the cloud results in a vertical collapse, compressing the cloud by a factor of ∼5000. By properly taking into account the ionization state of the gas, we find that the cloud is UV starved and are able to reproduce the observed Brγ luminosity. For densities larger than ≈500 cm-3 at pericentre, the cloud fragments due to cooling instabilities and the emitted radiation is inconsistent with observations. For lower densities, the cloud survives the pericentre passage intact and its emitted radiation matches the observed light curve. From the duration of Brγ emission that contains both redshifted and blueshifted components, we show that the cloud is not spherical but rather elongated with a size ratio of 4 at year 2001. The simulated cloud's elongation grows as it travels towards pericentre and is consistent with observations, due to viewing angles. The simulation is also consistent with having a spherical shape at apocentre.

  18. Molecular clouds in Orion and Monoceros. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Maddalena, R. J.

    1986-01-01

    About one-eighth of a well-sampled 850 deg. sq. region of Orion and Monoceros shows CO emission coming from either local clouds (d < 1 kpc) lying as much as 25 deg. from the galactic plane or from more distant objects located within a few degrees of the plane. Local giant clouds associated with Orion A and B have enhanced temperatures and densities near their western edges possibly due to compression by a high pressure region created by approx.10 supernovae that occurred in the Orion OB association. Another giant cloud associated with Mon R2 may be related to the Orion clouds. Two filamentary clouds (one possibly 300 pc long but 10 pc wide) may represent a new class of object. An expanding ring of clouds concentric with the H II region ionized by lambda Ori probably constitute fragments of the original cloud from which lambda Ori formed; the gas pressure of the H II region and the rocket effect probably disrupted the original cloud. At a distance of 3 kpc, a large (250 x 100 pc) and massive (7-11x10 to the 5th power solar mass) cloud was found with the unusual combination of low temperatures (T sub R < 2.7 K) and wide spectral lines (approx. 7 km /sec). Most of the signs of star formation expected for such a massive cloud being absent, this may be a young cloud that has not yet started to form stars. The approx. 15 large clouds found in the outer galaxy (1 approx. 206 deg. - 220 deg.) probably lie in two spiral arms. The distribution of outer galaxy clouds and a comparison of the properties of these clouds and those of local clouds are given.

  19. The photoionization of the diffuse galactic gas

    NASA Technical Reports Server (NTRS)

    Mathis, J. S.

    1986-01-01

    In a study of the diffuse ionized gas (DIG) component of the interstellar medium, it is attempted to see if the general properties of dilute gas ionized by O stars are similar to observations and to what extent the observations of the DIG can be used to determine the nature of the ionizing radiation field at great distances above the plane of the Galaxy. It has been suggested by Reynolds (1985) that either shocks or photoionization might be responsible for the DIG. The photoionization model seems required by the observations.

  20. Low Clouds and Cosmic Rays: Possible Reasons for Correlation Changes

    NASA Astrophysics Data System (ADS)

    Veretenenko, S. V.; Ogurtsov, M. G.

    2015-03-01

    In this work we investigated the nature of correlations between low cloud cover anomalies (LCA) and galactic cosmic ray (GCR) variations detected on the decadal time scale, as well as possible reasons for the violation of these correlations in the early 2000s. It was shown that the link between cloud cover at middle latitudes and GCR fluxes is not direct, but it is realized through GCR influence on the development of extratropical baric systems (cyclones and troughs) which form cloud field. As the sign of GCR effects on the troposphere dynamics seems to depend on the strength of the stratospheric polar vortex, a possible reason for the violation of a positive correlation between LCA and GCR fluxes in the early 2000s may be the change of the vortex state which resulted in the reversal of GCR effects on extratropical cyclone development.

  1. Studying the Formation and Development of Molecular Clouds: With the CCAT Heterodyne Array Instrument (CHAI)

    NASA Technical Reports Server (NTRS)

    Goldsmith, Paul F.

    2012-01-01

    Surveys of all different types provide basic data using different tracers. Molecular clouds have structure over a very wide range of scales. Thus, "high resolution" surveys and studies of selected nearby clouds add critical information. The combination of large-area and high resolution allows Increased spatial dynamic range, which in turn enables detection of new and perhaps critical morphology (e.g. filaments). Theoretical modeling has made major progress, and suggests that multiple forces are at work. Galactic-scale modeling also progressing - indicates that stellar feedback is required. Models must strive to reproduce observed cloud structure at all scales. Astrochemical observations are not unrelated to questions of cloud evolution and star formation but we are still learning how to use this capability.

  2. Ice Mapping Observations in Galactic Star-Forming Regions: the AKARI Legacy

    NASA Astrophysics Data System (ADS)

    Fraser, Helen Jane; Suutarinnen, Aleksi; Noble, Jennifer

    2015-08-01

    It is becoming increasingly clear that explaining the small-scale distribution of many gas-phase molecules relies on our interpretation of the complex inter-connectivity between gas- and solid-phase interstellar chemistries. Inputs to proto-stellar astrochemical models are required that exploit ice compositions reflecting the historical physical conditions in pre-stellar environments when the ices first formed. Such data are required to translate the near-universe picture of ice-composition to our understanding of the role of extra-galactic ices in star-formation at higher redshifts.Here we present the first attempts at multi-object ice detections, and the subsequent ice column density mapping. The AKARI space telescope was uniquely capable of observing all the ice features between 2 and 5 microns, thereby detecting H2O, CO and CO2 ices concurrently, through their stretching vibrational features. Our group has successfully extracted an unprecedented volume of ice spectra from AKARI, including sources with not more than 2 mJy flux at 3 microns, showing:(a) H2O CO and CO2 ices on 30 lines of sight towards pre-stellar and star-forming cores, which when combined with laboratory experiments indicate how the chemistries of these three ices are interlinked (Noble et al (2013)),(b) ice maps showing the spatial distribution of water ice across 12 pre-stellar cores, in different molecular clouds (Suutarinnen et al (2015)), and the distribution of ice components within these cores on 1000 AU scales (Noble et al (2015)),(c) over 200 new detections of water ice, mostly on lines of sight towards background sources (> 145), indicating that water ice column density has a minimum value as a function of Av, but on a cloud-by-cloud basis typically correlates with Av, and dust emissivity at 250 microns (Suutarinnen et al (2015)),(d) the first detections of HDO ice towards background stars (Fraser et al (2015)).We discuss whether these results support the picture of a generic chemical

  3. Anomalous Galactic Cosmic Rays in the Framework of AMS-02

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khiali, Behrouz; Haino, Sadakazu; Feng, Jie, E-mail: behrouz.khiali@cern.ch

    2017-02-01

    The cosmic-ray (CR) energy spectra of protons and helium nuclei, which are the most abundant components of cosmic radiation, exhibit a remarkable hardening at energies above 100 GeV/nucleon. Recent data from AMS-02 confirm this feature with a higher significance. These data challenge the current models of CR acceleration in Galactic sources and propagation in the Galaxy. Here, we explain the observed break in the spectra of protons and helium nuclei in light of recent advances in CR diffusion theories in turbulent astrophysical sources as being a result of a transition between different CR diffusion regimes. We reconstruct the observed CRmore » spectra using the fact that a transition from normal diffusion to superdiffusion changes the efficiency of particle acceleration and causes the change in the spectral index. We find that calculated proton and helium spectra match the data very well.« less

  4. The dependence of gamma-ray burst X-ray column densities on the model for Galactic hydrogen

    NASA Astrophysics Data System (ADS)

    Arcodia, R.; Campana, S.; Salvaterra, R.

    2016-05-01

    We study the X-ray absorption of a complete sample of 99 bright Swift gamma-ray bursts (GRBs). In recent years, a strong correlation has been found between the intrinsic X-ray absorbing column density (NH(z)) and the redshift. This absorption excess in high-z GRBs is now thought to be due to the overlooked contribution of the absorption along the intergalactic medium (IGM), by means of both intervening objects and the diffuse warm-hot intergalactic medium along the line of sight. In this work we neglect the absorption along the IGM, because our purpose is to study the eventual effect of a radical change in the Galactic absorption model on the NH(z) distribution. Therefore, we derive the intrinsic absorbing column densities using two different Galactic absorption models: the Leiden Argentine Bonn HI survey and the more recent model that includes molecular hydrogen. We find that if, on the one hand, the new Galactic model considerably affects the single column density values, on the other hand, there is no drastic change in the distribution as a whole. It becomes clear that the contribution of Galactic column densities alone, no matter how improved, is not sufficient to change the observed general trend and it has to be considered as a second order correction. The cosmological increase of NH(z) as a function of redshift persists and, to explain the observed distribution, it is necessary to include the contribution of both the diffuse intergalactic medium and the intervening systems along the line of sight of the GRBs.

  5. DYNAMICS OF TIDALLY CAPTURED PLANETS IN THE GALACTIC CENTER

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Trani, Alessandro A.; Bressan, Alessandro; Mapelli, Michela

    2016-11-01

    Recent observations suggest ongoing planet formation in the innermost parsec of the Galactic center. The supermassive black hole (SMBH) might strip planets or planetary embryos from their parent star, bringing them close enough to be tidally disrupted. Photoevaporation by the ultraviolet field of young stars, combined with ongoing tidal disruption, could enhance the near-infrared luminosity of such starless planets, making their detection possible even with current facilities. In this paper, we investigate the chance of planet tidal captures by means of high-accuracy N -body simulations exploiting Mikkola's algorithmic regularization. We consider both planets lying in the clockwise (CW) disk andmore » planets initially bound to the S-stars. We show that tidally captured planets remain on orbits close to those of their parent star. Moreover, the semimajor axis of the planetary orbit can be predicted by simple analytic assumptions in the case of prograde orbits. We find that starless planets that were initially bound to CW disk stars have mild eccentricities and tend to remain in the CW disk. However, we speculate that angular momentum diffusion and scattering by other young stars in the CW disk might bring starless planets into orbits with low angular momentum. In contrast, planets initially bound to S-stars are captured by the SMBH on highly eccentric orbits, matching the orbital properties of the clouds G1 and G2. Our predictions apply not only to planets but also to low-mass stars initially bound to the S-stars and tidally captured by the SMBH.« less

  6. Probing the galactic disk and halo. 2: Hot interstellar gas toward the inner galaxy star HD 156359

    NASA Technical Reports Server (NTRS)

