Science.gov

Sample records for galactic magnetic fields

  1. Modeling the evolution of galactic magnetic fields

    SciTech Connect

    Yar-Mukhamedov, D.

    2015-04-15

    An analytic model for evolution of galactic magnetic fields in hierarchical galaxy formation frameworks is introduced. Its major innovative components include explicit and detailed treatment of the physics of merger events, mass gains and losses, gravitational energy sources and delays associated with formation of large-scale magnetic fields. This paper describes the model, its implementation, and core results obtained by its means.

  2. Galactic and Intergalactic Magnetic Fields

    NASA Astrophysics Data System (ADS)

    Klein, U.; Fletcher, A.

    This course-tested textbook conveys the fundamentals of magnetic fields and relativistic plasma in diffuse cosmic media, with a primary focus on phenomena that have been observed at different wavelengths. Theoretical concepts are addressed wherever necessary, with derivations presented in sufficient detail to be generally accessible. In the first few chapters the authors present an introduction to various astrophysical phenomena related to cosmic magnetism, with scales ranging from molecular clouds in star-forming regions and supernova remnants in the Milky Way, to clusters of galaxies. Later chapters address the role of magnetic fields in the evolution of the interstellar medium, galaxies and galaxy clusters. The book is intended for advanced undergraduate and postgraduate students in astronomy and physics and will serve as an entry point for those starting their first research projects in the field.

  3. Galactic magnetic fields and hierarchical galaxy formation

    NASA Astrophysics Data System (ADS)

    Rodrigues, L. F. S.; Shukurov, A.; Fletcher, A.; Baugh, C. M.

    2015-07-01

    A framework is introduced for coupling the evolution of galactic magnetic fields sustained by the mean-field dynamo with the formation and evolution of galaxies in cold dark matter cosmology. Estimates of the steady-state strength of the large-scale and turbulent magnetic fields from mean-field and fluctuation dynamo models are used together with galaxy properties predicted by semi-analytic models of galaxy formation for a population of spiral galaxies. We find that the field strength is mostly controlled by the evolving gas content of the galaxies. Thus, because of the differences in the implementation of the star formation law, feedback from supernovae and ram-pressure stripping, each of the galaxy formation models considered predicts a distribution of field strengths with unique features. The most prominent of them is the difference in typical magnetic field strengths obtained for the satellite and central galaxy populations as well as the typical strength of the large-scale magnetic field in galaxies of different mass.

  4. Magnetic fields and galactic star formation rates

    SciTech Connect

    Loo, Sven Van; Tan, Jonathan C.; Falle, Sam A. E. G.

    2015-02-10

    The regulation of galactic-scale star formation rates (SFRs) is a basic problem for theories of galaxy formation and evolution: which processes are responsible for making observed star formation rates so inefficient compared to maximal rates of gas content divided by dynamical timescale? Here we study the effect of magnetic fields of different strengths on the evolution of giant molecular clouds (GMCs) within a kiloparsec patch of a disk galaxy and resolving scales down to ≃0.5 pc. Including an empirically motivated prescription for star formation from dense gas (n{sub H}>10{sup 5} cm{sup −3}) at an efficiency of 2% per local free-fall time, we derive the amount of suppression of star formation by magnetic fields compared to the nonmagnetized case. We find GMC fragmentation, dense clump formation, and SFR can be significantly affected by the inclusion of magnetic fields, especially in our strongest investigated B-field case of 80 μG. However, our chosen kiloparsec-scale region, extracted from a global galaxy simulation, happens to contain a starbursting cloud complex that is only modestly affected by these magnetic fields and likely requires internal star formation feedback to regulate its SFR.

  5. Magnetic Fields and Galactic Star Formation Rates

    NASA Astrophysics Data System (ADS)

    Van Loo, Sven; Tan, Jonathan C.; Falle, Sam A. E. G.

    2015-02-01

    The regulation of galactic-scale star formation rates (SFRs) is a basic problem for theories of galaxy formation and evolution: which processes are responsible for making observed star formation rates so inefficient compared to maximal rates of gas content divided by dynamical timescale? Here we study the effect of magnetic fields of different strengths on the evolution of giant molecular clouds (GMCs) within a kiloparsec patch of a disk galaxy and resolving scales down to ≃ 0.5 pc. Including an empirically motivated prescription for star formation from dense gas ({{n}H}\\gt {{10}5} c{{m}-3}) at an efficiency of 2% per local free-fall time, we derive the amount of suppression of star formation by magnetic fields compared to the nonmagnetized case. We find GMC fragmentation, dense clump formation, and SFR can be significantly affected by the inclusion of magnetic fields, especially in our strongest investigated B-field case of 80 μG. However, our chosen kiloparsec-scale region, extracted from a global galaxy simulation, happens to contain a starbursting cloud complex that is only modestly affected by these magnetic fields and likely requires internal star formation feedback to regulate its SFR.

  6. STUDIES IN GALACTIC ASTRONOMY, INCLUDING MAGNETIC FIELDS.

    DTIC Science & Technology

    ASTRONOMY , GALAXIES), (*GALAXIES, BIBLIOGRAPHIES), (*BIBLIOGRAPHIES, GALAXIES), NOVAE, INTERSTELLAR MATTER, MAGNETIC FIELDS, POLARIZATION, STARS, STABILITY, ENERGY, DISTRIBUTION, OPTICAL PROPERTIES, CELESTIAL MECHANICS

  7. On the Origin and Evolution of Galactic Magnetic Fields

    NASA Astrophysics Data System (ADS)

    Lesch, H.; Chiba, M.

    The existence of large-scale magnetic fields in galaxies is still a challenge for theoretical astrophysics. Are magnetic fields of primordial origin, produced somehow during the initial stages of cosmic evolution or are they intrinsically produced by the galaxies themselves? Especially observations of m G fields in high redshift (z = 2-3) damped Lyman alpha clouds, which are supposed to be the progenitors of disk galaxies, raise questions about the origin of such strong fields only one or two Gigayears after the Big Bang. Recent observations of galactic magnetic fields in nearby disk galaxies as well as in high redshift objects are reviewed and the role of electrodynamical coupling of the fields and the gas motions in different stages of galaxy evolution is emphasized. By presenting two different scenarios-action of a turbulent dynamo in axisymmetric differentially rotating disks and magnetic field amplification by non-axisymmetric dynamical processes (protogalactic collapse and subsequent excitation of spiral arms and bars) - we illustrate the basic problems of magnetic field production and amplification in galactic systems. It is shown that origin and amplification via dynamical processes leads to appropriate time scales and efficiencies to account for the strong magnetic fields in high redshift objects as well as the field structure in nearby disk galaxies. We describe the implications for galaxy formation if such strong fields exist in the epoch prior to galaxy formation. Finally we discuss our conclusion that the origin and evolution of galactic magnetic fields can only be understood by considering the time-varying velocity field of the conductor, the galactic interstellar medium in all stages of a galactic lifetime, in detail.

  8. SOFIA/HAWC+: Mapping the Galactic Center Magnetic Field

    NASA Technical Reports Server (NTRS)

    Werner, Michael W.; Dowell, C. Darren; Chuss, D. T.; Morris, M. R.; Novak, G.

    2013-01-01

    Polarimetry of the far infrared emission from magnetically-aligned interstellar grains is one of the best ways of studying the magnetic field at the Galactic Center. We describe the HAWC+ instrument, under development for flight on SOFIA starting in 2015, which will provide a major advance in capability for these critically important measurements.

  9. SOFIA/HAWC+: Mapping the Galactic Center Magnetic Field

    NASA Technical Reports Server (NTRS)

    Werner, Michael W.; Dowell, C. Darren; Chuss, D. T.; Morris, M. R.; Novak, G.

    2013-01-01

    Polarimetry of the far infrared emission from magnetically-aligned interstellar grains is one of the best ways of studying the magnetic field at the Galactic Center. We describe the HAWC+ instrument, under development for flight on SOFIA starting in 2015, which will provide a major advance in capability for these critically important measurements.

  10. Neutrino mass and the origin of galactic magnetic fields

    SciTech Connect

    Enqvist, K. ); Semikoz, V. IZMIRAN, Academy of Sciences, Troitsk 142092 ); Shukurov, A. Computing Center, Moscow University, Moscow 119899 ); Sokoloff, D. Isaac Newton Institute, Cambridge University, Cambridge CB3 0EH )

    1993-11-15

    We compare two constraints on the strength of the cosmological primordial magnetic field: the one following from the restrictions on the Dirac neutrino spin flip in the early Universe, and another one based on the galactic dynamo theory for the Milky Way (presuming that the seed magnetic field has a relic origin). Since the magnetic field facilitates transitions between left- and right-handed neutrino states, thereby affecting [sup 4]He production at primordial nucleosynthesis, we can obtain a guaranteed [ital upper] limit on the strength of the relic magnetic field in the protogalaxy, [ital B][sub [ital c

  11. The Galactic Magnetic Field as Viewed from the VLA

    NASA Astrophysics Data System (ADS)

    van Eck, Cameron; Brown, Jo-Anne

    2009-05-01

    Interstellar magnetic fields play critical roles in many astrophysical processes. Yet despite their importance, our knowledge about magnetic fields in our Galaxy remains limited. For the field within the Milky Way much of what we do know comes from radio astronomy, through observations of polarization and Faraday rotation measures (RMs) of extragalactic sources and pulsars. A high angular density of RM measurements in several critical areas of the Galaxy is needed to clarify the Galactic magnetic field structure. Understanding the overall structure of the magnetic field will subsequently help us determine the origin and evolution of the field. In an effort to determine the overall structure of the field, Sun et al. (2008) produced 3 models of the Galactic magnetic field based on RM measurements available at the time. These models made distinct predictions for RMs in a region of the inner Galaxy at low Galactic latitude. Using observations made with the Very Large Array (VLA), we have determined RMs for sources in this critical region. In this talk we will present the results of our study and show how the RMs strongly support the ASS+RING model.

  12. Distinctive aspects of the evolution of galactic magnetic fields

    SciTech Connect

    Yar-Mukhamedov, D.

    2016-11-15

    We perform an in-depth analysis of the evolution of galactic magnetic fields within a semi-analytic galaxy formation and evolution framework, determine various distinctive aspects of the evolution process, and obtain analytic solutions for a wide range of possible evolution scenarios.

  13. Galactic Magnetic Fields, from Radio Polarimetry of the WIM

    NASA Astrophysics Data System (ADS)

    Haverkorn, M.; Katgert, P.; de Bruyn, A. G.; Heitsch, F.

    2004-10-01

    Multi-frequency radio polarimetry of the diffuse Galactic synchrotron back-ground gives new viewpoints on the Galactic magnetic field. Rotation measure maps reveal magnetic structures on arcminute to degree scales, such as a ring in polarization that we interpret as a magnetic tunnel. A complication using this technique is depolarization across the beam and along the line of sight. The influence of beam depolarization has been estimated using numerical models of the magneto-ionic ISM, through which polarized radiation propagates. The models show that depolarization canals similar to those observed can be caused by beam depolarization, and that the one-dimensional gradients in RM needed to produce these canals are ubiquitous in the medium.

  14. The Galactic Magnetic Field and its lensing of Ultrahigh Energy and Galactic Cosmic Rays

    NASA Astrophysics Data System (ADS)

    Farrar, Glennys

    2015-08-01

    It has long been recognized that magnetic fields play an important role in many astrophysical environments, but the magnetic field strength and structure has only been quantitatively determined for relatively few systems beyond our solar system.Our understanding of the Galactic magnetic field (GMF) has improved tremendously in recent years. The Jansson-Farrar (2012) (JF12) GMF model is the most realistic and comprehensive model available. It was constrained by fitting all-sky Faraday Rotation Measures of ~40k extragalactic sources, simultaneously with WMAP polarized (Q,U) and total synchrotron emission maps - together providing a total of more than 10,000 independent datapoints, each with measured astrophysical variance. In addition to disk and toroidal halo components, a previously overlooked coherent poloidal halo field proves to be necessary to account for the RM, Q and U data. Moreover a “striated” random component is needed in addition to a fully random component, in both disk and halo.The talk will give a concise review of the JF12 model and its derivation, with emphasis on which features of the GMF are well or poorly established. I will show that the data unambiguously demand a large scale coherent component to the halo field which is a diverging-spiral centered on the Galactic center, with field lines running from Southern to Northern hemispheres. The puzzles posed by the large scale coherent halo and disk magnetic fields, and their possible origins, will be discussed.Having a good model of the Galactic magnetic field is crucial for determining the sources of UHECRs, for modeling the transport of Galactic CRs (the halo field provides a heretofore-overlooked escape route for by diffusion along its field lines), and for calculating the background to dark matter and CMB-cosmology studies. I will present new results on the lensing effect of the GMF on UHECRs, which produces multiple images and dramatic magnification and demagnification that varies with

  15. Strong magnetic fields, galaxy formation, and the Galactic engine

    NASA Technical Reports Server (NTRS)

    Greyber, Howard D.

    1989-01-01

    The strong-magnetic-field model proposed as an energy source for AGN and quasars by Greyber (1961, 1962, 1964, 1967, 1984, 1988, and 1989) is discussed. The basic principles of the model are reviewed; its advantages (in explaining the observed features of AGN and quasars) over models based on a rotating accretion disk are indicated in a table; and its implications for galaxy and quasar formation are explored. The gravitationally bound current loops detected in nearby spiral galaxies are interpreted as weak remnants of the current loops present during their formation. An observational search for a similar loop near the Galactic center is proposed.

  16. Magnetic fields in the central engines of active galactic nuclei

    NASA Technical Reports Server (NTRS)

    Begelman, Mitchell C.

    1989-01-01

    Important physical processes which may occur in the central engines of active galactic nuclei and which rely on the presence of a strong magnetic field are discussed. These processes include those involved in the plasma physics of hot tenuous accretion flows, the production of nonthermal continuum radiation, and the radiative manifestation of hydromagnetic jet production. The main arguments which support the hypothesis that supermassive black holes are the prime movers in the central engines are reviewed, and some major deduction regarding the physical state of the accreting gas are pointed out.

  17. MAGMO: Mapping the Galactic Magnetic field through OH masers

    NASA Astrophysics Data System (ADS)

    Green, James A.; McClure-Griffiths, Naomi M.; Caswell, James L.; Robishaw, Tim; Harvey-Smith, Lisa; Mao, Sui Ann

    2015-03-01

    We are undertaking a project (MAGMO) to examine large-scale magnetic fields pervading regions of high-mass star formation. The project will test if the orientations of weak large-scale magnetic fields can be maintained in the contraction (and field amplification) to the high densities encountered in high-mass star forming regions. This will be achieved through correlating targeted observations of ground-state hydroxyl (OH) maser emission towards hundreds of sites of high-mass star formation spread throughout the spiral arms of the Milky Way. Through the Zeeman splitting of the OH maser emission these observations will determine the strength and orientation of the in-situ magnetic field. The completion of the southern hemisphere Methanol Multibeam survey has provided an abundance of targets for ground-state OH maser observations, approximately 1000 sites of high-mass star formation. With this sample, much larger and more homogeneous than previously available, we will have the statistics necessary to outweigh random fluctuations and observe an underlying Galactic magnetic field if it exists. We presented details of the overall progress of the project illustrated by the results of a pilot sample of sources towards the Carina-Sagittarius spiral arm tangent, where a coherent field is implied.

  18. Wiggle Instability of Galactic Spiral Shocks: Effects of Magnetic Fields

    NASA Astrophysics Data System (ADS)

    Kim, Yonghwi; Kim, Woong-Tae; Elmegreen, Bruce G.

    2015-08-01

    It has been suggested that the wiggle instability (WI) of spiral shocks in a galactic disk is responsible for the formation of gaseous feathers observed in grand-design spiral galaxies. We perform both a linear stability analysis and numerical simulations to investigate the effect of magnetic fields on the WI. The disk is assumed to be infinitesimally thin, isothermal, and non-self-gravitating. We control the strengths of magnetic fields and spiral-arm forcing using the dimensionless parameters β and {F}, respectively. By solving the perturbation equations as a boundary-eigenvalue problem, we obtain dispersion relations of the WI for various values of β =1-∞ and {F}=5% and 10%. We find that the WI arising from the accumulation of potential vorticity at disturbed shocks is suppressed, albeit not completely, by magnetic fields. The stabilizing effect of magnetic fields is not from the perturbed fields but from the unperturbed fields that reduce the density compression factor in the background shocks. When {F}=5% and β ≲ 10 or {F}=10% and β ˜ 5-10, the most unstable mode has a wavelength of ˜0.1-0.2 times the arm-to-arm separation, which appears consistent with a mean spacing of observed feathers.

  19. Pulsar rotation and dispersion measures and the galactic magnetic field.

    NASA Technical Reports Server (NTRS)

    Manchester, R. N.

    1972-01-01

    Use of observations of pulsar polarization and pulse time of arrival at frequencies between 250 and 500 MHz to determine rotation and dispersion measures for 19 and 21 pulsars, respectively. These measurements have been used to calculate mean line-of-sight components of the magnetic field in the path to the pulsars. These and other observations show that there is probably no contribution to the observed rotation measure from the pulsar itself. Low-latitude, low-dispersion pulsars are observed to have strong field components, and a strong dependence of rotation-measure sign on galactic longitude has been found. The observations are consistent with a relatively uniform field of about 3.5 microgauss directed toward about l = 90 deg in the local region, but appear to be inconsistent with the helical model for the local field.

  20. Magnetic monopole plasma oscillations and the survival of Galactic magnetic fields

    NASA Astrophysics Data System (ADS)

    Parker, E. N.

    1987-10-01

    This paper explores the general nature of magnetic-monopole plasma oscillations as a theoretical possibility for the observed Galactic magnetic field in the presence of a high abundance of magnetic monopoles. The modification of the hydromagnetic induction equation by the monopole oscillations produces the half-velocity effect, in which the magnetic field is transported bodily with a velocity midway between the motion of the conducting fluid and the monopole plasma. Observational studies of the magnetic field in the Galaxy, and in other galaxies, exclude the half-velocity effect, indicating that the magnetic fields is not associated with monopole oscillations. In any case the phase mixing would destroy the oscillations in less than 100 Myr. The conclusion is that magnetic monopole oscillations do not play a significant role in the galactic magnetic fields. Hence the existence of galactic magnetic fields places a low limit on the monopole flux, so that their detection - if they exist at all - requires a collecting area at least as large as a football field.

  1. Magnetic monopole plasma oscillations and the survival of Galactic magnetic fields

    SciTech Connect

    Parker, E.N.

    1987-10-01

    This paper explores the general nature of magnetic-monopole plasma oscillations as a theoretical possibility for the observed Galactic magnetic field in the presence of a high abundance of magnetic monopoles. The modification of the hydromagnetic induction equation by the monopole oscillations produces the half-velocity effect, in which the magnetic field is transported bodily with a velocity midway between the motion of the conducting fluid and the monopole plasma. Observational studies of the magnetic field in the Galaxy, and in other galaxies, exclude the half-velocity effect, indicating that the magnetic fields is not associated with monopole oscillations. In any case the phase mixing would destroy the oscillations in less than 100 Myr. The conclusion is that magnetic monopole oscillations do not play a significant role in the galactic magnetic fields. Hence the existence of galactic magnetic fields places a low limit on the monopole flux, so that their detection - if they exist at all - requires a collecting area at least as large as a football field. 47 references.

  2. Planck intermediate results. XLII. Large-scale Galactic magnetic fields

    NASA Astrophysics Data System (ADS)

    Planck Collaboration; Adam, R.; Ade, P. A. R.; Alves, M. I. R.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Banday, A. J.; Barreiro, R. B.; Bartolo, N.; Battaner, E.; Benabed, K.; Benoit-Lévy, A.; Bernard, J.-P.; Bersanelli, M.; Bielewicz, P.; Bonavera, L.; Bond, J. R.; Borrill, J.; Bouchet, F. R.; Boulanger, F.; Bucher, M.; Burigana, C.; Butler, R. C.; Calabrese, E.; Cardoso, J.-F.; Catalano, A.; Chiang, H. C.; Christensen, P. R.; Colombo, L. P. L.; Combet, C.; Couchot, F.; Crill, B. P.; Curto, A.; Cuttaia, F.; Danese, L.; Davis, R. J.; de Bernardis, P.; de Rosa, A.; de Zotti, G.; Delabrouille, J.; Dickinson, C.; Diego, J. M.; Dolag, K.; Doré, O.; Ducout, A.; Dupac, X.; Elsner, F.; Enßlin, T. A.; Eriksen, H. K.; Ferrière, K.; Finelli, F.; Forni, O.; Frailis, M.; Fraisse, A. A.; Franceschi, E.; Galeotta, S.; Ganga, K.; Ghosh, T.; Giard, M.; Gjerløw, E.; González-Nuevo, J.; Górski, K. M.; Gregorio, A.; Gruppuso, A.; Gudmundsson, J. E.; Hansen, F. K.; Harrison, D. L.; Hernández-Monteagudo, C.; Herranz, D.; Hildebrandt, S. R.; Hobson, M.; Hornstrup, A.; Hurier, G.; Jaffe, A. H.; Jaffe, T. R.; Jones, W. C.; Juvela, M.; Keihänen, E.; Keskitalo, R.; Kisner, T. S.; Knoche, J.; Kunz, M.; Kurki-Suonio, H.; Lamarre, J.-M.; Lasenby, A.; Lattanzi, M.; Lawrence, C. R.; Leahy, J. P.; Leonardi, R.; Levrier, F.; Liguori, M.; Lilje, P. B.; Linden-Vørnle, M.; López-Caniego, M.; Lubin, P. M.; Macías-Pérez, J. F.; Maggio, G.; Maino, D.; Mandolesi, N.; Mangilli, A.; Maris, M.; Martin, P. G.; Martínez-González, E.; Masi, S.; Matarrese, S.; Melchiorri, A.; Mennella, A.; Migliaccio, M.; Miville-Deschênes, M.-A.; Moneti, A.; Montier, L.; Morgante, G.; Munshi, D.; Murphy, J. A.; Naselsky, P.; Nati, F.; Natoli, P.; Nørgaard-Nielsen, H. U.; Oppermann, N.; Orlando, E.; Pagano, L.; Pajot, F.; Paladini, R.; Paoletti, D.; Pasian, F.; Perotto, L.; Pettorino, V.; Piacentini, F.; Piat, M.; Pierpaoli, E.; Plaszczynski, S.; Pointecouteau, E.; Polenta, G.; Ponthieu, N.; Pratt, G. W.; Prunet, S.; Puget, J.-L.; Rachen, J. P.; Reinecke, M.; Remazeilles, M.; Renault, C.; Renzi, A.; Ristorcelli, I.; Rocha, G.; Rossetti, M.; Roudier, G.; Rubiño-Martín, J. A.; Rusholme, B.; Sandri, M.; Santos, D.; Savelainen, M.; Scott, D.; Spencer, L. D.; Stolyarov, V.; Stompor, R.; Strong, A. W.; Sudiwala, R.; Sunyaev, R.; Suur-Uski, A.-S.; Sygnet, J.-F.; Tauber, J. A.; Terenzi, L.; Toffolatti, L.; Tomasi, M.; Tristram, M.; Tucci, M.; Valenziano, L.; Valiviita, J.; Van Tent, F.; Vielva, P.; Villa, F.; Wade, L. A.; Wandelt, B. D.; Wehus, I. K.; Yvon, D.; Zacchei, A.; Zonca, A.

    2016-12-01

    Recent models for the large-scale Galactic magnetic fields in the literature have been largely constrained by synchrotron emission and Faraday rotation measures. We use three different but representative models to compare their predicted polarized synchrotron and dust emission with that measured by the Planck satellite. We first update these models to match the Planck synchrotron products using a common model for the cosmic-ray leptons. We discuss the impact on this analysis of the ongoing problems of component separation in the Planck microwave bands and of the uncertain cosmic-ray spectrum. In particular, the inferred degree of ordering in the magnetic fields is sensitive to these systematic uncertainties, and we further show the importance of considering the expected variations in the observables in addition to their mean morphology. We then compare the resulting simulated emission to the observed dust polarization and find that the dust predictions do not match the morphology in the Planck data but underpredict the dust polarization away from the plane. We modify one of the models to roughly match both observables at high latitudes by increasing the field ordering in the thin disc near the observer. Though this specific analysis is dependent on the component separation issues, we present the improved model as a proof of concept for how these studies can be advanced in future using complementary information from ongoing and planned observational projects.

  3. Using red clump stars to decompose the galactic magnetic field with distance

    SciTech Connect

    Pavel, Michael D.

    2014-09-01

    A new method for measuring the large-scale structure of the Galactic magnetic field is presented. The Galactic magnetic field has been probed through the Galactic disk with near-infrared starlight polarimetry; however, the distance to each background star is unknown. Using red clump stars as near-infrared standard candles, this work presents the first attempt to decompose the line-of-sight structure of the sky-projected Galactic magnetic field. Two example lines of sight are decomposed: toward a field with many red clump stars and toward a field with few red clump stars. A continuous estimate of magnetic field orientation over several kiloparsecs of distance is possible in the field with many red clump stars, while only discrete estimates are possible in the sparse example. Toward the outer Galaxy, there is a continuous field orientation with distance that shows evidence of perturbation by the Galactic warp. Toward the inner Galaxy, evidence for a large-scale change in the magnetic field geometry is consistent with models of magnetic field reversals, independently derived from Faraday rotation studies. A photo-polarimetric method for identifying candidate intrinsically polarized stars is also presented. The future application of this method to large regions of the sky will begin the process of mapping the Galactic magnetic field in a way never before possible.

  4. Using Red Clump Stars to Decompose the Galactic Magnetic Field with Distance

    NASA Astrophysics Data System (ADS)

    Pavel, Michael D.

    2014-09-01

    A new method for measuring the large-scale structure of the Galactic magnetic field is presented. The Galactic magnetic field has been probed through the Galactic disk with near-infrared starlight polarimetry; however, the distance to each background star is unknown. Using red clump stars as near-infrared standard candles, this work presents the first attempt to decompose the line-of-sight structure of the sky-projected Galactic magnetic field. Two example lines of sight are decomposed: toward a field with many red clump stars and toward a field with few red clump stars. A continuous estimate of magnetic field orientation over several kiloparsecs of distance is possible in the field with many red clump stars, while only discrete estimates are possible in the sparse example. Toward the outer Galaxy, there is a continuous field orientation with distance that shows evidence of perturbation by the Galactic warp. Toward the inner Galaxy, evidence for a large-scale change in the magnetic field geometry is consistent with models of magnetic field reversals, independently derived from Faraday rotation studies. A photo-polarimetric method for identifying candidate intrinsically polarized stars is also presented. The future application of this method to large regions of the sky will begin the process of mapping the Galactic magnetic field in a way never before possible.

  5. The ties that bind? Galactic magnetic fields and ram pressure stripping

    SciTech Connect

    Tonnesen, Stephanie; Stone, James E-mail: jstone@astro.princeton.edu

    2014-11-10

    One process affecting gas-rich cluster galaxies is ram pressure stripping (RPS), i.e., the removal of galactic gas through direct interaction with the intracluster medium (ICM). Galactic magnetic fields may have an important impact on the stripping rate and tail structure. We run the first magnetohydrodynamic (MHD) simulations of RPS that include a galactic magnetic field, using 159 pc resolution throughout our entire domain in order to resolve mixing throughout the tail. We find very little difference in the total amount of gas removed from the unmagnetized and magnetized galaxies, although a magnetic field with a radial component will initially accelerate stripped gas more quickly. In general, we find that magnetic fields in the disk lead to slower velocities in the stripped gas near the disk and faster velocities farther from the disk. We also find that magnetic fields in the galactic gas lead to larger unmixed structures in the tail. Finally, we discuss whether ram pressure stripped tails can magnetize the ICM. We find that the total magnetic energy density grows as the tail lengthens, likely through turbulence. There are μG-strength fields in the tail in all of our MHD runs, which survive to at least 100 kpc from the disk (the edge of our simulated region), indicating that the area-filling factor of magnetized tails in a cluster could be large.

  6. The spectrum of random magnetic fields in the mean field dynamo theory of the Galactic magnetic field

    NASA Technical Reports Server (NTRS)

    Kulsrud, Russell M.; Anderson, Stephen W.

    1992-01-01

    The fluctuation spectrum that must arise in a mean field dynamo generation of galactic fields if the initial field is weak is considered. A kinetic equation for its evolution is derived and solved. The spectrum evolves by transfer of energy from one magnetic mode to another by interaction with turbulent velocity modes. This kinetic equation is valid in the limit that the rate of evolution of the magnetic modes is slower than the reciprocal decorrelation time of the turbulent modes. This turns out to be the case by a factor greater than 3. Most of the fluctuation energy concentrates on small scales, shorter than the hydrodynamic turbulent scales. The fluctuation energy builds up to equipartition with the turbulent energy in times that are short compared to the e-folding time of the mean field. The turbulence becomes strongly modified before the dynamo amplification starts. Thus, the kinematic assumption of the mean dynamo theory is invalid. Thus, the galactic field must have a primordial origin, although it may subsequently be modified by dynamo action.

  7. Bilateral symmetry in supernova remnants and the connection to the Galactic magnetic field

    NASA Astrophysics Data System (ADS)

    West, Jennifer Lorraine; Safi-Harb, Samar; Jaffe, Tess; Kothes, Roland; Foster, Tyler; Landecker, Tom

    2015-08-01

    Supernova explosions are some of the most significant and transformative events in our Universe. Understanding Supernova Remnants (SNRs), the leftover remains of these explosions, is fundamental to our understanding of the chemical enrichment and magnetism in galaxies, including our own Milky Way. We model the radio synchrotron emission from Galactic SNRs using the “Hammurabi” synchrotron modelling code. We incorporate current models of Galactic magnetic field and electron density to simulate the emission from the SNRs as a function of their position in the Galaxy. We do this in an effort to understand the connection between SNRs and their environment and to investigate the relationship between the angle of the symmetry axis of the SNR and the Galactic Magnetic field. This relationship has implications for understanding the magnetic field geometry and cosmic ray electron distribution in SNRs, and possibly even a new method for determining or constraining the distances to SNRs.

  8. Galactic winds and the origin of large-scale magnetic fields

    NASA Astrophysics Data System (ADS)

    Moss, D.; Sokoloff, D.

    2017-02-01

    Context. Observations of dwarf galaxies suggest the presence of large-scale magnetic fields. However the size and slow rotation of these galaxies appear insufficient to support a mean-field dynamo action to excite such fields. Aims: Here we suggest a new mechanism to explain large-scale magnetic fields in galaxies that are too small to support mean-field dynamo action. The key idea is that we do not identify large-scale and mean magnetic fields. In our scenario the magnetic structures originate from a small-scale dynamo which produces small-scale magnetic field in the galactic disc and a galactic wind that transports this field into the galactic halo where the large turbulent diffusion increases the scale and order of the field. As a result, the magnetic field becomes large-scale; however its mean value remains vanishing in a strict sense. Methods: We verify the idea by numerical modelling of two distinct simplified configurations, a thin disc model using the no-z approximation, and an axisymmetric model using cylindrical r,z coordinates. Results: Each of these allows reduction of the problem to two spatial dimensions. Taken together, the models support the proposition that the general trends will persist in a fully 3D model. We demonstrate that a pronounced large-scale pattern can develop in the galactic halo for a wide choice of the dynamo governing parameters. Conclusions: We believe that our mechanism can be relevant to explaining the presence of the fields observed in the halos of dwarf galaxies, and maybe elsewhere. We emphasize that detailed modelling of the proposed scenario needs 3D simulations, and adjustment to the specific dynamo governing parameters of dwarf galaxies.

  9. The Large Scale Structure of the Galactic Magnetic Field and High Energy Cosmic Ray Anisotropy

    NASA Astrophysics Data System (ADS)

    Alvarez-Muñiz, Jaime; Stanev, Todor

    2006-10-01

    Measurements of the magnetic field in our Galaxy are complex and usually difficult to interpret. A spiral regular field in the disk is favored by observations, however the number of field reversals is still under debate. Measurements of the parity of the field across the Galactic plane are also very difficult due to the presence of the disk field itself. In this work we demonstrate that cosmic ray protons in the energy range 1018 to 1019eV, if accelerated near the center of the Galaxy, are sensitive to the large scale structure of the Galactic Magnetic Field (GMF). In particular if the field is of even parity, and the spiral field is bi-symmetric (BSS), ultra high energy protons will predominantly come from the Southern Galactic hemisphere, and predominantly from the Northern Galactic hemisphere if the field is of even parity and axi-symmetric (ASS). There is no sensitivity to the BSS or ASS configurations if the field is of odd parity.

  10. Magnetic Filaments at the Galactic Center: Clues to the Field Configuration in the Inner Galaxy

    NASA Astrophysics Data System (ADS)

    Lang, Cornelia C.; Anantharamaiah, K. R.

    High-resolution, polarimetric VLA observations reveal several new filamentary features in the central 250 pc of the Galaxy. G359.79+0.17 (the Curved filament) and G358.85+0.47 (the Pelican) both exhibit strong linearly polarized radio emission and have intrinsic magnetic field orientations aligned along their long axes. Based on their structural, spectral and polarimetric characteristics, these two filaments can be classified as the newest members of the unique collection of Galactic center non-thermal filaments (NTFs). The group of six previously-known NTFs all have orientations perpendicular to the Galactic plane and are thought to define a poloidal magnetic field configuration in the central 200 pc of the Galaxy. The orientation of the Curved filament is consistent with this geometry. In contrast, the Pelican, which is the furthest known NTF from the Galactic center (225 pc in projection), is oriented parallel to the Galactic plane. The location and orientation of the Pelican suggests that the magnetic field may be undergoing a transition at this location from its perpendicular orientation in the innermost central regions, to the azimuthal orientation in the Galactic disk. In addition, these observations have sufficient resolution to confirm a new property of NTFs: that they are comprised of multiple, parallel, and very narrow (<0.2 pc) strands which appear to be twisting about each other.

  11. Determination of magnetic fields in broad line region of active galactic nuclei from polarimetric observations

    NASA Astrophysics Data System (ADS)

    Piotrovich, Mikhail; Silant'ev, Nikolai; Gnedin, Yuri; Natsvlishvili, Tinatin; Buliga, Stanislava

    2017-02-01

    Magnetic fields play an important role in confining gas clouds in the broad line region (BLR) of active galactic nuclei (AGN) and in maintaining the stability of these clouds. Without magnetic fields the clouds would not be stable, and soon after their formation they would expand and disperse. We show that the strength of the magnetic field can be derived from the polarimetric observations. Estimates of magnetic fields for a number of AGNs are based on the observed polarization degrees of broad Hα lines and nearby continuum. The difference between their values allows us to estimate the magnetic field strength in the BLR using the method developed by Silant'ev et al. (2013). Values of magnetic fields in BLR for a number of AGNs have been derived.

  12. A lower limit of 50 microgauss for the magnetic field near the Galactic Centre.

    PubMed

    Crocker, Roland M; Jones, David I; Melia, Fulvio; Ott, Jürgen; Protheroe, Raymond J

    2010-01-07

    The amplitude of the magnetic field near the Galactic Centre has been uncertain by two orders of magnitude for several decades. On a scale of approximately 100 parsecs (pc), fields of approximately 1,000 microgauss (microG; refs 1-3) have been reported, implying a magnetic energy density more than 10,000 times stronger than typical for the Galaxy. Alternatively, the assumption of pressure equilibrium between the various phases of the Galactic Centre interstellar medium (including turbulent molecular gas, the contested 'very hot' plasma, and the magnetic field) suggests fields of approximately 100 microG over approximately 400 pc size scales. Finally, assuming equipartition, fields of only approximately 6 microG have been inferred from radio observations for 400 pc scales. Here we report a compilation of previous data that reveals a downward break in the region's non-thermal radio spectrum (attributable to a transition from bremsstrahlung to synchrotron cooling of the in situ cosmic-ray electron population). We show that the spectral break requires that the Galactic Centre field be at least approximately 50 microG on 400 pc scales, lest the synchrotron-emitting electrons produce too much gamma-ray emission, given other existing constraints. Other considerations support a field of 100 microG, implying that over 10% of the Galaxy's magnetic energy is contained in only less than or approximately 0.05% of its volume.

  13. Probing stochastic inter-galactic magnetic fields using blazar-induced gamma ray halo morphology

    NASA Astrophysics Data System (ADS)

    Duplessis, Francis; Vachaspati, Tanmay

    2017-05-01

    Inter-galactic magnetic fields can imprint their structure on the morphology of blazar-induced gamma ray halos. We show that the halo morphology arises through the interplay of the source's jet and a two-dimensional surface dictated by the magnetic field. Through extensive numerical simulations, we generate mock halos created by stochastic magnetic fields with and without helicity, and study the dependence of the halo features on the properties of the magnetic field. We propose a sharper version of the Q-statistics and demonstrate its sensitivity to the magnetic field strength, the coherence scale, and the handedness of the helicity. We also identify and explain a new feature of the Q-statistics that can further enhance its power.

  14. Pulsar Rotation Measures and the Large-Scale Structure of the Galactic Magnetic Field

    NASA Astrophysics Data System (ADS)

    Han, J. L.; Manchester, R. N.; Lyne, A. G.; Qiao, G. J.; van Straten, W.

    2006-05-01

    The large-scale magnetic field of our Galaxy can be probed in three dimensions using Faraday rotation of pulsar signals. We report on the determination of 223 rotation measures from polarization observations of relatively distant southern pulsars made using the Parkes radio telescope. Combined with previously published observations, these data give clear evidence for large-scale counterclockwise fields (viewed from the north Galactic pole) in the spiral arms interior to the Sun and weaker evidence for a counterclockwise field in the Perseus arm. However, in interarm regions, including the solar neighborhood, we present evidence that suggests that large-scale fields are clockwise. We propose that the large-scale Galactic magnetic field has a bisymmetric structure with reversals on the boundaries of the spiral arms. Streaming motions associated with spiral density waves can directly generate such a structure from an initial, inwardly directed radial field. Large-scale fields increase toward the Galactic center, with a mean value of about 2 μG in the solar neighborhood and 4 μG at a galactocentric radius of 3 kpc.

  15. Galactic cosmic ray currents and magnetic field irregularity degree in high-speed solar wind streams

    NASA Technical Reports Server (NTRS)

    Kuzmin, A. I.; Samsonov, I. S.; Samsonova, Z. N.

    1985-01-01

    Currents of galactic cosmic rays (GCR) obtained by global survey method are analyzed. The cases of almost total disappearance of GCR currents are compared with the results of direct measurements of the solar wind parameters. The conclusion is made on a restricted application of the convective-diffusive mechanism of the GCR modulation by the solar wind during the occurrence of stationary and regular magnetic fields in the interplanetary medium.

  16. A Constraint on the Organization of the Galactic Center Magnetic Field Using Faraday Rotation

    NASA Astrophysics Data System (ADS)

    Law, C. J.; Brentjens, M. A.; Novak, G.

    2011-04-01

    We present new 6 and 20 cm Very Large Array (VLA) observations of polarized continuum emission of roughly 0.5 deg2 of the Galactic center (GC) region. The 6 cm observations detect diffuse linearly polarized emission throughout the region with a brightness of roughly 1 mJy per 15''×10'' beam. The Faraday rotation measure (RM) toward this polarized emission has structure on degree size scales and ranges from roughly +330 rad m-2 east of the dynamical center (Sgr A) to-880 rad m-2 west of the dynamical center. This RM structure is also seen toward several nonthermal radio filaments, which implies that they have a similar magnetic field orientation and constrains models for their origin. Modeling shows that the RM and its change with Galactic longitude are best explained by the high electron density and strong magnetic field of the GC region. Considering the emissivity of the GC plasma shows that while the absolute RM values are indirect measures of the GC magnetic field, the RM longitude structure directly traces the magnetic field in the central kiloparsec of the Galaxy. Combining this result with previous work reveals a larger RM structure covering the central ~2° of the Galaxy. This RM structure is similar to that proposed by Novak and coworkers, but is shifted roughly 50 pc west of the dynamical center of the Galaxy. If this RM structure originates in the GC region, it shows that the GC magnetic field is organized on ~300 pc size scales. The pattern is consistent with a predominantly poloidal field geometry, pointing from south to north, that is perturbed by the motion of gas in the Galactic disk.

  17. MAGNETIC FIELD CONFIGURATION AT THE GALACTIC CENTER INVESTIGATED BY WIDE-FIELD NEAR-INFRARED POLARIMETRY: TRANSITION FROM A TOROIDAL TO A POLOIDAL MAGNETIC FIELD

    SciTech Connect

    Nishiyama, Shogo; Yoshikawa, Tatsuhito; Nagata, Tetsuya; Hatano, Hirofumi; Nagayama, Takahiro; Tamura, Motohide; Matsunaga, Noriyuki; Suenaga, Takuya; Hough, James H.; Sugitani, Koji; Kato, Daisuke

    2010-10-10

    We present a large-scale view of the magnetic field (MF) in the central 2{sup 0} x 2{sup 0} region of our Galaxy. The polarization of point sources has been measured in the J, H, and K{sub S} bands using the near-infrared polarimetric camera SIRPOL on the 1.4 m Infrared Survey Facility telescope. Comparing the Stokes parameters between high extinction stars and relatively low extinction ones, we obtain polarization originating from magnetically aligned dust grains in the central few hundred parsecs of our Galaxy. We find that near the Galactic plane, the MF is almost parallel to the Galactic plane (i.e., toroidal configuration), but at high Galactic latitudes (|b | >0.{sup 0}4) the field is nearly perpendicular to the plane (i.e., poloidal configuration). This is the first detection of a smooth transition of the large-scale MF configuration in this region.

  18. Mapping magnetic fields in the cold dust at the Galactic center

    NASA Astrophysics Data System (ADS)

    Chuss, David Thomas

    2002-12-01

    We present polarimetry results of the Galactic center with two complementary instruments: SPARO (Submillimeter Polarimeter for Antarctic Remote Observing), a 450 μm polarimeter with 6' resolution, and Hertz, a 350 μm polarimeter with 20' resolution operating on the Caltech Submillimeter Observatory. The design of SPARO is reviewed. A description of the data acquisition and analysis for SPARO is included. Finally, results are presented for the two instruments that are consistent with a model for the Galactic center magnetosphere in which an initially poloidal field has been sheared into a toroidal configuration in regions in which the energy density of gravity dominates that of magnetic fields. The SPARO data show that at low latitudes over much of the central 200 pc of the Galactic center, the field is toroidal. The Hertz data focus on the central 30 pc and find a clumpy matter distribution in which the dense regions are dominated by a toroidal field, while in the less dense regions, the field is preferentially poloidal. We use this model to estimate a characteristic field strength in this region of ˜3 mG.

  19. Planck intermediate results. XLIV. Structure of the Galactic magnetic field from dust polarization maps of the southern Galactic cap

    NASA Astrophysics Data System (ADS)

    Planck Collaboration; Aghanim, N.; Alves, M. I. R.; Arzoumanian, D.; Aumont, J.; Baccigalupi, C.; Ballardini, M.; Banday, A. J.; Barreiro, R. B.; Bartolo, N.; Basak, S.; Benabed, K.; Bernard, J.-P.; Bersanelli, M.; Bielewicz, P.; Bonavera, L.; Bond, J. R.; Borrill, J.; Bouchet, F. R.; Boulanger, F.; Bracco, A.; Bucher, M.; Burigana, C.; Calabrese, E.; Cardoso, J.-F.; Chiang, H. C.; Colombo, L. P. L.; Combet, C.; Comis, B.; Couchot, F.; Coulais, A.; Crill, B. P.; Curto, A.; Cuttaia, F.; Davis, R. J.; de Bernardis, P.; de Rosa, A.; de Zotti, G.; Delabrouille, J.; Delouis, J.-M.; Di Valentino, E.; Dickinson, C.; Diego, J. M.; Doré, O.; Douspis, M.; Ducout, A.; Dupac, X.; Dusini, S.; Efstathiou, G.; Elsner, F.; Enßlin, T. A.; Eriksen, H. K.; Falgarone, E.; Fantaye, Y.; Ferrière, K.; Finelli, F.; Frailis, M.; Fraisse, A. A.; Franceschi, E.; Frolov, A.; Galeotta, S.; Galli, S.; Ganga, K.; Génova-Santos, R. T.; Gerbino, M.; Ghosh, T.; González-Nuevo, J.; Górski, K. M.; Gratton, S.; Gregorio, A.; Gruppuso, A.; Gudmundsson, J. E.; Guillet, V.; Hansen, F. K.; Helou, G.; Henrot-Versillé, S.; Herranz, D.; Hivon, E.; Huang, Z.; Jaffe, A. H.; Jaffe, T. R.; Jones, W. C.; Keihänen, E.; Keskitalo, R.; Kisner, T. S.; Krachmalnicoff, N.; Kunz, M.; Kurki-Suonio, H.; Lagache, G.; Lähteenmäki, A.; Lamarre, J.-M.; Langer, M.; Lasenby, A.; Lattanzi, M.; Le Jeune, M.; Levrier, F.; Liguori, M.; Lilje, P. B.; López-Caniego, M.; Lubin, P. M.; Macías-Pérez, J. F.; Maggio, G.; Maino, D.; Mandolesi, N.; Mangilli, A.; Maris, M.; Martin, P. G.; Martínez-González, E.; Matarrese, S.; Mauri, N.; McEwen, J. D.; Melchiorri, A.; Mennella, A.; Migliaccio, M.; Miville-Deschênes, M.-A.; Molinari, D.; Moneti, A.; Montier, L.; Morgante, G.; Moss, A.; Naselsky, P.; Natoli, P.; Neveu, J.; Nørgaard-Nielsen, H. U.; Oppermann, N.; Oxborrow, C. A.; Pagano, L.; Paoletti, D.; Partridge, B.; Perdereau, O.; Perotto, L.; Pettorino, V.; Piacentini, F.; Plaszczynski, S.; Polenta, G.; Rachen, J. P.; Rebolo, R.; Reinecke, M.; Remazeilles, M.; Renzi, A.; Ristorcelli, I.; Rocha, G.; Rossetti, M.; Roudier, G.; Ruiz-Granados, B.; Salvati, L.; Sandri, M.; Savelainen, M.; Scott, D.; Sirignano, C.; Soler, J. D.; Suur-Uski, A.-S.; Tauber, J. A.; Tavagnacco, D.; Tenti, M.; Toffolatti, L.; Tomasi, M.; Tristram, M.; Trombetti, T.; Valiviita, J.; Vansyngel, F.; Van Tent, F.; Vielva, P.; Villa, F.; Wandelt, B. D.; Wehus, I. K.; Zacchei, A.; Zonca, A.

    2016-12-01

    Using data from the Planck satellite, we study the statistical properties of interstellar dust polarization at high Galactic latitudes around the south pole (b < -60°). Our aim is to advance the understanding of the magnetized interstellar medium (ISM), and to provide a modelling framework of the polarized dust foreground for use in cosmic microwave background (CMB) component-separation procedures. We examine the Stokes I, Q, and U maps at 353 GHz, and particularly the statistical distribution of the polarization fraction (p) and angle (ψ), in order to characterize the ordered and turbulent components of the Galactic magnetic field (GMF) in the solar neighbourhood. The Q and U maps show patterns at large angular scales, which we relate to the mean orientation of the GMF towards Galactic coordinates (l0,b0) = (70° ± 5°,24° ± 5°). The histogram of the observed p values shows a wide dispersion up to 25%. The histogram of ψ has a standard deviation of 12° about the regular pattern expected from the ordered GMF. We build a phenomenological model that connects the distributions of p and ψ to a statistical description of the turbulent component of the GMF, assuming a uniform effective polarization fraction (p0) of dust emission. To compute the Stokes parameters, we approximate the integration along the line of sight (LOS) as a sum over a set of N independent polarization layers, in each of which the turbulent component of the GMF is obtained from Gaussian realizations of a power-law power spectrum. We are able to reproduce the observed p and ψ distributions using a p0 value of 26%, a ratio of 0.9 between the strengths of the turbulent and mean components of the GMF, and a small value of N. The mean value of p (inferred from the fit of the large-scale patterns in the Stokes maps) is 12 ± 1%. We relate the polarization layers to the density structure and to the correlation length of the GMF along the LOS. We emphasize the simplicity of our model (involving only

  20. ANISOTROPY AS A PROBE OF THE GALACTIC COSMIC-RAY PROPAGATION AND HALO MAGNETIC FIELD

    SciTech Connect

    Qu, Xiao-bo; Zhang, Yi; Liu, Cheng; Hu, Hong-bo; Xue, Liang

    2012-05-01

    The anisotropy of cosmic rays (CRs) in the solar vicinity is generally attributed to CR streaming due to the discrete distribution of CR sources or local magnetic field modulation. Recently, the two-dimensional large-scale CR anisotropy has been measured by many experiments in the TeV-PeV energy range in both hemispheres. The tail-in excess along the tangential direction of the local spiral arm and the loss cone deficit pointing to the north Galactic pole direction agree with what have been obtained in tens to hundreds of GeV. The persistence of the two large-scale anisotropy structures in such a wide energy range suggests that the anisotropy might be due to global streaming of the Galactic CRs (GCRs). This work tries to extend the observed CR anisotropy picture from the solar system to the whole galaxy. In such a case, we can find a new interesting signature, a loop of GCR streaming, of the GCR propagation. We further calculate the overall GCR streaming induced magnetic field, and find a qualitative consistency with the observed structure of the halo magnetic field.

  1. The Galactic magnetic field as spectrograph for ultra-high energy cosmic rays

    NASA Astrophysics Data System (ADS)

    Kachelrieß, M.; Serpico, P. D.; Teshima, M.

    2007-01-01

    We study the influence of the regular component of the Galactic magnetic field (GMF) on the arrival directions of ultra-high energy cosmic rays (UHECRs). We find that, if the angular resolution of current experiments has to be fully exploited, deflections in the GMF cannot be neglected even for E = 1020 eV protons, especially for trajectories along the Galactic plane or crossing the Galactic center region. On the other hand, the GMF could be used as a spectrograph to discriminate among different source models and/or primaries of UHECRs, if its structure would be known with sufficient precision. We compare several GMF models introduced in the literature and discuss for the example of the AGASA data set how the significance of small-scale clustering or correlations with given astrophysical sources are affected by the GMF. We point out that the non-uniform exposure to the extragalactic sky induced by the GMF should be taken into account estimating the significance of potential (auto-) correlation signals.

  2. A possible influence on standard model of quasars and active galactic nuclei in strong magnetic field

    NASA Astrophysics Data System (ADS)

    Peng, Qiu-He; Liu, Jing-Jing; Chou, Chi-Kang

    2016-12-01

    Recent observational evidence indicates that the center of our Milky Way galaxy harbors a super-massive object with ultra-strong radial magnetic field (Eatough et al. in Nature 591:391, 2013). Here we demonstrate that the radiations observed in the vicinity of the Galactic Center (GC) (Falcke and Marko in arXiv:1311.1841v1, 2013) cannot be emitted by the gas of the accretion disk since the accreting plasma is prevented from approaching to the GC by the abnormally strong radial magnetic field. These fields obstruct the infalling accretion flow from the inner region of the disk and the central massive black hole in the standard model. It is expected that the observed radiations near the GC can not be generated by the central black hole. We also demonstrate that the observed ultra-strong radial magnetic field near the GC (Eatough et al. in Nature 591:391, 2013) can not be generated by the generalized α-turbulence type dynamo mechanism since preliminary qualitative estimate in terms of this mechanism gives a magnetic field strength six orders of magnitude smaller than the observed field strength at r=0.12 pc. However, both these difficulties or the dilemma of the standard model can be overcome if the central black hole in the standard model is replaced by a model of a super-massive star with magnetic monopoles (SMSMM) (Peng and Chou in Astrophys. J. Lett. 551:23, 2001). Five predictions about the GC have been proposed in the SMSMM model. Especially, three of them are quantitatively consistent with the observations. They are: (1) Plenty of positrons are produced, the production rate is 6×10^{42} e+ s^{-1} or so, this prediction is confirmed by the observation (Kn ödlseder et al. 2003); (2) The lower limit of the observed ultra-strong radial magnetic field near the GC (Eatough et al. in Nature 591:391, 2013), is just good agreement with the predicted estimated radial magnetic field from the SMSMM model, which really is an exclusive and a key prediction; (3) The

  3. OPEN CLUSTERS AS PROBES OF THE GALACTIC MAGNETIC FIELD. I. CLUSTER PROPERTIES

    SciTech Connect

    Hoq, Sadia; Clemens, D. P. E-mail: clemens@bu.edu

    2015-10-15

    Stars in open clusters are powerful probes of the intervening Galactic magnetic field via background starlight polarimetry because they provide constraints on the magnetic field distances. We use 2MASS photometric data for a sample of 31 clusters in the outer Galaxy for which near-IR polarimetric data were obtained to determine the cluster distances, ages, and reddenings via fitting theoretical isochrones to cluster color–magnitude diagrams. The fitting approach uses an objective χ{sup 2} minimization technique to derive the cluster properties and their uncertainties. We found the ages, distances, and reddenings for 24 of the clusters, and the distances and reddenings for 6 additional clusters that were either sparse or faint in the near-IR. The derived ranges of log(age), distance, and E(B−V) were 7.25–9.63, ∼670–6160 pc, and 0.02–1.46 mag, respectively. The distance uncertainties ranged from ∼8% to 20%. The derived parameters were compared to previous studies, and most cluster parameters agree within our uncertainties. To test the accuracy of the fitting technique, synthetic clusters with 50, 100, or 200 cluster members and a wide range of ages were fit. These tests recovered the input parameters within their uncertainties for more than 90% of the individual synthetic cluster parameters. These results indicate that the fitting technique likely provides reliable estimates of cluster properties. The distances derived will be used in an upcoming study of the Galactic magnetic field in the outer Galaxy.

  4. The Invariant Twist of Magnetic Fields in the Relativistic Jets of Active Galactic Nuclei

    NASA Technical Reports Server (NTRS)

    Contopoulos, Ioannis; Christodoulou, Dimitris M.; Kazanas, Demosthenes; Gabuzda, Denise C.

    2009-01-01

    The origin of cosmic magnetic (B) fields remains an open question. It is generally believed that very weak primordial B fields are amplified by dynamo processes, but it appears unlikely that the amplification proceeds fast enough to account for the fields presently observed in galaxies and galaxy clusters. In an alternative scenario, cosmic B fields are generated near the inner edges of accretion disks in Active Galactic Nuclei (AGNs) by azimuthal electric currents due to the difference between the plasma electron and ion velocities that arises when the electrons are retarded by interactions with photons. While dynamo processes show no preference for the polarity of the (presumably random) seed field that they amplify, this alternative mechanism uniquely relates the polarity of the poloidal B field to the angular velocity of the accretion disk, resulting in a unique direction for the toroidal B field induced by disk rotation. Observations of the toroidal fields of 29 AGN jets revealed by parsec-scale Faraday rotation measurements show a clear asymmetry that is consistent with this model, with the probability that this asymmetry came about by chance being less than 1 %. This lends support to the hypothesis that the Universe is seeded by B fields that are generated in AGN via this mechanism

  5. The Invariant Twist of Magnetic Fields in the Relativistic Jets of Active Galactic Nuclei

    NASA Technical Reports Server (NTRS)

    Contopoulos, Ioannis; Christodoulou, Dimitris M.; Kazanas, Demosthenes; Gabuzda, Denise C.

    2009-01-01

    The origin of cosmic magnetic (B) fields remains an open question. It is generally believed that very weak primordial B fields are amplified by dynamo processes, but it appears unlikely that the amplification proceeds fast enough to account for the fields presently observed in galaxies and galaxy clusters. In an alternative scenario, cosmic B fields are generated near the inner edges of accretion disks in Active Galactic Nuclei (AGNs) by azimuthal electric currents due to the difference between the plasma electron and ion velocities that arises when the electrons are retarded by interactions with photons. While dynamo processes show no preference for the polarity of the (presumably random) seed field that they amplify, this alternative mechanism uniquely relates the polarity of the poloidal B field to the angular velocity of the accretion disk, resulting in a unique direction for the toroidal B field induced by disk rotation. Observations of the toroidal fields of 29 AGN jets revealed by parsec-scale Faraday rotation measurements show a clear asymmetry that is consistent with this model, with the probability that this asymmetry came about by chance being less than 1 %. This lends support to the hypothesis that the Universe is seeded by B fields that are generated in AGN via this mechanism

  6. Feedback Regulated Turbulence, Magnetic Fields, and Star Formation Rates in Galactic Disks

    NASA Astrophysics Data System (ADS)

    Kim, Chang-Goo; Ostriker, Eve C.

    2015-08-01

    We use three-dimensional numerical magnetohydrodynamic simulations to investigate the quasi-equilibrium states of galactic disks regulated by star formation feedback. We incorporate effects from massive-star feedback via time-varying heating rates and supernova (SN) explosions, comparing momentum-only injection with thermal energy injection for SNe. The latter SN prescription generates more realistic feedback, producing a hot interstellar medium (ISM), but we show that the minimum required resolution (at least three grid zones for the SN remnant (SNR) radius at shell formation epoch) is beyond the capability of most large-scale global galaxy simulations. Our local model disks enable higher resolution, to follow the full SNR evolution and all ISM phases. The momentum-only approach for SNe yields the correct turbulence level and star formation rate (SFR) in the warm and cold ISM, and can be used when resolution is limited. We find that the ISM disks in our simulations rapidly approach a quasi-steady state that satisfies vertical dynamical equilibrium. The SFR surface density self-adjusts to provide the total momentum flux (pressure) in the vertical direction that matches the weight of the gas. The final (time-averaged) state is insensitive to initial conditions and vertical boundary conditions. We quantify feedback efficiency by measuring ``feedback yields’’ defined by the ratio between different pressure components and the SFR surface density. For both magnetized and unmagnetized models, the turbulent and thermal yields are the same, and the ratio of turbulent to thermal yield is about 3. In magnetized models, turbulent magnetic fields are rapidly generated by the small-scale turbulence dynamo, and saturate at a level corresponding to the equipartition with the turbulent kinetic energy. The presence of magnetic fields enhances the total feedback yield and therefore reduces the SFR, since the same vertical support can be supplied at a smaller SFR. Since

  7. A method for establishing constraints on galactic magnetic field models using ultra high energy cosmic rays and results from the data of the Pierre Auger Observatory

    NASA Astrophysics Data System (ADS)

    Sutherland, Michael Stephen

    2010-12-01

    The Galactic magnetic field is poorly understood. Essentially the only reliable measurements of its properties are the local orientation and field strength. Its behavior at galactic scales is unknown. Historically, magnetic field measurements have been performed using radio astronomy techniques which are sensitive to certain regions of the Galaxy and rely upon models of the distribution of gas and dust within the disk. However, the deflection of trajectories of ultra high energy cosmic rays arriving from extragalactic sources depends only on the properties of the magnetic field. In this work, a method is developed for determining acceptable global models of the Galactic magnetic field by backtracking cosmic rays through the field model. This method constrains the parameter space of magnetic field models by comparing a test statistic between backtracked cosmic rays and isotropic expectations for assumed cosmic ray source and composition hypotheses. Constraints on Galactic magnetic field models are established using data from the southern site of the Pierre Auger Observatory under various source distribution and cosmic ray composition hypotheses. Field models possessing structure similar to the stellar spiral arms are found to be inconsistent with hypotheses of an iron cosmic ray composition and sources selected from catalogs tracing the local matter distribution in the universe. These field models are consistent with hypothesis combinations of proton composition and sources tracing the local matter distribution. In particular, strong constraints are found on the parameter space of bisymmetric magnetic field models scanned under hypotheses of proton composition and sources selected from the 2MRS-VS, Swift 39-month, and VCV catalogs. Assuming that the Galactic magnetic field is well-described by a bisymmetric model under these hypotheses, the magnetic field strength near the Sun is less than 3-4 muG and magnetic pitch angle is less than -8°. These results comprise

  8. VSOP's Legacy for our Understanding of Magnetic Fields in Active Galactic Nuclei

    NASA Astrophysics Data System (ADS)

    Gabuzda, D. C.

    2009-08-01

    Although relatively few polarisation-sensitive observations were carried out with VSOP, they have had a profound effect on our picture of the compact central regions of radio emission in Active Galactic Nuclei (AGN). The extra resolution provided by these images at relatively low frequencies provided new information about the ``core'' polarisation observed in ground-based images, indicating that this polarised emission is, in many cases, associated with newly emerging jet components, rather than the intrinsically optically thick core. A joint analysis of VSOP and VLBA polarisation observations near in time revealed the first observation of the theoretically predicted 90-degree rotation in polarisation angle associated with the transition from the optically thick to the optically thin regime. Perhaps most significantly, and quite unforeseen, VSOP polarisation observations provided the first clear evidence that at least some of the polarisation associated with the jets of AGN is associated with the ``intrinsic'' magnetic fields of the jets themselves, rather than local phenomena, such as shock compression or shear interaction with the surrounding medium. These extremely important VSOP polarisation observations have had a profound influence on subsequent work in this field, leading to a whole new series of VLBI studies focusing on the possibility that many AGN jets may have helical magnetic fields - which could come about naturally via the combined effect of the rotation of the central supermassive black hole and accretion disk and the jet outflow. These studies, in turn, provide crucial new links with theoretical investigations and concepts, making it possible for VLBI observations to seriously address for the first time such fundamental questions as the launching and collimation mechanisms for the jets. Key VSOP polarisation observations and the fundamentally new studies to which they have led are reviewed.

  9. Two Point Autocorrelation Analysis of Auger Highest Energy Events Backtracked in Galactic Magnetic Field

    NASA Astrophysics Data System (ADS)

    Petrov, Yevgeniy

    2009-10-01

    Searches for sources of the highest-energy cosmic rays traditionally have included looking for clusters of event arrival directions on the sky. The smallest cluster is a pair of events falling within some angular window. In contrast to the standard two point (2-pt) autocorrelation analysis, this work takes into account influence of the galactic magnetic field (GMF). The highest energy events, those above 50EeV, collected by the surface detector of the Pierre Auger Observatory between January 1, 2004 and May 31, 2009 are used in the analysis. Having assumed protons as primaries, events are backtracked through BSS/S, BSS/A, ASS/S and ASS/A versions of Harari-Mollerach-Roulet (HMR) model of the GMF. For each version of the model, a 2-pt autocorrelation analysis is applied to the backtracked events and to 105 isotropic Monte Carlo realizations weighted by the Auger exposure. Scans in energy, separation angular window and different model parameters reveal clustering at different angular scales. Small angle clustering at 2-3 deg is particularly interesting and it is compared between different field scenarios. The strength of the autocorrelation signal at those angular scales differs between BSS and ASS versions of the HMR model. The BSS versions of the model tend to defocus protons as they arrive to Earth whereas for the ASS, in contrary, it is more likely to focus them.

  10. Connecting magnetic fields from sub-galactic scale to clusters of galaxies and beyond with cosmological MHD simulations

    NASA Astrophysics Data System (ADS)

    Dolag, Klaus; Beck, Alexander M.; Arth, Alexander

    Using the MHD version of Gadget3 (Stasyszyn, Dolag & Beck 2013) and a model for the seeding of magnetic fields by supernovae (SN), we performed simulations of the evolution of the magnetic fields in galaxy clusters and study their effects on the heat transport within the intra cluster medium (ICM). This mechanism - where SN explosions during the assembly of galaxies provide magnetic seed fields - has been shown to reproduce the magnetic field in Milky Way-like galactic halos (Beck et al. 2013). The build up of the magnetic field at redshifts before z = 5 and the accordingly predicted rotation measure evolution are also in good agreement with current observations. Such magnetic fields present at high redshift are then transported out of the forming protogalaxies into the large-scale structure and pollute the ICM (in a similar fashion to metals transport). Here, complex velocity patterns, driven by the formation process of cosmic structures are further amplifying and distributing the magnetic fields. In galaxy clusters, the magnetic fields therefore get amplified to the observed μG level and produce the observed amplitude of rotation measures of several hundreds of rad/m2. We also demonstrate that heat conduction in such turbulent fields on average is equivalent to a suppression factor around 1/20th of the classical Spitzer value and in contrast to classical, isotropic heat transport leads to temperature structures within the ICM compatible with observations (Arth et al. 2014).

  11. Energetic secondary electrons and the nonthermal galactic radio background - A probe of the magnetic field in interstellar clouds

    NASA Technical Reports Server (NTRS)

    Marscher, A. P.; Brown, R. L.

    1978-01-01

    A previous analysis of the manifestations of charged-pion-decay secondary electrons in interstellar cloud material is extended to include those contributions to the Galactic radio and soft gamma-ray backgrounds that are directly attributable to energetic secondaries. The equilibrium distribution of secondary electrons in dense interstellar clouds is calculated, synchrotron emissivity from isolated interstellar clouds is examined, and it is shown how the value of the magnetic field in these clouds may be determined by observing the radio emission in their directions. The contribution that such clouds make to the integrated radio background is evaluated, and the Galactic distribution of bremsstrahlung gamma rays that arise from interactions of secondary electrons with thermal material in dense clouds is computed. The results indicate that a magnetic field of no more than 80 microgauss is characteristic of dense clouds and that the integrated synchrotron radiation from secondary electrons in interstellar clouds will contribute a significant fraction of the nonthermal brightness along the Galactic equator even if the mean cloud field is as low as 35 microgauss.

