Science.gov

Sample records for galactic nuclear region

  1. 3-D Mapping of the Galactic Nuclear Region

    NASA Astrophysics Data System (ADS)

    Wang, Q. Daniel

    The Galactic center of our Galaxy provides an excellent laboratory to study the star formation mode and history as well as the structure and dynamics of stars and gas under an extreme galactic nuclear environment. We propose a comprehensive data analysis program to investigate the 3-D properties of the region enclosed by the Central Molecular Zone of the Galaxy. We will capitalize on an extensive data set now available from Planck, Herschel, Spitzer, and Hubble Space Telescopes, as well as the Large Millimeter Telescope and other ground-based facilities. This data set provides sensitive high-resolution probes of the region over the millimeter to nearIR wavelength range. The data set, together with dedicated state-of-art analysis tools that we have been developing, will enable us to obtain (1) the first full-spacing millimeter dust emission image of the region at a resolution better than 10 arcseconds (FWHM), (2) the column density, temperature, and opacity spectral index distributions of dusty gas; (3) the mapping of dust extinction toward individual stars; (4) the line-of-sight locations of individual dense clouds, (5) the global spatial distribution and formation history of stars, and (6) the characterization of environment effects on stellar and gas dynamics in the region. The combined analysis of the dust emission and extinction will represent a major step forward in determining the properties of the dusty gas as well as its effect on the stellar light observations of the region. This body of work will likely have strong implications for our understanding the stellar and gas properties in other galactic nuclei and their role in regulating the evolution of galaxies as whole.

  2. UNCOVERING THE DEEPLY EMBEDDED ACTIVE GALACTIC NUCLEUS ACTIVITY IN THE NUCLEAR REGIONS OF THE INTERACTING GALAXY Arp 299

    SciTech Connect

    Alonso-Herrero, A.; Roche, P. F.; Esquej, P.; Colina, L.; González-Martín, O.; Ramos Almeida, C.; Asensio Ramos, A.; Rodríguez Espinosa, J. M.; Alvarez, C.; Pereira-Santaella, M.; Levenson, N. A.; Packham, C.; Mason, R. E.; Aretxaga, I.; Díaz-Santos, T.; Perlman, E.; Telesco, C. M.

    2013-12-10

    We present mid-infrared (MIR) 8-13 μm spectroscopy of the nuclear regions of the interacting galaxy Arp 299 (IC 694+NGC 3690) obtained with CanariCam (CC) on the 10.4 m Gran Telescopio Canarias (GTC). The high angular resolution (∼0.''3-0.''6) of the data allows us to probe nuclear physical scales between 60 and 120 pc, which is a factor of 10 improvement over previous MIR spectroscopic observations of this system. The GTC/CC spectroscopy displays evidence of deeply embedded active galactic nucleus (AGN) activity in both nuclei. The GTC/CC nuclear spectrum of NGC 3690/Arp 299-B1 can be explained as emission from AGN-heated dust in a clumpy torus with both a high covering factor and high extinction along the line of sight. The estimated bolometric luminosity of the AGN in NGC 3690 is 3.2 ± 0.6 × 10{sup 44} erg s{sup –1}. The nuclear GTC/CC spectrum of IC 694/Arp 299-A shows 11.3 μm polycyclic aromatic hydrocarbon emission stemming from a deeply embedded (A{sub V} ∼ 24 mag) region of less than 120 pc in size. There is also a continuum-emitting dust component. If associated with the putative AGN in IC 694, we estimate that it would be approximately five times less luminous than the AGN in NGC 3690. The presence of dual AGN activity makes Arp 299 a good example to study such phenomena in the early coalescence phase of interacting galaxies.

  3. Nuclear obscuration in active galactic nuclei

    NASA Astrophysics Data System (ADS)

    Ramos Almeida, Cristina; Ricci, Claudio

    2017-09-01

    The material surrounding accreting supermassive black holes connects the active galactic nucleus with its host galaxy and, besides being responsible for feeding the black hole, provides important information on the feedback that nuclear activity produces on the galaxy. In this Review, we summarize our current understanding of the close environment of accreting supermassive black holes obtained from studies of local active galactic nuclei carried out in the infrared and X-ray regimes. The structure of this circumnuclear material is complex, clumpy and dynamic, and its covering factor depends on the accretion properties of the active galactic nucleus. In the infrared, this obscuring material is a transition zone between the broad- and narrow-line regions, and, at least in some galaxies, it consists of two structures: an equatorial disk/torus and a polar component. In the X-ray regime, the obscuration is produced by multiple absorbers across various spatial scales, mostly associated with the torus and the broad-line region. In the coming decade, the new generation of infrared and X-ray facilities will greatly contribute to our understanding of the structure and physical properties of nuclear obscuration in active galactic nuclei.

  4. Nuclear obscuration in active galactic nuclei

    NASA Astrophysics Data System (ADS)

    Almeida, Cristina Ramos; Ricci, Claudio

    2017-10-01

    The material surrounding accreting supermassive black holes connects the active galactic nucleus with its host galaxy and, besides being responsible for feeding the black hole, provides important information on the feedback that nuclear activity produces on the galaxy. In this Review, we summarize our current understanding of the close environment of accreting supermassive black holes obtained from studies of local active galactic nuclei carried out in the infrared and X-ray regimes. The structure of this circumnuclear material is complex, clumpy and dynamic, and its covering factor depends on the accretion properties of the active galactic nucleus. In the infrared, this obscuring material is a transition zone between the broad- and narrow-line regions, and, at least in some galaxies, it consists of two structures: an equatorial disk/torus and a polar component. In the X-ray regime, the obscuration is produced by multiple absorbers across various spatial scales, mostly associated with the torus and the broad-line region. In the coming decade, the new generation of infrared and X-ray facilities will greatly contribute to our understanding of the structure and physical properties of nuclear obscuration in active galactic nuclei.

  5. Finding Distant Galactic HII Regions

    NASA Astrophysics Data System (ADS)

    Anderson, L. D.; Armentrout, W. P.; Johnstone, B. M.; Bania, T. M.; Balser, Dana S.; Wenger, Trey V.; Cunningham, V.

    2015-12-01

    The WISE Catalog of Galactic H ii Regions contains ˜2000 H ii region candidates lacking ionized gas spectroscopic observations. All candidates have the characteristic H ii region mid-infrared morphology of WISE 12 μ {{m}} emission surrounding 22 μ {{m}} emission, and additionally have detected radio continuum emission. We here report Green Bank Telescope hydrogen radio recombination line and radio continuum detections in the X-band (9 GHz; 3 cm) of 302 WISE H ii region candidates (out of 324 targets observed) in the zone 225^\\circ ≥slant {\\ell }≥slant -20^\\circ , | {\\text{}}b| ≤slant 6^\\circ . Here we extend the sky coverage of our H ii region Discovery Survey, which now contains nearly 800 H ii regions distributed across the entire northern sky. We provide LSR velocities for the 302 detections and kinematic distances for 131 of these. Of the 302 new detections, 5 have ({\\ell },{\\text{}}b,v) coordinates consistent with the Outer Scutum-Centaurus Arm (OSC), the most distant molecular spiral arm of the Milky Way. Due to the Galactic warp, these nebulae are found at Galactic latitudes >1° in the first Galactic quadrant, and therefore were missed in previous surveys of the Galactic plane. One additional region has a longitude and velocity consistent with the OSC but lies at a negative Galactic latitude (G039.183-01.422 -54.9 {km} {{{s}}}-1). With Heliocentric distances >22 kpc and Galactocentric distances >16 kpc, the OSC H ii regions are the most distant known in the Galaxy. We detect an additional three H ii regions near {\\ell }≃ 150^\\circ whose LSR velocities place them at Galactocentric radii >19 kpc. If their distances are correct, these nebulae may represent the limit to Galactic massive star formation.

  6. The Galactic nucleus: A unique region in the Galactic ecosystem

    NASA Technical Reports Server (NTRS)

    Genzel, Reinhard; Poglitsch, Albrecht

    1995-01-01

    The nucleus is a unique region in the Galactic ecosystem. It is also superb laboratory of modern astrophysics where astronomers can study, at unprecedented spatial resolution and across the entire electromagnetic spectrum, physical processes that may also happen at the cores of other galaxies. Infrared observations from the Kuiper Airborne Observatory have made important contributions to unraveling the mysteries of the Galactic nucleus and this review highlights some of these measurements, as well as recent results regarding the central parsec.

  7. Trajectories of Cepheid variable stars in the Galactic nuclear bulge

    NASA Astrophysics Data System (ADS)

    Matsunaga, Noriyuki

    2012-06-01

    The central region of our Galaxy provides us with a good opportunity to study the evolution of galactic nuclei and bulges because we can observe various phenomena in detail at the proximity of 8 kpc. There is a hierarchical alignment of stellar systems with different sizes; from the extended bulge, the nuclear bulge, down to the compact cluster around the central supermassive blackhole. The nuclear bulge contains stars as young as a few Myr, and even hosts the ongoing star formation. These are in contrast to the more extended bulge which are dominated by old stars, ~10Gyr. It is considered that the star formation in the nuclear bulge is caused by fresh gas provided from the inner disk. In this picture, the nuclear bulge plays an important role as the interface between the gas supplier, the inner disk, and the galactic nucleus. Kinematics of young stars in the nuclear bulge is important to discuss the star forming process and the gas circulation in the Galactic Center. We here propose spectroscopic observations of Cepheid variable stars, ~25 Myr, which we recently discovered in the nuclear bulge. The spectra taken in this proposal will allow timely estimates of the systemic velocities of the variable stars.

  8. Formation of Galactic Prominence in the Galactic Central Region

    NASA Astrophysics Data System (ADS)

    Peng, Chih-Han; Matsumoto, Ryoji

    2017-02-01

    We carried out 2.5-dimensional resistive MHD simulations to study the formation mechanism of molecular loops observed by Fukui et al. in the Galactic central region. Since it is hard to form molecular loops by lifting up dense molecular gas, we study the formation mechanism of molecular gas in rising magnetic arcades. This model is based on the in situ formation model of solar prominences, in which prominences are formed by cooling instability in helical magnetic flux ropes formed by imposing converging and shearing motion at footpoints of the magnetic arch anchored to the solar surface. We extended this model to Galactic center scale (a few hundreds of parsecs). Numerical results indicate that magnetic reconnection taking place in the current sheet that formed inside the rising magnetic arcade creates dense blobs confined by the rising helical magnetic flux ropes. Thermal instability taking place in the flux ropes forms dense molecular filaments floating at high Galactic latitude. The mass of the filament increases with time and can exceed {10}5 {M}ȯ .

  9. Gamma rays from the Galactic Centre region

    NASA Astrophysics Data System (ADS)

    Su, Meng; van Eldik, Christopher

    2015-08-01

    During the last decades, increasingly precise astronomical observations of the Galactic Centre region at radio, infrared, and X-ray wavelengths laid the foundations for a detailed understanding of the high-energy astroparticle physics of this most remarkable location in the Galaxy. Recently, observations of this region in high energy (HE, 10 MeV-100 GeV) and very high energy (VHE, > 100 GeV) γ-rays added important insights into the emerging picture of the Galactic nucleus as a most violent and active region where acceleration of particles to highest energies and their transport can be studied in great detail. We review the current understanding of the γ-ray emission emanating from the Galactic Centre.

  10. Gamma ray emission from the region of the galactic center

    NASA Technical Reports Server (NTRS)

    Dahlbacka, G. H.; Freier, P. S.; Waddington, C. J.

    1972-01-01

    A combination nuclear emulsion-spark chamber gamma ray (E=100 MeV) telescope was used to study the region of sky that includes the Galactic Center. 95% confidence upper limits on the flux from the reported sources G gamma 2 - 3 and Sgr gamma-1 were placed at 4.4 and 8.8 x 10 to the minus 5th power protons/sq cm-sec, and a similar limit on the emission from the Galactic Center as a point source (plus or minus .75 degrees) was placed at 3.3 x 10 to the minus 5th power protons/sq cm-sec. No enhanced emission was observed from the Galactic Plane (plus or minus 6 degrees) and an upper limit of 2 x 10 to the minus 4th power protons/sq cm-sec rad/ was obtained.

  11. The GBT HII Region Discovery Survey: Galactic Structure

    NASA Astrophysics Data System (ADS)

    Balser, Dana S.; Anderson, Loren D.; Bania, Thomas M.; Wenger, Trey

    2015-01-01

    The HII region discovery survey (HRDS) has significantly expanded the census of HII regions in the Galaxy using the Green Bank Telescope (GBT). HII regions are the formation sites of massive OB stars and reveal the locations of current Galactic star formation. They are the archetypical tracers of spiral arms since, unlike other tracers, the identification of an HII region unambiguously locates massive star formation. Their chemical abundances indicate the present state of the ISM and reveal the elemental enrichment caused by the nuclear processing of many stellar generations. We determine kinematic distances in a self consistent way and explore Galactic structure across the Milky Way disk. In thermal equilibrium metal abundances are expected to set the nebular electron temperature with high abundances producing low temperatures. We derive the electron temperature using the radio recombination line-to-continuum ratio and use these values to explore metallicity structure.

  12. Galactic Archaeology via Relics Of Nuclear Accretion Events

    NASA Astrophysics Data System (ADS)

    Nicastro, Fabrizio; Senatore, F.; Krongold, Y.; Elvis, M.; Mathur, S.

    2016-10-01

    I will report on the presence of large amounts of million-degree gas in the Milky Way's interstellar and circum-galactic medium, and will show that this gas: (1) permeates both the Galactic plane and the halo, (2) extends to distances larger than 60-200 kpc from the center, and (3) its mass is sufficient to close the Galaxy's baryon census.I will also show that a vast, 6 kpc radius, spherically-symmetric central region of the Milky Way above and below the 0.16 kpc thick plane, has either been emptied of hot gas or the density of this gas within the cavity has a peculiar profile, increasing from the center up to a radius of 6 kpc, and then decreasing with a typical halo density profile. This, and several other converging pieces of evidence, suggest that the current surface of the cavity, at 6 kpc from the Galaxy's center, traces the distant echo of a period of strong nuclear activity of our super-massive black-hole, occurred about 6 Myrs ago.

  13. THE INNER GALACTIC BULGE: EVIDENCE FOR A NUCLEAR BAR?

    SciTech Connect

    Gerhard, Ortwin; Martinez-Valpuesta, Inma

    2012-01-15

    Recent data from the VVV survey have strengthened evidence for a structural change in the Galactic bulge inward of |l| {<=} 4 Degree-Sign . Here we show with an N-body barred galaxy simulation that a boxy bulge formed through the bar and buckling instabilities effortlessly matches measured bulge longitude profiles for red clump stars. The same simulation snapshot was earlier used to clarify the apparent boxy bulge-long bar dichotomy, for the same orientation and scaling. The change in the slope of the model longitude profiles in the inner few degrees is caused by a transition from highly elongated to more nearly axisymmetric isodensity contours in the inner boxy bulge. This transition is confined to a few degrees from the Galactic plane; thus the change of slope is predicted to disappear at higher Galactic latitudes. We also show that the nuclear star count map derived from this simulation snapshot displays a longitudinal asymmetry similar to that observed in the Two Micron All Sky Survey (2MASS) data, but is less flattened to the Galactic plane than the 2MASS map. These results support the interpretation that the Galactic bulge originated from disk evolution and question the evidence advanced from star count data for the existence of a secondary nuclear bar in the Milky Way.

  14. The Inner Galactic Bulge: Evidence for a Nuclear Bar?

    NASA Astrophysics Data System (ADS)

    Gerhard, Ortwin; Martinez-Valpuesta, Inma

    2012-01-01

    Recent data from the VVV survey have strengthened evidence for a structural change in the Galactic bulge inward of |l| <= 4°. Here we show with an N-body barred galaxy simulation that a boxy bulge formed through the bar and buckling instabilities effortlessly matches measured bulge longitude profiles for red clump stars. The same simulation snapshot was earlier used to clarify the apparent boxy bulge—long bar dichotomy, for the same orientation and scaling. The change in the slope of the model longitude profiles in the inner few degrees is caused by a transition from highly elongated to more nearly axisymmetric isodensity contours in the inner boxy bulge. This transition is confined to a few degrees from the Galactic plane; thus the change of slope is predicted to disappear at higher Galactic latitudes. We also show that the nuclear star count map derived from this simulation snapshot displays a longitudinal asymmetry similar to that observed in the Two Micron All Sky Survey (2MASS) data, but is less flattened to the Galactic plane than the 2MASS map. These results support the interpretation that the Galactic bulge originated from disk evolution and question the evidence advanced from star count data for the existence of a secondary nuclear bar in the Milky Way.