    Sembach, Kenneth R.; Savage, Blair D.; Lu, Limin

    1995-01-01

    We present Goddard High Resolution Spectrograph intermediate-resolution measurements of the 1233-1256 A spectral region of HD 156396, a halo star at l = 328.7 deg, b = -14.5 deg in the inner Galaxy with a line-of sight distance of 11.1 kpc and a z-distance of -2.8 kpc. The data have a resolution of 18 km/s Full Width at Half Maximum (FWHM) and a signal-to-noise ratio of approximately 50:1. We detect interstellar lines of Mg II, S II, S II, Ge II, and N V and determine log N/(Mg II) = 15.78 +0.25, -0.27, log N(Si II) greater than 13.70, log N(S II) greater than 15.76, log N(Ge II) = 12.20 +0.09,-0.11, and log N(N v) = 14.06 +/- 0.02. Assuming solar reference abundances, the diffuse clouds containing Mg, S, and Ge along the sight line have average logarithmic depletions D(Mg) = -0.6 +/- 0.3 dex, D(S) greater than -0.2 dex, and D(Ge) = -0.2 +/- 0.2 dex. The Mg and Ge depletions are approximately 2 times smaller than is typical of diffuse clouds in the solar vicinity. Galactic rotational modeling of the N v profiles indicates that the highly ionized gas traced by this ion has a scale height of approximately 1 kpc if gas at large z-distances corotates with the underlying disk gas. Rotational modeling of the Si iv and C iv profiles measured by the IUE satellite yields similar scale height estimates. The scale height results contrast with previous studies of highly ionized gas in the outer Milky Way that reveal a more extended gas distribtion with h approximately equals 3-4 kpc. We detect a high-velocity feature in N v and Si II v(sub LSR) approximately equals + 125 km/s) that is probably created in an interface between warm and hot gas.

  7. Constraints on dark matter annihilations from diffuse gamma-ray emission in the Galaxy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tavakoli, Maryam; Evoli, Carmelo; Cholis, Ilias

    2014-01-01

    Recent advances in γ-ray cosmic ray, infrared and radio astronomy have allowed us to develop a significantly better understanding of the galactic medium properties in the last few years. In this work using the DRAGON code, that numerically solves the CR propagation equation and calculating γ-ray emissivities in a 2-dimensional grid enclosing the Galaxy, we study in a self consistent manner models for the galactic diffuse γ-ray emission. Our models are cross-checked to both the available CR and γ-ray data. We address the extend to which dark matter annihilations in the Galaxy can contribute to the diffuse γ-ray flux towardsmore » different directions on the sky. Moreover we discuss the impact that astrophysical uncertainties of non DM nature, have on the derived γ-ray limits. Such uncertainties are related to the diffusion properties on the Galaxy, the interstellar gas and the interstellar radiation field energy densities. Light ∼ 10 GeV dark matter annihilating dominantly to hadrons is more strongly constrained by γ-ray observations towards the inner parts of the Galaxy and influenced the most by assumptions of the gas distribution; while TeV scale DM annihilating dominantly to leptons has its tightest constraints from observations towards the galactic center avoiding the galactic disk plane, with the main astrophysical uncertainty being the radiation field energy density. In addition, we present a method of deriving constraints on the dark matter distribution profile from the diffuse γ-ray spectra. These results critically depend on the assumed mass of the dark matter particles and the type of its end annihilation products.« less

  8. Galactic gamma-ray sources, SNOBs, and giant H2 regions

    NASA Technical Reports Server (NTRS)

    Montmerle, T.

    1985-01-01

    Progress towards understanding the nature of the COS-B galactic gamma-ray sources was made by two recent developments. The developments are: (1) the existence of extensive wide-latitude CO surveys, from the Northern Hemisphere, and from the Southern Hemisphere which give more precise information on molecular cloud population of the Perseus, Sagittarius, and Carina spiral arms; (2) the study of the time variability of gamma-ray sources in gamma-rays but also at other wavelengths, leading to the discovery of four new variable sources in addition to the already known Crab and Vela pulsars. Three classes of gamma-ray sources are found; invariable sources, active sources, and passive sources.

  9. Hazard calculations of diffuse reflected laser radiation for the SELENE program

    NASA Technical Reports Server (NTRS)

    Miner, Gilda A.; Babb, Phillip D.

    1993-01-01

    The hazards from diffuse laser light reflections off water clouds, ice clouds, and fog and from possible specular reflections off ice clouds were assessed with the American National Standards (ANSI Z136.1-1986) for the free-electron-laser parameters under consideration for the Segmented Efficient Laser Emission for Non-Nuclear Electricity (SELENE) Program. Diffuse laser reflection hazards exist for water cloud surfaces less than 722 m in altitude and ice cloud surfaces less than 850 m in altitude. Specular reflections from ice crystals in cirrus clouds are not probable; however, any specular reflection is a hazard to ground observers. The hazard to the laser operators and any ground observers during heavy fog conditions is of such significant magnitude that the laser should not be operated in fog.

  10. Galactic Winds

    NASA Astrophysics Data System (ADS)

    Veilleux, Sylvain

    Galactic winds have become arguably one of the hottest topics in extragalactic astronomy. This enthusiasm for galactic winds is due in part to the detection of winds in many, if not most, high-redshift galaxies. Galactic winds have also been invoked by theorists to (1) suppress the number of visible dwarf galaxies and avoid the "cooling catastrophe" at high redshift that results in the overproduction of massive luminous galaxies, (2) remove material with low specific angular momentum early on and help enlarge gas disks in CDM + baryons simulations, (3) reduce the dark mass concentrations in galaxies, (4) explain the mass-metallicity relation of galaxies from selective loss of metal-enriched gas from smaller galaxies, (5) enrich and "preheat" the ICM, (6) enrich the IGM without disturbing the Lyαforest significantly, and (7) inhibit cooling flows in galaxy clusters with active cD galaxies. The present paper highlights a few key aspects of galactic winds taken from a recent ARAA review by Veilleux, Cecil, &Bland-Hawthorn (2005; herafter VCBH). Readers interested in a more detailed discussion of this topic are encouraged to refer to the original ARAA article.

  11. Discovery of very-high-energy gamma-rays from the Galactic Centre ridge.

    PubMed

    Aharonian, F; Akhperjanian, A G; Bazer-Bachi, A R; Beilicke, M; Benbow, W; Berge, D; Bernlöhr, K; Boisson, C; Bolz, O; Borrel, V; Braun, I; Breitling, F; Brown, A M; Chadwick, P M; Chounet, L-M; Cornils, R; Costamante, L; Degrange, B; Dickinson, H J; Djannati-Ataï, A; Drury, L O'C; Dubus, G; Emmanoulopoulos, D; Espigat, P; Feinstein, F; Fontaine, G; Fuchs, Y; Funk, S; Gallant, Y A; Giebels, B; Gillessen, S; Glicenstein, J F; Goret, P; Hadjichristidis, C; Hauser, D; Hauser, M; Heinzelmann, G; Henri, G; Hermann, G; Hinton, J A; Hofmann, W; Holleran, M; Horns, D; Jacholkowska, A; de Jager, O C; Khélifi, B; Klages, S; Komin, Nu; Konopelko, A; Latham, I J; Le Gallou, R; Lemière, A; Lemoine-Goumard, M; Leroy, N; Lohse, T; Marcowith, A; Martin, J M; Martineau-Huynh, O; Masterson, C; McComb, T J L; de Naurois, M; Nolan, S J; Noutsos, A; Orford, K J; Osborne, J L; Ouchrif, M; Panter, M; Pelletier, G; Pita, S; Pühlhofer, G; Punch, M; Raubenheimer, B C; Raue, M; Raux, J; Rayner, S M; Reimer, A; Reimer, O; Ripken, J; Rob, L; Rolland, L; Rowell, G; Sahakian, V; Saugé, L; Schlenker, S; Schlickeiser, R; Schuster, C; Schwanke, U; Siewert, M; Sol, H; Spangler, D; Steenkamp, R; Stegmann, C; Tavernet, J-P; Terrier, R; Théoret, C G; Tluczykont, M; van Eldik, C; Vasileiadis, G; Venter, C; Vincent, P; Völk, H J; Wagner, S J

    2006-02-09

    The source of Galactic cosmic rays (with energies up to 10(15) eV) remains unclear, although it is widely believed that they originate in the shock waves of expanding supernova remnants. At present the best way to investigate their acceleration and propagation is by observing the gamma-rays produced when cosmic rays interact with interstellar gas. Here we report observations of an extended region of very-high-energy (> 10(11) eV) gamma-ray emission correlated spatially with a complex of giant molecular clouds in the central 200 parsecs of the Milky Way. The hardness of the gamma-ray spectrum and the conditions in those molecular clouds indicate that the cosmic rays giving rise to the gamma-rays are likely to be protons and nuclei rather than electrons. The energy associated with the cosmic rays could have come from a single supernova explosion around 10(4) years ago.

  12. Study of diffuse H II regions potentially forming part of the gas streams around Sgr A*

    NASA Astrophysics Data System (ADS)

    Armijos-Abendaño, J.; López, E.; Martín-Pintado, J.; Báez-Rubio, A.; Aravena, M.; Requena-Torres, M. A.; Martín, S.; Llerena, M.; Aldás, F.; Logan, C.; Rodríguez-Franco, A.

    2018-05-01

    We present a study of diffuse extended ionized gas towards three clouds located in the Galactic Centre (GC). One line of sight (LOS) is towards the 20 km s-1 cloud (LOS-0.11) in the Sgr A region, another LOS is towards the 50 km s-1 cloud (LOS-0.02), also in Sgr A, while the third is towards the Sgr B2 cloud (LOS+0.693). The emission from the ionized gas is detected from Hnα and Hmβ radio recombination lines (RRLs). Henα and Hemβ RRL emission is detected with the same n and m as those from the hydrogen RRLs only towards LOS+0.693. RRLs probe gas with positive and negative velocities towards the two Sgr A sources. The Hmβ to Hnα ratios reveal that the ionized gas is emitted under local thermodynamic equilibrium conditions in these regions. We find a He to H mass fraction of 0.29±0.01 consistent with the typical GC value, supporting the idea that massive stars have increased the He abundance compared to its primordial value. Physical properties are derived for the studied sources. We propose that the negative velocity component of both Sgr A sources is part of gas streams considered previously to model the GC cloud kinematics. Associated massive stars with what are presumably the closest H II regions to LOS-0.11 (positive velocity gas), LOS-0.02, and LOS+0.693 could be the main sources of ultraviolet photons ionizing the gas. The negative velocity components of both Sgr A sources might be ionized by the same massive stars, but only if they are in the same gas stream.

