Sample records for galactic halo dark

  1. A search for dark matter in the Galactic halo with HAWC

    NASA Astrophysics Data System (ADS)

    Abeysekara, A. U.; Albert, A.; Alfaro, R.; Alvarez, C.; Arceo, R.; Arteaga-Velázquez, J. C.; Avila Rojas, D.; Ayala Solares, H. A.; Becerril, A.; Belmont-Moreno, E.; BenZvi, S. Y.; Bernal, A.; Brisbois, C.; Caballero-Mora, K. S.; Capistrán, T.; Carramiñana, A.; Casanova, S.; Castillo, M.; Cotti, U.; Cotzomi, J.; De León, C.; De la Fuente, E.; Diaz Hernandez, R.; Dingus, B. L.; DuVernois, M. A.; Díaz-Vélez, J. C.; Engel, K.; Enríquez-Rivera, O.; Fiorino, D. W.; Fleischhack, H.; Fraija, N.; García-González, J. A.; Garfias, F.; González Muñoz, A.; González, M. M.; Goodman, J. A.; Hampel-Arias, Z.; Harding, J. P.; Hernandez, S.; Hernandez-Almada, A.; Hueyotl-Zahuantitla, F.; Hüntemeyer, P.; Iriarte, A.; Jardin-Blicq, A.; Joshi, V.; Kaufmann, S.; Lauer, R. J.; Lee, W. H.; Lennarz, D.; León Vargas, H.; Linnemann, J. T.; Longinotti, A. L.; Luis-Raya, G.; Luna-García, R.; López-Coto, R.; Malone, K.; Marinelli, S. S.; Martinez, O.; Martinez-Castellanos, I.; Martínez-Castro, J.; Matthews, J. A.; Miranda-Romagnoli, P.; Moreno, E.; Mostafá, M.; Nellen, L.; Newbold, M.; Nisa, M. U.; Noriega-Papaqui, R.; Pelayo, R.; Pretz, J.; Pérez-Pérez, E. G.; Ren, Z.; Rho, C. D.; Rodd, N. L.; Rosa-González, D.; Rosenberg, M.; Ruiz-Velasco, E.; Safdi, B. R.; Salazar, H.; Salesa Greus, F.; Sandoval, A.; Schneider, M.; Sinnis, G.; Smith, A. J.; Springer, R. W.; Surajbali, P.; Taboada, I.; Tibolla, O.; Tollefson, K.; Torres, I.; Ukwatta, T. N.; Vianello, G.; Villaseñor, L.; Weisgarber, T.; Westerhoff, S.; Wisher, I. G.; Wood, J.; Yapici, T.; Yodh, G. B.; Younk, P. W.; Zepeda, A.; Zhou, H.; Álvarez, J. D.

    2018-02-01

    The High Altitude Water Cherenkov (HAWC) gamma-ray observatory is a wide field-of-view observatory sensitive to 500 GeV – 100 TeV gamma rays and cosmic rays. With its observations over 2/3 of the sky every day, the HAWC observatory is sensitive to a wide variety of astrophysical sources, including possible gamma rays from dark matter. Dark matter annihilation and decay in the Milky Way Galaxy should produce gamma-ray signals across many degrees on the sky. The HAWC instantaneous field-of-view of 2 sr enables observations of extended regions on the sky, such as those from dark matter in the Galactic halo. Here we show limits on the dark matter annihilation cross-section and decay lifetime from HAWC observations of the Galactic halo with 15 months of data. These are some of the most robust limits on TeV and PeV dark matter, largely insensitive to the dark matter morphology. These limits begin to constrain models in which PeV IceCube neutrinos are explained by dark matter which primarily decays into hadrons.

  2. A search for dark matter in the Galactic halo with HAWC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abeysekara, A. U.; Albert, A.; Alfaro, R.

    The High Altitude Water Cherenkov (HAWC) gamma-ray observatory is a wide field-of-view observatory sensitive to 500 GeV – 100 TeV gamma rays and cosmic rays. With its observations over 2/3 of the sky every day, the HAWC observatory is sensitive to a wide variety of astrophysical sources, including possible gamma rays from dark matter. Dark matter annihilation and decay in the Milky Way Galaxy should produce gamma-ray signals across many degrees on the sky. The HAWC instantaneous field-of-view of 2 sr enables observations of extended regions on the sky, such as those from dark matter in the Galactic halo. Heremore » we show limits on the dark matter annihilation cross-section and decay lifetime from HAWC observations of the Galactic halo with 15 months of data. These are some of the most robust limits on TeV and PeV dark matter, largely insensitive to the dark matter morphology. These limits begin to constrain models in which PeV IceCube neutrinos are explained by dark matter which primarily decays into hadrons.« less

  3. A search for dark matter in the Galactic halo with HAWC

    DOE PAGES

    Abeysekara, A. U.; Albert, A.; Alfaro, R.; ...

    2018-02-23

    The High Altitude Water Cherenkov (HAWC) gamma-ray observatory is a wide field-of-view observatory sensitive to 500 GeV – 100 TeV gamma rays and cosmic rays. With its observations over 2/3 of the sky every day, the HAWC observatory is sensitive to a wide variety of astrophysical sources, including possible gamma rays from dark matter. Dark matter annihilation and decay in the Milky Way Galaxy should produce gamma-ray signals across many degrees on the sky. The HAWC instantaneous field-of-view of 2 sr enables observations of extended regions on the sky, such as those from dark matter in the Galactic halo. Heremore » we show limits on the dark matter annihilation cross-section and decay lifetime from HAWC observations of the Galactic halo with 15 months of data. These are some of the most robust limits on TeV and PeV dark matter, largely insensitive to the dark matter morphology. These limits begin to constrain models in which PeV IceCube neutrinos are explained by dark matter which primarily decays into hadrons.« less

  4. Search for dark matter from the Galactic halo with the IceCube Neutrino Telescope

    NASA Astrophysics Data System (ADS)

    Abbasi, R.; Abdou, Y.; Abu-Zayyad, T.; Adams, J.; Aguilar, J. A.; Ahlers, M.; Andeen, K.; Auffenberg, J.; Bai, X.; Baker, M.; Barwick, S. W.; Bay, R.; Bazo Alba, J. L.; Beattie, K.; Beatty, J. J.; Bechet, S.; Becker, J. K.; Becker, K.-H.; Benabderrahmane, M. L.; Benzvi, S.; Berdermann, J.; Berghaus, P.; Berley, D.; Bernardini, E.; Bertrand, D.; Besson, D. Z.; Bindig, D.; Bissok, M.; Blaufuss, E.; Blumenthal, J.; Boersma, D. J.; Bohm, C.; Bose, D.; Böser, S.; Botner, O.; Braun, J.; Brown, A. M.; Buitink, S.; Carson, M.; Chirkin, D.; Christy, B.; Clem, J.; Clevermann, F.; Cohen, S.; Colnard, C.; Cowen, D. F.; D'Agostino, M. V.; Danninger, M.; Daughhetee, J.; Davis, J. C.; de Clercq, C.; Demirörs, L.; Denger, T.; Depaepe, O.; Descamps, F.; Desiati, P.; de Vries-Uiterweerd, G.; Deyoung, T.; Díaz-Vélez, J. C.; Dierckxsens, M.; Dreyer, J.; Dumm, J. P.; Ehrlich, R.; Eisch, J.; Ellsworth, R. W.; Engdegård, O.; Euler, S.; Evenson, P. A.; Fadiran, O.; Fazely, A. R.; Fedynitch, A.; Feusels, T.; Filimonov, K.; Finley, C.; Fischer-Wasels, T.; Foerster, M. M.; Fox, B. D.; Franckowiak, A.; Franke, R.; Gaisser, T. K.; Gallagher, J.; Geisler, M.; Gerhardt, L.; Gladstone, L.; Glüsenkamp, T.; Goldschmidt, A.; Goodman, J. A.; Grant, D.; Griesel, T.; Groß, A.; Grullon, S.; Gurtner, M.; Ha, C.; Hallgren, A.; Halzen, F.; Han, K.; Hanson, K.; Heinen, D.; Helbing, K.; Herquet, P.; Hickford, S.; Hill, G. C.; Hoffman, K. D.; Homeier, A.; Hoshina, K.; Hubert, D.; Huelsnitz, W.; Hülß, J.-P.; Hulth, P. O.; Hultqvist, K.; Hussain, S.; Ishihara, A.; Jacobsen, J.; Japaridze, G. S.; Johansson, H.; Joseph, J. M.; Kampert, K.-H.; Kappes, A.; Karg, T.; Karle, A.; Kelley, J. L.; Kenny, P.; Kiryluk, J.; Kislat, F.; Klein, S. R.; Köhne, J.-H.; Kohnen, G.; Kolanoski, H.; Köpke, L.; Kopper, S.; Koskinen, D. J.; Kowalski, M.; Kowarik, T.; Krasberg, M.; Krings, T.; Kroll, G.; Kuehn, K.; Kuwabara, T.; Labare, M.; Lafebre, S.; Laihem, K.; Landsman, H.; Larson, M. J.; Lauer, R.; Lünemann, J.; Madsen, J.; Majumdar, P.; Marotta, A.; Maruyama, R.; Mase, K.; Matis, H. S.; Meagher, K.; Merck, M.; Mészáros, P.; Meures, T.; Middell, E.; Milke, N.; Miller, J.; Montaruli, T.; Morse, R.; Movit, S. M.; Nahnhauer, R.; Nam, J. W.; Naumann, U.; Nießen, P.; Nygren, D. R.; Odrowski, S.; Olivas, A.; Olivo, M.; O'Murchadha, A.; Ono, M.; Panknin, S.; Paul, L.; Pérez de Los Heros, C.; Petrovic, J.; Piegsa, A.; Pieloth, D.; Porrata, R.; Posselt, J.; Price, P. B.; Prikockis, M.; Przybylski, G. T.; Rawlins, K.; Redl, P.; Resconi, E.; Rhode, W.; Ribordy, M.; Rizzo, A.; Rodrigues, J. P.; Roth, P.; Rothmaier, F.; Rott, C.; Ruhe, T.; Rutledge, D.; Ruzybayev, B.; Ryckbosch, D.; Sander, H.-G.; Santander, M.; Sarkar, S.; Schatto, K.; Schmidt, T.; Schoenwald, A.; Schukraft, A.; Schultes, A.; Schulz, O.; Schunck, M.; Seckel, D.; Semburg, B.; Seo, S. H.; Sestayo, Y.; Seunarine, S.; Silvestri, A.; Slipak, A.; Spiczak, G. M.; Spiering, C.; Stamatikos, M.; Stanev, T.; Stephens, G.; Stezelberger, T.; Stokstad, R. G.; Stoyanov, S.; Strahler, E. A.; Straszheim, T.; Stür, M.; Sullivan, G. W.; Swillens, Q.; Taavola, H.; Taboada, I.; Tamburro, A.; Tarasova, O.; Tepe, A.; Ter-Antonyan, S.; Tilav, S.; Toale, P. A.; Toscano, S.; Tosi, D.; Turčan, D.; van Eijndhoven, N.; Vandenbroucke, J.; van Overloop, A.; van Santen, J.; Vehring, M.; Voge, M.; Voigt, B.; Walck, C.; Waldenmaier, T.; Wallraff, M.; Walter, M.; Weaver, Ch.; Wendt, C.; Westerhoff, S.; Whitehorn, N.; Wiebe, K.; Wiebusch, C. H.; Williams, D. R.; Wischnewski, R.; Wissing, H.; Wolf, M.; Woschnagg, K.; Xu, C.; Xu, X. W.; Yodh, G.; Yoshida, S.; Zarzhitsky, P.

    2011-07-01

    Self-annihilating or decaying dark matter in the Galactic halo might produce high energy neutrinos detectable with neutrino telescopes. We have conducted a search for such a signal using 276 days of data from the IceCube 22-string configuration detector acquired during 2007 and 2008. The effect of halo model choice in the extracted limit is reduced by performing a search that considers the outer halo region and not the Galactic Center. We constrain any large-scale neutrino anisotropy and are able to set a limit on the dark matter self-annihilation cross section of ⟨σAv⟩≃10-22cm3s-1 for weakly interacting massive particle masses above 1 TeV, assuming a monochromatic neutrino line spectrum.

  5. WEIGHING THE GALACTIC DARK MATTER HALO: A LOWER MASS LIMIT FROM THE FASTEST HALO STAR KNOWN

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Przybilla, Norbert; Tillich, Alfred; Heber, Ulrich

    2010-07-20

    The mass of the Galactic dark matter halo is under vivid discussion. A recent study by Xue et al. revised the Galactic halo mass downward by a factor of {approx}2 relative to previous work, based on the line-of-sight velocity distribution of {approx}2400 blue horizontal-branch (BHB) halo stars. The observations were interpreted with a statistical approach using cosmological galaxy formation simulations, as only four of the six-dimensional phase-space coordinates were determined. Here we concentrate on a close investigation of the stars with the highest negative radial velocity from that sample. For one star, SDSSJ153935.67+023909.8 (J1539+0239 for short), we succeed in measuringmore » a significant proper motion, i.e., full phase-space information is obtained. We confirm the star to be a Population II BHB star from an independent quantitative analysis of the Sloan Digital Sky Survey (SDSS) spectrum-providing the first non-LTE (NLTE) study of any halo BHB star-and reconstruct its three-dimensional trajectory in the Galactic potential. J1539+0239 turns out to be the fastest halo star known to date, with a Galactic rest-frame velocity of 694{sup +300}{sub -221} km s{sup -1} (full uncertainty range from Monte Carlo error propagation) at its current position. The extreme kinematics of the star allows a significant lower limit to be put on the halo mass in order to keep it bound, of M {sub halo} {>=} 1.7{sup +2.3}{sub -1.1} x 10{sup 12} M{sub sun}. We conclude that the Xue et al. results tend to underestimate the true halo mass as their most likely mass value is consistent with our analysis only at a level of 4%. However, our result confirms other studies that make use of the full phase-space information.« less

  6. The global dark halo structure of the Andromeda galaxy

    NASA Astrophysics Data System (ADS)

    Hayashi, Kohei; Chiba, Masashi

    2014-01-01

    We set new limits on the global shape of the dark halo in the Andromeda galaxy based on axisymmetric mass models constructed by Hayashi & Chiba (2012). This is motivated by the fact that CDM models predict non-spherical virialized dark halos, which reflect the process of mass assembly in the galactic scale. Based on the application of our models to latest kinematical data of globular clusters and dwarf spheroidal galaxies in the Andromeda halo, we find that the most plausible cases for Andromeda yield not a spherical but a prolate shape for its dark halo. We also find that the prolate dark halo is consistent with theoretical predictions in which the satellites are distributed anisotropically and preferentially located along major axes of their galactic host halos. It is a reflection of the intimate connection between galactic dark matter halos and the cosmic web.

  7. Effect of dark matter halo on global spiral modes in a collisionless galactic disk

    NASA Astrophysics Data System (ADS)

    Ghosh, Soumavo; Saini, Tarun Deep; Jog, Chanda J.

    2017-07-01

    Low surface brightness (LSB) galaxies are dominated by dark matter halo from the innermost radii; hence they are ideal candidates to investigate the influence of dark matter on different dynamical aspects of spiral galaxies. Here, we study the effect of dark matter halo on grand-design, m = 2 , spiral modes in a galactic disk, treated as a collisionless system, by carrying out a global modal analysis within the WKB approximation. First, we study a superthin, LSB galaxy UGC 7321 and show that it does not support discrete global spiral modes when modeled as a disk-alone system or as a disk plus dark matter system. Even a moderate increase in the stellar central surface density does not yield any global spiral modes. This naturally explains the observed lack of strong large-scale spiral structure in LSBs. An earlier work (Ghosh et al., 2016) where the galactic disk was treated as a fluid system for simplicity had shown that the dominant halo could not arrest global modes. We found that this difference arises due to the different dispersion relation used in the two cases and which plays a crucial role in the search for global spiral modes. Thus the correct treatment of stars as a collisionless system as done here results in the suppression of global spiral modes, in agreement with the observations. We performed a similar modal analysis for the Galaxy, and found that the dark matter halo has a negligible effect on large-scale spiral structure.

  8. Discussion on the energy content of the galactic dark matter Bose-Einstein condensate halo in the Thomas-Fermi approximation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    De Souza, J.C.C.; Pires, M.O.C., E-mail: jose.souza@ufabc.edu.br, E-mail: marcelo.pires@ufabc.edu.br

    We show that the galactic dark matter halo, considered composed of an axionlike particles Bose-Einstein condensate [6] trapped by a self-graviting potential [5], may be stable in the Thomas-Fermi approximation since appropriate choices for the dark matter particle mass and scattering length are made. The demonstration is performed by means of the calculation of the potential, kinetic and self-interaction energy terms of a galactic halo described by a Boehmer-Harko density profile. We discuss the validity of the Thomas-Fermi approximation for the halo system, and show that the kinetic energy contribution is indeed negligible.

  9. Baryonic dark clusters in galactic halos and their observable consequences

    NASA Technical Reports Server (NTRS)

    Wasserman, Ira; Salpeter, Edwin E.

    1994-01-01

    We consider the possibility that approximately 10% of the mass of a typical galaxy halo is in the form of massive (approximately 10(exp 7) solar masses), compact (escape speeds approximately 100 km/s) baryonic clusters made of neutron stars (approximately 10% by mass), black holes (less than or approximately equal to 1%) and brown dwarfs, asteroids, and other low-mass debris (approximately 90%). These general properties are consistent with several different observational and phenomenological constraints on cluster properties subject to the condition that neutron stars comprise approximately 1% of the total halo mass. Such compact, dark clusters could be the sites of a variety of collisional phenomena involving neutron stars. We find that integrated out to the Hubble distance approximately one neutron star-neutron star or neutron star-black hole collision occurs daily. Of order 0.1-1 asteroid-neutron star collisions may also happen daily in the halo of the Milky Way if there is roughly equal cluster mass per logarithmic particle mass interval between asteroids and brown dwarfs. These event rates are comparable to the frequency of gamma-ray burst detections by the Burst and Transient Source Experiment (BATSE) on the Compton Observatory, implying that if dark halo clusters are the sites of most gamma-ray bursts, perhaps approximately 90% of all bursts are extragalactic, but approximately 10% are galactic. It is possible that dark clusters of the kind discussed here could be detected directly by the Infrared Space Observatory (ISO) or Space Infrared Telescope Facility (SIRTF). If the clusters considered in this paper exist, they should produce spatially correlated gravitational microlensing of stars in the Large Magellanic Cloud (LMC). If 10% of the halo is in the form of dark baryonic clusters, and the remaining 90% is in brown dwarfs and other dark objects which are either unclustered or collected into low-mass clusters, then we expect that two events within

  10. Ultra Light Axionic Dark Matter: Galactic Halos and Implications for Observations with Pulsar Timing Arrays

    NASA Astrophysics Data System (ADS)

    de Martino, Ivan; Broadhurst, Tom; Tye, S.-H. Henry; Chiueh, Tzihong; Shive, Hsi-Yu; Lazkoz, Ruth

    2018-01-01

    The cold dark matter (CDM) paradigm successfully explains the cosmic structure over an enormous span of redshifts. However, it fails when probing the innermost regions of dark matter halos and the properties of the Milky Way's dwarf galaxy satellites. Moreover, the lack of experimental detection of Weakly Interacting Massive Particle (WIMP) favors alternative candidates such as light axionic dark matter that naturally arise in string theory. Cosmological N-body simulations have shown that axionic dark matter forms a solitonic core of size of ≃ 150 pc in the innermost region of the galactic halos. The oscillating scalar field associated to the axionic dark matter halo produces an oscillating gravitational potential that induces a time dilation of the pulse arrival time of ≃ 400 ns/(m_B/10^{-22} eV) for pulsar within such a solitonic core. Over the whole galaxy, the averaged predicted signal may be detectable with current and forthcoming pulsar timing array telescopes.

  11. Galactic Warps in Triaxial Halos

    NASA Astrophysics Data System (ADS)

    Jeon, Myoungwon; Kim, Sungsoo S.; Ann, Hong Bae

    2009-05-01

    We study the behavior of galactic disks in triaxial halos both numerically and analytically to see if warps can be excited and sustained in triaxial potentials. We consider the following two scenarios: (1) galactic disks that are initially tilted relative to the equatorial plane of the halo (for a pedagogical purpose), and (2) tilted infall of dark matter relative to the equatorial plane of the disk and the halo. With numerical simulations of 100,000 disk particles in a fixed halo potential, we find that in triaxial halos, warps can be excited and sustained just as in spherical or axisymmetric halos but they show some oscillatory behavior and even can be transformed to a polar-ring system if the halo has a prolate-like triaxiality. The nonaxisymmetric component of the halo causes the disk to nutate, and the differential nutation between the inner and outer parts of the disk generally makes the magnitude of the warp slightly diminish and fluctuate. We also find that warps are relatively weaker in oblate and oblate-like triaxial halos, and since these halos are the halo configurations of disk galaxies inferred by cosmological simulations, our results are consistent with the fact that most of the observed warps are quite weak. We derive approximate formulae for the torques exerted on the disk by the triaxial halo and the dark matter torus, and with these formulae we successfully describe the behavior of the disks in our simulations. The techniques used in deriving these formulae could be applied for realistic halos with more complex structures.

  12. The Prolate Dark Matter Halo of the Andromeda Galaxy

    NASA Astrophysics Data System (ADS)

    Hayashi, Kohei; Chiba, Masashi

    2014-07-01

    We present new limits on the global shape of the dark matter halo in the Andromeda galaxy using and generalizing non-spherical mass models developed by Hayashi & Chiba and compare our results with theoretical predictions of cold dark matter (CDM) models. This is motivated by the fact that CDM models predict non-spherical virialized dark halos, which reflect the process of mass assembly in the galactic scale. Applying our models to the latest kinematic data of globular clusters and dwarf spheroidal galaxies in the Andromeda halo, we find that the most plausible cases for Andromeda yield a prolate shape for its dark halo, irrespective of assumed density profiles. We also find that this prolate dark halo in Andromeda is consistent with theoretical predictions in which the satellites are distributed anisotropically and preferentially located along major axes of their host halos. It is a reflection of the intimate connection between galactic dark matter halos and the cosmic web. Therefore, our result is profound in understanding internal dynamics of halo tracers in Andromeda, such as orbital evolutions of tidal stellar streams, which play important roles in extracting the abundance of CDM subhalos through their dynamical effects on stream structures.

  13. The prolate dark matter halo of the Andromeda galaxy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hayashi, Kohei; Chiba, Masashi, E-mail: k.hayasi@astr.tohoku.ac.jp, E-mail: chiba@astr.tohoku.ac.jp

    We present new limits on the global shape of the dark matter halo in the Andromeda galaxy using and generalizing non-spherical mass models developed by Hayashi and Chiba and compare our results with theoretical predictions of cold dark matter (CDM) models. This is motivated by the fact that CDM models predict non-spherical virialized dark halos, which reflect the process of mass assembly in the galactic scale. Applying our models to the latest kinematic data of globular clusters and dwarf spheroidal galaxies in the Andromeda halo, we find that the most plausible cases for Andromeda yield a prolate shape for itsmore » dark halo, irrespective of assumed density profiles. We also find that this prolate dark halo in Andromeda is consistent with theoretical predictions in which the satellites are distributed anisotropically and preferentially located along major axes of their host halos. It is a reflection of the intimate connection between galactic dark matter halos and the cosmic web. Therefore, our result is profound in understanding internal dynamics of halo tracers in Andromeda, such as orbital evolutions of tidal stellar streams, which play important roles in extracting the abundance of CDM subhalos through their dynamical effects on stream structures.« less

  14. Ordinary Dark Matter versus Mysterious Dark Matter in Galactic Rotation

    NASA Astrophysics Data System (ADS)

    Gallo, C. F.; Feng, James

    2008-04-01

    To theoretically describe the measured rotational velocity curves of spiral galaxies, there are two different approaches and conclusions. (1) ORDINARY DARK MATTER. We assume Newtonian gravity/dynamics and successfully find (via computer) mass distributions in bulge/disk configurations that duplicate the measured rotational velocities. There is ordinary dark matter within the galactic disk towards the cooler periphery which has lower emissivity/opacity. There are no mysteries in this scenario based on verified physics. (2) MYSTERIOUS DARK MATTER. Others INaccurately assume the galactic mass distributions follow the measured light distributions, and then the measured rotational velocity curves are NOT duplicated. To alleviate this discrepancy, speculations are invoked re ``Massive Peripheral Spherical Halos of Mysterious Dark Matter.'' But NO matter has been detected in this UNtenable Halo configuration. Many UNverified ``Mysteries'' are invoked as necessary and convenient. CONCLUSION. The first approach utilizing Newtonian gravity/dynamics and searching for the ordinary mass distributions within the galactic disk simulates reality and agrees with data.

  15. Bright gamma-ray Galactic Center excess and dark dwarfs: Strong tension for dark matter annihilation despite Milky Way halo profile and diffuse emission uncertainties

    NASA Astrophysics Data System (ADS)

    Abazajian, Kevork N.; Keeley, Ryan E.

    2016-04-01

    We incorporate Milky Way dark matter halo profile uncertainties, as well as an accounting of diffuse gamma-ray emission uncertainties in dark matter annihilation models for the Galactic Center Extended gamma-ray excess (GCE) detected by the Fermi Gamma Ray Space Telescope. The range of particle annihilation rate and masses expand when including these unknowns. However, two of the most precise empirical determinations of the Milky Way halo's local density and density profile leave the signal region to be in considerable tension with dark matter annihilation searches from combined dwarf galaxy analyses for single-channel dark matter annihilation models. The GCE and dwarf tension can be alleviated if: one, the halo is very highly concentrated or strongly contracted; two, the dark matter annihilation signal differentiates between dwarfs and the GC; or, three, local stellar density measures are found to be significantly lower, like that from recent stellar counts, increasing the local dark matter density.

  16. Constraints on baryonic dark matter in the Galactic halo and Local Group

    NASA Technical Reports Server (NTRS)

    Richstone, Douglas; Gould, Andrew; Guhathakurta, Puragra; Flynn, Chris

    1992-01-01

    A four-color method and deep CCD data are used to search for very faint metal-poor stars in the direction of the south Galactic pole. The results make it possible to limit the contribution of ordinary old, metal-poor stars to the dynamical halo of the Galaxy or to the Local Group. The ratio of the mass of the halo to its ordinary starlight must be more than about 2000, unless the halo is very small. For the Local Group, this ratio is greater than about 400. If this local dark matter is baryonic, the process of compact-object formation must produce very few 'impurities' in the form of stars similar to those found in globular clusters. The expected number of unbound stars with MV not greater than 6 within 100 pc of the sun is less than 1 based on the present 90-percent upper limit to the Local Group starlight.

  17. Prospects for detecting supersymmetric dark matter in the Galactic halo.

    PubMed

    Springel, V; White, S D M; Frenk, C S; Navarro, J F; Jenkins, A; Vogelsberger, M; Wang, J; Ludlow, A; Helmi, A

    2008-11-06

    Dark matter is the dominant form of matter in the Universe, but its nature is unknown. It is plausibly an elementary particle, perhaps the lightest supersymmetric partner of known particle species. In this case, annihilation of dark matter in the halo of the Milky Way should produce gamma-rays at a level that may soon be observable. Previous work has argued that the annihilation signal will be dominated by emission from very small clumps (perhaps smaller even than the Earth), which would be most easily detected where they cluster together in the dark matter haloes of dwarf satellite galaxies. Here we report that such small-scale structure will, in fact, have a negligible impact on dark matter detectability. Rather, the dominant and probably most easily detectable signal will be produced by diffuse dark matter in the main halo of the Milky Way. If the main halo is strongly detected, then small dark matter clumps should also be visible, but may well contain no stars, thereby confirming a key prediction of the cold dark matter model.

  18. One dark matter mystery: halos in the cosmic web

    NASA Astrophysics Data System (ADS)

    Gaite, Jose

    2015-01-01

    The current cold dark matter cosmological model explains the large scale cosmic web structure but is challenged by the observation of a relatively smooth distribution of matter in galactic clusters. We consider various aspects of modeling the dark matter around galaxies as distributed in smooth halos and, especially, the smoothness of the dark matter halos seen in N-body cosmological simulations. We conclude that the problems of the cold dark matter cosmology on small scales are more serious than normally admitted.

  19. DETECTING TRIAXIALITY IN THE GALACTIC DARK MATTER HALO THROUGH STELLAR KINEMATICS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rojas-Nino, Armando; Valenzuela, Octavio; Pichardo, Barbara

    Assuming the dark matter halo of the Milky Way to be a non-spherical potential (i.e., triaxial, prolate, oblate), we show how the assembling process of the Milky Way halo may have left long-lasting stellar halo kinematic fossils due to the shape of the dark matter halo. In contrast with tidal streams, which are associated with recent satellite accretion events, these stellar kinematic groups will typically show inhomogeneous chemical and stellar population properties. However, they may be dominated by a single accretion event for certain mass assembling histories. If the detection of these peculiar kinematic stellar groups were confirmed, they wouldmore » be the smoking gun for the predicted triaxiality of dark halos in cosmological galaxy formation scenarios.« less

  20. A Speeding Binary in the Galactic Halo

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2016-04-01

    cool (4,800 K) companion star in a wide orbit, likely separated by several AU.An Unknown Past and FutureWhy are these new observations of J1211 such a big deal? Because all the acceleration scenarios for a star originating in the Galactic disk fail in the case of J1211. The authors find by modeling J1211s motion that the system cant have originated in the Galactic center, so interactions with the supermassive black hole are out. And supernova explosions or dynamical interactions would tear the wide binary apart in the process of accelerating it. Nmeth and collaborators suggest instead that J1211 was either born in the halo population or accreted later from the debris of a destroyed satellite galaxy.J1211s speed is so extreme that its orbit could be either bound or unbound. Interestingly, when the authors model the binarys orbit, they find that the assumed mass of the Milky Ways dark-matter halo determines whether J1211s orbit is bound. This means that future observations of J1211 may provide a new way to probe the Galactic potential and determine the mass of the dark matter halo, in addition to revealing unexpected origins of high-velocity halo stars.CitationPter Nmeth et al 2016 ApJ 821 L13. doi:10.3847/2041-8205/821/1/L13

  1. Massive black holes in galactic halos?

    NASA Technical Reports Server (NTRS)

    Lacey, C. G.; Ostriker, J. P.

    1985-01-01

    In the present attempt to resolve the problems posed by the composition of dark halos and the heating of stellar disks, under the assumption that galaxy halos are composed of massive black holes, it is noted that the black holes must have masses of the order of one million solar masses. The heating mechanism proposed yields predictions for the dependence of the velocity dispersion on time, and for the shape of the velocity ellipsoid, which are in good agreement with observations. Attention is given to the constraints set by dynamical friction causing black holes to spiral to the Galactic center, by the possible presence of dark matter in dwarf spheroidal galaxies, and by the accretion of interstellar gas by the black holes that produce luminous objects in the Galaxy.

  2. Relativistic Dark Matter at the Galactic Center

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Amin, Mustafa A.; /Stanford U., Phys. Dept. /KIPAC, Menlo Park; Wizansky, Tommer

    2007-11-16

    In a large region of the supersymmetry parameter space, the annihilation cross section for neutralino dark matter is strongly dependent on the relative velocity of the incoming particles. We explore the consequences of this velocity dependence in the context of indirect detection of dark matter from the galactic center. We find that the increase in the annihilation cross section at high velocities leads to a flattening of the halo density profile near the galactic center and an enhancement of the annihilation signal.

  3. Cosmological simulations of decaying dark matter: implications for small-scale structure of dark matter haloes

    NASA Astrophysics Data System (ADS)

    Wang, Mei-Yu; Peter, Annika H. G.; Strigari, Louis E.; Zentner, Andrew R.; Arant, Bryan; Garrison-Kimmel, Shea; Rocha, Miguel

    2014-11-01

    We present a set of N-body simulations of a class of models in which an unstable dark matter particle decays into a stable dark matter particle and a non-interacting light particle with decay lifetime comparable to the Hubble time. We study the effects of the recoil kick velocity (Vk) received by the stable dark matter on the structures of dark matter haloes ranging from galaxy-cluster to Milky Way-mass scales. For Milky Way-mass haloes, we use high-resolution, zoom-in simulations to explore the effects of decays on Galactic substructure. In general, haloes with circular velocities comparable to the magnitude of kick velocity are most strongly affected by decays. We show that models with lifetimes Γ-1 ˜ H_0^{-1} and recoil speeds Vk ˜ 20-40 km s-1 can significantly reduce both the abundance of Galactic subhaloes and their internal densities. We find that decaying dark matter models that do not violate current astrophysical constraints can significantly mitigate both the `missing satellites problem' and the more recent `too big to fail problem'. These decaying models predict significant time evolution of haloes, and this implies that at high redshifts decaying models exhibit the similar sequence of structure formation as cold dark matter. Thus, decaying dark matter models are significantly less constrained by high-redshift phenomena than warm dark matter models. We conclude that models of decaying dark matter make predictions that are relevant for the interpretation of small galaxies observations in the Local Group and can be tested as well as by forthcoming large-scale surveys.

  4. Sub-MeV bosonic dark matter, misalignment mechanism, and galactic dark matter halo luminosities

    NASA Astrophysics Data System (ADS)

    Yang, Qiaoli; Di, Haoran

    2017-04-01

    We explore a scenario that dark matter is a boson condensate created by the misalignment mechanism, in which a spin 0 boson (an axionlike particle) and a spin 1 boson (the dark photon) are considered, respectively. We find that although the sub-MeV dark matter boson is extremely stable, the huge number of dark matter particles in a galaxy halo makes the decaying signal detectable. A galaxy halo is a large structure bounded by gravity with a typical ˜1 012 solar mass, and the majority of its components are made of dark matter. For the axionlike particle case, it decays via ϕ →γ γ , therefore the photon spectrum is monochromatic. For the dark photon case, it is a three body decay A'→γ γ γ . However, we find that the photon spectrum is heavily peaked at M /2 and thus can facilitate observation. We also suggest a physical explanation for the three body decay spectrum by comparing the physics in the decay of orthopositronium. In addition, for both cases, the decaying photon flux can be measured for some regions of parameter space using current technologies.

  5. Testing the Caustic Ring Dark Matter Halo Model Against Observations in the Milky Way

    NASA Astrophysics Data System (ADS)

    Dumas, Julie; Newberg, Heidi Jo; Niedzielski, Bethany; Susser, Adam; Thompson, Jeffery M.; Weiss, Jake; Lewis, Kim M.

    2016-06-01

    One prediction of axion dark matter models is they can form Bose-Einstein condensates and rigid caustic rings as a halo collapses in the non-linear regime. In this thesis, we undertake the first study of a caustic ring model for the Milky Way halo (Duffy & Sikivie 2008), paying particular attention to observational consequences. We first present the formalism for calculating the gravitational acceleration of a caustic ring halo. The caustic ring dark matter theory reproduces a roughly logarithmic halo, with large perturbations near the rings. We show that this halo can reasonably match the known Galactic rotation curve. We are not able to confirm or rule out an association between the positions of the caustic rings and oscillations in the observed rotation curve, due to insufficient rotation curve data. We explore the effects of dark matter caustic rings on dwarf galaxy tidal disruption with N-body simulations. Simulations of the Sagittarius (Sgr) dwarf galaxy in a caustic ring halo potential, with disk and bulge parameters that are tuned to match the Galactic rotation curve, match observations of the Sgr trailing tidal tails as far as 90 kpc from the Galactic center. Like the Navarro-Frenk-White (NFW) halo, they are, however, unable to match the leading tidal tail. None of the caustic, NFW, or triaxial logarithmic halos are able to simultaneously match observations of the leading and trailing arms of the Sagittarius stream. We further show that simulations of dwarf galaxies that move through caustic rings are qualitatively similar to those moving in a logarithmic halo. This research was funded by NSF grant AST 10-09670, the NASA-NY Space Grant, and the American Fellowship from AAUW.

  6. Tully-Fisher relation, galactic rotation curves and dissipative mirror dark matter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Foot, R., E-mail: rfoot@unimelb.edu.au

    2014-12-01

    If dark matter is dissipative then the distribution of dark matter within galactic halos can be governed by dissipation, heating and hydrostatic equilibrium. Previous work has shown that a specific model, in the framework of mirror dark matter, can explain several empirical galactic scaling relations. It is shown here that this dynamical halo model implies a quasi-isothermal dark matter density, ρ(r) ≅ ρ{sub 0}r{sub 0}{sup 2}/(r{sup 2}+r{sub 0}{sup 2}), where the core radius, r{sub 0}, scales with disk scale length, r{sub D}, via r{sub 0}/kpc ≈ 1.4(r{sub D}/kpc). Additionally, the product ρ{sub 0}r{sub 0} is roughly constant, i.e. independent ofmore » galaxy size (the constant is set by the parameters of the model). The derived dark matter density profile implies that the galactic rotation velocity satisfies the Tully-Fisher relation, L{sub B}∝v{sup 3}{sub max}, where v{sub max} is the maximal rotational velocity. Examples of rotation curves resulting from this dynamics are given.« less

  7. Statistics of Dark Matter Halos from Gravitational Lensing.

    PubMed

    Jain; Van Waerbeke L

    2000-02-10

    We present a new approach to measure the mass function of dark matter halos and to discriminate models with differing values of Omega through weak gravitational lensing. We measure the distribution of peaks from simulated lensing surveys and show that the lensing signal due to dark matter halos can be detected for a wide range of peak heights. Even when the signal-to-noise ratio is well below the limit for detection of individual halos, projected halo statistics can be constrained for halo masses spanning galactic to cluster halos. The use of peak statistics relies on an analytical model of the noise due to the intrinsic ellipticities of source galaxies. The noise model has been shown to accurately describe simulated data for a variety of input ellipticity distributions. We show that the measured peak distribution has distinct signatures of gravitational lensing, and its non-Gaussian shape can be used to distinguish models with different values of Omega. The use of peak statistics is complementary to the measurement of field statistics, such as the ellipticity correlation function, and is possibly not susceptible to the same systematic errors.

  8. The Milky Way, the Galactic halo, and the Halos of Galaxies

    NASA Astrophysics Data System (ADS)

    Gerhard, Ortwin

    2015-08-01

    The Milky Way, "our" Galaxy, is currently the subject of intense study with many ground-based surveys, in anticipation of upcoming results from the GAIA mission. From this work we have been learning about the full three-dimensional structure of the Galactic box/peanut bulge, the distribution of stars in the bar and disk, and the many streams in the Galactic halo. The data tell us that most of the Galactic bulge formed from the disk, and that a large fraction of the Galactic halo has been accreted from outside. Similarly, in many external galaxy halos there is now evidence for tidal streams and accretion of satellites. To see these features requires exquisite data - mostly very deep photometry, but some halo substructures have also been found with kinematic data. These observations illustrate how galaxy halos are still growing, and sometimes can be used to "time" the accretion events. In comparison with cosmological simulations, the structure of galaxy halos gives us a vivid illustration of the hierarchical nature of our Universe.

  9. Formation of the Galactic Stellar Halo: Origin of the Metallicity-Eccentricity Relation.

    PubMed

    Bekki; Chiba

    2000-05-01

    Motivated by the recently improved knowledge on the kinematic and chemical properties of the Galactic metal-poor stars, we present the numerical simulation for the formation of the Galactic stellar halo to interpret the observational results. As a model for the Galaxy contraction, we adopt the currently standard theory of galaxy formation based on the hierarchical assembly of the cold dark matter fluctuations. We find, for the simulated stars with &sqbl0;Fe&solm0;H&sqbr0;Galactic halo is a natural consequence of the hierarchical evolution of the subgalactic clumps seeded from the cold dark matter density fluctuations.

  10. DETECTING TRIAXIALITY IN THE GALACTIC DARK MATTER HALO THROUGH STELLAR KINEMATICS. II. DEPENDENCE ON NATURE DARK MATTER AND GRAVITY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rojas-Niño, Armando; Pichardo, Barbara; Valenzuela, Octavio

    Recent studies have presented evidence that the Milky Way global potential may be non-spherical. In this case, the assembling process of the Galaxy may have left long-lasting stellar halo kinematic fossils due to the shape of the dark matter halo, potentially originated by orbital resonances. We further investigate such a possibility, now considering potential models further away from ΛCDM halos, like scalar field dark matter halos and Modified Newtonian Dynamics (MOND), and including several other factors that may mimic the emergence and permanence of kinematic groups, such as a spherical and triaxial halo with an embedded disk potential. We find that regardless ofmore » the density profile (DM nature), kinematic groups only appear in the presence of a triaxial halo potential. For the case of a MOND-like gravity theory no kinematic structure is present. We conclude that the detection of these kinematic stellar groups could confirm the predicted triaxiality of dark halos in cosmological galaxy formation scenarios.« less

  11. Detecting dark matter with imploding pulsars in the galactic center.

    PubMed

    Bramante, Joseph; Linden, Tim

    2014-11-07

    The paucity of old millisecond pulsars observed at the galactic center of the Milky Way could be the result of dark matter accumulating in and destroying neutron stars. In regions of high dark matter density, dark matter clumped in a pulsar can exceed the Schwarzschild limit and collapse into a natal black hole which destroys the pulsar. We examine what dark matter models are consistent with this hypothesis and find regions of parameter space where dark matter accumulation can significantly degrade the neutron star population within the galactic center while remaining consistent with observations of old millisecond pulsars in globular clusters and near the solar position. We identify what dark matter couplings and masses might cause a young pulsar at the galactic center to unexpectedly extinguish. Finally, we find that pulsar collapse age scales inversely with the dark matter density and linearly with the dark matter velocity dispersion. This implies that maximum pulsar age is spatially dependent on position within the dark matter halo of the Milky Way. In turn, this pulsar age spatial dependence will be dark matter model dependent.

  12. "Invisible" Galactic Halos.

    ERIC Educational Resources Information Center

    Lugt, Karel Vander

    1993-01-01

    Develops a simple core-halo model of a galaxy that exhibits the main features of observed rotation curves and quantitatively illustrates the need to postulate halos of dark matter. Uses only elementary mechanics. (Author/MVL)

  13. The Milky Way, the Galactic Halo, and the Halos of Galaxies

    NASA Astrophysics Data System (ADS)

    Gerhard, Ortwin

    2016-08-01

    The Milky Way, ``our'' Galaxy, is currently the subject of intense study with many ground-based surveys, in anticipation of upcoming results from the Gaia mission. From this work we have been learning about the full three-dimensional structure of the Galactic box/peanut bulge, the distribution of stars in the bar and disk, and the many streams and substructures in the Galactic halo. The data indicate that a large fraction of the Galactic halo has been accreted from outside. Similarly, in many external galaxy halos there is now evidence for tidal streams and accretion of satellites. To study these features requires exquisite, deep photometry and spectroscopy. These observations illustrate how galaxy halos are still growing, and sometimes can be used to ``time'' the accretion events. In comparison with cosmological simulations, the structure of galaxy halos gives us a vivid illustration of the hierarchical nature of our Universe.

  14. Distant Galactic Halo Substructures Observed by the Palomar Transient Factory

    NASA Astrophysics Data System (ADS)

    Sesar, Branimir

    2013-01-01

    Characterization of Galactic halo substructures is important as their kinematic and chemical properties help constrain the properties of the Galactic dark matter halo, the formation history of the Milky Way, and the galaxy formation process in general. The best practical choice for finding distant halo substructures are pulsating RR Lyrae stars, due to their intrinsic brightness (M_V = 0.6 mag) and distinct light curves. I will present kinematic and chemical properties of two distant halo substructures that were traced using RR Lyrae stars observed by the Palomar Transient Factory. One of these substructures, located at 90 kpc from the Sun in the Cancer constellation, consists of two groups of RR Lyrae stars moving away from the Galaxy at ~80 and ~20 km/s, respectively. The second substructure is located at ~65 kpc from the Sun in the Hercules constellation. The kinematics of RR Lyrae stars tracing this substructure suggest a presence of 2 or 3 stellar streams extending in the similar direction on the sky. Due to their spatial extent, both of these substructures are clearly disrupted and would be very difficult to detect using tradiitonal techniques such as the color-magnitude diagram filtering.

  15. Search for dark matter annihilation in the Galactic Center with IceCube-79

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aartsen, M. G.; Abraham, K.; Ackermann, M.

    The Milky Way is expected to be embedded in a halo of dark matter particles, with the highest density in the central region, and decreasing density with the halo-centric radius. Dark matter might be indirectly detectable at Earth through a flux of stable particles generated in dark matter annihilations and peaked in the direction of the Galactic Center. We present a search for an excess flux of muon (anti-) neutrinos from dark matter annihilation in the Galactic Center using the cubic-kilometer-sized IceCube neutrino detector at the South Pole. There, the Galactic Center is always seen above the horizon. Thus, newmore » and dedicated veto techniques against atmospheric muons are required to make the southern hemisphere accessible for IceCube. We used 319.7 live-days of data from IceCube operating in its 79-string configuration during 2010 and 2011. Here, no neutrino excess was found and the final result is compatible with the background. We present upper limits on the self-annihilation cross-section, Av>, for WIMP masses ranging from 30 GeV up to 10 TeV, assuming cuspy (NFW) and flat-cored (Burkert) dark matter halo profiles, reaching down to ≃4•10 –24 cm 3 s –1, and ≃2.6•10 –23 cm 3 s –1 for the ν ν¯ channel, respectively.« less

  16. Search for dark matter annihilation in the Galactic Center with IceCube-79

    DOE PAGES

    Aartsen, M. G.; Abraham, K.; Ackermann, M.; ...

    2015-10-15

    The Milky Way is expected to be embedded in a halo of dark matter particles, with the highest density in the central region, and decreasing density with the halo-centric radius. Dark matter might be indirectly detectable at Earth through a flux of stable particles generated in dark matter annihilations and peaked in the direction of the Galactic Center. We present a search for an excess flux of muon (anti-) neutrinos from dark matter annihilation in the Galactic Center using the cubic-kilometer-sized IceCube neutrino detector at the South Pole. There, the Galactic Center is always seen above the horizon. Thus, newmore » and dedicated veto techniques against atmospheric muons are required to make the southern hemisphere accessible for IceCube. We used 319.7 live-days of data from IceCube operating in its 79-string configuration during 2010 and 2011. Here, no neutrino excess was found and the final result is compatible with the background. We present upper limits on the self-annihilation cross-section, Av>, for WIMP masses ranging from 30 GeV up to 10 TeV, assuming cuspy (NFW) and flat-cored (Burkert) dark matter halo profiles, reaching down to ≃4•10 –24 cm 3 s –1, and ≃2.6•10 –23 cm 3 s –1 for the ν ν¯ channel, respectively.« less

  17. Dark energy and extended dark matter halos

    NASA Astrophysics Data System (ADS)

    Chernin, A. D.; Teerikorpi, P.; Valtonen, M. J.; Dolgachev, V. P.; Domozhilova, L. M.; Byrd, G. G.

    2012-03-01

    The cosmological mean matter (dark and baryonic) density measured in the units of the critical density is Ωm = 0.27. Independently, the local mean density is estimated to be Ωloc = 0.08-0.23 from recent data on galaxy groups at redshifts up to z = 0.01-0.03 (as published by Crook et al. 2007, ApJ, 655, 790 and Makarov & Karachentsev 2011, MNRAS, 412, 2498). If the lower values of Ωloc are reliable, as Makarov & Karachentsev and some other observers prefer, does this mean that the Local Universe of 100-300 Mpc across is an underdensity in the cosmic matter distribution? Or could it nevertheless be representative of the mean cosmic density or even be an overdensity due to the Local Supercluster therein. We focus on dark matter halos of groups of galaxies and check how much dark mass the invisible outer layers of the halos are able to host. The outer layers are usually devoid of bright galaxies and cannot be seen at large distances. The key factor which bounds the size of an isolated halo is the local antigravity produced by the omnipresent background of dark energy. A gravitationally bound halo does not extend beyond the zero-gravity surface where the gravity of matter and the antigravity of dark energy balance, thus defining a natural upper size of a system. We use our theory of local dynamical effects of dark energy to estimate the maximal sizes and masses of the extended dark halos. Using data from three recent catalogs of galaxy groups, we show that the calculated mass bounds conform with the assumption that a significant amount of dark matter is located in the invisible outer parts of the extended halos, sufficient to fill the gap between the observed and expected local matter density. Nearby groups of galaxies and the Virgo cluster have dark halos which seem to extend up to their zero-gravity surfaces. If the extended halo is a common feature of gravitationally bound systems on scales of galaxy groups and clusters, the Local Universe could be typical or even

  18. Chemical trends in the Galactic halo from APOGEE data

    NASA Astrophysics Data System (ADS)

    Fernández-Alvar, E.; Carigi, L.; Allende Prieto, C.; Hayden, M. R.; Beers, T. C.; Fernández-Trincado, J. G.; Meza, A.; Schultheis, M.; Santiago, B. X.; Queiroz, A. B.; Anders, F.; da Costa, L. N.; Chiappini, C.

    2017-02-01

    The galaxy formation process in the Λ cold dark matter scenario can be constrained from the analysis of stars in the Milky Way's halo system. We examine the variation of chemical abundances in distant halo stars observed by the Apache Point Observatory Galactic Evolution Experiment (APOGEE), as a function of distance from the Galactic Centre (r) and iron abundance ([M/H]), in the range 5 ≲ r ≲ 30 kpc and -2.5 < [M/H] < 0.0. We perform a statistical analysis of the abundance ratios derived by the APOGEE pipeline (ASPCAP) and distances calculated by several approaches. Our analysis reveals signatures of a different chemical enrichment between the inner and outer regions of the halo, with a transition at about 15 kpc. The derived metallicity distribution function exhibits two peaks, at [M/H] ˜ -1.5 and ˜-2.1, consistent with previously reported halo metallicity distributions. We obtain a difference of ˜0.1 dex for α-element-to-iron ratios for stars at r > 15 kpc and [M/H] > -1.1 (larger in the case of O, Mg, and S) with respect to the nearest halo stars. This result confirms previous claims for low-α stars found at larger distances. Chemical differences in elements with other nucleosynthetic origins (Ni, K, Na, and Al) are also detected. C and N do not provide reliable information about the interstellar medium from which stars formed because our sample comprises red giant branch and asymptotic giant branch stars and can experience mixing of material to their surfaces.

  19. Constraints on the Galactic Halo Dark Matter from Fermi-LAT Diffuse Measurements

    NASA Technical Reports Server (NTRS)

    Ackermann, M.; Ajello, M.; Atwood, W. B.; Baldini, L.; Barbiellini, G.; Bastieri, D.; Bechtol, K.; Bellazzini, R.; Blandford, R. D.; Bloom, E. D.; hide

    2012-01-01

    We have performed an analysis of the diffuse gamma-ray emission with the Fermi Large Area Telescope (LAT) in the Milky Way halo region, searching for a signal from dark matter annihilation or decay. In the absence of a robust dark matter signal, constraints are presented. We consider both gamma rays produced directly in the dark matter annihilation/decay and produced by inverse Compton scattering of the e+/e- produced in the annihilation/decay. Conservative limits are derived requiring that the dark matter signal does not exceed the observed diffuse gamma-ray emission. A second set of more stringent limits is derived based on modeling the foreground astrophysical diffuse emission using the GALPROP code. Uncertainties in the height of the diffusive cosmic-ray halo, the distribution of the cosmic-ray sources in the Galaxy, the index of the injection cosmic-ray electron spectrum, and the column density of the interstellar gas are taken into account using a profile likelihood formalism, while the parameters governing the cosmic-ray propagation have been derived from fits to local cosmic-ray data. The resulting limits impact the range of particle masses over which dark matter thermal production in the early universe is possible, and challenge the interpretation of the PAMELA/Fermi-LAT cosmic ray anomalies as the annihilation of dark matter.

  20. Constraints on the Galactic Halo Dark Matter From FERMI-LAT Diffuse Measurements

    DOE PAGES

    Ackermann, M.; Ajello, M.; Atwood, W. B.; ...

    2012-11-28

    For this study, we have performed an analysis of the diffuse gamma-ray emission with the Fermi Large Area Telescope (LAT) in the Milky Way halo region, searching for a signal from dark matter annihilation or decay. In the absence of a robust dark matter signal, constraints are presented. We consider both gamma rays produced directly in the dark matter annihilation/decay and produced by inverse Compton scattering of the e +/e – produced in the annihilation/decay. Conservative limits are derived requiring that the dark matter signal does not exceed the observed diffuse gamma-ray emission. A second set of more stringent limitsmore » is derived based on modeling the foreground astrophysical diffuse emission using the GALPROP code. Uncertainties in the height of the diffusive cosmic-ray halo, the distribution of the cosmic-ray sources in the Galaxy, the index of the injection cosmic-ray electron spectrum, and the column density of the interstellar gas are taken into account using a profile likelihood formalism, while the parameters governing the cosmic-ray propagation have been derived from fits to local cosmic-ray data. In conclusion, the resulting limits impact the range of particle masses over which dark matter thermal production in the early universe is possible, and challenge the interpretation of the PAMELA/Fermi-LAT cosmic ray anomalies as the annihilation of dark matter.« less

  1. Unbound particles in dark matter halos

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Behroozi, Peter S.; Wechsler, Risa H.; Loeb, Abraham, E-mail: behroozi@stanford.edu, E-mail: aloeb@cfa.harvard.edu, E-mail: rwechsler@stanford.edu

    2013-06-01

    We investigate unbound dark matter particles in halos by tracing particle trajectories in a simulation run to the far future (a = 100). We find that the traditional sum of kinetic and potential energies is a very poor predictor of which dark matter particles will eventually become unbound from halos. We also study the mass fraction of unbound particles, which increases strongly towards the edges of halos, and decreases significantly at higher redshifts. We discuss implications for dark matter detection experiments, precision calibrations of the halo mass function, the use of baryon fractions to constrain dark energy, and searches formore » intergalactic supernovae.« less

  2. Unbound particles in dark matter halos

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Behroozi, Peter S.; Loeb, Abraham; Wechsler, Risa H.

    2013-06-13

    We investigate unbound dark matter particles in halos by tracing particle trajectories in a simulation run to the far future (a = 100). We find that the traditional sum of kinetic and potential energies is a very poor predictor of which dark matter particles will eventually become unbound from halos. We also study the mass fraction of unbound particles, which increases strongly towards the edges of halos, and decreases significantly at higher redshifts. We discuss implications for dark matter detection experiments, precision calibrations of the halo mass function, the use of baryon fractions to constrain dark energy, and searches formore » intergalactic supernovae.« less

  3. Dark matter haloes: a multistream view

    NASA Astrophysics Data System (ADS)

    Ramachandra, Nesar S.; Shandarin, Sergei F.

    2017-09-01

    Mysterious dark matter constitutes about 85 per cent of all masses in the Universe. Clustering of dark matter plays a dominant role in the formation of all observed structures on scales from a fraction to a few hundreds of Mega-parsecs. Galaxies play a role of lights illuminating these structures so they can be observed. The observations in the last several decades have unveiled opulent geometry of these structures currently known as the cosmic web. Haloes are the highest concentrations of dark matter and host luminous galaxies. Currently the most accurate modelling of dark matter haloes is achieved in cosmological N-body simulations. Identifying the haloes from the distribution of particles in N-body simulations is one of the problems attracting both considerable interest and efforts. We propose a novel framework for detecting potential dark matter haloes using the field unique for dark matter-multistream field. The multistream field emerges at the non-linear stage of the growth of perturbations because the dark matter is collisionless. Counting the number of velocity streams in gravitational collapses supplements our knowledge of spatial clustering. We assume that the virialized haloes have convex boundaries. Closed and convex regions of the multistream field are hence isolated by imposing a positivity condition on all three eigenvalues of the Hessian estimated on the smoothed multistream field. In a single-scale analysis of high multistream field resolution and low softening length, the halo substructures with local multistream maxima are isolated as individual halo sites.

  4. Rate for annihilation of galactic dark matter into two photons

    NASA Technical Reports Server (NTRS)

    Giudice, Gian F.; Griest, Kim

    1989-01-01

    A calculation of the cross section for neutralino-neutralino annihilation into two photons is performed and applied to dark matter in the galactic halo to find the counting rate in a large gamma ray detector such as EGRET (Energetic Gamma Ray Experiment Telescope) or ASTROGAM. Combining constraints from particle accelerators with the requirement that the neutralinos make up the dark matter, it is found that rates of over a few dozen events per year are unlikely. The assumptions that go into these conclusions are listed. Other particle dark matter candidates which could give larger and perhaps observable signals are suggested.

  5. Cosmic stellar relics in the Galactic halo

    NASA Astrophysics Data System (ADS)

    Salvadori, Stefania; Schneider, Raffaella; Ferrara, Andrea

    2007-10-01

    We study the stellar population history and chemical evolution of the Milky Way (MW) in a hierarchical Λ cold dark matter model for structure formation. Using a Monte Carlo method based on the semi-analytical extended Press & Schechter formalism, we develop a new code GALAXY MERGER TREE AND EVOLUTION (GAMETE) to reconstruct the merger tree of the Galaxy and follow the evolution of gas and stars along the hierarchical tree. Our approach allows us to compare the observational properties of the MW with model results, exploring different properties of primordial stars, such as their initial mass function and the critical metallicity for low-mass star formation, Zcr. In particular, by matching our predictions to the metallicity distribution function (MDF) of metal-poor stars in the Galactic halo we find that: (i) a strong supernova (SN) feedback is required to reproduce the observed properties of the MW; (ii) stars with [Fe/H] < -2.5 form in haloes accreting Galactic medium (GM) enriched by earlier SN explosions; (iii) the fiducial model (Zcr = 10-4Zsolar, mPopIII = 200 Msolar) provides an overall good fit to the MDF, but cannot account for the two hyper-metal-poor (HMP) stars with [Fe/H] < -5 the latter can be accommodated if Zcr <= 10-6 Zsolar but such model overpopulates the `metallicity desert', that is, the range -5.3 < [Fe/H] < -4 in which no stars have been detected; (iv) the current non-detection of metal-free stars robustly constrains either Zcr > 0 or the masses of the first stars mPopIII > 0.9 Msolar (v) the statistical impact of truly second-generation stars, that is, stars forming out of gas polluted only by metal-free stars, is negligible in current samples; and (vi) independent of Zcr, 60 per cent of metals in the GM are ejected through winds by haloes with masses M < 6 × 109 Msolar, thus showing that low-mass haloes are the dominant population contributing to cosmic metal enrichment. We discuss the limitations of our study and comparison with previous

  6. EGRET excess of diffuse galactic gamma rays as tracer of dark matter

    NASA Astrophysics Data System (ADS)

    de Boer, W.; Sander, C.; Zhukov, V.; Gladyshev, A. V.; Kazakov, D. I.

    2005-12-01

    The public data from the EGRET space telescope on diffuse Galactic gamma rays in the energy range from 0.1 to 10 GeV are reanalyzed with the purpose of searching for signals of Dark Matter annihilation (DMA). The analysis confirms the previously observed excess for energies above 1 GeV in comparison with the expectations from conventional Galactic models. In addition, the excess was found to show all the key features of a signal from Dark Matter Annihilation (DMA): a) the excess is observable in all sky directions and has the same shape everywhere, thus pointing to a common source; b) the shape corresponds to the expected spectrum of the annihilation of non-relativistic massive particles into - among others - neutral π0 mesons, which decay into photons. From the energy spectrum of the excess we deduce a WIMP mass between 50 and 100 GeV, while from the intensity of the excess in all sky directions the shape of the halo could be reconstructed. The DM halo is consistent with an almost spherical isothermal profile with substructure in the Galactic plane in the form of toroidal rings at 4 and 14 kpc from the center. These rings lead to a peculiar shape of the rotation curve, in agreement with the data, which proves that the EGRET excess traces the Dark Matter.

  7. HaloSat- A CubeSat to Study the Hot Galactic Halo

    NASA Astrophysics Data System (ADS)

    Kaaret, Philip

    We propose to develop, build, and fly HaloSat, a CubeSat capable of measuring the oxygen line emission from the hot Galactic halo. A dedicated CubeSat enables an instrument design and observing strategy to maximize the halo signal while minimizing foregrounds from solar wind charge exchange interactions within the solar system. We will use HaloSat to map the distribution of hot gas in the Milky Way and determine whether it fills an extended, and thus massive halo, or whether the halo is compact, and thus does not contribute significantly to the total mass of the Milky Way. HaloSat can be accomplished at modest cost using a CubeSat, a novel platform for space astrophysics missions. We will use a commercially available CubeSat bus and commercially available X-ray detectors to reduce development risk and minimize overall mission cost. HaloSat builds on the initiatives of GSFC/Wallops Flight Facility (WFF) in the development of CubeSats for low cost access to space and relies on the technical expertise of WFF personnel for spacecraft and mission design and operations. The team, from University of Iowa (UI), GSFC, Johns Hopkins, and CNRS (France), contains experts in X-ray detector development and data analysis and the astrophysics of hot plasmas and Galactic structure. The UI team will include a number of junior researchers (undergraduates, graduate students, and a postdoc) and help train them for future leadership roles on NASA space flight missions.

  8. The Halo Occupation Distribution of Active Galactic Nuclei

    NASA Astrophysics Data System (ADS)

    Chatterjee, Suchetana; Nagai, D.; Richardson, J.; Zheng, Z.; Degraf, C.; DiMatteo, T.

    2011-05-01

    We investigate the halo occupation distribution of active galactic nuclei (AGN) using a state-of-the-art cosmological hydrodynamic simulation that self-consistently incorporates the growth and feedback of supermassive black holes and the physics of galaxy formation (DiMatteo et al. 2008). We show that the mean occupation function can be modeled as a softened step function for central AGN and a power law for the satellite population. The satellite occupation is consistent with weak redshift evolution and a power law index of unity. The number of satellite black holes at a given halo mass follows a Poisson distribution. We show that at low redshifts (z=1.0) feedback from AGN is responsible for higher suppression of black hole growth in higher mass halos. This effect introduces a bias in the correlation between instantaneous AGN luminosity and the host halo mass, making AGN clustering depend weakly on luminosity at low redshifts. We show that the radial distribution of AGN follows a power law which is fundamentally different from those of galaxies and dark matter. The best-fit power law index is -2.26 ± 0.23. The power law exponent do not show any evolution with redshift, host halo mass and AGN luminosity within statistical limits. Incorporating the environmental dependence of supermassive black hole accretion and feedback, our formalism provides the most complete theoretical tool for interpreting current and future measurements of AGN clustering.

  9. Large-scale gas dynamical processes affecting the origin and evolution of gaseous galactic halos

    NASA Technical Reports Server (NTRS)

    Shapiro, Paul R.

    1991-01-01

    Observations of galactic halo gas are consistent with an interpretation in terms of the galactic fountain model in which supernova heated gas in the galactic disk escapes into the halo, radiatively cools and forms clouds which fall back to the disk. The results of a new study of several large-scale gas dynamical effects which are expected to occur in such a model for the origin and evolution of galactic halo gas will be summarized, including the following: (1) nonequilibrium absorption line and emission spectrum diagnostics for radiatively cooling halo gas in our own galaxy, as well the implications of such absorption line diagnostics for the origin of quasar absorption lines in galactic halo clouds of high redshift galaxies; (2) numerical MHD simulations and analytical analysis of large-scale explosions ad superbubbles in the galactic disk and halo; (3) numerical MHD simulations of halo cloud formation by thermal instability, with and without magnetic field; and (4) the effect of the galactic fountain on the galactic dynamo.

  10. Dark-Matter Halos of Tenuous Galaxies

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2016-03-01

    A series of recent deep-imaging surveys has revealed dozens of lurking ultra-diffuse galaxies (UDGs) in nearby galaxy clusters. A new study provides key information to help us understand the origins of these faint giants.What are UDGs?There are three main possibilities for how UDGs galaxies with the sizes of giants, but luminosities no brighter than those of dwarfs formed:They are tidal dwarfs, created in galactic collisions when streams of matter were pulled away from the parent galaxies and halos to form dwarfs.They are descended from normal galaxies and were then altered by tidal interactions with the galaxy cluster.They are ancient remnant systems large galaxies whose gas was swept away, putting an early halt to star formation. The gas removal did not, however, affect their large dark matter halos, which permitted them to survive in the cluster environment.The key to differentiating between these options is to obtain mass measurements for the UDGs how large are their dark matter halos? In a recent study led by Michael Beasley (Institute of Astrophysics of the Canary Islands, University of La Laguna), a team of astronomers has determined a clever approach for measuring these galaxies masses: examine their globular clusters.Masses from Globular ClustersVCC 1287s mass measurements put it outside of the usual halo-mass vs. stellar-mass relationships for nearby galaxies: it has a significantly higher halo mass than is normal, given its stellar mass. [Adapted from Beasley et al. 2016]Beasley and collaborators selected one UDG, VCC 1287, from the Virgo galaxy cluster, and they obtained spectra of the globular clusters around it using the OSIRIS spectrograph on the Great Canary Telescope. They then determined VCC 1287s total halo mass in two ways: first by using the dynamics of the globular clusters, and then by relying on a relation between total globular cluster mass and halo mass.The two masses they found are in good agreement with each other; both are around 80

  11. Review of the fermionic dark matter model applied to galactic structures

    NASA Astrophysics Data System (ADS)

    Krut, A.; Argüelles, C. R.; Rueda, J.; Ruffini, R.

    2015-12-01

    Baryonic components (e.g. bulge and disk) of galactic structures are assumed to be embedded in an isothermal dark matter halo of fermionic nature. Besides the Pauli principle only gravitational interaction is considered. Using the underlying Fermi-Dirac phase space distribution, typical of collisionless relaxation processes, it yields an one-parameter family of scaled solutions which reproduces the observed flat rotation curves in galaxies, and additionally predicts a degenerate core through their centers. In order to provide the right DM halo properties of galaxies a set of four parameters (particle mass, degeneracy parameter at the galactic center, central density and the velocity dispersion) is necessary. The more general density profile shows three regimes depending on radius: an almost uniform very dense quantum core followed by a steep fall, a plateau in the diluted regime and a Boltzmannian tail representing the halo. In contrast to purely Boltzmannian configurations the fermionic DM model containing a quantum core allows to determine the particle mass. We show that the quantum core can be well approximated by a polytrope of index n = 3/2, while the halo can be perfectly described by an isothermal sphere with a halo scale length radius equal to approximately 3/4 of the King-radius.

  12. Review of the fermionic dark matter model applied to galactic structures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krut, A.; Argüelles, C. R.; Rueda, J.

    2015-12-17

    Baryonic components (e.g. bulge and disk) of galactic structures are assumed to be embedded in an isothermal dark matter halo of fermionic nature. Besides the Pauli principle only gravitational interaction is considered. Using the underlying Fermi-Dirac phase space distribution, typical of collisionless relaxation processes, it yields an one-parameter family of scaled solutions which reproduces the observed flat rotation curves in galaxies, and additionally predicts a degenerate core through their centers. In order to provide the right DM halo properties of galaxies a set of four parameters (particle mass, degeneracy parameter at the galactic center, central density and the velocity dispersion)more » is necessary. The more general density profile shows three regimes depending on radius: an almost uniform very dense quantum core followed by a steep fall, a plateau in the diluted regime and a Boltzmannian tail representing the halo. In contrast to purely Boltzmannian configurations the fermionic DM model containing a quantum core allows to determine the particle mass. We show that the quantum core can be well approximated by a polytrope of index n = 3/2, while the halo can be perfectly described by an isothermal sphere with a halo scale length radius equal to approximately 3/4 of the King-radius.« less

  13. New detections of embedded clusters in the Galactic halo

    NASA Astrophysics Data System (ADS)

    Camargo, D.; Bica, E.; Bonatto, C.

    2016-09-01

    Context. Until recently it was thought that high Galactic latitude clouds were a non-star-forming ensemble. However, in a previous study we reported the discovery of two embedded clusters (ECs) far away from the Galactic plane (~ 5 kpc). In our recent star cluster catalogue we provided additional high and intermediate latitude cluster candidates. Aims: This work aims to clarify whether our previous detection of star clusters far away from the disc represents just an episodic event or whether star cluster formation is currently a systematic phenomenon in the Galactic halo. We analyse the nature of four clusters found in our recent catalogue and report the discovery of three new ECs each with an unusually high latitude and distance from the Galactic disc midplane. Methods: The analysis is based on 2MASS and WISE colour-magnitude diagrams (CMDs), and stellar radial density profiles (RDPs). The CMDs are built by applying a field-star decontamination procedure, which uncovers the cluster's intrinsic CMD morphology. Results: All of these clusters are younger than 5 Myr. The high-latitude ECs C 932, C 934, and C 939 appear to be related to a cloud complex about 5 kpc below the Galactic disc, under the Local arm. The other clusters are above the disc, C 1074 and C 1100 with a vertical distance of ~3 kpc, C 1099 with ~ 2 kpc, and C 1101 with ~1.8 kpc. Conclusions: According to the derived parameters ECs located below and above the disc occur, which gives evidence of widespread star cluster formation throughout the Galactic halo. This study therefore represents a paradigm shift, by demonstrating that a sterile halo must now be understood as a host for ongoing star formation. The origin and fate of these ECs remain open. There are two possibilities for their origin, Galactic fountains or infall. The discovery of ECs far from the disc suggests that the Galactic halo is more actively forming stars than previously thought. Furthermore, since most ECs do not survive the infant

  14. HaloSat - A CubeSat to Study the Hot Galactic Halo

    NASA Astrophysics Data System (ADS)

    Kaaret, Philip

    2017-01-01

    Observations of the nearby universe fail to locate about half of the baryons observed in the early universe. The missing baryons may be in hot galactic halos. HaloSat is a CubeSat designed to map oxygen line emission (O VII and O VIII) around the Milky Way in order to constrain the mass and spatial distribution of hot gas in the halo. HaloSat has a grasp competitive with current X-ray observatories. Its observing program will be optimized to minimize contributions from solar wind charge exchange (SWCX) emission that limit the accuracy of current measurements. We will describe the HaloSat mission concept, progress towards its implementation, and plans for archiving and distribution of the data.

  15. Clouds Dominate the Galactic Halo

    NASA Astrophysics Data System (ADS)

    2003-01-01

    Using the exquisite sensitivity of the National Science Foundation's Robert C. Byrd Green Bank Telescope (GBT), astronomer Jay Lockman of the National Radio Astronomy Observatory (NRAO) in Green Bank, W. Va., has produced the best cross-section ever of the Milky Way Galaxy's diffuse halo of hydrogen gas. This image confirms the presence of discrete hydrogen clouds in the halo, and could help astronomers understand the origin and evolution of the rarefied atmosphere that surrounds our Galaxy. Lockman presented his findings at the American Astronomical Society meeting in Seattle, WA. Hydrogen Clouds Graphic Artist's Rendering of the Milky Way (background) with insert showing GBT image of cross-section of neutral atomic Hydrogen Credit: Kirk Woellert/National Science Foundation Patricia Smiley, NRAO. "The first observations with the Green Bank Telescope suggested that the hydrogen in the lower halo, the transition zone between the Milky Way and intergalactic space, is very clumpy," said Lockman. "The latest data confirm these results and show that instead of trailing away smoothly from the Galactic plane, a significant fraction of the hydrogen gas in the halo is concentrated in discrete clouds. There are even some filaments." Beyond the star-filled disk of the Milky Way, there exists an extensive yet diffuse halo of hydrogen gas. For years, astronomers have speculated about the origin and structure of this gas. "Even the existence of neutral hydrogen in the halo has been somewhat of a puzzle," Lockman remarked. "Unlike the Earth's atmosphere, which is hot enough to hold itself up against the force of gravity, the hydrogen in the halo is too cool to support itself against the gravitational pull of the Milky Way." Lockman points out that some additional factor has to be involved to get neutral hydrogen to such large distances from the Galactic plane. "This force could be cosmic rays, a supersonic wind, the blast waves from supernovae, or something we have not thought of

  16. Globular Cluster Contributions to the Galactic Halo

    NASA Astrophysics Data System (ADS)

    Martell, Sarah; Grebel, Eva; Lai, David

    2010-08-01

    The goal of this project is to confirm chemically that globular clusters are the source of as much as half the population of the Galactic halo. Using moderate-resolution spectroscopy from the SEGUE survey, we have identified a previously unknown population of halo field giants with distinctly strong CN features. CN variations are typically only observed in globular clusters, so these stars are interpreted as immigrants to the halo that originally formed in globular clusters. In one night of Keck/HIRES time, we will obtain high-quality, high- resolution spectra for five such stars, and determine abundances of O, Na, Mg, Al, alpha, iron-peak and neutron-capture elements. With this information we can state clearly whether these unusual CN-strong halo stars carry the full abundance pattern seen in CN-strong globular cluster stars, with depleted C, O, and Mg and enhanced N, Na, and Al. This type of coarse ``chemical tagging'' will allow a clearer division of the Galactic halo into contributions from globular clusters and from dwarf galaxies, and will place constraints on theoretical models of globular cluster formation and evolution.

  17. The metal-poor stellar halo in RAVE-TGAS and its implications for the velocity distribution of dark matter

    NASA Astrophysics Data System (ADS)

    Herzog-Arbeitman, Jonah; Lisanti, Mariangela; Necib, Lina

    2018-04-01

    The local velocity distribution of dark matter plays an integral role in interpreting the results from direct detection experiments. We previously showed that metal-poor halo stars serve as excellent tracers of the virialized dark matter velocity distribution using a high-resolution hydrodynamic simulation of a Milky Way-like halo. In this paper, we take advantage of the first Gaia data release, coupled with spectroscopic measurements from the RAdial Velocity Experiment (RAVE), to study the kinematics of stars belonging to the metal-poor halo within an average distance of ~5 kpc of the Sun. We study stars with iron abundances [Fe/H] < ‑1.5 and ‑1.8 that are located more than 1.5 kpc from the Galactic plane. Using a Gaussian mixture model analysis, we identify the stars that belong to the halo population, as well as some kinematic outliers. We find that both metallicity samples have similar velocity distributions for the halo component, within uncertainties. Assuming that the stellar halo velocities adequately trace the virialized dark matter, we study the implications for direct detection experiments. The Standard Halo Model, which is typically assumed for dark matter, is discrepant with the empirical distribution by ~6σ, predicts fewer high-speed particles, and is anisotropic. As a result, the Standard Halo Model overpredicts the nuclear scattering rate for dark matter masses below ~10 GeV. The kinematic outliers that we identify may potentially be correlated with dark matter substructure, though further study is needed to establish this correspondence.

  18. Unified halo-independent formalism from convex hulls for direct dark matter searches

    NASA Astrophysics Data System (ADS)

    Gelmini, Graciela B.; Huh, Ji-Haeng; Witte, Samuel J.

    2017-12-01

    Using the Fenchel-Eggleston theorem for convex hulls (an extension of the Caratheodory theorem), we prove that any likelihood can be maximized by either a dark matter 1- speed distribution F(v) in Earth's frame or 2- Galactic velocity distribution fgal(vec u), consisting of a sum of delta functions. The former case applies only to time-averaged rate measurements and the maximum number of delta functions is (Script N‑1), where Script N is the total number of data entries. The second case applies to any harmonic expansion coefficient of the time-dependent rate and the maximum number of terms is Script N. Using time-averaged rates, the aforementioned form of F(v) results in a piecewise constant unmodulated halo function tilde eta0BF(vmin) (which is an integral of the speed distribution) with at most (Script N-1) downward steps. The authors had previously proven this result for likelihoods comprised of at least one extended likelihood, and found the best-fit halo function to be unique. This uniqueness, however, cannot be guaranteed in the more general analysis applied to arbitrary likelihoods. Thus we introduce a method for determining whether there exists a unique best-fit halo function, and provide a procedure for constructing either a pointwise confidence band, if the best-fit halo function is unique, or a degeneracy band, if it is not. Using measurements of modulation amplitudes, the aforementioned form of fgal(vec u), which is a sum of Galactic streams, yields a periodic time-dependent halo function tilde etaBF(vmin, t) which at any fixed time is a piecewise constant function of vmin with at most Script N downward steps. In this case, we explain how to construct pointwise confidence and degeneracy bands from the time-averaged halo function. Finally, we show that requiring an isotropic Galactic velocity distribution leads to a Galactic speed distribution F(u) that is once again a sum of delta functions, and produces a time-dependent tilde etaBF(vmin, t) function

  19. The sagittarius tidal stream and the shape of the galactic stellar halo

    NASA Astrophysics Data System (ADS)

    Newby, Matthew T.

    The stellar halo that surrounds our Galaxy contains clues to understanding galaxy formation, cosmology, stellar evolution, and the nature of dark matter. Gravitationally disrupted dwarf galaxies form tidal streams, which roughly trace orbits through the Galactic halo. The Sagittarius (Sgr) dwarf tidal debris is the most dominant of these streams, and its properties place important constraints on the distribution of mass (including dark matter) in the Galaxy. Stars not associated with substructures form the "smooth" component of the stellar halo, the origin of which is still under investigation. Characterizing halo substructures such as the Sgr stream and the smooth halo provides valuable information on the formation history and evolution of our galaxy, and places constraints on cosmological models. This thesis is primarily concerned with characterizing the 3-dimensional stellar densities of the Sgr tidal debris system and the smooth stellar halo, using data from the Sloan Digital Sky Survey (SDSS). F turnoff stars are used to infer distances, as they are relatively bright, numerous, and distributed about a single intrinsic brightness (magnitude). The inherent spread in brightnesses of these stars is overcome through the use of the recently-developed technique of statistical photometric parallax, in which the bulk properties of a stellar population are used to create a probability distribution for a given star's distance. This was used to build a spatial density model for the smooth stellar halo and tidal streams. The free parameters in this model are then fit to SDSS data with a maximum likelihood technique, and the parameters are optimized by advanced computational methods. Several computing platforms are used in this study, including the RPI SUR Bluegene and the Milkyway home volunteer computing project. Fits to the Sgr stream in 18 SDSS data stripes were performed, and a continuous density profile is found for the major Sgr stream. The stellar halo is found to

  20. Dissipative dark matter halos: The steady state solution

    NASA Astrophysics Data System (ADS)

    Foot, R.

    2018-02-01

    Dissipative dark matter, where dark matter particle properties closely resemble familiar baryonic matter, is considered. Mirror dark matter, which arises from an isomorphic hidden sector, is a specific and theoretically constrained scenario. Other possibilities include models with more generic hidden sectors that contain massless dark photons [unbroken U (1 ) gauge interactions]. Such dark matter not only features dissipative cooling processes but also is assumed to have nontrivial heating sourced by ordinary supernovae (facilitated by the kinetic mixing interaction). The dynamics of dissipative dark matter halos around rotationally supported galaxies, influenced by heating as well as cooling processes, can be modeled by fluid equations. For a sufficiently isolated galaxy with a stable star formation rate, the dissipative dark matter halos are expected to evolve to a steady state configuration which is in hydrostatic equilibrium and where heating and cooling rates locally balance. Here, we take into account the major cooling and heating processes, and numerically solve for the steady state solution under the assumptions of spherical symmetry, negligible dark magnetic fields, and that supernova sourced energy is transported to the halo via dark radiation. For the parameters considered, and assumptions made, we were unable to find a physically realistic solution for the constrained case of mirror dark matter halos. Halo cooling generally exceeds heating at realistic halo mass densities. This problem can be rectified in more generic dissipative dark matter models, and we discuss a specific example in some detail.

  1. Earth-mass dark-matter haloes as the first structures in the early Universe.

    PubMed

    Diemand, J; Moore, B; Stadel, J

    2005-01-27

    The Universe was nearly smooth and homogeneous before a redshift of z = 100, about 20 million years after the Big Bang. After this epoch, the tiny fluctuations imprinted upon the matter distribution during the initial expansion began to collapse because of gravity. The properties of these fluctuations depend on the unknown nature of dark matter, the determination of which is one of the biggest challenges in present-day science. Here we report supercomputer simulations of the concordance cosmological model, which assumes neutralino dark matter (at present the preferred candidate), and find that the first objects to form are numerous Earth-mass dark-matter haloes about as large as the Solar System. They are stable against gravitational disruption, even within the central regions of the Milky Way. We expect over 10(15) to survive within the Galactic halo, with one passing through the Solar System every few thousand years. The nearest structures should be among the brightest sources of gamma-rays (from particle-particle annihilation).

  2. The Structure of Dark Matter Halos in Dwarf Galaxies

    NASA Astrophysics Data System (ADS)

    Burkert, A.

    1995-07-01

    Recent observations indicate that dark matter halos have flat central density profiles. Cosmological simulations with nonbaryonic dark matter, however, predict self-similar halos with central density cusps. This contradiction has lead to the conclusion that dark matter must be baryonic. Here it is shown that the dark matter halos of dwarf spiral galaxies represent a one-parameter family with self-similar density profiles. The observed global halo parameters are coupled with each other through simple scaling relations which can be explained by the standard cold dark matter model if one assumes that all the halos formed from density fluctuations with the same primordial amplitude. We find that the finite central halo densities correlate with the other global parameters. This result rules out scenarios where the flat halo cores formed subsequently through violent dynamical processes in the baryonic component. These cores instead provide important information on the origin and nature of dark matter in dwarf galaxies.

  3. Condensation of galactic cold dark matter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Visinelli, Luca

    2016-07-07

    We consider the steady-state regime describing the density profile of a dark matter halo, if dark matter is treated as a Bose-Einstein condensate. We first solve the fluid equation for “canonical” cold dark matter, obtaining a class of density profiles which includes the Navarro-Frenk-White profile, and which diverge at the halo core. We then solve numerically the equation obtained when an additional “quantum pressure” term is included in the computation of the density profile. The solution to this latter case is finite at the halo core, possibly avoiding the “cuspy halo problem” present in some cold dark matter theories. Withinmore » the model proposed, we predict the mass of the cold dark matter particle to be of the order of M{sub χ}c{sup 2}≈10{sup −24} eV, which is of the same order of magnitude as that predicted in ultra-light scalar cold dark matter models. Finally, we derive the differential equation describing perturbations in the density and the pressure of the dark matter fluid.« less

  4. Dark halos formed via dissipationless collapse. I - Shapes and alignment of angular momentum

    NASA Astrophysics Data System (ADS)

    Warren, Michael S.; Quinn, Peter J.; Salmon, John K.; Zurek, Wojciech H.

    1992-11-01

    We use N-body simulations on highly parallel supercomputers to study the structure of Galactic dark matter halos. The systems form by gravitational collapse from scale-free and more general Gaussian initial density perturbations in an expanding 400 Mpc-cubed spherical slice of an Einstein-deSitter universe. We analyze the structure and kinematics of about 100 of the largest relaxed halos in each of 10 separate simulations. A typical halo is a triaxial spheroid which tends to be more often prolate than oblate. These shapes are maintained by anisotropic velocity dispersion rather than by angular momentum. Nevertheless, there is a significant tendency for the total angular momentum vector to be aligned with the minor axis of the density distribution.

  5. On physical scales of dark matter halos

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zemp, Marcel, E-mail: mzemp@pku.edu.cn

    2014-09-10

    It is common practice to describe formal size and mass scales of dark matter halos as spherical overdensities with respect to an evolving density threshold. Here, we critically investigate the evolutionary effects of several such commonly used definitions and compare them to the halo evolution within fixed physical scales as well as to the evolution of other intrinsic physical properties of dark matter halos. It is shown that, in general, the traditional way of characterizing sizes and masses of halos dramatically overpredicts the degree of evolution in the last 10 Gyr, especially for low-mass halos. This pseudo-evolution leads to themore » illusion of growth even though there are no major changes within fixed physical scales. Such formal size definitions also serve as proxies for the virialized region of a halo in the literature. In general, those spherical overdensity scales do not coincide with the virialized region. A physically more precise nomenclature would be to simply characterize them by their very definition instead of calling such formal size and mass definitions 'virial'. In general, we find a discrepancy between the evolution of the underlying physical structure of dark matter halos seen in cosmological structure formation simulations and pseudo-evolving formal virial quantities. We question the importance of the role of formal virial quantities currently ubiquitously used in descriptions, models, and relations that involve properties of dark matter structures. Concepts and relations based on pseudo-evolving formal virial quantities do not properly reflect the actual evolution of dark matter halos and lead to an inaccurate picture of the physical evolution of our universe.« less

  6. The segregation of baryons and dark matter during halo assembly

    NASA Astrophysics Data System (ADS)

    Liao, Shihong; Gao, Liang; Frenk, Carlos S.; Guo, Qi; Wang, Jie

    2017-09-01

    The standard galaxy formation theory assumes that baryons and dark matter are initially well mixed before becoming segregated due to radiative cooling. We use non-radiative hydrodynamical simulations to explicitly examine this assumption and find that baryons and dark matter can also be segregated due to different characteristics of gas and dark matter during the buildup of the halo. As a result, baryons in many haloes do not originate from the same Lagrangian region as the dark matter. When using the fraction of corresponding dark matter and gas particles in the initial conditions (the 'paired fraction') as a proxy of the dark matter and gas segregation strength of a halo, on average about 25 per cent of the baryonic and dark matter of the final halo are segregated in the initial conditions. This is at odds with the assumption of the standard galaxy formation model. A consequence of this effect is that the baryons and dark matter of the same halo initially experience different tidal torques and thus their angular momentum vectors are often misaligned. The degree of the misalignment is largely preserved during later halo assembly and can be understood with the tidal torque theory. The result challenges the precision of some semi-analytical approaches that utilize dark matter halo merger trees to infer properties of gas associated with dark matter haloes.

  7. Astronomical Constraints on Quantum Cold Dark Matter

    NASA Astrophysics Data System (ADS)

    Spivey, Shane; Musielak, Z.; Fry, J.