  12. Energetic secondary electrons and the nonthermal galactic radio background - A probe of the magnetic field in interstellar clouds

    NASA Technical Reports Server (NTRS)

    Marscher, A. P.; Brown, R. L.

    1978-01-01

    A previous analysis of the manifestations of charged-pion-decay secondary electrons in interstellar cloud material is extended to include those contributions to the Galactic radio and soft gamma-ray backgrounds that are directly attributable to energetic secondaries. The equilibrium distribution of secondary electrons in dense interstellar clouds is calculated, synchrotron emissivity from isolated interstellar clouds is examined, and it is shown how the value of the magnetic field in these clouds may be determined by observing the radio emission in their directions. The contribution that such clouds make to the integrated radio background is evaluated, and the Galactic distribution of bremsstrahlung gamma rays that arise from interactions of secondary electrons with thermal material in dense clouds is computed. The results indicate that a magnetic field of no more than 80 microgauss is characteristic of dense clouds and that the integrated synchrotron radiation from secondary electrons in interstellar clouds will contribute a significant fraction of the nonthermal brightness along the Galactic equator even if the mean cloud field is as low as 35 microgauss.

  13. What drives galactic magnetism?

    NASA Astrophysics Data System (ADS)

    Chyży, K. T.; Sridhar, S. S.; Jurusik, W.

    2017-07-01

    Aims: Magnetic fields are important ingredients of the interstellar medium. They are suspected to be maintained by dynamo processes related to star-formation activity, properties of the interstellar medium and global features of galaxies. We aim to use statistical analysis of a large number of various galaxies to probe, model, and understand relations between different galaxy properties and magnetic fields. Methods: We have compiled a sample of 55 galaxies including low-mass dwarf and Magellanic-types, normal spirals and several massive starbursts, and applied principal component analysis (PCA) and regression methods to assess the impact of various galaxy properties on the observed magnetic fields. Results: According to PCA the global galaxy parameters (like H i, H2, and dynamical mass, star formation rate (SFR), near-infrared luminosity, size, and rotational velocity) are all mutually correlated and can be reduced to a single principal component. Further PCA performed for global and intensive (not size related) properties of galaxies (such as gas density, and surface density of the star formation rate, SSFR), indicates that magnetic field strength B is connected mainly to the intensive parameters, while the global parameters have only weak relationships with B. We find that the tightest relationship of B is with SSFR, which is described by a power-law with an index of 0.33 ± 0.03. The relation is observed for galaxies with the global SFR spread over more than four orders of magnitude. Only the radio faintest dwarf galaxies deviate from this relation probably due to the inverse Compton losses of relativistic electrons or long turbulence injection timescales. The observed weaker associations of B with galaxy dynamical mass and the rotational velocity we interpret as indirect ones, resulting from the observed connection of the global SFR with the available total H2 mass in galaxies. Using our sample we constructed a diagram of B across the Hubble sequence which

  14. Galactic magnetic field strengths, from three different methods - a cautionary note.

    NASA Astrophysics Data System (ADS)

    Vallee, J. P.

    1995-04-01

    Recent cosmic-ray data have led to the suggestion that the magnetic field B in late-type galaxies may be quite large, i.e. B>3B_eq_, where B_ eq_ is the magnetic field derived from the equipartition method (e.g., Chi & Wolfendale 1993; Zweibel 1993). Previous radio data had led to the claim that the magnetic field B in late-type galaxies was close to B_eq_, i.e. 0.3B_eq_magnetic field B is far or close to B_eq_. Here, a statistical study is carried out of the three methods often employed to give magnetic field strengths, namely (i) the Faraday rotation method, (ii) the Equipartition method, and (iii) the Cosmic-ray particle method. I use statistics with small observational samples to find that two independent methods (Faraday rotation B_fa_ and Equipartition B_eq_) are converging on similar values of the magnetic field strength. For the available observational data, I find on average that 1.0B_eq_magnetic field B=~B_fa_=~B_eq_. The third method (cosmic-ray particle B_cr_) appears at times to predict magnetic field strengths different than those of the other two methods. Thus a caution is in order; possible reasons for that divergence are discussed.

  15. Plunging neutron stars as origin of organised magnetic field in galactic nuclei

    NASA Astrophysics Data System (ADS)

    Karas, V.; Kopáček, O.; Kunneriath, D.; Zajaček, M.; Araudo, A.; Eckart, A.; Kovář, J.

    2017-07-01

    Black holes cannot support their own internal magnetic field like, for example, compact stars can. Despite this fact observations indicate that event horizons of supermassive black holes (SMBH) are threaded by field lines along which plasma streams flow. Various magnetohydrodynamical mechanisms have been suggested to generate turbulent magnetic fields on small scales, however, the origin of the large-scale component is unclear. In this write-up we describe our progress in an on-going work and discuss the possibility of dipole-type magnetic fields being brought onto SMBH by magnetised neutron stars, which are expected to drift inward from a hidden population in the Nuclear Star Cluster. This can contribute to an organised component of the magnetic field on the characteristic length-scale of the stellar size, which thread the horizon during the final stages of the magnetized star plunge into or its close flyby around SMBH. Because of mass—size scaling relations for black holes, the effect is more important for lower-mass SMBH.

  16. Magnetic Field Strength in an Intermediate-velocity Ionized Filament in the First Galactic Quadrant

    NASA Astrophysics Data System (ADS)

    Stil, J. M.; Hryhoriw, A.

    2016-08-01

    We investigate the magnetic field in an intermediate-velocity filament for which the Hα intensity in the WHAM survey correlates with excess Faraday rotation of extragalactic radio sources over the length of the filament from b ≈ 20° to b ≈ 55°. The density-weighted mean magnetic field is 2.8 +/- 0.8 μ {{G}}, derived from rotation measures and an empirical relation between Hα emission measure and dispersion measure from Berkhuijsen et al. In view of the uncertainties in the derived magnetic field strength, we propose an alternative use of the available data, rotation measure, and emission measure, to derive a lower limit to the Alfvén speed, weighted by electron density {n}e3/2. We find lower limits to the Alfvén speed that are comparable to or larger than the sound speed in a {10}4 {{K}} plasma, and conclude that the magnetic field is dynamically important. We discuss the role of intermediate-velocity gas as a locus of Faraday rotation in the interstellar medium, and propose that this lower limit to the Alfvén speed may also be applicable to Faraday rotation by galaxy clusters.

  17. Evidence for Gamma-ray Halos Around Active Galactic Nuclei and the First Measurement of Intergalactic Magnetic Fields

    NASA Astrophysics Data System (ADS)

    Ando, Shin'ichiro; Kusenko, Alexander

    2010-10-01

    Intergalactic magnetic fields (IGMFs) can cause the appearance of halos around the gamma-ray images of distant objects because an electromagnetic cascade initiated by a high-energy gamma-ray interaction with the photon background is broadened by magnetic deflections. We report evidence of such gamma-ray halos in the stacked images of the 170 brightest active galactic nuclei (AGNs) in the 11 month source catalog of the Fermi Gamma-Ray Space Telescope. Excess over the point-spread function in the surface brightness profile is statistically significant at 3.5σ (99.95% confidence level), for the nearby, hard population of AGNs. The halo size and brightness are consistent with IGMF, B IGMF ≈ 10-15 G. The knowledge of IGMF will facilitate the future gamma-ray and charged-particle astronomy. Furthermore, since IGMFs are likely to originate from the primordial seed fields created shortly after the big bang, this potentially opens a new window on the origin of cosmological magnetic fields, inflation, and the phase transitions in the early universe.

  18. Wavelength dependence of polarization and physical mechanisms of magnetic field generation in accretion disks around supermassive black holes in active galactic nuclei

    NASA Astrophysics Data System (ADS)

    Piotrovich, M. Yu.; Gnedin, Yu. N.; Buliga, S. D.; Natsvlishvili, T. M.

    2014-08-01

    Analysis of the wavelength dependence of the polarization of radiation from active galactic nuclei (AGNs) is shown to allow the main physical mechanisms of magnetic field generation in accretion disks around supermassive black holes in these objects to be determined. These main processes include the generation of magnetic fields as a result of the equality between the magnetic and radiation pressures or as a result of the equality between the magnetic and gas pressures. In several cases, the wavelength dependence of polarization is shown to be explained, provided that the Shakura-Sunyaev viscosity parameter depends on the accretion-disk radius.

  19. First constraints on the magnetic field strength in extra-Galactic stars: FORS2 observations of Of?p stars in the Magellanic Clouds

    NASA Astrophysics Data System (ADS)

    Bagnulo, S.; Nazé, Y.; Howarth, I. D.; Morrell, N.; Vink, J. S.; Wade, G. A.; Walborn, N.; Romaniello, M.; Barbá, R.

    2017-05-01

    Massive O-type stars play a dominant role in our Universe, but many of their properties remain poorly constrained. In the last decade magnetic fields have been detected in all Galactic members of the distinctive Of?p class, opening the door to a better knowledge of all O-type stars. With the aim of extending the study of magnetic massive stars to nearby galaxies, to better understand the role of metallicity in the formation of their magnetic fields and magnetospheres, and to broaden our knowledge of the role of magnetic fields in massive star evolution, we carried out spectropolarimetry of five extra-Galactic Of?p stars, and of a couple of dozen neighbouring stars. We were able to measure magnetic fields with typical error bars from 0.2 to 1.0 kG, depending on the apparent magnitude and on weather conditions. No magnetic field was firmly detected in any of our measurements, but we were able to estimate upper limits on the field values of our target stars. One of our targets, 2dFS 936, exhibited an unexpected strengthening of emission lines. We confirm the unusual behaviour of BI 57, which exhibits a 787 d period with two photometric peaks and one spectroscopic maximum. The observed strengthening of the emission lines of 2dFS 936, and the lack of detection of a strong magnetic field in a star with such strong emission lines is at odd with expectations. Together with the unusual periodic behaviour of BI 57, it represents a challenge for the current models of Of?p stars. The limited precision that we obtained in our field measurements (in most cases as a consequence of poor weather) has led to field-strength upper limits that are substantially larger than those typically measured in Galactic magnetic O stars. Further higher precision observations and monitoring are clearly required.

  20. EVOLUTION AND DISTRIBUTION OF MAGNETIC FIELDS FROM ACTIVE GALACTIC NUCLEI IN GALAXY CLUSTERS. I. THE EFFECT OF INJECTION ENERGY AND REDSHIFT

    SciTech Connect

    Xu Hao; Li Hui; Li Shengtai; Collins, David C.; Norman, Michael L. E-mail: hli@lanl.go E-mail: dcollins@physics.ucsd.ed

    2010-12-20

    We present a series of cosmological magnetohydrodynamic simulations that simultaneously follow the formation of a galaxy cluster and evolution of magnetic fields ejected by an active galactic nucleus (AGN). Specifically, we investigate the influence of both the epoch of the AGN (z {approx} 3-0.5) and the AGN energy ({approx}3 x 10{sup 57}- 2 x 10{sup 60} erg) on the final magnetic field distribution in a relatively massive cluster (M{sub vir} {approx} 10{sup 15} M{sub sun}). We find that as long as the AGN magnetic fields are ejected before the major mergers in the cluster formation history, magnetic fields can be transported throughout the cluster and can be further amplified by the intracluster medium (ICM) turbulence caused by hierarchical mergers during the cluster formation process. The total magnetic energy in the cluster can reach {approx}10{sup 61} erg, with micro Gauss fields distributed over the {approx}Mpc scale. The amplification of the total magnetic energy by the ICM turbulence can be significant, up to {approx}1000 times in some cases. Therefore even weak magnetic fields from AGNs can be used to magnetize the cluster to the observed level. The final magnetic energy in the ICM is determined by the ICM turbulent energy, with a weak dependence on the AGN injection energy. We discuss the properties of magnetic fields throughout the cluster and the synthetic Faraday rotation measure maps they produce. We also show that high spatial resolution over most of the magnetic regions of the cluster is very important to capture the small-scale dynamo process and maintain the magnetic field structure in our simulations.

  1. EVOLUTION AND DISTRIBUTION OF MAGNETIC FIELDS FROM ACTIVE GALACTIC NUCLEI IN GALAXY CLUSTERS. II. THE EFFECTS OF CLUSTER SIZE AND DYNAMICAL STATE

    SciTech Connect

    Xu Hao; Li Hui; Collins, David C.; Li, Shengtai; Norman, Michael L. E-mail: hli@lanl.gov E-mail: sli@lanl.gov

    2011-10-01

    Theory and simulations suggest that magnetic fields from radio jets and lobes powered by their central super massive black holes can be an important source of magnetic fields in the galaxy clusters. This is Paper II in a series of studies where we present self-consistent high-resolution adaptive mesh refinement cosmological magnetohydrodynamic simulations that simultaneously follow the formation of a galaxy cluster and evolution of magnetic fields ejected by an active galactic nucleus. We studied 12 different galaxy clusters with virial masses ranging from 1 x 10{sup 14} to 2 x 10{sup 15} M{sub sun}. In this work, we examine the effects of the mass and merger history on the final magnetic properties. We find that the evolution of magnetic fields is qualitatively similar to those of previous studies. In most clusters, the injected magnetic fields can be transported throughout the cluster and be further amplified by the intracluster medium (ICM) turbulence during the cluster formation process with hierarchical mergers, while the amplification history and the magnetic field distribution depend on the cluster formation and magnetism history. This can be very different for different clusters. The total magnetic energies in these clusters are between 4 x 10{sup 57} and 10{sup 61} erg, which is mainly decided by the cluster mass, scaling approximately with the square of the total mass. Dynamically older relaxed clusters usually have more magnetic fields in their ICM. The dynamically very young clusters may be magnetized weakly since there is not enough time for magnetic fields to be amplified.

  2. Cosmological magnetic fields

    NASA Astrophysics Data System (ADS)

    Kunze, Kerstin E.

    2013-12-01

    Magnetic fields are observed on nearly all scales in the Universe, from stars and galaxies up to galaxy clusters and even beyond. The origin of cosmic magnetic fields is still an open question, however a large class of models puts its origin in the very early Universe. A magnetic dynamo amplifying an initial seed magnetic field could explain the present day strength of the galactic magnetic field. However, it is still an open problem how and when this initial magnetic field was created. Observations of the cosmic microwave background (CMB) provide a window to the early Universe and might therefore be able to tell us whether cosmic magnetic fields are of a primordial cosmological origin and at the same time constrain its parameters. We will give an overview of the observational evidence of large-scale magnetic fields, describe generation mechanisms of primordial magnetic fields and possible imprints in the CMB.

  3. Ultra-high energy cosmic rays detected by Auger and AGASA. Corrections for galactic magnetic field deflections, source populations, and arguments for multiple components

    NASA Astrophysics Data System (ADS)

    Nagar, N. M.; Matulich, J.

    2010-11-01

    Context. The origin and composition of ultra-high energy cosmic rays (UHECRs) remain unclear. Possible sources include active galactic nuclei - selected by various criteria - and extragalactic magnetars. Aims: We aim to improve constraints on the source population(s) and compositions of UHECRs by accounting for UHECR deflections within existing Galactic magnetic field models (GMFs). Methods: We used Monte Carlo simulations for UHECRs detected by the Pierre Auger Observatory and AGASA, to determine the UHECR trajectories within the Galaxy and their outside-the-Galaxy arrival directions. The simulations, which used UHECR compositions from protons to iron and seven models of the ordered GMF, accounted for uncertainties in the GMF and a turbulent magnetic field component. Trajectories and outside-the-Galaxy arrival directions were compared with Galactic and extragalactic sources. Results: For a given proton or light UHECR, the multiple potential outside-the-Galaxy arrival directions within a given GMF model are not very different, allowing meaningful constraints on source populations. Our previous claim of a correlation between a subset of UHECRs and nearby extended radiogalaxies remains valid, even strengthened, within several GMF models. Both the nearest radiogalaxy Cen A, and the nearest radio-extended BL Lac, CGCG 413-019, are potential sources of multiple UHECRs. The correlation appears to be linked to the extended radio source rather than a tracer of an underlying matter distribution. Several UHECRs have trajectories that pass close to the Galactic plane, some passing close to Galactic magnetars and/or microquasars. For heavier UHECRs, the multiple potential outside-the-Galaxy arrival directions of any given UHECR are highly scattered but still allow meaningful constraints. It is possible, but unlikely, that all UHECRs originate in the nearby radiogalaxy Cen A. Conclusions: Nearby radiogalaxies remain a strong potential source of a significant subset of UHECRs

  4. The Promise of Future VSOP-2 Observations for Studies of Helical Magnetic Fields and Their Evolution in Active Galactic Nuclei

    NASA Astrophysics Data System (ADS)

    Mahmud, M.; Gabuzda, D.

    2009-08-01

    We present here results of an observational search for Faraday Rotation Measure (RM) gradients transverse to the VLBI jet direction in a sample of BL Lac objects that provide evidence for the presence of helical magnetic fields wrapped around the jets. This project has revealed new transverse RM gradients in several sources. In at least three sources, we observe new features, such as reversal of the transverse RM gradient with time or distance from the core. We discuss how these gradients could potentially be used to infer the intrinsic magnetic field configuration of the region surrounding the central black hole (e.g. dipolar, quadropolar; Blandford 2008). The use of 8 GHz VSOP-2 polarization observations in combination with ground VLBI polarization observations at higher frequencies will give us even higher angular resolution to probe in the central regions of the jet, enabling more accurate determination of the RM gradients on smaller scales, and could help identify possible counter-jets in some sources, which could provide a test for the magnetic field configuration of the black hole.

  5. The connection between supernova remnants and the Galactic magnetic field: An analysis of quasi-parallel and quasi-perpendicular cosmic-ray acceleration for the axisymmetric sample

    NASA Astrophysics Data System (ADS)

    West, J. L.; Safi-Harb, S.; Ferrand, G.

    2017-01-01

    The mechanism for the acceleration of cosmic-rays in supernova remnants (SNRs) is an outstanding question in the field. We model a sample of 32 axisymmetric SNRs using the quasi-perpendicular and quasi-parallel cosmic-ray-electron (CRE) acceleration cases. The axisymmetric sample is defined to include SNRs with a double-sided, bilateral morphology, and also those with a one-sided morphology where one limb is much brighter than the other. Using a coordinate transformation technique, we insert a bubble-like model SNR into a model of the Galactic magnetic field. Since radio emission of SNRs is dominated by synchrotron emission and since this emission depends on the magnetic field and CRE distribution, we are able to simulate the SNR emission and compare this to data. We find that the quasi-perpendicular CRE acceleration case is much more consistent with the data than the quasi-parallel CRE acceleration case, with G327.6+14.6 (SN1006) being a notable exception. We propose that SN1006 may be a case where both quasi-parallel and quasi-perpendicular acceleration are simultaneously at play in a single SNR.

  6. Molecular Loops in the Galactic Center: Evidence for Magnetic Flotation

    NASA Astrophysics Data System (ADS)

    Fukui, Yasuo; Yamamoto, Hiroaki; Fujishita, Motosuji; Kudo, Natsuko; Torii, Kazufumi; Nozawa, Satoshi; Takahashi, Kunio; Matsumoto, Ryoji; Machida, Mami; Kawamura, Akiko; Yonekura, Yoshinori; Mizuno, Norikazu; Onishi, Toshikazu; Mizuno, Akira

    2006-10-01

    The central few hundred parsecs of the Milky Way host a massive black hole and exhibit very violent gas motion and high temperatures in molecular gas. The origin of these properties has been a mystery for the past four decades. Wide-field imaging of the 12CO (rotational quantum number J = 1 to 0) 2.6-millimeter spectrum has revealed huge loops of dense molecular gas with strong velocity dispersions in the galactic center. We present a magnetic flotation model to explain that the formation of the loops is due to magnetic buoyancy caused by the Parker instability. The model has the potential to offer a coherent explanation for the origin of the violent motion and extensive heating of the molecular gas in the galactic center.

  7. Molecular loops in the galactic center: evidence for magnetic flotation.

    PubMed

    Fukui, Yasuo; Yamamoto, Hiroaki; Fujishita, Motosuji; Kudo, Natsuko; Torii, Kazufumi; Nozawa, Satoshi; Takahashi, Kunio; Matsumoto, Ryoji; Machida, Mami; Kawamura, Akiko; Yonekura, Yoshinori; Mizuno, Norikazu; Onishi, Toshikazu; Mizuno, Akira

    2006-10-06

    The central few hundred parsecs of the Milky Way host a massive black hole and exhibit very violent gas motion and high temperatures in molecular gas. The origin of these properties has been a mystery for the past four decades. Wide-field imaging of the (12)CO (rotational quantum number J = 1 to 0) 2.6-millimeter spectrum has revealed huge loops of dense molecular gas with strong velocity dispersions in the galactic center. We present a magnetic flotation model to explain that the formation of the loops is due to magnetic buoyancy caused by the Parker instability. The model has the potential to offer a coherent explanation for the origin of the violent motion and extensive heating of the molecular gas in the galactic center.

  8. Asteroseismology for Galactic archaeology: bridging two fields

    NASA Astrophysics Data System (ADS)

    Casagrande, Luca; Aguirre, Victor Silva; Serenelli, Aldo M.

    Asteroseismology has the capability of precisely determining stellar properties that would otherwise be inaccessible, such as radii, masses, and thus ages of field stars. When coupling this information with classical determinations of stellar parameters, such as metallicities, effective temperatures, and angular diameters, powerful new diagnostics for Galactic studies can be obtained. An overview of the ongoing Strömgren survey for Asteroseismology and Galactic Archaeology (SAGA) is presented, along with recent results using asteroseismology to investigate the vertical age structure of the Milky Way disc.

  9. A mechanism for inducing climatic variations through ozone destruction: Screening of galactic cosmic rays by solar and terrestrial magnetic fields

    NASA Technical Reports Server (NTRS)

    Chamberlain, J. W.

    1976-01-01

    A perturbation analysis, allowing for temperature and opacity feedbacks, is developed to calculate depletions in the O3 abundance and reductions of stratospheric solar heating that result from increases in NOx concentration. A pair of perturbation coefficients give the reduction in O3 and temperature through the stratosphere for a specified NOx increase. This type of analysis illustrates the tendency for various levels to self-heal when a perturbation occurs. Physical arguments indicate that the expected sign of the climatic effect is correct, with colder surface temperatures produced by reduced magnetic shielding. In addition, four qualitative reasons are suggested for thinking that significant ozone reductions by cosmic ray influxes will lead to an increased terrestrial albedo from stratospheric condensation. In this view, long-term (approximately 10,000 years) climatic changes have resulted from secular geomagnetic variations while shorter (approximately 100 years) excursions are related to changes in solar activity.

  10. Magnetic field generation by rotating black holes

    NASA Technical Reports Server (NTRS)

    Leahy, D. A.; Vilenkin, A.

    1981-01-01

    A new mechanism of cosmic magnetic field generation is discussed. Neutrinos asymmetrically emitted by rotating black holes scatter on protons and produce a proton current which generates the magnetic field. It is shown that this mechanism can in principle produce a seed field sufficiently strong to account for present galactic fields.

  11. Are the Galactic-bulge X-ray sources magnetized?

    NASA Technical Reports Server (NTRS)

    Kundt, W.; Ozel, M. E.; Ercan, E. N.

    1987-01-01

    This paper attempts to demonstrate that a better understanding of Galactic-bulge X-ray sources can be achieved if their magnetic moments are assumed to have the same values as those of young pulsars. It is argued that most of the matter leaving the inner edge of the accretion disk can reach the neutron star's surface in the form of massive clumps in quasi-Keplerian orbits. As a result, most of the accretion flow covers a broad equatorial belt rather than the polar caps, and the star shines as an almost unpulsed source. The liberation of half of the accretion power before the surface is reached can lead to the reported UHE pulses and bright infrared bursts. Spasmodic accretion is discussed as a model for gamma-ray bursts, and the observed low-energy X-ray absorption features are considered as an indication of strong magnetic fields shifted to lower energies during super-Eddington outbursts.

  12. Magnetic Fields in Irregular Galaxies

    NASA Astrophysics Data System (ADS)

    Kepley, Amanda A.; Muehle, S.; Robishaw, T.; Everett, J.; Wilcots, E.; Zweibel, E.; Heiles, C.

    2007-12-01

    Magnetic fields are an important component of the interstellar medium (ISM). They provide a source of pressure support, transfer energy from supernovae, are a possible heating mechanism for the ISM, and channel gas flows. Despite the importance of magnetic fields in the ISM, what generates and sustains galactic magnetic fields or how magnetic fields, gas, and stars interact in galaxies is not well understood. The magnetic fields may be especially important in low-mass galaxies like irregulars where the magnetic pressure may be great enough for the field to be dynamically important. Only three irregular galaxies besides the LMC and the SMC have previously observed magnetic field structures. NGC 4449 (Chyzy et al. 2000) and the LMC (Gaensler et al. 2005) both have large-scale fields, while IC 10 and NGC 6822 have mostly random fields (Chyzy et al. 2003). Our goal is to determine what mechanisms generate and sustain large-scale magnetic fields in irregular galaxies and what causes the range of magnetic field structure in irregular galaxies. We have observed the polarized radio continuum emission of four irregular galaxies with the VLA, GBT, and ATCA. Our observations double the number of irregular galaxies with observed magnetic field structure. Here we present results from two of our galaxies: NGC 4214 and NGC 1569. We find that NGC 4214 has a mostly random magnetic field structure, which is not surprising given its weak bar, small size, and high star formation rate. The magnetic field of NGC 1569 has large-scale structure which has been shaped not by a dynamo, but by an outflow generated by the massive star formation rate in this galaxy. Support for this research has been provided by a GBT Student Support Award, a Wisconsin Space Grant Consortium Graduate Fellowship, and an NSF Graduate Research Fellowship.

  13. Magnetic fields from phase transitions

    NASA Astrophysics Data System (ADS)

    Hindmarsh, Mark; Everett, Allen

    1998-11-01

    The generation of primordial magnetic fields from cosmological phase transitions is discussed, paying particular attention to the electroweak transition and to the various definitions of the ``average'' field that have been put forward. It is emphasized that only the volume average has dynamical significance as a seed for galactic dynamos. On rather general grounds of causality and energy conservation, it is shown that, in the absence of MHD effects that transfer power in the magnetic field from small to large scales, processes occurring at the electroweak transition cannot generate fields stronger than 10-20 G on a scale of 0.5 Mpc. However, it is implausible that this upper bound could ever be reached, as it would require all the energy in the Universe to be turned into a magnetic field coherent at the horizon scale. Non-linear MHD effects seem therefore to be necessary if the electroweak transition is to create a primordial seed field.

  14. MAGNETIC FLUX PARADIGM FOR RADIO LOUDNESS OF ACTIVE GALACTIC NUCLEI

    SciTech Connect

    Sikora, Marek; Begelman, Mitchell C. E-mail: mitch@jila.colorado.edu

    2013-02-20

    We argue that the magnetic flux threading the black hole (BH), rather than BH spin or Eddington ratio, is the dominant factor in launching powerful jets and thus determining the radio loudness of active galactic nuclei (AGNs). Most AGNs are radio quiet because the thin accretion disks that feed them are inefficient in depositing magnetic flux close to the BH. Flux accumulation is more likely to occur during a hot accretion (or thick disk) phase, and we argue that radio-loud quasars and strong emission-line radio galaxies occur only when a massive, cold accretion event follows an episode of hot accretion. Such an event might be triggered by the merger of a giant elliptical galaxy with a disk galaxy. This picture supports the idea that flux accumulation can lead to the formation of a so-called magnetically choked accretion flow. The large observed range in radio loudness reflects not only the magnitude of the flux pressed against the BH, but also the decrease in UV flux from the disk, due to its disruption by the ''magnetosphere'' associated with the accumulated flux. While the strongest jets result from the secular accumulation of flux, moderate jet activity can also be triggered by fluctuations in the magnetic flux deposited by turbulent, hot inner regions of otherwise thin accretion disks, or by the dissipation of turbulent fields in accretion disk coronae. These processes could be responsible for jet production in Seyferts and low-luminosity AGNs, as well as jets associated with X-ray binaries.

  15. Observations of Interstellar Magnetic Fields

    NASA Astrophysics Data System (ADS)

    Crutcher, R.; Heiles, C.; Troland, T.

    This article describes how interstellar magnetic fields are detected, measured, and mapped, the results of such observations, and the role played by interstellar magnetic fields in the physics of the interstellar medium. A goal of the observations is the measurement of the morphology and strengths of the uniform (Bu) and random (Br) components of magnetic fields. Observational techniques probe either the component of B parallel to the line of sight (B_parallel) or in the plane of the sky (B_⊥). Tracers of B_parallel are Faraday rotation of the position angle of linearly polarized radiation and Zeeman splitting of spectral lines. Tracers of B_⊥ are the strength of synchrotron radiation and linear polarization of syn chrotron radiation and of emission or absorption from dust and spectral lines. Starlight polarization shows that on large spatial scales the Galactic magnetic field is not heavily tangled (B_u/B_r ≈ 0.7 - 1.0), that the field is generally parallel to the Galactic plane near the plane, that the local field points approximately along the local spiral arm (pitch angle 9.4(°) , center of curvature 7.8 kpc distant towards ℓ ≈ -15.4(°) ), and that off the Galactic plane there is considerable small-scale structure to the field. Galactic synchrotron emission shows magnetic spiral arms with a total strength B_t ≈ 6 #55G and B_u ≈ 4 #55G. Pulsar data show evidence for reversals of the field direction with Galactic radius and yield B_r ≈ 5 #55G and B_u ≈ 1.5 #55G; the morphology of the large-scale mean field is consistent with dynamo generation. H I Zeeman detections for diffuse clouds yield B_parallel char 126 5 - 20 #55G with many limits B_parallel #55G. A recent survey of Galactic H I in absorption against extragalactic sources confirms the result that the fields in diffuse clouds are often quite weak. The critical parameter for evaluating the importance of magnetic fields in star formation is the ratio of the mass to the magnetic flux, M

  16. The Heliospheric Magnetic Field

    NASA Astrophysics Data System (ADS)

    Owens, Mathew J.; Forsyth, Robert J.

    2013-12-01

    The heliospheric magnetic field (HMF) is the extension of the coronal magnetic field carried out into the solar system by the solar wind. It is the means by which the Sun interacts with planetary magnetospheres and channels charged particles propagating through the heliosphere. As the HMF remains rooted at the solar photosphere as the Sun rotates, the large-scale HMF traces out an Archimedean spiral. This pattern is distorted by the interaction of fast and slow solar wind streams, as well as the interplanetary manifestations of transient solar eruptions called coronal mass ejections. On the smaller scale, the HMF exhibits an array of waves, discontinuities, and turbulence, which give hints to the solar wind formation process. This review aims to summarise observations and theory of the small- and large-scale structure of the HMF. Solar-cycle and cycle-to-cycle evolution of the HMF is discussed in terms of recent spacecraft observations and pre-spaceage proxies for the HMF in geomagnetic and galactic cosmic ray records.

  17. Magnetic fields during galaxy mergers

    NASA Astrophysics Data System (ADS)

    Rodenbeck, Kai; Schleicher, Dominik R. G.

    2016-09-01

    Galaxy mergers are expected to play a central role for the evolution of galaxies and may have a strong effect on their magnetic fields. We present the first grid-based 3D magnetohydrodynamical simulations investigating the evolution of magnetic fields during merger events. For this purpose, we employed a simplified model considering the merger event of magnetized gaseous disks in the absence of stellar feedback and without a stellar or dark matter component. We show that our model naturally leads to the production of two peaks in the evolution of the average magnetic field strength within 5 kpc, within 25 kpc, and on scales in between 5 and 25 kpc. The latter is consistent with the peak in the magnetic field strength previously reported in a merger sequence of observed galaxies. We show that the peak on the galactic scale and in the outer regions is most likely due to geometrical effects, as the core of one galaxy enters the outskirts of the other one. In addition, the magnetic field within the central ~5 kpc is physically enhanced, which reflects the enhancement in density that is due to efficient angular momentum transport. We conclude that high-resolution observations of the central regions will be particularly relevant for probing the evolution of magnetic field structures during merger events.

  18. Magnetic field sensor

    NASA Astrophysics Data System (ADS)

    Silva, Nicolas

    2012-09-01

    Earlier papers1-3 in this journal have described experiments on measuring the magnetic fields of current-carrying wires and permanent magnets using magnetic field probes of various kinds. This paper explains how to use an iPad and the free app MagnetMeter-3D Vector Magnetometer and Accelerometer4 (compass HD) to measure the magnetic fields.

  19. The Magnetic Field of the Milky Way Galaxy

    NASA Astrophysics Data System (ADS)

    Brown, J. C.

    2010-12-01

    Cosmic magnetic fields are an integral component of the interstellar medium (ISM), having influence on scales ranging from star formation to galactic dynamics. While observations of external galaxies offer a ‘birds-eye-view' of magnetic fields within galaxies, it is equally important to explore the magnetic field of our own Milky Way Galaxy, which offers a more detailed, albeit more complicated view. Over the past decade there has been a significant increase in interest in the Galactic magnetic field, fueled largely by innovations developed through the Canadian Galactic Plane Survey. In this paper, I review the current state of understanding of the Galactic magnetic field, and discuss briefly new and future observations that will provide exciting new insights about the field.

  20. GLOBAL GALACTIC DYNAMO DRIVEN BY COSMIC RAYS AND EXPLODING MAGNETIZED STARS

    SciTech Connect

    Hanasz, Michal; Woltanski, Dominik; Kowalik, Kacper

    2009-11-20

    We report the first results of the first global galactic-scale cosmic ray (CR)-MHD simulations of CR-driven dynamo. We investigate the dynamics of magnetized interstellar medium (ISM), which is dynamically coupled with CR gas. We assume that exploding stars deposit small-scale, randomly oriented, dipolar magnetic fields into the differentially rotating ISM, together with a portion of CRs, accelerated in supernova shocks. We conduct numerical simulations with the aid of a new parallel MHD code PIERNIK. We find that the initial magnetization of galactic disks by exploding magnetized stars forms favorable conditions for the CR-driven dynamo. We demonstrate that dipolar magnetic fields supplied on small supernova remnant scales can be amplified exponentially by the CR-driven dynamo, to the present equipartition values, and transformed simultaneously to large galactic scales. The resulting magnetic field structure in an evolved galaxy appears spiral in the face-on view and reveals the so-called X-shaped structure in the edge-on view.

  1. Magnetized High Velocity Clouds in the Galactic Halo: A New Distance Constraint

    NASA Astrophysics Data System (ADS)

    Grønnow, Asger; Tepper-García, Thor; Bland-Hawthorn, Joss; McClure-Griffiths, N. M.

    2017-08-01

    High velocity gas that does not conform to Galactic rotation is observed throughout the Galaxy’s halo. One component of this gas, H i high velocity clouds (HVCs), have attracted attention since their discovery in the 1960s and remain controversial in terms of their origins, largely due to the lack of reliable distance estimates. The recent discovery of enhanced magnetic fields toward HVCs has encouraged us to explore their connection to cloud evolution, kinematics, and survival as they fall through the magnetized Galactic halo. For a reasonable model of the halo magnetic field, most infalling clouds see transverse rather than radial field lines. We find that significant compression (and thereby amplification) of the ambient magnetic field occurs in front of the cloud and in the tail of material stripped from the cloud. The compressed transverse field attenuates hydrodynamical instabilities. This delays cloud destruction, though not indefinitely. The observed {\\boldsymbol{B}} field compression is related to the cloud’s distance from the Galactic plane. As a result, the observed rotation measure provides useful distance information on a cloud’s location.

  2. Role of galactic sources and magnetic fields in forming the observed energy-dependent composition of ultrahigh-energy cosmic rays.

    PubMed

    Calvez, Antoine; Kusenko, Alexander; Nagataki, Shigehiro

    2010-08-27

    Recent results from the Pierre Auger Observatory, showing energy-dependent chemical composition of ultrahigh-energy cosmic rays (UHECRs) with a growing fraction of heavy elements at high energies, suggest a possible non-negligible contribution of the Galactic sources. We show that, in the case of UHECRs produced by gamma-ray bursts or rare types of supernova explosions that took place in the Milky Way in the past, the change in UHECR composition can result from the difference in diffusion times for different species. The anisotropy in the direction of the Galactic center is expected to be a few per cent on average, but the locations of the most recent or closest bursts can be associated with observed clusters of UHECRs.

  3. Facility Measures Magnetic Fields

    NASA Technical Reports Server (NTRS)

    Honess, Shawn B.; Narvaez, Pablo; Mcauley, James M.

    1991-01-01

    Partly automated facility measures and computes steady near magnetic field produced by object. Designed to determine magnetic fields of equipment to be installed on spacecraft including sensitive magnetometers, with view toward application of compensating fields to reduce interfernece with spacecraft-magnetometer readings. Because of its convenient operating features and sensitivity of its measurements, facility serves as prototype for similar facilities devoted to magnetic characterization of medical equipment, magnets for high-energy particle accelerators, and magnetic materials.

  4. X-ray Point Sources in Galactic Center Region Fields

    NASA Astrophysics Data System (ADS)

    Hong, J.; Grindlay, J.; van den Berg, M.; Laycock, S.; Koenig, X.; Zhao, P.; Schlegel, E.

    2005-12-01

    We report the recent progress of the Chandra Multiwavelength Plane (ChaMPlane) survey in the Galactic Center region fields. These fields include deep Chandra observations of three low extinction windows near the Galactic Center - Baade's window, Stanek window, and Limiting window (100 ksec each, see van den Berg et al. for a detailed description of these three fields) and the Chandra archival data of Sgr A* (750 ksec), Sgr B2 field (100 ksec) and the shallow survey (2x12 ksec) of the Galactic Center strip (Wang et al 2002, Nature, 415, 148). We classify the spectral types of X-ray sources by quantile analysis, and we explore the source population using logN-logS and spatial distributions based on their spectral type. This project is supported by Chandra grant GO5-6091X.

  5. Magnetic field evolution in interacting galaxies

    NASA Astrophysics Data System (ADS)

    Drzazga, R. T.; Chyży, K. T.; Jurusik, W.; Wiórkiewicz, K.

    2011-09-01

    Aims: Violent gravitational interactions can change the morphologies of galaxies and, by means of merging, transform them into elliptical galaxies. We aim to investigate how they affect the evolution of galactic magnetic fields. Methods: We selected 16 systems of interacting galaxies with available VLA archive radio data at 4.86 and 1.4 GHz and compared their radio emission and estimated magnetic field strengths with their star-forming activity, far-infrared emission, and the stage of tidal interaction. Results: The estimated mean of total magnetic field strength for our sample of interacting galaxies is 14 ± 5 μG, which is larger than for the non-interacting objects. The field regularity (of 0.27 ± 0.09) is lower than in typical spirals and indicates enhanced production of random magnetic fields in the interacting objects. We find a general evolution of magnetic fields: for weak interactions the strength of magnetic field is almost constant (10-15 μG) as interaction advances, then it increases up to 2× , peaks at the nuclear coalescence (25 μG), and decreases again, down to 5-6 μG, for the post-merger remnants. The main production of magnetic fields in colliding galaxies thus terminates somewhere close to the nuclear coalescence, after which magnetic field diffuses. The magnetic field strength for whole galaxies is weakly affected by the star formation rate (SFR), while the dependence is higher for galactic centres. We show that the morphological distortions visible in the radio total and polarized emission do not depend statistically on the global or local SFRs, while they do increase (especially in the polarization) with the advance of interaction. The constructed radio-far-infrared relations for interacting and non-interacting galaxies display a similar balance between the generation of cosmic rays, magnetic fields, and the production of the thermal energy and dust radiation. Conclusions: The regular magnetic fields are much more sensitive to

  6. Magnetic Fields in Irregular Galaxies: NGC 4214

    NASA Astrophysics Data System (ADS)

    Kepley, Amanda A.; Wilcots, E. M.; Robishaw, T.; Heiles, C.; Zweibel, E.

    2006-12-01

    Magnetic fields are an important component of the interstellar medium of galaxies. They provide support, transfer energy from supernovae, provide a possible heating mechanism, and channel gas flows (Beck 2004). Despite the importance of magnetic fields in the ISM, it is not well known what generates and sustains galactic magnetic fields or how magnetic fields, gas, and stars interact in galaxies. The magnetic fields may be especially important in low-mass galaxies like irregulars where the magnetic pressure may be great enough for the field to be dynamically important. However, only four irregular galaxies besides the LMC and the SMC have observed magnetic field structures. The goal of our project is to significantly increase the number of irregular galaxies with observed magnetic field structure. Here we present preliminary results for one of the galaxies in our sample: NGC 4214. Using the VLA and the GBT, we have obtained 3cm, 6cm, and 20cm radio continuum polarization observations of this well-studied galaxy. Our observations allow us to investigate the effects of NGC 4214's high star formation rate, slow rotation rate, and weak bar on the structure of its magnetic field. We find that NGC 4214's magnetic field has an S-shaped structure, with the central field following the bar and the outer edges curving to follow the shape of the arms. The mechanism for generating these fields is still uncertain. A. Kepley is funded by an NSF Graduate Research Fellowship.

  7. Magnetic fields in spiral galaxies

    NASA Astrophysics Data System (ADS)

    Krause, Marita

    2015-03-01

    The magnetic field structure in edge-on galaxies observed so far shows a plane-parallel magnetic field component in the disk of the galaxy and an X-shaped field in its halo. The plane-parallel field is thought to be the projected axisymmetric (ASS) disk field as observed in face-on galaxies. Some galaxies addionionally exhibit strong vertical magnetic fields in the halo right above and below the central region of the disk. The mean-field dynamo theory in the disk cannot explain these observed fields without the action of a wind, which also probably plays an important role to keep the vertical scale heights constant in galaxies of different Hubble types and star formation activities, as has been observed in the radio continuum: At λ6 cm the vertical scale heights of the thin disk and the thick disk/halo in a sample of five edge-on galaxies are similar with a mean value of 300 +/- 50 pc for the thin disk and 1.8 +/- 0.2 kpc for the thick disk (a table and references are given in Krause 2011) with our sample including the brightest halo observed so far, NGC 253, with strong star formation, as well as one of the weakest halos, NGC 4565, with weak star formation. If synchrotron emission is the dominant loss process of the relativistic electrons the outer shape of the radio emission should be dumbbell-like as has been observed in several edge-on galaxies like e.g. NGC 253 (Heesen et al. 2009) and NGC 4565. As the synchrotron lifetime t syn at a single frequency is proportional to the total magnetic field strength B t -1.5, a cosmic ray bulk speed (velocity of a galactic wind) can be defined as v CR = h CR /t syn = 2 h z /t syn , where h CR and h z are the scale heights of the cosmic rays and the observed radio emission at this freqnency. Similar observed radio scale heights imply a self regulation mechanism between the galactic wind velocity, the total magnetic field strength and the star formation rate SFR in the disk: v CR ~ B t 1.5 ~ SFR ~ 0.5 (Niklas & Beck 1997).

  8. Fueling active galactic nuclei by magnetic braking

    NASA Technical Reports Server (NTRS)

    Krolik, Julian H.; Meiksin, Avery

    1990-01-01

    Recent detections of massive concentrations of molecular gas near the centers of galaxies hosting active nuclei suggest that these concentrations may be the source of accretion fuel for the nucleus. However, for that to be true, an angular momentum barrier must be overcome before the material in such a cloud can reach the nucleus. It is suggested that magnetic braking of the cloud may remove sufficient angular momentum to permit its material to draw considerably closer to the central object. The mechanism is particularly effective in the limit that the gas becomes self-gravitating because removal of a fraction of the initial angular momentum can lead to dynamical instability and collapse. Any small misalignment between the initial rotation axis of the cloud and the rotation axis of the galaxy can be substantially amplified as a result of the braking. It is argued that mass accretion onto the central object may occur in episodes, in some cases with a constant mass accretion rate during each episode.

  9. COLLISIONS BETWEEN DARK MATTER CONFINED HIGH VELOCITY CLOUDS AND MAGNETIZED GALACTIC DISKS: THE SMITH CLOUD

    SciTech Connect

    Galyardt, Jason; Shelton, Robin L. E-mail: rls@physast.uga.edu

    2016-01-01

    The Galaxy’s population of High Velocity Clouds (HVCs) may include a subpopulation that is confined by dark matter minihalos and falling toward the Galactic disk. We present the first magnetohydrodynamic simulational study of dark-matter-dominated HVCs colliding with a weakly magnetized galactic disk. Our HVCs have baryonic masses of 5 × 10{sup 6}M{sub ⊙} and dark matter minihalo masses of 0, 3 × 10{sup 8}, or 1 × 10{sup 9} M{sub ⊙}. They are modeled on the Smith Cloud, which is said to have collided with the disk 70 Myr ago. We find that, in all cases, the cloud’s collision with the galactic disk creates a hole in the disk, completely disperses the cloud, and forms a bubble-shaped structure on the far side of the disk. In contrast, when present, the dark matter minihalo continues unimpeded along its trajectory. Later, as the minihalo passes through the bubble structure and galactic halo, it accretes up to 6.0 × 10{sup 5} M{sub ⊙} in baryonic material, depending on the strengths of the magnetic field and minihalo gravity. These simulations suggest that if the Smith Cloud is associated with a dark matter minihalo and collided with the Galactic disk, the minihalo has accreted the observed gas. However, if the Smith Cloud is dark-matter-free, it is on its first approach toward the disk. These simulations also suggest that the dark matter is most concentrated either at the head of the cloud or near the cloud, depending upon the strength of the magnetic field, a point that could inform indirect dark matter searches.

  10. The orientation of the local interstellar magnetic field.

    PubMed

    Opher, M; Stone, E C; Gombosi, T I

    2007-05-11

    The orientation of the local interstellar magnetic field introduces asymmetries in the heliosphere that affect the location of heliospheric radio emissions and the streaming direction of ions from the termination shock of the solar wind. We combined observations of radio emissions and energetic particle streaming with extensive three-dimensional magnetohydrodynamic computer simulations of magnetic field draping over the heliopause to show that the plane of the local interstellar field is approximately 60 degrees to 90 degrees from the galactic plane. This finding suggests that the field orientation in the Local Interstellar Cloud differs from that of a larger-scale interstellar magnetic field thought to parallel the galactic plane.

  11. Photospheric magnetic fields

    NASA Technical Reports Server (NTRS)

    Howard, R.

    1972-01-01

    Knowledge on the nature of magnetic fields on the solar surface is reviewed. At least a large part of the magnetic flux in the solar surface is confined to small bundles of lines of force within which the field strength is of the order of 500 gauss. Magnetic fields are closely associated with all types of solar activity. Magnetic flux appears at the surface at the clearly defined birth or regeneration of activity of an active region. As the region ages, the magnetic flux migrates to form large-scale patterns and the polar fields. Some manifestations of the large-scale distribution are discussed.

  12. The magnetic field of the Milky Way

    NASA Astrophysics Data System (ADS)

    Jansson, Ronnie

    The magnetic field of the Milky Way is a significant component of our Galaxy, and impacts a great variety of Galactic processes. For example, it regulates star formation, accelerates cosmic rays, transports energy and momentum, acts as a source of pressure, and obfuscates the arrival directions of ultrahigh energy cosmic rays (UHECRs). This thesis is mainly concerned with the large scale Galactic magnetic field (GMF), and the effect it has on UHECRs. In Chapter 1 we review what is known about Galactic and extragalactic magnetic fields, their origin, the different observables of the GMF, and the ancillary data that is necessary to constrain astrophysical magnetic fields. Chapter 2 introduces a method to quantify the quality-of-fit between data and observables sensitive to the large scale Galactic magnetic field. We combine WMAP5 polarized synchrotron data and rotation measures of extragalactic sources in a joint analysis to obtain best-fit parameters and confidence levels for GMF models common in the literature. None of the existing models provide a good fit in both the disk and halo regions, and in many instances best-fit parameters are quite different than the original values. We introduce a simple model of the magnetic field in the halo that provides a much improved fit to the data. We show that some characteristics of the electron densities can already be constrained using our method and with future data it may be possible to carry out a self-consistent analysis in which models of the GMF and electron densities are simultaneously optimized. Chapter 3 investigates the observed excess of UHECRs in the region of the sky close to the nearby radio galaxy Centaurus A. We constrain the large-scale Galactic magnetic field and the small-scale random magnetic field in the direction of Cen A, and estimate the deflection of the observed UHECRs and predict their source positions on the sky. We find that the deflection due to random fields are small compared to deflections

  13. A magnetic torsional wave near the Galactic Centre traced by a 'double helix' nebula.

    PubMed

    Morris, Mark; Uchida, Keven; Do, Tuan

    2006-03-16

    The magnetic field in the central few hundred parsecs of the Milky Way has a dipolar geometry and is substantially stronger than elsewhere in the Galaxy, with estimates ranging up to a milligauss (refs 1-6). Characterization of the magnetic field at the Galactic Centre is important because it can affect the orbits of molecular clouds by exerting a drag on them, inhibit star formation, and could guide a wind of hot gas or cosmic rays away from the central region. Here we report observations of an infrared nebula having the morphology of an intertwined double helix about 100 parsecs from the Galaxy's dynamical centre, with its axis oriented perpendicular to the Galactic plane. The observed segment is about 25 parsecs in length, and contains about 1.25 full turns of each of the two continuous, helically wound strands. We interpret this feature as a torsional Alfvén wave propagating vertically away from the Galactic disk, driven by rotation of the magnetized circumnuclear gas disk. The direct connection between the circumnuclear disk and the double helix is ambiguous, but the images show a possible meandering channel that warrants further investigation.

  14. Magnetic Fields in Stars

    NASA Astrophysics Data System (ADS)

    Landstreet, J.; Murdin, P.

    2000-11-01

    Magnetism—the force that deflects the needle of a compass—and magnetic fields have been found in some hundreds of stars during the past 50 yr. Magnetic fields have been detected in T Tauri stars and other pre-main-sequence stars, several types of main sequence stars, white dwarfs and neutron stars. We now know a number of methods by which such magnetic fields may be detected, we are in the proces...

  15. Organic magnetic field sensor

    DOEpatents

    McCamey, Dane; Boehme, Christoph

    2017-01-24

    An organic, spin-dependent magnetic field sensor (10) includes an active stack (12) having an organic material with a spin-dependence. The sensor (10) also includes a back electrical contact (14) electrically coupled to a back of the active stack (12) and a front electrical contact (16) electrically coupled to a front of the active stack (12). A magnetic field generator (18) is oriented so as to provide an oscillating magnetic field which penetrates the active stack (12).

  16. A MAGNETIC RECONNECTION ORIGIN FOR THE SOFT X-RAY EXCESS IN AN ACTIVE GALACTIC NUCLEUS

    SciTech Connect

    Zhong Xiaogu; Wang Jiancheng

    2013-08-10

    We present a new scenario to explain the soft X-ray excess in an active galactic nucleus (AGN). Magnetic reconnection could happen in a thin layer on the surface of an accretion disk. Electrons are accelerated by a shock wave and turbulence is triggered by magnetic reconnection. Inverse Compton scattering then takes place above the accretion disk, producing soft X-rays. Based on the standard disk model, we estimate the magnetic field strength and the energy released by magnetic reconnection along the accretion disk and find that the luminosity arising from magnetic reconnection is mostly emitted in the inner disk, which is dominated by radiation pressure. We then apply the model to fit the spectra of AGNs with strong soft X-ray excess.

  17. Magnetic Bubble Expansion as an Experimental Model for Extra-Galactic Radio Lobes

    NASA Astrophysics Data System (ADS)

    Lynn, Alan; Zhang, Yue; Hsu, Scott

    2010-11-01

    The Plasma Bubble Expansion Experiment (PBEX) is conducting laboratory experiments to address outstanding nonlinear plasma physics issues related to how magnetic energy and helicity carried by extra-galactic jets interacts with the intergalactic medium to form radio lobe structures. Experiments are being conducted in the 4 meter long, 50 cm diameter HELCAT linear plasma device at UNM. A pulsed magnetized coaxial gun (˜10 kV, ˜100 kA, ˜2 mWb) forms and injects magnetized plasma bubbles perpendicularly into a lower pressure weakly magnetized background plasma formed by a helicon and/or hot cathode source in HELCAT. Ideal MHD simulations show that an MHD shock develops ahead of the bubble as it propagates, and that the bubble develops asymmetries due to the background field [1]. Experimental data from plasma bubble injection into a background plasma, particularly magnetic probe measurements, will be discussed. [4pt] [1] W. Liu et al., Phys. Plasmas 15, 072905 (2008).

  18. Magnetic field generator

    DOEpatents

    Krienin, Frank

    1990-01-01

    A magnetic field generating device provides a useful magnetic field within a specific retgion, while keeping nearby surrounding regions virtually field free. By placing an appropriate current density along a flux line of the source, the stray field effects of the generator may be contained. One current carrying structure may support a truncated cosine distribution, and it may be surrounded by a current structure which follows a flux line that would occur in a full coaxial double cosine distribution. Strong magnetic fields may be generated and contained using superconducting cables to approximate required current surfaces.

  19. Investigating Magnetic Activity in the Galactic Centre by Global MHD Simulation

    NASA Astrophysics Data System (ADS)

    Suzuki, Takeru K.; Fukui, Yasuo; Torii, Kazufumi; Machida, Mami; Matsumoto, Ryoji; Kakiuchi, Kensuke

    2017-01-01

    By performing a global magnetohydrodynamical (MHD) simulation for the Milky Way with an axisymmetric gravitational potential, we propose that spatially dependent amplification of magnetic fields possibly explains the observed noncircular motion of the gas in the Galactic centre (GC) region. The radial distribution of the rotation frequency in the bulge region is not monotonic in general. The amplification of the magnetic field is enhanced in regions with stronger differential rotation, because magnetorotational instability and field-line stretching are more effective. The strength of the amplified magnetic field reaches >~ 0.5 mG, and radial flows of the gas are excited by the inhomogeneous transport of angular momentum through turbulent magnetic field that is amplified in a spatially dependent manner. As a result, the simulated position-velocity diagram exhibits a time-dependent asymmetric parallelogram-shape owing to the intermittency of the magnetic turbulence; the present model provides a viable alternative to the bar-potential-driven model for the parallelogram shape of the central molecular zone. In addition, Parker instability (magnetic buoyancy) creates vertical magnetic structure, which would correspond to observed molecular loops, and frequently excited vertical flows. Furthermore, the time-averaged net gas flow is directed outward, whereas the flows are highly time dependent, which would contribute to the outflow from the bulge.

  20. Stochastic non-circular motion and outflows driven by magnetic activity in the Galactic bulge region

    NASA Astrophysics Data System (ADS)

    Suzuki, Takeru K.; Fukui, Yasuo; Torii, Kazufumi; Machida, Mami; Matsumoto, Ryoji

    2015-12-01

    By performing a global magnetohydrodynamical simulation for the Milky Way with an axisymmetric gravitational potential, we propose that spatially dependent amplification of magnetic fields possibly explains the observed noncircular motion of the gas in the Galactic centre region. The radial distribution of the rotation frequency in the bulge region is not monotonic in general. The amplification of the magnetic field is enhanced in regions with stronger differential rotation, because magnetorotational instability and field-line stretching are more effective. The strength of the amplified magnetic field reaches ≳0.5 mG, and radial flows of the gas are excited by the inhomogeneous transport of angular momentum through turbulent magnetic field that is amplified in a spatially dependent manner. In addition, the magnetic pressure-gradient force also drives radial flows in a similar manner. As a result, the simulated position-velocity diagram exhibits a time-dependent asymmetric parallelogram-shape owing to the intermittency of the magnetic turbulence; the present model provides a viable alternative to the bar-potential-driven model for the parallelogram shape of the central molecular zone. This is a natural extension into the central few 100 pc of the magnetic activity, which is observed as molecular loops at radii from a few 100 pc to 1 kpc. Furthermore, the time-averaged net gas flow is directed outward, whereas the flows are highly time dependent, which we discuss from a viewpoint of the outflow from the bulge.

  1. Effects of solar magnetic field on cosmic rays

    NASA Technical Reports Server (NTRS)

    Goncher, G. A.; Kolomeets, E. V.; Lyakhova, A. K.; Slyunyaeva, N. V.; Stekolnikov, N. V.

    1985-01-01

    Aspects of the problem of galactic cosmic ray propagation, including inversion of the solar total magnetic field and an analysis of data related to the heliomagnetic cycle are discussed. It is noted that the global structure of the solar magnetic field results in an additional flux of galactic cosmic rays generated by curvature and gradient drifts. An analysis of heliomagnetic cycle data shows that the latitudinal gradient results in a N-S asymmetry, with the amplitude of the effect growing with depth in the atmosphere. The inversion of the solar total magnetic field, drift effects, and other space distributions are found to contribute to a 22-year cycle of solar activity.

  2. Magnetic fields around black holes

    NASA Astrophysics Data System (ADS)

    Garofalo, David A. G.

    Active Galactic Nuclei are the most powerful long-lived objects in the universe. They are thought to harbor supermassive black holes that range from 1 million solar masses to 1000 times that value and possibly greater. Theory and observation are converging on a model for these objects that involves the conversion of gravitational potential energy of accreting gas to radiation as well as Poynting flux produced by the interaction of the rotating spacetime and the electromagnetic fields originating in the ionized accretion flow. The presence of black holes in astrophysics is taking center stage, with the output from AGN in various forms such as winds and jets influencing the formation and evolution of the host galaxy. This dissertation addresses some of the basic unanswered questions that plague our current understanding of how rotating black holes interact with their surrounding magnetized accretion disks to produce the enormous observed energy. Two magnetic configurations are examined. The first involves magnetic fields connecting the black hole with the inner accretion disk and the other involves large scale magnetic fields threading the disk and the hole. We study the effects of the former type by establishing the consequences that magnetic torques between the black hole and the inner accretion disk have on the energy dissipation profile. We attempt a plausible explanation to the observed "Deep Minimum" state in the Seyfert galaxy MCG-6- 30-15. For the latter type of magnetic geometry, we study the effects of the strength of the magnetic field threading the black hole within the context of the cherished Blandford & Znajek mechanism for black hole spin energy extraction. We begin by addressing the problem in the non-relativistic regime where we find that the black hole-threading magnetic field is stronger for greater disk thickness, larger magnetic Prandtl number, and for a larger accretion disk. We then study the problem in full relativity where we show that our

  3. The Primordial Origin Model of Magnetic Fields in Spiral Galaxies

    NASA Astrophysics Data System (ADS)

    Sofue, Yoshiaki; Machida, Mami; Kudoh, Takahiro

    2010-10-01

    We propose a primordial-origin model for composite configurations of global magnetic fields in spiral galaxies. We show that a uniform tilted magnetic field wound up into a rotating disk galaxy can evolve into composite magnetic configurations comprising bisymmetric spiral (S = BSS), axisymmetric spiral (A = ASS), plane-reversed spiral (PR), and/or ring (R) fields in the disk, and vertical (V) fields in the center. By MHD simulations we show that these composite galactic fields are indeed created from a weak primordial uniform field, and that different configurations can co-exist in the same galaxy. We show that spiral fields trigger the growth of two-armed gaseous arms. The centrally accumulated vertical fields are twisted and produce a jet toward the halo. We found that the more vertical was the initial uniform field, the stronger was the formed magnetic field in the galactic disk.

  4. The galactic dynamo, the helical force free field and the emissions of AGN

    SciTech Connect

    Colgate, S.; Li, Hui

    1997-05-01

    We present a theory relating the central galactic black hole (BH) formation to the galactic dynamo through an accretion disk. The associated AGN emissions and the collimated radio sources are then a result of the dynamo process. A unified theory of quasar and BL-Lac formation (hereafter AGN) starts with the collapse of damped Lyman-alpha clouds, presumably proto-galaxies, which then evolve to a central disk and black hole, (BH). An alpha - omega dynamo forms in this accretion disk where the augmentation of the poloidal field from the toroidal field depends upon star disk collisions. The winding number of the inner most orbit of the disk is so large, tilde 10 to the 11th power that the total gain of the dynamo is semi-infinite, and the original seed field of no consequence. The total magnetic flux produced is tilde 10000 times that of the galaxy, sufficient to explain the much larger flux of clusters. The semi-infinite gain of the dynamo implies that the field saturates at the dynamic stress so that most of the free energy of formation of the BH is carried off as magnetic energy in the form of a magnetic helix. The dissipation of this magnetic energy leads to the unique emission spectrum of AGN as well as the equally startling collimated radio and optical sources.

  5. Vertical flows and structures excited by magnetic activity in the Galactic center region

    NASA Astrophysics Data System (ADS)

    Kakiuchi, Kensuke; Suzuki, Takeru K.; Fukui, Yasuo; Torii, Kazufumi; Machida, Mami; Matsumoto, Ryoji

    2017-01-01

    Various observations show peculiar features in the Galactic Center region, such as loops and filamentary structure. It is still unclear how such characteristic features are formed. Magnetic field is believed to play very important roles in the dynamics of gas in the Galaxy Center. Suzuki et al. (2015) performed a global magneto-hydrodynamical simulation focusing on the Galactic Center with an axisymmetric gravitational potential and claimed that non-radial motion is excited by magnetic activity. We further analyzed their simulation data and found that vertical motion is also excited by magnetic activity. In particular, fast down flows with speed of ~100 km/s are triggered near the footpoint of magnetic loops that are buoyantly risen by Parker instability. These downward flows are accelerated by the vertical component of the gravity, falling along inclined field lines. As a result, the azimuthal and radial components of the velocity are also excited, which are observed as high velocity features in a simulated position-velocity diagram. Depending on the viewing angle, these fast flows will show a huge variety of characteristic features in the position-velocity diagram.

  6. Magnetic fields around AGNs at large and small scales

    NASA Astrophysics Data System (ADS)

    Tyul'bashev, S. A.

    2002-06-01

    The dipole structure of the magnetic field on distances ge 1 kpc from an active galactic nucleus is discussed. Two different models of the magnetic field around a supermassive black hole on the scale of the accretion disk are tested. The first model suggests a superstrong field of the order of 1010 Gauss (Kardashev \\cite{Kardashev95}), the other one proposed by Field & Rodgers (\\cite{Field93}) predicts much lower values ( ~ 104 Gauss).

  7. An examination of magnetized outflows from active galactic nuclei in galaxy clusters

    NASA Astrophysics Data System (ADS)

    Sutter, P. M.; Yang, H.-Y. Karen; Ricker, P. M.; Foreman, G.; Pugmire, D.

    2012-01-01

    We present 3D adaptive mesh refinement magnetohydrodynamic (MHD) simulations of an isolated galaxy cluster that include injection of kinetic, thermal and magnetic energy via a central active galactic nucleus (AGN) in order to study and evaluate the role that AGN may play in producing the observed cluster-wide magnetic fields. Using the MHD solver in FLASH 3.3, we compare several subresolution approaches to the evolution of AGN, specifically focusing on large-scale jet and bubble models. We examine the effects of magnetized outflows on the accretion history of the black hole and cluster thermodynamic properties, discuss the ability of various models to magnetize the cluster medium, and assess the sensitivity of these models to their underlying subgrid parameters. We find that magnetized jet-based models suffer a severe reduction in accretion rate compared to hydrodynamic jets; however, bubble models remain largely unaffected. While both jets and sporadically placed bubbles have difficulty reproducing the observed strength and topology of cluster magnetic fields, models based on centrally located bubbles come closest to observations. Finally, whereas jet models are relatively insensitive to changes in their subgrid parameters, the accretion rate and average magnetic field produced by the bubbles vary by as much as an order of magnitude depending on the grid resolution and accretion strength.

  8. Magnetic fields in spiral galaxies

    NASA Astrophysics Data System (ADS)

    Chiba, Masashi

    The magnetic-field characteristics in spiral galaxies are investigated, with emphasis on the Milky Way. The dynamo theory is considered, and axisymmetric spiral (ASS) and bisymmetric spiral (BSS) magnetic fields are analyzed. Toroidal and poloidal magnetic fields are discussed.

  9. Galactic heavy-ion shielding using electrostatic fields

    NASA Technical Reports Server (NTRS)

    Townsend, L. W.

    1984-01-01

    The shielding of spacecraft against galactic heavy ions, particularly high-energy Fe(56) nuclei, by electrostatic fields is analyzed for an arrangement of spherical concentric shells. Vacuum breakdown considerations are found to limit the minimum radii of the spheres to over 100 m. This limitation makes it impractical to use the fields for shielding small spacecraft. The voltages necessary to repel these Fe(56) nuclei exceed present electrostatic generating capabilities by over 2 orders of magnitude and render the concept useless as an alternative to traditional bulk-material shielding methods.