  13. THERMAL PRESSURES IN THE INTERSTELLAR MEDIUM OF THE MAGELLANIC CLOUDS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Welty, Daniel E.; York, Donald G.; Lauroesch, James T.

    2016-04-20

    We discuss the thermal pressures ( n {sub H} T ) in predominantly cold, neutral interstellar gas in the Magellanic Clouds, derived from analyses of the fine-structure excitation of neutral carbon, as seen in high-resolution Hubble Space Telescope /Space Telescope Imaging Spectrograph spectra of seven diverse sight lines in the LMC and SMC. Detailed fits to the line profiles of the absorption from C i, C i*, and C i** yield consistent column densities for the three to six C i multiplets detected in each sight line. In the LMC and SMC, N (C i{sub tot}) is consistent with Galacticmore » trends versus N (Na i) and N (CH), but is slightly lower versus N (K i) and N (H{sub 2}). As for N (Na i) and N (K i), N (C i{sub tot}) is generally significantly lower, for a given N (H{sub tot}), in the LMC and (especially) in the SMC, compared to the local Galactic relationship. For the LMC and SMC components with well-determined column densities for C i, C i*, and C i**, the derived thermal pressures are typically factors of a few higher than the values found for most cold, neutral clouds in the Galactic ISM. Such differences are consistent with the predictions of models for clouds in systems (like the LMC and SMC) that are characterized by lower metallicities, lower dust-to-gas ratios, and enhanced radiation fields—where higher pressures are required for stable cold, neutral clouds. The pressures may be further enhanced by energetic activity (e.g., due to stellar winds, star formation, and/or supernova remnants) in several of the regions probed by these sight lines. Comparisons are made with the C i observed in some quasar absorption-line systems.« less

  14. Improved cosmic-ray injection models and the Galactic Center gamma-ray excess

    NASA Astrophysics Data System (ADS)

    Carlson, Eric; Linden, Tim; Profumo, Stefano

    2016-09-01

    Fermi-LAT observations of the Milky Way Galactic Center (GC) have revealed a spherically symmetric excess of GeV γ rays extending to at least 10° from the dynamical center of the Galaxy. A critical uncertainty in extracting the intensity, spectrum, and morphology of this excess concerns the accuracy of astrophysical diffuse γ -ray emission models near the GC. Recently, it has been noted that many diffuse emission models utilize a cosmic-ray injection rate far below that predicted based on the observed star-formation rate in the Central Molecular Zone. In this study, we add a cosmic-ray injection component which nonlinearly traces the Galactic H2 density determined in three dimensions, and find that the associated γ -ray emission is degenerate with many properties of the GC γ -ray excess. Specifically, in models that utilize a large sideband (4 0 ° ×4 0 ° surrounding the GC) to normalize the best-fitting diffuse emission models, the intensity of the GC excess decreases by approximately a factor of 2, and the morphology of the excess becomes less peaked and less spherically symmetric. In models which utilize a smaller region of interest (1 5 ° ×1 5 ° ) the addition of an excess template instead suppresses the intensity of the best-fit astrophysical diffuse emission, and the GC excess is rather resilient to changes in the details of the astrophysical diffuse modeling. In both analyses, the addition of a GC excess template still provides a statistically significant improvement to the overall fit to the γ -ray data. We also implement advective winds at the GC, and find that the Fermi-LAT data strongly prefer outflows of order several hundred km/s, whose role is to efficiently advect low-energy cosmic rays from the inner-few kpc of the Galaxy. Finally, we perform numerous tests of our diffuse emission models, and conclude that they provide a significant improvement in the physical modeling of the multiwavelength nonthermal emission from the GC region.

  15. The generation and dissipation of solar and galactic magnetic fields.

    NASA Technical Reports Server (NTRS)

    Parker, E. N.

    1973-01-01

    Turbulent diffusion of magnetic field plays an essential role in the generation of magnetic field in most astrophysical bodies. Review of what can be proved and what can be believed about the turbulent diffusion of magnetic field. Observations indicate the dissipation of magnetic field at rates that can be understood only in terms of turbulent diffusion. Theory shows that a large-scale weak magnetic field diffuses in a turbulent flow in the same way that smoke is mixed throughout the fluid by the turbulence. The small-scale fields (produced from the large-scale field by the turbulence) are limited in their growth by reconnection of field lines at neutral points, so that the turbulent mixing of field and fluid is not halted by them. Altogether, it appears that the mixing of field and fluid in the observed turbulent motions in the sun and in the Galaxy is unavoidable. Turbulent diffusion causes decay of the general solar fields in a decade or so, and of the galactic field in 100 m.y. to 1 b.y. It is concluded that continual dynamo action is implied by the observed existence of the fields.

  16. The spectrum of isotropic diffuse gamma-ray emission between 100 MeV and 820 GeV

    DOE PAGES

    Ackermann, M.; Ajello, M.; Albert, A.; ...

    2015-01-19

    We present that the γ-ray sky can be decomposed into individually detected sources, diffuse emission attributed to the interactions of Galactic cosmic rays with gas and radiation fields, and a residual all-sky emission component commonly called the isotropic diffuse γ-ray background (IGRB). The IGRB comprises all extragalactic emissions too faint or too diffuse to be resolved in a given survey, as well as any residual Galactic foregrounds that are approximately isotropic. The first IGRB measurement with the Large Area Telescope (LAT) on board the Fermi Gamma-ray Space Telescope (Fermi) used 10 months of sky-survey data and considered an energy rangemore » between 200 MeV and 100 GeV. Improvements in event selection and characterization of cosmic-ray backgrounds, better understanding of the diffuse Galactic emission (DGE), and a longer data accumulation of 50 months allow for a refinement and extension of the IGRB measurement with the LAT, now covering the energy range from 100 MeV to 820 GeV. The IGRB spectrum shows a significant high-energy cutoff feature and can be well described over nearly four decades in energy by a power law with exponential cutoff having a spectral index of 2.32 ± 0.02 and a break energy of (279 ± 52) GeV using our baseline DGE model. In conclusion, the total intensity attributed to the IGRB is (7.2 ± 0.6) × 10 –6 cm –2 s –1 sr –1 above 100 MeV, with an additional +15%/–30% systematic uncertainty due to the Galactic diffuse foregrounds.« less

  17. Galactic Hearts of Glass

    NASA Technical Reports Server (NTRS)

    2006-01-01

    crystals in 20 additional galaxies, all belonging to a class called ultraluminous infrared galaxies. These extremely bright and dusty galaxies usually consist of two galaxies in the process of smashing into each other. Astronomers believe massive stars at the hearts of the galaxies are churning out clouds of silicate crystals. This phenomenon may represent a short-lived phase in the evolution of galactic mergers.

  18. Horizontal branch stars, and galactic and magellanic cloud globular clusters

    NASA Technical Reports Server (NTRS)

    Deboer, K. S.

    1981-01-01

    Seven blue horizontal branch stars in the field were observed and a few HB stars were isolated in globular clusters. Energy distributions are compared to assess possible differences and also used in comparison with model atmospheres. Observed energy distributions of HB stars in NGC 6397 are used to estimate the total number of HB stars which produced the integrated fluxes as observed by ANS. Preliminary results are given for colors of globular clusters observed in the Magellanic Clouds and for their extent, based on the Washburn IUE extraction.

  19. Coherent forward broadening in cold atom clouds

    NASA Astrophysics Data System (ADS)

    Sutherland, R. T.; Robicheaux, F.

    2016-02-01

    It is shown that homogeneous line-broadening in a diffuse cold atom cloud is proportional to the resonant optical depth of the cloud. Furthermore, it is demonstrated how the strong directionality of the coherent interactions causes the cloud's spectra to depend strongly on its shape, even when the cloud is held at constant densities. These two numerical observations can be predicted analytically by extending the single-photon wave-function model. Lastly, elongating a cloud along the line of laser propagation causes the excitation probability distribution to deviate from the exponential decay predicted by the Beer-Lambert law to the extent where the atoms at the back of the cloud are more excited than the atoms at the front. These calculations are conducted at the low densities relevant to recent experiments.

  20. ALMA Observations of Molecular Clouds in Three Group-centered Elliptical Galaxies: NGC 5846, NGC 4636, and NGC 5044

    NASA Astrophysics Data System (ADS)

    Temi, Pasquale; Amblard, Alexandre; Gitti, Myriam; Brighenti, Fabrizio; Gaspari, Massimo; Mathews, William G.; David, Laurence

    2018-05-01

    We present new ALMA CO(2–1) observations of two well-studied group-centered elliptical galaxies: NGC 4636 and NGC 5846. In addition, we include a revised analysis of Cycle 0 ALMA observations of the central galaxy in the NGC 5044 group. We find evidence that molecular gas is a common presence in bright group-centered galaxies (BGG). CO line widths are broader than Galactic molecular clouds, and using the reference Milky Way X CO, the total molecular mass ranges from 2.6 × 105 M ⊙ in NGC 4636 to 6.1 × 107 M ⊙ in NGC 5044. Complementary observations using the ALMA Compact Array do not exhibit any detection of a CO diffuse component at the sensitivity level achieved by current exposures. The origin of the detected molecular features is still uncertain, but these ALMA observations suggest that they are the end product of the hot gas cooling process and not the result of merger events. Some of the molecular clouds are associated with dust features as revealed by HST dust extinction maps, suggesting that these clouds formed from dust-enhanced cooling. The global nonlinear condensation may be triggered via the chaotic turbulent field or buoyant uplift. The large virial parameter of the molecular structures and correlation with the warm ({10}3{--}{10}5 {{K}})/hot (≥106) phase velocity dispersion provide evidence that they are unbound giant molecular associations drifting in the turbulent field, consistent with numerical predictions of the chaotic cold accretion process. Alternatively, the observed large CO line widths may be generated by molecular gas flowing out from cloud surfaces due to heating by the local hot gas atmosphere.