  15. Decaying globular cluster systems and galactic nuclear activity

    NASA Astrophysics Data System (ADS)

    Capuzzo-Dolcetta, R.

    Globular cluster are systems that evolve dissipatively in non symmetric galactic potentials, losing energy and angular momentum. As a consequence, the GCS radial profile in a galaxy evolves significantly, so to differ from the one of the collisionless stellar bulge phase: this can explain the observations, which indicate how the GCS distribution in galaxies is usually more extended than the underlining stellar distribution. Moreover, the GCS orbital decay implies that a significant quantity of mass is carried toward the mother galaxy's central galactic region in a time scale short compared to the Hubble time. We show that this mass can accrete a galactic nucleus and fuel its activity in early stages of galactic life.

  16. The Green Bank Telescope Galactic H II Region Discovery Survey

    NASA Astrophysics Data System (ADS)

    Bania, T. M.; Anderson, L. D.; Balser, Dana S.; Rood, R. T.

    2010-08-01

    We discovered a large population of previously unknown Galactic H II regions by using the Green Bank Telescope to detect their hydrogen radio recombination line emission. Since recombination lines are optically thin at 3 cm wavelength, we can detect H II regions across the entire Galactic disk. Our targets were selected based on spatially coincident 24 μm and 21 cm continuum emission. For the Galactic zone -16 ° <= ell <= 67° and |b| <= 1°, we detected 602 discrete recombination line components from 448 lines of sight, 95% of the sample targets, which more than doubles the number of known H II regions in this part of the Milky Way. We found 25 new first quadrant nebulae with negative LSR velocities, placing them beyond the solar orbit. Because we can detect all nebulae inside the solar orbit that are ionized by O-stars, the Discovery Survey targets, when combined with existing H II region catalogs, give a more accurate census of Galactic H II regions and their properties. The distribution of H II regions across the Galactic disk shows strong, narrow (~1 kpc wide) peaks at Galactic radii of 4.3 and 6.0 kpc. The longitude-velocity distribution of H II regions now gives unambiguous evidence for Galactic structure, including the kinematic signatures of the radial peaks in the spatial distribution, a concentration of nebulae at the end of the Galactic Bar, and nebulae located on the kinematic locus of the 3 Kpc Arm.

  17. THE GREEN BANK TELESCOPE GALACTIC H II REGION DISCOVERY SURVEY

    SciTech Connect

    Bania, T. M.; Anderson, L. D.; Balser, Dana S.; Rood, R. T.

    2010-08-01

    We discovered a large population of previously unknown Galactic H II regions by using the Green Bank Telescope to detect their hydrogen radio recombination line emission. Since recombination lines are optically thin at 3 cm wavelength, we can detect H II regions across the entire Galactic disk. Our targets were selected based on spatially coincident 24 {mu}m and 21 cm continuum emission. For the Galactic zone -16 {sup 0} {<=} l {<=} 67{sup 0} and |b| {<=} 1{sup 0}, we detected 602 discrete recombination line components from 448 lines of sight, 95% of the sample targets, which more than doubles the number of known H II regions in this part of the Milky Way. We found 25 new first quadrant nebulae with negative LSR velocities, placing them beyond the solar orbit. Because we can detect all nebulae inside the solar orbit that are ionized by O-stars, the Discovery Survey targets, when combined with existing H II region catalogs, give a more accurate census of Galactic H II regions and their properties. The distribution of H II regions across the Galactic disk shows strong, narrow ({approx}1 kpc wide) peaks at Galactic radii of 4.3 and 6.0 kpc. The longitude-velocity distribution of H II regions now gives unambiguous evidence for Galactic structure, including the kinematic signatures of the radial peaks in the spatial distribution, a concentration of nebulae at the end of the Galactic Bar, and nebulae located on the kinematic locus of the 3 Kpc Arm.

  18. Star formation in Galactic spiral arms and the interarm regions

    NASA Astrophysics Data System (ADS)

    Eden, D. J.; Moore, T. J. T.; Morgan, L. K.; Thompson, M. A.; Urquhart, J. S.

    2013-05-01

    The line of sight through the Galactic plane between longitudes l = 37°.83 and 42°.50 allows for the separation of Galactic Ring Survey molecular clouds into those that fall within the spiral arms and those located in the interarm regions. By matching these clouds in both position and velocity with dense clumps detected in the mm continuum by the Bolocam Galactic Plane Survey, we are able to look for changes in the clump formation efficiency (CFE), the ratio of clump to cloud mass, with Galactic environment. We find no evidence of any difference in the CFE between the interarm and spiral-arm regions along this line of sight. This is further evidence that, outside the Galactic Centre region, the large-scale structures of the Galaxy play little part in changing the dense, potentially star-forming structures within molecular clouds.

  19. The Green Bank Telescope Galactic H II Region Discovery Survey

    NASA Astrophysics Data System (ADS)

    Bania, Thomas M.; Anderson, L. D.; Balser, D. S.; Rood, R. T.

    2010-05-01

    We discovered a large population of previously unknown Galactic HII regions by using the NRAO Green Bank Telescope to detect hydrogen radio recombination line (RRL) emission from these nebulae. Since recombination lines are optically thin at 3 cm wavelength, we can detect HII regions across the entire Galactic disk. Our targets were selected based on spatially coincident 24µm (Spitzer/MIPSGAL) and 21 cm (either from the VLA Galactic Plane Survey or the NRAO NVSS) continuum emission. For the Galactic zone, -16° < Lgal < 67° and |Bgal|<1°, we detected 602 discrete RRL components from 95% of the sample targets, which more than doubles the number of known HII regions in this part of the Milky Way. We found 25 new first quadrant nebulae with negative RRL velocities, placing them beyond the Solar orbit in the Perseus arm. We plan to determine the distance to over 90% of our sources (for the region Lgal>18°) by using HI emission/absorption experiments to resolve the kinematic distance ambiguity. Because we can detect all nebulae inside the Solar orbit that are ionized by O-stars, the Discovery Survey targets, when combined with existing HII region catalogs, will give a more accurate census of Galactic HII regions and their properties. The distribution of HII regions across the Galactic disk shows strong, narrow ( 1 kpc wide) peaks at Galactic radii of 4.3 and 6.0 kpc. There is still an overall dearth of HII regions within 4 kpc radius. For the first time the longitude-velocity distribution of HII regions gives unambiguous evidence for Galactic structure, including the kinematic signatures of the radial peaks in the spatial distribution, a concentration of nebulae at the end of the Galactic Bar, and nebulae located in kinematic locus of the 3 kpc Arm.

  20. Nuclear Structure and Galactic γ-Ray Activity.

    PubMed

    Görres, J

    2000-01-01

    The observation of galactic γ lines following the decay of radioactive nuclei provides a direct link between nuclear physics experiments in earth-based laboratories and astrophysical observations with space-based observatories. Two examples are presented to illustrate this interplay: the measurement of the lifetime of (44)Ti to allow an improved determination of the (44)Ti mass of the supernova remnant Cassiopeia A from the observed γ ray activity and the measurements of excited states in (24)Si to determine the reaction rate of (23)Al(p, γ)(24)Si which might be important for a reduced production of (22)Na in novae.

  1. First results from the NuSTAR "mini-survey" of the Galactic center region

    NASA Astrophysics Data System (ADS)

    Hailey, Charles J.

    2014-05-01

    One of the major science objectives of the Nuclear Spectroscopic Telescope Array (NuSTAR) observatory is to perform the first sub-arcminute, hard X-ray survey of several square degrees of the Galactic plane, centered on a region near the Galactic center. As a prelude to the full survey, which began in July 2013, NuSTAR conducted a ˜500 ks, 0.3 × 0.4° "mini-survey" focused on Sgr A* and its environs. We present analysis of several candidate pulsar wind nebulae and filaments, which are revealed to be intense sources of X-ray emission at >10 keV.

  2. Interstellar HOCN in the Galactic center region

    NASA Astrophysics Data System (ADS)

    Brünken, S.; Belloche, A.; Martín, S.; Verheyen, L.; Menten, K. M.

    2010-06-01

    Aims: Our aim is to confirm the interstellar detection of cyanic acid, HOCN, in the Galactic center clouds. It has previously been tentatively detected only in Sgr B2(OH). Methods: We used a complete line survey of the hot cores Sgr B2(N) and (M) in the 3 mm range, complemented by additional observations carried out with the IRAM 30 m telescope at selected frequencies in the 2 mm band and towards four additional positions in the Sgr B2 cloud complex in the 2 and 3 mm bands. The spectral survey was analysed in the local thermodynamical equilibrium approximation (LTE) by modeling the emission of all identified molecules simultaneously. This allowed us to distinguish weak features of HOCN from the rich line spectrum observed in Sgr B2(N) and (M). Lines of the more stable (by 1.1 eV) isomer isocyanic acid, HNCO, in these sources, as well as those of HOCN and HNCO towards the other positions, were analysed in the LTE approximation as well. Results: Four transitions of HOCN were detected in a quiescent molecular cloud in the Galactic center at a position offset in (RA, Dec) by (20”, 100”) from the hot core source Sgr B2(M), confirming its previous tentative interstellar detection. Up to four transitions were detected toward five other positions in the Sgr B2 complex, including the hot cores Sgr B2(M), (S), and (N). A fairly constant abundance ratio of ~0.3-0.8% for HOCN relative to HNCO was derived for the extended gas components, suggesting a common formation process of these isomers. Based on observations with the IRAM 30-m telescope. IRAM is supported by CNRS/INSU (France), the MPG (Germany) and the IGN (Spain).

  3. Molecular Lines of 13 Galactic Infrared Bubble Regions

    NASA Astrophysics Data System (ADS)

    Yan, Qing-zeng; Xu, Ye; Zhang, Bo; Lu, Deng-rong; Chen, Xi; Tang, Zheng-hong

    2016-11-01

    We investigated the physical properties of molecular clouds and star formation (SF) processes around infrared bubbles, which are essentially expanding H ii regions. We performed observations of 13 galactic infrared bubble fields containing 18 bubbles. We observed five molecular lines—12CO (J=1\\to 0), 13CO (J=1\\to 0), C18O (J=1\\to 0), HCN (J=1\\to 0), and HCO+ (J=1\\to 0)—and several publicly available surveys were used for comparison: Galactic Legacy Infrared Mid-Plane Survey Extraordinaire, Multiband Imaging Photometer for Spitzer Galactic Plane Survey, APEX Telescope Large Area Survey of the Galaxy, Bolocam Galactic Plane Survey, Very Large Array (VLA) Galactic Plane Survey, Multi-Array Galactic Plane Imaging Survey, and NRAO VLA Sky Survey. We find that these bubbles are generally connected with molecular clouds, most of which are giant. Several bubble regions display velocity gradients and broad-shifted profiles, which could be due to the expansion of bubbles. The masses of molecular clouds within bubbles range from 100 to 19,000 M ⊙, and their dynamic ages are about 0.3-3.7 Myr, which takes into account the internal turbulence pressure of surrounding molecular clouds. Clumps are found in the vicinity of all 18 bubbles, and molecular clouds near four of these bubbles with larger angular sizes show shell-like morphologies, indicating that either collect-and-collapse or radiation-driven implosion processes may have occurred. Due to the contamination of adjacent molecular clouds, only six bubble regions are appropriate to search for outflows, and we find that four have outflow activities. Three bubbles display ultra-compact H ii regions at their borders, and one is probably responsible for its outflow. In total, only six bubbles show SF activities in the vicinity, and we suggest that SF processes might have been triggered.

  4. X-ray Point Sources in Galactic Center Region Fields

    NASA Astrophysics Data System (ADS)

    Hong, J.; Grindlay, J.; van den Berg, M.; Laycock, S.; Koenig, X.; Zhao, P.; Schlegel, E.

    2005-12-01

    We report the recent progress of the Chandra Multiwavelength Plane (ChaMPlane) survey in the Galactic Center region fields. These fields include deep Chandra observations of three low extinction windows near the Galactic Center - Baade's window, Stanek window, and Limiting window (100 ksec each, see van den Berg et al. for a detailed description of these three fields) and the Chandra archival data of Sgr A* (750 ksec), Sgr B2 field (100 ksec) and the shallow survey (2x12 ksec) of the Galactic Center strip (Wang et al 2002, Nature, 415, 148). We classify the spectral types of X-ray sources by quantile analysis, and we explore the source population using logN-logS and spatial distributions based on their spectral type. This project is supported by Chandra grant GO5-6091X.

  5. Star Formation and Cloud Dynamics in the Galactic Bar Region

    NASA Astrophysics Data System (ADS)

    Tolls, Volker

    The Inner Galaxy (IG) that is the Galactic Bar Region (GBR) and the Central Molecular Zone (CMZ) including the Galactic Center (GC) are, despite being the sites of dramatic processes and unique sources, still only incompletely understood. Detailed new datasets from the Herschel Space Observatory can be systematically combined with older archival material to enable a new and more complete analysis of the region, its large-scale dynamics, its unusual giant molecular clouds, and the likely influences of its bar and its supermassive black hole. Such a study is both timely and important: the region has affected the structure and evolution of the galaxy; its individual sources are opportunities to examine star formation (for example) under extreme conditions; the processes feeding the CMZ and, subsequently, its black hole are important; and not least, it is a nearby template for the inner regions of other galaxies. The Herschel Space Observatory has provided us with exciting new datasets including full FIR photometric maps and highand low-resolution far-infrared/submillimeter spectra of key sources and lines of the locations of dynamical importance. All these datasets are publicly available from the Herschel Science Archive. Our experienced team has already developed preliminary models, and we propose a thorough investigation to combine the Herschel datasets with Spitzer and WISE datasets. We will supplement them with ground-based observations in cases when it will improve the results. We will then analyze the data and use the results to refine the models and improve our understanding of this key region. Our specific goal is to characterize and model the 3 giant high-velocity molecular cloud clumps in the Galaxy Bar Region (GBR) in detail and to combine the conclusions to produce an improved model of the IG. We have seven tasks: (1) identify all smaller scale gas and dust cores using archival Herschel FIR photometric observations and obtain their physical characteristics

  6. Searches for point sources in the Galactic Center region

    NASA Astrophysics Data System (ADS)

    di Mauro, Mattia; Fermi-LAT Collaboration

    2017-01-01

    Several groups have demonstrated the existence of an excess in the gamma-ray emission around the Galactic Center (GC) with respect to the predictions from a variety of Galactic Interstellar Emission Models (GIEMs) and point source catalogs. The origin of this excess, peaked at a few GeV, is still under debate. A possible interpretation is that it comes from a population of unresolved Millisecond Pulsars (MSPs) in the Galactic bulge. We investigate the detection of point sources in the GC region using new tools which the Fermi-LAT Collaboration is developing in the context of searches for Dark Matter (DM) signals. These new tools perform very fast scans iteratively testing for additional point sources at each of the pixels of the region of interest. We show also how to discriminate between point sources and structural residuals from the GIEM. We apply these methods to the GC region considering different GIEMs and testing the DM and MSPs intepretations for the GC excess. Additionally, we create a list of promising MSP candidates that could represent the brightest sources of a MSP bulge population.

  7. Nuclear 11.3 μm PAH emission in local active galactic nuclei

    NASA Astrophysics Data System (ADS)

    Alonso-Herrero, A.; Ramos Almeida, C.; Esquej, P.; Roche, P. F.; Hernán-Caballero, A.; Hönig, S. F.; González-Martín, O.; Aretxaga, I.; Mason, R. E.; Packham, C.; Levenson, N. A.; Rodríguez Espinosa, J. M.; Siebenmorgen, R.; Pereira-Santaella, M.; Díaz-Santos, T.; Colina, L.; Alvarez, C.; Telesco, C. M.

    2014-09-01

    We present Gran Telescopio CANARIAS CanariCam 8.7 μm imaging and 7.5-13 μm spectroscopy of six local systems known to host an active galactic nucleus (AGN) and have nuclear star formation. Our main goal is to investigate whether the molecules responsible for the 11.3 μm polycyclic aromatic hydrocarbon (PAH) feature are destroyed in the close vicinity of an AGN. We detect 11.3 μm PAH feature emission in the nuclear regions of the galaxies as well as extended PAH emission over a few hundred parsecs. The equivalent width (EW) of the feature shows a minimum at the nucleus but increases with increasing radial distances, reaching typical star-forming values a few hundred parsecs away from the nucleus. The reduced nuclear EWs are interpreted as due to increased dilution from the AGN continuum rather than destruction of the PAH molecules. We conclude that at least those molecules responsible for the 11.3 μm PAH feature survive in the nuclear environments as close as 10 pc from the AGN and for Seyfert-like AGN luminosities. We propose that material in the dusty tori, nuclear gas discs, and/or host galaxies of AGN is likely to provide the column densities necessary to protect the PAH molecules from the AGN radiation field.