  10. Parity nonconservation and the origin of cosmic magnetic fields

    NASA Technical Reports Server (NTRS)

    Vilenkin, A.; Leahy, D. A.

    1982-01-01

    Three mechanisms of cosmic magnetic field generation are discussed: (1) asymmetric decay of particles emitted by rotating black holes; (2) asymmetric proton emission by black holes due to weak radiative corrections, and (3) equilibrium parity-violating currents. It is shown that all three mechanisms can produce a seed field sufficiently strong to account for the present galactic fields.

  11. Parity nonconservation and the origin of cosmic magnetic fields

    NASA Technical Reports Server (NTRS)

    Vilenkin, A.; Leahy, D. A.

    1982-01-01

    Three mechanisms of cosmic magnetic field generation are discussed: (1) asymmetric decay of particles emitted by rotating black holes; (2) asymmetric proton emission by black holes due to weak radiative corrections, and (3) equilibrium parity-violating currents. It is shown that all three mechanisms can produce a seed field sufficiently strong to account for the present galactic fields.

  12. Magnetic field dosimeter development

    SciTech Connect

    Lemon, D.K.; Skorpik, J.R.; Eick, J.L.

    1980-09-01

    In recent years there has been increased concern over potential health hazards related to exposure of personnel to magnetic fields. If exposure standards are to be established, then a means for measuring magnetic field dose must be available. To meet this need, the Department of Energy has funded development of prototype dosimeters at the Battelle Pacific Northwest Laboratory. This manual reviews the principle of operation of the dosimeter and also contains step-by-step instructions for its operation.

  13. Magnetosheath magnetic field variability

    NASA Technical Reports Server (NTRS)

    Sibeck, D. G.

    1994-01-01

    A case study using simulations IRM and CCE observations demonstrates that transient magnetospheric events correspond to pressure pulses in the magnetosheath, inward bow shock motion, and magnetopause compression. Statistical surveys indicate that the magnetosheath magnetic field orientation rarely remains constant during periods of magnetopause and bow shock motion (both characterized by periods of 1 to 10 min). There is no tendency for bow shock motion to occur for southward interplanetary magnetic field (IMF) orientations.

  14. Solar Wind Magnetic Fields

    NASA Technical Reports Server (NTRS)

    Smith, E. J.

    1995-01-01

    The magnetic fields originate as coronal fields that are converted into space by the supersonic, infinitely conducting, solar wind. On average, the sun's rotation causes the field to wind up and form an Archimedes Spiral. However, the field direction changes almost continuously on a variety of scales and the irregular nature of these changes is often interpreted as evidence that the solar wind flow is turbulent.

  15. Solar Wind Magnetic Fields

    NASA Technical Reports Server (NTRS)

    Smith, E. J.

    1995-01-01

    The magnetic fields originate as coronal fields that are converted into space by the supersonic, infinitely conducting, solar wind. On average, the sun's rotation causes the field to wind up and form an Archimedes Spiral. However, the field direction changes almost continuously on a variety of scales and the irregular nature of these changes is often interpreted as evidence that the solar wind flow is turbulent.

  16. Magnetic Field Illuminated

    NASA Image and Video Library

    2016-06-16

    Each day NASA solar scientists produce overlays (in white lines) that show their estimation of how the magnetic field lines above the sun are configured (June16, 2016). In the video clip we show the sun in a wavelength of extreme ultraviolet light, then reveal the magnetic field line configuration in the same wavelength. Notice how the lines are tightly bundled near the lighter-toned active regions, which are magnetically intense regions. The magnetic lines from the darker areas, called coronal holes, open out into space and the extended lines show that. Our magnetically active sun is a dynamic body that changes all the time. Movie are also available at the Photojournal. http://photojournal.jpl.nasa.gov/catalog/PIA20881

  17. Molecules in Magnetic Fields

    NASA Astrophysics Data System (ADS)

    Berdyugina, Svetlana

    2015-08-01

    Molecules probe cool matter in the Universe and various astrophysical objects. Their ability to sense magnetic fields provides new insights into magnetic properties of these objects. During the past fifteen years we have carried out a theoretical study of molecular magnetic effects such as the Zeeman, Paschen-Back and Hanle effects and their applications for inferring magnetic structures and spatial inhomogeneities on the Sun, cool stars, brown dwarfs, and exoplanets from molecular spectro-polarimetry (e.g., Berdyugina 2011). Here, we present an overview of this study and compare our theoretical predictions with recent laboratory measurements of magnetic properties of some molecules. We present also a new web-based tool to compute molecular magnetic effects and polarized spectra which is supported by the ERC Advanced Grant HotMol.

  18. Probing Magnetic Fields of Early Galaxies

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2017-06-01

    How do magnetic fields form and evolve in early galaxies? A new study has provided some clever observations to help us answer this question.The Puzzle of Growing FieldsDynamo theory is the primary model describing how magnetic fields develop in galaxies. In this picture, magnetic fields start out as weak seed fields that are small and unordered. These fields then become ordered and amplified by large-scale rotation and turbulence in galaxy disks and halos, eventually leading to the magnetic fields we observe in galaxies today.Schematic showinghow to indirectly measure protogalactic magnetic fields. The measured polarization of a background quasar is altered by the fields in a foreground protogalaxy. Click for a closer look! [Farnes et al. 2017/Adolf Schaller/STSCI/NRAO/AUI/NSF]To test this model, we need observations of the magnetic fields in young protogalaxies. Unfortunately, we dont have the sensitivity to be able to measure these fields directly but a team of scientists led by Jamie Farnes (Radboud University in the Netherlands) have come up with a creative alternative.The key is to find early protogalaxies that absorb the light of more distant background objects. If a protogalaxy lies between us and a distant quasar, then magnetic fields of the protogalaxy if present will affect the polarization measurements of the background quasar.Observing Galactic Building BlocksTop: Redshift distribution for the background quasars in the authors sample. Bottom: Redshift distribution for the foreground protogalaxies the authors are exploring. [Farnes et al. 2017]Farnes and collaborators examined two types of foreground protogalaxies: Damped Lyman-Alpha Absorbers (DLAs) and Lyman Limit Systems (LLSs). They obtained polarimetric data for a sample of 114 distant quasars with nothing in the foreground (the control sample), 19 quasars with DLAs in the foreground, and 27 quasars with LLSs in the foreground. They then used statistical analysis techniques to draw conclusions about

  19. Cluster Magnetic Fields

    NASA Astrophysics Data System (ADS)

    Carilli, C. L.; Taylor, G. B.

    Magnetic fields in the intercluster medium have been measured using a variety of techniques, including studies of synchrotron relic and halo radio sources within clusters, studies of inverse Compton X-ray emission from clusters, surveys of Faraday rotation measures of polarized radio sources both within and behind clusters, and studies of cluster cold fronts in X-ray images. These measurements imply that most cluster atmospheres are substantially magnetized, with typical field strengths of order 1 μGauss with high areal filling factors out to Mpc radii. There is likely to be considerable variation in field strengths and topologies both within and between clusters, especially when comparing dynamically relaxed clusters to those that have recently undergone a merger. In some locations, such as the cores of cooling flow clusters, the magnetic fields reach levels of 10-40 μG and may be dynamically important. In all clusters the magnetic fields have a significant effect on energy transport in the intracluster medium. We also review current theories on the origin of cluster magnetic fields.

  20. Magnetic Field Solver

    NASA Technical Reports Server (NTRS)

    Ilin, Andrew V.

    2006-01-01

    The Magnetic Field Solver computer program calculates the magnetic field generated by a group of collinear, cylindrical axisymmetric electromagnet coils. Given the current flowing in, and the number of turns, axial position, and axial and radial dimensions of each coil, the program calculates matrix coefficients for a finite-difference system of equations that approximates a two-dimensional partial differential equation for the magnetic potential contributed by the coil. The program iteratively solves these finite-difference equations by use of the modified incomplete Cholesky preconditioned-conjugate-gradient method. The total magnetic potential as a function of axial (z) and radial (r) position is then calculated as a sum of the magnetic potentials of the individual coils, using a high-accuracy interpolation scheme. Then the r and z components of the magnetic field as functions of r and z are calculated from the total magnetic potential by use of a high-accuracy finite-difference scheme. Notably, for the finite-difference calculations, the program generates nonuniform two-dimensional computational meshes from nonuniform one-dimensional meshes. Each mesh is generated in such a way as to minimize the numerical error for a benchmark one-dimensional magnetostatic problem.

  1. Cosmic Magnetic Fields: Observations and Prospects

    NASA Astrophysics Data System (ADS)

    Beck, Rainer

    2011-09-01

    Synchrotron emission, its polarization and its Faraday rotation at radio frequencies of 0.2-10 GHz are powerful tools to study the strength and structure of cosmic magnetic fields. Unpolarized emission traces turbulent fields which are strongest in galactic spiral arms and bars (20-30 μG) and in central starburst regions (50-100 μG). Such fields are dynamically important, e.g. they can drive gas inflows in central regions. Polarized emission traces ordered fields which can be regular (uni-directional) or anisotropic random (generated from isotropic random fields by compression or shear). Ordered fields with spiral patterns exist in grand-design, barred and flocculent galaxies, and in central regions of starburst galaxies. The strongest ordered (mostly regular) fields of 10-15 μG strength are generally found in galactic interarm regions and follow the orientation of adjacent gas spiral arms. Faraday rotation measures (RM) of the diffuse polarized radio emission from the disks of several spiral galaxies reveal large-scale patterns, which are signatures of regular fields probably generated by a mean-field dynamo. Ordered fields in interacting galaxies have asymmetric distributions and are an excellent tracer of past interactions between galaxies or with the intergalactic medium. Ordered magnetic fields are also observed in radio halos around edge-on galaxies, out to large distances from the plane, with X-shaped patterns.--The strength of the total magnetic field in our Milky Way is about 6 μG near the solar radius, but several mG in dense clouds, pulsar wind nebulae, and filaments near the Galactic Center. Diffuse polarized radio emission and Faraday rotation data from pulsars and background sources show spiral fields with large-scale reversals, but the overall field structure in our Galaxy is still under debate.--Diffuse radio emission from the halos of galaxy clusters is mostly unpolarized because intracluster magnetic fields are turbulent, while cluster

  2. Magnetic Helicity and Large Scale Magnetic Fields: A Primer

    NASA Astrophysics Data System (ADS)

    Blackman, Eric G.

    2015-05-01

    Magnetic fields of laboratory, planetary, stellar, and galactic plasmas commonly exhibit significant order on large temporal or spatial scales compared to the otherwise random motions within the hosting system. Such ordered fields can be measured in the case of planets, stars, and galaxies, or inferred indirectly by the action of their dynamical influence, such as jets. Whether large scale fields are amplified in situ or a remnant from previous stages of an object's history is often debated for objects without a definitive magnetic activity cycle. Magnetic helicity, a measure of twist and linkage of magnetic field lines, is a unifying tool for understanding large scale field evolution for both mechanisms of origin. Its importance stems from its two basic properties: (1) magnetic helicity is typically better conserved than magnetic energy; and (2) the magnetic energy associated with a fixed amount of magnetic helicity is minimized when the system relaxes this helical structure to the largest scale available. Here I discuss how magnetic helicity has come to help us understand the saturation of and sustenance of large scale dynamos, the need for either local or global helicity fluxes to avoid dynamo quenching, and the associated observational consequences. I also discuss how magnetic helicity acts as a hindrance to turbulent diffusion of large scale fields, and thus a helper for fossil remnant large scale field origin models in some contexts. I briefly discuss the connection between large scale fields and accretion disk theory as well. The goal here is to provide a conceptual primer to help the reader efficiently penetrate the literature.

  3. The magnetic field in the disk of our Galaxy

    NASA Astrophysics Data System (ADS)

    Han, J. L.; Qiao, G. J.

    1994-08-01

    The magnetic field in the disk of our Galaxy is investigated by using the Rotation Measures (RMs) of pulsars and Extragalactic Radio Sources (ERSes). Through analyses of the RMs of carefully selected pulsar samples, it is found that the Galaxy has a global field of BiSymmetric Spiral (BSS) configuration, rather than a concentric ring or an AxiSymmetric Spiral (ASS) configuration. The Galactic magnetic field of BSS structure is supposed to be of primordial origin. The pitch angle of the BSS structure is -8.2deg+/-0.5deg. The field geometry shows that the field goes along the Carina-Sagittarius arm, which is delineated by Giant Molecular Clouds (GMCs). The amplitude of the BSS field is 1.8+/-0.3μG. The first field strength maximum is at r_0_=11.9+/-0.15 kpc in the direction of l=180deg. The field is strong in the interarm regions and it reverses in the arm regions. In the vicinity of the Sun, it has a strength of ~1.4μG and reverses at 0.2-0.3kpc in the direction of l=0deg. Because of the unknown electron distribution of the Galaxy and other difficulties, it is impossible to derive the galactic field from the RMs of ERSes very quantitatively. Nevertheless, the RMs of ERSes located in the region of the two galactic poles are used to estimate the vertical component of the local galactic field, which is found to have a strength of 0.2-0.3μG and is directed from the south galactic pole to the north galactic pole. The scale height of the magnetic disk of the Galaxy is estimated from the RMs of all-sky distributed ERSes, being about 1.2+/-0.4pc. The regular magnetic field of our Galaxy, which is probably similar to that of M81, extends far from the optical disk.

  4. Magnetic fields at uranus.

    PubMed

    Ness, N F; Acuña, M H; Behannon, K W; Burlaga, L F; Connerney, J E; Lepping, R P; Neubauer, F M

    1986-07-04

    The magnetic field experiment on the Voyager 2 spacecraft revealed a strong planetary magnetic field of Uranus and an associated magnetosphere and fully developed bipolar masnetic tail. The detached bow shock wave in the solar wind supersonic flow was observed upstream at 23.7 Uranus radii (1 R(U) = 25,600 km) and the magnetopause boundary at 18.0 R(U), near the planet-sun line. A miaximum magnetic field of 413 nanotesla was observed at 4.19 R(U ), just before closest approach. Initial analyses reveal that the planetary magnetic field is well represented by that of a dipole offset from the center of the planet by 0.3 R(U). The angle between Uranus' angular momentum vector and the dipole moment vector has the surprisingly large value of 60 degrees. Thus, in an astrophysical context, the field of Uranus may be described as that of an oblique rotator. The dipole moment of 0.23 gauss R(3)(U), combined with the large spatial offset, leads to minimum and maximum magnetic fields on the surface of the planet of approximately 0.1 and 1.1 gauss, respectively. The rotation period of the magnetic field and hence that of the interior of the planet is estimated to be 17.29+/- 0.10 hours; the magnetotail rotates about the planet-sun line with the same period. Thelarge offset and tilt lead to auroral zones far from the planetary rotation axis poles. The rings and the moons are embedded deep within the magnetosphere, and, because of the large dipole tilt, they will have a profound and diurnally varying influence as absorbers of the trapped radiation belt particles.

  5. Magnetically Regulated Gas Accretion in High-Redshift Galactic Disks

    NASA Astrophysics Data System (ADS)

    Birnboim, Yuval

    2009-09-01

    Disk galaxies are in hydrostatic equilibrium along their vertical axis. The pressure allowing for this configuration consists of thermal, turbulent, magnetic, and cosmic-ray components. For the Milky Way the thermal pressure contributes ~10% of the total pressure near the plane, with this fraction dropping toward higher altitudes. Out of the rest, magnetic fields contribute ~1/3 of the pressure to distances of ~3 kpc above the disk plane. In this Letter, we attempt to extrapolate these local values to high-redshift, rapidly accreting, rapidly star-forming disk galaxies and study the effect of the extra pressure sources on the accretion of gas onto the galaxies. In particular, magnetic field tension may convert a smooth cold-flow accretion to clumpy, irregular star formation regions and rates. The infalling gas accumulates on the edge of the magnetic fields, supported by magnetic tension. When the mass of the infalling gas exceeds some threshold mass, its gravitational force cannot be balanced by magnetic tension anymore, and it falls toward the disk's plane, rapidly making stars. Simplified estimations of this threshold mass are consistent with clumpy star formation observed in SINS, UDF, GOODS, and GEMS surveys. We discuss the shortcomings of pure hydrodynamic codes in simulating the accretion of cold flows into galaxies, and emphasize the need for magnetohydrodynamic simulations.

  6. Mercury's Magnetic Field

    NASA Astrophysics Data System (ADS)

    Johnson, C. L.

    2014-12-01

    Mercury is the only inner solar system body other than Earth to possess an active core dynamo-driven magnetic field and the only planet with a small, highly dynamic magnetosphere. Measurements made by the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft have provided a wealth of data on Mercury's magnetic field environment. Mercury's weak magnetic field was discovered 40 years ago by the Mariner 10 spacecraft, but its large-scale geometry, strength and origin could not be definitively established. MESSENGER data have shown that the field is dynamo-generated and can be described as an offset axisymmetric dipole field (hereafter OAD): the magnetic equator lies ~0.2 RM (RM = 2440 km) north of the geographic equator and the dipole moment is 2.8 x1019 Am2 (~0.03% that of Earth's). The weak internal field and the high, but variable, solar wind ram pressure drive vigorous magnetospheric dynamics and result in an average distance from the planet center to the sub-solar magnetopause of only 1.42 RM. Magnetospheric models developed with MESSENGER data have allowed re-analysis of the Mariner 10 observations, establishing that there has been no measureable secular variation in the internal field over 40 years. Together with spatial power spectra for the OAD, this provides critical constraints for viable dynamo models. Time-varying magnetopause fields induce secondary core fields, the magnitudes of which confirm the core radius estimated from MESSENGER gravity and Earth-based radar data. After accounting for large-scale magnetospheric fields, residual signatures are dominated by additional external fields that are organized in the local time frame and that vary with magnetospheric activity. Birkeland currents have been identified, which likely close in the planetary interior at depths below the base of the crust. Near-periapsis magnetic field measurements at altitudes greater than 200 km have tantalizing hints of crustal fields, but crustal

  7. Searching for galactic axions through magnetized media: The QUAX proposal

    NASA Astrophysics Data System (ADS)

    Barbieri, R.; Braggio, C.; Carugno, G.; Gallo, C. S.; Lombardi, A.; Ortolan, A.; Pengo, R.; Ruoso, G.; Speake, C. C.

    2017-03-01

    We present a proposal to search for QCD axions with mass in the 200 μeV range, assuming that they make a dominant component of dark matter. Due to the axion-electron spin coupling, their effect is equivalent to the application of an oscillating rf field with frequency and amplitude fixed by the axion mass and coupling respectively. This equivalent magnetic field would produce spin flips in a magnetic sample placed inside a static magnetic field, which determines the resonant interaction at the Larmor frequency. Spin flips would subsequently emit radio frequency photons that can be detected by a suitable quantum counter in an ultra-cryogenic environment. This new detection technique is crucial to keep under control the thermal photon background which would otherwise produce a too large noise.

  8. Magnetic Field Arches

    NASA Image and Video Library

    2016-09-28

    When an active region rotated into a profile view, SDO was able to capture the magnificent loops arching above an active region (Sept. 28-29, 2016). Active region are areas of strong magnetic fields. The magnetic field lines above these regions are illuminated by charged particles spiraling along them. The images were taken in a wavelength of extreme ultraviolet light. The video covers 12 hours of activity. The Earth was inset to give a sense of the scale of these towering arches. Movies are available at http://photojournal.jpl.nasa.gov/catalog/PIA21101

  9. Magnetic field amplification in turbulent astrophysical plasmas

    NASA Astrophysics Data System (ADS)

    Federrath, Christoph

    2016-12-01

    Magnetic fields play an important role in astrophysical accretion discs and in the interstellar and intergalactic medium. They drive jets, suppress fragmentation in star-forming clouds and can have a significant impact on the accretion rate of stars. However, the exact amplification mechanisms of cosmic magnetic fields remain relatively poorly understood. Here, I start by reviewing recent advances in the numerical and theoretical modelling of the turbulent dynamo, which may explain the origin of galactic and intergalactic magnetic fields. While dynamo action was previously investigated in great detail for incompressible plasmas, I here place particular emphasis on highly compressible astrophysical plasmas, which are characterised by strong density fluctuations and shocks, such as the interstellar medium. I find that dynamo action works not only in subsonic plasmas, but also in highly supersonic, compressible plasmas, as well as for low and high magnetic Prandtl numbers. I further present new numerical simulations from which I determine the growth of the turbulent (un-ordered) magnetic field component ( turb$ ) in the presence of weak and strong guide fields ( 0$ ). I vary 0$ over five orders of magnitude and find that the dependence of turb$ on 0$ is relatively weak, and can be explained with a simple theoretical model in which the turbulence provides the energy to amplify turb$ . Finally, I discuss some important implications of magnetic fields for the structure of accretion discs, the launching of jets and the star-formation rate of interstellar clouds.

  10. Magnetic fields from inflation?

    SciTech Connect

    Demozzi, Vittoria; Mukhanov, Viatcheslav; Rubinstein, Hector E-mail: viatcheslav.mukhanov@physik.uni-muenchen.de

    2009-08-01

    We consider the possibility of generation of the primordial magnetic field on inflation and show that the effect of the back reaction of this field can be very important. Assuming that the back reaction does not spoil inflation we find a rather strong restriction on the amplitude of the primordial field which could be generated on inflation. Namely, this amplitude recalculated to the present epoch cannot exceed 10{sup −32}G in Mpc scales. This field seems to be too small to be amplified to the observable values by a possible dynamo mechanism.

  11. On the origin of cosmic magnetic fields

    NASA Astrophysics Data System (ADS)

    Kulsrud, Russell M.; Zweibel, Ellen G.

    2008-04-01

    We review the extensive and controversial literature concerning how the cosmic magnetic fields pervading nearly all galaxies and clusters of galaxies actually got started. Some observational evidence supports a hypothesis that the field is already moderately strong at the beginning of the life of a galaxy and its disc. One argument involves the chemical abundance of the light elements Be and B, while a second one is based on the detection of strong magnetic fields in very young high red shift galaxies. Since this problem of initial amplification of cosmic magnetic fields involves important plasma problems it is obvious that one must know the plasma in which the amplification occurs. Most of this review is devoted to this basic problem and for this it is necessary to devote ourselves to reviewing studies that take place in environments in which the plasma properties are most clearly understood. For this reason the authors have chosen to restrict themselves almost completely to studies of dynamos in our Galaxy. It is true that one can get a much better idea of the grand scope of galactic fields in extragalactic systems. However, most mature galaxies share the same dilemma as ours of overcoming important plasma problems. Since the authors are both trained in plasma physics we may be biased in pursuing this approach, but we feel it is justified by the above argument. In addition we feel we can produce a better review by staying close to that which we know best. In addition we have chosen not to consider the saturation problem of the galactic magnetic field since if the original dynamo amplification fails the saturation question does not arise. It is generally accepted that seed fields, whose strength is of order 10-20 G, easily spring up in the era preceding galaxy formation. Several mechanisms have been proposed to amplify these seed magnetic fields to a coherent structure with the microgauss strengths of the currently observed galactic magnetic fields. The standard

  12. Magnetic dipole in a nonuniform magnetic field

    NASA Astrophysics Data System (ADS)

    Kraftmakher, Yaakov

    2017-05-01

    The magnetic moment of a permanent magnet is determined from forces acting on the magnet in nonuniform magnetic fields produced by two coaxial current-carrying coils. Therefore, the measurements are performed under well controllable and reproducible conditions. With a data-acquisition system, the experiments can be done in a reasonably short time. The magnetic moment of the magnet is in good agreement with values obtained by other experimental techniques. The experiment is well suited for undergraduate laboratories.

  13. High field superconducting magnets

    NASA Technical Reports Server (NTRS)

    Hait, Thomas P. (Inventor); Shirron, Peter J. (Inventor)

    2011-01-01

    A superconducting magnet includes an insulating layer disposed about the surface of a mandrel; a superconducting wire wound in adjacent turns about the mandrel to form the superconducting magnet, wherein the superconducting wire is in thermal communication with the mandrel, and the superconducting magnet has a field-to-current ratio equal to or greater than 1.1 Tesla per Ampere; a thermally conductive potting material configured to fill interstices between the adjacent turns, wherein the thermally conductive potting material and the superconducting wire provide a path for dissipation of heat; and a voltage limiting device disposed across each end of the superconducting wire, wherein the voltage limiting device is configured to prevent a voltage excursion across the superconducting wire during quench of the superconducting magnet.

  14. The interplanetary magnetic field

    NASA Technical Reports Server (NTRS)

    Davis, L., Jr.

    1972-01-01

    Large-scale properties of the interplanetary magnetic field as determined by the solar wind velocity structure are examined. The various ways in which magnetic fields affect phenomena in the solar wind are summarized. The dominant role of high and low velocity solar wind streams that persist, with fluctuations and evolution, for weeks or months is emphasized. It is suggested that for most purposes the sector structure is better identified with the stream structure than with the magnetic polarity and that the polarity does not necessarily change from one velocity sector to the next. Several mechanisms that might produce the stream structure are considered. The interaction of the high and low velocity streams is analyzed in a model that is steady state when viewed in a frame that corotates with the sun.

  15. A self-consistent field method for galactic dynamics

    NASA Technical Reports Server (NTRS)

    Hernquist, Lars; Ostriker, Jeremiah P.

    1992-01-01

    The present study describes an algorithm for evolving collisionless stellar systems in order to investigate the evolution of systems with density profiles like the R exp 1/4 law, using only a few terms in the expansions. A good fit is obtained for a truncated isothermal distribution, which renders the method appropriate for galaxies with flat rotation curves. Calculations employing N of about 10 exp 6-7 are straightforward on existing supercomputers, making possible simulations having significantly smoother fields than with direct methods such as tree-codes. Orbits are found in a given static or time-dependent gravitational field; the potential, phi(r, t) is revised from the resultant density, rho(r, t). Possible scientific uses of this technique are discussed, including tidal perturbations of dwarf galaxies, the adiabatic growth of central masses in spheroidal galaxies, instabilities in realistic galaxy models, and secular processes in galactic evolution.

  16. A self-consistent field method for galactic dynamics

    NASA Technical Reports Server (NTRS)

    Hernquist, Lars; Ostriker, Jeremiah P.

    1992-01-01

    The present study describes an algorithm for evolving collisionless stellar systems in order to investigate the evolution of systems with density profiles like the R exp 1/4 law, using only a few terms in the expansions. A good fit is obtained for a truncated isothermal distribution, which renders the method appropriate for galaxies with flat rotation curves. Calculations employing N of about 10 exp 6-7 are straightforward on existing supercomputers, making possible simulations having significantly smoother fields than with direct methods such as tree-codes. Orbits are found in a given static or time-dependent gravitational field; the potential, phi(r, t) is revised from the resultant density, rho(r, t). Possible scientific uses of this technique are discussed, including tidal perturbations of dwarf galaxies, the adiabatic growth of central masses in spheroidal galaxies, instabilities in realistic galaxy models, and secular processes in galactic evolution.

  17. The Sun Magnetic Field

    NASA Image and Video Library

    2011-12-16

    This frame from an animation shows how the magnetic field lines emanating from our sun spiral out into the solar system as the sun rotates. NASA Voyager 1 is in an area scientists are calling the stagnation region, at the outer layer of the heliosphere.

  18. DIFFUSE GALACTIC LIGHT IN THE FIELD OF THE TRANSLUCENT HIGH GALACTIC LATITUDE CLOUD MBM32

    SciTech Connect

    Ienaka, N.; Kawara, K.; Matsuoka, Y.; Oyabu, S.; Sameshima, H.; Tsujimoto, T.; Peterson, B. A.

    2013-04-10

    We have conducted B-, g-, V-, and R-band imaging in a 45' Multiplication-Sign 40' field containing part of the high Galactic latitude translucent cloud MBM32, and correlated the intensity of diffuse optical light S{sub {nu}}({lambda}) with that of 100 {mu}m emission S{sub {nu}}(100 {mu}m). A {chi}{sup 2} minimum analysis is applied to fit a linear function to the measured correlation and derive the slope parameter b({lambda}) = {Delta}S{sub {nu}}({lambda})/{Delta}S{sub {nu}}(100 {mu}m) of the best-fit linear function. Compiling a sample by combining our b({lambda}) and published ones, we show that the b({lambda}) strength varies from cloud to cloud by a factor of four. Finding that b({lambda}) decreases as S{sub {nu}}(100 {mu}m) increases in the sample, we suggest that a nonlinear correlation including a quadratic term of S{sub {nu}}(100 {mu}m){sup 2} should be fitted to the measured correlation. The variation of optical depth, which is A{sub V} = 0.16-2.0 in the sample, can change b({lambda}) by a factor of 2-3. There would be some contribution to the large b({lambda}) variation from the forward-scattering characteristic of dust grains which is coupled to the non-isotropic interstellar radiation field (ISRF). Models of the scattering of diffuse Galactic light (DGL) underestimate the b({lambda}) values by a factor of two. This could be reconciled by deficiency in UV photons in the ISRF or by a moderate increase in dust albedo. Our b({lambda}) spectrum favors a contribution from extended red emission (ERE) to the diffuse optical light; b({lambda}) rises from B to V faster than the models, seems to peak around 6000 A and decreases toward long wavelengths. Such a characteristic is expected from the models in which the DGL is combined with ERE.

  19. Interstellar Magnetic Fields and Polarimetry of Dust Emission

    NASA Technical Reports Server (NTRS)

    Dowell, Darren

    2010-01-01

    Magnetic fields are an important ingredient in the stormy cosmos. Magnetic fields: (1) are intimately involved with winds from Active Galactic Nuclei (AGN) and stars (2) create at least some of the structures observed in the ISM (3) modulate the formation of clouds, cores, and stars within a turbulent medium (4) may be dynamically important in protostellar accretion disks (5) smooth weak shocks (C-shocks).

  20. Magnetic fields in the Milky Way: Near-infrared polarimetry

    NASA Astrophysics Data System (ADS)

    Pavel, Michael D.

    Astronomers have a limited understanding of the large-scale structure of the Galactic magnetic field and its role in the evolution of the interstellar medium (ISM). This understanding derives primarily from Faraday rotation and synchrotron observations which do not probe the cool, dusty ISM. To advance our knowledge of the Galactic magnetic field, this dissertation reports on the application of a different method, near-infrared (NIR) polarization of background starlight, to place new observational constraints on the nature of the Galactic magnetic field and to study the field's role in the evolution of interstellar material. A radiative transfer computer code was developed to predict all-sky starlight polarization observations. Starlight polarimetry predictions were made for several different dynamo-driven magnetic field geometries, assuming that magnetically-aligned interstellar dust grains polarize background starlight. New NIR starlight polarimetry measurements in the outer Galaxy were tested against these predictions. These observations favor disk-symmetric magnetic fields while rejecting disk-antisymmetric magnetic fields. This result contradicts some previous interpretations of all-sky, radio Faraday rotation measurements. The Galactic magnetic pitch angle is constrained to p = -6 ± 2°. The physical orientations of Galactic HII regions, traced by mid-infrared emission, are compared to the large-scale, disk-symmetric Galactic magnetic field geometry derived above. Hydrogen recombination line spectra towards these same objects revealed that many possessed turbulent linewidths. If fluid turbulence decays with time, then it may be used as a relative age indicator. A trend is seen between magnetic alignment and the degree of turbulence in the HII region. This result leads to the development of an observationally-driven HII region magnetic evolutionary sequence. Resolved polarimetry across the face of the galaxy M51 was measured for comparison with the internal

  1. Radial velocities in three fields along the southern galactic equator

    NASA Astrophysics Data System (ADS)

    Denoyelle, J.

    1987-09-01

    A list of radial velocities for 764 stars is given for three fields in the Vela-Carina region of the Galaxy. They were obtained from GPO-plates taken at La Silla and reduced following Fehrenbach's method. Slit-spectra were collected with the 152 cm-spectrographic telescope at La Silla, to derive an accurate radial velocity for a sufficient number of calibration stars: out of the 29 stars, 26 had no formerly published value. The global motions of 10 to 14 km/s can be considered as normal on the basis of galactic rotation. Some stars however show high velocities. The case of HD 81471 (Sp type A7 Iab) suggest that a detailed study of this star is to be recommended.

  2. Cosmic Magnetic Fields from Torsion Modes and Massive Photon Inflation

    NASA Astrophysics Data System (ADS)

    Garcia de Andrade, L. C.

    2014-09-01

    Earlier Barrow & Tsagas (2008) showed that a slower decay of magnetic fields are present in open Friedmann universes, with traditional Maxwell equations. In their paper magnetic fields of the order of B˜10-33 G which are far below the value required to seed galactic dynamos were obtained. In this paper galactic dynamo seeds of the order of B˜10-23 G are obtained from massive electrodynamics in Einstein-Cartan-Proca (ECP) expanding universe of de Sitter type. Slow decay of magnetic fields in photon-torsion coupling in QED (Garcia de Andrade 2011b) have been recently shown by Garcia de Andrade (2012) also not be able to seed galactic dynamos. Torsion modes are constrained by the field equations. Space-time torsion is shown to be explicitly responsible for the slow decay of cosmic magnetic field. In the absence of massive photon torsion coupling the magnetic field decay is of the order B˜t-3/2, while when torsion is turn on B˜t-1.2. The pure massive-photon-torsion contribution amplifies the magnetic field by Btorsion˜t0.1 which characterizes an extremely slow magnetic dynamo action due to purely torsion gravitational effects. Recently, Barrow et al. (2012) have obtained superadiabatic amplification of B-fields in the Friedmann open cosmology which lies within 10-20 G and 10-12 G which falls very comfortable within limits to seed galactic dynamos. Other simple solutions where B-field decays as B˜a-1, relatively weak photon-torsion coupling approximation. These solutions are obtained for the de Sitter and Friedmann metrics.

  3. Magnetic fields and cancer

    SciTech Connect

    Jones, T.L.

    1993-10-01

    This letter is a response to an article by Savitz and Kaune, EHP 101:76-80. W-L wire code was applied to data from a 1988 Denver study, and an association was reported between high W-L wire code and childhood cancer. This author discusses several studies and provides explanations which weakens the argument that classification error resulted in an appreciable reduction in the association between W-L high wire code and childhood cancer. In conclusion, the fact that new wire code is only weakly correlated with magnetic field measurements (in the same manner as the original W-L wire code) suggests that the newly reported stronger association with childhood cancer is likely due to factors other than magnetic fields. Differential residential mobility and differential residential age are two possible explanations and are suggestive that the reported association may be false.

  4. Photonic Magnetic Field Sensor

    DTIC Science & Technology

    2007-11-02

    reduce feedback in fiber optic links can be the basis for excellent magnetic field sensors. Based on the giant magneto-optical ( GMO ) or Faraday...Squids are those based upon the giant magneto-optical ( GMO ) effect in ferrimagnetic materials or YIG garnets and the giant magneto-resistance (GMR...effect in manganese based compounds. The development of the GMO material was mostly motivated by the need for compact, in-line fiber optical

  5. Magnetic field reconnection

    NASA Astrophysics Data System (ADS)

    Axford, W. I.

    The fundamental principles of particle acceleration by magnetic reconnection in cosmic plasmas are reviewed. The history of reconnection models is traced, and consideration is given to the Kelvin-Helmholtz theorem, the frozen-field theorem, the application of the Kelvin-Helmholtz theorem to a collisionless plasma, solutions to specific reconnection problems, and configurational instability. Diagrams and graphs are provided, and the objections raised by critics of the reconnection theory and/or its astrophysical applications are discussed.

  6. Coronal Magnetic Field Models

    NASA Astrophysics Data System (ADS)

    Wiegelmann, Thomas; Petrie, Gordon J. D.; Riley, Pete

    2017-09-01

    Coronal magnetic field models use photospheric field measurements as boundary condition to model the solar corona. We review in this paper the most common model assumptions, starting from MHD-models, magnetohydrostatics, force-free and finally potential field models. Each model in this list is somewhat less complex than the previous one and makes more restrictive assumptions by neglecting physical effects. The magnetohydrostatic approach neglects time-dependent phenomena and plasma flows, the force-free approach neglects additionally the gradient of the plasma pressure and the gravity force. This leads to the assumption of a vanishing Lorentz force and electric currents are parallel (or anti-parallel) to the magnetic field lines. Finally, the potential field approach neglects also these currents. We outline the main assumptions, benefits and limitations of these models both from a theoretical (how realistic are the models?) and a practical viewpoint (which computer resources to we need?). Finally we address the important problem of noisy and inconsistent photospheric boundary conditions and the possibility of using chromospheric and coronal observations to improve the models.

  7. Magnetic Field Topology in Jets

    NASA Technical Reports Server (NTRS)

    Gardiner, T. A.; Frank, A.

    2000-01-01

    We present results on the magnetic field topology in a pulsed radiative. jet. For initially helical magnetic fields and periodic velocity variations, we find that the magnetic field alternates along the, length of the jet from toroidally dominated in the knots to possibly poloidally dominated in the intervening regions.

  8. Low field magnetic resonance imaging

    DOEpatents

    Pines, Alexander; Sakellariou, Dimitrios; Meriles, Carlos A.; Trabesinger, Andreas H.

    2010-07-13

    A method and system of magnetic resonance imaging does not need a large homogenous field to truncate a gradient field. Spatial information is encoded into the spin magnetization by allowing the magnetization to evolve in a non-truncated gradient field and inducing a set of 180 degree rotations prior to signal acquisition.

  9. Magnetic Field Topology in Jets

    NASA Technical Reports Server (NTRS)

    Gardiner, T. A.; Frank, A.

    2000-01-01

    We present results on the magnetic field topology in a pulsed radiative. jet. For initially helical magnetic fields and periodic velocity variations, we find that the magnetic field alternates along the, length of the jet from toroidally dominated in the knots to possibly poloidally dominated in the intervening regions.

  10. UNDERSTANDING THE GEOMETRY OF ASTROPHYSICAL MAGNETIC FIELDS

    SciTech Connect

    Broderick, Avery E.; Blandford, Roger D.

    2010-08-01

    Faraday rotation measurements have provided an invaluable technique for probing the properties of astrophysical magnetized plasmas. Unfortunately, typical observations provide information only about the density-weighted average of the magnetic field component parallel to the line of sight. As a result, the magnetic field geometry along the line of sight, and in many cases even the location of the rotating material, is poorly constrained. Frequently, interpretations of Faraday rotation observations are dependent upon underlying models of the magnetic field being probed (e.g., uniform, turbulent, equipartition). However, we show that at sufficiently low frequencies, specifically below roughly 13(RM/1 rad m{sup -2}){sup 1/4}(B/1 G){sup 1/2} MHz, the character of Faraday rotation changes, entering what we term the 'super-adiabatic regime' in which the rotation measure (RM) is proportional to the integrated absolute value of the line-of-sight component of the field. As a consequence, comparing RMs at high frequencies with those in this new regime provides direct information about the geometry of the magnetic field along the line of sight. Furthermore, the frequency defining the transition to this new regime, {nu}{sub SA}, depends directly upon the local electron density and magnetic field strength where the magnetic field is perpendicular to the line of sight, allowing the unambiguous distinction between Faraday rotation within and in front of the emission region. Typical values of {nu}{sub SA} range from 10 kHz (below the ionospheric cutoff, but above the heliospheric cutoff) to 10 GHz, depending upon the details of the Faraday rotating environment. In particular, for resolved active galactic nuclei, including the black holes at the center of the Milky Way (Sgr A*) and M81, {nu}{sub SA} ranges from roughly 10 MHz to 10 GHz, and thus can be probed via existing and up-coming ground-based radio observatories.

  11. Magnetic field switchable dry adhesives.

    PubMed

    Krahn, Jeffrey; Bovero, Enrico; Menon, Carlo

    2015-02-04

    A magnetic field controllable dry adhesive device is manufactured. The normal adhesion force can be increased or decreased depending on the presence of an applied magnetic field. If the magnetic field is present during the entire normal adhesion test cycle which includes both applying a preloading force and measuring the pulloff pressure, a decrease in adhesion is observed when compared to when there is no applied magnetic field. Similarly, if the magnetic field is present only during the preload portion of the normal adhesion test cycle, a decrease in adhesion is observed because of an increased stiffness of the magnetically controlled dry adhesive device. When the applied magnetic field is present during only the pulloff portion of the normal adhesion test cycle, either an increase or a decrease in normal adhesion is observed depending on the direction of the applied magnetic field.

  12. The Martian magnetic field

    NASA Technical Reports Server (NTRS)

    Russell, C. T.

    1979-01-01

    The paper presents an overview of the Martian magnetic field measurements and the criticisms made of them. The measurements of the Mars 2, 3, and 5 spacecraft were interpreted by Dolginov et al. (1976, 1978) to be consistent with an intrinsic planetary magnetic moment of 2.5 times 10 to the 22nd power gauss cu cm, basing this result on the apparent size of the obstacle responsible for deflecting the solar wind and an apparent encounter of the spacecraft with the planetary field. It is shown that if the dependence of the Martian magnetic moment on the rotation rate was linear, the estimate of the moment would be far larger than reported by Dolginov et al. An upper limit of 250 km is calculated for the dynamo radius using the similarity law, compared with 500 km obtained by Dolginov et al. It is concluded that the possible strength of a Martian dynamo is below expectations, and it is likely that the Mars dynamo is not presently operative.

  13. Superhorizon magnetic fields

    NASA Astrophysics Data System (ADS)

    Campanelli, Leonardo

    2016-03-01

    We analyze the evolution of superhorizon-scale magnetic fields from the end of inflation till today. Whatever is the mechanism responsible for their generation during inflation, we find that a given magnetic mode with wave number k evolves, after inflation, according to the values of k ηe , nk , and Ωk , where ηe is the conformal time at the end of inflation, nk is the number density spectrum of inflation-produced photons, and Ωk is the phase difference between the two Bogoliubov coefficients which characterize the state of that mode at the end of inflation. For any realistic inflationary magnetogenesis scenario, we find that nk-1≪|k ηe|≪1 , and three evolutionary scenarios are possible: (i) |Ωk∓π |=O (1 ) , in which case the evolution of the magnetic spectrum Bk(η ) is adiabatic, a2Bk(η )=const , with a being the expansion parameter; (ii) |Ωk∓π |≪|k ηe| , in which case the evolution is superadiabatic, a2Bk(η )∝η ; (iii) |k ηe|≪|Ωk∓π |≪1 or |k ηe|˜|Ωk∓π |≪1 , in which case an early phase of adiabatic evolution is followed, after a time η⋆˜|Ωk∓π |/k , by a superadiabatic evolution. Once a given mode reenters the horizon, it remains frozen into the plasma and then evolves adiabatically till today. As a corollary of our results, we find that inflation-generated magnetic fields evolve adiabatically on all scales and for all times in conformal-invariant free Maxwell theory, while they evolve superadiabatically after inflation on superhorizon scales in the nonconformal-invariant Ratra model, where the inflaton is kinematically coupled to the electromagnetic field. The latter result supports and, somehow, clarifies our recent claim that the Ratra model can account for the presence of cosmic magnetic fields without suffering from both backreaction and strong-coupling problems.

  14. Electric and magnetic fields

    NASA Technical Reports Server (NTRS)

    Kaufman, H. R.; Robinson, R. S.; Etters, R. D.

    1982-01-01

    A number of energy momentum anomalies are described that result from the use of Abraham-Lorentz electromagnetic theory. These anomalies have in common the motion of charged bodies or current carrying conductors relative to the observer. The anomalies can be avoided by using the nonflow approach, based on internal energy of the electromagnetic field. The anomalies can also be avoided by using the flow approach, if all contributions to flow work are included. The general objective of this research is a fundamental physical understanding of electric and magnetic fields which, in turn, might promote the development of new concepts in electric space propulsion. The approach taken is to investigate quantum representations of these fields.

  15. Galactic Cosmic Ray Intensity Response to Interplanetary Coronal Mass Ejections/Magnetic Clouds in 1995 - 2009

    NASA Astrophysics Data System (ADS)

    Richardson, I. G.; Cane, H. V.

    2011-06-01

    We summarize the response of the galactic cosmic ray (CGR) intensity to the passage of the more than 300 interplanetary coronal mass ejections (ICMEs) and their associated shocks that passed the Earth during 1995 - 2009, a period that encompasses the whole of Solar Cycle 23. In ˜ 80% of cases, the GCR intensity decreased during the passage of these structures, i.e., a "Forbush decrease" occurred, while in ˜ 10% there was no significant change. In the remaining cases, the GCR intensity increased. Where there was an intensity decrease, minimum intensity was observed inside the ICME in ˜ 90% of these events. The observations confirm the role of both post-shock regions and ICMEs in the generation of these decreases, consistent with many previous studies, but contrary to the conclusion of Reames, Kahler, and Tylka ( Astrophys. J. Lett. 700, L199, 2009) who, from examining a subset of ICMEs with flux-rope-like magnetic fields (magnetic clouds) argued that these are "open structures" that allow free access of particles including GCRs to their interior. In fact, we find that magnetic clouds are more likely to participate in the deepest GCR decreases than ICMEs that are not magnetic clouds.

  16. Effects of interplanetary magnetic clouds, interaction regions, and high-speed streams on the transient modulation of galactic cosmic rays

    NASA Astrophysics Data System (ADS)

    Singh, Y. P.; Badruddin

    2007-02-01

    Interplanetary manifestations of coronal mass ejections (CMEs) with specific plasma and field properties, called ``interplanetary magnetic clouds,'' have been observed in the heliosphere since the mid-1960s. Depending on their associated features, a set of observed magnetic clouds identified at 1 AU were grouped in four different classes using data over 4 decades: (1) interplanetary magnetic clouds moving with the ambient solar wind (MC structure), (2) magnetic clouds moving faster than the ambient solar wind and forming a shock/sheath structure of compressed plasma and field ahead of it (SMC structure), (3) magnetic clouds ``pushed'' by the high-speed streams from behind, forming an interaction region between the two (MIH structure), and (4) shock-associated magnetic clouds followed by high-speed streams (SMH structure). This classification into different groups led us to study the role, effect, and the relative importance of (1) closed field magnetic cloud structure with low field variance, (2) interplanetary shock and magnetically turbulent sheath region, (3) interaction region with large field variance, and (4) the high-speed solar wind stream coming from the open field regions, in modulating the galactic cosmic rays (GCRs). MC structures are responsible for transient decrease with fast recovery. SMC structures are responsible for fast decrease and slow recovery, MIH structures produce depression with slow decrease and slow recovery, and SMH structures are responsible for fast decrease with very slow recovery. Simultaneous variations of GCR intensity, solar plasma velocity, interplanetary magnetic field strength, and its variance led us to study the relative effectiveness of different structures as well as interplanetary plasma/field parameters. Possible role of the magnetic field, its topology, field turbulence, and the high-speed streams in influencing the amplitude and time profile of resulting decreases in GCR intensity have also been discussed.

  17. The distribution of mean and fluctuating magnetic fields in the multiphase interstellar medium

    NASA Astrophysics Data System (ADS)

    Evirgen, C. C.; Gent, F. A.; Shukurov, A.; Fletcher, A.; Bushby, P.

    2017-01-01

    We explore the effects of the multiphase structure of the interstellar medium (ISM) on galactic magnetic fields. Basing our analysis on compressible magnetohydrodynamic simulations of supernova-driven turbulence in the ISM, we investigate the properties of both the mean and fluctuating components of the magnetic field. We find that the mean magnetic field preferentially resides in the warm phase and is generally absent from the hot phase. The fluctuating magnetic field does not show such pronounced sensitivity to the multiphase structure.

  18. Magnetic Fields in the Interstellar Medium

    NASA Astrophysics Data System (ADS)

    Clark, Susan

    2017-01-01

    The Milky Way is magnetized. Invisible magnetic fields thread the Galaxy on all scales and play a vital but still poorly understood role in regulating flows of gas in the interstellar medium and the formation of stars. I will present highlights from my thesis work on magnetic fields in the diffuse interstellar gas and in accretion disks. At high Galactic latitudes, diffuse neutral hydrogen is organized into an intricate network of slender linear features. I will show that these neutral hydrogen “fibers” are extremely well aligned with the ambient magnetic field as traced by both starlight polarization (Clark et al. 2014) and Planck 353 GHz polarized dust emission (Clark et al. 2015). The structure of the neutral interstellar medium is more tightly coupled to the magnetic field than previously known. Because the orientation of neutral hydrogen is an independent predictor of the local dust polarization angle, our work provides a new tool in the search for inflationary gravitational wave B-mode polarization in the cosmic microwave background, which is currently limited by dust foreground contamination. Magnetic fields also drive accretion in astrophysical disks via the magnetorotational instability (MRI). I analytically derive the behavior of this instability in the weakly nonlinear regime and show that the saturated state of the instability depends on the geometry of the background magnetic field. The analytical model describes the behavior of the MRI in a Taylor-Couette flow, a set-up used by experimentalists in the ongoing quest to observe MRI in the laboratory (Clark & Oishi 2016a, 2016b).

  19. Analyzing Extragalactic Magnetic Fields Using Faraday Rotation Measure Synthesis

    NASA Astrophysics Data System (ADS)

    Pare, Dylan; Wang, Q. Daniel; Kamieneski, Patrick; Sullivan, Kendall

    2017-01-01

    Extragalactic magnetic fields are a poorly understood element of galaxies that are likely to play an important role in galaxy formation and evolution. Until recently, however, there was no way to observe these fields to a high level of detail, making it difficult to map the spatial distribution of these fields to any high degree of accuracy. Fortunately, a new technique known as Faraday Rotation Measure Synthesis allows for a more precise analysis of galactic magnetism. This technique uses the observed Faraday rotation of polarized emission from background sources to map the magnetic field of a foreground galaxy. This Faraday rotation occurs when the polarized emission encounters ionized, magnetized gas within the galaxy, causing the emission to be rotated by an amount proportional the magnetic field subjected to the ionized gas. Working as part of CHANG-ES (Continuum HAlos in Nearby Galaxies - an EVLA Survey), we have applied this technique in order to learn about the distribution of magnetic fields in the disks and halos of edge-on spiral galaxies. We will present maps of the galactic magnetic fields of CHANG-ES galaxies using this technique, indicating the potential of this technique in successfully mapping these distant fields.

  20. Reconnection of Magnetic Fields

    NASA Technical Reports Server (NTRS)

    1984-01-01

    Spacecraft observations of steady and nonsteady reconnection at the magnetopause are reviewed. Computer simulations of three-dimensional reconnection in the geomagnetic tail are discussed. Theoretical aspects of the energization of particles in current sheets and of the microprocesses in the diffusion region are presented. Terrella experiments in which magnetospheric reconnection is simulated at both the magnetopause and in the tail are described. The possible role of reconnection in the evolution of solar magnetic fields and solar flares is discussed. A two-dimensional magnetohydrodynamic computer simulation of turbulent reconnection is examined. Results concerning reconnection in Tokamak devices are also presented.

  1. Polar Magnetic Field Experiment

    NASA Technical Reports Server (NTRS)

    Russell, C. T.

    1999-01-01

    This grant covers the initial data reduction and analysis of the magnetic field measurements of the Polar spacecraft. At this writing data for the first three years of the mission have been processed and deposited in the key parameter database. These data are also available in a variety of time resolutions and coordinate systems via a webserver at UCLA that provides both plots and digital data. The flight software has twice been reprogrammed: once to remove a glitch in the data where there were rare collisions between commands in the central processing unit and once to provide burst mode data at 100 samples per second on a regular basis. The instrument continues to function as described in the instrument paper (1.1 in the bibliography attached below). The early observations were compared with observations on the same field lines at lower altitude. The polar magnetic measurements also proved to be most useful for testing the accuracy of MHD models. WE also made important contributions to study of waves and turbulence.

  2. Photonic Magnetic Field Sensor

    NASA Astrophysics Data System (ADS)

    Wyntjes, Geert

    2002-02-01

    Small, in-line polarization rotators or isolators to reduce feedback in fiber optic links can be the basis for excellent magnetic field sensors. Based on the giant magneto-optical (GMO) or Faraday effect in iron garnets, they with a magnetic field of a few hundred Gauss, (20 mT) for an interaction length for an optical beam of a few millimeters achieve a polarization rotation or phase shift of 45 deg (1/8 cycle). When powered by a small laser diode, with the induced linear phase shift recovered at the shot noise limit, we have demonstrated sensitivities at the 3.3 nT/Hz1/2 level for frequencies from less than 1 Hz to frequencies into the high kHz range. Through further improvements; an increase in interaction length, better materials and by far the greatest factor, the addition of a flux concentrator, sensitivities at the pT/Hz1/2 level appear to be within reach. We will detail such a design and discuss the issues that may limit achieving these goals.

  3. HUBBLE'S SEARCH FOR FAINT FIELD STARS IN GALACTIC HALO

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Left A NASA Hubble Space Telescope image of a randomly selected area of sky taken to search for faint red stars that might constitute dark matter in our Milky Way Galaxy. (Dark matter is material of an unknown type that makes up most of the mass of our galaxy). If the dark matter in our Galaxy was made of faint red stars -- as many scientists have previously conjectured -- then about 38 such stars should have been visible in this HST image. The simulated stars (diamond-shaped symbols), based on theoretical calculations, illustrate what scientists would have seen if the dark matter were locked-up in faint red stars. These surprising results rule out dim stars as an explanation for dark matter in our Galaxy. Right The unmodified HST image shows the region is actually so devoid of stars that far more distant background galaxies can easily be seen. The field is in the constellation Eridanus, far outside the plane of our Milky Way Galaxy. This region was chosen to highlight stars in the galactic halo, where dark matter exists, and to avoid the contribution of faint stars in the plane of the Galaxy. Technical Information: The image was constructed from seven exposures totaling almost three hours of searching by HST. The field shown is about 1.5 arc-minutes across. The image was taken in near-infrared light (814 nm) with the Wide Field Planetary Camera 2, on Feb 8, 1994. This observation is part of the HST parallel observing program. Credit: J Bahcall, Institute for Advance Study, Princeton and NASA

  4. HUBBLE'S SEARCH FOR FAINT FIELD STARS IN GALACTIC HALO

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Left A NASA Hubble Space Telescope image of a randomly selected area of sky taken to search for faint red stars that might constitute dark matter in our Milky Way Galaxy. (Dark matter is material of an unknown type that makes up most of the mass of our galaxy). If the dark matter in our Galaxy was made of faint red stars -- as many scientists have previously conjectured -- then about 38 such stars should have been visible in this HST image. The simulated stars (diamond-shaped symbols), based on theoretical calculations, illustrate what scientists would have seen if the dark matter were locked-up in faint red stars. These surprising results rule out dim stars as an explanation for dark matter in our Galaxy. Right The unmodified HST image shows the region is actually so devoid of stars that far more distant background galaxies can easily be seen. The field is in the constellation Eridanus, far outside the plane of our Milky Way Galaxy. This region was chosen to highlight stars in the galactic halo, where dark matter exists, and to avoid the contribution of faint stars in the plane of the Galaxy. Technical Information: The image was constructed from seven exposures totaling almost three hours of searching by HST. The field shown is about 1.5 arc-minutes across. The image was taken in near-infrared light (814 nm) with the Wide Field Planetary Camera 2, on Feb 8, 1994. This observation is part of the HST parallel observing program. Credit: J Bahcall, Institute for Advance Study, Princeton and NASA

  5. Magnetic Fields: Visible and Permanent.

    ERIC Educational Resources Information Center

    Winkeljohn, Dorothy R.; Earl, Robert D.

    1983-01-01

    Children will be able to see the concept of a magnetic field translated into a visible reality using the simple method outlined. Standard shelf paper, magnets, iron filings, and paint in a spray can are used to prepare a permanent and well-detailed picture of the magnetic field. (Author/JN)

  6. Fast superconducting magnetic field switch

    DOEpatents

    Goren, Y.; Mahale, N.K.

    1996-08-06

    The superconducting magnetic switch or fast kicker magnet is employed with electron stream or a bunch of electrons to rapidly change the direction of flow of the electron stream or bunch of electrons. The apparatus employs a beam tube which is coated with a film of superconducting material. The tube is cooled to a temperature below the superconducting transition temperature and is subjected to a constant magnetic field which is produced by an external dc magnet. The magnetic field produced by the dc magnet is less than the critical field for the superconducting material, thus, creating a Meissner Effect condition. A controllable fast electromagnet is used to provide a magnetic field which supplements that of the dc magnet so that when the fast magnet is energized the combined magnetic field is now greater that the critical field and the superconducting material returns to its normal state allowing the magnetic field to penetrate the tube. This produces an internal field which effects the direction of motion and of the electron stream or electron bunch. The switch can also operate as a switching mechanism for charged particles. 6 figs.

  7. Fast superconducting magnetic field switch

    DOEpatents

    Goren, Yehuda; Mahale, Narayan K.

    1996-01-01

    The superconducting magnetic switch or fast kicker magnet is employed with electron stream or a bunch of electrons to rapidly change the direction of flow of the electron stream or bunch of electrons. The apparatus employs a beam tube which is coated with a film of superconducting material. The tube is cooled to a temperature below the superconducting transition temperature and is subjected to a constant magnetic field which is produced by an external dc magnet. The magnetic field produced by the dc magnet is less than the critical field for the superconducting material, thus, creating a Meissner Effect condition. A controllable fast electromagnet is used to provide a magnetic field which supplements that of the dc magnet so that when the fast magnet is energized the combined magnetic field is now greater that the critical field and the superconducting material returns to its normal state allowing the magnetic field to penetrate the tube. This produces an internal field which effects the direction of motion and of the electron stream or electron bunch. The switch can also operate as a switching mechanism for charged particles.

  8. Martian external magnetic field proxies

    NASA Astrophysics Data System (ADS)

    Langlais, Benoit; Civet, Francois

    2015-04-01

    Mars possesses no dynamic magnetic field of internal origin as it is the case for the Earth or for Mercury. Instead Mars is characterized by an intense and localized magnetic field of crustal origin. This field is the result of past magnetization and demagnetization processes, and reflects its evolution. The Interplanetary Magnetic Field (IMF) interacts with Mars' ionized environment to create an external magnetic field. This external field is weak compared to lithospheric one but very dynamic, and may hamper the detailed analysis of the internal magnetic field at some places or times. Because there are currently no magnetic field measurements made at Mars' surface, it is not possible to directly monitor the external field temporal variability as it is done in Earth's ground magnetic observatories. In this study we examine to indirect ways of quantifying this external field. First we use the Advanced Composition Explorer (ACE) mission which measures the solar wind about one hour upstream of the bow-shock resulting from the interaction between the solar wind and the Earth's internal magnetic field. These measurements are extrapolated to Mars' position taking into account the orbital configurations of the Mars-Earth system and the velocity of particles carrying the IMF. Second we directly use Mars Global Surveyor magnetic field measurements to quantify the level of variability of the external field. We subtract from the measurements the internal field which is otherwise modeled, and bin the residuals first on a spatial and then on a temporal mesh. This allows to compute daily or semi daily index. We present a comparison of these two proxies and demonstrate their complementarity. We also illustrate our analysis by comparing our Martian external field proxies to terrestrial index at epochs of known strong activity. These proxies will especially be useful for upcoming magnetic field measurements made around or at the surface of Mars.

  9. The effect of the solar field reversal on the modulation of galactic cosmic rays

    NASA Technical Reports Server (NTRS)

    Thomas, B. T.; Goldstein, B. E.

    1983-01-01

    There is now a growing awareness that solar cycle related changes in the large-scale structure of the interplanetary magnetic field (IMF) may play an important role in the modulation of galactic cosmic rays. To date, attention focussed on two aspects of the magnetic field structure: large scale compression regions produced by fast solar wind streams and solar flares, both of which are known to vary in intensity and number over the solar cycle, and the variable warp of the heliospheric current sheet. It is suggested that another feature of the solar cycle is worthy of consideration: the field reversal itself. If the Sun reverses its polarity by simply overturning the heliospheric current sheet (northern fields migrating southward and vice-versa) then there may well be an effect on cosmic ray intensity. However, such a simple picture of solar reversal seems improbable. Observations of the solar corona suggest the existence of not one but several current sheets in the heliosphere at solar maximum. The results of a simple calculation to demonstrate that the variation in cosmic ray intensities that will result can be as large as is actually observed over the solar cycle are given.

  10. Evolution of twisted magnetic fields

    SciTech Connect

    Zweibel, E.G.; Boozer, A.H.

    1985-02-01

    The magnetic field of the solar corona evolves quasistatically in response to slowly changing photospheric boundary conditions. The magnetic topology is preserved by the low resistivity of the solar atmosphere. We show that a magnetic flux coordinate system simplifies the problem of calculating field evolution with invariant topology. As an example, we calculate the equilibrium of a thin magnetic flux tube with small twist per unit length.

  11. Exposure guidelines for magnetic fields

    SciTech Connect

    Miller, G.

    1987-12-01

    The powerful magnetic fields produced by a controlled fusion experiment at Lawrence Livermore National Laboratory (LLNL) necessitated the development of personnel-exposure guidelines for steady magnetic fields. A literature search and conversations with active researchers showed that it is currently possible to develop preliminary exposure guidelines for steady magnetic fields. An overview of the results of past research into the bioeffects of magnetic fields was compiled, along with a discussion of hazards that may be encountered by people with sickle-cell anemia or medical electronic and prosthetic implants. The LLNL steady magnetic-field exposure guidelines along with a review of developments concerning the safety of time-varying fields were also presented in this compilation. Guidelines developed elsewhere for time varying fields were also given. Further research is needed to develop exposure standards for both steady or time-varying fields.

  12. Exposure guidelines for magnetic fields.

    PubMed

    Miller, G

    1987-12-01

    The powerful magnetic fields produced by a controlled fusion experiment at Lawrence Livermore National Laboratory (LLNL) necessitated the development of personnel-exposure guidelines for steady magnetic fields. A literature search and conversations with active researchers showed that it is currently possible to develop preliminary exposure guidelines for steady magnetic fields. An overview of the results of past research into the bioeffects of magnetic fields was compiled, along with a discussion of hazards that may be encountered by people with sickle-cell anemia or medical electronic and prosthetic implants. The LLNL steady magnetic-field exposure guidelines along with a review of developments concerning the safety of time-varying fields were also presented in this compilation. Guidelines developed elsewhere for time varying fields were also given. Further research is needed to develop exposure standards for both steady or time-varying fields.

  13. Magnetic-field-dosimetry system

    DOEpatents

    Lemon, D.K.; Skorpik, J.R.; Eick, J.L.

    1981-01-21

    A device is provided for measuring the magnetic field dose and peak field exposure. The device includes three Hall-effect sensors all perpendicular to each other, sensing the three dimensional magnetic field and associated electronics for data storage, calculating, retrieving and display.

  14. Magnetic-field-dosimetry system

    SciTech Connect

    Lemon, D.K.; Skorpik, J.R.; Eick, J.L.

    1981-01-21

    A device is provided for measuring the magnetic field dose and peak field exposure. The device includes three Hall-effect sensors all perpendicular to each other, sensing the three dimensional magnetic field and associated electronics for data storage, calculating, retrieving and display.

  15. Magnetic fields in Local Group dwarf irregulars

    NASA Astrophysics Data System (ADS)

    Chyży, K. T.; Weżgowiec, M.; Beck, R.; Bomans, D. J.

    2011-05-01

    Aims: We wish to clarify whether strong magnetic fields can be effectively generated in typically low-mass dwarf galaxies and to assess the role of dwarf galaxies in the magnetization of the Universe. Methods: We performed a search for radio emission and magnetic fields in an unbiased sample of 12 Local Group (LG) irregular and dwarf irregular galaxies with the 100-m Effelsberg telescope at 2.64 GHz. Three galaxies were detected. A higher frequency (4.85 GHz) was used to search for polarized emission in five dwarfs that are the most luminous ones in the infrared domain, of which three were detected. Results: Magnetic fields in LG dwarfs are weak, with a mean value of the total field strength of <4.2 ± 1.8 μG, three times lower than in the normal spirals. The strongest field among all LG dwarfs of 10 μG (at 2.64 GHz) is observed in the starburst dwarf IC 10. The production of total magnetic fields in dwarf systems appears to be regulated mainly by the star-formation surface density (with the power-law exponent of 0.30 ± 0.04) or by the gas surface density (with the exponent 0.47 ± 0.09). In addition, we find systematically stronger fields in objects of higher global star-formation rate. The dwarf galaxies follow a similar far-infrared relationship (with a slope of 0.91 ± 0.08) to that determined for high surface brightness spiral galaxies. The magnetic field strength in dwarf galaxies does not correlate with their maximum rotational velocity, indicating that a small-scale rather than a large-scale dynamo process is responsible for producting magnetic fields in dwarfs. If magnetization of the Universe by galactic outflows is coeval with its metal enrichment, we show that more massive objects (such as Lyman break galaxies) can efficiently magnetize the intergalactic medium with a magnetic field strength of about 0.8 nG out to a distance of 160-530 kpc at redshifts 5-3, respectively. Magnetic fields that are several times weaker and shorter magnetization

  16. Vestibular stimulation by magnetic fields

    PubMed Central

    Ward, Bryan K.; Roberts, Dale C.; Della Santina, Charles C.; Carey, John P.; Zee, David S.