  1. Dust scattering from the Taurus Molecular Cloud

    NASA Astrophysics Data System (ADS)

    Narayan, Sathya; Murthy, Jayant; Karuppath, Narayanankutty

    2017-04-01

    We present an analysis of the diffuse ultraviolet emission near the Taurus Molecular Cloud based on observations made by the Galaxy Evolution Explorer. We used a Monte Carlo dust scattering model to show that about half of the scattered flux originates in the molecular cloud with 25 per cent arising in the foreground and 25 per cent behind the cloud. The best-fitting albedo of the dust grains is 0.3, but the geometry is such that we could not constrain the phase function asymmetry factor (g).

  2. Molecular Gas Feeding the Circumnuclear Disk of the Galactic Center

    NASA Astrophysics Data System (ADS)

    Hsieh, Pei-Ying; Koch, Patrick M.; Ho, Paul T. P.; Kim, Woong-Tae; Tang, Ya-Wen; Wang, Hsiang-Hsu; Yen, Hsi-Wei; Hwang, Chorng-Yuan

    2017-09-01

    The interaction between a supermassive black hole (SMBH) and the surrounding material is of primary importance in modern astrophysics. The detection of the molecular 2 pc circumnuclear disk (CND) immediately around the Milky Way SMBH, SgrA*, provides a unique opportunity to study SMBH accretion at subparsec scales. Our new wide-field CS(J = 2 - 1) map toward the Galactic center (GC) reveals multiple dense molecular streamers that originated from the ambient clouds 20 pc further out, and that are connected to the central 2 pc of the CND. These dense gas streamers appear to carry gas directly toward the nuclear region and might be captured by the central potential. Our phase-plot analysis indicates that these streamers show a signature of rotation and inward radial motion with progressively higher velocities as the gas approaches the CND and finally ends up corotating with the CND. Our results might suggest a possible mechanism of gas feeding the CND from 20 pc around 2 pc in the GC. In this paper, we discuss the morphology and the kinematics of these streamers. As the nearest observable Galactic nucleus, this feeding process may have implications for understanding the processes in extragalactic nuclei.

  3. Copernicus observations of C I and CO in diffuse interstellar clouds

    NASA Technical Reports Server (NTRS)

    Jenkins, E. B.; Jura, M.; Loewenstein, M.

    1980-01-01

    Copernicus was used to observe absorption lines of C I in its ground state and excited fine structure levels and CO toward 29 stars. We use the C I data to infer densities and pressures within the observed clouds, and because our results are of higher precision than previous work, much more precise estimates of the physical conditions in clouds are obtained. In agreement with previous work, the interstellar thermal pressure appears to be variable, with most clouds having values of p/k between 1000/cu cm K and 10,000/cu cm K, but there are some clouds with p/k as high as 100,000/cu cm K. Our results are consistent with the view that the interstellar thermal pressure is so variable that the gas undergoes continuous dynamic evolution. Our observations provide useful constraints on the physical processes on the surfaces of grains. In particular, we find that grains are efficient catalysts of interstellar H2 in the sense that at least half of the hydrogen atoms that strike grains come off as part of H2. Results place strong constraints on models for the formation and destruction of interstellar CO. In many clouds, an order of magnitude less CO than predicted in some models was found.

  4. Lithium and zirconium abundances in massive Galactic O-rich AGB stars

    NASA Astrophysics Data System (ADS)

    García-Hernández, D. A.; García-Lario, P.; Plez, B.; Manchado, A.; D'Antona, F.; Lub, J.; Habing, H.

    2007-02-01

    Lithium and zirconium abundances (the latter taken as representative of s-process enrichment) are determined for a large sample of massive Galactic O-rich AGB stars, for which high-resolution optical spectroscopy has been obtained (R˜ 40 000{-}50 000). This was done by computing synthetic spectra based on classical hydrostatic model atmospheres for cool stars and using extensive line lists. The results are discussed in the framework of "hot bottom burning" (HBB) and nucleosynthesis models. The complete sample is studied for various observational properties such as the position of the stars in the IRAS two-colour diagram ([ 12] - [25] vs. [ 25] - [60] ), Galactic distribution, expansion velocity (derived from the OH maser emission), and period of variability (when available). We conclude that a considerable fraction of these sources are actually massive AGB stars (M>3{-}4 M⊙) experiencing HBB, as deduced from the strong Li overabundances we found. A comparison of our results with similar studies carried out in the past for the Magellanic Clouds (MCs) reveals that, in contrast to MC AGB stars, our Galactic sample does not show any indication of s-process element enrichment. The differences observed are explained as a consequence of metallicity effects. Finally, we discuss the results obtained in the framework of stellar evolution by comparing our results with the data available in the literature for Galactic post-AGB stars and PNe. Based on observations at the 4.2 m William Herschel Telescope operated on the island of La Palma by the Isaac Newton Group in the Spanish Observatorio del Roque de Los Muchachos of the Instituto de Astrofisica de Canarias. Also based on observations with the ESO 3.6 m telescope at La Silla Observatory (Chile). Tables [see full text]-[see full text] are only available in electronic form at http://www.aanda.org

  5. Characterizing the structure of an unusually cold high latitude cloud

    NASA Astrophysics Data System (ADS)

    Veneziani, Marcella; Paladini, Roberta; Noriega-Crespo, Alberto; Carey, Sean; Tibbs, Christopher; Flagey, Nicolas; Piacentini, Francesco

    2012-10-01

    Recently the BOOMERanG 2003 experiment, with an angular resolution of 10', has detected an unusually cold cloud (T = 9 K) located at high Galactic latitudes and with an area of 0.25 deg^2. The low temperature of this object has been confirmed by a follow-up in the with Herschel which measured T = 15.3 in the range 100-500micron and with a resolution 20 times higher than BOOMERanG. Despite the cold temperature of the cloud, the measured extinction (Av=0.15 mag) seems to indicate a fairly low amount of shielding material which could justify the dust cooling. Surprisingly, while the dust content in the cloud is well constrained by a substantial amount of data, no - or very little information - is available for its gas counterpart. Therefore, we request 5hrs of 21-cm spectral line observations with the Parkes telescopes. The observations will allow us to accurately estimate the cloud HI column density, as well as to derive information about its kinematics.

  6. Photometric Metallicities of the Small and Large Magellanic Clouds

    NASA Astrophysics Data System (ADS)

    Miller, Amy Elizabeth

    2018-06-01

    In the field of astronomy, the study of galaxies is vitally important to understanding the structure and evolution of the universe. Within the study of galaxies, of particular interest are the Small and Large Magellanic Clouds (SMC and LMC, respectively), two of the Milky Way’s closest and most massive satellite galaxies. Their close proximity make them ideal candidates for understanding astrophysical processes such as galaxy interactions. In order to fully understand the Magellanic Clouds, it is imperative that the metallicity of the clouds be mapped in detail. In order to accomplish this task, I will use data from the Survey of Magellanic Stellar History (SMASH) which is a deep, multi-band (ugriz) photometric survey of the Magellanic Clouds that contains approximately 400 million objects in 197 fully-calibrated fields. SMASH is an extensive and deep photometric data set that enables the full-scale study of the galactic structure in the Clouds. The SMASH u-band is sensitive to metallicity for main-sequence turn-off stars which we calibrate using SDSS spectroscopy in overlapping regions (mainly standard star fields). The final steps will be to make metallicity maps of the main bodies and peripheries of the LMC and SMC. Ultimately, these metallicity maps will help us trace out population gradients in the Clouds and uncover the origin of their very extended stellar peripheries.

  7. Coherent Forward Broadening in Cold Atom Clouds

    NASA Astrophysics Data System (ADS)

    Sutherland, R. T.; Robicheaux, Francis

    2016-05-01

    It is shown that homogeneous line-broadening in a diffuse cold atom cloud is proportional to the resonant optical depth of the cloud. Further, it is demonstrated how the strong directionality of the coherent interactions causes the cloud's spectra to depend strongly on its shape, even when the cloud is held at constant densities. These two numerical observations can be predicted analytically by extending the single photon wavefunction model. Lastly, elongating a cloud along the line of laser propagation causes the excitation probability distribution to deviate from the exponential decay predicted by the Beer-Lambert law to the extent where the atoms in the back of the cloud are more excited than the atoms in the front. These calculations are conducted at low densities relevant to recent experiments. This work was supported by the National Science Foundation under Grant No. 1404419-PHY.

  8. The diffuse infrared background - COBE and other observations

    NASA Technical Reports Server (NTRS)

    Hauser, M. G.; Kelsall, T.; Moseley, S. H., Jr.; Silverberg, R. F.; Murdock, T.; Toller, G.; Spiesman, W.; Weiland, J.

    1991-01-01

    The Diffuse Infrared Background Experiment (DIRBE) on the Cosmic Background Explorer (COBE) satellite is designed to conduct a sensitive search for an isotropic cosmic infrared background radiation over the spectral range from 1 to 300 micrometers. The cumulative emissions of pregalactic, protogalactic, and evolving galactic systems are expected to be recorded in this background. The DIRBE instrument, a 10 spectral band absolute photometer with an 0.7 deg field of view, maps the full sky with high redundancy at solar elongation angles ranging from 64 to 124 degrees to facilitate separation of interplanetary, Galactic, and extragalactic sources of emission. Initial sky maps show the expected character of the foreground emissions, with relative minima at wavelengths of 3.4 micrometers and longward of 100 micrometers. Extensive modelling of the foregrounds, just beginning, will be required to isolate the extragalactic component. In this paper, we summarize the status of diffuse infrared background observations from the DIRBE, and compare preliminary results with those of recent rocket and satellite instruments.

  9. Interstellar Extinction in the Vicinity of the Galactic Center

    NASA Technical Reports Server (NTRS)

    Cotera, Angela S.; Simpson, Janet P.; Erickson, Edwin F.; Colgan, Sean W. J.; Burton, Michael G.; Allen, David A.