  8. IFU spectroscopy of 10 early-type galactic nuclei - II. Nuclear emission line properties

    NASA Astrophysics Data System (ADS)

    Ricci, T. V.; Steiner, J. E.; Menezes, R. B.

    2014-05-01

    Although it is well known that massive galaxies have central black holes, most of them accreting at low Eddington ratios, many important questions still remain open. Among them are the nature of the ionizing source, the characteristics and frequencies of the broad-line region and of the dusty torus. We report observations of 10 early-type galactic nuclei, observed with the Gemini Multi Object Spectrograph in integral field unit mode, installed on the Gemini South telescope, analysed with standard techniques for spectral treatment and compared with results obtained with principal component analysis Tomography (Paper I). We performed spectral synthesis of each spaxel of the data cubes and subtracted the stellar component from the original cube, leaving a data cube with emission lines only. The emission lines were decomposed in multi-Gaussian components. We show here that, for eight galaxies previously known to have emission lines, the narrow-line region can be decomposed in two components with distinct line widths. In addition to this, broad Hα emission was detected in six galaxies. The two galaxies not previously known to have emission lines show weak Hα+[N II] lines. All 10 galaxies may be classified as low-ionization nuclear emission regions in diagnostic diagrams and seven of them have bona fide active galactic nuclei with luminosities between 1040 and 1043 erg s-1. Eddington ratios are always <10-3.

  9. Variable position annihilation radiation from the galactic center region

    SciTech Connect

    Riegler, G.R.; Ling, J.C.; Mahoney, W.A.; Wheaton, W.A.; Willett, J.B.; Jacobson, A.S.; Prince, T.A.

    1981-08-15

    The HEAO 3 Cosmic Gamma-Ray Spectrometer performed the first high spectral resolution survey of the entire sky at gamma-ray energies from 50 keV to 10 MeV. Studies of 511 keV positron annihilation radiation from the vicinity of the galactic center are reported here, based on data which were recorded during 1979 September/October and 1980 March/April. The 1979 fall data show unshifted, narrow 511 keV line emission of intensity (1.85 +- 0.21) x 10/sup -3/ photons cm/sup -2/ s/sup -1/, consistent with earlier measurments. The 1980 spring measurement showed a statistically significant reduction in 511 keV emission from this region, thus requiring that a significant fraction of the flux originate in one or more compact sources of size < or =10/sup 18/ cm. While distribution of sources within approx.22/sup 0/ (at 90% confidence level) of the direction of the galactic center are allowed by the observations, the data rule out most extended models for positron production, such as by cosmic ray interaction in the interstellar medium or by distributions of many supernovae, novae, or pulsars. The data are well satisfied by assuming that the emission originates in a single compact source at the galactic center.

  10. Infrared diffuse interstellar bands in the Galactic Centre region.

    PubMed

    Geballe, T R; Najarro, F; Figer, D F; Schlegelmilch, B W; de la Fuente, D

    2011-11-02

    The spectrum of any star viewed through a sufficient quantity of diffuse interstellar material reveals a number of absorption features collectively called 'diffuse interstellar bands' (DIBs). The first DIBs were reported about 90  years ago, and currently well over 500 are known. None of them has been convincingly identified with any specific element or molecule, although recent studies suggest that the DIB carriers are polyatomic molecules containing carbon. Most of the DIBs currently known are at visible and very near-infrared wavelengths, with only two previously known at wavelengths beyond one micrometre (10,000 ångströms), the longer of which is at 1.318 micrometres (ref. 6). Here we report 13 diffuse interstellar bands in the 1.5-1.8 micrometre interval on high-extinction sightlines towards stars in the Galactic Centre. We argue that they originate almost entirely in the Galactic Centre region, a considerably warmer and harsher environment than where DIBs have been observed previously. The relative strengths of these DIBs towards the Galactic Centre and the Cygnus OB2 diffuse cloud are consistent with their strengths scaling mainly with the extinction by diffuse material.

  11. A NEW GALACTIC EXTINCTION MAP OF THE CYGNUS REGION

    SciTech Connect

    Kohyama, T.; Shibai, H.; Fukagawa, M.; Hibi, Y.

    2010-08-10

    We have made a Galactic extinction map of the Cygnus region with 5' spatial resolution. The selected area is 80{sup 0} to 90{sup 0} in the Galactic longitude and -4{sup 0} to 8{sup 0} in the Galactic latitude. The intensity at 140 {mu}m is derived from the intensities at 60 and 100 {mu}m of the IRAS data using the tight correlation between 60, 100, and 140 {mu}m found in the Galactic plane. The dust temperature and optical depth are calculated with 5' resolution from the 140 and 100 {mu}m intensity, and A{sub V} is calculated from the optical depth. In the selected area, the mean dust temperature is 17 K, the minimum is 16 K, and the maximum is 30 K. The mean A{sub V} is 6.5 mag, the minimum is 0.5 mag, and the maximum is 11 mag. The dust temperature distribution shows significant spatial variation on smaller scales down to 5'. Because the present study can trace the 5'-scale spatial variation of the extinction, it has an advantage over the previous studies, such as the one by Schlegel, Finkbeiner, and Davis, who used the COBE/DIRBE data to derive the dust temperature distribution with a spatial resolution of 1{sup 0}. The difference of A{sub V} between our map and Schlegel et al.'s is {+-} 3 mag. A new extinction map of the entire sky can be produced by applying the present method.

  12. Gamma rays from the Galactic Centre region: A review

    NASA Astrophysics Data System (ADS)

    van Eldik, Christopher

    2015-12-01

    During the last decades, increasingly precise astronomical observations of the Galactic Centre (GC) region at radio, infrared, and X-ray wavelengths laid the foundations to a detailed understanding of the high energy astroparticle physics of this most remarkable location in the Galaxy. Recently, observations of this region in high energy (HE, 10 MeV-100 GeV) and very high energy (VHE, > 100 GeV) γ-rays added important insights to the emerging picture of the Galactic nucleus as a most violent and active region where acceleration of particles to very high energies - possibly up to a PeV - and their transport can be studied in great detail. Moreover, the inner Galaxy is believed to host large concentrations of dark matter (DM), and is therefore one of the prime targets for the indirect search for γ-rays from annihilating or decaying dark matter particles. In this article, the current understanding of the γ-ray emission emanating from the GC is summarised and the results of recent DM searches in HE and VHE γ-rays are reviewed.

  13. HI Clouds Near the Galactic Center: Possible Tracers of the Nuclear Wind

    NASA Astrophysics Data System (ADS)

    Lockman, Felix J.; McClure-Griffiths, Naomi; DiTeodoro, Enrico

    2017-01-01

    We have used the Green Bank Telescope to discover more than one hundred neutral hydrogen clouds that appear to be embedded in the Fermi Bubble -- the Milky Way’s nuclear wind. With the other members of this population that were previously found with the Australia Telescope Compact Array, we now have a sample of about 200 such clouds. They are identified by their peculiar velocities. The cloud kinematics show no trace of Galactic rotation or association with the Galactic bar. Near longitude zero the clouds can have values of VLSR = +-200 km/s. No clouds have been detected with |VLSR| > 350 km/s. The clouds are concentrated toward the Galactic plane, but some are still found to |b|=10 degrees, or z > 1 kpc at the Galactic Center, where the current surveys end. These clouds are important tracers of conditions in the nuclear wind of the Milky Way.

  14. Infrared Spectroscopy of Star Formation in Galactic and Extragalactic Regions

    NASA Technical Reports Server (NTRS)

    Smith, Howard A.; Hasan, Hashima (Technical Monitor)

    2002-01-01

    This report details work done in a project involving spectroscopic studies, including data analysis and modeling, of star-formation regions using an ensemble of archival space-based data including some from the Infrared Space Observatory's Long Wavelength Spectrometer and Short Wavelength Spectrometer, and other spectroscopic databases. We will include four kinds of regions: (1) disks around more evolved objects; (2) young, low or high mass pre-main sequence stars in star-formation regions; (3) star formation in external, bright IR (infrared) galaxies; and (4) the galactic center. During this period, work proceeded fully on track and on time. Details on workshops and conferences attended and research results are presented. A preprint article entitled 'The Far Infrared Lines of OH as Molecular Cloud Diagnostics' is included as an appendix.

  15. Chemical distribution of H II regions towards the Galactic anticentre

    NASA Astrophysics Data System (ADS)

    Fernández-Martín, A.; Pérez-Montero, E.; Vílchez, J. M.; Mampaso, A.

    2017-01-01

    Context. The study of the radial variations of metallicity across the Galactic disc is a powerful method for understanding the history of star formation and chemical evolution of the Milky Way. Although several studies about gradients have been performed so far, the knowledge of the Galactic antincentre is still poor. Aims: This work aims to determine accurately the physical and chemical properties of a sample of H ii regions located at RG > 11 kpc and to study the radial distribution of abundances in the outermost part of the Galaxy disc. Methods: We carried out new optical spectroscopic observations of nine H ii regions with the William Herschel Telescope covering the spectral range from 3500 Å to 10 100 Å. In addition, we increased the sample by searching the literature for optical observations of regions towards the Galactic anticentre, re-analysing them to obtain a single sample of 23 objects to be processed in a homogeneous and consistent manner. The total sample distribution covers the Galactocentric radius from 11 kpc to 18 kpc. Results: Emission line ratios were used to determine accurate electron densities and temperatures of several ionic species in 13 H ii regions. These physical parameters were applied to the spectra to determine direct total chemical abundances. For those regions without direct estimations of temperature, chemical abundances were derived by performing tailor-made photoionisation models and/or by using an empirical relation obtained from radio recombination and optical temperatures. We performed weighted least-squares fits to the distribution of the derived abundances along the Galactocentric distances to study the radial gradients of metallicity across the outermost part of the MW. The distributions O/H, N/H, S/H, and Ar/H towards the anticentre can be represented by decreasing linear radial gradients, while in the case of N/O abundances the radial distribution is better fitted with a two-zone model. The He/H radial gradient is

  16. Nuclear Infrared Spectral Energy Distribution of Type II Active Galactic Nuclei

    NASA Astrophysics Data System (ADS)

    Videla, Liza; Lira, Paulina; Andrews, Heather; Alonso-Herrero, Almudena; Alexander, David M.; Ward, Martin

    2013-02-01

    We present near- and mid-IR observations of a sample of Seyfert II galaxies drawn from the 12 μm Galaxy sample. The sample was observed in the J, H, K, L, M and N bands. Galaxy surface brightness profiles are modeled using nuclear, bulge, bar (when necessary), and disk components. To check the reliability of our findings, the procedure was tested using Spitzer observations of M 31. Nuclear spectral energy distributions (SEDs) are determined for 34 objects, and optical spectra are presented for 38, including analysis of their stellar populations using the STARLIGHT spectral synthesis code. Emission line diagnostic diagrams are used to discriminate between genuine active galactic nuclei (AGNs) and H II nuclei. Combining our observations with those found in the literature, we have a total of 40 SEDs. It is found that about 40% of the SEDs are characterized by an upturn in the near-IR, which we have quantified as a NIR slope α < 1 for an SED characterized as λf λvpropλα. The three objects with an H II nucleus and two Seyfert nuclei with strong contamination from a circumnuclear also show an upturn. For genuine AGNs, this component could be explained as emission from the accretion disk, a jet, or from a very hot dust component leaking from the central region through a clumpy obscuring structure. The presence of a very compact nuclear starburst as the origin for this NIR excess emission is not favored by our spectroscopic data for these objects.

  17. The Intermediate-line Region in Active Galactic Nuclei

    NASA Astrophysics Data System (ADS)

    Adhikari, T. P.; Różańska, A.; Czerny, B.; Hryniewicz, K.; Ferland, G. J.

    2016-11-01

    We show that the recently observed suppression of the gap between the broad-line region (BLR) and the narrow-line region (NLR) in some active galactic nuclei (AGNs) can be fully explained by an increase of the gas density in the emitting region. Our model predicts the formation of the intermediate-line region (ILR) that is observed in some Seyfert galaxies by the detection of emission lines with intermediate-velocity FWHM ˜ 700-1200 km s-1. These lines are believed to be originating from an ILR located somewhere between the BLR and NLR. As was previously proved, the apparent gap is assumed to be caused by the presence of dust beyond the sublimation radius. Our computations with the use of the cloudy photoionization code show that the differences in the shape of the spectral energy distribution from the central region of AGNs do not diminish the apparent gap in the line emission in those objects. A strong discontinuity in the line emission versus radius exists for all lines at the dust sublimation radius. However, increasing the gas density to ˜{10}11.5 cm-3 at the sublimation radius provides the continuous line emission versus radius and fully explains the recently observed lack of apparent gap in some AGNs. We show that such a high density is consistent with the density of upper layers of an accretion disk atmosphere. Therefore, the upper layers of the disk atmosphere can give rise to the formation of observed emission-line clouds.

  18. A new method to estimate the Galactic extinction for the analysis of large scale structure in the Galactic center region

    NASA Astrophysics Data System (ADS)

    Hasegawa, T.; Wakamatsu, K.; Malkan, M. A.; Sekiguchi, K.; Menzies, J. W.; Parker, Q. A.; Jugaku, J.; Karoji, H.; Okamura, S.

    In order to study the large scale structure in the region of low Galactic latitude, it is indispensable to discriminate true features in the projected galaxy distribution from spurious ones due to the patchy Galactic extinction. We derive a linear relation between the Galactic extinction and the flux density at 100 microns in IRAS Sky Survey Atlas (ISSA) based on the analysis of the number count of faint galaxies. Thus, ISSA 100 microns flux density can be used to estimate the Galactic extinction with a fine resolution of 1.5 arcmin. With the aid of this estimate, we investigate large scale structure in the Galactic center region. We made a galaxy survey in the 175 square degree field centered at the Ophiuchus cluster (l = 0.5circ, b = +9.5circ, cz = 8,500 km s^{-1}) using ESO/SERC Southern Sky Survey films. We detected 4,021 galaxies and compiled redshifts for 219 galaxies including 179 new determinations. Seven clumps were identified in the distribution of luminous galaxies. On the basis of redshifts in these seven clumps, the Ophiuchus cluster, two new clusters of irregular type and four new groups of galaxies are found to form a supercluster. The region of cz = 0 - 5,000 km s^{-1}, this side of the supercluster, is found to be a void.

  19. A dynamical model for gas flows, star formation and nuclear winds in galactic centres

    NASA Astrophysics Data System (ADS)

    Krumholz, Mark R.; Kruijssen, J. M. Diederik; Crocker, Roland M.

    2017-04-01

    We present a dynamical model for gas transport, star formation and winds in the nuclear regions of galaxies, focusing on the Milky Way's Central Molecular Zone (CMZ). In our model angular momentum and mass are transported by a combination of gravitational and bar-driven acoustic instabilities. In gravitationally unstable regions the gas can form stars, and the resulting feedback drives both turbulence and a wind that ejects mass from the CMZ. We show that the CMZ is in a quasi-steady state where mass deposited at large radii by the bar is transported inwards to a star-forming, ring-shaped region at ∼100 pc from the Galactic Centre, where the shear reaches a minimum. This ring undergoes episodic starbursts, with bursts lasting ∼5-10 Myr occurring at ∼20-40 Myr intervals. During quiescence the gas in the ring is not fully cleared, but is driven out of a self-gravitating state by the momentum injected by expanding supernova remnants. Starbursts also drive a wind off the star-forming ring, with a time-averaged mass flux comparable to the star formation rate. We show that our model agrees well with the observed properties of the CMZ, and places it near a star formation minimum within the evolutionary cycle. We argue that such cycles of bursty star formation and winds should be ubiquitous in the nuclei of barred spiral galaxies, and show that the resulting distribution of galactic nuclei on the Kennicutt-Schmidt relation is in good agreement with that observed in nearby galaxies.

  20. Gamma-ray spectrum of the galactic center region

    SciTech Connect

    Riegler, G.R.; Ling, J.C.; Mahoney, W.A.; Wheaton, W.A.; Jacobson, A.S.