    2015-01-01

    Individuals working next to strong static magnetic fields occasionally report disorientation and vertigo. With the increasing strength of magnetic fields used for magnetic resonance imaging (MRI) studies, these reports have become more common. It was recently learned that humans, mice and zebrafish all demonstrate behaviors consistent with constant peripheral vestibular stimulation while inside a strong, static magnetic field. The proposed mechanism for this effect involves a Lorentz force resulting from the interaction of a strong static magnetic field with naturally occurring ionic currents flowing through the inner ear endolymph into vestibular hair cells. The resulting force within the endolymph is strong enough to displace the lateral semicircular canal cupula, inducing vertigo and the horizontal nystagmus seen in normal mice and in humans. This review explores the evidence for interactions of magnetic fields with the vestibular system. PMID:25735662

  17. Magnetic fields around evolved stars

    NASA Astrophysics Data System (ADS)

    Leal-Ferreira, M.; Vlemmings, W.; Kemball, A.; Amiri, N.; Maercker, M.; Ramstedt, S.; Olofsson, G.

    2014-04-01

    A number of mechanisms, such as magnetic fields, (binary) companions and circumstellar disks have been suggested to be the cause of non-spherical PNe and in particular collimated outflows. This work investigates one of these mechanisms: the magnetic fields. While MHD simulations show that the fields can indeed be important, few observations of magnetic fields have been done so far. We used the VLBA to observe five evolved stars, with the goal of detecting the magnetic field by means of water maser polarization. The sample consists in four AGB stars (IK Tau, RT Vir, IRC+60370 and AP Lyn) and one pPN (OH231.8+4.2). In four of the five sources, several strong maser features were detected allowing us to measure the linear and/or circular polarization. Based on the circular polarization detections, we infer the strength of the component of the field along the line of sight to be between ~30 mG and ~330 mG in the water maser regions of these four sources. When extrapolated to the surface of the stars, the magnetic field strength would be between a few hundred mG and a few Gauss when assuming a toroidal field geometry and higher when assuming more complex magnetic fields. We conclude that the magnetic energy we derived in the water maser regions is higher than the thermal and kinetic energy, leading to the conclusion that, indeed, magnetic fields probably play an important role in shaping Planetary Nebulae.

  18. The Magnetic Field in the Outer Heliosphere

    NASA Technical Reports Server (NTRS)

    Suess, S. T.

    2004-01-01

    One of the great achievements of Parker was the prediction that the solar magnetic field would be drawn into Archimedian spirals as it is carried away from the Sun by the solar wind. This prediction has been amply confirmed by many in situ measurements in the intervening four decades. But, Parker made his prediction for a solar wind that expands into infinite space while we now know that the local interstellar medium (LISM) is far from empty and, in fact, confines the solar wind to a finite volume, known as the heliosphere, that extends to approximately 100 AU in the upstream direction (the solar system is moving through the LISM). Voyagers 1/2, presently at -80 AU, are approaching the upstream boundaries of the heliosphere and returning data on the properties of the magnetic field. This is important for understanding how galactic cosmic rays (GCRs) reach the Earth. Voyagers show that the IMF at 10-80 AU behaves much as Parker predicted - with two important exceptions. This is not surprising since the field is essentially passively advected by the solar wind out to 80 AU. But, new models say that nearer the heliosphere boundaries the field plays a major role in the solar wind-LISM interaction. However, of the many physical ingredients that constitute the outer heliosphere, the magnetic field poses some of the most interesting and difficult numerical modeling problems. Presently, only a few results have been published and much remains to be done. Here I will summarize the expected and measured behavior of the magnetic field at 80 AU. Then I will describe modeling predictions beyond 80 AU: magnetic "tornadoes", polarity envelopes, the Axford-Cranfill effect, inner and outer magnetic walls and more. I will also list what I believe to be important new modeling objectives. Finally, I will speculate on what is happening with the magnetic field near the nose of the heliosphere. My conclusion is that models of GCR modulation rarely incorporate even crudely realistic

  19. The Magnetic Field in the Outer Heliosphere

    NASA Technical Reports Server (NTRS)

    Suess, S. T.

    2004-01-01

    One of the great achievements of Parker was the prediction that the solar magnetic field would be drawn into Archimedian spirals as it is carried away from the Sun by the solar wind. This prediction has been amply confirmed by many in situ measurements in the intervening four decades. But, Parker made his prediction for a solar wind that expands into infinite space while we now know that the local interstellar medium (LISM) is far from empty and, in fact, confines the solar wind to a finite volume, known as the heliosphere, that extends to approximately 100 AU in the upstream direction (the solar system is moving through the LISM). Voyagers 1/2, presently at -80 AU, are approaching the upstream boundaries of the heliosphere and returning data on the properties of the magnetic field. This is important for understanding how galactic cosmic rays (GCRs) reach the Earth. Voyagers show that the IMF at 10-80 AU behaves much as Parker predicted - with two important exceptions. This is not surprising since the field is essentially passively advected by the solar wind out to 80 AU. But, new models say that nearer the heliosphere boundaries the field plays a major role in the solar wind-LISM interaction. However, of the many physical ingredients that constitute the outer heliosphere, the magnetic field poses some of the most interesting and difficult numerical modeling problems. Presently, only a few results have been published and much remains to be done. Here I will summarize the expected and measured behavior of the magnetic field at 80 AU. Then I will describe modeling predictions beyond 80 AU: magnetic "tornadoes", polarity envelopes, the Axford-Cranfill effect, inner and outer magnetic walls and more. I will also list what I believe to be important new modeling objectives. Finally, I will speculate on what is happening with the magnetic field near the nose of the heliosphere. My conclusion is that models of GCR modulation rarely incorporate even crudely realistic

  20. Recombination era magnetic fields from axion dark matter

    NASA Astrophysics Data System (ADS)

    Banik, Nilanjan; Christopherson, Adam J.

    2016-02-01

    We introduce a new mechanism for generating magnetic fields in the recombination era. This Harrison-like mechanism utilizes vorticity in baryons that is sourced through the Bose-Einstein condensate of axions via gravitational interactions. The magnetic fields generated are on galactic scales ˜10 kpc and have a magnitude of the order of B ˜1 0-23G today. The field has a greater magnitude than those generated from other mechanisms relying on second-order perturbation theory, and is sufficient to provide a seed for battery mechanisms.

  1. Recombination era magnetic fields from axion dark matter

    SciTech Connect

    Banik, Nilanjan; Christopherson, Adam J.

    2016-02-04

    We introduce a new mechanism for generating magnetic fields in the recombination era. This Harrison-like mechanism utilizes vorticity in baryons that is sourced through the Bose-Einstein condensate of axions via gravitational interactions. The magnetic fields generated are on galactic scales ~10 kpc and have a magnitude of the order of B~10–23G today. Lastly, the field has a greater magnitude than those generated from other mechanisms relying on second-order perturbation theory, and is sufficient to provide a seed for battery mechanisms.

  2. Recombination era magnetic fields from axion dark matter

    DOE PAGES

    Banik, Nilanjan; Christopherson, Adam J.

    2016-02-04

    We introduce a new mechanism for generating magnetic fields in the recombination era. This Harrison-like mechanism utilizes vorticity in baryons that is sourced through the Bose-Einstein condensate of axions via gravitational interactions. The magnetic fields generated are on galactic scales ~10 kpc and have a magnitude of the order of B~10–23G today. Lastly, the field has a greater magnitude than those generated from other mechanisms relying on second-order perturbation theory, and is sufficient to provide a seed for battery mechanisms.

  3. Seeding of Intergalactic Magnetic Fields by Primeval Galaxies

    NASA Astrophysics Data System (ADS)

    Kronberg, P. P.; Lesch, H.; Hopp, U.

    1998-12-01

    We apply what has been recently learned from starburst - driven ``superwinds,'' dwarf galaxy surveys, and galaxy merging scenarios, to demonstate how a substantial fraction of the intergalactic medium can be permeated by magnetized outflow material from the ``volcanic early universe.'' Galactic wind outflow scenarios have been parameterized in model calculations that are embedded in different cosmological scenarios, in which the earliest galaxies are assumed to form around z=10. We show how subsequent, acausal diffusion of magnetized gas can propagate the fields over substantial intergalactic distances within a Hubble time. We conclude that dwarf galaxies can effectively ``seed'' the intergalactic medium with magnetic fields, for a wide range of outflow, and galaxy density parameters. If the first galaxies form at or before z ~ 10, in a heirarchical merging scenario, a substantial fraction of the interglactic medium will be permeated with a magnetic field at the present epoch. This i.g. field seeding is largely acccomplished by z ~ 6. Galactic outflows after that epoch have little global effect. Our scenario is consistent with growing evidence for substantial and relatively strong fields in and around galaxy systems, even at large redshifts. Our model of intergalactic field generation would also likely ``mask'' any magnetic field seeding due to processes in the very early, pre-recombination universe, i.e. before z=1500. It also does not require it.

  4. The Capacitive Magnetic Field Sensor

    NASA Astrophysics Data System (ADS)

    Zyatkov, D. O.; Yurchenko, A. V.; Balashov, V. B.; Yurchenko, V. I.

    2016-01-01

    The results of a study of sensitive element magnetic field sensor are represented in this paper. The sensor is based on the change of the capacitance with an active dielectric (ferrofluid) due to the magnitude of magnetic field. To prepare the ferrofluid magnetic particles are used, which have a followingdispersion equal to 50 < Ø < 56, 45 < Ø < 50, 40 < Ø < 45 and Ø < 40micron of nanocrystalline alloy of brand 5BDSR. The dependence of the sensitivity of the capacitive element from the ferrofluid with different dispersion of magnetic particles is considered. The threshold of sensitivity and sensitivity of a measuring cell with ferrofluid by a magnetic field was determined. The experimental graphs of capacitance change of the magnitude of magnetic field are presented.

  5. Measurements of magnetic field alignment

    SciTech Connect

    Kuchnir, M.; Schmidt, E.E.

    1987-11-06

    The procedure for installing Superconducting Super Collider (SSC) dipoles in their respective cryostats involves aligning the average direction of their field with the vertical to an accuracy of 0.5 mrad. The equipment developed for carrying on these measurements is described and the measurements performed on the first few prototypes SSC magnets are presented. The field angle as a function of position in these 16.6 m long magnets is a characteristic of the individual magnet with possible feedback information to its manufacturing procedure. A comparison of this vertical alignment characteristic with a magnetic field intensity (by NMR) characteristic for one of the prototypes is also presented. 5 refs., 7 figs.

  6. Primordial magnetic fields and dynamos from parity violated torsion

    NASA Astrophysics Data System (ADS)

    Garcia de Andrade, L. C.

    2012-05-01

    It is well known that torsion induced magnetic fields may seed galactic dynamos, but the price one pays for that is the conformal and gauge invariance breaks and a tiny photon mass. More recently I have shown [L.C. Garcia de Andrade, Phys. Lett. B 468 (2011) 28] that magnetic fields decay in a gauge invariant non-minimal coupling theory of torsion is slow down, which would allow for dynamo action to take place. In this Letter, by adding a parity violation term of the type Rɛ to the non-coupling term, a magnetic dynamo equation is obtained. From dynamo equation it is shown that torsion terms only appear in the dynamo equation when diffusion in the cosmic plasma is present. Torsion breaks the homogeneity of the magnetic field in the universe. Since Zeldovich anti-dynamo theorem assumes that the spacetime should be totally flat, torsion is responsible for violation of anti-dynamo theorem in 2D spatial dimensions. Contrary to previous results torsion induced primordial magnetic fields cannot seed galactic dynamos since from torsion and diffusion coefficient the decaying time of the magnetic field is 106yrs, which is much shorter than the galaxy age.

  7. The MAVEN Magnetic Field Investigation

    NASA Technical Reports Server (NTRS)

    Connerney, J. E. P.; Espley, J.; Lawton, P.; Murphy, S.; Odom, J.; Oliversen, R.; Sheppard, D.

    2014-01-01

    The MAVEN magnetic field investigation is part of a comprehensive particles and fields subsystem that will measure the magnetic and electric fields and plasma environment of Mars and its interaction with the solar wind. The magnetic field instrumentation consists of two independent tri-axial fluxgate magnetometer sensors, remotely mounted at the outer extremity of the two solar arrays on small extensions ("boomlets"). The sensors are controlled by independent and functionally identical electronics assemblies that are integrated within the particles and fields subsystem and draw their power from redundant power supplies within that system. Each magnetometer measures the ambient vector magnetic field over a wide dynamic range (to 65,536 nT per axis) with a quantization uncertainty of 0.008 nT in the most sensitive dynamic range and an accuracy of better than 0.05%. Both magnetometers sample the ambient magnetic field at an intrinsic sample rate of 32 vector samples per second. Telemetry is transferred from each magnetometer to the particles and fields package once per second and subsequently passed to the spacecraft after some reformatting. The magnetic field data volume may be reduced by averaging and decimation, when necessary to meet telemetry allocations, and application of data compression, utilizing a lossless 8-bit differencing scheme. The MAVEN magnetic field experiment may be reconfigured in flight to meet unanticipated needs and is fully hardware redundant. A spacecraft magnetic control program was implemented to provide a magnetically clean environment for the magnetic sensors and the MAVEN mission plan provides for occasional spacecraft maneuvers - multiple rotations about the spacecraft x and z axes - to characterize spacecraft fields and/or instrument offsets in flight.

  8. The MAVEN Magnetic Field Investigation

    NASA Astrophysics Data System (ADS)

    Connerney, J. E. P.; Espley, J.; Lawton, P.; Murphy, S.; Odom, J.; Oliversen, R.; Sheppard, D.

    2015-12-01

    The MAVEN magnetic field investigation is part of a comprehensive particles and fields subsystem that will measure the magnetic and electric fields and plasma environment of Mars and its interaction with the solar wind. The magnetic field instrumentation consists of two independent tri-axial fluxgate magnetometer sensors, remotely mounted at the outer extremity of the two solar arrays on small extensions ("boomlets"). The sensors are controlled by independent and functionally identical electronics assemblies that are integrated within the particles and fields subsystem and draw their power from redundant power supplies within that system. Each magnetometer measures the ambient vector magnetic field over a wide dynamic range (to 65,536 nT per axis) with a resolution of 0.008 nT in the most sensitive dynamic range and an accuracy of better than 0.05 %. Both magnetometers sample the ambient magnetic field at an intrinsic sample rate of 32 vector samples per second. Telemetry is transferred from each magnetometer to the particles and fields package once per second and subsequently passed to the spacecraft after some reformatting. The magnetic field data volume may be reduced by averaging and decimation, when necessary to meet telemetry allocations, and application of data compression, utilizing a lossless 8-bit differencing scheme. The MAVEN magnetic field experiment may be reconfigured in flight to meet unanticipated needs and is fully hardware redundant. A spacecraft magnetic control program was implemented to provide a magnetically clean environment for the magnetic sensors and the MAVEN mission plan provides for occasional spacecraft maneuvers—multiple rotations about the spacecraft x and z axes—to characterize spacecraft fields and/or instrument offsets in flight.

  9. Cosmic Magnetic Fields - An Overview

    NASA Astrophysics Data System (ADS)

    Wielebinski, Richard; Beck, Rainer

    Magnetic fields have been known in antiquity. Aristotle attributes the first of what could be called a scientific discussion on magnetism to Thales, who lived from about 625 BC. In China “magnetic carts” were in use to help the Emperor in his journeys of inspection. Plinius comments that in the Asia Minor province of Magnesia shepherds' staffs get at times “glued” to a stone, a alodestone. In Europe the magnetic compass came through the Arab sailors who met the Portuguese explorers. The first scientific treatise on magnetism, “De Magnete”, was published by William Gilbert who in 1600 described his experiments and suggested that the Earth was a huge magnet. Johannes Kepler was a correspondent of Gilbert and at times suggested that planetary motion was due to magnetic forces. Alas, this concept was demolished by Isaac Newton,who seeing the falling apple decided that gravity was enough. This concept of dealing with gravitational forces only remains en vogue even today. The explanations why magnetic effects must be neglected go from “magnetic energy is only 1% of gravitation” to “magnetic fields only complicate the beautiful computer solutions”. What is disregarded is the fact that magnetic effects are very directional(not omni-directional as gravity) and also the fact that magnetic fields are seen every where in our cosmic universe.

  10. Magnetic Fields of Nondegenerate Stars

    NASA Astrophysics Data System (ADS)

    Donati, J.-F.; Landstreet, J. D.

    2009-09-01

    Magnetic fields are present in a wide variety of stars throughout the HR diagram and play a role at basically all evolutionary stages, from very-low-mass dwarfs to very massive stars, and from young star-forming molecular clouds and protostellar accretion discs to evolved giants/supergiants and magnetic white dwarfs/neutron stars. These fields range from a few μG (e.g., in molecular clouds) to TG and more (e.g., in magnetic neutron stars); in nondegenerate stars in particular, they feature large-scale topologies varying from simple nearly axisymmetric dipoles to complex nonaxsymmetric structures, and from mainly poloidal to mainly toroidal topologies. After recalling the main techniques of detecting and modeling stellar magnetic fields, we review the existing properties of magnetic fields reported in cool, hot, and young nondegenerate stars and protostars, and discuss our understanding of the origin of these fields and their impact on the birth and life of stars.

  11. Anisotropic magnetic particles in a magnetic field

    PubMed Central

    Martchenko, Ilya; Mihut, Adriana M.; Bialik, Erik; Hirt, Ann M.; Rufier, Chantal; Menzel, Andreas; Dietsch, Hervé; Linse, Per

    2016-01-01

    We characterize the structural properties of magnetic ellipsoidal hematite colloids with an aspect ratio ρ ≈ 2.3 using a combination of small-angle X-ray scattering and computer simulations. The evolution of the phase diagram with packing fraction φ and the strength of an applied magnetic field B is described, and the coupling between orientational order of magnetic ellipsoids and the bulk magnetic behavior of their suspension addressed. We establish quantitative structural criteria for the different phase and arrest transitions and map distinct isotropic, polarized non-nematic, and nematic phases over an extended range in the φ–B coordinates. We show that upon a rotational arrest of the ellipsoids around φ = 0.59, the bulk magnetic behavior of their suspension switches from superparamagnetic to ordered weakly ferromagnetic. If densely packed and arrested, these magnetic particles thus provide persisting remanent magnetization of the suspension. By exploring structural and magnetic properties together, we extend the often used colloid-atom analogy to the case of magnetic spins. PMID:27722439

  12. The Spatial Energy Spectrum of Magnetic Fields in Our Galaxy

    NASA Astrophysics Data System (ADS)

    Han, J. L.; Ferriere, K.; Manchester, R. N.

    2004-08-01

    Interstellar magnetic fields exist over a broad range of spatial scales, extending from large Galactic scales (~10 kpc) down to very small dissipative scales (<<1 pc). In this paper, we use a set of 490 pulsars distributed over roughly one-third of the Galactic disk out to a radius R~=10 kpc (assuming Rsolar=8.5 kpc) and combine their observed rotation and dispersion measures with their estimated distances to derive the spatial energy spectrum of the Galactic interstellar magnetic field over the scale range 0.5-15 kpc. We obtain a nearly flat spectrum, with a one-dimensional power-law index α=-0.37+/-0.10 for EB(k)=Ckα and an rms field strength of approximately 6 μG over the relevant scales. Our study complements the derivation of the magnetic energy spectrum over the scale range 0.03-100 pc by Minter & Spangler, showing that the magnetic spectrum becomes flatter at larger scales. This observational result is discussed in the framework of current theoretical and numerical models.

  13. Magnetic field synthesis for microwave magnetics

    NASA Astrophysics Data System (ADS)

    Morgenthaler, F. R.

    1982-04-01

    The Microwave and Quantum Magnetics Group of the M.I.T. Department of Electrical Engineering and Computer Science undertook a two-year research program directed at developing synthesis procedures that allow magnetostatic and/or magnetoelastic modes to be specially tailored for microwave signal processing applications that include magnetically tunable filters and limiters as well as delay lines that are either linearly dispersive or nondispersive over prescribed bandwidths. Special emphasis was given to devices employing thin films of yttrium iron garnet (YIG) that are blessed with spatially nonuniform dc magnetic fields.

  14. Structure distribution and turbulence in self-consistently supernova-driven ISM of multiphase magnetized galactic discs

    NASA Astrophysics Data System (ADS)

    Iffrig, Olivier; Hennebelle, Patrick

    2017-08-01

    Context. Galaxy evolution and star formation are two multi-scale problems tightly linked to each other. Aims: We aim to describe simultaneously the large-scale evolution widely induced by the feedback processes and the details of the gas dynamics that controls the star formation process through gravitational collapse. This is a necessary step in understanding the interstellar cycle, which triggers galaxy evolution. Methods: We performed a set of three-dimensional high-resolution numerical simulations of a turbulent, self-gravitating and magnetized interstellar medium within a 1 kpc stratified box with supernova feedback correlated with star-forming regions. In particular, we focussed on the role played by the magnetic field and the feedback on the galactic vertical structure, the star formation rate (SFR) and the flow dynamics. For this purpose we have varied their respective intensities. We extracted properties of the dense clouds arising from the turbulent motions and compute power spectra of various quantities. Results: Using a distribution of supernovae sufficiently correlated with the dense gas, we find that supernova explosions can reproduce the observed SFR, particularly if the magnetic field is on the order of a few μG. The vertical structure, which results from a dynamical and an energy equilibrium is well reproduced by a simple analytical model, which allows us to roughly estimate the efficiency of the supernovae in driving the turbulence in the disc to be rather low, of the order of 1.5%. Strong magnetic fields may help to increase this efficiency by a factor of between two and three. To characterize the flow we compute the power spectra of various quantities in 3D but also in 2D in order to account for the stratification of the galactic disc. We find that within our setup, the compressive modes tend to dominate in the equatorial plane, while at about one scale height above it, solenoidal modes become dominant. We measured the angle between the magnetic

  15. Dynamically important magnetic fields near accreting supermassive black holes.

    PubMed

    Zamaninasab, M; Clausen-Brown, E; Savolainen, T; Tchekhovskoy, A

    2014-06-05

    Accreting supermassive black holes at the centres of active galaxies often produce 'jets'--collimated bipolar outflows of relativistic particles. Magnetic fields probably play a critical role in jet formation and in accretion disk physics. A dynamically important magnetic field was recently found near the Galactic Centre black hole. If this is common and if the field continues to near the black hole event horizon, disk structures will be affected, invalidating assumptions made in standard models. Here we report that jet magnetic field and accretion disk luminosity are tightly correlated over seven orders of magnitude for a sample of 76 radio-loud active galaxies. We conclude that the jet-launching regions of these radio-loud galaxies are threaded by dynamically important fields, which will affect the disk properties. These fields obstruct gas infall, compress the accretion disk vertically, slow down the disk rotation by carrying away its angular momentum in an outflow and determine the directionality of jets.

  16. Rotating superconductor magnet for producing rotating lobed magnetic field lines

    DOEpatents

    Hilal, Sadek K.; Sampson, William B.; Leonard, Edward F.

    1978-01-01

    This invention provides a rotating superconductor magnet for producing a rotating lobed magnetic field, comprising a cryostat; a superconducting magnet in the cryostat having a collar for producing a lobed magnetic field having oppositely directed adjacent field lines; rotatable support means for selectively rotating the superconductor magnet; and means for energizing the superconductor magnet.

  17. PREPROCESSING MAGNETIC FIELDS WITH CHROMOSPHERIC LONGITUDINAL FIELDS

    SciTech Connect

    Yamamoto, Tetsuya T.; Kusano, K.

    2012-06-20

    Nonlinear force-free field (NLFFF) extrapolation is a powerful tool for the modeling of the magnetic field in the solar corona. However, since the photospheric magnetic field does not in general satisfy the force-free condition, some kind of processing is required to assimilate data into the model. In this paper, we report the results of new preprocessing for the NLFFF extrapolation. Through this preprocessing, we expect to obtain magnetic field data similar to those in the chromosphere. In our preprocessing, we add a new term concerning chromospheric longitudinal fields into the optimization function proposed by Wiegelmann et al. We perform a parameter survey of six free parameters to find minimum force- and torque-freeness with the simulated-annealing method. Analyzed data are a photospheric vector magnetogram of AR 10953 observed with the Hinode spectropolarimeter and a chromospheric longitudinal magnetogram observed with SOLIS spectropolarimeter. It is found that some preprocessed fields show the smallest force- and torque-freeness and are very similar to the chromospheric longitudinal fields. On the other hand, other preprocessed fields show noisy maps, although the force- and torque-freeness are of the same order. By analyzing preprocessed noisy maps in the wave number space, we found that small and large wave number components balance out on the force-free index. We also discuss our iteration limit of the simulated-annealing method and magnetic structure broadening in the chromosphere.

  18. Ring currents and poloidal magnetic fields in nuclear regions of galaxies

    NASA Astrophysics Data System (ADS)

    Lesch, H.; Crusius, A.; Schlickeiser, R.; Wielebinski, R.

    1989-06-01

    The origin of observed strong poloidal magnetic fields R(z) in the central regions of galaxies which have gaseous rings is discussed. In the context of galactic disk dynamo models only weak poloidal fields but strong toroidal fields result. The strength of the poloidal fields is tied to the central activity and apply known and tested ideas rigorously. A battery process on galactic scales is discussed which ensures the existence of a large-scale magnetic field in the inner galactic region. The frozen-in field may be amplified by v x B compression and turbulent stretching; the resulting field is poloidal. The central activity provides a flow field which can produce B(z) equal to or greater than B(phi).

  19. Preflare magnetic and velocity fields

    NASA Technical Reports Server (NTRS)

    Hagyard, M. J.; Gaizauskas, V.; Chapman, G. A.; Deloach, A. C.; Gary, G. A.; Jones, H. P.; Karpen, J. T.; Martres, M.-J.; Porter, J. G.; Schmeider, B.

    1986-01-01

    A characterization is given of the preflare magnetic field, using theoretical models of force free fields together with observed field structure to determine the general morphology. Direct observational evidence for sheared magnetic fields is presented. The role of this magnetic shear in the flare process is considered within the context of a MHD model that describes the buildup of magnetic energy, and the concept of a critical value of shear is explored. The related subject of electric currents in the preflare state is discussed next, with emphasis on new insights provided by direct calculations of the vertical electric current density from vector magnetograph data and on the role of these currents in producing preflare brightenings. Results from investigations concerning velocity fields in flaring active regions, describing observations and analyses of preflare ejecta, sheared velocities, and vortical motions near flaring sites are given. This is followed by a critical review of prevalent concepts concerning the association of flux emergence with flares

  20. AC photovoltaic module magnetic fields

    SciTech Connect

    Jennings, C.; Chang, G.J.; Reyes, A.B.; Whitaker, C.M.

    1997-12-31

    Implementation of alternating current (AC) photovoltaic (PV) modules, particularly for distributed applications such as PV rooftops and facades, may be slowed by public concern about electric and magnetic fields (EMF). This paper documents magnetic field measurements on an AC PV module, complementing EMF research on direct-current PV modules conducted by PG and E in 1993. Although not comprehensive, the PV EMF data indicate that 60 Hz magnetic fields (the EMF type of greatest public concern) from PV modules are comparable to, or significantly less than, those from household appliances. Given the present EMF research knowledge, AC PV module EMF may not merit considerable concern.

  1. Magnetic Field of Strange Dwarfs

    NASA Astrophysics Data System (ADS)

    Baghdasaryan, D. S.

    2016-03-01

    The generation of a magnetic field in a strange quark star owing to differential rotation of the superfluid and superconducting quark core relative to the normal electron-nuclear crust of the star is examined. The maximum possible magnetic field on the surface is estimated for various models of strange dwarfs. Depending on the configuration parameters, i.e., the mass M and radius R of the star, a range of 103-105 G is found. These values of the magnetic field may be an additional condition for identification of strange dwarfs among the extensive class of observed white dwarfs.

  2. Magnetoconvection in sheared magnetic fields

    SciTech Connect

    Bian, N. H.; Garcia, O. E.

    2008-10-15

    The development of magnetoconvection in a sheared magnetic field is investigated. The equilibrium magnetic field B{sub 0} is horizontal and its orientation varies linearly along the vertical axis. Preliminary consideration of the transition from the inertial to the viscous regime of the gravitational resistive interchange instability, reveals that the latter is characterized by the existence of viscoresistive boundary layers of vertical width which scales as Q{sup -1/6}, where Q is the Chandrasekhar number. The situation is analogous to the one encountered in magnetically confined laboratory plasmas, where convective flows are constrained by the magnetic shear to develop in boundary layers located around resonant magnetic surfaces in order to fulfill the 'interchange condition'k{center_dot}B{sub 0}=0, where k is the wave vector of the magnetic perturbation. It follows that when the effect of thermal diffusion is taken into account in the process, convection can only occur above a certain critical value of the Rayleigh number which scales as Q{sup 2/3} for large Q. At the onset, the convection pattern is a superposition of identically thin convective rolls everywhere aligned with the local magnetic field lines and which therefore adopt the magnetic field geometry, a situation also reminiscent of the penumbra of sunspots. Using this degeneracy, equations describing the weakly nonlinear state are obtained and discussed. A reduced magnetohydrodynamic description of magnetoconvection is introduced. Since it is valid for arbitrary magnetic field configurations, it allows a simple extension to the case where there exists an inclination between the direction of gravity and the plane spanned by the equilibrium magnetic field. These reduced magnetohydrodynamic equations are proposed as a powerful tool for further investigations of magnetoconvection in more complex field line geometries.

  3. Preface: Cosmic magnetic fields

    NASA Astrophysics Data System (ADS)

    Kosovichev, Alexander

    2015-02-01

    Recent advances in observations and modeling have opened new perspectives for the understanding of fundamental dynamical processes of cosmic magnetism, and associated magnetic activity on the Sun, stars and galaxies. The goal of the Special Issue is to discuss the progress in solar physics and astrophysics, similarities and differences in phenomenology and physics of magnetic phenomena on the Sun and other stars. Space observatories, ground-based telescopes, and new observational methods have provided tremendous amount of data that need to be analyzed and understood. The solar observations discovered multi-scale organization of solar activity, dramatically changing current paradigms of solar variability. On the other side, stellar observations discovered new regimes of dynamics and magnetism that are different from the corresponding solar phenomena, but described by the same physics. Stars represent an astrophysical laboratory for studying the dynamical, magnetic and radiation processes across a broad range of stellar masses and ages. These studies allow us to look at the origin and evolution of our Sun, whereas detailed investigations of the solar magnetism give us a fundamental basis for interpretation and understanding of unresolved stellar data.

  4. The large-scale magnetic field in the solar wind. [interplanetary magnetic fields/solar activity effects

    NASA Technical Reports Server (NTRS)

    Burlaga, L. F.; Ness, N. F.

    1975-01-01

    A large-scale, three dimensional magnetic field in the interplanetary medium with an expected classical spiral pattern to zeroth order is discussed. Systematic and random deviations which are expected are treated. The sector structure which should be evident at high latitudes is examined. Interplanetary streams are discussed as determining the patterns of magnetic field intensity. It was proposed that the large-scale spiral field can induce a meridional flow which might alter the field geometry somewhat. The nonuniformities caused by streams will probably significantly influence the motion of solar and galactic particles. It was concluded that knowledge of the 3-dimensional field and its dynamical effects can be obtained by in situ measurements by a probe which goes over the sun's poles. Diagrams of the magnetic fields are given.

  5. Magnetically elevated accretion discs in active galactic nuclei: broad emission-line regions and associated star formation

    NASA Astrophysics Data System (ADS)

    Begelman, Mitchell C.; Silk, Joseph

    2017-01-01

    We propose that the accretion discs fueling active galactic nuclei (AGN) are supported vertically against gravity by a strong toroidal (φ-direction) magnetic field that develops naturally as the result of an accretion disc dynamo. The magnetic pressure elevates most of the gas carrying the accretion flow at R to large heights z ≳ 0.1R and low densities, while leaving a thin dense layer containing most of the mass - but contributing very little accretion - around the equator. We show that such a disc model leads naturally to the formation of a broad emission-line region through thermal instability. Extrapolating to larger radii, we demonstrate that local gravitational instability and associated star formation are strongly suppressed compared to standard disc models for AGN, although star formation in the equatorial zone is predicted for sufficiently high mass supply rates. This new class of accretion disc models thus appears capable of resolving two longstanding puzzles in the theory of AGN fueling: the formation of broad emission-line regions and the suppression of fragmentation thought to inhibit accretion at the required rates. We show that the disc of stars that formed in the Galactic Center a few million years ago could have resulted from an episode of magnetically elevated accretion at ≳ 0.1 of the Eddington limit.

  6. Anomalous resistivity and the evolution of magnetic field topology

    NASA Technical Reports Server (NTRS)

    Parker, E. N.

    1993-01-01

    This paper explores the topological restructuring of a force-free magnetic field caused by the hypothetical sudden onset of a localized region of strong anomalous resistivity. It is shown that the topological complexity increases, with the primitive planar force-free field with straight field lines developing field lines that wrap half a turn around each other, evidently providing a surface of tangential discontinuity in the wraparound region. It is suggested that the topological restructuring contributes to the complexity of the geomagnetic substorm, the aurora, and perhaps some of the flare activity on the sun, or other star, and the Galactic halo.

  7. Anomalous resistivity and the evolution of magnetic field topology

    NASA Technical Reports Server (NTRS)

    Parker, E. N.

    1993-01-01

    This paper explores the topological restructuring of a force-free magnetic field caused by the hypothetical sudden onset of a localized region of strong anomalous resistivity. It is shown that the topological complexity increases, with the primitive planar force-free field with straight field lines developing field lines that wrap half a turn around each other, evidently providing a surface of tangential discontinuity in the wraparound region. It is suggested that the topological restructuring contributes to the complexity of the geomagnetic substorm, the aurora, and perhaps some of the flare activity on the sun, or other star, and the Galactic halo.

  8. Generation and maintenance of bisymmetric spiral magnetic fields in disk galaxies in differential rotation

    NASA Astrophysics Data System (ADS)

    Sawa, Takeyasu; Fujimoto, M.

    1993-05-01

    The approximate dynamo equation, which yields asymptotic solutions for the large scale bisymmetric spiral (BSS) magnetic fields rotating rigidly over a large area of the galactic disk, is derived. The vertical thickness and the dynamo strength of the gaseous disk which are necessary to generate and sustain the BSS magnetic fields is determined. The globally BSS magnetic fields which propagate over the disk as a wave without being twisted more tightly are reproduced. A poloidal field configuration is theoretically predicted in the halo around the disk, and is observed in the edge-on galaxy NGC4631. Mathematical methods for the galactic dynamo are shown to be equivalent. Those methods give different growth rates between the BSS and the axisymmetric spiral (ASS) magnetic fields in the disk. Magnetohydrodynamical excitation is discussed between the BSS magnetic fields and the two armed spiral density waves.

  9. The Optical Gravitational Lensing Experiment. OGLE-III Photometric Maps of the Galactic Disk Fields

    NASA Astrophysics Data System (ADS)

    Szymański, M. K.; Udalski, A.; Soszyński, I.; Kubiak, M.; Pietrzyński, G.; Poleski, R.; Wyrzykowski, Ł.; Ulaczyk, K.

    2010-12-01

    We present OGLE-III Photometric Maps of the Galactic disk fields observed during the OGLE-III campaigns for low luminosity transiting objects that led to the discovery of the first transitng exoplanets. The maps contain precise, calibrated VI photometry of about 9 million stars from 21 OGLE-III fields in the Galactic disk observed in the years 2002-2009 and covering more than 7 square degrees in the sky. Precise astrometry of these objects is also provided. We discuss quality of the data and present a few color-magnitude diagrams of the observed fields. All photometric data are available to the astronomical community from the OGLE Internet archive.

  10. Measuring Earth's Magnetic Field Simply.

    ERIC Educational Resources Information Center

    Stewart, Gay B.

    2000-01-01

    Describes a method for measuring the earth's magnetic field using an empty toilet paper tube, copper wire, clear tape, a battery, a linear variable resistor, a small compass, cardboard, a protractor, and an ammeter. (WRM)

  11. Measuring Earth's Magnetic Field Simply.

    ERIC Educational Resources Information Center

    Stewart, Gay B.

    2000-01-01

    Describes a method for measuring the earth's magnetic field using an empty toilet paper tube, copper wire, clear tape, a battery, a linear variable resistor, a small compass, cardboard, a protractor, and an ammeter. (WRM)

  12. The Juno Magnetic Field Investigation

    NASA Astrophysics Data System (ADS)

    Connerney, J. E. P.; Benn, M.; Bjarno, J. B.; Denver, T.; Espley, J.; Jorgensen, J. L.; Jorgensen, P. S.; Lawton, P.; Malinnikova, A.; Merayo, J. M.; Murphy, S.; Odom, J.; Oliversen, R.; Schnurr, R.; Sheppard, D.; Smith, E. J.

    2017-02-01

    The Juno Magnetic Field investigation (MAG) characterizes Jupiter's planetary magnetic field and magnetosphere, providing the first globally distributed and proximate measurements of the magnetic field of Jupiter. The magnetic field instrumentation consists of two independent magnetometer sensor suites, each consisting of a tri-axial Fluxgate Magnetometer (FGM) sensor and a pair of co-located imaging sensors mounted on an ultra-stable optical bench. The imaging system sensors are part of a subsystem that provides accurate attitude information (to ˜20 arcsec on a spinning spacecraft) near the point of measurement of the magnetic field. The two sensor suites are accommodated at 10 and 12 m from the body of the spacecraft on a 4 m long magnetometer boom affixed to the outer end of one of 's three solar array assemblies. The magnetometer sensors are controlled by independent and functionally identical electronics boards within the magnetometer electronics package mounted inside Juno's massive radiation shielded vault. The imaging sensors are controlled by a fully hardware redundant electronics package also mounted within the radiation vault. Each magnetometer sensor measures the vector magnetic field with 100 ppm absolute vector accuracy over a wide dynamic range (to 16 Gauss = 1.6 × 106 nT per axis) with a resolution of ˜0.05 nT in the most sensitive dynamic range (±1600 nT per axis). Both magnetometers sample the magnetic field simultaneously at an intrinsic sample rate of 64 vector samples per second. The magnetic field instrumentation may be reconfigured in flight to meet unanticipated needs and is fully hardware redundant. The attitude determination system compares images with an on-board star catalog to provide attitude solutions (quaternions) at a rate of up to 4 solutions per second, and may be configured to acquire images of selected targets for science and engineering analysis. The system tracks and catalogs objects that pass through the imager field of

  13. The Juno Magnetic Field Investigation

    NASA Technical Reports Server (NTRS)

    Connerney, J. E. P.; Benna, M.; Bjarno, J. B.; Denver, T.; Espley, J.; Jorgensen, J. L.; Jorgensen, P. S.; Lawton, P.; Malinnikova, A.; Merayo, J. M.; hide

    2017-01-01

    The Juno Magnetic Field investigation (MAG) characterizes Jupiter's planetary magnetic field and magnetosphere, providing the first globally distributed and proximate measurements of the magnetic field of Jupiter. The magnetic field instrumentation consists of two independent magnetometer sensor suites, each consisting of a tri-axial Fluxgate Magnetometer (FGM) sensor and a pair of co-located imaging sensors mounted on an ultra-stable optical bench. The imaging system sensors are part of a subsystem that provides accurate attitude information (to approx. 20 arcsec on a spinning spacecraft) near the point of measurement of the magnetic field. The two sensor suites are accommodated at 10 and 12 m from the body of the spacecraft on a 4 m long magnetometer boom affixed to the outer end of one of 's three solar array assemblies. The magnetometer sensors are controlled by independent and functionally identical electronics boards within the magnetometer electronics package mounted inside Juno's massive radiation shielded vault. The imaging sensors are controlled by a fully hardware redundant electronics package also mounted within the radiation vault. Each magnetometer sensor measures the vector magnetic field with 100 ppm absolute vector accuracy over a wide dynamic range (to 16 Gauss = 1.6 x 10(exp. 6) nT per axis) with a resolution of approx. 0.05 nT in the most sensitive dynamic range (+/-1600 nT per axis). Both magnetometers sample the magnetic field simultaneously at an intrinsic sample rate of 64 vector samples per second. The magnetic field instrumentation may be reconfigured in flight to meet unanticipated needs and is fully hardware redundant. The attitude determination system compares images with an on-board star catalog to provide attitude solutions (quaternions) at a rate of up to 4 solutions per second, and may be configured to acquire images of selected targets for science and engineering analysis. The system tracks and catalogs objects that pass through

  14. Investigation of Magnetic Field Measurements.

    DTIC Science & Technology

    1983-02-28

    the magnetic field in space by cancelling the ambient magnetic field. An observatory-quality, proton - precession magnetometer is available to monitor...test and calibrate the fluxgate magnetometers . Changes in design of the induction-coil magnetometere should enhance their reliability. The value of...Report) Ill. SUPPLEMENTARY NOTES IS. KEY WORDS (CoEntnue on revere side I necoseer mnd Identify by block mamber) AFGL Magnetometer Network Fluxgate

  15. Magnetic-Field Hazards Bibliography.

    DTIC Science & Technology

    1985-09-01

    Puchalska, I. B., Influence of magnetic fields on frog sciatic nerve , Biochem. Biophys. Res. Comm. 91:118 (1979). 35. Fardon, 3. C., "Effect of magnetic...fields, Bioelectromagnetic 2:357 (1981). 41. Gaffey, C. T. and Tenforde, T. S., Bioelectric properties of frog sciatic nerves during exposure to...available from: U.S. Dept. of Energy, Bonneville Power Administration, Portland, Oregon 97208 (1982). 29. Levy , R. H., and Jones, G. S., "Plasma

  16. Optical sensor of magnetic fields

    DOEpatents

    Butler, M.A.; Martin, S.J.

    1986-03-25

    An optical magnetic field strength sensor for measuring the field strength of a magnetic field comprising a dilute magnetic semi-conductor probe having first and second ends, longitudinally positioned in the magnetic field for providing Faraday polarization rotation of light passing therethrough relative to the strength of the magnetic field. Light provided by a remote light source is propagated through an optical fiber coupler and a single optical fiber strand between the probe and the light source for providing a light path therebetween. A polarizer and an apparatus for rotating the polarization of the light is provided in the light path and a reflector is carried by the second end of the probe for reflecting the light back through the probe and thence through the polarizer to the optical coupler. A photo detector apparatus is operably connected to the optical coupler for detecting and measuring the intensity of the reflected light and comparing same to the light source intensity whereby the magnetic field strength may be calculated.

  17. Quantum oscillations without magnetic field

    NASA Astrophysics Data System (ADS)

    Liu, Tianyu; Pikulin, D. I.; Franz, M.

    2017-01-01

    When the magnetic field B is applied to a metal, nearly all observable quantities exhibit oscillations periodic in 1 /B . Such quantum oscillations reflect the fundamental reorganization of electron states into Landau levels as a canonical response of the metal to the applied magnetic field. We predict here that, remarkably, in the recently discovered Dirac and Weyl semimetals, quantum oscillations can occur in the complete absence of magnetic field. These zero-field quantum oscillations are driven by elastic strain which, in the space of the low-energy Dirac fermions, acts as a chiral gauge potential. We propose an experimental setup in which the strain in a thin film (or nanowire) can generate a pseudomagnetic field b as large as 15 T and demonstrate the resulting de Haas-van Alphen and Shubnikov-de Haas oscillations periodic in 1 /b .

  18. A limitation of the generation of magnetic fields. [astrophysics

    NASA Technical Reports Server (NTRS)

    Balbus, Steven A.

    1993-01-01

    Simple arguments are put forward to show that the currents produced in disks by radiative or other types of drag forces on electrons must give rise to extraordinarily small magnetic fields. The field strengths are consistent with earlier (more complex) treatments of this class of problem, but inconsistent with the claims of recent papers in the literature. The discrepancies involve the treatment of self-induction. Ion-electron inductive coupling limits the generated magnetic field to have an associated ion Larmor radius greater than or of order of the radius of the disk, a result which follows most directly from conservation of canonical ion momentum, p + eA/c. An explicit time-dependent model for the buildup of the field leads to the same conclusion. If internal velocity gradient scales are smaller than the ion Larmor radius, and the plasma is not collision dominated, standard dynamo amplification within the disk is hardly likely to be effective. But to explain the Galactic field, dynamo amplification in a collisional plasma is also likely to be problematic. The difficulties posed by the existence of ordered Galactic-scale magnetic fields are made all the more acute by the simplicity and the scope of the discussed field limitation.

  19. Magnetic fields in spiral galaxies

    NASA Astrophysics Data System (ADS)

    Beck, Rainer

    2015-12-01

    Radio synchrotron emission, its polarization and Faraday rotation of the polarization angle are powerful tools to study the strength and structure of magnetic fields in galaxies. Unpolarized synchrotron emission traces isotropic turbulent fields which are strongest in spiral arms and bars (20-30 \\upmu G) and in central starburst regions (50-100 \\upmu G). Such fields are dynamically important; they affect gas flows and drive gas inflows in central regions. Polarized emission traces ordered fields, which can be regular or anisotropic turbulent, where the latter originates from isotropic turbulent fields by the action of compression or shear. The strongest ordered fields (10-15 \\upmu G) are generally found in interarm regions. In galaxies with strong density waves, ordered fields are also observed at the inner edges of spiral arms. Ordered fields with spiral patterns exist in grand-design, barred and flocculent galaxies and in central regions. Ordered fields in interacting galaxies have asymmetric distributions and are a tracer of past interactions between galaxies or with the intergalactic medium.—Faraday rotation measures of the diffuse polarized radio emission from galaxy disks reveal large-scale spiral patterns that can be described by the superposition of azimuthal modes; these are signatures of regular fields generated by mean-field dynamos. "Magnetic arms" between gaseous spiral arms may also be products of dynamo action, but need a stable spiral pattern to develop. Helically twisted field loops winding around spiral arms were found in two galaxies so far. Large-scale field reversals, like the one found in the Milky Way, could not yet be detected in external galaxies. In radio halos around edge-on galaxies, ordered magnetic fields with X-shaped patterns are observed. The origin and evolution of cosmic magnetic fields, in particular their first occurrence in young galaxies and their dynamical importance during galaxy evolution, will be studied with

  20. Nanometric alternating magnetic field generator.

    PubMed

    Espejo, A P; Tejo, F; Vidal-Silva, N; Escrig, J

    2017-07-05

    In this work we introduce an alternating magnetic field generator in a cylindrical nanostructure. This field appears due to the rotation of a magnetic domain wall located at some position, generating a magnetic region that varies its direction of magnetization alternately, thus inducing an alternating magnetic flux in its vicinity. This phenomenon occurs due to the competition between a spin-polarized current and a magnetic field, which allows to control both the angular velocity and the pinning position of the domain wall. As proof of concept, we study the particular case of a diameter-modulated nanowire with a spin-polarized current along its axis and the demagnetizing field produced by its modulation. This inhomogeneous field allows one to control the angular velocity of the domain wall as a function of its position along the nanowire allowing frequencies in the GHz range to be achieved. This generator could be used in telecommunications for devices in the range of radiofrequencies or, following Faraday's induction law, could also induce an electromotive force and be used as a movable alternate voltage source in future nanodevices.

  1. Strong Magnetic Field Characterisation

    DTIC Science & Technology

    2012-04-01

    coils were driven by a pulsed-power system to generate the fields. All the sources were characterised through a series of measurements and modelling... generated for the coils. Options for further investigation were provided. UNCLASSIFIED UNCLASSIFIED This...investigation. The desired field strength was based on assessments [1] from preliminary magnetohydrodynamic ( MHD ) modelling and while not achievable by

  2. MAGNETIC FIELD MEASUREMENTS FOR FAST-CHANGING MAGNETIC FIELDS.

    SciTech Connect

    JAIN, A.; ESCALLIER, J.; GANETIS, G.; LOUIE, W.; MARONE, A.; THOMAS. R.; WANDERER, P.

    2004-10-03

    Several recent applications for fast ramped magnets have been found that require rapid measurement of the field quality during the ramp. (In one instance, accelerator dipoles will be ramped at 1 T/sec, with measurements needed to the accuracy typically required for accelerators.) We have built and tested a new type of magnetic field measuring system to meet this need. The system consists of 16 stationary pickup windings mounted on a cylinder. The signals induced in the windings in a changing magnetic field are sampled and analyzed to obtain the field harmonics. To minimize costs, printed circuit boards were used for the pickup windings and a combination of amplifiers and ADPs used for the voltage readout system. New software was developed for the analysis. Magnetic field measurements of a model dipole developed for the SIS200 accelerator at GSI are presented. The measurements are needed to insure that eddy currents induced by the fast ramps do not impact the field quality needed for successful accelerator operation.

  3. Generic estimates for magnetic fields generated during inflation including Dirac-Born-Infeld theories

    SciTech Connect

    Bamba, Kazuharu; Ohta, Nobuyoshi; Tsujikawa, Shinji

    2008-08-15

    We estimate the strength of large-scale magnetic fields produced during inflation in the framework of Dirac-Born-Infeld (DBI) theories. This analysis is sufficiently general in the sense that it covers most of conformal symmetry breaking theories in which the electromagnetic field is coupled to a scalar field. In DBI theories there is an additional factor associated with the speed of sound, which allows a possibility to lead to an extra amplification of the magnetic field in a ultrarelativistic region. We clarify the conditions under which seed magnetic fields to feed the galactic dynamo mechanism at a decoupling epoch as well as present magnetic fields on galactic scales are sufficiently generated to satisfy observational bounds.

  4. Indoor localization using magnetic fields

    NASA Astrophysics Data System (ADS)

    Pathapati Subbu, Kalyan Sasidhar

    Indoor localization consists of locating oneself inside new buildings. GPS does not work indoors due to multipath reflection and signal blockage. WiFi based systems assume ubiquitous availability and infrastructure based systems require expensive installations, hence making indoor localization an open problem. This dissertation consists of solving the problem of indoor localization by thoroughly exploiting the indoor ambient magnetic fields comprising mainly of disturbances termed as anomalies in the Earth's magnetic field caused by pillars, doors and elevators in hallways which are ferromagnetic in nature. By observing uniqueness in magnetic signatures collected from different campus buildings, the work presents the identification of landmarks and guideposts from these signatures and further develops magnetic maps of buildings - all of which can be used to locate and navigate people indoors. To understand the reason behind these anomalies, first a comparison between the measured and model generated Earth's magnetic field is made, verifying the presence of a constant field without any disturbances. Then by modeling the magnetic field behavior of different pillars such as steel reinforced concrete, solid steel, and other structures like doors and elevators, the interaction of the Earth's field with the ferromagnetic fields is described thereby explaining the causes of the uniqueness in the signatures that comprise these disturbances. Next, by employing the dynamic time warping algorithm to account for time differences in signatures obtained from users walking at different speeds, an indoor localization application capable of classifying locations using the magnetic signatures is developed solely on the smart phone. The application required users to walk short distances of 3-6 m anywhere in hallway to be located with accuracies of 80-99%. The classification framework was further validated with over 90% accuracies using model generated magnetic signatures representing

  5. Magnetic field of the Earth

    NASA Astrophysics Data System (ADS)

    Popov, Aleksey

    2013-04-01

    The magnetic field of the Earth has global meaning for a life on the Earth. The world geophysical science explains: - occurrence of a magnetic field of the Earth it is transformation of kinetic energy of movements of the fused iron in the liquid core of Earth - into the magnetic energy; - the warming up of a kernel of the Earth occurs due to radioactive disintegration of elements, with excretion of thermal energy. The world science does not define the reasons: - drift of a magnetic dipole on 0,2 a year to the West; - drift of lithospheric slabs and continents. The author offers: an alternative variant existing in a world science the theories "Geodynamo" - it is the theory « the Magnetic field of the Earth », created on the basis of physical laws. Education of a magnetic field of the Earth occurs at moving the electric charge located in a liquid kernel, at rotation of the Earth. At calculation of a magnetic field is used law the Bio Savara for a ring electric current: dB = . Magnetic induction in a kernel of the Earth: B = 2,58 Gs. According to the law of electromagnetic induction the Faradey, rotation of a iron kernel of the Earth in magnetic field causes occurrence of an electric field Emf which moves electrons from the center of a kernel towards the mantle. So of arise the radial electric currents. The magnetic field amplifies the iron of mantle and a kernel of the Earth. As a result of action of a radial electric field the electrons will flow from the center of a kernel in a layer of an electric charge. The central part of a kernel represents the field with a positive electric charge, which creates inverse magnetic field Binv and Emfinv When ?mfinv = ?mf ; ?inv = B, there will be an inversion a magnetic field of the Earth. It is a fact: drift of a magnetic dipole of the Earth in the western direction approximately 0,2 longitude, into a year. Radial electric currents a actions with the basic magnetic field of a Earth - it turn a kernel. It coincides with laws

  6. Observations of Mercury's magnetic field

    NASA Technical Reports Server (NTRS)

    Ness, N. F.; Behannon, K. W.; Lepping, R. P.; Whang, Y. C.

    1975-01-01

    Magnetic field data obtained by Mariner 10 during the third and final encounter with the planet Mercury on 16 March 1975 were studied. A well developed bow shock and modest magnetosphere, previously observed at first encounter on 29 March 1974, were again observed. In addition, a much stronger magnetic field near closest approach, 400 gamma versus 98 gamma, was observed at an altitude of 327 km and approximately 70 deg north Mercurian latitude. Spherical harmonic analysis of the data provide an estimate of the centered planetary magnetic dipole of 4.7 x 10 to the 22nd power Gauss/cu cm with the axis tilted 12 deg to the rotation axis and in the same sense as Earth's. The interplanetary field was sufficiently different between first and third encounters that in addition to the very large field magnitude observed, it argues strongly against a complex induction process generating the observed planetary field. While a possibility exists that Mercury possesses a remanent field due to magnetization early in its formation, a present day active dynamo seems to be a more likely candidate for its origin.

  7. Satellite to study earth's magnetic field

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The Magnetic Field Satellite (Magsat) designed to measure the near earth magnetic field and crustal anomalies is briefly described. A scalar magnetometer to measure the magnitude of the earth's crustal magnetic field and a vector magnetometer to measure magnetic field direction as well as magnitude are included. The mission and its objectives are summarized along with the data collection and processing system.

  8. TRIANGULATION OF THE INTERSTELLAR MAGNETIC FIELD

    SciTech Connect

    Schwadron, N. A.; Moebius, E.; Richardson, J. D.; Burlaga, L. F.; McComas, D. J.

    2015-11-01

    Determining the direction of the local interstellar magnetic field (LISMF) is important for understanding the heliosphere’s global structure, the properties of the interstellar medium, and the propagation of cosmic rays in the local galactic medium. Measurements of interstellar neutral atoms by Ulysses for He and by SOHO/SWAN for H provided some of the first observational insights into the LISMF direction. Because secondary neutral H is partially deflected by the interstellar flow in the outer heliosheath and this deflection is influenced by the LISMF, the relative deflection of H versus He provides a plane—the so-called B–V plane in which the LISMF direction should lie. Interstellar Boundary Explorer (IBEX) subsequently discovered a ribbon, the center of which is conjectured to be the LISMF direction. The most recent He velocity measurements from IBEX and those from Ulysses yield a B–V plane with uncertainty limits that contain the centers of the IBEX ribbon at 0.7–2.7 keV. The possibility that Voyager 1 has moved into the outer heliosheath now suggests that Voyager 1's direct observations provide another independent determination of the LISMF. We show that LISMF direction measured by Voyager 1 is >40° off from the IBEX ribbon center and the B–V plane. Taking into account the temporal gradient of the field direction measured by Voyager 1, we extrapolate to a field direction that passes directly through the IBEX ribbon center (0.7–2.7 keV) and the B–V plane, allowing us to triangulate the LISMF direction and estimate the gradient scale size of the magnetic field.

  9. Coils of Magnetic Field Lines

    NASA Image and Video Library

    2017-06-27

    A smallish solar filament looks like it collapsed into the sun and set off a minor eruption that hurled plasma into space (June 20, 2017). Then, the disrupted magnetic field immediately began to reorganize itself, hence the bright series of spirals coiling up over that area. The magnetic field lines are made visible in extreme ultraviolet light as charged particles spin along them. Also of interest are the darker, cooler strands of plasma being pulled and twisted at the edge of the sun just below the active region. The activity here is in a 21-hour period. Movies are available at https://photojournal.jpl.nasa.gov/catalog/PIA21764

  10. Consistent generation of magnetic fields in axion inflation models

    SciTech Connect

    Fujita, Tomohiro; Namba, Ryo; Tada, Yuichiro; Takeda, Naoyuki; Tashiro, Hiroyuki E-mail: ryo.namba@ipmu.jp E-mail: takedan@icrr.u-tokyo.ac.jp

    2015-05-01

    There has been a growing evidence for the existence of magnetic fields in the extra-galactic regions, while the attempt to associate their origin with the inflationary epoch alone has been found extremely challenging. We therefore take into account the consistent post-inflationary evolution of the magnetic fields that are originated from vacuum fluctuations during inflation. In the model of our interest, the electromagnetic (EM) field is coupled to a pseudo-scalar inflaton φ through the characteristic term φ  F-tilde  F, breaking the conformal invariance. This interaction dynamically breaks the parity and enables a continuous production of only one of the polarization states of the EM field through tachyonic instability. The produced magnetic fields are thus helical. We find that the dominant contribution to the observed magnetic fields in this model comes from the modes that leave the horizon near the end of inflation, further enhanced by the tachyonic instability right after the end of inflation. The EM field is subsequently amplified by parametric resonance during the period of inflaton oscillation. Once the thermal plasma is formed (reheating), the produced helical magnetic fields undergo a turbulent process called inverse cascade, which shifts their peak correlation scales from smaller to larger scales. We consistently take all these effects into account within the regime where the perturbation of φ is negligible and obtain B{sub eff} ∼ 10{sup −19} G, indicating the necessity of additional mechanisms to accommodate the observations.

  11. Early Starbursts and Magnetic Field Generation in Galaxy Clusters

    NASA Astrophysics Data System (ADS)

    Völk, H. J.; Atoyan, A. M.

    2000-09-01

    We propose a mechanism for the early generation of the mean intracluster magnetic field in terms of magnetized galactic winds. These winds are the result of starburst phases of the cluster galaxies, assumed to produce the predominant population of early-type galaxies in mergers of gas-rich progenitors. After further cluster contraction, typical field strengths are 10-7 G. This estimate may increase to the level of 10-6 G if more extreme galactic parameters and subsequent shear amplification of the field are considered. The topology of the field is one of almost unconnected wind bubbles with Parker-type spiral field configurations over scales of the distance between galaxies. Further cluster accretion, which continues chaotically in space and time up to the present, will perturb these ``large-scale'' mean fields on smaller or at best comparable spatial scales. The small-scale fields in the resulting turbulent fluctuation spectrum should be able to confine relativistic particles over times longer than the age of the universe. The nonthermal particle content of galaxy clusters should therefore also have a ``cosmological'' hadronic component generated during the early starburst phase of the member galaxies. Already by itself it implies a nonthermal energy fraction of about 10% for the intracluster gas that should then be detectable by future γ-ray telescopes.

  12. Photospheric and coronal magnetic fields

    SciTech Connect

    Sheeley, N.R., Jr. )

    1991-01-01

    Research on small-scale and large-scale photospheric and coronal magnetic fields during 1987-1990 is reviewed, focusing on observational studies. Particular attention is given to the new techniques, which include the correlation tracking of granules, the use of highly Zeeman-sensitive infrared spectral lines and multiple lines to deduce small-scale field strength, the application of long integration times coupled with good seeing conditions to study weak fields, and the use of high-resolution CCD detectors together with computer image-processing techniques to obtain images with unsurpassed spatial resolution. Synoptic observations of large-scale fields during the sunspot cycle are also discussed. 101 refs.

  13. Majorana neutrinos and magnetic fields

    NASA Astrophysics Data System (ADS)

    Schechter, J.; Valle, J. W. F.

    1981-10-01

    It is stressed that if neutrinos are massive they are probably of "Majorana" type. This implies that their magnetic-moment form factor vanishes identically so that the previously discussed phenomenon of spin rotation in a magnetic field would not appear to take place. We point out that Majorana neutrinos can, however, have transition moments. This enables an inhomogeneous magnetic field to rotate both spin and "flavor" of a neutrino. In this case the spin rotation changes particle to antiparticle. The spin-flavor-rotation effect is worked out in detail. We also discuss the parametrization and calculation of the electromagnetic form factors of Majorana neutrinos. Our discussion takes into account the somewhat unusual quantum theory of massive Majorana particles.

  14. The resolved magnetic fields of the quiescent cloud GRSMC 45.60+0.30

    NASA Astrophysics Data System (ADS)

    Pavel, Michael D.; Marchwinski, Robert C.; Clemens, Dan P.

    2015-03-01

    Marchwinski et al. (2012) mapped the magnetic field strength across the quiescent cloud GRSMC 45.60+0.30 (shown in Figure 1 subtending 40x10 pc at a distance of 1.88 kpc) with the Chandrasekhar-Fermi method CF; Chandrasekhar & Fermi 1953) using near-infrared starlight polarimetry from the Galactic Plane Infrared Polarization Survey (Clemens et al. 2012a, b) and gas properties from the Galactic Ring Survey (Jackson et al. 2006). The large-scale magnetic field is oriented parallel to the gas-traced `spine' of the cloud. Seven `magnetic cores' with high magnetic field strength were identified and are coincident with peaks in the gas column density. Calculation of the mass-to-flux ratio (Crutcher 1999) shows that these cores are exclusively magnetically subcritical and that magnetostatic pressure can support them against gravitational collapse.

  15. Magnetic Fields of Neutron Stars

    NASA Astrophysics Data System (ADS)

    Konar, Sushan

    2017-09-01

    This article briefly reviews our current understanding of the evolution of magnetic fields in neutron stars, which basically defines the evolutionary pathways between different observational classes of neutron stars. The emphasis here is on the evolution in binary systems and the newly emergent classes of millisecond pulsars.

  16. Transverse Magnetic Field Propellant Isolator

    NASA Technical Reports Server (NTRS)

    Foster, John E.

    2000-01-01

    An alternative high voltage isolator for electric propulsion and ground-based ion source applications has been designed and tested. This design employs a transverse magnetic field that increases the breakdown voltage. The design can greatly enhance the operating range of laboratory isolators used for high voltage applications.

  17. Crystal field and magnetic properties

    NASA Technical Reports Server (NTRS)

    Flood, D. J.

    1977-01-01

    Magnetization and magnetic susceptibility measurements have been made in the temperature range 1.3 to 4.2 K on powdered samples of ErH3. The susceptibility exhibits Curie-Weiss behavior from 4.2 to 2 K, and intercepts the negative temperature axis at theta = 1.05 + or - 0.05 K, indicating that the material is antiferromagnetic. The low field effective moment is 6.77 + or - 0.27 Bohr magnetons per ion. The magnetization exhibits a temperature independent contribution, the slope of which is (5 + or - 1.2) x 10 to the -6th Weber m/kg Tesla. The saturation moment is 3.84 + or - 1 - 0.15 Bohr magnetons per ion. The results can be qualitatively explained by the effects of crystal fields on the magnetic ions. No definitive assignment of a crystal field ground state can be given, nor can a clear choice between cubically or hexagonally symmetric crystal fields be made. For hexagonal symmetry, the first excited state is estimated to be 86 to 100 K above the ground state. For cubic symmetry, the splitting is on the order of 160 to 180 K.

  18. The coexistence of odd and even parity magnetic fields in disc galaxies

    NASA Astrophysics Data System (ADS)

    Moss, D.; Sokoloff, D.

    2008-08-01

    Aims: Naive dynamo models predict that large-scale magnetic fields generated in flattened disc-like structures will be steady and symmetric with respect to the equatorial plane, whereas fields generated in quasi-spherical volumes will be oscillatory and anti-symmetric. Spiral galaxies consist of a flattened disc and a quasi-spherical halo. We thus investigate to what extent this naive understanding of symmetry properties is realised in composite disc/halo models for galactic magnetic fields. Methods: We consider generation of galactic magnetic fields in the framework of galactic mean field dynamo theory, based on the effects of differential rotation and helical turbulent motions (the “α-effect”), using conventional profiles for both generators of magnetic field in the disc and halo. The halo and disc regions are mostly separated by a substantial contrast between their turbulent diffusivities, respectively ηd and halo η_h. We solve the corresponding equations of mean field electrodynamics numerically, using contrasts up to η_h/ηd =5, while realizing that it might be realistic to consider significantly larger values. Results: In contrast to our naive expectations coexisting steady symmetric (quadrupole-like) magnetic structures in the disc and oscillating antisymmetric (dipole-like) structures in the halo were not found. Usually one component of the dynamo system enslaves the other: a more dynamo-active disc creates a symmetric field in the halo as well as in the disc or, conversely, a more dynamo-active halo generates antisymmetric magnetic fields that pervade both halo and disc. Our most interesting models are mixed parity solutions at the transition between the two regimes. Conclusions: We consider the results obtained as presenting a challenge for the contemporary theory of galactic magnetic fields. We note that there is some recent observational evidence for a difference in symmetry properties between disc and halo. We see three possible resolutions of

  19. Magnetic field evolution and reversals in spiral galaxies

    NASA Astrophysics Data System (ADS)

    Dobbs, C. L.; Price, D. J.; Pettitt, A. R.; Bate, M. R.; Tricco, T. S.