    2000-01-01

    We present J (1.2 microns), H (1-6 microns), K' (2.11 microns) and Br(gamma) (2.166 microns) images from four large regions within the central 40 pc of the Galaxy. Localized variations in the extinction, as determined by observations of the stellar population, are examined using the median H-K' color as a function of position within each region. As the value of the derived extinction from the stars is dependent upon the intrinsic magnitude of the assumed stellar type, the J-H vs. H-K' diagrams are first used to investigate the distribution of stellar types in the four regions. We find that there is a distinct OB population, contrary to earlier assumptions, with the ratio of K and M giants and supergiants to OB stars approximately twice that of the solar neighborhood. Although the on the scale of approx. l' fluctuations in the extinction are on the order of A(sub V) approx. 2, throughout the entire region the extinction varies from A(sub V) approx. greater than 25 to A(sub V) approx. less than 40. We also examine whether there is any variation in the extinction and stellar number density relative to the usual radio features in these regions and do not find a significant correlation. Spectral imaging in Br(gamma) 2.166 microns emission shows a strong morphological correspondence between the 6 cm radio images and the diffuse Br(gamma) emission. By comparing the theoretical Br(gamma) flux derived from the radio flux using recombination theory, with our measured Br(gamma) flux, we obtain a second, independent, estimate of the extinction. We compare the two data sets and find that the extinction as derived from the stars is consistently greater, sometimes by a factor of two, than the value of the extinction derived from the Br(gamma) images. The derived extinction in various regions, however, is insufficient for any of these regions-to be located behind the molecular clouds as previously observed in the Galactic Center, consistent with the theory that the observed radio

  10. Interstellar Extinction in the Vicinity of the Galactic Center

    NASA Technical Reports Server (NTRS)

    Cotera, Angela S.; Simpson, Janet P.; Erickson, Edwin F.; Colgan, Sean W. J.

    1998-01-01

    We present J (1.2 microns) H (1-6 microns) K' (2.11 microns) and Br(gamma) (2.166 microns) images from four large regions within the central 40 pc of the Galaxy. Localized variations in the extinction, as determined by observations of the stellar population, are examined using the median H-K' color as a function of position within each region. As the value of the derived extinction from the stars is dependent upon the intrinsic magnitude of the assumed stellar type, the J-H vs. H-K' diagrams are first used to investigate the distribution of stellar types in the four regions. We find that there is a distinct OB population, contrary to earlier assumptions, with the ratio of K and M giants and supergiants to OB stars approximately twice that of the solar neighborhood. Although the on the scale of approx. 1 min. fluctuations in the extinction are on the order of A(sub V) approx. greater than 2, throughout the entire region the extinction varies from A(sub V) approx. greater than 25 to A(sub V) approx. less than 40. We also examine whether there is any variation in the extinction and stellar number density relative to the unusual radio features in these regions and do not find a significant correlation. Spectral imaging in Br(gamma) 2.166 microns emission shows a strong morphological correspondence between the 6 cm radio images and the diffuse Br(gamma) emission. By comparing the theoretical Br(gamma) flux derived from the radio flux using recombination theory, with our measured Br(gamma) flux, we obtain a second, independent, estimate of the extinction. We compare the two data sets and find that the extinction as derived from the stars is consistently greater, sometimes by a factor of two, than the value of the extinction derived from the Br(gamma) images. The derived extinction in various regions, however, is insufficient for any of these regions to be located behind the molecular clouds as previously observed in the Galactic Center, consistent with the theory that

  11. Spitzer Digs Up Galactic Fossil

    NASA Technical Reports Server (NTRS)

    2004-01-01

    [figure removed for brevity, see original site] Figure 1

    [figure removed for brevity, see original site] Figure 2

    This false-color image taken by NASA's Spitzer Space Telescope shows a globular cluster previously hidden in the dusty plane of our Milky Way galaxy. Globular clusters are compact bundles of old stars that date back to the birth of our galaxy, 13 or so billion years ago. Astronomers use these galactic 'fossils' as tools for studying the age and formation of the Milky Way.

    Most clusters orbit around the center of the galaxy well above its dust-enshrouded disc, or plane, while making brief, repeated passes through the plane that each last about a million years. Spitzer, with infrared eyes that can see into the dusty galactic plane, first spotted the newfound cluster during its current pass. A visible-light image (inset of Figure 1) shows only a dark patch of sky.

    The red streak behind the core of the cluster is a dust cloud, which may indicate the cluster's interaction with the Milky Way. Alternatively, this cloud may lie coincidentally along Spitzer's line of sight.

    Follow-up observations with the University of Wyoming Infrared Observatory helped set the distance of the new cluster at about 9,000 light-years from Earth - closer than most clusters - and set the mass at the equivalent of 300,000 Suns. The cluster's apparent size, as viewed from Earth, is comparable to a grain of rice held at arm's length. It is located in the constellation Aquila.

    Astronomers believe that this cluster may be one of the last in our galaxy to be uncovered.

    This image composite was taken on April 21, 2004, by Spitzer's infrared array camera. It is composed of images obtained at four wavelengths: 3.6 microns (blue), 4.5 microns (green), 5.8 microns (orange) and 8 microns (red).

    Galactic Fossil Found Behind Curtain of Dust In Figure 2, the image mosaic shows the same patch of sky in various wavelengths of light. While the

  12. THE YOUNG STELLAR OBJECT POPULATION IN THE VELA-D MOLECULAR CLOUD

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Strafella, F.; Maruccia, Y.; Maiolo, B.

    2015-01-10

    We investigate the young stellar population in the Vela Molecular Ridge, Cloud-D, a star-forming region observed by both the Spitzer/NASA and Herschel/ESA space telescopes. The point-source, band-merged, Spitzer-IRAC catalog complemented with MIPS photometry previously obtained is used to search for candidate young stellar objects (YSOs), also including sources detected in less than four IRAC bands. Bona fide YSOs are selected by using appropriate color-color and color-magnitude criteria aimed at excluding both Galactic and extragalactic contaminants. The derived star formation rate and efficiency are compared with the same quantities characterizing other star-forming clouds. Additional photometric data, spanning from the near-IR tomore » the submillimeter, are used to evaluate both bolometric luminosity and temperature for 33 YSOs located in a region of the cloud observed by both Spitzer and Herschel. The luminosity-temperature diagram suggests that some of these sources are representative of Class 0 objects with bolometric temperatures below 70 K and luminosities of the order of the solar luminosity. Far-IR observations from the Herschel/Hi-GAL key project for a survey of the Galactic plane are also used to obtain a band-merged photometric catalog of Herschel sources intended to independently search for protostars. We find 122 Herschel cores located on the molecular cloud, 30 of which are protostellar and 92 of which are starless. The global protostellar luminosity function is obtained by merging the Spitzer and Herschel protostars. Considering that 10 protostars are found in both the Spitzer and Herschel lists, it follows that in the investigated region we find 53 protostars and that the Spitzer-selected protostars account for approximately two-thirds of the total.« less

  13. THE FIRST DISTANCE CONSTRAINT ON THE RENEGADE HIGH-VELOCITY CLOUD COMPLEX WD

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peek, J. E. G.; Roman-Duval, Julia; Tumlinson, Jason

    2016-09-10

    We present medium-resolution, near-ultraviolet Very Large Telescope/FLAMES observations of the star USNO-A0600-15865535. We adapt a standard method of stellar typing to our measurement of the shape of the Balmer ϵ absorption line to demonstrate that USNO-A0600-15865535 is a blue horizontal branch star, residing in the lower stellar halo at a distance of 4.4 kpc from the Sun. We measure the H and K lines of singly ionized calcium and find two isolated velocity components, one originating in the disk, and one associated with the high-velocity cloud complex WD. This detection demonstrated that complex WD is closer than ∼4.4 kpc andmore » is the first distance constraint on the +100 km s{sup −1} Galactic complex of clouds. We find that complex WD is not in corotation with the Galactic disk, which has been assumed for decades. We examine a number of scenarios and find that the most likely scenario is that complex WD was ejected from the solar neighborhood and is only a few kiloparsecs from the Sun.« less

  14. A High-velocity Cloud Impact Forming a Supershell in the Milky Way

    NASA Astrophysics Data System (ADS)

    Park, Geumsook; Koo, Bon-Chul; Kang, Ji-hyun; Gibson, Steven J.; Peek, J. E. G.; Douglas, Kevin A.; Korpela, Eric J.; Heiles, Carl E.

    2016-08-01

    Neutral atomic hydrogen (H I) gas in interstellar space is largely organized into filaments, loops, and shells, the most prominent of which are “supershells.” These gigantic structures, which require ≳ 3× {10}52 erg to form, are generally thought to be produced by either the explosion of multiple supernovae (SNe) in OB associations or, alternatively, by the impact of high-velocity clouds (HVCs) falling into the Galactic disk. Here, we report the detection of a kiloparsec (kpc)-size supershell in the outskirts of the Milky Way with the compact HVC 040 + 01-282 (hereafter, CHVC040) at its geometrical center using the “Inner-Galaxy Arecibo L-band Feed Array” H I 21 cm survey data. The morphological and physical properties of both objects suggest that CHVC040, which is either a fragment of a nearby disrupted galaxy or a cloud that originated from an intergalactic accreting flow, collided with the disk ˜5 Myr ago to form the supershell. Our results show that some compact HVCs can survive their trip through the Galactic halo and inject energy and momentum into the Milky Way disk.

  15. Consequences of hot gas in the broad line region of active galactic nuclei

    NASA Technical Reports Server (NTRS)

    Kallman, T.; Mushotzky, R.

    1985-01-01

    Models for hot gas in the broad line region of active galactic nuclei are discussed. The results of the two phase equilibrium models for confinement of broad line clouds by Compton heated gas are used to show that high luminosity quasars are expected to show Fe XXVI L alpha line absorption which will be observed with spectrometers such as those planned for the future X-ray spectroscopy experiments. Two phase equilibrium models also predict that the gas in the broad line clouds and the confining medium may be Compton thick. It is shown that the combined effects of Comptonization and photoabsorption can suppress both the broad emission lines and X-rays in the Einstein and HEAO-1 energy bands. The observed properties of such Compton thick active galaxies are expected to be similar to those of Seyfert 2 nuclei. The implications for polarization and variability are also discussed.

  16. Observational discrimination between modes of shock propagation in interstellar clouds: Predictions of CH+ and SH+ column densities in diffuse clouds

    NASA Technical Reports Server (NTRS)

    Flower, D. R.; Desforets, G. P.; Roueff, E.; Hartquist, T. W.