    1985-07-01

    The Galactic center region was observed with the HEAO 3 High Resolution Gamma-Ray Spectrometer during the fall of 1979 and the spring of 1980. Between these epochs we observed (1) a statistically significant decrease in the high-energy (511 keV to approx.3 MeV) luminosity (2) a decrease in the positron annihilation line intensity, reported previously, and (3) a low positronium annihilation fraction f = 0.38 +- 0.19 during the fall of 1979. If positrons are generated by photon-photon collisions of high-energy photons, then the absence of a detected flux above 511 keV in the spring of 1980 may indicate a time delay between positron production and annihilation.

  1. Examining XMM Observations in the Galactic Bulge Survey Region

    NASA Astrophysics Data System (ADS)

    Estrada-Carpenter, Vicente; Hynes, R. I.; Britt, C.; Johnson, C.; Jonker, P.; Maccarone, T. J.; Torres, M.; Steeghs, D.; Greiss, S.; Nelemans, G.; Galactic Bulge Survey Collaboration

    2014-01-01

    The VXMM catalog was created in an effort to find help find low mass X-ray binaries (LMXBs) as part of the Galactic Bulge Survey (GBS). VXMM consists of XMM-Newton detections made in the GBS region, two 6x1 degree regions 1 degree above and below the Galactic plane. The goal of the project was to find GBS X-ray sources that exist in XMM observations in order to classify them. The XMM data were downloaded from NASA’s database. Source detection was conducted on the filtered data sets using the 2XMM Serendipitous Survey as a guideline for the procedure but incorporating more recent data than 2XMM. The sources detected make up the VXMM catalog, which was used to cross reference with the GBS catalog to find GBS sources in the XMM data. In total the VXMM catalog found 107 GBS sources also detected by XMM. The spectra of several of these sources were examined to see which could be classified based on the XMM data. We focus on CX13 as it was the brightest unclassified GBS source detected by XMM. CX13 was determined to not be an active star as its temperature would to be high. Using a power-law model fit an LMXB was ruled out, as was a background AGN after the variability power spectrum was analyzed. The most likely remaining interpretation of its X-ray spectrum and variability is that it is an absorbed magnetic cataclysmic variable. This work is supported by the National Science Foundation under Grant No. AST-0908789. Vicente Estrada-Carpenter also acknowledges support from the REU Site in Physics and Astronomy (NSF Grant No. 1262890) at Louisiana State University

  2. Nuclear weapons and regional conflict

    SciTech Connect

    Latter, A.L.; Martinelli, E.A.

    1993-05-01

    An important national defense objective for the US in the post cold-war era -- according to Secretary of Defense, Cheney is to deter regional conflicts. To satisfy this objective there is more or less general agreement that nuclear weapons are not needed, especially against regional powers like Iraq that do not (as yet) have a nuclear capability. Modern conventional weapons (PGMs), it is believed, are adequate when used in the traditional way of fighting: massive ground forces with heavy ground equipment, supported by air and naval forces. Of course, there are arguments against this view. For example, nuclear advocates call attention to deeply buried targets that are unattackable with conventional munitions. But this argument, and others, for US use (or threat of use) of nuclear weapons are presently discounted in favor of the political/moral advantages of a no-first-use policy. We do not wish to take sides in this debate. We believe, however, that the debate win continue as political, military, technical and economic factors undergo inevitable changes. In this brief paper, we want to present another pro-nuclear argument which, to the best of our knowledge, has received little or no attention. This argument, we believe, could become important in weighing the pros and cons of the debate if domestic pressures cause the defense budget to undergo such severe cuts that we must either abandon our political commitments or adopt a non-traditional war-fighting strategy that is effective under a greatly reduced defense budget.

  3. Radio Recombination Lines in Galactic H II Regions

    NASA Astrophysics Data System (ADS)

    Quireza, Cintia; Rood, Robert T.; Balser, Dana S.; Bania, T. M.

    2006-07-01

    We report radio recombination line (RRL) and continuum observations of a sample of 106 Galactic H II regions made with the NRAO 140 Foot (43 m) radio telescope in Green Bank, West Virginia. We believe this to be the most sensitive RRL survey ever made for a sample this large. Most of our source integration times range between 6 and 90 hr, yielding typical rms noise levels of ~1.0-3.5 mK. Our data result from two different experiments performed, calibrated, and analyzed in similar ways. A C II survey was made at the 3.5 cm wavelength to obtain accurate measurements of carbon radio recombination lines. When combined with atomic (C I) and molecular (CO) data, these measurements will constrain the composition, structure, kinematics, and physical properties of the photodissociation regions that lie on the edges of H II regions. A second survey was made at the 3.5 cm wavelength to determine the abundance of 3He in the interstellar medium of the Milky Way. Together with measurements of the 3He+ hyperfine line, we get high-precision RRL parameters for H, 4He, and C. Here we discuss significant improvements in these data with both longer integrations and newly observed sources.

  4. Infrared Spectroscopy of Star Formation in Galactic and Extragalactic Regions

    NASA Technical Reports Server (NTRS)

    Frogel, Jay (Technical Monitor); Smith, Howard A.

    2004-01-01

    In this program we proposed to perform a series of spectroscopic studies, including data analysis and modeling, of star formation regions using an ensemble of archival space-based data from the Infrared Space Observatory's Long Wavelength Spectrometer and Short Wavelength Spectrometer, and to take advantage of other spectroscopic databases including the first results from SIRTF. Our empha- sis has been on star formation in external, bright IR galaxies, but other areas of research have in- cluded young, low or high mass pre-main sequence stars in star formation regions, and the galactic center. The OH lines in the far infrared were proposed as one key focus of this inquiry because the Principal Investigator (H. Smith) had a full set of OH IR lines from IS0 observations. It was planned that during the proposed 2-1/2 year timeframe of the proposal other data (including perhaps from SIRTF) would become available, and we intended to be responsive to these and other such spec- troscopic data sets. Three papers are included:The Infrared Lines of OH: Diagnostics of Molecular Cloud Conditions in Infrared Bright Galaxies; The Far-Infrared Spectrum of Arp 220; andThe Far-Infrared Emission Line and Continuum Spectrum of the Seyfert Galaxy NGC 1068.

  5. Herschel observations of the Galactic H II region RCW 79

    NASA Astrophysics Data System (ADS)

    Liu, Hong-Li; Figueira, Miguel; Zavagno, Annie; Hill, Tracey; Schneider, Nicola; Men'shchikov, Alexander; Russeil, Delphine; Motte, Frédérique; Tigé, Jérémy; Deharveng, Lise; Anderson, Loren D.; Li, Jin-Zeng; Wu, Yuefang; Yuan, Jing-Hua; Huang, Maohai

    2017-06-01

    Context. Triggered star formation around H II regions could be an important process. The Galactic H II region RCW 79 is a prototypical object for triggered high-mass star formation. Aims: We aim to obtain a census of the young stellar population observed at the edges of the H II region and to determine the properties of the young sources in order to characterize the star formation processes that take place at the edges of this ionized region. Methods: We take advantage of Herschel data from the surveys HOBYS, "Evolution of Interstellar Dust", and Hi-Gal to extract compact sources. We use the algorithm getsources. We complement the Herschel data with archival 2MASS, Spitzer, and WISE data to determine the physical parameters of the sources (e.g., envelope mass, dust temperature, and luminosity) by fitting the spectral energy distribution. Results: We created the dust temperature and column density maps along with the column density probability distribution function (PDF) for the entire RCW 79 region. We obtained a sample of 50 compact sources in this region, 96% of which are situated in the ionization-compressed layer of cold and dense gas that is characterized by the column density PDF with a double-peaked lognormal distribution. The 50 sources have sizes of 0.1-0.4 pc with a typical value of 0.2 pc, temperatures of 11-26 K, envelope masses of 6-760 M⊙, densities of 0.1-44 × 105 cm-3, and luminosities of 19-12 712 L⊙. The sources are classified into 16 class 0, 19 intermediate, and 15 class I objects. Their distribution follows the evolutionary tracks in the diagram of bolometric luminosity versus envelope mass (Lbol-Menv) well. A mass threshold of 140 M⊙, determined from the Lbol-Menv diagram, yields 12 candidate massive dense cores that may form high-mass stars. The core formation efficiency (CFE) for the 8 massive condensations shows an increasing trend of the CFE with density. This suggests that the denser the condensation, the higher the fraction of its

  6. THE NUCLEAR INFRARED EMISSION OF LOW-LUMINOSITY ACTIVE GALACTIC NUCLEI

    SciTech Connect

    Mason, R. E.; Lopez-Rodriguez, E.; Packham, C.; Alonso-Herrero, A.; Elitzur, M.; Aretxaga, I.; Roche, P. F.; Oi, N.

    2012-07-15

    We present high-resolution mid-infrared (MIR) imaging, nuclear spectral energy distributions (SEDs), and archival Spitzer spectra for 22 low-luminosity active galactic nuclei (LLAGNs; L{sub bol} {approx}< 10{sup 42} erg s{sup -1}). Infrared (IR) observations may advance our understanding of the accretion flows in LLAGNs, the fate of the obscuring torus at low accretion rates, and, perhaps, the star formation histories of these objects. However, while comprehensively studied in higher-luminosity Seyferts and quasars, the nuclear IR properties of LLAGNs have not yet been well determined. We separate the present LLAGN sample into three categories depending on their Eddington ratio and radio emission, finding different IR characteristics for each class. (1) At the low-luminosity, low-Eddington-ratio (log L{sub bol}/L{sub Edd} < -4.6) end of the sample, we identify 'host-dominated' galaxies with strong polycyclic aromatic hydrocarbon bands that may indicate active (circum-)nuclear star formation. (2) Some very radio-loud objects are also present at these low Eddington ratios. The IR emission in these nuclei is dominated by synchrotron radiation, and some are likely to be unobscured type 2 AGNs that genuinely lack a broad-line region. (3) At higher Eddington ratios, strong, compact nuclear sources are visible in the MIR images. The nuclear SEDs of these galaxies are diverse; some resemble typical Seyfert nuclei, while others lack a well-defined MIR 'dust bump'. Strong silicate emission is present in many of these objects. We speculate that this, together with high ratios of silicate strength to hydrogen column density, could suggest optically thin dust and low dust-to-gas ratios, in accordance with model predictions that LLAGNs do not host a Seyfert-like obscuring torus. We anticipate that detailed modeling of the new data and SEDs in terms of accretion disk, jet, radiatively inefficient accretion flow, and torus components will provide further insights into the nuclear

  7. The Transition between the Inner Disc and the Innermost Galactic Regions

    NASA Astrophysics Data System (ADS)

    Bono, G.; Genovali, K.; Lemasle, B.; Romaniello, M.; Nonino, M.; Bergemann, M.; Buonanno, R.; Fabrizio, M.; François, P.; Inno, L.; Laney, C.; Matsunaga, N.; Pedicelli, S.; Primas, F.; Thévenin, F.

    2015-05-01

    We discuss the iron and the α-element gradients in the Galactic disc and in the innermost Galactic regions (bulge, bar, nuclear bulge). Accurate spectroscopic measurements of young stellar tracers show a well defined iron gradient between the inner and the outer disc. The same outcome applies to light, α, and heavy elements. Moreover, the [α/Fe] ratio attains solar values over a significant fraction of the disc, in the bar and in the nuclear bulge. Thus suggesting that the slopes of iron and α-elements attain quite similar values. There is evidence of a mild enhancement in the outer disc, but this is the consequence of the steady decrease in iron abundance. Current findings do not allow us to constrain whether the chemical enrichment in the nuclear bulge and in the bar is currently driven by bar instabilities. The recent results by the ARGOS spectroscopic survey of intermediate-age stellar tracers (red clump) suggest that the metal-rich stellar components associated with the boxy/peanut bulge show evidence of a mild iron gradient, while the metal-poor component associated with the thick disc/halo shows a flat iron distribution across the bulge. The [α/Fe] ratio of the metal-rich components is slightly enhanced in the bulge, but attains a solar value in the disc. On the other hand, the metal-poor component is α-enhanced both in the bulge and at larger Galactocentric distances. The chemical enrichment history of the bulge supports N-body simulations suggesting that the bulge formed via a bar-forming and bar-buckling instabilities (Ness et al. 2013a,b).

  8. The sub-galactic and nuclear main sequences for local star-forming galaxies

    NASA Astrophysics Data System (ADS)

    Maragkoudakis, A.; Zezas, A.; Ashby, M. L. N.; Willner, S. P.

    2017-04-01

    We describe a sub-galactic main sequence (SGMS) relating star formation rate (SFR) surface density (ΣSFR) and stellar mass density (Σ⋆) for distinct regions within star-forming galaxies, including their nuclei. We use a sample of 246 nearby star-forming galaxies from the 'Star Formation Reference Survey and demonstrate that the SGMS holds down to ∼1 kpc scales with a slope of α = 0.91 and a dispersion of 0.31 dex, similar to the well-known main sequence (MS) measured for globally integrated SFRs and stellar masses. The SGMS slope depends on galaxy morphology, with late-type galaxies (Sc-Irr) having α = 0.97 and early-type spirals (Sa-Sbc) having α = 0.81. The SGMS constructed from subregions of individual galaxies has on average the same characteristics as the composite SGMS from all galaxies. The SGMS for galaxy nuclei shows a dispersion similar to that seen for other subregions. Sampling a limited range of SFR-M⋆ space may produce either sublinearity or superlinearity of the SGMS slope. For nearly all galaxies, both SFR and stellar mass peak in the nucleus, indicating that circumnuclear clusters are among the most actively star-forming regions in the galaxy and the most massive. The nuclear SFR also correlates with total galaxy mass, forming a distinct sequence from the standard MS of star formation. The nuclear MS will be useful for studying bulge growth and for characterizing feedback processes connecting AGN and star formation.

  9. Infrared Spectroscopy of Star Formation in Galactic and Extragalactic Regions

    NASA Technical Reports Server (NTRS)

    Smith, Howard A.; Hasan, Hashima (Technical Monitor)

    2003-01-01

    In this program we proposed to perform a series of spectroscopic studies, including data analysis and modeling, of star formation regions using an ensemble of archival space-based data from the Infrared Space Observatory's Long Wavelength Spectrometer and Short Wavelength Spectrometer, and to take advantage of other spectroscopic databases including the first results from SIRTF. Our emphasis has been on star formation in external, bright IR galaxies, but other areas of research have included young, low or high mass pre-main sequence stars in star formation regions, and the galactic center. The OH lines in the far infrared were proposed as one key focus of this inquiry, because the Principal Investigator (H. Smith) had a full set of OH IR lines from IS0 observations. It was planned that during the proposed 2-1/2 year timeframe of the proposal other data (including perhaps from SIRTF) would become available, and we intended to be responsive to these and other such spectroscopic data sets. The program has the following goals: 1) Refine the data analysis of IS0 observations to obtain deeper and better SNR results on selected sources. The IS0 data itself underwent pipeline 10 reductions in early 2001, and the more 'hands-on data reduction packages' have been released. The IS0 Fabry-Perot database is particularly sensitive to noise and can have slight calibration errors, and improvements are anticipated. We plan to build on these deep analysis tools and contribute to their development. Model the atomic and molecular line shapes, in particular the OH lines, using revised montecarlo techniques developed by the Submillimeter Wave Astronomy Satellite (SWAS) team at the Center for Astrophysics. 2) 3) Use newly acquired space-based SIRTF or SOFIA spectroscopic data as they become available, and contribute to these observing programs as appropriate. 4) Attend scientific meetings and workshops. 5) E&PO activities, especially as related to infrared astrophysics and

  10. CMB and galactic maps in the millimetric region

    NASA Astrophysics Data System (ADS)

    de Bernardis, Paolo; Masi, Silvia; Vittorio, Nicola

    We present low angular resolution, full sky maps of the expected millimetric diffuse emission, in order to illustrate the level of Galactic contamination in CMB (Cosmic Microwave Background) large scale anisotropy experiments. The maps are obtained by simple modelling the diffuse emission of our Galaxy at mm wavelengths, including dust and radio continuum emission. CMB maps expected in cold dark matter (CDM) and baryonic isocurvature scenarios are compared to the Galactic anisotropy pattern. We present the results of a complete analysis of the Quadrupole anisotropy, which, in the case of COBE-DMR, seems to be the most useful tool for cosmological tests.

  11. Dynamical Evolution of Globular Clusters Moving within the Galactic Central Regions

    NASA Astrophysics Data System (ADS)

    Miocchi, P.; Capuzzo-Dolcetta, R.