    2012-01-01

    A model of quantum (`fuzzy') cold dark matter that accounts for both the halo core problem and the missing dwarf galaxies problem, which plague the usual cold dark matter paradigm, is developed. The model requires that a cold dark matter particle has a mass so small that its only allowed physical description is a quantum wave function. Each such particle in a galactic halo is bound to a gravitational potential that is created by luminous matter and by the halo itself, and the resulting wave function is described by a Schrödinger equation. To solve this equation on a galactic scale, we impose astronomical constraints that involve several density profiles used to fit data from simulations of dark matter galactic halos. The solutions to the Schrödinger equation are quantum waves which resemble the density profiles acquired from simulations, and they are used to determine the mass of the cold dark matter particle. The effects of adding certain types of baryonic matter to the halo, such as a dwarf elliptical galaxy or a supermassive black hole, are also discussed.

  8. Resonance Trapping in the Galactic Disc and Halo and its Relation with Moving Groups

    NASA Astrophysics Data System (ADS)

    Pichardo, Barbara; Moreno, Edmundo; william, schuster B.

    2015-08-01

    With the use of a detailed Milky Way nonaxisymmetric potential, observationally and dynamically constrained, the eects of the bar and the spiral arms in the Galaxy are studied in the disc and in the stellar halo. Especially the trapping of stars in the disk and Galactic halo by resonances on the Galactic plane created by the Galactic bar has been analysed in detail. To this purpose, a new method is presented to delineate the trapping regions using empirical diagrams of some orbital properties obtained in the Galactic potential. In these diagrams we plot in the inertial Galactic frame a characteristic orbital energy versus a characteristic orbital angular momentum, or versus the orbital Jacobi constant in the reference frame of the bar, when this is the only nonaxisymmetric component in the Galactic potential. With these diagrams some trapping regions are obtained in the disc and halo using a sample of disc stars and halo stars in the solar neighborhood. We compute several families of periodic orbits on the Galactic plane, some associated with this resonant trapping. In particular, we nd that the trapping eect of these resonances on the Galactic plane can extend some kpc from this plane, trapping stars in the Galactic halo. The purpose of our analysis is to investigate if the trapping regions contain some known moving groups in our Galaxy. We have applied our method to the Kapteyn group, a moving group in the halo, and we have found that this group appears not to be associated with a particular resonance on the Galactic plane.

  9. Dark Matter Halos with VIRUS-P

    NASA Astrophysics Data System (ADS)

    Murphy, Jeremy; Gebhardt, K.

    2010-05-01

    We present new, two-dimensional stellar kinematic data on several of the most massive galaxies in the local universe. These data were taken with the integral field spectrograph, VIRUS-P, and extend to unprecedented radial distances. Once robust stellar kinematics are in hand, we run orbit-based axisymmetric dynamical models in order to constrain the stellar mass-to-light ratio and dark matter halo parameters. We have run a large set of dynamical models on the second rank galaxy in the Virgo cluster, M87, and find clear evidence for a massive dark matter halo. The two-dimensional stellar kinematics for several of our other targets, all first and second rank galaxies, are also presented. Dark matter halos are known to dominate the mass profile of elliptical galaxies somewhere between one to two effective radii, yet due to the low surface brightness at these radial distances, determining stellar dynamics is technologically challenging. To overcome this, constraints on the dark matter halo are often made with planetary nebulae or globular clusters at large radii. However, as results from different groups have returned contradictory results, it remains unclear whether different dynamical tracers always follow the stellar kinematics. Due to VIRUS-P's large field of view and on-sky fiber diameter, we are able to determine stellar kinematics at radial distances that overlap with other dynamical tracers. Understanding what the dynamics of stars, planetary nebula and globular clusters tell us about both the extent of the dark matter halo profile and the formation histories of the largest elliptical galaxies is a primary science driver for this work.

  10. Substructure of fuzzy dark matter haloes

    NASA Astrophysics Data System (ADS)

    Du, Xiaolong; Behrens, Christoph; Niemeyer, Jens C.

    2017-02-01

    We derive the halo mass function (HMF) for fuzzy dark matter (FDM) by solving the excursion set problem explicitly with a mass-dependent barrier function, which has not been done before. We find that compared to the naive approach of the Sheth-Tormen HMF for FDM, our approach has a higher cutoff mass and the cutoff mass changes less strongly with redshifts. Using merger trees constructed with a modified version of the Lacey & Cole formalism that accounts for suppressed small-scale power and the scale-dependent growth of FDM haloes and the semi-analytic GALACTICUS code, we study the statistics of halo substructure including the effects from dynamical friction and tidal stripping. We find that if the dark matter is a mixture of cold dark matter (CDM) and FDM, there will be a suppression on the halo substructure on small scales which may be able to solve the missing satellites problem faced by the pure CDM model. The suppression becomes stronger with increasing FDM fraction or decreasing FDM mass. Thus, it may be used to constrain the FDM model.

  11. Stellar Velocity Dispersion: Linking Quiescent Galaxies to Their Dark Matter Halos

    NASA Astrophysics Data System (ADS)

    Zahid, H. Jabran; Sohn, Jubee; Geller, Margaret J.

    2018-06-01

    We analyze the Illustris-1 hydrodynamical cosmological simulation to explore the stellar velocity dispersion of quiescent galaxies as an observational probe of dark matter halo velocity dispersion and mass. Stellar velocity dispersion is proportional to dark matter halo velocity dispersion for both central and satellite galaxies. The dark matter halos of central galaxies are in virial equilibrium and thus the stellar velocity dispersion is also proportional to dark matter halo mass. This proportionality holds even when a line-of-sight aperture dispersion is calculated in analogy to observations. In contrast, at a given stellar velocity dispersion, the dark matter halo mass of satellite galaxies is smaller than virial equilibrium expectations. This deviation from virial equilibrium probably results from tidal stripping of the outer dark matter halo. Stellar velocity dispersion appears insensitive to tidal effects and thus reflects the correlation between stellar velocity dispersion and dark matter halo mass prior to infall. There is a tight relation (≲0.2 dex scatter) between line-of-sight aperture stellar velocity dispersion and dark matter halo mass suggesting that the dark matter halo mass may be estimated from the measured stellar velocity dispersion for both central and satellite galaxies. We evaluate the impact of treating all objects as central galaxies if the relation we derive is applied to a statistical ensemble. A large fraction (≳2/3) of massive quiescent galaxies are central galaxies and systematic uncertainty in the inferred dark matter halo mass is ≲0.1 dex thus simplifying application of the simulation results to currently available observations.

  12. Low-redshift Lyman-alpha absorption lines and the dark matter halos of disk galaxies

    NASA Technical Reports Server (NTRS)

    Maloney, Philip

    1992-01-01

    Ultraviolet observations of the low-redshift quasar 3C 273 using the Hubble Space Telescope have revealed many more Lyman-alpha absorption lines than would be expected from extrapolation of the absorption systems seen toward QSOs at z about 2. It is shown here that these absorption lines can plausibly be produced by gas at large radii in the disks of spiral and irregular galaxies; the gas is confined by the dark matter halos and ionized and heated by the extragalactic radiation field. This scenario does not require the extragalactic ionizing radiation field to decline as rapidly with decreasing z as the QSO emissivity. Observations of Ly-alpha absorption through the halos of known galaxies at low redshift will constrain both the extragalactic background and the properties of galactic halos.

  13. Analytical halo model of galactic conformity

    NASA Astrophysics Data System (ADS)

    Pahwa, Isha; Paranjape, Aseem

    2017-09-01

    We present a fully analytical halo model of colour-dependent clustering that incorporates the effects of galactic conformity in a halo occupation distribution framework. The model, based on our previous numerical work, describes conformity through a correlation between the colour of a galaxy and the concentration of its parent halo, leading to a correlation between central and satellite galaxy colours at fixed halo mass. The strength of the correlation is set by a tunable 'group quenching efficiency', and the model can separately describe group-level correlations between galaxy colour (1-halo conformity) and large-scale correlations induced by assembly bias (2-halo conformity). We validate our analytical results using clustering measurements in mock galaxy catalogues, finding that the model is accurate at the 10-20 per cent level for a wide range of luminosities and length-scales. We apply the formalism to interpret the colour-dependent clustering of galaxies in the Sloan Digital Sky Survey (SDSS). We find good overall agreement between the data and a model that has 1-halo conformity at a level consistent with previous results based on an SDSS group catalogue, although the clustering data require satellites to be redder than suggested by the group catalogue. Within our modelling uncertainties, however, we do not find strong evidence of 2-halo conformity driven by assembly bias in SDSS clustering.

  14. Grains in galactic haloes

    NASA Technical Reports Server (NTRS)

    Ferrara, Andrea; Barsella, Bruno; Ferrini, F.; Greenberg, J. Mayo; Aiello, Santi

    1989-01-01

    Researchers considered the effect of extensive forces on dust grains subjected to the light and matter distribution of a spiral galaxy (Greenberg et al. (1987), Ferrini et al. (1987), Barsella et al (1988). Researchers showed that the combined force on a small particle located above the plane of a galactic disk may be either attractive or repulsive depending on a variety of parameters. They found, for example, that graphite grains from 20 nm to 250 nm radius are expelled from a typical galaxy, while silicates and other forms of dielectrics, after initial expulsion, may settle in potential minimum within the halo. They discuss only the statistical behavior of the forces for 17 galaxies whose luminosity and matter distribution in the disk, bulge and halo components are reasonably well known. The preliminary results of the study of the motion of a dust grain for NGC 3198 are given.

  15. Semi-empirical catalog of early-type galaxy-halo systems: dark matter density profiles, halo contraction and dark matter annihilation strength

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chae, Kyu-Hyun; Kravtsov, Andrey V.; Frieman, Joshua A.

    With Sloan Digital Sky Survey galaxy data and halo data from up-to-date N-body simulations within the ΛCDM framework we construct a semi-empirical catalog (SEC) of early-type galaxy-halo systems by making a self-consistent bivariate statistical match of stellar mass (M{sub *}) and velocity dispersion (σ) with halo virial mass (M{sub vir}) as demonstrated here for the first time. We then assign stellar mass profile and velocity dispersion profile parameters to each system in the SEC using their observed correlations with M{sub *} and σ. Simultaneously, we solve for dark matter density profile of each halo using the spherical Jeans equation. Themore » resulting dark matter density profiles deviate in general from the dissipationless profile of Navarro-Frenk-White or Einasto and their mean inner density slope and concentration vary systematically with M{sub vir}. Statistical tests of the distribution of profiles at fixed M{sub vir} rule out the null hypothesis that it follows the distribution predicted by dissipationless N-body simulations for M{sub vir}∼<10{sup 13.5} {sup –} {sup 14.5} M{sub s}un. These dark matter profiles imply that dark matter density is, on average, enhanced significantly in the inner region of halos with M{sub vir}∼<10{sup 13.5} {sup –} {sup 14.5} M{sub s}un supporting halo contraction. The main characteristics of halo contraction are: (1) the mean dark matter density within the effective radius has increased by a factor varying systematically up to ≈ 3–4 at M{sub vir} = 10{sup 12} M{sub s}un, and (2) the inner density slope has a mean of (α) ≈ 1.3 with ρ{sub dm}(r)∝r{sup −α} and a halo-to-halo rms scatter of rms(α) ∼ 0.4–0.5 for 10{sup 12} M{sub s}un∼« less

  16. Formation and evolution of substructures in tidal tails: spherical dark matter haloes

    NASA Astrophysics Data System (ADS)

    Reinoso, B.; Fellhauer, M.; Véjar, R.

    2018-05-01

    Recently a theory about the formation of overdensities of stars along tidal tails of globular clusters has been presented. This theory predicts the position and the time of the formation of such overdensities and was successfully tested with N-body simulations of globular clusters in a point-mass galactic potential. In this work, we present a comparison between this theory and our simulations using a dwarf galaxy orbiting two differently shaped dark matter haloes to study the effects of a cored and a cuspy halo on the formation and the evolution of tidal tails. We find no difference using a cuspy or a cored halo, however, we find an intriguing asymmetry between the leading arm and the trailing arm of the tidal tails. The trailing arm grows faster than the leading arm. This asymmetry is seen in the distance to the first overdensity and its size as well. We establish a relation between the distance to the first overdensity and the size of this overdensity.

  17. COLLISIONS BETWEEN DARK MATTER CONFINED HIGH VELOCITY CLOUDS AND MAGNETIZED GALACTIC DISKS: THE SMITH CLOUD

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Galyardt, Jason; Shelton, Robin L., E-mail: jeg@uga.edu, E-mail: rls@physast.uga.edu

    2016-01-01

    The Galaxy’s population of High Velocity Clouds (HVCs) may include a subpopulation that is confined by dark matter minihalos and falling toward the Galactic disk. We present the first magnetohydrodynamic simulational study of dark-matter-dominated HVCs colliding with a weakly magnetized galactic disk. Our HVCs have baryonic masses of 5 × 10{sup 6}M{sub ⊙} and dark matter minihalo masses of 0, 3 × 10{sup 8}, or 1 × 10{sup 9} M{sub ⊙}. They are modeled on the Smith Cloud, which is said to have collided with the disk 70 Myr ago. We find that, in all cases, the cloud’s collision with the galactic disk creates a hole inmore » the disk, completely disperses the cloud, and forms a bubble-shaped structure on the far side of the disk. In contrast, when present, the dark matter minihalo continues unimpeded along its trajectory. Later, as the minihalo passes through the bubble structure and galactic halo, it accretes up to 6.0 × 10{sup 5} M{sub ⊙} in baryonic material, depending on the strengths of the magnetic field and minihalo gravity. These simulations suggest that if the Smith Cloud is associated with a dark matter minihalo and collided with the Galactic disk, the minihalo has accreted the observed gas. However, if the Smith Cloud is dark-matter-free, it is on its first approach toward the disk. These simulations also suggest that the dark matter is most concentrated either at the head of the cloud or near the cloud, depending upon the strength of the magnetic field, a point that could inform indirect dark matter searches.« less

  18. The growth and structure of dark matter haloes

    NASA Astrophysics Data System (ADS)

    Zhao, D. H.; Mo, H. J.; Jing, Y. P.; Börner, G.

    2003-02-01

    In this paper, we analyse in detail the mass-accretion histories and structural properties of dark haloes in high-resolution N-body simulations. We model the density distribution in individual haloes using the Navarro-Frenk-White (NFW) profile. For a given halo, there is a tight correlation between its inner-scale radius rs and the mass within it, Ms, for all its main progenitors. Using this correlation, one can predict quite well the structural properties of a dark halo at any time in its history from its mass-accretion history, implying that the structure properties and the mass-accretion history are closely correlated. The predicted growing rate of concentration c with time tends to increase with decreasing mass-accretion rate. The build-up of dark haloes in cold dark matter (CDM) models generally consists of an early phase of fast accretion (where the halo mass Mh increases with time much faster than the expansion rate of the Universe) and a late phase of slow accretion (where Mh increases with time approximately as the expansion rate). These two phases are separated at a time when c~ 4 and the typical binding energy of the halo is approximately equal to that of a singular isothermal sphere with the same circular velocity. Haloes in the two accretion phases show systematically different properties, for example, the circular velocity vh increases rapidly with time in the fast accretion phase but remains almost constant in the slow accretion phase, the inner properties of a halo, such as rs and Ms increase rapidly with time in the fast accretion phase but change only slowly in the slow accretion phase, the inner circular velocity vs is approximately equal to vh in the fast accretion phase but is larger in the slow accretion phase. The potential well associated with a halo is built up mainly in the fast accretion phase, while a large amount of mass can be accreted in the slow accretion phase without changing the potential well significantly. We discuss our results

  19. Large-scale structure after COBE: Peculiar velocities and correlations of cold dark matter halos

    NASA Technical Reports Server (NTRS)

    Zurek, Wojciech H.; Quinn, Peter J.; Salmon, John K.; Warren, Michael S.

    1994-01-01

    Large N-body simulations on parallel supercomputers allow one to simultaneously investigate large-scale structure and the formation of galactic halos with unprecedented resolution. Our study shows that the masses as well as the spatial distribution of halos on scales of tens of megaparsecs in a cold dark matter (CDM) universe with the spectrum normalized to the anisotropies detected by Cosmic Background Explorer (COBE) is compatible with the observations. We also show that the average value of the relative pairwise velocity dispersion sigma(sub v) - used as a principal argument against COBE-normalized CDM models-is significantly lower for halos than for individual particles. When the observational methods of extracting sigma(sub v) are applied to the redshift catalogs obtained from the numerical experiments, estimates differ significantly between different observation-sized samples and overlap observational estimates obtained following the same procedure.

  20. Bose-Einstein condensate haloes embedded in dark energy

    NASA Astrophysics Data System (ADS)

    Membrado, M.; Pacheco, A. F.

    2018-04-01

    Context. We have studied clusters of self-gravitating collisionless Newtonian bosons in their ground state and in the presence of the cosmological constant to model dark haloes of dwarf spheroidal (dSph) galaxies. Aim. We aim to analyse the influence of the cosmological constant on the structure of these systems. Observational data of Milky Way dSph galaxies allow us to estimate the boson mass. Methods: We obtained the energy of the ground state of the cluster in the Hartree approximation by solving a variational problem in the particle density. We have also developed and applied the virial theorem. Dark halo models were tested in a sample of 19 galaxies. Galaxy radii, 3D deprojected half-light radii, mass enclosed within them, and luminosity-weighted averages of the square of line-of-sight velocity dispersions are used to estimate the particle mass. Results: Cosmological constant repulsive effects are embedded in one parameter ξ. They are appreciable for ξ > 10-5. Bound structures appear for ξ ≤ ξc = 1.65 × 10-4, what imposes a lower bound for cluster masses as a function of the particle mass. In principle, these systems present tunnelling through a potential barrier; however, after estimating their mean lifes, we realize that their existence is not affected by the age of the Universe. When Milky Way dSph galaxies are used to test the model, we obtain 3.5-1.0+1.3 × 10-22 eV for the particle mass and a lower limit of 5.1-2.8+2.2 × 106 M⊙ for bound haloes. Conclusions: Our estimation for the boson mass is in agreement with other recent results which use different methods. From our particle mass estimation, the treated dSph galaxies would present dark halo masses 5-11 ×107 M⊙. With these values, they would not be affected by the cosmological constant (ξ < 10-8). However, dark halo masses smaller than 107 M⊙ (ξ > 10-5) would already feel their effects. Our model that includes dark energy allows us to deal with these dark haloes. Assuming quantities

  1. The Mass and Absorption Columns of Galactic Gaseous Halos

    NASA Astrophysics Data System (ADS)

    Qu, Zhijie; Bregman, Joel N.

    2018-03-01

    The galactic gaseous halo is a gas reservoir for the interstellar medium in the galaxy disk, supplying materials for star formation. We developed a gaseous halo model connecting the galaxy disk and the gaseous halo by assuming that the star formation rate on the disk is balanced by the radiative cooling rate of the gaseous halo, including stellar feedback. In addition to a single-temperature gaseous halo in collisional ionization equilibrium, we also consider the photoionization effect and a steady-state cooling model. Photoionization is important for modifying the ion distribution in low-mass galaxies and in the outskirts of massive galaxies due to the low densities. The multiphase cooling model dominates the region within the cooling radius, where t cooling = t Hubble. Our model reproduces most of the observed high ionization state ions for a wide range of galaxy masses (i.e., O VI, O VII, Ne VIII, Mg X, and O VIII). We find that the O VI column density has a narrow range around ≈1014 cm‑2 for halo masses from M ⋆ ≈ 3 × 1010 M ⊙ to 6 × 1012 M ⊙, which is consistent with some but not all observational studies. For galaxies with halo masses ≲3 × 1011 M ⊙, photoionization produces most of the O VI, while for more massive galaxies, the O VI is from the medium that is cooling from higher temperatures. Fitting the Galactic (Milky-Way) O VII and O VIII suggests a gaseous halo model where the metallicity is ≈0.55 Z ⊙ and the gaseous halo has a maximum temperature of ≈1.9 × 106 K. This gaseous halo model does not close the census of baryonic material within R 200.

  2. Uncovering the hidden iceberg structure of the Galactic halo

    NASA Astrophysics Data System (ADS)

    Moss, Vanessa A.; Di Teodoro, Enrico M.; McClure-Griffiths, Naomi M.; Lockman, Felix; Pisano, D. J.; Price, Daniel; Rees, Glen

    2018-01-01

    How the Milky Way gets its gas and keeps its measured star formation rate going are both long-standing mysteries in Galactic studies, with important implications for galaxy evolution across the Universe. I will present our recent discovery of two populations of neutral hydrogen (HI) in the halo of the Milky Way: 1) a narrow line-width dense population typical of the majority of bright high velocity cloud (HVC) components, and 2) a fainter, broad line-width diffuse population that aligns well with the population found in very sensitive pointings such as in Lockman et al. (2002). From our existing data, we concluded that the diffuse population likely outweighs the dense HI by a factor of 3. This discovery of diffuse HI, which appears to be prevalent throughout the halo, takes us closer to solving the Galactic mystery of accretion and reveals a gaseous neutral halo hidden from the view of most large-scale surveys. We are currently carrying out deep Parkes observations to investigate these results further, in order to truly uncover the nature of the diffuse HI and determine whether our 3:1 ratio (based on the limited existing data) is consistent with what is seen when Parkes and the 140 ft Green Bank telescope are employed at comparable sensitivity. With these data, through a combination of both known and new sightline measurements, we aim to reveal the structure of the Galactic halo in more detail than ever before.

  3. Universal Dark Halo Scaling Relation for the Dwarf Spheroidal Satellites

    NASA Astrophysics Data System (ADS)

    Hayashi, Kohei; Ishiyama, Tomoaki; Ogiya, Go; Chiba, Masashi; Inoue, Shigeki; Mori, Masao

    2017-07-01

    Motivated by a recently found interesting property of the dark halo surface density within a radius, {r}\\max , giving the maximum circular velocity, {V}\\max , we investigate it for dark halos of the Milky Way’s and Andromeda’s dwarf satellites based on cosmological simulations. We select and analyze the simulated subhalos associated with Milky-Way-sized dark halos and find that the values of their surface densities, {{{Σ }}}{V\\max }, are in good agreement with those for the observed dwarf spheroidal satellites even without employing any fitting procedures. Moreover, all subhalos on the small scales of dwarf satellites are expected to obey the universal relation, irrespective of differences in their orbital evolutions, host halo properties, and observed redshifts. Therefore, we find that the universal scaling relation for dark halos on dwarf galaxy mass scales surely exists and provides us with important clues for understanding fundamental properties of dark halos. We also investigate orbital and dynamical evolutions of subhalos to understand the origin of this universal dark halo relation and find that most subhalos evolve generally along the {r}\\max \\propto {V}\\max sequence, even though these subhalos have undergone different histories of mass assembly and tidal stripping. This sequence, therefore, should be the key feature for understanding the nature of the universality of {{{Σ }}}{V\\max }.

  4. Palomar 13: An Unusual Stellar System in the Galactic Halo

    NASA Astrophysics Data System (ADS)

    Côté, Patrick; Djorgovski, S. G.; Meylan, G.; Castro, Sandra; McCarthy, J. K.

    2002-08-01

    We report the first results of a program to study the internal kinematics of globular clusters in the outer halo of the Milky Way. Using the Keck telescope and High Resolution Echelle Spectrometer, we have measured precise radial velocities for 30 candidate red giants in the direction of Palomar 13, an object traditionally cataloged as a compact, low-luminosity globular cluster. We have combined these radial velocities with published proper motion membership probabilities and new CCD photometry from the Keck and Canada-France-Hawaii telescopes to isolate a sample of 21 probable members. We find a systemic velocity of s=24.1+/-0.5 km s-1 and a projected, intrinsic velocity dispersion of σp=2.2+/-0.4 km s-1. Although modest, this dispersion is nevertheless several times larger than that expected for a globular cluster of this luminosity and central concentration. Taken at face value, it implies a mass-to-light ratio of ΥV=40+24-17 based on the best-fit King-Michie model. The surface density profile of Palomar 13 also appears unusual compared to most Galactic globular clusters; depending upon the details of background subtraction and model-fitting, Palomar 13 either contains a substantial population of ``extratidal'' stars, or is considerably more spatially extended than previously suspected. The full surface density profile is equally well fitted by a King-Michie model having a high concentration and large tidal radius, or by a Navarro-Frenk-White model. We examine-and tentatively reject-a number of possible origins for the observed characteristics of Palomar 13 (e.g., velocity ``jitter'' among the red giant branch stars, spectroscopic binary stars, nonstandard mass functions, modified Newtonian dynamics) and conclude that the two leading explanations are either catastrophic heating during a recent perigalacticon passage or the presence of a dark matter halo. The available evidence therefore suggests that Palomar 13 is either a globular cluster that is now in

  5. Dissipative dark matter halos: The steady state solution. II.

    NASA Astrophysics Data System (ADS)

    Foot, R.

    2018-05-01

    Within the mirror dark matter model and dissipative dark matter models in general, halos around galaxies with active star formation (including spirals and gas-rich dwarfs) are dynamical: they expand and contract in response to heating and cooling processes. Ordinary type II supernovae (SNe) can provide the dominant heat source, which is possible if kinetic mixing interaction exists with strength ɛ ˜10-9- 10-10 . Dissipative dark matter halos can be modeled as a fluid governed by Euler's equations. Around sufficiently isolated and unperturbed galaxies the halo can relax to a steady state configuration, where heating and cooling rates locally balance and hydrostatic equilibrium prevails. These steady state conditions can be solved to derive the physical properties, including the halo density and temperature profiles, for model galaxies. Here, we consider idealized spherically symmetric galaxies within the mirror dark particle model, as in our earlier paper [Phys. Rev. D 97, 043012 (2018), 10.1103/PhysRevD.97.043012], but we assume that the local halo heating in the SN vicinity dominates over radiative sources. With this assumption, physically interesting steady state solutions arise which we compute for a representative range of model galaxies. The end result is a rather simple description of the dark matter halo around idealized spherically symmetric systems, characterized in principle by only one parameter, with physical properties that closely resemble the empirical properties of disk galaxies.

  6. Detecting the Disruption of Dark-Matter Halos with Stellar Streams.

    PubMed

    Bovy, Jo

    2016-03-25

    Narrow stellar streams in the Milky Way halo are uniquely sensitive to dark-matter subhalos, but many of these subhalos may be tidally disrupted. I calculate the interaction between stellar and dark-matter streams using analytical and N-body calculations, showing that disrupting objects can be detected as low-concentration subhalos. Through this effect, we can constrain the lumpiness of the halo as well as the orbit and present position of individual dark-matter streams. This will have profound implications for the formation of halos and for direct- and indirect-detection dark-matter searches.

  7. Chemical Cartography. I. A Carbonicity Map of the Galactic Halo

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Young Sun; Kim, Young Kwang; Beers, Timothy C.

    We present the first map of carbonicity, [C/Fe], for the halo system of the Milky Way, based on a sample of over 100,000 main-sequence turnoff stars with available spectroscopy from the Sloan Digital Sky Survey. This map, which explores distances up to 15 kpc from the Sun, reveals clear evidence for the dual nature of the Galactic halo, based on the spatial distribution of stellar carbonicity. The metallicity distribution functions of stars in the inner- and outer-halo regions of the carbonicity map reproduce those previously argued to arise from contributions of the inner- and outer-halo populations, with peaks at [Fe/H]more » = −1.5 and −2.2, respectively. From consideration of the absolute carbon abundances for our sample, A (C), we also confirm that the carbon-enhanced metal-poor (CEMP) stars in the outer-halo region exhibit a higher frequency of CEMP-no stars (those with no overabundances of heavy neutron-capture elements) than of CEMP- s stars (those with strong overabundances of elements associated with the s -process), whereas the stars in the inner-halo region exhibit a higher frequency of CEMP- s stars. We argue that the contrast in the behavior of the CEMP-no and CEMP- s fractions in these regions arises from differences in the mass distributions of the mini-halos from which the stars of the inner- and outer-halo populations formed, which gives rise in turn to the observed dichotomy of the Galactic halo.« less

  8. Neutron stars and white dwarfs in galactic halos

    NASA Technical Reports Server (NTRS)

    Ryu, Dongsu; Olive, Keith A.; Silk, Joseph

    1989-01-01

    The possibility that galactic halos are composed of stellar remnants such as neutron stars and white dwarfs is discussed. On the basis of a simple model for the evolution of galactic halos, researchers follow the history of halo matter, luminosity, and metal and helium abundances. They assume conventional yields for helium and the heavier elements. By comparing with the observational constraints, which may be considered as fairly conservative, it is found that, for an exponentially decreasing star formation rate (SFR) with e-folding time tau, only values between 6 x 10(8) less than similar to tau less than similar to 2 x 10(9) years are allowed together with a very limited range of masses for the initial mass function (IMF). Star formation is allowed for 2 solar mass less than similar to m less than similar to 8 solar mass if tau = 2 x 10(9) years, and for 4 solar mass less than similar to m less than similar to 6 solar mass if tau = 10(9) years. For tau = 6 x 10(8) years, the lower and upper mass limits merge to similar to 5 solar mass. Researchers conclude that, even though the possibility of neutron stars as halo matter may be ruled out, that of white dwarfs may still be a viable hypothesis, though with very stringent constraints on allowed parameters, that merits further consideration.

  9. The Profile of the Galactic Halo from Pan-STARRS1 3π RR Lyrae

    NASA Astrophysics Data System (ADS)

    Hernitschek, Nina; Cohen, Judith G.; Rix, Hans-Walter; Sesar, Branimir; Martin, Nicolas F.; Magnier, Eugene; Wainscoat, Richard; Kaiser, Nick; Tonry, John L.; Kudritzki, Rolf-Peter; Hodapp, Klaus; Chambers, Ken; Flewelling, Heather; Burgett, William

    2018-05-01

    We characterize the spatial density of the Pan-STARRS1 (PS1) sample of Rrab stars to study the properties of the old Galactic stellar halo. This sample, containing 44,403 sources, spans galactocentric radii of 0.55 kpc ≤ R gc ≤ 141 kpc with a distance precision of 3% and thus is able to trace the halo out to larger distances than most previous studies. After excising stars that are attributed to dense regions such as stellar streams, the Galactic disk and bulge, and halo globular clusters, the sample contains ∼11,000 sources within 20 kpc ≤ R gc ≤ 131 kpc. We then apply forward modeling using Galactic halo profile models with a sample selection function. Specifically, we use ellipsoidal stellar density models ρ(l, b, R gc) with a constant and a radius-dependent halo flattening q(R gc). Assuming constant flattening q, the distribution of the sources is reasonably well fit by a single power law with n={4.40}-0.04+0.05 and q={0.918}-0.014+0.016 and comparably well fit by an Einasto profile with n={9.53}-0.28+0.27, an effective radius r eff = 1.07 ± 0.10 kpc, and a halo flattening of q = 0.923 ± 0.007. If we allow for a radius-dependent flattening q(R gc), we find evidence for a distinct flattening of q ∼ 0.8 of the inner halo at ∼25 kpc. Additionally, we find that the south Galactic hemisphere is more flattened than the north Galactic hemisphere. The results of our work are largely consistent with many earlier results (e.g., Watkins et al.; Iorio et al.). We find that the stellar halo, as traced in RR Lyrae stars, exhibits a substantial number of further significant over- and underdensities, even after masking all known overdensities.

  10. The Angular Momentum of Baryons and Dark Matter Halos Revisited

    NASA Technical Reports Server (NTRS)

    Kimm, Taysun; Devriendt, Julien; Slyz, Adrianne; Pichon, Christophe; Kassin, Susan A.; Dubois, Yohan

    2011-01-01

    Recent theoretical studies have shown that galaxies at high redshift are fed by cold, dense gas filaments, suggesting angular momentum transport by gas differs from that by dark matter. Revisiting this issue using high-resolution cosmological hydrodynamics simulations with adaptive-mesh refinement (AMR), we find that at the time of accretion, gas and dark matter do carry a similar amount of specific angular momentum, but that it is systematically higher than that of the dark matter halo as a whole. At high redshift, freshly accreted gas rapidly streams into the central region of the halo, directly depositing this large amount of angular momentum within a sphere of radius r = 0.1R(sub vir). In contrast, dark matter particles pass through the central region unscathed, and a fraction of them ends up populating the outer regions of the halo (r/R(sub vir) > 0.1), redistributing angular momentum in the process. As a result, large-scale motions of the cosmic web have to be considered as the origin of gas angular momentum rather than its virialised dark matter halo host. This generic result holds for halos of all masses at all redshifts, as radiative cooling ensures that a significant fraction of baryons remain trapped at the centre of the halos. Despite this injection of angular momentum enriched gas, we predict an amount for stellar discs which is in fair agreement with observations at z=0. This arises because the total specific angular momentum of the baryons (gas and stars) remains close to that of dark matter halos. Indeed, our simulations indicate that any differential loss of angular momentum amplitude between the two components is minor even though dark matter halos continuously lose between half and two-thirds of their specific angular momentum modulus as they evolve. In light of our results, a substantial revision of the standard theory of disc formation seems to be required. We propose a new scenario where gas efficiently carries the angular momentum generated

  11. The Structure and Dark Halo Core Properties of Dwarf Spheroidal Galaxies

    NASA Astrophysics Data System (ADS)

    Burkert, A.

    2015-08-01

    The structure and dark matter halo core properties of dwarf spheroidal galaxies (dSphs) are investigated. A double-isothermal (DIS) model of an isothermal, non-self-gravitating stellar system embedded in an isothermal dark halo core provides an excellent fit to the various observed stellar surface density distributions. The stellar core scale length a* is sensitive to the central dark matter density ρ0,d. The maximum stellar radius traces the dark halo core radius {r}c,d. The concentration c* of the stellar system, determined by a King profile fit, depends on the ratio of the stellar-to-dark-matter velocity dispersion {σ }*/{σ }d. Simple empirical relationships are derived that allow us to calculate the dark halo core parameters ρ0,d, {r}c,d, and σd given the observable stellar quantities σ*, a*, and c*. The DIS model is applied to the Milky Way’s dSphs. All dSphs closely follow the same universal dark halo scaling relations {ρ }0,d× {r}c,d={75}-45+85 M⊙ pc-2 that characterize the cores of more massive galaxies over a large range in masses. The dark halo core mass is a strong function of core radius, {M}c,d˜ {r}c,d2. Inside a fixed radius of ˜400 pc the total dark matter mass is, however, roughly constant with {M}d=2.6+/- 1.4× {10}7 M⊙, although outliers are expected. The dark halo core densities of the Galaxy’s dSphs are very high, with {ρ }0,d ≈ 0.2 M⊙ pc-3. dSphs should therefore be tidally undisturbed. Evidence for tidal effects might then provide a serious challenge for the CDM scenario.

  12. The insight into the dark side - I. The pitfalls of the dark halo parameters estimation

    NASA Astrophysics Data System (ADS)

    Saburova, Anna S.; Kasparova, Anastasia V.; Katkov, Ivan Yu.

    2016-12-01

    We examined the reliability of estimates of pseudo-isothermal, Burkert and NFW dark halo parameters for the methods based on the mass-modelling of the rotation curves. To do it, we constructed the χ2 maps for the grid of the dark matter halo parameters for a sample of 14 disc galaxies with high-quality rotation curves from THINGS. We considered two variants of models in which: (a) the mass-to-light ratios of disc and bulge were taken as free parameters, (b) the mass-to-light ratios were fixed in a narrow range according to the models of stellar populations. To reproduce the possible observational features of the real galaxies, we made tests showing that the parameters of the three halo types change critically in the cases of a lack of kinematic data in the central or peripheral areas and for different spatial resolutions. We showed that due to the degeneracy between the central densities and the radial scales of the dark haloes there are considerable uncertainties of their concentrations estimates. Due to this reason, it is also impossible to draw any firm conclusion about universality of the dark halo column density based on mass-modelling of even a high-quality rotation curve. The problem is not solved by fixing the density of baryonic matter. In contrast, the estimates of dark halo mass within optical radius are much more reliable. We demonstrated that one can evaluate successfully the halo mass using the pure best-fitting method without any restrictions on the mass-to-light ratios.

  13. Self-consistent construction of virialized wave dark matter halos

    NASA Astrophysics Data System (ADS)

    Lin, Shan-Chang; Schive, Hsi-Yu; Wong, Shing-Kwong; Chiueh, Tzihong

    2018-05-01

    Wave dark matter (ψ DM ), which satisfies the Schrödinger-Poisson equation, has recently attracted substantial attention as a possible dark matter candidate. Numerical simulations have, in the past, provided a powerful tool to explore this new territory of possibility. Despite their successes in revealing several key features of ψ DM , further progress in simulations is limited, in that cosmological simulations so far can only address formation of halos below ˜2 ×1011 M⊙ and substantially more massive halos have become computationally very challenging to obtain. For this reason, the present work adopts a different approach in assessing massive halos by constructing wave-halo solutions directly from the wave distribution function. This approach bears certain similarities with the analytical construction of the particle-halo (cold dark matter model). Instead of many collisionless particles, one deals with one single wave that has many noninteracting eigenstates. The key ingredient in the wave-halo construction is the distribution function of the wave power, and we use several halos produced by structure formation simulations as templates to determine the wave distribution function. Among different models, we find the fermionic King model presents the best fits and we use it for our wave-halo construction. We have devised an iteration method for constructing the nonlinear halo and demonstrate its stability by three-dimensional simulations. A Milky Way-sized halo has also been constructed, and the inner halo is found to be flatter than the NFW profile. These wave-halos have small-scale interferences both in space and time producing time-dependent granules. While the spatial scale of granules varies little, the correlation time is found to increase with radius by 1 order of magnitude across the halo.

  14. Clumpy cold dark matter

    NASA Technical Reports Server (NTRS)

    Silk, Joseph; Stebbins, Albert

    1993-01-01

    A study is conducted of cold dark matter (CDM) models in which clumpiness will inhere, using cosmic strings and textures suited to galaxy formation. CDM clumps of 10 million solar mass/cu pc density are generated at about z(eq) redshift, with a sizable fraction surviving. Observable implications encompass dark matter cores in globular clusters and in galactic nuclei. Results from terrestrial dark matter detection experiments may be affected by clumpiness in the Galactic halo.

  15. The Edges Of Dark Matter Halos: Theory And Observations

    NASA Astrophysics Data System (ADS)

    More, Surhud

    2017-06-01

    I discuss recent theoretical advances which have led us to suggest a physical definition for the boundary of dark matter halos. We propose using the "splashback radius" which corresponds to the apocenter of recently infalling material as a physical boundary for dark matter halos. We also present how the splashback radius can be detected in observations.

  16. Unmixing the Galactic halo with RR Lyrae tagging

    NASA Astrophysics Data System (ADS)

    Belokurov, V.; Deason, A. J.; Koposov, S. E.; Catelan, M.; Erkal, D.; Drake, A. J.; Evans, N. W.

    2018-06-01

    We show that tagging RR Lyrae stars according to their location in the period-amplitude diagram can be used to shed light on the genesis of the Galactic stellar halo. The mixture of RR Lyrae of ab type, separated into classes along the lines suggested by Oosterhoff, displays a strong and coherent evolution with Galactocentric radius. The change in the RR Lyrae composition appears to coincide with the break in the halo's radial density profile at ˜25 kpc. Using simple models of the stellar halo, we establish that at least three different types of accretion events are necessary to explain the observed RRab behaviour. Given that there exists a correlation between the RRab class fraction and the total stellar content of a dwarf satellite, we hypothesize that the field halo RRab composition is controlled by the mass of the progenitor contributing the bulk of the stellar debris at the given radius. This idea is tested against a suite of cosmological zoom-in simulations of Milky Way-like stellar halo formation. Finally, we study some of the most prominent stellar streams in the Milky Way halo and demonstrate that their RRab class fractions follow the trends established previously.

  17. Numerical Convergence in the Dark Matter Halos Properties Using Cosmological Simulations

    NASA Astrophysics Data System (ADS)

    Mosquera-Escobar, X. E.; Muñoz-Cuartas, J. C.

    2017-07-01

    Nowadays, the accepted cosmological model is the so called -Cold Dark Matter (CDM). In such model, the universe is considered to be homogeneous and isotropic, composed of diverse components as the dark matter and dark energy, where the latter is the most abundant one. Dark matter plays an important role because it is responsible for the generation of gravitational potential wells, commonly called dark matter halos. At the end, dark matter halos are characterized by a set of parameters (mass, radius, concentration, spin parameter), these parameters provide valuable information for different studies, such as galaxy formation, gravitational lensing, etc. In this work we use the publicly available code Gadget2 to perform cosmological simulations to find to what extent the numerical parameters of the simu- lations, such as gravitational softening, integration time step and force calculation accuracy affect the physical properties of the dark matter halos. We ran a suite of simulations where these parameters were varied in a systematic way in order to explore accurately their impact on the structural parameters of dark matter halos. We show that the variations on the numerical parameters affect the structural pa- rameters of dark matter halos, such as concentration, virial radius, and concentration. We show that these modifications emerged when structures become non- linear (at redshift 2) for the scale of our simulations, such that these variations affected the formation and evolution structure of halos mainly at later cosmic times. As a quantitative result, we propose which would be the most appropriate values for the numerical parameters of the simulations, such that they do not affect the halo properties that are formed. For force calculation accuracy we suggest values smaller or equal to 0.0001, integration time step smaller o equal to 0.005 and for gravitational softening we propose equal to 1/60th of the mean interparticle distance, these values, correspond to the

  18. The Generation Model of Particle Physics and Galactic Dark Matter

    NASA Astrophysics Data System (ADS)

    Robson, B. A.

    2013-09-01

    Galactic dark matter is matter hypothesized to account for the discrepancy of the mass of a galaxy determined from its gravitational effects, assuming the validity of Newton's law of universal gravitation, and the mass calculated from the "luminous matter", stars, gas, dust, etc. observed to be contained within the galaxy. The conclusive observation from the rotation curves of spiral galaxies that the mass discrepancy is greater, the larger the distance scales involved implies that either Newton's law of universal gravitation requires modification or considerably more mass (dark matter) is required to be present in each galaxy. Both the modification of Newton's law of gravitation and the hypothesis of the existence of considerable dark matter in a galaxy are discussed. It is shown that the Generation Model (GM) of particle physics, which leads to a modification of Newton's law of gravitation, is found to be essentially equivalent to that of Milgrom's modified Newtonian dynamics (MOND) theory, with the GM providing a physical understanding of the MOND theory. The continuing success of MOND theory in describing the extragalactic mass discrepancy problems constitutes a strong argument against the existence of undetected dark matter haloes, consisting of unknown nonbaryonic matter, surrounding spiral galaxies.

  19. Probing the shape and internal structure of dark matter haloes with the halo-shear-shear three-point correlation function

    NASA Astrophysics Data System (ADS)

    Shirasaki, Masato; Yoshida, Naoki

    2018-04-01

    Weak lensing three-point statistics are powerful probes of the structure of dark matter haloes. We propose to use the correlation of the positions of galaxies with the shapes of background galaxy pairs, known as the halo-shear-shear correlation (HSSC), to measure the mean halo ellipticity and the abundance of subhaloes in a statistical manner. We run high-resolution cosmological N-body simulations and use the outputs to measure the HSSC for galaxy haloes and cluster haloes. Non-spherical haloes cause a characteristic azimuthal variation of the HSSC, and massive subhaloes in the outer region near the virial radius contribute to ˜ 10 per cent of the HSSC amplitude. Using the HSSC and its covariance estimated from our N-body simulations, we make forecast for constraining the internal structure of dark matter haloes with future galaxy surveys. With 1000 galaxy groups with mass greater than 1013.5 h-1M⊙, the average halo ellipticity can be measured with an accuracy of 10 percent. A spherical, smooth mass distribution can be ruled out at a ˜5σ significance level. The existence of subhaloes whose masses are in 1-10 percent of the main halo mass can be detected with ˜104 galaxies/clusters. We conclude that the HSSC provides valuable information on the structure of dark haloes and hence on the nature of dark matter.

  20. Distribution and Kinematics of O VI in the Galactic Halo

    NASA Astrophysics Data System (ADS)

    Savage, B. D.; Sembach, K. R.; Wakker, B. P.; Richter, P.; Meade, M.; Jenkins, E. B.; Shull, J. M.; Moos, H. W.; Sonneborn, G.

    2003-05-01

    Far-Ultraviolet Spectroscopic Explorer (FUSE) spectra of 100 extragalactic objects and two distant halo stars are analyzed to obtain measures of O VI λλ1031.93, 1037.62 absorption along paths through the Milky Way thick disk/halo. Strong O VI absorption over the velocity range from -100 to 100 km s-1 reveals a widespread but highly irregular distribution of O VI, implying the existence of substantial amounts of hot gas with T~3×105 K in the Milky Way thick disk/halo. The integrated column density, log[N(O VI) cm-2], ranges from 13.85 to 14.78 with an average value of 14.38 and a standard deviation of 0.18. Large irregularities in the gas distribution are found to be similar over angular scales extending from <1° to 180°, implying a considerable amount of small- and large-scale structure in the absorbing gas. The overall distribution of O VI is not well described by a symmetrical plane-parallel layer of patchy O VI absorption. The simplest departure from such a model that provides a reasonable fit to the observations is a plane-parallel patchy absorbing layer with an average O VI midplane density of n0(O VI)=1.7×10-8 cm-3, a scale height of ~2.3 kpc, and a ~0.25 dex excess of O VI in the northern Galactic polar region. The distribution of O VI over the sky is poorly correlated with other tracers of gas in the halo, including low- and intermediate-velocity H I, Hα emission from the warm ionized gas at ~104 K, and hot X-ray-emitting gas at ~106 K. The O VI has an average velocity dispersion, b~60 km s-1, and standard deviation of 15 km s-1. Thermal broadening alone cannot explain the large observed profile widths. The average O VI absorption velocities toward high-latitude objects (|b|>45deg) range from -46 to 82 km s-1, with a high-latitude sample average of 0 km s-1 and a standard deviation of 21 km s-1. High positive velocity O VI absorbing wings extending from ~100 to ~250 km s-1 observed along 21 lines of sight may be tracing the flow of O VI into the halo

  1. Studying Dust Scattering Halos with Galactic X-ray Binaries

    NASA Astrophysics Data System (ADS)

    Beeler, Doreen; Corrales, Lia; Heinz, Sebastian

    2018-01-01

    Dust is an important part of the interstellar medium (ISM) and contributes to the formation of stars and planets. Since the advent of modern X-ray telescopes, Galactic X-ray point sources have permitted a closer look at all phases of the ISM. Interstellar metals from oxygen to iron — in both gas and dust form — are responsible for absorption and scattering of X-ray light. Dust scatters the light in a forward direction and creates a diffuse halo image surrounding many bright Galactic X-ray binaries. We use all the bright X-ray point sources available in the Chandra HETG archive to study dust scattering halos from the local ISM. We have described a data analysis pipeline using a combination of the data reduction software CIAO and Python. We compare our results from Chandra HETG and ACIS-I observations of a well studied dust scattering halo around GX 13+1, in order to characterize any systematic errors associated with the HETG data set. We describe how our data products will be used to measure ISM scaling relations for X-ray extinction, dust abundance, and dust-to-metal ratios.

  2. Remapping dark matter halo catalogues between cosmological simulations

    NASA Astrophysics Data System (ADS)

    Mead, A. J.; Peacock, J. A.

    2014-05-01

    We present and test a method for modifying the catalogue of dark matter haloes produced from a given cosmological simulation, so that it resembles the result of a simulation with an entirely different set of parameters. This extends the method of Angulo & White, which rescales the full particle distribution from a simulation. Working directly with the halo catalogue offers an advantage in speed, and also allows modifications of the internal structure of the haloes to account for non-linear differences between cosmologies. Our method can be used directly on a halo catalogue in a self-contained manner without any additional information about the overall density field; although the large-scale displacement field is required by the method, this can be inferred from the halo catalogue alone. We show proof of concept of our method by rescaling a matter-only simulation with no baryon acoustic oscillation (BAO) features to a more standard Λ cold dark matter model containing a cosmological constant and a BAO signal. In conjunction with the halo occupation approach, this method provides a basis for the rapid generation of mock galaxy samples spanning a wide range of cosmological parameters.

  3. Optimal linear reconstruction of dark matter from halo catalogues

    DOE PAGES

    Cai, Yan -Chuan; Bernstein, Gary; Sheth, Ravi K.

    2011-04-01

    The dark matter lumps (or "halos") that contain galaxies have locations in the Universe that are to some extent random with respect to the overall matter distributions. We investigate how best to estimate the total matter distribution from the locations of the halos. We derive the weight function w(M) to apply to dark-matter haloes that minimizes the stochasticity between the weighted halo distribution and its underlying mass density field. The optimal w(M) depends on the range of masses of halos being used. While the standard biased-Poisson model of the halo distribution predicts that bias weighting is optimal, the simple factmore » that the mass is comprised of haloes implies that the optimal w(M) will be a mixture of mass-weighting and bias-weighting. In N-body simulations, the Poisson estimator is up to 15× noisier than the optimal. Optimal weighting could make cosmological tests based on the matter power spectrum or cross-correlations much more powerful and/or cost effective.« less

  4. Effective Dark Matter Halo Catalog in f(R) Gravity.

    PubMed

    He, Jian-Hua; Hawken, Adam J; Li, Baojiu; Guzzo, Luigi

    2015-08-14

    We introduce the idea of an effective dark matter halo catalog in f(R) gravity, which is built using the effective density field. Using a suite of high resolution N-body simulations, we find that the dynamical properties of halos, such as the distribution of density, velocity dispersion, specific angular momentum and spin, in the effective catalog of f(R) gravity closely mimic those in the cold dark matter model with a cosmological constant (ΛCDM). Thus, when using effective halos, an f(R) model can be viewed as a ΛCDM model. This effective catalog therefore provides a convenient way for studying the baryonic physics, the galaxy halo occupation distribution and even semianalytical galaxy formation in f(R) cosmologies.

  5. The Spin and Orientation of Dark Matter Halos Within Cosmic Filaments

    NASA Astrophysics Data System (ADS)

    Zhang, Youcai; Yang, Xiaohu; Faltenbacher, Andreas; Springel, Volker; Lin, Weipeng; Wang, Huiyuan

    2009-11-01

    Clusters, filaments, sheets, and voids are the building blocks of the cosmic web. Forming dark matter halos respond to these different large-scale environments, and this in turn affects the properties of galaxies hosted by the halos. It is therefore important to understand the systematic correlations of halo properties with the morphology of the cosmic web, as this informs both about galaxy formation physics and possible systematics of weak lensing studies. In this study, we present and compare two distinct algorithms for finding cosmic filaments and sheets, a task which is far less well established than the identification of dark matter halos or voids. One method is based on the smoothed dark matter density field and the other uses the halo distributions directly. We apply both techniques to one high-resolution N-body simulation and reconstruct the filamentary/sheet like network of the dark matter density field. We focus on investigating the properties of the dark matter halos inside these structures, in particular, on the directions of their spins and the orientation of their shapes with respect to the directions of the filaments and sheets. We find that both the spin and the major axes of filament halos with masses lsim1013 h -1 M sun are preferentially aligned with the direction of the filaments. The spins and major axes of halos in sheets tend to lie parallel to the sheets. There is an opposite mass dependence of the alignment strength for the spin (negative) and major (positive) axes, i.e. with increasing halo mass the major axis tends to be more strongly aligned with the direction of the filament, whereas the alignment between halo spin and filament becomes weaker with increasing halo mass. The alignment strength as a function of the distance to the most massive node halo indicates that there is a transit large-scale environment impact: from the two-dimensional collapse phase of the filament to the three-dimensional collapse phase of the cluster/node halo at

  6. Concentrations of Simulated Dark Matter Halos

    NASA Astrophysics Data System (ADS)

    Child, Hillary

    2017-01-01

    We present the concentration-mass (c-M) relation of dark matter halos in two new high-volume high-resolution cosmological N-body simulations, Q Continuum and Outer Rim. Concentration describes the density of the central regions of halos; it is highest for low-mass halos at low redshift, decreasing at high mass and redshift. The shape of the c-M relation is an important probe of cosmology. We discuss the redshift dependence of the c-M relation, several different methods to determine concentrations of simulated halos, and potential sources of bias in concentration measurements. To connect to lensing observations, we stack halos, which also allows us to assess the suitability of the Navarro-Frenk-White profile and other profiles, such as Einasto, with an additional shape parameter. This material is based upon work supported by the National Science Foundation Graduate Research Fellowship under Grant No. DGE-1144082.

  7. Baryonic impact on the dark matter orbital properties of Milky Way-sized haloes

    NASA Astrophysics Data System (ADS)

    Zhu, Qirong; Hernquist, Lars; Marinacci, Federico; Springel, Volker; Li, Yuexing

    2017-04-01

    We study the orbital properties of dark matter haloes by combining a spectral method and cosmological simulations of Milky Way-sized Galaxies. We compare the dynamics and orbits of individual dark matter particles from both hydrodynamic and N-body simulations, and find that the fraction of box, tube and resonant orbits of the dark matter halo decreases significantly due to the effects of baryons. In particular, the central region of the dark matter halo in the hydrodynamic simulation is dominated by regular, short-axis tube orbits, in contrast to the chaotic, box and thin orbits dominant in the N-body run. This leads to a more spherical dark matter halo in the hydrodynamic run compared to a prolate one as commonly seen in the N-body simulations. Furthermore, by using a kernel-based density estimator, we compare the coarse-grained phase-space densities of dark matter haloes in both simulations and find that it is lower by ˜0.5 dex in the hydrodynamic run due to changes in the angular momentum distribution, which indicates that the baryonic process that affects the dark matter is irreversible. Our results imply that baryons play an important role in determining the shape, kinematics and phase-space density of dark matter haloes in galaxies.

  8. Cold dark matter. 1: The formation of dark halos

    NASA Technical Reports Server (NTRS)

    Gelb, James M.; Bertschinger, Edmund

    1994-01-01

    We use numerical simulations of critically closed cold dark matter (CDM) models to study the effects of numerical resolution on observable quantities. We study simulations with up to 256(exp 3) particles using the particle-mesh (PM) method and with up to 144(exp 3) particles using the adaptive particle-particle-mesh (P3M) method. Comparisons of galaxy halo distributions are made among the various simulations. We also compare distributions with observations, and we explore methods for identifying halos, including a new algorithm that finds all particles within closed contours of the smoothed density field surrounding a peak. The simulated halos show more substructure than predicted by the Press-Schechter theory. We are able to rule out all omega = 1 CDM models for linear amplitude sigma(sub 8) greater than or approximately = 0.5 because the simulations produce too many massive halos compared with the observations. The simulations also produce too many low-mass halos. The distribution of halos characterized by their circular velocities for the P3M simulations is in reasonable agreement with the observations for 150 km/s less than or = V(sub circ) less than or = 350 km/s.

  9. Conserved actions, maximum entropy and dark matter haloes

    NASA Astrophysics Data System (ADS)

    Pontzen, Andrew; Governato, Fabio

    2013-03-01

    We use maximum entropy arguments to derive the phase-space distribution of a virialized dark matter halo. Our distribution function gives an improved representation of the end product of violent relaxation. This is achieved by incorporating physically motivated dynamical constraints (specifically on orbital actions) which prevent arbitrary redistribution of energy. We compare the predictions with three high-resolution dark matter simulations of widely varying mass. The numerical distribution function is accurately predicted by our argument, producing an excellent match for the vast majority of particles. The remaining particles constitute the central cusp of the halo (≲4 per cent of the dark matter). They can be accounted for within the presented framework once the short dynamical time-scales of the centre are taken into account.

  10. N-body dark matter haloes with simple hierarchical histories

    NASA Astrophysics Data System (ADS)

    Jiang, Lilian; Helly, John C.; Cole, Shaun; Frenk, Carlos S.

    2014-05-01

    We present a new algorithm which groups the subhaloes found in cosmological N-body simulations by structure finders such as SUBFIND into dark matter haloes whose formation histories are strictly hierarchical. One advantage of these `Dhaloes' over the commonly used friends-of-friends (FoF) haloes is that they retain their individual identity in the cases when FoF haloes are artificially merged by tenuous bridges of particles or by an overlap of their outer diffuse haloes. Dhaloes are thus well suited for modelling galaxy formation and their merger trees form the basis of the Durham semi-analytic galaxy formation model, GALFORM. Applying the Dhalo construction to the Λ cold dark matter Millennium II Simulation, we find that approximately 90 per cent of Dhaloes have a one-to-one, bijective match with a corresponding FoF halo. The remaining 10 per cent are typically secondary components of large FoF haloes. Although the mass functions of both types of haloes are similar, the mass of Dhaloes correlates much more tightly with the virial mass, M200, than FoF haloes. Approximately 80 per cent of FoF and bijective and non-bijective Dhaloes are relaxed according to standard criteria. For these relaxed haloes, all three types have similar concentration-M200 relations and, at fixed mass, the concentration distributions are described accurately by log-normal distributions.

  11. X-ray detection of warm ionized matter in the Galactic halo

    NASA Astrophysics Data System (ADS)

    Nicastro, F.; Senatore, F.; Gupta, A.; Guainazzi, M.; Mathur, S.; Krongold, Y.; Elvis, M.; Piro, L.

    2016-03-01

    We report on a systematic investigation of the cold and mildly ionized gaseous baryonic metal components of our Galaxy, through the analysis of high-resolution Chandra and XMM-Newton spectra of two samples of Galactic and extragalactic sources. The comparison between lines of sight towards sources located in the disc of our Galaxy and extragalactic sources allows us for the first time to clearly distinguish between gaseous metal components in the disc and halo of our Galaxy. We find that a warm ionized metal medium (WIMM) permeates a large volume above and below the Galaxy's disc, perhaps up to the circum-galactic space. This halo WIMM imprints virtually the totality of the O I and O II absorption seen in the spectra of our extragalactic targets, has a temperature of T_{WIMM}^{Halo}=2900 ± 900 K, a density < n_H > _{WIMM}^{Halo} = 0.023 ± 0.009 cm-3 and a metallicity Z_{WIMM}^{Halo} = (0.4 ± 0.1) Z⊙. Consistently with previous works, we also confirm that the disc of the Galaxy contains at least two distinct gaseous metal components, one cold and neutral (the CNMM: cold neutral metal medium) and one warm and mildly ionized, with the same temperature of the halo WIMM, but higher density (< n_H > _{WIMM}^{Disc} = 0.09 ± 0.03 cm-3) and metallicity (Z_{WIMM}^{Disc} = 0.8 ± 0.1 Z⊙). By adopting a simple disc+sphere geometry for the Galaxy, we estimate masses of the CNMM and the total (disc + halo) WIMM of MCNMM ≲ 8 × 108 M⊙ and MWIMM ≃ 8.2 × 109 M⊙.

  12. The white dwarf luminosity function - A possible probe of the galactic halo

    NASA Technical Reports Server (NTRS)

    Tamanaha, Christopher M.; Silk, Joseph; Wood, M. A.; Winget, D. E.

    1990-01-01

    The dynamically inferred dark halo mass density, amounting to above 0.01 solar masses/cu pc at the sun's Galactocentric radius, can be composed of faint white dwarfs provided that the halo formed in a sufficiently early burst of star formation. The model is constrained by the observed disk white dwarf luminosity function which falls off below log (L/solar L) = -4.4, due to the onset of star formation in the disk. By using a narrow range for the initial mass function and an exponentially decaying halo star formation rate with an e-folding time equal to the free-fall time, all the halo dark matter is allowed to be in cool white dwarfs which lie beyond the falloff in the disk luminosity function. Although it is unlikely that all the dark matter is in these dim white dwarfs, a definite signature in the low-luminosity end of the white dwarf luminosity function is predicted even if they comprise only 1 percent of the dark matter. Current CCD surveys should answer the question of the existence of this population within the next few years.

  13. Galactic googly: the rotation-metallicity bias in the inner stellar halo of the Milky Way

    NASA Astrophysics Data System (ADS)

    Kafle, Prajwal R.; Sharma, Sanjib; Robotham, Aaron S. G.; Pradhan, Raj K.; Guglielmo, Magda; Davies, Luke J. M.; Driver, Simon P.

    2017-09-01

    The first and second moments of stellar velocities encode important information about the formation history of the Galactic halo. However, due to the lack of tangential motion and inaccurate distances of the halo stars, the velocity moments in the Galactic halo have largely remained 'known unknowns'. Fortunately, our off-centric position within the Galaxy allows us to estimate these moments in the galactocentric frame using the observed radial velocities of the stars alone. We use these velocities coupled with the hierarchical Bayesian scheme, which allows easy marginalization over the missing data (the proper motion, and uncertainty-free distance and line-of-sight velocity), to measure the velocity dispersions, orbital anisotropy (β) and streaming motion (vrot) of the halo main-sequence turn-off (MSTO) and K-giant (KG) stars in the inner stellar halo (r ≲ 15 kpc). We study the metallicity bias in kinematics of the halo stars and observe that the comparatively metal-rich ([Fe/H] > -1.4) and the metal-poor ([Fe/H] ≤ -1.4) MSTO samples show a clear systematic difference in vrot ˜ 20-40 km s - 1, depending on how restrictive the spatial cuts to cull the disc contamination are. The bias is also detected in KG samples but with less certainty. Both MSTO and KG populations suggest that the inner stellar halo of the Galaxy is radially biased I.e. σr > σθ or σϕ and β ≃ 0.5. The apparent metallicity contrariety in the rotation velocity among the halo sub-populations supports the co-existence of multiple populations in the galactic halo that may have formed through distinct formation scenarios, I.e. in situ versus accretion.

  14. A Universal Angular Momentum Profile for Dark Matter Halos

    NASA Astrophysics Data System (ADS)

    Liao, Shihong; Chen, Jianxiong; Chu, M.-C.

    2017-07-01

    The angular momentum distribution in dark matter halos and galaxies is a key ingredient in understanding their formation. Specifically, the internal distribution of angular momenta is closely related to the formation of disk galaxies. In this article, we use halos identified from a high-resolution simulation, the Bolshoi simulation, to study the spatial distribution of specific angular momenta, j(r,θ ). We show that by stacking halos with similar masses to increase the signal-to-noise ratio, the profile can be fitted as a simple function, j{(r,θ )={j}s{\\sin }2{(θ /{θ }s)(r/{r}s)}2/(1+r/{r}s)}4, with three free parameters, {j}s,{r}s, and {θ }s. Specifically, j s correlates with the halo mass M vir as {j}s\\propto {M}{vir}2/3, r s has a weak dependence on the halo mass as {r}s\\propto {M}{vir}0.040, and {θ }s is independent of M vir. This profile agrees with that from a rigid shell model, though its origin is unclear. Our universal specific angular momentum profile j(r,θ ) is useful in modeling the angular momenta of halos. Furthermore, by using an empirical stellar mass-halo mass relation, we can infer the average angular momentum distribution of a dark matter halo. The specific angular momentum-stellar mass relation within a halo computed from our profile is shown to share a similar shape as that from the observed disk galaxies.

  15. THE ORIGIN OF THE HOT GAS IN THE GALACTIC HALO: TESTING GALACTIC FOUNTAIN MODELS' X-RAY EMISSION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Henley, David B.; Shelton, Robin L.; Kwak, Kyujin

    2015-02-20

    We test the X-ray emission predictions of galactic fountain models against XMM-Newton measurements of the emission from the Milky Way's hot halo. These measurements are from 110 sight lines, spanning the full range of Galactic longitudes. We find that a magnetohydrodynamical simulation of a supernova-driven interstellar medium, which features a flow of hot gas from the disk to the halo, reproduces the temperature but significantly underpredicts the 0.5-2.0 keV surface brightness of the halo (by two orders of magnitude, if we compare the median predicted and observed values). This is true for versions of the model with and without anmore » interstellar magnetic field. We consider different reasons for the discrepancy between the model predictions and the observations. We find that taking into account overionization in cooled halo plasma, which could in principle boost the predicted X-ray emission, is unlikely in practice to bring the predictions in line with the observations. We also find that including thermal conduction, which would tend to increase the surface brightnesses of interfaces between hot and cold gas, would not overcome the surface brightness shortfall. However, charge exchange emission from such interfaces, not included in the current model, may be significant. The faintness of the model may also be due to the lack of cosmic ray driving, meaning that the model may underestimate the amount of material transported from the disk to the halo. In addition, an extended hot halo of accreted material may be important, by supplying hot electrons that could boost the emission of the material driven out from the disk. Additional model predictions are needed to test the relative importance of these processes in explaining the observed halo emission.« less

  16. The Origin of the Hot Gas in the Galactic Halo: Testing Galactic Fountain Models' X-Ray Emission

    NASA Astrophysics Data System (ADS)

    Henley, David B.; Shelton, Robin L.; Kwak, Kyujin; Hill, Alex S.; Mac Low, Mordecai-Mark

    2015-02-01

    We test the X-ray emission predictions of galactic fountain models against XMM-Newton measurements of the emission from the Milky Way's hot halo. These measurements are from 110 sight lines, spanning the full range of Galactic longitudes. We find that a magnetohydrodynamical simulation of a supernova-driven interstellar medium, which features a flow of hot gas from the disk to the halo, reproduces the temperature but significantly underpredicts the 0.5-2.0 keV surface brightness of the halo (by two orders of magnitude, if we compare the median predicted and observed values). This is true for versions of the model with and without an interstellar magnetic field. We consider different reasons for the discrepancy between the model predictions and the observations. We find that taking into account overionization in cooled halo plasma, which could in principle boost the predicted X-ray emission, is unlikely in practice to bring the predictions in line with the observations. We also find that including thermal conduction, which would tend to increase the surface brightnesses of interfaces between hot and cold gas, would not overcome the surface brightness shortfall. However, charge exchange emission from such interfaces, not included in the current model, may be significant. The faintness of the model may also be due to the lack of cosmic ray driving, meaning that the model may underestimate the amount of material transported from the disk to the halo. In addition, an extended hot halo of accreted material may be important, by supplying hot electrons that could boost the emission of the material driven out from the disk. Additional model predictions are needed to test the relative importance of these processes in explaining the observed halo emission.

  17. STRUCTURAL PROPERTIES OF NON-SPHERICAL DARK HALOS IN MILKY WAY AND ANDROMEDA DWARF SPHEROIDAL GALAXIES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hayashi, Kohei; Chiba, Masashi, E-mail: kohei.hayashi@ipmu.jp, E-mail: chiba@astr.tohoku.ac.jp

    We investigate the non-spherical density structure of dark halos of the dwarf spheroidal (dSph) galaxies in the Milky Way and Andromeda galaxies based on revised axisymmetric mass models from our previous work. The models we adopt here fully take into account velocity anisotropy of tracer stars confined within a flattened dark halo. Applying our models to the available kinematic data of the 12 bright dSphs, we find that these galaxies associate with, in general, elongated dark halos, even considering the effect of this velocity anisotropy of stars. We also find that the best-fit parameters, especially for the shapes of darkmore » halos and velocity anisotropy, are susceptible to both the availability of velocity data in the outer regions and the effect of the lack of sample stars in each spatial bin. Thus, to obtain more realistic limits on dark halo structures, we require photometric and kinematic data over much larger areas in the dSphs than previously explored. The results obtained from the currently available data suggest that the shapes of dark halos in the dSphs are more elongated than those of ΛCDM subhalos. This mismatch needs to be solved by theory including baryon components and the associated feedback to dark halos as well as by further observational limits in larger areas of dSphs. It is also found that more diffuse dark halos may have undergone consecutive star formation history, thereby implying that dark-halo structure plays an important role in star formation activity.« less

  18. The globular cluster-dark matter halo connection

    NASA Astrophysics Data System (ADS)

    Boylan-Kolchin, Michael

    2017-12-01

    I present a simple phenomenological model for the observed linear scaling of the stellar mass in old globular clusters (GCs) with z = 0 halo mass in which the stellar mass in GCs scales linearly with progenitor halo mass at z = 6 above a minimum halo mass for GC formation. This model reproduces the observed MGCs-Mhalo relation at z = 0 and results in a prediction for the minimum halo mass at z = 6 required for hosting one GC: Mmin(z = 6) = 1.07 × 109 M⊙. Translated to z = 0, the mean threshold mass is Mhalo(z = 0) ≈ 2 × 1010 M⊙. I explore the observability of GCs in the reionization era and their contribution to cosmic reionization, both of which depend sensitively on the (unknown) ratio of GC birth mass to present-day stellar mass, ξ. Based on current detections of z ≳ 6 objects with M1500<-17, values of ξ > 10 are strongly disfavoured; this, in turn, has potentially important implications for GC formation scenarios. Even for low values of ξ, some observed high-z galaxies may actually be GCs, complicating estimates of reionization-era galaxy ultraviolet luminosity functions and constraints on dark matter models. GCs are likely important reionization sources if 5 ≲ ξ ≲ 10. I also explore predictions for the fraction of accreted versus in situ GCs in the local Universe and for descendants of systems at the halo mass threshold of GC formation (dwarf galaxies). An appealing feature of the model presented here is the ability to make predictions for GC properties based solely on dark matter halo merger trees.

  19. Galactic center gamma-ray excess from dark matter annihilation: is there a black hole spike?

    PubMed

    Fields, Brian D; Shapiro, Stuart L; Shelton, Jessie

    2014-10-10

    If the supermassive black hole Sgr A* at the center of the Milky Way grew adiabatically from an initial seed embedded in a Navarro-Frenk-White dark matter (DM) halo, then the DM profile near the hole has steepened into a spike. We calculate the dramatic enhancement to the gamma-ray flux from the Galactic center (GC) from such a spike if the 1-3 GeV excess observed in Fermi data is due to DM annihilations. We find that for the parameter values favored in recent fits, the point-source-like flux from the spike is 35 times greater than the flux from the inner 1° of the halo, far exceeding all Fermi point source detections near the GC. We consider the dependence of the spike signal on astrophysical and particle parameters and conclude that if the GC excess is due to DM, then a canonical adiabatic spike is disfavored by the data. We discuss alternative Galactic histories that predict different spike signals, including (i) the nonadiabatic growth of the black hole, possibly associated with halo and/or black hole mergers, (ii) gravitational interaction of DM with baryons in the dense core, such as heating by stars, or (iii) DM self-interactions. We emphasize that the spike signal is sensitive to a different combination of particle parameters than the halo signal and that the inclusion of a spike component to any DM signal in future analyses would provide novel information about both the history of the GC and the particle physics of DM annihilations.

  20. The Space Motion of Leo I: The Mass of the Milky Way's Dark Matter Halo

    NASA Astrophysics Data System (ADS)

    Boylan-Kolchin, Michael; Bullock, James S.; Sohn, Sangmo Tony; Besla, Gurtina; van der Marel, Roeland P.

    2013-05-01

    We combine our Hubble Space Telescope measurement of the proper motion of the Leo I dwarf spheroidal galaxy (presented in a companion paper) with the highest resolution numerical simulations of Galaxy-size dark matter halos in existence to constrain the mass of the Milky Way's dark matter halo (M vir, MW). Despite Leo I's large Galactocentric space velocity (200 km s-1) and distance (261 kpc), we show that it is extremely unlikely to be unbound if Galactic satellites are associated with dark matter substructure, as 99.9% of subhalos in the simulations are bound to their host. The observed position and velocity of Leo I strongly disfavor a low-mass Milky Way: if we assume that Leo I is the least bound of the Milky Way's classical satellites, then we find that M vir, MW > 1012 M ⊙ at 95% confidence for a variety of Bayesian priors on M vir, MW. In lower mass halos, it is vanishingly rare to find subhalos at 261 kpc moving as fast as Leo I. Should an additional classical satellite be found to be less bound than Leo I, this lower limit on M vir, MW would increase by 30%. Imposing a mass-weighted ΛCDM prior, we find a median Milky Way virial mass of M vir, MW = 1.6 × 1012 M ⊙, with a 90% confidence interval of [1.0-2.4] × 1012 M ⊙. We also confirm a strong correlation between subhalo infall time and orbital energy in the simulations and show that proper motions can aid significantly in interpreting the infall times and orbital histories of satellites.

  1. Evidence of lensing of the cosmic microwave background by dark matter halos.

    PubMed

    Madhavacheril, Mathew; Sehgal, Neelima; Allison, Rupert; Battaglia, Nick; Bond, J Richard; Calabrese, Erminia; Caligiuri, Jerod; Coughlin, Kevin; Crichton, Devin; Datta, Rahul; Devlin, Mark J; Dunkley, Joanna; Dünner, Rolando; Fogarty, Kevin; Grace, Emily; Hajian, Amir; Hasselfield, Matthew; Hill, J Colin; Hilton, Matt; Hincks, Adam D; Hlozek, Renée; Hughes, John P; Kosowsky, Arthur; Louis, Thibaut; Lungu, Marius; McMahon, Jeff; Moodley, Kavilan; Munson, Charles; Naess, Sigurd; Nati, Federico; Newburgh, Laura; Niemack, Michael D; Page, Lyman A; Partridge, Bruce; Schmitt, Benjamin; Sherwin, Blake D; Sievers, Jon; Spergel, David N; Staggs, Suzanne T; Thornton, Robert; Van Engelen, Alexander; Ward, Jonathan T; Wollack, Edward J

    2015-04-17

    We present evidence of the gravitational lensing of the cosmic microwave background by 10(13) solar mass dark matter halos. Lensing convergence maps from the Atacama Cosmology Telescope Polarimeter (ACTPol) are stacked at the positions of around 12 000 optically selected CMASS galaxies from the SDSS-III/BOSS survey. The mean lensing signal is consistent with simulated dark matter halo profiles and is favored over a null signal at 3.2σ significance. This result demonstrates the potential of microwave background lensing to probe the dark matter distribution in galaxy group and galaxy cluster halos.

  2. Surveying the H I Content of the Galactic Halo via Lyman Series Absorption

    NASA Astrophysics Data System (ADS)

    Fox, Andrew

    The halo of the Milky Way is home to a population of gaseous high-velocity clouds (HVCs) that trace the exchange of matter between the Galaxy and its surroundings. HVCs have been studied extensively via H I 21 cm emission and UV metal-line absorption. Here we propose a third, complementary approach for studying HVCs: surveying them in UV Lyman series H I absorption using all AGN spectra in the FarUltraviolet Spectroscopic Explorer (FUSE) archive. This H I survey will constitute a metal-independent view of the baryons in the Galactic halo at a level over 1000 times more sensitive than 21 cm surveys, and it can be conducted with archival data alone. 67 AGN are available in the FUSE archives with suitable properties (S/N>4 at 977 A), and the data are reduced and ready for analysis. With these data, we will calculate HVC sky covering fractions in H I absorption and conduct HVC metallicity measurements in sightlines with UV metal absorption in HST/COS or HST/STIS spectra. We will calculate the Galactic H I column density distribution function (CDDF), the incidence of H I clouds per unit column density that encodes underlying density and ionization variations and is sensitive to the escaping ionization radiation field. The CDDF has been measured at high redshifts over eight orders of magnitude of H I column density via quasar-absorption line experiments. However, the Galactic H I CDDF has until now only been constrained at high H I column density where HVCs can be seen in 21cm emission. Our detailed work plan will involve identifying and modeling HVC absorption in ten Lyman series lines from Ly gamma 972 to Ly mu 917 in each sight line in the FUSE sample. This will constrain the H I CDDF in the column density range log N(H I) 14 to 18. By combining with the existing H I CDDF in 21 cm HVCs in the range log N(H I) 18 to 21 from the all-sky GASS survey, we will produce a global Galactic CDDF complete over seven orders of magnitude, providing key new information on the

  3. Signatures of compact halos of sterile-neutrino dark matter

    NASA Astrophysics Data System (ADS)

    Kühnel, Florian; Ohlsson, Tommy

    2017-11-01

    We investigate compact halos of sterile-neutrino dark matter and examine observable signatures with respect to neutrino and photon emission. Primarily, we consider two cases: primordial black-hole halos and ultracompact minihalos. In both cases, we find that there exists a broad range of possible parameter choices such that detection in the near future with x-ray and gamma-ray telescopes might be well possible. In fact, for energies above 10 TeV, the neutrino telescope IceCube would be a splendid detection machine for such macroscopic dark-matter candidates.

  4. Under the sword of Damocles: plausible regeneration of dark matter cusps at the smallest galactic scales

    NASA Astrophysics Data System (ADS)

    Laporte, Chervin F. P.; Peñarrubia, Jorge

    2015-04-01

    We study the evolution of the dark matter (DM) halo profiles of dwarf galaxies driven by the accretion of DM substructures through controlled N-body experiments. Our initial conditions assume that early supernova feedback erases the primordial DM cusps of haloes with z = 0 masses of 109 - 1010 M⊙. The orbits and masses of the infalling substructures are borrowed from the Aquarius cosmological simulations. Our experiments show that a fraction of haloes that undergo 1:3 down to 1:30 mergers are susceptible to reform a DM cusp by z ≈ 0. Cusp regrowth is driven by the accretion of DM substructures that are dense enough to reach the central regions of the main halo before being tidally disrupted. The infall of substructures on the mean of the reported mass-concentration relation and a mass ratio above 1:6 systematically leads to cusp regrowth. Substructures with 1:6-1:8, and 1:8-1:30 only reform DM cusps if their densities are 1σ and 2σ above the mean, respectively. The merging time-scales of these dense, low-mass substructures is relatively long (5 - 11 Gyr), which may pose a time-scale problem for the longevity of DM cores in dwarfs galaxies and possibly explain the existence of dense dwarfs-like Draco. These results suggest that within cold dark matter a non-negligible level of scatter in the mass profiles of galactic haloes acted on by feedback is to be expected given the stochastic mass accretion histories of low-mass haloes and the diverse star formation histories observed in the Local Group dwarfs.

  5. Abundances and Evolution of Lithium in the Galactic Halo and Disk

    NASA Astrophysics Data System (ADS)

    Ryan, Sean G.; Kajino, Toshitaka; Beers, Timothy C.; Suzuki, Takeru Ken; Romano, Donatella; Matteucci, Francesca; Rosolankova, Katarina

    2001-03-01

    We have measured the Li abundance of 18 stars with -2<~[Fe/H]<~-1 and 6000<~Teff<~6400 K, a parameter range that was poorly represented in previous studies. We examine the Galactic chemical evolution (GCE) of this element, combining these data with previous samples of turnoff stars over the full range of halo metallicities. We find that A(Li) increases from a level of ~2.10 at [Fe/H]=-3.5 to ~2.40 at [Fe/H]=-1.0, where A(Li)=log10(n(Li)/n(H))+12.00. We compare the observations with several GCE calculations, including existing one-zone models and a new model developed in the framework of inhomogeneous evolution of the Galactic halo. We show that Li evolved at a constant rate relative to iron throughout the halo and old disk epochs but that during the formation of young disk stars, the production of Li relative to iron increased significantly. These observations can be understood in the context of models in which postprimordial Li evolution during the halo and old disk epochs is dominated by Galactic cosmic-ray fusion and spallation reactions, with some contribution from the ν-process in supernovae. The onset of more efficient Li production (relative to iron) in the young disk coincides with the appearance of Li from novae and asymptotic giant branch (AGB) stars. The major challenge facing the models is to reconcile the mild evolution of Li during the halo and old disk phases with the more efficient production (relative to iron) at [Fe/H]>-0.5. We speculate that cool-bottom processing (production) of Li in low-mass stars may provide an important late-appearing source of Li, without attendant Fe production, that might explain the Li production in the young disk. Based on observations obtained with the University College London échelle spectrograph (UCLES) on the Anglo-Australian Telescope (AAT) and the Utrecht échelle spectrograph (UES) on the William Herschel Telescope (WHT).

  6. A Formation Timescale of the Galactic Halo from Mg Isotopes in Dwarf Stars

    NASA Astrophysics Data System (ADS)

    Carlos, Marília; Karakas, Amanda I.; Cohen, Judith G.; Kobayashi, Chiaki; Meléndez, Jorge

    2018-04-01

    We determine magnesium isotopic abundances of metal-poor dwarf stars from the galactic halo, to shed light on the onset of asymptotic giant branch (AGB) star nucleosynthesis in the galactic halo and constrain the timescale of its formation. We observed a sample of eight new halo K dwarfs in a metallicity range of ‑1.9 < [Fe/H] < ‑0.9 and 4200 < T eff(K) < 4950, using the HIRES spectrograph at the Keck Observatory (R ≈ 105 and 200 ≤ S/N ≤ 300). We obtain magnesium isotopic abundances by spectral synthesis on three MgH features and compare our results with galactic chemical evolution models. With the current sample, we almost double the number of metal-poor stars with Mg isotopes determined from the literature. The new data allow us to determine the metallicity when the 26Mg abundances start to become important, [Fe/H] ∼ ‑1.4 ± 0.1. The data with [Fe/H] > ‑1.4 are somewhat higher (1–3σ) than previous chemical evolution model predictions, indicating perhaps higher yields of the neutron-rich isotopes. Our results using only AGB star enrichment suggest a timescale for formation for the galactic halo of about 0.3 Gyr, but considering also supernova enrichment, the upper limit for the timescale formation is about 1.5 Gyr. The data presented herein were obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W. M. Keck Foundation.

  7. The FUSE Survey of 0 VI in the Galactic Halo

    NASA Technical Reports Server (NTRS)

    Sonneborn, George; Savage, B. D.; Wakker, B. P.; Sembach, K. R.; Jenkins, E. B.; Moos, H. W.; Shull, J. M.

    2003-01-01

    This paper summarizes the results of the Far-Ultraviolet Spectroscopic Explorer (FUSE) program to study 0 VI in the Milky Way halo. Spectra of 100 extragalactic objects and two distant halo stars are analyzed to obtain measures of O VI absorption along paths through the Milky Way thick disk/halo. Strong O VI absorption over the velocity range from -100 to 100 km/s reveals a widespread but highly irregular distribution of O VI, implying the existence of substantial amounts of hot gas with T approx. 3 x 10(exp 5) K in the Milky Way thick disk/halo. The overall distribution of O VI is not well described by a symmetrical plane-parallel layer of patchy O VI absorption. The simplest departure from such a model that provides a reasonable fit to the observations is a plane-parallel patchy absorbing layer with an average O VI mid-plane density of n(sub 0)(O VI) = 1.7 x 10(exp -2)/cu cm, a scale height of approx. 2.3 kpc, and a approx. 0.25 dex excess of O VI in the northern Galactic polar region. The distribution of O VI over the sky is poorly correlated with other tracers of gas in the halo, including low and intermediate velocity H I, Ha emission from the warm ionized gas at approx. l0(exp 4) K, and hot X-ray emitting gas at approx. l0(exp 6) K . The O VI has an average velocity dispersion, b approx. 60 km/s and standard deviation of 15 km/s. Thermal broadening alone cannot explain the large observed profile widths. A combination of models involving the radiative cooling of hot fountain gas, the cooling of supernova bubbles in the halo, and the turbulent mixing of warm and hot halo gases is required to explain the presence of O VI and other highly ionized atoms found in the halo. The preferential venting of hot gas from local bubbles and superbubbles into the northern Galactic polar region may explain the enhancement of O VI in the North.

  8. Galactic bulge preferred over dark matter for the Galactic centre gamma-ray excess

    NASA Astrophysics Data System (ADS)

    Macias, Oscar; Gordon, Chris; Crocker, Roland M.; Coleman, Brendan; Paterson, Dylan; Horiuchi, Shunsaku; Pohl, Martin

    2018-05-01

    An anomalous gamma-ray excess emission has been found in the Fermi Large Area Telescope data1 covering the centre of the Galaxy2,3. Several theories have been proposed for this `Galactic centre excess'. They include self-annihilation of dark-matter particles4, an unresolved population of millisecond pulsars5, an unresolved population of young pulsars6, or a series of burst events7. Here, we report on an analysis that exploits hydrodynamical modelling to register the position of interstellar gas associated with diffuse Galactic gamma-ray emission. We find evidence that the Galactic centre excess gamma rays are statistically better described by the stellar over-density in the Galactic bulge and the nuclear stellar bulge, rather than a spherical excess. Given its non-spherical nature, we argue that the Galactic centre excess is not a dark-matter phenomenon but rather associated with the stellar population of the Galactic bulge and the nuclear bulge.

  9. New Asymptotic Giant Branch Carbon Stars in the Galactic Halo

    NASA Astrophysics Data System (ADS)

    Mauron, N.; Gigoyan, K. S.; Kostandyan, G. R.

    2018-03-01

    For the first time the data on the eight confirmed or candidate carbon (C) stars found mainly from objective-prism plates are presented. By using the Catalina database of lightcurves, we find that all these stars are pulsating, allowing a distance to be estimated through the K-band Period-Luminosity (PL) relation. This relation does not depend on spectral type (M or C) and distances are reliable even for C candidates. Seven stars are more than 10 kpc from the galactic plane, suggesting they do not belong to the galactic disk. We also find one star located at about 180 kpc from the Sun, being one of the most distant star in the Galaxy. Many of these new C stars are relatively blue. Some comments are also provided on seven other known halo carbon stars for which either a pulsation period is obtained, or because they were not included in previous works on halo C stars.

  10. Spatial clustering of dark matter haloes: secondary bias, neighbour bias, and the influence of massive neighbours on halo properties

    NASA Astrophysics Data System (ADS)

    Salcedo, Andrés N.; Maller, Ariyeh H.; Berlind, Andreas A.; Sinha, Manodeep; McBride, Cameron K.; Behroozi, Peter S.; Wechsler, Risa H.; Weinberg, David H.

    2018-04-01

    We explore the phenomenon commonly known as halo assembly bias, whereby dark matter haloes of the same mass are found to be more or less clustered when a second halo property is considered, for haloes in the mass range 3.7 × 1011-5.0 × 1013 h-1 M⊙. Using the Large Suite of Dark Matter Simulations (LasDamas) we consider nine commonly used halo properties and find that a clustering bias exists if haloes are binned by mass or by any other halo property. This secondary bias implies that no single halo property encompasses all the spatial clustering information of the halo population. The mean values of some halo properties depend on their halo's distance to a more massive neighbour. Halo samples selected by having high values of one of these properties therefore inherit a neighbour bias such that they are much more likely to be close to a much more massive neighbour. This neighbour bias largely accounts for the secondary bias seen in haloes binned by mass and split by concentration or age. However, haloes binned by other mass-like properties still show a secondary bias even when the neighbour bias is removed. The secondary bias of haloes selected by their spin behaves differently than that for other halo properties, suggesting that the origin of the spin bias is different than of other secondary biases.