    1986-01-01

    Considerable effort in recent years has been devoted to the study of shocks in the diffuse interstellar medium. This work has been motivated partly by the observations of rotationally excited states of H2, and partly by the realization that species such as CH(+), OH and H2O might be formed preferentially in hot, post-shock gas. The problem of CH(+) and the difficulties encountered when trying to explain the high column densities, observed along lines of sight to certain hot stars, have been reviewed earlier. The importance of a transverse magnetic field on the structure of an interstellar shock was also demonstrated earlier. Transverse magnetic fields above a critical strength give rise to an acceleration zone or precursor, in which the parameters on the flow vary continuously. Chemical reactions, which change the degree of ionization of the gas, also modify the structure of the shock considerably. Recent work has shown that large column densities of CH(+) can be produced in magnetohydrodynamic shock models. Shock speeds U sub s approx. = 10 km/s and initial magnetic field strengths of a few micro G are sufficient to produce ion-neutral drift velocities which can drive the endothermic C(+)(H2,H)CH(+) reaction. It was also shown that single-fluid hydrodynamic models do not generate sufficiently large column densities of CH(+) unless unacceptably high shock velocities (u sub s approx. 20 km/s) are assumed in the models. Thus, the observed column densities of CH(+) provide a constraint on the mode of shock propagation in diffuse clouds. More precisely, they determine a lower limit to the ion-neutral drift velocity.

  17. Streaming motions and kinematic distances to molecular clouds

    NASA Astrophysics Data System (ADS)

    Ramón-Fox, F. G.; Bonnell, Ian A.

    2018-02-01

    We present high-resolution smoothed particle hydrodynamics simulations of a region of gas flowing in a spiral arm and identify dense gas clouds to investigate their kinematics with respect to a Milky Way model. We find that, on average, the gas in the arms can have a net radial streaming motion of vR ≈ -9 km s-1 and rotate ≈ 6 km s-1 slower than the circular velocity. This translates to average peculiar motions towards the Galaxy centre and opposite to Galactic rotation. These results may be sensitive to the assumed spiral arm perturbation, which is ≈ 3 per cent of the disc potential in our model. We compare the actual distance and the kinematic estimate and we find that streaming motions introduce systematic offsets of ≈1 kpc. We find that the distance error can be as large as ±2 kpc, and the recovered cloud positions have distributions that can extend significantly into the inter-arm regions. We conclude that this poses a difficulty in tracing spiral arm structure in molecular cloud surveys.

  18. Investigating the galactic Supernova Remnant Kes 78 with XMM-Newton

    NASA Astrophysics Data System (ADS)

    Miceli, M.; Bamba, A.; Orlando, S.; Bocchino, F.

    2016-06-01

    The galactic supernova remnant Kes 78 is associated with a HESS gamma-ray source and its X-ray emission has been recently revealed by Suzaku observations which have found indications for a hard X-ray component in the spectra. We analyzed an XMM-Newton EPIC observation of Kes 78 and studied the spatial distribution of the physical and chemical properties of the X-ray emitting plasma. The EPIC data unveiled a very complex morphology for the soft X-ray emission. We performed image analysis and spatially resolved spectral analysis finding indications for the interaction of the remnant with a local molecular cloud. Finally, we investigated the origin of the hard X-ray emitting component.

  19. Investigating the Galactic supernova remnant Kes 78 with XMM-Newton

    NASA Astrophysics Data System (ADS)

    Miceli, Marco; Bamba, Aya; Orlando, Salvatore; Bocchino, Fabrizio

    2016-06-01

    The galactic supernova remnant Kes 78 is associated with a HESS gamma-ray source and its X-ray emission has been recently revealed by Suzaku observations which have found indications for a hard X-ray component in the spectra. We analyzed an XMM-Newton EPIC observation of Kes 78 and studied the spatial distribution of the physical and chemical properties of the X-ray emitting plasma. The EPIC data unveiled a very complex morphology for the soft X-ray emission. We performed image analysis and spatially resolved spectral analysis finding indications for the interaction of the remnant with a local molecular cloud. Finally, we investigated the origin of the hard X-ray emitting component.

  20. The Advanced Gamma-ray Imaging System (AGIS): Galactic Astrophysics

    NASA Astrophysics Data System (ADS)

    Digel, Seth William; Funk, S.; Kaaret, P. E.; Tajima, H.; AGIS Collaboration

    2010-03-01

    The Advanced Gamma-ray Imaging System (AGIS), a concept for a next-generation atmospheric Cherenkov telescope array, would provide unprecedented sensitivity and resolution in the energy range >50 GeV, allowing great advances in the understanding of the populations and physics of sources of high-energy gamma rays in the Milky Way. Extrapolation based on the known source classes and the performance parameters for AGIS indicates that a survey of the Galactic plane with AGIS will reveal hundreds of TeV sources in exquisite detail, for population studies of a variety of source classes, and detailed studies of individual sources. AGIS will be able to study propagation effects on the cosmic rays produced by Galactic sources by detecting the diffuse glow from their interactions in dense interstellar gas. AGIS will complement and extend results now being obtained in the GeV range with the Fermi mission, by providing superior angular resolution and sensitivity to variability on short time scales, and of course by probing energies that Fermi cannot reach.

  1. Observations of O VI Emission from the Diffuse Interstellar Medium

    NASA Technical Reports Server (NTRS)

    Shelton, R. L.; Kruk, J. W.; Murphy, E. M.; Andersson, B. G.; Blair, W. P.; Dixon, W. V.; Edelstein, J.; Fullerton, A. W.; Gry, C.; Howk, J. C.; hide

    2001-01-01

    We report the first Far Ultraviolet Spectroscopic Explorer (FUSE) measurements of diffuse O(VI) (lambda lambda 1032,1038) emission from the general diffuse interstellar medium outside of supernova remnants or superbubbles. We observed a 30 arcsec x 30 arcsec region of the sky centered at l = 315.0 deg and b = -41.3 deg. From the observed intensities (2930 +/- 290 (random) +/- 410 (systematic) and 1790 +/- 260 (random) +/- 250 (systematic) photons/sq cm/s/sr in the 1032 and 1038 angstrom emission lines, respectively), derived equations, and assumptions about the source location, we calculate the intrinsic intensity, electron density, thermal pressure, and emitting depth. The intensities are too large for the emission to originate solely in the Local Bubble. Thus, we conclude that the Galactic thick disk and lower halo also contribute. High velocity clouds are ruled out because there are none near the pointing direction. The calculated emitting depth is small, indicating that the O(VI)-bearing gas fills a small volume. The observations can also be used to estimate the cooling rate of the hot interstellar medium and constrain models. The data also yield the first intensity measurement of the C(II) 3s 2S(1/2) to 2p 2P(3/2) emission line at 1037 angstrom and place upper limits on the intensities of ultraviolet line emission from C(I), C(III), Si(II), S(III), S(IV), S(VI), and Fe(III).

  2. Understanding Coupling of Global and Diffuse Solar Radiation with Climatic Variability

    NASA Astrophysics Data System (ADS)

    Hamdan, Lubna

    Global solar radiation data is very important for wide variety of applications and scientific studies. However, this data is not readily available because of the cost of measuring equipment and the tedious maintenance and calibration requirements. Wide variety of models have been introduced by researchers to estimate and/or predict the global solar radiations and its components (direct and diffuse radiation) using other readily obtainable atmospheric parameters. The goal of this research is to understand the coupling of global and diffuse solar radiation with climatic variability, by investigating the relationships between these radiations and atmospheric parameters. For this purpose, we applied multilinear regression analysis on the data of National Solar Radiation Database 1991--2010 Update. The analysis showed that the main atmospheric parameters that affect the amount of global radiation received on earth's surface are cloud cover and relative humidity. Global radiation correlates negatively with both variables. Linear models are excellent approximations for the relationship between atmospheric parameters and global radiation. A linear model with the predictors total cloud cover, relative humidity, and extraterrestrial radiation is able to explain around 98% of the variability in global radiation. For diffuse radiation, the analysis showed that the main atmospheric parameters that affect the amount received on earth's surface are cloud cover and aerosol optical depth. Diffuse radiation correlates positively with both variables. Linear models are very good approximations for the relationship between atmospheric parameters and diffuse radiation. A linear model with the predictors total cloud cover, aerosol optical depth, and extraterrestrial radiation is able to explain around 91% of the variability in diffuse radiation. Prediction analysis showed that the linear models we fitted were able to predict diffuse radiation with efficiency of test adjusted R2 values

  3. Diffuse Ionized Gas in the Milky Way Disk

    NASA Astrophysics Data System (ADS)

    Luisi, Matteo; Anderson, L. D.; Balser, Dana S.; Wenger, Trey V.; Bania, T. M.

    2017-11-01

    We analyze the diffuse ionized gas (DIG) in the first Galactic quadrant from {\\ell }=18^\\circ to 40° using radio recombination line (RRL) data from the Green Bank Telescope. These data allow us to distinguish DIG emission from H II region emission and thus study the diffuse gas essentially unaffected by confusion from discrete sources. We find that the DIG has two dominant velocity components, one centered around 100 {km} {{{s}}}-1 associated with the luminous H II region W43, and the other centered around 45 {km} {{{s}}}-1 not associated with any large H II region. Our analysis suggests that the two velocity components near W43 may be caused by noncircular streaming motions originating near the end of the Galactic bar. At lower Galactic longitudes, the two velocities may instead arise from gas at two distinct distances from the Sun, with the most likely distances being ˜6 kpc for the 100 {km} {{{s}}}-1 component and ˜12 kpc for the 45 {km} {{{s}}}-1 component. We show that the intensity of diffuse Spitzer GLIMPSE 8.0 μm emission caused by excitation of polyaromatic hydrocarbons (PAHs) is correlated with both the locations of discrete H II regions and the intensity of the RRL emission from the DIG. This implies that the soft ultraviolet photons responsible for creating the infrared emission have a similar origin as the harder ultraviolet photons required for the RRL emission. The 8.0 μm emission increases with RRL intensity but flattens out for directions with the most intense RRL emission, suggesting that PAHs are partially destroyed by the energetic radiation field at these locations.

  4. Dynamical evolution of the Oort cloud

    NASA Technical Reports Server (NTRS)

    Weissman, P. R.

    1985-01-01

    New studies of the dynamical evolution of cometary orbits in the Oort cloud are made using a revised version of Weissman's (1982) Monte Carlo simulation model, which more accurately mimics the perturbation of comets by the giant planets. It is shown that perturbations by Saturn and Jupiter provide a substantial barrier to the diffusion of cometary perihelia into the inner solar system. Perturbations by Uranus and Neptune are rarely great enough to remove comets from the Oort cloud, but do serve to scatter the comets in the cloud in initial energy. The new model gives a population of 1.8 to 2.1 x 10 to the 12th comets for the present-day Oort cloud, and a mass of 7 to 8 earth masses. Perturbation of the Oort cloud by giant molecular clouds in the galaxy is discussed, as is evidence for a massive 'inner Oort cloud' internal to the observed one. The possibility of an unseen solar companion orbiting in the Oort cloud and causing periodic comet showers is shown to be dynamically plausible but unlikely, based on the observed cratering rate on the earth and moon.