    2016-10-01

    We study the evolution of galactic magnetic fields using 3D smoothed particle magnetohydrodynamics (SPMHD) simulations of galaxies with an imposed spiral potential. We consider the appearance of reversals of the field, and amplification of the field. We find that magnetic field reversals occur when the velocity jump across the spiral shock is above ≈20 km s-1, occurring where the velocity change is highest, typically at the inner Lindblad resonance in our models. Reversals also occur at corotation, where the direction of the velocity field reverses in the corotating frame of a spiral arm. They occur earlier with a stronger amplitude spiral potential, and later or not at all with weaker or no spiral arms. The presence of a reversal at radii of around 4-6 kpc in our fiducial model is consistent with a reversal identified in the Milky Way, though we caution that alternative Galaxy models could give a similar reversal. We find that relatively high resolution, a few million particles in SPMHD, is required to produce consistent behaviour of the magnetic field. Amplification of the magnetic field occurs in the models, and while some may be genuinely attributable to differential rotation or spiral arms, some may be a numerical artefact. We check our results using ATHENA, finding reversals but less amplification of the field, suggesting that some of the amplification of the field with SPMHD is numerical.

  20. Separation of magnetic field lines

    SciTech Connect

    Boozer, Allen H.

    2012-11-15

    The field lines of magnetic fields that depend on three spatial coordinates are shown to have a fundamentally different behavior from those that depend on two coordinates. Unlike two-coordinate cases, a flux tube in a magnetic field that depends on all three spatial coordinates that has a circular cross section at one location along the tube characteristically has a highly distorted cross section at other locations. In an ideal evolution of a magnetic field, the current densities typically increase. Crudely stated, if the current densities increase by a factor {sigma}, the ratio of the long to the short distance across a cross section of a flux tube characteristically increases by e{sup 2{sigma}}, and the ratio of the longer distance to the initial radius increases as e{sup {sigma}}. Electron inertia prevents a plasma from isolating two magnetic field structures on a distance scale shorter than c/{omega}{sub pe}, which is about 10 cm in the solar corona, and reconnection must be triggered if {sigma} becomes sufficiently large. The radius of the sun, R{sub Circled-Dot-Operator }=7 Multiplication-Sign 10{sup 10}cm is about e{sup 23} times larger, so when {sigma} Greater-Than-Or-Equivalent-To 23, two lines separated by c/{omega}{sub pe} at one location can be separated by the full scale of any magnetic structures in the corona at another. The conditions for achieving a large exponentiation, {sigma}, are derived, and the importance of exponentiation is discussed.

  1. Probing Magnetic Fields with Square Kilometre Array and its Precursors

    NASA Astrophysics Data System (ADS)

    Roy, Subhashis; Sur, Sharanya; Subramanian, Kandaswamy; Mangalam, Arun; Seshadri, T. R.; Chand, Hum

    2016-12-01

    Origin of magnetic fields, its structure and effects on dynamical processes in stars to galaxies are not well understood. Lack of a direct probe has remained a problem for its study. The first phase of Square Kilometre Array (SKA-I), will have almost an order of magnitude higher sensitivity than the best existing radio telescope at GHz frequencies. In this contribution, we discuss specific science cases that are of interest to the Indian community concerned with astrophysical turbulence and magnetic fields. The SKA-I will allow observations of a large number of background sources with detectable polarization and measure their Faraday depths (FDs) through the Milky Way, other galaxies and their circum-galactic mediums. This will probe line-of-sight magnetic fields in these objects well and provide field configurations. Detailed comparison of observational data (e.g., pitch angles in spirals) with models which consider various processes giving rise to field amplification and maintenance (e.g., various types of dynamo models) will then be possible. Such observations will also provide the coherence scale of the fields and its random component through RM structure function. Measuring the random component is important to characterize turbulence in the medium. Observations of FDs with redshift will provide important information on magnetic field evolution as a function of redshift. The background sources could also be used to probe magnetic fields and its coherent scale in galaxy clusters and in bridges formed between interacting galaxies. Other than FDs, sensitive observations of synchrotron emission from galaxies will provide complimentary information on their magnetic field strengths in the sky plane. The core shift measurements of AGNs can provide more precise measurements of magnetic field in the sub parsec region near the black hole and its evolution. The low band of SKA-I will also be useful to study circularly polarized emission from Sun and comparing various

  2. Galactic Cosmic Ray Intensity Response to Interplanetary Coronal Mass Ejections/Magnetic Clouds in 1995-2009

    NASA Technical Reports Server (NTRS)

    Richardson, I. G.; Cane, H. V.

    2011-01-01

    We summarize the response of the galactic cosmic ray (CGR) intensity to the passage of the more than 300 interplanetary coronal mass ejections (ICMEs) and their associated shocks that passed the Earth during 1995-2009, a period that encompasses the whole of Solar Cycle 23. In approx.80% of cases, the GCR intensity decreased during the passage of these structures, i.e., a "Forbush decrease" occurred, while in approx.10% there was no significant change. In the remaining cases, the GCR intensity increased. Where there was an intensity decrease, minimum intensity was observed inside the ICME in approx.90% of these events. The observations confirm the role of both post-shock regions and ICMEs in the generation of these decreases, consistent with many previous studies, but contrary to the conclusion of Reames, Kahler, and Tylka (Astrophys. 1. Lett. 700, L199, 2009) who, from examining a subset of ICMEs with flux-rope-like magnetic fields (magnetic clouds) argued that these are "open structures" that allow free access of particles including GCRs to their interior. In fact, we find that magnetic clouds are more likely to participate in the deepest GCR decreases than ICMEs that are not magnetic clouds.

  3. Magnetic fields in the sun

    NASA Technical Reports Server (NTRS)

    Mullan, D. J.

    1974-01-01

    The observed properties of solar magnetic fields are reviewed, with particular reference to the complexities imposed on the field by motions of the highly conducting gas. Turbulent interactions between gas and field lead to heating or cooling of the gas according to whether the field energy density is less or greater than the maximum kinetic energy density in the convection zone. The field strength above which cooling sets in is 700 gauss. A weak solar dipole field may be primeval, but dynamo action is also important in generating new flux. The dynamo is probably not confined to the convection zone, but extends throughout most of the volume of the sun. Planetary tides appear to play a role in driving the dynamo.

  4. The magnetic field of Jupiter

    NASA Technical Reports Server (NTRS)

    Acuna, M. H.; Ness, N. F.

    1976-01-01

    The paper is concerned mainly with the intrinsic planetary field which dominates the inner magnetosphere up to a distance of 10 to 12 Jovian radii where other phenomena, such as ring currents and diamagnetic effects of trapped charged particles, become significant. The main magnetic field of Jupiter as determined by in-situ observations by Pioner 10 and 11 is found to be relatively more complex than a simple offset tilted dipole. Deviations from a simple dipole geometry lead to distortions of the charged particle L shells and warping of the magnetic equator. Enhanced absorption effects associated with Io and Amalthea are predicted. The results are consistent with the conclusions derived from extensive radio observations at decimetric and decametric wavelengths for the planetary field.

  5. Anomalous short-term increases in the galactic cosmic ray intensity: Are they related to the interplanetary magnetic cloud-like structures?

    NASA Technical Reports Server (NTRS)

    Iucci, N.; Parisi, M.; Signorini, C.; Storini, M.; Villoresi, G.

    1985-01-01

    Thirty-one short-term increases (time duration 24 hours and amplitude up to 5%) in the galactic cosmic ray intensity, occurring inside Forbush decreases events, have been identified over the period 1966 - 1977. These increases are highly anisotropic and occur after the compression region following the shock; the interplanetary medium is characterized by intense ( 10 nT) and higly fluctuating magnetic field B, high velocity, low density and temperature (flare ejecta piston?). These B-fluctuations seem to be ordered variations which could be representative of magnetic clouds. Also the large cosmic ray increase occurring on 17-18 September 1979, belongs to this category of events.

  6. Oxide superconductors under magnetic field

    NASA Technical Reports Server (NTRS)

    Kitazawa, K.

    1990-01-01

    One of the current most serious problems for the oxide superconductors from the standpoint of practical application is the various novel features derived mainly from their extremely short coherence. In particular, the coherence length so far observed in the cuprate superconductors is in the range of 0.1 nm perpendicular to the CuO2 plane. This seems to be creating most of the difficulties in the device fabrication and in the performance under the magnetic field. Some of the superconducting properties under the magnetic field will be discussed in terms of the short coherence length. A model will be presented based on the gradual strengthening of the pinning force with decrease in temperature and the weak coupling at the grain boundaries. Secondly, the broadening of the superconducting transition under the magnetic field is discussed. This is observed significantly only when the field is applied perpendicular to the basal plane and the relative orientation of the current to the field is insignificant in determining the extent of the broadening. Besides, the change in the strength of the pinning force does not affect the width of the broadening. From these observations discussions will be made on a model based on the giant fluctuation. Based on this model, it is predicted that the coherence length along the c-axis will be the single most important material parameter to determine the performance of the superconductor under a strong magnetic field. It seems that BYCO is superior in this regard to Bi- or Tl-systems as far as the performance at 77 K is considered, although another material with the coherence length slightly longer along the c-axis is still highly desired.

  7. Oxide superconductors under magnetic field

    NASA Technical Reports Server (NTRS)

    Kitazawa, K.

    1991-01-01

    One of the current most serious problems for the oxide superconductors from the standpoint of practical application is the various novel features derived mainly from their extremely short coherence. In particular, the coherence length so far observed in the cuprate superconductors is in the range of 0.1 nm perpendicular to the CuO2 plane. This seems to be creating most of the difficulties in the device fabrication and in the performance under the magnetic field. Some of the superconducting properties under the magnetic field will be discussed in terms of the short coherence length. A model will be presented based on the gradual strengthening of the pinning force with decrease in temperature and the weak coupling at the grain boundaries. Secondly, the broadening of the superconducting transition under the magnetic field is discussed. This is observed significantly only when the field is applied perpendicular to the basal plane and the relative orientation of the current to the field is insignificant in determining the extent of broadening. Besides, the change in the strength of the pinning force does not affect the width of the broadening. From these observations discussions will be made on a model based on the giant fluctuation. Based on this model, it is predicted that the coherence length along the c-axis will be the single most important material parameter to determine the performance of the superconductor under a strong magnetic field. It seems that BYCO is superior in this regard to Bi- or Tl-systems as far as the performance at 77 K is considered, although another material with the coherence length slightly longer along the c-axis is still highly desired.

  8. New Mira Variables from the MACHO Galactic Bulge Fields, part II

    NASA Astrophysics Data System (ADS)

    Bernhard, A.; Hümmerich, S.

    2013-12-01

    We present a new sample of 525 Mira variables in the direction of the Galactic Bulge, expanding on previous samples of 69 and 500 objects, respectively, and thereby concluding our search for new Mira variables in the MACHO Galactic Bulge fields. 364 Miras of the present sample are reported as variable stars for the first time. We have cross-correlated our sample with the sample of Mira stars from the OGLE-III Catalog of Long-Period Variables (LPVs) in the Galactic Bulge and found 146 matches; MACHO and OGLE periods are in very good overall agreement. We present summary data for all stars of the present sample and give a statistical overview, comparing the properties of the MACHO and OGLE samples and enlarging on the analyses in our previous paper. Lightcurves, folded lightcurves and further details are available via the AAVSO International Variable Star Index (http://www.aavso.org/vsx/). Data of the complete sample of Mira variables from the MACHO Galactic Bulge fields, as presented in our papers (Bernhard, 2011; Hümmerich and Bernhard, 2012 and the present paper), can be found in the appendix.

  9. Particle Acceleration, Magnetic Field Generation and Emission from Relativistic Jets

    NASA Technical Reports Server (NTRS)

    Nishikawa, K.-I.; Hardee, P.; Hededal, C.; Mizuno, Yosuke; Fishman, G. Jerry; Hartmann, D. H.

    2006-01-01

    Nonthermal radiation observed from astrophysical systems containing relativistic jets and shocks, e.g., active galactic nuclei (AGNs), gamma-ray bursts (GRBs), supernova remnants, and Galactic microquasar systems usually have power-law emission spectra. Fermi acceleration is the mechanism usually assumed for the acceleration of particles in astrophysical environments. Recent PIC simulations using injected relativistic electron-ion (electro-positron) jets show that particle acceleration occurs within the downstream jet, rather than by the scattering of particles back and forth across the shock as in Fermi acceleration. Shock acceleration' is a ubiquitous phenomenon in astrophysical plasmas. Plasma waves and their associated instabilities (e.g., the Buneman instability, other two-streaming instability, and the Weibel instability) created in the shocks are responsible for particle (electron, positron, and ion) acceleration. The simulation results show that the Weibel instability is responsible for generating and amplifying highly nonuniform, small-scale magnetic fields. These magnetic fields contribute to the electron's transverse deflection behind the jet head. The "jitter" radiation from deflected electrons has different spectral properties than synchrotron radiation which is calculated in a uniform magnetic field. This jitter radiation may be important to understanding the complex time evolution and/or spectral structure in gamma-ray bursts, relativistic jets, and supernova remnants. We will review recent PIC simulations of relativistic jets and try to make a connection with observations.

  10. Magnetic field reversals in the Milky Way- "cherchez le champ magnetique".

    NASA Astrophysics Data System (ADS)

    Vallee, J. P.

    1996-04-01

    Radio observations of nearby spiral galaxies have tremendously enhanced our knowledge of their global magnetic field distributions. Recent theoretical developments in the area of dynamos have also helped in the interpretation of magnetic field data in spiral galaxies. When it comes to the magnetic field in the Milky Way galaxy, our position in the Milky Way's galactic disk hinders our attempts at interpreting the observational data. This makes the proposition of "cherchez le champ magnetique" a difficult one to follow. Some recent papers have attempted to fit magnetic field models to spiral galaxies, and in particular to the Milky Way galaxy. Magnetic field reversals in the Milky Way are crucial to all interpretations, be they axisymmetric spiral (ASS) or bisymmetric spiral (BSS) global magnetic field models. Magnetic field reversals can be found in both ASS and BSS magnetic field models, not just BSS ones. The axisymmetric spiral (ASS) magnetic field models produced by the dynamo theory already predict magnetic field reversals, and they are of the type observed in the Milky Way. The small number of magnetic field reversals observed in the Milky Way is compatible with the ASS magnetic field models. The bisymmetric spiral (BSS) magnetic field models as applied to the pulsar RM data and to the QSO and galaxies data have many problems, due to the many pitfalls in model fitting the magnetic field reversals observed in the Milky Way. Many pitfalls are discussed here, including the incomplete comparisons of BSS versus ASS models, the number of spiral arms to be used in modelling, and the proper distance to pulsars via the more accurate distribution of thermal electrons within spiral arms. The two magnetic field reversals in our Milky Way are clearly located in the interarm regions. Predicted magnetic field reversals are periodic, while observed ones are not periodic. Magnetic field reversals cannot be masked effectively by local interstellar magnetised shells. The

  11. Blue horizontal branch field stars in the galactic halo - Observations versus kinematic models

    NASA Astrophysics Data System (ADS)

    Sommer-Larsen, Jesper; Christensen, Per Rex

    1989-07-01

    A sample of 185 blue horizontal branch field (BHBF) stars situated in four fields in the galactic halo at galactocentric distances r of less than 40 kpc has been analyzed. The BHBF stars are found to constitute a well mixed system. The Sommer-Larsen (1986, 1987) model is shown to provide a better fit to the kinematical data in all four fields than either the White (1985, 1988) or Ratnatunga and Freeman (1985, 1989) models. A formation scenario for the galactic halo which includes the effects of gas dynamical processes is proposed to account for the feature of the Sommer-Larsen model that the velocity distribution of halo stars is radially anisotropic in the inner halo, but tangentially anisotropic in the outer parts of the halo.

  12. The Optical Gravitational Lensing Experiment. OGLE-III Photometric Maps of the Galactic Bulge Fields

    NASA Astrophysics Data System (ADS)

    Szymański, M. K.; Udalski, A.; Soszyński, I.; Kubiak, M.; Pietrzyński, G.; Poleski, R.; Wyrzykowski, Ł.; Ulaczyk, K.

    2011-06-01

    We present OGLE-III Photometric Maps of the Galactic bulge fields observed during the third phase of the OGLE project. This paper describes the last, concluding set of maps based on OGLE-III data. The maps contain precise, calibrated VI photometry of about 340 million stars from 267 fields in the Galactic bulge observed during entire OGLE-III phase (2002-2009), covering about 92 square degrees in the sky. Precise astrometry of these objects is also provided. We briefly discuss the photometry procedures and the quality of the data. We also present sample data and color-magnitude diagrams of the observed fields. All photometric data are available to the astronomical community from the OGLE Internet archive.

  13. Torsion constraints from cosmological magnetic field and QCD domain walls

    NASA Astrophysics Data System (ADS)

    Garcia de Andrade, L. C.

    2014-10-01

    Earlier Kostelecky [Phys. Rev. D 69, 105009 (2004)] has investigated the role of gravitational sector in Riemann-Cartan (RC) spacetime with torsion, in Lorentz and CPT violating (LV) Standard Model extension (SME). In his paper use of quantum electrodynamic (QED) extension in RC spacetime is made. More recently L. C. Garcia de Andrade [Phys. Lett. B 468, 28 (2011)] obtained magnetic field galactic dynamo seeds in the bosonic sector with massless photons, which proved to decay faster than necessary [Phys. Lett. B 711, 143 (2012)] to be able to seed galactic dynamos. In this paper it is shown that by using the fermionic sector of Kostelecky-Lagrangian and torsion written as a chiral current, one obtains torsion and magnetic fields explicitly from a Heisenberg-Ivanenko form of Dirac equation whose solution allows us to express torsion in terms of LV coefficients and magnetic field in terms of fermionic matter fields. When minimal coupling between electromagnetic and torsion fields is used it is shown that the fermionic sector of QED with torsion leads to resonantly amplify magnetic fields which mimics an α2-dynamo mechanism. Fine-tuning of torsion is shown to result in the dynamo reversal, a phenomenon so important in solar physics and geophysics. Of course this is only an analogy since torsion is very weak in solar and geophysics contexts. An analogous expression for the α-effect of mean-field dynamos is also obtained where the α-effect is mimic by torsion. Similar resonant amplification mechanisms connected to early universe have been considered by Finelli and Gruppuso.

  14. Galactic arm structure and gamma ray astronomy

    NASA Technical Reports Server (NTRS)

    Bignami, G. F.; Fichtel, C. E.

    1974-01-01

    Unexpectedly high energy gamma radiation over a broad region of the galactic plane in the general direction of the galactic center was observed. A model is proposed wherein the galactic cosmic rays are preferentially located in the high matter density regions of galactic arm segments, as a result of the weight of the matter in these arms tieing the magnetic fields and hence the cosmic rays to these regions. The presently observed galactic gamma ray longitudinal distribution can be explained with the current estimate of the average galactic matter density: if the average arm to interarm matter ratio is five to one for the major arm segments toward the galactic center from the sun; and if the cosmic ray density normalized to its local value is assumed to be directly proportional to the matter density.

  15. The HMI Magnetic Field Pipeline

    NASA Astrophysics Data System (ADS)

    Hoeksema, Jon Todd; Liu, Y.; Schou, J.; Scherrer, P.; HMI Science Team

    2009-05-01

    The Helioseismic and Magnetic Imager (HMI) will provide frequent full-disk magnetic field data after launch of the Solar Dynamics Observatory (SDO), currently scheduled for fall 2009. 16 megapixel line-of-sight magnetograms (Blos) will be recorded every 45 seconds. A full set of polarized filtergrams needed to determine the vector magnetic field requires 90 seconds. Quick-look data will be available within a few minutes of observation. Quick-look space weather and browse products must have identified users, and the list currently includes full disk magnetograms, feature identification and movies, 12-minute disambiguated vector fields in active region patches, time evolution of AR indices, synoptic synchronic frames, potential and MHD model results, and 1 AU predictions. A more complete set of definitive science data products will be offered about a day later and come in three types. "Pipeline” products, such as full disk vector magnetograms, will be computed for all data on an appropriate cadence. A larger menu of "On Demand” products, such as Non-Linear Force Free Field snapshots of an evolving active region, will be produced whenever a user wants them. Less commonly needed "On Request” products that require significant project resources, such as a high resolution MHD simulation of the global corona, will be created subject to availability of resources. Further information can be found at the SDO Joint Science Operations Center web page, jsoc.stanford.edu

  16. Dynamical population synthesis: constructing the stellar single and binary contents of galactic field populations

    NASA Astrophysics Data System (ADS)

    Marks, Michael; Kroupa, Pavel

    2011-11-01

    The galactic field's late-type stellar single and binary populations are calculated on the observationally well-constrained supposition that all stars form as binaries with invariant properties in discrete star formation events. A recently developed tool (Marks, Kroupa & Oh) is used to evolve the binary star distributions in star clusters for a few million years until an equilibrium situation is achieved which has a particular mixture of single and binary stars. On cluster dissolution the population enters the galactic field with these characteristics. The different contributions of single stars and binaries from individual star clusters, which are selected from a power-law-embedded star cluster mass function, are then added up. This gives rise to integrated galactic field binary distribution functions (IGBDFs), resembling a galactic field's stellar content (dynamical population synthesis). It is found that the binary proportion in the galactic field of a galaxy is larger the lower the minimum cluster mass, Mecl, min, the lower the star formation rate, SFR, the steeper the embedded star cluster mass function (described by index β) and the larger the typical size of forming star clusters in the considered galaxy. In particular, period, mass ratio and eccentricity IGBDFs for the Milky Way (MW) are modelled using Mecl, min= 5 M⊙, SFR = 3 M⊙ yr-1 and β= 2 which are justified by observations. For rh≈ 0.1-0.3 pc, the half-mass radius of an embedded cluster, the aforementioned theoretical IGBDFs agree with independently observed distributions, suggesting that the individual discrete star formation events in the MW generally formed compact star clusters. Of all late-type binaries, 50 per cent stem from Mecl≲ 300 M⊙ clusters, while 50 per cent of all single stars were born in Mecl≳ 104 M⊙ clusters. Comparison of the G-dwarf and M-dwarf binary populations indicates that the stars are formed in mass-segregated clusters. In particular, it is pointed out that

  17. Biological effects due to weak magnetic field on plants.

    PubMed

    Belyavskaya, N A

    2004-01-01

    Throughout the evolution process, Earth's magnetic field (MF, about 50 microT) was a natural component of the environment for living organisms. Biological objects, flying on planned long-term interplanetary missions, would experience much weaker magnetic fields, since galactic MF is known to be 0.1-1 nT. However, the role of weak magnetic fields and their influence on functioning of biological organisms are still insufficiently understood, and is actively studied. Numerous experiments with seedlings of different plant species placed in weak magnetic field have shown that the growth of their primary roots is inhibited during early germination stages in comparison with control. The proliferative activity and cell reproduction in meristem of plant roots are reduced in weak magnetic field. Cell reproductive cycle slows down due to the expansion of G1 phase in many plant species (and of G2 phase in flax and lentil roots), while other phases of cell cycle remain relatively stable. In plant cells exposed to weak magnetic field, the functional activity of genome at early pre-replicate period is shown to decrease. Weak magnetic field causes intensification of protein synthesis and disintegration in plant roots. At ultrastructural level, changes in distribution of condensed chromatin and nucleolus compactization in nuclei, noticeable accumulation of lipid bodies, development of a lytic compartment (vacuoles, cytosegresomes and paramural bodies), and reduction of phytoferritin in plastids in meristem cells were observed in pea roots exposed to weak magnetic field. Mitochondria were found to be very sensitive to weak magnetic field: their size and relative volume in cells increase, matrix becomes electron-transparent, and cristae reduce. Cytochemical studies indicate that cells of plant roots exposed to weak magnetic field show Ca2+ over-saturation in all organelles and in cytoplasm unlike the control ones. The data presented suggest that prolonged exposures of plants to weak

  18. Biological effects due to weak magnetic field on plants

    NASA Astrophysics Data System (ADS)

    Belyavskaya, N. A.

    2004-01-01

    Throughout the evolution process, Earth's magnetic field (MF, about 50 μT) was a natural component of the environment for living organisms. Biological objects, flying on planned long-term interplanetary missions, would experience much weaker magnetic fields, since galactic MF is known to be 0.1-1 nT. However, the role of weak magnetic fields and their influence on functioning of biological organisms are still insufficiently understood, and is actively studied. Numerous experiments with seedlings of different plant species placed in weak magnetic field have shown that the growth of their primary roots is inhibited during early germination stages in comparison with control. The proliferative activity and cell reproduction in meristem of plant roots are reduced in weak magnetic field. Cell reproductive cycle slows down due to the expansion of G 1 phase in many plant species (and of G 2 phase in flax and lentil roots), while other phases of cell cycle remain relatively stabile. In plant cells exposed to weak magnetic field, the functional activity of genome at early pre-replicate period is shown to decrease. Weak magnetic field causes intensification of protein synthesis and disintegration in plant roots. At ultrastructural level, changes in distribution of condensed chromatin and nucleolus compactization in nuclei, noticeable accumulation of lipid bodies, development of a lytic compartment (vacuoles, cytosegresomes and paramural bodies), and reduction of phytoferritin in plastids in meristem cells were observed in pea roots exposed to weak magnetic field. Mitochondria were found to be very sensitive to weak magnetic field: their size and relative volume in cells increase, matrix becomes electron-transparent, and cristae reduce. Cytochemical studies indicate that cells of plant roots exposed to weak magnetic field show Ca 2+ over-saturation in all organelles and in cytoplasm unlike the control ones. The data presented suggest that prolonged exposures of plants to weak

  19. Explaining Mercury's peculiar magnetic field

    NASA Astrophysics Data System (ADS)

    Wicht, Johannes; Cao, Hao; Heyner, Daniel; Dietrich, Wieland; Christensen, Ulrich R.

    2014-05-01

    MESSENGER magnetometer data revealed that Mercury's magnetic field is not only particularly weak but also has a peculiar geometry. The MESSENGER team finds that the location of the magnetic equator always lies significantly north of the geographic equator, is largely independent of the distance to the planet, and also varies only weakly with longitude. The field is best described by an axial dipole that is offset to the north by about 20% of the planetary radius. In terms of classical Gauss coefficients, this translates into a low axial dipole component of g10= -190 nT but a relatively large axial quadrupole contribution that amounts to roughly 40% of this value. The axial octupole is also sizable while higher harmonic contributions are much weaker. Very remarkable is also the fact that the equatorial dipole contribution is very small, consistent with a dipole tilt below 0.8 degree, and this is also true for the other non-axisymmetic field contributions. We analyze several numerical dynamos concerning their capability of explaining Mercury's magnetic field. Classical schemes geared to model the geomagnetic field typically show a much weaker quadrupole component and thus a smaller offset. The onset only becomes larger when the dynamo operates in the multipolar regime at higher Rayleigh numbers. However, since the more complex dynamics generally promotes all higher multipole contributions the location of the magnetic equator varies strongly with longitude and distance to the planet. The situation improves when introducing a stably stratified outer layer in the dynamo region, representing either a rigid FeS layer or a sub-adiabatic core-mantle boundary heat flux. This layer filters out the higher harmonic contributions and the field not only becomes sufficiently weak but also assumes a Mercury like offset geometry during a few percent of the simulation time. To increase the likelihood for the offset configuration, the north-south symmetry must be permanently broken

  20. Magnetic Fields in Massive Filaments

    NASA Astrophysics Data System (ADS)

    Pillai, Thushara

    Magnetic fields pervade galaxies, shaping them from the largest scales to the smallest star forming scales. A firm understanding of their role is crucial to our understanding of the physics of ISM. A dominant phase of the ISM that has received considerable attention is that of filaments which are ubiquitous and dominate the mass reservoir in molecular clouds. Enormous progress has been made recently towards understanding filament properties. The next major step should be to understand the role of magnetic fields in filaments. We propose to take advantage of HAWC+ dust emission polarimeter now available on SOFIA to launch a pilot polarization study towards three major classes of filaments: (i) Pristine (ii) Hub-Filament systems and (iii) Perturbed. HAWC+ will trace the connection between the star forming cores and the filaments enveloping them. By covering a vast range in parameter space from quiescent to active filaments, we will be constraining the initial conditions prior to star formation, during star formation and after star formation (feedback from newly formed stars on their parent clouds.) The interpretation of observations will be supported by extensive custom-made numerical simulations of magnetized clouds and subsequent dust radiative transfer with various grain alignment mechanisms, as provided by collaborators. Combined, these observations will provide the first panoramic view of the magnetized nature of massive filaments in the ISM.

  1. Magnetic Fields in Massive Filaments

    NASA Astrophysics Data System (ADS)

    Pillai, G. S. Thushara

    2015-10-01

    Magnetic fields pervade galaxies, shaping them from the largest scales to the smallest star forming scales. A firm understanding of their role is crucial to our understanding of the physics of ISM. A dominant phase of the ISM that has received considerable attention is that of filaments which are ubiquitous and dominate the mass reservoir in molecular clouds. Enormous progress has been made recently towards understanding filament properties. The next major step should be to understand the role of magnetic fields in filaments. We propose to take advantage of HAWC+ dust emission polarimeter now available on SOFIA to launch a pilot polarization study towards three major classes of filaments: (i) Pristine (ii) Hub-Filament systems and (iii) Perturbed. HAWC+ will trace the connection between the star forming cores and the filaments enveloping them. By covering a vast range in parameter space from quiescent to active filaments, we will be constraining the initial conditions prior to star formation, during star formation and after star formation (feedback from newly formed stars on their parent clouds.) The interpretation of observations will be supported by extensive custom--made numerical simulations of magnetized clouds and subsequent dust radiative transfer with various grain alignment mechanisms, as provided by collaborators. Combined, these observations will provide the first panoramic view of the magnetized nature of massive filaments in the ISM.

  2. Field errors in superconducting magnets

    SciTech Connect

    Barton, M. Q.

    1982-01-01

    The mission of this workshop is a discussion of the techniques for tracking particles through arbitrary accelerator field configurations to look for dynamical effects that are suggested by various theoretical models but are not amenable to detailed analysis. A major motivation for this type of study is that many of our accelerator projects are based on the use of superconducting magnets which have field imperfections that are larger and of a more complex nature than those of conventional magnets. Questions such as resonances, uncorrectable closed orbit effects, coupling between planes, and diffusion mechanisms all assume new importance. Since, simultaneously, we are trying to do sophisticated beam manipulations such as stacking, high current accelerator, long life storage, and low loss extraction, we clearly need efficient and accurate tracking programs to proceed with confidence.

  3. VLA Observations of the Magnetic Field of the Smith High Velocity Cloud

    NASA Astrophysics Data System (ADS)

    Betti, Sarah; Hill, Alex S.; Mao, Sui Ann; McClure-Griffiths, Naomi M.; Lockman, Felix J.; Benjamin, Robert A.; Gaensler, Bryan M.

    2017-01-01

    High velocity clouds (HVCs) are hydrogen gas clouds around galaxies with velocities inconsistent with Galactic rotation. HVCs may fuel future star formation and drive galaxy evolution. The Smith Cloud is an HVC with an orbit suggesting it has made at least one passage through the disk. A measured magnetic field suggests how it survived passage through the Galactic halo. The Faraday rotation measure (RM) provides information about the strength and direction of the magnetic field. We use the Karl G. Jansky Very Large Array (VLA) to obtain reliable RMs towards ~950 background point sources to measure the geometry of the magnetic field of the Smith Cloud. These RMs constrain the strength of the magnetic field at the head, tail, and body of the Smith Cloud while RMs directly behind the Smith Cloud suggest there is ionized gas associated with the cloud that has not previously been detected. The confirmation of the magnetic field of the Smith Cloud along with a detailed morphology of the magnetic field structure will constrain how HVCs pass through the Galactic halo without losing their gas and survive the passage through the intergalactic and interstellar media.

  4. Influence of the Galactic Gravitational Field on the Positional Accuracy of Extragalactic Sources

    NASA Astrophysics Data System (ADS)

    Larchenkova, Tatiana I.; Lutovinov, Alexander A.; Lyskova, Natalya S.

    2017-01-01

    We investigate the influence of random variations of the Galactic gravitational field on the apparent celestial positions of extragalactic sources. The basic statistical characteristics of a stochastic process (first-order moments, an autocorrelation function and a power spectral density) are used to describe a light ray deflection in a gravitational field of randomly moving point masses as a function of the source coordinates. We map a 2D distribution of the standard deviation of the angular shifts in positions of distant sources (including reference sources of the International Celestial Reference Frame) with respect to their true positions. For different Galactic matter distributions the standard deviation of the offset angle can reach several tens of μas (microarcsecond) toward the Galactic center, decreasing down to 4-6 μas at high galactic latitudes. The conditional standard deviation (“jitter”) of 2.5 μas is reached within 10 years at high galactic latitudes and within a few months toward the inner part of the Galaxy. The photometric microlensing events are not expected to be disturbed by astrometric random variations anywhere except the inner part of the Galaxy as the Einstein-Chvolson times are typically much shorter than the jittering timescale. While a jitter of a single reference source can be up to dozens of μas over some reasonable observational time, using a sample of reference sources would reduce the error in relative astrometry. The obtained results can be used for estimating the physical upper limits on the time-dependent accuracy of astrometric measurements.

  5. Magnetic fields for fluid motion.

    PubMed

    Weston, Melissa C; Gerner, Matthew D; Fritsch, Ingrid

    2010-05-01

    Three forces induced by magnetic fields offer unique control of fluid motion and new opportunities in microfluidics. This article describes magnetoconvective phenomena in terms of the theory and controversy, tuning by redox processes at electrodes, early-stage applications in analytical chemistry, mature applications in disciplines far afield, and future directions for micro total analysis systems. (To listen to a podcast about this article, please go to the Analytical Chemistry multimedia page at pubs.acs.org/page/ancham/audio/index.html .).

  6. Vertical Equilibrium, Energetics, and Star Formation Rates in Magnetized Galactic Disks Regulated by Momentum Feedback from Supernovae

    NASA Astrophysics Data System (ADS)

    Kim, Chang-Goo; Ostriker, Eve C.

    2015-12-01

    Recent hydrodynamic (HD) simulations have shown that galactic disks evolve to reach well-defined statistical equilibrium states. The star formation rate (SFR) self-regulates until energy injection by star formation feedback balances dissipation and cooling in the interstellar medium (ISM), and provides vertical pressure support to balance gravity. In this paper, we extend our previous models to allow for a range of initial magnetic field strengths and configurations, utilizing three-dimensional, magnetohydrodynamic (MHD) simulations. We show that a quasi-steady equilibrium state is established as rapidly for MHD as for HD models unless the initial magnetic field is very strong or very weak, which requires more time to reach saturation. Remarkably, models with initial magnetic energy varying by two orders of magnitude approach the same asymptotic state. In the fully saturated state of the fiducial model, the integrated energy proportions Eturb:Eth:δ Emag:\\barEmag are 0.35:0.39:0.15:0.11, while the proportions of midplane support Pturb:Pth:δ Π mag:\\barΠmag are 0.49:0.18:0.18:0.15. Vertical profiles of total effective pressure satisfy vertical dynamical equilibrium with the total gas weight at all heights. We measure the "feedback yields" ηc≡ Pc/ΣSFR (in suitable units) for each pressure component, finding that η turb∼ 3.5-4 and ηth∼ 1.1-1.4 are the same for MHD as in previous HD simulations, and δ ηmag∼ 1.3-1.5. These yields can be used to predict the equilibrium SFR for a local region in a galaxy based on its observed gas and stellar surface densities and velocity dispersions. As the ISM weight (or dynamical equilibrium pressure) is fixed, an increase in η from turbulent magnetic fields reduces the predicted Σ SFR by ∼ 20-30% relative to the HD case.

  7. Amplification of magnetic fields by supernova-driven turbulence

    NASA Astrophysics Data System (ADS)

    Kim, J.; Balsara, D. S.

    2006-06-01

    Observations of μG magnetic fields in radio galaxies at cosmological epochs as early as around z=2 have shortened the available time for dynamo action. This fact suggests that the mean-field dynamo mechanism in a global galactic scale either is too slow to amplify a seed field generated by the Biermann battery effect to the level of the observed field strength at z˜2 or needs much stronger seed fields of an order of 10-10 G. A ``contamination'' picture that amplified magnetic fields in smaller objects, such as stars or AGNs, within a relatively shorter timescale spread out through supernova ejecta, stellar winds, and AGN jets to nearby environments is gaining momentum. In line with this picture, we demonstrate, through three-dimensional numerical experiments, that magnetic fields can be amplified by supernova-driven turbulence with two orders of magnitude smaller e-folding timescale than that of the mean-field dynamo mechanism. Therefore, supernova-driven turbulence may play an important role in amplifying small-scale B-fields in any astrophysical systems that have harbored massive stars.

  8. A study of the force-field equation for the propagation of galactic cosmic rays

    NASA Technical Reports Server (NTRS)

    Gleeson, L. J.; Urch, I. H.

    1973-01-01

    A new development is given of the solution of the equation of the force-field approximation for the propagation of galactic cosmic rays in the interplanetary region. It leads to simpler methods for determining the force-field parameters. A method is given for determining the separable diffusion coefficient from observations of galactic electron spectrum and near-earth electron spectra; it is shown that this diffusion coefficient is not unique but may have a periodic-like dependence upon rigidity; and the method is used to obtain diffusion coefficients for 1965 and 1968. Approximate formulae relating small changes in intensity and diffusion coefficient are developed and some applications of these noted; in one it is shown that the form of, and changes in, diffusion coefficient deduced previously for a neutron monitor event during June-September 1969 are unnecessarily constrained and therefore probably not correct.

  9. Magnetic Fields and Bow Shocks Illustration

    NASA Image and Video Library

    2013-02-19

    This illustration shows quasi-parallel top and quasi-perpendicular bottom magnetic field conditions at a planetary bow shock. Bow shocks are shockwaves created when the solar wind blows on a planet magnetic field.

  10. Solar and Interstellar Magnetic Fields Artist Concept

    NASA Image and Video Library

    2012-12-03

    This artist concept shows the different expected directions of the magnetic fields in interstellar space black lines and the magnetic field emanating from our sun white lines as NASA Voyager 1 spacecraft travels northward out of the heliosphere.

  11. Passing Comet Affects Magnetic Field at Mars

    NASA Image and Video Library

    2016-03-09

    This artist depiction shows the close encounter between comet Siding Sprng and Mars in 2014. The comet powerful magnetic field temporarily merged with, and overwhelmed, the planet weak magnetic field.

  12. Comparing Magnetic Fields on Earth and Mars

    NASA Image and Video Library

    This animation compares the magnetic fields on Earth and Mars. The Earth has a large-scale planetary magnetic field that can protect it from space weather and other hazards. Mars, on the other hand...

  13. Field quality aspects of CBA superconducting magnets

    SciTech Connect

    Kahn, S.; Engelmann, R.; Fernow, R.; Greene, A.F.; Herrera, J.; Kirk, H.; Skaritka, J.; Wanderer, P.; Willen, E.

    1983-01-01

    A series of superconducting dipole magnets for the BNL Colliding Beam Accelerator which were manufactured to have the proper field quality characteristics has been tested. This report presents the analysis of the field harmonics of these magnets.

  14. Measurements of Solar Vector Magnetic Fields

    NASA Technical Reports Server (NTRS)

    Hagyard, M. J. (Editor)

    1985-01-01

    Various aspects of the measurement of solar magnetic fields are presented. The four major subdivisions of the study are: (1) theoretical understanding of solar vector magnetic fields; (3) techniques for interpretation of observational data; and (4) techniques for data display.

  15. Magnetic holes in the solar wind. [(interplanetary magnetic fields)

    NASA Technical Reports Server (NTRS)

    Turner, J. M.; Burlaga, L. F.; Ness, N. F.; Lemaire, J. F.

    1976-01-01

    An analysis is presented of high resolution interplanetary magnetic field measurements from the magnetometer on Explorer 43 which showed that low magnetic field intensities in the solar wind at 1 AU occur as distinct depressions or 'holes'. These magnetic holes are new kinetic-scale phenomena, having a characteristic dimension on the order of 20,000 km. They occurred at a rate of 1.5/day in the 18-day time span (March 18 to April 6, 1971) that was analyzed. Most of the magnetic holes are characterized by both a depression in the absolute value of the magnetic field, and a change in the magnetic field direction; some of these are possibly the result of magnetic merging. However, in other cases the magnetic field direction does not change; such holes are not due to magnetic merging, but might be a diamagnetic effect due to localized plasma inhomogeneities.

  16. Dominance of magnetic cataclysmic variables in the resolved Galactic ridge X-ray emission of the limiting window

    NASA Astrophysics Data System (ADS)

    Hong, JaeSub

    2012-12-01

    The diffuse appearance of the Galactic ridge X-ray emission has been puzzling since its discovery due to the lack of compelling theories for sustainable hot diffuse X-ray emission in the Galactic plane. Recently, Revnivtsev et al. claimed that ˜90 per cent of the 6.5-7.1 keV X-ray flux from a small section of a low-extinction region at 1°.4 south of the Galactic Centre has been resolved to discrete sources with LX, 2-10 keV ≳4×10-16 erg s-1 cm-2, using ultradeep (1 Ms) observations made by the Chandra X-ray Observatory. They also concluded that coronally active stars such as active binaries (ABs) contribute ˜60 per cent of the resolved flux. However, our recent discovery of a large population of magnetic cataclysmic variables (MCVs) in the same region suggests their significant role in the resolved hard X-ray flux. In addition, deep X-ray surveys of other several Galactic bulge fields over the past decade have indicated that MCVs are likely the major contributor in the hard X-ray emission above 2-3 keV. To solve this mystery, we have conducted an independent in-depth analysis of discrete X-ray sources in the low-extinction region. The total fraction of the 6.5-7.1 keV flux we can confidently claim as resolved is ˜70-80 per cent, which largely agrees with Revnivtsev et al., but leaves some room for diffuse components. However, despite the various attempts, we consistently find that the resolved hard X-ray flux above 3 keV is dominated by relatively bright, hard X-ray sources such as MCVs, whereas the contribution from relatively faint, soft sources such as ABs is below 20 per cent. We describe in detail our analysis procedure in order to elucidate possible origins of the discrepancy.

  17. Minireview: Biological effects of magnetic fields

    SciTech Connect

    Villa, M.; Mustarelli, P. ); Caprotti, M. )

    1991-01-01

    The literature about the biological effects of magnetic fields is reviewed. The authors begin by discussing the weak and/or time variable fields, responsible for subtle changes in the circadian rhythms of superior animals, which are believed to be induced by same sort of resonant mechanism. The safety issues related with the strong magnetic fields and gradients generated by clinical NMR magnets are then considered. The last portion summarizes the debate about the biological effects of strong and uniform magnetic fields.

  18. Rotating copper plasmoid in external magnetic field

    SciTech Connect

    Pandey, Pramod K.; Thareja, Raj K.

    2013-02-15

    Effect of nonuniform magnetic field on the expanding copper plasmoid in helium and argon gases using optical emission spectroscopy and fast imaging is presented. We report a peculiar oscillatory rotation of plasmoid in magnetic field and argon ambient. The temporal variation and appearance of the dip in the electron temperature show a direct evidence of the threading and expulsion of the magnetic field lines from the plasmoid. Rayleigh Taylor instability produced at the interface separating magnetic field and plasma is discussed.

  19. Applied Magnetic Field Enhances Arc Vapor Deposition

    NASA Technical Reports Server (NTRS)

    Miller, T. A.; Loutfy, R. O.; Withers, J. C.

    1993-01-01

    Applied magnetic field enhances performance of vaporization part of arc vapor deposition apparatus. When no magnetic field applied by external means, arc wonders semirandomly over cathode, with net motion toward electrical feedthrough. When magnetic field applied arc moves circumferentially around cathode, and downward motion suppressed.

  20. SAS-2 galactic gamma ray results, 1

    NASA Technical Reports Server (NTRS)

    Thompson, D. J.; Fichtel, C. E.; Hartman, R. C.; Kniffen, D. A.; Bignami, G. F.; Lamb, R. C.; Oegelman, H.; Oezel, M. E.; Tuemer, T.

    1976-01-01

    Continuing analysis of the data from the SAS-2 high energy gamma-ray experiment has produced an improved picture of the sky at photon energies above 35 MeV. On a large scale, the diffuse emission from the galactic plane is the dominant feature observed by SAS-2. This galactic plane emission is most intense between galactic longitude 310 and 45 deg, corresponding to a region within 7kpc of the galactic center. Within the high-intensity region, SAS-2 observes peaks around galactic longitudes 315 deg, 330 deg, 345 deg, 0 deg, and 35 deg. These peaks appear to be correlated with such galactic features and components as molecular hydrogen, atomic hydrogen, magnetic fields, cosmic ray concentrations, and photon fields.

  1. Bats respond to very weak magnetic fields.

    PubMed

    Tian, Lan-Xiang; Pan, Yong-Xin; Metzner, Walter; Zhang, Jin-Shuo; Zhang, Bing-Fang

    2015-01-01

    How animals, including mammals, can respond to and utilize the direction and intensity of the Earth's magnetic field for orientation and navigation is contentious. In this study, we experimentally tested whether the Chinese Noctule, Nyctalus plancyi (Vespertilionidae) can sense magnetic field strengths that were even lower than those of the present-day geomagnetic field. Such field strengths occurred during geomagnetic excursions or polarity reversals and thus may have played an important role in the evolution of a magnetic sense. We found that in a present-day local geomagnetic field, the bats showed a clear preference for positioning themselves at the magnetic north. As the field intensity decreased to only 1/5th of the natural intensity (i.e., 10 μT; the lowest field strength tested here), the bats still responded by positioning themselves at the magnetic north. When the field polarity was artificially reversed, the bats still preferred the new magnetic north, even at the lowest field strength tested (10 μT), despite the fact that the artificial field orientation was opposite to the natural geomagnetic field (P<0.05). Hence, N. plancyi is able to detect the direction of a magnetic field even at 1/5th of the present-day field strength. This high sensitivity to magnetic fields may explain how magnetic orientation could have evolved in bats even as the Earth's magnetic field strength varied and the polarity reversed tens of times over the past fifty million years.

  2. Hybrid Shielding for Magnetic Fields

    NASA Astrophysics Data System (ADS)

    Mullins, David; Royal, Kevin

    2017-01-01

    Precision symmetry measurements such as the search for the electric dipole moment of the neutron require magnetic shielding rooms to reduce the ambient field to the pT scale. The massive mu-metal sheets and large separation between layers make these shield rooms bulky and expensive. Active field cancellation systems used to reduce the surrounding field are limited in uniformity of cancellation. A novel approach to reducing the space between shield layers and increasing the effectiveness of active cancellation is to combine the two systems into a hybrid system, with active and passive layers interspersed. We demonstrate this idea in a prototype with an active layer sandwiched between two passive layers of shielding.

  3. Interplanetary magnetic field data book

    NASA Technical Reports Server (NTRS)

    King, J. H.

    1975-01-01

    An interplanetary magnetic field (IMF) data set is presented that is uniform with respect to inclusion of cislunar IMF data only, and which has as complete time coverage as presently possible over a full solar cycle. Macroscale phenomena in the interplanetary medium (sector structure, heliolatitude variations, solar cycle variations, etc.) and other phenomena (e.g., ground level cosmic-ray events) for which knowledge of the IMF with hourly resolution is necessary, are discussed. Listings and plots of cislunar hourly averaged IMP parameters over the period November 27, 1963, to May 17, 1974, are presented along with discussion of the mutual consistency of the IMF data used herein. The magnetic tape from which the plots and listings were generated, which is available from the National Space Science Data Center (NSSDC), is also discussed.

  4. The Giotto magnetic field investigation

    NASA Technical Reports Server (NTRS)

    Neubauer, F. M.; Musmann, G.; Acuna, M. H.; Burlaga, L. F.; Ness, N. F.; Mariani, F.; Wallis, M.; Ungstrup, E.; Schmidt, H.

    1983-01-01

    The Giotto spacecraft will carry sensors for investigating the interplanetary magnetic field while en route and the interaction between the solar wind magnetoplasma and Halley's Comet neutral gas outflow during close approach. Giotto will carry an outboard biaxial fluxgate system and inboard electronics. The instrumentation draws 1.2 kW and weighs 1.31 kg. Sampling rates will be 28/sec during close encounter, covering selectable ranges from 16 nT to 65,535 nT. In-flight calibration techniques are under development to ensure magnetic cleanliness will be obtained. Measurements are also planned of the inbound bow shock, the magnetosheath and the cometary ionopause. The data will be collected as close as 1000 km from the comet surface.

  5. Astrophysical dynamos and the growth of magnetic fields in high-redshift galaxies

    NASA Astrophysics Data System (ADS)

    Rieder, Michael; Teyssier, Romain

    2015-08-01

    The origin and evolution of magnetic fields in the Universe is still an open question. Observations of galaxies at high-redshift give evidence for strong galactic magnetic fields even in the early Universe which are consistently measured at later times up to the present age. However, primordial magnetic fields and seed field generation by battery processes cannot explain such high field strengths, suggesting the presence of a rapid growth mechanism in those high-redshift galaxies and subsequent maintenance against decay. Astrophysical dynamo theory provides efficient means of field amplification where even weak initial fields can grow exponentially on sufficiently fast timescales, driving the conversion of kinetic energy into magnetic energy. We investigate the role which feedback mechanisms play in the creation of the turbulence necessary for dynamos to operate. Performing magnetohydrodynamic simulations of cooling halos of dwarf and Milky Way-like high-redshift progenitors, we compare the magnetic field evolution of weak seed fields with various topologies and stellar feedback mechanisms. We find that strong feedback can drive galactic gas turbulence which gives rise to velocity fields with fast exponential magnetic field growth. The simulations display a high gas fraction and a clumpy morphology with kinematics resembling Kolmogorov turbulence and magnetic energy spectra as predicted by Kazantsev dynamo theory. Magnetic fields reach equipartition with $\\mu$G field strength. In a final quiescent phase where feedback is turned off, gas turbulence is reduced and a quadrupole symmetry is observed in the magnetic field. These findings support the theory of rapid magnetic field amplification inside high-redshift galaxies, when the Universe was still young.

  6. Magnetic field sources and their threat to magnetic media

    NASA Technical Reports Server (NTRS)

    Jewell, Steve

    1993-01-01

    Magnetic storage media (tapes, disks, cards, etc.) may be damaged by external magnetic fields. The potential for such damage has been researched, but no objective standard exists for the protection of such media. This paper summarizes a magnetic storage facility standard, Publication 933, that ensures magnetic protection of data storage media.

  7. Static magnetic fields: animal studies.

    PubMed

    Saunders, Richard

    2005-01-01

    Various experimental studies carried out over the last 30-40 years have examined the effects of the chronic or acute exposure of laboratory animals to static magnetic fields. Many of the earlier studies have been adequately reviewed elsewhere; few adverse effects were identified. This review focuses on studies carried out more recently, mostly those using vertebrates, particularly mammals. Four main areas of investigation have been covered, viz., nervous system and behavioural studies, cardiovascular system responses, reproduction and development, and genotoxicity and cancer. Work on the role of the natural geomagnetic field in animal orientation and migration has been omitted. Generally, the acute responses found during exposure to static fields above about 4 T are consistent with those found in volunteer studies, namely the induction of flow potentials around the heart and the development of aversive/avoidance behaviour resulting from body movement in such fields. No consistently demonstrable effects of exposure to fields of approximately 1T and above have been seen on other behavioural or cardiovascular endpoints. In addition, no adverse effects of such fields on reproduction and development or on the growth and development of tumours have been firmly established. Overall, however, far too few animal studies have been carried out to reach any firm conclusions.

  8. Saturn's Magnetic Field and Magnetosphere.

    PubMed

    Smith, E J; Davis, L; Jones, D E; Coleman, P J; Colburn, D S; Dyal, P; Sonett, C P

    1980-01-25

    The Pioneer Saturn vector helium magnetometer has detected a bow shock and magnetopause at Saturn and has provided an accurate characterization of the planetary field. The equatorial surface field is 0.20 gauss, a factor of 3 to 5 times smaller than anticipated on the basis of attempted scalings from Earth and Jupiter. The tilt angle between the magnetic dipole axis and Saturn's rotation axis is < 1 degrees , a surprisingly small value. Spherical harmonic analysis of the measurements shows that the ratio of quadrupole to dipole moments is < 10 percent, indicating that the field is more uniform than those of the Earth or Jupiter and consistent with Saturn having a relatively small core. The field in the outer magnetosphere shows systematic departures from the dipole field, principally a compression of the field near noon and an equatorial orientation associated with a current sheet near dawn. A hydromagnetic wake resulting from the interaction of Titan with the rotating magnetosphere appears to have been observed.

  9. A supernova scenario for magnetic fields and rotation measures in galaxies

    NASA Astrophysics Data System (ADS)

    Beck, Alexander; Dolag, Klaus; Lesch, Harald

    2015-08-01

    We present a model for the seeding and evolution of magnetic fields in protogalaxies. Supernova SN explosions during the assembly of a protogalaxy provide magnetic seed fields, which are subsequently amplified by compression, shear flows and random motions. Our model explains the origin of strong magnetic fields of microG amplitude within the first starforming protogalactic structures shortly after onset of star formation. We implement the model into the MHD version of the cosmological N-body / SPH simulation code GADGET and we couple the magnetic seeding directly to the underlying multi-phase description of star formation. We perform simulations of Milky Way-like galactic halo formation using a standard LCDM cosmology and analyse the strength and distribution of the subsequent evolving magnetic field.Within starforming regions and given typical dimensions and magnetic field strengths in canonical SN remnants, we inject a dipole-shape magnetic field at a rate of nG/Gyr.Subsequently, the magnetic field strength increases exponentially on timescales of a few ten million years within the innermost regions of the halo. Furthermore, turbulent diffusion, shocks and gas motions transport the magnetic field towards the halo outskirts. At redshift z=0, the entire galactic halo is magnetized and the field amplitude is of the order of a few microG in the center of the halo and nG at the virial radius. Additionally, we analyse the intrinsic rotation measure (RM) of the forming galactic halo over redshift. The mean halo intrinsic RM peaks between redshifts z=4 and z=2 and reaches absolute values around 1000 rad/m^2.While the halo virializes towards redshift z=0, the intrinsic RM values decline to a mean value below 10 rad/m^2. At high redshifts, the distribution of individual starforming and thus magnetized regions is widespread. This leads to a widespread distribution of large intrinsic RM values. In our model, galactic magnetic fields are a consequence of the star formation

  10. Pulsar magnetospheric convulsions induced by an external magnetic field

    NASA Astrophysics Data System (ADS)

    Zhang, Fan

    2017-02-01

    The canonical pulsar magnetosphere contains a bubble of closed magnetic field lines that is separated from the open lines by current sheets, and different branches of such sheets intersect at a critical line on the light cylinder (LC). The LC is located far away from the neutron star, and the pulsar's intrinsic magnetic field at that location is much weaker than the commonly quoted numbers applicable to the star surface. The magnetic field surrounding supermassive black holes that reside in galactic nuclei is of comparable or greater strength. Therefore, when the pulsar travels inside such regions, a non-negligible Lorentz force is experienced by the current sheets, which tends to pull them apart at the critical line. As breakage occurs, instabilities ensue that burst the bubble, allowing closed field lines to snap open and release large amounts of electromagnetic energy, sufficient to power fast radio bursts (FRBs). This process is necessarily associated with an environment of a strong magnetic field and thus might explain the large rotation measures recorded for the FRBs. We sketch a portrait of the process and examine its compatibility with several other salient features of the FRBs.

  11. Hammurabi: Simulating polarized Galactic synchrotron emission

    NASA Astrophysics Data System (ADS)

    Jaffe, Tess; Waelkens, Andre; Reinecke, M.; Kitaura, F. S.; Enßlin, T. A.

    2012-01-01

    The Hammurabi code is a publicly available C++ code for generating mock polarized observations of Galactic synchrotron emission with telescopes such as LOFAR, SKA, Planck, and WMAP, based on model inputs for the Galactic magnetic field (GMF), the cosmic-ray density distribution, and the thermal electron density. The Hammurabi code allows one to perform simulations of several different data sets simultaneously, providing a more reliable constraint of the magnetized ISM.

  12. Magnetic field penetration of erosion switch plasmas

    NASA Astrophysics Data System (ADS)

    Mason, Rodney J.; Jones, Michael E.; Grossmann, John M.; Ottinger, Paul F.

    1988-10-01

    Computer simulations demonstrate that the entrainment (or advection) of magnetic field with the flow of cathode-emitted electrons can constitute a dominant mechanism for the magnetic field penetration of erosion switch plasmas. Cross-field drift in the accelerating electric field near the cathode starts the penetration process. Plasma erosion propagates the point for emission and magnetic field injection along the cathode toward the load-for the possibility of rapid switch opening.

  13. Harmonic undulator radiations with constant magnetic field

    NASA Astrophysics Data System (ADS)

    Jeevakhan, Hussain; Mishra, G.

    2015-01-01

    Harmonic undulators has been analysed in the presence of constant magnetic field along the direction of main undulator field. The spectrum modifications in harmonic undulator radiations and intensity degradation as a function of constant magnetic field magnitude at fundamental and third harmonics have been evaluated with a numerical integration method and generalised Bessel function. The role of harmonic field to overcome the intensity reduction due to constant magnetic field and energy spread in electron beam has also been demonstrated.

  14. Magnetic Fields Around the Heliosphere: Theory vs Observations

    NASA Astrophysics Data System (ADS)

    Pogorelov, Nikolai

    2016-07-01

    Voyager in situ measurements of the magnetic field around the heliosphere are the source of invaluable information about the interface between the solar wind (SW) and local interstellar medium (LISM). On the other hand, they are quite challenging for theoretical analysis unless accompanied by remote observations of neutral atoms the Interstellar Boundary Explorer (IBEX) and Ulysses missions. Of particular interest is the fine structure of the heliopause due to its instability and possible magnetic reconnection. Both phenomena may have contributed to the remarkable changes in the galactic and anomalous cosmic ray fluxes observed by Voyager 1 within a one-month period of 2012 after which the spacecraft penetrated into the LISM. Draping of the heliopause by the interstellar magnetic field affects the position of the bright ribbon of enhanced ENA flux observed by IBEX on the celestial sphere and 2-3 kHz radio emission caused by shock propagation through the outer heliosheath observed by Voyager 1. Interstellar magnetic field determines the structure of the bow wave in front of the heliopause. Moreover, magnetic fields define the orientation and shape of the heliotail, the features of which have been observed by IBEX. Recent numerical simulations show that the details of the large-scale interstellar magnetic field modification caused by the presence of the heliotail may be the source of the observed 1-10 TeV cosmic ray anisotropy studied in detail in numerous air shower measurements around the world. In this paper, an overview will be given of the recent theoretical and simulations results describing the magnetic field distribution around the heliosphere. The objective of the talk is to connect observational and theoretical results, and outline challenges that are going to inspire the heliospheric community in the coming years.

  15. Graphene in high magnetic fields

    NASA Astrophysics Data System (ADS)

    Orlita, Milan; Escoffier, Walter; Plochocka, Paulina; Raquet, Bertrand; Zeitler, Uli

    2013-01-01

    Carbon-based nano-materials, such as graphene and carbon nanotubes, represent a fascinating research area aiming at exploring their remarkable physical and electronic properties. These materials not only constitute a playground for physicists, they are also very promising for practical applications and are envisioned as elementary bricks of the future of the nano-electronics. As for graphene, its potential already lies in the domain of opto-electronics where its unique electronic and optical properties can be fully exploited. Indeed, recent technological advances have demonstrated its effectiveness in the fabrication of solar cells and ultra-fast lasers, as well as touch-screens and sensitive photo-detectors. Although the photo-voltaic technology is now dominated by silicon-based devices, the use of graphene could very well provide higher efficiency. However, before the applied research to take place, one must first demonstrates the operativeness of carbon-based nano-materials, and this is where the fundamental research comes into play. In this context, the use of magnetic field has been proven extremely useful for addressing their fundamental properties as it provides an external and adjustable parameter which drastically modifies their electronic band structure. In order to induce some significant changes, very high magnetic fields are required and can be provided using both DC and pulsed technology, depending of the experimental constraints. In this article, we review some of the challenging experiments on single nano-objects performed in high magnetic and low temperature. We shall mainly focus on the high-field magneto-optical and magneto-transport experiments which provided comprehensive understanding of the peculiar Landau level quantization of the Dirac-type charge carriers in graphene and thin graphite.

  16. Far-ultraviolet studies. II - Galactic-latitude dependence of the 1530 A interstellar radiation field

    NASA Technical Reports Server (NTRS)

    Henry, R. C.; Swandic, J. R.; Shulman, S. D.; Fritz, G.

    1977-01-01

    A 0.62-sq cm Geiger counter, sensitive between 1425 and 1640 A, was used to map the far-ultraviolet brightness of about half the sky, providing an experimental measurement of the far-ultraviolet interstellar radiation field. At 1530 A, the energy density is approximately 7.4 by 10 to the -17th power erg/cu cm per A. Comparison with integrations of star catalogs calibrated to the ultraviolet shows, as expected, that the bulk of the radiation comes directly from B- and A-type stars. The galactic-latitude dependence of the radiation is analyzed in an unsuccessful attempt to set limits on the absorbing and scattering properties of the interstellar grains in the far-ultraviolet. Excess radiation observed at the galactic pole is probably residual airglow from above the rocket altitude.

  17. Parsec-Scale Obscuring Accretion Disk with Large-Scale Magnetic Field in AGNs

    NASA Technical Reports Server (NTRS)

    Dorodnitsyn, A.; Kallman, T.

    2017-01-01

    A magnetic field dragged from the galactic disk, along with inflowing gas, can provide vertical support to the geometrically and optically thick pc (parsec) -scale torus in AGNs (Active Galactic Nuclei). Using the Soloviev solution initially developed for Tokamaks, we derive an analytical model for a rotating torus that is supported and confined by a magnetic field. We further perform three-dimensional magneto-hydrodynamic simulations of X-ray irradiated, pc-scale, magnetized tori. We follow the time evolution and compare models that adopt initial conditions derived from our analytic model with simulations in which the initial magnetic flux is entirely contained within the gas torus. Numerical simulations demonstrate that the initial conditions based on the analytic solution produce a longer-lived torus that produces obscuration that is generally consistent with observed constraints.

  18. Homogeneous photometry and star counts in the field of 9 Galactic star clusters

    NASA Astrophysics Data System (ADS)

    Seleznev, A. F.; Carraro, G.; Costa, E.; Loktin, A. V.

    2010-01-01

    We present homogeneous V, I CCD photometry of nine stellar fields in the two inner quadrants of the Galactic plane. The lines-of-view to most of these fields aim in the direction of the very inner Galaxy, where the Galactic field is very dense, and extinction is high and patchy. Our nine fields are, according to several catalogs, centred on Galactic star clusters, namely Trumpler 13, Trumpler 20, Lynga 4, Hogg 19, Lynga 12, Trumpler 25, Trumpler 26, Ruprecht 128, and Trumpler 34. Apart from their coordinates, and in some cases additional basic data (mainly from the 2MASS archive), their properties are poorly known. By means of star count techniques and field star decontaminated Color Magnitude diagrams, the nature and size of these visual over-densities has been established; and, when possible, new cluster fundamental parameters have been derived. To strengthen our findings, we complement our data-set with JHKs photometry from the 2MASS archive, that we analyze using a suitably defined Q-parameter. Most clusters are projected towards the Carina-Sagittarium spiral arm. Because of that, we detect in the Color Magnitude diagrams of most of the other fields several distinctive sequences produced by young population within the arm. All the clusters are of intermediate or old age. The most interesting cases detected by our study are, perhaps, that of Trumpler 20, which seems to be much older than previously believed, as indicated by its prominent - and double - red clump; and that of Hogg 19, a previously overlooked old open cluster, whose existence in such regions of the Milky Way is puzzling.

  19. Permanent Magnet Ecr Plasma Source With Magnetic Field Optimization

    DOEpatents

    Doughty, Frank C.; Spencer, John E.