  11. What sets the central structure of dark matter haloes?

    NASA Astrophysics Data System (ADS)

    Ogiya, Go; Hahn, Oliver

    2018-02-01

    Dark matter (DM) haloes forming near the thermal cut-off scale of the density perturbations are unique, since they are the smallest objects and form through monolithic gravitational collapse, while larger haloes contrastingly have experienced mergers. While standard cold dark matter (CDM) simulations readily produce haloes that follow the universal Navarro-Frenk-White (NFW) density profile with an inner slope, ρ ∝ r-α, with α = 1, recent simulations have found that when the free-streaming cut-off expected for the CDM model is resolved, the resulting haloes follow nearly power-law density profiles of α ∼ 1.5. In this paper, we study the formation of density cusps in haloes using idealized N-body simulations of the collapse of proto-haloes. When the proto-halo profile is initially cored due to particle free-streaming at high redshift, we universally find ∼r-1.5 profiles irrespective of the proto-halo profile slope outside the core and large-scale non-spherical perturbations. Quite in contrast, when the proto-halo has a power-law profile, then we obtain profiles compatible with the NFW shape when the density slope of the proto-halo patch is shallower than a critical value, αini ∼ 0.3, while the final slope can be steeper for αini ≳ 0.3. We further demonstrate that the r-1.5 profiles are sensitive to small-scale noise, which gradually drives them towards an inner slope of -1, where they become resilient to such perturbations. We demonstrate that the r-1.5 solutions are in hydrostatic equilibrium, largely consistent with a simple analytic model, and provide arguments that angular momentum appears to determine the inner slope.

  12. Ultraviolet absorption by highly ionized halo gas near the Galactic center

    NASA Technical Reports Server (NTRS)

    Savage, B. D.; Massa, D.

    1985-01-01

    Initial results are presented for a program to survey highly ionized gas in the Milky Way disk and halo. High-resolution IUE (International Ultraviolet Explorer) far-UV spectra were obtained for 12 stars at galactocentric distances less than 6 kpc. The stars are 0.7-2.2 kpc away from the plane. Most of the spectra contain exceedingly strong and broad interstellar absorption lines of weakly and highly ionized atoms. In addition to the normally strong lines of Si IV and C IV, strong interstellar NV lines have been detected in the spectra of eight stars. The detection of NV absorption (amounting to more than 10 times the predicted NV) provides an important new constraint on models for the origin of Galactic halo gas. A Galactic fountain operating in the presence of known UV and EUV radiation might explain the observations.

  13. Spatial clustering of dark matter haloes: secondary bias, neighbour bias, and the influence of massive neighbours on halo properties

    DOE PAGES

    Salcedo, Andres N.; Maller, Ariyeh H.; Berlind, Andreas A.; ...

    2018-01-15

    Here, we explore the phenomenon commonly known as halo assembly bias, whereby dark matter haloes of the same mass are found to be more or less clustered when a second halo property is considered, for haloes in the mass range 3.7 × 10 11–5.0 × 10 13 h –1 M ⊙. Using the Large Suite of Dark Matter Simulations (LasDamas) we consider nine commonly used halo properties and find that a clustering bias exists if haloes are binned by mass or by any other halo property. This secondary bias implies that no single halo property encompasses all the spatial clusteringmore » information of the halo population. The mean values of some halo properties depend on their halo's distance to a more massive neighbour. Halo samples selected by having high values of one of these properties therefore inherit a neighbour bias such that they are much more likely to be close to a much more massive neighbour. This neighbour bias largely accounts for the secondary bias seen in haloes binned by mass and split by concentration or age. However, haloes binned by other mass-like properties still show a secondary bias even when the neighbour bias is removed. The secondary bias of haloes selected by their spin behaves differently than that for other halo properties, suggesting that the origin of the spin bias is different than of other secondary biases.« less

  14. Spatial clustering of dark matter haloes: secondary bias, neighbour bias, and the influence of massive neighbours on halo properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Salcedo, Andres N.; Maller, Ariyeh H.; Berlind, Andreas A.

    Here, we explore the phenomenon commonly known as halo assembly bias, whereby dark matter haloes of the same mass are found to be more or less clustered when a second halo property is considered, for haloes in the mass range 3.7 × 10 11–5.0 × 10 13 h –1 M ⊙. Using the Large Suite of Dark Matter Simulations (LasDamas) we consider nine commonly used halo properties and find that a clustering bias exists if haloes are binned by mass or by any other halo property. This secondary bias implies that no single halo property encompasses all the spatial clusteringmore » information of the halo population. The mean values of some halo properties depend on their halo's distance to a more massive neighbour. Halo samples selected by having high values of one of these properties therefore inherit a neighbour bias such that they are much more likely to be close to a much more massive neighbour. This neighbour bias largely accounts for the secondary bias seen in haloes binned by mass and split by concentration or age. However, haloes binned by other mass-like properties still show a secondary bias even when the neighbour bias is removed. The secondary bias of haloes selected by their spin behaves differently than that for other halo properties, suggesting that the origin of the spin bias is different than of other secondary biases.« less

  15. A gamma-ray constraint on the nature of dark matter

    NASA Technical Reports Server (NTRS)

    Silk, Joseph; Bloemen, Hans

    1987-01-01

    If even a small component of the Galactic spheroid consists of the weakly interacting majorana fermions that are cold-dark-matter candidate particles for the Galactic halo, there should be a substantial flux of annihilation gamma rays from a source of about 1-deg extent at the Galactic center. COS B observations already constrain the halo cold-dark-matter (CDM) content entrained in the inner spheroid to be less than about 10 percent. A somewhat weaker constraint applies to the CDM believed to be present in the Galactic disk, but still only about 15 percent can be in such particles. Monochromatic line photons of energy 3-10 GeV are also predicted, and future experiments may be capable of improving these limits. Since both theoretical models of galaxy formation in a CDM-dominated universe and mass models for the rotation curve in the inner Galaxy suggest that a substantial fraction of the spheroid component should be nonluminous and incorporate entrained halo CDM, the hypothesis that the halo CDM consists predominantly of weakly interacting fermions such as photinos or heavy majorana mass neutrinos or higgsinos may already be subject to observational test.

  16. Correlation Analysis between Spin, Velocity Shear, and Vorticity of Baryonic and Dark Matter Halos

    NASA Astrophysics Data System (ADS)

    Liu, Li-li

    2017-04-01

    Based on the cosmological hydrodynamic simulations, we investigate the correlations between the spin, velocity shear and vorticity in dark matter halos, as well as the relationship between the baryonic matter and the dark matter. We find that (1) the difference between the vorticity of baryonic matter and that of dark matter is evident on the scales of < 0.2 h-1 Mpc; (2) the vorticity of baryonic matter exhibits a stronger correlation with the tensor of velocity shear than the vorticity of dark matter does; and (3) the spinning direction of small-mass dark matter halos tends to be parallel to the direction of their host filaments, while the spinning direction of massive dark matter halos tends to be perpendicular to the direction of their host filaments, and the intensity of this kind correlation depends on the size of simulation box, and the simulation accuracy. These factors may cause the relationship between the the spins of dark matter halos and those of galaxies to be complicated, and affect the correlation between the galaxy spins and the nearby large-scale structures.

  17. ELUCID. V. Lighting Dark Matter Halos with Galaxies

    NASA Astrophysics Data System (ADS)

    Yang, Xiaohu; Zhang, Youcai; Wang, Huiyuan; Liu, Chengze; Lu, Tianhuan; Li, Shijie; Shi, Feng; Jing, Y. P.; Mo, H. J.; van den Bosch, Frank C.; Kang, Xi; Cui, Weiguang; Guo, Hong; Li, Guoliang; Lim, S. H.; Lu, Yi; Luo, Wentao; Wei, Chengliang; Yang, Lei

    2018-06-01

    In a recent study, using the distribution of galaxies in the north galactic pole of the SDSS DR7 region enclosed in a 500 {h}-1 {Mpc} box, we carried out our ELUCID simulation (ELUCID III). Here, we light the dark matter halos and subhalos in the reconstructed region in the simulation with galaxies in the SDSS observations using a novel neighborhood abundance matching method. Before we make use of the galaxy–subhalo connections established in the ELUCID simulation to evaluate galaxy formation models, we set out to explore the reliability of such a link. For this purpose, we focus on the following few aspects of galaxies: (1) the central–subhalo luminosity and mass relations, (2) the satellite fraction of galaxies, (3) the conditional luminosity function (CLF) and conditional stellar mass function (CSMF) of galaxies, and (4) the cross-correlation functions between galaxies and dark matter particles, most of which are measured separately for all, red, and blue galaxy populations. We find that our neighborhood abundance matching method accurately reproduces the central–subhalo relations, satellite fraction, and the CLFs, CSMFs, and biases of galaxies. These features ensure that galaxy–subhalo connections thus established will be very useful in constraining galaxy formation processes. We provide some suggestions for the three levels of using the galaxy–subhalo pairs for galaxy formation constraints. The galaxy–subhalo links and the subhalo merger trees in the SDSS DR7 region extracted from our ELUCID simulation are available upon request.

  18. The dependence of cosmic ray-driven galactic winds on halo mass

    NASA Astrophysics Data System (ADS)

    Jacob, Svenja; Pakmor, Rüdiger; Simpson, Christine M.; Springel, Volker; Pfrommer, Christoph

    2018-03-01

    Galactic winds regulate star formation in disc galaxies and help to enrich the circum-galactic medium. They are therefore crucial for galaxy formation, but their driving mechanism is still poorly understood. Recent studies have demonstrated that cosmic rays (CRs) can drive outflows if active CR transport is taken into account. Using hydrodynamical simulations of isolated galaxies with virial masses between 1010 and 1013 M⊙, we study how the properties of CR-driven winds depend on halo mass. CRs are treated in a two-fluid approximation and their transport is modelled through isotropic or anisotropic diffusion. We find that CRs are only able to drive mass-loaded winds beyond the virial radius in haloes with masses below 1012 M⊙. For our lowest examined halo mass, the wind is roughly spherical and has velocities of ˜20 km s-1. With increasing halo mass, the wind becomes biconical and can reach 10 times higher velocities. The mass loading factor drops rapidly with virial mass, a dependence that approximately follows a power law with a slope between -1 and -2. This scaling is slightly steeper than observational inferences, and also steeper than commonly used prescriptions for wind feedback in cosmological simulations. The slope is quite robust to variations of the CR injection efficiency or the CR diffusion coefficient. In contrast to the mass loading, the energy loading shows no significant dependence on halo mass. While these scalings are close to successful heuristic models of wind feedback, the CR-driven winds in our present models are not yet powerful enough to fully account for the required feedback strength.

  19. Possible existence of wormholes in the central regions of halos

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rahaman, Farook, E-mail: rahaman@iucaa.ernet.in; Salucci, P., E-mail: salucci@sissa.it; INFN, Sezione di Trieste, Via Valerio 2, 34127, Trieste

    2014-11-15

    An earlier study (Rahaman, et al., 2014 and Kuhfittig, 2014) has demonstrated the possible existence of wormholes in the outer regions of the galactic halo, based on the Navarro–Frenk–White (NFW) density profile. This paper uses the Universal Rotation Curve (URC) dark matter model to obtain analogous results for the central parts of the halo. This result is an important compliment to the earlier result, thereby confirming the possible existence of wormholes in most of the spiral galaxies. - Highlights: • Earlier we showed possible existence of wormholes in the outer regions of halo. • We obtain here analogous results for themore » central parts of the galactic halo. • Our result is an important compliment to the earlier result. • This confirms possible existence of wormholes in most of the spiral galaxies.« less

  20. Dynamics of massive black holes as a possible candidate of Galactic dark matter

    NASA Technical Reports Server (NTRS)

    Xu, Guohong; Ostriker, Jeremiah P.

    1994-01-01

    If the dark halo of the Galaxy is comprised of massive black holes (MBHs), then those within approximately 1 kpc will spiral to the center, where they will interact with one another, forming binaries which contract, owing to further dynamical friction, and then possibly merge to become more massive objects by emission of gravitational radiation. If successive mergers would invariably lead, as has been proposed by various authors, to the formation of a very massive nucleus of 10(exp 8) solar mass, then the idea of MBHs as a dark matter candidate could be excluded on observational grounds, since the observed limit (or value) for a Galactic central black hole is approximately 10(exp 6.5) solar mass. But, if successive mergers are delayed or prevented by other processes, such as the gravitational slingshot or rocket effect of gravitational radiation, then a large mass accumulation will not occur. In order to resolve this issue, we perform detailed N-body simulations using a modfied Aarseth code to explore the dynamical behavior of the MBHs, and we find that for a 'best estimate' model of the Galaxy a runaway does not occur. The code treates the MBHs as subject to the primary gravitational forces of one another and to the smooth stellar distribution, as well as the secondary perturbations in their orbits due to another and to the smooth stellar distribution, as well as the secondary perturbations in their orbits due to dynamical friction and gravitational radiation. Instead of a runaway, three-body interactions between hard binaries and single MBHs eject massive objects before accumulation of more than a few units, so that typically the center will contain zero, one, or two MBHs. We study how the situation depends in detail on the mass per MBH, the rotation of the halo, the mass distribution within the Galaxy, and other parameters. A runaway will most sensitively depend on the ratio of initial (spheroid/halo) central mass densities and secondarily on the typical values

  1. Galaxy disruption in a halo of dark matter.

    PubMed

    Forbes, Duncan A; Beasley, Michael A; Bekki, Kenji; Brodie, Jean P; Strader, Jay

    2003-08-29

    The relics of disrupted satellite galaxies have been found around the Milky Way and Andromeda, but direct evidence of a satellite galaxy in the early stages of disruption has remained elusive. We have discovered a dwarf satellite galaxy in the process of being torn apart by gravitational tidal forces as it merges with a larger galaxy's dark matter halo. Our results illustrate the morphological transformation of dwarf galaxies by tidal interaction and the continued buildup of galaxy halos.

  2. Is the Milky Way's hot halo convectively unstable?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Henley, David B.; Shelton, Robin L., E-mail: dbh@physast.uga.edu

    2014-03-20

    We investigate the convective stability of two popular types of model of the gas distribution in the hot Galactic halo. We first consider models in which the halo density and temperature decrease exponentially with height above the disk. These halo models were created to account for the fact that, on some sight lines, the halo's X-ray emission lines and absorption lines yield different temperatures, implying that the halo is non-isothermal. We show that the hot gas in these exponential models is convectively unstable if γ < 3/2, where γ is the ratio of the temperature and density scale heights. Usingmore » published measurements of γ and its uncertainty, we use Bayes' theorem to infer posterior probability distributions for γ, and hence the probability that the halo is convectively unstable for different sight lines. We find that, if these exponential models are good descriptions of the hot halo gas, at least in the first few kiloparsecs from the plane, the hot halo is reasonably likely to be convectively unstable on two of the three sight lines for which scale height information is available. We also consider more extended models of the halo. While isothermal halo models are convectively stable if the density decreases with distance from the Galaxy, a model of an extended adiabatic halo in hydrostatic equilibrium with the Galaxy's dark matter is on the boundary between stability and instability. However, we find that radiative cooling may perturb this model in the direction of convective instability. If the Galactic halo is indeed convectively unstable, this would argue in favor of supernova activity in the Galactic disk contributing to the heating of the hot halo gas.« less

  3. Classifying orbits in galaxy models with a prolate or an oblate dark matter halo component

    NASA Astrophysics Data System (ADS)

    Zotos, Euaggelos E.

    2014-03-01

    Aims: The distinction between regular and chaotic motion in galaxies is undoubtedly an issue of paramount importance. We explore the nature of orbits of stars moving in the meridional plane (R,z) of an axially symmetric galactic model with a disk, a spherical nucleus, and a flat biaxial dark matter halo component. In particular, we study the influence of all the involved parameters of the dynamical system by computing both the percentage of chaotic orbits and the percentages of orbits of the main regular resonant families in each case. Methods: To distinguish between ordered and chaotic motion, we use the smaller alignment index (SALI) method to extensive samples of orbits by numerically integrating the equations of motion as well as the variational equations. Moreover, a method based on the concept of spectral dynamics that utilizes the Fourier transform of the time series of each coordinate is used to identify the various families of regular orbits and also to recognize the secondary resonances that bifurcate from them. Two cases are studied for every parameter: (i) the case where the halo component is prolate and (ii) the case where an oblate dark halo is present. Results: Our numerical investigation indicates that all the dynamical quantities affect, more or less, the overall orbital structure. It was observed that the mass of the nucleus, the halo flattening parameter, the scale length of the halo, the angular momentum, and the orbital energy are the most influential quantities, while the effect of all the other parameters is much weaker. It was also found that all the parameters corresponding to the disk only have a minor influence on the nature of orbits. Furthermore, some other quantities, such as the minimum distance to the origin, the horizontal, and the vertical force, were tested as potential chaos detectors. Our analysis revealed that only general information can be obtained from these quantities. We also compared our results with early related work

  4. Probing stochastic inter-galactic magnetic fields using blazar-induced gamma ray halo morphology

    NASA Astrophysics Data System (ADS)

    Duplessis, Francis; Vachaspati, Tanmay

    2017-05-01

    Inter-galactic magnetic fields can imprint their structure on the morphology of blazar-induced gamma ray halos. We show that the halo morphology arises through the interplay of the source's jet and a two-dimensional surface dictated by the magnetic field. Through extensive numerical simulations, we generate mock halos created by stochastic magnetic fields with and without helicity, and study the dependence of the halo features on the properties of the magnetic field. We propose a sharper version of the Q-statistics and demonstrate its sensitivity to the magnetic field strength, the coherence scale, and the handedness of the helicity. We also identify and explain a new feature of the Q-statistics that can further enhance its power.

  5. Reionization and the Abundance of Galactic Satellites

    NASA Astrophysics Data System (ADS)

    Bullock, James S.; Kravtsov, Andrey V.; Weinberg, David H.

    2000-08-01

    One of the main challenges facing standard hierarchical structure formation models is that the predicted abundance of Galactic subhalos with circular velocities vc~10-30 km s-1 is an order of magnitude higher than the number of satellites actually observed within the Local Group. Using a simple model for the formation and evolution of dark halos, based on the extended Press-Schechter formalism and tested against N-body results, we show that the theoretical predictions can be reconciled with observations if gas accretion in low-mass halos is suppressed after the epoch of reionization. In this picture, the observed dwarf satellites correspond to the small fraction of halos that accreted substantial amounts of gas before reionization. The photoionization mechanism naturally explains why the discrepancy between predicted halos and observed satellites sets in at vc~30 km s-1, and for reasonable choices of the reionization redshift (zre~5-12) the model can reproduce both the amplitude and shape of the observed velocity function of galactic satellites. If this explanation is correct, then typical bright galaxy halos contain many low-mass dark matter subhalos. These might be detectable through their gravitational lensing effects, through their influence on stellar disks, or as dwarf satellites with very high mass-to-light ratios. This model also predicts a diffuse stellar component produced by large numbers of tidally disrupted dwarfs, perhaps sufficient to account for most of the Milky Way's stellar halo.

  6. On the Evolution of Dark Matter Halo Properties Following Major and Minor Mergers

    NASA Astrophysics Data System (ADS)

    Wu, Peter; Zhang, Shawn; Lee, Christoph; Primack, Joel

    2018-01-01

    We conducted an analysis on dark matter halo properties following major and minor mergers to advance our understanding of halo evolution. In this work, we analyzed ~80,000 dark matter halos from the Bolshoi-Planck cosmological simulation and studied halo evolution during relaxation after major mergers. We then applied a Gaussian filter to the property evolutions and characterized peak distributions, frequencies, and variabilities for several halo properties, including centering, spin, shape (prolateness), scale radius, and virial ratio. However, there were also halos that experienced relaxation without the presence of major mergers. We hypothesized that this was due to minor mergers unrecorded by the simulation analysis. By using property peaks to create a novel merger detection algorithm, we attempted to find minor mergers and match them to the unaccounted relaxed halos. Not only did we find evidence that minor mergers were the causes, but we also found similarities between major and minor merger effects, showing the significance of minor mergers for future studies. Through our dark matter merger statistics, we expect our work to ultimately serve as vital parameters towards better understanding galaxy formation and evolution. Most of this work was carried out by high school students working under the auspices of the Science Internship Program (SIP) at UC Santa Cruz.

  7. Self-Interacting Dark Matter Can Explain Diverse Galactic Rotation Curves

    NASA Astrophysics Data System (ADS)

    Kamada, Ayuki; Kaplinghat, Manoj; Pace, Andrew B.; Yu, Hai-Bo

    2017-09-01

    The rotation curves of spiral galaxies exhibit a diversity that has been difficult to understand in the cold dark matter (CDM) paradigm. We show that the self-interacting dark matter (SIDM) model provides excellent fits to the rotation curves of a sample of galaxies with asymptotic velocities in the 25 - 300 km /s range that exemplify the full range of diversity. We assume only the halo concentration-mass relation predicted by the CDM model and a fixed value of the self-interaction cross section. In dark-matter-dominated galaxies, thermalization due to self-interactions creates large cores and reduces dark matter densities. In contrast, thermalization leads to denser and smaller cores in more luminous galaxies and naturally explains the flatness of rotation curves of the highly luminous galaxies at small radii. Our results demonstrate that the impact of the baryons on the SIDM halo profile and the scatter from the assembly history of halos as encoded in the concentration-mass relation can explain the diverse rotation curves of spiral galaxies.

  8. Self-Interacting Dark Matter Can Explain Diverse Galactic Rotation Curves.

    PubMed

    Kamada, Ayuki; Kaplinghat, Manoj; Pace, Andrew B; Yu, Hai-Bo

    2017-09-15

    The rotation curves of spiral galaxies exhibit a diversity that has been difficult to understand in the cold dark matter (CDM) paradigm. We show that the self-interacting dark matter (SIDM) model provides excellent fits to the rotation curves of a sample of galaxies with asymptotic velocities in the 25-300  km/s range that exemplify the full range of diversity. We assume only the halo concentration-mass relation predicted by the CDM model and a fixed value of the self-interaction cross section. In dark-matter-dominated galaxies, thermalization due to self-interactions creates large cores and reduces dark matter densities. In contrast, thermalization leads to denser and smaller cores in more luminous galaxies and naturally explains the flatness of rotation curves of the highly luminous galaxies at small radii. Our results demonstrate that the impact of the baryons on the SIDM halo profile and the scatter from the assembly history of halos as encoded in the concentration-mass relation can explain the diverse rotation curves of spiral galaxies.

  9. CONSTRAINTS ON THE SHAPE OF THE MILKY WAY DARK MATTER HALO FROM JEANS EQUATIONS APPLIED TO SLOAN DIGITAL SKY SURVEY DATA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Loebman, Sarah R.; Ivezic, Zeljko; Quinn, Thomas R.

    2012-10-10

    We search for evidence of dark matter in the Milky Way by utilizing the stellar number density distribution and kinematics measured by the Sloan Digital Sky Survey (SDSS) to heliocentric distances exceeding {approx}10 kpc. We employ the cylindrically symmetric form of Jeans equations and focus on the morphology of the resulting acceleration maps, rather than the normalization of the total mass as done in previous, mostly local, studies. Jeans equations are first applied to a mock catalog based on a cosmologically derived N-body+SPH simulation, and the known acceleration (gradient of gravitational potential) is successfully recovered. The same simulation is alsomore » used to quantify the impact of dark matter on the total acceleration. We use Galfast, a code designed to quantitatively reproduce SDSS measurements and selection effects, to generate a synthetic stellar catalog. We apply Jeans equations to this catalog and produce two-dimensional maps of stellar acceleration. These maps reveal that in a Newtonian framework, the implied gravitational potential cannot be explained by visible matter alone. The acceleration experienced by stars at galactocentric distances of {approx}20 kpc is three times larger than what can be explained by purely visible matter. The application of an analytic method for estimating the dark matter halo axis ratio to SDSS data implies an oblate halo with q{sub DM} = 0.47 {+-} 0.14 within the same distance range. These techniques can be used to map the dark matter halo to much larger distances from the Galactic center using upcoming deep optical surveys, such as LSST.« less

  10. Galactic Forces Rule the Dynamics of Milky Way Dwarf Galaxies

    NASA Astrophysics Data System (ADS)

    Hammer, Francois; Yang, Yanbin; Arenou, Frederic; Babusiaux, Carine; Wang, Jianling; Puech, Mathieu; Flores, Hector

    2018-06-01

    Dwarf galaxies populating the Galactic halo are assumed to host the largest fractions of dark matter, as calculated from their velocity dispersions. Their major axes are preferentially aligned with the Vast Polar Structure (VPOS) that is perpendicular to the Galactic disk, and we find their velocity gradients aligned as well. This finding results in a probability of random occurrence for the VPOS as low as ∼10‑5. It suggests that tidal forces exerted by the Milky Way are distorting dwarf galaxies. Here we demonstrate on the basis of the impulse approximation that the Galactic gravitational acceleration induces the dwarf line-of-sight velocity dispersion, which is also evidenced by strong dependences between both quantities. Since this result is valid for any dwarf mass value, it implies that dark matter estimates in Milky Way dwarfs cannot be deduced from the product of their radius to the square of their line-of-sight velocity dispersion. This questions the high dark matter fractions reported for these evanescent systems, and the universally adopted total-to-stellar mass relationship in the dwarf regime. It suggests that many dwarfs are at their first passage and are dissolving into the Galactic halo. This gives rise to a promising method to estimate the Milky Way total mass profile at large distances.

  11. Probing stochastic inter-galactic magnetic fields using blazar-induced gamma ray halo morphology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duplessis, Francis; Vachaspati, Tanmay, E-mail: fdupless@asu.edu, E-mail: tvachasp@asu.edu

    Inter-galactic magnetic fields can imprint their structure on the morphology of blazar-induced gamma ray halos. We show that the halo morphology arises through the interplay of the source's jet and a two-dimensional surface dictated by the magnetic field. Through extensive numerical simulations, we generate mock halos created by stochastic magnetic fields with and without helicity, and study the dependence of the halo features on the properties of the magnetic field. We propose a sharper version of the Q-statistics and demonstrate its sensitivity to the magnetic field strength, the coherence scale, and the handedness of the helicity. We also identify andmore » explain a new feature of the Q-statistics that can further enhance its power.« less

  12. Velocity bias in the distribution of dark matter halos

    NASA Astrophysics Data System (ADS)

    Baldauf, Tobias; Desjacques, Vincent; Seljak, Uroš

    2015-12-01

    The standard formalism for the coevolution of halos and dark matter predicts that any initial halo velocity bias rapidly decays to zero. We argue that, when the purpose is to compute statistics like power spectra etc., the coupling in the momentum conservation equation for the biased tracers must be modified. Our new formulation predicts the constancy in time of any statistical halo velocity bias present in the initial conditions, in agreement with peak theory. We test this prediction by studying the evolution of a conserved halo population in N -body simulations. We establish that the initial simulated halo density and velocity statistics show distinct features of the peak model and, thus, deviate from the simple local Lagrangian bias. We demonstrate, for the first time, that the time evolution of their velocity is in tension with the rapid decay expected in the standard approach.

  13. The impact of baryonic discs on the shapes and profiles of self-interacting dark matter halos

    NASA Astrophysics Data System (ADS)

    Sameie, Omid; Creasey, Peter; Yu, Hai-Bo; Sales, Laura V.; Vogelsberger, Mark; Zavala, Jesús

    2018-06-01

    We employ isolated N-body simulations to study the response of self-interacting dark matter (SIDM) halos in the presence of the baryonic potentials. Dark matter self-interactions lead to kinematic thermalization in the inner halo, resulting in a tight correlation between the dark matter and baryon distributions. A deep baryonic potential shortens the phase of SIDM core expansion and triggers core contraction. This effect can be further enhanced by a large self-scattering cross section. We find the final SIDM density profile is sensitive to the baryonic concentration and the strength of dark matter self-interactions. Assuming a spherical initial halo, we also study evolution of the SIDM halo shape together with the density profile. The halo shape at later epochs deviates from spherical symmetry due to the influence of the non-spherical disc potential, and its significance depends on the baryonic contribution to the total gravitational potential, relative to the dark matter one. In addition, we construct a multi-component model for the Milky Way, including an SIDM halo, a stellar disc and a bulge, and show it is consistent with observations from stellar kinematics and streams.

  14. Impact of Neutrinos on Dark Matter Halo Environment

    NASA Astrophysics Data System (ADS)

    Court, Travis; Villaescusa-Navarro, Francisco

    2018-01-01

    The spatial clustering of galaxies is commonly used to infer the shape of the matter power spectrum and therefore to place constraints on the value of the cosmological parameters. In order to extract the maximum information from galaxy surveys it is required to provide accurate theoretical predictions. The first step to model galaxy clustering is to understand the spatial distribution of the structures where they reside: dark matter halos. I will show that the clustering of halos does not depend only on mass, but on other quantities like local matter overdensity. I will point out that halo clustering is also sensitive to the local overdensity of the cosmic neutrino background. I will show that splitting halos according to neutrino overdensity induces a very large scale-dependence bias, an effect that may lead to a new technique to constraint the sum of the neutrino masses.

  15. Is the dark halo of the Milky Way prolate?

    NASA Astrophysics Data System (ADS)

    Bowden, A.; Evans, N. W.; Williams, A. A.

    2016-07-01

    We introduce the flattening equation, which relates the shape of the dark halo to the angular velocity dispersions and the density of a tracer population of stars. It assumes spherical alignment of the velocity dispersion tensor, as seen in the data on stellar halo stars in the Milky Way. The angular anisotropy and gradients in the angular velocity dispersions drive the solutions towards prolateness, whilst the gradient in the stellar density is a competing effect favouring oblateness. We provide an efficient numerical algorithm to integrate the flattening equation. Using tests on mock data, we show that there is a strong degeneracy between circular speed and flattening, which can be circumvented with informative priors. Therefore, we advocate the use of the flattening equation to test for oblateness or prolateness, though the precise value of q can only be measured with the addition of the radial Jeans equation. We apply the flattening equation to a sample extracted from the Sloan Digital Sky Survey of ˜15 000 halo stars with full phase space information and errors. We find that between Galactocentric radii of 5 and 10 kpc, the shape of the dark halo is prolate, whilst even mildly oblate models are disfavoured. Strongly oblate models are ruled out. Specifically, for a logarithmic halo model, if the asymptotic circular speed v0 lies between 210 and 250 km s-1, then we find the axis ratio of the equipotentials q satisfies 1.5 ≲ q ≲ 2.

  16. THE SEGUE K GIANT SURVEY. III. QUANTIFYING GALACTIC HALO SUBSTRUCTURE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Janesh, William; Morrison, Heather L.; Ma, Zhibo

    2016-01-10

    We statistically quantify the amount of substructure in the Milky Way stellar halo using a sample of 4568 halo K giant stars at Galactocentric distances ranging over 5–125 kpc. These stars have been selected photometrically and confirmed spectroscopically as K giants from the Sloan Digital Sky Survey’s Sloan Extension for Galactic Understanding and Exploration project. Using a position–velocity clustering estimator (the 4distance) and a model of a smooth stellar halo, we quantify the amount of substructure in the halo, divided by distance and metallicity. Overall, we find that the halo as a whole is highly structured. We also confirm earliermore » work using blue horizontal branch (BHB) stars which showed that there is an increasing amount of substructure with increasing Galactocentric radius, and additionally find that the amount of substructure in the halo increases with increasing metallicity. Comparing to resampled BHB stars, we find that K giants and BHBs have similar amounts of substructure over equivalent ranges of Galactocentric radius. Using a friends-of-friends algorithm to identify members of individual groups, we find that a large fraction (∼33%) of grouped stars are associated with Sgr, and identify stars belonging to other halo star streams: the Orphan Stream, the Cetus Polar Stream, and others, including previously unknown substructures. A large fraction of sample K giants (more than 50%) are not grouped into any substructure. We find also that the Sgr stream strongly dominates groups in the outer halo for all except the most metal-poor stars, and suggest that this is the source of the increase of substructure with Galactocentric radius and metallicity.« less

  17. Testing the Bose-Einstein Condensate dark matter model at galactic cluster scale

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harko, Tiberiu; Liang, Pengxiang; Liang, Shi-Dong

    The possibility that dark matter may be in the form of a Bose-Einstein Condensate (BEC) has been extensively explored at galactic scale. In particular, good fits for the galactic rotations curves have been obtained, and upper limits for the dark matter particle mass and scattering length have been estimated. In the present paper we extend the investigation of the properties of the BEC dark matter to the galactic cluster scale, involving dark matter dominated astrophysical systems formed of thousands of galaxies each. By considering that one of the major components of a galactic cluster, the intra-cluster hot gas, is describedmore » by King's β-model, and that both intra-cluster gas and dark matter are in hydrostatic equilibrium, bound by the same total mass profile, we derive the mass and density profiles of the BEC dark matter. In our analysis we consider several theoretical models, corresponding to isothermal hot gas and zero temperature BEC dark matter, non-isothermal gas and zero temperature dark matter, and isothermal gas and finite temperature BEC, respectively. The properties of the finite temperature BEC dark matter cluster are investigated in detail numerically. We compare our theoretical results with the observational data of 106 galactic clusters. Using a least-squares fitting, as well as the observational results for the dark matter self-interaction cross section, we obtain some upper bounds for the mass and scattering length of the dark matter particle. Our results suggest that the mass of the dark matter particle is of the order of μ eV, while the scattering length has values in the range of 10{sup −7} fm.« less

  18. Using photometrically selected metal-poor stars to study dwarf galaxies and the Galactic stellar halo

    NASA Astrophysics Data System (ADS)

    Youakim, Kris; Starkenburg, Else; Martin, Nicolas; Pristine Team

    2018-06-01

    The Pristine survey is a narrow-band photometric survey designed to efficiently search for extremely metal-poor (EMP) stars. In the first three years of the survey, it has demonstrated great efficiency at finding EMP stars, and also great promise for increasing the current, small sample of the most metal-poor stars. The present sky coverage is ~2500 square degrees in the Northern Galactic Halo, including several individual fields targeting dwarf galaxies. By efficiently identifying member stars in the outskirts of known faint dwarf galaxies, the dynamical histories and chemical abundance patterns of these systems can be understood in greater detail. Additionally, with reliable photometric metallicities over a large sky coverage it is possible to perform a large scale clustering analysis in the Milky Way halo, and investigate the characteristic scale of substructure at different metallicities. This can reveal important details about the process of building up the halo through dwarf galaxy accretion, and offer insight into the connection between dwarf galaxies and the Milky Way halo. In this talk I will outline our results on the search for the most pristine stars, with a focus on how we are using this information to advance our understanding of dwarf galaxies and their contribution to the formation of the Galactic stellar halo.

  19. CLUMPY: A code for γ-ray signals from dark matter structures

    NASA Astrophysics Data System (ADS)

    Charbonnier, Aldée; Combet, Céline; Maurin, David

    2012-03-01

    We present the first public code for semi-analytical calculation of the γ-ray flux astrophysical J-factor from dark matter annihilation/decay in the Galaxy, including dark matter substructures. The core of the code is the calculation of the line of sight integral of the dark matter density squared (for annihilations) or density (for decaying dark matter). The code can be used in three modes: i) to draw skymaps from the Galactic smooth component and/or the substructure contributions, ii) to calculate the flux from a specific halo (that is not the Galactic halo, e.g. dwarf spheroidal galaxies) or iii) to perform simple statistical operations from a list of allowed DM profiles for a given object. Extragalactic contributions and other tracers of DM annihilation (e.g. positrons, anti-protons) will be included in a second release.

  20. Search for Dark Matter Annihilations towards the Inner Galactic Halo from 10 Years of Observations with H.E.S.S.

    NASA Astrophysics Data System (ADS)

    Abdallah, H.; Abramowski, A.; Aharonian, F.; Ait Benkhali, F.; Akhperjanian, A. G.; Angüner, E.; Arrieta, M.; Aubert, P.; Backes, M.; Balzer, A.; Barnard, M.; Becherini, Y.; Becker Tjus, J.; Berge, D.; Bernhard, S.; Bernlöhr, K.; Birsin, E.; Blackwell, R.; Böttcher, M.; Boisson, C.; Bolmont, J.; Bordas, P.; Bregeon, J.; Brun, F.; Brun, P.; Bryan, M.; Bulik, T.; Capasso, M.; Carr, J.; Casanova, S.; Chakraborty, N.; Chalme-Calvet, R.; Chaves, R. C. G.; Chen, A.; Chevalier, J.; Chrétien, M.; Colafrancesco, S.; Cologna, G.; Condon, B.; Conrad, J.; Couturier, C.; Cui, Y.; Davids, I. D.; Degrange, B.; Deil, C.; deWilt, P.; Djannati-Ataï, A.; Domainko, W.; Donath, A.; Drury, L. O'C.; Dubus, G.; Dutson, K.; Dyks, J.; Dyrda, M.; Edwards, T.; Egberts, K.; Eger, P.; Ernenwein, J.-P.; Eschbach, S.; Farnier, C.; Fegan, S.; Fernandes, M. V.; Fiasson, A.; Fontaine, G.; Förster, A.; Funk, S.; Füßling, M.; Gabici, S.; Gajdus, M.; Gallant, Y. A.; Garrigoux, T.; Giavitto, G.; Giebels, B.; Glicenstein, J. F.; Gottschall, D.; Goyal, A.; Grondin, M.-H.; Grudzińska, M.; Hadasch, D.; Hahn, J.; Hawkes, J.; Heinzelmann, G.; Henri, G.; Hermann, G.; Hervet, O.; Hillert, A.; Hinton, J. A.; Hofmann, W.; Hoischen, C.; Holler, M.; Horns, D.; Ivascenko, A.; Jacholkowska, A.; Jamrozy, M.; Janiak, M.; Jankowsky, D.; Jankowsky, F.; Jingo, M.; Jogler, T.; Jouvin, L.; Jung-Richardt, I.; Kastendieck, M. A.; Katarzyński, K.; Katz, U.; Kerszberg, D.; Khélifi, B.; Kieffer, M.; King, J.; Klepser, S.; Klochkov, D.; Kluźniak, W.; Kolitzus, D.; Komin, Nu.; Kosack, K.; Krakau, S.; Kraus, M.; Krayzel, F.; Krüger, P. P.; Laffon, H.; Lamanna, G.; Lau, J.; Lees, J.-P.; Lefaucheur, J.; Lefranc, V.; Lemière, A.; Lemoine-Goumard, M.; Lenain, J.-P.; Leser, E.; Lohse, T.; Lorentz, M.; Lui, R.; Lypova, I.; Marandon, V.; Marcowith, A.; Mariaud, C.; Marx, R.; Maurin, G.; Maxted, N.; Mayer, M.; Meintjes, P. J.; Menzler, U.; Meyer, M.; Mitchell, A. M. W.; Moderski, R.; Mohamed, M.; Morâ, K.; Moulin, E.; Murach, T.; de Naurois, M.; Niederwanger, F.; Niemiec, J.; Oakes, L.; Odaka, H.; Ohm, S.; Öttl, S.; Ostrowski, M.; Oya, I.; Padovani, M.; Panter, M.; Parsons, R. D.; Paz Arribas, M.; Pekeur, N. W.; Pelletier, G.; Petrucci, P.-O.; Peyaud, B.; Pita, S.; Poon, H.; Prokhorov, D.; Prokoph, H.; Pühlhofer, G.; Punch, M.; Quirrenbach, A.; Raab, S.; Reimer, A.; Reimer, O.; Renaud, M.; de los Reyes, R.; Rieger, F.; Romoli, C.; Rosier-Lees, S.; Rowell, G.; Rudak, B.; Rulten, C. B.; Sahakian, V.; Salek, D.; Sanchez, D. A.; Santangelo, A.; Sasaki, M.; Schlickeiser, R.; Schüssler, F.; Schulz, A.; Schwanke, U.; Schwemmer, S.; Seyffert, A. S.; Shafi, N.; Simoni, R.; Sol, H.; Spanier, F.; Spengler, G.; Spieß, F.; Stawarz, L.; Steenkamp, R.; Stegmann, C.; Stinzing, F.; Stycz, K.; Sushch, I.; Tavernet, J.-P.; Tavernier, T.; Taylor, A. M.; Terrier, R.; Tluczykont, M.; Trichard, C.; Tuffs, R.; van der Walt, J.; van Eldik, C.; van Soelen, B.; Vasileiadis, G.; Veh, J.; Venter, C.; Viana, A.; Vincent, P.; Vink, J.; Voisin, F.; Völk, H. J.; Vuillaume, T.; Wadiasingh, Z.; Wagner, S. J.; Wagner, P.; Wagner, R. M.; White, R.; Wierzcholska, A.; Willmann, P.; Wörnlein, A.; Wouters, D.; Yang, R.; Zabalza, V.; Zaborov, D.; Zacharias, M.; Zdziarski, A. A.; Zech, A.; Zefi, F.; Ziegler, A.; Żywucka, N.; H. E. S. S. Collaboration

    2016-09-01

    The inner region of the Milky Way halo harbors a large amount of dark matter (DM). Given its proximity, it is one of the most promising targets to look for DM. We report on a search for the annihilations of DM particles using γ -ray observations towards the inner 300 pc of the Milky Way, with the H.E.S.S. array of ground-based Cherenkov telescopes. The analysis is based on a 2D maximum likelihood method using Galactic Center (GC) data accumulated by H.E.S.S. over the last 10 years (2004-2014), and does not show any significant γ -ray signal above background. Assuming Einasto and Navarro-Frenk-White DM density profiles at the GC, we derive upper limits on the annihilation cross section ⟨σ v ⟩. These constraints are the strongest obtained so far in the TeV DM mass range and improve upon previous limits by a factor 5. For the Einasto profile, the constraints reach ⟨σ v ⟩ values of 6 ×10-26 cm3 s-1 in the W+W- channel for a DM particle mass of 1.5 TeV, and 2 ×10-26 cm3 s-1 in the τ+τ- channel for a 1 TeV mass. For the first time, ground-based γ -ray observations have reached sufficient sensitivity to probe ⟨σ v ⟩ values expected from the thermal relic density for TeV DM particles.

  1. The clustering of QSOs and the dark matter halos that host them

    NASA Astrophysics Data System (ADS)

    Zhao, Dong-Yao; Yan, Chang-Shuo; Lu, Youjun

    2013-10-01

    The spatial clustering of QSOs is an important measurable quantity which can be used to infer the properties of dark matter halos that host them. We construct a simple QSO model to explain the linear bias of QSOs measured by recent observations and explore the properties of dark matter halos that host a QSO. We assume that major mergers of dark matter halos can lead to the triggering of QSO phenomena, and the evolution of luminosity for a QSO generally shows two accretion phases, i.e., initially having a constant Eddington ratio due to the self-regulation of the accretion process when supply is sufficient, and then declining in rate with time as a power law due to either diminished supply or long term disk evolution. Using a Markov Chain Monte Carlo method, the model parameters are constrained by fitting the observationally determined QSO luminosity functions (LFs) in the hard X-ray and in the optical band simultaneously. Adopting the model parameters that best fit the QSO LFs, the linear bias of QSOs can be predicted and then compared with the observational measurements by accounting for various selection effects in different QSO surveys. We find that the latest measurements of the linear bias of QSOs from both the SDSS and BOSS QSO surveys can be well reproduced. The typical mass of SDSS QSOs at redshift 1.5 < z < 4.5 is ~ (3 - 6) × 1012 h-1 Msolar and the typical mass of BOSS QSOs at z ~ 2.4 is ~ 2 × 1012 h-1 Msolar. For relatively faint QSOs, the mass distribution of their host dark matter halos is wider than that of bright QSOs because faint QSOs can be hosted in both big halos and smaller halos, but bright QSOs are only hosted in big halos, which is part of the reason for the predicted weak dependence of the linear biases on the QSO luminosity.

  2. Probing the Interstellar Dust towards the Galactic Centre using X-ray Dust Scattering Halos

    NASA Astrophysics Data System (ADS)

    Jin, C.; Ponti, G.; Haberl, F.; Smith, R.

    2017-10-01

    Dust scattering creates an X-ray halo that contains abundant information about the interstellar dust along the source's line-of-sight (LOS), and is most prominent when the LOS nH is high. In this talk, I will present results from our latest study of a bright dust scattering halo around an eclipsing X-ray binary at 1.45 arcmin away from Sgr A*, namely AX J1745.6-2901. This study is based on a large set of XMM-Newton and Chandra observations, and is so-far the best dust scattering halo study of a X-ray transient in the Galactic centre (GC). I will show that the foreground dust of AX J1745.6-2901 can be decomposed into two major thick dust layers. One layer contains (66-81)% of the total LOS dust and is several kpc away from the source, and so is most likely to reside in the Galactic disc. The other layer is local to the source. I will also show that the dust scattering halo can cause the source spectrum to severely depend on the source extraction region. Such spectral bias can be corrected by our new Xspec model, which is likely to be applicable to Sgr A* and other GC sources as well.

  3. Accurate mass and velocity functions of dark matter haloes

    NASA Astrophysics Data System (ADS)

    Comparat, Johan; Prada, Francisco; Yepes, Gustavo; Klypin, Anatoly

    2017-08-01

    N-body cosmological simulations are an essential tool to understand the observed distribution of galaxies. We use the MultiDark simulation suite, run with the Planck cosmological parameters, to revisit the mass and velocity functions. At redshift z = 0, the simulations cover four orders of magnitude in halo mass from ˜1011M⊙ with 8783 874 distinct haloes and 532 533 subhaloes. The total volume used is ˜515 Gpc3, more than eight times larger than in previous studies. We measure and model the halo mass function, its covariance matrix w.r.t halo mass and the large-scale halo bias. With the formalism of the excursion-set mass function, we explicit the tight interconnection between the covariance matrix, bias and halo mass function. We obtain a very accurate (<2 per cent level) model of the distinct halo mass function. We also model the subhalo mass function and its relation to the distinct halo mass function. The set of models obtained provides a complete and precise framework for the description of haloes in the concordance Planck cosmology. Finally, we provide precise analytical fits of the Vmax maximum velocity function up to redshift z < 2.3 to push for the development of halo occupation distribution using Vmax. The data and the analysis code are made publicly available in the Skies and Universes data base.

  4. Effect of the cosmological constant on halo size

    NASA Astrophysics Data System (ADS)

    Kulchoakrungsun, Ekapob; Lam, Adrian; Lowe, David A.

    2018-04-01

    In this work, we consider the effect of the cosmological constant on galactic halo size. As a model, we study the general relativistic derivation of orbits in the Schwarzschild-de Sitter metric. We find that there exists a length scale rΛ corresponding to a maximum size of a circular orbit of a test mass in a gravitationally bound system, which is the geometric mean of the cosmological horizon size squared and the Schwarzschild radius. This agrees well with the size of a galactic halo when the effects of dark matter are included. The size of larger structures such as galactic clusters and superclusters are also well-approximated by this scale. This model provides a simplified approach to computing the size of such structures without the usual detailed dynamical models. Some of the more detailed approaches that appear in the literature are reviewed, and we find the length scales agree to within a factor of order one. Finally, we note the length scale associated with the effects of MOND or Verlinde’s emergent gravity, which offer explanations of the flattening of galaxy rotation curves without invoking dark matter, may be expressed as the geometric mean of the cosmological horizon size and the Schwarzschild radius, which is typically 100 times smaller than rΛ.

  5. Search for γ -Ray Line Signals from Dark Matter Annihilations in the Inner Galactic Halo from 10 Years of Observations with H.E.S.S.

    NASA Astrophysics Data System (ADS)

    Abdallah, H.; Abramowski, A.; Aharonian, F.; Ait Benkhali, F.; Angüner, E. O.; Arakawa, M.; Arrieta, M.; Aubert, P.; Backes, M.; Balzer, A.; Barnard, M.; Becherini, Y.; Becker Tjus, J.; Berge, D.; Bernhard, S.; Bernlöhr, K.; Blackwell, R.; Böttcher, M.; Boisson, C.; Bolmont, J.; Bonnefoy, S.; Bordas, P.; Bregeon, J.; Brun, F.; Brun, P.; Bryan, M.; Büchele, M.; Bulik, T.; Capasso, M.; Caroff, S.; Carosi, A.; Carr, J.; Casanova, S.; Cerruti, M.; Chakraborty, N.; Chaves, R. C. G.; Chen, A.; Chevalier, J.; Colafrancesco, S.; Condon, B.; Conrad, J.; Davids, I. D.; Decock, J.; Deil, C.; Devin, J.; deWilt, P.; Dirson, L.; Djannati-Ataï, A.; Domainko, W.; Donath, A.; Drury, L. O'C.; Dutson, K.; Dyks, J.; Edwards, T.; Egberts, K.; Eger, P.; Emery, G.; Ernenwein, J.-P.; Eschbach, S.; Farnier, C.; Fegan, S.; Fernandes, M. V.; Fiasson, A.; Fontaine, G.; Förster, A.; Funk, S.; Füßling, M.; Gabici, S.; Gallant, Y. A.; Garrigoux, T.; Gaté, F.; Giavitto, G.; Giebels, B.; Glawion, D.; Glicenstein, J. F.; Gottschall, D.; Grondin, M.-H.; Hahn, J.; Haupt, M.; Hawkes, J.; Heinzelmann, G.; Henri, G.; Hermann, G.; Hinton, J. A.; Hofmann, W.; Hoischen, C.; Holch, T. L.; Holler, M.; Horns, D.; Ivascenko, A.; Iwasaki, H.; Jacholkowska, A.; Jamrozy, M.; Janiak, M.; Jankowsky, D.; Jankowsky, F.; Jingo, M.; Jouvin, L.; Jung-Richardt, I.; Kastendieck, M. A.; Katarzyński, K.; Katsuragawa, M.; Katz, U.; Kerszberg, D.; Khangulyan, D.; Khélifi, B.; King, J.; Klepser, S.; Klochkov, D.; Kluźniak, W.; Komin, Nu.; Kosack, K.; Krakau, S.; Kraus, M.; Krüger, P. P.; Laffon, H.; Lamanna, G.; Lau, J.; Lees, J.-P.; Lefaucheur, J.; Lemière, A.; Lemoine-Goumard, M.; Lenain, J.-P.; Leser, E.; Liu, R.; Lohse, T.; Lorentz, M.; López-Coto, R.; Lypova, I.; Malyshev, D.; Marandon, V.; Marcowith, A.; Mariaud, C.; Marx, R.; Maurin, G.; Maxted, N.; Mayer, M.; Meintjes, P. J.; Meyer, M.; Mitchell, A. M. W.; Moderski, R.; Mohamed, M.; Mohrmann, L.; Morâ, K.; Moulin, E.; Murach, T.; Nakashima, S.; de Naurois, M.; Ndiyavala, H.; Niederwanger, F.; Niemiec, J.; Oakes, L.; O'Brien, P.; Odaka, H.; Ohm, S.; Ostrowski, M.; Oya, I.; Padovani, M.; Panter, M.; Parsons, R. D.; Pekeur, N. W.; Pelletier, G.; Perennes, C.; Petrucci, P.-O.; Peyaud, B.; Piel, Q.; Pita, S.; Poireau, V.; Poon, H.; Prokhorov, D.; Prokoph, H.; Pühlhofer, G.; Punch, M.; Quirrenbach, A.; Raab, S.; Rauth, R.; Reimer, A.; Reimer, O.; Renaud, M.; de los Reyes, R.; Rieger, F.; Rinchiuso, L.; Romoli, C.; Rowell, G.; Rudak, B.; Rulten, C. B.; Sahakian, V.; Saito, S.; Sanchez, D. A.; Santangelo, A.; Sasaki, M.; Schandri, M.; Schlickeiser, R.; Schüssler, F.; Schulz, A.; Schwanke, U.; Schwemmer, S.; Seglar-Arroyo, M.; Settimo, M.; Seyffert, A. S.; Shafi, N.; Shilon, I.; Shiningayamwe, K.; Simoni, R.; Sol, H.; Spanier, F.; Spir-Jacob, M.; Stawarz, Ł.; Steenkamp, R.; Stegmann, C.; Steppa, C.; Sushch, I.; Takahashi, T.; Tavernet, J.-P.; Tavernier, T.; Taylor, A. M.; Terrier, R.; Tibaldo, L.; Tiziani, D.; Tluczykont, M.; Trichard, C.; Tsirou, M.; Tsuji, N.; Tuffs, R.; Uchiyama, Y.; van der Walt, J.; van Eldik, C.; van Rensburg, C.; van Soelen, B.; Vasileiadis, G.; Veh, J.; Venter, C.; Viana, A.; Vincent, P.; Vink, J.; Voisin, F.; Völk, H. J.; Vuillaume, T.; Wadiasingh, Z.; Wagner, S. J.; Wagner, P.; Wagner, R. M.; White, R.; Wierzcholska, A.; Willmann, P.; Wörnlein, A.; Wouters, D.; Yang, R.; Zaborov, D.; Zacharias, M.; Zanin, R.; Zdziarski, A. A.; Zech, A.; Zefi, F.; Ziegler, A.; Zorn, J.; Żywucka, N.; H. E. S. S. Collaboration

    2018-05-01

    Spectral lines are among the most powerful signatures for dark matter (DM) annihilation searches in very-high-energy γ rays. The central region of the Milky Way halo is one of the most promising targets given its large amount of DM and proximity to Earth. We report on a search for a monoenergetic spectral line from self-annihilations of DM particles in the energy range from 300 GeV to 70 TeV using a two-dimensional maximum likelihood method taking advantage of both the spectral and spatial features of the signal versus background. The analysis makes use of Galactic center observations accumulated over ten years (2004-2014) with the H.E.S.S. array of ground-based Cherenkov telescopes. No significant γ -ray excess above the background is found. We derive upper limits on the annihilation cross section ⟨σ v ⟩ for monoenergetic DM lines at the level of 4 ×10-28 cm3 s-1 at 1 TeV, assuming an Einasto DM profile for the Milky Way halo. For a DM mass of 1 TeV, they improve over the previous ones by a factor of 6. The present constraints are the strongest obtained so far for DM particles in the mass range 300 GeV-70 TeV. Ground-based γ -ray observations have reached sufficient sensitivity to explore relevant velocity-averaged cross sections for DM annihilation into two γ -ray photons at the level expected from the thermal relic density for TeV DM particles.

  6. Search for γ-Ray Line Signals from Dark Matter Annihilations in the Inner Galactic Halo from 10 Years of Observations with H.E.S.S.

    PubMed

    Abdallah, H; Abramowski, A; Aharonian, F; Ait Benkhali, F; Angüner, E O; Arakawa, M; Arrieta, M; Aubert, P; Backes, M; Balzer, A; Barnard, M; Becherini, Y; Becker Tjus, J; Berge, D; Bernhard, S; Bernlöhr, K; Blackwell, R; Böttcher, M; Boisson, C; Bolmont, J; Bonnefoy, S; Bordas, P; Bregeon, J; Brun, F; Brun, P; Bryan, M; Büchele, M; Bulik, T; Capasso, M; Caroff, S; Carosi, A; Carr, J; Casanova, S; Cerruti, M; Chakraborty, N; Chaves, R C G; Chen, A; Chevalier, J; Colafrancesco, S; Condon, B; Conrad, J; Davids, I D; Decock, J; Deil, C; Devin, J; deWilt, P; Dirson, L; Djannati-Ataï, A; Domainko, W; Donath, A; Drury, L O'C; Dutson, K; Dyks, J; Edwards, T; Egberts, K; Eger, P; Emery, G; Ernenwein, J-P; Eschbach, S; Farnier, C; Fegan, S; Fernandes, M V; Fiasson, A; Fontaine, G; Förster, A; Funk, S; Füßling, M; Gabici, S; Gallant, Y A; Garrigoux, T; Gaté, F; Giavitto, G; Giebels, B; Glawion, D; Glicenstein, J F; Gottschall, D; Grondin, M-H; Hahn, J; Haupt, M; Hawkes, J; Heinzelmann, G; Henri, G; Hermann, G; Hinton, J A; Hofmann, W; Hoischen, C; Holch, T L; Holler, M; Horns, D; Ivascenko, A; Iwasaki, H; Jacholkowska, A; Jamrozy, M; Janiak, M; Jankowsky, D; Jankowsky, F; Jingo, M; Jouvin, L; Jung-Richardt, I; Kastendieck, M A; Katarzyński, K; Katsuragawa, M; Katz, U; Kerszberg, D; Khangulyan, D; Khélifi, B; King, J; Klepser, S; Klochkov, D; Kluźniak, W; Komin, Nu; Kosack, K; Krakau, S; Kraus, M; Krüger, P P; Laffon, H; Lamanna, G; Lau, J; Lees, J-P; Lefaucheur, J; Lemière, A; Lemoine-Goumard, M; Lenain, J-P; Leser, E; Liu, R; Lohse, T; Lorentz, M; López-Coto, R; Lypova, I; Malyshev, D; Marandon, V; Marcowith, A; Mariaud, C; Marx, R; Maurin, G; Maxted, N; Mayer, M; Meintjes, P J; Meyer, M; Mitchell, A M W; Moderski, R; Mohamed, M; Mohrmann, L; Morå, K; Moulin, E; Murach, T; Nakashima, S; de Naurois, M; Ndiyavala, H; Niederwanger, F; Niemiec, J; Oakes, L; O'Brien, P; Odaka, H; Ohm, S; Ostrowski, M; Oya, I; Padovani, M; Panter, M; Parsons, R D; Pekeur, N W; Pelletier, G; Perennes, C; Petrucci, P-O; Peyaud, B; Piel, Q; Pita, S; Poireau, V; Poon, H; Prokhorov, D; Prokoph, H; Pühlhofer, G; Punch, M; Quirrenbach, A; Raab, S; Rauth, R; Reimer, A; Reimer, O; Renaud, M; de Los Reyes, R; Rieger, F; Rinchiuso, L; Romoli, C; Rowell, G; Rudak, B; Rulten, C B; Sahakian, V; Saito, S; Sanchez, D A; Santangelo, A; Sasaki, M; Schandri, M; Schlickeiser, R; Schüssler, F; Schulz, A; Schwanke, U; Schwemmer, S; Seglar-Arroyo, M; Settimo, M; Seyffert, A S; Shafi, N; Shilon, I; Shiningayamwe, K; Simoni, R; Sol, H; Spanier, F; Spir-Jacob, M; Stawarz, Ł; Steenkamp, R; Stegmann, C; Steppa, C; Sushch, I; Takahashi, T; Tavernet, J-P; Tavernier, T; Taylor, A M; Terrier, R; Tibaldo, L; Tiziani, D; Tluczykont, M; Trichard, C; Tsirou, M; Tsuji, N; Tuffs, R; Uchiyama, Y; van der Walt, J; van Eldik, C; van Rensburg, C; van Soelen, B; Vasileiadis, G; Veh, J; Venter, C; Viana, A; Vincent, P; Vink, J; Voisin, F; Völk, H J; Vuillaume, T; Wadiasingh, Z; Wagner, S J; Wagner, P; Wagner, R M; White, R; Wierzcholska, A; Willmann, P; Wörnlein, A; Wouters, D; Yang, R; Zaborov, D; Zacharias, M; Zanin, R; Zdziarski, A A; Zech, A; Zefi, F; Ziegler, A; Zorn, J; Żywucka, N

    2018-05-18

    Spectral lines are among the most powerful signatures for dark matter (DM) annihilation searches in very-high-energy γ rays. The central region of the Milky Way halo is one of the most promising targets given its large amount of DM and proximity to Earth. We report on a search for a monoenergetic spectral line from self-annihilations of DM particles in the energy range from 300 GeV to 70 TeV using a two-dimensional maximum likelihood method taking advantage of both the spectral and spatial features of the signal versus background. The analysis makes use of Galactic center observations accumulated over ten years (2004-2014) with the H.E.S.S. array of ground-based Cherenkov telescopes. No significant γ-ray excess above the background is found. We derive upper limits on the annihilation cross section ⟨σv⟩ for monoenergetic DM lines at the level of 4×10^{-28}  cm^{3} s^{-1} at 1 TeV, assuming an Einasto DM profile for the Milky Way halo. For a DM mass of 1 TeV, they improve over the previous ones by a factor of 6. The present constraints are the strongest obtained so far for DM particles in the mass range 300 GeV-70 TeV. Ground-based γ-ray observations have reached sufficient sensitivity to explore relevant velocity-averaged cross sections for DM annihilation into two γ-ray photons at the level expected from the thermal relic density for TeV DM particles.

  7. XMM-NEWTON MEASUREMENT OF THE GALACTIC HALO X-RAY EMISSION USING A COMPACT SHADOWING CLOUD

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Henley, David B.; Shelton, Robin L.; Cumbee, Renata S.

    2015-02-01

    Observations of interstellar clouds that cast shadows in the soft X-ray background can be used to separate the background Galactic halo emission from the local emission due to solar wind charge exchange (SWCX) and/or the Local Bubble (LB). We present an XMM-Newton observation of a shadowing cloud, G225.60–66.40, that is sufficiently compact that the on- and off-shadow spectra can be extracted from a single field of view (unlike previous shadowing observations of the halo with CCD-resolution spectrometers, which consisted of separate on- and off-shadow pointings). We analyzed the spectra using a variety of foreground models: one representing LB emission, andmore » two representing SWCX emission. We found that the resulting halo model parameters (temperature T {sub h} ≈ 2 × 10{sup 6} K, emission measure E{sub h}≈4×10{sup −3} cm{sup −6} pc) were not sensitive to the foreground model used. This is likely due to the relative faintness of the foreground emission in this observation. However, the data do favor the existence of a foreground. The halo parameters derived from this observation are in good agreement with those from previous shadowing observations, and from an XMM-Newton survey of the Galactic halo emission. This supports the conclusion that the latter results are not subject to systematic errors, and can confidently be used to test models of the halo emission.« less

  8. Constraints on Resonant Dark Matter Annihilation

    NASA Astrophysics Data System (ADS)

    Backovic, Mihailo

    Resonant dark matter annihilation drew much attention in the light of recent measurements of charged cosmic ray fluxes. Interpreting the anomalous signal in the positron fraction as a sign of dark matter annihilation in the galactic halo requires cross sections orders of magnitudes higher than the estimates coming from thermal relic abundance. Resonant dark matter annihilation provides a mechanism to bridge the apparent contradiction between thermal relic abundance and the positron data measured by PAMELA and FERMI satellites. In this thesis, we analyze a class of models which allow for dark matter to annihilate through an s-channel resonance. Our analysis takes into account constraints from thermal relic abundance and the recent measurements of charged lepton cosmic ray fluxes, first separately and then simultaneously. Consistency of resonant dark matter annihilation models with thermal relic abundance as measured by WMAP serves to construct a relationship between the full set of masses, couplings and widths involved. Extensive numerical analysis of the full four dimensional parameter space is summarized by simple analytic approximations. The expressions are robust enough to be generalized to models including additional annihilation channels. We provide a separate treatment of resonant annihilation of dark matter in the galac- tic halo. We find model-independent upper limits on halo dark matter annihilation rates and show that the most efficient annihilation mechanism involves s-channel resonances. Widths that are large compared to the energy spread in the galactic halo are capable of saturating unitarity bounds without much difficulty. Partial wave unitarity prevents the so called Sommerfeld factors from producing large changes in cross sections. In addition, the approximations made in Sommerfeld factors break down in the kinematic regions where large cross section enhancements are often cited. Simultaneous constraints from thermal relic abundance and halo

  9. Ultralight Axion Dark Matter and Its Impact on Dark Halo Structure in N-body Simulations

    NASA Astrophysics Data System (ADS)

    Zhang, Jiajun; Sming Tsai, Yue-Lin; Kuo, Jui-Lin; Cheung, Kingman; Chu, Ming-Chung

    2018-01-01

    Ultralight axion is a dark matter candidate with mass { O }({10}-22){eV} and de Broglie wavelength of order kiloparsec. Such an axion, also called fuzzy dark matter (FDM), thermalizes via gravitational force and forms a Bose–Einstein condensate. Recent studies suggested that the quantum pressure from FDM can significantly affect structure formation in small scales, thus alleviating the so-called “small-scale crisis.” In this paper, we develop a new technique to discretize the quantum pressure and illustrate the interactions among FDM particles in an N-body simulation that accurately simulates the formation of the dark matter halo and its inner structure in the region outside the softening length. In a self-gravitationally bound virialized halo, we find a constant density solitonic core, which is consistent with theoretical prediction. The existence of the solitonic core reveals the nonlinear effect of quantum pressure and impacts structure formation in the FDM model.

  10. Flattened halos in a nontopological soliton model of dark matter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mielke, Eckehard W.; Peralta, Humberto H.

    2004-12-15

    Soliton type solutions of a scalar model with a {phi}{sup 6} self-interaction are analyzed for their density profiles as toy model of dark matter halos. We construct exact solutions with nontrivial ellipticity due to angular momentum and propose a 'nonlinear superposition' of round and flattened halos in order to improve the scaling relations and the correspondence of the predicted rotation curves to the empirical Burkert fit.

  11. Dark Matter and the Galactic Center

    NASA Astrophysics Data System (ADS)

    Bergstrom, Lars

    2017-01-01

    The question of the identity of dark matter is one of the most outstanding enigmas of contemporary cosmology and particle astrophysics. An overview is given of the subject, a brief history, some proposed particle candidates, and the several methods now available for finally solving this difficult problem. The galactic center is one of the most interesting places for the dark matter search using γ-rays, but also one that has challenging, maybe confusing, other sources of GeV-scale radiation.

  12. Static structure of chameleon dark matter as an explanation of dwarf spheroidal galaxy cores

    NASA Astrophysics Data System (ADS)

    Chanda, Prolay Krishna; Das, Subinoy

    2017-04-01

    We propose a novel mechanism that explains the cored dark matter density profile in recently observed dark matter rich dwarf spheroidal galaxies. In our scenario, dark matter particle mass decreases gradually as a function of distance towards the center of a dwarf galaxy due to its interaction with a chameleon scalar. At closer distance towards the Galactic center the strength of attractive scalar fifth force becomes much stronger than gravity and is balanced by the Fermi pressure of the dark matter cloud; thus, an equilibrium static configuration of the dark matter halo is obtained. Like the case of soliton star or fermion Q-star, the stability of the dark matter halo is obtained as the scalar achieves a static profile and reaches an asymptotic value away from the Galactic center. For simple scalar-dark matter interaction and quadratic scalar self-interaction potential, we show that dark matter behaves exactly like cold dark matter (CDM) beyond a few kpc away from the Galactic center but at closer distance it becomes lighter and Fermi pressure cannot be ignored anymore. Using Thomas-Fermi approximation, we numerically solve the radial static profile of the scalar field, fermion mass and dark matter energy density as a function of distance. We find that for fifth force mediated by an ultralight scalar, it is possible to obtain a flattened dark matter density profile towards the Galactic center. In our scenario, the fifth force can be neglected at distance r ≥1 kpc from the Galactic center and dark matter can be simply treated as heavy nonrelativistic particles beyond this distance, thus reproducing the success of CDM at large scales.

  13. Studying generalised dark matter interactions with extended halo-independent methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kahlhoefer, Felix; Wild, Sebastian

    2016-10-20

    The interpretation of dark matter direct detection experiments is complicated by the fact that neither the astrophysical distribution of dark matter nor the properties of its particle physics interactions with nuclei are known in detail. To address both of these issues in a very general way we develop a new framework that combines the full formalism of non-relativistic effective interactions with state-of-the-art halo-independent methods. This approach makes it possible to analyse direct detection experiments for arbitrary dark matter interactions and quantify the goodness-of-fit independent of astrophysical uncertainties. We employ this method in order to demonstrate that the degeneracy between astrophysicalmore » uncertainties and particle physics unknowns is not complete. Certain models can be distinguished in a halo-independent way using a single ton-scale experiment based on liquid xenon, while other models are indistinguishable with a single experiment but can be separated using combined information from several target elements.« less

  14. The mass dependence of dark matter halo alignments with large-scale structure

    NASA Astrophysics Data System (ADS)

    Piras, Davide; Joachimi, Benjamin; Schäfer, Björn Malte; Bonamigo, Mario; Hilbert, Stefan; van Uitert, Edo

    2018-02-01

    Tidal gravitational forces can modify the shape of galaxies and clusters of galaxies, thus correlating their orientation with the surrounding matter density field. We study the dependence of this phenomenon, known as intrinsic alignment (IA), on the mass of the dark matter haloes that host these bright structures, analysing the Millennium and Millennium-XXL N-body simulations. We closely follow the observational approach, measuring the halo position-halo shape alignment and subsequently dividing out the dependence on halo bias. We derive a theoretical scaling of the IA amplitude with mass in a dark matter universe, and predict a power law with slope βM in the range 1/3 to 1/2, depending on mass scale. We find that the simulation data agree with each other and with the theoretical prediction remarkably well over three orders of magnitude in mass, with the joint analysis yielding an estimate of β M = 0.36^{+0.01}_{-0.01}. This result does not depend on redshift or on the details of the halo shape measurement. The analysis is repeated on observational data, obtaining a significantly higher value, β M = 0.56^{+0.05}_{-0.05}. There are also small but significant deviations from our simple model in the simulation signals at both the high- and low-mass end. We discuss possible reasons for these discrepancies, and argue that they can be attributed to physical processes not captured in the model or in the dark matter-only simulations.

  15. Dark matter haloes determine the masses of supermassive black holes

    NASA Astrophysics Data System (ADS)

    Booth, C. M.; Schaye, Joop

    2010-06-01

    The energy and momentum deposited by the radiation from accretion flows on to the supermassive black holes (BHs) that reside at the centres of virtually all galaxies can halt or even reverse gas inflow, providing a natural mechanism for supermassive BHs to regulate their growth and to couple their properties to those of their host galaxies. However, it remains unclear whether this self-regulation occurs on the scale at which the BH is gravitationally dominant, on that of the stellar bulge, the galaxy or that of the entire dark matter halo. To answer this question, we use self-consistent simulations of the co-evolution of the BH and galaxy populations that reproduce the observed correlations between the masses of the BHs and the properties of their host galaxies. We first confirm unambiguously that the BHs regulate their growth: the amount of energy that the BHs inject into their surroundings remains unchanged when the fraction of the accreted rest mass energy that is injected is varied by four orders of magnitude. The BHs simply adjust their masses so as to inject the same amount of energy. We then use simulations with artificially reduced star formation rates to demonstrate explicitly that BH mass is not set by the stellar mass. Instead, we find that it is determined by the mass of the dark matter halo with a secondary dependence on the halo concentration, of the form that would be expected if the halo binding energy were the fundamental property that controls the mass of the BH. We predict that the BH mass, mBH, scales with halo mass as mBH ~ mαhalo, with α ~ 1.55 +/- 0.05, and that the scatter around the mean relation in part reflects the scatter in the halo concentration-mass relation.

  16. Hierarchical phase space structure of dark matter haloes: Tidal debris, caustics, and dark matter annihilation

    NASA Astrophysics Data System (ADS)

    Afshordi, Niayesh; Mohayaee, Roya; Bertschinger, Edmund

    2009-04-01

    Most of the mass content of dark matter haloes is expected to be in the form of tidal debris. The density of debris is not constant, but rather can grow due to formation of caustics at the apocenters and pericenters of the orbit, or decay as a result of phase mixing. In the phase space, the debris assemble in a hierarchy that is truncated by the primordial temperature of dark matter. Understanding this phase structure can be of significant importance for the interpretation of many astrophysical observations and, in particular, dark matter detection experiments. With this purpose in mind, we develop a general theoretical framework to describe the hierarchical structure of the phase space of cold dark matter haloes. We do not make any assumption of spherical symmetry and/or smooth and continuous accretion. Instead, working with correlation functions in the action-angle space, we can fully account for the hierarchical structure (predicting a two-point correlation function ∝ΔJ-1.6 in the action space), as well as the primordial discreteness of the phase space. As an application, we estimate the boost to the dark matter annihilation signal due to the structure of the phase space within virial radius: the boost due to the hierarchical tidal debris is of order unity, whereas the primordial discreteness of the phase structure can boost the total annihilation signal by up to an order of magnitude. The latter is dominated by the regions beyond 20% of the virial radius, and is largest for the recently formed haloes with the least degree of phase mixing. Nevertheless, as we argue in a companion paper, the boost due to small gravitationally-bound substructure can dominate this effect at low redshifts.

  17. Large-scale assembly bias of dark matter halos

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lazeyras, Titouan; Musso, Marcello; Schmidt, Fabian, E-mail: titouan@mpa-garching.mpg.de, E-mail: mmusso@sas.upenn.edu, E-mail: fabians@mpa-garching.mpg.de

    We present precise measurements of the assembly bias of dark matter halos, i.e. the dependence of halo bias on other properties than the mass, using curved 'separate universe' N-body simulations which effectively incorporate an infinite-wavelength matter overdensity into the background density. This method measures the LIMD (local-in-matter-density) bias parameters b {sub n} in the large-scale limit. We focus on the dependence of the first two Eulerian biases b {sup E} {sup {sub 1}} and b {sup E} {sup {sub 2}} on four halo properties: the concentration, spin, mass accretion rate, and ellipticity. We quantitatively compare our results with previous worksmore » in which assembly bias was measured on fairly small scales. Despite this difference, our findings are in good agreement with previous results. We also look at the joint dependence of bias on two halo properties in addition to the mass. Finally, using the excursion set peaks model, we attempt to shed new insights on how assembly bias arises in this analytical model.« less

  18. Simulating Halos with the Caterpillar Project

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2016-04-01

    The Caterpillar Project is a beautiful series of high-resolution cosmological simulations. The goal of this project is to examine the evolution of dark-matter halos like the Milky Ways, to learn about how galaxies like ours formed. This immense computational project is still in progress, but the Caterpillar team is already providing a look at some of its first results.Lessons from Dark-Matter HalosWhy simulate the dark-matter halos of galaxies? Observationally, the formation history of our galaxy is encoded in galactic fossil record clues, like the tidal debris from disrupted satellite galaxies in the outer reaches of our galaxy, or chemical abundance patterns throughout our galactic disk and stellar halo.But to interpret this information in a way that lets us learn about our galaxys history, we need to first test galaxy formation and evolution scenarios via cosmological simulations. Then we can compare the end result of these simulations to what we observe today.This figure illustrates the difference that mass resolution makes. In the left panel, the mass resolution is 1.5*10^7 solar masses per particle. In the right panel, the mass resolution is 3*10^4 solar masses per particle [Griffen et al. 2016]A Computational ChallengeDue to how computationally expensive such simulations are, previous N-body simulations of the growth of Milky-Way-like halos have consisted of only one or a few halos each. But in order to establish a statistical understanding of how galaxy halos form and find out whether the Milky Ways halo is typical or unusual! it is necessary to simulate a larger number of halos.In addition, in order to accurately follow the formation and evolution of substructure within the dark-matter halos, these simulations must be able to resolve the smallest dwarf galaxies, which are around a million solar masses. This requires an extremely high mass resolution, which adds to the computational expense of the simulation.First OutcomesThese are the challenges faced by

  19. The Galactic Magnetic Field and its lensing of Ultrahigh Energy and Galactic Cosmic Rays

    NASA Astrophysics Data System (ADS)

    Farrar, Glennys

    2015-08-01

    It has long been recognized that magnetic fields play an important role in many astrophysical environments, but the magnetic field strength and structure has only been quantitatively determined for relatively few systems beyond our solar system.Our understanding of the Galactic magnetic field (GMF) has improved tremendously in recent years. The Jansson-Farrar (2012) (JF12) GMF model is the most realistic and comprehensive model available. It was constrained by fitting all-sky Faraday Rotation Measures of ~40k extragalactic sources, simultaneously with WMAP polarized (Q,U) and total synchrotron emission maps - together providing a total of more than 10,000 independent datapoints, each with measured astrophysical variance. In addition to disk and toroidal halo components, a previously overlooked coherent poloidal halo field proves to be necessary to account for the RM, Q and U data. Moreover a “striated” random component is needed in addition to a fully random component, in both disk and halo.The talk will give a concise review of the JF12 model and its derivation, with emphasis on which features of the GMF are well or poorly established. I will show that the data unambiguously demand a large scale coherent component to the halo field which is a diverging-spiral centered on the Galactic center, with field lines running from Southern to Northern hemispheres. The puzzles posed by the large scale coherent halo and disk magnetic fields, and their possible origins, will be discussed.Having a good model of the Galactic magnetic field is crucial for determining the sources of UHECRs, for modeling the transport of Galactic CRs (the halo field provides a heretofore-overlooked escape route for by diffusion along its field lines), and for calculating the background to dark matter and CMB-cosmology studies. I will present new results on the lensing effect of the GMF on UHECRs, which produces multiple images and dramatic magnification and demagnification that varies with

  20. A study of ultraviolet absorption lines through the complete Galactic halo by the analysis of HST faint object spectrograph spectra of active Galactic nuclei, 1

    NASA Technical Reports Server (NTRS)

    Burks, Geoffrey S.; Bartko, Frank; Shull, J. Michael; Stocke, John T.; Sachs, Elise R.; Burbidge, E. Margaret; Cohen, Ross D.; Junkkarinen, Vesa T.; Harms, Richard J.; Massa, Derck

    1994-01-01

    The ultraviolet (1150 - 2850 A) spectra of a number of active galactic nuclei (AGNs) observed with the Hubble Space Telescope (HST) Faint Object Spectrograph (FOS) have been used to study the properties of the Galactic halo. The objects that served as probes are 3C 273, PKS 0454-220, Pg 1211+143, CSO 251, Ton 951, and PG 1351+640. The equivalent widths of certain interstellar ions have been measured, with special attention paid to the C IV/C II and Si IV/Si II ratios. These ratios have been intercompared, and the highest values are found in the direction of 3C 273, where C IV/C II = 1.2 and Si IV/Si II greater than 1. These high ratios may be due to a nearby supernova remnant, rather than to ionized gas higher up in the Galactic halo. Our data give some support to the notion that QSO metal-line systems may arise from intervening galaxies which contain high supernova rates, galactic fountains, and turbulent mixing layers.

  1. Millisecond Pulsars, TeV Halos, and Implications For The Galactic Center Gamma-Ray Excess

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hooper, Dan; Linden, Tim

    Observations by HAWC indicate that many young pulsars (including Geminga and Monogem) are surrounded by spatially extended, multi-TeV emitting regions. It is not currently known, however, whether TeV emission is also produced by recycled, millisecond pulsars (MSPs). In this study, we perform a stacked analysis of 24 MSPs within HAWC's field-of-view, finding between 2.6-3.2 sigma evidence that these sources are, in fact, surrounded by TeV halos. The efficiency with which these MSPs produce TeV halos is similar to that exhibited by young pulsars. This result suggests that several dozen MSPs will ultimately be detectable by HAWC, including many "invisible" pulsarsmore » without radio beams oriented in our direction. The TeV halos of unresolved MSPs could also dominate the TeV-scale diffuse emission observed at high galactic latitudes. We also discuss the possibility that TeV and radio observations could be used to constrain the population of MSPs that is present in the inner Milky Way, thereby providing us with a new way to test the hypothesis that MSPs are responsible for the Galactic Center GeV excess.« less

  2. Dynamical Family Properties and Dark Halo Scaling Relations of Giant Elliptical Galaxies

    NASA Astrophysics Data System (ADS)

    Gerhard, Ortwin; Kronawitter, Andi; Saglia, R. P.; Bender, Ralf

    2001-04-01

    Based on a uniform dynamical analysis of the line-profile shapes of 21 mostly luminous, slowly rotating, and nearly round elliptical galaxies, we have investigated the dynamical family relations and dark halo properties of ellipticals. Our results include: (i) The circular velocity curves (CVCs) of elliptical galaxies are flat to within ~=10% for R>~0.2Re. (ii) Most ellipticals are moderately radially anisotropic; their dynamical structure is surprisingly uniform. (iii) Elliptical galaxies follow a Tully-Fisher (TF) relation with marginally shallower slope than spiral galaxies, and vmaxc~=300 km s-1 for an L*B galaxy. At given circular velocity, they are ~1 mag fainter in B and ~0.6 mag in R and appear to have slightly lower baryonic mass than spirals, even for the maximum M/LB allowed by the kinematics. (iv) The luminosity dependence of M/LB indicated by the tilt of the fundamental plane (FP) is confirmed. The tilt of the FP is not caused by dynamical or photometric nonhomology, although the latter might influence the slope of M/L versus L. It can also not be due only to an increasing dark matter fraction with L for the range of IMF currently discussed. It is, however, consistent with stellar population models based on published metallicities and ages. The main driver is therefore probably metallicity, and a secondary population effect is needed to explain the K-band tilt. (v) These results make it likely that elliptical galaxies have nearly maximal M/LB (minimal halos). (vi) Despite the uniformly flat CVCs, there is a spread in the luminous to dark matter ratio and in cumulative M/LB(r). Some galaxies have no indication for dark matter within 2Re, whereas for others we obtain local M/LB-values of 20-30 at 2Re. (vii) In models with maximum stellar mass, the dark matter contributes ~10%-40% of the mass within Re. Equal interior mass of dark and luminous matter is predicted at ~2-4Re. (viii) Even in these maximum stellar mass models, the halo core densities and

  3. Point sources from dissipative dark matter

    NASA Astrophysics Data System (ADS)

    Agrawal, Prateek; Randall, Lisa

    2017-12-01

    If a component of dark matter has dissipative interactions, it can cool to form compact astrophysical objects with higher density than that of conventional cold dark matter (sub)haloes. Dark matter annihilations might then appear as point sources, leading to novel morphology for indirect detection. We explore dissipative models where interaction with the Standard Model might provide visible signals, and show how such objects might give rise to the observed excess in gamma rays arising from the galactic center.

  4. A general explanation on the correlation of dark matter halo spin with the large-scale environment

    NASA Astrophysics Data System (ADS)

    Wang, Peng; Kang, Xi

    2017-06-01

    Both simulations and observations have found that the spin of halo/galaxy is correlated with the large-scale environment, and particularly the spin of halo flips in filament. A consistent picture of halo spin evolution in different environments is still lacked. Using N-body simulation, we find that halo spin with its environment evolves continuously from sheet to cluster, and the flip of halo spin happens both in filament and nodes. The flip in filament can be explained by halo formation time and migrating time when its environment changes from sheet to filament. For low-mass haloes, they form first in sheets and migrate into filaments later, so their mass and spin growth inside filament are lower, and the original spin is still parallel to filament. For high-mass haloes, they migrate into filaments first, and most of their mass and spin growth are obtained in filaments, so the resulted spin is perpendicular to filament. Our results well explain the overall evolution of cosmic web in the cold dark matter model and can be tested using high-redshift data. The scenario can also be tested against alternative models of dark matter, such as warm/hot dark matter, where the structure formation will proceed in a different way.

  5. Did LIGO Detect Dark Matter?

    PubMed

    Bird, Simeon; Cholis, Ilias; Muñoz, Julian B; Ali-Haïmoud, Yacine; Kamionkowski, Marc; Kovetz, Ely D; Raccanelli, Alvise; Riess, Adam G

    2016-05-20

    We consider the possibility that the black-hole (BH) binary detected by LIGO may be a signature of dark matter. Interestingly enough, there remains a window for masses 20M_{⊙}≲M_{bh}≲100M_{⊙} where primordial black holes (PBHs) may constitute the dark matter. If two BHs in a galactic halo pass sufficiently close, they radiate enough energy in gravitational waves to become gravitationally bound. The bound BHs will rapidly spiral inward due to the emission of gravitational radiation and ultimately will merge. Uncertainties in the rate for such events arise from our imprecise knowledge of the phase-space structure of galactic halos on the smallest scales. Still, reasonable estimates span a range that overlaps the 2-53  Gpc^{-3} yr^{-1} rate estimated from GW150914, thus raising the possibility that LIGO has detected PBH dark matter. PBH mergers are likely to be distributed spatially more like dark matter than luminous matter and have neither optical nor neutrino counterparts. They may be distinguished from mergers of BHs from more traditional astrophysical sources through the observed mass spectrum, their high ellipticities, or their stochastic gravitational wave background. Next-generation experiments will be invaluable in performing these tests.

  6. Dark-matter haloes and the M-σ relation for supermassive black holes

    NASA Astrophysics Data System (ADS)

    Larkin, Adam C.; McLaughlin, Dean E.

    2016-10-01

    We develop models of two-component spherical galaxies to establish scaling relations linking the properties of spheroids at z = 0 (total stellar masses, effective radii Re and velocity dispersions within Re) to the properties of their dark-matter haloes at both z = 0 and higher redshifts. Our main motivation is the widely accepted idea that the accretion-driven growth of supermassive black holes (SMBHs) in protogalaxies is limited by quasar-mode feedback and gas blow-out. The SMBH masses, MBH, should then be connected to the dark-matter potential wells at the redshift zqso of the blow-out. We specifically consider the example of a power-law dependence on the maximum circular speed in a protogalactic dark-matter halo: M_{BH}∝ V^4_{d,pk}, as could be expected if quasar-mode feedback were momentum-driven. For haloes with a given Vd,pk at a given zqso ≥ 0, our model scaling relations give a typical stellar velocity dispersion σap(Re) at z = 0. Thus, they transform a theoretical MBH-Vd,pk relation into a prediction for an observable MBH-σap(Re) relation. We find the latter to be distinctly non-linear in log-log space. Its shape depends on the generic redshift evolution of haloes in a Λ cold dark matter cosmology and the systematic variation of stellar-to-dark matter mass fraction at z = 0, in addition to any assumptions about the physics underlying the MBH-Vd,pk relation. Despite some clear limitations of the form we use for MBH versus Vd,pk, and even though we do not include any SMBH growth through dry mergers at low redshift, our results for MBH-σap(Re) compare well to data for local early types if we take zqso ˜ 2-4.

  7. The role of the dark matter haloes on the cosmic star formation rate

    NASA Astrophysics Data System (ADS)

    Pereira, Eduardo S.; Miranda, Oswaldo D.