  5. THE SPECTRUM OF ISOTROPIC DIFFUSE GAMMA-RAY EMISSION BETWEEN 100 MeV AND 820 GeV

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ackermann, M.; Buehler, R.; Ajello, M.

    2015-01-20

    The γ-ray sky can be decomposed into individually detected sources, diffuse emission attributed to the interactions of Galactic cosmic rays with gas and radiation fields, and a residual all-sky emission component commonly called the isotropic diffuse γ-ray background (IGRB). The IGRB comprises all extragalactic emissions too faint or too diffuse to be resolved in a given survey, as well as any residual Galactic foregrounds that are approximately isotropic. The first IGRB measurement with the Large Area Telescope (LAT) on board the Fermi Gamma-ray Space Telescope (Fermi) used 10 months of sky-survey data and considered an energy range between 200 MeV and 100 GeV. Improvementsmore » in event selection and characterization of cosmic-ray backgrounds, better understanding of the diffuse Galactic emission (DGE), and a longer data accumulation of 50 months allow for a refinement and extension of the IGRB measurement with the LAT, now covering the energy range from 100 MeV to 820 GeV. The IGRB spectrum shows a significant high-energy cutoff feature and can be well described over nearly four decades in energy by a power law with exponential cutoff having a spectral index of 2.32 ± 0.02 and a break energy of (279 ± 52) GeV using our baseline DGE model. The total intensity attributed to the IGRB is (7.2 ± 0.6) × 10{sup –6} cm{sup –2} s{sup –1} sr{sup –1} above 100 MeV, with an additional +15%/–30% systematic uncertainty due to the Galactic diffuse foregrounds.« less

  6. The origin of Halley-type comets: probing the inner Oort cloud

    NASA Astrophysics Data System (ADS)

    Levison, H.; Dones, L.; Duncan, M.

    2000-10-01

    We have integrated the orbits of 27,700 test particles initially entering the planetary system from the Oort cloud in order to study the origin of Halley-type comets (HTCs). We included the gravitational influence of the Sun, giant planets, passing stars, and galactic tides. We find that an isotropically distributed Oort cloud does not reproduce the observed orbital element distribution of the HTCs. In order to match the observations, the initial inclination distribution of the progenitors of the HTCs must be similar to the observed HTC inclination distribution. We can match the observations with an Oort cloud that consists of an isotropic outer cloud and a disk-like massive inner cloud. These idealized two-component models have inner disks with median inclinations that range from 10 to 50o. This analysis represents the first link between observations and the structure of the inner Oort cloud. HFL and LD gratefully acknowledges grants provided by the NASA Origins of Solar Systems and Planetary Geology and Geophysics Programs. MJD is grateful for the continuing financial support of the Natural Science and Engineering Research Council of Canada and for financial support for work done inthe U.S.from NASA Planetary Geology and Geophysics Programs.

  7. Active galactic nuclei

    PubMed Central

    Fabian, Andrew C.

    1999-01-01

    Active galactic nuclei are the most powerful, long-lived objects in the Universe. Recent data confirm the theoretical idea that the power source is accretion into a massive black hole. The common occurrence of obscuration and outflows probably means that the contribution of active galactic nuclei to the power density of the Universe has been generally underestimated. PMID:10220363

  8. Kosmos 856 and Kosmos 914 measurements of high-energy diffuse gamma rays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kalinkin, L.F.; Nagornykh, Y.I.

    1982-09-01

    The measurements by the Kosmos 856 and Kosmos 914 satellites of diffuse cosmic ..gamma.. rays with photon energies above 100 MeV are discussed. Integrated energy spectra for the 100--4000 MeV energy range are given for galactic lattitudes Vertical BarbVertical Bar< or =30/sup 0/ and Vertical BarbVertical Bar>30/sup 0/. The form of the spectra suggests that at high lattitudes there may still be some contribution from the galactic component.

  9. A dearth of OH/IR stars in the Small Magellanic Cloud

    NASA Astrophysics Data System (ADS)

    Goldman, Steven R.; van Loon, Jacco Th.; Gómez, José F.; Green, James A.; Zijlstra, Albert A.; Nanni, Ambra; Imai, Hiroshi; Whitelock, Patricia A.; Groenewegen, Martin A. T.; Oliveira, Joana M.

    2018-01-01

    We present the results of targeted observations and a survey of 1612-, 1665- and 1667-MHz circumstellar OH maser emission from asymptotic giant branch (AGB) stars and red supergiants (RSGs) in the Small Magellanic Cloud (SMC), using the Parkes and Australia Telescope Compact Array (ATCA) radio telescopes. No clear OH maser emission has been detected in any of our observations targeting luminous, long-period, large-amplitude variable stars, which have been confirmed spectroscopically and photometrically to be mid- to late-M spectral type. These observations have probed 3-4 times deeper than any OH maser survey in the SMC. Using a bootstrapping method with Large Magellanic Cloud (LMC) and Galactic OH/IR star samples and our SMC observation upper limits, we have calculated the likelihood of not detecting maser emission in any of the two sources considered to be the top maser candidates to be less than 0.05 per cent, assuming a similar pumping mechanism as the LMC and Galactic OH/IR sources. We have performed a population comparison of the Magellanic Clouds and used Spitzer IRAC and MIPS photometry to confirm that we have observed all high luminosity SMC sources that are expected to exhibit maser emission. We suspect that, compared to the OH/IR stars in the Galaxy and LMC, the reduction in metallicity may curtail the dusty wind phase at the end of the evolution of the most massive cool stars. We also suspect that the conditions in the circumstellar envelope change beyond a simple scaling of abundances and wind speed with metallicity.

  10. Some consequences of shear on galactic dynamos with helicity fluxes

    NASA Astrophysics Data System (ADS)

    Zhou, Hongzhe; Blackman, Eric G.

    2017-08-01

    Galactic dynamo models sustained by supernova (SN) driven turbulence and differential rotation have revealed that the sustenance of large-scale fields requires a flux of small-scale magnetic helicity to be viable. Here we generalize a minimalist analytic version of such galactic dynamos to explore some heretofore unincluded contributions from shear on the total turbulent energy and turbulent correlation time, with the helicity fluxes maintained by either winds, diffusion or magnetic buoyancy. We construct an analytic framework for modelling the turbulent energy and correlation time as a function of SN rate and shear. We compare our prescription with previous approaches that include only rotation. The solutions depend separately on the rotation period and the eddy turnover time and not just on their ratio (the Rossby number). We consider models in which these two time-scales are allowed to be independent and also a case in which they are mutually dependent on radius when a radial-dependent SN rate model is invoked. For the case of a fixed rotation period (or a fixed radius), we show that the influence of shear is dramatic for low Rossby numbers, reducing the correlation time of the turbulence, which, in turn, strongly reduces the saturation value of the dynamo compared to the case when the shear is ignored. We also show that even in the absence of winds or diffusive fluxes, magnetic buoyancy may be able to sustain sufficient helicity fluxes to avoid quenching.

  11. CHEMICAL ANALYSIS OF A DIFFUSE CLOUD ALONG A LINE OF SIGHT TOWARD W51: MOLECULAR FRACTION AND COSMIC-RAY IONIZATION RATE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Indriolo, Nick; Neufeld, D. A.; Gerin, M.

    2012-10-20

    Absorption lines from the molecules OH{sup +}, H{sub 2}O{sup +}, and H{sup +} {sub 3} have been observed in a diffuse molecular cloud along a line of sight near W51 IRS2. We present the first chemical analysis that combines the information provided by all three of these species. Together, OH{sup +} and H{sub 2}O{sup +} are used to determine the molecular hydrogen fraction in the outskirts of the observed cloud, as well as the cosmic-ray ionization rate of atomic hydrogen. H{sup +} {sub 3} is used to infer the cosmic-ray ionization rate of H{sub 2} in the molecular interior ofmore » the cloud, which we find to be {zeta}{sub 2} = (4.8 {+-} 3.4) Multiplication-Sign 10{sup -16} s{sup -1}. Combining the results from all three species we find an efficiency factor-defined as the ratio of the formation rate of OH{sup +} to the cosmic-ray ionization rate of H-of {epsilon} = 0.07 {+-} 0.04, much lower than predicted by chemical models. This is an important step in the future use of OH{sup +} and H{sub 2}O{sup +} on their own as tracers of the cosmic-ray ionization rate.« less

  12. Morphology of Gas in the Galactic Center from Spectroscopy of H_3^+

    NASA Astrophysics Data System (ADS)

    Oka, Takeshi; Geballe, Thomas R.; Indriolo, Nick; Goto, Miwa

    2012-06-01

    Over the last several years our observations of the infrared spectrum of H_3^+ toward the Galactic center (GC) have established a high ionization rate (ζ > 2 × 10-15 s-1) and the existence of a vast amount of warm (T ˜250 K) and diffuse (n < 100 cm-3) gas with a high volume filling factor (f > 0.3) in the Central Molecular Zone (CMZ) of the GC, a region of radius ˜150 pc. These findings are gradually being assimilated into the astrophysics of the GC. Determining the morphology of this gas is difficult because the sightlines for study are limited by the uncontrollable locations of background stars suitable for spectroscopy of H_3^+. There are wide longitudinal gaps in the locations of those stars and the precise radial locations of the stars within the CMZ are uncertain. Nevertheless, the velocity profiles of the observed H_3^+ spectra indicate the presence of the Expanding Molecular Ring (EMR), a structure containing mostly diffuse gas expanding from the center with velocities of up to 180 km s-1 and bordering the CMZ. On the other hand, the 120 pc Molecular Ring, an inner t ring of cold dust and dense gas with radius ˜100 pc is not clearly seen in H_3^+. This is possibly because the sightlines that we have observed to date lie close to the Galactic plane and miss the ring, which goes above and below the Galactic plane. Oka, T., Geballe, T.R., Goto, M., Usuda, T., McCall, B.J. 2005, ApJ, 632, 882 Goto, Usuda, Nagata, Geballe, McCall, Indriolo, Suto, Henning, Morong, and Oka, 2008, ApJ, 688, 306. Geballe, T.R. and Oka, T. 2010, ApJ, 709, L70 Sofue, Y. 1995, PASJ, 47, 527 Molinari, S. et al. 2011, ApJ, 735, L33.