    2000-12-19

    In a plasma-producing device, an optimized magnet field for electron cyclotron resonance plasma generation is provided by a shaped pole piece. The shaped pole piece adjusts spacing between the magnet and the resonance zone, creates a convex or concave resonance zone, and decreases stray fields between the resonance zone and the workpiece. For a cylindrical permanent magnet, the pole piece includes a disk adjacent the magnet together with an annular cylindrical sidewall structure axially aligned with the magnet and extending from the base around the permanent magnet. The pole piece directs magnetic field lines into the resonance zone, moving the resonance zone further from the face of the magnet. Additional permanent magnets or magnet arrays may be utilized to control field contours on a local scale. Rather than a permeable material, the sidewall structure may be composed of an annular cylindrical magnetic material having a polarity opposite that of the permanent magnet, creating convex regions in the resonance zone. An annular disk-shaped recurve section at the end of the sidewall structure forms magnetic mirrors keeping the plasma off the pole piece. A recurve section composed of magnetic material having a radial polarity forms convex regions and/or magnetic mirrors within the resonance zone.

  20. Near-Field Magnetic Dipole Moment Analysis

    NASA Technical Reports Server (NTRS)

    Harris, Patrick K.

    2003-01-01

    This paper describes the data analysis technique used for magnetic testing at the NASA Goddard Space Flight Center (GSFC). Excellent results have been obtained using this technique to convert a spacecraft s measured magnetic field data into its respective magnetic dipole moment model. The model is most accurate with the earth s geomagnetic field cancelled in a spherical region bounded by the measurement magnetometers with a minimum radius large enough to enclose the magnetic source. Considerably enhanced spacecraft magnetic testing is offered by using this technique in conjunction with a computer-controlled magnetic field measurement system. Such a system, with real-time magnetic field display capabilities, has been incorporated into other existing magnetic measurement facilities and is also used at remote locations where transport to a magnetics test facility is impractical.

  1. Magnetic fields from the electroweak phase transition

    SciTech Connect

    Tornkvist, O.

    1998-02-01

    I review some of the mechanisms through which primordial magnetic fields may be created in the electroweak phase transition. I show that no magnetic fields are produced initially from two-bubble collisions in a first-order transition. The initial field produced in a three-bubble collision is computed. The evolution of fields at later times is discussed.

  2. Magnetic field observations in Comet Halley's coma

    NASA Astrophysics Data System (ADS)

    Riedler, W.; Schwingenschuh, K.; Yeroshenko, Ye. G.; Styashkin, V. A.; Russell, C. T.

    1986-05-01

    During the encounter with Comet Halley, the magnetometer (MISCHA) aboard the Vega 1 spacecraft observed an increased level of magnetic field turbulence, resulting from an upstream bow wave. Both Vega spacecraft measured a peak field strength of 70-80 nT and observed draping of magnetic field lines around the cometary obstacle. An unexpected rotation of the magnetic field vector was observed, which may reflect either penetration of magnetic field lines into a diffuse layer related to the contact surface separating the solar-wind and cometary plasma, or the persistence of pre-existing interplanetary field structures.

  3. Spin dephasing in a magnetic dipole field.

    PubMed

    Ziener, C H; Kampf, T; Reents, G; Schlemmer, H-P; Bauer, W R

    2012-05-01

    Transverse relaxation by dephasing in an inhomogeneous field is a general mechanism in physics, for example, in semiconductor physics, muon spectroscopy, or nuclear magnetic resonance. In magnetic resonance imaging the transverse relaxation provides information on the properties of several biological tissues. Since the dipole field is the most important part of the multipole expansion of the local inhomogeneous field, dephasing in a dipole field is highly important in relaxation theory. However, there have been no analytical solutions which describe the dephasing in a magnetic dipole field. In this work we give a complete analytical solution for the dephasing in a magnetic dipole field which is valid over the whole dynamic range.

  4. Spin dephasing in a magnetic dipole field

    NASA Astrophysics Data System (ADS)

    Ziener, C. H.; Kampf, T.; Reents, G.; Schlemmer, H.-P.; Bauer, W. R.

    2012-05-01

    Transverse relaxation by dephasing in an inhomogeneous field is a general mechanism in physics, for example, in semiconductor physics, muon spectroscopy, or nuclear magnetic resonance. In magnetic resonance imaging the transverse relaxation provides information on the properties of several biological tissues. Since the dipole field is the most important part of the multipole expansion of the local inhomogeneous field, dephasing in a dipole field is highly important in relaxation theory. However, there have been no analytical solutions which describe the dephasing in a magnetic dipole field. In this work we give a complete analytical solution for the dephasing in a magnetic dipole field which is valid over the whole dynamic range.

  5. Magnetic field effects on microwave absorbing materials

    NASA Technical Reports Server (NTRS)

    Goldberg, Ira; Hollingsworth, Charles S.; Mckinney, Ted M.

    1991-01-01

    The objective of this program was to gather information to formulate a microwave absorber that can work in the presence of strong constant direct current (DC) magnetic fields. The program was conducted in four steps. The first step was to investigate the electrical and magnetic properties of magnetic and ferrite microwave absorbers in the presence of strong magnetic fields. This included both experimental measurements and a literature survey of properties that may be applicable to finding an appropriate absorbing material. The second step was to identify those material properties that will produce desirable absorptive properties in the presence of intense magnetic fields and determine the range of magnetic field in which the absorbers remain effective. The third step was to establish ferrite absorber designs that will produce low reflection and adequate absorption in the presence of intense inhomogeneous static magnetic fields. The fourth and final step was to prepare and test samples of such magnetic microwave absorbers if such designs seem practical.

  6. Search for EeV protons of galactic origin

    NASA Astrophysics Data System (ADS)

    Abbasi, R. U.; Abe, M.; Abu-Zayyad, T.; Allen, M.; Azuma, R.; Barcikowski, E.; Belz, J. W.; Bergman, D. R.; Blake, S. A.; Cady, R.; Cheon, B. G.; Chiba, J.; Chikawa, M.; Fujii, T.; Fukushima, M.; Goto, T.; Hanlon, W.; Hayashi, Y.; Hayashi, M.; Hayashida, N.; Hibino, K.; Honda, K.; Ikeda, D.; Inoue, N.; Ishii, T.; Ishimori, R.; Ito, H.; Ivanov, D.; Jui, C. C. H.; Kadota, K.; Kakimoto, F.; Kalashev, O.; Kasahara, K.; Kawai, H.; Kawakami, S.; Kawana, S.; Kawata, K.; Kido, E.; Kim, H. B.; Kim, J. H.; Kim, J. H.; Kishigami, S.; Kitamura, S.; Kitamura, Y.; Kuzmin, V.; Kwon, Y. J.; Lan, J.; Lubsandorzhiev, B.; Lundquist, J. P.; Machida, K.; Martens, K.; Matsuda, T.; Matsuyama, T.; Matthews, J. N.; Minamino, M.; Mukai, K.; Myers, I.; Nagasawa, K.; Nagataki, S.; Nakamura, T.; Nonaka, T.; Nozato, A.; Ogio, S.; Ogura, J.; Ohnishi, M.; Ohoka, H.; Oki, K.; Okuda, T.; Ono, M.; Onogi, R.; Oshima, A.; Ozawa, S.; Park, I. H.; Pshirkov, M. S.; Rodriguez, D. C.; Rubtsov, G.; Ryu, D.; Sagawa, H.; Saito, K.; Saito, Y.; Sakaki, N.; Sakurai, N.; Scott, L. M.; Sekino, K.; Shah, P. D.; Shibata, T.; Shibata, F.; Shimodaira, H.; Shin, B. K.; Shin, H. S.; Smith, J. D.; Sokolsky, P.; Stokes, B. T.; Stratton, S. R.; Stroman, T. A.; Suzawa, T.; Takahashi, Y.; Takamura, M.; Takeda, M.; Takeishi, R.; Taketa, A.; Takita, M.; Tameda, Y.; Tanaka, M.; Tanaka, K.; Tanaka, H.; Thomas, S. B.; Thomson, G. B.; Tinyakov, P.; Tirone, A. H.; Tkachev, I.; Tokuno, H.; Tomida, T.; Troitsky, S.; Tsunesada, Y.; Tsutsumi, K.; Uchihori, Y.; Udo, S.; Urban, F.; Wong, T.; Yamane, R.; Yamaoka, H.; Yamazaki, K.; Yang, J.; Yashiro, K.; Yoneda, Y.; Yoshida, S.; Yoshii, H.; Zollinger, R.; Zundel, Z.

    2017-01-01

    Cosmic rays in the energy range 1018.0-1018.5 eV are thought to have a light, probably protonic, composition. To study their origin one can search for anisotropy in their arrival directions. Extragalactic cosmic rays should be isotropic, but galactic cosmic rays of this type should be seen mostly along the galactic plane, and there should be a shortage of events coming from directions near the galactic anticenter. This is due to the fact that, under the influence of the galactic magnetic field, the transition from ballistic to diffusive behavior is well advanced, and this qualitative picture persists over the whole energy range. Guided by models of the galactic magnetic field that indicate that the enhancement along the galactic plane should have a standard deviation of about 20° in galactic latitude, and the deficit in the galactic anticenter direction should have a standard deviation of about 50° in galactic longitude, we use the data of the Telescope Array surface detector in 1018.0 to 1018.5 eV energy range to search for these effects. The data are isotropic. Neither an enhancement along the galactic plane nor a deficit in the galactic anticenter direction is found. Using these data we place an upper limit on the fraction of EeV cosmic rays of galactic origin at 1.3% at 95% confidence level.

  7. Cosmological magnetic fields as string dynamo seeds and axion fields in torsioned spacetime

    SciTech Connect

    De Andrade, L.C. Garcia

    2014-08-01

    In this paper two examples of the generation cosmological magnetic fields (CMF) are given. The first is the string dynamo seed cosmological magnetic field estimated as B{sub seed}∼10{sup -24} Gauss from a static spin polarised cylinder in Einstein-Cartan-Maxwell spacetime. The string dynamo seeds from a static spin polarised cylinder is given by B∼σ{sup 2}R{sup 2} where σ is the spin-torsion density while R is the string radius. The B-field value above is able to seed galactic dynamo. In the BBN the magnetic fields around 10{sup 12} Gauss give rise to a string radius as small as 10{sup 17}l{sub P} where l{sub P} is the Planck length. The second is the CMF from axionic torsion field which is given by B{sub seed}∼10{sup -27} Gauss which is stronger than the primordial magnetic field B{sub BICEP2}∼10{sup -30} Gauss from the BICEP2 recent experiment on primordial gravitational waves and cosmological inflation to axionic torsion. The interaction Lagrangean between axionic torsion scalar φ and magnetic fields used in this last example is given by f{sup 2}(φ)F{sub μν}F{sup μν}. A similar lagrangean has been used by K. Bamba et al. [JCAP 10 (2012) 058] so generate magnetic fields without dynamo action. Since axionic torsion can be associated with axionic domain walls both examples discussed here could be consider as topological defects examples of the generation of primordial magnetic fields in universes endowed with spacetime torsion.

  8. Chiral plasmons without magnetic field

    PubMed Central

    Song, Justin C. W.; Rudner, Mark S.

    2016-01-01

    Plasmons, the collective oscillations of interacting electrons, possess emergent properties that dramatically alter the optical response of metals. We predict the existence of a new class of plasmons—chiral Berry plasmons (CBPs)—for a wide range of 2D metallic systems including gapped Dirac materials. As we show, in these materials the interplay between Berry curvature and electron–electron interactions yields chiral plasmonic modes at zero magnetic field. The CBP modes are confined to system boundaries, even in the absence of topological edge states, with chirality manifested in split energy dispersions for oppositely directed plasmon waves. We unveil a rich CBP phenomenology and propose setups for realizing them, including in anomalous Hall metals and optically pumped 2D Dirac materials. Realization of CBPs will offer a powerful paradigm for magnetic field-free, subwavelength optical nonreciprocity, in the mid-IR to terahertz range, with tunable splittings as large as tens of THz, as well as sensitive all-optical diagnostics of topological bands. PMID:27071090

  9. Chiral plasmons without magnetic field

    NASA Astrophysics Data System (ADS)

    Song, Justin C. W.

    2016-04-01

    Plasmons, the collective oscillations of interacting electrons, possess emergent properties that dramatically alter the optical response of metals. We predict the existence of a new class of plasmons—chiral Berry plasmons (CBPs)—for a wide range of 2D metallic systems including gapped Dirac materials. As we show, in these materials the interplay between Berry curvature and electron-electron interactions yields chiral plasmonic modes at zero magnetic field. The CBP modes are confined to system boundaries, even in the absence of topological edge states, with chirality manifested in split energy dispersions for oppositely directed plasmon waves. We unveil a rich CBP phenomenology and propose setups for realizing them, including in anomalous Hall metals and optically pumped 2D Dirac materials. Realization of CBPs will offer a powerful paradigm for magnetic field-free, subwavelength optical nonreciprocity, in the mid-IR to terahertz range, with tunable splittings as large as tens of THz, as well as sensitive all-optical diagnostics of topological bands.

  10. The flexible magnetic field thruster

    NASA Technical Reports Server (NTRS)

    Brophy, J. R.; Wilbur, P. J.

    1982-01-01

    The thruster is designed so that ion currents to various internal surfaces can be measured directly; these measurements facilitate calculations of the distribution of ion currents inside the discharge chamber. Experiments are described suggesting that the distribution of ion currents inside the discharge chamber is strongly dependent on the shape and strength of the magnetic field but independent of the discharge current, discharge voltage, and neutral flow rate. Measurements of the energy cost per plasma ion suggest that this cost decreases with increasing magnetic field strength as a consequence of increased anode shielding from the primary electrons. Energy costs per argon plasma ion as low as 50 eV are measured. The energy cost per beam ion is found to be a function of the energy cost per plasma ion, extracted ion fraction, and discharge voltage. Part of the energy cost per beam ion has to do with creating many ions in the plasma and then extracting only a fraction of them into the beam. The balance of the energy goes into accelerating the remaining plasma ions into the walls of the discharge chamber.

  11. Magnetic field waves at Uranus

    NASA Technical Reports Server (NTRS)

    Smith, Charles W.; Goldstein, Melvyn L.; Lepping, Ronald P.; Mish, William H.; Wong, Hung K.

    1994-01-01

    The research efforts funded by the Uranus Data Analysis Program (UDAP) grant to the Bartol Research Institute (BRI) involved the study of magnetic field waves associated with the Uranian bow shock. Upstream wave studies are motivated as a study of the physics of collisionless shocks. Collisionless shocks in plasmas are capable of 'reflecting' a fraction of the incoming thermal particle distribution and directing the resulting energetic particle motion back into the upstream region. Once within the upstream region, the backward streaming energetic particles convey information of the approaching shock to the supersonic flow. This particle population is responsible for the generation of upstream magnetic and electrostatic fluctuations known as 'upstream waves', for slowing the incoming wind prior to the formation of the shock ramp, and for heating of the upstream plasma. The waves produced at Uranus not only differed in several regards from the observations at other planetary bow shocks, but also gave new information regarding the nature of the reflected particle populations which were largely unmeasurable by the particle instruments. Four distinct magnetic field wave types were observed upstream of the Uranian bow shock: low-frequency Alfven or fast magnetosonic waves excited by energetic protons originating at or behind the bow shock; whistler wave bursts driven by gyrating ion distributions within the shock ramp; and two whistler wave types simultaneously observed upstream of the flanks of the shock and argued to arise from resonance with energetic electrons. In addition, observations of energetic particle distributions by the LECP experiment, thermal particle populations observed by the PLS experiment, and electron plasma oscillations recorded by the PWS experiment proved instrumental to this study and are included to some degree in the papers and presentations supported by this grant.

  12. Magnetic Field Distribution for Massive Stars

    NASA Astrophysics Data System (ADS)

    Medvedev, A.; Kholtygin, A.

    2017-06-01

    A model of the evolution of an ensemble of magnetic massive stars on the main sequence is developed. We use our own population synthesis code, which allows us to obtain distributions of stars by radii, ages, masses, temperatures, effective magnetic fields, and magnetic fluxes from the pre-main sequence up to the TAMS stages. We assume that magnetic fields in massive stars decrease with time. The rate of magnetic field dissipation may depend on the mass of a star on ZAMS. The distribution of magnetic fluxes of the ZAMS stars is assumed to be log-normal. We show that such kind of distribution may be a result of the dynamo action occurring at the pre-MS evolutionary stage of magnetic stars. Our model also includes capabilities for statistical simulations and parameter estimation necessary for the analysis of real data. Comparison of model magnetic field distributions with those obtained from recent measurements of stellar magnetic fields allows us to conclude that the evolution of magnetic fields of massive stars is very slow if not absent. The shape of the real magnetic field distribution has no indications of the “magnetic desert,” previously suggested by Lignieres et al. (2014). Based on those findings we argue that the observed fraction of magnetic stars is determined only by physical conditions at early stages of stellar evolution.

  13. Magnetic Sensors with Picotesla Magnetic Field Sensitivity at Room Temperature

    DTIC Science & Technology

    2008-06-01

    concern MTJ - magnetic tunneling junction pT - the picotesla (10-12 tesla) SQUID - Superconducting quantum interference device MFC - magnetic flux...magnetic noise by annealing of MTJ in high magnetic field and a hydrogen environment, and (3) increasing signal by the use of external low-noise...indicate the reference layer pinning direction. Fig. 2 The structure of the magnetic tunnel junctions ( MTJs ) is 5 nm Ta / 5 nm

  14. Magnetic Trapping of Bacteria at Low Magnetic Fields

    PubMed Central

    Wang, Z. M.; Wu, R. G.; Wang, Z. P.; Ramanujan, R. V.

    2016-01-01

    A suspension of non-magnetic entities in a ferrofluid is referred to as an inverse ferrofluid. Current research to trap non-magnetic entities in an inverse ferrofluid focuses on using large permanent magnets to generate high magnetic field gradients, which seriously limits Lab-on-a-Chip applications. On the other hand, in this work, trapping of non-magnetic entities, e.g., bacteria in a uniform external magnetic field was studied with a novel chip design. An inverse ferrofluid flows in a channel and a non-magnetic island is placed in the middle of this channel. The magnetic field was distorted by this island due to the magnetic susceptibility difference between this island and the surrounding ferrofluid, resulting in magnetic forces applied on the non-magnetic entities. Both the ferromagnetic particles and the non-magnetic entities, e.g., bacteria were attracted towards the island, and subsequently accumulate in different regions. The alignment of the ferrimagnetic particles and optical transparency of the ferrofluid was greatly enhanced by the bacteria at low applied magnetic fields. This work is applicable to lab-on-a-chip based detection and trapping of non-magnetic entities bacteria and cells. PMID:27254771

  15. Magnetic Trapping of Bacteria at Low Magnetic Fields

    NASA Astrophysics Data System (ADS)

    Wang, Z. M.; Wu, R. G.; Wang, Z. P.; Ramanujan, R. V.

    2016-06-01

    A suspension of non-magnetic entities in a ferrofluid is referred to as an inverse ferrofluid. Current research to trap non-magnetic entities in an inverse ferrofluid focuses on using large permanent magnets to generate high magnetic field gradients, which seriously limits Lab-on-a-Chip applications. On the other hand, in this work, trapping of non-magnetic entities, e.g., bacteria in a uniform external magnetic field was studied with a novel chip design. An inverse ferrofluid flows in a channel and a non-magnetic island is placed in the middle of this channel. The magnetic field was distorted by this island due to the magnetic susceptibility difference between this island and the surrounding ferrofluid, resulting in magnetic forces applied on the non-magnetic entities. Both the ferromagnetic particles and the non-magnetic entities, e.g., bacteria were attracted towards the island, and subsequently accumulate in different regions. The alignment of the ferrimagnetic particles and optical transparency of the ferrofluid was greatly enhanced by the bacteria at low applied magnetic fields. This work is applicable to lab-on-a-chip based detection and trapping of non-magnetic entities bacteria and cells.

  16. Deformation of Water by a Magnetic Field

    ERIC Educational Resources Information Center

    Chen, Zijun; Dahlberg, E. Dan

    2011-01-01

    After the discovery that superconducting magnets could levitate diamagnetic objects, researchers became interested in measuring the repulsion of diamagnetic fluids in strong magnetic fields, which was given the name "The Moses Effect." Both for the levitation experiments and the quantitative studies on liquids, the large magnetic fields necessary…

  17. Exploring Magnetic Fields with a Compass

    ERIC Educational Resources Information Center

    Lunk, Brandon; Beichner, Robert

    2011-01-01

    A compass is an excellent classroom tool for the exploration of magnetic fields. Any student can tell you that a compass is used to determine which direction is north, but when paired with some basic trigonometry, the compass can be used to actually measure the strength of the magnetic field due to a nearby magnet or current-carrying wire. In this…

  18. Exploring Magnetic Fields with a Compass

    ERIC Educational Resources Information Center

    Lunk, Brandon; Beichner, Robert

    2011-01-01

    A compass is an excellent classroom tool for the exploration of magnetic fields. Any student can tell you that a compass is used to determine which direction is north, but when paired with some basic trigonometry, the compass can be used to actually measure the strength of the magnetic field due to a nearby magnet or current-carrying wire. In this…

  19. Deformation of Water by a Magnetic Field

    ERIC Educational Resources Information Center

    Chen, Zijun; Dahlberg, E. Dan

    2011-01-01

    After the discovery that superconducting magnets could levitate diamagnetic objects, researchers became interested in measuring the repulsion of diamagnetic fluids in strong magnetic fields, which was given the name "The Moses Effect." Both for the levitation experiments and the quantitative studies on liquids, the large magnetic fields necessary…

  20. Baryon onset in a magnetic field

    SciTech Connect

    Haber, Alexander; Preis, Florian; Schmitt, Andreas

    2016-01-22

    The critical baryon chemical potential for the onset of nuclear matter is a function of the vacuum mass and the binding energy. Both quantities are affected by an external magnetic field. We show within two relativistic mean-field models – including magnetic catalysis, but omitting the anomalous magnetic moment – that a magnetic field increases both the vacuum mass and the binding energy. For sufficiently large magnetic fields, the effect on the vacuum mass dominates and as a result the critical baryon chemical potential is increased.

  1. Magnetic field concentrator for probing optical magnetic metamaterials.

    PubMed

    Antosiewicz, Tomasz J; Wróbel, Piotr; Szoplik, Tomasz

    2010-12-06

    Development of all dielectric and plasmonic metamaterials with a tunable optical frequency magnetic response creates a need for new inspection techniques. We propose a method of measuring magnetic responses of such metamaterials within a wide range of optical frequencies with a single probe. A tapered fiber probe with a radially corrugated metal coating concentrates azimuthally polarized light in the near-field into a subwavelength spot the longitudinal magnetic field component which is much stronger than the perpendicular electric one. The active probe may be used in a future scanning near-field magnetic microscope for studies of magnetic responses of subwavelength elementary cells of metamaterials.

  2. Analysis of magnetic field levels at KSC

    NASA Technical Reports Server (NTRS)

    Christodoulou, Christos G.

    1994-01-01

    The scope of this work is to evaluate the magnetic field levels of distribution systems and other equipment at Kennedy Space Center (KSC). Magnetic fields levels in several operational areas and various facilities are investigated. Three dimensional mappings and contour are provided along with the measured data. Furthermore, the portion of magnetic fields generated by the 60 Hz fundamental frequency and the portion generated by harmonics are examined. Finally, possible mitigation techniques for attenuating fields from electric panels are discussed.

  3. Magnetic field gradiometer. Final technical report

    SciTech Connect

    Fraser-Smith, A.C.

    1983-02-01

    This report has two principal goals. First, to present a general review of magnetic field gradiometers and, second, to provide new data concerning these gradiometers, including new information about their response to magnetic dipole fields. A system of nomenclature is introduced that is consistent with the mathematical concept of gradient and which provides a basis for discussions of the different functions of magnetic field gradiometers and differential magnetometers. The distinction between component gradiometers and total field gradiometers is also stressed.

  4. MiMes and Magnetic Fields in Massive Stars

    NASA Astrophysics Data System (ADS)

    Petit, Veronique

    2013-06-01

    Massive star magnetism is often considered an astronomical ``wildcard'', as it is hard to predict in which stars it may occur. This reflects our fundamental ignorance of the origin of massive star magnetism, and compels us to better understand the scope of its influence on massive stars individually, and also as a population. In the last decade, our understanding of this phenomenon has made a giant leap forward thanks to a new generation of powerful spectropolarimeters capable of measuring the Zeeman effect in the spectra of these stars. Over the past 5 years, ambitious projects such as the Magnetism in Massive Stars (MiMeS) Collaboration have been seeking out magnetic massive stars in the Galaxy, to better understand their origins, physical properties, and how they influence observable stellar characteristics. In this talk, we review the general properties of OB star magnetism in the Galaxy, using recent MiMeS discoveries as examples. It is now clear that the magnetic properties of massive stars are established early in their evolution. This raises interesting and fundamental questions about the physics of stellar formation and connections with stellar magnetism, as MiMeS observations have established that about 1 in 15 Galactic OB stars hosts a magnetic field that is sufficiently strong to significantly influence its atmospheric and wind structure. Could your own mysterious and perplexing OB target be a magnetic massive star? To aid in answering this question, we review many of the outstanding or exotic properties exhibited by known magnetic OB stars that relate directly to their magnetic nature.

  5. Transient magnetic field and temperature modeling in large magnet applications

    SciTech Connect

    Gurol, H.; Hardy, G.E.; Peck, S.D.; Leung, E. . Space Systems Div.)

    1989-07-01

    This paper discusses a coupled magnetic/thermal model developed to study heat and magnetic field diffusion in conducting materials subject to time-varying external fields. There are numerous applications, both military and commercial. These include: energy storage devices, pulsed power transformers, and electromagnetic launchers. The time scales of interest may range from a magnetic field pulse of a microsecond in an electromagnetic launcher, to hundreds of seconds in an energy storage magnet. The problem can be dominated by either the magnetic field or heat diffusion, depending on the temperature and the material properties of the conductor. In general, heat diffuses much more rapidly in high electrical conductivity materials of cryogenic temperatures. The magnetic field takes longer to diffuse, since screening currents can be rapidly set up which shield the interior of the material from further magnetic field penetration. Conversely, in high resistivity materials, the magnetic field diffuses much more rapidly. A coupled two-dimensional thermal/magnetic model has been developed. The results of this model, showing the time and spatial variation of the magnetic field and temperature, are discussed for the projectile of an electromagnetic launcher.

  6. Abnormal Magnetic Field Effects on Electrogenerated Chemiluminescence

    NASA Astrophysics Data System (ADS)

    Pan, Haiping; Shen, Yan; Wang, Hongfeng; He, Lei; Hu, Bin

    2015-03-01

    We report abnormal magnetic field effects on electrogenerated chemiluminescence (MFEECL) based on triplet emission from the Ru(bpy)3Cl2-TPrA electrochemical system: the appearance of MFEECL after magnetic field ceases. In early studies the normal MFEECL have been observed from electrochemical systems during the application of magnetic field. Here, the abnormal MFEECL suggest that the activated charge-transfer [Ru(bpy)33+ … TPrA•] complexes may become magnetized in magnetic field and experience a long magnetic relaxation after removing magnetic field. Our analysis indicates that the magnetic relaxation can gradually increase the density of charge-transfer complexes within reaction region due to decayed magnetic interactions, leading to a positive component in the abnormal MFEECL. On the other hand, the magnetic relaxation facilitates an inverse conversion from triplets to singlets within charge-transfer complexes. The inverse triplet --> singlet conversion reduces the density of triplet light-emitting states through charge-transfer complexes and gives rise to a negative component in the abnormal MFEECL. The combination of positive and negative components can essentially lead to a non-monotonic profile in the abnormal MFEECL after ceasing magnetic field. Nevertheless, our experimental studies may reveal un-usual magnetic behaviors with long magnetic relaxation from the activated charge-transfer [Ru(bpy)33+ … TPrA•] complexes in solution at room temperature.

  7. Complex Scattered Radiation Fields And Multiple Magnetic Fields In The Protostellar Cluster In NGC 2264

    NASA Astrophysics Data System (ADS)

    KWON, Jungmi; Tamura, M.; Kandori, R.; Kusakabe, N.; Hashimoto, J.; Nakajima, Y.; Nakamura, F.; Nagayama, T.; Nagata, T.; Hough, J. H.; Werner, M. W.; Teixeira, P. S.

    2012-05-01

    Near-infrared imaging polarimetry in the J, H, and Ks bands has been carried out for the protostellar cluster region around NGC 2264 IRS 2 in the Monoceros OB1 molecular cloud. Various infrared reflection nebula clusters (IRNCs) associated with NGC 2264 IRS 2 and the IRAS 12 S1 core, as well as local infrared reflection nebulae (IRNe), were detected. The illuminating sources of the IRNe were identified with known or new near- and mid-infrared sources. In addition, 314 point-like sources were detected in all three bands and their aperture polarimetry was studied. Using a color-color diagram, reddened field stars and diskless pre-main-sequence stars were selected to trace the magnetic field structure of the molecular cloud. The mean polarization position angle of the point-like sources is 80 degrees in the cluster core, and 60 degrees in the perimeter of the cluster core, which is interpreted as the projected direction on the sky of the magnetic field in the observed region of the cloud. The Chandrasekhar-Fermi method gives a rough estimate of the magnetic field strength to be about 100 micro-Gauss. A comparison with recent numerical simulations of the cluster formation implies that the cloud dynamics is controlled by the relatively strong magnetic field. The local magnetic field direction is well associated with that of CO outflow for IRAS 12 S1 and consistent with that inferred from submillimeter polarimetry. In contrast, the local magnetic field direction runs roughly perpendicular to the Galactic magnetic field direction.

  8. Quark stars with strong magnetic fields: considering different magnetic field geometries

    NASA Astrophysics Data System (ADS)

    Wei, Wei; Liu, Xi-Wei; Zheng, Xiao-Ping

    2017-09-01

    We calculate the mass-radius relationship of quark stars with the magnetized density-dependent quark mass model in this work, considering two magnetic field geometries: a statistically isotropic, tangled field and a force-free configuration. In both cases, magnetic field production decreases in the case of maximum quark star mass. Furthermore, a tangled, isotropic magnetic field has a relatively smaller impact on the mass and radius, compared to the force-free configuration, which implies that the geometry of the interior magnetic field is at least as important as the field strength itself when the influence of the strong magnetic field on the mass and radius is assessed.

  9. Unique topological characterization of braided magnetic fields

    SciTech Connect

    Yeates, A. R.; Hornig, G.

    2013-01-15

    We introduce a topological flux function to quantify the topology of magnetic braids: non-zero, line-tied magnetic fields whose field lines all connect between two boundaries. This scalar function is an ideal invariant defined on a cross-section of the magnetic field, and measures the average poloidal magnetic flux around any given field line, or the average pairwise crossing number between a given field line and all others. Moreover, its integral over the cross-section yields the relative magnetic helicity. Using the fact that the flux function is also an action in the Hamiltonian formulation of the field line equations, we prove that it uniquely characterizes the field line mapping and hence the magnetic topology.

  10. Application peculiarities of magnetic materials for protection from magnetic fields

    NASA Astrophysics Data System (ADS)

    Wai, P.; Dmitrenko, V.; Grabchikov, S.; Vlasik, K.; Novikov, A.; Petrenko, D.; Trukhanov, V.; Ulin, S.; Uteshev, Z.; Chernysheva, V.; Shustov, A.

    2016-02-01

    In different materials for magnetic shields, the maximum permeability is achieved for different values of the magnetic field. This determines the choice of material. So for protection from magnetic fields strength of 10 - 150 A/m it is advisable to apply the amorphous ribbon 84KXCP. For stronger fields (more than 400 A/m) it is recommended to use MFS based on Ni20Fe80. Use of these materials allows creating an effective shield working in a wide range of magnetic field strengths.

  11. Bipolar pulse field for magnetic refrigeration

    DOEpatents

    Lubell, Martin S.

    1994-01-01

    A magnetic refrigeration apparatus includes first and second steady state magnets, each having a field of substantially equal strength and opposite polarity, first and second bodies made of magnetocaloric material disposed respectively in the influence of the fields of the first and second steady state magnets, and a pulsed magnet, concentric with the first and second steady state magnets, and having a field which cycles between the fields of the first and second steady state magnets, thereby cyclically magnetizing and demagnetizing and thus heating and cooling the first and second bodies. Heat exchange apparatus of suitable design can be used to expose a working fluid to the first and second bodies of magnetocaloric material. A controller is provided to synchronize the flow of working fluid with the changing states of magnetization of the first and second bodies.

  12. Bipolar pulse field for magnetic refrigeration

    DOEpatents

    Lubell, M.S.

    1994-10-25

    A magnetic refrigeration apparatus includes first and second steady state magnets, each having a field of substantially equal strength and opposite polarity, first and second bodies made of magnetocaloric material disposed respectively in the influence of the fields of the first and second steady state magnets, and a pulsed magnet, concentric with the first and second steady state magnets, and having a field which cycles between the fields of the first and second steady state magnets, thereby cyclically magnetizing and demagnetizing and thus heating and cooling the first and second bodies. Heat exchange apparatus of suitable design can be used to expose a working fluid to the first and second bodies of magnetocaloric material. A controller is provided to synchronize the flow of working fluid with the changing states of magnetization of the first and second bodies. 2 figs.

  13. Observed Faraday Effects in Damped Lyα Absorbers and Lyman Limit Systems: The Magnetized Environment of Galactic Building Blocks at Redshift = 2

    NASA Astrophysics Data System (ADS)

    Farnes, J. S.; Rudnick, L.; Gaensler, B. M.; Haverkorn, M.; O'Sullivan, S. P.; Curran, S. J.

    2017-06-01

    Protogalactic environments are typically identified using quasar absorption lines and can manifest as Damped Lyman-alpha Absorbers (DLAs) and Lyman Limit Systems (LLSs). We use radio observations of Faraday effects to test whether these galactic building blocks host a magnetized medium, by combining DLA and LLS detections with 1.4 GHz polarization data from the NRAO VLA Sky Survey (NVSS). We obtain a control, a DLA, and an LLS sample consisting of 114, 19, and 27 lines of sight, respectively. Using a Bayesian framework and weakly informative priors, we are unable to detect either coherent or random magnetic fields in DLAs: the regular coherent fields must be ≤slant 2.8 μG, and the lack of depolarization suggests the weakly magnetized gas in DLAs is non-turbulent and quiescent. However, we find a mild suggestive indication that LLSs have coherent magnetic fields, with a 71.5% probability that LLSs have higher | {RM}| than a control, although this is sensitive to the redshift distribution. We also find a strong indication that LLSs host random magnetic fields, with a 95.5% probability that LLS lines of sight have lower polarized fractions than a control. The regular coherent fields within the LLSs must be ≤slant 2.4 μG, and the magnetized gas must be highly turbulent with a typical turbulent length scale on the order of ≈5-20 pc. Our results are consistent with the standard dynamo paradigm, whereby magnetism in protogalaxies increases in coherence over cosmic time, and with a hierarchical galaxy formation scenario, with the DLAs and LLSs exploring different stages of magnetic field evolution in galaxies.

  14. Blue straggler stars in Galactic open clusters and the effect of field star contamination

    NASA Astrophysics Data System (ADS)

    Carraro, G.; Vázquez, R. A.; Moitinho, A.

    2008-05-01

    Context: We investigate the distribution of blue straggler stars in the field of three open star clusters. Aims: The main purpose is to highlight the crucial role played by general Galactic disk fore-/back-ground field stars, which are often located in the same region of the color magnitude diagram as blue straggler stars. Methods: We analyze photometry taken from the literature of 3 open clusters of intermediate/old age rich in blue straggler stars, which are projected in the direction of the Perseus arm, and study their spatial distribution and the color magnitude diagram. Results: As expected, we find that a large portion of the blue straggler population in these clusters are simply young field stars belonging to the spiral arm. This result has important consequences on the theories of the formation and statistics of blue straggler stars in different population environments: open clusters, globular clusters, or dwarf galaxies. Conclusions: As previously emphasized by many authors, a detailed membership analysis is mandatory before comparing the blue straggler population in star clusters to theoretical models. Moreover, these sequences of young field stars (blue plumes) are potentially powerful tracers of Galactic structure and they require further consideration.

  15. Strong intrinsic mixing in vortex magnetic fields.

    PubMed

    Martin, James E; Shea-Rohwer, Lauren; Solis, Kyle J

    2009-07-01

    We report a method of magnetic mixing wherein a "vortex" magnetic field applied to a suspension of magnetic particles creates strong homogeneous mixing throughout the fluid volume. Experiments designed to elucidate the microscopic mechanism of mixing show that the torque is quadratic in the field, decreases with field frequency, and is optimized at a vortex field angle of approximately 55 degrees . Theory and simulations indicate that the field-induced formation of volatile particle chains is responsible for these phenomena. This technique has applications in microfluidic devices and is ideally suited to applications such as accelerating the binding of target biomolecules to biofunctionalized magnetic microbeads.

  16. Resolved magnetic-field structure and variability near the event horizon of Sagittarius A.

    PubMed

    Johnson, Michael D; Fish, Vincent L; Doeleman, Sheperd S; Marrone, Daniel P; Plambeck, Richard L; Wardle, John F C; Akiyama, Kazunori; Asada, Keiichi; Beaudoin, Christopher; Blackburn, Lindy; Blundell, Ray; Bower, Geoffrey C; Brinkerink, Christiaan; Broderick, Avery E; Cappallo, Roger; Chael, Andrew A; Crew, Geoffrey B; Dexter, Jason; Dexter, Matt; Freund, Robert; Friberg, Per; Gold, Roman; Gurwell, Mark A; Ho, Paul T P; Honma, Mareki; Inoue, Makoto; Kosowsky, Michael; Krichbaum, Thomas P; Lamb, James; Loeb, Abraham; Lu, Ru-Sen; MacMahon, David; McKinney, Jonathan C; Moran, James M; Narayan, Ramesh; Primiani, Rurik A; Psaltis, Dimitrios; Rogers, Alan E E; Rosenfeld, Katherine; SooHoo, Jason; Tilanus, Remo P J; Titus, Michael; Vertatschitsch, Laura; Weintroub, Jonathan; Wright, Melvyn; Young, Ken H; Zensus, J Anton; Ziurys, Lucy M

    2015-12-04

    Near a black hole, differential rotation of a magnetized accretion disk is thought to produce an instability that amplifies weak magnetic fields, driving accretion and outflow. These magnetic fields would naturally give rise to the observed synchrotron emission in galaxy cores and to the formation of relativistic jets, but no observations to date have been able to resolve the expected horizon-scale magnetic-field structure. We report interferometric observations at 1.3-millimeter wavelength that spatially resolve the linearly polarized emission from the Galactic Center supermassive black hole, Sagittarius A*. We have found evidence for partially ordered magnetic fields near the event horizon, on scales of ~6 Schwarzschild radii, and we have detected and localized the intrahour variability associated with these fields. Copyright © 2015, American Association for the Advancement of Science.

  17. GROWTH OF A LOCALIZED SEED MAGNETIC FIELD IN A TURBULENT MEDIUM

    SciTech Connect

    Cho, Jungyeon; Yoo, Hyunju

    2012-11-10

    Turbulence dynamo deals with the amplification of a seed magnetic field in a turbulent medium and has been studied mostly for uniform or spatially homogeneous seed magnetic fields. However, some astrophysical processes (e.g., jets from active galaxies, galactic winds, or ram-pressure stripping in galaxy clusters) can provide localized seed magnetic fields. In this paper, we numerically study amplification of localized seed magnetic fields in a turbulent medium. Throughout the paper, we assume that the driving scale of turbulence is comparable to the size of the system. Our findings are as follows. First, turbulence can amplify a localized seed magnetic field very efficiently. The growth rate of magnetic energy density is as high as that for a uniform seed magnetic field. This result implies that magnetic field ejected from an astrophysical object can be a viable source of a magnetic field in a cluster. Second, the localized seed magnetic field disperses and fills the whole system very fast. If turbulence in a system (e.g., a galaxy cluster or a filament) is driven at large scales, we expect that it takes a few large-eddy turnover times for the magnetic field to fill the whole system. Third, growth and turbulence diffusion of a localized seed magnetic field are also fast in high magnetic Prandtl number turbulence. Fourth, even in decaying turbulence, a localized seed magnetic field can ultimately fill the whole system. Although the dispersal rate of the magnetic field is not fast in purely decaying turbulence, it can be enhanced by an additional forcing.

  18. Near field imaging of refraction via the magnetic field

    NASA Astrophysics Data System (ADS)

    Kanté, Boubacar; Germain, Dylan; de Lustrac, André

    2014-01-01

    We experimentally map positive and negative refractions by probing the magnetic field after the interaction of a complex metallo-dielectric composite with electromagnetic wave. The structure consists of coupled electric dipoles and negative refractive index is achieved exclusively from coupled localized resonances. By mapping out the magnetic field, negative refraction is directly observed from the three dimensional composite using a small magnetic antenna as local probe. Our work shows that light meta-matter interaction can be equally probed from magnetic light.

  19. Magnetic field waves at Uranus

    NASA Technical Reports Server (NTRS)

    Smith, Charles W.; Goldstein, Melvyn L.; Lepping, Ronald P.; Mish, William H.; Wong, Hung K.

    1991-01-01

    The proposed research efforts funded by the UDAP grant to the BRI involve the study of magnetic field waves associated with the Uranian bow shock. This is a collaborative venture bringing together investigators at the BRI, Southwest Research Institute (SwRI), and Goddard Space Flight Center (GSFC). In addition, other collaborations have been formed with investigators granted UDAP funds for similar studies and with investigators affiliated with other Voyager experiments. These investigations and the corresponding collaborations are included in the report. The proposed effort as originally conceived included an examination of waves downstream from the shock within the magnetosheath. However, the observations of unexpected complexity and diversity within the upstream region have necessitated that we confine our efforts to those observations recorded upstream of the bow shock on the inbound and outbound legs of the encounter by the Voyager 2 spacecraft.

  20. PIPER and Polarized Galactic Foregrounds

    NASA Technical Reports Server (NTRS)

    Chuss, David

    2009-01-01

    In addition to probing inflationary cosmology, PIPER will measure the polarized dust emission from the Galaxy. PIPER will be capable of full (I,0,U,V) measurement over four frequency bands ' These measurements will provide insight into the physics of dust grains and a probe of the Galactic magnetic field on large and intermediate scales.

  1. Representation of magnetic fields in space

    NASA Technical Reports Server (NTRS)

    Stern, D. P.

    1975-01-01

    Several methods by which a magnetic field in space can be represented are reviewed with particular attention to problems of the observed geomagnetic field. Time dependence is assumed to be negligible, and five main classes of representation are described by vector potential, scalar potential, orthogonal vectors, Euler potentials, and expanded magnetic field.

  2. DC-based magnetic field controller

    DOEpatents

    Kotter, D.K.; Rankin, R.A.; Morgan, J.P.

    1994-05-31

    A magnetic field controller is described for laboratory devices and in particular to dc operated magnetic field controllers for mass spectrometers, comprising a dc power supply in combination with improvements to a Hall probe subsystem, display subsystem, preamplifier, field control subsystem, and an output stage. 1 fig.

  3. DC-based magnetic field controller

    DOEpatents

    Kotter, Dale K.; Rankin, Richard A.; Morgan, John P,.

    1994-01-01

    A magnetic field controller for laboratory devices and in particular to dc operated magnetic field controllers for mass spectrometers, comprising a dc power supply in combination with improvements to a hall probe subsystem, display subsystem, preamplifier, field control subsystem, and an output stage.

  4. Trapped magnetic field measurements on HTS bulk by peak controlled pulsed field magnetization

    NASA Astrophysics Data System (ADS)

    Ida, Tetsuya; Watasaki, Masahiro; Kimura, Yosuke; Miki, Motohiro; Izumi, Mitsuru

    2010-06-01

    For the past several years, we have studied the high-temperature superconducting (HTS) synchronous motor assembled with melt-textured Gd-Ba-Cu-O bulk magnets. If the single pulse field magnetizes a bulk effectively, size of electrical motor will become small for the strong magnetic field of the HTS magnets without reducing output power of motor. In the previous study, we showed that the HTS bulk was magnetized to excellent cone-shape magnetic field distribution by using the waveform control pulse magnetization (WCPM) method. The WCPM technique made possible the active control of the waveform on which magnetic flux motion depended. We generated the pulse waveform with controlled risetime for HTS bulk magnetization to suppress the magnetic flux motion which decreases magnetization efficiency. The pulsed maximum magnetic flux density with slow risetime is not beyond the maximum magnetic flux density which is trapped by the static field magnetization. But, as for applying the pulse which has fast risetime, the magnetic flux which exceed greatly the threshold penetrates the bulk and causes the disorder of the trapped magnetic distribution. This fact suggests the possibility that the threshold at pulsed magnetization influences the dynamic magnetic flux motion. In this study, Gd-Ba-Cu-O bulk is magnetized by the controlled arbitrary trapezoidal shape pulse, of which the maximum magnetic flux density is controlled not to exceed the threshold. We will present the trapped magnetic characteristics and the technique to generate the controlled pulsed field.

  5. Static uniform magnetic fields and amoebae

    SciTech Connect

    Berk, S.G.; Srikanth, S.; Mahajan, S.M.; Ventrice, C.A.

    1997-03-01

    Three species of potentially pathogenic amoebae were exposed to 71 and 106.5 mT from constant homogeneous magnetic fields and examined for inhibition of population growth. The number of amoebae for three species was significantly less than controls after a 72 h exposure to the magnetic fields when the temperature was 20 C or above. Axenic cultures, i.e., cultures grown without bacteria, were significantly affected after only 24 h. In 20 of 21 tests using the three species, the magnetic field significantly inhibited the growth of amoebae. In one test in which the temperature was 20 C for 48 h, exposure to the magnetic field was not inhibitory. Final numbers of magnetic field-exposed amoebae ranged from 9 to 72% lower than the final numbers of unexposed controls, depending on the species. This research may lead to disinfection strategies utilizing magnetic fields for surfaces on which pathogenic amoebae may proliferate.

  6. Electric-field and magnetic-field sensors

    NASA Astrophysics Data System (ADS)

    Wieckowski, T. W.

    1993-05-01

    Analysis of double-loaded loop antennas and their properties has led to the design of new measuring sensors which enable has led to determination of both electric field strength and magnetic field strength. Sensors of the design proposed are applicable to a quasipoint measurement providing independent determination of the electric and magnetic component of the field.

  7. Magnetic field sensor for isotropically sensing an incident magnetic field in a sensor plane

    NASA Technical Reports Server (NTRS)

    Pant, Bharat B. (Inventor); Wan, Hong (Inventor)

    2001-01-01

    A magnetic field sensor that isotropically senses an incident magnetic field. This is preferably accomplished by providing a magnetic field sensor device that has one or more circular shaped magnetoresistive sensor elements for sensing the incident magnetic field. The magnetoresistive material used is preferably isotropic, and may be a CMR material or some form of a GMR material. Because the sensor elements are circular in shape, shape anisotropy is eliminated. Thus, the resulting magnetic field sensor device provides an output that is relatively independent of the direction of the incident magnetic field in the sensor plane.

  8. Nonlinear energy dissipation of magnetic nanoparticles in oscillating magnetic fields

    NASA Astrophysics Data System (ADS)

    Soto-Aquino, D.; Rinaldi, C.

    2015-11-01

    The heating of magnetic nanoparticle suspensions subjected to alternating magnetic fields enables a variety of emerging applications such as magnetic fluid hyperthermia and triggered drug release. Rosensweig (2002) [25] obtained a model for the heat dissipation rate of a collection of non-interacting particles. However, the assumptions made in this analysis make it rigorously valid only in the limit of small applied magnetic field amplitude and frequency (i.e., values of the Langevin parameter that are much less than unity and frequencies below the inverse relaxation time). In this contribution we approach the problem from an alternative point of view by solving the phenomenological magnetization relaxation equation exactly for the case of arbitrary magnetic field amplitude and frequency and by solving a more accurate magnetization relaxation equation numerically. We also use rotational Brownian dynamics simulations of non-interacting magnetic nanoparticles subjected to an alternating magnetic field to estimate the rate of energy dissipation and compare the results of the phenomenological theories to the particle-scale simulations. The results are summarized in terms of a normalized energy dissipation rate and show that Rosensweig's expression provides an upper bound on the energy dissipation rate achieved at high field frequency and amplitude. Estimates of the predicted dependence of energy dissipation rate, quantified as specific absorption rate (SAR), on magnetic field amplitude and frequency, and particle core and hydrodynamic diameter, are also given.

  9. Swarm: ESA's Magnetic Field Mission

    NASA Astrophysics Data System (ADS)

    Drinkwater, M. R.; Haagmans, R.; Floberghagen, R.; Plank, G.; Menard, Y.

    2011-12-01

    Swarm is the fifth Earth Explorer mission in ESA's Living Planet Programme, and is scheduled for launch in 2012. The objective of the Swarm mission is to provide the best-ever survey of the geomagnetic field and its temporal evolution using a constellation of 3 identical satellites. The Mission shall deliver data that allow access to new insights into the Earth system by improved scientific understanding of the Earth's interior and near-Earth electromagnetic environment. After launch and triple satellite release at an initial altitude of about 490 km, a pair of the satellites will fly side-by-side with slowly decaying altitude, while the third satellite will be lifted to 530 km to complete the Swarm constellation. High-precision and high-resolution measurements of the strength, direction and variation of the magnetic field, complemented by precise navigation, accelerometer and electric field measurements, will provide the observations required to separate and model various sources of the geomagnetic field and near-Earth current systems. The mission science goals are to provide a unique view into Earth core dynamics, mantle conductivity, crustal magnetisation, ionospheric and magnetospheric current systems and upper atmosphere dynamics - ranging from understanding the geodynamo to contributing to space weather. The scientific objectives and results from recent scientific studies will be presented. In addition the current status of the project, which is presently approaching the final stage of the development phase, will be addressed. A consortium of European scientific institutes is developing a distributed processing system to produce geophysical (Level 2) data products to the Swarm user community. The setup of Swarm ground segment and the contents of the data products will be addressed. More information on the Swarm mission can be found at the mission web site (see URL below).

  10. Nuclear Magnetic Resonance in the Earth's Magnetic Field

    NASA Astrophysics Data System (ADS)

    Hollos, Stefan; Hollos, Richard

    2002-10-01

    We will address the challenges of doing NMR in the Earth's magnetic field. The design of an Earth's field proton precession magnetometer will be presented along with some preliminary attempts to do spectroscopy with this device.

  11. Magnetic Field Observation around Current Path by Magnetic Force Microscopy

    NASA Astrophysics Data System (ADS)

    Saida, Daisuke; Takahashi, Takuji

    2004-07-01

    The magnetic field around a GaAs/AlGaAs mesa stripe induced by an AC current in the range of 0.3-15.6 μA was observed by magnetic force microscopy (MFM). To confirm the possibility of the vector decomposition of the current-induced magnetic field gradient, we compared the magnetic force signals in the cases of parallel and perpendicular configurations between the MFM cantilever and the current path. In addition, we proposed a novel way of eliminating some effects of electrostatic force, by which a good linearity in the magnetic force signals against the currents was achieved. The spatial resolution of this method was also discussed.

  12. Magnetically modified bioсells in constant magnetic field

    NASA Astrophysics Data System (ADS)

    Abramov, E. G.; Panina, L. K.; Kolikov, V. A.; Bogomolova, E. V.; Snetov, V. N.; Cherepkova, I. A.; Kiselev, A. A.

    2017-02-01

    Paper addresses the inverse problem in determining the area, where the external constant magnetic field captures the biological cells modified by the magnetic nanoparticles. Zero velocity isolines, in area where the modified cells are captured by the magnetic field were determined by numerical method for two locations of the magnet. The problem was solved taking into account the gravitational field, magnetic induction, density of medium, concentration and size of cells, and size and magnetization of nanoparticles attached to the cell. Increase in the number of the nanoparticles attached to the cell and decrease in the cell' size, enlarges the area, where the modified cells are captured and concentrated by the magnet. Solution is confirmed by the visible pattern formation of the modified cells Saccharomyces cerevisiae.

  13. Minimizing magnetic fields for precision experiments

    SciTech Connect

    Altarev, I.; Fierlinger, P.; Lins, T.; Marino, M. G.; Nießen, B.; Petzoldt, G.; Reisner, M.; Stuiber, S. Sturm, M.; Taggart Singh, J.; Taubenheim, B.; Rohrer, H. K.; Schläpfer, U.

    2015-06-21

    An increasing number of measurements in fundamental and applied physics rely on magnetically shielded environments with sub nano-Tesla residual magnetic fields. State of the art magnetically shielded rooms (MSRs) consist of up to seven layers of high permeability materials in combination with highly conductive shields. Proper magnetic equilibration is crucial to obtain such low magnetic fields with small gradients in any MSR. Here, we report on a scheme to magnetically equilibrate MSRs with a 10 times reduced duration of the magnetic equilibration sequence and a significantly lower magnetic field with improved homogeneity. For the search of the neutron's electric dipole moment, our finding corresponds to a 40% improvement of the statistical reach of the measurement. However, this versatile procedure can improve the performance of any MSR for any application.

  14. Operating a magnetic nozzle helicon thruster with strong magnetic field

    SciTech Connect

    Takahashi, Kazunori Komuro, Atsushi; Ando, Akira

    2016-03-15

    A pulsed axial magnetic field up to ∼2.8 kG is applied to a 26-mm-inner-diameter helicon plasma thruster immersed in a vacuum chamber, and the thrust is measured using a pendulum target. The pendulum is located 30-cm-downstream of the thruster, and the thruster rf power and argon flow rate are fixed at 1 kW and 70 sccm (which gives a chamber pressure of 0.7 mTorr). The imparted thrust increases as the applied magnetic field is increased and saturates at a maximum value of ∼9.5 mN for magnetic field above ∼2 kG. At the maximum magnetic field, it is demonstrated that the normalized plasma density, and the ion flow energy in the magnetic nozzle, agree within ∼50% and of 10%, respectively, with a one-dimensional model that ignores radial losses from the nozzle. This magnetic nozzle model is combined with a simple global model of the thruster source that incorporates an artificially controlled factor α, to account for radial plasma losses to the walls, where α = 0 and 1 correspond to zero losses and no magnetic field, respectively. Comparison between the experiments and the model implies that the radial losses in the thruster source are experimentally reduced by the applied magnetic field to about 10% of that obtained from the no magnetic field model.

  15. Magnetic field evolution in tidal disruption events

    NASA Astrophysics Data System (ADS)

    Bonnerot, Clément; Price, Daniel J.; Lodato, Giuseppe; Rossi, Elena M.

    2017-08-01

    When a star gets tidally disrupted by a supermassive black hole, its magnetic field is expected to pervade its debris. In this paper, we study this process via smoothed particle magnetohydrodynamical simulations of the disruption and early debris evolution including the stellar magnetic field. As the gas stretches into a stream, we show that the magnetic field evolution is strongly dependent on its orientation with respect to the stretching direction. In particular, an alignment of the field lines with the direction of stretching induces an increase of the magnetic energy. For disruptions happening well within the tidal radius, the star compression causes the magnetic field strength to sharply increase by an order of magnitude at the time of pericentre passage. If the disruption is partial, we find evidence for a dynamo process occurring inside the surviving core due to the formation of vortices. This causes an amplification of the magnetic field strength by a factor of ˜10. However, this value represents a lower limit since it increases with numerical resolution. For an initial field strength of 1 G, the magnetic field never becomes dynamically important. Instead, the disruption of a star with a strong 1 MG magnetic field produces a debris stream within which magnetic pressure becomes similar to gas pressure a few tens of hours after disruption. If the remnant of one or multiple partial disruptions is eventually fully disrupted, its magnetic field could be large enough to magnetically power the relativistic jet detected from Swift J1644+57. Magnetized streams could also be significantly thickened by magnetic pressure when it overcomes the confining effect of self-gravity.

  16. Bats Respond to Very Weak Magnetic Fields

    PubMed Central

    Tian, Lan-Xiang; Pan, Yong-Xin; Metzner, Walter; Zhang, Jin-Shuo; Zhang, Bing-Fang

    2015-01-01

    How animals, including mammals, can respond to and utilize the direction and intensity of the Earth’s magnetic field for orientation and navigation is contentious. In this study, we experimentally tested whether the Chinese Noctule, Nyctalus plancyi (Vespertilionidae) can sense magnetic field strengths that were even lower than those of the present-day geomagnetic field. Such field strengths occurred during geomagnetic excursions or polarity reversals and thus may have played an important role in the evolution of a magnetic sense. We found that in a present-day local geomagnetic field, the bats showed a clear preference for positioning themselves at the magnetic north. As the field intensity decreased to only 1/5th of the natural intensity (i.e., 10 μT; the lowest field strength tested here), the bats still responded by positioning themselves at the magnetic north. When the field polarity was artificially reversed, the bats still preferred the new magnetic north, even at the lowest field strength tested (10 μT), despite the fact that the artificial field orientation was opposite to the natural geomagnetic field (P<0.05). Hence, N. plancyi is able to detect the direction of a magnetic field even at 1/5th of the present-day field strength. This high sensitivity to magnetic fields may explain how magnetic orientation could have evolved in bats even as the Earth’s magnetic field strength varied and the polarity reversed tens of times over the past fifty million years. PMID:25922944

  17. Magnetic vector field tag and seal

    DOEpatents

    Johnston, Roger G.; Garcia, Anthony R.

    2004-08-31

    One or more magnets are placed in a container (preferably on objects inside the container) and the magnetic field strength and vector direction are measured with a magnetometer from at least one location near the container to provide the container with a magnetic vector field tag and seal. The location(s) of the magnetometer relative to the container are also noted. If the position of any magnet inside the container changes, then the measured vector fields at the these locations also change, indicating that the tag has been removed, the seal has broken, and therefore that the container and objects inside may have been tampered with. A hollow wheel with magnets inside may also provide a similar magnetic vector field tag and seal. As the wheel turns, the magnets tumble randomly inside, removing the tag and breaking the seal.

  18. Magnetic monopole field exposed by electrons

    NASA Astrophysics Data System (ADS)

    Béché, Armand; van Boxem, Ruben; van Tendeloo, Gustaaf; Verbeeck, Jo

    2014-01-01

    The experimental search for magnetic monopole particles has, so far, been in vain. Nevertheless, these elusive particles of magnetic charge have fuelled a rich field of theoretical study. Here, we created an approximation of a magnetic monopole in free space at the end of a long, nanoscopically thin magnetic needle. We experimentally demonstrate that the interaction of this approximate magnetic monopole field with a beam of electrons produces an electron vortex state, as theoretically predicted for a true magnetic monopole. This fundamental quantum mechanical scattering experiment is independent of the speed of the electrons and has consequences for all situations where electrons meet such monopole magnetic fields, as, for example, in solids. The set-up not only shows an attractive way to produce electron vortex states but also provides a unique insight into monopole fields and shows that electron vortices might well occur in unexplored solid-state physics situations.

  19. Simulation of Magnetic Field Guided Plasma Expansion

    NASA Astrophysics Data System (ADS)

    Ebersohn, Frans; Sheehan, J. P.; Gallimore, Alec; Shebalin, John

    2015-09-01

    Magnetic field guided expansion of a radio-frequency plasma was simulated with a quasi-one-dimensional particle-in-cell code. Two-dimensional effects were included in a one-dimensional particle-in-cell code by varying the cross-sectional area of the one dimensional domain and including forces due to the magnetic field. Acceleration of electrons by the magnetic field forces leads to the formation of potential structures which then accelerate the ions into a beam. Density changes due to the plasma expansion only weakly affect the ion acceleration. Rapidly diverging magnetic fields lead to more rapid acceleration and the electrons cool as they expand.

  20. Magnetic field spectrum at cosmological recombination revisited

    NASA Astrophysics Data System (ADS)

    Saga, Shohei; Ichiki, Kiyotomo; Takahashi, Keitaro; Sugiyama, Naoshi

    2015-06-01

    If vector type perturbations are present in the primordial plasma before recombination, the generation of magnetic fields is known to be inevitable through the Harrison mechanism. In the context of the standard cosmological perturbation theory, nonlinear couplings of first-order scalar perturbations create second-order vector perturbations, which generate magnetic fields. Here we reinvestigate the generation of magnetic fields at second-order in cosmological perturbations on the basis of our previous study, and extend it by newly taking into account the time evolution of purely second-order vector perturbations with a newly developed second-order Boltzmann code. We confirm that the amplitude of magnetic fields from the product-terms of the first-order scalar modes is consistent with the result in our previous study. However, we find, both numerically and analytically, that the magnetic fields from the purely second-order vector perturbations partially cancel out the magnetic fields from one of the product-terms of the first-order scalar modes, in the tight coupling regime in the radiation dominated era. Therefore, the amplitude of the magnetic fields on small scales, k ≳10 h Mpc-1 , is smaller than the previous estimates. The amplitude of the generated magnetic fields at cosmological recombination is about Brec=5.0 ×10-24 Gauss on k =5.0 ×10-1 h Mpc-1 . Finally, we discuss the reason for the discrepancies that exist in estimates of the amplitude of magnetic fields among other authors.

  1. Ferroelectric Cathodes in Transverse Magnetic Fields

    SciTech Connect

    Alexander Dunaevsky; Yevgeny Raitses; Nathaniel J. Fisch

    2002-07-29

    Experimental investigations of a planar ferroelectric cathode in a transverse magnetic field up to 3 kGs are presented. It is shown that the transverse magnetic field affects differently the operation of ferroelectric plasma cathodes in ''bright'' and ''dark'' modes in vacuum. In the ''bright'' mode, when the surface plasma is formed, the application of the transverse magnetic field leads to an increase of the surface plasma density. In the ''dark'' mode, the magnetic field inhibits the development of electron avalanches along the surface, as it does similarly in other kinds of surface discharges in the pre-breakdown mode.

  2. Microchannel plates phototubes in high magnetic field

    NASA Astrophysics Data System (ADS)

    Barnyakov, A. Yu.; Barnyakov, M. Yu.; Karpov, S. V.; Katcin, A. A.; Prisekin, V. G.

    2017-09-01

    Microchannel plate photomultiplier tubes (MCP PMT) can work in a high magnetic field and have an excellent time resolution. The influence of the magnetic fields up to 4 T on the parameters of several MCP PMTs of different designs was investigated. PMTs with two, three and four MCPs were tested in magnetic fields. The tested samples have different diameters of MCP pores: 3.5, 6, 8 and 10 microns. Dependencies of the time resolution, the gain and the photoelectron collection efficiency on the magnetic field are presented below.

  3. Thermodynamical instabilities under strong magnetic fields

    NASA Astrophysics Data System (ADS)

    Chen, Y. J.

    2017-03-01

    The thermodynamical instabilities of low densities in the n p matter and n p e matter are studied within several relativistic nuclear models under some values of magnetic fields. The results are compared between each other and the effects of the symmetry energy slope at saturation density on the instability are investigated. The instability regions can exhibit bands due to the presence of Landau levels for very strong magnetic fields of the order of 1017 G, while for weaker magnetic fields, the bands are replaced by many diffused or scattered pieces. It also shows that the proton fraction in the inner crust of neutron stars may be complex under strong magnetic fields.

  4. Flow Transitions in a Rotating Magnetic Field

    NASA Technical Reports Server (NTRS)

    Volz, M. P.; Mazuruk, K.

    1996-01-01

    Critical Rayleigh numbers have been measured in a liquid metal cylinder of finite height in the presence of a rotating magnetic field. Several different stability regimes were observed, which were determined by the values of the Rayleigh and Hartmann numbers. For weak rotating magnetic fields and small Rayleigh numbers, the experimental observations can be explained by the existence of a single non-axisymmetric meridional roll rotating around the cylinder, driven by the azimuthal component of the magnetic field. The measured dependence of rotational velocity on magnetic field strength is consistent with the existence of laminar flow in this regime.

  5. Variable magnetic field and temperature magnetic force microscopy

    NASA Astrophysics Data System (ADS)

    Mohanty, J.; Engel-Herbert, R.; Hesjedal, T.

    2005-11-01

    Magnetic force microscopy (MFM) studies of epitaxial MnAs films on GaAs(001) have been performed as a function of the applied magnetic field and the sample temperature. For this purpose, we combined a stable variable-temperature sample stage with a compact magnet assembly to fit a commercial magnetic force microscope. In order to keep the thermal drift that affects MFM measurements low, we employed a permanent magnet that can be rotated in a yoke assembly guiding the magnetic flux to the sample.

  6. Free oscillations of magnetic fluid in strong magnetic field

    NASA Astrophysics Data System (ADS)

    Polunin, V. M.; Ryapolov, P. A.; Platonov, V. B.; Kuz'ko, A. E.

    2016-05-01

    The paper presents the esults of measuring the elastic parameters of an oscillatory system (coefficient of pondermotive elasticity, damping factor, and oscillation frequency) whose viscous inertial element is represented by a magnetic fluid confined in a tube by magnetic levitation in a strong magnetic field. The role of elasticity is played by the pondermotive force acting on thin layers at the upper and lower ends of the fluid column. It is shown that, by measuring the elastic oscillation frequencies of the magnetic fluid column, it is possible to develop a fundamentally new absolute method for determining the saturation magnetization of a magnetic colloid.