    2015-11-01

    The cosmic star formation rate (CSFR) represents the fraction of gas that is converted into stars within a certain comoving volume and at a given time t. However the evolution of the dark matter haloes and its relationship with the CSFR is not yet clear. In this context, we have investigated the role of the dark halo mass function - DHMF - in the process of gas conversion into stars. We observed a strong dependence between the fraction of baryons in structures, fb, and the specific mass function used for describing the dark matter haloes. In some cases, we have obtained fb greater than one at redshift z = 0 . This result indicates that the evolution of dark matter, described by the specific DHMF, could not trace the baryonic matter without a bias parameter. We also observed that the characteristic time-scale for star formation, τ, is strongly dependent on the considered DHMF, when the model is confronted against the observational data. Also, as part of this work it was released, under GNU general public license, a Python package called 'pycosmicstar' to study the CSFR and its relationship with the DHMF.

  8. Self-similar infall models for cold dark matter haloes

    NASA Astrophysics Data System (ADS)

    Le Delliou, Morgan Patrick

    2002-04-01

    How can we understand the mechanisms for relaxation and the constitution of the density profile in CDM halo formation? Can the old Self-Similar Infall Model (SSIM) be made to contain all the elements essential for this understanding? In this work, we have explored and improved the SSIM, showing it can at once explain large N-body simulations and indirect observations of real haloes alike. With the use of a carefully-crafted simple shell code, we have followed the accretion of secondary infalls in different settings, ranging from a model for mergers to a distribution of angular momentum for the shells, through the modeling of a central black hole. We did not assume self-similar accretion from initial conditions but allowed for it to develop and used coordinates that make it evident. We found self-similar accretion to appear very prominently in CDM halo formation as an intermediate stable (quasi-equilibrium) stage of Large Scale Structure formation. Dark Matter haloes density profiles are shown to be primarily influenced by non-radial motion. The merger paradigm reveals itself through the SSIM to be a secondary but non-trivial factor in those density profiles: it drives the halo profile towards a unique attractor, but the main factor for universality is still the self-similarity. The innermost density cusp flattening observed in some dwarf and Low Surface Brightness galaxies finds a natural and simple explanation in the SSIM embedding a central black hole. Relaxation in cold collisionless collapse is clarified by the SSIM. It is a continuous process involving only the newly-accreted particles for just a few dynamical times. All memory of initial energy is not lost so relaxation is only moderately violent. A sharp cut off, or population inversion, originates in initial conditions and is maintained through relaxation. It characterises moderately violent relaxation in the system's Distribution Function. Finally, the SSIM has shown this relaxation to arise from phase

  9. Ghostly Halos in Dwarf Galaxies: a probe of star formation in the Early Universe

    NASA Astrophysics Data System (ADS)

    Kang, Hoyoung; Ricotti, Massimo

    2016-01-01

    We carry out numerical simulations to characterize the size, stellar mass, and stellar mass surface density of extended stellar halos in dwarf galaxies as a function of dark matter halo mass. We expect that for galaxies smaller than a critical value, these ghostly halos will not exist because the smaller galactic subunits that build it up, do not form any stars. The detection of ghostly halos around isolated dwarf galaxies is a sensitive test of the efficiency of star formation in the first galaxies and of whether ultra-faint dwarf satellites of the Milky Way are fossils of the first galaxies.

  10. The Phase-space Density Distribution of Dark Matter Halos

    NASA Astrophysics Data System (ADS)

    Williams, Liliya L. R.; Austin, Crystal; Barnes, Eric; Babul, Arif; Dalcanton, Julianne

    2004-12-01

    High resolution N-body simulations have all but converged on a common empirical form for the shape of the density profiles of halos, but the full understanding of the underlying physics of halo formation has eluded them so far. We investigate the formation and structure of dark matter halos using analytical and semi-analytical techniques. Our halos are formed via an extended secondary infall model (ESIM); they contain secondary perturbations and hence random tangential and ra- dial motions which affect the halo’s evolution at it undergoes shell-crossing and virialization. Even though the density profiles of NFW and ESIM halos are different their phase-space density distributions are the same: ρ σ3 ∝ r α , with α 1 875 over 3 decades in radius. We use two approaches to try to explain this “universal” slope: (1) The Jeans equation analysis yields many insights, however, does not answer why α 1 875. (2) The secondary infall model of the 1960’s £ ¤ and 1970’s, augmented by “thermal motions” of particles does predict that halos should have α 1 875. However, this relies on assumptions of spherical symmetry and slow accretion. While £ ¤ for ESIM halos these assumptions are justified, they most certainly break down for simulated halos which forms hierarchically. We speculate that our argument may apply to an “on-average” formation scenario of halos within merger-driven numerical simulations, and thereby explain why α 1 875 for NFW halos. Thus, ρ σ3 ∝ r 1 875 may be a generic feature of violent relaxation.

  11. Bimodal Formation Time Distribution for Infall Dark Matter Halos

    NASA Astrophysics Data System (ADS)

    Shi, Jingjing; Wang, Huiyuan; Mo, H. J.; Xie, Lizhi; Wang, Xiaoyu; Lapi, Andrea; Sheth, Ravi K.

    2018-04-01

    We use a 200 {h}-1 {Mpc} a-side N-body simulation to study the mass accretion history (MAH) of dark matter halos to be accreted by larger halos, which we call infall halos. We define a quantity {a}nf}\\equiv (1+{z}{{f}})/(1+{z}peak}) to characterize the MAH of infall halos, where {z}peak} and {z}{{f}} are the accretion and formation redshifts, respectively. We find that, at given {z}peak}, their MAH is bimodal. Infall halos are dominated by a young population at high redshift and by an old population at low redshift. For the young population, the {a}nf} distribution is narrow and peaks at about 1.2, independent of {z}peak}, while for the old population, the peak position and width of the {a}nf} distribution both increase with decreasing {z}peak} and are both larger than those of the young population. This bimodal distribution is found to be closely connected to the two phases in the MAHs of halos. While members of the young population are still in the fast accretion phase at z peak, those of the old population have already entered the slow accretion phase at {z}peak}. This bimodal distribution is not found for the whole halo population, nor is it seen in halo merger trees generated with the extended Press–Schechter formalism. The infall halo population at {z}peak} are, on average, younger than the whole halo population of similar masses identified at the same redshift. We discuss the implications of our findings in connection to the bimodal color distribution of observed galaxies and to the link between central and satellite galaxies.

  12. A ROBUST MEASURE OF DARK MATTER HALO ELLIPTICITIES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Evslin, Jarah

    2016-08-01

    In simulations of the standard cosmological model (ΛCDM), dark matter halos are aspherical. However, so far the asphericity of an individual galaxy’s halo has never been robustly established. We use the Jeans equations to define a quantity that robustly characterizes a deviation from rotational symmetry. This quantity is essentially the gravitational torque and it roughly provides the ellipticity projected along the line of sight. We show that the Thirty Meter Telescope (TMT), with a single epoch of observations combined with those of the Gaia Space Telescope , can distinguish the ΛCDM value of the torque from zero for each Sculptor-likemore » dwarf galaxy with a confidence between 0 and 5 σ , depending on the orientation of each halo. With two epochs of observations, TMT will achieve a 5 σ discovery of torque and thus asphericity for most such galaxies, thus providing a new and powerful test of the ΛCDM model.« less

  13. Scaling Laws for Dark Matter Halos in Late-type and Dwarf Spheroidal Galaxies

    NASA Astrophysics Data System (ADS)

    Kormendy, John; Freeman, K. C.

    2016-02-01

    Dark matter (DM) halos of Sc-Im and dwarf spheroidal (dSph) galaxies satisfy scaling laws: halos in lower-luminosity galaxies have smaller core radii, higher central densities, and smaller velocity dispersions. These results are based on maximum-disk rotation curve decompositions for giant galaxies and Jeans equation analysis for dwarfs. (1) We show that spiral, Im, and Sph galaxies with absolute magnitudes MV > -18 form a sequence of decreasing baryon-to-DM surface density with decreasing luminosity. We suggest that this is a sequence of decreasing baryon retention versus supernova-driven losses or decreasing baryon capture after cosmological reionization. (2) The structural differences between S+Im and Sph galaxies are small. Both are affected mostly by the physics that controls baryon depletion. (3) There is a linear correlation between the maximum rotation velocities of baryonic disks and the outer circular velocities Vcirc of test particles in their DM halos. Baryons become unimportant at Vcirc = 42 ± 4 km s-1. Smaller galaxies are dim or dark. (4) We find that, absent baryon “depletion” and with all baryons converted into stars, dSph galaxies would be brighter by ˜4.6 mag and dIm galaxies would be brighter by ˜3.5 mag. Both have DM halos that are massive enough to help to solve the “too big to fail” problem with DM galaxy formation. (5) We suggest that there exist many galaxies that are too dark to be discovered by current techniques, as required by cold DM theory. (6) Central surface densities of DM halos are constant from MB ˜ -5 to -22. This implies a Faber-Jackson law with halo mass M ∝ (halo dispersion)4.

  14. SCALING LAWS FOR DARK MATTER HALOS IN LATE-TYPE AND DWARF SPHEROIDAL GALAXIES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kormendy, John; Freeman, K. C., E-mail: kormendy@astro.as.utexas.edu, E-mail: kenneth.freeman@anu.edu.au

    2016-02-01

    Dark matter (DM) halos of Sc–Im and dwarf spheroidal (dSph) galaxies satisfy scaling laws: halos in lower-luminosity galaxies have smaller core radii, higher central densities, and smaller velocity dispersions. These results are based on maximum-disk rotation curve decompositions for giant galaxies and Jeans equation analysis for dwarfs. (1) We show that spiral, Im, and Sph galaxies with absolute magnitudes M{sub V} > −18 form a sequence of decreasing baryon-to-DM surface density with decreasing luminosity. We suggest that this is a sequence of decreasing baryon retention versus supernova-driven losses or decreasing baryon capture after cosmological reionization. (2) The structural differences betweenmore » S+Im and Sph galaxies are small. Both are affected mostly by the physics that controls baryon depletion. (3) There is a linear correlation between the maximum rotation velocities of baryonic disks and the outer circular velocities V{sub circ} of test particles in their DM halos. Baryons become unimportant at V{sub circ} = 42 ± 4 km s{sup −1}. Smaller galaxies are dim or dark. (4) We find that, absent baryon “depletion” and with all baryons converted into stars, dSph galaxies would be brighter by ∼4.6 mag and dIm galaxies would be brighter by ∼3.5 mag. Both have DM halos that are massive enough to help to solve the “too big to fail” problem with DM galaxy formation. (5) We suggest that there exist many galaxies that are too dark to be discovered by current techniques, as required by cold DM theory. (6) Central surface densities of DM halos are constant from M{sub B} ∼ −5 to −22. This implies a Faber–Jackson law with halo mass M ∝ (halo dispersion){sup 4}.« less

  15. WEAK GALACTIC HALO-DWARF SPHEROIDAL CONNECTION FROM RR LYRAE STARS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fiorentino, Giuliana; Bono, Giuseppe; Monelli, Matteo

    2015-01-01

    We discuss the role that dwarf galaxies may have played in the formation of the Galactic halo (Halo) using RR Lyrae stars (RRL) as tracers of their ancient stellar component. The comparison is performed using two observables (periods, luminosity amplitudes) that are reddening and distance independent. Fundamental mode RRL in 6 dwarf spheroidals (dSphs) and 11 ultra faint dwarf galaxies (∼1300) show a Gaussian period distribution well peaked around a mean period of (Pab) = 0.610 ± 0.001 days (σ = 0.03). The Halo RRL (∼15,000) are characterized by a broader period distribution. The fundamental mode RRL in all the dSphs apart from Sagittariusmore » are completely lacking in High Amplitude Short Period (HASP) variables, defined as those having P ≲ 0.48 days and A{sub V} ≥ 0.75 mag. Such variables are not uncommon in the Halo and among the globular clusters and massive dwarf irregulars. To further interpret this evidence, we considered 18 globulars covering a broad range in metallicity (–2.3 ≲ [Fe/H] ≲ –1.1) and hosting more than 35 RRL each. The metallicity turns out to be the main parameter, since only globulars more metal-rich than [Fe/H] ∼ –1.5 host RRL in the HASP region. This finding suggests that dSphs similar to the surviving ones do not appear to be the major building-blocks of the Halo. Leading physical arguments suggest an extreme upper limit of ∼50% to their contribution. On the other hand, massive dwarfs hosting an old population with a broad metallicity distribution (Large Magellanic Cloud, Sagittarius) may have played a primary role in the formation of the Halo.« less

  16. The bulge-halo conspiracy in massive elliptical galaxies: implications for the stellar initial mass function and halo response to baryonic processes

    NASA Astrophysics Data System (ADS)

    Dutton, Aaron A.; Treu, Tommaso

    2014-03-01

    Recent studies have shown that massive elliptical galaxies have total mass density profiles within an effective radius that can be approximated as ρ_tot∝ r^{-γ^', with mean slope <γ'> = 2.08 ± 0.03 and scatter σ _{γ ^' } }=0.16± 0.02. The small scatter of the slope (known as the bulge-halo conspiracy) is not generic in Λ cold dark matter (ΛCDM) based models and therefore contains information about the galaxy formation process. We compute the distribution of γ' for ΛCDM-based models that reproduce the observed correlations between stellar mass, velocity dispersion, and effective radius of early-type galaxies in the Sloan Digital Sky Survey. The models have a range of stellar initial mass functions (IMFs) and dark halo responses to galaxy formation. The observed distribution of γ' is well reproduced by a model with cosmologically motivated but uncontracted dark matter haloes, and a Salpeter-type IMF. Other models are on average ruled out by the data, even though they may happen in individual cases. Models with adiabatic halo contraction (and lighter IMFs) predict too small values of γ'. Models with halo expansion, or mass-follows-light predict too high values of γ'. Our study shows that the non-homologous structure of massive early-type galaxies can be precisely reproduced by ΛCDM models if the IMF is not universal and if mechanisms, such as feedback from active galactic nuclei, or dynamical friction, effectively on average counterbalance the contraction of the halo expected as a result of baryonic cooling.

  17. Effects of primordial magnetic field on the formation rate of dark matter halos

    NASA Astrophysics Data System (ADS)

    Cheera, Varalakshmi; Nigam, Rahul

    2018-05-01

    We construct and demonstrate a method for computing the formation rate of the dark matter halo in the hierarchical model set up. This method uses the Press-Schecter distribution for the halos and hence applies only to the spherical halos. But this can be generalized to ellipsoidal structures also if one uses the Sheth-Torman distribution. After obtaining the formation rate, we study the effect of primordial magnetic field on the dynamics of these halos. We investigate the effect for different field strengths and conclude that a magnetic field stronger than 10 nG would impact the halos larger than 108 solar masses while a weaker field affects the formation rate of smaller halos.

  18. Understanding the core-halo relation of quantum wave dark matter from 3D simulations.

    PubMed

    Schive, Hsi-Yu; Liao, Ming-Hsuan; Woo, Tak-Pong; Wong, Shing-Kwong; Chiueh, Tzihong; Broadhurst, Tom; Hwang, W-Y Pauchy

    2014-12-31

    We examine the nonlinear structure of gravitationally collapsed objects that form in our simulations of wavelike cold dark matter, described by the Schrödinger-Poisson (SP) equation with a particle mass ∼10(-22)  eV. A distinct gravitationally self-bound solitonic core is found at the center of every halo, with a profile quite different from cores modeled in the warm or self-interacting dark matter scenarios. Furthermore, we show that each solitonic core is surrounded by an extended halo composed of large fluctuating dark matter granules which modulate the halo density on a scale comparable to the diameter of the solitonic core. The scaling symmetry of the SP equation and the uncertainty principle tightly relate the core mass to the halo specific energy, which, in the context of cosmological structure formation, leads to a simple scaling between core mass (Mc) and halo mass (Mh), Mc∝a(-1/2)Mh(1/3), where a is the cosmic scale factor. We verify this scaling relation by (i) examining the internal structure of a statistical sample of virialized halos that form in our 3D cosmological simulations and by (ii) merging multiple solitons to create individual virialized objects. Sufficient simulation resolution is achieved by adaptive mesh refinement and graphic processing units acceleration. From this scaling relation, present dwarf satellite galaxies are predicted to have kiloparsec-sized cores and a minimum mass of ∼10(8)M⊙, capable of solving the small-scale controversies in the cold dark matter model. Moreover, galaxies of 2×10(12)M⊙ at z=8 should have massive solitonic cores of ∼2×10(9)M⊙ within ∼60  pc. Such cores can provide a favorable local environment for funneling the gas that leads to the prompt formation of early stellar spheroids and quasars.

  19. Gravitational lenses and dark matter - Theory

    NASA Technical Reports Server (NTRS)

    Gott, J. Richard, III

    1987-01-01

    Theoretical models are presented for guiding the application of gravitational lenses to probe the characteristics of dark matter in the universe. Analytical techniques are defined for quantifying the mass associated with lensing galaxies (in terms of the image separation), determining the quantity of dark mass of the lensing bodies, and estimating the mass density of the lenses. The possibility that heavy halos are made of low mass stars is considered, along with the swallowing of central images of black holes or cusps in galactic nuclei and the effects produced on a lensed quasar image by nonbaryonic halos. The observable effects of dense groups and clusters and the characteristics of dark matter strings are discussed, and various types of images which are possible due to lensing phenomena and position are described.

  20. Viscous self interacting dark matter and cosmic acceleration

    NASA Astrophysics Data System (ADS)

    Atreya, Abhishek; Bhatt, Jitesh R.; Mishra, Arvind

    2018-02-01

    Self interacting dark matter (SIDM) provides us with a consistent solution to certain astrophysical observations in conflict with collision-less cold DM paradigm. In this work we estimate the shear viscosity (η) and bulk viscosity (ζ) of SIDM, within kinetic theory formalism, for galactic and cluster size SIDM halos. To that extent we make use of the recent constraints on SIDM cross-section for the dwarf galaxies, LSB galaxies and clusters. We also estimate the change in solution of Einstein's equation due to these viscous effects and find that σ/m constraints on SIDM from astrophysical data provide us with sufficient viscosity to account for the observed cosmic acceleration at present epoch, without the need of any additional dark energy component. Using the estimates of dark matter density for galactic and cluster size halo we find that the mean free path of dark matter ~ few Mpc. Thus the smallest scale at which the viscous effect start playing the role is cluster scale. Astrophysical data for dwarf, LSB galaxies and clusters also seems to suggest the same. The entire analysis is independent of any specific particle physics motivated model for SIDM.

  1. Null Environmental Effects of the Cosmic Web on Dark Matter Halo Properties

    NASA Astrophysics Data System (ADS)

    Goh, Tze; Primack, Joel; Aragon-Calvo, Miguel; Hellinger, Doug; Rodriguez-Puebla, Aldo; Lee, Christoph; Eckleholm, Elliot; Johnston, Kathryn

    2018-01-01

    We study the effects of the cosmic web environment (filaments, voids and walls) and environmental density on key properties of dark matter halos at redshift z = 0 using the Bolshoi-Planck ΛCDM. The z=0 Bolshoi-Planck simulation is analysed into filaments, voids and walls using the SpineWeb method, as well as VIDE method, both of which use Voronoi tessellation and the watershed transform. The key halo properties that we study are the mass accretion rate, spin parameter, concentration, prolateness, scale factor of the last major merger, and scale factor when the halo had half of its z=0 mass. For all these properties, we find that there is no discernible difference between the halo properties in filaments, walls or voids when compared at the same environmental density. As a result, we conclude that environmental density is the core attribute that affects these properties. This conclusion is in line with recent findings that properties of galaxies in redshift surveys are independent of their cosmic web environment at the same environmental density. We also find that the local web environment of the Milky Way and the Andromeda galaxy near the centre of a cosmic wall does not appear to have any effect on the key properties of these galaxies' dark matter halos, although we find that it is rather rare to have such massive halos near the centre of a relatively small cosmic wall.

  2. Hierarchical formation of dark matter halos and the free streaming scale

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ishiyama, Tomoaki, E-mail: ishiyama@ccs.tsukuba.ac.jp

    2014-06-10

    The smallest dark matter halos are formed first in the early universe. According to recent studies, the central density cusp is much steeper in these halos than in larger halos and scales as ρ∝r {sup –(1.5-1.3)}. We present the results of very large cosmological N-body simulations of the hierarchical formation and evolution of halos over a wide mass range, beginning from the formation of the smallest halos. We confirmed early studies that the inner density cusps are steeper in halos at the free streaming scale. The cusp slope gradually becomes shallower as the halo mass increases. The slope of halosmore » 50 times more massive than the smallest halo is approximately –1.3. No strong correlation exists between the inner slope and the collapse epoch. The cusp slope of halos above the free streaming scale seems to be reduced primarily due to major merger processes. The concentration, estimated at the present universe, is predicted to be 60-70, consistent with theoretical models and earlier simulations, and ruling out simple power law mass-concentration relations. Microhalos could still exist in the present universe with the same steep density profiles.« less

  3. Disc-halo interactions in ΛCDM

    NASA Astrophysics Data System (ADS)

    Bauer, Jacob S.; Widrow, Lawrence M.; Erkal, Denis

    2018-05-01

    We present a new method for embedding a stellar disc in a cosmological dark matter halo and provide a worked example from a Λ cold dark matter zoom-in simulation. The disc is inserted into the halo at a redshift z = 3 as a zero-mass rigid body. Its mass and size are then increased adiabatically while its position, velocity, and orientation are determined from rigid-body dynamics. At z = 1, the rigid disc (RD) is replaced by an N-body disc whose particles sample a three-integral distribution function (DF). The simulation then proceeds to z = 0 with live disc (LD) and halo particles. By comparison, other methods assume one or more of the following: the centre of the RD during the growth phase is pinned to the minimum of the halo potential, the orientation of the RD is fixed, or the live N-body disc is constructed from a two rather than three-integral DF. In general, the presence of a disc makes the halo rounder, more centrally concentrated, and smoother, especially in the innermost regions. We find that methods in which the disc is pinned to the minimum of the halo potential tend to overestimate the amount of adiabatic contraction. Additionally, the effect of the disc on the subhalo distribution appears to be rather insensitive to the disc insertion method. The LD in our simulation develops a bar that is consistent with the bars seen in late-type spiral galaxies. In addition, particles from the disc are launched or `kicked up' to high galactic latitudes.

  4. Using tidal streams to investigate the rotation of the Milky Way's dark matter halo

    NASA Astrophysics Data System (ADS)

    Valluri, Monica; Snyder, Sarah Jean; Price-Whelan, Adrian M.

    2017-06-01

    The dark matter halos surrounding Milky Way-like galaxies that are formed in cosmological simulations are triaxial. These simulated triaxial halos are expected to be slowly rotating with log-normal distribution of pattern speeds centered on ~0.148h km/s/kpc (Bailin & Steinmetz 2004, ApJ., 616, 27). Stellar streams arising from a satellite experiencing tidal disruption inside such a slowly rotating triaxial halo are expected to be subject to additional forces (e.g. Coriolis forces) that affect the structure of the tidal streams. Using the Python Galaxy dynamics package Gala (Price-Whelan, http://gala.adrian.pw) we have generated simulations of tidal streams in a range of triaxial potentials to explore how the structure of Milky Way's tidal streams, especially the structure of stream bifurcations and the stream orbital plane, are altered by a slow figure rotation of the triaxial dark matter halo. We investigate what can be inferred about halo rotation from current and future data including upcoming data from Gaia. This work is supported by NASA-ATP award NNX15AK79G to the University of Michigan.

  5. Is There a Dark Matter Signal in the Galactic Positron Annihilation Radiation?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lingenfelter, R. E.; Rothschild, R. E.; Higdon, J. C.

    2009-07-17

    Assuming Galactic positrons do not go far before annihilating, a difference between the observed 511 keV annihilation flux distribution and that of positron production, expected from beta{sup +} decay in Galactic iron nucleosynthesis, was evoked as evidence of a new source and signal of dark matter. We show, however, that the dark matter sources cannot account for the observed positronium fraction without extensive propagation. Yet with such propagation, standard nucleosynthetic sources can fully account for the spatial differences and positronium fraction, leaving no new signal for dark matter to explain.

  6. Study of galactic halo F(T,TG) wormhole solutions

    NASA Astrophysics Data System (ADS)

    Sharif, M.; Nazir, Kanwal

    In this paper, we investigate static spherically symmetric wormhole solutions with galactic halo region in the background of F(T,TG) gravity. Here, T represents torsion scalar and TG is teleparallel equivalent Gauss-Bonnet term. For this purpose, we consider a diagonal tetrad and two specific F(T,TG) models. We analyze the wormhole structure through shape function graphically for both models. We also investigate the behavior of null/weak energy conditions. Finally, we evaluate the equilibrium condition to check stability of the wormhole solutions. It is concluded that there exists physically viable wormhole solution only for the first model that turns out to be stable.

  7. The Impact of Galactic Winds on the Angular Momentum of Disk Galaxies in the Illustris Simulation

    NASA Astrophysics Data System (ADS)

    DeFelippis, Daniel; Genel, Shy; Bryan, Greg L.; Fall, S. Michael

    2017-05-01

    Observed galactic disks have specific angular momenta similar to expectations for typical dark matter halos in ΛCDM. Cosmological hydrodynamical simulations have recently reproduced this similarity in large galaxy samples by including strong galactic winds, but the exact mechanism that achieves this is not yet clear. Here we present an analysis of key aspects contributing to this relation: angular momentum selection and evolution of Lagrangian mass elements as they accrete onto dark matter halos, condense into Milky-Way-scale galaxies, and join the z = 0 stellar phase. We contrast this evolution in the Illustris simulation with that in a simulation without galactic winds, where the z = 0 angular momentum is ≈ 0.6 {dex} lower. We find that winds induce differences between these simulations in several ways: increasing angular momentum, preventing angular momentum loss, and causing z = 0 stars to sample the accretion-time angular momentum distribution of baryons in a biased way. In both simulations, gas loses on average ≈ 0.4 {dex} between accreting onto halos and first accreting onto central galaxies. In Illustris, this is followed by ≈ 0.2 {dex} gains in the “galactic wind fountain” and no further net evolution past the final accretion onto the galaxy. Without feedback, further losses of ≈ 0.2 {dex} occur in the gas phase inside the galaxies. An additional ≈ 0.15 {dex} difference arises from feedback preferentially selecting higher angular momentum gas at accretion by expelling gas that is poorly aligned. These and additional effects of similar magnitude are discussed, suggesting a complex origin of the similarity between the specific angular momenta of galactic disks and typical halos.

  8. Baryonic distributions in galaxy dark matter haloes - II. Final results

    NASA Astrophysics Data System (ADS)

    Richards, Emily E.; van Zee, L.; Barnes, K. L.; Staudaher, S.; Dale, D. A.; Braun, T. T.; Wavle, D. C.; Dalcanton, J. J.; Bullock, J. S.; Chandar, R.

    2018-06-01

    Re-creating the observed diversity in the organization of baryonic mass within dark matter haloes represents a key challenge for galaxy formation models. To address the growth of galaxy discs in dark matter haloes, we have constrained the distribution of baryonic and non-baryonic matter in a statistically representative sample of 44 nearby galaxies defined from the Extended Disk Galaxy Exploration Science (EDGES) Survey. The gravitational potentials of each galaxy are traced using rotation curves derived from new and archival radio synthesis observations of neutral hydrogen (H I). The measured rotation curves are decomposed into baryonic and dark matter halo components using 3.6 μm images for the stellar content, the H I observations for the atomic gas component, and, when available, CO data from the literature for the molecular gas component. The H I kinematics are supplemented with optical integral field spectroscopic (IFS) observations to measure the central ionized gas kinematics in 26 galaxies, including 13 galaxies that are presented for the first time in this paper. Distributions of baryonic-to-total mass ratios are determined from the rotation curve decompositions under different assumptions about the contribution of the stellar component and are compared to global and radial properties of the dominant stellar populations extracted from optical and near-infrared photometry. Galaxies are grouped into clusters of similar baryonic-to-total mass distributions to examine whether they also exhibit similar star and gas properties. The radial distribution of baryonic-to-total mass in a galaxy does not appear to correlate with any characteristics of its star formation history.

  9. Ages, chemistry, and type 1A supernovae: Clues to the formation of the galactic stellar halo

    NASA Technical Reports Server (NTRS)

    Smecker-Hane, Tammy A.; Wyse, Rosemary F. G.

    1993-01-01

    We endeavor to resolve two conflicting constraints on the duration of the formation of the Galactic stellar halo - 2-3 Gyr age differences in halo stars, and the time scale inferred from the observed constant values of chemical element abundance ratios characteristic of enrichment by Type II supernovae - by investigating the time scale for the onset of Type Ia supernovae (SNIa) in the currently favored progenitor model - mergers of carbon and oxygen white dwarfs (CO WDs).

  10. The Mass and Absorption Columns of Galactic Gaseous Halos

    NASA Astrophysics Data System (ADS)

    Qu, Zhijie; Bregman, Joel N.

    2018-01-01

    The gaseous halo surrounding the galaxy is a reservoir for the gas on the galaxy disk, supplying materials for the star formation. We developed a gaseous halo model connecting the galactic disk and the gaseous halo by assuming the star formation rate is equal to the radiative cooling rate. Besides the single-phase collisional gaseous halo, we also consider the photoionization effect and a time-independent cooling model that assumes the mass cooling rate is constant over all temperatures. The photoionization dominates the low mass galaxy and the outskirts of the massive galaxy due to the low-temperature or low-density nature. The multi-phase cooling model dominates the denser region within the cooling radius, where the efficient radiative cooling must be included. Applying these two improvements, our model can reproduce the most of observed high ionization state ions (i.e., O VI, O VII, Ne VIII and Mg X). Our models show that the O VI column density is almost a constant of around 10^14 cm^-2 over a wide stellar mass from M_\\star ~10^8 M_Sun to 10^11 M_Sun, which is constant with current observations. This model also implies the O VI is photoionized for the galaxy with a halo mass <~ 3 * 10^11 M_Sun, while for more massive galaxies, the O VI is from the cooling-down medium from higher temperature materials (collisional ionized). As higher ionization states, Mg X and Ne VIII are also consistent with observations with the column density of 10^13.5 - 10^14.0 cm^-2, however, the absorber-galaxy pair sample is few to constrain the connection with the galaxy. Based on our calculation, such a gaseous halo cannot close the census of baryonic materials in the galaxy, which shows the same tendency as the baryonic fraction function of the EAGLE simulation. Finally, our model predicts plateaus of the Ne VIII and the Mg X column densities above the sub-L^* galaxy, and the possibly detectable O VII and O VIII column densities for low-mass galaxies, which help to determine the

  11. Building the Galactic halo from globular clusters: evidence from chemically unusual red giants

    NASA Astrophysics Data System (ADS)

    Martell, S. L.; Smolinski, J. P.; Beers, T. C.; Grebel, E. K.

    2011-10-01

    We present a spectroscopic search for halo field stars that originally formed in globular clusters. Using moderate-resolution SDSS-III/SEGUE-2 spectra of 561 red giants with typical halo metallicities (-1.8 ≤ [Fe/H] ≤ -1.0), we identify 16 stars, 3% of the sample, with CN and CH bandstrength behavior indicating depleted carbon and enhanced nitrogen abundances relative to the rest of the data set. Since globular clusters are the only environment known in which stars form with this pattern of atypical light-element abundances, we claim that these stars are second-generation globular cluster stars that have been lost to the halo field via normal cluster mass-loss processes. Extrapolating from theoretical models of two-generation globular cluster formation, this result suggests that globular clusters contributed significant numbers of stars to the construction of the Galactic halo: we calculate that a minimum of 17% of the present-day mass of the stellar halo was originally formed in globular clusters. The ratio of CN-strong to CN-normal stars drops with Galactocentric distance, suggesting that the inner-halo population may be the primary repository of these stars. Full Tables 1 and 3 are available in electronic form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/534/A136

  12. What the Milky Way's dwarfs tell us about the Galactic Center extended gamma-ray excess

    NASA Astrophysics Data System (ADS)

    Keeley, Ryan E.; Abazajian, Kevork N.; Kwa, Anna; Rodd, Nicholas L.; Safdi, Benjamin R.

    2018-05-01

    The Milky Way's Galactic Center harbors a gamma-ray excess that is a candidate signal of annihilating dark matter. Dwarf galaxies remain predominantly dark in their expected commensurate emission. In this work we quantify the degree of consistency between these two observations through a joint likelihood analysis. In doing so we incorporate Milky Way dark matter halo profile uncertainties, as well as an accounting of diffuse gamma-ray emission uncertainties in dark matter annihilation models for the Galactic Center extended gamma-ray excess (GCE) detected by the Fermi Gamma-Ray Space Telescope. The preferred range of annihilation rates and masses expands when including these unknowns. Even so, using two recent determinations of the Milky Way halo's local density leaves the GCE preferred region of single-channel dark matter annihilation models to be in strong tension with annihilation searches in combined dwarf galaxy analyses. A third, higher Milky Way density determination, alleviates this tension. Our joint likelihood analysis allows us to quantify this inconsistency. We provide a set of tools for testing dark matter annihilation models' consistency within this combined data set. As an example, we test a representative inverse Compton sourced self-interacting dark matter model, which is consistent with both the GCE and dwarfs.

  13. Testing feedback-modified dark matter haloes with galaxy rotation curves: estimation of halo parameters and consistency with ΛCDM scaling relations

    NASA Astrophysics Data System (ADS)

    Katz, Harley; Lelli, Federico; McGaugh, Stacy S.; Di Cintio, Arianna; Brook, Chris B.; Schombert, James M.

    2017-04-01

    Cosmological N-body simulations predict dark matter (DM) haloes with steep central cusps (e.g. NFW). This contradicts observations of gas kinematics in low-mass galaxies that imply the existence of shallow DM cores. Baryonic processes such as adiabatic contraction and gas outflows can, in principle, alter the initial DM density profile, yet their relative contributions to the halo transformation remain uncertain. Recent high-resolution, cosmological hydrodynamic simulations by Di Cintio et al. (DC14) predict that inner density profiles depend systematically on the ratio of stellar-to-DM mass (M*/Mhalo). Using a Markov Chain Monte Carlo approach, we test the NFW and the M*/Mhalo-dependent DC14 halo models against a sample of 147 galaxy rotation curves from the new Spitzer Photometry and Accurate Rotation Curves data set. These galaxies all have extended H I rotation curves from radio interferometry as well as accurate stellar-mass-density profiles from near-infrared photometry. The DC14 halo profile provides markedly better fits to the data compared to the NFW profile. Unlike NFW, the DC14 halo parameters found in our rotation-curve fits naturally fall within two standard deviations of the mass-concentration relation predicted by Λ cold dark matter (ΛCDM) and the stellar mass-halo mass relation inferred from abundance matching with few outliers. Halo profiles modified by baryonic processes are therefore more consistent with expectations from ΛCDM cosmology and provide better fits to galaxy rotation curves across a wide range of galaxy properties than do halo models that neglect baryonic physics. Our results offer a solution to the decade long cusp-core discrepancy.

  14. Scaling relations of halo cores for self-interacting dark matter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, Henry W.; Loeb, Abraham, E-mail: henrylin@college.harvard.edu, E-mail: aloeb@cfa.harvard.edu

    2016-03-01

    Using a simple analytic formalism, we demonstrate that significant dark matter self-interactions produce halo cores that obey scaling relations nearly independent of the underlying particle physics parameters such as the annihilation cross section and the mass of the dark matter particle. For dwarf galaxies, we predict that the core density ρ{sub c} and the core radius r{sub c} should obey ρ{sub c} r{sub c} ≈ 41 M{sub ⊙} pc{sup −2} with a weak mass dependence ∼ M{sup 0.2}. Remarkably, such a scaling relation has recently been empirically inferred. Scaling relations involving core mass, core radius, and core velocity dispersion are predicted and agree well with observationalmore » data. By calibrating against numerical simulations, we predict the scatter in these relations and find them to be in excellent agreement with existing data. Future observations can test our predictions for different halo masses and redshifts.« less

  15. The Dark Matter Halo Profile Of NGC 2976 Via Stellar Kinematics

    NASA Astrophysics Data System (ADS)

    Adams, Joshua J.; Gebhardt, K.; Hill, G. J.; van den Bosch, R. C. E.; Blanc, G. A.

    2011-01-01

    The observations of kinematics in low surface brightness (LSB) and dwarf late type galaxies have stubbornly resisted giving clear evidence for the cuspy Navarro-Frenk-White (NFW) dark matter (DM) halo profiles that simulations with ΛCDM inputs predict. Instead, most LSBs and late type dwarfs suggest cored DM halos or the observations are not yet constraining enough to rule out cusps. One viable theory to explain cored DM halos relies on the gravitational perturbation of a growing baryonic disk that is then rapidly removed causing the halo to expand to a cored equilibrium. Weakly self-interacting dark matter has also been invoked to explain cored DM halos. This problem may loom large over small galaxy formation and growth. However, different measurements can be taken to further test the apparent problem. Most previous data have relied on HI or Hα as kinematic tracers. A small number of works have studied the problem with longslit stellar kinematics. Ideally, the advantages of 2D spectroscopic coverage and a collisionless kinematic tracer would be combined. So far, NGC 2976 has made one of the cleanest cases for a cored DM halo via integral field spectroscopy in Hα. We here report on observations of NGC 2976 with the large field-of-view fiber-fed Visible Integral field Replicable Unit Spectrograph Prototype (VIRUS-P) at R=3200 to concurrently measure the gaseous and stellar kinematics and probe the DM halo. We find that the gas and stellar kinematics disagree both in the magnitude of their second velocity moments and their detailed profiles. We unexpectedly find emission features in one of NGC 2976's two large star-forming regions which may be indicative of carbon-rich Wolf-Rayet stars. A putative bar further complicates the use of gaseous tracers. We solve the Jeans equations with stellar kinematics to reevaluate the DM profile in this exemplar galaxy of the core-cusp problem.

  16. Cumulative Neutrino and Gamma-Ray Backgrounds from Halo and Galaxy Mergers

    NASA Astrophysics Data System (ADS)

    Yuan, Chengchao; Mészáros, Peter; Murase, Kohta; Jeong, Donghui

    2018-04-01

    The merger of dark matter halos and the gaseous structures embedded in them, such as protogalaxies, galaxies, and groups and clusters of galaxies, results in strong shocks that are capable of accelerating cosmic rays (CRs) to ≳10 PeV. These shocks will produce high-energy neutrinos and γ-rays through inelastic pp collisions. In this work, we study the contributions of these halo mergers to the diffuse neutrino flux and to the nonblazar portion of the extragalactic γ-ray background. We formulate the redshift dependence of the shock velocity, galactic radius, halo gas content, and galactic/intergalactic magnetic fields over the dark matter halo distribution up to a redshift z = 10. We find that high-redshift mergers contribute a significant amount of the CR luminosity density, and the resulting neutrino spectra could explain a large part of the observed diffuse neutrino flux above 0.1 PeV up to several PeV. We also show that our model can somewhat alleviate tensions with the extragalactic γ-ray background. First, since a larger fraction of the CR luminosity density comes from high redshifts, the accompanying γ-rays are more strongly suppressed through γγ annihilations with the cosmic microwave background and the extragalactic background light. Second, mildly radiative-cooled shocks may lead to a harder CR spectrum with spectral indices of 1.5 ≲ s ≲ 2.0. Our study suggests that halo mergers, a fraction of which may also induce starbursts in the merged galaxies, can be promising neutrino emitters without violating the existing Fermi γ-ray constraints on the nonblazar component of the extragalactic γ-ray background.

  17. The formation and evolution of earth-mass dark matter microhalos and their impact on indirect probes of dark matter

    NASA Astrophysics Data System (ADS)

    Ishiyama, Tomoaki

    2013-07-01

    Earth-mass dark matter microhalos with a size of ~100 AU are the first structures formed in the universe, if the dark matter of the universe is made of neutralinos. We report the results of ultra-high-resolution cosmological N-body simulations of the formation and evolution of these microhalos. We found that microhalos have the central density cusps of the form ρ ∝ r-1.5, much steeper than the cusps of larger dark halos. The central regions of these microhalos survive the encounters with stars except in the very inner region of the galaxy down to the radius of a few hundreds parsecs from the galactic center. The annihilation signals from the nearest microhalos are observed as gamma-ray point sources (radius less than 1'), with unusually large proper motions of ~0.2 deg per year. Their surface brightnesses are ~10% of that of the galactic center. Their signal-to-noise ratios might be better if they are far from the galactic plane.

  18. Milky Way mass and potential recovery using tidal streams in a realistic halo

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bonaca, Ana; Geha, Marla; Küpper, Andreas H. W.

    2014-11-01

    We present a new method for determining the Galactic gravitational potential based on forward modeling of tidal stellar streams. We use this method to test the performance of smooth and static analytic potentials in representing realistic dark matter halos, which have substructure and are continually evolving by accretion. Our FAST-FORWARD method uses a Markov Chain Monte Carlo algorithm to compare, in six-dimensional phase space, an 'observed' stream to models created in trial analytic potentials. We analyze a large sample of streams that evolved in the Via Lactea II (VL2) simulation, which represents a realistic Galactic halo potential. The recovered potentialmore » parameters are in agreement with the best fit to the global, present-day VL2 potential. However, merely assuming an analytic potential limits the dark matter halo mass measurement to an accuracy of 5%-20%, depending on the choice of analytic parameterization. Collectively, the mass estimates using streams from our sample reach this fundamental limit, but individually they can be highly biased. Individual streams can both under- and overestimate the mass, and the bias is progressively worse for those with smaller perigalacticons, motivating the search for tidal streams at galactocentric distances larger than 70 kpc. We estimate that the assumption of a static and smooth dark matter potential in modeling of the GD-1- and Pal5-like streams introduces an error of up to 50% in the Milky Way mass estimates.« less

  19. Dissipative hidden sector dark matter

    NASA Astrophysics Data System (ADS)

    Foot, R.; Vagnozzi, S.

    2015-01-01

    A simple way of explaining dark matter without modifying known Standard Model physics is to require the existence of a hidden (dark) sector, which interacts with the visible one predominantly via gravity. We consider a hidden sector containing two stable particles charged under an unbroken U (1 )' gauge symmetry, hence featuring dissipative interactions. The massless gauge field associated with this symmetry, the dark photon, can interact via kinetic mixing with the ordinary photon. In fact, such an interaction of strength ε ˜10-9 appears to be necessary in order to explain galactic structure. We calculate the effect of this new physics on big bang nucleosynthesis and its contribution to the relativistic energy density at hydrogen recombination. We then examine the process of dark recombination, during which neutral dark states are formed, which is important for large-scale structure formation. Galactic structure is considered next, focusing on spiral and irregular galaxies. For these galaxies we modeled the dark matter halo (at the current epoch) as a dissipative plasma of dark matter particles, where the energy lost due to dissipation is compensated by the energy produced from ordinary supernovae (the core-collapse energy is transferred to the hidden sector via kinetic mixing induced processes in the supernova core). We find that such a dynamical halo model can reproduce several observed features of disk galaxies, including the cored density profile and the Tully-Fisher relation. We also discuss how elliptical and dwarf spheroidal galaxies could fit into this picture. Finally, these analyses are combined to set bounds on the parameter space of our model, which can serve as a guideline for future experimental searches.

  20. Empirical Determination of Dark Matter Velocities Using Metal-Poor Stars.

    PubMed

    Herzog-Arbeitman, Jonah; Lisanti, Mariangela; Madau, Piero; Necib, Lina

    2018-01-26

    The Milky Way dark matter halo is formed from the accretion of smaller subhalos. These sub-units also harbor stars-typically old and metal-poor-that are deposited in the Galactic inner regions by disruption events. In this Letter, we show that the dark matter and metal-poor stars in the Solar neighborhood share similar kinematics due to their common origin. Using the high-resolution eris simulation, which traces the evolution of both the dark matter and baryons in a realistic Milky Way analog galaxy, we demonstrate that metal-poor stars are indeed effective tracers for the local, virialized dark matter velocity distribution. The local dark matter velocities can therefore be inferred from observations of the stellar halo made by the Sloan Digital Sky Survey within 4 kpc of the Sun. This empirical distribution differs from the standard halo model in important ways and suggests that the bounds on the spin-independent scattering cross section may be weakened for dark matter masses below ∼10  GeV. Data from Gaia will allow us to further refine the expected distribution for the smooth dark matter component, and to test for the presence of local substructure.

  1. Empirical Determination of Dark Matter Velocities Using Metal-Poor Stars

    NASA Astrophysics Data System (ADS)

    Herzog-Arbeitman, Jonah; Lisanti, Mariangela; Madau, Piero; Necib, Lina

    2018-01-01

    The Milky Way dark matter halo is formed from the accretion of smaller subhalos. These sub-units also harbor stars—typically old and metal-poor—that are deposited in the Galactic inner regions by disruption events. In this Letter, we show that the dark matter and metal-poor stars in the Solar neighborhood share similar kinematics due to their common origin. Using the high-resolution eris simulation, which traces the evolution of both the dark matter and baryons in a realistic Milky Way analog galaxy, we demonstrate that metal-poor stars are indeed effective tracers for the local, virialized dark matter velocity distribution. The local dark matter velocities can therefore be inferred from observations of the stellar halo made by the Sloan Digital Sky Survey within 4 kpc of the Sun. This empirical distribution differs from the standard halo model in important ways and suggests that the bounds on the spin-independent scattering cross section may be weakened for dark matter masses below ˜10 GeV . Data from Gaia will allow us to further refine the expected distribution for the smooth dark matter component, and to test for the presence of local substructure.

  2. Using Dark Matter Haloes to Learn about Cosmic Acceleration: A New Proposal for a Universal Mass Function

    NASA Technical Reports Server (NTRS)

    Prescod-Weinstein, Chanda; Afshordi, Niayesh

    2011-01-01

    Structure formation provides a strong test of any cosmic acceleration model because a successful dark energy model must not inhibit or overpredict the development of observed large-scale structures. Traditional approaches to studies of structure formation in the presence of dark energy or a modified gravity implement a modified Press-Schechter formalism, which relates the linear overdensities to the abundance of dark matter haloes at the same time. We critically examine the universality of the Press-Schechter formalism for different cosmologies, and show that the halo abundance is best correlated with spherical linear overdensity at 94% of collapse (or observation) time. We then extend this argument to ellipsoidal collapse (which decreases the fractional time of best correlation for small haloes), and show that our results agree with deviations from modified Press-Schechter formalism seen in simulated mass functions. This provides a novel universal prescription to measure linear density evolution, based on current and future observations of cluster (or dark matter) halo mass function. In particular, even observations of cluster abundance in a single epoch will constrain the entire history of linear growth of cosmological of perturbations.

  3. On the relevance of chaos for halo stars in the solar neighbourhood II

    NASA Astrophysics Data System (ADS)

    Maffione, Nicolas P.; Gómez, Facundo A.; Cincotta, Pablo M.; Giordano, Claudia M.; Grand, Robert J. J.; Marinacci, Federico; Pakmor, Rüdiger; Simpson, Christine M.; Springel, Volker; Frenk, Carlos S.

    2018-05-01

    In a previous paper based on dark matter only simulations we show that, in the approximation of an analytic and static potential describing the strongly triaxial and cuspy shape of Milky Way-sized haloes, diffusion due to chaotic mixing in the neighbourhood of the Sun does not efficiently erase phase space signatures of past accretion events. In this second paper we further explore the effect of chaotic mixing using multicomponent Galactic potential models and solar neighbourhood-like volumes extracted from fully cosmological hydrodynamic simulations, thus naturally accounting for the gravitational potential associated with baryonic components, such as the bulge and disc. Despite the strong change in the global Galactic potentials with respect to those obtained in dark matter only simulations, our results confirm that a large fraction of halo particles evolving on chaotic orbits exhibit their chaotic behaviour after periods of time significantly larger than a Hubble time. In addition, significant diffusion in phase space is not observed on those particles that do exhibit chaotic behaviour within a Hubble time.

  4. The Halo Occupation Distribution of obscured quasars: revisiting the unification model

    NASA Astrophysics Data System (ADS)

    Mitra, Kaustav; Chatterjee, Suchetana; DiPompeo, Michael A.; Myers, Adam D.; Zheng, Zheng

    2018-06-01

    We model the projected angular two-point correlation function (2PCF) of obscured and unobscured quasars selected using the Wide-field Infrared Survey Explorer (WISE), at a median redshift of z ˜ 1 using a five parameter Halo Occupation Distribution (HOD) parametrization, derived from a cosmological hydrodynamic simulation by Chatterjee et al. The HOD parametrization was previously used to model the 2PCF of optically selected quasars and X-ray bright active galactic nuclei (AGNs) at z ˜ 1. The current work shows that a single HOD parametrization can be used to model the population of different kinds of AGN in dark matter haloes suggesting the universality of the relationship between AGN and their host dark matter haloes. Our results show that the median halo mass of central quasar hosts increases from optically selected (4.1^{+0.3}_{-0.4} × 10^{12} h^{-1} M_{⊙}) and infra-red (IR) bright unobscured populations (6.3^{+6.2}_{-2.3} × 10^{12} h^{-1} M_{⊙}) to obscured quasars (10.0^{+2.6}_{-3.7} × 10^{12} h^{-1} M_{⊙}), signifying an increase in the degree of clustering. The projected satellite fractions also increase from optically bright to obscured quasars and tend to disfavour a simple `orientation only' theory of active galactic nuclei unification. Our results also show that future measurements of the small-scale clustering of obscured quasars can constrain current theories of galaxy evolution where quasars evolve from an IR-bright obscured phase to the optically bright unobscured phase.

  5. Constraining self-interacting dark matter with scaling laws of observed halo surface densities

    NASA Astrophysics Data System (ADS)

    Bondarenko, Kyrylo; Boyarsky, Alexey; Bringmann, Torsten; Sokolenko, Anastasia

    2018-04-01

    The observed surface densities of dark matter halos are known to follow a simple scaling law, ranging from dwarf galaxies to galaxy clusters, with a weak dependence on their virial mass. Here we point out that this can not only be used to provide a method to determine the standard relation between halo mass and concentration, but also to use large samples of objects in order to place constraints on dark matter self-interactions that can be more robust than constraints derived from individual objects. We demonstrate our method by considering a sample of about 50 objects distributed across the whole halo mass range, and by modelling the effect of self-interactions in a way similar to what has been previously done in the literature. Using additional input from simulations then results in a constraint on the self-interaction cross section per unit dark matter mass of about σ/mχlesssim 0.3 cm2/g. We expect that these constraints can be significantly improved in the future, and made more robust, by i) an improved modelling of the effect of self-interactions, both theoretical and by comparison with simulations, ii) taking into account a larger sample of objects and iii) by reducing the currently still relatively large uncertainties that we conservatively assign to the surface densities of individual objects. The latter can be achieved in particular by using kinematic observations to directly constrain the average halo mass inside a given radius, rather than fitting the data to a pre-selected profile and then reconstruct the mass. For a velocity-independent cross-section, our current result is formally already somewhat smaller than the range 0.5‑5 cm2/g that has been invoked to explain potential inconsistencies between small-scale observations and expectations in the standard collisionless cold dark matter paradigm.

  6. Halo-independence with quantified maximum entropy at DAMA/LIBRA

    NASA Astrophysics Data System (ADS)

    Fowlie, Andrew

    2017-10-01

    Using the DAMA/LIBRA anomaly as an example, we formalise the notion of halo-independence in the context of Bayesian statistics and quantified maximum entropy. We consider an infinite set of possible profiles, weighted by an entropic prior and constrained by a likelihood describing noisy measurements of modulated moments by DAMA/LIBRA. Assuming an isotropic dark matter (DM) profile in the galactic rest frame, we find the most plausible DM profiles and predictions for unmodulated signal rates at DAMA/LIBRA. The entropic prior contains an a priori unknown regularisation factor, β, that describes the strength of our conviction that the profile is approximately Maxwellian. By varying β, we smoothly interpolate between a halo-independent and a halo-dependent analysis, thus exploring the impact of prior information about the DM profile.

  7. Asymmetric capture of Dirac dark matter by the Sun

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blennow, Mattias; Clementz, Stefan

    2015-08-18

    Current problems with the solar model may be alleviated if a significant amount of dark matter from the galactic halo is captured in the Sun. We discuss the capture process in the case where the dark matter is a Dirac fermion and the background halo consists of equal amounts of dark matter and anti-dark matter. By considering the case where dark matter and anti-dark matter have different cross sections on solar nuclei as well as the case where the capture process is considered to be a Poisson process, we find that a significant asymmetry between the captured dark particles andmore » anti-particles is possible even for an annihilation cross section in the range expected for thermal relic dark matter. Since the captured number of particles are competitive with asymmetric dark matter models in a large range of parameter space, one may expect solar physics to be altered by the capture of Dirac dark matter. It is thus possible that solutions to the solar composition problem may be searched for in these type of models.« less

  8. Dark-ages reionization and galaxy formation simulation-XI. Clustering and halo masses of high redshift galaxies

    NASA Astrophysics Data System (ADS)

    Park, Jaehong; Kim, Han-Seek; Liu, Chuanwu; Trenti, Michele; Duffy, Alan R.; Geil, Paul M.; Mutch, Simon J.; Poole, Gregory B.; Mesinger, Andrei; Wyithe, J. Stuart B.

    2017-12-01

    We investigate the clustering properties of Lyman-break galaxies (LBGs) at z ∼ 6 - 8. Using the semi-analytical model MERAXES constructed as part of the dark-ages reionization and galaxy-formation observables from numerical simulation (DRAGONS) project, we predict the angular correlation function (ACF) of LBGs at z ∼ 6 - 8. Overall, we find that the predicted ACFs are in good agreement with recent measurements at z ∼ 6 and z ∼ 7.2 from observations consisting of the Hubble eXtreme Deep Field, the Hubble Ultra Deep Field and cosmic sssembly near-infrared deep extragalactic legacy survey field. We confirm the dependence of clustering on luminosity, with more massive dark matter haloes hosting brighter galaxies, remains valid at high redshift. The predicted galaxy bias at fixed luminosity is found to increase with redshift, in agreement with observations. We find that LBGs of magnitude MAB(1600) < -19.4 at 6 ≲ z ≲ 8 reside in dark matter haloes of mean mass ∼1011.0-1011.5 M⊙, and this dark matter halo mass does not evolve significantly during reionisation.

  9. Galactic Halo Stars in Phase Space: A Hint of Satellite Accretion?

    NASA Astrophysics Data System (ADS)

    Brook, Chris B.; Kawata, Daisuke; Gibson, Brad K.; Flynn, Chris

    2003-03-01

    The present-day chemical and dynamical properties of the Milky Way bear the imprint of the Galaxy's formation and evolutionary history. One of the most enduring and critical debates surrounding Galactic evolution is that regarding the competition between ``satellite accretion'' and ``monolithic collapse'' the apparent strong correlation between orbital eccentricity and metallicity of halo stars was originally used as supporting evidence for the latter. While modern-day unbiased samples no longer support the claims for a significant correlation, recent evidence has been presented by Chiba & Beers for the existence of a minor population of high-eccentricity metal-deficient halo stars. It has been suggested that these stars represent the signature of a rapid (if minor) collapse phase in the Galaxy's history. Employing velocity and integrals of motion phase-space projections of these stars, coupled with a series of N-body/smoothed particle hydrodynamic chemodynamical simulations, we suggest that an alternative mechanism for creating such stars may be the recent accretion of a polar orbit dwarf galaxy.

  10. Positron line radiation from halo WIMP annihilations as a dark matter signature

    NASA Technical Reports Server (NTRS)

    Turner, Michael S.; Wilczek, Frank

    1989-01-01

    We suggest a new signature for dark matter annihilation in the halo: high energy positron line radiation. Because the cosmic ray positron spectrum falls rapidly with energy, e+'s from halo WIMP annihilations can be a significant, clean signal for very massive WIMP's (approx. greater than 30 GeV). In the case that the e+e- annihilation channel has an appreciable branch, the e+ signal should be above background in a future detector, such as have been proposed for ASTROMAG, and of potential importance as a dark matter signature. A significant e+e- branching ratio can occur for neutralinos or Dirac neutrinos. High-energy, continuum positron radiation may also be an important signature for massive neutralino annihilations, especially near or above the threshold of the W+W- and ZoZo annihilation channels.

  11. Updated search for spectral lines from Galactic dark matter interactions with pass 8 data from the Fermi Large Area Telescope

    DOE PAGES

    Ackermann, M.; Ajello, M.; Albert, A.; ...

    2015-06-15

    Dark matter in the Milky Way may annihilate directly into γ rays, producing a monoenergetic spectral line. Therefore, detecting such a signature would be strong evidence for dark matter annihilation or decay. We search for spectral lines in the Fermi Large Area Telescope observations of the Milky Way halo in the energy range 200 MeV–500 GeV using analysis methods from our most recent line searches. The main improvements relative to previous works are our use of 5.8 years of data reprocessed with the Pass 8 event-level analysis and the additional data resulting from the modified observing strategy designed to increasemore » exposure of the Galactic center region. Furthermore, we search in five sky regions selected to optimize sensitivity to different theoretically motivated dark matter scenarios and find no significant detections. In addition to presenting the results from our search for lines, we also investigate the previously reported tentative detection of a line at 133 GeV using the new Pass 8 data.« less

  12. Mapping photometric metallicities in the Galactic halo using broadband photometry

    NASA Astrophysics Data System (ADS)

    Hebenstreit, Samuel David; Nidever, David L.; Munn, Jeffrey A.; Majewski, Steven R.

    2018-06-01

    An important objective of modern Astrophysics is to trace the history of galaxies and the dynamics of their formations. The outer regions of the Milky Way, including the Galactic halo, could potentially elucidate the evolutionary history of our galaxy. In this study, we make use of extensive DDO51 photometry combined with SDSS broadband photometry to select giant stars reaching to 90 kpc. Photometric metallicities, calibrated by overlapping spectroscopic data (SDSS, APOGEE and LAMOST), and distances are calculated for all giant stars. Using these metallicities and distances, we construct metallicity distribution functions (MDFs) from these stars. We study the MDFs for information pertaining to the accretion history of the Milky Way.

  13. V474 Car: A RARE HALO RS CVn BINARY IN RETROGRADE GALACTIC ORBIT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bubar, Eric J.; Mamajek, Eric E.; Jensen, Eric L. N.

    We report the discovery that the star V474 Car is an extremely active, high velocity halo RS CVn system. The star was originally identified as a possible pre-main-sequence star in Carina, given its enhanced stellar activity, rapid rotation (10.3 days), enhanced Li, and absolute magnitude which places it above the main sequence (MS). However, its extreme radial velocity (264 km s{sup -1}) suggested that this system was unlike any previously known pre-MS system. Our detailed spectroscopic analysis of echelle spectra taken with the CTIO 4 m finds that V474 Car is both a spectroscopic binary with an orbital period similarmore » to the photometric rotation period and metal-poor ([Fe/H] {approx_equal}-0.99). The star's Galactic orbit is extremely eccentric (e {approx_equal} 0.93) with a perigalacticon of only {approx}0.3 kpc of the Galactic center-and the eccentricity and smallness of its perigalacticon are surpassed by only {approx}0.05% of local F/G-type field stars. The observed characteristics are consistent with V474 Car being a high-velocity, metal-poor, tidally locked, chromospherically active binary, i.e., a halo RS CVn binary, and one of only a few such specimens known.« less

  14. Stellar Mass Versus Stellar Velocity Dispersion: Which is Better for Linking Galaxies to Their Dark Matter Halos?

    NASA Astrophysics Data System (ADS)

    Li, Cheng; Wang, Lixin; Jing, Y. P.

    2013-01-01

    It was recently suggested that compared to its stellar mass (M *), the central stellar velocity dispersion (σ*) of a galaxy might be a better indicator for its host dark matter halo mass. Here we test this hypothesis by estimating the dark matter halo mass for central galaxies in groups as a function of M * and σ*. For this we have estimated the redshift-space cross-correlation function (CCF) between the central galaxies at given M * and σ* and a reference galaxy sample, from which we determine both the projected CCF, wp (rp ), and the velocity dispersion profile. A halo mass is then obtained from the average velocity dispersion within the virial radius. At fixed M *, we find very weak or no correlation between halo mass and σ*. In contrast, strong mass dependence is clearly seen even when σ* is limited to a narrow range. Our results thus firmly demonstrate that the stellar mass of central galaxies is still a good (if not the best) indicator for dark matter halo mass, better than the stellar velocity dispersion. The dependence of galaxy clustering on σ* at fixed M *, as recently discovered by Wake et al., may be attributed to satellite galaxies, for which the tidal stripping occurring within halos has stronger effect on stellar mass than on central stellar velocity dispersion.

  15. Toroidal halos in a nontopological soliton model of dark matter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mielke, Eckehard W.; Perez, Jose A. Velez

    2007-02-15

    Soliton type solutions of an axionlike scalar model with self-interaction are analyzed further as a toy model of dark matter halos. For a 'nonlinear superposition' of round and flattened configurations we found ringlike substructures in the density profile similarly as has been inferred for our Galaxy from the observed excess of the diffuse component of cosmic gamma rays.

  16. A New Determination of the Luminosity Function of the Galactic Halo.

    NASA Astrophysics Data System (ADS)

    Dawson, Peter Charles

    The luminosity function of the galactic halo is determined by subtracting from the observed numbers of proper motion stars in the LHS Catalogue the expected numbers of main-sequence, degenerate, and giant stars of the disk population. Selection effects are accounted for by Monte Carlo simulations based upon realistic colour-luminosity relations and kinematic models. The catalogue is shown to be highly complete, and a calibration of the magnitude estimates therein is presented. It is found that, locally, the ratio of disk to halo material is close to 950, and that the mass density in main sequence and subgiant halo stars with 3 < M(,v) < 14 is about 2 x 10('-5) M(,o) pc('-3). With due allowance for white dwarfs and binaries, and taking into account the possibility of a moderate rate of halo rotation, it is argued that the total density does not much exceed 5 x 10('-5) M(,o) pc('-3), in which case the total mass interior to the sun is of the order of 5 x 10('8) M(,o) for a density distribution which projects to a de Vaucouleurs r(' 1/4) law. It is demonstrated that if the Wielen luminosity function is a faithful representation of the stellar distribution in the solar neighbourhood, then the observed numbers of large proper motion stars are inconsistent with the presence of an intermediate popula- tion at the level, and with the kinematics advocated recently by Gilmore and Reid. The initial mass function (IMF) of the halo is considered, and weak evidence is presented that its slope is at least not shallower than that of the disk population IMF. A crude estimate of the halo's age, based on a comparison of the main sequence turnoff in the reduced proper motion diagram with theoretical models is obtained; a tentative lower limit is 15 Gyr with a best estimate of between 15 and 18 Gyr. Finally, the luminosity function obtained here is compared with those determined in other investigations.

  17. The Correspondence between Convergence Peaks from Weak Lensing and Massive Dark Matter Haloes

    NASA Astrophysics Data System (ADS)

    Wei, Chengliang; Li, Guoliang; Kang, Xi; Liu, Xiangkun; Fan, Zuhui; Yuan, Shuo; Pan, Chuzhong

    2018-05-01

    The convergence peaks, constructed from galaxy shape measurement in weak lensing, is a powerful probe of cosmology as the peaks can be connected with the underlined dark matter haloes. However the capability of convergence peak statistic is affected by the noise in galaxy shape measurement, signal to noise ratio as well as the contribution from the projected mass distribution from the large-scale structures along the line of sight (LOS). In this paper we use the ray-tracing simulation on a curved sky to investigate the correspondence between the convergence peak and the dark matter haloes at the LOS. We find that, in case of no noise and for source galaxies at zs = 1, more than 65% peaks with SNR ≥ 3 (signal to noise ratio) are related to more than one massive haloes with mass larger than 1013M⊙. Those massive haloes contribute 87.2% to high peaks (SNR ≥ 5) with the remaining contributions are from the large-scale structures. On the other hand, the peaks distribution is skewed by the noise in galaxy shape measurement, especially for lower SNR peaks. In the noisy field where the shape noise is modelled as a Gaussian distribution, about 60% high peaks (SNR ≥ 5) are true peaks and the fraction decreases to 20% for lower peaks (3 ≤ SNR < 5). Furthermore, we find that high peaks (SNR ≥ 5) are dominated by very massive haloes larger than 1014M⊙.

  18. Dark matter, shared asymmetries, and galactic gamma ray signals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fonseca, Nayara; Necib, Lina; Thaler, Jesse, E-mail: nayara@if.usp.br, E-mail: lnecib@mit.edu, E-mail: jthaler@mit.edu

    2016-02-01

    We introduce a novel dark matter scenario where the visible sector and the dark sector share a common asymmetry. The two sectors are connected through an unstable mediator with baryon number one, allowing the standard model baryon asymmetry to be shared with dark matter via semi-annihilation. The present-day abundance of dark matter is then set by thermal freeze-out of this semi-annihilation process, yielding an asymmetric version of the WIMP miracle as well as promising signals for indirect detection experiments. As a proof of concept, we find a viable region of parameter space consistent with the observed Fermi excess of GeVmore » gamma rays from the galactic center.« less

  19. How do stars affect ψDM halos?

    NASA Astrophysics Data System (ADS)

    Chan, James H. H.; Schive, Hsi-Yu; Woo, Tak-Pong; Chiueh, Tzihong

    2018-04-01

    Wave dark matter (ψDM) predicts a compact soliton core and a granular halo in every galaxy. This work presents the first simulation study of an elliptical galaxy by including both stars and ψDM, focusing on the systematic changes of the central soliton and halo granules. With the addition of stars in the inner halo, we find the soliton core consistently becomes more prominent by absorbing mass from the host halo than that without stars, and the halo granules become "non-isothermal", "hotter" in the inner halo and "cooler" in the outer halo, as opposed to the isothermal halo in pure ψDM cosmological simulations. Moreover, the composite (star+ψDM) mass density is found to follow a r-2 isothermal profile near the half-light radius in most cases. Most striking is the velocity dispersion of halo stars that increases rapidly toward the galactic center by a factor of at least 2 inside the half-light radius caused by the deepened soliton gravitational potential, a result that compares favorably with observations of elliptical galaxies and bulges in spiral galaxies. However in some rare situations we find a phase segregation turning a compact distribution of stars into two distinct populations with high and very low velocity dispersions; while the high-velocity component mostly resides in the halo, the very low-velocity component is bound to the interior of the soliton core, resembling stars in faint dwarf spheroidal galaxies.

  20. Precision measurement of the local bias of dark matter halos

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lazeyras, Titouan; Wagner, Christian; Schmidt, Fabian

    2016-02-01

    We present accurate measurements of the linear, quadratic, and cubic local bias of dark matter halos, using curved 'separate universe' N-body simulations which effectively incorporate an infinite-wavelength overdensity. This can be seen as an exact implementation of the peak-background split argument. We compare the results with the linear and quadratic bias measured from the halo-matter power spectrum and bispectrum, and find good agreement. On the other hand, the standard peak-background split applied to the Sheth and Tormen (1999) and Tinker et al. (2008) halo mass functions matches the measured linear bias parameter only at the level of 10%. The predictionmore » from the excursion set-peaks approach performs much better, which can be attributed to the stochastic moving barrier employed in the excursion set-peaks prediction. We also provide convenient fitting formulas for the nonlinear bias parameters b{sub 2}(b{sub 1}) and b{sub 3}(b{sub 1}), which work well over a range of redshifts.« less

  1. Halo-independence with quantified maximum entropy at DAMA/LIBRA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fowlie, Andrew, E-mail: andrew.j.fowlie@googlemail.com

    2017-10-01

    Using the DAMA/LIBRA anomaly as an example, we formalise the notion of halo-independence in the context of Bayesian statistics and quantified maximum entropy. We consider an infinite set of possible profiles, weighted by an entropic prior and constrained by a likelihood describing noisy measurements of modulated moments by DAMA/LIBRA. Assuming an isotropic dark matter (DM) profile in the galactic rest frame, we find the most plausible DM profiles and predictions for unmodulated signal rates at DAMA/LIBRA. The entropic prior contains an a priori unknown regularisation factor, β, that describes the strength of our conviction that the profile is approximately Maxwellian.more » By varying β, we smoothly interpolate between a halo-independent and a halo-dependent analysis, thus exploring the impact of prior information about the DM profile.« less

  2. Halo abundance and assembly history with extreme-axion wave dark matter at z ≥ 4

    NASA Astrophysics Data System (ADS)

    Schive, Hsi-Yu; Chiueh, Tzihong

    2018-01-01

    Wave dark matter (ψDM) composed of extremely light bosons (mψ ˜ 10 - 22 eV), with quantum pressure suppressing structures below a kpc-scale de Broglie wavelength, has become a viable dark matter candidate. Compared to the conventional free-particle ψDM (FPψDM), the extreme-axion ψDM model (EAψDM) proposed by Zhang & Chiueh features a larger cut-off wavenumber and a broad spectral bump in the matter transfer function. Here, we conduct cosmological simulations to compare the halo abundances and assembly histories at z = 4-11 between three different scenarios: FPψDM, EAψDM and cold dark matter (CDM). We show that EAψDM produces significantly more abundant low-mass haloes than FPψDM with the same mψ, and therefore could alleviate the tension in mψ required by the Lyα forest data and by the kpc-scale dwarf galaxy cores. We also find that, compared to the CDM counterparts, massive EAψDM haloes are, on average, 3-4 times more massive at z = 10-11 due to their earlier formation, undergo a slower mass accretion at 7 ≲ z ≲ 11, and then show a rapidly rising major merger rate exceeding CDM by ˜ 50 per cent at 4 ≲ z ≲ 7. This fact suggests that EAψDM haloes may exhibit more prominent starbursts at z ≲ 7.

  3. Prospects for Dark Matter Measurements with the Advanced Gamma Ray Imaging System (AGIS)

    NASA Astrophysics Data System (ADS)

    Buckley, James

    2009-05-01

    AGIS, a concept for a future gamma-ray observatory consisting of an array of 50 atmospheric Cherenkov telescopes, would provide a powerful new tool for determining the nature of dark matter and its role in structure formation in the universe. The advent of more sensitive direct detection experiments, the launch of Fermi and the startup of the LHC make the near future an exciting time for dark matter searches. Indirect measurements of cosmic-ray electrons may already provide a hint of dark matter in our local halo. However, gamma-ray measurements will provide the only means for mapping the dark matter in the halo of our galaxy and other galaxies. In addition, the spectrum of gamma-rays (either direct annihilation to lines or continuum emission from other annihilation channels) will be imprinted with the mass of the dark matter particle, and the particular annihilation channels providing key measurements needed to identify the dark matter particle. While current gamma-ray instruments fall short of the generic sensitivity required to measure the dark matter signal from any sources other than the (confused) region around the Galactic center, we show that the planned AGIS array will have the angular resolution, energy resolution, low threshold energy and large effective area required to detect emission from dark matter annihilation in Galactic substructure or nearby Dwarf spheroidal galaxies.

  4. Annihilation physics of exotic galactic dark matter particles

    NASA Technical Reports Server (NTRS)

    Stecker, F. W.

    1990-01-01

    Various theoretical arguments make exotic heavy neutral weakly interacting fermions, particularly those predicted by supersymmetry theory, attractive candidates for making up the large amount of unseen gravitating mass in galactic halos. Such particles can annihilate with each other, producing secondary particles of cosmic-ray energies, among which are antiprotons, positrons, neutrinos, and gamma-rays. Spectra and fluxes of these annihilation products can be calculated, partly by making use of positron electron collider data and quantum chromodynamic models of particle production derived therefrom. These spectra may provide detectable signatures of exotic particle remnants of the big bang.

  5. Effects of coupled dark energy on the Milky Way and its satellites

    NASA Astrophysics Data System (ADS)

    Penzo, Camilla; Macciò, Andrea V.; Baldi, Marco; Casarini, Luciano; Oñorbe, Jose; Dutton, Aaron A.

    2016-09-01

    We present the first numerical simulations in coupled dark energy cosmologies with high enough resolution to investigate the effects of the coupling on galactic and subgalactic scales. We choose two constant couplings and a time-varying coupling function and we run simulations of three Milky Way-sized haloes (˜1012 M⊙), a lower mass halo (6 × 1011 M⊙) and a dwarf galaxy halo (5 × 109 M⊙). We resolve each halo with several million dark matter particles. On all scales, the coupling causes lower halo concentrations and a reduced number of substructures with respect to Λ cold dark matter (ΛCDM). We show that the reduced concentrations are not due to different formation times. We ascribe them to the extra terms that appear in the equations describing the gravitational dynamics. On the scale of the Milky Way satellites, we show that the lower concentrations can help in reconciling observed and simulated rotation curves, but the coupling values necessary to have a significant difference from ΛCDM are outside the current observational constraints. On the other hand, if other modifications to the standard model allowing a higher coupling (e.g. massive neutrinos) are considered, coupled dark energy can become an interesting scenario to alleviate the small-scale issues of the ΛCDM model.

  6. Painting galaxies into dark matter halos using machine learning

    NASA Astrophysics Data System (ADS)

    Agarwal, Shankar; Davé, Romeel; Bassett, Bruce A.

    2018-05-01

    We develop a machine learning (ML) framework to populate large dark matter-only simulations with baryonic galaxies. Our ML framework takes input halo properties including halo mass, environment, spin, and recent growth history, and outputs central galaxy and halo baryonic properties including stellar mass (M*), star formation rate (SFR), metallicity (Z), neutral (H I) and molecular (H_2) hydrogen mass. We apply this to the MUFASA cosmological hydrodynamic simulation, and show that it recovers the mean trends of output quantities with halo mass highly accurately, including following the sharp drop in SFR and gas in quenched massive galaxies. However, the scatter around the mean relations is under-predicted. Examining galaxies individually, at z = 0 the stellar mass and metallicity are accurately recovered (σ ≲ 0.2 dex), but SFR and H I show larger scatter (σ ≳ 0.3 dex); these values improve somewhat at z = 1, 2. Remarkably, ML quantitatively recovers second parameter trends in galaxy properties, e.g. that galaxies with higher gas content and lower metallicity have higher SFR at a given M*. Testing various ML algorithms, we find that none perform significantly better than the others, nor does ensembling improve performance, likely because none of the algorithms reproduce the large observed scatter around the mean properties. For the random forest algorithm, we find that halo mass and nearby (˜200 kpc) environment are the most important predictive variables followed by growth history, while halo spin and ˜Mpc scale environment are not important. Finally we study the impact of additionally inputting key baryonic properties M*, SFR, and Z, as would be available e.g. from an equilibrium model, and show that particularly providing the SFR enables H I to be recovered substantially more accurately.

  7. Supermassive dark-matter Q-balls in galactic centers?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Troitsky, Sergey; Moscow Institute for Physics and Technology,Institutskii per. 9, 141700, Dolgoprudny, Moscow Region

    2016-11-11

    Though widely accepted, it is not proven that supermassive compact objects (SMCOs) residing in galactic centers are black holes. In particular, the Milky Way’s SMCO can be a giant nontopological soliton, Q-ball, made of a scalar field: this fits perfectly all observational data. Similar but tiny Q-balls produced in the early Universe may constitute, partly or fully, the dark matter. This picture explains in a natural way, why our SMCO has very low accretion rate and why the observed angular size of the corresponding radio source is much smaller than expected. Interactions between dark-matter Q-balls may explain how SMCOs weremore » seeded in galaxies and resolve well-known problems of standard (non-interacting) dark matter.« less

  8. Halo histories versus galaxy properties at z = 0 II: large-scale galactic conformity

    NASA Astrophysics Data System (ADS)

    Tinker, Jeremy L.; Hahn, ChangHoon; Mao, Yao-Yuan; Wetzel, Andrew R.; Conroy, Charlie

    2018-06-01

    Using group catalogues from the Sloan Digital Sky Survey (SDSS) Data Release 7, we measure galactic conformity in the local universe. We measure the quenched fraction of neighbour galaxies around isolated primary galaxies, dividing the isolated sample into star-forming and quiescent objects. We restrict our measurements to scales >1 Mpc to probe the correlations between halo formation histories. Over the stellar mass range 109.7 ≤ M*/M⊙ ≤ 1010.9, we find minimal evidence for conformity. We further compare these data to predictions of the halo age-matching model, in which the oldest galaxies are associated with the oldest haloes. For models with strong correlations between halo and stellar age, the conformity is too large to be consistent with the data. Weaker implementations of the age-matching model would not produce a detectable signal in SDSS data. We reproduce the results of Kauffmann et al., in which the star formation rates of neighbour galaxies are reduced around primary galaxies when the primaries are low star formers. However, we find this result is mainly driven by contamination in the isolation criterion; when removing the small fraction of satellite galaxies in the sample, the conformity signal largely goes away. Lastly, we show that small conformity signals, i.e. 2-5 per cent differences in the quenched fractions of neighbour galaxies, can be produced by mechanisms other than halo assembly bias. For example, if passive galaxies occupy more massive haloes than star-forming galaxies of the same stellar mass, a conformity signal that is consistent with recent measurements from PRIMUS (Berti et al.) can be produced.

  9. Self-interacting dark matter

    NASA Astrophysics Data System (ADS)

    Mavromatos, Nick E.; Argüelles, Carlos R.; Ruffini, Remo; Rueda, Jorge A.

    Self-interacting dark matter (SIDM) is a hypothetical form of dark matter (DM), characterized by relatively strong (compared to the weak interaction strength) self-interactions (SIs), which has been proposed to resolve a number of issues concerning tensions between simulations and observations at the galactic or smaller scales. We review here some recent developments discussed at the 14th Marcel Grossmann Meeting (MG14), paying particular attention to restrictions on the SIDM (total) cross-section from using novel observables in merging galactic structures, as well as the rôle of SIDM on the Milky Way halo and its central region. We report on some interesting particle-physics inspired SIDM models that were discussed at MG14, namely the glueball DM, and a right-handed neutrino DM (with mass of a few tens of keV, that may exist in minimal extensions of the standard model (SM)), interacting among themselves via vector bosons mediators in the dark sector. A detailed phenomenology of the latter model on galactic scales, as well as the potential role of the right handed neutrinos in alleviating some of the small-scale cosmology problems, namely the discrepancies between observations and numerical simulations within standard ΛCDM and ΛWDM cosmologies are reported.

  10. THE INNER STRUCTURE OF DWARF-SIZED HALOS IN WARM AND COLD DARK MATTER COSMOLOGIES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    González-Samaniego, A.; Avila-Reese, V.; Colín, P.

    2016-03-10

    By means of N-body + hydrodynamic zoom-in simulations we study the evolution of the inner dark matter and stellar mass distributions of central dwarf galaxies formed in halos of virial masses M{sub v} = (2–3) × 10{sup 10} h{sup −1} M{sub ⊙} at z = 0, both in a warm dark matter (WDM) and cold dark matter (CDM) cosmology. The half-mode mass in the WDM power spectrum of our simulations is M{sub f} = 2 × 10{sup 10} h{sup −1} M{sub ⊙}. In the dark matter (DM) only simulations halo density profiles are well described by the Navarro–Frenk–White parametric fit in both cosmologies, though the WDM halos have concentrations lower bymore » factors of 1.5–2.0 than their CDM counterparts. In the hydrodynamic simulations, the effects of baryons significantly flatten the inner density, velocity dispersion, and pseudo phase space density profiles of the WDM halos but not of the CDM ones. The density slope, measured at ≈0.02R{sub v}, α{sub 0.02}, becomes shallow in periods of 2–5 Gyr in the WDM runs. We explore whether this flattening process correlates with the global star formation (SF), M{sub s}/M{sub v} ratio, gas outflow, and internal specific angular momentum histories. We do not find any clear trends, but when α{sub 0.02} is shallower than −0.5, M{sub s}/M{sub v} is always between 0.25% and 1%. We conclude that the main reason for the formation of the shallow core is the presence of strong gas mass fluctuations inside the inner halo, which are a consequence of the feedback driven by a very bursty and sustained SF history in shallow gravitational potentials. Our WDM halos, which assemble late and are less concentrated than the CDM ones, obey these conditions. There are also (rare) CDM systems with extended mass assembly histories that obey these conditions and form shallow cores. The dynamical heating and expansion processes behind the DM core flattening apply also to the stars in such a way that the stellar age and metallicity gradients

  11. The halo Boltzmann equation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Biagetti, Matteo; Desjacques, Vincent; Kehagias, Alex

    2016-04-01

    Dark matter halos are the building blocks of the universe as they host galaxies and clusters. The knowledge of the clustering properties of halos is therefore essential for the understanding of the galaxy statistical properties. We derive an effective halo Boltzmann equation which can be used to describe the halo clustering statistics. In particular, we show how the halo Boltzmann equation encodes a statistically biased gravitational force which generates a bias in the peculiar velocities of virialized halos with respect to the underlying dark matter, as recently observed in N-body simulations.

  12. Intermediate-mass Black Holes and Dark Matter at the Galactic Center

    NASA Astrophysics Data System (ADS)

    Lacroix, Thomas; Silk, Joseph

    2018-01-01

    Could there be a large population of intermediate-mass black holes (IMBHs) formed in the early universe? Whether primordial or formed in Population III, these are likely to be very subdominant compared to the dark matter density, but could seed early dwarf galaxy/globular cluster and supermassive black hole formation. Via survival of dark matter density spikes, we show here that a centrally concentrated relic population of IMBHs, along with ambient dark matter, could account for the Fermi gamma-ray “excess” in the Galactic center because of dark matter particle annihilations.

  13. Angular momentum evolution in dark matter haloes: a study of the Bolshoi and Millennium simulations

    NASA Astrophysics Data System (ADS)

    Contreras, S.; Padilla, N.; Lagos, C. D. P.

    2017-12-01

    We use three different cosmological dark matter simulations to study how the orientation of the angular momentum (AM) vector in dark matter haloes evolve with time. We find that haloes in this kind of simulations are constantly affected by a spurious change of mass, which translates into an artificial change in the orientation of the AM. After removing the haloes affected by artificial mass change, we found that the change in the orientation of the AM vector is correlated with time. The change in its angle and direction (i.e. the angle subtended by the AM vector in two consecutive time-steps) that affect the AM vector has a dependence on the change of mass that affects a halo, the time elapsed in which the change of mass occurs and the halo mass. We create a Monte Carlo simulation that reproduces the change of angle and direction of the AM vector. We reproduce the angular separation of the AM vector since a lookback time of 8.5 Gyr to today (α) with an accuracy of approximately 0.05 in cos(α). We are releasing this Monte Carlo simulation together with this publication. We also create a Monte Carlo simulation that reproduces the change of the AM modulus. We find that haloes in denser environments display the most dramatic evolution in their AM direction, as well as haloes with a lower specific AM modulus. These relations could be used to improve the way we follow the AM vector in low-resolution simulations.

  14. A Low-metallicity Molecular Cloud in the Lower Galactic Halo

    NASA Astrophysics Data System (ADS)

    Hernandez, Audra K.; Wakker, Bart P.; Benjamin, Robert A.; French, David; Kerp, Juergen; Lockman, Felix J.; O'Toole, Simon; Winkel, Benjamin

    2013-11-01

    We find evidence for the impact of infalling, low-metallicity gas on the Galactic disk. This is based on FUV absorption line spectra, 21 cm emission line spectra, and far-infrared (FIR) mapping to estimate the abundance and physical properties of IV21 (IVC135+54-45), a galactic intermediate-velocity molecular cloud that lies ~300 pc above the disk. The metallicity of IV21 was estimated using observations toward the subdwarf B star PG1144+615, located at a projected distance of 16 pc from the cloud's densest core, by measuring ion and H I column densities for comparison with known solar abundances. Despite the cloud's bright FIR emission and large column densities of molecular gas as traced by CO, we find that it has a sub-solar metallicity of log (Z/Z ⊙) = -0.43 ± 0.12 dex. IV21 is thus the first known sub-solar metallicity cloud in the solar neighborhood. In contrast, most intermediate-velocity clouds (IVC) have near-solar metallicities and are believed to originate in the Galactic Fountain. The cloud's low metallicity is also atypical for Galactic molecular clouds, especially in light of the bright FIR emission which suggest a substantial dust content. The measured I 100 μm/N(H I) ratio is a factor of three below the average found in high latitude H I clouds within the solar neighborhood. We argue that IV21 represents the impact of an infalling, low-metallicity high-velocity cloud that is mixing with disk gas in the lower Galactic halo. Based on observations made with the NASA/ESA Hubble Space Telescope, obtained from MAST at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555. These observations are associated with program No. 12275. The Green Bank Telescope is part of the National Radio Astronomy Observatory which is a Facility of the National Science Foundation, operated by Associated Universities, Inc.

  15. The Impact of Assembly Bias on the Galaxy Content of Dark Matter Halos

    NASA Astrophysics Data System (ADS)

    Zehavi, Idit; Contreras, Sergio; Padilla, Nelson; Smith, Nicholas J.; Baugh, Carlton M.; Norberg, Peder

    2018-01-01

    We study the dependence of the galaxy content of dark matter halos on large-scale environment and halo formation time using semi-analytic galaxy models applied to the Millennium simulation. We analyze subsamples of halos at the extremes of these distributions and measure the occupation functions for the galaxies they host. We find distinct differences among these occupation functions. The main effect with environment is that central galaxies (and in one model, also the satellites) in denser regions start populating lower-mass halos. A similar, but significantly stronger, trend exists with halo age, where early-forming halos are more likely to host central galaxies at lower halo mass. We discuss the origin of these trends and the connection to the stellar mass–halo mass relation. We find that, at fixed halo mass, older halos and to some extent also halos in dense environments tend to host more massive galaxies. Additionally, we see a reverse trend for the occupation of satellite galaxies where early-forming halos have fewer satellites, likely due to having more time for them to merge with the central galaxy. We describe these occupancy variations in terms of the changes in the occupation function parameters, which can aid in constructing realistic mock galaxy samples. Finally, we study the corresponding galaxy auto- and cross-correlation functions of the different samples and elucidate the impact of assembly bias on galaxy clustering. Our results can inform theoretical modeling of galaxy assembly bias and attempts to detect it in the real universe.