    The decaying of globular clusters towards galactic nuclei can be an efficient dynamical mechanism to concentrate high amounts of stellar matter in the very inner galactic regions, so to contribute significantly to the accretion and feeding of a central massive black hole. Such decaying is made possible by the dynamical friction which dissipates the cluster orbital kinetic energy in a reasonably short time. Quantitative indications that this mechanism is capable to sustain the observed AGN luminosities have been already given. However, there is need of a more refined numerical approach. In particular, while in normal conditions dynamical friction is well understood and its effects sufficiently well described, it is not clear what happens when a cluster decays into a region which ``encloses'' a bulge mass comparable with that of the cluster itself. In this case the gravitational feed-back of the cluster on the bulge is very important and cannot be neglected. Moreover, it is quite difficult to predict, by just analytical means, the tidal effects due to the presence of the massive black hole on clusters' dynamics. We want to show the results obtained by our simulations in this context. The simulations have been performed both with a serial and a parallel `tree-code' (on a CRAY T3E), using a leap-frog scheme for the integration of particles' trajectories, with individual and variable time steps. A completely self-consistent particle representation has been used, not only for the globular cluster but also for the nuclear region of the bulge and for the massive black hole.

  12. Multiphase environment of compact galactic nuclei: the role of the nuclear star cluster

    NASA Astrophysics Data System (ADS)

    Różańska, A.; Kunneriath, D.; Czerny, B.; Adhikari, T. P.; Karas, V.

    2017-01-01

    We study the conditions for the onset of thermal instability in the innermost regions of compact galactic nuclei, where the properties of the interstellar environment are governed by the interplay of quasi-spherical accretion on to a supermassive black hole (SMBH) and the heating/cooling processes of gas in a dense nuclear star cluster (NSC). Stellar winds are the source of material for radiatively inefficient (quasi-spherical, non-magnetized) inflow/outflow on to the central SMBH, where a stagnation point develops within the Bondi-type accretion. We study the local thermal equilibrium to determine the parameter space that allows cold and hot phases in mutual contact to co-exist. We include the effects of mechanical heating by stellar winds and radiative cooling/heating by the ambient field of the dense star cluster. We consider two examples: the NSC in the Milky Way central region (including the gaseous mini-spiral of Sgr A*), and the ultracompact dwarf galaxy M60-UCD1. We find that the two systems behave in different ways because they are placed in different areas of parameter space in the instability diagram: gas temperature versus dynamical ionization parameter. In the case of Sgr A*, stellar heating prevents the spontaneous formation of cold clouds. The plasma from stellar winds joins the hot X-ray emitting phase and forms an outflow. In M60-UCD1, our model predicts spontaneous formation of cold clouds in the inner part of the galaxy. These cold clouds may survive since the cooling time-scale is shorter than the inflow/outflow time-scale.

  13. Ground-state OH maser distributions in the Galactic Centre region

    NASA Astrophysics Data System (ADS)

    Qiao, Hai-Hua; Walsh, Andrew J.; Shen, Zhi-Qiang; Dawson, Joanne R.

    2017-01-01

    Ground-state OH masers identified in the Southern Parkes Large-Area Survey in Hydroxyl were observed with the Australia Telescope Compact Array to obtain positions with high accuracy (~1 arcsec). We classified these OH masers into evolved star OH maser sites, star formation OH maser sites, supernova remnant OH maser sites, planetary nebula OH maser sites and unknown maser sites using their accurate positions. Evolved star and star formation OH maser sites in the Galactic Centre region (between Galactic longitudes of -5° to +5° and Galactic latitudes of -2° and +2°) were studied in detail to understand their distributions.

  14. DO MOST ACTIVE GALACTIC NUCLEI LIVE IN HIGH STAR FORMATION NUCLEAR CUSPS?

    SciTech Connect

    Mushotzky, Richard F.; Shimizu, T. Taro; Meléndez, Marcio; Koss, Michael

    2014-02-01

    We present early results of the Herschel PACS (70 and 160 μm) and SPIRE (250, 350, and 500 μm) survey of 313 low redshift (z < 0.05), ultra-hard X-ray (14-195 keV) selected active galactic nuclei (AGNs) from the 58 month Swift/Burst Alert Telescope catalog. Selection of AGNs from ultra-hard X-rays avoids bias from obscuration, providing a complete sample of AGNs to study the connection between nuclear activity and star formation in host galaxies. With the high angular resolution of PACS, we find that >35% and >20% of the sources are ''point-like'' at 70 and 160 μm respectively and many more have their flux dominated by a point source located at the nucleus. The inferred star formation rates (SFRs) of 0.1-100 M {sub ☉} yr{sup –1} using the 70 and 160 μm flux densities as SFR indicators are consistent with those inferred from Spitzer Ne II fluxes, but we find that 11.25 μm polycyclic aromatic hydrocarbon data give ∼3× lower SFR. Using GALFIT to measure the size of the far-infrared emitting regions, we determined the SFR surface density (M {sub ☉} yr{sup –1} kpc{sup –2}) for our sample, finding that a significant fraction of these sources exceed the threshold for star formation driven winds (0.1 M {sub ☉} yr{sup –1} kpc{sup –2})

  15. A NEW PERSPECTIVE OF THE RADIO BRIGHT ZONE AT THE GALACTIC CENTER: FEEDBACK FROM NUCLEAR ACTIVITIES

    SciTech Connect

    Zhao, Jun-Hui; Morris, Mark R.; Goss, W. M.

    2016-02-01

    New observations of Sgr A have been carried out with the Jansky VLA in the B and C arrays using the broadband (2 GHz) continuum mode at 5.5 GHz. The field of view covers the central 13′ (30 pc) region of the radio-bright zone at the Galactic center. Using the multi-scale and multi-frequency-synthesis (MS-MFS) algorithms in CASA, we have imaged Sgr A with a resolution of 1″, achieving an rms noise of 8 μJy beam{sup −1}, and a dynamic range of 100,000:1. Both previously known and newly identified radio features in this region are revealed, including numerous filamentary sources. The radio continuum image is compared with Chandra X-ray images, with a CN emission-line image obtained with the Submillimeter Array and with detailed Paschen-α images obtained with Hubble Space Telescope/NICMOS. We discuss several prominent features in the radio image. The “Sgr A west Wings” extend 2′ (5 pc) from the NW and SE tips of the Sgr A west H ii region (the “Mini-spiral”) to positions located 2.9 and 2.4 arcmin to the northwest and southeast of Sgr A*, respectively. The NW wing, along with several other prominent features, including the previously identified “NW Streamers,” form an elongated radio lobe (NW lobe), oriented nearly perpendicular to the Galactic plane. This radio lobe, with a size of 6.′3 × 3.′2 (14.4 pc × 7.3 pc), has a known X-ray counterpart. In the outer region of the NW lobe, a row of three thermally emitting rings is observed. A field containing numerous amorphous radio blobs extends for a distance of ∼2 arcmin beyond the tip of the SE wing; these newly recognized features coincide with the SE X-ray lobe. Most of the amorphous radio blobs in the NW and SE lobes have Paschen-α counterparts. We propose that they have been produced by shock interaction of ambient gas concentrations with a collimated nuclear wind or an outflow that originated from within the circumnuclear disk (CND). We also discuss the possibility that the ionized

  16. A New Perspective of the Radio Bright Zone at The Galactic Center: Feedback from Nuclear Activities

    NASA Astrophysics Data System (ADS)

    Zhao, Jun-Hui; Morris, Mark R.; Goss, W. M.

    2016-02-01

    New observations of Sgr A have been carried out with the Jansky VLA in the B and C arrays using the broadband (2 GHz) continuum mode at 5.5 GHz. The field of view covers the central 13‧ (30 pc) region of the radio-bright zone at the Galactic center. Using the multi-scale and multi-frequency-synthesis (MS-MFS) algorithms in CASA, we have imaged Sgr A with a resolution of 1″, achieving an rms noise of 8 μJy beam-1, and a dynamic range of 100,000:1. Both previously known and newly identified radio features in this region are revealed, including numerous filamentary sources. The radio continuum image is compared with Chandra X-ray images, with a CN emission-line image obtained with the Submillimeter Array and with detailed Paschen-α images obtained with Hubble Space Telescope/NICMOS. We discuss several prominent features in the radio image. The “Sgr A west Wings” extend 2‧ (5 pc) from the NW and SE tips of the Sgr A west H ii region (the “Mini-spiral”) to positions located 2.9 and 2.4 arcmin to the northwest and southeast of Sgr A*, respectively. The NW wing, along with several other prominent features, including the previously identified “NW Streamers,” form an elongated radio lobe (NW lobe), oriented nearly perpendicular to the Galactic plane. This radio lobe, with a size of 6.‧3 × 3.‧2 (14.4 pc × 7.3 pc), has a known X-ray counterpart. In the outer region of the NW lobe, a row of three thermally emitting rings is observed. A field containing numerous amorphous radio blobs extends for a distance of ˜2 arcmin beyond the tip of the SE wing; these newly recognized features coincide with the SE X-ray lobe. Most of the amorphous radio blobs in the NW and SE lobes have Paschen-α counterparts. We propose that they have been produced by shock interaction of ambient gas concentrations with a collimated nuclear wind or an outflow that originated from within the circumnuclear disk (CND). We also discuss the possibility that the ionized wind or

  17. Variability of the central region in active galactic nuclei

    NASA Astrophysics Data System (ADS)

    Wallinder, F. H.; Kato, S.; Abramowicz, M. A.

    We review implications of the observed optical and X-ray variability (periodicities and light-curves), relevant for the understanding of physical conditions in the deep interiors of active galactic nuclei. We discuss in detail kinematical, hydrodynamical, thermal and radiative transfer effects which are theorized to be responsible for observed variability patterns. We put emphasis on theoretical options which can predict basic accretion parameters, such as the mass of the central black hole, the accretion rate, and the inclination angle, in terms of observable quantities. Closed analytical results are given whenever available.

  18. Star formation towards the Scutum tangent region and the effects of Galactic environment

    NASA Astrophysics Data System (ADS)

    Eden, D. J.; Moore, T. J. T.; Plume, R.; Morgan, L. K.

    2012-06-01

    By positional matching to the catalogue of Galactic Ring Survey molecular clouds, we have derived distances to 793 Bolocam Galactic Plane Survey (BGPS) sources out of a possible 806 located within the region defined by Galactic longitudes l= 28°.5-31°.5 and latitudes |b|≤ 1°. This section of the Galactic plane contains several major features of Galactic structure at different distances, mainly mid-arm sections of the Perseus and Sagittarius spiral arms and the tangent of the Scutum-Centaurus arm, which is coincident with the end of the Galactic long bar. By utilizing the catalogued cloud distances plus new kinematic distance determinations, we are able to separate the dense BGPS clumps into these three main line-of-sight components to look for variations in star formation properties that might be related to the different Galactic environments. We find no evidence of any difference in either the clump mass function or the average clump formation efficiency (CFE) between these components that might be attributed to environmental effects on scales comparable to Galactic structure features. Despite having a very high star formation rate, and containing at least one cloud with a very high CFE, the star formation associated with the Scutum-Centaurus tangent does not appear to be in any way abnormal or different to that in the other two spiral arm sections. Large variations in the CFE are found on the scale of individual clouds, however, which may be due to local triggering agents as opposed to the large-scale Galactic structure.

  19. Spatially Resolved Narrow-Line Region Kinematics in Active Galactic Nuclei

    NASA Astrophysics Data System (ADS)

    Rice, Melissa S.; Martini, Paul; Greene, Jenny E.; Pogge, Richard W.; Shields, Joseph C.; Mulchaey, John S.; Regan, Michael W.

    2006-01-01

    We have analyzed Hubble Space Telescope spectroscopy of 24 nearby active galactic nuclei (AGNs) to investigate spatially resolved gas kinematics in the narrow-line region (NLR). These observations effectively isolate the nuclear line profiles on less than 100 pc scales and are used to investigate the origin of the substantial scatter between the widths of strong NLR lines and the stellar velocity dispersion σ* of the host galaxy, a quantity that relates with substantially less scatter to the mass of the central, supermassive black hole and more generally characterize variations in the NLR velocity field with radius. We find that line widths measured with STIS at a range of spatial scales systematically underestimate both σ* and the line width measured from ground-based observations, although they do have comparably large scatter to the relation between ground-based NLR line width and σ*. There are no obvious trends in the residuals when compared with a range of host galaxy and nuclear properties. The widths and asymmetries of [O III] λ5007 and [S II] λλ6716, 6731 as a function of radius exhibit a wide range of behavior. Some of the most common phenomena are substantial width increases from the STIS to the large-scale, ground-based aperture and almost no change in line profile between the unresolved nuclear spectrum and ground-based measurements. We identify asymmetries in a surprisingly large fraction of low-ionization [S II] line profiles and several examples of substantial red asymmetries in both [O III] and [S II]. These results underscore the complexity of the circumnuclear material that constitutes the NLR and suggest that the scatter in the NLR width and σ* correlation cannot be substantially reduced with a simple set of empirical relations.

  20. A Survey of the Galactic Center Region in HCO+, H13CO+, and SiO

    DTIC Science & Technology

    2010-06-07

    A&A 523, A45 (2010) DOI: 10.1051/0004-6361/200913359 c© ESO 2010 Astronomy & Astrophysics A survey of the Galactic center region in HCO+, H13CO+, and...Received 26 September 2009 / Accepted 7 June 2010 ABSTRACT Aims. A large -scale survey of the Galactic center region in the 3 mm rotational transitions...gion is obscured by intervening dust in the optical, but not in the millimeter to far infrared wavelength range. It contains a large amount (∼3× 107 M

  1. Age determination of the nuclear stellar population of Active Galactic Nuclei using Locally Weighted Regression

    NASA Astrophysics Data System (ADS)

    Estrada-Piedra, T.; Torres-Papaqui, J. P.; Terlevich, R.; Fuentes, O.; Terlevich, E.

    2004-07-01

    We present a new technique to segregate old and young stellar populations in galactic spectra using machine learning methods. We used an ensemble of classifiers, each classifier in the ensemble specializes in young or old populations and was trained with locally weighted regression and tested using ten-fold cross-validation. Since the relevant information concentrates in certain regions of the spectra we used the method of sequential floating backward selection offline for feature selection. The application to Seyfert galaxies proved that this technique is very insensitive to the dilution by the Active Galactic Nucleus (AGN) continuum. Comparing with exhaustive search we concluded that both methods are similar in terms of accuracy but the machine learning method is faster by about two orders of magnitude.

  2. Study of the Galactic Center region with the ANTARES neutrino telescope

    NASA Astrophysics Data System (ADS)

    Grégoire, T.; ANTARES collaboration

    2017-09-01

    The measurements of astrophysical neutrinos by the IceCube collaboration contains some indications of a North/South asymmetry which could hint a Galactic contribution. The ANTARES neutrino telescope has a direct view of the Galactic Center region and can provide complementary information on the neutrino flux from this region thanks to its excellent angular resolution both for tracks and showers. The recent model KRA γ , characterized by radially-dependent cosmic-ray transport properties predicts a neutrino flux close to the ANTARES sensitivity. We present here a study on a possible Galactic contribution to the astrophysical neutrino flux using seven years of data from the ANTARES neutrino telescope. The results of this analysis are preliminary, the median upper limit at 90% confidence level is roughly two times larger than the flux predicted by the KRA γ model and the discovery probability at 3σ is 3% of the KRA γ flux.

  3. Final SAS-2 gamma-ray results on sources in the galactic anticenter region

    NASA Technical Reports Server (NTRS)

    Thompson, D. J.; Fichtel, C. E.; Hartman, R. C.; Kniffen, D. A.; Lamb, R. C.

    1977-01-01

    Final results are presented for SAS-2 observations of high-energy gamma-rays from the galactic anticenter region. Three main gamma-ray features are shown to characterize this region: a localized source associated with the Crab Nebula and its pulsar, another localized source near galactic coordinates 195 deg, +5 deg, and a general enhancement of the diffuse background 10 to 15 deg south of the galactic plane, which is associated with the Gould Belt. For the Crab, it is found that the radiation is mostly pulsed, the pulsed fraction increases with energy, and the intensity of the radiation in the main and interpulse peaks is approximately the same. The other localized source, provisionally designated as gamma 195+5, is found to have a harder spectrum than the Crab but no obvious radio counterpart; emission from an external galaxy is ruled out.

  4. Luminous Infrared Galaxies. III. Multiple Merger, Extended Massive Star Formation, Galactic Wind, and Nuclear Inflow in NGC 3256

    NASA Astrophysics Data System (ADS)

    Lípari, S.; Díaz, R.; Taniguchi, Y.; Terlevich, R.; Dottori, H.; Carranza, G.