  7. Magnetic Field Synthesis for Microwave Magnetics.

    DTIC Science & Technology

    1982-04-01

    layer is etched first with a potassium iodide soliuton, while the lower chromium layer is etched with a KMnO4 and sodium hydroxide solution. Finally, the...inhomogeneity in the saturation magnetization near the interface between the gadolinium gallium garnet and yttrium iron garnet could give rise to an

  8. Numerical analysis of magnetic field in superconducting magnetic energy storage

    SciTech Connect

    Kanamaru, Y. ); Amemiya, Y. )

    1991-09-01

    This paper reports that the superconducting magnetic energy storage (SMES) is more useful than the other systems of electric energy storage because of larger stored energy and higher efficiency. The other systems are the battery, the flywheel, the pumped-storage power station. Some models of solenoid type SMES are designed in U.S.A. and Japan. But a high magnetic field happens by the large scale SMES in the living environment, and makes the erroneous operations of the computer display, the pacemaker of the heart and the electronic equipments. We study some fit designs of magnetic shielding of the solenoidal type SMES for reduction of the magnetic field in living environment. When some superconducting shielding coils are over the main storage coil, magnetic field reduces remarkably than the case of non shielding coil. The calculated results of the magnetic field are obtained y the finite element method.

  9. Cosmological magnetic fields from inflation in extended electromagnetism

    SciTech Connect

    Beltran Jimenez, Jose; Maroto, Antonio L.

    2011-01-15

    In this work we consider an extended electromagnetic theory in which the scalar state which is usually eliminated by means of the Lorenz condition is allowed to propagate. This state has been shown to generate a small cosmological constant in the context of standard inflationary cosmology. Here we show that the usual Lorenz gauge-breaking term now plays the role of an effective electromagnetic current. Such a current is generated during inflation from quantum fluctuations and gives rise to a stochastic effective charge density distribution. Because of the high electric conductivity of the cosmic plasma after inflation, the electric charge density generates currents which give rise to both vorticity and magnetic fields on sub-Hubble scales. Present upper limits on vorticity coming from temperature anisotropies of the CMB are translated into lower limits on the present value of cosmic magnetic fields. We find that, for a nearly scale invariant vorticity spectrum, magnetic fields B{sub {lambda}>}10{sup -12} G are typically generated with coherence lengths ranging from subgalactic scales up to the present Hubble radius. Those fields could act as seeds for a galactic dynamo or even account for observations just by collapse and differential rotation of the protogalactic cloud.

  10. On the slow time geomagnetic field modulation of galactic cosmic rays

    NASA Astrophysics Data System (ADS)

    Okpala, Kingsley

    2016-07-01

    Cosmic rays of galactic origin are modulated by both heliospheric and geomagnetic conditions. The mutual (and mutually exclusive) contribution of both heliospheric and geomagnetic conditions to galactic cosmic rays (GCR) modulation is still an open question. While the rapid-time association of the galactic cosmic ray variation with different heliophysical and geophysical phenomena has been well studied, not so much attention has been paid to slow-time variations especially with regards to local effects. In this work, we employed monthly means of cosmic ray count rates from two mid latitude (Hermanus and Rome), and two higher latitude (Inuvik and Oulu) neutron monitors (NM), and compared their variability with geomagnetic stations that are in close proximity to the NMs. The data spans 1966 to 2008 and covers four (4) solar cycles. The difference (DeltaCR)between the mean count rate of all days and the mean of the five quietest days for each month was compared with the Dst-related disturbance (DeltaH) derived from the nearby geomagnetic stations. Zeroth- and First- correlation between the cosmic ray parameters and geomagnetic parameters was performed to ascertain statistical association and test for spurious association. Our results show that solar activity is generally strongly correlated (>0.75) with mean strength of GCR count rate and geomagnetic field during individual solar cycles. The correlation between mean strength of cosmic ray intensity and Geomagnetic field strength is spurious and is basically moderated by the solar activity. The signature of convection driven disturbances at high latitude geomagnetic stations was evident during the declining phase of the solar cycles close to the solar minimum. The absence of this feature in the slow-time varying cosmic ray count rates in all stations, and especially in the mid latitude geomagnetic stations suggest that the local geomagnetic disturbance contributes much less in modulating the cosmic ray flux.

  11. Reducing Field Distortion in Magnetic Resonance Imaging

    NASA Technical Reports Server (NTRS)

    Eom, Byeong Ho; Penanen, Konstantin; Hahn, Inseob

    2010-01-01

    A concept for a magnetic resonance imaging (MRI) system that would utilize a relatively weak magnetic field provides for several design features that differ significantly from the corresponding features of conventional MRI systems. Notable among these features are a magnetic-field configuration that reduces (relative to the conventional configuration) distortion and blurring of the image, the use of a superconducting quantum interference device (SQUID) magnetometer as the detector, and an imaging procedure suited for the unconventional field configuration and sensor. In a typical application of MRI, a radio-frequency pulse is used to excite precession of the magnetic moments of protons in an applied magnetic field, and the decaying precession is detected for a short time following the pulse. The precession occurs at a resonance frequency proportional to the strengths of the magnetic field and the proton magnetic moment. The magnetic field is configured to vary with position in a known way; hence, by virtue of the aforesaid proportionality, the resonance frequency varies with position in a known way. In other words, position is encoded as resonance frequency. MRI using magnetic fields weaker than those of conventional MRI offers several advantages, including cheaper and smaller equipment, greater compatibility with metallic objects, and higher image quality because of low susceptibility distortion and enhanced spin-lattice-relaxation- time contrast. SQUID MRI is being developed into a practical MRI method for applied magnetic flux densities of the order of only 100 T

  12. Magnetic field strength in solar coronal waveguides

    NASA Astrophysics Data System (ADS)

    Arregui, I.; Asensio Ramos, A.

    2017-03-01

    We applied Bayesian techniques to the problem of inferring the magnetic field strength in transversely oscillating solar coronal loops from observed periods and damping times. This was done by computing the marginal posterior probability density for parameters such as the waveguide density, the density contrast, the transverse inhomogeneity length scale, and the magnetic field strength under the assumption that the observed waves can be modelled as standing or propagating magnetohydrodynamic (MHD) kink modes of magnetic flux tubes. Our results indicate that the magnetic field strength can be inferred, even if the densities inside and outside the structure are largely unknown. When information on plasma density is available, the method enables to self-consistently include this knowledge to further constrain the inferred magnetic field strength. The inclusion of the observed oscillation damping enables to obtain information on the transverse density structuring and considerably alters the obtained posterior for the magnetic field strength.

  13. Ulysses observations of latitude gradients in the heliospheric magnetic field

    NASA Technical Reports Server (NTRS)

    Smith, E. J.; Balogh, A.; Lepping, R. P.; Neugebauer, M.; Phillips, J.; Tsurutani, B. T.

    1995-01-01

    Several parameters measured by Ulysses as it traveled southward to heliographic latitudes of -50 deg are presented and analyzed. The radial component of the magnetic field, averaged over 5 deg latitude increments and extrapolated back to 1 AU, is found to agree with baseline measurements provided by IMP-8. There is little, if any, evidence of a latitude gradient, a result consistent with the dominance of the magnetic field associated with the heliospheric current sheet and with recent models which include the effect of the current sheet as well as of source surface fields. Thus far, the spiral angle agrees with the Parker spiral assuming a rate of rotation of the field lines at the Sun equal to the equatorial value. No evidence is seen of either a change in rotation rate with latitude or an unwinding of the spiral as suggested by a recent analysis. Hourly variances in the field magnitude and in the sum of the variances in the components, normalized to the square of the observed field strenght, show the former to be independent of latitude while the latter shows a strong increase with latitude. These two observations are shown to be associated with Alfven waves that are continuously present at high latitudes. The waves have large amplitudes, extend to long periods, and have important implications for galactic cosmic rays and the solar wind.

  14. Magnetic field decay in model SSC dipoles

    SciTech Connect

    Gilbert, W.S.; Althaus, R.F.; Barale, P.J.; Benjegerdes, R.W.; Green, M.A.; Green, M.I.; Scanlan, R.M.

    1988-08-01

    We have observed that some of our model SSC dipoles have long time constant decays of the magnetic field harmonics with amplitudes large enough to result in significant beam loss, if they are not corrected. The magnets were run at constant current at the SSC injection field level of 0.3 tesla for one to three hours and changes in the magnetic field were observed. One explanation for the observed field decay is time dependent superconductor magnetization. Another explanation involves flux creep or flux flow. Data are presented on how the decay changes with previous flux history. Similar magnets with different Nb-Ti filament spacings and matrix materials have different long time field decay. A theoretical model using proximity coupling and flux creep for the observed field decay is discussed. 10 refs., 5 figs., 2 tabs.

  15. The Evolution of the Earth's Magnetic Field.

    ERIC Educational Resources Information Center

    Bloxham, Jeremy; Gubbins, David

    1989-01-01

    Describes the change of earth's magnetic field at the boundary between the outer core and the mantle. Measurement techniques used during the last 300 years are considered. Discusses the theories and research for explaining the field change. (YP)

  16. The Evolution of the Earth's Magnetic Field.

    ERIC Educational Resources Information Center

    Bloxham, Jeremy; Gubbins, David

    1989-01-01

    Describes the change of earth's magnetic field at the boundary between the outer core and the mantle. Measurement techniques used during the last 300 years are considered. Discusses the theories and research for explaining the field change. (YP)

  17. Magnetic Field Investigations During ROSETTA's Steins Flyby

    NASA Astrophysics Data System (ADS)

    Glassmeier, K.; Auster, H.; Richter, I.; Motschmann, U.; RPC/ROMAP Teams

    2009-05-01

    During the recent Steins flyby of the ROSETTA spacecraft magnetic field measurements have been made with both, the RPC orbiter magnetometer and the ROMAP lander magnetometer. These combined magnetic field measurements allow a detailed examination of any magnetic signatures caused either directly by the asteroid or indirectly by Steins different modes of interaction with the solar wind. Comparing our measurements with simulation results show that Steins does not possess a significant remanent magnetization. The magnetization is estimated at less than 1 mAm2/kg. This is significantly different from results at Braille and Gaspra.

  18. Supersolid phases in the magnetic fields

    NASA Astrophysics Data System (ADS)

    Wang, Ji-Guo; Yang, Shi-Jie

    2017-02-01

    We study the ground state phases of the ultracold atomic condensates loaded in a two-dimensional optical lattice with the magnetic fields. Apart from uniform superfluid (SF) phase, four types of supersolid (SS) phases in the presence of the uniform magnetic fluxes and two types of SS phases in the presence of the staggered magnetic fluxes are found. For the system without magnetic flux, except for a certain unit phase factor ϕ x (y) = π, the magnetic field has no effect on the system.

  19. Stochasticity from external magnetic field measurements

    SciTech Connect

    Castle, G.G.; Wootton, A.J. . Fusion Research Center)

    1994-08-01

    To determine whether or not magnetic field lines inside a tokamak plasma are stochastic the authors need the Fourier coefficients of any perturbing radial field inside the plasma. Usually what is measured with magnetic pick-up coils is the root mean square poloidal field outside the plasma. Although no unique transformation is available, they present a model which allows an interpretation of the measured (external) root mean square field in terms of the internal Fourier harmonics. The results are applied to particular TEXT discharges, and suggest a link between magnetic stochasticity and in increasing (more positive) radial electric field, as measured with a heavy ion beam probe.

  20. SAS-2 gamma-ray results from the galactic plane and their implications for galactic structure and galactic cosmic-ray dynamics

    NASA Technical Reports Server (NTRS)

    Fichtel, C. E.; Kniffen, D. A.; Thompson, D. J.

    1977-01-01

    The final SAS-2 results related to high energy galactic gamma-ray emission show a strong correlation with galactic structural features seen at other wavelenghts, when the known gamma-ray sources are subtracted. Theoretical considerations and analysis of the gamma-ray data suggest that the galactic cosmic rays are dynamically coupled to the interstellar matter through the magnetic fields, and hence the cosmic ray density is enhanced where the matter density is greatest on the scale of the galactic arms. This concept has been explored in a galactic model that assumes: (1) cosmic rays are galactic and not universal; (2)on the scale of the galactic arms, the cosmic ray column (surface) density is proportional to the total interstellar gas column density; (3)the cosmic ray scale height is significantly larger than the scale height to the matter; and (4) ours is a spiral galaxy characterized by an arm to interarm density ratio of over 2:1.

  1. Control of magnetism by electric fields.

    PubMed

    Matsukura, Fumihiro; Tokura, Yoshinori; Ohno, Hideo

    2015-03-01

    The electrical manipulation of magnetism and magnetic properties has been achieved across a number of different material systems. For example, applying an electric field to a ferromagnetic material through an insulator alters its charge-carrier population. In the case of thin films of ferromagnetic semiconductors, this change in carrier density in turn affects the magnetic exchange interaction and magnetic anisotropy; in ferromagnetic metals, it instead changes the Fermi level position at the interface that governs the magnetic anisotropy of the metal. In multiferroics, an applied electric field couples with the magnetization through electrical polarization. This Review summarizes the experimental progress made in the electrical manipulation of magnetization in such materials, discusses our current understanding of the mechanisms, and finally presents the future prospects of the field.

  2. Assembly of magnetic spheres in strong homogeneous magnetic field

    NASA Astrophysics Data System (ADS)

    Messina, René; Stanković, Igor

    2017-01-01

    The assembly in two dimensions of spherical magnets in strong magnetic field is addressed theoretically. It is shown that the attraction and assembly of parallel magnetic chains is the result of a delicate interplay of dipole-dipole interactions and short ranged excluded volume correlations. Minimal energy structures are obtained by numerical optimization procedure as well as analytical considerations. For a small number of constitutive magnets Ntot ≤ 26, a straight chain is found to be the ground state. In the regime of larger Ntot ≥ 27, the magnets form two touching chains with equally long tails at both ends. We succeed to identify the transition from two to three touching chains at Ntot = 129. Overall, this study sheds light on the mechanisms of the recently experimentally observed ribbon formation of superparamagnetic colloids via lateral aggregation of magnetic chains in magnetic field (Darras et al., 2016).

  3. Magnetization of disclinated graphene in nonuniform magnetic field

    NASA Astrophysics Data System (ADS)

    Roshanzamir-Nikou, M.; Goudarzi, H.

    2017-02-01

    Two-dimensional disclinated atomic graphene layer in curved space-time is exactly discussed, and the explicit dependence of Landau levels on the topological defect and external magnetic field are obtained in the presence of nonuniform magnetic field. It is worth mentioning that the presence of topological defect reduces the degeneracy of energy levels. The persistent current, magnetization, susceptibility and the magnetoresistance of structure are investigated. It can be shown that the curvature of the conical surface affects the pattern of oscillations of persistent current and, of course, corresponding magnetoresistance. The behavior of the above physical quantities as a function of magnetic flux is explicitly found for various defects. We observe that increasing magnetic field leads to a aperiodic oscillation. The large Aharonov-Bohm flux gives rise to vanish the magnetization oscillations.

  4. Magnetic field evolution of accreting neutron stars

    NASA Astrophysics Data System (ADS)

    Istomin, Y. N.; Semerikov, I. A.

    2016-01-01

    The flow of a matter, accreting on to a magnetized neutron star, is accompanied by an electric current. The closing of the electric current occurs in the crust of a neutron stars in the polar region across the magnetic field. But the conductivity of the crust along the magnetic field greatly exceeds the conductivity across the field, so the current penetrates deep into the crust down up to the superconducting core. The magnetic field, generated by the accretion current, increases greatly with the depth of penetration due to the Hall conductivity of the crust is also much larger than the transverse conductivity. As a result, the current begins to flow mainly in the toroidal direction, creating a strong longitudinal magnetic field, far exceeding an initial dipole field. This field exists only in the narrow polar tube of r width, narrowing with the depth, i.e. with increasing of the crust density ρ, r ∝ ρ-1/4. Accordingly, the magnetic field B in the tube increases with the depth, B∝ρ1/2, and reaches the value of about 1017 Gauss in the core. It destroys superconducting vortices in the core of a star in the narrow region of the size of the order of 10 cm. Because of generated density gradient of vortices, they constantly flow into this dead zone and the number of vortices decreases, the magnetic field of a star decreases as well. The attenuation of the magnetic field is exponential, B = B0(1 + t/τ)-1. The characteristic time of decreasing of the magnetic field τ is equal to τ ≃ 103 yr. Thus, the magnetic field of accreted neutron stars decreases to values of 108-109 Gauss during 107-106 yr.

  5. Single-layer high field dipole magnets

    SciTech Connect

    Vadim V. Kashikhin and Alexander V. Zlobin

    2001-07-30

    Fermilab is developing high field dipole magnets for post-LHC hadron colliders. Several designs with a nominal field of 10-12 T, coil bore size of 40-50 mm based on both shell-type and block-type coil geometry are currently under consideration. This paper presents a new approach to magnet design, based on simple and robust single-layer coils optimized for the maximum field, good field quality and minimum number of turns.

  6. Two-axis magnetic field sensor

    NASA Technical Reports Server (NTRS)

    Jander, Albrecht (Inventor); Nordman, Catherine A. (Inventor); Qian, Zhenghong (Inventor); Smith, Carl H. (Inventor)

    2006-01-01

    A ferromagnetic thin-film based magnetic field sensor with first and second sensitive direction sensing structures each having a nonmagnetic intermediate layer with two major surfaces on opposite sides thereof having a magnetization reference layer on one and an anisotropic ferromagnetic material sensing layer on the other having a length in a selected length direction and a smaller width perpendicular thereto and parallel to the relatively fixed magnetization direction. The relatively fixed magnetization direction of said magnetization reference layer in each is oriented in substantially parallel to the substrate but substantially perpendicular to that of the other. An annealing process is used to form the desired magnetization directions.

  7. Beginning stages of local magnetic field formation

    NASA Astrophysics Data System (ADS)

    Bumba, V.

    Based on a study of the initial stages of local magnetic field formation, the appearance of a new magnetic flux in the photosphere is studied. This magnetic flux is found to occur both under the influence of different modes of convective motion as well as under the action of Paleomagnetic fields. Waldmeier's Heliographic Maps of the Photosphere and Mt. Wilson Observatory daily magnetic maps were used in the analysis. Observed regularities could not be explained by a model of magnetic flux tubes emerging on the photospheric surface. This model can not account for the practically simultaneous development of separate active regions, belonging to different solar hemispheres and different cycles of solar activity in one, relatively narrow, 'unipolar' sector of the background field. It is also difficult to explain the different roles and velocities of negative and positive polarities during the formation of new magnetic fields. The importance of velocity measurements and maps for solving the observed phenomenon is stressed.

  8. The magnetic field of ζ Ori A

    NASA Astrophysics Data System (ADS)

    Blazère, A.; Neiner, C.; Bouret, J.-C.; Tkachenko, A.

    2015-01-01

    Magnetic fields play a significant role in the evolution of massive stars. About 7% of massive stars are found to be magnetic at a level detectable with current instrumentation (Wade et al. 2013) and only a few magnetic O stars are known. Detecting magnetic field in O stars is particularly challenging because they only have few, often broad, lines to measure the field, which leads to a deficit in the knowledge of the basic magnetic properties of O stars. We present new spectropolarimetric Narval observations of ζ Ori A. We also provide a new analysis of both the new and older data taking binarity into account. The aim of this study was to confirm the presence of a magnetic field in ζ Ori A. We identify that it belongs to ζ Ori Aa and characterize it.

  9. Modeling Magnetic Field Topology at Jupiter with the Khurana Magnetic Field Model

    NASA Astrophysics Data System (ADS)

    Cohen, I.; Bagenal, F.

    2008-12-01

    To explore the degree of coupling between the interplanetary magnetic field (IMF) and Jupiter's magnetosphere, we traced magnetic field lines from the polar region of the planet using the Khurana [1997, 2005] magnetic field model. We used a parameterized definition of the Jovian magnetopause created by Joy et al. [2002] that varies with the value of the solar wind dynamic pressure. We searched for field lines that cross the magnetopause and that potentially connect to the interplanetary magnetic field. We further explored the variation on magnetic field structure with local time orientation of Jupiter's dipole (i.e. Central Meridian Longitude) as well as upstream solar wind and IMF conditions.

  10. Disruption of coronal magnetic field arcades

    NASA Technical Reports Server (NTRS)

    Mikic, Zoran; Linker, Jon A.

    1994-01-01

    The ideal and resistive properties of isolated large-scale coronal magnetic arcades are studied using axisymmetric solutions of the time-dependent magnetohydrodynamic (MHD) equations in spherical geometry. We examine how flares and coronal mass ejections may be initiated by sudden disruptions of the magnetic field. The evolution of coronal arcades in response to applied shearing photospheric flows indicates that disruptive behavior can occur beyond a critical shear. The disruption can be traced to ideal MHD magnetic nonequilibrium. The magnetic field expands outward in a process that opens the field lines and produces a tangential discontinuity in the magnetic field. In the presence of plasma resistivity, the resulting current sheet is the site of rapid reconnection, leading to an impulsive release of magnetic energy, fast flows, and the ejection of a plasmoid. We relate these results to previous studies of force-free fields and to the properties of the open-field configuration. We show that the field lines in an arcade are forced open when the magnetic energy approaches (but is still below) the open-field energy, creating a partially open field in which most of the field lines extend away from the solar surface. Preliminary application of this model to helmet streamers indicates that it is relevant to the initiation of coronal mass ejections.

  11. Disruption of coronal magnetic field arcades

    NASA Technical Reports Server (NTRS)

    Mikic, Zoran; Linker, Jon A.

    1994-01-01

    The ideal and resistive properties of isolated large-scale coronal magnetic arcades are studied using axisymmetric solutions of the time-dependent magnetohydrodynamic (MHD) equations in spherical geometry. We examine how flares and coronal mass ejections may be initiated by sudden disruptions of the magnetic field. The evolution of coronal arcades in response to applied shearing photospheric flows indicates that disruptive behavior can occur beyond a critical shear. The disruption can be traced to ideal MHD magnetic nonequilibrium. The magnetic field expands outward in a process that opens the field lines and produces a tangential discontinuity in the magnetic field. In the presence of plasma resistivity, the resulting current sheet is the site of rapid reconnection, leading to an impulsive release of magnetic energy, fast flows, and the ejection of a plasmoid. We relate these results to previous studies of force-free fields and to the properties of the open-field configuration. We show that the field lines in an arcade are forced open when the magnetic energy approaches (but is still below) the open-field energy, creating a partially open field in which most of the field lines extend away from the solar surface. Preliminary application of this model to helmet streamers indicates that it is relevant to the initiation of coronal mass ejections.

  12. Fluctuating magnetic field induced resonant activation

    SciTech Connect

    Mondal, Shrabani; Das, Sudip; Baura, Alendu; Bag, Bidhan Chandra

    2014-12-14

    In this paper, we have studied the properties of a Brownian particle at stationary state in the presence of a fluctuating magnetic field. Time dependence of the field makes the system thermodynamically open. As a signature of that the steady state distribution function becomes function of damping strength, intensity of fluctuations and constant parts of the applied magnetic field. It also depends on the correlation time of the fluctuating magnetic field. Our another observation is that the random magnetic field can induce the resonant activation phenomenon. Here correlation time is increased under the fixed variance of the fluctuating field. But if the correlation time (τ) increases under the fixed field strength then the mean first passage time rapidly grows at low τ and it almost converges at other limit. This is sharp contrast to the usual colored noise driven open system case where the mean first passage time diverges exponentially. We have also observed that a giant enhancement of barrier crossing rate occurs particularly at large strength of constant parts of the applied magnetic field even for very weak fluctuating magnetic field. Finally, break down of the Arrhenius result and disappearance of the Kramers’ turn over phenomenon may occur in the presence of a fluctuating magnetic field.

  13. An 84-microG magnetic field in a galaxy at redshift z = 0.692.

    PubMed

    Wolfe, Arthur M; Jorgenson, Regina A; Robishaw, Timothy; Heiles, Carl; Prochaska, Jason X

    2008-10-02

    The magnetic field pervading our Galaxy is a crucial constituent of the interstellar medium: it mediates the dynamics of interstellar clouds, the energy density of cosmic rays, and the formation of stars. The field associated with ionized interstellar gas has been determined through observations of pulsars in our Galaxy. Radio-frequency measurements of pulse dispersion and the rotation of the plane of linear polarization, that is, Faraday rotation, yield an average value for the magnetic field of B approximately 3 microG (ref. 2). The possible detection of Faraday rotation of linearly polarized photons emitted by high-redshift quasars suggests similar magnetic fields are present in foreground galaxies with redshifts z > 1. As Faraday rotation alone, however, determines neither the magnitude nor the redshift of the magnetic field, the strength of galactic magnetic fields at redshifts z > 0 remains uncertain. Here we report a measurement of a magnetic field of B approximately 84 microG in a galaxy at z = 0.692, using the same Zeeman-splitting technique that revealed an average value of B = 6 microG in the neutral interstellar gas of our Galaxy. This is unexpected, as the leading theory of magnetic field generation, the mean-field dynamo model, predicts large-scale magnetic fields to be weaker in the past rather than stronger.

  14. Magnetic fields in Neutron Stars

    NASA Astrophysics Data System (ADS)

    Viganò, D.; Pons, J. A.; Miralles, J. A.; Rea, N.

    2015-05-01

    Isolated neutron stars show a diversity in timing and spectral properties, which has historically led to a classification in different sub-classes. The magnetic field plays a key role in many aspects of the neutron star phenomenology: it regulates the braking torque responsible for their timing properties and, for magnetars, it provides the energy budget for the outburst activity and high quiescent luminosities (usually well above the rotational energy budget). We aim at unifying this observational variety by linking the results of the state-of-the-art 2D magneto-thermal simulations with observational data. The comparison between theory and observations allows to place two strong constraints on the physical properties of the inner crust. First, strong electrical currents must circulate in the crust, rather than in the star core. Second, the innermost part of the crust must be highly resistive, which is in principle in agreement with the presence of a novel phase of matter so-called nuclear pasta phase.

  15. Interplanetary stream magnetism: Kinematic effects. [solar magnetic fields and wind

    NASA Technical Reports Server (NTRS)

    Burlaga, L. F.; Barouch, E.

    1974-01-01

    The particle density, and the magnetic field intensity and direction are calculated in corotating streams of the solar wind, assuming that the solar wind velocity is constant and radial and that its azimuthal variations are not two rapid. The effects of the radial velocity profile in corotating streams on the magnetic fields were examined using kinematic approximation and a variety of field configurations on the inner boundary. Kinematic and dynamic effects are discussed.

  16. Paramagnetic ellipsoidal microswimmer in a magnetic field

    NASA Astrophysics Data System (ADS)

    Sandoval, Mario; Fan, Louis; Pak, On Shun

    We study the two-dimensional Brownian dynamics of an ellipsoidal paramagnetic microswimmer moving at low-Reynolds-number and subject to a magnetic field. Its corresponding mean-square displacement tensor showing the effect of particles's shape, activity and magnetic field, on the microswimmer's diffusion is analytically obtained. A comparison among analytical and computational results is also made and we obtain excellent agreement.

  17. Magnetic Fields at the Center of Coils

    ERIC Educational Resources Information Center

    Binder, Philippe; Hui, Kaleonui; Goldman, Jesse

    2014-01-01

    In this note we synthesize and extend expressions for the magnetic field at the center of very short and very long current-carrying coils. Elementary physics textbooks present the following equation for the magnetic field inside a very long current-carrying coil (solenoid): B[subscript sol] = µ[subscript 0] (N/L) I, (1) where I is the current, N…

  18. Magnetic Fields at the Center of Coils

    ERIC Educational Resources Information Center

    Binder, Philippe; Hui, Kaleonui; Goldman, Jesse

    2014-01-01

    In this note we synthesize and extend expressions for the magnetic field at the center of very short and very long current-carrying coils. Elementary physics textbooks present the following equation for the magnetic field inside a very long current-carrying coil (solenoid): B[subscript sol] = µ[subscript 0] (N/L) I, (1) where I is the current, N…

  19. On interplanetary electric and magnetic fields

    NASA Astrophysics Data System (ADS)

    Alekseev, I. I.; Kropotkin, A. P.; Veselovskii, I. S.

    1982-08-01

    A kinematic model of the stationary electromagnetic fields in interplanetary space with finite conductivity is considered. The electrodynamic problem is solved for a medium with uniform conductivity and radial plasma outflow from a spherical source. Simple analytical formulae are obtained for electric and magnetic fields, currents and charges in the case of a uniformly-magnetized rotating sphere.

  20. Vacuum magnetic fields with dense flux surfaces

    SciTech Connect

    Cary, J R

    1982-05-01

    A procedure is given for eliminating resonances and stochasticity in nonaxisymmetric vacuum toroidal magnetic field. The results of this procedure are tested by the surface of section method. It is found that one can obtain magnetic fields with increased rotational transform and decreased island structure while retaining basically the same winding law.

  1. Solar Magnetic Field: Zeeman and Hanle Effects

    NASA Astrophysics Data System (ADS)

    Stenflo, J.; Murdin, P.

    2001-10-01

    An external magnetic field causes the atomic energy levels to split into different sublevels, and the emitted radiation becomes polarized. This phenomenon is called the ZEEMAN EFFECT. When atoms in a magnetic field scatter radiation via bound-bound transitions, the phase relations or quantum interferences between the Zeeman-split sublevels give rise to POLARIZATION phenomena that go under the nam...

  2. Permanent magnet edge-field quadrupole

    DOEpatents

    Tatchyn, Roman O.

    1997-01-01

    Planar permanent magnet edge-field quadrupoles for use in particle accelerating machines and in insertion devices designed to generate spontaneous or coherent radiation from moving charged particles are disclosed. The invention comprises four magnetized rectangular pieces of permanent magnet material with substantially similar dimensions arranged into two planar arrays situated to generate a field with a substantially dominant quadrupole component in regions close to the device axis.

  3. Permanent magnet edge-field quadrupole

    DOEpatents

    Tatchyn, R.O.

    1997-01-21

    Planar permanent magnet edge-field quadrupoles for use in particle accelerating machines and in insertion devices designed to generate spontaneous or coherent radiation from moving charged particles are disclosed. The invention comprises four magnetized rectangular pieces of permanent magnet material with substantially similar dimensions arranged into two planar arrays situated to generate a field with a substantially dominant quadrupole component in regions close to the device axis. 10 figs.

  4. Mechanics of magnetic fluid column in strong magnetic fields

    NASA Astrophysics Data System (ADS)

    Polunin, V. M.; Ryapolov, P. A.; Platonov, V. B.

    2017-06-01

    Elastic-and magnetic properties of magnetic fluid confined by ponderomotive force in a tube fixed in horizontal position are considered. The system is placed in a strong magnetic field under the influence of external static and dynamic perturbations. An experimental setup has been developed. A theoretical basis of the processes of magnetic colloid elastic deformation has been proposed. The values of the static ponderomotive elasticity coefficient and the elasticity coefficient under dynamic action are experimentally determined. The calculations of the saturation magnetization for two magnetic fluid samples, carried out according to the equation containing the dynamic elasticity coefficient, are in good agreement with the experimental magnetization curve. The described method is of interest when studying magnetophoresis and aggregation of nanoparticles in magnetic colloids.

  5. In vivo heating of magnetic nanoparticles in alternating magnetic field.

    PubMed

    Babincová, M; Altanerová, V; Altaner, C; Cicmanec, P; Babinec, P

    2004-08-01

    We have evaluated heating capabilities of new magnetic nanoparticles. In in vitro experiments they were exposed to an alternating magnetic field with frequency 3.5 MHz and induction 1.5 mT produced in three turn pancake coil. In in vivo experiments rats with injected magnetic nanoparticles were also exposed to an ac field. An optimal increase of temperature of the tumor to 44 degrees C was achieved after 10 minutes of exposure. Obtained results showed that magnetic nanoparticles may be easily heated in vitro as well as in vivo, and may be therefore useful for hyperthermic therapy of cancer.

  6. Energy of magnetic moment of superconducting current in magnetic field

    NASA Astrophysics Data System (ADS)

    Gurtovoi, V. L.; Nikulov, A. V.

    2015-09-01

    The energy of magnetic moment of the persistent current circulating in superconducting loop in an externally produced magnetic field is not taken into account in the theory of quantization effects because of identification of the Hamiltonian with the energy. This identification misleads if, in accordance with the conservation law, the energy of a state is the energy expended for its creation. The energy of magnetic moment is deduced from a creation history of the current state in magnetic field both in the classical and quantum case. But taking this energy into account demolishes the agreement between theory and experiment. Impartial consideration of this problem discovers the contradiction both in theory and experiment.

  7. Three-dimensional structure of the magnetic field in the disk of the Milky Way

    NASA Astrophysics Data System (ADS)

    Ordog, A.; Brown, J. C.; Kothes, R.; Landecker, T. L.

    2017-07-01

    Aims: We present rotation measures (RM) of the diffuse Galactic synchrotron emission from the Canadian Galactic Plane Survey (CGPS) and compare them to RMs of extragalactic sources in order to study the large-scale reversal in the Galactic magnetic field (GMF). Methods: Using Stokes Q, U and I measurements of the Galactic disk collected with the Synthesis Telescope at the Dominion Radio Astrophysical Observatory, we calculate RMs over an extended region of the sky, focusing on the low longitude range of the CGPS (ℓ = 52° to ℓ = 72°). Results: We note the similarity in the structures traced by the compact sources and the extended emission and highlight the presence of a gradient in the RM map across an approximately diagonal line, which we identify with the well-known field reversal of the Sagittarius-Carina arm. We suggest that the orientation of this reversal is a geometric effect resulting from our location within a GMF structure arising from current sheets that are not perpendicular to the Galactic plane, as is required for a strictly radial field reversal, but that have at least some component parallel to the disk. Examples of models that fit this description are the three-dimensional dynamo-based model of Gressel et al. (2013, A&A, 560, A93) and a Galactic scale Parker spiral (Akasofu & Hakamada 1982, ApJ, 253, 552), although the latter may be problematic in terms of Galactic dynamics. Conclusions: We emphasize the importance of constructing three-dimensional models of the GMF to account for structures like the diagonal RM gradient observed in this dataset.

  8. Orienting Paramecium with intense static magnetic fields

    NASA Astrophysics Data System (ADS)

    Valles, James M., Jr.; Guevorkian, Karine; Quindel, Carl

    2004-03-01

    Recent experiments on cell division suggest the application of intense static magnetic fields as a novel tool for the manipulation of biological systems [1]. The magnetic field appears to couple to the intrinsic anisotropies in the diamagnetic components of the cells. Here, we present measurements of the intrinsic average diamagnetic anisotropy of the whole single celled ciliate, Paramecium Caudatum. Magnetic fields, 2.5 T < B < 8 T were applied to immobilized (non-swimming) Paramecium Caudatum that were suspended in a density matched medium. The organisms align with their long axis parallel to the applied magnetic field. Their intrinsic diamagnetic anisotropy is 3x10-11 in cgs units. We will discuss the implications of these results for employing magnetic fields to probe the behavior of swimming Paramecium. [1] J. M. Valles, Jr. et al., Expt. Cell Res.274, 112-118 (2002).

  9. Tracing magnetic field orientation in starless cores

    NASA Astrophysics Data System (ADS)

    Maheswar, G.; Ramaprakash, A. N.; Lee, C. W.; Dib, S.

    It is now well understood that stars are formed in the interiors of dense, gravitationally bound molecular cloud cores that are both magnetized and turbulent. But the relative role played by the magnetic field and the turbulence in cloud formation and evolution and in the subsequent star formation is a matter of debate. In a magnetically dominated scenario, the magnetic field geometry of the cores is expected to be inherited unchanged from their low-density envelope, even for an hour glass geometry of the field, unless the action of turbulence disturbs it. We carried out polarimetry of stars projected on starless molecular clouds, LDN 183 and LDN 1544, in R-filter. The comparison of these fields with those in the interiors of the cloud cores inferred from the sub-mm polarization shows that both magnetic field and turbulence are important in the cloud formation and evolution of star formation.

  10. Chaotic magnetic fields: Particle motion and energization

    SciTech Connect

    Dasgupta, Brahmananda; Ram, Abhay K.; Li, Gang; Li, Xiaocan

    2014-02-11

    Magnetic field line equations correspond to a Hamiltonian dynamical system, so the features of a Hamiltonian systems can easily be adopted for discussing some essential features of magnetic field lines. The integrability of the magnetic field line equations are discussed by various authors and it can be shown that these equations are, in general, not integrable. We demonstrate several examples of realistic chaotic magnetic fields, produced by asymmetric current configurations. Particular examples of chaotic force-free field and non force-free fields are shown. We have studied, for the first time, the motion of a charged particle in chaotic magnetic fields. It is found that the motion of a charged particle in a chaotic magnetic field is not necessarily chaotic. We also showed that charged particles moving in a time-dependent chaotic magnetic field are energized. Such energization processes could play a dominant role in particle energization in several astrophysical environments including solar corona, solar flares and cosmic ray propagation in space.

  11. AAOmega spectroscopy of 29 351 stars in fields centered on ten Galactic globular clusters

    NASA Astrophysics Data System (ADS)

    Lane, R. R.; Kiss, L. L.; Lewis, G. F.; Ibata, R. A.; Siebert, A.; Bedding, T. R.; Székely, P.; Szabó, G. M.

    2011-06-01

    Galactic globular clusters have been pivotal in our understanding of many astrophysical phenomena. Here we publish the extracted stellar parameters from a recent large spectroscopic survey of ten globular clusters. A brief review of the project is also presented. Stellar parameters have been extracted from individual stellar spectra using both a modified version of the RAdial Velocity Experiment (RAVE) pipeline and a pipeline based on the parameter estimation method of RAVE. We publish here all parameters extracted from both pipelines. We calibrate the metallicity and convert this to [Fe/H] for each star and, furthermore, we compare the velocities and velocity dispersions of the Galactic stars in each field to the Besançon Galaxy model. We find that the model does not correspond well with the data, indicating that the model is probably of little use for comparisons with pencil beam survey data such as this. The data described in Tables 1-3 are only available at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/530/A31

  12. Bending of magnetic filaments under a magnetic field

    NASA Astrophysics Data System (ADS)

    Shcherbakov, Valera P.; Winklhofer, Michael

    2004-12-01

    Magnetic beads and superparamagnetic (SP) colloid particles have successfully been employed for micromechanical manipulation of soft material, in situ probing of elastic properties, and design of smart materials (ferrogels). Here we derive analytical expressions for the equilibrium shape of magnetic fibers, considering two end-member cases, (a) SP or single-domain particles concentrated at the free end of cantilevered rods or tubes, and (b) filaments consisting of SP particles, with this case being mathematically equivalent to tubes containing SP particles. Our analysis yields also metastable equilibrium states (MES’s), which only exist above a critical filament length, but become more stable with increasing magnetic field. The MES’s for case (a) are, like the ground state, circular arcs, but more strongly bent. The multiform MES’s in case (b), which comprise hairpin, sinuous, or even closed shapes, have recently been observed in experiments, too. We also study the effect of gravity on the balance between bending and magnetic energy, which leads to curves with inflection point if the influence of gravity is stronger than that of the magnetic field. Because of their simple experimental realization, case (a) magnetic filaments are deemed highly suitable for micromechanical experiments on long chains of polymer molecules. Another potential application of cantilevered magnetic filaments with magnetic material attached to the free end is in scanning probe microscopes. Because the magnetic field due to the magnetic tip is comparatively weak, the magnetization structure of the sample to be investigated would not be affected by the probe. Thus, for the examination of magnetically soft materials, probes in the form of magnetic filaments may hold advantages over tips usually employed in magnetic force microscopy.

  13. Bending of magnetic filaments under a magnetic field.

    PubMed

    Shcherbakov, Valera P; Winklhofer, Michael

    2004-12-01

    Magnetic beads and superparamagnetic (SP) colloid particles have successfully been employed for micromechanical manipulation of soft material, in situ probing of elastic properties, and design of smart materials (ferrogels). Here we derive analytical expressions for the equilibrium shape of magnetic fibers, considering two end-member cases, (a) SP or single-domain particles concentrated at the free end of cantilevered rods or tubes, and (b) filaments consisting of SP particles, with this case being mathematically equivalent to tubes containing SP particles. Our analysis yields also metastable equilibrium states (MES's), which only exist above a critical filament length, but become more stable with increasing magnetic field. The MES's for case (a) are, like the ground state, circular arcs, but more strongly bent. The multiform MES's in case (b), which comprise hairpin, sinuous, or even closed shapes, have recently been observed in experiments, too. We also study the effect of gravity on the balance between bending and magnetic energy, which leads to curves with inflection point if the influence of gravity is stronger than that of the magnetic field. Because of their simple experimental realization, case (a) magnetic filaments are deemed highly suitable for micromechanical experiments on long chains of polymer molecules. Another potential application of cantilevered magnetic filaments with magnetic material attached to the free end is in scanning probe microscopes. Because the magnetic field due to the magnetic tip is comparatively weak, the magnetization structure of the sample to be investigated would not be affected by the probe. Thus, for the examination of magnetically soft materials, probes in the form of magnetic filaments may hold advantages over tips usually employed in magnetic force microscopy.

  14. Formation of magnetically anisotropic composite films at low magnetic fields

    NASA Astrophysics Data System (ADS)

    Ghazi Zahedi, Maryam; Ennen, Inga; Marchi, Sophie; Barthel, Markus J.; Hütten, Andreas; Athanassiou, Athanassia; Fragouli, Despina

    2017-04-01

    We present a straightforward two-step technique for the fabrication of poly (methyl methacrylate) composites with embedded aligned magnetic chains. First, ferromagnetic microwires are realized in a poly (methyl methacrylate) solution by assembling iron nanoparticles in a methyl methacrylate solution under heat in an external magnetic field of 160 mT. The simultaneous thermal polymerization of the monomer throughout the wires is responsible for their permanent linkage and stability. Next, the polymer solution containing the randomly dispersed microwires is casted on a solid substrate in the presence of a low magnetic field (20-40 mT) which induces the final alignment of the microwires into long magnetic chains upon evaporation of the solvent. We prove that the presence of the nanoparticles assembled in the form of microwires is a key factor for the formation of the anisotropic films under low magnetic fields. In fact, such low fields are not capable of driving and assembling dispersed magnetic nanoparticles in the same type of polymer solutions. Hence, this innovative approach can be utilized for the synthesis of magnetically anisotropic nanocomposite films at low magnetic fields.

  15. Central Magnetic Field of a Magnetic White Dwarf Star

    NASA Astrophysics Data System (ADS)

    Shah, Hridaya; Sebastian, Kunnat

    2017-07-01

    Observations of over-luminous Type 1a supernovae have prompted researchers to come up with various hypotheses in order to explain them. One hypothesis is based on the explosion of a progenitor super-massive magnetic white dwarf star. These stars are assumed to have very strong magnetic fields inside of them. However, there is a lack of analytic proof of the existence of such magnetic fields in the magnetic white dwarf stars. In this work, we plan to address an analytic proof of the existence of very strong magnetic fields in the center of these magnetic white dwarfs. We will see that for a one Landau-level white dwarf star, with central density {10}9{--}{10}11 {{g}} {{cm}}-3, it is possible to have central magnetic fields of the order of {10}13{--}{10}15G at least. In the presence of strong magnetic fields, the threshold densities chosen for this work that correspond to instabilities due to general relativity and pycnonuclear reactions have been found to increase so that the matter does not acquire instability at such central densities.

  16. Warm inflation in presence of magnetic fields

    SciTech Connect

    Piccinelli, Gabriella; Ayala, Alejandro; Mizher, Ana Julia

    2013-07-23

    We present preliminary results on the possible effects that primordial magnetic fields can have for a warm inflation scenario, based on global supersymmetry, with a new-inflation-type potential. This work is motivated by two considerations: first, magnetic fields seem to be present in the universe on all scales which rises de possibility that they could also permeate the early universe; second, the recent emergence of inflationary models where the inflaton is not assumed to be isolated but instead it is taken as an interacting field, even during the inflationary expansion. The effects of magnetic fields are included resorting to Schwinger's proper time method.

  17. Teaching Representation Translations with Magnetic Field Experiments

    NASA Astrophysics Data System (ADS)

    Tillotson, Wilson Andrew; McCaskey, Timothy; Nasser, Luis

    2017-01-01

    We have developed a laboratory exercise designed to help students translate between different field representations. It starts with students qualitatively mapping field lines for various bar magnet configurations and continues with a Hall probe experiment in which students execute a series of scaffolded tasks, culminating in the prediction and measurement of the spatial variation of magnetic field components along a line near magnets. We describe the experimental tasks, various difficulties students have throughout, and ways this lab makes even their incorrect predictions better. We suggest that developing lab activities of this nature brings a new dimension to the ways students learn and interact with field concepts.

  18. The magnetic field of ζ Orionis A

    NASA Astrophysics Data System (ADS)

    Blazère, A.; Neiner, C.; Tkachenko, A.; Bouret, J.-C.; Rivinius, Th.

    2015-10-01

    Context. ζ Ori A is a hot star claimed to host a weak magnetic field, but no clear magnetic detection was obtained so far. In addition, it was recently shown to be a binary system composed of a O9.5I supergiant and a B1IV star. Aims: We aim at verifying the presence of a magnetic field in ζ Ori A, identifying to which of the two binary components it belongs (or whether both stars are magnetic), and characterizing the field. Methods: Very high signal-to-noise spectropolarimetric data were obtained with Narval at the Bernard Lyot Telescope (TBL) in France. Archival HEROS, FEROS and UVES spectroscopic data were also used. The data were first disentangled to separate the two components. We then analyzed them with the least-squares deconvolution technique to extract the magnetic information. Results: We confirm that ζ Ori A is magnetic. We find that the supergiant component ζ Ori Aa is the magnetic component: Zeeman signatures are observed and rotational modulation of the longitudinal magnetic field is clearly detected with a period of 6.829 d. This is the only magnetic O supergiant known as of today. With an oblique dipole field model of the Stokes V profiles, we show that the polar field strength is ~140 G. Because the magnetic field is weak and the stellar wind is strong, ζ Ori Aa does not host a centrifugally supported magnetosphere. It may host a dynamical magnetosphere. Its companion ζ Ori Ab does not show any magnetic signature, with an upper limit on the undetected field of ~300 G. Based on observations obtained at the Télescope Bernard Lyot (USR5026) operated by the Observatoire Midi-Pyrénées, Université de Toulouse (Paul Sabatier), Centre National de la Recherche Scientifique of France.Appendix A is available in electronic form at http://www.aanda.org

  19. Magnetic fields in noninvasive brain stimulation.

    PubMed

    Vidal-Dourado, Marcos; Conforto, Adriana Bastos; Caboclo, Luis Otávio Sales Ferreira; Scaff, Milberto; Guilhoto, Laura Maria de Figueiredo Ferreira; Yacubian, Elza Márcia Targas

    2014-04-01

    The idea that magnetic fields could be used therapeutically arose 2000 years ago. These therapeutic possibilities were expanded after the discovery of electromagnetic induction by the Englishman Michael Faraday and the American Joseph Henry. In 1896, Arsène d'Arsonval reported his experience with noninvasive brain magnetic stimulation to the scientific French community. In the second half of the 20th century, changing magnetic fields emerged as a noninvasive tool to study the nervous system and to modulate neural function. In 1985, Barker, Jalinous, and Freeston presented transcranial magnetic stimulation, a relatively focal and painless technique. Transcranial magnetic stimulation has been proposed as a clinical neurophysiology tool and as a potential adjuvant treatment for psychiatric and neurologic conditions. This article aims to contextualize the progress of use of magnetic fields in the history of neuroscience and medical sciences, until 1985.

  20. Field Mapping System for Solenoid Magnet

    NASA Astrophysics Data System (ADS)

    Park, K. H.; Jung, Y. K.; Kim, D. E.; Lee, H. G.; Park, S. J.; Chung, C. W.; Kang, B. K.

    2007-01-01

    A three-dimensional Hall probe mapping system for measuring the solenoid magnet of PLS photo-cathode RF e-gun has been developed. It can map the solenoid field either in Cartesian or in cylindrical coordinate system with a measurement reproducibility better than 5 × 10-5 T. The system has three axis motors: one for the azimuthal direction and the other two for the x and z direction. This architecture makes the measuring system simple in fabrication. The magnetic center was calculated using the measured axial component of magnetic field Bz in Cartesian coordinate system because the accuracy of magnetic axis measurement could be improved significantly by using Bz, instead of the radial component of magnetic field Br. This paper describes the measurement system and summarizes the measurement results for the solenoid magnetic of PLS photo-cathode RF e-gun.

  1. Magnetic-field-controlled reconfigurable semiconductor logic.

    PubMed

    Joo, Sungjung; Kim, Taeyueb; Shin, Sang Hoon; Lim, Ju Young; Hong, Jinki; Song, Jin Dong; Chang, Joonyeon; Lee, Hyun-Woo; Rhie, Kungwon; Han, Suk Hee; Shin, Kyung-Ho; Johnson, Mark

    2013-02-07

    Logic devices based on magnetism show promise for increasing computational efficiency while decreasing consumed power. They offer zero quiescent power and yet combine novel functions such as programmable logic operation and non-volatile built-in memory. However, practical efforts to adapt a magnetic device to logic suffer from a low signal-to-noise ratio and other performance attributes that are not adequate for logic gates. Rather than exploiting magnetoresistive effects that result from spin-dependent transport of carriers, we have approached the development of a magnetic logic device in a different way: we use the phenomenon of large magnetoresistance found in non-magnetic semiconductors in high electric fields. Here we report a device showing a strong diode characteristic that is highly sensitive to both the sign and the magnitude of an external magnetic field, offering a reversible change between two different characteristic states by the application of a magnetic field. This feature results from magnetic control of carrier generation and recombination in an InSb p-n bilayer channel. Simple circuits combining such elementary devices are fabricated and tested, and Boolean logic functions including AND, OR, NAND and NOR are performed. They are programmed dynamically by external electric or magnetic signals, demonstrating magnetic-field-controlled semiconductor reconfigurable logic at room temperature. This magnetic technology permits a new kind of spintronic device, characterized as a current switch rather than a voltage switch, and provides a simple and compact platform for non-volatile reconfigurable logic devices.

  2. Sensitivity of magnetic field gradients over Fennoscandia

    NASA Astrophysics Data System (ADS)

    Baykiev, Eldar; Ebbing, Jörg; Brönner, Marco; Fabian, Karl

    2016-04-01

    Magnetic fields from forward calculations of global crustal or lithospheric models cannot be compared easily with spherical harmonic (SH) crustal field models derived from the satellite observations. The reason for this is, that the lithospheric field has a significant part in the low-degree spherical harmonics (n<14) that are dominated by the core field. These low-degree harmonics are commonly zeroed out to retrieve the lithospheric magnetic field. In addition, at satellite height far-field effects from sources outside a regional study affect the long-wavelength part of the magnetic field. Because magnetic field gradients are less sensitive to the long wavelength anomalies, they are also less affected by the far field. However, the gradients still contain information about deep lithospheric structures. We present sensitivity tests based on a synthetic model of the Fennoscandian lithosphere to validate the influence of induced and remanent magnetization in magnetic data at the height of airborne surveys and satellite missions. The use of airborne data and satellite data is complementary because, due to their different height, they are sensitive to different depth domains. To correctly account for global and local aspects of the lithospheric field, our analysis is based on surface discretization by tesseroids (spherical prisms).

  3. THE INTERSTELLAR MAGNETIC FIELD CLOSE TO THE SUN. II

    SciTech Connect

    Frisch, P. C.; Andersson, B-G; Berdyugin, A.; Piirola, V.; DeMajistre, R.; Funsten, H. O.; Magalhaes, A. M.; Seriacopi, D. B.; McComas, D. J.; Schwadron, N. A.; Slavin, J. D.; Wiktorowicz, S. J.

    2012-12-01

    The magnetic field in the local interstellar medium (ISM) provides a key indicator of the galactic environment of the Sun and influences the shape of the heliosphere. We have studied the interstellar magnetic field (ISMF) in the solar vicinity using polarized starlight for stars within 40 pc of the Sun and 90 Degree-Sign of the heliosphere nose. In Frisch et al. (Paper I), we developed a method for determining the local ISMF direction by finding the best match to a group of interstellar polarization position angles obtained toward nearby stars, based on the assumption that the polarization is parallel to the ISMF. In this paper, we extend the analysis by utilizing weighted fits to the position angles and by including new observations acquired for this study. We find that the local ISMF is pointed toward the galactic coordinates l, b =47 Degree-Sign {+-} 20 Degree-Sign , 25 Degree-Sign {+-} 20 Degree-Sign . This direction is close to the direction of the ISMF that shapes the heliosphere, l, b =33 Degree-Sign {+-} 4 Degree-Sign , 55 Degree-Sign {+-} 4 Degree-Sign , as traced by the center of the 'Ribbon' of energetic neutral atoms discovered by the Interstellar Boundary Explorer (IBEX) mission. Both the magnetic field direction and the kinematics of the local ISM are consistent with a scenario where the local ISM is a fragment of the Loop I superbubble. A nearby ordered component of the local ISMF has been identified in the region l Almost-Equal-To 0 Degree-Sign {yields} 80 Degree-Sign and b Almost-Equal-To 0 Degree-Sign {yields} 30 Degree-Sign , where PlanetPol data show a distance-dependent increase of polarization strength. The ordered component extends to within 8 pc of the Sun and implies a weak curvature in the nearby ISMF of {approx}0.{sup 0}25 pc{sup -1}. This conclusion is conditioned on the small sample of stars available for defining this rotation. Variations from the ordered component suggest a turbulent component of {approx}23 Degree-Sign . The ordered

  4. Dynamic Magnetic Field Applications for Materials Processing

    NASA Technical Reports Server (NTRS)

    Mazuruk, K.; Grugel, Richard N.; Motakef, S.; Whitaker, Ann F. (Technical Monitor)

    2001-01-01

    Magnetic fields, variable in time and space, can be used to control convection in electrically conducting melts. Flow induced by these fields has been found to be beneficial for crystal growth applications. It allows increased crystal growth rates, and improves homogeneity and quality. Particularly beneficial is the natural convection damping capability of alternating magnetic fields. One well-known example is the rotating magnetic field (RMF) configuration. RMF induces liquid motion consisting of a swirling basic flow and a meridional secondary flow. In addition to crystal growth applications, RMF can also be used for mixing non-homogeneous melts in continuous metal castings. These applied aspects have stimulated increasing research on RMF-induced fluid dynamics. A novel type of magnetic field configuration consisting of an axisymmetric magnetostatic wave, designated the traveling magnetic field (TMF), has been recently proposed. It induces a basic flow in the form of a single vortex. TMF may find use in crystal growth techniques such as the vertical Bridgman (VB), float zone (FZ), and the traveling heater method. In this review, both methods, RMF and TMF are presented. Our recent theoretical and experimental results include such topics as localized TMF, natural convection dumping using TMF in a vertical Bridgman configuration, the traveling heater method, and the Lorentz force induced by TMF as a function of frequency. Experimentally, alloy mixing results, with and without applied TMF, will be presented. Finally, advantages of the traveling magnetic field, in comparison to the more mature rotating magnetic field method, will be discussed.

  5. INTERSTELLAR MAGNETIC FIELD SURROUNDING THE HELIOPAUSE

    SciTech Connect

    Whang, Y. C.

    2010-02-20

    This paper presents a three-dimensional analytical solution, in the limit of very low plasma beta-ratio, for the distortion of the interstellar magnetic field surrounding the heliopause. The solution is obtained using a line dipole method that is the integration of point dipole along a semi-infinite line; it represents the magnetic field caused by the presence of the heliopause. The solution allows the variation of the undisturbed magnetic field at any inclination angle. The heliosphere is considered as having blunt-nosed geometry on the upwind side and it asymptotically approaches a cylindrical geometry having an open exit for the continuous outflow of the solar wind on the downwind side. The heliopause is treated as a magnetohydrodynamic tangential discontinuity; the interstellar magnetic field lines at the boundary are tangential to the heliopause. The interstellar magnetic field is substantially distorted due to the presence of the heliopause. The solution shows the draping of the field lines around the heliopause. The magnetic field strength varies substantially near the surface of the heliopause. The effect on the magnetic field due to the presence of the heliopause penetrates very deep into the interstellar space; the depth of penetration is of the same order of magnitude as the scale length of the heliosphere.

  6. Dynamic Magnetic Field Applications for Materials Processing

    NASA Technical Reports Server (NTRS)

    Mazuruk, K.; Grugel, Richard N.; Motakef, S.; Whitaker, Ann F. (Technical Monitor)

    2001-01-01

    Magnetic fields, variable in time and space, can be used to control convection in electrically conducting melts. Flow induced by these fields has been found to be beneficial for crystal growth applications. It allows increased crystal growth rates, and improves homogeneity and quality. Particularly beneficial is the natural convection damping capability of alternating magnetic fields. One well-known example is the rotating magnetic field (RMF) configuration. RMF induces liquid motion consisting of a swirling basic flow and a meridional secondary flow. In addition to crystal growth applications, RMF can also be used for mixing non-homogeneous melts in continuous metal castings. These applied aspects have stimulated increasing research on RMF-induced fluid dynamics. A novel type of magnetic field configuration consisting of an axisymmetric magnetostatic wave, designated the traveling magnetic field (TMF), has been recently proposed. It induces a basic flow in the form of a single vortex. TMF may find use in crystal growth techniques such as the vertical Bridgman (VB), float zone (FZ), and the traveling heater method. In this review, both methods, RMF and TMF are presented. Our recent theoretical and experimental results include such topics as localized TMF, natural convection dumping using TMF in a vertical Bridgman configuration, the traveling heater method, and the Lorentz force induced by TMF as a function of frequency. Experimentally, alloy mixing results, with and without applied TMF, will be presented. Finally, advantages of the traveling magnetic field, in comparison to the more mature rotating magnetic field method, will be discussed.

  7. The earth's magnetic field: Its history, origin and planetary perspective

    NASA Astrophysics Data System (ADS)

    Merrill, R. T.; McElhinny, M. W.

    The history of geomagnetism and palaeomagnetism is examined, and an analysis and description of the present geomagnetic field is presented. The magnetic compass is discussed along with declination, inclination, secular variation, magnetic charts and the search for the poles, fossil magnetism and the magnetic field in the past, transient magnetic variations regarding the external magnetic field, the origin of the earth's magnetic field, magnetic elements and charts, a spherical harmonic analysis description of the earth's magnetic field, uniqueness and other mathematical problems, geomagnetic secular variation, and the external magnetic field. Other topics explored are elated to the fundamentals of palaeomagnetism, palaeomagnetic observations regarding the recent geomagnetic field, reversals of the earth's magnetic field, the time-averaged palaeomagnetic field, the origin of the earth's magnetic field, advanced dynamo theory, the origin of secular variation and field reversals, lunar magnetism, and magnetic fields of the sun, planets, and meteorites.

  8. Decay of Resonaces in Strong Magnetic Field

    NASA Astrophysics Data System (ADS)

    Filip, Peter

    2015-08-01

    We suggest that decay properties (branching ratios) of hadronic resonances may become modified in strong external magnetic field. The behavior of K±*, K0* vector mesons as well as Λ* (1520) and Ξ0* baryonic states is considered in static fields 1013-1015 T. In particular, n = 0 Landau level energy increase of charged particles in the external magnetic field, and the interaction of hadron magnetic moments with the field is taken into account. We suggest that enhanced yield of dileptons and photons from ρ0(770) mesons may occur if strong decay channel ρ0 → π+π- is significantly suppressed. CP - violating π+π- decays of pseudoscalar ηc and η(547) mesons in the magnetic field are discussed, and superpositions of quarkonium states ηc,b and χc,b(nP) with Ψ(nS), ϒ(nS) mesons in the external field are considered.

  9. The Measurement of Magnetic Fields

    ERIC Educational Resources Information Center

    Berridge, H. J. J.

    1973-01-01

    Discusses five experimental methods used by senior high school students to provide an accurate calibration curve of magnet current against the magnetic flux density produced by an electromagnet. Compares the relative merits of the five methods, both as measurements and from an educational viewpoint. (JR)

  10. The Measurement of Magnetic Fields

    ERIC Educational Resources Information Center

    Berridge, H. J. J.

    1973-01-01

    Discusses five experimental methods used by senior high school students to provide an accurate calibration curve of magnet current against the magnetic flux density produced by an electromagnet. Compares the relative merits of the five methods, both as measurements and from an educational viewpoint. (JR)

  11. The GIRAFFE Inner Bulge Survey (GIBS). III. Metallicity distributions and kinematics of 26 Galactic bulge fields

    NASA Astrophysics Data System (ADS)

    Zoccali, M.; Vasquez, S.; Gonzalez, O. A.; Valenti, E.; Rojas-Arriagada, A.; Minniti, J.; Rejkuba, M.; Minniti, D.; McWilliam, A.; Babusiaux, C.; Hill, V.; Renzini, A.

    2017-02-01

    Context. Several recent studies have demonstrated that the Galactic bulge hosts two components with different mean metallicities, and possibly different spatial distribution and kinematics. As a consequence, both the metallicity distribution and the radial velocity of bulge stars vary across different lines of sight. Aims: We present here the metallicity distribution function of red clump stars in 26 fields spread across a wide area of the bulge, with special emphasis on fields close to Galactic plane, at latitudes b = -2° and b = -1°, that have not been explored before. Methods: This paper includes new metallicities from a sample of approximately 5000 K giant stars, observed at spectral resolution R 6500, in the Calcium II Triplet region. These represent the main dataset from the GIRAFFE Inner Bulge Survey. As part of the same survey we have previously published results for a sample of approximately 600 K giant stars, at latitude b -4°, derived from higher resolution spectra (R = 22 500). Results: The combined sample allows us to trace and characterize the metal poor and metal rich bulge populations down to the inner bulge. We present a density map for each of the two components. Contrary to expectations from previous works, we found the metal poor population to be more centrally concentrated than the metal rich one, and with a more axisymmetric spatial distribution. The metal rich population, on the other hand, is arranged in a boxy distribution, consistent with an edge-on bar. By coupling metallicities and radial velocities we show that the metal poor population has a velocity dispersion that varies rather mildly with latitude. On the contrary, the metal rich population has a low velocity dispersion far from the plane (b = -8.5°), yet has a steeper gradient with latitude, becoming higher than the metal poor one in the innermost field (b = -1°). Conclusions: This work provides new observational constraints on the actual chemodynamical properties of the

  12. External-field-free magnetic biosensor

    SciTech Connect

    Li, Yuanpeng; Wang, Yi; Klein, Todd; Wang, Jian-Ping

    2014-03-24

    In this paper, we report a magnetic nanoparticle (MNP) detection scheme without the presence of any external magnetic field. The proposed magnetic sensor uses a patterned groove structure within the sensor so that no external magnetic field is needed to magnetize the MNPs. An example is given based on a giant magnetoresistance (GMR) sensing device with a spin valve structure. For this structure, the detection of MNPs located inside the groove and near the free layer is demonstrated under no external magnetic field. Micromagnetic simulations are performed to calculate the signal to noise level of this detection scheme. A maximum signal to noise ratio (SNR) of 18.6 dB from one iron oxide magnetic nanoparticle with 8 nm radius is achieved. As proof of concept, this external-field-free GMR sensor with groove structure of 200 nm × 200 nm is fabricated using a photo and an electron beam integrated lithography process. Using this sensor, the feasibility demonstration of the detection SNR of 9.3 dB is achieved for 30 μl magnetic nanoparticles suspension (30 nm iron oxide particles, 1 mg/ml). This proposed external-field-free sensor structure is not limited to GMR devices and could be applicable to other magnetic biosensing devices.

  13. Ohm's law for mean magnetic fields

    SciTech Connect

    Boozer, A.H.

    1984-11-01

    Spatially complicated magnetic fields are frequently treated as the sum of a large, slowly varying, mean field and a small, rapidly varying, field. The primary effect of the small field is to modify the Ohm's law of the mean field. A set of plausible assumptions leads to a form of the mean field Ohm's law which is fundamentally different from the conventional alpha effect of dynamo theory.

  14. Interplanetary magnetic field and geomagnetic Dst variations.

    NASA Technical Reports Server (NTRS)

    Patel, V. L.; Desai, U. D.

    1973-01-01

    The interplanetary magnetic field has been shown to influence the ring current field represented by Dst. Explorer 28 hourly magnetic field observations have been used with the hourly Dst values. The moderate geomagnetic storms of 60 gammas and quiet-time fluctuations of 10 to 30 gammas are correlated with the north to south change of the interplanetary field component perpendicular to the ecliptic. This change in the interplanetary field occurs one to three hours earlier than the corresponding change in the Dst field.