  16. Dark catalysis

    NASA Astrophysics Data System (ADS)

    Agrawal, Prateek; Cyr-Racine, Francis-Yan; Randall, Lisa; Scholtz, Jakub

    2017-08-01

    Recently it was shown that dark matter with mass of order the weak scale can be charged under a new long-range force, decoupled from the Standard Model, with only weak constraints from early Universe cosmology. Here we consider the implications of an additional charged particle C that is light enough to lead to significant dissipative dynamics on galactic times scales. We highlight several novel features of this model, which can be relevant even when the C particle constitutes only a small fraction of the number density (and energy density). We assume a small asymmetric abundance of the C particle whose charge is compensated by a heavy X particle so that the relic abundance of dark matter consists mostly of symmetric X and bar X, with a small asymmetric component made up of X and C. As the universe cools, it undergoes asymmetric recombination binding the free Cs into (XC) dark atoms efficiently. Even with a tiny asymmetric component, the presence of C particles catalyzes tight coupling between the heavy dark matter X and the dark photon plasma that can lead to a significant suppression of the matter power spectrum on small scales and lead to some of the strongest bounds on such dark matter theories. We find a viable parameter space where structure formation constraints are satisfied and significant dissipative dynamics can occur in galactic haloes but show a large region is excluded. Our model shows that subdominant components in the dark sector can dramatically affect structure formation.

  17. Dark catalysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Agrawal, Prateek; Cyr-Racine, Francis-Yan; Randall, Lisa

    Recently it was shown that dark matter with mass of order the weak scale can be charged under a new long-range force, decoupled from the Standard Model, with only weak constraints from early Universe cosmology. Here we consider the implications of an additional charged particle C that is light enough to lead to significant dissipative dynamics on galactic times scales. We highlight several novel features of this model, which can be relevant even when the C particle constitutes only a small fraction of the number density (and energy density). We assume a small asymmetric abundance of the C particle whosemore » charge is compensated by a heavy X particle so that the relic abundance of dark matter consists mostly of symmetric X and X-bar , with a small asymmetric component made up of X and C . As the universe cools, it undergoes asymmetric recombination binding the free C s into ( XC ) dark atoms efficiently. Even with a tiny asymmetric component, the presence of C particles catalyzes tight coupling between the heavy dark matter X and the dark photon plasma that can lead to a significant suppression of the matter power spectrum on small scales and lead to some of the strongest bounds on such dark matter theories. We find a viable parameter space where structure formation constraints are satisfied and significant dissipative dynamics can occur in galactic haloes but show a large region is excluded. Our model shows that subdominant components in the dark sector can dramatically affect structure formation.« less

  18. Inelastic Boosted Dark Matter at direct detection experiments

    NASA Astrophysics Data System (ADS)

    Giudice, Gian F.; Kim, Doojin; Park, Jong-Chul; Shin, Seodong

    2018-05-01

    We explore a novel class of multi-particle dark sectors, called Inelastic Boosted Dark Matter (iBDM). These models are constructed by combining properties of particles that scatter off matter by making transitions to heavier states (Inelastic Dark Matter) with properties of particles that are produced with a large Lorentz boost in annihilation processes in the galactic halo (Boosted Dark Matter). This combination leads to new signals that can be observed at ordinary direct detection experiments, but require unconventional searches for energetic recoil electrons in coincidence with displaced multi-track events. Related experimental strategies can also be used to probe MeV-range boosted dark matter via their interactions with electrons inside the target material.

  19. VizieR Online Data Catalog: The SEGUE K giant survey. III. Galactic halo (Janesh+, 2016)

    NASA Astrophysics Data System (ADS)

    Janesh, W.; Morrison, H. L.; Ma, Z.; Rockosi, C.; Starkenburg, E.; Xue, X. X.; Rix, H.-W.; Harding, P.; Beers, T. C.; Johnson, J.; Lee, Y. S.; Schneider, D. P.

    2016-03-01

    We statistically quantify the amount of substructure in the Milky Way stellar halo using a sample of 4568 halo K giant stars at Galactocentric distances ranging over 5-125kpc. These stars have been selected photometrically and confirmed spectroscopically as K giants from the Sloan Digital Sky Survey's Sloan Extension for Galactic Understanding and Exploration (SEGUE) project. Using a position-velocity clustering estimator (the 4distance) and a model of a smooth stellar halo, we quantify the amount of substructure in the halo, divided by distance and metallicity. Overall, we find that the halo as a whole is highly structured. We also confirm earlier work using blue horizontal branch (BHB) stars which showed that there is an increasing amount of substructure with increasing Galactocentric radius, and additionally find that the amount of substructure in the halo increases with increasing metallicity. Comparing to resampled BHB stars, we find that K giants and BHBs have similar amounts of substructure over equivalent ranges of Galactocentric radius. Using a friends-of-friends algorithm to identify members of individual groups, we find that a large fraction (~33%) of grouped stars are associated with Sgr, and identify stars belonging to other halo star streams: the Orphan Stream, the Cetus Polar Stream, and others, including previously unknown substructures. A large fraction of sample K giants (more than 50%) are not grouped into any substructure. We find also that the Sgr stream strongly dominates groups in the outer halo for all except the most metal-poor stars, and suggest that this is the source of the increase of substructure with Galactocentric radius and metallicity. (2 data files).

  20. Dark matter as an effect of the quantum vacuum

    NASA Astrophysics Data System (ADS)

    Santos, Emilio

    2018-04-01

    The interaction between the quantum vacuum and a weak gravitational field is calculated for the vacuum fields of quantum electrodynamics. The result shows that the vacuum state is modified by the gravitational field, giving rise to a nonzero interaction energy. This suggests a model that fits in the main properties of the hypothetical dark matter in galactic haloes.

  1. How does the Structure of Spherical Dark Matter Halos Affect the Types of Orbits in Disk Galaxies?

    NASA Astrophysics Data System (ADS)

    Zotos, Euaggelos E.

    The main objective of this work is to determine the character of orbits of stars moving in the meridional (R,z) plane of an axially symmetric time-independent disk galaxy model with a central massive nucleus and an additional spherical dark matter halo component. In particular, we try to reveal the influence of the scale length of the dark matter halo on the different families of orbits of stars, by monitoring how the percentage of chaotic orbits, as well as the percentages of orbits of the main regular resonant families evolve when this parameter varies. The smaller alignment index (SALI) was computed by numerically integrating the equations of motion as well as the variational equations to extensive samples of orbits in order to distinguish safely bet ween ordered and chaotic motion. In addition, a method based on the concept of spectral dynamics that utilizes the Fourier transform of the time series of each coordinate is used to identify the various families of regular orbits and also to recognize the secondary resonances that bifurcate from them. Our numerical computations reveal that when the dark matter halo is highly concentrated, that is when the scale length has low values the vast majority of star orbits move in regular orbits, while on the oth er hand in less concentrated dark matter halos the percentage of chaos increases significantly. We also compared our results with early related work.

  2. The imprint of dark matter haloes on the size and velocity dispersion evolution of early-type galaxies

    NASA Astrophysics Data System (ADS)

    Posti, Lorenzo; Nipoti, Carlo; Stiavelli, Massimo; Ciotti, Luca

    2014-05-01

    Early-type galaxies (ETGs) are observed to be more compact, on average, at z ≳ 2 than at z ≃ 0, at fixed stellar mass. Recent observational works suggest that such size evolution could reflect the similar evolution of the host dark matter halo density as a function of the time of galaxy quenching. We explore this hypothesis by studying the distribution of halo central velocity dispersion (σ0) and half-mass radius (rh) as functions of halo mass M and redshift z, in a cosmological Λ cold dark matter N-body simulation. In the range 0 ≲ z ≲ 2.5, we find σ0∝M0.31-0.37 and rh∝M0.28-0.32, close to the values expected for homologous virialized systems. At fixed M in the range 1011 M⊙ ≲ M ≲ 5.5 × 1014 M⊙ we find σ0 ∝ (1 + z)0.35 and rh ∝ (1 + z)-0.7. We show that such evolution of the halo scaling laws is driven by individual haloes growing in mass following the evolutionary tracks σ0 ∝ M0.2 and rh ∝ M0.6, consistent with simple dissipationless merging models in which the encounter orbital energy is accounted for. We compare the N-body data with ETGs observed at 0 ≲ z ≲ 3 by populating the haloes with a stellar component under simple but justified assumptions: the resulting galaxies evolve consistently with the observed ETGs up to z ≃ 2, but the model has difficulty in reproducing the fast evolution observed at z ≳ 2. We conclude that a substantial fraction of the size evolution of ETGs can be ascribed to a systematic dependence on redshift of the dark matter haloes structural properties.

  3. New Halo Stars of the Galactic Globular Clusters M3 and M13 in the LAMOST DR1 Catalog

    NASA Astrophysics Data System (ADS)

    Navin, Colin A.; Martell, Sarah L.; Zucker, Daniel B.

    2016-10-01

    M3 and M13 are Galactic globular clusters with previous reports of surrounding stellar halos. We present the results of a search for members and extratidal cluster halo stars within and outside of the tidal radius of these clusters in the LAMOST Data Release 1. We find seven candidate cluster members (inside the tidal radius) of both M3 and M13, respectively. In M3 we also identify eight candidate extratidal cluster halo stars at distances up to ˜9.8 times the tidal radius, and in M13 we identify 12 candidate extratidal cluster halo stars at distances up to ˜13.8 times the tidal radius. These results support previous indications that both M3 and M13 are surrounded by extended stellar halos, and we find that the GC destruction rates corresponding to the observed mass loss are generally significantly higher than theoretical studies predict.

  4. Dark matter annihilation at the galactic center

    NASA Astrophysics Data System (ADS)

    Linden, Tim

    Observations by the WMAP and PLANCK satellites have provided extraordinarily accurate observations on the densities of baryonic matter, dark matter, and dark energy in the universe. These observations indicate that our universe is composed of approximately five times as much dark matter as baryonic matter. However, efforts to detect a particle responsible for the energy density of dark matter have been unsuccessful. Theoretical models have indicated that a leading candidate for the dark matter is the lightest supersymmetric particle, which may be stable due to a conserved R-parity. This dark matter particle would still be capable of interacting with baryons via weak-force interactions in the early universe, a process which was found to naturally explain the observed relic abundance of dark matter today. These residual annihilations can persist, albeit at a much lower rate, in the present universe, providing a detectable signal from dark matter annihilation events which occur throughout the universe. Simulations calculating the distribution of dark matter in our galaxy almost universally predict the galactic center of the Milky Way Galaxy (GC) to provide the brightest signal from dark matter annihilation due to its relative proximity and large simulated dark matter density. Recent advances in telescope technology have allowed for the first multiwavelength analysis of the GC, with suitable effective exposure, angular resolution, and energy resolution in order to detect dark matter particles with properties similar to those predicted by the WIMP miracle. In this work, I describe ongoing efforts which have successfully detected an excess in gamma-ray emission from the region immediately surrounding the GC, which is difficult to describe in terms of standard diffuse emission predicted in the GC region. While the jury is still out on any dark matter interpretation of this excess, I describe several related observations which may indicate a dark matter origin. Finally, I

  5. Transition between order and chaos in a composite disk galaxy model with a massive nucleus and a dark matter halo

    NASA Astrophysics Data System (ADS)

    Caranicolas, Nicolaos D.; Zotos, Euaggelos E.

    2013-02-01

    We investigate the transition from regular to chaotic motion in a composite galaxy model with a disk-halo, a massive dense nucleus and a dark halo component. We obtain relationships connecting the critical value of the mass of the nucleus or the critical value of the angular momentum Lzc, with the mass Mh of the dark halo, where the transition from regular motion to chaos occurs. We also present 3D diagrams connecting the mass of nucleus the energy and the percentage of stars that can show chaotic motion. The fraction of the chaotic orbits observed in the (r,pr) phase plane, as a function of the mass of the dark halo is also computed. We use a semi-numerical method, that is a combination of theoretical and numerical procedure. The theoretical results obtained using the version 8.0 of the Mathematica package, while all the numerical calculations were made using a Bulirsch-Stöer FORTRAN routine in double precision. The results can be obtained in semi-numerical or numerical form and give good description for the connection of the physical quantities entering the model and the transition between regular and chaotic motion. We observe that the mass of the dark halo, the mass of the dense nucleus and the Lz component of the angular momentum, are important physical quantities, as they are linked to the regular or chaotic character of orbits in disk galaxies described by the model. Our numerical experiments suggest, that the amount of the dark matter plays an important role in disk galaxies represented by the model, as the mass of the halo affects, not only the regular or chaotic nature of motion but it is also connected with the existence of the different families of regular orbits. Comparison of the present results with earlier work is also presented.

  6. What to expect from dynamical modelling of galactic haloes - II. The spherical Jeans equation

    NASA Astrophysics Data System (ADS)

    Wang, Wenting; Han, Jiaxin; Cole, Shaun; More, Surhud; Frenk, Carlos; Schaller, Matthieu

    2018-06-01

    The spherical Jeans equation (SJE) is widely used in dynamical modelling of the Milky Way (MW) halo potential. We use haloes and galaxies from the cosmological Millennium-II simulation and hydrodynamical APOSTLE (A Project of Simulations of The Local Environment) simulations to investigate the performance of the SJE in recovering the underlying mass profiles of MW mass haloes. The best-fitting halo mass and concentration parameters scatter by 25 per cent and 40 per cent around their input values, respectively, when dark matter particles are used as tracers. This scatter becomes as large as a factor of 3 when using star particles instead. This is significantly larger than the estimated statistical uncertainty associated with the use of the SJE. The existence of correlated phase-space structures that violate the steady-state assumption of the SJE as well as non-spherical geometries is the principal source of the scatter. Binary haloes show larger scatter because they are more aspherical in shape and have a more perturbed dynamical state. Our results confirm that the number of independent phase-space structures sets an intrinsic limiting precision on dynamical inferences based on the steady-state assumption. Modelling with a radius-independent velocity anisotropy, or using tracers within a limited outer radius, result in significantly larger scatter, but the ensemble-averaged measurement over the whole halo sample is approximately unbiased.

  7. On the stability of satellite planes - I. Effects of mass, velocity, halo shape and alignment

    NASA Astrophysics Data System (ADS)

    Fernando, Nuwanthika; Arias, Veronica; Guglielmo, Magda; Lewis, Geraint F.; Ibata, Rodrigo A.; Power, Chris

    2017-02-01

    The recently discovered vast thin plane of dwarf satellites orbiting the Andromeda Galaxy (M31) adds to the mystery of the small-scale distribution of the Local Group's galaxy population. Such well-defined planar structures are apparently rare occurrences in cold dark matter cosmological simulations, and we lack a coherent explanation of their formation and existence. In this paper, we explore the long-term survivability of thin planes of dwarfs in galactic haloes, focusing, in particular, on systems mimicking the observed Andromeda distribution. The key results show that, in general, planes of dwarf galaxies are fragile, sensitive to the shape of the dark matter halo and other perturbing effects. In fact, long-lived planes of satellites only exist in polar orbits in spherical dark matter haloes, presenting a challenge to the observed Andromeda plane that is significantly tilted with respect to the optical disc. Our conclusion is that, in the standard cosmological models, planes of satellites are generally short lived, and hence we must be located at a relatively special time in the evolution of the Andromeda Plane, lucky enough to see its coherent pattern.

  8. Interaction of clumpy dark matter with interstellar medium in astrophysical systems

    NASA Astrophysics Data System (ADS)

    Baushev, A. N.

    2012-02-01

    Contemporary cosmological conceptions suggest that the dark matter in haloes of galaxies and galaxy clusters has most likely a clumpy structure. If a stream of gas penetrates through it, a small-scale gravitational field created by the clumps disturbs the flow resulting in momentum exchange between the stream and the dark matter. In this article, we perform an analysis of this effect, based on the hierarchical halo model of the dark matter structure and Navarro-Frenk-White density profiles. We consider the clumps of various masses, from the smallest up to the highest ones M≥ 109 M⊙. It has been found that in any event the effect grows with the mass of the clump: not only the drag force ? acting on the clump but also its acceleration ? increases. We discuss various astrophysical systems. The mechanism proved to be ineffective in the case of galaxy or galaxy cluster collisions. On the other hand, it played an important role during the process of galaxy formation. As a result, the dark matter should have formed a more compact, oblate and faster rotating substructure in the halo of our Galaxy. We have shown that this thick disc should be more clumpy than the halo. This fact is very important for the indirect detection experiments since it is the clumps that give the main contribution to the annihilation signal. Our calculations show that the mechanism of momentum exchange between the dark and baryon matter is ineffective on the outskirts of the galactic halo. It means that the clumps from there were not transported to the thick disc, and this region should be more clumpy than the halo on the average.

  9. Alignments of Dark Matter Halos with Large-scale Tidal Fields: Mass and Redshift Dependence

    NASA Astrophysics Data System (ADS)

    Chen, Sijie; Wang, Huiyuan; Mo, H. J.; Shi, Jingjing

    2016-07-01

    Large-scale tidal fields estimated directly from the distribution of dark matter halos are used to investigate how halo shapes and spin vectors are aligned with the cosmic web. The major, intermediate, and minor axes of halos are aligned with the corresponding tidal axes, and halo spin axes tend to be parallel with the intermediate axes and perpendicular to the major axes of the tidal field. The strengths of these alignments generally increase with halo mass and redshift, but the dependence is only on the peak height, ν \\equiv {δ }{{c}}/σ ({M}{{h}},z). The scaling relations of the alignment strengths with the value of ν indicate that the alignment strengths remain roughly constant when the structures within which the halos reside are still in a quasi-linear regime, but decreases as nonlinear evolution becomes more important. We also calculate the alignments in projection so that our results can be compared directly with observations. Finally, we investigate the alignments of tidal tensors on large scales, and use the results to understand alignments of halo pairs separated at various distances. Our results suggest that the coherent structure of the tidal field is the underlying reason for the alignments of halos and galaxies seen in numerical simulations and in observations.

  10. Imaging Galactic Dark Matter with High-Energy Cosmic Neutrinos

    NASA Astrophysics Data System (ADS)

    Argüelles, Carlos A.; Kheirandish, Ali; Vincent, Aaron C.

    2017-11-01

    We show that the high-energy cosmic neutrinos seen by the IceCube Neutrino Observatory can be used to probe interactions between neutrinos and the dark sector that cannot be reached by current cosmological methods. The origin of the observed neutrinos is still unknown, and their arrival directions are compatible with an isotropic distribution. This observation, together with dedicated studies of Galactic plane correlations, suggests a predominantly extragalactic origin. Interactions between this isotropic extragalactic flux and the dense dark matter (DM) bulge of the Milky Way would thus lead to an observable imprint on the distribution, which would be seen by IceCube as (i) slightly suppressed fluxes at energies below a PeV and (ii) a deficit of events in the direction of the Galactic center. We perform an extended unbinned likelihood analysis using the four-year high-energy starting event data set to constrain the strength of DM-neutrino interactions for two model classes. We find that, in spite of low statistics, IceCube can probe regions of the parameter space inaccessible to current cosmological methods.

  11. Imaging Galactic Dark Matter with High-Energy Cosmic Neutrinos.

    PubMed

    Argüelles, Carlos A; Kheirandish, Ali; Vincent, Aaron C

    2017-11-17

    We show that the high-energy cosmic neutrinos seen by the IceCube Neutrino Observatory can be used to probe interactions between neutrinos and the dark sector that cannot be reached by current cosmological methods. The origin of the observed neutrinos is still unknown, and their arrival directions are compatible with an isotropic distribution. This observation, together with dedicated studies of Galactic plane correlations, suggests a predominantly extragalactic origin. Interactions between this isotropic extragalactic flux and the dense dark matter (DM) bulge of the Milky Way would thus lead to an observable imprint on the distribution, which would be seen by IceCube as (i) slightly suppressed fluxes at energies below a PeV and (ii) a deficit of events in the direction of the Galactic center. We perform an extended unbinned likelihood analysis using the four-year high-energy starting event data set to constrain the strength of DM-neutrino interactions for two model classes. We find that, in spite of low statistics, IceCube can probe regions of the parameter space inaccessible to current cosmological methods.

  12. Particle Dark Matter constraints: the effect of Galactic uncertainties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Benito, Maria; Bernal, Nicolás; Iocco, Fabio

    2017-02-01

    Collider, space, and Earth based experiments are now able to probe several extensions of the Standard Model of particle physics which provide viable dark matter candidates. Direct and indirect dark matter searches rely on inputs of astrophysical nature, such as the local dark matter density or the shape of the dark matter density profile in the target in object. The determination of these quantities is highly affected by astrophysical uncertainties. The latter, especially those for our own Galaxy, are ill-known, and often not fully accounted for when analyzing the phenomenology of particle physics models. In this paper we present amore » systematic, quantitative estimate of how astrophysical uncertainties on Galactic quantities (such as the local galactocentric distance, circular velocity, or the morphology of the stellar disk and bulge) propagate to the determination of the phenomenology of particle physics models, thus eventually affecting the determination of new physics parameters. We present results in the context of two specific extensions of the Standard Model (the Singlet Scalar and the Inert Doublet) that we adopt as case studies for their simplicity in illustrating the magnitude and impact of such uncertainties on the parameter space of the particle physics model itself. Our findings point toward very relevant effects of current Galactic uncertainties on the determination of particle physics parameters, and urge a systematic estimate of such uncertainties in more complex scenarios, in order to achieve constraints on the determination of new physics that realistically include all known uncertainties.« less

  13. Neutron stars at the dark matter direct detection frontier

    NASA Astrophysics Data System (ADS)

    Raj, Nirmal; Tanedo, Philip; Yu, Hai-Bo

    2018-02-01

    Neutron stars capture dark matter efficiently. The kinetic energy transferred during capture heats old neutron stars in the local galactic halo to temperatures detectable by upcoming infrared telescopes. We derive the sensitivity of this probe in the framework of effective operators. For dark matter heavier than a GeV, we find that neutron star heating can set limits on the effective operator cutoff that are orders of magnitude stronger than possible from terrestrial direct detection experiments in the case of spin-dependent and velocity-suppressed scattering.

  14. DO NOT FORGET THE FOREST FOR THE TREES: THE STELLAR-MASS HALO-MASS RELATION IN DIFFERENT ENVIRONMENTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tonnesen, Stephanie; Cen, Renyue, E-mail: stonnes@gmail.com, E-mail: cen@astro.princeton.edu

    2015-10-20

    The connection between dark matter halos and galactic baryons is often not well constrained nor well resolved in cosmological hydrodynamical simulations. Thus, halo occupation distribution models that assign galaxies to halos based on halo mass are frequently used to interpret clustering observations, even though it is well known that the assembly history of dark matter halos is related to their clustering. In this paper we use high-resolution hydrodynamical cosmological simulations to compare the halo and stellar mass growth of galaxies in a large-scale overdensity to those in a large-scale underdensity (on scales of about 20 Mpc). The simulation reproduces assemblymore » bias, in which halos have earlier formation times in overdense environments than in underdense regions. We find that the ratio of stellar mass to halo mass is larger in overdense regions in central galaxies residing in halos with masses between 10{sup 11} and 10{sup 12.9} M{sub ⊙}. When we force the local density (within 2 Mpc) at z = 0 to be the same for galaxies in the large-scale over- and underdensities, we find the same results. We posit that this difference can be explained by a combination of earlier formation times, more interactions at early times with neighbors, and more filaments feeding galaxies in overdense regions. This result puts the standard practice of assigning stellar mass to halos based only on their mass, rather than considering their larger environment, into question.« less

  15. Dark matter and cosmological nucleosynthesis

    NASA Technical Reports Server (NTRS)

    Schramm, D. N.

    1986-01-01

    Existing dark matter problems, i.e., dynamics, galaxy formation and inflation, are considered, along with a model which proposes dark baryons as the bulk of missing matter in a fractal universe. It is shown that no combination of dark, nonbaryonic matter can either provide a cosmological density parameter value near unity or, as in the case of high energy neutrinos, allow formation of condensed matter at epochs when quasars already existed. The possibility that correlations among galactic clusters are scale-free is discussed. Such a distribution of matter would yield a fractal of 1.2, close to a one-dimensional universe. Biasing, cosmic superstrings, and percolated explosions and hot dark matter are theoretical approaches that would satisfy the D = 1.2 fractal model of the large-scale structure of the universe and which would also allow sufficient dark matter in halos to close the universe.

  16. Necessity of dark matter in modified Newtonian dynamics within galactic scales.

    PubMed

    Ferreras, Ignacio; Sakellariadou, Mairi; Yusaf, Muhammad Furqaan

    2008-01-25

    To test modified Newtonian dynamics (MOND) on galactic scales, we study six strong gravitational lensing early-type galaxies from the CASTLES sample. Comparing the total mass (from lensing) with the stellar mass content (from a comparison of photometry and stellar population synthesis), we conclude that strong gravitational lensing on galactic scales requires a significant amount of dark matter, even within MOND. On such scales a 2 eV neutrino cannot explain the excess of matter in contrast with recent claims to explain the lensing data of the bullet cluster. The presence of dark matter is detected in regions with a higher acceleration than the characteristic MOND scale of approximately 10(-10) m/s(2). This is a serious challenge to MOND unless lensing is qualitatively different [possibly to be developed within a covariant, such as Tensor-Vector-Scalar (TeVeS), theory].

  17. Relations between the Sizes of Galaxies and Their Dark Matter Halos at Redshifts 0 < z < 3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Kuang-Han; Fall, S. Michael; Ferguson, Henry C.

    2017-03-20

    We derive relations between the effective radii R {sub eff} of galaxies and the virial radii R {sub 200} {sub c} of their dark matter halos over the redshift range 0 < z < 3. For galaxies, we use the measured sizes from deep images taken with Hubble Space Telescope for the Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey; for halos, we use the inferred sizes from abundance matching to cosmological dark matter simulations via a stellar mass–halo mass (SMHM) relation. For this purpose, we derive a new SMHM relation based on the same selection criteria and other assumptions asmore » for our sample of galaxies with size measurements. As a check on the robustness of our results, we also derive R {sub eff}–R {sub 200} {sub c} relations for three independent SMHM relations from the literature. We find that galaxy R {sub eff} is proportional on average to halo R {sub 200} {sub c}, confirming and extending to high redshifts the z = 0 results of Kravtsov. Late-type galaxies (with low Sérsic index and high specific star formation rate (sSFR)) follow a linear R {sub eff}– R {sub 200} {sub c} relation, with effective radii at 0.5 < z < 3 close to those predicted by simple models of disk formation; at z < 0.5, the sizes of late-type galaxies appear to be slightly below this prediction. Early-type galaxies (with high Sérsic index and low sSFR) follow a roughly parallel R {sub eff}– R {sub 200} {sub c} relation, ∼0.2–0.3 dex below the one for late-type galaxies. Our observational results, reinforced by recent hydrodynamical simulations, indicate that galaxies grow quasi-homologously with their dark matter halos.« less

  18. The relationship between galaxy and dark matter halo size from z ˜ 3 to the present

    NASA Astrophysics Data System (ADS)

    Somerville, Rachel S.; Behroozi, Peter; Pandya, Viraj; Dekel, Avishai; Faber, S. M.; Fontana, Adriano; Koekemoer, Anton M.; Koo, David C.; Pérez-González, P. G.; Primack, Joel R.; Santini, Paola; Taylor, Edward N.; van der Wel, Arjen

    2018-01-01

    We explore empirical constraints on the statistical relationship between the radial size of galaxies and the radius of their host dark matter haloes from z ∼ 0.1-3 using the Galaxy And Mass Assembly (GAMA) and Cosmic Assembly Near Infrared Deep Extragalactic Legacy Survey (CANDELS) surveys. We map dark matter halo mass to galaxy stellar mass using relationships from abundance matching, applied to the Bolshoi-Planck dissipationless N-body simulation. We define SRHR ≡ re/Rh as the ratio of galaxy radius to halo virial radius, and SRHRλ ≡ re/(λRh) as the ratio of galaxy radius to halo spin parameter times halo radius. At z ∼ 0.1, we find an average value of SRHR ≃ 0.018 and SRHRλ ≃ 0.5 with very little dependence on stellar mass. Stellar radius-halo radius (SRHR) and SRHRλ have a weak dependence on cosmic time since z ∼ 3. SRHR shows a mild decrease over cosmic time for low-mass galaxies, but increases slightly or does not evolve for more massive galaxies. We find hints that at high redshift (z ∼ 2-3), SRHRλ is lower for more massive galaxies, while it shows no significant dependence on stellar mass at z ≲ 0.5. We find that for both the GAMA and CANDELS samples, at all redshifts from z ∼ 0.1-3, the observed conditional size distribution in stellar mass bins is remarkably similar to the conditional distribution of λRh. We discuss the physical interpretation and implications of these results.

  19. A Robust Approach to Constraining Dark Matter from Gamma-Ray Data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baxter, Eric J.; /Chicago U., Astron. Astrophys. Ctr.; Dodelson, Scott

    2011-03-01

    Photons produced in the annihilations of dark matter particles can be detected by gamma-ray telescopes; this technique of indirect detection serves as a cornerstone of the upcoming assault on the dark matter paradigm. The main obstacle to the extraction of information about dark matter from the annihilation photons is the presence of large and uncertain gamma-ray backgrounds. We present a new technique for using gamma-ray data to constrain the properties of dark matter that makes minimal assumptions about the dark matter and the backgrounds. The technique relies on two properties of the expected signal from annihilations of the smooth darkmore » matter component in our Galaxy: (1) it is approximately rotationally symmetric around the axis connecting us to the Galactic center, and (2) variations from the mean signal are uncorrelated from one pixel to the next. We apply this technique to recent data from the Fermi telescope to generate constraints on the dark matter mass and cross section for a variety of annihilation channels. We quantify the uncertainty introduced into our constraints by uncertainties in the halo profile and by the possibility that the halo is triaxial. The resultant constraint, the flux F {le} 4.5 x 10{sup -6} cm{sup -2} s{sup -1} sr{sup -1} for energies between 1 and 100 GeV at an angle 15{sup o} away from the Galactic center, translates into an upper limit on the velocity-weighted annihilation cross section of order 10{sup -25} cm{sup 3} s{sup -1}, depending on the annihilation mode.« less

  20. The Gaia-ESO Survey: A globular cluster escapee in the Galactic halo

    NASA Astrophysics Data System (ADS)

    Lind, K.; Koposov, S. E.; Battistini, C.; Marino, A. F.; Ruchti, G.; Serenelli, A.; Worley, C. C.; Alves-Brito, A.; Asplund, M.; Barklem, P. S.; Bensby, T.; Bergemann, M.; Blanco-Cuaresma, S.; Bragaglia, A.; Edvardsson, B.; Feltzing, S.; Gruyters, P.; Heiter, U.; Jofre, P.; Korn, A. J.; Nordlander, T.; Ryde, N.; Soubiran, C.; Gilmore, G.; Randich, S.; Ferguson, A. M. N.; Jeffries, R. D.; Vallenari, A.; Allende Prieto, C.; Pancino, E.; Recio-Blanco, A.; Romano, D.; Smiljanic, R.; Bellazzini, M.; Damiani, F.; Hill, V.; de Laverny, P.; Jackson, R. J.; Lardo, C.; Zaggia, S.

    2015-03-01

    A small fraction of the halo field is made up of stars that share the light element (Z ≤ 13) anomalies characteristic of second generation globular cluster (GC) stars. The ejected stars shed light on the formation of the Galactic halo by tracing the dynamical history of the clusters, which are believed to have once been more massive. Some of these ejected stars are expected to show strong Al enhancement at the expense of shortage of Mg, but until now no such star has been found. We search for outliers in the Mg and Al abundances of the few hundreds of halo field stars observed in the first eighteen months of the Gaia-ESO public spectroscopic survey. One halo star at the base of the red giant branch, here referred to as 22593757-4648029 is found to have [ Mg/Fe ] = -0.36 ± 0.04 and [ Al/Fe ] = 0.99 ± 0.08, which is compatible with the most extreme ratios detected in GCs so far. We compare the orbit of 22593757-4648029 to GCs of similar metallicity andfind it unlikely that this star has been tidally stripped with low ejection velocity from any of the clusters. However, both chemical and kinematic arguments render it plausible that the star has been ejected at high velocity from the anomalous GC ω Centauri within the last few billion years. We cannot rule out other progenitor GCs, because some may have disrupted fully, and the abundance and orbital data are inadequate for many of those that are still intact. Based on data acquired by the Gaia-ESO Survey, programme ID 188.B-3002. Observations were made with ESO Telescopes at the La Silla Paranal Observatory.Appendix A is available in electronic form at http://www.aanda.org

  1. Possible resonance effect of axionic dark matter in Josephson junctions.

    PubMed

    Beck, Christian

    2013-12-06

    We provide theoretical arguments that dark-matter axions from the galactic halo that pass through Earth may generate a small observable signal in resonant S/N/S Josephson junctions. The corresponding interaction process is based on the uniqueness of the gauge-invariant axion Josephson phase angle modulo 2π and is predicted to produce a small Shapiro steplike feature without externally applied microwave radiation when the Josephson frequency resonates with the axion mass. A resonance signal of so far unknown origin observed by C. Hoffmann et al. [Phys. Rev. B 70, 180503(R) (2004)] is consistent with our theory and can be interpreted in terms of an axion mass m(a)c2=0.11  meV and a local galactic axionic dark-matter density of 0.05  GeV/cm3. We discuss future experimental checks to confirm the dark-matter nature of the observed signal.

  2. Mapping stellar content to dark matter haloes - III. Environmental dependence and conformity of galaxy colours

    NASA Astrophysics Data System (ADS)

    Zu, Ying; Mandelbaum, Rachel

    2018-05-01

    Recent studies suggest that the quenching properties of galaxies are correlated over several megaparsecs. The large-scale `galactic conformity' phenomenon around central galaxies has been regarded as a potential signature of `galaxy assembly bias' or `pre-heating', both of which interpret conformity as a result of direct environmental effects acting on galaxy formation. Building on the iHOD halo quenching framework developed in Zu and Mandelbaum, we discover that our fiducial halo mass quenching model, without any galaxy assembly bias, can successfully explain the overall environmental dependence and the conformity of galaxy colours in Sloan Digital Sky Survey, as measured by the mark correlation functions of galaxy colours and the red galaxy fractions around isolated primaries, respectively. Our fiducial iHOD halo quenching mock also correctly predicts the differences in the spatial clustering and galaxy-galaxy lensing signals between the more versus less red galaxy subsamples, split by the red-sequence ridge line at fixed stellar mass. Meanwhile, models that tie galaxy colours fully or partially to halo assembly bias have difficulties in matching all these observables simultaneously. Therefore, we demonstrate that the observed environmental dependence of galaxy colours can be naturally explained by the combination of (1) halo quenching and (2) the variation of halo mass function with environment - an indirect environmental effect mediated by two separate physical processes.

  3. Galactic conformity measured in semi-analytic models

    NASA Astrophysics Data System (ADS)

    Lacerna, I.; Contreras, S.; González, R. E.; Padilla, N.; Gonzalez-Perez, V.

    2018-03-01

    We study the correlation between the specific star formation rate of central galaxies and neighbour galaxies, also known as `galactic conformity', out to 20 h^{-1} {Mpc} using three semi-analytic models (SAMs, one from L-GALAXIES and other two from GALFORM). The aim is to establish whether SAMs are able to show galactic conformity using different models and selection criteria. In all the models, when the selection of primary galaxies is based on an isolation criterion in real space, the mean fraction of quenched (Q) galaxies around Q primary galaxies is higher than that around star-forming primary galaxies of the same stellar mass. The overall signal of conformity decreases when we remove satellites selected as primary galaxies, but the effect is much stronger in GALFORM models compared with the L-GALAXIES model. We find this difference is partially explained by the fact that in GALFORM once a galaxy becomes a satellite remains as such, whereas satellites can become centrals at a later time in L-GALAXIES. The signal of conformity decreases down to 60 per cent in the L-GALAXIES model after removing central galaxies that were ejected from their host halo in the past. Galactic conformity is also influenced by primary galaxies at fixed stellar mass that reside in dark matter haloes of different masses. Finally, we explore a proxy of conformity between distinct haloes. In this case, the conformity is weak beyond ˜3 h^{-1} {Mpc} (<3 per cent in L-GALAXIES, <1-2 per cent in GALFORM models). Therefore, it seems difficult that conformity is directly related with a long-range effect.

  4. Spherical cows in dark matter indirect detection

    NASA Astrophysics Data System (ADS)

    Bernal, Nicolás; Necib, Lina; Slatyer, Tracy R.

    2016-12-01

    Dark matter (DM) halos have long been known to be triaxial, but in studies of possible annihilation and decay signals they are often treated as approximately spherical. In this work, we examine the asymmetry of potential indirect detection signals of DM annihilation and decay, exploiting the large statistics of the hydrodynamic simulation Illustris. We carefully investigate the effects of the baryons on the sphericity of annihilation and decay signals for both the case where the observer is at 8.5 kpc from the center of the halo (exemplified in the case of Milky Way-like halos), and for an observer situated well outside the halo. In the case of Galactic signals, we find that both annihilation and decay signals are expected to be quite symmetric, with axis ratios very different from 1 occurring rarely. In the case of extragalactic signals, while decay signals are still preferentially spherical, the axis ratio for annihilation signals has a much flatter distribution, with elongated profiles appearing frequently. Many of these elongated profiles are due to large subhalos and/or recent mergers. Comparing to gamma-ray emission from the Milky Way and X-ray maps of clusters, we find that the gamma-ray background appears less spherical/more elongated than the expected DM signal from the large majority of halos, and the Galactic gamma ray excess appears very spherical, while the X-ray data would be difficult to distinguish from a DM signal by elongation/sphericity measurements alone.

  5. The hierarchical nature of the spin alignment of dark matter haloes in filaments

    NASA Astrophysics Data System (ADS)

    Aragon-Calvo, M. A.; Yang, Lin Forrest

    2014-05-01

    Dark matter haloes in cosmological filaments and walls have (in average) their spin vector aligned with their host structure. While haloes in walls are aligned with the plane of the wall independently of their mass, haloes in filaments present a mass-dependent two-regime orientation. Here, we show that the transition mass determining the change in the alignment regime (from parallel to perpendicular) depends on the hierarchical level in which the halo is located, reflecting the hierarchical nature of the Cosmic Web. By explicitly exposing the hierarchical structure of the Cosmic Web, we are able to identify the contributions of different components of the filament network to the alignment signal. We propose a unifying picture of angular momentum acquisition that is based on the results presented here and previous results found by other authors. In order to do a hierarchical characterization of the Cosmic Web, we introduce a new implementation of the multiscale morphology filter, the MMF-2, that significantly improves the identification of structures and explicitly describes their hierarchy. L36

  6. Gamma-ray and Neutrino Fluxes from Heavy Dark Matter in the Galactic Center

    NASA Astrophysics Data System (ADS)

    Gammaldi, V.; Cembranos, J. A. R.; de la Cruz-Dombriz, A.; Lineros, R. A.; Maroto, A. L.

    We present a study of the Galactic Center region as a possible source of both secondary gamma-ray and neutrino fluxes from annihilating dark matter. We have studied the gamma-ray flux observed by the High Energy Stereoscopic System (HESS) from the J1745-290 Galactic Center source. The data are well fitted as annihilating dark matter in combination with an astrophysical background. The analysis was performed by means of simulated gamma spectra produced by Monte Carlo event generators packages. We analyze the differences in the spectra obtained by the various Monte Carlo codes developed so far in particle physics. We show that, within some uncertainty, the HESS data can be fitted as a signal from a heavy dark matter density distribution peaked at the Galactic Center, with a power-law for the background with a spectral index which is compatible with the Fermi-Large Area Telescope (LAT) data from the same region. If this kind of dark matter distribution generates the gamma-ray flux observed by HESS, we also expect to observe a neutrino flux. We show prospective results for the observation of secondary neutrinos with the Astronomy with a Neutrino Telescope and Abyss environmental RESearch project (ANTARES), Ice Cube Neutrino Observatory (Ice Cube) and the Cubic Kilometer Neutrino Telescope (KM3NeT). Prospects solely depend on the device resolution angle when its effective area and the minimum energy threshold are fixed.

  7. Changes in interstellar atomic abundances from the galactic plane to the halo

    NASA Technical Reports Server (NTRS)

    Jenkins, E. B.

    1982-01-01

    A few, specially selected interstellar absorption lines were measured in the high resolution, far ultraviolet spectra of 200 O and B type stars observed by the International Ultraviolet Explorer (IUE). For lines of sight extending beyond about 500 pc from the galactic plane, the abundance of singly ionized iron atoms increases relative to singly ionized sulfur. However, the relative abundances of singly ionized sulfur, silicon and aluminum do not seem to change appreciably. An explanation for the apparent increase of iron is the partial sputtering of material off the surfaces of dust grains by interstellar shocks. Another possibility might be that the ejecta from type I supernovae enrich the low density medium in the halo with iron.

  8. ULTRAVIOLET HALOS AROUND SPIRAL GALAXIES. I. MORPHOLOGY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hodges-Kluck, Edmund; Cafmeyer, Julian; Bregman, Joel N., E-mail: hodgeskl@umich.edu

    2016-12-10

    We examine ultraviolet halos around a sample of highly inclined galaxies within 25 Mpc to measure their morphology and luminosity. Despite contamination from galactic light scattered into the wings of the point-spread function, we find that ultraviolet (UV) halos occur around each galaxy in our sample. Around most galaxies the halos form a thick, diffuse disk-like structure, but starburst galaxies with galactic superwinds have qualitatively different halos that are more extensive and have filamentary structure. The spatial coincidence of the UV halos above star-forming regions, the lack of consistent association with outflows or extraplanar ionized gas, and the strong correlationmore » between the halo and galaxy UV luminosity suggest that the UV light is an extragalactic reflection nebula. UV halos may thus represent 10{sup 6}–10{sup 7} M {sub ⊙} of dust within 2–10 kpc of the disk, whose properties may change with height in starburst galaxies.« less

  9. A galaxy lacking dark matter.

    PubMed

    van Dokkum, Pieter; Danieli, Shany; Cohen, Yotam; Merritt, Allison; Romanowsky, Aaron J; Abraham, Roberto; Brodie, Jean; Conroy, Charlie; Lokhorst, Deborah; Mowla, Lamiya; O'Sullivan, Ewan; Zhang, Jielai

    2018-03-28

    Studies of galaxy surveys in the context of the cold dark matter paradigm have shown that the mass of the dark matter halo and the total stellar mass are coupled through a function that varies smoothly with mass. Their average ratio M halo /M stars has a minimum of about 30 for galaxies with stellar masses near that of the Milky Way (approximately 5 × 10 10 solar masses) and increases both towards lower masses and towards higher masses. The scatter in this relation is not well known; it is generally thought to be less than a factor of two for massive galaxies but much larger for dwarf galaxies. Here we report the radial velocities of ten luminous globular-cluster-like objects in the ultra-diffuse galaxy NGC1052-DF2, which has a stellar mass of approximately 2 × 10 8 solar masses. We infer that its velocity dispersion is less than 10.5 kilometres per second with 90 per cent confidence, and we determine from this that its total mass within a radius of 7.6 kiloparsecs is less than 3.4 × 10 8 solar masses. This implies that the ratio M halo /M stars is of order unity (and consistent with zero), a factor of at least 400 lower than expected. NGC1052-DF2 demonstrates that dark matter is not always coupled with baryonic matter on galactic scales.

  10. Direct detection of WIMPs: implications of a self-consistent truncated isothermal model of the Milky Way's dark matter halo

    NASA Astrophysics Data System (ADS)

    Chaudhury, Soumini; Bhattacharjee, Pijushpani; Cowsik, Ramanath

    2010-09-01

    Direct detection of Weakly Interacting Massive Particle (WIMP) candidates of Dark Matter (DM) is studied within the context of a self-consistent truncated isothermal model of the finite-size dark halo of the Galaxy. The halo model, based on the ``King model'' of the phase space distribution function of collisionless DM particles, takes into account the modifications of the phase-space structure of the halo due to the gravitational influence of the observed visible matter in a self-consistent manner. The parameters of the halo model are determined by a fit to a recently determined circular rotation curve of the Galaxy that extends up to ~ 60 kpc. Unlike in the Standard Halo Model (SHM) customarily used in the analysis of the results of WIMP direct detection experiments, the velocity distribution of the WIMPs in our model is non-Maxwellian with a cut-off at a maximum velocity that is self-consistently determined by the model itself. For our halo model that provides the best fit to the rotation curve data, the 90% C.L. upper limit on the WIMP-nucleon spin-independent cross section from the recent results of the CDMS-II experiment, for example, is ~ 5.3 × 10-8 pb at a WIMP mass of ~ 71 GeV. We also find, using the original 2-bin annual modulation amplitude data on the nuclear recoil event rate seen in the DAMA experiment, that there exists a range of small WIMP masses, typically ~ 2-16 GeV, within which DAMA collaboration's claimed annual modulation signal purportedly due to WIMPs is compatible with the null results of other experiments. These results, based as they are on a self-consistent model of the dark matter halo of the Galaxy, strengthen the possibility of low-mass (lsim10 GeV) WIMPs as a candidate for dark matter as indicated by several earlier studies performed within the context of the SHM. A more rigorous analysis using DAMA bins over smaller intervals should be able to better constrain the ``DAMA regions'' in the WIMP parameter space within the context of

  11. Updating the MACHO fraction of the Milky Way dark halo with improved mass models

    NASA Astrophysics Data System (ADS)

    Calcino, Josh; García-Bellido, Juan; Davis, Tamara M.

    2018-05-01

    Recent interest in primordial black holes as a possible dark matter candidate has motivated the reanalysis of previous methods for constraining massive astrophysical compact objects in the Milky Way halo and beyond. In order to derive these constraints, a model for the dark matter distribution around the Milky Way must be used. Previous microlensing searches have assumed a semi-isothermal density sphere for this task. We show this model is no longer consistent with data from the Milky Way rotation curve, and test two replacement models, namely NFW and power-law. The power-law model is the most flexible as it can break spherical symmetry, and best fits the data. Thus, we recommend the power-law model as a replacement, although it still lacks the flexibility to fully encapsulate all possible shapes of the Milky Way halo. We then use the power-law model to rederive some previous microlensing constraints in the literature, while propagating the primary halo-shape uncertainties through to our final constraints. Our analysis reveals that the microlensing constraints towards the Large Magellanic Cloud weaken somewhat for MACHO masses around 10 M⊙ when this uncertainty is taken into account, but the constraints tighten at lower masses. Exploring some of the simplifying assumptions of previous constraints we also study the effect of wide mass distributions of compact halo objects, as well as the effect of spatial clustering on microlensing constraints. We find that both effects induce a shift in the constraints towards smaller masses, and can effectively remove the microlensing constraints from M ˜ 1 - 10M⊙ for certain MACHO populations.

  12. H.E.S.S. Limits on Linelike Dark Matter Signatures in the 100 GeV to 2 TeV Energy Range Close to the Galactic Center

    NASA Astrophysics Data System (ADS)

    Abdalla, H.; Abramowski, A.; Aharonian, F.; Ait Benkhali, F.; Akhperjanian, A. G.; Andersson, T.; Angüner, E. O.; Arrieta, M.; Aubert, P.; Backes, M.; Balzer, A.; Barnard, M.; Becherini, Y.; Becker Tjus, J.; Berge, D.; Bernhard, S.; Bernlöhr, K.; Birsin, E.; Blackwell, R.; Böttcher, M.; Boisson, C.; Bolmont, J.; Bordas, P.; Bregeon, J.; Brun, F.; Brun, P.; Bryan, M.; Bulik, T.; Capasso, M.; Carr, J.; Casanova, S.; Chakraborty, N.; Chalme-Calvet, R.; Chaves, R. C. G.; Chen, A.; Chevalier, J.; Chrétien, M.; Colafrancesco, S.; Cologna, G.; Condon, B.; Conrad, J.; Couturier, C.; Cui, Y.; Davids, I. D.; Degrange, B.; Deil, C.; Devin, J.; deWilt, P.; Djannati-Ataï, A.; Domainko, W.; Donath, A.; Drury, L. O'C.; Dubus, G.; Dutson, K.; Dyks, J.; Dyrda, M.; Edwards, T.; Egberts, K.; Eger, P.; Ernenwein, J.-P.; Eschbach, S.; Farnier, C.; Fegan, S.; Fernandes, M. V.; Fiasson, A.; Fontaine, G.; Förster, A.; Funk, S.; Füßling, M.; Gabici, S.; Gajdus, M.; Gallant, Y. A.; Garrigoux, T.; Giavitto, G.; Giebels, B.; Glicenstein, J. F.; Gottschall, D.; Goyal, A.; Grondin, M.-H.; Grudzińska, M.; Hadasch, D.; Hahn, J.; Hawkes, J.; Heinzelmann, G.; Henri, G.; Hermann, G.; Hervet, O.; Hillert, A.; Hinton, J. A.; Hofmann, W.; Hoischen, C.; Holler, M.; Horns, D.; Ivascenko, A.; Jacholkowska, A.; Jamrozy, M.; Janiak, M.; Jankowsky, D.; Jankowsky, F.; Jingo, M.; Jogler, T.; Jouvin, L.; Jung-Richardt, I.; Kastendieck, M. A.; Katarzyński, K.; Katz, U.; Kerszberg, D.; Khélifi, B.; Kieffer, M.; King, J.; Klepser, S.; Klochkov, D.; Kluźniak, W.; Kolitzus, D.; Komin, Nu.; Kosack, K.; Krakau, S.; Kraus, M.; Krayzel, F.; Krüger, P. P.; Laffon, H.; Lamanna, G.; Lau, J.; Lees, J.-P.; Lefaucheur, J.; Lefranc, V.; Lemière, A.; Lemoine-Goumard, M.; Lenain, J.-P.; Leser, E.; Liu, R.; Lohse, T.; Lorentz, M.; Lypova, I.; Marandon, V.; Marcowith, A.; Mariaud, C.; Marx, R.; Maurin, G.; Maxted, N.; Mayer, M.; Meintjes, P. J.; Meyer, M.; Mitchell, A. M. W.; Moderski, R.; Mohamed, M.; Morâ, K.; Moulin, E.; Murach, T.; de Naurois, M.; Niederwanger, F.; Niemiec, J.; Oakes, L.; O'Brien, P.; Odaka, H.; Ohm, S.; Ostrowski, M.; Öttl, S.; Oya, I.; Padovani, M.; Panter, M.; Parsons, R. D.; Paz Arribas, M.; Pekeur, N. W.; Pelletier, G.; Perennes, C.; Petrucci, P.-O.; Peyaud, B.; Pita, S.; Poon, H.; Prokhorov, D.; Prokoph, H.; Pühlhofer, G.; Punch, M.; Quirrenbach, A.; Raab, S.; Reimer, A.; Reimer, O.; Renaud, M.; de los Reyes, R.; Rieger, F.; Romoli, C.; Rosier-Lees, S.; Rowell, G.; Rudak, B.; Rulten, C. B.; Sahakian, V.; Salek, D.; Sanchez, D. A.; Santangelo, A.; Sasaki, M.; Schlickeiser, R.; Schüssler, F.; Schulz, A.; Schwanke, U.; Schwemmer, S.; Settimo, M.; Seyffert, A. S.; Shafi, N.; Shilon, I.; Simoni, R.; Sol, H.; Spanier, F.; Spengler, G.; Spies, F.; Stawarz, Ł.; Steenkamp, R.; Stegmann, C.; Stinzing, F.; Stycz, K.; Sushch, I.; Tavernet, J.-P.; Tavernier, T.; Taylor, A. M.; Terrier, R.; Tibaldo, L.; Tluczykont, M.; Trichard, C.; Tuffs, R.; van der Walt, J.; van Eldik, C.; van Soelen, B.; Vasileiadis, G.; Veh, J.; Venter, C.; Viana, A.; Vincent, P.; Vink, J.; Voisin, F.; Völk, H. J.; Vuillaume, T.; Wadiasingh, Z.; Wagner, S. J.; Wagner, P.; Wagner, R. M.; White, R.; Wierzcholska, A.; Willmann, P.; Wörnlein, A.; Wouters, D.; Yang, R.; Zabalza, V.; Zaborov, D.; Zacharias, M.; Zdziarski, A. A.; Zech, A.; Zefi, F.; Ziegler, A.; Żywucka, N.; H. E. S. S. Collaboration

    2016-10-01

    A search for dark matter linelike signals iss performed in the vicinity of the Galactic Center by the H.E.S.S. experiment on observational data taken in 2014. An unbinned likelihood analysis iss developed to improve the sensitivity to linelike signals. The upgraded analysis along with newer data extend the energy coverage of the previous measurement down to 100 GeV. The 18 h of data collected with the H.E.S.S. array allow one to rule out at 95% C.L. the presence of a 130 GeV line (at l =-1.5 ° , b =0 ° and for a dark matter profile centered at this location) previously reported in Fermi-LAT data. This new analysis overlaps significantly in energy with previous Fermi-LAT and H.E.S.S. results. No significant excess associated with dark matter annihilations was found in the energy range of 100 GeV to 2 TeV and upper limits on the gamma-ray flux and the velocity weighted annihilation cross section are derived adopting an Einasto dark matter halo profile. Expected limits for present and future large statistics H.E.S.S. observations are also given.

  13. Environmental screening of dark matter haloes in f(R) gravity

    NASA Astrophysics Data System (ADS)

    Shi, Difu; Li, Baojiu; Han, Jiaxin

    2017-07-01

    In certain theories of modified gravity, Solar system constraints on deviations from general relativity (GR) are satisfied by virtue of a so-called screening mechanism, which enables the theory to revert to GR in regions where the matter density is high or the gravitational potential is deep. In the case of chameleon theories, the screening has two contributions - self-screening, which is due to the mass of an object itself, and environmental screening, which is caused by the surrounding matter - which are often entangled, with the second contribution being more crucial for less massive objects. A quantitative understanding of the effect of the environment on the screening can prove critical in observational tests of such theories using systems such as the Local Group and dwarf galaxies, for which the environment may be inferred in various ways. We use the high-resolution liminality simulation of Shi et al. to test the fidelity of different definitions of environment. We find that, although the different ways to define environment in practice do not agree with one another perfectly, they can provide useful guidance, and cross checks about how well a dark matter halo is screened. In addition, the screening of subhaloes in dark matter haloes is primarily determined by the environment, with the subhalo mass playing a minor role, which means that lower resolution simulations where subhaloes are not well resolved can still be useful for understanding the modification of gravity inside subhaloes.

  14. The ellipticity of galaxy cluster haloes from satellite galaxies and weak lensing

    NASA Astrophysics Data System (ADS)

    Shin, Tae-hyeon; Clampitt, Joseph; Jain, Bhuvnesh; Bernstein, Gary; Neil, Andrew; Rozo, Eduardo; Rykoff, Eli

    2018-04-01

    We study the ellipticity of galaxy cluster haloes as characterized by the distribution of cluster galaxies and as measured with weak lensing. We use Monte Carlo simulations of elliptical cluster density profiles to estimate and correct for Poisson noise bias, edge bias and projection effects. We apply our methodology to 10 428 Sloan Digital Sky Survey clusters identified by the redMaPPer algorithm with richness above 20. We find a mean ellipticity =0.271 ± 0.002 (stat) ±0.031 (sys) corresponding to an axis ratio = 0.573 ± 0.002 (stat) ±0.039 (sys). We compare this ellipticity of the satellites to the halo shape, through a stacked lensing measurement using optimal estimators of the lensing quadrupole based on Clampitt and Jain (2016). We find a best-fitting axis ratio of 0.56 ± 0.09 (stat) ±0.03 (sys), consistent with the ellipticity of the satellite distribution. Thus, cluster galaxies trace the shape of the dark matter halo to within our estimated uncertainties. Finally, we restack the satellite and lensing ellipticity measurements along the major axis of the cluster central galaxy's light distribution. From the lensing measurements, we infer a misalignment angle with an root-mean-square of 30° ± 10° when stacking on the central galaxy. We discuss applications of halo shape measurements to test the effects of the baryonic gas and active galactic nucleus feedback, as well as dark matter and gravity. The major improvements in signal-to-noise ratio expected with the ongoing Dark Energy Survey and future surveys from Large Synoptic Survey Telescope, Euclid, and Wide Field Infrared Survey Telescope will make halo shapes a useful probe of these effects.

  15. A comprehensive study of the cool gas content of massive dark matter halos

    NASA Astrophysics Data System (ADS)

    Gauthier, Jean-Rene

    2011-09-01

    This thesis is based on the results of an on-going investigation of the cool, T ˜ 104 K, gas present in massive dark matter halos traced by luminous red galaxies (LRGs) at z ˜ 0.5. It consists of three parts. The first part (Chapter 2) presents a series of measurements of the large-scale clustering of MgII lambdalambda 2796,2803 absorbers with respect to a population of LRGs. From the cross-correlation measurements between the absorbers and the galaxies, the mean bias of the dark matter halos in which the absorbers reside is derived. One finds a 1-sigma anti-correlation between mean halo bias and absorber strength W r(2796) that translates into a 1-sigma anti-correlation between mean galaxy mass and Wr(2796). The results indicate that a significant fraction of the MgII absorber population of W r(2796) = 1-1.5A are found in group-size dark matter halos of log Mh < 13.4, whereas absorbers of Wr(2796) > 1.5A are primarily seen in halos of log Mh < 12.7. In the second part of this thesis, a series of constraints on the covering fraction of cool gas are derived in Chapter 3. The results of an on-going spectroscopic follow-up of close LRG-Mg II absorber pairs are presented in Chapter 4. This spectroscopic sample consists of 70 photometrically selected LRGs at physical projected separations rho <˜ 400 kpc/h from a QSO sightline. The moderate-resolution spectra confirm a physical association between the cool gas revealed by the presence of MgII absorption features and the LRG halo in 15 cases. From a pair sample with no prior knowledge of the presence/absence of MgII absorbers, a covering fraction kappa = 0.13+0.05-0.06 is found for Wr(2796) > 0.3A and rho < 400 kpc/h. The third part of this thesis addresses the results of a stellar population synthesis analysis done on stacked spectra of MgII absorbing and non-absorbing LRG subsamples. The main finding of this analysis is that LRGs with or without associated MgII absorbers share similar star formation histories and are

  16. The Dual Origin Of Stellar Halos

    NASA Astrophysics Data System (ADS)

    Zolotov, Adi

    In the dominant Lambda+Cold Dark Matter cosmological paradigm, galaxy stellar halos are thought to form hierarchically from multiple accretion events, starting from the first structures to collapse in the Universe. This dissertation aims to make the first detailed theoretical predictions for the origin of galactic stellar halos. We focus on understanding the physical processes involved in halo formation using high-resolution, N-body + Smooth Particle Hydrodynamic simulations of disk galaxies in a cosmological context. These self-consistent simulations are used to study the competing importance of dissipative processes and dissipationless mergers in the formation of stellar halos. The relative contribution of each mechanism, and its specific role in assembling the inner and outer regions of halos is explored, as a function of galaxy mass and merging history. We show that the presence of both accreted and in situ stars in halos is a generic feature of galaxy formation. For L* galaxies, the relative contribution of each stellar population to a halo is shown to be a function of a galaxy's accretion history. Galaxies with recent mergers, like M31, will host relatively few in situ stars, while galaxies with more quiescent recent histories, like the Milky Way, will likely have a larger relative contribution from an in situ population. We show that in situ halo stars are more [alpha/Fe]-rich than accreted stars at the high [Fe/H] end of a halo's metallicity distribution function. In lower mass galaxies, M ˜ 1010 M, in situ stars dominate the stellarmass of halos. In these galaxies, in situ halo stars are, on average, younger and more metal-rich than accreted halo stars. Because in situ stars are dominant, these trends result in halos that are more metal-rich than simple accretion models predict. The halos of low mass galaxies do not extend out to the virial radii of the primary, as they do in more massive galaxies. We find that the ratio of luminous-halo mass to total

  17. A Herschel [C ii] Galactic plane survey. II. CO-dark H2 in clouds

    NASA Astrophysics Data System (ADS)

    Langer, W. D.; Velusamy, T.; Pineda, J. L.; Willacy, K.; Goldsmith, P. F.

    2014-01-01

    Context. H i and CO large scale surveys of the Milky Way trace the diffuse atomic clouds and the dense shielded regions of molecular hydrogen clouds, respectively. However, until recently, we have not had spectrally resolved C+ surveys in sufficient lines of sight to characterize the ionized and photon dominated components of the interstellar medium, in particular, the H2 gas without CO, referred to as CO-dark H2, in a large sample of interstellar clouds. Aims: We use a sparse Galactic plane survey of the 1.9 THz (158 μm) [C ii] spectral line from the Herschel open time key programme, Galactic Observations of Terahertz C+ (GOT C+), to characterize the H2 gas without CO in a statistically significant sample of interstellar clouds. Methods: We identify individual clouds in the inner Galaxy by fitting the [C ii] and CO isotopologue spectra along each line of sight. We then combine these spectra with those of H i and use them along with excitation models and cloud models of C+ to determine the column densities and fractional mass of CO-dark H2 clouds. Results: We identify1804 narrow velocity [C ii] components corresponding to interstellar clouds in different categories and evolutionary states. About 840 are diffuse molecular clouds with no CO, ~510 are transition clouds containing [C ii] and 12CO, but no 13CO, and the remainder are dense molecular clouds containing 13CO emission. The CO-dark H2 clouds are concentrated between Galactic radii of ~3.5 to 7.5 kpc and the column density of the CO-dark H2 layer varies significantly from cloud to cloud with a global average of 9 × 1020 cm-2. These clouds contain a significant fraction by mass of CO-dark H2, that varies from ~75% for diffuse molecular clouds to ~20% for dense molecular clouds. Conclusions: We find a significant fraction of the warm molecular ISM gas is invisible in H i and CO, but is detected in [C ii]. The fraction of CO-dark H2 is greatest in the diffuse clouds and decreases with increasing total column

  18. Population Synthesis Studies of the White Dwarfs of the Galactic Disk and Halo

    NASA Astrophysics Data System (ADS)

    Cojocaru, Elena-Ruxandra

    2016-09-01

    White dwarfs are fossil stars that can encode valuable information about the formation, evolution and other properties of the different Galactic stellar populations. They are the direct descendants of main-sequence stars with masses ranging from ∼0.8 M⊙ to ∼10 M⊙, which means that over 95% of the stars in our Galaxy will eventually become white dwarfs. This fact, correlated with the excellent quality of modern white dwarf cooling models, clearly marks their potential as cosmic clocks for estimating the ages of Galactic stellar populations, as well as place white dwarfs as privileged objects in understanding several actual astrophysical problems. Stellar population synthesis methods (Tinsley, 1968) use theoretical evolutionary sequences to reproduce luminosities, temperatures and other parameters building up to a synthetic population that can be readily compared to an observed sample of stars. Such techniques are perfect for the study of the different white dwarf populations in our Galaxy and their strength has only grown in recent years, fueled both by improved evolutionary sequences and detailed cooling tracks and also by the ever growing samples of white dwarfs identified through modern survey missions. In particular, the work presented in this thesis uses an updated population synthesis code based on previous versions of the code from our group (García-Berro et al., 1999; Torres et al., 2002; García-Berro et al., 2004; Torres et al., 2005; Camacho et al., 2014). Our synthetic population code, based on Monte Carlo statistical techniques, has been extensively used in the study of the disk (García-Berro et al., 1! 999; Torres et al., 2001; Torres & García-Berro, 2016) and halo (Torres et al., 2002; García-Berro et al., 2004) single white-dwarf population, white dwarf plus main sequence stars (Camacho et al., 2014), as well as open clusters such as NGC 6791 (García-Berro et al., 2010; García-Berro et al., 2011) or globular clusters, as 47 Tuc (Garc

  19. Large-scale clustering measurements with photometric redshifts: comparing the dark matter haloes of X-ray AGN, star-forming and passive galaxies at z ≈ 1

    NASA Astrophysics Data System (ADS)

    Georgakakis, A.; Mountrichas, G.; Salvato, M.; Rosario, D.; Pérez-González, P. G.; Lutz, D.; Nandra, K.; Coil, A.; Cooper, M. C.; Newman, J. A.; Berta, S.; Magnelli, B.; Popesso, P.; Pozzi, F.

    2014-10-01

    We combine multi-wavelength data in the AEGIS-XD and C-COSMOS surveys to measure the typical dark matter halo mass of X-ray selected active galactic nuclei (AGN) [LX(2-10 keV) > 1042 erg s- 1] in comparison with far-infrared selected star-forming galaxies detected in the Herschel/PEP survey (PACS Evolutionary Probe; LIR > 1011 L⊙) and quiescent systems at z ≈ 1. We develop a novel method to measure the clustering of extragalactic populations that uses photometric redshift probability distribution functions in addition to any spectroscopy. This is advantageous in that all sources in the sample are used in the clustering analysis, not just the subset with secure spectroscopy. The method works best for large samples. The loss of accuracy because of the lack of spectroscopy is balanced by increasing the number of sources used to measure the clustering. We find that X-ray AGN, far-infrared selected star-forming galaxies and passive systems in the redshift interval 0.6 < z < 1.4 are found in haloes of similar mass, log MDMH/(M⊙ h-1) ≈ 13.0. We argue that this is because the galaxies in all three samples (AGN, star-forming, passive) have similar stellar mass distributions, approximated by the J-band luminosity. Therefore, all galaxies that can potentially host X-ray AGN, because they have stellar masses in the appropriate range, live in dark matter haloes of log MDMH/(M⊙ h-1) ≈ 13.0 independent of their star formation rates. This suggests that the stellar mass of X-ray AGN hosts is driving the observed clustering properties of this population. We also speculate that trends between AGN properties (e.g. luminosity, level of obscuration) and large-scale environment may be related to differences in the stellar mass of the host galaxies.

  20. Dark Kinetic Heating of Neutron Stars and an Infrared Window on WIMPs, SIMPs, and Pure Higgsinos.

    PubMed

    Baryakhtar, Masha; Bramante, Joseph; Li, Shirley Weishi; Linden, Tim; Raj, Nirmal

    2017-09-29

    We identify a largely model-independent signature of dark matter (DM) interactions with nucleons and electrons. DM in the local galactic halo, gravitationally accelerated to over half the speed of light, scatters against and deposits kinetic energy into neutron stars, heating them to infrared blackbody temperatures. The resulting radiation could potentially be detected by the James Webb Space Telescope, the Thirty Meter Telescope, or the European Extremely Large Telescope. This mechanism also produces optical emission from neutron stars in the galactic bulge, and x-ray emission near the galactic center because dark matter is denser in these regions. For GeV-PeV mass dark matter, dark kinetic heating would initially unmask any spin-independent or spin-dependent dark matter-nucleon cross sections exceeding 2×10^{-45}  cm^{2}, with improved sensitivity after more telescope exposure. For lighter-than-GeV dark matter, cross-section sensitivity scales inversely with dark matter mass because of Pauli blocking; for heavier-than-PeV dark matter, it scales linearly with mass as a result of needing multiple scatters for capture. Future observations of dark sector-warmed neutron stars could determine whether dark matter annihilates in or only kinetically heats neutron stars. Because inelastic interstate transitions of up to a few GeV would occur in relativistic scattering against nucleons, elusive inelastic dark matter like pure Higgsinos can also be discovered.

  1. Dark Kinetic Heating of Neutron Stars and an Infrared Window on WIMPs, SIMPs, and Pure Higgsinos

    NASA Astrophysics Data System (ADS)

    Baryakhtar, Masha; Bramante, Joseph; Li, Shirley Weishi; Linden, Tim; Raj, Nirmal

    2017-09-01

    We identify a largely model-independent signature of dark matter (DM) interactions with nucleons and electrons. DM in the local galactic halo, gravitationally accelerated to over half the speed of light, scatters against and deposits kinetic energy into neutron stars, heating them to infrared blackbody temperatures. The resulting radiation could potentially be detected by the James Webb Space Telescope, the Thirty Meter Telescope, or the European Extremely Large Telescope. This mechanism also produces optical emission from neutron stars in the galactic bulge, and x-ray emission near the galactic center because dark matter is denser in these regions. For GeV-PeV mass dark matter, dark kinetic heating would initially unmask any spin-independent or spin-dependent dark matter-nucleon cross sections exceeding 2 ×10-45 cm2, with improved sensitivity after more telescope exposure. For lighter-than-GeV dark matter, cross-section sensitivity scales inversely with dark matter mass because of Pauli blocking; for heavier-than-PeV dark matter, it scales linearly with mass as a result of needing multiple scatters for capture. Future observations of dark sector-warmed neutron stars could determine whether dark matter annihilates in or only kinetically heats neutron stars. Because inelastic interstate transitions of up to a few GeV would occur in relativistic scattering against nucleons, elusive inelastic dark matter like pure Higgsinos can also be discovered.

  2. Search for domain wall dark matter with atomic clocks on board global positioning system satellites.

    PubMed

    Roberts, Benjamin M; Blewitt, Geoffrey; Dailey, Conner; Murphy, Mac; Pospelov, Maxim; Rollings, Alex; Sherman, Jeff; Williams, Wyatt; Derevianko, Andrei

    2017-10-30

    Cosmological observations indicate that dark matter makes up 85% of all matter in the universe yet its microscopic composition remains a mystery. Dark matter could arise from ultralight quantum fields that form macroscopic objects. Here we use the global positioning system as a ~ 50,000 km aperture dark matter detector to search for such objects in the form of domain walls. Global positioning system navigation relies on precision timing signals furnished by atomic clocks. As the Earth moves through the galactic dark matter halo, interactions with domain walls could cause a sequence of atomic clock perturbations that propagate through the satellite constellation at galactic velocities ~ 300 km s -1 . Mining 16 years of archival data, we find no evidence for domain walls at our current sensitivity level. This improves the limits on certain quadratic scalar couplings of domain wall dark matter to standard model particles by several orders of magnitude.

  3. Enlightening Students about Dark Matter

    NASA Astrophysics Data System (ADS)

    Hamilton, Kathleen; Barr, Alex; Eidelman, Dave

    2018-01-01

    Dark matter pervades the universe. While it is invisible to us, we can detect its influence on matter we can see. To illuminate this concept, we have created an interactive javascript program illustrating predictions made by six different models for dark matter distributions in galaxies. Students are able to match the predicted data with actual experimental results, drawn from several astronomy papers discussing dark matter’s impact on galactic rotation curves. Programming each new model requires integration of density equations with parameters determined by nonlinear curve-fitting using MATLAB scripts we developed. Using our javascript simulation, students can determine the most plausible dark matter models as well as the average percentage of dark matter lurking in galaxies, areas where the scientific community is still continuing to research. In that light, we strive to use the most up-to-date and accepted concepts: two of our dark matter models are the pseudo-isothermal halo and Navarro-Frenk-White, and we integrate out to each galaxy’s virial radius. Currently, our simulation includes NGC3198, NGC2403, and our own Milky Way.

  4. Spherical cows in dark matter indirect detection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bernal, Nicolás; Necib, Lina; Slatyer, Tracy R., E-mail: nicolas.bernal@uan.edu.co, E-mail: lnecib@mit.edu, E-mail: tslatyer@mit.edu

    2016-12-01

    Dark matter (DM) halos have long been known to be triaxial, but in studies of possible annihilation and decay signals they are often treated as approximately spherical. In this work, we examine the asymmetry of potential indirect detection signals of DM annihilation and decay, exploiting the large statistics of the hydrodynamic simulation Illustris. We carefully investigate the effects of the baryons on the sphericity of annihilation and decay signals for both the case where the observer is at 8.5 kpc from the center of the halo (exemplified in the case of Milky Way-like halos), and for an observer situated wellmore » outside the halo. In the case of Galactic signals, we find that both annihilation and decay signals are expected to be quite symmetric, with axis ratios very different from 1 occurring rarely. In the case of extragalactic signals, while decay signals are still preferentially spherical, the axis ratio for annihilation signals has a much flatter distribution, with elongated profiles appearing frequently. Many of these elongated profiles are due to large subhalos and/or recent mergers. Comparing to gamma-ray emission from the Milky Way and X-ray maps of clusters, we find that the gamma-ray background appears less spherical/more elongated than the expected DM signal from the large majority of halos, and the Galactic gamma ray excess appears very spherical, while the X-ray data would be difficult to distinguish from a DM signal by elongation/sphericity measurements alone.« less

  5. Hierarchical Formation of Dark Matter Halos near the Cutoff Scale and Their Impact on Indirect Detections

    NASA Astrophysics Data System (ADS)

    Ishiyama, Tomoaki

    2015-08-01

    The smallest dark matter halos are formed first in the early universe. We present results of very large cosmological N-body simulations of the hierarchical formation and evolution of halos over a wide mass range, beginning from the formation of the smallest halos. In the largest simulation, the motions of 40963 particles in comoving boxes of side lengths 400 pc and 200 pc were followed. The particle masses were 3.4 Χ 10-11 M⊙ and 4.3 Χ 10-12 M⊙, ensuring that halos at the cutoff scale were represented by ˜30,000 and ˜230,000 particles, respectively. We found that the central density cusp is much steeper in these halos than in larger halos (dwarf-galaxy-sized to cluster-sized halos), and scales as ρ ∝ r(-1.5—1.3). The cusp slope gradually becomes shallower as the halo mass increases. The slope of halos 50 times more massive than the smallest halo is approximately -1.3. No strong correlation exists between inner slope and the collapse epoch. The cusp slope of halos above the cutoff scale seems to be reduced primarily due to major merger processes. The concentration, estimated at the present universe, is predicted to be 60—70, consistent with theoretical models and earlier simulations, and ruling out simple power law mass-concentration relations. Such halos could still exist in the present universe with the same steep density profiles. Strongly depending on the subhalo mass function and the adopted concentration model, the steeper inner cusps of halos near the cutoff scale enhance the annihilation luminosity of a Milky Way sized halo between 12 to 67%.

  6. RR Lyrae in XSTPS: The halo density profile in the north galactic cap

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Faccioli, L.; Smith, M. C.; Yuan, H.-B.

    We present a catalog of RR Lyrae stars (RRLs) observed by the Xuyi Schmidt Telescope Photometric Survey (XSTPS). The area we consider is located in the north Galactic cap, covering ≈376.75 deg{sup 2} at α ≈ 150° and δ ≈ 27° down to a magnitude limit of i ≈ 19. Using the variability information afforded by the multi-epoch nature of our XSTPS data, combined with colors from the Sloan Digital Sky Survey, we are able to identify candidate RRLs. We find 318 candidates, derive distances to them, and estimate the detection efficiency. The majority of our candidates have more thanmore » 12 observations, and for these we are able to calculate periods. These also allow us to estimate our contamination level, which we predict is between 30% and 40%. Finally, we use the sample to probe the halo density profile in the 9-49 kpc range and find that it can be well fitted by a double power law. We find good agreement between this model and the models derived for the south Galactic cap using the Watkins et al. and Sesar et al. RRL data sets, after accounting for possible contamination in our data set from Sagittarius stream members. We consider non-spherical double power-law models of the halo density profile and again find agreement with literature data sets, although we have limited power to constrain the flattening due to our small survey area. Much tighter constraints will be placed by current and future wide-area surveys, most notably ESA's astrometric Gaia mission. Our analysis demonstrates that surveys with a limited number of epochs can effectively be mined for RRLs. Our complete sample is provided as accompanying online material; as an example the first few entries of each electronic table are shown in the text.« less

  7. RR Lyrae in XSTPS: The Halo Density Profile in the North Galactic Cap

    NASA Astrophysics Data System (ADS)

    Faccioli, L.; Smith, M. C.; Yuan, H.-B.; Zhang, H.-H.; Liu, X.-W.; Zhao, H.-B.; Yao, J.-S.

    2014-06-01

    We present a catalog of RR Lyrae stars (RRLs) observed by the Xuyi Schmidt Telescope Photometric Survey (XSTPS). The area we consider is located in the north Galactic cap, covering ≈376.75 deg2 at α ≈ 150° and δ ≈ 27° down to a magnitude limit of i ≈ 19. Using the variability information afforded by the multi-epoch nature of our XSTPS data, combined with colors from the Sloan Digital Sky Survey, we are able to identify candidate RRLs. We find 318 candidates, derive distances to them, and estimate the detection efficiency. The majority of our candidates have more than 12 observations, and for these we are able to calculate periods. These also allow us to estimate our contamination level, which we predict is between 30% and 40%. Finally, we use the sample to probe the halo density profile in the 9-49 kpc range and find that it can be well fitted by a double power law. We find good agreement between this model and the models derived for the south Galactic cap using the Watkins et al. and Sesar et al. RRL data sets, after accounting for possible contamination in our data set from Sagittarius stream members. We consider non-spherical double power-law models of the halo density profile and again find agreement with literature data sets, although we have limited power to constrain the flattening due to our small survey area. Much tighter constraints will be placed by current and future wide-area surveys, most notably ESA's astrometric Gaia mission. Our analysis demonstrates that surveys with a limited number of epochs can effectively be mined for RRLs. Our complete sample is provided as accompanying online material; as an example the first few entries of each electronic table are shown in the text.

  8. QSO absorption spectroscopy and baryonic dark matter

    NASA Astrophysics Data System (ADS)

    Cirković, Milan M.

    2005-04-01

    The present book should serve a double purpose: first, as an introduction into the host of tightly related topics in astrophysics and cosmology all dealing with the history and evolution of the baryonic matter in the universe. Secondly, it gives argument for still somewhat controversial view that large baryonic reservoirs are present (at least in the low-redshift regime) in form of huge gaseous galactic haloes surrounding normal luminous galaxies, and manifesting through the Lyman-α absorption lines in spectra of background sources. If accepted, this view would profoundly impact our understanding of the galactic structure and evolution, and will deeply influence our views of the future evolution of galactic systems. After an introduction into cosmological jargon and symbols used throughout, and other important introductory material given in Chapter 1, the bulk of the argumentation is given in Chapter 2, which exposes phenomenology of Lyα absorption systems and various theories advanced to account for their physical origin. Chapter 3 deals with models of absorbing gas in the extended haloes of normal galaxies, and Chapter 4 gives a global discussion of main candidates for the reservoirs of the still elusive baryonic dark matter. A set of closely related technical issues which are used at several places in the main narrative are given in the appendices.

  9. A new direction for dark matter research: intermediate-mass compact halo objects

    NASA Astrophysics Data System (ADS)

    Chapline, George F.; Frampton, Paul H.

    2016-11-01

    The failure to find evidence for elementary particles that could serve as the constituents of dark matter brings to mind suggestions that dark matter might consist of massive compact objects (MACHOs). In particular, it has recently been argued that MACHOs with masses > 15Msolar may have been prolifically produced at the onset of the big bang. Although a variety of astrophysical signatures for primordial MACHOs with masses in this range have been discussed in the literature, we favor a strategy that uses the potential for magnification of stars outside our galaxy due to gravitational microlensing of these stars by MACHOs in the halo of our galaxy. We point out that the effect of the motion of the Earth on the shape of the micro-lensing brightening curves provides a promising approach to testing over the course of next several years the hypothesis that dark matter consists of massive compact objects.

  10. FASTPM: a new scheme for fast simulations of dark matter and haloes

    NASA Astrophysics Data System (ADS)

    Feng, Yu; Chu, Man-Yat; Seljak, Uroš; McDonald, Patrick

    2016-12-01

    We introduce FASTPM, a highly scalable approximated particle mesh (PM) N-body solver, which implements the PM scheme enforcing correct linear displacement (1LPT) evolution via modified kick and drift factors. Employing a two-dimensional domain decomposing scheme, FASTPM scales extremely well with a very large number of CPUs. In contrast to Comoving-Lagrangian (COLA) approach, we do not require to split the force or track separately the 2LPT solution, reducing the code complexity and memory requirements. We compare FASTPM with different number of steps (Ns) and force resolution factor (B) against three benchmarks: halo mass function from friends-of-friends halo finder; halo and dark matter power spectrum; and cross-correlation coefficient (or stochasticity), relative to a high-resolution TREEPM simulation. We show that the modified time stepping scheme reduces the halo stochasticity when compared to COLA with the same number of steps and force resolution. While increasing Ns and B improves the transfer function and cross-correlation coefficient, for many applications FASTPM achieves sufficient accuracy at low Ns and B. For example, Ns = 10 and B = 2 simulation provides a substantial saving (a factor of 10) of computing time relative to Ns = 40, B = 3 simulation, yet the halo benchmarks are very similar at z = 0. We find that for abundance matched haloes the stochasticity remains low even for Ns = 5. FASTPM compares well against less expensive schemes, being only 7 (4) times more expensive than 2LPT initial condition generator for Ns = 10 (Ns = 5). Some of the applications where FASTPM can be useful are generating a large number of mocks, producing non-linear statistics where one varies a large number of nuisance or cosmological parameters, or serving as part of an initial conditions solver.

  11. Density profile of dark matter haloes and galaxies in the HORIZON-AGN simulation: the impact of AGN feedback

    NASA Astrophysics Data System (ADS)

    Peirani, Sébastien; Dubois, Yohan; Volonteri, Marta; Devriendt, Julien; Bundy, Kevin; Silk, Joe; Pichon, Christophe; Kaviraj, Sugata; Gavazzi, Raphaël; Habouzit, Mélanie

    2017-12-01

    Using a suite of three large cosmological hydrodynamical simulations, HORIZON-AGN, HORIZON–NOAGN (no AGN feedback) and HORIZON-DM (no baryons), we investigate how a typical sub-grid model for AGN feedback affects the evolution of the inner density profiles of massive dark matter haloes and galaxies. Based on direct object-to-object comparisons, we find that the integrated inner mass and density slope differences between objects formed in these three simulations (hereafter, HAGN, HnoAGN and HDM) significantly evolve with time. More specifically, at high redshift (z ∼ 5), the mean central density profiles of HAGN and HnoAGN dark matter haloes tend to be much steeper than their HDM counterparts owing to the rapidly growing baryonic component and ensuing adiabatic contraction. By z ∼ 1.5, these mean halo density profiles in HAGN have flattened, pummelled by powerful AGN activity ('quasar mode'): the integrated inner mass difference gaps with HnoAGN haloes have widened, and those with HDM haloes have narrowed. Fast forward 9.5 billion years, down to z = 0, and the trend reverses: HAGN halo mean density profiles drift back to a more cusped shape as AGN feedback efficiency dwindles ('radio mode'), and the gaps in integrated central mass difference with HnoAGN and HDM close and broaden, respectively. On the galaxy side, the story differs noticeably. Averaged stellar profile central densities and inner slopes are monotonically reduced by AGN activity as a function of cosmic time, resulting in better agreement with local observations.

  12. CFHTLenS: co-evolution of galaxies and their dark matter haloes

    NASA Astrophysics Data System (ADS)

    Hudson, Michael J.; Gillis, Bryan R.; Coupon, Jean; Hildebrandt, Hendrik; Erben, Thomas; Heymans, Catherine; Hoekstra, Henk; Kitching, Thomas D.; Mellier, Yannick; Miller, Lance; Van Waerbeke, Ludovic; Bonnett, Christopher; Fu, Liping; Kuijken, Konrad; Rowe, Barnaby; Schrabback, Tim; Semboloni, Elisabetta; van Uitert, Edo; Velander, Malin

    2015-02-01

    Galaxy-galaxy weak lensing is a direct probe of the mean matter distribution around galaxies. The depth and sky coverage of the Canada-France-Hawaii Telescope Legacy Survey yield statistically significant galaxy halo mass measurements over a much wider range of stellar masses (108.75 to 1011.3 M⊙) and redshifts (0.2 < z < 0.8) than previous weak lensing studies. At redshift z ˜ 0.5, the stellar-to-halo mass ratio (SHMR) reaches a maximum of 4.0 ± 0.2 per cent as a function of halo mass at ˜1012.25 M⊙. We find, for the first time from weak lensing alone, evidence for significant evolution in the SHMR: the peak ratio falls as a function of cosmic time from 4.5 ± 0.3 per cent at z ˜ 0.7 to 3.4 ± 0.2 per cent at z ˜ 0.3, and shifts to lower stellar mass haloes. These evolutionary trends are dominated by red galaxies, and are consistent with a model in which the stellar mass above which star formation is quenched `downsizes' with cosmic time. In contrast, the SHMR of blue, star-forming galaxies is well fitted by a power law that does not evolve with time. This suggests that blue galaxies form stars at a rate that is balanced with their dark matter accretion in such a way that they evolve along the SHMR locus. The redshift dependence of the SHMR can be used to constrain the evolution of the galaxy population over cosmic time.