    2000-08-01

    ouflow axis (at P.A.~160deg). We analyze in detail the physical conditions in the giant H II regions located in the asymmetric spiral arms, the two main optical nuclei, and the outflow component (using long-slit spectroscopy, plus standard models of photoionization, shocks, and starbursts). We present four detailed emission-line ratios (N II/Hα, S II/Hα, S II/S II), and FWHM (Hα) maps for the central region (30''×30'' rmax~22''~4 kpc), with a spatial resolution of 1". In the central region (r~5-6 kpc) we detected that the nuclear starburst and the extended giant H II regions (in the spiral arms) have very similar properties, i.e., high metallicity and low-ionization spectra, with Teff=35,000 K, solar abundance, a range of Te~6000-7000 K, and Ne~100-1000 cm-3. The nuclear and extended outflow shows properties typical of galactic wind/shocks, associated with the nuclear starburst. We suggest that the interaction between dynamical effects, the galactic wind (outflow), low-energy cosmic rays, and the molecular+ionized gas (probably in the inflow phase) could be the possible mechanism that generate the ``similar extended properties in the massive star formation, at a scale of 5-6 kpc!'' We have also studied the presence of the close merger/interacting systems NGC 3256C (at ~150 kpc, ΔV=-100 km s-1) and the possible association between the NGC 3256 and 3263 groups of galaxies. In conclusion, these results suggest that NGC 3256 is the product of a multiple merger, which generated an extended massive star formation process with an associated galactic wind plus a nuclear inflow. Therefore, NGC 3256 is another example in which the relation between mergers and extreme starburst (and the powerful galactic wind, ``multiple'' Type II supernova explosions) play an important role in the evolution of galaxies (the hypothesis of Rieke et al., Joseph et al., Terlevich et al., Heckman et al., and Lípari et al.). Based on observations obtained at the Hubble Space Telescope (HST; Wide

  5. Multicolour far infrared photometry of galactic H2 regions. [data acquisition using high altitude balloons

    NASA Technical Reports Server (NTRS)

    Olthof, H.

    1974-01-01

    Results are presented of far infrared photometric measurements of H2 regions in the galactic plane between longitudes 350 and 40 degrees. The results are combined from balloon flights in 1972 and 1973 carried out in cooperation with CNES in the south of France.

  6. SAS-2 observations of the galactic gamma radiation from the Vela region

    NASA Technical Reports Server (NTRS)

    Thompson, D. J.; Bignami, G. F.; Fichtel, C. E.; Kniffen, D. A.

    1974-01-01

    Data from a scan of the galactic plane by the SAS-2 high energy gamma ray experiment in the region 250 deg l2 290 deg show a statistically-significant excess over the general radiation from the galactic plane for gamma radiation of energy 100 MeV in the region 260 deg l2 270 deg and -7.5 deg b2 0 deg. If the enhanced gamma radiation results from interactions of cosmic rays with galactic matter, as the energy spectrum suggests, it seems reasonable to associate the enhancement with large scale galactic features, such as spiral arm segments in that direction, or with the region surrounding the Vela supernova remnant, with which PSR 0833-45 is associated. If the excess is attributed to cosmic rays released from this supernova interacting with the interstellar matter in that region, then on the order of 3.10 to the 50th power ergs would be released by that supernova in the form of cosmic rays.

  7. Differences in the size-internal velocity relation of galactic and extragalactic HII regions

    NASA Technical Reports Server (NTRS)

    Odell, C. R.

    1990-01-01

    The nature of the size-internal velocity relation in extragalactic HII regions is examined in order to improve their use as distance determinants. The relation between the linear size and the internal velocity was compared for HII regions in the Galaxy and in external galaxies. Data for the former are from the researcher's own studies at high spatial resolution, while the latter have been the subject of spectroscopy that includes almost the entire objects. The Galactic HII regions are corrected to values of the internal velocity that would be observed if they were at extragalactic distances. A very different size-internal velocity relation was found for the two types of objects in the sense that the extragalactic objects are some ten times larger at the same internal velocity. This is interpreted to mean that the extragalactic HII regions are actually complexes of small HII regions comparable in size to their Galactic counterparts.

  8. An estimate of the DM profile in the Galactic bulge region

    NASA Astrophysics Data System (ADS)

    Iocco, Fabio; Benito, Maria

    2017-03-01

    We present an analysis of the mass distribution in the region of the Galactic bulge, which leads to constraints on the total amount and distribution of Dark Matter (DM) therein. Our results - based on the dynamical measurement of the BRAVA collaboration - are quantitatively compatible with those of a recent analysis, and generalized to a vast sample of observationally inferred morphologies of the stellar components in the region of the Galactic bulge. By fitting the inferred DM mass to a generalized NFW profile, we find that cores (γ ≲ 0 . 6) are forbidden only for very light configurations of the bulge, and that cusps (γ ≳ 1 . 2) are allowed, but not necessarily preferred. Interestingly, we find that the results for the bulge region are compatible with those obtained with dynamical methods (based on the rotation curve) applied to outer regions of the Milky Way, for all morphologies adopted. We find that the uncertainty on the shape of the stellar morphology heavily affects the determination of the DM distribution in the bulge region, which is gravitationally dominated by baryons, adding up to the uncertainty on its normalization. The combination of the two hinders the actual possibility to infer sound conclusions about the distribution of DM in the region of the Galactic bulge, and only future observations of the stellar census and dynamics in this region will bring us closer to a quantitatively more definite answer.

  9. Light ion components of the galactic cosmic rays: Nuclear interactions and transport theory

    NASA Technical Reports Server (NTRS)

    Cucinotta, F. A.; Townsend, L. W.; Wilson, J. W.; Shinn, J. L.; Badhwar, G. D.; Dubey, R. R.

    1996-01-01

    Light nuclei are present in the primary galactic cosmic rays (GCR) and are produced in thick targets due to projectile or target fragmentation from both nucleon and heavy induced reactions. In the primary GCR, He-4 is the most abundant nucleus after H-1. However, there are also a substantial fluxes of H-2 and He-3. In this paper we describe theoretical models based on quantum multiple scattering theory for the description of light ion nuclear interactions. The energy dependence of the light ion fragmentation cross section is considered with comparisons of inclusive yields and secondary momentum distributions to experiments described. We also analyze the importance of a fast component of lights ions from proton and neutron induced target fragementation. These theoretical models have been incorporated into the cosmic ray transport code HZETRN and will be used to analyze the role of shielding materials in modulating the production and the energy spectrum of light ions.

  10. Light ion components of the galactic cosmic rays: Nuclear interactions and transport theory

    NASA Technical Reports Server (NTRS)

    Cucinotta, F. A.; Townsend, L. W.; Wilson, J. W.; Shinn, J. L.; Badhwar, G. D.; Dubey, R. R.

    1996-01-01

    Light nuclei are present in the primary galactic cosmic rays (GCR) and are produced in thick targets due to projectile or target fragmentation from both nucleon and heavy induced reactions. In the primary GCR, He-4 is the most abundant nucleus after H-1. However, there are also a substantial fluxes of H-2 and He-3. In this paper we describe theoretical models based on quantum multiple scattering theory for the description of light ion nuclear interactions. The energy dependence of the light ion fragmentation cross section is considered with comparisons of inclusive yields and secondary momentum distributions to experiments described. We also analyze the importance of a fast component of lights ions from proton and neutron induced target fragementation. These theoretical models have been incorporated into the cosmic ray transport code HZETRN and will be used to analyze the role of shielding materials in modulating the production and the energy spectrum of light ions.

  11. Solar modulation and nuclear fragmentation effects in galactic cosmic ray transport through shielding

    NASA Astrophysics Data System (ADS)

    Townsend, L. W.; Cucinotta, C. F.; Wilson, J. W.; Shinn, J. L.; Badhwar, G.

    1994-10-01

    Crews of manned interplanetary missions may accumulate significant radiation exposures from the Galactic Cosmic Ray (GCR) environment in space. Estimates of how these dose levels are affected by the assumed temporal and spatial variations in the composition of the GCR environment, and by the effects of the spacecraft and body self-shielding on the transported fields are presented. In this work, the physical processes through which shielding alters the transported radiation fields are described. We then present estimates of the effects on model calculations of (1) nuclear fragmentation model uncertainties, (2) solar modulation, (3) variations between solar cycles, and (4) proposed changes to the quality factors which relate dose equivalent to absorbed dose.

  12. Solar modulation and nuclear fragmentation effects in galactic cosmic ray transport through shielding

    NASA Technical Reports Server (NTRS)

    Townsend, L. W.; Cucinotta, C. F.; Wilson, J. W.; Shinn, J. L.; Badhwar, G.

    1994-01-01

    Crews of manned interplanetary missions may accumulate significant radiation exposures from the Galactic Cosmic Ray (GCR) environment in space. Estimates of how these dose levels are affected by the assumed temporal and spatial variations in the composition of the GCR environment, and by the effects of the spacecraft and body self-shielding on the transported fields are presented. In this work, the physical processes through which shielding alters the transported radiation fields are described. We then present estimates of the effects on model calculations of (1) nuclear fragmentation model uncertainties, (2) solar modulation, (3) variations between solar cycles, and (4) proposed changes to the quality factors which relate dose equivalent to absorbed dose.

  13. Multi-wavelength study of Galactic H II region W40

    NASA Astrophysics Data System (ADS)

    Mallick, K. K.; Kumar, M. S. N.; Ojha, D. K.; Bachiller, R.; Samal, M. R.; Pirogov, Lev

    Study of Galactic H II regions is one of the vital tools in understanding the effect of high-mass star(s). Copious amount of UV photons from high-mass stars can ionise the neighbouring ISM, injecting energy and momentum, which leads to a host of interesting features. Such regions can be used as test-beds for triggered star formation theories such as radiation driven implosion and collect-and-collapse model. Tangentially, it can also be tested if such processes can lead to the formation of second generation high-mass stars. The sheer complexity of an H II region makes multi-wavelength study an imperative. In this respect, we have carried out infrared, sub-millimeter, and radio continuum analysis of the W40 Galactic H II region to decipher the global star formation scenario. We discuss the preliminary results in this talk.

  14. Agriculture Impacts of Regional Nuclear Conflict

    NASA Astrophysics Data System (ADS)

    Xia, Lili; Robock, Alan; Mills, Michael; Toon, Owen Brian

    2013-04-01

    One of the major consequences of nuclear war would be climate change due to massive smoke injection into the atmosphere. Smoke from burning cities can be lofted into the stratosphere where it will have an e-folding lifetime more than 5 years. The climate changes include significant cooling, reduction of solar radiation, and reduction of precipitation. Each of these changes can affect agricultural productivity. To investigate the response from a regional nuclear war between India and Pakistan, we used the Decision Support System for Agrotechnology Transfer agricultural simulation model. We first evaluated the model by forcing it with daily weather data and management practices in China and the USA for rice, maize, wheat, and soybeans. Then we perturbed observed weather data using monthly climate anomalies for a 10-year period due to a simulated 5 Tg soot injection that could result from a regional nuclear war between India and Pakistan, using a total of 100 15 kt atomic bombs, much less than 1% of the current global nuclear arsenal. We computed anomalies using the NASA Goddard Institute for Space Studies ModelE and NCAR's Whole Atmosphere Community Climate Model (WACCM). We perturbed each year of the observations with anomalies from each year of the 10-year nuclear war simulations. We found that different regions respond differently to a regional nuclear war; southern regions show slight increases of crop yields while in northern regions crop yields drop significantly. Sensitivity tests show that temperature changes due to nuclear war are more important than precipitation and solar radiation changes in affecting crop yields in the regions we studied. In total, crop production in China and the USA would decrease 15-50% averaged over the 10 years using both models' output. Simulations forced by ModelE output show smaller impacts than simulations forced by WACCM output at the end of the 10 year period because of the different temperature responses in the two models.

  15. Antarctic Submillimeter Telescope and Remote Observatory Observations of CO J=7-->6 and J=4-->3 Emission toward the Galactic Center Region

    NASA Astrophysics Data System (ADS)

    Kim, Sunguen; Martin, Christopher L.; Stark, Antony A.; Lane, Adair P.

    2002-12-01

    We present position-velocity strip maps of the Galactic center region in the CO J=7-->6 and J=4-->3 transitions observed with the Antarctic Submillimeter Telescope and Remote Observatory located at the Amundsen-Scott South Pole Station. Emission from the two rotational transitions of 12CO was mapped at b=0deg for 3.5d>l>-1.5d on a 1' grid with a FWHM beam size of 58" at 806 GHz and 105" at 461 GHz. Previous observations of CO J=4-->3 (C. L. Martin et al., in preparation) and of [C I] emission (Ojha et al.) from this region show that these lines are distributed in a manner similar to CO J=1-->0 (Stark et al.); the (CO J=4-->3)/(CO J=1-->0) line ratio map is almost featureless across the entire Galactic center region. In contrast, the CO J=7-->6 emission from the Galactic center is strongly peaked toward the Sgr A and Sgr B molecular complexes. A large velocity gradient analysis shows that, aside from the two special regions Sgr A and Sgr B, the photon-dominated regions within a few hundred parsecs of the Galactic center are remarkably uniform in mean density and kinetic temperature at n=2500-4000 cm-3 and T=30-45 K. The (CO J=7-->6)/(CO J=4-->3) line temperature ratios near Sgr B are a factor of 2 higher than those observed in the nuclear region of the starburst galaxy M82 (Mao et al.), while the CO(J=7-->6)/CO(J=4-->3) line temperature ratios around Sgr A are similar to M82. The line ratio on large scales from the Galactic center region is an order of magnitude less than that from M82.

  16. AST/RO Observations of CO J = 7 → 6 and J = 4 → 3 Emission toward the Galactic Center Region

    NASA Astrophysics Data System (ADS)

    Kim, S.; Martin, C. L.; Stark, A. A.; Lane, A. P.

    We present position-velocity strip maps of the Galactic Center region in the CO J = 7 → 6 and J = 4 → 3 transitions observed with the Antarctic Submillimeter Telescope and Remote Observatory (AST/RO) located at Amundsen-Scott South Pole Station. Emission from the two rotational transitions of 12CO was mapped at b = 0circ for 3.5circ > ell > -1.5circ, on a 1' grid with a FWHM beamsize of 58'' at 806 GHz and 105'' at 461 GHz. CO J = 4 → 3, and [C I] (Ojha et al. 2001) emission from this region show that these lines are distributed in a manner similar to CO J = 1 → 0 (Stark et al. 1987); the (CO J = 4 → 3)/(CO J = 1 → 0) line ratio map is almost featureless across the entire Galactic Center region. In contrast, the CO J = 7 → 6 emission from the Galactic Center is strongly peaked toward the Sgr A and Sgr B molecular complexes. A Large Velocity Gradient (LVG) analysis shows that aside from the two special regions Sgr A and Sgr B, the photon-dominated regions within a few hundred parsecs of the Galactic Center are remarkably uniform in mean density and kinetic temperature at n = 2500 to 4000 cm3 and T = 30 to 45 K. The (CO J = 7 → 6) / (CO J = 4 → 3) line temperature ratios near Sgr B are a factor of two higher than those observed in the nuclear region of the starburst galaxy M82 (Mao et al. 2000), while the CO(J = 7 → 6) / CO(J = 4 → 3) line temperature ratios around Sgr A are similar to M82. The line ratio on large scales from the Galactic Center region is an order of magnitude less than that from M82.

  17. NUCLEAR RADIO JET FROM A LOW-LUMINOSITY ACTIVE GALACTIC NUCLEUS IN NGC 4258

    SciTech Connect

    Doi, Akihiro; Kohno, Kotaro; Nakanishi, Kouichiro; Kameno, Seiji; Inoue, Makoto; Hada, Kazuhiro; Sorai, Kazuo

    2013-03-01

    The nearby low-luminosity active galactic nucleus (LLAGN) NGC 4258 has a weak radio continuum component at the galactic center. We investigate its radio spectral properties on the basis of our new observations using the Nobeyama Millimeter Array at 100 GHz and archival data from the Very Large Array at 1.7-43 GHz and the James Clerk Maxwell telescope at 347 GHz. The NGC 4258 nuclear component exhibits (1) an intra-month variable and complicated spectral feature at 5-22 GHz and (2) a slightly inverted spectrum at 5-100 GHz ({alpha} {approx} 0.3; F {sub {nu}}{proportional_to}{nu}{sup {alpha}}) in time-averaged flux densities, which are also apparent in the closest LLAGN M81. These similarities between NGC 4258 and M81 in radio spectral natures in addition to previously known core shift in their AU-scale jet structures produce evidence that the same mechanism drives their nuclei. We interpret the observed spectral property as the superposition of emission spectra originating at different locations with frequency-dependent opacity along the nuclear jet. Quantitative differences between NGC 4258 and M81 in terms of jet/counter jet ratio, radio loudness, and degree of core shift can be consistently understood by fairly relativistic speeds ({Gamma} {approx}> 3) of jets and their quite different inclinations. The picture established from the two closest LLAGNs is useful for understanding the physical origin of unresolved and flat/inverted spectrum radio cores that are prevalently found in LLAGNs, including Sgr A*, with starved supermassive black holes in the present-day universe.