  15. Polarized radiation diagnostics of stellar magnetic fields

    NASA Astrophysics Data System (ADS)

    Mathys, Gautier

    The main techniques used to diagnose magnetic fields in stars from polarimetric observations are presented. First, a summary of the physics of spectral line formation in the presence of a magnetic field is given. Departures from the simple case of linear Zeeman effect are briefly considered: partial Paschen-Back effect, contribution of hyperfine structure, and combined Stark and Zeeman effects. Important approximate solutions of the equation of transfer of polarized light in spectral lines are introduced. The procedure for disk-integration of emergent Stokes profiles, which is central to stellar magnetic field studies, is described, with special attention to the treatment of stellar rotation. This formalism is used to discuss the determination of the mean longitudinal magnetic field (through the photographic technique and through Balmer line photopolarimetry). This is done within the specific framework of Ap stars, which, with their unique large-scale organized magnetic fields, are an ideal laboratory for studies of stellar magnetism. Special attention is paid to those Ap stars whose magnetically split line components are resolved in high-dispersion Stokes I spectra, and to the determination of their mean magnetic field modulus. Various techniques of exploitation of the information contained in polarized spectral line profiles are reviewed: the moment technique (in particular, the determination of the crossover and of the mean quadratic field), Zeeman-Doppler imaging, and least-squares deconvolution. The prospects that these methods open for linear polarization studies are sketched. The way in which linear polarization diagnostics complement their Stokes I and V counterparts is emphasized by consideration of the results of broad band linear polarization measurements. Illustrations of the use of various diagnostics to derive properties of the magnetic fields of Ap stars are given. This is used to show the interest of deriving more physically realistic models of the

  16. Protein detection with magnetic nanoparticles in a rotating magnetic field

    NASA Astrophysics Data System (ADS)

    Dieckhoff, Jan; Lak, Aidin; Schilling, Meinhard; Ludwig, Frank

    2014-01-01

    A detection scheme based on magnetic nanoparticle (MNP) dynamics in a rotating magnetic field for a quantitative and easy-to-perform detection of proteins is illustrated. For the measurements, a fluxgate-based setup was applied, which measures the MNP dynamics, while a rotating magnetic field is generated. The MNPs exhibit single iron oxide cores of 25 nm and 40 nm diameter, respectively, as well as a protein G functionalized shell. IgG antibodies were utilized as binding target molecules for the physical proof-of-concept. The measurement results were fitted with a theoretical model describing the magnetization dynamics in a rotating magnetic field. The established detection scheme allows quantitative determination of proteins even at a concentration lower than of the particles. The observed differences between the two MNP types are discussed on the basis of logistic functions.

  17. Scattering in a magnetic field

    SciTech Connect

    David C. Carey

    2002-08-19

    The fixed target program at Fermilab has come to an end. New projects are in the planning stage. Among them is a muon storage ring. Up to the present, all storage rings in high-energy physics have carried stable particles, namely the electron and proton and their antiparticles. The muon is unstable and decays with a mean lifetime of 2.0 x 10{sup -6} sec. Two types of cooling have been used in the past. One is stochastic cooling where an electrode is used to detect the positions of the particles and send a signal to another position across the ring. Through successive applications of this technique, the phase space is ultimately greatly reduced and beams can be made to collide with a useful event rate. The second type of cooling is electron cooling. Here protons and electrons are made to travel together for a short distance. Equipartition causes transfer of transverse energy of the protons to that of the electrons. Neither of these methods is fast enough to allow acceleration of a sufficient number of muons up to maximum energy before they decay. A new method known as ionization cooling has been proposed.[1] The muons are cooled by passing them through a container of liquid hydrogen. The energy loss reduces both transverse and longitudinal momentum. The longitudinal momentum is restored with RF cavities. The net result is to maintain the longitudinal momentum while cooling the transverse momentum. To minimize the total travel distance of the muons the liquid hydrogen is placed inside the focusing solenoids. The question arises as to whether the presence of the solenoids influences the phase space occupied by the muons. After the muon scatters it has transverse momentum. In a constant longitudinal magnetic field the trajectory wraps around the field lines and coincides in momentum and position with a particle which scatters one cycle later. Here we calculate the change in emittance for both a drift space and a solenoid. We find that the presence of the solenoid does

  18. The angular power spectrum measurement of the Galactic synchrotron emission in two fields of the TGSS survey

    NASA Astrophysics Data System (ADS)

    Choudhuri, Samir; Bharadwaj, Somnath; Ali, Sk. Saiyad; Roy, Nirupam; Intema, Huib. T.; Ghosh, Abhik

    2017-09-01

    Characterizing the diffuse Galactic synchrotron emission at arcminute angular scales is needed to reliably remove foregrounds in cosmological 21-cm measurements. The study of this emission is also interesting in its own right. Here, we quantify the fluctuations of the diffuse Galactic synchrotron emission using visibility data for two of the fields observed by the TIFR GMRT Sky Survey. We have used the 2D Tapered Gridded Estimator to estimate the angular power spectrum (Cℓ) from the visibilities. We find that the sky signal, after subtracting the point sources, is likely dominated by the diffuse Galactic synchrotron radiation across the angular multipole range 240 ≤ ℓ ≲ 500. We present a power-law fit, C_{ℓ}=A× \\big (1000/l\\big )^{β }, to the measured Cℓ over this ℓ range. We find that (A, β) have values (356 ± 109 mK2, 2.8 ± 0.3) and (54 ± 26 mK2, 2.2 ± 0.4) in the two fields. For the second field, however, there is indication of a significant residual point source contribution and for this field we interpret the measured Cℓ as an upper limit for the diffuse Galactic synchrotron emission. While in both fields the slopes are consistent with earlier measurements, the second field appears to have an amplitude that is considerably smaller compared to similar measurements in other parts of the sky.

  19. Surface magnetic fields across the HR Diagram

    NASA Astrophysics Data System (ADS)

    Landstreet, John D.

    2015-10-01

    The past 20 years have seen remarkable advances in spectropolarimetric instrumentation that have allowed us, for the first time, to identify some magnetic stars in most major stages of stellar evolution. We are beginning to see the broad outline of how such fields change during stellar evolution, to confront theoretical hypotheses and models of magnetic field structure and evolution with detailed data, and to understand more of the ways in which the presence of a field in turn affects stellar structure and evolution.

  20. Ohm's law for mean magnetic fields

    SciTech Connect

    Boozer, A.H.

    1986-05-01

    The magnetic fields associated with plasmas frequently exhibit small amplitude MHD fluctuations. It is useful to have equations for the magnetic field averaged over these fluctuations, the so-called mean field equations. Under very general assumptions it is shown that the effect of MHD fluctuations on a force-free plasma can be represented by one parameter in Ohm's law, which is effectively the coefficient of electric current viscosity.

  1. Hyperfine magnetic fields in substituted Finemet alloys

    NASA Astrophysics Data System (ADS)

    Brzózka, K.; Sovák, P.; Szumiata, T.; Gawroński, M.; Górka, B.

    2016-12-01

    Transmission Mössbauer spectroscopy was used to determine the hyperfine fields of Finemet-type alloys in form of ribbons, substituted alternatively by Mn, Ni, Co, Al, Zn, V or Ge of various concentration. The comparative analysis of magnetic hyperfine fields was carried out which enabled to understand the role of added elements in as-quenched as well as annealed samples. Moreover, the influence of the substitution on the mean direction of the local hyperfine magnetic field was examined.

  2. Manipulating Cells with Static Magnetic Fields

    NASA Astrophysics Data System (ADS)

    Valles, J. M.; Guevorkian, K.

    2005-07-01

    We review our investigations of the use of static magnetic fields, B, for manipulating cells and cellular processes. We describe how B fields modify the cell division pattern of frog embryos and consequently can be used to probe the pattern determinants. We also observe that magnetic fields modify the swimming behavior of Paramecium Caudatum. We describe these modifications and their potential application to investigations of their swimming behavior.

  3. Write field asymmetry in perpendicular magnetic recording

    NASA Astrophysics Data System (ADS)

    Li, Zhanjie; Bai, Daniel Z.; Lin, Ed; Mao, Sining

    2012-04-01

    We present a systematic study of write field asymmetry by using micromagnetic modeling for a perpendicular magnetic recording (PMR) writer structure. Parameters investigated include initial magnetization condition, write current amplitude, write current frequency, and initial write current polarity. It is found that the write current amplitude and frequency (data rate) are the dominant factors that impact the field asymmetry. Lower write current amplitude and higher write current frequency will deteriorate the write field asymmetry, causing recording performance (such as bit error rate) degradation.

  4. Biological effects of high DC magnetic fields

    SciTech Connect

    Tenforde, T.S.

    1981-06-01

    The principal focus of the program is the analysis of magnetic field effects on physiological functions in experimental animals and selected organ and tissue systems. A major research effort has involved the use of electrical recording techniques to detect functional alterations in the cardiovascular, neural, and visual systems during the application of DC magnetic fields. These systems involve ionic conduction processes, and are therefore potentially sensitive to electrodynamic interactions with an applied magnetic field. In the specific case of the visual system, magnetic interactions could also arise through orientational effects on the magnetically anisotropic photopigment molecules within retinal photoreceptor cells. In addition to studies with potentially sensitive target tissues, an evaluation is being made of magnetic field effects on a broad range of other physiological functions in laboratory mammals, including the measurement of circadian rhythms using noninvasive recording techniques. Results of investigations of magnetic field effects on the conformation of DNA, and on the growth and development of plants and insects are also reported. Figures and tables provide a brief summary of some representative observations in each of the research areas described. No significant alterations were observed in any of the physiological parameters examined to date, with the exception of major changes that occur in the electrocardiogram during magnetic field exposure. Studies with several species of animals have provided evidence that this phenomenon is attributable to electrical potentials that are induced during pulsatile blood flow in the aorta and in other major vessels of the circulatory system.

  5. Ferrofluid Turbulence Modification by Applied Magnetic Fields

    NASA Astrophysics Data System (ADS)

    Schumacher, Kristopher; Finlayson, Bruce; Riley, James

    2004-11-01

    A ferrofluid is a dielectric liquid with stable nanoscale (3-15 nm) magnetic particles suspended within it such that it responds strongly to magnetic fields. Ferrofluids are stable and retain their ability to flow even in intense magnetic fields. Applications such as hermetic seals in computer hard drives and increased heat transfer in electrical devices take advantage of the ability to control and position the liquid using magnetic fields. Ferrofluid theory has been successful at predicting laminar flow and some mean turbulence properties, but has never been extended to study the physics of turbulent flows. Our research objective is to use direct numerical simulation as a tool to gain insight on how the basic physics of ferrofluid turbulence are modified with magnetic fields. We present simulation results of homogeneous ferrofluid turbulence with steady and oscillating applied magnetic fields. Mean properties (e.g., velocity, spin rate, and total dissipation) and energetics (e.g., wave number distribution of kinetic and rotational energy) are reported and compared to analogous Newtonian fluid cases. Increasing the magnetic particle relaxation time, which corresponds to increasing the size of the ferrofluild particles, can lead to dramatic effects when the magnetic field is turned on.

  6. Vector Magnetic Field in Emerging Flux Regions

    NASA Astrophysics Data System (ADS)

    Schmieder, B.; Pariat, E.

    A crucial phase in magnetic flux emergence is the rise of magnetic flux tubes through the solar photosphere, which represents a severe transition between the very different environments of the solar interior and corona. Multi-wavelength observations with Flare Genesis, TRACE, SoHO, and more recently with the vector magnetographs at THEMIS and Hida (DST) led to the following conclusions. The fragmented magnetic field in the emergence region - with dipped field lines or bald patches - is directly related with Ellerman bombs, arch filament systems, and overlying coronal loops. Measurements of vector magnetic fields have given evidence that undulating "serpentine" fields are present while magnetic flux tubes cross the photosphere. See the sketch below, and for more detail see Pariat et al. (2004, 2007); Watanabe et al. (2008):

  7. Magnetic field homogeneity perturbations in finite Halbach dipole magnets.

    PubMed

    Turek, Krzysztof; Liszkowski, Piotr

    2014-01-01

    Halbach hollow cylinder dipole magnets of a low or relatively low aspect ratio attract considerable attention due to their applications, among others, in compact NMR and MRI systems for investigating small objects. However, a complete mathematical framework for the analysis of magnetic fields in these magnets has been developed only for their infinitely long precursors. In such a case the analysis is reduced to two-dimensions (2D). The paper details the analysis of the 3D magnetic field in the Halbach dipole cylinders of a finite length. The analysis is based on three equations in which the components of the magnetic flux density Bx, By and Bz are expanded to infinite power series of the radial coordinate r. The zeroth term in the series corresponds to a homogeneous magnetic field Bc, which is perturbed by the higher order terms due to a finite magnet length. This set of equations is supplemented with an equation for the field profile B(z) along the magnet axis, presented for the first time. It is demonstrated that the geometrical factors in the coefficients of particular powers of r, defined by intricate integrals are the coefficients of the Taylor expansion of the homogeneity profile (B(z)-Bc)/Bc. As a consequence, the components of B can be easily calculated with an arbitrary accuracy. In order to describe perturbations of the field due to segmentation, two additional equations are borrowed from the 2D theory. It is shown that the 2D approach to the perturbations generated by the segmentation can be applied to the 3D Halbach structures unless r is not too close to the inner radius of the cylinder ri. The mathematical framework presented in the paper was verified with great precision by computations of B by a highly accurate integration of the magnetostatic Coulomb law and utilized to analyze the inhomogeneity of the magnetic field in the magnet with the accuracy better than 1 ppm.

  8. Using rotation measure to search for magnetic fields around galaxies at z ~ 0.5

    NASA Astrophysics Data System (ADS)

    Williams, Anna; Lundgren, Britt; Mao, Sui Ann; Wilcots, Eric; Zweibel, Ellen

    2017-03-01

    Magnetic fields are an important component in galaxies, and yet, we still do not know how these magnetic fields were originally seeded within galaxies, nor how they have grown to the strengths we observe today. One way we can unravel this complex problem is by measuring the growth of magnetic fields over cosmic time. We present the initial results of a rotation measure study to search for the presence of coherent magnetic fields around young disk-like galaxies at z ~ 0.5. The S-band receiver at the VLA allows us to simultaneously observe Stokes I, Q, U, and V from 2-4 GHz. With these broadband polarization observations we apply multiple methods for determining the rotation measure of each source, improving the fidelity of our results. Beyond magnetogenesis, the results of this study also have implications for the life-cycle of baryons within galaxies and the composition of galactic haloes.

  9. Limits to the Magnetic Field in the Planetary Nebula NGC 246 from Faraday Rotation

    NASA Astrophysics Data System (ADS)

    Rodríguez, L. F.; Carrasco-González, C.; Cantó, J.; Pasetto, A.; Raga, A. C.; Tafoya, D.

    2017-04-01

    We present radio continuum observations of the linearly polarized extragalactic source J0047-1150, whose line of sight traverses the galactic planetary nebula NGC 246. We determine the position angle of the electric vector at seven frequencies between 1.3 and 1.8 GHz, finding no evidence of Faraday rotation and setting a 4-σ upper limit to the rotation measure of 9.6 rad m-2, which implies an upper limit to the average line-of-sight component of the magnetic field in NGC 246 of 1.3 μG. However, we show that the rotation measure across a source with a dipolar magnetic field morphology practically cancels out. Therefore, if the magnetic field has this morphology, the local values of the magnetic field in NGC 246 could be much larger and will not be evident in a Faraday rotation experiment.

  10. MICE Spectrometer Solenoid Magnetic Field Measurements

    SciTech Connect

    Leonova, M.

    2013-09-01

    The Muon Ionization Cooling Experiment (MICE) is designed to demonstrate ionization cooling in a muon beam. Its goal is to measure a 10% change in transverse emittance of a muon beam going through a prototype Neutrino Factory cooling channel section with an absolute measurement accuracy of 0.1%. To measure emittances, MICE uses two solenoidal spectrometers, with Solenoid magnets designed to have 4 T fields, uniform at 3 per mil level in the tracking volumes. Magnetic field measurements of the Spectrometer Solenoid magnet SS2, and analysis of coil parameters for input into magnet models will be discussed.

  11. Magnetic fields near Mars - First results

    NASA Technical Reports Server (NTRS)

    Riedler, W.; Schwingenschuh, K.; Moehlmann, D.; Oraevskii, V. N.; Eroshenko, E.; Slavin, J.

    1989-01-01

    The magnetic fields of Mars have been measured from Phobos 2 with high temporal resolution in the tail and down to an 850-km altitude. During four successive highly elliptical orbits, the position of the bow shock as well as that of a transition layer, the 'planetopause', were identified. Subsequent circular orbits at 6000-km altitude provided the first high-resolution data in the planetary tail and indicate that the interplanetary magnetic field mainly controls the magnetic tail. Magnetic turbulence was also detected when the spacecraft crossed the orbit of Phobos, indicating the possible existence of a torus near the orbit of this moon.

  12. Force-field parameterization of the galactic cosmic ray spectrum: Validation for Forbush decreases

    NASA Astrophysics Data System (ADS)

    Usoskin, I. G.; Kovaltsov, G. A.; Adriani, O.; Barbarino, G. C.; Bazilevskaya, G. A.; Bellotti, R.; Boezio, M.; Bogomolov, E. A.; Bongi, M.; Bonvicini, V.; Bottai, S.; Bruno, A.; Cafagna, F.; Campana, D.; Carbone, R.; Carlson, P.; Casolino, M.; Castellini, G.; De Donato, C.; De Santis, C.; De Simone, N.; Di Felice, V.; Formato, V.; Galper, A. M.; Karelin, A. V.; Koldashov, S. V.; Koldobskiy, S.; Krutkov, S. Y.; Kvashnin, A. N.; Leonov, A.; Malakhov, V.; Marcelli, L.; Martucci, M.; Mayorov, A. G.; Menn, W.; Mergé, M.; Mikhailov, V. V.; Mocchiutti, E.; Monaco, A.; Mori, N.; Munini, R.; Osteria, G.; Palma, F.; Panico, B.; Papini, P.; Pearce, M.; Picozza, P.; Pizzolotto, C.; Ricci, M.; Ricciarini, S. B.; Rossetto, L.; Sarkar, R.; Scotti, V.; Simon, M.; Sparvoli, R.; Spillantini, P.; Stozhkov, Y. I.; Vacchi, A.; Vannuccini, E.; Vasilyev, G. I.; Voronov, S. A.; Yurkin, Y. T.; Zampa, G.; Zampa, N.; Zverev, V. G.

    2015-06-01

    A useful parametrization of the energy spectrum of galactic cosmic rays (GCR) near Earth is offered by the so-called force-field model which describes the shape of the entire spectrum with a single parameter, the modulation potential. While the usefulness of the force-field approximation has been confirmed for regular periods of solar modulation, it was not tested explicitly for disturbed periods, when GCR are locally modulated by strong interplanetary transients. Here we use direct measurements of protons and α -particles performed by the PAMELA space-borne instrument during December 2006, including a major Forbush decrease, in order to directly test the validity of the force-field parameterization. We conclude that (1) The force-field parametrization works very well in describing the energy spectra of protons and α -particles directly measured by PAMELA outside the Earths atmosphere; (2) The energy spectrum of GCR can be well parameterized by the force-field model also during a strong Forbush decrease; (3) The estimate of the GCR modulation parameter, obtained using data from the world-wide neutron monitor network, is in good agreement with the spectra directly measured by PAMELA during the studied interval. This result is obtained on the basis of a single event analysis, more events need to be analyzed.

  13. Tuning bacterial hydrodynamics with magnetic fields

    NASA Astrophysics Data System (ADS)

    Pierce, C. J.; Mumper, E.; Brown, E. E.; Brangham, J. T.; Lower, B. H.; Lower, S. K.; Yang, F. Y.; Sooryakumar, R.

    2017-06-01

    Magnetotactic bacteria are a group of motile prokaryotes that synthesize chains of lipid-bound, magnetic nanoparticles called magnetosomes. This study exploits their innate magnetism to investigate previously unexplored facets of bacterial hydrodynamics at surfaces. Through use of weak, uniform, external magnetic fields and local, micromagnetic surface patterns, the relative strength of hydrodynamic, magnetic, and flagellar force components is tuned through magnetic control of the bacteria's orientation. The resulting swimming behaviors provide a means to experimentally determine hydrodynamic parameters and offer a high degree of control over large numbers of living microscopic entities. The implications of this controlled motion for studies of bacterial motility near surfaces and for micro- and nanotechnology are discussed.

  14. THEMIS/MSDP magnetic field measurements

    NASA Astrophysics Data System (ADS)

    Berlicki, A.; Mein, P.; Schmieder, B.

    2006-01-01

    We present an analysis of longitudinal magnetic field measurements using the spectral data obtained with the French - Italian polarisation free telescope THEMIS working in Multichannel Subtractive Double Pass (MSDP) mode. We also used SOHO/MDI data to extend our analysis. THEMIS observations in the MSDP mode allows us to perform imaging spectropolarimetry characterized by high spatial and time resolution. In our analysis we used the observations of solar active region NOAA 10484 performed on October 20, 2003. From THEMIS 2D spectral images recorded in Na D1 5896 Å line we obtained the longitudinal magnetic field in the active region. The value of the magnetic field was calculated at different distances from the Na D1 line centre. We determine the LOS magnetic field at different heights in the solar atmosphere. SOHO/MDI observations provide the longitudinal magnetic field in Ni I (6768 Å) line. THEMIS/MSDP measurements at Δλ= 0.30 Å are similar to SOHO/MDI results. Gradients of longitudinal magnetic fields derived from MSDP measurements at Δλ= 0.08 and Δλ=0.24 Å exhibit different behaviours according to solar targets. A decrease with height is seen in spot umbrae and penumbrae, while the gradient in facular and network areas suggests a slight increase of the longitudinal magnetic field, which might be explained by the 3D-structure of canopies.

  15. Magnetic field reconstruction based on sunspot oscillations

    NASA Astrophysics Data System (ADS)

    Löhner-Böttcher, J.; Bello González, N.; Schmidt, W.

    2016-11-01

    The magnetic field of a sunspot guides magnetohydrodynamic waves toward higher atmospheric layers. In the upper photosphere and lower chromosphere, wave modes with periods longer than the acoustic cut-off period become evanescent. The cut-off period essentially changes due to the atmospheric properties, e.g., increases for larger zenith inclinations of the magnetic field. In this work, we aim at introducing a novel technique of reconstructing the magnetic field inclination on the basis of the dominating wave periods in the sunspot chromosphere and upper photosphere. On 2013 August 21, we observed an isolated, circular sunspot (NOAA11823) for 58 min in a purely spectroscopic multi-wavelength mode with the Interferometric Bidimensional Spectro-polarimeter (IBIS) at the Dunn Solar Telescope. By means of a wavelet power analysis, we retrieved the dominating wave periods and reconstructed the zenith inclinations in the chromosphere and upper photosphere. The results are in good agreement with the lower photospheric HMI magnetograms. The sunspot's magnetic field in the chromosphere inclines from almost vertical (0°) in the umbra to around 60° in the outer penumbra. With increasing altitude in the sunspot atmosphere, the magnetic field of the penumbra becomes less inclined. We conclude that the reconstruction of the magnetic field topology on the basis of sunspot oscillations yields consistent and conclusive results. The technique opens up a new possibility to infer the magnetic field inclination in the solar chromosphere.

  16. Pulsed field magnets at the United States National High Magnetic Field Laboratory

    SciTech Connect

    Campbell, L.J.; Parkin, D.M.; Crow, J.E.; Schneider-Muntau, H.J.; Sullivan, N.S.

    1993-11-01

    The pulsed field facility of the National High Magnetic Field Laboratory (NHMFL) consists of four components. Now available are (1) explosive driven flux compression, (2) capacitor-driven magnets, and (3) a 20 T superconducting magnet. The fourth component, a 60 T quasi-continuous magnet, has been designed and is scheduled for installation in early 1995. All magnets have He-4 cryostats giving temperatures from room temperature (RT) to 2.2--1.5 K. Dilution refrigerators for the superconducting 20 T magnet and the 50 T pulsed magnet will be installed by early 1994. A wide range of experiments has been completed within the past year.

  17. Evolution of the interplanetary magnetic field

    SciTech Connect

    McComas, D.J.

    1993-01-01

    Remote observations of magnetic field topologies in the solar corona and in situ observations of the solar wind and interplanetary magnetic field (IMF) in interplanetary space are used to examine the temporal evolution of the spatial distribution of open and closed field regions emanating from the Sun. The simple open'' configuration of inward and outward pointing sectors in the IMF is periodically disrupted by magnetically distinct coronal mass ejections (CMEs) which erupt from previously closed magnetic field regions in the corona into interplanetary space. At 1 AU, CMEs contain counterstreaming halo electrons which indicate their distinct magnetic topologies. This topology is generally thought to be: plasmoids that are completely disconnected from the Sun; magnetic bottles,'' still tied to the corona at both ends; or flux ropes which are only partially disconnected. Fully disconnected plasmoids would have no long term effect on the amount of open flux; however, both in situ observations of details of the halo electron distributions and remote coronagraph observations of radial fields following CMEs indicate that CMEs generally do retain at least partial attached to the Sun. Both the magnetic-bottle and flux rope geometries require some mitigating process to close off previously open fields in order to avoid a flux catastrophe. In addition, the average amount of magnetic flux observed in interplanetary space varies over the solar cycle, also indicating that there must be ways in which new flux is opened and previously open flux is closed off. The most likely scenario for closing off open magnetic fields is for reconnection to occurs above helmet streamers, where oppositely directed field regions are juxtaposed in the corona. These events would serve to return closed field arches to the Sun and release open, U-shaped structures into the solar wind.

  18. Evolution of the interplanetary magnetic field

    SciTech Connect

    McComas, D.J.

    1993-05-01

    Remote observations of magnetic field topologies in the solar corona and in situ observations of the solar wind and interplanetary magnetic field (IMF) in interplanetary space are used to examine the temporal evolution of the spatial distribution of open and closed field regions emanating from the Sun. The simple ``open`` configuration of inward and outward pointing sectors in the IMF is periodically disrupted by magnetically distinct coronal mass ejections (CMEs) which erupt from previously closed magnetic field regions in the corona into interplanetary space. At 1 AU, CMEs contain counterstreaming halo electrons which indicate their distinct magnetic topologies. This topology is generally thought to be: plasmoids that are completely disconnected from the Sun; magnetic ``bottles,`` still tied to the corona at both ends; or flux ropes which are only partially disconnected. Fully disconnected plasmoids would have no long term effect on the amount of open flux; however, both in situ observations of details of the halo electron distributions and remote coronagraph observations of radial fields following CMEs indicate that CMEs generally do retain at least partial attached to the Sun. Both the magnetic-bottle and flux rope geometries require some mitigating process to close off previously open fields in order to avoid a flux catastrophe. In addition, the average amount of magnetic flux observed in interplanetary space varies over the solar cycle, also indicating that there must be ways in which new flux is opened and previously open flux is closed off. The most likely scenario for closing off open magnetic fields is for reconnection to occurs above helmet streamers, where oppositely directed field regions are juxtaposed in the corona. These events would serve to return closed field arches to the Sun and release open, U-shaped structures into the solar wind.

  19. Ultra-Short-Period Binary Systems in the OGLE Fields Toward the Galactic Bulge

    NASA Astrophysics Data System (ADS)

    Soszyński, I.; Stępień, K.; Pilecki, B.; Mróz, P.; Udalski, A.; Szymański, M. K.; Pietrzyński, G.; Wyrzykowski, Ł.; Ulaczyk, K.; Poleski, R.; Kozłowski, S.; Pietrukowicz, P.; Skowron, J.; Pawlak, M.

    2015-03-01

    We present a sample of 242 ultra-short-period (Porb<0.22 d) eclipsing and ellipsoidal binary stars identified in the OGLE fields toward the Galactic bulge. Based on the light curve morphology, we divide the sample into candidates for contact binaries and non-contact binaries. In the latter group we distinguish binary systems consisting of a cool main-sequence star and a B-type subdwarf (HW Vir stars) and candidates for cataclysmic variables, including five eclipsing dwarf novae. One of the detected eclipsing binary systems - OGLE-BLG-ECL-000066 - with the orbital period below 0.1 d, likely consists of M dwarfs in a nearly contact configuration. If confirmed, this would be the shortest-period M-dwarf binary system currently known. We discuss possible evolutionary mechanisms that could lead to the orbital period below 0.1 d in an M-dwarf binary.

  20. Electric-field guiding of magnetic skyrmions

    NASA Astrophysics Data System (ADS)

    Upadhyaya, Pramey; Yu, Guoqiang; Amiri, Pedram Khalili; Wang, Kang L.

    2015-10-01

    We theoretically study equilibrium and dynamic properties of nanosized magnetic skyrmions in thin magnetic films with broken inversion symmetry, where an electric field couples to magnetization via spin-orbit coupling. Based on a symmetry-based phenomenology and micromagnetic simulations we show that this electric-field coupling, via renormalizing the micromagnetic energy, modifies the equilibrium properties of the skyrmion. This change, in turn, results in a significant alteration of the current-induced skyrmion motion. Particularly, the speed and direction of the skyrmion can be manipulated by designing a desired energy landscape electrically, which we describe within Thiele's analytical model and demonstrate in micromagnetic simulations including electric-field-controlled magnetic anisotropy. We additionally use this electric-field control to construct gates for controlling skyrmion motion exhibiting a transistorlike and multiplexerlike function. The proposed electric-field effect can thus provide a low-energy electrical knob to extend the reach of information processing with skyrmions.

  1. ASYMMETRIC DIFFUSION OF MAGNETIC FIELD LINES

    SciTech Connect

    Beresnyak, Andrey

    2013-04-20

    Stochasticity of magnetic field lines is important for particle transport properties. Magnetic field lines separate faster than diffusively in turbulent plasma, which is called superdiffusion. We discovered that this superdiffusion is pronouncedly asymmetric, so that the separation of field lines along the magnetic field direction is different from the separation in the opposite direction. While the symmetry of the flow is broken by the so-called imbalance or cross-helicity, the difference between forward and backward diffusion is not directly due to imbalance, but a non-trivial consequence of both imbalance and non-reversibility of turbulence. The asymmetric diffusion perpendicular to the mean magnetic field entails a variety of new physical phenomena, such as the production of parallel particle streaming in the presence of perpendicular particle gradients. Such streaming and associated instabilities could be significant for particle transport in laboratory, space, and astrophysical plasmas.

  2. Magnetic field evolution in neutron stars

    NASA Astrophysics Data System (ADS)

    Castillo, F.; Reisenegger, A.; Valdivia, J. A.

    2017-07-01

    Neutron stars contain the strongest magnetic fields known in the Universe. Using numerical simulations restricted to axially symmetric geometry, we study the long-term evolution of the magnetic field in the interior of an isolated neutron star under the effect of ambipolar diffusion, i.e. the drift of the magnetic field and the charged particles relative to the neutrons. We model the stellar interior as an electrically neutral fluid composed of neutrons, protons and electrons; these species can be converted into each other by weak interactions (beta decays), suffer binary collisions, and be affected by each other's macroscopic electromagnetic fields. We show that, in the restricted case of pure ambipolar diffusion, neglecting weak interactions, the magnetic fields evolves towards a stable MHD equilibria configuration, in the timescales analytically expected.

  3. The Magnetic Field Geometry of Cool Stars

    NASA Astrophysics Data System (ADS)

    See, Victor; Jardine, Moira; Vidotto, Aline; Donati, Jean-Francois; Folsom, Colin; Boro Saikia, Sudeshna; Bouvier, Jerome; Fares, Rim; Gregory, Scott; Hussain, Gaitee; Jeffers, Sandra; Marsden, Stephen; Morin, Julien; Moutou, Claire; do Nascimento, Jose-Dias, Jr.; Petit, Pascal; Rosen, Lisa; Waite, Ian

    2016-06-01

    Zeeman-Doppler imaging has been used to map the large-scale surface magnetic fields of cool stars across a wide range of stellar masses and rotation periods. The derived field geometries are surprising, with many stars showing strong azimuthal fields that are not observed on the Sun. In this poster, using 100 magnetic maps of over 50 stars, we present results showing how the magnetic field geometry of cool stars varies as a function of fundamental parameters. The stellar mass, and hence internal structure, critically influences the field geometry, although this is modified by the stellar rotation rate. We discuss the implications of these results for dynamo theory and the nature of stellar magnetic activity.

  4. Magnetic field aberration induced by cycle stress

    NASA Astrophysics Data System (ADS)

    En, Yang; luming, Li; Xing, Chen

    2007-05-01

    Magneto-mechanical effect has been causing people's growing interest because of its relevance to several technology problems. One of them is the variation of surface magnetic field induced by stress concentration under the geomagnetic field. It can be used as an innovative, simple and convenient potential NDE method, called as magnetic memory method. However, whether and how this can be used as a quantitative measurement method, is still a virginal research field where nobody sets foot in. In this paper, circle tensile stress within the elastic region was applied to ferromagnetic sample under geomagnetic field. Experiment results on the relation between surface magnetic field and elastic stress were presented, and a simple model was derived. Simulation of the model was reconciled with the experimental results. This can be of great importance for it provides a brighter future for the promising Magnetic Memory NDE method—the potential possibility of quantitative measurement.

  5. How are static magnetic fields detected biologically?

    NASA Astrophysics Data System (ADS)

    Finegold, Leonard

    2009-03-01

    There is overwhelming evidence that life, from bacteria to birds to bats, detects magnetic fields, using the fields for orientation or navigation. Indeed there are recent reports (based on Google Earth imagery) that cattle and deer align themselves with the earth's magnetic field. [1]. The development of frog and insect eggs are changed by high magnetic fields, probably through known physical mechanisms. However, the mechanisms for eukaryotic navigation and alignment are not clear. Persuasive published models will be discussed. Evidence, that static magnetic fields might produce therapeutic effects, will be updated [2]. [4pt] [1] S. Begall, et al., Proc Natl Acad Sci USA, 105:13451 (2008). [0pt] [2] L. Finegold and B.L. Flamm, BMJ, 332:4 (2006).

  6. Generation of solar magnetic fields. I. II

    NASA Astrophysics Data System (ADS)

    Parker, E. N.

    Attention is given to those magnetic field properties which allow the fields to destroy themselves rapidly, thereby producing solar, stellar and geomagnetic activity. Magnetic fields actively figure in the production of flares, plages, eruptions and streamers. The existence of magnetic fields in other stars is inferred from the X-rays that can be observed to radiate from them. In the second part of this paper, the discussion in the first part of the generation of magnetic fields from the motion of conducting fluids is further developed through the proposal of the 'short, sudden' idealization, and quick bursts of turbulence during which any degree of twisting and rotation can be accomplished are introduced. After these quick bursts of motion, the fluid is held motionless so that small scale irregularities subside, leaving a smooth, average and large scale state. This cycle is repeated at time intervals tau, producing the dynamo equations for the mean vector potential.

  7. The magnetic field of Mercury, part 1

    NASA Technical Reports Server (NTRS)

    Ness, N. F.; Behannon, K. W.; Lepping, R. P.; Whang, Y. C.

    1974-01-01

    An updated analysis and interpretation is presented of the magnetic field observations obtained during the Mariner 10 encounter with the planet Mercury. The combination of data relating to position of the detached bow shock wave and magnetopause, and the geometry and magnitude of the magnetic field within the magnetosphere-like region surrounding Mercury, lead to the conclusion that an internal planetary field exists with dipole moment approximately 5.1 x 10 the 22nd power Gauss sq cm. The dipole axis has a polarity sense similar to earth's and is tilted 7 deg from the normal to Mercury's orbital plane. The magnetic field observations reveal a significant distortion of the modest Hermean field (350 Gamma at the equator) by the solar wind flow and the formation of a magnetic tail and neutral sheet which begins close to the planet on the night side. The composite data is not consistent with a complex induction process driven by the solar wind flow.

  8. The National High Magnetic Field Laboratory

    NASA Astrophysics Data System (ADS)

    Schneider-Muntau, H. J.; Brandt, B. L.; Brunel, L. C.; Cross, T. A.; Edison, A. S.; Marshall, A. G.; Reyes, A. P.

    2004-04-01

    We describe two of the main user facilities of the National High Magnetic Field Laboratory (NHMFL): (a) the General Purpose DC Field Facility with nine resistive and hybrid magnet stations with continuous fields between 20 and 45 T, and (b) the CIMAR Facilities with 17 spectrometers for the NMR Spectroscopy and Imaging Program, the Fourier Transform ICR Mass Spectrometry Program and the Electron Magnetic Resonance Spectroscopy Program. The facilities are located in Tallahassee, and Gainesville, FL. Members of the worldwide science and engineering communities can access NHMFL facilities, generally without cost, through a peer-reviewed proposal process.

  9. Ultracold atoms in strong synthetic magnetic fields

    NASA Astrophysics Data System (ADS)

    Ketterle, Wolfgang

    2015-03-01

    The Harper Hofstadter Hamiltonian describes charged particles in the lowest band of a lattice at high magnetic fields. This Hamiltonian can be realized with ultracold atoms using laser assisted tunneling which imprints the same phase into the wavefunction of neutral atoms as a magnetic field dose for electrons. I will describe our observation of a bosonic superfluid in a magnetic field with half a flux quantum per lattice unit cell, and discuss new possibilities for implementing spin-orbit coupling. Work done in collaboration with C.J. Kennedy, G.A. Siviloglou, H. Miyake, W.C. Burton, and Woo Chang Chung.

  10. Magnetic field quality analysis using ANSYS

    SciTech Connect

    Dell'Orco, D.; Chen, Y.

    1991-03-01

    The design of superconducting magnets for particles accelerators requires a high quality of the magnetic field. This paper presents an ANSYS 4.4A Post 1 macro that computes the field quality performing a Fourier analysis of the magnetic field. The results show that the ANSYS solution converges toward the analytical solution and that the error on the multipole coefficients depends linearly on the square of the mesh size. This shows the good accuracy of ANSYS in computing the multipole coefficients. 2 refs., 16 figs., 4 tabs.

  11. Relativistic electron in curved magnetic fields

    NASA Technical Reports Server (NTRS)

    An, S.

    1985-01-01

    Making use of the perturbation method based on the nonlinear differential equation theory, the author investigates the classical motion of a relativistic electron in a class of curved magnetic fields which may be written as B=B(O,B sub phi, O) in cylindrical coordinates (R. phi, Z). Under general astrophysical conditions the author derives the analytical expressions of the motion orbit, pitch angle, etc., of the electron in their dependence upon parameters characterizing the magnetic field and electron. The effects of non-zero curvature of magnetic field lines on the motion of electrons and applicabilities of these results to astrophysics are also discussed.

  12. Magnetic-field induced critical endpoint

    NASA Astrophysics Data System (ADS)

    Rechenberger, Stefan

    2017-03-01

    The phase diagram of strong interaction matter is analyzed utilizing the Nambu-Jona-Lasinio model. Special emphasis is placed on its dependence on an external magnetic field and isospin chemical potential. Using flavor mixing induced by instanton effects the influence of isospin breaking due to the magnetic field and the isospin chemical potential is compared. It is found that at low temperatures and large quark chemical potential the magnetic field, depending on its strength, induces a new critical endpoint or a triple point.

  13. Environmental magnetic fields: Influences on early embryogenesis

    SciTech Connect

    Cameron, I.L.; Hardman, W.E.; Winters, W.D.; Zimmerman, S.; Zimmerman, A.M. )

    1993-04-01

    A 10-mG, 50 to 60-Hz magnetic field is in the intensity and frequency range that people worldwide are often exposed to in homes and in the workplace. Studies about the effects of 50- to 100-Hz electromagnetic fields on various species of animal embryos (fish, chick, fly, sea urchin, rat, and mouse) indicate that early stages of embryonic development are responsive to fluctuating magnetic fields. Chick, sea urchin, and mouse embryos are responsive to magnetic field intensities of 10-100 mG. Results from studies on sea urchin embryos indicate that exposure to conditions of rotating 60-Hz magnetic fields, e.g., similar to those in our environment, interferes with cell proliferation at the morula stage in a manner dependent on field intensity. The cleavage stages, prior to the 64-cell stage, were not delayed by this rotating 60-Hz magnetic field suggesting that the ionic surges, DNA replication, and translational events essential for early cleavage stages were not significantly altered. Studies of histone synthesis in early sea urchin embryos indicated that the rotating 60-Hz magnetic field decreased zygotic expression of early histone genes at the morula stage and suggests that this decrease in early histone production was limiting to cell proliferation. Whether these comparative observations from animal development studies will be paralleled by results from studies of human embryogenesis, as suggested by some epidemiology studies, has yet to be established. 38 refs.

  14. Magnetic Field Control of Combustion Dynamics

    NASA Astrophysics Data System (ADS)

    Barmina, I.; Valdmanis, R.; Zake, M.; Kalis, H.; Marinaki, M.; Strautins, U.

    2016-08-01

    Experimental studies and mathematical modelling of the effects of magnetic field on combustion dynamics at thermo-chemical conversion of biomass are carried out with the aim of providing control of the processes developing in the reaction zone of swirling flame. The joint research of the magnetic field effect on the combustion dynamics includes the estimation of this effect on the formation of the swirling flame dynamics, flame temperature and composition, providing analysis of the magnetic field effects on the flame characteristics. The results of experiments have shown that the magnetic field exerts the influence on the flow velocity components by enhancing a swirl motion in the flame reaction zone with swirl-enhanced mixing of the axial flow of volatiles with cold air swirl, by cooling the flame reaction zone and by limiting the thermo-chemical conversion of volatiles. Mathematical modelling of magnetic field effect on the formation of the flame dynamics confirms that the electromagnetic force, which is induced by the electric current surrounding the flame, leads to field-enhanced increase of flow vorticity by enhancing mixing of the reactants. The magnetic field effect on the flame temperature and rate of reactions leads to conclusion that field-enhanced increase of the flow vorticity results in flame cooling by limiting the chemical conversion of the reactants.

  15. Radiation dosimetry in magnetic fields with Farmer-type ionization chambers: determination of magnetic field correction factors for different magnetic field strengths and field orientations

    NASA Astrophysics Data System (ADS)

    Spindeldreier, C. K.; Schrenk, O.; Bakenecker, A.; Kawrakow, I.; Burigo, L.; Karger, C. P.; Greilich, S.; Pfaffenberger, A.

    2017-08-01

    The aim of this work was to determine magnetic field correction factors that are needed for dosimetry in hybrid devices for MR-guided radiotherapy for Farmer-type ionization chambers for different magnetic field strengths and field orientations. The response of six custom-built Farmer-type chambers irradiated at a 6 MV linac was measured in a water tank positioned in a magnet with magnetic field strengths between 0.0 T and 1.1 T. Chamber axis, beam and magnetic field were perpendicular to each other and both magnetic field directions were investigated. EGSnrc Monte Carlo simulations were compared to the measurements and simulations with different field orientations were performed. For all geometries, magnetic field correction factors, kBQ , and perturbation factors were calculated. A maximum increase of 8.8% in chamber response was measured for the magnetic field perpendicular to chamber and beam axis. The measured chamber response could be reproduced by adjusting the dead volume layer near the chamber stem in the Monte Carlo simulations. For the magnetic field parallel to the chamber axis or parallel to the beam, the simulated response increased by 1.1% at maximum for field strengths up to 1.1 T. A complex dependence of the response was found on chamber radius, magnetic field strength and orientation of beam, chamber axis and magnetic field direction. Especially for magnetic fields perpendicular to beam and chamber axis, the exact sensitive volume has to be considered in the simulations. To minimize magnetic field correction factors and the influence of dead volumes on the response of Farmer chambers, a measurement set-up with the magnetic field parallel to the chamber axis or parallel to the beam is recommended for dosimetry.

  16. Reversals of the Earth's Magnetic Field

    NASA Astrophysics Data System (ADS)

    Champion, Duene E.

    J.A. Jacobs of Cambridge University has written a concise, authoritative, and up-todate text on reversals of the earth's magnetic field. Chapter 1 is a concise summary of the basic attributes of the geomagnetic field and its behavior in different time frames. It explains spherical harmonic analysis of the field and presents the history of acquisition of the data that best represent the recent field. Lastly, it includes a short summary of the origin and electrodynamics of the magnetic field, outlining the current theoretical basis for its generation.

  17. Magnetoresistive sensor for weak magnetic fields

    NASA Astrophysics Data System (ADS)

    Moran, Timothy J.; Dahlberg, E. Dan

    1997-04-01

    A new excitation technique is described for the measurement of weak magnetic fields (<0.01 Oe). The resistance variation of a magnetoresistive element due to an oscillating excitation field is converted into a voltage proportional to the environmental field. The excitation field amplitude is set large enough to saturate the magnetization during each half-cycle, greatly reducing hysteresis effects in the output signal. Both anisotropic magnetoresistance (AMR) and giant magnetoresistance (GMR) structures have been used to measure fields with sufficient accuracy for compass applications. Such devices could be made with extremely small dimensions and power requirements.

  18. Dynamo Models for Saturn's Axisymmetric Magnetic Field

    NASA Astrophysics Data System (ADS)

    Stanley, S.; Tajdaran, K.

    2012-12-01

    Magnetic field measurements by the Cassini mission have confirmed the earlier Pioneer 11 and Voyager missions' results that Saturn's observed magnetic field is extremely axisymmetric . For example, Saturn's dipole tilt is less than 0.06 degrees (Cao et al., 2011) . The nearly-perfect axisymmetry of Saturn's dipole is troubling because of Cowling's Theorem which states that an axisymmetric magnetic field cannot be maintained by a dynamo. However, Cowling's Theorem applies to the magnetic field generated inside the dynamo source region and we can avert any contradiction with Cowling's Theorem if we can find reason for a non-axisymmetric field generated inside the dynamo region to have an axisymmetrized potential field observed at satellite altitude. Stevenson (1980) proposed a mechanism for this axisymmetrization. He suggested that differential rotation in a stably-stratified electrically conducting layer (i.e. the helium rain-out layer) surrounding the dynamo could act to shear out the non-axisymmetry and hence produce an axisymmetric observed magnetic field. In previous work, we used three-dimensional self-consistent numerical dynamo models to demonstrate that a thin helium rain-out layer can produce a more axisymmetrized field (Stanley, 2010). We also found that the direction of the zonal flows in the layer is a crucial factor for magnetic field axisymmetry. Here we investigate the influence of the thickness of the helium rain-out layer and the intensity of the thermal winds on the axisymmetrization of the field. We search for optimal regions in parameter space for producing axisymmetric magnetic fields with similar spectral properties to the observed Saturnian field.

  19. Oscillations of Magnetic Fluid Column in Strong Magnetic Field

    NASA Astrophysics Data System (ADS)

    Polunin, V. M.; Storozhenko, A. M.; Platonov, V. B.; Lobova, O. V.; Ryapolov, P. A.

    2017-01-01

    The paper considers the results of measuring the elastic parameters (ponderomotive elasticity coefficient, oscillation frequency, attenuation coefficient) of the oscillatory system with an inertial element that is a magnetic fluid column retained in a tube due to magnetic levitation in a strong magnetic field. Elasticity is provided by the ponderomotive force which affects the upper and lower thin layers of the fluid column. Measurement results of vibration parameters of the oscillatory system can be useful for the investigations of magnetophoresis and aggregation of nanoparticles in magnetic fluids.

  20. Large scale magnetic fields from torsion modes and massive photon inflation

    NASA Astrophysics Data System (ADS)

    Garcia de Andrade, L. C.

    2017-10-01

    Previously, Barrow and Tsagas (2008 Phys. Rev. D 77 107302) showed that a slower decay of magnetic fields are present in open Friedmann universes, with traditional Maxwell equations. In their paper magnetic fields of the order of B∼ 10-33~G , which are far below the value required to seed galactic dynamos, were obtained. In this paper, galactic dynamo seeds of the order of B∼ 10-23~G are obtained from massive electrodynamics in an Einstein–Cartan–Proca expanding universe of de Sitter type. Slow decay of magnetic fields in photon–torsion coupling in quantum electrodynamics (Garcia de Andrade 2011 Phys. Lett. B 468 28) have been recently shown by the author Garcia de Andrade (2012 Phys. Lett. B 711 143) to also not be able to seed galactic dynamos. Torsion modes are constrained by the field equations. Spacetime torsion is shown to be explicitly responsible for the slow decay of a cosmic magnetic field. In the absence of massive photon torsion coupling the magnetic field decay is of the order B∼ t-\\frac{3{2}} , when torsion turns on B∼ t-1.2 . The pure massive-photon–torsion contribution amplifies the magnetic field by B_torsion∼ t0.1 which characterizes an extremely slow magnetic dynamo action due to purely torsion gravitational effects. Recently Barrow, Tsagas and Yamamoto (2012 Phys. Rev. D 86 023535) have obtained superadiabatic amplification of B-fields in Friedmann open cosmology which lies within {10-20~G} and 10-12~G which falls very comfortably within the limits to seed galactic dynamos. The are other simple solutions where a B-field decays as B∼ a-1 , a relatively weak photon–torsion coupling approximation. These solutions are obtained for de Sitter and Friedmann metrics. Numerical values as displayed in this new version of the paper specifically for GUT phases of inflation with and without massive photons; without photons we obtain the well known value of GR which is B_GUT∼ 1048~G while for the values with massive photons one

  1. Space applications of superconductivity - High field magnets

    NASA Technical Reports Server (NTRS)

    Fickett, F. R.

    1979-01-01

    The paper discusses developments in superconducting magnets and their applications in space technology. Superconducting magnets are characterized by high fields (to 15T and higher) and high current densities combined with low mass and small size. The superconducting materials and coil design are being improved and new high-strength composites are being used for magnet structural components. Such problems as maintaining low cooling temperatures (near 4 K) for long periods of time and degradation of existing high-field superconductors at low strain levels can be remedied by research and engineering. Some of the proposed space applications of superconducting magnets include: cosmic ray analysis with magnetic spectrometers, energy storage and conversion, energy generation by magnetohydrodynamic and thermonuclear fusion techniques, and propulsion. Several operational superconducting magnet systems are detailed.

  2. Directed Plasma Flow across Magnetic Field

    NASA Astrophysics Data System (ADS)

    Presura, R.; Stepanenko, Y.; Neff, S.; Sotnikov, V. I.

    2008-04-01

    The Hall effect plays a significant role in the penetration of plasma flows across magnetic field. For example, its effect may become dominant in the solar wind penetration into the magnetosphere, in the magnetic field advection in wire array z-pinch precursors, or in the arcing of magnetically insulated transmission lines. An experiment performed at the Nevada Terawatt Facility explored the penetration of plasma with large Hall parameter (˜10) across ambient magnetic field. The plasma was produced by ablation with the short pulse high intensity laser Leopard (0.35 ps, 10^17W/cm^2) and the magnetic field with the pulsed power generator Zebra (50 T). The expanding plasma assumed a jet configuration and propagated beyond a distance consistent with a diamagnetic bubble model. Without magnetic field, the plasma expansion was close to hemispherical. The ability to produce the plasma and the magnetic field with distinct generators allows a controlled, quasi-continuous variation of the Hall parameter and other plasma parameters making the experiments useful for benchmarking numerical simulations.

  3. Effect of magnetic field inhomogeneity on ion cyclotron motion coherence at high magnetic field.

    PubMed

    Vladimirov, Gleb; Kostyukevich, Yury; Hendrickson, Christopher L; Blakney, Greg T; Nikolaev, Eugene

    2015-01-01

    A three-dimensional code based on the particle-in-cell algorithm modified to account for the inhomogeneity of the magnetic field was applied to determine the effect of Z(1), Z(2), Z(3), Z(4), X, Y, ZX, ZY, XZ(2) YZ(2), XY and X(2)-Y(2) components of an orthogonal magnetic field expansion on ion motion during detection in an FT-ICR cell. Simulations were performed for magnetic field strengths of 4.7, 7, 14.5 and 21 Tesla, including experimentally determined magnetic field spatial distributions for existing 4.7 T and 14.5 T magnets. The effect of magnetic field inhomogeneity on ion cloud stabilization ("ion condensation") at high numbers of ions was investigated by direct simulations of individual ion trajectories. Z(1), Z(2), Z(3) and Z(4) components have the largest effect (especially Z(1)) on ion cloud stability. Higher magnetic field strength and lower m/z demand higher relative magnetic field homogeneity to maintain cloud coherence for a fixed time period. The dependence of mass resolving power upper limit on Z(1) inhomogeneity is evaluated for different magnetic fields and m/z. The results serve to set the homogeneity requirements for various orthogonal magnetic field components (shims) for future FT-ICR magnet design.

  4. Compact Electric- And Magnetic-Field Sensor

    NASA Technical Reports Server (NTRS)

    Winterhalter, Daniel; Smith, Edward

    1994-01-01

    Compact sensor measures both electric and magnetic fields. Includes both short electric-field dipole and search-coil magnetometer. Three mounted orthogonally providing triaxial measurements of electromagnetic field at frequencies ranging from near 0 to about 10 kHz.

  5. Emittance growth in rippled solenoidal magnetic fields

    SciTech Connect

    Adler, R.J.

    1987-01-01

    Emittance growth results due to accelerating gaps, and magnetic field gaps in induction accelerators. The analytic technique previously used to study electric field induced emittance growth for immersed source beams is extended to include solenoid fringing field effects in the present work. These results have application to industrial induction accelerators and to high brightness Free Electron Laser drivers. 1 ref., 2 figs.

  6. Magnetic monopoles in field theory and cosmology.

    PubMed

    Rajantie, Arttu

    2012-12-28

    The existence of magnetic monopoles is predicted by many theories of particle physics beyond the standard model. However, in spite of extensive searches, there is no experimental or observational sign of them. I review the role of magnetic monopoles in quantum field theory and discuss their implications for particle physics and cosmology. I also highlight their differences and similarities with monopoles found in frustrated magnetic systems.

  7. High Field Pulse Magnets with New Materials

    NASA Astrophysics Data System (ADS)

    Li, L.; Lesch, B.; Cochran, V. G.; Eyssa, Y.; Tozer, S.; Mielke, C. H.; Rickel, D.; van Sciver, S. W.; Schneider-Muntau, H. J.

    2004-11-01

    High performance pulse magnets using the combination of CuNb conductor and Zylon fiber composite reinforcement with bore sizes of 24, 15 and 10 mm have been designed, manufactured and tested to destruction. The magnets successfully reached the peak fields of 64, 70 and 77.8 T respectively with no destruction. Failures occurred near the end flanges at the layer. The magnet design, manufacturing and testing, and the mode of the failure are described and analyzed.

  8. Magnetic Fields in the Universe III - From Laboratory and Stars to Primordial Structures

    NASA Astrophysics Data System (ADS)

    Soida, Marian; Otmianowska-Mazur, Katarzyna; de Gouveia Dal Pino, Elisabete M.; Lazarian, Alex

    2012-01-01

    The scientific aim of the conference is to provide a natural continuation to the former editions, putting forward the most recent advances of theoretical and numerical studies, as well as new information gathered from observations. Specific issues addressed include the role of magnetic fields in solar and stellar coronae, accretion disks, jets and outflows, stellar and galactic winds, massive stars and in black holes. We discussed its role in late stages of stellar evolution, supernova remnants, interstellar clouds and in star formation. Particular subjects involve the structure of spiral and irregular galaxies, galactic nuclei, clusters of galaxies, as well as high redshift and primordial magnetic fields. Basic plasma and MHD astrophysical processes were addressed. In particular, we mean phenomena such as: the MHD turbulence, dynamos, the magnetic reconnection, magnetic instabilities and a magnetized dusty gas,. We discussed these subjects using results of laboratory experiments and MHD of numerical modeling. The expected data on magnetic fields which will be gathered using new and forthcoming instruments (e.g. LOFAR, PLANCK, SOFIA, ALMA SKA, CTA, etc) were discussed as well.

  9. On the helicity of open magnetic fields

    SciTech Connect

    Prior, C.; Yeates, A. R.

    2014-06-01

    We reconsider the topological interpretation of magnetic helicity for magnetic fields in open domains, and relate this to the relative helicity. Specifically, our domains stretch between two parallel planes, and each of these ends may be magnetically open. It is demonstrated that, while the magnetic helicity is gauge-dependent, its value in any gauge may be physically interpreted as the average winding number among all pairs of field lines with respect to some orthonormal frame field. In fact, the choice of gauge is equivalent to the choice of reference field in the relative helicity, meaning that the magnetic helicity is no less physically meaningful. We prove that a particular gauge always measures the winding with respect to a fixed frame, and propose that this is normally the best choice. For periodic fields, this choice is equivalent to measuring relative helicity with respect to a potential reference field. However, for aperiodic fields, we show that the potential field can be twisted. We prove by construction that there always exists a possible untwisted reference field.

  10. Constraints on primordial magnetic fields from inflation

    SciTech Connect

    Green, Daniel; Kobayashi, Takeshi E-mail: takeshi.kobayashi@sissa.it

    2016-03-01

    We present generic bounds on magnetic fields produced from cosmic inflation. By investigating field bounds on the vector potential, we constrain both the quantum mechanical production of magnetic fields and their classical growth in a model independent way. For classical growth, we show that only if the reheating temperature is as low as T{sub reh} ∼< 10{sup 2} MeV can magnetic fields of 10{sup −15} G be produced on Mpc scales in the present universe. For purely quantum mechanical scenarios, even stronger constraints are derived. Our bounds on classical and quantum mechanical scenarios apply to generic theories of inflationary magnetogenesis with a two-derivative time kinetic term for the vector potential. In both cases, the magnetic field strength is limited by the gravitational back-reaction of the electric fields that are produced simultaneously. As an example of quantum mechanical scenarios, we construct vector field theories whose time diffeomorphisms are spontaneously broken, and explore magnetic field generation in theories with a variable speed of light. Transitions of quantum vector field fluctuations into classical fluctuations are also analyzed in the examples.

  11. MRS photodiode in strong magnetic field

    SciTech Connect

    Beznosko, D.; Blazey, G.; Dyshkant, A.; Francis, K.; Kubik, D.; Rykalin, V.; Tartaglia, M.A.; Zutshi, v.; /Northern Illinois U.

    2004-12-01

    The experimental results on the performance of the MRS (Metal/Resistor/Semiconductor) photodiode in the strong magnetic field of 4.4T, and the possible impact of the quench of the magnet at 4.5T on sensor's operation are reported.

  12. High-field superconducting nested coil magnet

    NASA Technical Reports Server (NTRS)

    Laverick, C.; Lobell, G. M.

    1970-01-01

    Superconducting magnet, employed in conjunction with five types of superconducting cables in a nested solenoid configuration, produces total, central magnetic field strengths approaching 70 kG. The multiple coils permit maximum information on cable characteristics to be gathered from one test.

  13. Topology of Saturn's main magnetic field

    NASA Astrophysics Data System (ADS)

    Acuna, M. H.; Connerney, J. E. P.; Ness, N. F.

    1981-08-01

    The reported analysis of Saturn's main magnetic field takes into account the data obtained by Voyager 1 during its close flyby of Saturn in November 1980. A magnetic field model for the analysis of Saturn's main field in which the distributed ring currents are explicitly modelled is constructed. The considered internal field parameters constitute a first approximation to Saturn's main field. Several model current systems that might be expected on physical grounds to be active in Saturn's magnetosphere are considered. It is pointed out that certain aspects of Saturn's main magnetic field relevant to the planet's interior have been discussed by Stevenson (1980). In particular, the unexpectedly small dipole moment seems to be consistent with the gravitational settling of helium, which leads to a much smaller electrically conducting and convecting region than would be expected of a homogeneous distribution of hydrogen and helium.

  14. Wire codes, magnetic fields, and childhood cancer

    SciTech Connect

    Kheifets, L.I.; Kavet, R.; Sussman, S.S.

    1997-05-01

    Childhood cancer has been modestly associated with wire codes, an exposure surrogate for power frequency magnetic fields, but less consistently with measured fields. The authors analyzed data on the population distribution of wire codes and their relationship with several measured magnetic field metrics. In a given geographic area, there is a marked trend for decreased prevalence from low to high wire code categories, but there are differences between areas. For average measured fields, there is a positive relationship between the mean of the distributions and wire codes but a large overlap among the categories. Better discrimination is obtained for the extremes of the measurement values when comparing the highest and the lowest wire code categories. Instability of measurements, intermittent fields, or other exposure conditions do not appear to provide a viable explanation for the differences between wire codes and magnetic fields with respect to the strength and consistency of their respective association with childhood cancer.

  15. Tubular discharge in a magnetic field

    SciTech Connect

    Karasev, V.Yu.; Semenov, R.I.; Chaika, M.P.

    1995-04-01

    Visual observations of Xe discharge glow in an axial magnetic field are described. Tubular discharge is detected in a narrow range of the parameters p, I, and H. A qualitative explanation of this effect is proposed.

  16. THE SNS RING DIPOLE MAGNETIC FIELD QUALITY.

    SciTech Connect

    WANDERER,P.; JACKSON,J.; JAIN,A.; LEE,Y.Y.; MENG,W.; PAPAPHILIPPOU,I.; SPATARO,C.; TEPIKIAN,S.; TSOUPAS,N.; WEI,J.

    2002-06-03

    The large acceptance and compact size of the Spallation Neutron Source (SNS) ring implies the use of short, large aperture dipole magnets, with significant end field errors. The SNS will contain 32 such dipoles. We report magnetic field measurements of the first 16 magnets. The end field errors have been successfully compensated by the use of iron bumps. For 1.0 GeV protons, the magnets have been shimmed to meet the 0.01% specification for rms variation of the integral field. At 1.3 GeV, the rms variation is 0.036%. The load on the corrector system at 1.3 GeV will be reduced by the use of sorting.

  17. Magnetic Field Response Measurement Acquisition System

    NASA Technical Reports Server (NTRS)

    Woodard, Stanley E.; Taylor, Bryant D.; Shams, Qamar A.; Fox, Robert L.

    2005-01-01

    A measurement acquisition method that alleviates many shortcomings of traditional measurement systems is presented in this paper. The shortcomings are a finite number of measurement channels, weight penalty associated with measurements, electrical arcing, wire degradations due to wear or chemical decay and the logistics needed to add new sensors. The key to this method is the use of sensors designed as passive inductor-capacitor circuits that produce magnetic field responses. The response attributes correspond to states of physical properties for which the sensors measure. A radio frequency antenna produces a time-varying magnetic field used to power the sensor and receive the magnetic field response of the sensor. An interrogation system for discerning changes in the sensor response is presented herein. Multiple sensors can be interrogated using this method. The method eliminates the need for a data acquisition channel dedicated to each sensor. Methods of developing magnetic field response sensors and the influence of key parameters on measurement acquisition are discussed.

  18. Magnetic Field Response Measurement Acquisition System

    NASA Technical Reports Server (NTRS)

    Woodard, Stanley E. (Inventor); Taylor, Bryant D. (Inventor); Shams, Qamar A. (Inventor); Fox, Robert L. (Inventor); Fox, Christopher L. (Inventor); Fox, Melanie L. (Inventor); Bryant, Robert G. (Inventor)

    2006-01-01

    Magnetic field response sensors designed as passive inductor-capacitor circuits produce magnetic field responses whose harmonic frequencies correspond to states of physical properties for which the sensors measure. Power to the sensing element is acquired using Faraday induction. A radio frequency antenna produces the time varying magnetic field used for powering the sensor, as well as receiving the magnetic field response of the sensor. An interrogation architecture for discerning changes in sensor s response kequency, resistance and amplitude is integral to the method thus enabling a variety of measurements. Multiple sensors can be interrogated using this method, thus eliminating the need to have a data acquisition channel dedicated to each sensor. The method does not require the sensors to be in proximity to any form of acquisition hardware. A vast array of sensors can be used as interchangeable parts in an overall sensing system.

  19. Heat Capacity Measurements in Pulsed Magnetic Fields

    SciTech Connect

    Jaime, M.; Movshovich, R.; Sarrao, J.L.; Kim, J.; Stewart, G.; Beyermann, W.P.; Canfield, P.C.

    1998-10-23

    The new NHMFL 60T quasi-continuous magnet produces a flat-top field for a period of 100 ms at 60 Tesla, and for longer time at lower fields, e.g. 0.5 s at 45 Tesla. We have developed for the first time the capability to measure heat capacity at very high magnetic fields in the NHMFL 60T quasi-continuous magnet at LANL, using a probe built out of various plastic materials. The field plateau allows us to utilize a heat-pulse method to obtain heat capacity data. Proof-of-principle heat capacity experiments were performed on a variety of correlated electron systems. Both magnet performance characteristics and physical properties of various materials studied hold out a promise of wide application of this new tool.

  20. Magnetic field dragging in accretion discs

    NASA Astrophysics Data System (ADS)

    de Guiran, R.; Ferreira, J.

    2010-12-01

    Accretion discs are composed of ionized gas in motion around a central object. Sometimes, the disc is the source of powerful bipolar jets along its rotation axis. Theoretical models invoke the existence of a bipolar magnetic field crossing the disc and require two conditions to produce powerful jets: field lines need to be bent enough at the disc surface and the magnetic field needs to be close to equipartition. The work of Petrucci et al (2008) on the variability of X-ray binaries supposes that transitions between pure accretion phases and accretion-ejection phases are due to some variations of the disc magnetization. This rises the problem of the magnetic field dragging in accretion discs. We revisit the method developed by Lubow et al (1994) by including momentum and mass conservation equations in a time-dependent 1D MHD code.