  13. The Initial Conditions and Evolution of Isolated Galaxy Models: Effects of the Hot Gas Halo

    NASA Astrophysics Data System (ADS)

    Hwang, Jeong-Sun; Park, Changbom; Choi, Jun-Hwan

    2013-02-01

    We construct several Milky Way-like galaxy models containing a gas halo (as well as gaseous and stellar disks, a dark matter halo, and a stellar bulge) following either an isothermal or an NFW density profile with varying mass and initial spin. In addition, galactic winds associated with star formation are tested in some of the simulations. We evolve these isolated galaxy models using the GADGET-3 N-body/hydrodynamic simulation code, paying particular attention to the effects of the gaseous halo on the evolution. We find that the evolution of the models is strongly affected by the adopted gas halo component, particularly in the gas dissipation and the star formation activity in the disk. The model without a gas halo shows an increasing star formation rate (SFR) at the beginning of the simulation for some hundreds of millions of years and then a continuously decreasing rate to the end of the run at 3 Gyr. Whereas the SFRs in the models with a gas halo, depending on the density profile and the total mass of the gas halo, emerge to be either relatively flat throughout the simulations or increasing until the middle of the run (over a gigayear) and then decreasing to the end. The models with the more centrally concentrated NFW gas halo show overall higher SFRs than those with the isothermal gas halo of the equal mass. The gas accretion from the halo onto the disk also occurs more in the models with the NFW gas halo, however, this is shown to take place mostly in the inner part of the disk and not to contribute significantly to the star formation unless the gas halo has very high density at the central part. The rotation of a gas halo is found to make SFR lower in the model. The SFRs in the runs including galactic winds are found to be lower than those in the same runs but without winds. We conclude that the effects of a hot gaseous halo on the evolution of galaxies are generally too significant to be simply ignored. We also expect that more hydrodynamical processes in

  14. The Lyman-alpha glow of gas falling into the dark matter halo of a z = 3 galaxy.

    PubMed

    Weidinger, Michael; Møller, Palle; Fynbo, Johan Peter Uldall

    2004-08-26

    Quasars are the visible signatures of gas falling into the deep potential well of super-massive black holes in the centres of distant galaxies. It has been suggested that quasars are formed when two massive galaxies collide and merge, leading to the prediction that quasars should be found in the centres of regions of largest overdensity in the early Universe. In dark matter (DM)-dominated models of the early Universe, massive DM halos are predicted to attract the surrounding gas, which falls towards their centres. The neutral gas is not detectable in emission by itself, but gas falling into the ionizing cone of such a quasar will glow in the Lyman-alpha line of hydrogen, effectively imaging the DM halo. Here we present a Lyalpha image of a DM halo at redshift z = 3, along with a two-dimensional spectrum of the gaseous halo. Our observations are best understood in the context of the standard model for DM haloes; we infer a mass of (2 - 7) x 10(12) solar masses (M(\\circ)) for the halo.

  15. Probing the Dark Sector with Dark Matter Bound States

    NASA Astrophysics Data System (ADS)

    An, Haipeng; Echenard, Bertrand; Pospelov, Maxim; Zhang, Yue

    2016-04-01

    A model of the dark sector where O (few GeV ) mass dark matter particles χ couple to a lighter dark force mediator V , mV≪mχ, is motivated by the recently discovered mismatch between simulated and observed shapes of galactic halos. Such models, in general, provide a challenge for direct detection efforts and collider searches. We show that for a large range of coupling constants and masses, the production and decay of the bound states of χ , such as 0-+ and 1-- states, ηD and ϒD, is an important search channel. We show that e+e-→ηD+V or ϒD+γ production at B factories for αD>0.1 is sufficiently strong to result in multiple pairs of charged leptons and pions via ηD→2 V →2 (l+l-) and ϒD→3 V →3 (l+l-) (l =e ,μ ,π ). The absence of such final states in the existing searches performed at BABAR and Belle sets new constraints on the parameter space of the model. We also show that a search for multiple bremsstrahlung of dark force mediators, e+e-→χ χ ¯+n V , resulting in missing energy and multiple leptons, will further improve the sensitivity to self-interacting dark matter.

  16. A new direction for dark matter research: intermediate-mass compact halo objects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chapline, George F.; Frampton, Paul H., E-mail: george.chapline@gmail.com, E-mail: paul.h.frampton@gmail.com

    2016-11-01

    The failure to find evidence for elementary particles that could serve as the constituents of dark matter brings to mind suggestions that dark matter might consist of massive compact objects (MACHOs). In particular, it has recently been argued that MACHOs with masses > 15 M {sub ⊙} may have been prolifically produced at the onset of the big bang. Although a variety of astrophysical signatures for primordial MACHOs with masses in this range have been discussed in the literature, we favor a strategy that uses the potential for magnification of stars outside our galaxy due to gravitational microlensing of thesemore » stars by MACHOs in the halo of our galaxy. We point out that the effect of the motion of the Earth on the shape of the micro-lensing brightening curves provides a promising approach to testing over the course of next several years the hypothesis that dark matter consists of massive compact objects.« less

  17. Subhalo demographics in the Illustris simulation: effects of baryons and halo-to-halo variation

    NASA Astrophysics Data System (ADS)

    Chua, Kun Ting Eddie; Pillepich, Annalisa; Rodriguez-Gomez, Vicente; Vogelsberger, Mark; Bird, Simeon; Hernquist, Lars

    2017-12-01

    We study the abundance of subhaloes in the hydrodynamical cosmological simulation Illustris, which includes both baryons and dark matter in a cold dark matter volume 106.5 Mpc a side. We compare Illustris to its dark-matter only (DMO) analogue, Illustris-Dark and quantify the effects of baryonic processes on the demographics of subhaloes in the host mass range 1011-3 × 1014 M⊙. We focus on both the evolved (z = 0) subhalo cumulative mass functions (SHMF) and the statistics of subhaloes ever accreted, i.e. infall SHMF. We quantify the variance in subhalo abundance at fixed host mass and investigate the physical reasons responsible for such scatter. We find that in Illustris, baryonic physics impacts both the infall and z = 0 subhalo abundance by tilting the DMO function and suppressing the abundance of low-mass subhaloes. The breaking of self-similarity in the subhalo abundance at z = 0 is enhanced by the inclusion of baryonic physics. The non-monotonic alteration of the evolved subhalo abundances can be explained by the modification of the concentration-mass relation of Illustris hosts compared to Illustris-Dark. Interestingly, the baryonic implementation in Illustris does not lead to an increase in the halo-to-halo variation compared to Illustris-Dark. In both cases, the normalized intrinsic scatter today is larger for Milky Way-like haloes than for cluster-sized objects. For Milky Way-like haloes, it increases from about eight per cent at infall to about 25 per cent at the current epoch. In both runs, haloes of fixed mass formed later host more subhaloes than early formers.

  18. A dark matter scaling relation from mirror dark matter

    NASA Astrophysics Data System (ADS)

    Foot, R.

    2014-12-01

    Mirror dark matter, and other similar dissipative dark matter candidates, need an energy source to stabilize dark matter halos around spiral galaxies. It has been suggested previously that ordinary supernovae can potentially supply the required energy. By matching the energy supplied to the halo from supernovae to that lost due to radiative cooling, we here derive a rough scaling relation, RSN ∝ρ0r02 (RSN is the supernova rate and ρ0 ,r0 the dark matter central density and core radius). Such a relation is consistent with dark matter properties inferred from studies of spiral galaxies with halo masses larger than 3 ×1011M⊙. We speculate that other observed galaxy regularities might be explained within the framework of such dissipative dark matter.

  19. On the possibility that ultra-light boson haloes host and form supermassive black holes

    NASA Astrophysics Data System (ADS)

    Avilez, Ana A.; Bernal, Tula; Padilla, Luis E.; Matos, Tonatiuh

    2018-07-01

    Several observations suggest the existence of supermassive black holes (SMBH) at the centres of galaxies. However, the mechanism under which these objects form remains non-completely understood. In this work, we review an alternative mechanism of formation of galactic SMBHs from the collapse of a fraction of a dark matter (DM) halo made of an ultra-light scalar field (SF) whose critical mass of collapse is ˜1013 M⊙. Once the BH is formed, a long-living quasi-resonant SF configuration survives and plays the role of a central fraction of the galactic DM halo. In this work, we construct a model with an ultra-light SF configuration laying in a Schwarzschild space-time to describe the centre of the DM halo hosting an SMBH in equilibrium, in the limit where self-gravitating effects can be neglected. We compute the induced stellar velocity dispersion in order to investigate the influence of the BH on to the velocity field of visible matter at the central galactic regions. We fit the empirical correlation between stellar velocity dispersions and masses of SMBHs considering two instances: the idealized case of DM-dominated (DMD) systems, where the gravitational influence of baryons is neglected, and cases of real luminous galaxies (LGAL). In the DMD case, we found it is possible to reproduce the observed stellar velocity dispersions at the effective radius of systems hosting SMBHs of at most 108 M⊙. In the LGAL case, we found that the baryons are crucial to reproduce the observed velocity dispersion.

  20. The stellar mass, star formation rate and dark matter halo properties of LAEs at z ˜ 2

    NASA Astrophysics Data System (ADS)

    Kusakabe, Haruka; Shimasaku, Kazuhiro; Ouchi, Masami; Nakajima, Kimihiko; Goto, Ryosuke; Hashimoto, Takuya; Konno, Akira; Harikane, Yuichi; Silverman, John D.; Capak, Peter L.

    2018-01-01

    We present average stellar population properties and dark matter halo masses of z ˜ 2 Lyα emitters (LAEs) from spectral energy distribution fitting and clustering analysis, respectively, using ≃ 1250 objects (NB387≤25.5) in four separate fields of ≃ 1 deg2 in total. With an average stellar mass of 10.2 ± 1.8 × 108 M⊙ and star formation rate of 3.4 ± 0.4 M⊙ yr-1, the LAEs lie on an extrapolation of the star-formation main sequence (MS) to low stellar mass. Their effective dark matter halo mass is estimated to be 4.0_{-2.9}^{+5.1} × 10^{10}{ }M_{⊙} with an effective bias of 1.22^{+0.16}_{-0.18}, which is lower than that of z ˜ 2 LAEs (1.8 ± 0.3) obtained by a previous study based on a three times smaller survey area, with a probability of 96%. However, the difference in the bias values can be explained if cosmic variance is taken into account. If such a low halo mass implies a low H I gas mass, this result appears to be consistent with the observations of a high Lyα escape fraction. With the low halo masses and ongoing star formation, our LAEs have a relatively high stellar-to-halo mass ratio (SHMR) and a high efficiency of converting baryons into stars. The extended Press-Schechter formalism predicts that at z = 0 our LAEs are typically embedded in halos with masses similar to that of the Large Magellanic Cloud (LMC); they will also have similar SHMRs to the LMC, if their star formation rates are largely suppressed after z ˜ 2 as some previous studies have reported for the LMC itself.

  1. White dwarfs in the building blocks of the Galactic spheroid

    NASA Astrophysics Data System (ADS)

    van Oirschot, Pim; Nelemans, Gijs; Starkenburg, Else; Toonen, Silvia; Helmi, Amina; Zwart, Simon Portegies

    2017-11-01

    Aims: The Galactic halo likely grew over time in part by assembling smaller galaxies, the so-called building blocks (BBs). We investigate if the properties of these BBs are reflected in the halo white dwarf (WD) population in the solar neighbourhood. Furthermore, we compute the halo WD luminosity functions (WDLFs for four major BBs of five cosmologically motivated stellar haloes). We compare the sum of these to the observed WDLF of the Galactic halo, derived from selected halo WDs in the SuperCOSMOS Sky Survey, aiming to investigate if they match better than the WDLFs predicted by simpler models. Methods: We couple the SeBa binary population synthesis model to the Munich-Groningen semi-analytic galaxy formation model applied to the high-resolution Aquarius dark matter simulations. Although the semi-analytic model assumes an instantaneous recycling approximation, we model the evolution of zero-age main sequence stars to WDs, taking age and metallicity variations of the population into account. To be consistent with the observed stellar halo mass density in the solar neighbourhood (ρ0), we simulate the mass in WDs corresponding to this density, assuming a Chabrier initial mass function (IMF) and a binary fraction of 50%. We also normalize our WDLFs to ρ0. Results: Although the majority of halo stars are old and metal-poor and therefore the WDs in the different BBs have similar properties (including present-day luminosity), we find in our models that the WDs originating from BBs that have young and/or metal-rich stars can be distinguished from WDs that were born in other BBs. In practice, however, it will be hard to prove that these WDs really originate from different BBs, as the variations in the halo WD population due to binary WD mergers result in similar effects. The five joined stellar halo WD populations that we modelled result in WDLFs that are very similar to each other. We find that simple models with a Kroupa or Salpeter IMF fit the observed luminosity

  2. Testing the Self-Consistency of the Excursion Set Approach to Predicting the Dark Matter Halo Mass Function

    NASA Astrophysics Data System (ADS)

    Achitouv, I.; Rasera, Y.; Sheth, R. K.; Corasaniti, P. S.

    2013-12-01

    The excursion set approach provides a framework for predicting how the abundance of dark matter halos depends on the initial conditions. A key ingredient of this formalism is the specification of a critical overdensity threshold (barrier) which protohalos must exceed if they are to form virialized halos at a later time. However, to make its predictions, the excursion set approach explicitly averages over all positions in the initial field, rather than the special ones around which halos form, so it is not clear that the barrier has physical motivation or meaning. In this Letter we show that once the statistical assumptions which underlie the excursion set approach are considered a drifting diffusing barrier model does provide a good self-consistent description both of halo abundance as well as of the initial overdensities of the protohalo patches.

  3. The ellipticity of galaxy cluster haloes from satellite galaxies and weak lensing

    DOE PAGES

    Shin, Tae-hyeon; Clampitt, Joseph; Jain, Bhuvnesh; ...

    2018-01-04

    Here, we study the ellipticity of galaxy cluster haloes as characterized by the distribution of cluster galaxies and as measured with weak lensing. We use Monte Carlo simulations of elliptical cluster density profiles to estimate and correct for Poisson noise bias, edge bias and projection effects. We apply our methodology to 10 428 Sloan Digital Sky Survey clusters identified by the redMaPPer algorithm with richness above 20. We find a mean ellipticity =0.271 ± 0.002 (stat) ±0.031 (sys) corresponding to an axis ratio = 0.573 ± 0.002 (stat) ±0.039 (sys). We compare this ellipticity of the satellites to the halomore » shape, through a stacked lensing measurement using optimal estimators of the lensing quadrupole based on Clampitt and Jain (2016). We find a best-fitting axis ratio of 0.56 ± 0.09 (stat) ±0.03 (sys), consistent with the ellipticity of the satellite distribution. Thus, cluster galaxies trace the shape of the dark matter halo to within our estimated uncertainties. Finally, we restack the satellite and lensing ellipticity measurements along the major axis of the cluster central galaxy's light distribution. From the lensing measurements, we infer a misalignment angle with an root-mean-square of 30° ± 10° when stacking on the central galaxy. We discuss applications of halo shape measurements to test the effects of the baryonic gas and active galactic nucleus feedback, as well as dark matter and gravity. The major improvements in signal-to-noise ratio expected with the ongoing Dark Energy Survey and future surveys from Large Synoptic Survey Telescope, Euclid, and Wide Field Infrared Survey Telescope will make halo shapes a useful probe of these effects.« less

  4. The ellipticity of galaxy cluster haloes from satellite galaxies and weak lensing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shin, Tae-hyeon; Clampitt, Joseph; Jain, Bhuvnesh

    Here, we study the ellipticity of galaxy cluster haloes as characterized by the distribution of cluster galaxies and as measured with weak lensing. We use Monte Carlo simulations of elliptical cluster density profiles to estimate and correct for Poisson noise bias, edge bias and projection effects. We apply our methodology to 10 428 Sloan Digital Sky Survey clusters identified by the redMaPPer algorithm with richness above 20. We find a mean ellipticity =0.271 ± 0.002 (stat) ±0.031 (sys) corresponding to an axis ratio = 0.573 ± 0.002 (stat) ±0.039 (sys). We compare this ellipticity of the satellites to the halomore » shape, through a stacked lensing measurement using optimal estimators of the lensing quadrupole based on Clampitt and Jain (2016). We find a best-fitting axis ratio of 0.56 ± 0.09 (stat) ±0.03 (sys), consistent with the ellipticity of the satellite distribution. Thus, cluster galaxies trace the shape of the dark matter halo to within our estimated uncertainties. Finally, we restack the satellite and lensing ellipticity measurements along the major axis of the cluster central galaxy's light distribution. From the lensing measurements, we infer a misalignment angle with an root-mean-square of 30° ± 10° when stacking on the central galaxy. We discuss applications of halo shape measurements to test the effects of the baryonic gas and active galactic nucleus feedback, as well as dark matter and gravity. The major improvements in signal-to-noise ratio expected with the ongoing Dark Energy Survey and future surveys from Large Synoptic Survey Telescope, Euclid, and Wide Field Infrared Survey Telescope will make halo shapes a useful probe of these effects.« less

  5. The Chandra Dust-scattering Halo of Galactic Center Transient Swift J174540.7–290015

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Corrales, L. R.; Mon, B.; Haggard, D.

    We report the detection of a dust-scattering halo around a recently discovered X-ray transient, Swift J174540.7–290015, which in early 2016 February underwent one of the brightest outbursts ( F {sub X} ≈ 5 × 10{sup −10} erg cm{sup −2} s{sup −1}) observed from a compact object in the Galactic Center field. We analyze four Chandra images that were taken as follow-up observations to Swift discoveries of new Galactic Center transients. After adjusting our spectral extraction for the effects of detector pile-up, we construct a point-spread function for each observation and compare it to the GC field before the outburst. Wemore » find residual surface brightness around Swift J174540.7–290015, which has a shape and temporal evolution consistent with the behavior expected from X-rays scattered by foreground dust. We examine the spectral properties of the source, which shows evidence that the object transitioned from a soft to hard spectral state as it faded below L {sub X} ∼ 10{sup 36} erg s{sup −1}. This behavior is consistent with the hypothesis that the object is a low-mass X-ray binary in the Galactic Center.« less

  6. Smooth halos in the cosmic web

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gaite, José, E-mail: jose.gaite@upm.es

    Dark matter halos can be defined as smooth distributions of dark matter placed in a non-smooth cosmic web structure. This definition of halos demands a precise definition of smoothness and a characterization of the manner in which the transition from smooth halos to the cosmic web takes place. We introduce entropic measures of smoothness, related to measures of inequality previously used in economy and with the advantage of being connected with standard methods of multifractal analysis already used for characterizing the cosmic web structure in cold dark matter N-body simulations. These entropic measures provide us with a quantitative description ofmore » the transition from the small scales portrayed as a distribution of halos to the larger scales portrayed as a cosmic web and, therefore, allow us to assign definite sizes to halos. However, these ''smoothness sizes'' have no direct relation to the virial radii. Finally, we discuss the influence of N-body discreteness parameters on smoothness.« less

  7. Rigging dark haloes: why is hierarchical galaxy formation consistent with the inside-out build-up of thin discs?

    NASA Astrophysics Data System (ADS)

    Pichon, C.; Pogosyan, D.; Kimm, T.; Slyz, A.; Devriendt, J.; Dubois, Y.

    2011-12-01

    State-of-the-art hydrodynamical simulations show that gas inflow through the virial sphere of dark matter haloes is focused (i.e. has a preferred inflow direction), consistent (i.e. its orientation is steady in time) and amplified (i.e. the amplitude of its advected specific angular momentum increases with time). We explain this to be a consequence of the dynamics of the cosmic web within the neighbourhood of the halo, which produces steady, angular momentum rich, filamentary inflow of cold gas. On large scales, the dynamics within neighbouring patches drives matter out of the surrounding voids, into walls and filaments before it finally gets accreted on to virialized dark matter haloes. As these walls/filaments constitute the boundaries of asymmetric voids, they acquire a net transverse motion, which explains the angular momentum rich nature of the later infall which comes from further away. We conjecture that this large-scale driven consistency explains why cold flows are so efficient at building up high-redshift thin discs inside out.

  8. A DIRECT MEASUREMENT OF THE BARYONIC MASS FUNCTION OF GALAXIES AND IMPLICATIONS FOR THE GALACTIC BARYON FRACTION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Papastergis, Emmanouil; Huang, Shan; Giovanelli, Riccardo

    We use both an H I-selected and an optically selected galaxy sample to directly measure the abundance of galaxies as a function of their 'baryonic' mass (stars + atomic gas). Stellar masses are calculated based on optical data from the Sloan Digital Sky Survey and atomic gas masses are calculated using atomic hydrogen (H I) emission line data from the Arecibo Legacy Fast ALFA survey. By using the technique of abundance matching, we combine the measured baryonic function of galaxies with the dark matter halo mass function in a {Lambda}CDM universe, in order to determine the galactic baryon fraction asmore » a function of host halo mass. We find that the baryon fraction of low-mass halos is much smaller than the cosmic value, even when atomic gas is taken into account. We find that the galactic baryon deficit increases monotonically with decreasing halo mass, in contrast with previous studies which suggested an approximately constant baryon fraction at the low-mass end. We argue that the observed baryon fractions of low-mass halos cannot be explained by reionization heating alone, and that additional feedback mechanisms (e.g., supernova blowout) must be invoked. However, the outflow rates needed to reproduce our result are not easily accommodated in the standard picture of galaxy formation in a {Lambda}CDM universe.« less

  9. Constraints on Leptophilic Dark Matter from the AMS-02 Experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cavasonza, Leila Ali; Gast, Henning; Schael, Stefan

    2017-04-10

    The annihilation of dark matter particles in the Galactic halo of the Milky Way may lead to cosmic ray signatures that can be probed by the AMS-02 experiment, which has measured the composition and fluxes of charged cosmic rays with unprecedented precision. Given the absence of characteristic spectral features in the electron and positron fluxes measured by AMS-02, we derive upper limits on the dark matter annihilation cross section for leptophilic dark matter models. Our limits are based on a new background model that describes all recent measurements of the energy spectra of cosmic-ray positrons and electrons. For thermal darkmore » matter relics, we can exclude dark matter masses below about 100 GeV. We include the radiation of electroweak gauge bosons in the dark matter annihilation process and compute the antiproton signal that can be expected within leptophilic dark matter models.« less

  10. The Mysterious 6565 Å Absorption Feature of the Galactic Halo

    NASA Astrophysics Data System (ADS)

    Sethi, Shiv K.; Shchekinov, Yuri; Nath, Biman B.

    2017-12-01

    We consider various possible scenarios to explain the recent observation of what has been called a broad Hα absorption in our Galactic halo, with peak optical depth τ ≃ 0.01 and equivalent width W≃ 0.17 \\mathringA . We show that the absorbed feature cannot arise from the circumgalactic and ISM Hα absorption. As the observed absorption feature is quite broad ({{Δ }}λ ≃ 30 \\mathringA ), we also consider CNO lines that lie close to Hα as possible alternatives to explain the feature. We show that such lines could also not account for the observed feature. Instead, we suggest that it could arise from diffuse interstellar bands (DIBs) carriers or polyaromatic hydrocarbons (PAHs) absorption. While we identify several such lines close to the Hα transition, we are unable to determine the molecule responsible for the observed feature, partly because of selection effects that prevent us from identifying DIBs/PAHs features close to Hα using local observations. Deep integration of a few extragalactic sources with high spectral resolution might allow us to distinguish between different possible explanations.

  11. Modeling the Gravitational Potential of a Cosmological Dark Matter Halo with Stellar Streams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sanderson, Robyn E.; Hartke, Johanna; Helmi, Amina, E-mail: robyn@astro.columbia.edu

    2017-02-20

    Stellar streams result from the tidal disruption of satellites and star clusters as they orbit a host galaxy, and can be very sensitive probes of the gravitational potential of the host system. We select and study narrow stellar streams formed in a Milky-Way-like dark matter halo of the Aquarius suite of cosmological simulations, to determine if these streams can be used to constrain the present day characteristic parameters of the halo’s gravitational potential. We find that orbits integrated in both spherical and triaxial static Navarro–Frenk–White potentials reproduce the locations and kinematics of the various streams reasonably well. To quantify thismore » further, we determine the best-fit potential parameters by maximizing the amount of clustering of the stream stars in the space of their actions. We show that using our set of Aquarius streams, we recover a mass profile that is consistent with the spherically averaged dark matter profile of the host halo, although we ignored both triaxiality and time evolution in the fit. This gives us confidence that such methods can be applied to the many streams that will be discovered by the Gaia mission to determine the gravitational potential of our Galaxy.« less

  12. Supermassive black holes do not correlate with dark matter haloes of galaxies.

    PubMed

    Kormendy, John; Bender, Ralf

    2011-01-20

    Supermassive black holes have been detected in all galaxies that contain bulge components when the galaxies observed were close enough that the searches were feasible. Together with the observation that bigger black holes live in bigger bulges, this has led to the belief that black-hole growth and bulge formation regulate each other. That is, black holes and bulges coevolve. Therefore, reports of a similar correlation between black holes and the dark matter haloes in which visible galaxies are embedded have profound implications. Dark matter is likely to be non-baryonic, so these reports suggest that unknown, exotic physics controls black-hole growth. Here we show, in part on the basis of recent measurements of bulgeless galaxies, that there is almost no correlation between dark matter and parameters that measure black holes unless the galaxy also contains a bulge. We conclude that black holes do not correlate directly with dark matter. They do not correlate with galaxy disks, either. Therefore, black holes coevolve only with bulges. This simplifies the puzzle of their coevolution by focusing attention on purely baryonic processes in the galaxy mergers that make bulges.

  13. Dark Matter or Modified Dynamics? Hints from Galaxy Kinematics

    NASA Astrophysics Data System (ADS)

    Gentile, G.

    2010-12-01

    I show two observational projects I am involved in, which are aimed at understanding better the existence and nature of dark matter, and also aimed at testing alternatives to galactic dark matter such as MOND (Modified Newtonian Dynamics). I present new HI observations of the nearby dwarf galaxy NGC 3741. This galaxy has an extremely extended HI disc (42 B-band exponential scalelengths). The distribution and kinematics are accurately derived by building model data cubes, which closely reproduce the observations. Mass modelling of the rotation curve shows that a cored dark matter halo or MOND provide very good fits, whereas Cold Dark Matter density profiles fail to fit the data. I also show new results about tidal dwarf galaxies, which within the CDM framework are expected to be dark matter-free but whose kinematics instead show a mass discrepancy, exactly of the magnitude that is expected in MOND (Modified Newtonian Dynamics).

  14. The correlation between the sizes of globular cluster systems and their host dark matter haloes

    NASA Astrophysics Data System (ADS)

    Hudson, Michael J.; Robison, Bailey

    2018-07-01

    The sizes of entire systems of globular clusters (GCs) depend not only on the formation and destruction histories of the GCs themselves but also on the assembly, merger, and accretion history of the dark matter (DM) haloes that they inhabit. Recent work has shown a linear relation between total mass of GCs in the GC system and the mass of its host DM halo, calibrated from weak lensing. Here, we extend this to GC system sizes, by studying the radial density profiles of GCs around galaxies in nearby galaxy groups. We find that radial density profiles of the GC systems are well fit with a de Vaucouleurs profile. Combining our results with those from the literature, we find tight relationship (˜0.2 dex scatter) between the effective radius of the GC system and the virial radius (or mass) of its host DM halo, for haloes with masses greater than ˜1012 M⊙. The steep non-linear dependence of this relationship (R_{ {e, GCS}} ∝ R_{200}^{2.5 - 3} ∝ M_{200}^{0.8 - 1}) is currently not well understood, but is an important clue regarding the assembly history of DM haloes and of the GC systems that they host.

  15. Probing the interstellar dust towards the Galactic Centre: dust-scattering halo around AX J1745.6-2901

    NASA Astrophysics Data System (ADS)

    Jin, Chichuan; Ponti, Gabriele; Haberl, Frank; Smith, Randall

    2017-07-01

    AX J1745.6-2901 is an X-ray binary located at only 1.45 arcmin from Sgr A⋆, showcasing a strong X-ray dust-scattering halo. We combine Chandra and XMM-Newton observations to study the halo around this X-ray binary. Our study shows two major thick dust layers along the line of sight (LOS) towards AX J1745.6-2901. The LOS position and NH of these two layers depend on the dust grain models with different grain size distributions and abundances. But for all the 19 dust grain models considered, dust layer-1 is consistently found to be within a fractional distance of 0.11 (mean value: 0.05) to AX J1745.6-2901 and contains only (19-34) per cent (mean value: 26 per cent) of the total LOS dust. The remaining dust is contained in layer-2, which is distributed from the Earth up to a mean fractional distance of 0.64. A significant separation between the two layers is found for all the dust grain models, with a mean fractional distance of 0.31. Besides, an extended wing component is discovered in the halo, which implies a higher fraction of dust grains with typical sizes ≲590 Å than considered in current dust grain models. Assuming AX J1745.6-2901 is 8 kpc away, dust layer-2 would be located in the Galactic disc several kpc away from the Galactic Centre (GC). The dust scattering halo biases the observed spectrum of AX J1745.6-2901 severely in both spectral shape and flux, and also introduces a strong dependence on the size of the instrumental point spread function and the source extraction region. We build xspec models to account for this spectral bias, which allow us to recover the intrinsic spectrum of AX J1745.6-2901 free from dust-scattering opacity. If dust layer-2 also intervenes along the LOS to Sgr A⋆ and other nearby GC sources, a significant spectral correction for the dust-scattering opacity would be necessary for all these GC sources.

  16. Halo-independent determination of the unmodulated WIMP signal in DAMA: the isotropic case

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gondolo, Paolo; Scopel, Stefano, E-mail: paolo.gondolo@utah.edu, E-mail: scopel@sogang.ac.kr

    2017-09-01

    We present a halo-independent determination of the unmodulated signal corresponding to the DAMA modulation if interpreted as due to dark matter weakly interacting massive particles (WIMPs). First we show how a modulated signal gives information on the WIMP velocity distribution function in the Galactic rest frame from which the unmodulated signal descends. Then we describe a mathematically-sound profile likelihood analysis in which the likelihood is profiled over a continuum of nuisance parameters (namely, the WIMP velocity distribution). As a first application of the method, which is very general and valid for any class of velocity distributions, we restrict the analysismore » to velocity distributions that are isotropic in the Galactic frame. In this way we obtain halo-independent maximum-likelihood estimates and confidence intervals for the DAMA unmodulated signal. We find that the estimated unmodulated signal is in line with expectations for a WIMP-induced modulation and is compatible with the DAMA background+signal rate. Specifically, for the isotropic case we find that the modulated amplitude ranges between a few percent and about 25% of the unmodulated amplitude, depending on the WIMP mass.« less

  17. The Average Star Formation Histories of Galaxies in Dark Matter Halos from z = 0-8

    NASA Astrophysics Data System (ADS)

    Behroozi, Peter S.; Wechsler, Risa H.; Conroy, Charlie

    2013-06-01

    We present a robust method to constrain average galaxy star formation rates (SFRs), star formation histories (SFHs), and the intracluster light (ICL) as a function of halo mass. Our results are consistent with observed galaxy stellar mass functions, specific star formation rates (SSFRs), and cosmic star formation rates (CSFRs) from z = 0 to z = 8. We consider the effects of a wide range of uncertainties on our results, including those affecting stellar masses, SFRs, and the halo mass function at the heart of our analysis. As they are relevant to our method, we also present new calibrations of the dark matter halo mass function, halo mass accretion histories, and halo-subhalo merger rates out to z = 8. We also provide new compilations of CSFRs and SSFRs; more recent measurements are now consistent with the buildup of the cosmic stellar mass density at all redshifts. Implications of our work include: halos near 1012 M ⊙ are the most efficient at forming stars at all redshifts, the baryon conversion efficiency of massive halos drops markedly after z ~ 2.5 (consistent with theories of cold-mode accretion), the ICL for massive galaxies is expected to be significant out to at least z ~ 1-1.5, and dwarf galaxies at low redshifts have higher stellar mass to halo mass ratios than previous expectations and form later than in most theoretical models. Finally, we provide new fitting formulae for SFHs that are more accurate than the standard declining tau model. Our approach places a wide variety of observations relating to the SFH of galaxies into a self-consistent framework based on the modern understanding of structure formation in ΛCDM. Constraints on the stellar mass-halo mass relationship and SFRs are available for download online.

  18. Using artificial neural networks to constrain the halo baryon fraction during reionization

    NASA Astrophysics Data System (ADS)

    Sullivan, David; Iliev, Ilian T.; Dixon, Keri L.

    2018-01-01

    Radiative feedback from stars and galaxies has been proposed as a potential solution to many of the tensions with simplistic galaxy formation models based on Λcold dark matter, such as the faint end of the ultraviolet (UV) luminosity function. The total energy budget of radiation could exceed that of galactic winds and supernovae combined, which has driven the development of sophisticated algorithms that evolve both the radiation field and the hydrodynamical response of gas simultaneously, in a cosmological context. We probe self-feedback on galactic scales using the adaptive mesh refinement, radiative transfer, hydrodynamics, and N-body code RAMSES-RT. Unlike previous studies which assume a homogeneous UV background, we self-consistently evolve both the radiation field and gas to constrain the halo baryon fraction during cosmic reionization. We demonstrate that the characteristic halo mass with mean baryon fraction half the cosmic mean, Mc(z), shows very little variation as a function of mass-weighted ionization fraction. Furthermore, we find that the inclusion of metal cooling and the ability to resolve scales small enough for self-shielding to become efficient leads to a significant drop in Mc when compared to recent studies. Finally, we develop an artificial neural network that is capable of predicting the baryon fraction of haloes based on recent tidal interactions, gas temperature, and mass-weighted ionization fraction. Such a model can be applied to any reionization history, and trivially incorporated into semi-analytical models of galaxy formation.

  19. Special Features of Galactic Dynamics

    NASA Astrophysics Data System (ADS)

    Efthymiopoulos, Christos; Voglis, Nikos; Kalapotharakos, Constantinos

    This is an introductory article to some basic notions and currently open problems of galactic dynamics. The focus is on topics mostly relevant to the so-called `new methods' of celestial mechanics or Hamiltonian dynamics, as applied to the ellipsoidal components of galaxies, i.e., to the elliptical galaxies and to the dark halos and bulges of disk galaxies. Traditional topics such as Jeans theorem, the role of a `third integral' of motion, Nekhoroshev theory, violent relaxation, and the statistical mechanics of collisionless stellar systems are first discussed. The emphasis is on modern extrapolations of these old topics. Recent results from orbital and global dynamical studies of galaxies are then shortly reviewed. The role of various families of orbits in supporting self-consistency, as well as the role of chaos in galaxies, are stressed. A description is then given of the main numerical techniques of integration of the N-body problem in the framework of stellar dynamics and of the results obtained via N-Body experiments. A final topic is the secular evolution and self-organization of galactic systems.

  20. Revisiting Black Holes as Dark Matter

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2017-02-01

    Could dark matter be made of intermediate-mass black holes formed in the beginning of the universe? A recent study takes a renewed look at this question.Galactic LurkersThe nature of dark matter has long been questioned, but the recent discovery of gravitational waves by the Laser Interferometer Gravitational-Wave Observatory (LIGO) has renewed interest in the possibility that dark matter could consist of primordial black holes in the mass range of 101000 solar masses.The relative amounts of the different constituents of the universe. Dark matter makes up roughly 27%. [ESA/Planck]According to this model, the extreme density of matter present during the universes early expansion led to the formation of a large number of intermediate-mass black holes. These black holes now hide in the halos of galaxies, constituting the mass that weve measured dynamically but remains unseen.LIGOs first gravitational-wave detection revealed the merger of two black holes that were both tens of solar masses in size. If primordial black holes are indeed a major constituent of dark matter, then LIGOs detection is consistent with what we would expect to find: occasional mergers of the intermediate-mass black holes that formed in the early universe and now lurk in galactic halos.Quasar MicrolensingTheres a catch, however. If there truly were a large number of intermediate-mass primordial black holes hiding in galactic halos, they wouldnt go completely unnoticed: we would see signs of their presence in the gravitational microlensing of background quasars. Unseen primordial black holes in a foreground galaxy could cause an image of a background quasar to briefly brighten which would provide us with clear evidence of such black holes despite our not being able to detect them directly.A depiction of quasar microlensing (click for a closer look!). The microlensing object in the foreground galaxy could be a star (as depicted), a primordial black hole, or any other compact object. [NASA

  1. Halo-independent direct detection analyses without mass assumptions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderson, Adam J.; Fox, Patrick J.; Kahn, Yonatan

    2015-10-01

    Results from direct detection experiments are typically interpreted by employing an assumption about the dark matter velocity distribution, with results presented in the m{sub χ}−σ{sub n} plane. Recently methods which are independent of the DM halo velocity distribution have been developed which present results in the v{sub min}− g-tilde plane, but these in turn require an assumption on the dark matter mass. Here we present an extension of these halo-independent methods for dark matter direct detection which does not require a fiducial choice of the dark matter mass. With a change of variables from v{sub min} to nuclear recoil momentummore » (p{sub R}), the full halo-independent content of an experimental result for any dark matter mass can be condensed into a single plot as a function of a new halo integral variable, which we call h-tilde (p{sub R}). The entire family of conventional halo-independent g-tilde (v{sub min}) plots for all DM masses are directly found from the single h-tilde (p{sub R}) plot through a simple rescaling of axes. By considering results in h-tilde (p{sub R}) space, one can determine if two experiments are inconsistent for all masses and all physically possible halos, or for what range of dark matter masses the results are inconsistent for all halos, without the necessity of multiple g-tilde (v{sub min}) plots for different DM masses. We conduct a sample analysis comparing the CDMS II Si events to the null results from LUX, XENON10, and SuperCDMS using our method and discuss how the results can be strengthened by imposing the physically reasonable requirement of a finite halo escape velocity.« less

  2. Halo-independent direct detection analyses without mass assumptions

    DOE PAGES

    Anderson, Adam J.; Fox, Patrick J.; Kahn, Yonatan; ...

    2015-10-06

    Results from direct detection experiments are typically interpreted by employing an assumption about the dark matter velocity distribution, with results presented in the m χ – σ n plane. Recently methods which are independent of the DM halo velocity distribution have been developed which present results in the v min – g ~ plane, but these in turn require an assumption on the dark matter mass. Here we present an extension of these halo-independent methods for dark matter direct detection which does not require a fiducial choice of the dark matter mass. With a change of variables from v minmore » to nuclear recoil momentum (p R), the full halo-independent content of an experimental result for any dark matter mass can be condensed into a single plot as a function of a new halo integral variable, which we call tilde h(p R). The entire family of conventional halo-independent tilde g ~(v min) plots for all DM masses are directly found from the single tilde h ~(p R) plot through a simple rescaling of axes. By considering results in tildeh ~(p R) space, one can determine if two experiments are inconsistent for all masses and all physically possible halos, or for what range of dark matter masses the results are inconsistent for all halos, without the necessity of multiple tilde g ~(v min) plots for different DM masses. As a result, we conduct a sample analysis comparing the CDMS II Si events to the null results from LUX, XENON10, and SuperCDMS using our method and discuss how the results can be strengthened by imposing the physically reasonable requirement of a finite halo escape velocity.« less

  3. Two chemically similar stellar overdensities on opposite sides of the plane of the Galactic disk.

    PubMed

    Bergemann, Maria; Sesar, Branimir; Cohen, Judith G; Serenelli, Aldo M; Sheffield, Allyson; Li, Ting S; Casagrande, Luca; Johnston, Kathryn V; Laporte, Chervin F P; Price-Whelan, Adrian M; Schönrich, Ralph; Gould, Andrew

    2018-03-15

    Our Galaxy is thought to have an active evolutionary history, dominated over the past ten billion years or so by star formation, the accretion of cold gas and, in particular, the merging of clumps of baryonic and dark matter. The stellar halo-the faint, roughly spherical component of the Galaxy-reveals rich 'fossil' evidence of these interactions, in the form of stellar streams, substructures and chemically distinct stellar components. The effects of interactions with dwarf galaxies on the content and morphology of the Galactic disk are still being explored. Recent studies have identified kinematically distinct stellar substructures and moving groups of stars in our Galaxy, which may have extragalactic origins. There is also mounting evidence that stellar overdensities (regions with greater-than-average stellar density) at the interface between the outer disk and the halo could have been caused by the interaction of a dwarf galaxy with the disk. Here we report a spectroscopic analysis of 14 stars from two stellar overdensities, each lying about five kiloparsecs above or below the Galactic plane-locations suggestive of an association with the stellar halo. We find that the chemical compositions of these two groups of stars are almost identical, both within and between these overdensities, and closely match the abundance patterns of stars in the Galactic disk. We conclude that these stars came from the disk, and that the overdensities that they are part of were created by tidal interactions of the disk with passing or merging dwarf galaxies.

  4. H.E.S.S. Limits on Linelike Dark Matter Signatures in the 100 GeV to 2 TeV Energy Range Close to the Galactic Center.

    PubMed

    Abdalla, H; Abramowski, A; Aharonian, F; Ait Benkhali, F; Akhperjanian, A G; Andersson, T; Angüner, E O; Arrieta, M; Aubert, P; Backes, M; Balzer, A; Barnard, M; Becherini, Y; Becker Tjus, J; Berge, D; Bernhard, S; Bernlöhr, K; Birsin, E; Blackwell, R; Böttcher, M; Boisson, C; Bolmont, J; Bordas, P; Bregeon, J; Brun, F; Brun, P; Bryan, M; Bulik, T; Capasso, M; Carr, J; Casanova, S; Chakraborty, N; Chalme-Calvet, R; Chaves, R C G; Chen, A; Chevalier, J; Chrétien, M; Colafrancesco, S; Cologna, G; Condon, B; Conrad, J; Couturier, C; Cui, Y; Davids, I D; Degrange, B; Deil, C; Devin, J; deWilt, P; Djannati-Ataï, A; Domainko, W; Donath, A; Drury, L O'C; Dubus, G; Dutson, K; Dyks, J; Dyrda, M; Edwards, T; Egberts, K; Eger, P; Ernenwein, J-P; Eschbach, S; Farnier, C; Fegan, S; Fernandes, M V; Fiasson, A; Fontaine, G; Förster, A; Funk, S; Füßling, M; Gabici, S; Gajdus, M; Gallant, Y A; Garrigoux, T; Giavitto, G; Giebels, B; Glicenstein, J F; Gottschall, D; Goyal, A; Grondin, M-H; Grudzińska, M; Hadasch, D; Hahn, J; Hawkes, J; Heinzelmann, G; Henri, G; Hermann, G; Hervet, O; Hillert, A; Hinton, J A; Hofmann, W; Hoischen, C; Holler, M; Horns, D; Ivascenko, A; Jacholkowska, A; Jamrozy, M; Janiak, M; Jankowsky, D; Jankowsky, F; Jingo, M; Jogler, T; Jouvin, L; Jung-Richardt, I; Kastendieck, M A; Katarzyński, K; Katz, U; Kerszberg, D; Khélifi, B; Kieffer, M; King, J; Klepser, S; Klochkov, D; Kluźniak, W; Kolitzus, D; Komin, Nu; Kosack, K; Krakau, S; Kraus, M; Krayzel, F; Krüger, P P; Laffon, H; Lamanna, G; Lau, J; Lees, J-P; Lefaucheur, J; Lefranc, V; Lemière, A; Lemoine-Goumard, M; Lenain, J-P; Leser, E; Liu, R; Lohse, T; Lorentz, M; Lypova, I; Marandon, V; Marcowith, A; Mariaud, C; Marx, R; Maurin, G; Maxted, N; Mayer, M; Meintjes, P J; Meyer, M; Mitchell, A M W; Moderski, R; Mohamed, M; Morå, K; Moulin, E; Murach, T; de Naurois, M; Niederwanger, F; Niemiec, J; Oakes, L; O'Brien, P; Odaka, H; Ohm, S; Ostrowski, M; Öttl, S; Oya, I; Padovani, M; Panter, M; Parsons, R D; Paz Arribas, M; Pekeur, N W; Pelletier, G; Perennes, C; Petrucci, P-O; Peyaud, B; Pita, S; Poon, H; Prokhorov, D; Prokoph, H; Pühlhofer, G; Punch, M; Quirrenbach, A; Raab, S; Reimer, A; Reimer, O; Renaud, M; de Los Reyes, R; Rieger, F; Romoli, C; Rosier-Lees, S; Rowell, G; Rudak, B; Rulten, C B; Sahakian, V; Salek, D; Sanchez, D A; Santangelo, A; Sasaki, M; Schlickeiser, R; Schüssler, F; Schulz, A; Schwanke, U; Schwemmer, S; Settimo, M; Seyffert, A S; Shafi, N; Shilon, I; Simoni, R; Sol, H; Spanier, F; Spengler, G; Spies, F; Stawarz, Ł; Steenkamp, R; Stegmann, C; Stinzing, F; Stycz, K; Sushch, I; Tavernet, J-P; Tavernier, T; Taylor, A M; Terrier, R; Tibaldo, L; Tluczykont, M; Trichard, C; Tuffs, R; van der Walt, J; van Eldik, C; van Soelen, B; Vasileiadis, G; Veh, J; Venter, C; Viana, A; Vincent, P; Vink, J; Voisin, F; Völk, H J; Vuillaume, T; Wadiasingh, Z; Wagner, S J; Wagner, P; Wagner, R M; White, R; Wierzcholska, A; Willmann, P; Wörnlein, A; Wouters, D; Yang, R; Zabalza, V; Zaborov, D; Zacharias, M; Zdziarski, A A; Zech, A; Zefi, F; Ziegler, A; Żywucka, N

    2016-10-07

    A search for dark matter linelike signals iss performed in the vicinity of the Galactic Center by the H.E.S.S. experiment on observational data taken in 2014. An unbinned likelihood analysis iss developed to improve the sensitivity to linelike signals. The upgraded analysis along with newer data extend the energy coverage of the previous measurement down to 100 GeV. The 18 h of data collected with the H.E.S.S. array allow one to rule out at 95% C.L. the presence of a 130 GeV line (at l=-1.5°, b=0° and for a dark matter profile centered at this location) previously reported in Fermi-LAT data. This new analysis overlaps significantly in energy with previous Fermi-LAT and H.E.S.S. No significant excess associated with dark matter annihilations was found in the energy range of 100 GeV to 2 TeV and upper limits on the gamma-ray flux and the velocity weighted annihilation cross section are derived adopting an Einasto dark matter halo profile. Expected limits for present and future large statistics H.E.S.S. observations are also given.

  5. Photoionization of the diffuse interstellar medium and galactic halo by OB associtations

    NASA Technical Reports Server (NTRS)

    Dove, James B.; Shull, J. Michael

    1994-01-01

    Assuming smoothly varying H I distributions in te Galactic disk, we have calculated the geometry of diffuse II regions due to OB associations in the Galactic plane. Near the solar circle, OB associations with a Lyman continuum (Lyc) photon luminosity Psi(sub Lyc) = 3.3 x 10(exp 7) cm(exp -2) s(exp -1), produce H II regions that are density bounded in the vertical direction (H II chimneys) allowing Lyc to escape the gaseous disk and penetrate into the Galactic halo. We provide analytic formulae for the Lyc escape fraction as functions of S(sub 0) O-star catalog of Garmany and a new Lyc stellar stellar Lyc stellar flux calibration, we find a production rate of Lyc photons by OB associations within 2.5 kpc of Psi(sub Lyc) = 3.3 x 10(exp 7) cm(exp -2) s(exp -1). Integrating the fraction of Lyc photons that escape the disk over our adopted luminosity function of OB associations, we estimate that approximately 7% of the ionizing photons, or Phi(sub Lyc) = 2.3 x 10(exp 6) cm(exp -2) s(exp -1), escape each side of the H I disk layer and penetrate the diffuse ionized medium ('Reynolds layer'). This flux is sufficient to explain the potoionization of this, although we have not constructed a model for the observed H-alpha emission and pulsar dispersion measures that is fully consistent with the absorption rate of Lyc in the H II layer. Since our quiescent model does not account for the effects of dynamic chimneys and superbubbles, which should enhance Lyc escape, we conclude the O stars are the probable source of ionizing radiation for the Reynolds layer. For a random distribution of OB associations throughout the disk, the Lyc flux is nearly uniform for heights Z is greater than approximately 0.8 kpc above the midplane.

  6. Extended maximum likelihood halo-independent analysis of dark matter direct detection data

    DOE PAGES

    Gelmini, Graciela B.; Georgescu, Andreea; Gondolo, Paolo; ...

    2015-11-24

    We extend and correct a recently proposed maximum-likelihood halo-independent method to analyze unbinned direct dark matter detection data. Instead of the recoil energy as independent variable we use the minimum speed a dark matter particle must have to impart a given recoil energy to a nucleus. This has the advantage of allowing us to apply the method to any type of target composition and interaction, e.g. with general momentum and velocity dependence, and with elastic or inelastic scattering. We prove the method and provide a rigorous statistical interpretation of the results. As first applications, we find that for dark mattermore » particles with elastic spin-independent interactions and neutron to proton coupling ratio f n/f p=-0.7, the WIMP interpretation of the signal observed by CDMS-II-Si is compatible with the constraints imposed by all other experiments with null results. We also find a similar compatibility for exothermic inelastic spin-independent interactions with f n/f p=-0.8.« less

  7. A high-velocity black hole on a Galactic-halo orbit in the solar neighbourhood.

    PubMed

    Mirabel, I F; Dhawan, V; Mignani, R P; Rodrigues, I; Guglielmetti, F

    2001-09-13

    Only a few of the dozen or so known stellar-mass black holes have been observed away from the plane of the Galaxy. Those few could have been ejected from the plane as a result of a 'kick' received during a supernova explosion, or they could be remnants of the population of massive stars formed in the early stages of evolution of the Galaxy. Determining their orbital motion should help to distinguish between these options. Here we report the transverse motion (in the plane of the sky) for the black-hole X-ray nova XTE J1118+480 (refs 2, 3, 4, 5), from which we derive a large space velocity. This X-ray binary system has an eccentric orbit around the Galactic Centre, like most objects in the halo of the Galaxy, such as ancient stars and globular clusters. The properties of the system suggest that its age is comparable to or greater than the age of the Galactic disk. Only an extraordinary 'kick' from a supernova could have launched the black hole into an orbit like this from a birthplace in the disk of the Galaxy.

  8. Constraints on WIMP annihilation for contracted dark matter in the inner Galaxy with the Fermi-LAT

    DOE PAGES

    Gómez-Vargas, Germán A.; Sánchez-Conde, Miguel A.; Huh, Ji -Haeng; ...

    2013-10-16

    Here, we derive constraints on parameters of generic dark matter candidates by comparing theoretical predictions with the gamma-ray emission observed by the Fermi-LAT from the region around the Galactic Center. Our analysis is conservative since it simply requires that the expected dark matter signal does not exceed the observed emission. The constraints obtained in the likely case that the collapse of baryons to the Galactic Center is accompanied by the contraction of the dark matter are strong. In particular, we find that for b b¯ and τ +τ – or W +W – dark matter annihilation channels, the upper limitsmore » on the annihilation cross section imply that the thermal cross section is excluded for a Weakly Interacting Massive Particle (WIMP) mass smaller than about 700 and 500 GeV, respectively. For the μ +μ – channel, where the effect of the inverse Compton scattering is important, depending on models of the Galactic magnetic field the exclusion of the thermal cross-section is for a WIMP mass smaller than about 150 to 400 GeV. The upper limits on the annihilation cross section of dark matter particles obtained are two orders of magnitude stronger than without contraction. In the latter case our results are compatible with the upper limits from the Galactic halo analysis reported by the Fermi-LAT collaboration for the case in which the same conservative approach without modeling of the astrophysical background is employed.« less

  9. IMPACT OF SUPERNOVA AND COSMIC-RAY DRIVING ON THE SURFACE BRIGHTNESS OF THE GALACTIC HALO IN SOFT X-RAYS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peters, Thomas; Girichidis, Philipp; Gatto, Andrea

    2015-11-10

    The halo of the Milky Way contains a hot plasma with a surface brightness in soft X-rays of the order 10{sup −12} erg cm{sup −2} s{sup −1} deg{sup −2}. The origin of this gas is unclear, but so far numerical models of galactic star formation have failed to reproduce such a large surface brightness by several orders of magnitude. In this paper, we analyze simulations of the turbulent, magnetized, multi-phase interstellar medium including thermal feedback by supernova explosions as well as cosmic-ray feedback. We include a time-dependent chemical network, self-shielding by gas and dust, and self-gravity. Pure thermal feedback alonemore » is sufficient to produce the observed surface brightness, although it is very sensitive to the supernova rate. Cosmic rays suppress this sensitivity and reduce the surface brightness because they drive cooler outflows. Self-gravity has by far the largest effect because it accumulates the diffuse gas in the disk in dense clumps and filaments, so that supernovae exploding in voids can eject a large amount of hot gas into the halo. This can boost the surface brightness by several orders of magnitude. Although our simulations do not reach a steady state, all simulations produce surface brightness values of the same order of magnitude as the observations, with the exact value depending sensitively on the simulation parameters. We conclude that star formation feedback alone is sufficient to explain the origin of the hot halo gas, but measurements of the surface brightness alone do not provide useful diagnostics for the study of galactic star formation.« less

  10. Galactic dual population models of gamma-ray bursts

    NASA Technical Reports Server (NTRS)

    Higdon, J. C.; Lingenfelter, R. E.

    1994-01-01

    We investigate in more detail the properties of two-population models for gamma-ray bursts in the galactic disk and halo. We calculate the gamma-ray burst statistical properties, mean value of (V/V(sub max)), mean value of cos Theta, and mean value of (sin(exp 2) b), as functions of the detection flux threshold for bursts coming from both Galactic disk and massive halo populations. We consider halo models inferred from the observational constraints on the large-scale Galactic structure and we compare the expected values of mean value of (V/V(sub max)), mean value of cos Theta, and mean value of (sin(exp 2) b), with those measured by Burst and Transient Source Experiment (BATSE) and other detectors. We find that the measured values are consistent with solely Galactic populations having a range of halo distributions, mixed with local disk distributions, which can account for as much as approximately 25% of the observed BATSE bursts. M31 does not contribute to these modeled bursts. We also demonstrate, contrary to recent arguments, that the size-frequency distributions of dual population models are quite consistent with the BATSE observations.

  11. Probing the Dark Sector with Dark Matter Bound States.

    PubMed

    An, Haipeng; Echenard, Bertrand; Pospelov, Maxim; Zhang, Yue

    2016-04-15

    A model of the dark sector where O(few  GeV) mass dark matter particles χ couple to a lighter dark force mediator V, m_{V}≪m_{χ}, is motivated by the recently discovered mismatch between simulated and observed shapes of galactic halos. Such models, in general, provide a challenge for direct detection efforts and collider searches. We show that for a large range of coupling constants and masses, the production and decay of the bound states of χ, such as 0^{-+} and 1^{--} states, η_{D} and ϒ_{D}, is an important search channel. We show that e^{+}e^{-}→η_{D}+V or ϒ_{D}+γ production at B factories for α_{D}>0.1 is sufficiently strong to result in multiple pairs of charged leptons and pions via η_{D}→2V→2(l^{+}l^{-}) and ϒ_{D}→3V→3(l^{+}l^{-}) (l=e,μ,π). The absence of such final states in the existing searches performed at BABAR and Belle sets new constraints on the parameter space of the model. We also show that a search for multiple bremsstrahlung of dark force mediators, e^{+}e^{-}→χχ[over ¯]+nV, resulting in missing energy and multiple leptons, will further improve the sensitivity to self-interacting dark matter.

  12. THE VELOCITY FUNCTION OF DARK MATTER HALOS AT R = 20 kpc: REMARKABLY LITTLE EVOLUTION SINCE z Almost-Equal-To 4

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weinmann, Simone M.; Franx, Marijn; Van Dokkum, Pieter

    We investigate the evolution in the dark matter halo circular velocity function, measured at a fixed physical radius of 20 kpc (v{sub 20}), which is likely to be a good proxy for galaxy circular velocity, in the Millennium-II simulation. We find that the v{sub 20} function evolves remarkably little since z Almost-Equal-To 4. We analyze the histories of the main progenitors of halos, and we find that the dark matter distribution within the central 20 kpc of massive halos has been in place since early times. This provides evidence for the inside-out growth of halos. The constancy of the centralmore » circular velocity of halos may offer a natural explanation for the observational finding that the galaxy circular velocity is an excellent predictor of various galaxy properties. Our results also indicate that we can expect a significant number of galaxies with high circular velocities already at z = 4 (more than one per 10{sup 6} h {sup -3} Mpc{sup 3} with circular velocities in excess of 450 km s{sup -1}, and more than one per 10{sup 4.5} h {sup -3} Mpc{sup 3} with circular velocities in excess of 350 km s{sup -1}). Finally, adding baryonic mass and using a simple model for halo adiabatic contraction, we find remarkable agreement with the velocity-dispersion functions inferred observationally by Bezanson et al. up to z Almost-Equal-To 1 and down to about 220 km s{sup -1}.« less

  13. The Segue K giant survey. II. A catalog of distance determinations for the Segue K giants in the galactic halo

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xue, Xiang-Xiang; Rix, Hans-Walter; Ma, Zhibo

    2014-04-01

    We present an online catalog of distance determinations for 6036 K giants, most of which are members of the Milky Way's stellar halo. Their medium-resolution spectra from the Sloan Digital Sky Survey/Sloan Extension for Galactic Understanding and Exploration are used to derive metallicities and rough gravity estimates, along with radial velocities. Distance moduli are derived from a comparison of each star's apparent magnitude with the absolute magnitude of empirically calibrated color-luminosity fiducials, at the observed (g – r){sub 0} color and spectroscopic [Fe/H]. We employ a probabilistic approach that makes it straightforward to properly propagate the errors in metallicities, magnitudes,more » and colors into distance uncertainties. We also fold in prior information about the giant-branch luminosity function and the different metallicity distributions of the SEGUE K-giant targeting sub-categories. We show that the metallicity prior plays a small role in the distance estimates, but that neglecting the luminosity prior could lead to a systematic distance modulus bias of up to 0.25 mag, compared to the case of using the luminosity prior. We find a median distance precision of 16%, with distance estimates most precise for the least metal-poor stars near the tip of the red giant branch. The precision and accuracy of our distance estimates are validated with observations of globular and open clusters. The stars in our catalog are up to 125 kpc from the Galactic center, with 283 stars beyond 50 kpc, forming the largest available spectroscopic sample of distant tracers in the Galactic halo.« less

  14. Populating dark matter haloes with galaxies: comparing the 2dFGRS with mock galaxy redshift surveys

    NASA Astrophysics Data System (ADS)

    Yang, Xiaohu; Mo, H. J.; Jing, Y. P.; van den Bosch, Frank C.; Chu, YaoQuan

    2004-06-01

    In two recent papers, we developed a powerful technique to link the distribution of galaxies to that of dark matter haloes by considering halo occupation numbers as a function of galaxy luminosity and type. In this paper we use these distribution functions to populate dark matter haloes in high-resolution N-body simulations of the standard ΛCDM cosmology with Ωm= 0.3, ΩΛ= 0.7 and σ8= 0.9. Stacking simulation boxes of 100 h-1 Mpc and 300 h-1 Mpc with 5123 particles each we construct mock galaxy redshift surveys out to a redshift of z= 0.2 with a numerical resolution that guarantees completeness down to 0.01L*. We use these mock surveys to investigate various clustering statistics. The predicted two-dimensional correlation function ξ(rp, π) reveals clear signatures of redshift space distortions. The projected correlation functions for galaxies with different luminosities and types, derived from ξ(rp, π), match the observations well on scales larger than ~3 h-1 Mpc. On smaller scales, however, the model overpredicts the clustering power by about a factor two. Modelling the `finger-of-God' effect on small scales reveals that the standard ΛCDM model predicts pairwise velocity dispersions (PVD) that are ~400 km s-1 too high at projected pair separations of ~1 h-1 Mpc. A strong velocity bias in massive haloes, with bvel≡σgal/σdm~ 0.6 (where σgal and σdm are the velocity dispersions of galaxies and dark matter particles, respectively) can reduce the predicted PVD to the observed level, but does not help to resolve the overprediction of clustering power on small scales. Consistent results can be obtained within the standard ΛCDM model only when the average mass-to-light ratio of clusters is of the order of 1000 (M/L)solar in the B-band. Alternatively, as we show by a simple approximation, a ΛCDM model with σ8~= 0.75 may also reproduce the observational results. We discuss our results in light of the recent WMAP results and the constraints on σ8 obtained

  15. Moving Groups in the Milky Way Halo and Disk Induced by the Bar and Spiral Arms

    NASA Astrophysics Data System (ADS)

    Schuster, William John

    2015-08-01

    In a previous study (Moreno et al. 2015), the use of a detailed Milky Way potential (observationally and dynamically constrained) has shown that the Galactic bar is able to efficiently concentrate stars of the stellar halo and disk into several main resonances. With the tools introduced here, the Galactic bar is shown to produce significant phase-space structure attracting stars to several main resonances. This new study is dedicated to the study of known groups of the Galactic halo and disk, and their relation to these resonances. Stars belonging to some known halo and disk moving groups have settled down along these bar resonant families, showing, in some cases, a likely Galactic secular origin. In general, the 2D resonant orbits of the disk produced by the bar, seem to dominate at large scale-heights (several kiloparsecs) into the Galactic halo. In particular, provisionally six of the members of the Kapteyn halo moving group seem to be associated with one of these resonances, and also the Groombridge 1830 (Eggen 1996a; Eggen & Sandage 1959) and especially the newer halo moving groups G21-22 and G18-39 (Silva et al. 2012) show some correlation with these resonances suggesting possible secular origins, while the halo moving group Ross 451 (Eggen 1996b) does not show any such correlation, indicating a more probable cosmological (non-secular) ancestry. All Galactic disk moving groups (such as Arcturus, Hercules, Castor, IC 2391, Hyades, Pleiades, and Ursa Major) show considerable association with these resonances.

  16. Formation and Maintenance of Galactic Warps in Triaxial Halos

    NASA Astrophysics Data System (ADS)

    Jeon, M. W.; Kim, S. S.; Ann, H. B.

    2008-10-01

    We investigate the evolution of the self-gravitating disk in a fixed axisymmetric halo with a torus of late cosmic infall that is tilted relative to the initial disk. This is an extension to the study by Shen & Sellwood (2006). We find that the magnitude of the warp is suppressed by a factor of ˜ 2 when the halo is moderately oblate while the magnitude of the warp periodically oscillates when the halo is moderately prolate.

  17. The Linear Bias in the Zeldovich Approximation and a Relation between the Number Density and the Linear Bias of Dark Halos

    NASA Astrophysics Data System (ADS)

    Fan, Zuhui

    2000-01-01

    The linear bias of the dark halos from a model under the Zeldovich approximation is derived and compared with the fitting formula of simulation results. While qualitatively similar to the Press-Schechter formula, this model gives a better description for the linear bias around the turnaround point. This advantage, however, may be compromised by the large uncertainty of the actual behavior of the linear bias near the turnaround point. For a broad class of structure formation models in the cold dark matter framework, a general relation exists between the number density and the linear bias of dark halos. This relation can be readily tested by numerical simulations. Thus, instead of laboriously checking these models one by one, numerical simulation studies can falsify a whole category of models. The general validity of this relation is important in identifying key physical processes responsible for the large-scale structure formation in the universe.

  18. Duration of the Early Galactic Formation Epoch: HST Photometry for Red-Horizontal Branch Clusters in the Outer Halo

    NASA Astrophysics Data System (ADS)

    Hesser, J. E.; Stetson, P. B.; McClure, R. D.; van den Bergh, S.; Bolte, M.; Harris, W. E.; van den Berg, D. A.; Bell, R. A.; Fahlman, G. G.; Richer, H. B.; Bond, H. E.

    1997-12-01

    Last year we presented evidence from HST photometry of the low-metallicity cluster NGC 2419 (M_V = -9.5, R_⊙ ~ 90 kpc, [Fe/H] = -2.2) that globular cluster formation began at essentially the same time throughout a region of the Galactic halo now almost 200 kpc in diameter (Harris et al. 1997 AJ 114, 1030). We now turn to the time spread of halo formation, with the ultimate aim of addressing the relative roles of mergers over the first 4 or more Gyrs (Searle & Zinn 1978, ApJ, 225, 357; Lee, Demarque & Zinn 1994 ApJ, 423, 248) versus models favoring a rapid collapse (Eggen, Lynden-Bell & Sandage 1962, ApJ, 236, 748; Stetson, VandenBerg & Bolte 1996, PASP, 108, 560), or some combination of those and other processes. We provide the first reliable measurements from the giant branch through the main-sequence turnoffs of red-horizontal-branch clusters in the outer halo, which are frequently postulated to be younger than most other globular clusters. From WFPC2 F555W (`V') and F814W (`I') photometry for Pal 3 (M_V = -5.2, R_⊙ ~ 87 kpc), Pal 4 (M_V = -5.8, R_⊙ ~ 98 kpc), and Eridanus (M_V = -4.8, R_⊙ ~ 78 kpc), all with [Fe/H] ~ -1.5, we estimate their relative ages by making differential comparisons among them and with respect to inner-halo objects of, presumably, comparable chemical compositions. It seems likely at this stage of our analysis that (a) the three clusters are the same age to our measurement precision of ~ 1 Gyr, and, (b) the CMDs of all three outer halo clusters differ from those of M 3 and M 5 (our template clusters of similar metallicity), in the sense that the outer halo clusters are younger by ~ 3 Gyr, or they are ~ 0.5 dex more metal-rich than currently thought. Large uncertainties in chemical compositions (He, [alpha /Fe], [CNO/Fe]) for outer halo and template clusters alike mask the true interpretation.

  19. On planetary nebulae as sources of carbon dust: Infrared emission from planetary nebulae of the galactic halo

    NASA Technical Reports Server (NTRS)

    Dinerstein, Harriet L.; Lester, Daniel F.

    1990-01-01

    Planetary nebulae of the galactic disk are generally seen to emit a thermal continuum due to dust grains heated by stellar and nebular photons. This continuum typically peaks between 25 and 60 micron m, so that the total power emitted by the dust is sampled well by the broad-band measurements made by IRAS. Researchers examine here the characteristics of the infrared emission from the four planetary nebulae which are believed on the basis of their low overall metallicities to belong to the halo population. These nebulae are of particular interest because they are the most metal-poor ionized nebulae known in our Galaxy, and offer the opportunity to probe possible dependences of the dust properties on nebular composition. Researchers present fluxes extracted from co-addition of the IRAS data, as well as ground-based near infrared measurements. Each of the four halo objects, including the planetary nebula in the globular cluster M15, is detected in at least one infrared band. Researchers compare the estimated infrared excesses of these nebulae (IRE, the ratio of measured infrared power to the power available in the form of resonantly-trapped Lyman alpha photons) to those of disk planetary nebulae with similar densities but more normal abundances. Three of the halo planetaries have IRE values similar to those of the disk nebulae, despite the fact that their Fe- and Si-peak gas phase abundances are factors of 10 to 100 lower. However, these halo nebulae have normal or elevated C/H ratios, due to nuclear processing and mixing in their red giant progenitors. Unlike the other halo planetaries, DDDM1 is deficient in carbon as well as in the other light metals. This nebula has a substantially lower IRE than the other halo planetaries, and may be truly dust efficient. Researchers suggest that the deficiency is due to a lack of the raw material for producing carbon-based grains, and that the main bulk constituent of the dust in these planetary nebulae is carbon.

  20. Optical Searches for Baryonic Dark Matter

    NASA Astrophysics Data System (ADS)

    Graff, David Steven

    1997-08-01

    microlensing results. I show that the minimum age of the white dwarf population depends upon assumptions regarding the initial mass function, atmospheric composition, and their total density. When I compare various theoretical white dwarf luminosity functions in which I vary these three parameters with the non detections of Liebert et al. and Flynn et al., I conclude that if white dwarfs constitute a significant portion of the halo then (I) the Universe must be 11 Gyr old and (II) they must have helium dominated atmospheres. Thus, white dwarfs could be the MACHOs and could make a significant contribution to galactic dark matter.

  1. Galaxy-halo alignments in the Horizon-AGN cosmological hydrodynamical simulation

    NASA Astrophysics Data System (ADS)

    Chisari, N. E.; Koukoufilippas, N.; Jindal, A.; Peirani, S.; Beckmann, R. S.; Codis, S.; Devriendt, J.; Miller, L.; Dubois, Y.; Laigle, C.; Slyz, A.; Pichon, C.

    2017-11-01

    Intrinsic alignments of galaxies are a significant astrophysical systematic affecting cosmological constraints from weak gravitational lensing. Obtaining numerical predictions from hydrodynamical simulations of expected survey volumes is expensive, and a cheaper alternative relies on populating large dark matter-only simulations with accurate models of alignments calibrated on smaller hydrodynamical runs. This requires connecting the shapes and orientations of galaxies to those of dark matter haloes and to the large-scale structure. In this paper, we characterize galaxy-halo alignments in the Horizon-AGN cosmological hydrodynamical simulation. We compare the shapes and orientations of galaxies in the redshift range of 0 < z < 3 to those of their embedding dark matter haloes, and to the matching haloes of a twin dark-matter only run with identical initial conditions. We find that galaxy ellipticities, in general, cannot be predicted directly from halo ellipticities. The mean misalignment angle between the minor axis of a galaxy and its embedding halo is a function of halo mass, with residuals arising from the dependence of alignment on galaxy type, but not on environment. Haloes are much more strongly aligned among themselves than galaxies, and they decrease their alignment towards low redshift. Galaxy alignments compete with this effect, as galaxies tend to increase their alignment with haloes towards low redshift. We discuss the implications of these results for current halo models of intrinsic alignments and suggest several avenues for improvement.

  2. Galaxy halo formation in the absence of violent relaxation and a universal density profile of the halo center

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baushev, A. N., E-mail: baushev@gmail.com; Institut für Physik und Astronomie, Universität Potsdam, D-14476 Potsdam-Golm

    2014-05-01

    While N-body simulations testify to a cuspy profile of the central region of dark matter halos, observations favor a shallow, cored density profile of the central region of at least some spiral galaxies and dwarf spheroidals. We show that a central profile, very close to the observed one, inevitably forms in the center of dark matter halos if we make a supposition about a moderate energy relaxation of the system during the halo formation. If we assume the energy exchange between dark matter particles during the halo collapse is not too intensive, the profile is universal: it depends almost notmore » at all on the properties of the initial perturbation and is very akin, but not identical, to the Einasto profile with a small Einasto index n ∼ 0.5. We estimate the size of the 'central core' of the distribution, i.e., the extent of the very central region with a respectively gentle profile, and show that the cusp formation is unlikely, even if the dark matter is cold. The obtained profile is in good agreement with observational data for at least some types of galaxies but clearly disagrees with N-body simulations.« less

  3. Search for Dark Matter Annihilation in Galaxy Groups

    NASA Astrophysics Data System (ADS)

    Lisanti, Mariangela; Mishra-Sharma, Siddharth; Rodd, Nicholas L.; Safdi, Benjamin R.

    2018-03-01

    We use 413 weeks of publicly available Fermi Pass 8 gamma-ray data combined with recently developed galaxy group catalogs to search for evidence of dark matter annihilation in extragalactic halos. In our study, we use luminosity-based mass estimates and mass-to-concentration relations to infer the J factors and associated uncertainties for hundreds of galaxy groups within a redshift range z ≲0.03 . We employ a conservative substructure boost factor model, which only enhances the sensitivity by an O (1 ) factor. No significant evidence for dark matter annihilation is found, and we exclude thermal relic cross sections for dark matter masses below ˜30 GeV to 95% confidence in the b b ¯ annihilation channel. These bounds are comparable to those from Milky Way dwarf spheroidal satellite galaxies. The results of our analysis increase the tension but do not rule out the dark matter interpretation of the Galactic Center excess. We provide a catalog of the galaxy groups used in this study and their inferred properties, which can be broadly applied to searches for extragalactic dark matter.

  4. The DarkSide veto: muon and neutron detectors

    NASA Astrophysics Data System (ADS)

    Pagani, L.; Agnes, P.; Alexander, T.; Alton, A.; Arisaka, K.; O. Back, H.; Baldin, B.; Biery, K.; Bonfini, G.; Bossa, M.; Brigatti, A.; Brodsky, J.; Budano, F.; Cadonati, L.; Calaprice, F.; Canci, N.; Candela, A.; Cao, H.; Cariello, M.; Cavalcante, P.; Chavarria, A.; Chepurnov, A.; Cocco, A. G.; D'Angelo, D.; D'Incecco, M.; Davini, S.; De Deo, M.; Derbin, A.; Devoto, A.; Di Eusanio, F.; Di Pietro, G.; Edkins, E.; Empl, A.; Fan, A.; Fiorillo, G.; Fomenko, K.; Forster, G.; Franco, D.; Gabriele, F.; Galbiati, C.; Goretti, A.; Grandi, L.; Gromov, M.; Y. Guan, M.; Guardincerri, Y.; Hackett, B.; Herner, K.; Humble, P.; Hungerford, E. V.; Ianni, Al.; Ianni, An.; Jollet, C.; Keeter, K.; Kendziora, C.; Kidner, S.; Kobychev, V.; Koh, G.; Korablev, D.; Korga, G.; Kurlej, A.; X. Li, P.; Lombardi, P.; Love, C.; Ludhova, L.; Luitz, S.; Ma, Y. Q.; Machulin, I.; Mandarano, A.; Mari, S.; Maricic, J.; Marini, L.; Martoff, C. J.; Meregaglia, A.; Meroni, E.; Meyers, P. D.; Milincic, R.; Montanari, D.; Montuschi, M.; Monzani, M. E.; Mosteiro, P.; Mount, B.; Muratova, V.; Musico, P.; Nelson, A.; Odrowski, S.; Okounkova, M.; Orsini, M.; Ortica, F.; Pallavicini, M.; Pantic, E.; Papp, L.; Parmeggiano, S.; Parsells, R.; Pelczar, K.; Pelliccia, N.; Perasso, S.; Pocar, A.; Pordes, S.; Pugachev, D.; Qian, H.; Randle, K.; Ranucci, G.; Razeto, A.; Reinhold, B.; Renshaw, A.; Romani, A.; Rossi, B.; Rossi, N.; D. Rountree, S.; Sablone, D.; Saggese, P.; Saldanha, R.; Sands, W.; Sangiorgio, S.; Segreto, E.; Semenov, D.; Shields, E.; Skorokhvatov, M.; Smirnov, O.; Sotnikov, A.; Stanford, C.; Suvorov, Y.; Tartaglia, R.; Tatarowicz, J.; Testera, G.; Tonazzo, A.; Unzhakov, E.; Vogelaar, R. B.; Wada, M.; Walker, S.; Wang, H.; Wang, Y.; Watson, A.; Westerdale, S.; Wojcik, M.; Wright, A.; Xiang, X.; Xu, J.; G. Yang, C.; Yoo, J.; Zavatarelli, S.; Zec, A.; Zhu, C.; Zuzel, G.; DarkSide Collaboration

    2015-01-01

    The existence of dark matter is known because of its gravitational effects, and although its nature remains undisclosed, there is a growing indication that the galactic halo could be permeated by weakly interactive massive particles (WIMPs) with mass of the order of 100GeV. Direct observation of WIMP-nuclear collisions in a laboratory detector plays a key role in dark matter searches. However, it also poses significant challenges, as the expected signals are low in energy and very rare. DarkSide is a project for direct observation of WIMPs in a liquid argon time-projection chamber specifically designed to overtake the difficulties of these challenges. A limiting background for all dark matter detectors is the production in their active volumes of nuclear recoils from the elastic scattering of radiogenic and cosmogenic neutrons. To rule out this background, DarkSide-50 is surrounded by a water tank serving as a Cherenkov detector for muons, and a boron-doped liquid scintillator acting as an active, high-efficiency neutron detector.

  5. Search for Dark Matter Annihilation in Galaxy Groups.

    PubMed

    Lisanti, Mariangela; Mishra-Sharma, Siddharth; Rodd, Nicholas L; Safdi, Benjamin R

    2018-03-09

    We use 413 weeks of publicly available Fermi Pass 8 gamma-ray data combined with recently developed galaxy group catalogs to search for evidence of dark matter annihilation in extragalactic halos. In our study, we use luminosity-based mass estimates and mass-to-concentration relations to infer the J factors and associated uncertainties for hundreds of galaxy groups within a redshift range z≲0.03. We employ a conservative substructure boost factor model, which only enhances the sensitivity by an O(1) factor. No significant evidence for dark matter annihilation is found, and we exclude thermal relic cross sections for dark matter masses below ∼30  GeV to 95% confidence in the bb[over ¯] annihilation channel. These bounds are comparable to those from Milky Way dwarf spheroidal satellite galaxies. The results of our analysis increase the tension but do not rule out the dark matter interpretation of the Galactic Center excess. We provide a catalog of the galaxy groups used in this study and their inferred properties, which can be broadly applied to searches for extragalactic dark matter.

  6. Globular cluster systems - Comparative evolution of Galactic halos

    NASA Astrophysics Data System (ADS)

    Harris, William E.

    Space distributions, metallicity/age distributions, and kinematics are considered for the Milky Way halo system. Comparisons are made with other systems, and time scales for dynamical evolution are considered. It is noted that the globular cluster subsystems of halos resemble each other more closely than their parent galaxies do; this forms a reasonable basis for supposing that they represent a kind of underlying unity in the protogalaxy formation process.

  7. Nearby stars of the Galactic disk and halo. III.

    NASA Astrophysics Data System (ADS)

    Fuhrmann, K.

    2004-01-01

    High-resolution spectroscopic observations of about 150 nearby stars or star systems are presented and discussed. The study of these and another 100 objects of the previous papers of this series implies that the Galaxy became reality 13 or 14 Gyr ago with the implementation of a massive, rotationally-supported population of thick-disk stars. The very high star formation rate in that phase gave rise to a rapid metal enrichment and an expulsion of gas in supernovae-driven Galactic winds, but was followed by a star formation gap for no less than three billion years at the Sun's galactocentric distance. In a second phase, then, the thin disk - our ``familiar Milky Way'' - came on stage. Nowadays it traces the bright side of the Galaxy, but it is also embedded in a huge coffin of dead thick-disk stars that account for a large amount of baryonic dark matter. As opposed to this, cold-dark-matter-dominated cosmologies that suggest a more gradual hierarchical buildup through mergers of minor structures, though popular, are a poor description for the Milky Way Galaxy - and by inference many other spirals as well - if, as the sample implies, the fossil records of its long-lived stars do not stick to this paradigm. Apart from this general picture that emerges with reference to the entire sample stars, a good deal of the present work is however also concerned with detailed discussions of many individual objects. Among the most interesting we mention the blue straggler or merger candidates HD 165401 and HD 137763/HD 137778, the likely accretion of a giant planet or brown dwarf on 59 Vir in its recent history, and HD 63433 that proves to be a young solar analog at \\tau˜200 Myr. Likewise, the secondary to HR 4867, formerly suspected non-single from the Hipparcos astrometry, is directly detectable in the high-resolution spectroscopic tracings, whereas the visual binary \\chi Cet is instead at least triple, and presumably even quadruple. With respect to the nearby young stars a

  8. Minimizing the stochasticity of halos in large-scale structure surveys

    NASA Astrophysics Data System (ADS)

    Hamaus, Nico; Seljak, Uroš; Desjacques, Vincent; Smith, Robert E.; Baldauf, Tobias

    2010-08-01

    In recent work (Seljak, Hamaus, and Desjacques 2009) it was found that weighting central halo galaxies by halo mass can significantly suppress their stochasticity relative to the dark matter, well below the Poisson model expectation. This is useful for constraining relations between galaxies and the dark matter, such as the galaxy bias, especially in situations where sampling variance errors can be eliminated. In this paper we extend this study with the goal of finding the optimal mass-dependent halo weighting. We use N-body simulations to perform a general analysis of halo stochasticity and its dependence on halo mass. We investigate the stochasticity matrix, defined as Cij≡⟨(δi-biδm)(δj-bjδm)⟩, where δm is the dark matter overdensity in Fourier space, δi the halo overdensity of the i-th halo mass bin, and bi the corresponding halo bias. In contrast to the Poisson model predictions we detect nonvanishing correlations between different mass bins. We also find the diagonal terms to be sub-Poissonian for the highest-mass halos. The diagonalization of this matrix results in one large and one low eigenvalue, with the remaining eigenvalues close to the Poisson prediction 1/n¯, where n¯ is the mean halo number density. The eigenmode with the lowest eigenvalue contains most of the information and the corresponding eigenvector provides an optimal weighting function to minimize the stochasticity between halos and dark matter. We find this optimal weighting function to match linear mass weighting at high masses, while at the low-mass end the weights approach a constant whose value depends on the low-mass cut in the halo mass function. This weighting further suppresses the stochasticity as compared to the previously explored mass weighting. Finally, we employ the halo model to derive the stochasticity matrix and the scale-dependent bias from an analytical perspective. It is remarkably successful in reproducing our numerical results and predicts that the

  9. Galactic cluster winds in presence of a dark energy

    NASA Astrophysics Data System (ADS)

    Bisnovatyi-Kogan, G. S.; Merafina, M.

    2013-10-01

    We obtain a solution for the hydrodynamic outflow of the polytropic gas from the gravitating centre, in the presence of the uniform dark energy (DE). The antigravity of DE is enlightening the outflow and makes the outflow possible at smaller initial temperature, at the same density. The main property of the wind in the presence of DE is its unlimited acceleration after passing the critical point. In application of this solution to the winds from galaxy clusters, we suggest that collision of the strongly accelerated wind with another galaxy cluster, or with another galactic cluster wind, could lead to the formation of a highest energy cosmic rays.

  10. A Wide-Field Photometric Survey for Extratidal Tails Around Five Metal-Poor Globular Clusters in the Galactic Halo

    NASA Astrophysics Data System (ADS)

    Chun, Sang-Hyun; Kim, Jae-Woo; Sohn, Sangmo T.; Park, Jang-Hyun; Han, Wonyong; Kim, Ho-Il; Lee, Young-Wook; Lee, Myung Gyoon; Lee, Sang-Gak; Sohn, Young-Jong

    2010-02-01

    Wide-field deep g'r'i' images obtained with the Megacam of the Canada-France-Hawaii Telescope are used to investigate the spatial configuration of stars around five metal-poor globular clusters M15, M30, M53, NGC 5053, and NGC 5466, in a field-of-view ~3°. Applying a mask filtering algorithm to the color-magnitude diagrams of the observed stars, we sorted cluster's member star candidates that are used to examine the characteristics of the spatial stellar distribution surrounding the target clusters. The smoothed surface density maps and the overlaid isodensity contours indicate that all of the five metal-poor globular clusters exhibit strong evidence of extratidal overdensity features over their tidal radii, in the form of extended tidal tails around the clusters. The orientations of the observed extratidal features show signatures of tidal tails tracing the clusters' orbits, inferred from their proper motions, and effects of dynamical interactions with the Galaxy. Our findings include detections of a tidal bridge-like feature and an envelope structure around the pair of globular clusters M53 and NGC 5053. The observed radial surface density profiles of target clusters have a deviation from theoretical King models, for which the profiles show a break at 0.5-0.7rt , extending the overdensity features out to 1.5-2rt . Both radial surface density profiles for different angular sections and azimuthal number density profiles confirm the overdensity features of tidal tails around the five metal-poor globular clusters. Our results add further observational evidence that the observed metal-poor halo globular clusters originate from an accreted satellite system, indicative of the merging scenario of the formation of the Galactic halo. Based on observations carried out at the Canada-France-Hawaii Telescope, operated by the National Research Council of Canada, the Centre National de la Recherche Scientifique de France, and the University of Hawaii. This is part of the

  11. Hidden Sector Dark Matter Models for the Galactic Center Gamma-Ray Excess

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berlin, Asher; Gratia, Pierre; Hooper, Dan

    2014-07-24

    The gamma-ray excess observed from the Galactic Center can be interpreted as dark matter particles annihilating into Standard Model fermions with a cross section near that expected for a thermal relic. Although many particle physics models have been shown to be able to account for this signal, the fact that this particle has not yet been observed in direct detection experiments somewhat restricts the nature of its interactions. One way to suppress the dark matter's elastic scattering cross section with nuclei is to consider models in which the dark matter is part of a hidden sector. In such models, themore » dark matter can annihilate into other hidden sector particles, which then decay into Standard Model fermions through a small degree of mixing with the photon, Z, or Higgs bosons. After discussing the gamma-ray signal from hidden sector dark matter in general terms, we consider two concrete realizations: a hidden photon model in which the dark matter annihilates into a pair of vector gauge bosons that decay through kinetic mixing with the photon, and a scenario within the generalized NMSSM in which the dark matter is a singlino-like neutralino that annihilates into a pair of singlet Higgs bosons, which decay through their mixing with the Higgs bosons of the MSSM.« less

  12. Dependence of GAMA galaxy halo masses on the cosmic web environment from 100 deg2 of KiDS weak lensing data

    NASA Astrophysics Data System (ADS)

    Brouwer, Margot M.; Cacciato, Marcello; Dvornik, Andrej; Eardley, Lizzie; Heymans, Catherine; Hoekstra, Henk; Kuijken, Konrad; McNaught-Roberts, Tamsyn; Sifón, Cristóbal; Viola, Massimo; Alpaslan, Mehmet; Bilicki, Maciej; Bland-Hawthorn, Joss; Brough, Sarah; Choi, Ami; Driver, Simon P.; Erben, Thomas; Grado, Aniello; Hildebrandt, Hendrik; Holwerda, Benne W.; Hopkins, Andrew M.; de Jong, Jelte T. A.; Liske, Jochen; McFarland, John; Nakajima, Reiko; Napolitano, Nicola R.; Norberg, Peder; Peacock, John A.; Radovich, Mario; Robotham, Aaron S. G.; Schneider, Peter; Sikkema, Gert; van Uitert, Edo; Verdoes Kleijn, Gijs; Valentijn, Edwin A.

    2016-11-01

    Galaxies and their dark matter haloes are part of a complex network of mass structures, collectively called the cosmic web. Using the tidal tensor prescription these structures can be classified into four cosmic environments: voids, sheets, filaments and knots. As the cosmic web may influence the formation and evolution of dark matter haloes and the galaxies they host, we aim to study the effect of these cosmic environments on the average mass of galactic haloes. To this end we measure the galaxy-galaxy lensing profile of 91 195 galaxies, within 0.039 < z < 0.263, from the spectroscopic Galaxy And Mass Assembly survey, using {˜ }100 ° ^2 of overlapping data from the Kilo-Degree Survey. In each of the four cosmic environments we model the contributions from group centrals, satellites and neighbouring groups to the stacked galaxy-galaxy lensing profiles. After correcting the lens samples for differences in the stellar mass distribution, we find no dependence of the average halo mass of central galaxies on their cosmic environment. We do find a significant increase in the average contribution of neighbouring groups to the lensing profile in increasingly dense cosmic environments. We show, however, that the observed effect can be entirely attributed to the galaxy density at much smaller scales (within 4 h-1 Mpc), which is correlated with the density of the cosmic environments. Within our current uncertainties we find no direct dependence of galaxy halo mass on their cosmic environment.