  18. Uncovering the Beast: The Galactic Starburst Region W49A

    NASA Astrophysics Data System (ADS)

    Homeier, N.; Alves, J.

    2002-12-01

    We present J, H, and Ks images of an unbiased 5‧ x 5‧ (16 pc x 16 pc) survey of the densest region of the W49 giant molecular cloud. The observations reveal a massive stellar cluster (Cluster 1) about 3 pc East of the well-known Welch ring of ultra-compact H II regions, as well as three smaller clusters associated with compact sources of radio emission. Cluster 1 powers a 6 pc diameter giant H II region seen at both the NIR and radio continuum, and has more than 30 visual magnitudes of internal imhomogeneous extinction, implying that it is still deeply embedded in its parent molecular cloud. The census of massive stars in W49A agrees or slightly overabundant when compared with the number of Lyman continuum photons derived from radio observations. We argue that although the formation of the Welch ring could have been triggered by Cluster 1, the entire W49A starburst region seems to have been multi-seeded instead of resulting from a coherent trigger.

  19. SIGMA discovery of a transient hard X-ray source in the galactic center region.

    NASA Astrophysics Data System (ADS)

    Vargas, M.; Goldwurm, A.; Paul, J.; Denis, M.; Borrel, V.; Bouchet, L.; Roques, J. P.; Jourdain, E.; Trudolyubov, S.; Gilfanov, M.; Churazov, E.; Sunyaev, R.; Khavenson, N.; Dyachkov, A.; Novikov, B.; Chulkov, I.

    1996-09-01

    A new X-ray transient source, GRS 1730-312 (=KS 1730-312), was discovered by the hard X-ray/soft γ-ray coded mask telescope SIGMA/GRANAT in the Galactic Center region during observations performed in September 1994. The flare started on September 22 and lasted approximately 3days, during which the source became the brightest object of the region at energies above 35keV. The average 35-200keV spectrum can be described by a power law with photon index of -2.5 or by a thermal bremsstrahlung model with kT_e_=~70keV. SIGMA data have been found consistent with the spectral shape and with the spectral evolution observed by the TTM/Mir-Kvant telescope at lower energies. This new source belongs to the population of hard X-ray sources already detected by SIGMA in the direction of the Galactic Bulge region.

  20. Gamma-ray astronomy: Nuclear transition region

    NASA Technical Reports Server (NTRS)

    Chupp, E. L.

    1976-01-01

    This monograph reviews the major theoretical and experimental efforts made during the past 12 years in gamma-ray astronomy over the energy range from 10 keV to about 100 MeV, where nuclear-transition lines are expected. Early attempts to detect celestial gamma rays are recounted, mechanisms of gamma-ray line and continuum production are examined, and formulas giving the various possible differential gamma-ray spectral shapes are provided. Predicted fluxes are discussed for solar gamma rays as well as for gamma emission from supernova remnants, supernovae, neutron stars, flare stars, the galactic core and disk, black holes, and diffuse sources. Gamma-ray interactions with matter are analyzed, particularly the photoelectric effect, Compton scattering from free electrons, and pair production in nuclear fields. Significant results are summarized for observations of gamma rays from the sun as well as from point and extended sources within and beyond the Galaxy, including diffuse fluxes and transient gamma-ray bursts. Factors pertaining to the design of gamma-ray astronomy experiments are considered, especially detector background limitations, gamma-ray production within instruments, and present-day detection methods.

  1. Gamma-ray astronomy: Nuclear transition region

    NASA Technical Reports Server (NTRS)

    Chupp, E. L.

    1976-01-01

    This monograph reviews the major theoretical and experimental efforts made during the past 12 years in gamma-ray astronomy over the energy range from 10 keV to about 100 MeV, where nuclear-transition lines are expected. Early attempts to detect celestial gamma rays are recounted, mechanisms of gamma-ray line and continuum production are examined, and formulas giving the various possible differential gamma-ray spectral shapes are provided. Predicted fluxes are discussed for solar gamma rays as well as for gamma emission from supernova remnants, supernovae, neutron stars, flare stars, the galactic core and disk, black holes, and diffuse sources. Gamma-ray interactions with matter are analyzed, particularly the photoelectric effect, Compton scattering from free electrons, and pair production in nuclear fields. Significant results are summarized for observations of gamma rays from the sun as well as from point and extended sources within and beyond the Galaxy, including diffuse fluxes and transient gamma-ray bursts. Factors pertaining to the design of gamma-ray astronomy experiments are considered, especially detector background limitations, gamma-ray production within instruments, and present-day detection methods.

  2. Mapping Galactic 60Fe Synthesis in Cen CIR Region

    NASA Technical Reports Server (NTRS)

    Woosley, Stanford

    2005-01-01

    This included a 1 year no cost time extension. The grant was for research into the origin of radioactive 60Fe, whose detection was a mission goal for INTEGRAL and RHESSI. During the grant period, both missions ultimately discovered gamma-line emission from this long lived radioactivity at precisely the value that had been predicted years before by Timmes and Woosley (ApJ, 449,204 (1995)). Unfortunately, using "revised" stellar models and cross sections Rauscher et a1 (ApJ, 576, 323 (2002)), had meanwhile predicted a much larger value. During the grant period, Dieter Hartmann (PI on the complementary grant at Clemson) and Woosley corresponded on this discrepancy and Hartmann visited Santa Cruz (November 20 - 28,2004). All of the grant funds in NAG513659 paid for the expenses of that visit. Subsequently, partly motivated by conversations with Hartmann and Diehl, Woosley re-investigated the production of 60Fe and 26A1 in massive stars from 12 - 120 solar masses, with an eye towards determining the relevant, uncertain physics. The chief changes in Rauscher et a1 were "new" Hauser Feshbach cross sections for 59,60Fe(ng) and 26Al(np)26Mg. The latter has an experimental evaluation which was actually better represented in the study of Timmes and Woosley. The iron (ng) cross sections are from theory and the Timmes and Woosley values were just as reliable as those from Rauscher. Experiments need to be done to resolve who is right. In addition uncertainties in stellar winds, opacities and the IMF were explored. The bottom line is that the value predicted by Timmes and Woosley could well be the correct one, but the experimental error bar is larger than was realized. At least half of the uncertainty is nuclear cross sections that can, and should be measured in the laboratory.

  3. Mapping Galactic 60Fe Synthesis in Cen CIR Region

    NASA Technical Reports Server (NTRS)

    Woosley, Stanford

    2005-01-01

    This included a 1 year no cost time extension. The grant was for research into the origin of radioactive 60Fe, whose detection was a mission goal for INTEGRAL and RHESSI. During the grant period, both missions ultimately discovered gamma-line emission from this long lived radioactivity at precisely the value that had been predicted years before by Timmes and Woosley (ApJ, 449,204 (1995)). Unfortunately, using "revised" stellar models and cross sections Rauscher et a1 (ApJ, 576, 323 (2002)), had meanwhile predicted a much larger value. During the grant period, Dieter Hartmann (PI on the complementary grant at Clemson) and Woosley corresponded on this discrepancy and Hartmann visited Santa Cruz (November 20 - 28,2004). All of the grant funds in NAG513659 paid for the expenses of that visit. Subsequently, partly motivated by conversations with Hartmann and Diehl, Woosley re-investigated the production of 60Fe and 26A1 in massive stars from 12 - 120 solar masses, with an eye towards determining the relevant, uncertain physics. The chief changes in Rauscher et a1 were "new" Hauser Feshbach cross sections for 59,60Fe(ng) and 26Al(np)26Mg. The latter has an experimental evaluation which was actually better represented in the study of Timmes and Woosley. The iron (ng) cross sections are from theory and the Timmes and Woosley values were just as reliable as those from Rauscher. Experiments need to be done to resolve who is right. In addition uncertainties in stellar winds, opacities and the IMF were explored. The bottom line is that the value predicted by Timmes and Woosley could well be the correct one, but the experimental error bar is larger than was realized. At least half of the uncertainty is nuclear cross sections that can, and should be measured in the laboratory.

  4. THE STAR-FORMATION RELATION FOR REGIONS IN THE GALACTIC PLANE: THE EFFECT OF SPATIAL RESOLUTION

    SciTech Connect

    Vutisalchavakul, Nalin; Evans II, Neal J.; Battersby, Cara

    2014-12-20

    We examined the relations between molecular gas surface density and star-formation rate surface density in an 11 deg{sup 2} region of the Galactic plane. Dust continua at 1.1 mm from the Bolocam Galactic Plane Survey and 22 μm emission from the Wide-field Infrared Survey Explorer (WISE) all-sky survey were used as tracers of molecular gas and the star-formation rate, respectively, across the Galactic longitude of 31.5 ≥ l ≥ 20.5 and Galactic latitude of 0.5 ≥ b ≥ –0.5. The relation was studied over a range of resolutions from 33'' to 20' by convolving images to larger scales. The pixel-by-pixel correlation between 1.1 mm and 22 μm increases rapidly at small scales and levels off at the scale of 5'-8'. We studied the star-formation relation based on a pixel-by-pixel analysis and on an analysis of the 1.1 mm and 22 μm peaks. The star-formation relation was found to be nearly linear with no significant changes in the form of the relation across all spatial scales, and it lies above the extragalactic relation from Kennicutt. The average gas-depletion time is ≈200 Myr and does not change significantly at different scales, but the scatter in the depletion time decreases as the scale increases.

  5. Final SAS-2 gamma ray results on sources in the galactic anticenter region

    NASA Technical Reports Server (NTRS)

    Thompson, D. J.; Fichtel, C. E.; Hartman, R. C.; Kniffen, D. A.; Lamb, R. C.

    1976-01-01

    Analysis of SAS-2 high energy Gamma ray data from the direction of the galactic anticenter shows that this region is characterized by: a diffuse emission from the galactic plane which has a maximum along b=0 deg and an enhancement toward negative latitudes associated with Gould's Belt, a strong point source in the direction of the Crab nebula, and a second intense localized source near galactic coordinates 195 deg, +5 deg. Gamma ray emission from the Crab source is dominated by a pulsed flux from PSR 0531+21. The total flux above 100MeV is 3.7 + or - 0.8 million/sq cm s. The source near 195 deg, + 5 deg has a flux above 100 MeV of 4.3 + or - 0.9 million/sq cm s. Its spectrum appears flatter than that of the Crab. The diffuse galactic plane emission at negative lattitudes shows a general correlation with the local matter distribution associated with Gould's Belt. The calculated Gamma ray intensity agrees well with the SAS-2 observations.

  6. Very-high energy observations of the galactic center region by VERITAS in 2010-2012

    SciTech Connect

    Archer, A.; Beilicke, M.; Buckley, J. H.; Bugaev, V.; Chen, W.; Barnacka, A.; Benbow, W.; Cerruti, M.; Berger, K.; Bird, R.; Biteau, J.; Byrum, K.; Cardenzana, J. V; Dickinson, H. J.; Eisch, J. D.; Chen, X.; Ciupik, L.; Connolly, M. P.; Cui, W.; Dumm, J.; and others

    2014-08-01

    The Galactic center is an interesting region for high-energy (0.1-100 GeV) and very-high-energy (E > 100 GeV) γ-ray observations. Potential sources of GeV/TeV γ-ray emission have been suggested, e.g., the accretion of matter onto the supermassive black hole, cosmic rays from a nearby supernova remnant (e.g., Sgr A East), particle acceleration in a plerion, or the annihilation of dark matter particles. The Galactic center has been detected by EGRET and by Fermi/LAT in the MeV/GeV energy band. At TeV energies, the Galactic center was detected with moderate significance by the CANGAROO and Whipple 10 m telescopes and with high significance by H.E.S.S., MAGIC, and VERITAS. We present the results from three years of VERITAS observations conducted at large zenith angles resulting in a detection of the Galactic center on the level of 18 standard deviations at energies above ∼2.5 TeV. The energy spectrum is derived and is found to be compatible with hadronic, leptonic, and hybrid emission models discussed in the literature. Future, more detailed measurements of the high-energy cutoff and better constraints on the high-energy flux variability will help to refine and/or disentangle the individual models.

  7. Distribution of cosmic gamma rays in the galactic anticenter region as observed by SAS-2

    NASA Technical Reports Server (NTRS)

    Kniffen, D. A.; Fichtel, C. E.; Hartman, R. C.; Thompson, D. J.; Ozel, M. E.; Tumer, T.; Bignami, G. F.; Ogelman, H.

    1975-01-01

    The high energy (above 35 MeV) gamma ray telescope flown on the second Small Astronomy Satellite has collected over one thousand gamma rays from the direction of the galactic anticenter. In addition to the diffuse galactic emission the distribution indicates a strong pulsed contribution from the Crab nebula with the same period and phase as the NP0532 pulsar. There also seems to be an excess in the direction of (gal. long. ? 195 deg; gal. lat ? +5 deg) where there is a region containing old supernova remnants. Search for gamma ray pulsations from other pulsars in the region do not show any statistically significant signal. The general intensity distribution of the gamma rays away from the plane appear to be similar to nonthermal radio emission brightness contours.

  8. Abundances of argon, sulfur, and neon in six galactic H II regions from infrared forbidden lines

    NASA Technical Reports Server (NTRS)

    Herter, T.; Helfer, H. L.; Forrest, W. J.; Mccarthy, J.; Houck, J. R.; Willner, S. P.; Puetter, R. C.; Rudy, R. J.; Soifer, B. T.; Pipher, J. L.

    1981-01-01

    Airborne measurements of the Ar II (6.99 micron) and S III (18.71 micron) forbidden lines for six compact H II regions are presented, as well as ground-based 2-4 micron and 8-13 micron spectroscopy if not already published. From these data and radio data, lower limits to the elemental abundances of Ar, Ne, and S are deduced. G29.9-0.0, at 5 kpc from the galactic center, is overabundant in all these elements. The other five regions (at distances 6-13 kpc from the center) mainly appear to be consistent with standard abundances, with the exception of G75.84 + 0.4 at 10 kpc from the galactic center, which is overabundant in S. However, preliminary results on G12.8-0.2 at 6 kpc from the galactic center suggest a possible underabundance. A large statistical sample of H II regions is required in order to determine if there is a radial gradient in the heavy element abundances of the Galaxy.

  9. Large-Scale Structures in the Zone of Avoidance: The Galactic Anticenter Region

    NASA Technical Reports Server (NTRS)

    Lu, Nanyao Y.; Freudling, Wolfram

    1995-01-01

    We have selected a sample of 876 galaxy candidates from the IRAS Point Source Catalog in the region of 2(exp h) < alpha < 10(exp h) and 0 deg < delta < 36 deg, which crosses the Galactic anticenter part of the Zone of Avoidance (ZOA) and includes most of the highly obscured Orion-Taurus complex region. We have identified galaxies among the candidate sources by attempting to detect the 21 cm H I line of those sources which were not known to be galaxies at the beginning of the survey. In this manner, we constructed a galaxy sample which is largely free from Galactic reddening. Of the 272 observed candidates, 89 were detected in the H I line up to a heliocentric velocity of v(sub h) approximately 16,000 km/s. The resulting galaxy sample of 717 galaxies is fairly complete (within about 10%) and uniform (within about 4%) in the part of the survey area 10 deg away from the Galactic plane and for velocities up to at least 9000 km/s. This provides, for the first time, a largely unbiased view on the large-scale structures in much of the survey area. Our main results are the following: (1) Several large voids are identified. In particular, a void between alpha approximately equals 3(sup h) and 4(sup h), up to v(sub h) approximately 6000 km/s, separates the Pisces-Perseus supercluster at alpha < 3(sup h) from structures at alpha > 4(sup h); and a "nearby void" occupies most of our survey area and reaches out to a redshift of nearly 3000 km/s. (2) We found no nearby galaxy concentration that could significantly contribute to the "Local Velocity Anomoly" (LVA), but a general excess of galaxies around v(sub h) approximately 5000 km/s in the survey area. (3) The contrast between the "Great Wall" at v(sub h) approximately 8500 km/s and the void in front of it appears to gradually diffuse out after it enters the Zone of Avoidance from the northern Galactic hemisphere. (4) Our data combined with other galaxy surveys in or near the Galactic anticenter part of the ZOA suggest that the

  10. Locating the TeV-excess from the Galactic Centre region

    SciTech Connect

    Gillessen, S.; Hinton, J.; Funk, S.