  13. Theory of grain alignment in molecular clouds

    NASA Technical Reports Server (NTRS)

    Roberge, Wayne G.

    1993-01-01

    Research accomplishments are presented and include the following: (1) mathematical theory of grain alignment; (2) super-paramagnetic alignment of molecular cloud grains; and (3) theory of grain alignment by ambipolar diffusion.

  14. Space Weather Connections to Clouds and Climate

    NASA Astrophysics Data System (ADS)

    Tinsley, B. A.

    2004-12-01

    There is now a considerable amount of observational data and theoretical work pointing to a link between space weather and atmospheric electricity, and then between atmospheric electricity and cloud cover and precipitation, which ultimately affect climate and the biosphere. Studies so far have been largely confined to the Earth, but may be applicable to all planets with clouds in their atmospheres. The current density Jz, that is the return current flowing downward through clouds in the global circuit, is modulated by the galactic cosmic ray flux; by solar energetic particles; by the dawn-dusk polar cap potential difference; and by the precipitation of relativistic electrons from the radiation belts. The flow of Jz through clouds generates unipolar space charge, which is positive at cloud tops and negative at cloud base. This charge attaches to aerosol particles, and affects their interaction with other particles and droplets. Ultrafine aerosol particles are formed around ions and are preserved from scavenging on background aerosols, and preserved for growth by vapor deposition, by space charge at the bases and tops of layer clouds. There is electro-preservation of both ultrafines and of existing CCN that leads to increases in CCN concentration, and increases in cloud cover and reduction in both droplet size and precipitation by the `indirect aerosol effect'. For cold clouds and larger aerosol particles that act as ice forming nuclei, the rate of scavenging of the IFN by large supercooled droplets varies with space charge. Changes in space weather affect both ion production and Jz in planetary atmospheres. In addition, changes in cosmic ray flux affect conductivity within thunderclouds and may affect the output of the thundercloud generators in the global circuit. Thus all four processes, (a) ion-induced nucleation, (b) electro-preservation of leading to increases in CCN concentration and the indirect aerosol effect, (c) contact ice nucleation affecting the

  15. A likely detection of a local interplanetary dust cloud passing near the Earth in the AKARI mid-infrared all-sky map

    NASA Astrophysics Data System (ADS)

    Ishihara, D.; Kondo, T.; Kaneda, H.; Suzuki, T.; Nakamichi, K.; Takaba, S.; Kobayashi, H.; Masuda, S.; Ootsubo, T.; Pyo, J.; Onaka, T.

    2017-07-01

    Context. We are creating the AKARI mid-infrared all-sky diffuse maps. Through a foreground removal of the zodiacal emission, we serendipitously detected a bright residual component whose angular size is about 50° × 20° at a wavelength of 9 μm. Aims: We investigate the origin and the physical properties of the residual component. Methods: We measured the surface brightness of the residual component in the AKARI mid-infrared all-sky maps. Results: The residual component was significantly detected only in 2007 January, even though the same region was observed in 2006 July and 2007 July, which shows that it is not due to the Galactic emission. We suggest that this may be a small cloud passing near the Earth. By comparing the observed intensity ratio of I9 μm/I18 μm with the expected intensity ratio assuming thermal equilibrium of dust grains at 1 AU for various dust compositions and sizes, we find that dust grains in the moving cloud are likely to be much smaller than typical grains that produce the bulk of the zodiacal light. Conclusions: Considering the observed date and position, it is likely that it originates in the solar coronal mass ejection (CME) which took place on 2007 January 25.

  16. Particle Acceleration in Active Galactic Nuclei

    NASA Technical Reports Server (NTRS)

    Miller, James A.

    1997-01-01

    The high efficiency of energy generation inferred from radio observations of quasars and X-ray observations of Seyfert active galactic nuclei (AGNs) is apparently achieved only by the gravitational conversion of the rest mass energy of accreting matter onto supermassive black holes. Evidence for the acceleration of particles to high energies by a central engine is also inferred from observations of apparent superluminal motion in flat spectrum, core-dominated radio sources. This phenomenon is widely attributed to the ejection of relativistic bulk plasma from the nuclei of active galaxies, and accounts for the existence of large scale radio jets and lobes at large distances from the central regions of radio galaxies. Reports of radio jets and superluminal motion from galactic black hole candidate X-ray sources indicate that similar processes are operating in these sources. Observations of luminous, rapidly variable high-energy radiation from active galactic nuclei (AGNs) with the Compton Gamma Ray Observatory show directly that particles are accelerated to high energies in a compact environment. The mechanisms which transform the gravitational potential energy of the infalling matter into nonthermal particle energy in galactic black hole candidates and AGNs are not conclusively identified, although several have been proposed. These include direct acceleration by static electric fields (resulting from, for example, magnetic reconnection), shock acceleration, and energy extraction from the rotational energy of Kerr black holes. The dominant acceleration mechanism(s) operating in the black hole environment can only be determined, of course, by a comparison of model predictions with observations. The purpose of the work proposed for this grant was to investigate stochastic particle acceleration through resonant interactions with plasma waves that populate the magnetosphere surrounding an accreting black hole. Stochastic acceleration has been successfully applied to the

  17. Vertical profile of cloud optical parameters derived from airborne measurements above, inside and below clouds

    NASA Astrophysics Data System (ADS)

    Melnikova, Irina; Gatebe, Charles K.

    2018-07-01

    Past strategies for retrieving cloud optical properties from remote sensing assumed significant limits for desired parameters such as semi-infinite optical thickness, single scattering albedo equaling unity (non-absorbing scattering), absence of spectral dependence of the optical thickness, etc., and only one optical parameter could be retrieved (either optical thickness or single scattering albedo). Here, we demonstrate a new method based on asymptotic theory for thick atmospheres, and the presence of a diffusion domain within the clouds that does not put restrictions and makes it possible to get two or even three optical parameters (optical thickness, single scattering albedo and phase function asymmetry parameter) for every wavelength independently. We applied this method to measurements of angular distribution of solar radiation above, inside and below clouds, obtained with NASA's Cloud Absorption Radiometer (CAR) over two cases of marine stratocumulus clouds; first case, offshore of Namibia and the second case, offshore of California. The observational and retrieval errors are accounted for by regularization, which allows stable and smooth solutions. Results show good potential for parameterization of the shortwave radiative properties (reflection, transmission, radiative divergence and heating rate) of water clouds.

  18. The influence of Oort clouds on the mass and chemical balance of the interstellar medium

    NASA Technical Reports Server (NTRS)

    Stern, S. Alan; Shull, J. Michael

    1990-01-01

    The contribution of stellar encounters and interstellar erosion to comet cloud mass injection to the ISM is calculated. It is shown that evaporative mass loss from passing stars and SNe results in an average Galactic mass injection rate of up to 10 to the -5th solar mass/yr if such clouds are frequent around solar-type stars. Cometary erosion by interstellar grains produces an injection rate of 10 to the -5th to 10 to the -4th solar mass/yr. An injection rate of 2 x 10 to the -5th solar mass/yr is calculated. Each of these rates could be increased by a factor of about 15 if the comet clouds contain a significant amount of smaller debris. It is concluded that the total mass injection rate of material to the ISM by comet clouds is small compared to other ISM mass injection sources. Comet cloud mass loss to the ISM could be responsible for a sizeable fraction of the metal and dust abundances of the ISM if Oort clouds are common.

  19. Molecular Gas Feeding the Circumnuclear Disk of the Galactic Center

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hsieh, Pei-Ying; Koch, Patrick M.; Ho, Paul T. P.

    The interaction between a supermassive black hole (SMBH) and the surrounding material is of primary importance in modern astrophysics. The detection of the molecular 2 pc circumnuclear disk (CND) immediately around the Milky Way SMBH, SgrA*, provides a unique opportunity to study SMBH accretion at subparsec scales. Our new wide-field CS( J = 2 − 1) map toward the Galactic center (GC) reveals multiple dense molecular streamers that originated from the ambient clouds 20 pc further out, and that are connected to the central 2 pc of the CND. These dense gas streamers appear to carry gas directly toward themore » nuclear region and might be captured by the central potential. Our phase-plot analysis indicates that these streamers show a signature of rotation and inward radial motion with progressively higher velocities as the gas approaches the CND and finally ends up corotating with the CND. Our results might suggest a possible mechanism of gas feeding the CND from 20 pc around 2 pc in the GC. In this paper, we discuss the morphology and the kinematics of these streamers. As the nearest observable Galactic nucleus, this feeding process may have implications for understanding the processes in extragalactic nuclei.« less

  20. Statistical properties of the polarized emission of Planck Galactic cold clumps

    NASA Astrophysics Data System (ADS)

    Ristorcelli, Isabelle; Planck Collaboration

    2015-08-01

    The Galactic magnetic fields are considered as one of the key components regulating star formation, but their actual role on the dense cores formation and evolution remains today an open question.Dust polarized continuum emission is particularly well suited to probe the dense and cold medium and study the magnetic field structure. Such observations also provide tight constraints to better understand the efficiency of the dust alignment along the magnetic field lines, which in turn relate on our grasp to properly interpret the B-field properties.With the Planck all-sky survey of dust submillimeter emission in intensity and polarization, we can investigate the intermediate scales, between that of molecular cloud and of prestellar cores, and perform a statistical analysis on the polarization properties of cold clumps.Combined with the IRAS map at 100microns, the Planck survey has allowed to build the first all-sky catalogue of Galactic Cold Clumps (PGCC, Planck 2015 results XXVIII 2015). The corresponding 13188 sources cover a broad range in physical properties, and correspond to different evolutionary stages, from cold and starless clumps, nearby cores, to young protostellar objects still embedded in their cold surrounding cloud.I will present the main results of our polarization analysis obtained on different samples of sources from the PGCC catalogue, based on the 353GHz polarized emission measured with Planck. The statistical properties are derived from a stacking method, using optimized estimators for the polarization fraction and angle parameters. These properties are determined and compared according to the nature of the sources (starless or YSOs), their size or density range. Finally, I will present a comparison of our results with predictions from MHD simulations of clumps including radiative transfer and the dust radiative torque alignment mechanism.