  13. The role of neutron star mergers in the chemical evolution of the Galactic halo

    NASA Astrophysics Data System (ADS)

    Cescutti, G.; Romano, D.; Matteucci, F.; Chiappini, C.; Hirschi, R.

    2015-05-01

    Context. The dominant astrophysical production site of the r-process elements has not yet been unambiguously identified. The suggested main r-process sites are core-collapse supernovae and merging neutron stars. Aims: We explore the problem of the production site of Eu. We also use the information present in the observed spread in the Eu abundances in the early Galaxy, and not only its average trend. Moreover, we extend our investigations to other heavy elements (Ba, Sr, Rb, Zr) to provide additional constraints on our results. Methods: We adopt a stochastic chemical evolution model that takes inhomogeneous mixing into account. The adopted yields of Eu from merging neutron stars and from core-collapse supernovae are those that are able to explain the average [Eu/Fe]-[Fe/H] trend observed for solar neighbourhood stars, the solar abundance of Eu, and the present-day abundance gradient of Eu along the Galactic disc in the framework of a well-tested homogeneous model for the chemical evolution of the Milky Way. Rb, Sr, Zr, and Ba are produced by both the s- and r-processes. The r-process yields were obtained by scaling the Eu yields described above according to the abundance ratios observed in r-process rich stars. The s-process contribution by spinstars is the same as in our previous papers. Results: Neutron star binaries that merge in less than 10 Myr or neutron star mergers combined with a source of r-process generated by massive stars can explain the spread of [Eu/Fe] in the Galactic halo. The combination of r-process production by neutron star mergers and s-process production by spinstars is able to reproduce the available observational data for Sr, Zr, and Ba. We also show the first predictions for Rb in the Galactic halo. Conclusions: We confirm previous results that either neutron star mergers on a very short timescale or both neutron star mergers and at least a fraction of Type II supernovae have contributed to the synthesis of Eu in the Galaxy. The r

  14. Halo abundance matching: accuracy and conditions for numerical convergence

    NASA Astrophysics Data System (ADS)

    Klypin, Anatoly; Prada, Francisco; Yepes, Gustavo; Heß, Steffen; Gottlöber, Stefan

    2015-03-01

    Accurate predictions of the abundance and clustering of dark matter haloes play a key role in testing the standard cosmological model. Here, we investigate the accuracy of one of the leading methods of connecting the simulated dark matter haloes with observed galaxies- the halo abundance matching (HAM) technique. We show how to choose the optimal values of the mass and force resolution in large volume N-body simulations so that they provide accurate estimates for correlation functions and circular velocities for haloes and their subhaloes - crucial ingredients of the HAM method. At the 10 per cent accuracy, results converge for ˜50 particles for haloes and ˜150 particles for progenitors of subhaloes. In order to achieve this level of accuracy a number of conditions should be satisfied. The force resolution for the smallest resolved (sub)haloes should be in the range (0.1-0.3)rs, where rs is the scale radius of (sub)haloes. The number of particles for progenitors of subhaloes should be ˜150. We also demonstrate that the two-body scattering plays a minor role for the accuracy of N-body simulations thanks to the relatively small number of crossing-times of dark matter in haloes, and the limited force resolution of cosmological simulations.

  15. Comparison between UBV- and RGU-photometrically determined density functions for the photometric disk and halo and between the corresponding mean isodensity behaviour in the halo close to the galactic north-pole (SA 57)

    NASA Astrophysics Data System (ADS)

    Fenkart, R.; Esin-Yilmaz, F.

    1985-10-01

    SA 57, RG U-photometrically treated by Fenkart (1967), is the third field of the Basle Halo Program (BHP) we investigate by applying the RG U-methods for the separation of the (photometric) populations disk and halo and for the determination of their space densities analogously in UBV in order to compare the results independently obtained in both systems. Figures 1 and 2 give the V- and G-fractioned two-colour diagrams of the same 1179 stars treated in UBV and RG U, respectively. On their basis, the logarithmic space density functions of both populations have been calculated for the overall (3m to 8m ) and for the 1m -intervals absolute magnitudes M(V) and M(G). They are tabulated in tables II and III and plotted in figures 3 and 4, respectively (a : disk, b : halo). The overall density functions for the disk and for the halo are compared between the systems in figures Sa and b, respectively. The mean misidentification-rate per system (MMRS) is 7.3 %, lying between the ones for SA 54(9.2 %) and for SA 82(4.5 %) (Fenkart and Esin-Yilmaz, 1983 and 1984, respectively) and close to the mean for all three investigations (7.0 ± 2.4 %) The direction to SA 57 lies almost in the middle of the sector of the northern galactic meridian which is limited by the directions to SA 54 and to SA 82. Our results permit, together with the ones obtained in these limiting directions, the comparison of the mean isodensity-patterns obtained in both systems within this sector. They are completely parallel and blend in perfectly with the mean (RG U-) isodensity-pattern of the - partly overlapping - sector between SA 51 and SA 57 obtained by Fenkart and Karaall (1984) (Fig. 6). The appendices describe shortly the involved methods (A) and refer to related work by other authors in the direction to the galactic north-pole (B).

  16. Dark energy and key physical parameters of clusters of galaxies

    NASA Astrophysics Data System (ADS)

    Bisnovatyi-Kogan, G. S.; Chernin, A. D.

    2012-04-01

    We study physics of clusters of galaxies embedded in the cosmic dark energy background. Under the assumption that dark energy is described by the cosmological constant, we show that the dynamical effects of dark energy are strong in clusters like the Virgo cluster. Specifically, the key physical parameters of the dark mater halos in clusters are determined by dark energy: (1) the halo cut-off radius is practically, if not exactly, equal to the zero-gravity radius at which the dark matter gravity is balanced by the dark energy antigravity; (2) the halo averaged density is equal to two densities of dark energy; (3) the halo edge (cut-off) density is the dark energy density with a numerical factor of the unity order slightly depending on the halo profile. The cluster gravitational potential well in which the particles of the dark halo (as well as galaxies and intracluster plasma) move is strongly affected by dark energy: the maximum of the potential is located at the zero-gravity radius of the cluster.

  17. Unveiling the stellar halo with TGAS

    NASA Astrophysics Data System (ADS)

    Veljanoski, Jovan; Posti, L.; Helmi, A.; Breddels, M. A.

    2018-04-01

    The detailed study of the Galactic stellar halo may hold the key to unlocking the assembly history of the Milky Way. Here, we present a machine learning model for selecting metal poor stars from the TGAS catalogue using 5 dimensional phase-space information, coupled with optical and near-IR photometry. We characterise the degree of substructure in our halo sample in the Solar neighbourhood by measuring the velocity correlation function.

  18. ASTROPHYSICS. Exclusion of leptophilic dark matter models using XENON100 electronic recoil data.

    PubMed

    2015-08-21

    Laboratory experiments searching for galactic dark matter particles scattering off nuclei have so far not been able to establish a discovery. We use data from the XENON100 experiment to search for dark matter interacting with electrons. With no evidence for a signal above the low background of our experiment, we exclude a variety of representative dark matter models that would induce electronic recoils. For axial-vector couplings to electrons, we exclude cross sections above 6 × 10(-35) cm(2) for particle masses of m(χ) = 2 GeV/c(2). Independent of the dark matter halo, we exclude leptophilic models as an explanation for the long-standing DAMA/LIBRA signal, such as couplings to electrons through axial-vector interactions at a 4.4σ confidence level, mirror dark matter at 3.6σ, and luminous dark matter at 4.6σ. Copyright © 2015, American Association for the Advancement of Science.

  19. Wandering Supermassive Black Holes in Milky-Way-mass Halos

    NASA Astrophysics Data System (ADS)

    Tremmel, Michael; Governato, Fabio; Volonteri, Marta; Pontzen, Andrew; Quinn, Thomas R.

    2018-04-01

    We present a self-consistent prediction from a large-scale cosmological simulation for the population of “wandering” supermassive black holes (SMBHs) of mass greater than 106 M ⊙ on long-lived, kpc-scale orbits within Milky Way (MW)-mass galaxies. We extract a sample of MW-mass halos from the ROMULUS25 cosmological simulation, which is uniquely able to capture the orbital evolution of SMBHs during and following galaxy mergers. We predict that such halos, regardless of recent merger history or morphology, host an average of 5.1 ± 3.3 SMBHs, including their central black hole, within 10 kpc from the galactic center and an average of 12.2 ± 8.4 SMBHs total within their virial radius, not counting those in satellite halos. Wandering SMBHs exist within their host galaxies for several Gyr, often accreted by their host halo in the early Universe. We find, with >4σ significance, that wandering SMBHs are preferentially found outside of galactic disks.

  20. Halo density profiles and baryon physics

    NASA Astrophysics Data System (ADS)

    Del Popolo, A.; Li, Xi-Guo

    2017-08-01

    The radial dependence of the pseudo phase-space density, ρ( r)/ σ 3( r) is studied. We find that the pseudo phase-space density for halos consisting both of dark matter and baryons is approximately a power-law only down to 0.1% of the virial radius while it has a non-power law behavior below the quoted scale, with inner profiles changing with mass. Halos consisting just of dark matter, as the one in dark matter only simulations, are characterized by an approximately power-law behavior. The results argue against universality of the pseudo phase-space density, when the baryons effect are included, and as a consequence argue against universality of density profiles constituted by dark matter and baryons as also discussed in [1].

  1. Testing the conditional mass function of dark matter haloes against numerical N-body simulations

    NASA Astrophysics Data System (ADS)

    Tramonte, D.; Rubiño-Martín, J. A.; Betancort-Rijo, J.; Dalla Vecchia, C.

    2017-05-01

    We compare the predicted conditional mass function (CMF) of dark matter haloes from two theoretical prescriptions against numerical N-body simulations, both in overdense and underdense regions and at different Eulerian scales ranging from 5 to 30 h-1 Mpc. In particular, we consider in detail a locally implemented rescaling of the unconditional mass function (UMF) already discussed in the literature, and also a generalization of the standard rescaling method described in the extended Press-Schechter formalism. First, we test the consistency of these two rescalings by verifying the normalization of the CMF at different scales, and showing that none of the proposed cases provides a normalized CMF. In order to satisfy the normalization condition, we include a modification in the rescaling procedure. After this modification, the resulting CMF generally provides a better description of numerical results. We finally present an analytical fit to the ratio between the CMF and the UMF (also known as the matter-to-halo bias function) in underdense regions, which could be of special interest to speed up the computation of the halo abundance when studying void statistics. In this case, the CMF prescription based on the locally implemented rescaling provides a slightly better description of the numerical results when compared to the standard rescaling.

  2. Geometric compatibility of IceCube TeV-PeV neutrino excess and its galactic dark matter origin

    DOE PAGES

    Bai, Yang; Lu, Ran; Salvado, Jordi

    2016-01-27

    Here, we perform a geometric analysis for the sky map of the IceCube TeV-PeV neutrino excess and test its compatibility with the sky map of decaying dark matter signals in our galaxy. Furthermore, we have found that a galactic decaying dark matter component in general improve the goodness of the fit of our model, although the pure isotropic hypothesis has a better fit than the pure dark matter one. Finally, we also consider several representative decaying dark matter, which can provide a good t to the observed spectrum at IceCube with a dark matter lifetime of around 12 orders ofmore » magnitude longer than the age of the universe.« less

  3. Tests and consequences of disk plus halo models of gamma-ray burst sources

    NASA Technical Reports Server (NTRS)

    Smith, I. A.

    1995-01-01

    The gamma-ray burst observations made by the Burst and Transient Source Experiment (BATSE) and by previous experiments are still consistent with a combined Galactic disk (or Galactic spiral arm) plus extended Galactic halo model. Testable predictions and consequences of the disk plus halo model are discussed here; tests performed on the expanded BATSE database in the future will constrain the allowed model parameters and may eventually rule out the disk plus halo model. Using examples, it is shown that if the halo has an appropriate edge, BATSE will never detect an anisotropic signal from the halo of the Andromeda galaxy. A prediction of the disk plus halo model is that the fraction of the bursts observed to be in the 'disk' population rises as the detector sensitivity improves. A careful reexamination of the numbers of bursts in the two populations for the pre-BATSE databases could rule out this class of models. Similarly, it is predicted that different satellites will observe different relative numbers of bursts in the two classes for any model in which there are two different spatial distribiutions of the sources, or for models in which there is one spatial distribution of the sources that is sampled to different depths for the two classes. An important consequence of the disk plus halo model is that for the birthrate of the halo sources to be small compared to the birthrate of the disk sources, it is necessary for the halo sources to release many orders of magnitude more energy over their bursting lifetime than the disk sources. The halo bursts must also be much more luminous than the disk bursts; if this disk-halo model is correct, it is necessary to explain why the disk sources do not produce halo-type bursts.

  4. Beyond assembly bias: exploring secondary halo biases for cluster-size haloes

    DOE PAGES

    Mao, Yao-Yuan; Zentner, Andrew R.; Wechsler, Risa H.

    2017-12-01

    Secondary halo bias, commonly known as ‘assembly bias’, is the dependence of halo clustering on a halo property other than mass. This prediction of the Λ Cold Dark Matter cosmology is essential to modelling the galaxy distribution to high precision and interpreting clustering measurements. As the name suggests, different manifestations of secondary halo bias have been thought to originate from halo assembly histories. We show conclusively that this is incorrect for cluster-size haloes. We present an up-to-date summary of secondary halo biases of high-mass haloes due to various halo properties including concentration, spin, several proxies of assembly history, and subhalomore » properties. While concentration, spin, and the abundance and radial distribution of subhaloes exhibit significant secondary biases, properties that directly quantify halo assembly history do not. In fact, the entire assembly histories of haloes in pairs are nearly identical to those of isolated haloes. In general, a global correlation between two halo properties does not predict whether or not these two properties exhibit similar secondary biases. For example, assembly history and concentration (or subhalo abundance) are correlated for both paired and isolated haloes, but follow slightly different conditional distributions in these two cases. Lastly, this results in a secondary halo bias due to concentration (or subhalo abundance), despite the lack of assembly bias in the strict sense for cluster-size haloes. Due to this complexity, caution must be exercised in using any one halo property as a proxy to study the secondary bias due to another property.« less

  5. Beyond assembly bias: exploring secondary halo biases for cluster-size haloes

    NASA Astrophysics Data System (ADS)

    Mao, Yao-Yuan; Zentner, Andrew R.; Wechsler, Risa H.

    2018-03-01

    Secondary halo bias, commonly known as `assembly bias', is the dependence of halo clustering on a halo property other than mass. This prediction of the Λ Cold Dark Matter cosmology is essential to modelling the galaxy distribution to high precision and interpreting clustering measurements. As the name suggests, different manifestations of secondary halo bias have been thought to originate from halo assembly histories. We show conclusively that this is incorrect for cluster-size haloes. We present an up-to-date summary of secondary halo biases of high-mass haloes due to various halo properties including concentration, spin, several proxies of assembly history, and subhalo properties. While concentration, spin, and the abundance and radial distribution of subhaloes exhibit significant secondary biases, properties that directly quantify halo assembly history do not. In fact, the entire assembly histories of haloes in pairs are nearly identical to those of isolated haloes. In general, a global correlation between two halo properties does not predict whether or not these two properties exhibit similar secondary biases. For example, assembly history and concentration (or subhalo abundance) are correlated for both paired and isolated haloes, but follow slightly different conditional distributions in these two cases. This results in a secondary halo bias due to concentration (or subhalo abundance), despite the lack of assembly bias in the strict sense for cluster-size haloes. Due to this complexity, caution must be exercised in using any one halo property as a proxy to study the secondary bias due to another property.

  6. Beyond assembly bias: exploring secondary halo biases for cluster-size haloes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mao, Yao-Yuan; Zentner, Andrew R.; Wechsler, Risa H.

    Secondary halo bias, commonly known as ‘assembly bias’, is the dependence of halo clustering on a halo property other than mass. This prediction of the Λ Cold Dark Matter cosmology is essential to modelling the galaxy distribution to high precision and interpreting clustering measurements. As the name suggests, different manifestations of secondary halo bias have been thought to originate from halo assembly histories. We show conclusively that this is incorrect for cluster-size haloes. We present an up-to-date summary of secondary halo biases of high-mass haloes due to various halo properties including concentration, spin, several proxies of assembly history, and subhalomore » properties. While concentration, spin, and the abundance and radial distribution of subhaloes exhibit significant secondary biases, properties that directly quantify halo assembly history do not. In fact, the entire assembly histories of haloes in pairs are nearly identical to those of isolated haloes. In general, a global correlation between two halo properties does not predict whether or not these two properties exhibit similar secondary biases. For example, assembly history and concentration (or subhalo abundance) are correlated for both paired and isolated haloes, but follow slightly different conditional distributions in these two cases. Lastly, this results in a secondary halo bias due to concentration (or subhalo abundance), despite the lack of assembly bias in the strict sense for cluster-size haloes. Due to this complexity, caution must be exercised in using any one halo property as a proxy to study the secondary bias due to another property.« less

  7. The impact of feedback and the hot halo on the rates of gas accretion on to galaxies

    NASA Astrophysics Data System (ADS)

    Correa, Camila A.; Schaye, Joop; van de Voort, Freeke; Duffy, Alan R.; Wyithe, J. Stuart B.

    2018-07-01

    We investigate the physics that drives the gas accretion rates on to galaxies at the centres of dark matter haloes using the EAGLE suite of hydrodynamical cosmological simulations. We find that at redshifts z ≤ 2, the accretion rate on to the galaxy increases with halo mass in the halo mass range 1010-1011.7 M⊙, flattens between the halo masses 1011.7 and 1012.7 M⊙, and increases again for higher mass haloes. However, the galaxy gas accretion does not flatten at intermediate halo masses when active galactic nucleus (AGN) feedback is switched off. To better understand these trends, we develop a physically motivated semi-analytic model of galaxy gas accretion. We show that the flattening is produced by the rate of gas cooling from the hot halo. The ratio of the cooling radius and the virial radius does not decrease continuously with increasing halo mass as generally thought. While it decreases up to ˜1013 M⊙ haloes, it increases for higher halo masses, causing an upturn in the galaxy gas accretion rate. This may indicate that in high-mass haloes, AGN feedback is not sufficiently efficient. When there is no AGN feedback, the density of the hot halo is higher, the ratio of the cooling and virial radii does not decrease as much, and the cooling rate is higher. Changes in the efficiency of stellar feedback can also increase or decrease the accretion rates on to galaxies. The trends can plausibly be explained by the re-accretion of gas ejected by progenitor galaxies and by the suppression of black hole growth, and hence AGN feedback, by stellar feedback.

  8. First Direct-Detection Constraints on eV-Scale Hidden-Photon Dark Matter with DAMIC at SNOLAB.

    PubMed

    Aguilar-Arevalo, A; Amidei, D; Bertou, X; Butner, M; Cancelo, G; Castañeda Vázquez, A; Cervantes Vergara, B A; Chavarria, A E; Chavez, C R; de Mello Neto, J R T; D'Olivo, J C; Estrada, J; Fernandez Moroni, G; Gaïor, R; Guardincerri, Y; Hernández Torres, K P; Izraelevitch, F; Kavner, A; Kilminster, B; Lawson, I; Letessier-Selvon, A; Liao, J; Matalon, A; Mello, V B B; Molina, J; Privitera, P; Ramanathan, K; Sarkis, Y; Schwarz, T; Settimo, M; Sofo Haro, M; Thomas, R; Tiffenberg, J; Tiouchichine, E; Torres Machado, D; Trillaud, F; You, X; Zhou, J

    2017-04-07

    We present direct detection constraints on the absorption of hidden-photon dark matter with particle masses in the range 1.2-30  eV c^{-2} with the DAMIC experiment at SNOLAB. Under the assumption that the local dark matter is entirely constituted of hidden photons, the sensitivity to the kinetic mixing parameter κ is competitive with constraints from solar emission, reaching a minimum value of 2.2×10^{-14} at 17  eV c^{-2}. These results are the most stringent direct detection constraints on hidden-photon dark matter in the galactic halo with masses 3-12  eV c^{-2} and the first demonstration of direct experimental sensitivity to ionization signals <12  eV from dark matter interactions.

  9. An improved catalog of halo wide binary candidates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Allen, Christine; Monroy-Rodríguez, Miguel A., E-mail: chris@astro.unam.mx

    2014-08-01

    We present an improved catalog of halo wide binaries compiled from an extensive literature search. Most of our binaries stem from the common proper motion binary catalogs by Allen et al. and Chanamé and Gould, but we have also included binaries from the lists of Ryan and Zapatero-Osorio and Martín. All binaries were carefully checked and their distances and systemic radial velocities are included when available. Probable membership to the halo population was tested by means of reduced proper motion diagrams for 251 candidate halo binaries. After eliminating obvious disk binaries, we ended up with 211 probable halo binaries, 150more » of which have radial velocities available. We compute galactic orbits for these 150 binaries and calculate the time they spend within the galactic disk. Considering the full sample of 251 candidate halo binaries as well as several subsamples, we find that the distribution of angular separations (or expected major semiaxes) follows a power law f(a) ∼ a {sup –1} (Oepik's relation) up to different limits. For the 50 most disk-like binaries, those that spend their entire lives within z = ±500 pc, this limit is found to be 19,000 AU (0.09 pc), while for the 50 most halo-like binaries, those that spend on average only 18% of their lives within z = ±500 pc, the limit is 63,000 AU (0.31 pc). In a companion paper, we employ this catalog to establish limits on the masses of the halo massive perturbers (massive compact halo objects).« less

  10. The super-NFW model: an analytic dynamical model for cold dark matter haloes and elliptical galaxies

    NASA Astrophysics Data System (ADS)

    Lilley, Edward J.; Evans, N. Wyn; Sanders, Jason L.

    2018-05-01

    An analytic galaxy model with ρ ˜ r-1 at small radii and ρ ˜ r-3.5 at large radii is presented. The asymptotic density fall-off is slower than the Hernquist model, but faster than the Navarro-Frenk-White (NFW) profile for dark matter haloes, and so in accord with recent evidence from cosmological simulations. The model provides the zeroth-order term in a biorthornomal basis function expansion, meaning that axisymmetric, triaxial, and lopsided distortions can easily be added (much like the Hernquist model itself which is the zeroth-order term of the Hernquist-Ostriker expansion). The properties of the spherical model, including analytic distribution functions which are either isotropic, radially anisotropic, or tangentially anisotropic, are discussed in some detail. The analogue of the mass-concentration relation for cosmological haloes is provided.

  11. The role of Dark Matter sub-halos in the non-thermal emission of galaxy clusters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marchegiani, Paolo; Colafrancesco, Sergio, E-mail: Paolo.Marchegiani@wits.ac.za, E-mail: Sergio.Colafrancesco@wits.ac.za

    2016-11-01

    Annihilation of Dark Matter (DM) particles has been recognized as one of the possible mechanisms for the production of non-thermal particles and radiation in galaxy clusters. Previous studies have shown that, while DM models can reproduce the spectral properties of the radio halo in the Coma cluster, they fail in reproducing the shape of the radio halo surface brightness because they produce a shape that is too concentrated towards the center of the cluster with respect to the observed one. However, in previous studies the DM distribution was modeled as a single spherically symmetric halo, while the DM distribution inmore » Coma is found to have a complex and elongated shape. In this work we calculate a range of non-thermal emissions in the Coma cluster by using the observed distribution of DM sub-halos. We find that, by including the observed sub-halos in the DM model, we obtain a radio surface brightness with a shape similar to the observed one, and that the sub-halos boost the radio emission by a factor between 5 and 20%, thus allowing to reduce the gap between the annihilation cross section required to reproduce the radio halo flux and the upper limits derived from other observations, and that this gap can be explained by realistic values of the boosting factor due to smaller substructures. Models with neutralino mass of 9 GeV and composition τ{sup +} τ{sup −}, and mass of 43 GeV and composition b b-bar can fit the radio halo spectrum using the observed properties of the magnetic field in Coma, and do not predict a gamma-ray emission in excess compared to the recent Fermi-LAT upper limits. These findings make these DM models viable candidate to explain the origin of radio halos in galaxy clusters, avoiding the problems connected to the excessive gamma-ray emission expected from proton acceleration in most of the currently proposed models, where the acceleration of particles is directly or indirectly connected to events related to clusters merging

  12. Parameters of Six Selected Galactic Potential Models

    NASA Astrophysics Data System (ADS)

    Bajkova, Anisa; Bobylev, Vadim

    2017-11-01

    This paper is devoted to the refinement of the parameters of the six three-component (bulge, disk, halo) axisymmetric Galactic gravitational potential models on the basis of modern data on circular velocities of Galactic objects located at distances up to 200 kpc from the Galactic center. In all models the bulge and disk are described by the Miyamoto-Nagai expressions. To describe the halo, the models of Allen-Santillán (I), Wilkinson-Evans (II), Navarro- Frenk-White (III), Binney (IV), Plummer (V), and Hernquist (VI) are used. The sought-for parameters of potential models are determined by fitting the model rotation curves to the measured velocities, taking into account restrictions on the local dynamical matter density p⊙ - 0.1M⊙ pc-3 and the vertical force |Kz=1.1|/2πG = 77M⊙ pc-2. A comparative analysis of the refined potential models is made and for each of the models the estimates of a number of the Galactic characteristics are presented.

  13. Addressing the too big to fail problem with baryon physics and sterile neutrino dark matter

    NASA Astrophysics Data System (ADS)

    Lovell, Mark R.; Gonzalez-Perez, Violeta; Bose, Sownak; Boyarsky, Alexey; Cole, Shaun; Frenk, Carlos S.; Ruchayskiy, Oleg

    2017-07-01

    N-body dark matter simulations of structure formation in the Λ cold dark matter (ΛCDM) model predict a population of subhaloes within Galactic haloes that have higher central densities than inferred for the Milky Way satellites, a tension known as the 'too big to fail' problem. Proposed solutions include baryonic effects, a smaller mass for the Milky Way halo and warm dark matter (WDM). We test these possibilities using a semi-analytic model of galaxy formation to generate luminosity functions for Milky Way halo-analogue satellite populations, the results of which are then coupled to the Jiang & van den Bosch model of subhalo stripping to predict the subhalo Vmax functions for the 10 brightest satellites. We find that selecting the brightest satellites (as opposed to the most massive) and modelling the expulsion of gas by supernovae at early times increases the likelihood of generating the observed Milky Way satellite Vmax function. The preferred halo mass is 6 × 1011 M⊙, which has a 14 per cent probability to host a Vmax function like that of the Milky Way satellites. We conclude that the Milky Way satellite Vmax function is compatible with a CDM cosmology, as previously found by Sawala et al. using hydrodynamic simulations. Sterile neutrino-WDM models achieve a higher degree of agreement with the observations, with a maximum 50 per cent chance of generating the observed Milky Way satellite Vmax function. However, more work is required to check that the semi-analytic stripping model is calibrated correctly for each sterile neutrino cosmology.

  14. Monthly modulation in dark matter direct-detection experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Britto, Vivian; Meyers, Joel, E-mail: vivian.britto@mail.utoronto.ca, E-mail: jmeyers@cita.utoronto.ca

    2015-11-01

    The signals in dark matter direct-detection experiments should exhibit modulation signatures due to the Earth's motion with respect to the Galactic dark matter halo. The annual and daily modulations, due to the Earth's revolution about the Sun and rotation about its own axis, have been explored previously. Monthly modulation is another such feature present in direct detection signals, and provides a nearly model-independent method of distinguishing dark matter signal events from background. We study here monthly modulations in detail for both WIMP and WISP dark matter searches, examining both the effect of the motion of the Earth about the Earth-Moonmore » barycenter and the gravitational focusing due to the Moon. For WIMP searches, we calculate the monthly modulation of the count rate and show the effects are too small to be observed in the foreseeable future. For WISP dark matter experiments, we show that the photons generated by WISP to photon conversion have frequencies which undergo a monthly modulating shift which is detectable with current technology and which cannot in general be neglected in high resolution WISP searches.« less

  15. Dark Energy and Key Physical Parameters of Clusters of Galaxies

    NASA Astrophysics Data System (ADS)

    Chernin, A. D.; Bisnovatyi-Kogan, G. S.

    We discuss the physics of clusters of galaxies embedded in the cosmic dark energy background and show that 1) the halo cut-off radius of a cluster like the Virgo cluster is practically, if not exactly, equal to the zero-gravity radius at which the dark matter gravity is balanced by the dark energy antigravity; 2) the halo averaged density is equal to two densities of dark energy; 3) the halo edge (cut-off) density is the dark energy density with a numerical factor of the unity order slightly depending on the halo profile.

  16. Absolute proper motions to B approximately 22.5: Evidence for kimematical substructure in halo field stars

    NASA Technical Reports Server (NTRS)

    Majewski, Steven R.; Munn, Jeffrey A.; Hawley, Suzanne L.

    1994-01-01

    Radial velocities have been obtained for six of nine stars identified on the basis of similar distances and common, extreme transverse velocities in the proper motion survey of Majewski (1992) as a candidate halo moving group at the north Galactic pole. These radial velocities correspond to velocities perpendicular to the Galactic plane which span the range -48 +/- 21 to -128 +/- 9 km/sec (but a smaller range, -48 +/- 21 to -86 +/- 19 km/sec, when only our own measurements are considered), significantly different than the expected distribution, with mean 0 km/sec, for a random sample of either halo or thick disk stars. The probability of picking such a set of radial velocities at random is less than 1%. Thus the radial velocity data support the hypothesis that these stars constitute part of a halo moving group or star stream at a distance of approximately 4-5 kpc above the Galactic plane. If real, this moving group is evidence for halo phase space substructure which may be the fossil remains of a destroyed globular cluster, Galactic satellite, or Searle & Zinn (1978) 'fragment.'

  17. Hints on the nature of dark matter from the properties of Milky Way satellites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderhalden, Donnino; Diemand, Juerg; Schneider, Aurel

    2013-03-01

    The nature of dark matter is still unknown and one of the most fundamental scientific mysteries. Although successfully describing large scales, the standard cold dark matter model (CDM) exhibits possible shortcomings on galactic and sub-galactic scales. It is exactly at these highly non-linear scales where strong astrophysical constraints can be set on the nature of the dark matter particle. While observations of the Lyman-α forest probe the matter power spectrum in the mildly non-linear regime, satellite galaxies of the Milky Way provide an excellent laboratory as a test of the underlying cosmology on much smaller scales. Here we present resultsmore » from a set of high resolution simulations of a Milky Way sized dark matter halo in eight distinct cosmologies: CDM, warm dark matter (WDM) with a particle mass of 2 keV and six different cold plus warm dark matter (C+WDM) models, varying the fraction, f{sub wdm}, and the mass, m{sub wdm}, of the warm component. We used three different observational tests based on Milky Way satellite observations: the total satellite abundance, their radial distribution and their mass profile. We show that the requirement of simultaneously satisfying all three constraints sets very strong limits on the nature of dark matter. This shows the power of a multi-dimensional small scale approach in ruling out models which would be still allowed by large scale observations.« less

  18. NGC 307 and the effects of dark-matter haloes on measuring supermassive black holes in disc galaxies

    NASA Astrophysics Data System (ADS)

    Erwin, Peter; Thomas, Jens; Saglia, Roberto P.; Fabricius, Maximilian; Rusli, Stephanie P.; Seitz, Stella; Bender, Ralf

    2018-01-01

    We present stellar-dynamical measurements of the central supermassive black hole (SMBH) in the S0 galaxy NGC 307, using adaptive-optics IFU data from VLT-SINFONI. We investigate the effects of including dark-matter haloes as well as multiple stellar components with different mass-to-light (M/L) ratios in the dynamical modelling. Models with no halo and a single stellar component yield a relatively poor fit with a low value for the SMBH mass [(7.0 ± 1.0) × 107 M⊙] and a high stellar M/L ratio (ϒK = 1.3 ± 0.1). Adding a halo produces a much better fit, with a significantly larger SMBH mass [(2.0 ± 0.5) × 108 M⊙] and a lower M/L ratio (ϒK = 1.1 ± 0.1). A model with no halo but with separate bulge and disc components produces a similarly good fit, with a slightly larger SMBH mass [(3.0 ± 0.5) × 108 M⊙] and an identical M/L ratio for the bulge component, though the disc M/L ratio is biased high (ϒK, disc = 1.9 ± 0.1). Adding a halo to the two-stellar-component model results in a much more plausible disc M/L ratio of 1.0 ± 0.1, but has only a modest effect on the SMBH mass [(2.2 ± 0.6) × 108 M⊙] and leaves the bulge M/L ratio unchanged. This suggests that measuring SMBH masses in disc galaxies using just a single stellar component and no halo has the same drawbacks as it does for elliptical galaxies, but also that reasonably accurate SMBH masses and bulge M/L ratios can be recovered (without the added computational expense of modelling haloes) by using separate bulge and disc components.

  19. INTERNAL STELLAR KINEMATICS OF M32 FROM THE SPLASH SURVEY: DARK HALO CONSTRAINTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Howley, K. M.; Guhathakurta, P.; Van der Marel, R.

    2013-03-01

    As part of the SPLASH survey of the Andromeda (M31) system, we have obtained Keck/DEIMOS spectra of the compact elliptical (cE) satellite M32. This is the first resolved-star kinematical study of any cE galaxy. In contrast to most previous kinematical studies that extended out to r {approx}< 30'' {approx} 1 r {sup eff} {sub I} {approx} 100 pc, we measure the rotation curve and velocity dispersion profile out to r {approx} 250'' and higher order Gauss-Hermite moments out to r {approx} 70''. We achieve this by combining integrated-light spectroscopy at small radii (where crowding/blending are severe) with resolved stellar spectroscopymore » at larger radii, using spatial and kinematical information to account statistically for M31 contamination. The rotation curve and velocity dispersion profile extend well beyond the radius (r {approx} 150'') where the isophotes are distorted. Unlike NGC 205, another close dwarf companion of M31, M32's kinematics appear regular and symmetric and do not show obvious sharp gradients across the region of isophotal elongation and twists. We interpret M31's kinematics using three-integral axisymmetric dynamical equilibrium models constructed using Schwarzschild's orbit superposition technique. Models with a constant mass-to-light ratio can fit the data remarkably well. However, since such a model requires an increasing tangential anisotropy with radius, invoking the presence of an extended dark halo may be more plausible. Such an extended dark halo is definitely required to bind a half-dozen fast-moving stars observed at the largest radii, but these stars may not be an equilibrium component of M32.« less

  20. The Exceptional Soft X-Ray Halo of the Galaxy Merger NGC 6240

    NASA Astrophysics Data System (ADS)

    Nardini, E.; Wang, Junfeng; Fabbiano, G.; Elvis, M.; Pellegrini, S.; Risaliti, G.; Karovska, M.; Zezas, A.

    2013-03-01

    We report on a recent ~150 ks long Chandra observation of the ultraluminous infrared galaxy merger NGC 6240, which allows a detailed investigation of the diffuse galactic halo. Extended soft X-ray emission is detected at the 3σ confidence level over a diamond-shaped region with projected physical size of ~110 × 80 kpc, and a single-component thermal model provides a reasonably good fit to the observed X-ray spectrum. The hot gas has a temperature of ~7.5 million K, an estimated density of 2.5 × 10-3 cm-3, and a total mass of ~1010 M ⊙, resulting in an intrinsic 0.4-2.5 keV luminosity of 4 × 1041 erg s-1. The average temperature of 0.65 keV is quite high to be obviously related to either the binding energy in the dark-matter gravitational potential of the system or the energy dissipation and shocks following the galactic collision, yet the spatially resolved spectral analysis reveals limited variations across the halo. The relative abundance of the main α-elements with respect to iron is several times the solar value, and nearly constant as well, implying a uniform enrichment by type II supernovae out to the largest scales. Taken as a whole, the observational evidence is not compatible with a superwind originated by a recent, nuclear starburst, but rather hints at widespread, enhanced star formation proceeding at a steady rate over the entire dynamical timescale (~200 Myr). The preferred scenario is that of a starburst-processed gas component gently expanding into, and mixing with, a pre-existing halo medium of lower metallicity (Z ~ 0.1 solar) and temperature (kT ~ 0.25 keV). This picture cannot be probed more extensively with the present data, and the ultimate fate of the diffuse, hot gas remains uncertain. Under some favorable conditions, at least a fraction of it might be retained after the merger completion, and evolve into the hot halo of a young elliptical galaxy.

  1. Spatial clustering and halo occupation distribution modelling of local AGN via cross-correlation measurements with 2MASS galaxies

    NASA Astrophysics Data System (ADS)

    Krumpe, Mirko; Miyaji, Takamitsu; Coil, Alison L.; Aceves, Hector

    2018-02-01

    We present the clustering properties and halo occupation distribution (HOD) modelling of very low redshift, hard X-ray-detected active galactic nuclei (AGN) using cross-correlation function measurements with Two-Micron All Sky Survey galaxies. Spanning a redshift range of 0.007 < z < 0.037, with a median z = 0.024, we present a precise AGN clustering study of the most local AGN in the Universe. The AGN sample is drawn from the SWIFT/BAT 70-month and INTEGRAL/IBIS eight year all-sky X-ray surveys and contains both type I and type II AGN. We find a large-scale bias for the full AGN sample of b=1.04^{+0.10}_{-0.11}, which corresponds to a typical host dark matter halo mass of M_h^typ=12.84^{+0.22}_{-0.30} h^{-1} M_{⊙}. When split into low and high X-ray luminosity and type I and type II AGN subsamples, we detect no statistically significant differences in the large-scale bias parameters. However, there are differences in the small-scale clustering, which are reflected in the full HOD model results. We find that low and high X-ray luminosity AGN, as well as type I and type II AGN, occupy dark matter haloes differently, with 3.4σ and 4.0σ differences in their mean halo masses, respectively, when split by luminosity and type. The latter finding contradicts a simple orientation-based AGN unification model. As a by-product of our cross-correlation approach, we also present the first HOD model of 2MASS galaxies.

  2. Pinning down inelastic dark matter in the Sun and in direct detection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blennow, Mattias; Clementz, Stefan; Herrero-Garcia, Juan, E-mail: emb@kth.se, E-mail: scl@kth.se, E-mail: juhg@kth.se

    2016-04-01

    We study the solar capture rate of inelastic dark matter with endothermic and/or exothermic interactions. By assuming that an inelastic dark matter signal will be observed in next generation direct detection experiments we can set a lower bound on the capture rate that is independent of the local dark matter density, the velocity distribution, the galactic escape velocity as well as the scattering cross section. In combination with upper limits from neutrino observatories we can place upper bounds on the annihilation channels leading to neutrinos. We find that, while endothermic scattering limits are weak in the isospin-conserving case, strong boundsmore » may be set for exothermic interactions, in particular in the spin-dependent case. Furthermore, we study the implications of observing two direct detection signals, in which case one can halo-independently obtain the dark matter mass and the mass splitting, and disentangle the endothermic/exothermic nature of the scattering. Finally we discuss isospin violation.« less

  3. An extremely primitive star in the Galactic halo.

    PubMed

    Caffau, Elisabetta; Bonifacio, Piercarlo; François, Patrick; Sbordone, Luca; Monaco, Lorenzo; Spite, Monique; Spite, François; Ludwig, Hans-G; Cayrel, Roger; Zaggia, Simone; Hammer, François; Randich, Sofia; Molaro, Paolo; Hill, Vanessa

    2011-08-31

    The early Universe had a chemical composition consisting of hydrogen, helium and traces of lithium; almost all other elements were subsequently created in stars and supernovae. The mass fraction of elements more massive than helium, Z, is known as 'metallicity'. A number of very metal-poor stars has been found, some of which have a low iron abundance but are rich in carbon, nitrogen and oxygen. For theoretical reasons and because of an observed absence of stars with Z < 1.5 × 10(-5), it has been suggested that low-mass stars cannot form from the primitive interstellar medium until it has been enriched above a critical value of Z, estimated to lie in the range 1.5 × 10(-8) to 1.5 × 10(-6) (ref. 8), although competing theories claiming the contrary do exist. (We use 'low-mass' here to mean a stellar mass of less than 0.8 solar masses, the stars that survive to the present day.) Here we report the chemical composition of a star in the Galactic halo with a very low Z (≤ 6.9 × 10(-7), which is 4.5 × 10(-5) times that of the Sun) and a chemical pattern typical of classical extremely metal-poor stars--that is, without enrichment of carbon, nitrogen and oxygen. This shows that low-mass stars can be formed at very low metallicity, that is, below the critical value of Z. Lithium is not detected, suggesting a low-metallicity extension of the previously observed trend in lithium depletion. Such lithium depletion implies that the stellar material must have experienced temperatures above two million kelvin in its history, given that this is necessary to destroy lithium.

  4. On the Evolution of High-redshift Active Galactic Nuclei

    NASA Astrophysics Data System (ADS)

    Mao, Jirong; Kim, Minsun

    2016-09-01

    We build a simple physical model to study the high-redshift active galactic nucleus (AGN) evolution within the co-evolution framework of central black holes (BHs) and their host galaxies. The correlation between the circular velocity of a dark halo V c and the velocity dispersion of a galaxy σ is used to link the dark matter halo mass and BH mass. The dark matter halo mass function is converted to the BH mass function for any given redshift. The high-redshift optical AGN luminosity functions (LFs) are constructed. At z˜ 4, the flattening feature is not shown at the faint end of the optical AGN LF. This is consistent with observational results. If the optical AGN LF at z˜ 6 can be reproduced in the case in which central BHs have the Eddington-limited accretion, it is possible for the AGN lifetime to have a small value of 2× {10}5 {{years}}. The X-ray AGN LFs and X-ray AGN number counts are also calculated at 2.0\\lt z\\lt 5.0 and z\\gt 3, respectively, using the same parameters adopted in the calculation for the optical AGN LF at z˜ 4. It is estimated that about 30 AGNs per {{{\\deg }}}2 at z\\gt 6 can be detected with a flux limit of 3× {10}-17 {erg} {{cm}}-2 {{{s}}}-1 in the 0.5-2 keV band. Additionally, the cosmic reionization is also investigated. The ultraviolet photons emitted from the high-redshift AGNs mainly contribute to the cosmic reionization, and the central BHs of the high-redshift AGNs have a mass range of {10}6{--}{10}8{M}⊙ . We also discuss some uncertainties in both the AGN LFs and AGN number counts originating from the {M}{{BH}}{--}σ relation, Eddington ratio, AGN lifetime, and X-ray attenuation in our model.

  5. Photoionization in the halo of the Galaxy

    NASA Technical Reports Server (NTRS)

    Bregman, Joel N.; Harrington, J. Patrick

    1986-01-01

    The ionizing radiation field in the halo is calculated and found to be dominated in the 13.6-45 eV range by light from O-B stars that escapes the disk, by planetary nebulae at 45-54 eV, by quasars and the Galactic soft X-ray background at 54-2000 eV, and by the extragalactic X-ray background at higher energies. Photoionization models are calculated with this radiation field incident on halo clouds of constant density for a variety of densities, for normal and depleted abundances, and with variations of the incident spectrum. For species at least triply ionized, such as Si IV, C IV, N V, and O VI, the line ratios are determined by intervening gas with the greatest volume, which is not necessarily the greatest mass component. Column densities from doubly ionized species like Si III should be greater than from triply ionized species. The role of photoionized gas in cosmic ray-supported halos and Galactic fountains is discussed. Observational tests of photoionization models are suggested.

  6. Robust constraints and novel gamma-ray signatures of dark matter that interacts strongly with nucleons

    NASA Astrophysics Data System (ADS)

    Hooper, Dan; McDermott, Samuel D.

    2018-06-01

    Due to shielding, direct detection experiments are in some cases insensitive to dark matter candidates with very large scattering cross sections with nucleons. In this paper, we revisit this class of models and derive a simple analytic criterion for conservative but robust direct detection limits. While large spin-independent cross sections seem to be ruled out, we identify potentially viable parameter space for dark matter with a spin-dependent cross section with nucleons in the range of 10-27 cm2≲σDM -p≲10-24 cm2 . With these parameters, cosmic-ray scattering with dark matter in the extended halo of the Milky Way could generate a novel and distinctive gamma-ray signal at high galactic latitudes. Such a signal could be observable by Fermi or future space-based gamma-ray telescopes.

  7. The HALO / HALO-2 Supernova Neutrino Detectors

    NASA Astrophysics Data System (ADS)

    Yen, Stanley; HALO Collaboration; HALO-2 Collaboration

    2016-09-01

    The Helium and Lead Observatory (HALO) is a dedicated supernova neutrino detector in SNOLAB, which is built from 79 tons of surplus lead and the helium-3 neutron detectors from the SNO experiment. It is sensitive primarily to electron neutrinos, and is thus complementary to water Cerenkov and organic scintillation detectors which are primarily sensitive to electron anti-neutrinos. A comparison of the rates in these complementary detectors will enable a flavor decomposition of the neutrino flux from the next galactic core-collapse supernova. We have tentative ideas to build a 1000-ton HALO-2 detector in the Gran Sasso laboratory by using the lead from the decommissioned OPERA detector. We are exploring several neutron detector technologies to supplement the existing helium-3 detectors. We welcome new collaborators to join us. This research is supported by the NRC and NSERC (Canada), the US DOE and NSF, and the German RISE program.

  8. The end of the MACHO era, revisited: New limits on MACHO masses from halo wide binaries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Monroy-Rodríguez, Miguel A.; Allen, Christine, E-mail: chris@astro.unam.mx

    2014-08-01

    In order to determine an upper bound for the mass of the massive compact halo objects (MACHOs), we use the halo binaries contained in a recent catalog by Allen and Monroy-Rodríguez. To dynamically model their interactions with massive perturbers, a Monte Carlo simulation is conducted, using an impulsive approximation method and assuming a galactic halo constituted by massive particles of a characteristic mass. The results of such simulations are compared with several subsamples of our improved catalog of candidate halo wide binaries. In accordance with Quinn et al., we also find our results to be very sensitive to the widestmore » binaries. However, our larger sample, together with the fact that we can obtain galactic orbits for 150 of our systems, allows a more reliable estimate of the maximum MACHO mass than that obtained previously. If we employ the entire sample of 211 candidate halo stars we, obtain an upper limit of 112 M{sub ☉}. However, using the 150 binaries in our catalog with computed galactic orbits, we are able to refine our fitting criteria. Thus, for the 100 most halo-like binaries we obtain a maximum MACHO mass of 21-68 M{sub ☉}. Furthermore, we can estimate the dynamical effects of the galactic disk using binary samples that spend progressively shorter times within the disk. By extrapolating the limits obtained for our most reliable—albeit smallest—sample, we find that as the time spent within the disk tends to zero, the upper bound of the MACHO mass tends to less than 5 M{sub ☉}. The non-uniform density of the halo has also been taken into account, but the limit obtained, less than 5 M{sub ☉}, does not differ much from the previous one. Together with microlensing studies that provide lower limits on the MACHO mass, our results essentially exclude the existence of such objects in the galactic halo.« less

  9. A look into the inside of haloes: a characterization of the halo shape as a function of overdensity in the Planck cosmology

    NASA Astrophysics Data System (ADS)

    Despali, Giulia; Giocoli, Carlo; Bonamigo, Mario; Limousin, Marceau; Tormen, Giuseppe

    2017-04-01

    In this paper, we study the triaxial properties of dark matter haloes of a wide range of masses extracted from a set of cosmological N-body simulations. We measure the shape at different distances from the halo centre (characterized by different overdensity thresholds), both in three and in two dimensions. We discuss how halo triaxiality increases with mass, redshift and distance from the halo centre. We also examine how the orientations of the different ellipsoids are aligned with each other and what is the gradient in internal shapes for haloes with different virial configurations. Our findings highlight that the internal part of the halo retains memory of the violent formation process keeping the major axis oriented towards the preferential direction of the infalling material while the outer part becomes rounder due to continuous isotropic merging events. This effect is clearly evident in high-mass haloes - which formed more recently - while it is more blurred in low-mass haloes. We present simple distributions that may be used as priors for various mass reconstruction algorithms, operating in different wavelengths, in order to recover a more complex and realistic dark matter distribution of isolated and relaxed systems.

  10. Testing approximate predictions of displacements of cosmological dark matter halos

    NASA Astrophysics Data System (ADS)

    Munari, Emiliano; Monaco, Pierluigi; Koda, Jun; Kitaura, Francisco-Shu; Sefusatti, Emiliano; Borgani, Stefano

    2017-07-01

    We present a test to quantify how well some approximate methods, designed to reproduce the mildly non-linear evolution of perturbations, are able to reproduce the clustering of DM halos once the grouping of particles into halos is defined and kept fixed. The following methods have been considered: Lagrangian Perturbation Theory (LPT) up to third order, Truncated LPT, Augmented LPT, MUSCLE and COLA. The test runs as follows: halos are defined by applying a friends-of-friends (FoF) halo finder to the output of an N-body simulation. The approximate methods are then applied to the same initial conditions of the simulation, producing for all particles displacements from their starting position and velocities. The position and velocity of each halo are computed by averaging over the particles that belong to that halo, according to the FoF halo finder. This procedure allows us to perform a well-posed test of how clustering of the matter density and halo density fields are recovered, without asking to the approximate method an accurate reconstruction of halos. We have considered the results at z=0,0.5,1, and we have analysed power spectrum in real and redshift space, object-by-object difference in position and velocity, density Probability Distribution Function (PDF) and its moments, phase difference of Fourier modes. We find that higher LPT orders are generally able to better reproduce the clustering of halos, while little or no improvement is found for the matter density field when going to 2LPT and 3LPT. Augmentation provides some improvement when coupled with 2LPT, while its effect is limited when coupled with 3LPT. Little improvement is brought by MUSCLE with respect to Augmentation. The more expensive particle-mesh code COLA outperforms all LPT methods, and this is true even for mesh sizes as large as the inter-particle distance. This test sets an upper limit on the ability of these methods to reproduce the clustering of halos, for the cases when these objects are

  11. The first all-sky view of the Milky Way stellar halo with Gaia+2MASS RR Lyrae

    NASA Astrophysics Data System (ADS)

    Iorio, G.; Belokurov, V.; Erkal, D.; Koposov, S. E.; Nipoti, C.; Fraternali, F.

    2018-02-01

    We exploit the first Gaia data release to study the properties of the Galactic stellar halo as traced by RR Lyrae. We demonstrate that it is possible to select a pure sample of RR Lyrae using only photometric information available in the Gaia+2MASS catalogue. The final sample contains about 21 600 RR Lyrae covering an unprecedented fraction ( ˜ 60 per cent) of the volume of the Galactic inner halo (R < 28 kpc). We study the morphology of the stellar halo by analysing the RR Lyrae distribution with parametric and non-parametric techniques. Taking advantage of the uniform all-sky coverage, we test halo models more sophisticated than usually considered in the literature, such as those with varying flattening, tilts and/or offset of the halo with respect to the Galactic disc. A consistent picture emerges: the inner halo is well reproduced by a smooth distribution of stars settled on triaxial density ellipsoids. The shortest axis is perpendicular to the Milky Way's disc, while the longest axis forms an angle of ˜70° with the axis connecting the Sun and the Galactic Centre. The elongation along the major axis is mild (p = 1.27), and the vertical flattening is shown to evolve from a squashed state with q ≈ 0.57 in the centre to a more spherical q ≈ 0.75 at the outer edge of our data set. Within the radial range probed, the density profile of the stellar halo is well approximated by a single power law with exponent α = -2.96. We do not find evidence of tilt or offset of the halo with respect to the Galaxy's disc.

  12. Constraining the noise-free distribution of halo spin parameters

    NASA Astrophysics Data System (ADS)

    Benson, Andrew J.

    2017-11-01

    Any measurement made using an N-body simulation is subject to noise due to the finite number of particles used to sample the dark matter distribution function, and the lack of structure below the simulation resolution. This noise can be particularly significant when attempting to measure intrinsically small quantities, such as halo spin. In this work, we develop a model to describe the effects of particle noise on halo spin parameters. This model is calibrated using N-body simulations in which the particle noise can be treated as a Poisson process on the underlying dark matter distribution function, and we demonstrate that this calibrated model reproduces measurements of halo spin parameter error distributions previously measured in N-body convergence studies. Utilizing this model, along with previous measurements of the distribution of halo spin parameters in N-body simulations, we place constraints on the noise-free distribution of halo spins. We find that the noise-free median spin is 3 per cent lower than that measured directly from the N-body simulation, corresponding to a shift of approximately 40 times the statistical uncertainty in this measurement arising purely from halo counting statistics. We also show that measurement of the spin of an individual halo to 10 per cent precision requires at least 4 × 104 particles in the halo - for haloes containing 200 particles, the fractional error on spins measured for individual haloes is of order unity. N-body simulations should be viewed as the results of a statistical experiment applied to a model of dark matter structure formation. When viewed in this way, it is clear that determination of any quantity from such a simulation should be made through forward modelling of the effects of particle noise.

  13. A survey for dwarf galaxy remnants around 14 globular clusters in the outer halo

    NASA Astrophysics Data System (ADS)

    Sollima, A.; Martínez Delgado, D.; Muñoz, R. R.; Carballo-Bello, J. A.; Valls-Gabaud, D.; Grebel, E. K.; Santana, F. A.; Côté, P.; Djorgovski, S. G.

    2018-06-01

    We report the results of a systematic photometric survey of the peripheral regions of a sample of 14 globular clusters in the outer halo of the Milky Way at distances dGC > 25 kpc from the Galactic Centre. The survey is aimed at searching for the remnants of the host satellite galaxies where these clusters could originally have been formed before being accreted on to the Galactic halo. The limiting surface brightness varies within our sample, but reaches μV, lim = 30-32 mag arcsec-2. For only two globular clusters (NGC 7492 and Whiting 1; already suggested to be associated with the Sagittarius galaxy), we detect extended stellar populations that cannot be associated with either the clusters themselves or with the surrounding Galactic field population. We show that the lack of substructures around globular clusters at these Galactocentric distances is still compatible with the predictions of cosmological simulations whereby in the outer halo the Galactic globular cluster system is built up through hierarchical accretion at early epochs.

  14. Haloes gone MAD: The Halo-Finder Comparison Project

    NASA Astrophysics Data System (ADS)

    Knebe, Alexander; Knollmann, Steffen R.; Muldrew, Stuart I.; Pearce, Frazer R.; Aragon-Calvo, Miguel Angel; Ascasibar, Yago; Behroozi, Peter S.; Ceverino, Daniel; Colombi, Stephane; Diemand, Juerg; Dolag, Klaus; Falck, Bridget L.; Fasel, Patricia; Gardner, Jeff; Gottlöber, Stefan; Hsu, Chung-Hsing; Iannuzzi, Francesca; Klypin, Anatoly; Lukić, Zarija; Maciejewski, Michal; McBride, Cameron; Neyrinck, Mark C.; Planelles, Susana; Potter, Doug; Quilis, Vicent; Rasera, Yann; Read, Justin I.; Ricker, Paul M.; Roy, Fabrice; Springel, Volker; Stadel, Joachim; Stinson, Greg; Sutter, P. M.; Turchaninov, Victor; Tweed, Dylan; Yepes, Gustavo; Zemp, Marcel

    2011-08-01

    We present a detailed comparison of fundamental dark matter halo properties retrieved by a substantial number of different halo finders. These codes span a wide range of techniques including friends-of-friends, spherical-overdensity and phase-space-based algorithms. We further introduce a robust (and publicly available) suite of test scenarios that allow halo finder developers to compare the performance of their codes against those presented here. This set includes mock haloes containing various levels and distributions of substructure at a range of resolutions as well as a cosmological simulation of the large-scale structure of the universe. All the halo-finding codes tested could successfully recover the spatial location of our mock haloes. They further returned lists of particles (potentially) belonging to the object that led to coinciding values for the maximum of the circular velocity profile and the radius where it is reached. All the finders based in configuration space struggled to recover substructure that was located close to the centre of the host halo, and the radial dependence of the mass recovered varies from finder to finder. Those finders based in phase space could resolve central substructure although they found difficulties in accurately recovering its properties. Through a resolution study we found that most of the finders could not reliably recover substructure containing fewer than 30-40 particles. However, also here the phase-space finders excelled by resolving substructure down to 10-20 particles. By comparing the halo finders using a high-resolution cosmological volume, we found that they agree remarkably well on fundamental properties of astrophysical significance (e.g. mass, position, velocity and peak of the rotation curve). We further suggest to utilize the peak of the rotation curve, vmax, as a proxy for mass, given the arbitrariness in defining a proper halo edge. Airport code for Madrid, Spain

  15. Stellar-to-halo mass relation of cluster galaxies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Niemiec, Anna; Jullo, Eric; Limousin, Marceau

    In the formation of galaxy groups and clusters, the dark matter haloes containing satellite galaxies are expected to be tidally stripped in gravitational interactions with the host. We use galaxy-galaxy weak lensing to measure the average mass of dark matter haloes of satellite galaxies as a function of projected distance to the centre of the host, since stripping is expected to be greater for satellites closer to the centre of the cluster. We further classify the satellites according to their stellar mass: assuming that the stellar component of the galaxy is less disrupted by tidal stripping, stellar mass can bemore » used as a proxy of the infall mass. We study the stellar to halo mass relation of satellites as a function of the cluster-centric distance to measure tidal stripping. We use the shear catalogues of the DES science veri cation archive, the CFHTLenS and the CFHT Stripe 82 surveys, and we select satellites from the redMaPPer catalogue of clusters. For galaxies located in the outskirts of clusters, we nd a stellar to halo mass relation in good agreement with the theoretical expectations from Moster, Naab & White (2013) for central galaxies. In the centre of the cluster, we nd that this relation is shifted to smaller halo mass for a given stellar mass. We interpret this nding as further evidence for tidal stripping of dark matter haloes in high density environments.« less

  16. Stellar-to-halo mass relation of cluster galaxies

    DOE PAGES

    Niemiec, Anna; Jullo, Eric; Limousin, Marceau; ...

    2017-07-04

    In the formation of galaxy groups and clusters, the dark matter haloes containing satellite galaxies are expected to be tidally stripped in gravitational interactions with the host. We use galaxy-galaxy weak lensing to measure the average mass of dark matter haloes of satellite galaxies as a function of projected distance to the centre of the host, since stripping is expected to be greater for satellites closer to the centre of the cluster. We further classify the satellites according to their stellar mass: assuming that the stellar component of the galaxy is less disrupted by tidal stripping, stellar mass can bemore » used as a proxy of the infall mass. We study the stellar to halo mass relation of satellites as a function of the cluster-centric distance to measure tidal stripping. We use the shear catalogues of the DES science veri cation archive, the CFHTLenS and the CFHT Stripe 82 surveys, and we select satellites from the redMaPPer catalogue of clusters. For galaxies located in the outskirts of clusters, we nd a stellar to halo mass relation in good agreement with the theoretical expectations from Moster, Naab & White (2013) for central galaxies. In the centre of the cluster, we nd that this relation is shifted to smaller halo mass for a given stellar mass. We interpret this nding as further evidence for tidal stripping of dark matter haloes in high density environments.« less

  17. Constraint on dark matter central density in the Eddington inspired Born-Infeld (EiBI) gravity with input from Weyl gravity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Potapov, Alexander A.; Mikolaychuk, Olga; Mikolaychuk, Nikolay

    Recently, Harko et al. (2014) derived an approximate metric of the galactic halo in the Eddington inspired Born-Infeld (EiBI) gravity. In this metric, we show that there is an upper limit ρ {sub 0}{sup upper} on the central density ρ {sub 0} of dark matter such that stable circular orbits are possible only when the constraint ρ {sub 0}≤ ρ {sub 0}{sup upper} is satisfied in each galactic sample. To quantify different ρ {sub 0}{sup upper} for different samples, we follow the novel approach of Edery and Paranjape (1998), where we use as input the geometric halo radius R{sub WR} from Weyl gravity and equate itmore » with the dark matter radius R{sub DM} from EiBI gravity for the same halo boundary. This input then shows that the known fitted values of ρ {sub 0} obey the constraint ρ {sub 0}≤ ρ {sub 0}{sup upper}∝  (R{sub WR}){sup −2}. Using the mass-to-light ratios giving α , we shall also evaluate ρ {sub 0}{sup lower} ∝  (α −1)M{sub lum}R{sub WR}{sup −3} and the average dark matter density  ( ρ ) {sup lower}. Quantitatively, it turns out that the interval ρ {sub 0}{sup lower} ≤ ρ {sub 0}≤  ρ {sub 0}{sup upper} verifies reasonably well against many dark matter dominated low surface brightness (LSB) galaxies for which values of ρ {sub 0} are independently known. The interval holds also in the case of Milky Way galaxy. Qualitatively, the existence of a stability induced upper limit  ρ {sub 0}{sup upper} is a remarkable prediction of the EiBI theory.« less

  18. Research Progresses of Halo Streams in the Solar Neighborhood

    NASA Astrophysics Data System (ADS)

    Xi-long, Liang; Jing-kun, Zhao; Yu-qin, Chen; Gang, Zhao

    2018-01-01

    The stellar streams originated from the Galactic halo may be detected when they pass by the solar neighborhood, and they still keep some information at their birth times. Thus, the investigation of halo streams in the solar neighborhood is very important for understanding the formation and evolution of our Galaxy. In this paper, the researches of halo streams in the solar neighborhood are briefly reviewed. We have introduced the methods how to detect the halo streams and identify their member stars, summarized the progresses in the observation of member stars of halo streams and in the study of their origins, introduced in detail how to analyze the origins of halo streams in the solar neighborhood by means of numerical simulation and chemical abundance, and finally discussed the prospects of the LAMOST and GAIA in the research of halo streams in the solar neighborhood.

  19. Modified dark matter: Relating dark energy, dark matter and baryonic matter

    NASA Astrophysics Data System (ADS)

    Edmonds, Douglas; Farrah, Duncan; Minic, Djordje; Ng, Y. Jack; Takeuchi, Tatsu

    Modified dark matter (MDM) is a phenomenological model of dark matter, inspired by gravitational thermodynamics. For an accelerating universe with positive cosmological constant (Λ), such phenomenological considerations lead to the emergence of a critical acceleration parameter related to Λ. Such a critical acceleration is an effective phenomenological manifestation of MDM, and it is found in correlations between dark matter and baryonic matter in galaxy rotation curves. The resulting MDM mass profiles, which are sensitive to Λ, are consistent with observational data at both the galactic and cluster scales. In particular, the same critical acceleration appears both in the galactic and cluster data fits based on MDM. Furthermore, using some robust qualitative arguments, MDM appears to work well on cosmological scales, even though quantitative studies are still lacking. Finally, we comment on certain nonlocal aspects of the quanta of modified dark matter, which may lead to novel nonparticle phenomenology and which may explain why, so far, dark matter detection experiments have failed to detect dark matter particles.

  20. The age of the galactic disk

    NASA Technical Reports Server (NTRS)

    Sandage, Allan

    1988-01-01

    The galactic disk is a dissipative structure and must, therefore be younger than the halo if galaxy formation generally proceeds by collapse. Just how much younger the oldest stars in the galactic disk are than the oldest halo stars remains an open question. A fast collapse (on a time scale no longer than the rotation period of the extended protogalaxy) permits an age gap of the order of approximately 10 to the 9th power years. A slow collapse, governed by the cooling rate of the partially pressure supported falling gas that formed into what is now the thick stellar disk, permits a longer age gap, claimed by some to be as long as 6 Gyr. Early methods of age dating the oldest components of the disk contain implicit assumptions concerning the details of the age-metallicity relation for stars in the solar neighborhood. The discovery that this relation for open clusters outside the solar circle is different that in the solar neighborhood (Geisler 1987), complicates the earlier arguments. The oldest stars in the galactic disk are at least as old as NGC 188. The new data by Janes on NGC 6791, shown first at this conference, suggest a disk age of at least 12.5 Gyr, as do data near the main sequence termination point of metal rich, high proper motion stars of low orbital eccentricity. Hence, a case can still be made that the oldest part of the galactic thick disk is similar in age to the halo globular clusters, if their ages are the same as 47 Tuc.

  1. Dynamics and X-ray emission of a galactic superwind interacting with disk and halo gas

    NASA Technical Reports Server (NTRS)

    Suchkov, Anatoly A.; Balsara, Dinshaw S.; Heckman, Timothy M.; Leitherner, Claus

    1994-01-01

    There is a general agreement that the conspicuous extranuclear X-ray, optical-line, and radio-contiuum emission of starbursts is associated with powerful galactic superwinds blowing from their centers. However, despite the significant advances in observational studies of superwinds, there is no consensus on the nature of the emitting material and even on the emission mechanisms themselves. This is to a great extent a consequence of a poor understanding of dynamical processes in the starburst superwind regions. To address this issue, we have conducted two-dimensional hydrodynamical simulations of galactic superwinds. While previous similar studies have used a single (disk) component to represent the ISM of the starburst galaxy, we analyze the interaction of the wind with a two-component disk-halo ambient interstellar medium and argue that this two-component representation is crucial for adequate modeling of starbursts. The emphasis of this study is on the geometry and structure of the wind region and the X-ray emission arising in the wind material and the shocked gas in the disk and the halo of the galaxy. The simulation results have shown that a clear-cut bipolar wind can easily develop under a range of very different conditions. On the other hand, a complex 'filamentary' structure associated with the entrained dense disk material is found to arise within the hot bubble blown out by the wind. The flow pattern within the bubble is dominated equally by the central biconic outflow and a system of whirling motions r elated to the origin and development of the 'filaments'. The filament parameters make them a good candidate for optical-emission-line filamentary gas observed in starburst halos. We find that the history of mass and energy deposition in the starburst region of the galaxy is crucial for wind dynamics. A 'mild' early wind, which arises as a result of the cumulative effect of stellar winds from massive stars, produces a bipolar vertical cavity in the disk and

  2. A balance for dark matter bound states

    NASA Astrophysics Data System (ADS)

    Nozzoli, F.

    2017-05-01

    Massive particles with self interactions of the order of 0.2 barn/GeV are intriguing Dark Matter candidates from an astrophysical point of view. Current and past experiments for direct detection of massive Dark Matter particles are focusing to relatively low cross sections with ordinary matter, however they cannot rule out very large cross sections, σ/M > 0.01 barn/GeV, due to atmosphere and material shielding. Cosmology places a strong indirect limit for the presence of large interactions among Dark Matter and baryons in the Universe, however such a limit cannot rule out the existence of a small sub-dominant component of Dark Matter with non negligible interactions with ordinary matter in our galactic halo. Here, the possibility of the existence of bound states with ordinary matter, for a similar Dark Matter candidate with not negligible interactions, is considered. The existence of bound states, with binding energy larger than ∼ 1 meV, would offer the possibility to test in laboratory capture cross sections of the order of a barn (or larger). The signature of the detection for a mass increasing of cryogenic samples, due to the possible particle accumulation, would allow the investigation of these Dark Matter candidates with mass up to the GUT scale. A proof of concept for a possible detection set-up and the evaluation of some noise sources are described.

  3. Testing approximate predictions of displacements of cosmological dark matter halos

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Munari, Emiliano; Monaco, Pierluigi; Borgani, Stefano

    We present a test to quantify how well some approximate methods, designed to reproduce the mildly non-linear evolution of perturbations, are able to reproduce the clustering of DM halos once the grouping of particles into halos is defined and kept fixed. The following methods have been considered: Lagrangian Perturbation Theory (LPT) up to third order, Truncated LPT, Augmented LPT, MUSCLE and COLA. The test runs as follows: halos are defined by applying a friends-of-friends (FoF) halo finder to the output of an N-body simulation. The approximate methods are then applied to the same initial conditions of the simulation, producing formore » all particles displacements from their starting position and velocities. The position and velocity of each halo are computed by averaging over the particles that belong to that halo, according to the FoF halo finder. This procedure allows us to perform a well-posed test of how clustering of the matter density and halo density fields are recovered, without asking to the approximate method an accurate reconstruction of halos. We have considered the results at z =0,0.5,1, and we have analysed power spectrum in real and redshift space, object-by-object difference in position and velocity, density Probability Distribution Function (PDF) and its moments, phase difference of Fourier modes. We find that higher LPT orders are generally able to better reproduce the clustering of halos, while little or no improvement is found for the matter density field when going to 2LPT and 3LPT. Augmentation provides some improvement when coupled with 2LPT, while its effect is limited when coupled with 3LPT. Little improvement is brought by MUSCLE with respect to Augmentation. The more expensive particle-mesh code COLA outperforms all LPT methods, and this is true even for mesh sizes as large as the inter-particle distance. This test sets an upper limit on the ability of these methods to reproduce the clustering of halos, for the cases when these

  4. Dissipative dark matter and the rotation curves of dwarf galaxies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Foot, R., E-mail: rfoot@unimelb.edu.au

    2016-07-01

    There is ample evidence from rotation curves that dark matter halos around disk galaxies have nontrivial dynamics. Of particular significance are: a) the cored dark matter profile of disk galaxies, b) correlations of the shape of rotation curves with baryonic properties, and c) Tully-Fisher relations. Dark matter halos around disk galaxies may have nontrivial dynamics if dark matter is strongly self interacting and dissipative. Multicomponent hidden sector dark matter featuring a massless 'dark photon' (from an unbroken dark U(1) gauge interaction) which kinetically mixes with the ordinary photon provides a concrete example of such dark matter. The kinetic mixing interactionmore » facilitates halo heating by enabling ordinary supernovae to be a source of these 'dark photons'. Dark matter halos can expand and contract in response to the heating and cooling processes, but for a sufficiently isolated halo could have evolved to a steady state or 'equilibrium' configuration where heating and cooling rates locally balance. This dynamics allows the dark matter density profile to be related to the distribution of ordinary supernovae in the disk of a given galaxy. In a previous paper a simple and predictive formula was derived encoding this relation. Here we improve on previous work by modelling the supernovae distribution via the measured UV and H α fluxes, and compare the resulting dark matter halo profiles with the rotation curve data for each dwarf galaxy in the LITTLE THINGS sample. The dissipative dark matter concept is further developed and some conclusions drawn.« less

  5. Exploring the Local Milky Way: M Dwarfs as Tracers of Galactic Populations

    DTIC Science & Technology

    2007-12-01

    dark matter cos- mology have sought to recreate the infant Galaxy, tracing the formation and collapse of baryons within the dark matter halo (Brook...with dark matter halo and interstellar material contri- butions, and the potential is computed using the Poisson equa- tion. Stars are then evolved

  6. Sagittarius A* as an origin of the Galactic PeV cosmic rays?

    NASA Astrophysics Data System (ADS)

    Fujita, Yutaka; Murase, Kohta; Kimura, Shigeo S.

    2017-04-01

    Supernova remnants (SNRs) have commonly been considered as a source of the observed PeV cosmic rays (CRs) or a Galactic PeV particle accelerator ("Pevatron"). In this work, we study Sagittarius A* (Sgr A*), which is the low-luminosity active galactic nucleus of the Milky Way Galaxy, as another possible canditate of the Pevatron, because it sometimes became very active in the past. We assume that a large number of PeV CRs were injected by Sgr A* at the outburst about 107 yr ago when the Fermi bubbles were created. We constrain the diffusion coefficient for the CRs in the Galactic halo on the condition that the CRs have arrived on the Earth by now, while a fairly large fraction of them have escaped from the halo. Based on a diffusion-halo model, we solve a diffusion equation for the CRs and compare the results with the CR spectrum on the Earth. The observed small anisotropy of the arrival directions of CRs may be explained if the diffusion coefficient in the Galactic disk is smaller than that in the halo. Our model predicts that a boron-to-carbon ratio should be energy-independent around the knee, where the CRs from Sgr A* become dominant. It is unlikely that the spectrum of the CRs accelerated at the outburst is represented by a power-law similar to the one for those responsible for the gamma-ray emission from the central molecular zone (CMZ) around the Galactic center.

  7. The Excursion Set Theory of Halo Mass Functions, Halo Clustering, and Halo Growth

    NASA Astrophysics Data System (ADS)

    Zentner, Andrew R.

    I review the excursion set theory with particular attention toward applications to cold dark matter halo formation and growth, halo abundance, and halo clustering. After a brief introduction to notation and conventions, I begin by recounting the heuristic argument leading to the mass function of bound objects given by Press and Schechter. I then review the more formal derivation of the Press-Schechter halo mass function that makes use of excursion sets of the density field. The excursion set formalism is powerful and can be applied to numerous other problems. I review the excursion set formalism for describing both halo clustering and bias and the properties of void regions. As one of the most enduring legacies of the excursion set approach and one of its most common applications, I spend considerable time reviewing the excursion set theory of halo growth. This section of the review culminates with the description of two Monte Carlo methods for generating ensembles of halo mass accretion histories. In the last section, I emphasize that the standard excursion set approach is the result of several simplifying assumptions. Dropping these assumptions can lead to more faithful predictions and open excursion set theory to new applications. One such assumption is that the height of the barriers that define collapsed objects is a constant function of scale. I illustrate the implementation of the excursion set approach for barriers of arbitrary shape. One such application is the now well-known improvement of the excursion set mass function derived from the "moving" barrier for ellipsoidal collapse. I also emphasize that the statement that halo accretion histories are independent of halo environment in the excursion set approach is not a general prediction of the theory. It is a simplifying assumption. I review the method for constructing correlated random walks of the density field in the more general case. I construct a simple toy model to illustrate that excursion set

  8. The Outer Halos of Early-Type Galaxies

    NASA Astrophysics Data System (ADS)

    Gerhard, Ortwin; Arnaboldi, Magda; Longobardi, Alessia

    2015-04-01

    The outer halos of massive early-type galaxies (ETGs) are dark matter dominated and may have formed by accretion of smaller systems during galaxy evolution. Here a brief report is given of some recent work on the kinematics, angular momentum, and mass distributions of simulated ETG halos, and of corresponding properties of observed halos measured with planetary nebulae (PNe) as tracers. In the outermost regions of the Virgo-central galaxy M87, the PN data show that the stellar halo and the co-spatial intracluster light are distinct kinematic components.

  9. Antimatter cosmic rays from dark matter annihilation: First results from an N-body experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lavalle, J.; Nezri, E.; Athanassoula, E.

    2008-11-15

    While the particle hypothesis for dark matter may be very soon investigated at the LHC, and as the PAMELA and GLAST satellites are currently taking new data on charged and gamma cosmic rays, the need of controlling the theoretical uncertainties affecting the possible indirect signatures of dark matter annihilation is of paramount importance. The uncertainties which originate from the dark matter distribution are difficult to estimate because current astrophysical observations provide rather weak dynamical constraints and because, according to cosmological N-body simulations, dark matter is neither smoothly nor spherically distributed in galactic halos. Some previous studies made use of N-bodymore » simulations to compute the {gamma}-ray flux from dark matter annihilation, but such a work has never been performed for the antimatter (positron and antiproton) primary fluxes, for which transport processes complicate the calculations. We take advantage of the galaxylike 3D dark matter map extracted from the Horizon Project results to calculate the positron and antiproton fluxes from dark matter annihilation, in a model-independent approach as well as for dark matter particle benchmarks relevant at the LHC scale (from supersymmetric and extradimensional theories). We find that the flux uncertainties arise mainly from fluctuations of the local dark matter density, and are of {approx}1 order of magnitude. We compare our results to analytic descriptions of the dark matter halo, showing how the latter can well reproduce the former. The overall antimatter predictions associated with our benchmark models are shown to lie far below the existing measurements and, in particular, that of the positron fraction recently reported by PAMELA, and far below the background predictions as well. Finally, we stress the limits of the use of an N-body framework in this context.« less

  10. CO-ORBITING PLANES OF SUB-HALOS ARE SIMILARLY UNLIKELY AROUND PAIRED AND ISOLATED HOSTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pawlowski, Marcel S.; McGaugh, Stacy S., E-mail: marcel.pawlowski@case.edu

    2014-07-01

    Sub-halos in dark-matter-based cosmological simulations tend to be distributed approximately isotropically around their host. The existence of highly flattened, co-orbiting planes of satellite galaxies has therefore been identified as a possible problem for these cosmological models, but so far studies have not considered the hosts' environments. That satellite planes are now known around both major galaxies in the Local Group raises the question whether they are more likely to be found around paired hosts. In a first attempt to investigate this possibility, we focus on the flattening and orbital coherence of the 11 brightest satellite galaxies of the vast polarmore » structure (VPOS) around the Milky Way (MW). We search for VPOS analogs in the ''Exploring the Local Volume in Simulations'' suite of cosmological simulations, which consist of 24 paired and 24 isolated host halos. We do not find significant differences between the properties of sub-halo distributions around paired and isolated hosts. The observed flattening and the observed orbital alignment are each reproduced by only 0.2%-2% of paired and isolated systems incorporating the obscuration of satellites by randomly oriented galactic disks. Only 1 of all 4800 analyzed realizations (0.02%) reproduces both parameters simultaneously, but the average orbital pole of this sub-halo system does not align as well with the normal to the plane fit as observed. That the MW is part of a galaxy pair thus does not help to explain the existence of the VPOS if the satellite galaxies are identified with sub-halos found in dissipationless simulations.« less

  11. Indirect searches of Galactic diffuse dark matter in INO-MagICAL detector

    DOE PAGES

    Khatun, Amina; Laha, Ranjan; Agarwalla, Sanjib Kumar

    2017-06-12

    Here, the signatures for the existence of dark matter are revealed only through its gravitational interaction. Theoretical arguments support that the Weakly Interacting Massive Particle (WIMP) can be a class of dark matter and it can annihilate and/or decay to Standard Model particles, among which neutrino is a favorable candidate. We show that the proposed 50 kt Magnetized Iron CALorimeter (MagICAL) detector under the India-based Neutrino Observatory (INO) project can play an important role in the indirect searches of Galactic diffuse dark matter in the neutrino and antineutrino mode separately. We present the sensitivity of 500 kt·yr MagICAL detector to set limits on the velocity-averaged self-annihilation cross-section (more » $$\\langle$$σv$$\\rangle$$) and decay lifetime (τ) of dark matter having mass in the range of 2 GeV ≤ m χ ≤ 90 GeV and 4 GeV ≤ m χ ≤ 180 GeV respectively, assuming no excess over the conventional atmospheric neutrino and antineutrino fluxes at the INO site. Our limits for low mass dark matter constrain the parameter space which has not been explored before. We show that MagICAL will be able to set competitive constraints, $$\\langle$$σv$$\\rangle$$ ≤ 1.87 × 10 -24 cm 3 s -1 for χχ→$$ν\\overline{v}$$ χχ→$$ν\\overline{v}$$ and τ ≥ 4.8 × 10 24s for χ → $$ν\\overline{v}$$ χ → $$ν\\overline{v}$$ at 90% C.L. (1 d.o.f.) for m χ = 10 GeV assuming the NFW as dark matter density profile.« less

  12. Indirect searches of Galactic diffuse dark matter in INO-MagICAL detector

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khatun, Amina; Laha, Ranjan; Agarwalla, Sanjib Kumar

    Here, the signatures for the existence of dark matter are revealed only through its gravitational interaction. Theoretical arguments support that the Weakly Interacting Massive Particle (WIMP) can be a class of dark matter and it can annihilate and/or decay to Standard Model particles, among which neutrino is a favorable candidate. We show that the proposed 50 kt Magnetized Iron CALorimeter (MagICAL) detector under the India-based Neutrino Observatory (INO) project can play an important role in the indirect searches of Galactic diffuse dark matter in the neutrino and antineutrino mode separately. We present the sensitivity of 500 kt·yr MagICAL detector to set limits on the velocity-averaged self-annihilation cross-section (more » $$\\langle$$σv$$\\rangle$$) and decay lifetime (τ) of dark matter having mass in the range of 2 GeV ≤ m χ ≤ 90 GeV and 4 GeV ≤ m χ ≤ 180 GeV respectively, assuming no excess over the conventional atmospheric neutrino and antineutrino fluxes at the INO site. Our limits for low mass dark matter constrain the parameter space which has not been explored before. We show that MagICAL will be able to set competitive constraints, $$\\langle$$σv$$\\rangle$$ ≤ 1.87 × 10 -24 cm 3 s -1 for χχ→$$ν\\overline{v}$$ χχ→$$ν\\overline{v}$$ and τ ≥ 4.8 × 10 24s for χ → $$ν\\overline{v}$$ χ → $$ν\\overline{v}$$ at 90% C.L. (1 d.o.f.) for m χ = 10 GeV assuming the NFW as dark matter density profile.« less

  13. Robust Constraints and Novel Gamma-Ray Signatures of Dark Matter That Interacts Strongly With Nucleons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hooper, Dan; McDermott, Samuel D.

    Due to shielding, direct detection experiments are in some cases insensitive to dark matter candidates with very large scattering cross sections with nucleons. In this paper, we revisit this class of models, and derive a simple analytic criterion for conservative but robust direct detection limits. While large spin-independent cross sections seem to be ruled out, we identify potentially viable parameter space for dark matter with a spin-dependent cross section with nucleons in the range ofmore » $$10^{-27} {\\rm cm}^2 < \\sigma_{{\\rm DM}-p} < 10^{-24} \\, {\\rm cm}^{2}$$. With these parameters, cosmic-ray scattering with dark matter in the extended halo of the Milky Way could generate a novel and distinctive gamma-ray signal at high galactic latitudes. Such a signal could be observable by Fermi or future space-based gamma-ray telescopes.« less

  14. Halo assembly bias and the tidal anisotropy of the local halo environment

    NASA Astrophysics Data System (ADS)

    Paranjape, Aseem; Hahn, Oliver; Sheth, Ravi K.

    2018-05-01

    We study the role of the local tidal environment in determining the assembly bias of dark matter haloes. Previous results suggest that the anisotropy of a halo's environment (i.e. whether it lies in a filament or in a more isotropic region) can play a significant role in determining the eventual mass and age of the halo. We statistically isolate this effect, using correlations between the large-scale and small-scale environments of simulated haloes at z = 0 with masses between 1011.6 ≲ (m/h-1 M⊙) ≲ 1014.9. We probe the large-scale environment, using a novel halo-by-halo estimator of linear bias. For the small-scale environment, we identify a variable αR that captures the tidal anisotropy in a region of radius R = 4R200b around the halo and correlates strongly with halo bias at fixed mass. Segregating haloes by αR reveals two distinct populations. Haloes in highly isotropic local environments (αR ≲ 0.2) behave as expected from the simplest, spherically averaged analytical models of structure formation, showing a negative correlation between their concentration and large-scale bias at all masses. In contrast, haloes in anisotropic, filament-like environments (αR ≳ 0.5) tend to show a positive correlation between bias and concentration at any mass. Our multiscale analysis cleanly demonstrates how the overall assembly bias trend across halo mass emerges as an average over these different halo populations, and provides valuable insights towards building analytical models that correctly incorporate assembly bias. We also discuss potential implications for the nature and detectability of galaxy assembly bias.

  15. Discretising the velocity distribution for directional dark matter experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kavanagh, Bradley J., E-mail: bradley.kavanagh@cea.fr

    2015-07-01

    Dark matter (DM) direct detection experiments which are directionally-sensitive may be the only method of probing the full velocity distribution function (VDF) of the Galactic DM halo. We present an angular basis for the DM VDF which can be used to parametrise the distribution in order to mitigate astrophysical uncertainties in future directional experiments and extract information about the DM halo. This basis consists of discretising the VDF in a series of angular bins, with the VDF being only a function of the DM speed v within each bin. In contrast to other methods, such as spherical harmonic expansions, themore » use of this basis allows us to guarantee that the resulting VDF is everywhere positive and therefore physical. We present a recipe for calculating the event rates corresponding to the discrete VDF for an arbitrary number of angular bins N and investigate the discretisation error which is introduced in this way. For smooth, Standard Halo Model-like distribution functions, only N=3 angular bins are required to achieve an accuracy of around 01–30% in the number of events in each bin. Shortly after confirmation of the DM origin of the signal with around 50 events, this accuracy should be sufficient to allow the discretised velocity distribution to be employed reliably. For more extreme VDFs (such as streams), the discretisation error is typically much larger, but can be improved with increasing N. This method paves the way towards an astrophysics-independent analysis framework for the directional detection of dark matter.« less

  16. Discretising the velocity distribution for directional dark matter experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kavanagh, Bradley J.; School of Physics & Astronomy, University of Nottingham,University Park, Nottingham, NG7 2RD

    2015-07-13

    Dark matter (DM) direct detection experiments which are directionally-sensitive may be the only method of probing the full velocity distribution function (VDF) of the Galactic DM halo. We present an angular basis for the DM VDF which can be used to parametrise the distribution in order to mitigate astrophysical uncertainties in future directional experiments and extract information about the DM halo. This basis consists of discretising the VDF in a series of angular bins, with the VDF being only a function of the DM speed v within each bin. In contrast to other methods, such as spherical harmonic expansions, themore » use of this basis allows us to guarantee that the resulting VDF is everywhere positive and therefore physical. We present a recipe for calculating the event rates corresponding to the discrete VDF for an arbitrary number of angular bins N and investigate the discretisation error which is introduced in this way. For smooth, Standard Halo Model-like distribution functions, only N=3 angular bins are required to achieve an accuracy of around 10–30% in the number of events in each bin. Shortly after confirmation of the DM origin of the signal with around 50 events, this accuracy should be sufficient to allow the discretised velocity distribution to be employed reliably. For more extreme VDFs (such as streams), the discretisation error is typically much larger, but can be improved with increasing N. This method paves the way towards an astrophysics-independent analysis framework for the directional detection of dark matter.« less

  17. The Galactic Isotropic γ-ray Background and Implications for Dark Matter

    NASA Astrophysics Data System (ADS)

    Campbell, Sheldon S.; Kwa, Anna; Kaplinghat, Manoj

    2018-06-01

    We present an analysis of the radial angular profile of the galacto-isotropic (GI) γ-ray flux-the statistically uniform flux in angular annuli centred on the Galactic centre. Two different approaches are used to measure the GI flux profile in 85 months of Fermi-LAT data: the BDS statistical method which identifies spatial correlations, and a new Poisson ordered-pixel method which identifies non-Poisson contributions. Both methods produce similar GI flux profiles. The GI flux profile is well-described by an existing model of bremsstrahlung, π0 production, inverse Compton scattering, and the isotropic background. Discrepancies with data in our full-sky model are not present in the GI component, and are therefore due to mis-modelling of the non-GI emission. Dark matter annihilation constraints based solely on the observed GI profile are close to the thermal WIMP cross section below 100 GeV, for fixed models of the dark matter density profile and astrophysical γ-ray foregrounds. Refined measurements of the GI profile are expected to improve these constraints by a factor of a few.

  18. Doppler effect on indirect detection of dark matter using dark matter only simulations

    DOE PAGES

    Powell, Devon; Laha, Ranjan; Ng, Kenny C. Y.; ...

    2017-03-15

    Indirect detection of dark matter is a major avenue for discovery. However, baryonic backgrounds are diverse enough to mimic many possible signatures of dark matter. In this work, we study the newly proposed technique of dark matter velocity spectroscopy. The nonrotating dark matter halo and the Solar motion produce a distinct longitudinal dependence of the signal which is opposite in direction to that produced by baryons. Using collisionless dark matter only simulations of Milky Way like halos, we show that this new signature is robust and holds great promise. We develop mock observations by a high energy resolution x-ray spectrometermore » on a sounding rocket, the Micro-X experiment, to our test case, the 3.5 keV line. We show that by using six different pointings, Micro-X can exclude a constant line energy over various longitudes at ≥ 3σ. As a result, the halo triaxiality is an important effect, and it will typically reduce the significance of this signal. We emphasize that this new smoking gun in motion signature of dark matter is general and is applicable to any dark matter candidate which produces a sharp photon feature in annihilation or decay.« less

  19. Doppler effect on indirect detection of dark matter using dark matter only simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Powell, Devon; Laha, Ranjan; Ng, Kenny C. Y.

    Indirect detection of dark matter is a major avenue for discovery. However, baryonic backgrounds are diverse enough to mimic many possible signatures of dark matter. In this work, we study the newly proposed technique of dark matter velocity spectroscopy. The nonrotating dark matter halo and the Solar motion produce a distinct longitudinal dependence of the signal which is opposite in direction to that produced by baryons. Using collisionless dark matter only simulations of Milky Way like halos, we show that this new signature is robust and holds great promise. We develop mock observations by a high energy resolution x-ray spectrometermore » on a sounding rocket, the Micro-X experiment, to our test case, the 3.5 keV line. We show that by using six different pointings, Micro-X can exclude a constant line energy over various longitudes at ≥ 3σ. As a result, the halo triaxiality is an important effect, and it will typically reduce the significance of this signal. We emphasize that this new smoking gun in motion signature of dark matter is general and is applicable to any dark matter candidate which produces a sharp photon feature in annihilation or decay.« less

  20. Supernova explosions in magnetized, primordial dark matter haloes

    NASA Astrophysics Data System (ADS)

    Seifried, D.; Banerjee, R.; Schleicher, D.

    2014-05-01

    The first supernova explosions are potentially relevant sources for the production of the first large-scale magnetic fields. For this reason, we present a set of high-resolution simulations studying the effect of supernova explosions on magnetized, primordial haloes. We focus on the evolution of an initially small-scale magnetic field formed during the collapse of the halo. We vary the degree of magnetization, the halo mass, and the amount of explosion energy in order to account for expected variations as well as to infer systematical dependences of the results on initial conditions. Our simulations suggest that core collapse supernovae with an explosion energy of 1051 erg and more violent pair instability supernovae with 1053 erg are able to disrupt haloes with masses up to about 106 and 107 M⊙, respectively. The peak of the magnetic field spectra shows a continuous shift towards smaller k-values, i.e. larger length scales, over time reaching values as low as k = 4. On small scales, the magnetic energy decreases at the cost of the energy on large scales resulting in a well-ordered magnetic field with a strength up to ˜10-8 G depending on the initial conditions. The coherence length of the magnetic field inferred from the spectra reaches values up to 250 pc in agreement with those obtained from autocorrelation functions. We find the coherence length to be as large as 50 per cent of the radius of the supernova bubble. Extrapolating this relation to later stages, we suggest that significantly strong magnetic fields with coherence lengths as large as 1.5 kpc could be created. We discuss possible implications of our results on processes like recollapse of the halo, first galaxy formation, and the magnetization of the intergalactic medium.

  1. The age of the galactic disk

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sandage, A.

    The galactic disk is a dissipative structure and must, therefore be younger than the halo if galaxy formation generally proceeds by collapse. Just how much younger the oldest stars in the galactic disk are than the oldest halo stars remains an open question. A fast collapse (on a time scale no longer than the rotation period of the extended protogalaxy) permits an age gap of the order of approximately 10 to the 9th power years. A slow collapse, governed by the cooling rate of the partially pressure supported falling gas that formed into what is now the thick stellar disk,more » permits a longer age gap, claimed by some to be as long as 6 Gyr. Early methods of age dating the oldest components of the disk contain implicit assumptions concerning the details of the age-metallicity relation for stars in the solar neighborhood. The discovery that this relation for open clusters outside the solar circle is different that in the solar neighborhood (Geisler 1987), complicates the earlier arguments. The oldest stars in the galactic disk are at least as old as NGC 188. The new data by Janes on NGC 6791, shown first at this conference, suggest a disk age of at least 12.5 Gyr, as do data near the main sequence termination point of metal rich, high proper motion stars of low orbital eccentricity. Hence, a case can still be made that the oldest part of the galactic thick disk is similar in age to the halo globular clusters, if their ages are the same as 47 Tuc.« less

  2. Updated collider and direct detection constraints on Dark Matter models for the Galactic Center gamma-ray excess

    DOE PAGES

    Escudero, Miguel; Hooper, Dan; Witte, Samuel J.

    2017-02-20

    Utilizing an exhaustive set of simplified models, we revisit dark matter scenarios potentially capable of generating the observed Galactic Center gamma-ray excess, updating constraints from the LUX and PandaX-II experiments, as well as from the LHC and other colliders. We identify a variety of pseudoscalar mediated models that remain consistent with all constraints. In contrast, dark matter candidates which annihilate through a spin-1 mediator are ruled out by direct detection constraints unless the mass of the mediator is near an annihilation resonance, or the mediator has a purely vector coupling to the dark matter and a purely axial coupling tomore » Standard Model fermions. Furthermore, all scenarios in which the dark matter annihilates through t-channel processes are now ruled out by a combination of the constraints from LUX/PandaX-II and the LHC.« less

  3. Two chemically similar stellar overdensities on opposite sides of the plane of the Galactic disk

    NASA Astrophysics Data System (ADS)

    Bergemann, Maria; Sesar, Branimir; Cohen, Judith G.; Serenelli, Aldo M.; Sheffield, Allyson; Li, Ting S.; Casagrande, Luca; Johnston, Kathryn V.; Laporte, Chervin F. P.; Price-Whelan, Adrian M.; Schönrich, Ralph; Gould, Andrew

    2018-03-01

    Our Galaxy is thought to have an active evolutionary history, dominated over the past ten billion years or so by star formation, the accretion of cold gas and, in particular, the merging of clumps of baryonic and dark matter. The stellar halo—the faint, roughly spherical component of the Galaxy—reveals rich ‘fossil’ evidence of these interactions, in the form of stellar streams, substructures and chemically distinct stellar components. The effects of interactions with dwarf galaxies on the content and morphology of the Galactic disk are still being explored. Recent studies have identified kinematically distinct stellar substructures and moving groups of stars in our Galaxy, which may have extragalactic origins. There is also mounting evidence that stellar overdensities (regions with greater-than-average stellar density) at the interface between the outer disk and the halo could have been caused by the interaction of a dwarf galaxy with the disk. Here we report a spectroscopic analysis of 14 stars from two stellar overdensities, each lying about five kiloparsecs above or below the Galactic plane—locations suggestive of an association with the stellar halo. We find that the chemical compositions of these two groups of stars are almost identical, both within and between these overdensities, and closely match the abundance patterns of stars in the Galactic disk. We conclude that these stars came from the disk, and that the overdensities that they are part of were created by tidal interactions of the disk with passing or merging dwarf galaxies.

  4. The shape of galaxy dark matter halos in massive galaxy clusters: Insights from strong gravitational lensing

    NASA Astrophysics Data System (ADS)

    Jauzac, Mathilde; Harvey, David; Massey, Richard

    2018-04-01

    We assess how much unused strong lensing information is available in the deep Hubble Space Telescope imaging and VLT/MUSE spectroscopy of the Frontier Field clusters. As a pilot study, we analyse galaxy cluster MACS J0416.1-2403 (z=0.397, M(R < 200 kpc)=1.6×1014M⊙), which has 141 multiple images with spectroscopic redshifts. We find that many additional parameters in a cluster mass model can be constrained, and that adding even small amounts of extra freedom to a model can dramatically improve its figures of merit. We use this information to constrain the distribution of dark matter around cluster member galaxies, simultaneously with the cluster's large-scale mass distribution. We find tentative evidence that some galaxies' dark matter has surprisingly similar ellipticity to their stars (unlike in the field, where it is more spherical), but that its orientation is often misaligned. When non-coincident dark matter and stellar halos are allowed, the model improves by 35%. This technique may provide a new way to investigate the processes and timescales on which dark matter is stripped from galaxies as they fall into a massive cluster. Our preliminary conclusions will be made more robust by analysing the remaining five Frontier Field clusters.

  5. The shape of galaxy dark matter haloes in massive galaxy clusters: insights from strong gravitational lensing

    NASA Astrophysics Data System (ADS)

    Jauzac, Mathilde; Harvey, David; Massey, Richard

    2018-07-01

    We assess how much unused strong lensing information is available in the deep Hubble Space Telescope imaging and Very Large Telescope/Multi Unit Spectroscopic Explorer spectroscopy of the Frontier Field clusters. As a pilot study, we analyse galaxy cluster MACS J0416.1-2403 (z = 0.397, M(R < 200 kpc) = 1.6 × 1014 M⊙), which has 141 multiple images with spectroscopic redshifts. We find that many additional parameters in a cluster mass model can be constrained, and that adding even small amounts of extra freedom to a model can dramatically improve its figures of merit. We use this information to constrain the distribution of dark matter around cluster member galaxies, simultaneously with the cluster's large-scale mass distribution. We find tentative evidence that some galaxies' dark matter has surprisingly similar ellipticity to their stars (unlike in the field, where it is more spherical), but that its orientation is often misaligned. When non-coincident dark matter and stellar haloes are allowed, the model improves by 35 per cent. This technique may provide a new way to investigate the processes and time-scales on which dark matter is stripped from galaxies as they fall into a massive cluster. Our preliminary conclusions will be made more robust by analysing the remaining five Frontier Field clusters.

  6. Deep photometry of two accreted families of globular clusters in the remote M31 halo

    NASA Astrophysics Data System (ADS)

    Mackey, Dougal

    2013-10-01

    Globular clusters {GCs} are fossil relics from which we can obtain critical insights into the merger and accretion events that underlie hierarchical galaxy assembly. As part of the major Pan-Andromeda Archaeological Survey {PAndAS} we have discovered two groups of GCs that closely trace narrow stellar debris streams in the M31 halo. These clearly represent two distinct accreted families of GCs - the only known examples apart from the few Galactic GCs arriving with the Sagittarius dwarf. We propose to obtain deep ACS imaging of 14 GCs spanning these two accreted families, allowing us to measure the constituent stellar populations, line-of-sight distance, and structural parameters of each object. We will, for the first time, quantify the typical properties of accreted GCs in the M31 halo as well as the degree of variation amongst them, and how closely they correspond to the suspected accreted GC population in the Milky Way. Combined with new radial velocity measurements for the GCs, our proposed observations will allow us to trace the 3D orbits of the two streams within the M31 halo, and thus break the main degeneracies that plague numerical models designed to probe the gravitational potential and distribution of dark mass.

  7. LEAVING THE DARK AGES WITH AMIGA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Manrique, Alberto; Salvador-Solé, Eduard; Juan, Enric

    2015-01-01

    We present an Analytic Model of Intergalactic-medium and GAlaxy (AMIGA) evolution since the dark ages. AMIGA is in the spirit of the popular semi-analytic models of galaxy formation, although it does not use halo merger trees but interpolates halo properties in grids that are progressively built. This strategy is less memory-demanding and allows one to start modeling at sufficiently high redshifts and low halo masses to have trivial boundary conditions. The number of free parameters is minimized by making a causal connection between physical processes usually treated as independent of each other, which leads to more reliable predictions. However, themore » strongest points of AMIGA are the following: (1) the inclusion of molecular cooling and metal-poor, population III (Pop III) stars with the most dramatic feedback and (2) accurate follow up of the temperature and volume filling factor of neutral, singly ionized, and doubly ionized regions, taking into account the distinct halo mass functions in those environments. We find the following general results. Massive Pop III stars determine the intergalactic medium metallicity and temperature, and the growth of spheroids and disks is self-regulated by that of massive black holes (MBHs) developed from the remnants of those stars. However, the properties of normal galaxies and active galactic nuclei appear to be quite insensitive to Pop III star properties due to the much higher yield of ordinary stars compared to Pop III stars and the dramatic growth of MBHs when normal galaxies begin to develop, which cause the memory loss of the initial conditions.« less

  8. The role of self-interacting right-handed neutrinos in galactic structure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Argüelles, C.R.; Rueda, J.A.; Ruffini, R.

    2016-04-01

    It has been shown previously that the DM in galactic halos can be explained by a self-gravitating system of massive keV fermions ('inos') in thermodynamic equilibrium, and predicted the existence of a denser quantum core of inos towards the center of galaxies. In this article we show that the inclusion of self-interactions among the inos, modeled within a relativistic mean-field-theory approach, allows the quantum core to become massive and compact enough to explain the dynamics of the S-cluster stars closest to the Milky Way's galactic center. The application of this model to other galaxies such as large elliptical harboring massivemore » central dark objects of ∼ 10{sup 9} M {sub ⊙} is also investigated. We identify these interacting inos with sterile right-handed neutrinos pertaining to minimal extensions of the Standard Model, and calculate the corresponding total cross-section σ within an electroweak-like formalism to be compared with other observationally inferred cross-section estimates. The coincidence of an ino mass range of few tens of keV derived here only from the galactic structure, with the range obtained independently from other astrophysical and cosmological constraints, points towards an important role of the right-handed neutrinos in the cosmic structure.« less

  9. ISW-galaxy cross correlation: a probe of dark energy clustering and distribution of dark matter tracers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khosravi, Shahram; Mollazadeh, Amir; Baghram, Shant, E-mail: khosravi_sh@khu.ac.ir, E-mail: amirmollazadeh@khu.ac.ir, E-mail: baghram@sharif.edu

    2016-09-01

    Cross correlation of the Integrated Sachs-Wolfe signal (ISW) with the galaxy distribution in late time is a promising tool for constraining the dark energy properties. Here, we study the effect of dark energy clustering on the ISW-galaxy cross correlation and demonstrate the fact that the bias parameter between the distribution of the galaxies and the underlying dark matter introduces a degeneracy and complications. We argue that as the galaxy's host halo formation time is different from the observation time, we have to consider the evolution of the halo bias parameter. It will be shown that any deviation from ΛCDM modelmore » will change the evolution of the bias as well. Therefore, it is deduced that the halo bias depends strongly on the sub-sample of galaxies which is chosen for cross correlation and that the joint kernel of ISW effect and the galaxy distribution has a dominant effect on the observed signal. In this work, comparison is made specifically between the clustered dark energy models using two samples of galaxies. The first one is a sub-sample of galaxies from Sloan Digital Sky Survey, chosen with the r-band magnitude 18 < r < 21 and the dark matter halo host of mass M ∼10{sup 12} M {sub ⊙} and formation redshift of z {sub f} ∼ 2.5. The second one is the sub-sample of Luminous Red galaxies with the dark matter halo hosts of mass M ∼ 10{sup 13} M {sub ⊙} and formation redshift of z {sub f} ∼ 2.0. Using the evolved bias we improve the χ{sup 2} for the ΛCDM which reconciles the ∼1σ-2σ tension of the ISW-galaxy signal with ΛCDM prediction. Finally, we study the parameter estimation of a dark energy model with free parameters w {sub 0} and w {sub a} in the equation of state w {sub de} = w {sub 0} + w {sub az} /(1+ z ) with the constant bias parameter and also with an evolved bias model with free parameters of galaxy's host halo mass and the halo formation redshift.« less

  10. Collapsed Dark Matter Structures

    NASA Astrophysics Data System (ADS)

    Buckley, Matthew R.; DiFranzo, Anthony

    2018-02-01

    The distributions of dark matter and baryons in the Universe are known to be very different: The dark matter resides in extended halos, while a significant fraction of the baryons have radiated away much of their initial energy and fallen deep into the potential wells. This difference in morphology leads to the widely held conclusion that dark matter cannot cool and collapse on any scale. We revisit this assumption and show that a simple model where dark matter is charged under a "dark electromagnetism" can allow dark matter to form gravitationally collapsed objects with characteristic mass scales much smaller than that of a Milky-Way-type galaxy. Though the majority of the dark matter in spiral galaxies would remain in the halo, such a model opens the possibility that galaxies and their associated dark matter play host to a significant number of collapsed substructures. The observational signatures of such structures are not well explored but potentially interesting.

  11. Collapsed Dark Matter Structures.

    PubMed

    Buckley, Matthew R; DiFranzo, Anthony

    2018-02-02

    The distributions of dark matter and baryons in the Universe are known to be very different: The dark matter resides in extended halos, while a significant fraction of the baryons have radiated away much of their initial energy and fallen deep into the potential wells. This difference in morphology leads to the widely held conclusion that dark matter cannot cool and collapse on any scale. We revisit this assumption and show that a simple model where dark matter is charged under a "dark electromagnetism" can allow dark matter to form gravitationally collapsed objects with characteristic mass scales much smaller than that of a Milky-Way-type galaxy. Though the majority of the dark matter in spiral galaxies would remain in the halo, such a model opens the possibility that galaxies and their associated dark matter play host to a significant number of collapsed substructures. The observational signatures of such structures are not well explored but potentially interesting.

  12. Angular momentum properties of haloes and their baryon content in the Illustris simulation

    NASA Astrophysics Data System (ADS)

    Zjupa, Jolanta; Springel, Volker

    2017-04-01

    The angular momentum properties of virialized dark matter haloes have been measured with good statistics in collisionless N-body simulations, but an equally accurate analysis of the baryonic spin is still missing. We employ the Illustris simulation suite, one of the first simulations of galaxy formation with full hydrodynamics that produces a realistic galaxy population in a sizeable volume, to quantify the baryonic spin properties for more than ˜320 000 haloes. We first compare the systematic differences between different spin parameter and halo definitions, and the impact of sample selection criteria on the derived properties. We confirm that dark-matter-only haloes exhibit a close to self-similar spin distribution in mass and redshift of lognormal form. However, the physics of galaxy formation radically changes the baryonic spin distribution. While the dark matter component remains largely unaffected, strong trends with mass and redshift appear for the spin of diffuse gas and the formed stellar component. With time, the baryons staying bound to the halo develop a misalignment of their spin vector with respect to dark matter, and increase their specific angular momentum by a factor of ˜1.3 in the non-radiative case and ˜1.8 in the full physics setup at z = 0. We show that this enhancement in baryonic spin can be explained by the combined effect of specific angular momentum transfer from dark matter on to gas during mergers and from feedback expelling low specific angular momentum gas from the halo. Our results challenge certain models for spin evolution and underline the significant changes induced by baryonic physics in the structure of haloes.

  13. Searching for Galactic hidden gas through interstellar scintillation: results from a test with the NTT-SOFI detector

    NASA Astrophysics Data System (ADS)

    Habibi, F.; Moniez, M.; Ansari, R.; Rahvar, S.

    2011-01-01

    Aims: Stars twinkle because their light propagates through the atmosphere. The same phenomenon is expected at a longer time scale when the light of remote stars crosses an interstellar molecular cloud, but it has never been observed at optical wavelength. In a favorable case, the light of a background star can be subject to stochastic fluctuations on the order of a few percent at a characteristic time scale of a few minutes. Our ultimate aim is to discover or exclude these scintillation effects to estimate the contribution of molecular hydrogen to the Galactic baryonic hidden mass. This feasibility study is a pathfinder toward an observational strategy to search for scintillation, probing the sensitivity of future surveys and estimating the background level. Methods: We searched for scintillation induced by molecular gas in visible dark nebulae as well as by hypothetical halo clumpuscules of cool molecular hydrogen (H2-He) during two nights. We took long series of 10 s infrared exposures with the ESO-NTT telescope toward stellar populations located behind visible nebulae and toward the Small Magellanic Cloud (SMC). We therefore searched for stars exhibiting stochastic flux variations similar to what is expected from the scintillation effect. According to our simulations of the scintillation process, this search should allow one to detect (stochastic) transverse gradients of column density in cool Galactic molecular clouds of order of ~ 3 × 10-5 g/cm2/10 000 km. Results: We found one light-curve that is compatible with a strong scintillation effect through a turbulent structure characterized by a diffusion radius Rdiff < 100 km in the B68 nebula. Complementary observations are needed to clarify the status of this candidate, and no firm conclusion can be established from this single observation. We can also infer limits on the existence of turbulent dense cores (of number density n > 109 cm-3) within the dark nebulae. Because no candidate is found toward the SMC, we

  14. The MUSE Hubble Ultra Deep Field Survey. VIII. Extended Lyman-α haloes around high-z star-forming galaxies

    NASA Astrophysics Data System (ADS)

    Leclercq, Floriane; Bacon, Roland; Wisotzki, Lutz; Mitchell, Peter; Garel, Thibault; Verhamme, Anne; Blaizot, Jérémy; Hashimoto, Takuya; Herenz, Edmund Christian; Conseil, Simon; Cantalupo, Sebastiano; Inami, Hanae; Contini, Thierry; Richard, Johan; Maseda, Michael; Schaye, Joop; Marino, Raffaella Anna; Akhlaghi, Mohammad; Brinchmann, Jarle; Carollo, Marcella

    2017-11-01

    We report the detection of extended Lyα haloes around 145 individual star-forming galaxies at redshifts 3 ≤ z ≤ 6 in the Hubble Ultra Deep Field observed with the Multi-Unit Spectroscopic Explorer (MUSE) at ESO-VLT. Our sample consists of continuum-faint (- 15 ≥ MUV ≥ -22) Lyα emitters (LAEs). Using a 2D, two-component (continuum-like and halo) decomposition of Lyα emission assuming circular exponential distributions, we measure scale lengths and luminosities of Lyα haloes. We find that 80% of our objects having reliable Lyα halo measurements show Lyα emission that is significantly more extended than the UV continuum detected by HST (by a factor ≈4 to >20). The median exponential scale length of the Lyα haloes in our sample is ≈4.5 kpc with a few haloes exceeding 10 kpc. By comparing the maximal detected extent of the Lyα emission with the predicted dark matter halo virial radii of simulated galaxies, we show that the detected Lyα emission of our selected sample of Lyα emitters probes a significant portion of the cold circum-galactic medium of these galaxies (>50% in average). This result therefore shows that there must be significant HI reservoirs in the circum-galactic medium and reinforces the idea that Lyα haloes are ubiquitous around high-redshift Lyα emitting galaxies. Our characterization of the Lyα haloes indicates that the majority of the Lyα flux comes from the halo (≈65%) and that their scale lengths seem to be linked to the UV properties of the galaxies (sizes and magnitudes). We do not observe a significant Lyα halo size evolution with redshift, although our sample for z> 5 is very small. We also explore the diversity of the Lyα line profiles in our sample and we find that the Lyα lines cover a large range of full width at half maximum (FWHM) from 118 to 512 km s-1. While the FWHM does not seem to be correlated to the Lyα scale length, most compact Lyα haloes and those that are not detected with high significance tend

  15. Dissecting the Gamma-Ray Background in Search of Dark Matter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cholis, Ilias; Hooper, Dan; McDermott, Samuel D.

    2014-02-01

    Several classes of astrophysical sources contribute to the approximately isotropic gamma-ray background measured by the Fermi Gamma-Ray Space Telescope. In this paper, we use Fermi's catalog of gamma-ray sources (along with corresponding source catalogs at infrared and radio wavelengths) to build and constrain a model for the contributions to the extragalactic gamma-ray background from astrophysical sources, including radio galaxies, star-forming galaxies, and blazars. We then combine our model with Fermi's measurement of the gamma-ray background to derive constraints on the dark matter annihilation cross section, including contributions from both extragalactic and galactic halos and subhalos. The resulting constraints are competitivemore » with the strongest current constraints from the Galactic Center and dwarf spheroidal galaxies. As Fermi continues to measure the gamma-ray emission from a greater number of astrophysical sources, it will become possible to more tightly constrain the astrophysical contributions to the extragalactic gamma-ray background. We project that with 10 years of data, Fermi's measurement of this background combined with the improved constraints on the astrophysical source contributions will yield a sensitivity to dark matter annihilations that exceeds the strongest current constraints by a factor of ~ 5 - 10.« less

  16. Fast dynamos, cosmic rays, and the Galactic magnetic field

    NASA Technical Reports Server (NTRS)

    Parker, E. N.

    1992-01-01

    It is suggested here that the dynamo believed to be responsible for the magnetic field of the Galaxy is a fast dynamo due to the dynamical reconnection of the azimuthal field of the Galaxy as the field is deformed by the instability of the gaseous disk and the rapid inflation of magnetic lobes by the cosmic-ray gas to form the Galactic halo. The reconnection of adjacent lobes carries out both the alpha effect and field dissipation essential for the existence of the Galactic alpha-omega dynamo. The azimuthal field is generated primarily in the gaseous disk, while the alpha effect is carried out in the halo.

  17. Taking Halo-Independent Dark Matter Methods Out of the Bin

    DOE PAGES

    Fox, Patrick J.; Kahn, Yonatan; McCullough, Matthew

    2014-10-30

    We develop a new halo-independent strategy for analyzing emerging DM hints, utilizing the method of extended maximum likelihood. This approach does not require the binning of events, making it uniquely suited to the analysis of emerging DM direct detection hints. It determines a preferred envelope, at a given confidence level, for the DM velocity integral which best fits the data using all available information and can be used even in the case of a single anomalous scattering event. All of the halo-independent information from a direct detection result may then be presented in a single plot, allowing simple comparisons betweenmore » multiple experiments. This results in the halo-independent analogue of the usual mass and cross-section plots found in typical direct detection analyses, where limit curves may be compared with best-fit regions in halo-space. The method is straightforward to implement, using already-established techniques, and its utility is demonstrated through the first unbinned halo-independent comparison of the three anomalous events observed in the CDMS-Si detector with recent limits from the LUX experiment.« less

  18. Study of the gamma-ray spectrum from the Galactic Center in view of multi-TeV dark matter candidates

    NASA Astrophysics Data System (ADS)

    Belikov, Alexander V.; Zaharijas, Gabrijela; Silk, Joseph

    2012-10-01

    Motivated by the complex gamma-ray spectrum of the Galactic Center source now measured over five decades in energy, we revisit the issue of the role of dark matter (DM) annihilations in this interesting region. We reassess whether the emission measured by the HESS collaboration could be a signature of dark matter annihilation, and we use the Fermi LAT spectrum to model the emission from SgrA*, using power-law spectral fits. We find that good fits are achieved by a power law with an index ˜2.5-2.6, in combination with a spectrum similar to the one observed from pulsar population and with a spectrum from a ≳10TeV DM annihilating to a mixture of bb¯ and harder τ+τ- channels and with boost factors of the order of a hundred. Alternatively, we also consider the combination of a log-parabola fit with the DM contribution. Finally, as both the spectrum of gamma rays from the Galactic Center and the spectrum of cosmic ray electrons exhibit a cutoff at TeV energies, we study the dark matter fits to both data sets. Constraining the spectral shape of the purported dark matter signal provides a robust way of comparing data. We find a marginal overlap only between the 99.999% C.L. regions in parameter space.

  19. Dynamical Constraints On The Galaxy-Halo Connection

    NASA Astrophysics Data System (ADS)

    Desmond, Harry

    2017-07-01

    Dark matter halos comprise the bulk of the universe's mass, yet must be probed by the luminous galaxies that form within them. A key goal of modern astrophysics, therefore, is to robustly relate the visible and dark mass, which to first order means relating the properties of galaxies and halos. This may be expected not only to improve our knowledge of galaxy formation, but also to enable high-precision cosmological tests using galaxies and hence maximise the utility of future galaxy surveys. As halos are inaccessible to observations - as galaxies are to N-body simulations - this relation requires an additional modelling step.The aim of this thesis is to develop and evaluate models of the galaxy-halo connection using observations of galaxy dynamics. In particular, I build empirical models based on the technique of halo abundance matching for five key dynamical scaling relations of galaxies - the Tully-Fisher, Faber-Jackson, mass-size and mass discrepancy-acceleration relations, and Fundamental Plane - which relate their baryon distributions and rotation or velocity dispersion profiles. I then develop a statistical scheme based on approximate Bayesian computation to compare the predicted and measured values of a number of summary statistics describing the relations' important features. This not only provides quantitative constraints on the free parameters of the models, but also allows absolute goodness-of-fit measures to be formulated. I find some features to be naturally accounted for by an abundance matching approach and others to impose new constraints on the galaxy-halo connection; the remainder are challenging to account for and may imply galaxy-halo correlations beyond the scope of basic abundance matching.Besides providing concrete statistical tests of specific galaxy formation theories, these results will be of use for guiding the inputs of empirical and semi-analytic galaxy formation models, which require galaxy-halo correlations to be imposed by hand. As

  20. PARALLEL HOP: A SCALABLE HALO FINDER FOR MASSIVE COSMOLOGICAL DATA SETS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Skory, Stephen; Turk, Matthew J.; Norman, Michael L.

    2010-11-15

    Modern N-body cosmological simulations contain billions (10{sup 9}) of dark matter particles. These simulations require hundreds to thousands of gigabytes of memory and employ hundreds to tens of thousands of processing cores on many compute nodes. In order to study the distribution of dark matter in a cosmological simulation, the dark matter halos must be identified using a halo finder, which establishes the halo membership of every particle in the simulation. The resources required for halo finding are similar to the requirements for the simulation itself. In particular, simulations have become too extensive to use commonly employed halo finders, suchmore » that the computational requirements to identify halos must now be spread across multiple nodes and cores. Here, we present a scalable-parallel halo finding method called Parallel HOP for large-scale cosmological simulation data. Based on the halo finder HOP, it utilizes message passing interface and domain decomposition to distribute the halo finding workload across multiple compute nodes, enabling analysis of much larger data sets than is possible with the strictly serial or previous parallel implementations of HOP. We provide a reference implementation of this method as a part of the toolkit {sup yt}, an analysis toolkit for adaptive mesh refinement data that include complementary analysis modules. Additionally, we discuss a suite of benchmarks that demonstrate that this method scales well up to several hundred tasks and data sets in excess of 2000{sup 3} particles. The Parallel HOP method and our implementation can be readily applied to any kind of N-body simulation data and is therefore widely applicable.« less

  1. Galaxy formation with BECDM - I. Turbulence and relaxation of idealized haloes

    NASA Astrophysics Data System (ADS)

    Mocz, Philip; Vogelsberger, Mark; Robles, Victor H.; Zavala, Jesús; Boylan-Kolchin, Michael; Fialkov, Anastasia; Hernquist, Lars

    2017-11-01

    We present a theoretical analysis of some unexplored aspects of relaxed Bose-Einstein condensate dark matter (BECDM) haloes. This type of ultralight bosonic scalar field dark matter is a viable alternative to the standard cold dark matter (CDM) paradigm, as it makes the same large-scale predictions as CDM and potentially overcomes CDM's small-scale problems via a galaxy-scale de Broglie wavelength. We simulate BECDM halo formation through mergers, evolved under the Schrödinger-Poisson equations. The formed haloes consist of a soliton core supported against gravitational collapse by the quantum pressure tensor and an asymptotic r-3 NFW-like profile. We find a fundamental relation of the core-to-halo mass with the dimensionless invariant Ξ ≡ |E|/M3/(Gm/ℏ)2 or Mc/M ≃ 2.6Ξ1/3, linking the soliton to global halo properties. For r ≥ 3.5 rc core radii, we find equipartition between potential, classical kinetic and quantum gradient energies. The haloes also exhibit a conspicuous turbulent behaviour driven by the continuous reconnection of vortex lines due to wave interference. We analyse the turbulence 1D velocity power spectrum and find a k-1.1 power law. This suggests that the vorticity in BECDM haloes is homogeneous, similar to thermally-driven counterflow BEC systems from condensed matter physics, in contrast to a k-5/3 Kolmogorov power law seen in mechanically-driven quantum systems. The mode where the power spectrum peaks is approximately the soliton width, implying that the soliton-sized granules carry most of the turbulent energy in BECDM haloes.

  2. Stellar Wakes from Dark Matter Subhalos.

    PubMed

    Buschmann, Malte; Kopp, Joachim; Safdi, Benjamin R; Wu, Chih-Liang

    2018-05-25

    We propose a novel method utilizing stellar kinematic data to detect low-mass substructure in the Milky Way's dark matter halo. By probing characteristic wakes that a passing dark matter subhalo leaves in the phase-space distribution of ambient halo stars, we estimate sensitivities down to subhalo masses of ∼10^{7}  M_{⊙} or below. The detection of such subhalos would have implications for dark matter and cosmological models that predict modifications to the halo-mass function at low halo masses. We develop an analytic formalism for describing the perturbed stellar phase-space distributions, and we demonstrate through idealized simulations the ability to detect subhalos using the phase-space model and a likelihood framework. Our method complements existing methods for low-mass subhalo searches, such as searches for gaps in stellar streams, in that we can localize the positions and velocities of the subhalos today.

  3. Stellar Wakes from Dark Matter Subhalos

    NASA Astrophysics Data System (ADS)

    Buschmann, Malte; Kopp, Joachim; Safdi, Benjamin R.; Wu, Chih-Liang

    2018-05-01

    We propose a novel method utilizing stellar kinematic data to detect low-mass substructure in the Milky Way's dark matter halo. By probing characteristic wakes that a passing dark matter subhalo leaves in the phase-space distribution of ambient halo stars, we estimate sensitivities down to subhalo masses of ˜107 M⊙ or below. The detection of such subhalos would have implications for dark matter and cosmological models that predict modifications to the halo-mass function at low halo masses. We develop an analytic formalism for describing the perturbed stellar phase-space distributions, and we demonstrate through idealized simulations the ability to detect subhalos using the phase-space model and a likelihood framework. Our method complements existing methods for low-mass subhalo searches, such as searches for gaps in stellar streams, in that we can localize the positions and velocities of the subhalos today.

  4. Strong optimized conservative Fermi-LAT constraints on dark matter models from the inclusive photon spectrum

    DOE PAGES

    Massari, Andrea; Izaguirre, Eder; Essig, Rouven; ...

    2015-04-29

    Here, we set conservative, robust constraints on the annihilation and decay of dark matter into various Standard Model final states under various assumptions about the distribution of the dark matter in the Milky Way halo. We use the inclusive photon spectrum observed by the Fermi Gamma-ray Space Telescope through its main instrument, the Large Area Telescope. We use simulated data to first find the “optimal” regions of interest in the γ-ray sky, where the expected dark matter signal is largest compared with the expected astrophysical foregrounds. We then require the predicted dark matter signal to be less than the observedmore » photon counts in the a priori optimal regions. This yields a very conservative constraint as we do not attempt to model or subtract astrophysical foregrounds. The resulting limits are competitive with other existing limits and, for some final states with cuspy dark-matter distributions in the Galactic Center region, disfavor the typical cross section required during freeze-out for a weakly interacting massive particle to obtain the observed relic abundance.« less

  5. Universal clustering of dark matter in phase space

    NASA Astrophysics Data System (ADS)

    Zavala, Jesús; Afshordi, Niayesh

    2016-03-01

    We have recently introduced a novel statistical measure of dark matter clustering in phase space, the particle phase-space average density (P2SAD). In a two-paper series, we studied the structure of P2SAD in the Milky Way-size Aquarius haloes, constructed a physically motivated model to describe it, and illustrated its potential as a powerful tool to predict signals sensitive to the nanostructure of dark matter haloes. In this work, we report a remarkable universality of the clustering of dark matter in phase space as measured by P2SAD within the subhaloes of host haloes across different environments covering a range from dwarf-size to cluster-size haloes (1010-1015 M⊙). Simulations show that the universality of P2SAD holds for more than seven orders of magnitude, over a 2D phase space, covering over three orders of magnitude in distance/velocity, with a simple functional form that can be described by our model. Invoking the universality of P2SAD, we can accurately predict the non-linear power spectrum of dark matter at small scales all the way down to the decoupling mass limit of cold dark matter particles. As an application, we compute the subhalo boost to the annihilation of dark matter in a wide range of host halo masses.

  6. Revealing the Cosmic Web-dependent Halo Bias

    NASA Astrophysics Data System (ADS)

    Yang, Xiaohu; Zhang, Youcai; Lu, Tianhuan; Wang, Huiyuan; Shi, Feng; Tweed, Dylan; Li, Shijie; Luo, Wentao; Lu, Yi; Yang, Lei

    2017-10-01

    Halo bias is the one of the key ingredients of the halo models. It was shown at a given redshift to be only dependent, to the first order, on the halo mass. In this study, four types of cosmic web environments—clusters, filaments, sheets, and voids—are defined within a state-of-the-art high-resolution N-body simulation. Within these environments, we use both halo-dark matter cross correlation and halo-halo autocorrelation functions to probe the clustering properties of halos. The nature of the halo bias differs strongly between the four different cosmic web environments described here. With respect to the overall population, halos in clusters have significantly lower biases in the {10}11.0˜ {10}13.5 {h}-1 {M}⊙ mass range. In other environments, however, halos show extremely enhanced biases up to a factor 10 in voids for halos of mass ˜ {10}12.0 {h}-1 {M}⊙ . Such a strong cosmic web environment dependence in the halo bias may play an important role in future cosmological and galaxy formation studies. Within this cosmic web framework, the age dependency of halo bias is found to be only significant in clusters and filaments for relatively small halos ≲ {10}12.5 {h}-1 {M}⊙ .

  7. A Discovery of a Compact High Velocity Cloud-Galactic Supershell System

    NASA Astrophysics Data System (ADS)

    Park, Geumsook; Koo, Bon-Chul; Kang, Ji-hyun; Gibson, Steven J.; Peek, Joshua Eli Goldston; Douglas, Kevin A.; Korpela, Eric J.; Heiles, Carl E.

    2017-01-01

    High velocity clouds (HVCs) are neutral hydrogen (HI) gas clouds having very different radial velocities from those of the Galactic disk material. While some large HVC complexes are known to be gas streams tidally stripped from satellite galaxies of the Milky Way, there are relatively isolated and small angular-sized HVCs, so called “compact HVCs (CHVCs)”, the origin of which remains controversial. There are about 300 known CHVCs in the Milky Way, and many of them show a head-tail structure, implying a ram pressure interaction with the diffuse Galactic halo gas. It is, however, not clear whether CHVCs are completely dissipated in the Galactic halo to feed the multi-phase circumgalactic medium or they can survive their trip through the halo and collide with the Galactic disk. The colliding CHVCs may leave a gigantic trail in the disk, and it had been suggested that some of HI supershells that require ≧ 3 x 1052 erg may be produced by the collision of such HVCs.Here we report the detection of a kiloparsec (kpc)-size supershell in the outskirts of the Milky Way with the compact HVC 040+01-282 (hereafter, CHVC040) at its geometrical center using the “Inner-Galaxy Arecibo L-band Feed Array” HI 21 cm survey data. The morphological and physical properties of both objects suggest that CHVC040, which is either a fragment of a nearby disrupted galaxy or a cloud that originated from an intergalactic accreting flow, collided with the disk ˜5 Myr ago to form the supershell. Our results show that some compact HVCs can survive their trip through the Galactic halo and inject energy and momentum into the Milky Way disk.

  8. Gravitationally bound BCS state as dark matter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alexander, Stephon; Cormack, Sam, E-mail: stephon_alexander@brown.edu, E-mail: samuel.c.cormack.gr@dartmouth.edu

    2017-04-01

    We explore the possibility that fermionic dark matter undergoes a BCS transition to form a superfluid. This requires an attractive interaction between fermions and we describe a possible source of this interaction induced by torsion. We describe the gravitating fermion system with the Bogoliubov-de Gennes formalism in the local density approximation. We solve the Poisson equation along with the equations for the density and gap energy of the fermions to find a self-gravitating, superfluid solution for dark matter halos. In order to produce halos the size of dwarf galaxies, we require a particle mass of ∼ 200 eV. We findmore » a maximum attractive coupling strength before the halo becomes unstable. If dark matter halos do have a superfluid component, this raises the possibility that they contain vortex lines.« less

  9. Shedding light on baryonic dark matter.

    PubMed

    Silk, J

    1991-02-01

    Halo dark matter, if it is baryonic, may plausibly consist of compact stellar remnants. Jeans mass clouds containing 10(6) to 10(8) solar masses could have efficiently formed stars in the early universe and could plausibly have generated, for a suitably top-heavy stellar initial mass function, a high abundance of neutron stars as well as a small admixture of long-lived low mass stars. Within the resulting clusters of dark remnants, which eventually are tidally disrupted when halos eventually form, captures of neutron stars by non-degenerate stars resulted in formation of close binaries. These evolve to produce, by the present epoch, an observable x-ray signal associated with dark matter aggregations in galaxy halos and galaxy cluster cores.

  10. Galactic Observations of Terahertz C+ (GOT C+): [CII] Detection of Warm "Dark Gas" in the ISM

    NASA Astrophysics Data System (ADS)

    Langer, W. D.; Velusamy, T.; Pineda, J.; Goldsmith, P.; Li, D.; Yorke, H. W.

    2011-11-01

    The Herschel HIFI Key Program, Galactic Observations of Terahertz C+ (GOT C+) is a survey of [CII] 1.9 THz emission throughout the Galaxy. Comparison of the first results of this survey with HI and CO isotopomer emission reveals excess [CII] emission beyond that expected from HI and CO layers alone, and is best explained as coming from a hidden layer of H2 gas, the so-called ISM "dark gas".

  11. The Fermi Galactic Center GeV Excess and Implications for Dark Matter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ackermann, M.; Buehler, R.; Ajello, M.

    2017-05-01

    The region around the Galactic Center (GC) is now well established to be brighter at energies of a few GeV than what is expected from conventional models of diffuse gamma-ray emission and catalogs of known gamma-ray sources. We study the GeV excess using 6.5 yr of data from the Fermi Large Area Telescope. We characterize the uncertainty of the GC excess spectrum and morphology due to uncertainties in cosmic-ray source distributions and propagation, uncertainties in the distribution of interstellar gas in the Milky Way, and uncertainties due to a potential contribution from the Fermi bubbles. We also evaluate uncertainties inmore » the excess properties due to resolved point sources of gamma rays. The GC is of particular interest, as it would be expected to have the brightest signal from annihilation of weakly interacting massive dark matter (DM) particles. However, control regions along the Galactic plane, where a DM signal is not expected, show excesses of similar amplitude relative to the local background. Based on the magnitude of the systematic uncertainties, we conservatively report upper limits for the annihilation cross-section as a function of particle mass and annihilation channel.« less

  12. The Local Group in LCDM - Shapes and masses of dark halos

    NASA Astrophysics Data System (ADS)

    Vera-Ciro, Carlos Andrés

    2013-01-01

    In dit proefschrift bestuderen we de eigenschappen van donkere materie halo's in het LCDM paradigma. Het eerste deel richt zich op de vorm van de massadistributie van dergelijke objecten. We hebben gevonden dat de vorm van ge"isoleerde Melkweg-achtige donkere materie halo's significant afwijkt van bolsymmetrie. De lokale omgeving heeft invloed op de halo's en deze worden daarbij sterk be"invloed door de manier waarop massa aangroeit. We hebben ook de structuur en de baanstructuur van de satellieten van dergelijke halo's in detail onderzocht. In het algemeen zijn deze objecten sferischer dan de halo's zelf. Ze vertonen ook duidelijke afdrukken van getijdenwerking in zowel hun geometrische vorm als in de baanstructuur. Daarna gebruiken we het aantal massieve objecten rond de Melkweg om limieten te zetten op de totale massa van de donkere materie halo van de Melkweg. De eigenschappen van de massaverdeling van de Melkweg worden verder onderzocht in het laatste hoofdstuk. Daar maken we gebruik van de Sagittarius sterstroom om de vorm van de galactische potentiaal beter te bepalen. We komen met een nieuw model dat rekening houdt met de galactische schijf en de invloed van satellietstelsels en die bovendien consistent is met het LCDM paradigma.

  13. Galaxy formation with BECDM - I. Turbulence and relaxation of idealized haloes.

    PubMed

    Mocz, Philip; Vogelsberger, Mark; Robles, Victor H; Zavala, Jesús; Boylan-Kolchin, Michael; Fialkov, Anastasia; Hernquist, Lars

    2017-11-01

    We present a theoretical analysis of some unexplored aspects of relaxed Bose-Einstein condensate dark matter (BECDM) haloes. This type of ultralight bosonic scalar field dark matter is a viable alternative to the standard cold dark matter (CDM) paradigm, as it makes the same large-scale predictions as CDM and potentially overcomes CDM's small-scale problems via a galaxy-scale de Broglie wavelength. We simulate BECDM halo formation through mergers, evolved under the Schrödinger-Poisson equations. The formed haloes consist of a soliton core supported against gravitational collapse by the quantum pressure tensor and an asymptotic r -3 NFW-like profile. We find a fundamental relation of the core-to-halo mass with the dimensionless invariant Ξ ≡ | E |/ M 3 /( Gm/ħ ) 2 or M c / M ≃ 2.6Ξ 1/3 , linking the soliton to global halo properties. For r ≥ 3.5 r c core radii, we find equipartition between potential, classical kinetic and quantum gradient energies. The haloes also exhibit a conspicuous turbulent behaviour driven by the continuous reconnection of vortex lines due to wave interference. We analyse the turbulence 1D velocity power spectrum and find a k -1.1 power law. This suggests that the vorticity in BECDM haloes is homogeneous, similar to thermally-driven counterflow BEC systems from condensed matter physics, in contrast to a k -5/3 Kolmogorov power law seen in mechanically-driven quantum systems. The mode where the power spectrum peaks is approximately the soliton width, implying that the soliton-sized granules carry most of the turbulent energy in BECDM haloes.

  14. A galaxy lacking dark matter

    NASA Astrophysics Data System (ADS)

    van Dokkum, Pieter; Danieli, Shany; Cohen, Yotam; Merritt, Allison; Romanowsky, Aaron J.; Abraham, Roberto; Brodie, Jean; Conroy, Charlie; Lokhorst, Deborah; Mowla, Lamiya; O'Sullivan, Ewan; Zhang, Jielai

    2018-03-01

    Studies of galaxy surveys in the context of the cold dark matter paradigm have shown that the mass of the dark matter halo and the total stellar mass are coupled through a function that varies smoothly with mass. Their average ratio Mhalo/Mstars has a minimum of about 30 for galaxies with stellar masses near that of the Milky Way (approximately 5 × 1010 solar masses) and increases both towards lower masses and towards higher masses. The scatter in this relation is not well known; it is generally thought to be less than a factor of two for massive galaxies but much larger for dwarf galaxies. Here we report the radial velocities of ten luminous globular-cluster-like objects in the ultra-diffuse galaxy NGC1052–DF2, which has a stellar mass of approximately 2 × 108 solar masses. We infer that its velocity dispersion is less than 10.5 kilometres per second with 90 per cent confidence, and we determine from this that its total mass within a radius of 7.6 kiloparsecs is less than 3.4 × 108 solar masses. This implies that the ratio Mhalo/Mstars is of order unity (and consistent with zero), a factor of at least 400 lower than expected. NGC1052–DF2 demonstrates that dark matter is not always coupled with baryonic matter on galactic scales.

  15. Effect of hydrodynamical-simulation–inspired dark matter velocity profile on directional detection of dark matter

    DOE PAGES

    Laha, Ranjan

    2018-02-01

    Directional detection is an important way to detect dark matter. An input for these experiments is the dark matter velocity distribution. Recent hydrodynamical simulations have shown that the dark matter velocity distribution differs substantially from the Standard Halo Model. We study the impact of some of these updated velocity distributions in dark matter directional detection experiments. Here, we calculate the ratio of events required to confirm the forward-backward asymmetry and the existence of the ring of maximum recoil rate using different dark matter velocity distributions for 19F and Xe targets. We show that with the use of updated dark mattermore » velocity profiles, the forward-backward asymmetry and the ring of maximum recoil rate can be confirmed using a factor of ~ 2– 3 less events when compared to that using the Standard Halo Model.« less

  16. Effect of hydrodynamical-simulation–inspired dark matter velocity profile on directional detection of dark matter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Laha, Ranjan

    Directional detection is an important way to detect dark matter. An input for these experiments is the dark matter velocity distribution. Recent hydrodynamical simulations have shown that the dark matter velocity distribution differs substantially from the Standard Halo Model. We study the impact of some of these updated velocity distributions in dark matter directional detection experiments. Here, we calculate the ratio of events required to confirm the forward-backward asymmetry and the existence of the ring of maximum recoil rate using different dark matter velocity distributions for 19F and Xe targets. We show that with the use of updated dark mattermore » velocity profiles, the forward-backward asymmetry and the ring of maximum recoil rate can be confirmed using a factor of ~ 2– 3 less events when compared to that using the Standard Halo Model.« less

  17. The 6dF Galaxy Survey: dependence of halo occupation on stellar mass

    NASA Astrophysics Data System (ADS)

    Beutler, Florian; Blake, Chris; Colless, Matthew; Jones, D. Heath; Staveley-Smith, Lister; Campbell, Lachlan; Parker, Quentin; Saunders, Will; Watson, Fred

    2013-03-01

    In this paper we study the stellar mass dependence of galaxy clustering in the 6dF Galaxy Survey (6dFGS). The near-infrared selection of 6dFGS allows more reliable stellar mass estimates compared to optical bands used in other galaxy surveys. Using the halo occupation distribution model, we investigate the trend of dark matter halo mass and satellite fraction with stellar mass by measuring the projected correlation function, wp(rp). We find that the typical halo mass (M1) as well as the satellite power-law index (α) increases with stellar mass. This indicates (1) that galaxies with higher stellar mass sit in more massive dark matter haloes and (2) that these more massive dark matter haloes accumulate satellites faster with growing mass compared to haloes occupied by low stellar mass galaxies. Furthermore, we find a relation between M1 and the minimum dark matter halo mass (Mmin) of M1 ≈ 22 Mmin, in agreement with similar findings for Sloan Digital Sky Survey galaxies. The satellite fraction of 6dFGS galaxies declines with increasing stellar mass from 21 per cent at Mstellar = 2.6 × 1010 h-2 M⊙ to 12 per cent at Mstellar = 5.4 × 1010 h-2 M⊙ indicating that high stellar mass galaxies are more likely to be central galaxies. We compare our results to two different semi-analytic models derived from the Millennium Simulation, finding some disagreement. Our results can be used for placing new constraints on semi-analytic models in the future, particularly the behaviour of luminous red satellites. Finally, we compare our results to studies of halo occupation using galaxy-galaxy weak lensing. We find good overall agreement, representing a valuable cross-check for these two different tools of studying the matter distribution in the Universe.

  18. Secluded WIMPs, Dark QED with Massive Photons, and the Galactic Center Gamma-Ray Excess

    NASA Technical Reports Server (NTRS)

    Fortes, E. C. F. S.; Pleitez, V.; Stecker, F. W.

    2015-01-01

    We discuss a particular secluded WIMP dark matter model consisting of neutral fermions as the dark matter candidate and a Proca-Wentzel (PW) field as a mediator. In the model that we consider here, dark matter WIMPs interact with standard model (SM) particles only through the PW field of approximately MeV-multi-GeV mass particles. The interactions occur via a U(1)' mediator, V'(sub mu), which couples to the SM by kinetic mixing with U(1) hypercharge bosons, B'(sub mu). One important difference between our model and other such models in the literature is the absence of an extra singlet scalar, so that the parameter with dimension of mass M(sup 2, sub V) is not related to a spontaneous symmetry breaking. This QED based model is also renormalizable. The mass scale of the mediator and the absence of the singlet scalar can lead to interesting astrophysical signatures. The dominant annihilation channels are different from those usually considered in previous work. We show that the GeV energy gamma-ray excess in the galactic center region, as derived from Fermi-LAT Gamma-ray Space Telescope data, can be attributed to such secluded dark matter WIMPs, given parameters of the model that are consistent with both the cosmological dark matter density and the upper limits on WIMP spin-independent elastic scattering. Secluded WIMP models are also consistent with suggested upper limits on a DM contribution to the cosmic-ray antiproton flux.

  19. Weak Lensing by Large-Scale Structure: A Dark Matter Halo Approach.

    PubMed

    Cooray; Hu; Miralda-Escudé

    2000-05-20

    Weak gravitational lensing observations probe the spectrum and evolution of density fluctuations and the cosmological parameters that govern them, but they are currently limited to small fields and subject to selection biases. We show how the expected signal from large-scale structure arises from the contributions from and correlations between individual halos. We determine the convergence power spectrum as a function of the maximum halo mass and so provide the means to interpret results from surveys that lack high-mass halos either through selection criteria or small fields. Since shot noise from rare massive halos is mainly responsible for the sample variance below 10&arcmin;, our method should aid our ability to extract cosmological information from small fields.

  20. The Physical Nature of the Circum-Galactic Medium

    NASA Astrophysics Data System (ADS)

    Faucher-Giguere, Claude-Andre

    The installation of the Cosmic Origins Spectrograph (COS) on the Hubble Space Telescope (HST) as part of its last servicing mission has revolutionized the study of gas in and around galaxies through the study of ultra-violet (UV) diagnostics. These diagnostics are enabling studies of gas flows in and out of low-redshift, evolved galaxies that are not feasible from the ground. Despite the great observational advances made possible with COS, it is necessary to complement the high-quality spectra with theoretical modeling sufficiently accurate for robust and complete physical interpretation so that the full scientific potential of the mission can be realized. The clear correlation between O VI absorption in galactic halos and the specific star formation rate of central galaxies revealed by COS, in particular, highlights the close connection between circum-galactic gas and galaxies. It is now also appreciated that the gaseous halos of galaxies contain a total mass and a mass in metals that are at least comparable to (and likely significantly greater than) the total and metal masses in the interstellar medium of galaxies. The circum-galactic medium (CGM) is thus intimately related to galaxy evolution, including the transformation of blue star-forming disks into red passive ellipticals. However, the physical origin of observed galaxy-halo gas correlations and of halo gas in general is presently not understood. We will model the CGM of low-redshift galaxies probed by HST observations with cosmological simulations of unprecedented resolution and with much more physically predictive models of star formation and stellar and black hole feedback than previously available. Our simulations will also employ a numerical solver that resolves all the main historical differences between grid- and particle-based hydrodynamical codes. Importantly, we will process all of our simulations with radiative transfer calculations to faithfully map the simulations to observable quantities, a

  1. Forming supermassive black holes by accreting dark and baryon matter

    NASA Astrophysics Data System (ADS)

    Hu, Jian; Shen, Yue; Lou, Yu-Qing; Zhang, Shuangnan

    2006-01-01

    Given a large-scale mixture of self-interacting dark matter (SIDM) particles and baryon matter distributed in the early Universe, we advance here a two-phase accretion scenario for forming supermassive black holes (SMBHs) with masses around ~109Msolar at high redshifts z(>~6). The first phase is conceived to involve a rapid quasi-spherical and quasi-steady Bondi accretion of mainly SIDM particles embedded with baryon matter on to seed black holes (BHs) created at redshifts z<~ 30 by the first generation of massive Population III stars; this earlier phase rapidly gives birth to significantly enlarged seed BH masses of during z~ 20-15, where σ0 is the cross-section per unit mass of SIDM particles and Cs is the velocity dispersion in the SIDM halo referred to as an effective `sound speed'. The second phase of BH mass growth is envisaged to proceed primarily via baryon accretion, eventually leading to SMBH masses of MBH~ 109Msolar such SMBHs may form either by z~ 6 for a sustained accretion at the Eddington limit or later at lower z for sub-Eddington mean accretion rates. In between these two phases, there is a transitional yet sustained diffusively limited accretion of SIDM particles which in an eventual steady state would be much lower than the accretion rates of the two main phases. We intend to account for the reported detections of a few SMBHs at early epochs, e.g. Sloan Digital Sky Survey (SDSS) 1148+5251 and so forth, without necessarily resorting to either super-Eddington baryon accretion or very frequent BH merging processes. Only extremely massive dark SIDM haloes associated with rare peaks of density fluctuations in the early Universe may harbour such early SMBHs or quasars. Observational consequences are discussed. During the final stage of accumulating a SMBH mass, violent feedback in circumnuclear environs of a galactic nucleus leads to the central bulge formation and gives rise to the familiar empirical MBH-σb correlation inferred for nearby normal

  2. Extragalactic science, cosmology, and Galactic archaeology with the Subaru Prime Focus Spectrograph

    NASA Astrophysics Data System (ADS)

    Takada, Masahiro; Ellis, Richard S.; Chiba, Masashi; Greene, Jenny E.; Aihara, Hiroaki; Arimoto, Nobuo; Bundy, Kevin; Cohen, Judith; Doré, Olivier; Graves, Genevieve; Gunn, James E.; Heckman, Timothy; Hirata, Christopher M.; Ho, Paul; Kneib, Jean-Paul; Le Fèvre, Olivier; Lin, Lihwai; More, Surhud; Murayama, Hitoshi; Nagao, Tohru; Ouchi, Masami; Seiffert, Michael; Silverman, John D.; Sodré, Laerte; Spergel, David N.; Strauss, Michael A.; Sugai, Hajime; Suto, Yasushi; Takami, Hideki; Wyse, Rosemary

    2014-02-01

    The Subaru Prime Focus Spectrograph (PFS) is a massively multiplexed fiber-fed optical and near-infrared three-arm spectrograph (Nfiber = 2400, 380 ≤ λ ≤ 1260 nm, 1 .^{circ}3 diameter field of view). Here, we summarize the science cases in terms of provisional plans for a 300-night Subaru survey. We describe plans to constrain the nature of dark energy via a survey of emission line galaxies spanning a comoving volume of 9.3 h-3 Gpc3 in the redshift range 0.8 < z < 2.4. In each of six redshift bins, the cosmological distances will be measured to 3% precision via the baryonic acoustic oscillation scale, and redshift-space distortion measures will constrain structure growth to 6% precision. In the near-field cosmology program, radial velocities and chemical abundances of stars in the Milky Way and M 31 will be used to infer the past assembly histories of spiral galaxies and the structure of their dark matter halos. Data will be secured for 106 stars in the Galactic thick-disk, halo, and tidal streams as faint as V ˜ 22, including stars with V < 20 to complement the goals of the Gaia mission. A medium-resolution mode with R = 5000 to be implemented in the red arm will allow the measurement of multiple α-element abundances and more precise velocities for Galactic stars. For the galaxy evolution program, our simulations suggest the wide wavelength range of PFS will be powerful in probing the galaxy population and its clustering over a wide redshift range. We plan to conduct a color-selected survey of 1 < z < 2 galaxies and AGN over 16 deg2 to J ≃ 23.4, yielding a fair sample of galaxies with stellar masses above ˜1010 M⊙ at z ≃ 2. A two-tiered survey of higher redshift Lyman break galaxies and Lyman alpha emitters will quantify the properties of early systems close to the reionization epoch.

  3. Dark matter and cosmology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schramm, D.N.

    1992-03-01

    The cosmological dark matter problem is reviewed. The Big Bang Nucleosynthesis constraints on the baryon density are compared with the densities implied by visible matter, dark halos, dynamics of clusters, gravitational lenses, large-scale velocity flows, and the {Omega} = 1 flatness/inflation argument. It is shown that (1) the majority of baryons are dark; and (2) non-baryonic dark matter is probably required on large scales. It is also noted that halo dark matter could be either baryonic or non-baryonic. Descrimination between ``cold`` and ``hot`` non-baryonic candidates is shown to depend on the assumed ``seeds`` that stimulate structure formation. Gaussian density fluctuations,more » such as those induced by quantum fluctuations, favor cold dark matter, whereas topological defects such as strings, textures or domain walls may work equally or better with hot dark matter. A possible connection between cold dark matter, globular cluster ages and the Hubble constant is mentioned. Recent large-scale structure measurements, coupled with microwave anisotropy limits, are shown to raise some questions for the previously favored density fluctuation picture. Accelerator and underground limits on dark matter candidates are also reviewed.« less

  4. Dark matter and cosmology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schramm, D.N.

    1992-03-01

    The cosmological dark matter problem is reviewed. The Big Bang Nucleosynthesis constraints on the baryon density are compared with the densities implied by visible matter, dark halos, dynamics of clusters, gravitational lenses, large-scale velocity flows, and the {Omega} = 1 flatness/inflation argument. It is shown that (1) the majority of baryons are dark; and (2) non-baryonic dark matter is probably required on large scales. It is also noted that halo dark matter could be either baryonic or non-baryonic. Descrimination between cold'' and hot'' non-baryonic candidates is shown to depend on the assumed seeds'' that stimulate structure formation. Gaussian density fluctuations,more » such as those induced by quantum fluctuations, favor cold dark matter, whereas topological defects such as strings, textures or domain walls may work equally or better with hot dark matter. A possible connection between cold dark matter, globular cluster ages and the Hubble constant is mentioned. Recent large-scale structure measurements, coupled with microwave anisotropy limits, are shown to raise some questions for the previously favored density fluctuation picture. Accelerator and underground limits on dark matter candidates are also reviewed.« less

  5. Dark matter and cosmology

    NASA Astrophysics Data System (ADS)

    Schramm, David N.

    1992-07-01

    The cosmological dark matter problem is reviewed. The Big Bang Nucleosynthesis constraints on the baryon density are compared with the densities implied by visible matter, dark halos, dynamics of clusters, gravitational lenses, large-scale velocity flows, and the Ω = 1 flatness/inflation argument. It is shown that (1) the majority of baryons are dark; and (2) non-baryonic dark matter is probably required on large scales. It is also noted that halo dark matter could be either baryonic or non-baryonic. Descrimination between ``cold'' and ``hot'' non-baryonic candidates is shown to depend on the assumed ``seeds'' that stimulate structure formation. Gaussian density fluctuations, such as those induced by quantum fluctuations, favor cold dark matter, whereas topological defects such as strings, textures or domain walls may work equally or better with hot dark matter. A possible connection between cold dark matter, globular cluster ages and the Hubble constant is mentioned. Recent large-scale structure measurements, coupled with microwave anisotropy limits, are shown to raise some questions for the previously favored density fluctuation picture. Accelerator and underground limits on dark matter candidates are also reviewed.

  6. Dark matter and cosmology

    NASA Astrophysics Data System (ADS)

    Schramm, D. N.

    1992-03-01

    The cosmological dark matter problem is reviewed. The Big Bang nucleosynthesis constraints on the baryon density are compared with the densities implied by visible matter, dark halos, dynamics of clusters, gravitational lenses, large-scale velocity flows, and the omega = 1 flatness/inflation argument. It is shown that (1) the majority of baryons are dark; and (2) non-baryonic dark matter is probably required on large scales. It is also noted that halo dark matter could be either baryonic or non-baryonic. Descrimination between 'cold' and 'hot' non-baryonic candidates is shown to depend on the assumed 'seeds' that stimulate structure formation. Gaussian density fluctuations, such as those induced by quantum fluctuations, favor cold dark matter, whereas topological defects such as strings, textures or domain walls may work equally or better with hot dark matter. A possible connection between cold dark matter, globular cluster ages, and the Hubble constant is mentioned. Recent large-scale structure measurements, coupled with microwave anisotropy limits, are shown to raise some questions for the previously favored density fluctuation picture. Accelerator and underground limits on dark matter candidates are also reviewed.

  7. The halo model in a massive neutrino cosmology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Massara, Elena; Villaescusa-Navarro, Francisco; Viel, Matteo, E-mail: emassara@sissa.it, E-mail: villaescusa@oats.inaf.it, E-mail: viel@oats.inaf.it

    2014-12-01

    We provide a quantitative analysis of the halo model in the context of massive neutrino cosmologies. We discuss all the ingredients necessary to model the non-linear matter and cold dark matter power spectra and compare with the results of N-body simulations that incorporate massive neutrinos. Our neutrino halo model is able to capture the non-linear behavior of matter clustering with a ∼20% accuracy up to very non-linear scales of k = 10 h/Mpc (which would be affected by baryon physics). The largest discrepancies arise in the range k = 0.5 – 1 h/Mpc where the 1-halo and 2-halo terms are comparable and are present also inmore » a massless neutrino cosmology. However, at scales k < 0.2 h/Mpc our neutrino halo model agrees with the results of N-body simulations at the level of 8% for total neutrino masses of < 0.3 eV. We also model the neutrino non-linear density field as a sum of a linear and clustered component and predict the neutrino power spectrum and the cold dark matter-neutrino cross-power spectrum up to k = 1 h/Mpc with ∼30% accuracy. For masses below 0.15 eV the neutrino halo model captures the neutrino induced suppression, casted in terms of matter power ratios between massive and massless scenarios, with a 2% agreement with the results of N-body/neutrino simulations. Finally, we provide a simple application of the halo model: the computation of the clustering of galaxies, in massless and massive neutrinos cosmologies, using a simple Halo Occupation Distribution scheme and our halo model extension.« less

  8. Galactic Angular Momentum in Cosmological Zoom-in Simulations. I. Disk and Bulge Components and the Galaxy-Halo Connection

    NASA Astrophysics Data System (ADS)

    Sokołowska, Aleksandra; Capelo, Pedro R.; Fall, S. Michael; Mayer, Lucio; Shen, Sijing; Bonoli, Silvia

    2017-02-01

    We investigate the angular momentum evolution of four disk galaxies residing in Milky-Way-sized halos formed in cosmological zoom-in simulations with various sub-grid physics and merging histories. We decompose these galaxies, kinematically and photometrically, into their disk and bulge components. The simulated galaxies and their components lie on the observed sequences in the j *-M * diagram, relating the specific angular momentum and mass of the stellar component. We find that galaxies in low-density environments follow the relation {j}* \\propto {M}* α past major mergers, with α ˜ 0.6 in the case of strong feedback, when bulge-to-disk ratios are relatively constant, and α ˜ 1.4 in the other cases, when secular processes operate on shorter timescales. We compute the retention factors (I.e., the ratio of the specific angular momenta of stars and dark matter) for both disks and bulges and show that they vary relatively slowly after averaging over numerous but brief fluctuations. For disks, the retention factors are usually close to unity, while for bulges, they are a few times smaller. Our simulations therefore indicate that galaxies and their halos grow in a quasi-homologous way.

  9. An explosion model for the formation of the radio halo of NGC 891

    NASA Astrophysics Data System (ADS)

    You, Jun-han; Allen, R. J.; Hu, Fu-xing

    1987-06-01

    The explosion model for the formation of the radio halo of NGC 891 proposed here are mainly based on two physical assumptions: a) the relativistic electrons belong to two families, a halo family and a disk family: the disk family originating in supernova events throughout the disk and the halo family, in a violent explosion of the galactic nucleus in the distant past. b) Energy equipartition, that is, the magnetic energy density be proportional to the number density of stars. On these two assumptions, the main observed features of the radio halo of NGC 891 can be satisfactorily explained.

  10. An explosion model for the formation of the radio halo of NGC 891

    NASA Astrophysics Data System (ADS)

    You, Jun-Han; Allen, R. J.; Hu, Fu-Xing

    1986-06-01

    The explosion model for the formation of the radio halo of NGC 891 proposed here is mainly based on two physical assumptions: (1) the relativistic electrons belong to two families, a halo family and a disk family, the disk family originating in supernova events throughout the disk, and the halo family in a violent explosion of the galactic nucleus in the distant past; and (2) energy equipartition, where the magnetic energy density is proportional to the number density of stars. On these two assumptions, the main observed features of the radio halo of NGC 891 can be satisfactorily explained.

  11. Tails and streams around the Galactic globular clusters NGC 1851, NGC 1904, NGC 2298 and NGC 2808

    NASA Astrophysics Data System (ADS)

    Carballo-Bello, Julio A.; Martínez-Delgado, David; Navarrete, Camila; Catelan, Márcio; Muñoz, Ricardo R.; Antoja, Teresa; Sollima, Antonio

    2018-02-01

    We present Dark Energy Camera imaging for the peculiar Galactic globular clusters NGC 1851, NGC 1904 (M 79), NGC 2298 and NGC 2808. Our deep photometry reveals that all the clusters have an important contribution of stars beyond their King tidal radii and present tails with different morphologies. We have also explored the surroundings of the clusters where the presence of the Canis Major overdensity and/or the low Galactic latitude Monoceros ring at d⊙ ˜ 8 kpc is evident. A second stellar system is found at d⊙ ˜ 17 kpc and spans at least 18 deg × 15 deg in the sky. As one of the possible scenarios to explain that feature, we propose that the unveiled system is part of Monoceros explained as a density wave moving towards the outer Milky Way. Alternatively, the unveiled system might be connected with other known halo substructures or associated with the progenitor dwarf galaxy of NGC 1851 and NGC 1904, which are widely considered accreted globular clusters.

  12. TeV Gamma Rays From Galactic Center Pulsars

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hooper, Dan; Cholis, Ilias; Linden, Tim

    Measurements of the nearby pulsars Geminga and B0656+14 by the HAWC and Milagro telescopes have revealed the presence of bright TeV-emitting halos surrounding these objects. If young and middle-aged pulsars near the Galactic Center transfer a similar fraction of their energy into TeV photons, then these sources could dominate the emission that is observed by HESS and other ground-based telescopes from the innermost ~10^2 parsecs of the Milky Way. In particular, both the spectral shape and the angular extent of this emission is consistent with TeV halos produced by a population of pulsars. The overall flux of this emission requiresmore » a birth rate of ~100-1000 neutron stars per Myr near the Galactic Center, in good agreement with recent estimates.« less

  13. Antideuteron based dark matter search with GAPS: Current progress and future prospects

    NASA Astrophysics Data System (ADS)

    Hailey, C. J.; Aramaki, T.; Boggs, S. E.; Doetinchem, P. v.; Fuke, H.; Gahbauer, F.; Koglin, J. E.; Madden, N.; Mognet, S. A. I.; Ong, R.; Yoshida, T.; Zhang, T.; Zweerink, J. A.

    2013-01-01

    The General Antiparticle Spectrometer (GAPS) is a new approach to the indirect detection of dark matter. It relies on searching for primary antideuterons produced in the annihilation of dark matter in the galactic halo. Low energy antideuterons produced through Standard Model processes, such as collisions of cosmic-rays with interstellar baryons, are greatly suppressed compared to primary antideuterons. Thus a low energy antideuteron search provides a clean signature of dark matter. In GAPS antiparticles are slowed down and captured in target atoms. The resultant exotic atom deexcites with the emission of X-rays and annihilation pions, protons and other particles. A tracking geometry allows for the detection of the X-rays and particles, providing a unique signature to identify the mass of the antiparticle. A prototype detector was successfully tested at the KEK accelerator in 2005, and a prototype GAPS balloon flight is scheduled for 2011. This will be followed by a full scale experiment on a long duration balloon from Antarctica in 2014. We discuss the status and future plans for GAPS.

  14. Planck early results. XXIV. Dust in the diffuse interstellar medium and the Galactic halo

    NASA Astrophysics Data System (ADS)

    Planck Collaboration; Abergel, A.; Ade, P. A. R.; Aghanim, N.; Arnaud, M.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Balbi, A.; Banday, A. J.; Barreiro, R. B.; Bartlett, J. G.; Battaner, E.; Benabed, K.; Benoît, A.; Bernard, J.-P.; Bersanelli, M.; Bhatia, R.; Blagrave, K.; Bock, J. J.; Bonaldi, A.; Bond, J. R.; Borrill, J.; Bouchet, F. R.; Boulanger, F.; Bucher, M.; Burigana, C.; Cabella, P.; Cantalupo, C. M.; Cardoso, J.-F.; Catalano, A.; Cayón, L.; Challinor, A.; Chamballu, A.; Chiang, L.-Y.; Chiang, C.; Christensen, P. R.; Clements, D. L.; Colombi, S.; Couchot, F.; Coulais, A.; Crill, B. P.; Cuttaia, F.; Danese, L.; Davies, R. D.; Davis, R. J.; de Bernardis, P.; de Gasperis, G.; de Rosa, A.; de Zotti, G.; Delabrouille, J.; Delouis, J.-M.; Désert, F.-X.; Dickinson, C.; Donzelli, S.; Doré, O.; Dörl, U.; Douspis, M.; Dupac, X.; Efstathiou, G.; Enßlin, T. A.; Eriksen, H. K.; Finelli, F.; Forni, O.; Frailis, M.; Franceschi, E.; Galeotta, S.; Ganga, K.; Giard, M.; Giardino, G.; Giraud-Héraud, Y.; González-Nuevo, J.; Górski, K. M.; Gratton, S.; Gregorio, A.; Gruppuso, A.; Hansen, F. K.; Harrison, D.; Helou, G.; Henrot-Versillé, S.; Herranz, D.; Hildebrandt, S. R.; Hivon, E.; Hobson, M.; Holmes, W. A.; Hovest, W.; Hoyland, R. J.; Huffenberger, K. M.; Jaffe, A. H.; Joncas, G.; Jones, A.; Jones, W. C.; Juvela, M.; Keihänen, E.; Keskitalo, R.; Kisner, T. S.; Kneissl, R.; Knox, L.; Kurki-Suonio, H.; Lagache, G.; Lamarre, J.-M.; Lasenby, A.; Laureijs, R. J.; Lawrence, C. R.; Leach, S.; Leonardi, R.; Leroy, C.; Linden-Vørnle, M.; Lockman, F. J.; López-Caniego, M.; Lubin, P. M.; Macías-Pérez, J. F.; MacTavish, C. J.; Maffei, B.; Maino, D.; Mandolesi, N.; Mann, R.; Maris, M.; Marshall, D. J.; Martin, P.; Martínez-González, E.; Masi, S.; Matarrese, S.; Matthai, F.; Mazzotta, P.; McGehee, P.; Meinhold, P. R.; Melchiorri, A.; Mendes, L.; Mennella, A.; Miville-Deschênes, M.-A.; Moneti, A.; Montier, L.; Morgante, G.; Mortlock, D.; Munshi, D.; Murphy, A.; Naselsky, P.; Nati, F.; Natoli, P.; Netterfield, C. B.; Nørgaard-Nielsen, H. U.; Noviello, F.; Novikov, D.; Novikov, I.; O'Dwyer, I. J.; Osborne, S.; Pajot, F.; Paladini, R.; Pasian, F.; Patanchon, G.; Perdereau, O.; Perotto, L.; Perrotta, F.; Piacentini, F.; Piat, M.; Pinheiro Gonçalves, D.; Plaszczynski, S.; Pointecouteau, E.; Polenta, G.; Ponthieu, N.; Poutanen, T.; Prézeau, G.; Prunet, S.; Puget, J.-L.; Rachen, J. P.; Reach, W. T.; Reinecke, M.; Renault, C.; Ricciardi, S.; Riller, T.; Ristorcelli, I.; Rocha, G.; Rosset, C.; Rowan-Robinson, M.; Rubiño-Martín, J. A.; Rusholme, B.; Sandri, M.; Santos, D.; Savini, G.; Scott, D.; Seiffert, M. D.; Shellard, P.; Smoot, G. F.; Starck, J.-L.; Stivoli, F.; Stolyarov, V.; Stompor, R.; Sudiwala, R.; Sygnet, J.-F.; Tauber, J. A.; Terenzi, L.; Toffolatti, L.; Tomasi, M.; Torre, J.-P.; Tristram, M.; Tuovinen, J.; Umana, G.; Valenziano, L.; Vielva, P.; Villa, F.; Vittorio, N.; Wade, L. A.; Wandelt, B. D.; Wilkinson, A.; Yvon, D.; Zacchei, A.; Zonca, A.

    2011-12-01

    This paper presents the first results from a comparison of Planck dust maps at 353, 545 and 857GHz, along with IRAS data at 3000 (100 μm) and 5000GHz (60 μm), with Green Bank Telescope 21-cm observations of Hi in 14 fields covering more than 800 deg2 at high Galactic latitude. The main goal of this study is to estimate the far-infrared to sub-millimeter (submm) emissivity of dust in the diffuse local interstellar medium (ISM) and in the intermediate-velocity (IVC) and high-velocity clouds (HVC) of the Galactic halo. Galactic dust emission for fields with average Hi column density lower than 2 × 1020 cm-2 is well correlated with 21-cm emission because in such diffuse areas the hydrogen is predominantly in the neutral atomic phase. The residual emission in these fields, once the Hi-correlated emission is removed, is consistent with the expected statistical properties of the cosmic infrared background fluctuations. The brighter fields in our sample, with an average Hi column density greater than 2 × 1020 cm-2, show significant excess dust emission compared to the Hi column density. Regions of excess lie in organized structures that suggest the presence of hydrogen in molecular form, though they are not always correlated with CO emission. In the higher Hi column density fields the excess emission at 857 GHz is about 40% of that coming from the Hi, but over all the high latitude fields surveyed the molecular mass faction is about 10%. Dust emission from IVCs is detected with high significance by this correlation analysis. Its spectral properties are consistent with, compared to the local ISM values, significantly hotter dust (T ~ 20K), lower submm dust opacity normalized per H-atom, and a relative abundance of very small grains to large grains about four times higher. These results are compatible with expectations for clouds that are part of the Galactic fountain in which there is dust shattering and fragmentation. Correlated dust emission in HVCs is not detected

  15. Relation between halo spin and cosmic-web filaments at z ≃ 3

    NASA Astrophysics Data System (ADS)

    González, Roberto E.; Prieto, Joaquin; Padilla, Nelson; Jimenez, Raul

    2017-02-01

    We investigate the spin evolution of dark matter haloes and their dependence on the number of connected filaments from the cosmic web at high redshift (spin-filament relation hereafter). To this purpose, we have simulated 5000 haloes in the mass range 5 × 109 h-1 M⊙ to 5 × 1011 h-1 M⊙ at z = 3 in cosmological N-body simulations. We confirm the relation found by Prieto et al. (2015) where haloes with fewer filaments have larger spin. We also found that this relation is more significant for higher halo masses, and for haloes with a passive (no major mergers) assembly history. Another finding is that haloes with larger spin or with fewer filaments have their filaments more perpendicularly aligned with the spin vector. Our results point to a picture in which the initial spin of haloes is well described by tidal torque theory and then gets subsequently modified in a predictable way because of the topology of the cosmic web, which in turn is given by the currently favoured Lambda cold dark matter (LCDM) model. Our spin-filament relation is a prediction from LCDM that could be tested with observations.

  16. ALMA observations of lensed Herschel sources: testing the dark matter halo paradigm

    NASA Astrophysics Data System (ADS)

    Amvrosiadis, A.; Eales, S. A.; Negrello, M.; Marchetti, L.; Smith, M. W. L.; Bourne, N.; Clements, D. L.; De Zotti, G.; Dunne, L.; Dye, S.; Furlanetto, C.; Ivison, R. J.; Maddox, S. J.; Valiante, E.; Baes, M.; Baker, A. J.; Cooray, A.; Crawford, S. M.; Frayer, D.; Harris, A.; Michałowski, M. J.; Nayyeri, H.; Oliver, S.; Riechers, D. A.; Serjeant, S.; Vaccari, M.

    2018-04-01

    With the advent of wide-area submillimetre surveys, a large number of high-redshift gravitationally lensed dusty star-forming galaxies have been revealed. Because of the simplicity of the selection criteria for candidate lensed sources in such surveys, identified as those with S500 μm > 100 mJy, uncertainties associated with the modelling of the selection function are expunged. The combination of these attributes makes submillimetre surveys ideal for the study of strong lens statistics. We carried out a pilot study of the lensing statistics of submillimetre-selected sources by making observations with the Atacama Large Millimeter Array (ALMA) of a sample of strongly lensed sources selected from surveys carried out with the Herschel Space Observatory. We attempted to reproduce the distribution of image separations for the lensed sources using a halo mass function taken from a numerical simulation that contains both dark matter and baryons. We used three different density distributions, one based on analytical fits to the haloes formed in the EAGLE simulation and two density distributions [Singular Isothermal Sphere (SIS) and SISSA] that have been used before in lensing studies. We found that we could reproduce the observed distribution with all three density distributions, as long as we imposed an upper mass transition of ˜1013 M⊙ for the SIS and SISSA models, above which we assumed that the density distribution could be represented by a Navarro-Frenk-White profile. We show that we would need a sample of ˜500 lensed sources to distinguish between the density distributions, which is practical given the predicted number of lensed sources in the Herschel surveys.

  17. Galactic center γ-ray excess in hidden sector DM models with dark gauge symmetries: local Z{sub 3} symmetry as an example

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ko, P.; Tang, Yong

    We show that hidden sector dark matter (DM) models with local dark gauge symmetries make a natural playground for the possible γ-ray excess from the galactic center (GC). We first discuss in detail the GC γ-ray excess in a scalar dark matter (DM) model with local Z{sub 3} symmetry which was recently proposed by the present authors. Within this model, scalar DM with mass 30–70 GeV is allowed due to the newly-opened (semi-)annihilation channels of a DM pair into dark Higgs ϕ and/or dark photon Z′ pair, and the γ-ray spectrum from the GC can be fit within this model.more » Then we argue that the GC gamma ray excess can be easily accommodated within hidden sector dark matter models where DM is stabilized by local gauge symmetries, due to the presence of dark Higgs (and also dark photon for Abelian dark gauge symmetry)« less

  18. The Fermi Galactic Center GeV excess and implications for dark matter

    DOE PAGES

    Ackermann, M.; Ajello, M.; Albert, A.; ...

    2017-05-04

    Here, the region around the Galactic Center (GC) is now well established to be brighter at energies of a few GeV than what is expected from conventional models of diffuse gamma-ray emission and catalogs of known gamma-ray sources. We study the GeV excess using 6.5 yr of data from the Fermi Large Area Telescope. We characterize the uncertainty of the GC excess spectrum and morphology due to uncertainties in cosmic-ray source distributions and propagation, uncertainties in the distribution of interstellar gas in the Milky Way, and uncertainties due to a potential contribution from the Fermi bubbles. We also evaluate uncertaintiesmore » in the excess properties due to resolved point sources of gamma rays. The GC is of particular interest, as it would be expected to have the brightest signal from annihilation of weakly interacting massive dark matter (DM) particles. However, control regions along the Galactic plane, where a DM signal is not expected, show excesses of similar amplitude relative to the local background. Furthermore, based on the magnitude of the systematic uncertainties, we conservatively report upper limits for the annihilation cross-section as a function of particle mass and annihilation channel.« less

  19. Cold dark matter: Controversies on small scales.

    PubMed

    Weinberg, David H; Bullock, James S; Governato, Fabio; Kuzio de Naray, Rachel; Peter, Annika H G

    2015-10-06

    The cold dark matter (CDM) cosmological model has been remarkably successful in explaining cosmic structure over an enormous span of redshift, but it has faced persistent challenges from observations that probe the innermost regions of dark matter halos and the properties of the Milky Way's dwarf galaxy satellites. We review the current observational and theoretical status of these "small-scale controversies." Cosmological simulations that incorporate only gravity and collisionless CDM predict halos with abundant substructure and central densities that are too high to match constraints from galaxy dynamics. The solution could lie in baryonic physics: Recent numerical simulations and analytical models suggest that gravitational potential fluctuations tied to efficient supernova feedback can flatten the central cusps of halos in massive galaxies, and a combination of feedback and low star formation efficiency could explain why most of the dark matter subhalos orbiting the Milky Way do not host visible galaxies. However, it is not clear that this solution can work in the lowest mass galaxies, where discrepancies are observed. Alternatively, the small-scale conflicts could be evidence of more complex physics in the dark sector itself. For example, elastic scattering from strong dark matter self-interactions can alter predicted halo mass profiles, leading to good agreement with observations across a wide range of galaxy mass. Gravitational lensing and dynamical perturbations of tidal streams in the stellar halo provide evidence for an abundant population of low-mass subhalos in accord with CDM predictions. These observational approaches will get more powerful over the next few years.

  20. Cold dark matter: Controversies on small scales

    PubMed Central

    Weinberg, David H.; Bullock, James S.; Governato, Fabio; Kuzio de Naray, Rachel; Peter, Annika H. G.

    2015-01-01

    The cold dark matter (CDM) cosmological model has been remarkably successful in explaining cosmic structure over an enormous span of redshift, but it has faced persistent challenges from observations that probe the innermost regions of dark matter halos and the properties of the Milky Way’s dwarf galaxy satellites. We review the current observational and theoretical status of these “small-scale controversies.” Cosmological simulations that incorporate only gravity and collisionless CDM predict halos with abundant substructure and central densities that are too high to match constraints from galaxy dynamics. The solution could lie in baryonic physics: Recent numerical simulations and analytical models suggest that gravitational potential fluctuations tied to efficient supernova feedback can flatten the central cusps of halos in massive galaxies, and a combination of feedback and low star formation efficiency could explain why most of the dark matter subhalos orbiting the Milky Way do not host visible galaxies. However, it is not clear that this solution can work in the lowest mass galaxies, where discrepancies are observed. Alternatively, the small-scale conflicts could be evidence of more complex physics in the dark sector itself. For example, elastic scattering from strong dark matter self-interactions can alter predicted halo mass profiles, leading to good agreement with observations across a wide range of galaxy mass. Gravitational lensing and dynamical perturbations of tidal streams in the stellar halo provide evidence for an abundant population of low-mass subhalos in accord with CDM predictions. These observational approaches will get more powerful over the next few years. PMID:25646464