    2005-02-21

    Gamma-ray experiments using the imaging atmospheric Cherenkov technique have an angular resolution of typically better than 0.1 deg. per event in stereoscopic mode. The centroid of a point-source emitter, however, can be determined with higher precision, down to a few arcseconds for strong sources. This is of special interest when an excess could be due to several potential sources in the field of view. Here it is shown that H.E.S.S. achieves a pointing precision of 10 to 20 arcseconds by means of a mechanical pointing model. This is demonstrated by reconstructing the position of the AGN PKS 2155-304, which is a point source emitter with a priori known position. The high precision allows to show that the TeV signal from the galactic centre region is consistent with the position of the galactic centre Sgr A*.

  11. How Space Radiation Risk from Galactic Cosmic Rays at the International Space Station Relates to Nuclear Cross Sections

    NASA Technical Reports Server (NTRS)

    Lin, Zi-Wei; Adams, J. H., Jr.

    2005-01-01

    Space radiation risk to astronauts is a major obstacle for long term human space explorations. Space radiation transport codes have thus been developed to evaluate radiation effects at the International Space Station (ISS) and in missions to the Moon or Mars. We study how nuclear fragmentation processes in such radiation transport affect predictions on the radiation risk from galactic cosmic rays. Taking into account effects of the geomagnetic field on the cosmic ray spectra, we investigate the effects of fragmentation cross sections at different energies on the radiation risk (represented by dose-equivalent) from galactic cosmic rays behind typical spacecraft materials. These results tell us how the radiation risk at the ISS is related to nuclear cross sections at different energies, and consequently how to most efficiently reduce the physical uncertainty in our predictions on the radiation risk at the ISS.

  12. Formation of the twin galactic starburst regions NGC6334 and NGC6357

    NASA Astrophysics Data System (ADS)

    Torii, Kazufumi; Hasegawa, Keisuke; Ohama, Akio; Yamamoto, Hiroaki; Tachihara, Kengo; Fukui, Yasuo

    2015-08-01

    Since 2009, several molecular line observations toward the galactic high-mass star forming regions have indicated that cloud-cloud collisions (CCC) play an important role in forming high-mass stars; for example, super star clusters Westerlund2, NGC3603, and RCW38 (Furukawa et al. 2009; Fukui et al. 2014, 2015) and small galactic HII regions M20 and RCW120 which are each excited by a single O star (Torii et al. 2011, 2015). Using the NANTEN2 4-m telescope situated at Atacama, Chile, we have completed a large-scale molecular line mapping toward young galactic starburst regions NGC6334 and NGC6357. The two regions have several clusetrs which are rich in O stars having 30-100 MSun and are suggested to be physically connected with each other, although they are separated by 100 pc. Our new CO observations show that two molecular cloud complexes are distributed toward NGC6334 and NGC6357 at two different velocities, -3 km/s and -18 km/s. They have filamentary distributions elongated for over 100 pc nearly parallel to the galactic plane. The -3km/s complex apparently shows morphological agreements with the nebulosity in NGC6334 and NGC6357, and the -18km/s complex shows complementary distributions with the -3 km/s complex especially toward the O stars. Furthermore, intermediate velocity features which connect the two complexes are seen toward the same direction. These observational signatures indicate the physical association of the two cloud complexes with NGC6334 and NGC6357. We postulate a scenario that a collision between the two filamentary cloud complexes with a colliding velocity ~15 km/s triggered high-mass star formation in NGC6334 and NGC6357. The timescale of the collision, thus the high-mass star formation, is estimated to be less than 0.5 Myrs, which corresponds to a mass accretion rate up to 2×10-4 MSun/yr. Previous known CCC origin objects are the ones in which high-mass star were formed at a very limited volume less than 1pc3. In contrast, the CCC in NGC

  13. Hard X-ray observations of the region from the galactic center to Centaurus

    NASA Technical Reports Server (NTRS)

    Guo, D. D.; Webber, W. R.; Damle, S. V.

    1974-01-01

    A balloon flight from Parana, Argentina, was conducted to observe emissions from discrete or extended sources in the southern sky. The sources observed include GX 304-1, Nor X-2, GX 340+0, GX 354-5, a possibly composite source near the galactic center, and the nova-like source (2U1543-47) in the Lupus-Norma region which has been reported previously only in satellite observations. Data concerning the possibility of line emission near 0.5 MeV from different regions of the southern sky are also presented.

  14. Hard X-ray observations of the region from the galactic center to Centaurus

    NASA Technical Reports Server (NTRS)

    Guo, D. D.; Webber, W. R.; Damle, S. V.

    1974-01-01

    A balloon flight from Parana, Argentina, was conducted to observe emissions from discrete or extended sources in the southern sky. The sources observed include GX 304-1, Nor X-2, GX 340+0, GX 354-5, a possibly composite source near the galactic center, and the nova-like source (2U1543-47) in the Lupus-Norma region which has been reported previously only in satellite observations. Data concerning the possibility of line emission near 0.5 MeV from different regions of the southern sky are also presented.

  15. A discussion of the H-alpha filamentary nebulae and galactic structure in the Cygnus region

    NASA Technical Reports Server (NTRS)

    Matthews, T. A.; Simonson, S. C., III

    1971-01-01

    From observation of the galactic structure in Cygnus, the system of filamentary nebulae was found to lie at a distance of roughly 1.5 kpc, in the same region as about half the thermal radio sources in Cygnus X, the supernova remnant near gamma Cygni, and the association Cygnus OB2, in the direction of which the X-ray source Cygnus XR-3 is observed. The source of excitation was probably the pulse of radiation from a supernova explosion, as proposed in the case of Gum nebula. However continuing excitation by early stars in the region of Cygnus X cannot be excluded.

  16. Effects of Nuclear Cross Sections at Different Energies on Space Radiation Exposure from Galactic Cosmic Rays

    NASA Technical Reports Server (NTRS)

    Li, Zi-Wei; Adams, James H., Jr.

    2007-01-01

    Space radiation from galactic cosmic rays (GCR) is a major hazard to space crews, especially in long duration human space explorations. For this reason, they will be protected by radiation shielding that fragments the GCR heavy ions. Here we investigate how sensitive the crew's radiation exposure is to nuclear fragmentation cross sections at different energies. We find that in deep space cross sections between about 0.2 and 1.2 GeV/u have the strongest effect on dose equivalent behind shielding in solar minimum GCR environments, and cross sections between about 0.6 and 1.7 GeV/u are the most important at solar maximum'. On the other hand, at the location of the International Space Station, cross sections at_higher -energies, between about 0.6 and 1.7 GeV /u at solar minimum and between about 1.7 and 3.4 GeV/u'at,solar maximum, are the most important This is. due-to the average geomagnetic cutoff for the ISS orbit. We also show the effect of uncertainties in the fragmentation cross sections on the elemental energy spectra behind shielding. These results help to focus the studies of fragmentation cross sections on the proper energy range in order to improve our predictions of crew exposures.

  17. Effects of Nuclear Cross Sections at Different Energies on Space Radiation Exposure from Galactic Cosmic Rays

    NASA Technical Reports Server (NTRS)

    Li, Zi-Wei; Adams, James H., Jr.

    2007-01-01

    Space radiation from galactic cosmic rays (GCR) is a major hazard to space crews, especially in long duration human space explorations. For this reason, they will be protected by radiation shielding that fragments the GCR heavy ions. Here we investigate how sensitive the crew's radiation exposure is to nuclear fragmentation cross sections at different energies. We find that in deep space cross sections between about 0.2 and 1.2 GeV/u have the strongest effect on dose equivalent behind shielding in solar minimum GCR environments, and cross sections between about 0.6 and 1.7 GeV/u are the most important at solar maximum'. On the other hand, at the location of the International Space Station, cross sections at_higher -energies, between about 0.6 and 1.7 GeV /u at solar minimum and between about 1.7 and 3.4 GeV/u'at,solar maximum, are the most important This is. due-to the average geomagnetic cutoff for the ISS orbit. We also show the effect of uncertainties in the fragmentation cross sections on the elemental energy spectra behind shielding. These results help to focus the studies of fragmentation cross sections on the proper energy range in order to improve our predictions of crew exposures.

  18. Kinetic temperatures toward X1/X2 orbit interceptions regions and giant molecular loops in the Galactic center region

    NASA Astrophysics Data System (ADS)

    Riquelme, D.; Amo-Baladrón, M. A.; Martín-Pintado, J.; Mauersberger, R.; Martín, S.; Bronfman, L.

    2013-01-01

    Context. It is well known that the kinetic temperatures, Tkin, of the molecular clouds in the Galactic center region are higher than in typical disk clouds. However, the Tkin of the molecular complexes found at higher latitudes towards the giant molecular loops in the central region of the Galaxy is so far unknown. The gas of these high-latitude molecular clouds (hereafter referred to as "halo clouds") is located in a region where the gas in the disk may interact with the gas in the halo in the Galactic center region. Aims: To derive Tkin in the molecular clouds at high latitude and understand the physical process responsible for the heating of the molecular gas both in the central molecular zone (the concentration of molecular gas in the inner ~500 pc) and in the giant molecular loops. Methods: We measured the metastable inversion transitions of NH3 from (J,K) = (1,1) to (6,6) toward six positions selected throughout the Galactic central disk and halo. We used rotational diagrams and large velocity gradient (LVG) modeling to estimate the kinetic temperatures toward all the sources. We also observed other molecules like SiO, HNCO, CS, C34S, C18O, and 13CO, to derive the densities and to trace different physical processes (shocks, photodissociation, dense gas) expected to dominate the heating of the molecular gas. Results: We derive for the first time Tkin of the high-latitude clouds interacting with the disk in the Galactic center region. We find high rotational temperatures in all the observed positions. We derive two kinetic temperature components (~150 K and ~40 K) for the positions in the central molecular zone, and only the warm kinetic temperature component for the clouds toward the giant molecular loops. The fractional abundances derived from the different molecules suggest that shocks provide the main heating mechanism throughout the Galactic center, also at high latitudes. Appendices A and B are available in electronic form at http://www.aanda.org

  19. Climatic Effects of Regional Nuclear War

    NASA Technical Reports Server (NTRS)

    Oman, Luke D.

    2011-01-01

    We use a modern climate model and new estimates of smoke generated by fires in contemporary cities to calculate the response of the climate system to a regional nuclear war between emerging third world nuclear powers using 100 Hiroshima-size bombs (less than 0.03% of the explosive yield of the current global nuclear arsenal) on cities in the subtropics. We find significant cooling and reductions of precipitation lasting years, which would impact the global food supply. The climate changes are large and longlasting because the fuel loadings in modern cities are quite high and the subtropical solar insolation heats the resulting smoke cloud and lofts it into the high stratosphere, where removal mechanisms are slow. While the climate changes are less dramatic than found in previous "nuclear winter" simulations of a massive nuclear exchange between the superpowers, because less smoke is emitted, the changes seem to be more persistent because of improvements in representing aerosol processes and microphysical/dynamical interactions, including radiative heating effects, in newer global climate system models. The assumptions and calculations that go into these conclusions will be described.

  20. The Fan Region at 1.5 GHz with GMIMS: Polarized synchrotron emission tracing Galactic structure

    NASA Astrophysics Data System (ADS)

    Hill, Alex S.; Landecker, Tom; Carretti, Ettore; Douglas, Kevin A.; Sun, Xiaohui; Gaensler, Bryan M.; Mao, Sui Ann; McClure-Griffiths, Naomi; Reich, Wolfgang; Wolleben, Maik; Miller Dickey, John; Gray, Andrew; Haverkorn, Marijke; Leahy, John Patrick; Schnitzeler, Dominic

    2017-01-01

    Diffuse polarized radio continuum emission provides information about the structure of the Galactic magnetic field. With the Global Magneto-Ionic Medium Survey (GMIMS), we are mapping this emission from the entire sky from 300 to 1800 MHz. We will present a brief overview of the GMIMS survey.We will focus on 1270-1750 MHz observations from the Northern hemisphere GMIMS data to determine the geometry of the magnetic field in the Fan Region. The Fan Region is one of the dominant features of the sky in polarized radio continuum, long thought to be a local (d < 500 pc) synchrotron emission feature. We find that the 1.5 GHz polarized radio emission is anti-correlated with Halpha emission from the Perseus Arm, 2 kpc away. This indicates that ionized gas in the Perseus Arm depolarizes about 30% of the Fan Region emission, indicating that some of the Fan Region emission originates in or beyond the Perseus Arm. The synchrotron emission must therefore be produced along a large path length, suggesting the presence of a coherent magnetic field in the plane in the outer Galaxy. We argue that the polarized emission from the Fan Region is a consequence of the structure of the Galactic magnetic field and ISM. We model beam depolarization due to the ISM, finding that in the presence of depolarization the rotation measure measured from polarized emission is much lower than that measured towards background point sources, explaining an observed discrepancy between the GMIMS rotation measures and background rotation measures.

  1. RE-ANALYSIS OF THE RADIO LUMINOSITY FUNCTION OF GALACTIC H II REGIONS

    SciTech Connect

    Paladini, R.; Noriega-Crespo, A.; Carey, S. J.; DeZotti, G.

    2009-09-10

    We have re-analyzed continuum and recombination lines radio data available in the literature in order to derive the luminosity function (LF) of Galactic H II regions. The study is performed by considering the first and fourth Galactic quadrants independently. We estimate the completeness level of the sample in the fourth quadrant at 5 Jy, and the one in the first quadrant at 2 Jy. We show that the two samples (fourth or first quadrant) include, as well as giant and supergiant H II regions, a significant number of subgiant sources. The LF is obtained, in each Galactic quadrant, with a generalized Schmidt's estimator using an effective volume derived from the observed spatial distribution of the considered H II regions. The re-analysis also takes advantage of recently published ancillary absorption data allowing to solve the distance ambiguity for several objects. A single power-law fit to the LFs retrieves a slope equal to -2.23 {+-} 0.07 (fourth quadrant) and to -1.85 {+-} 0.11 (first quadrant). We also find marginal evidence of a luminosity break at L{sub knee} = 10{sup 23.45} erg s{sup -1} Hz{sup -1} for the LF in the fourth quadrant. We convert radio luminosities into equivalent H{alpha} and Lyman continuum luminosities to facilitate comparisons with extragalactic studies. We obtain an average total H II regions Lyman continuum luminosity of 0.89 {+-} 0.23 x 10{sup 53} s{sup -1}, corresponding to 30% of the total ionizing luminosity of the Galaxy.

  2. Global Famine after a Regional Nuclear War

    NASA Astrophysics Data System (ADS)

    Robock, A.; Xia, L.; Mills, M. J.; Stenke, A.; Helfand, I.

    2014-12-01

    A regional nuclear war between India and Pakistan, using 100 15-kt atomic bombs, could inject 5 Tg of soot into the upper troposphere from fires started in urban and industrial areas. Simulations by three different general circulation models, GISS ModelE, WACCM, and SOCOL, all agree that global surface temperature would decrease by 1 to 2°C for 5 to 10 years, and have major impacts on precipitation and solar radiation reaching Earth's surface. Local summer climate changes over land would be larger. Using the DSSAT crop simulation model forced by these three global climate model simulations, we investigate the impacts on agricultural production in China, the largest grain producer in the world. In the first year after the regional nuclear war, a cooler, drier, and darker environment would reduce annual rice production by 23 Mt (24%), maize production by 41 Mt (23%), and wheat production by 23 Mt (50%). This reduction of food availability would continue, with gradually decreasing amplitude, for more than a decade. Results from simulations in other major grain producing regions produce similar results. Thus a nuclear war using much less than 1% of the current global arsenal could produce a global food crisis and put a billion people at risk of famine.

  3. Gamma-ray continuum emission from the inner Galactic region as observed with INTEGRAL/SPI

    NASA Astrophysics Data System (ADS)

    Strong, A. W.; Diehl, R.; Halloin, H.; Schönfelder, V.; Bouchet, L.; Mandrou, P.; Lebrun, F.; Terrier, R.

    2005-12-01

    The diffuse continuum emission from the Galactic plane in the energy range 18-1000 keV has been studied using 16 Ms of data from the SPI instrument on INTEGRAL. With such an exposure we can exploit the imaging properties of SPI to achieve a good separation of point sources from the various diffuse components. Using a candidate-source catalogue derived with IBIS on INTEGRAL and a number of sky distribution models we obtained spectra resolved in Galactic longitude. We can identify spectral components of a diffuse continuum of power law shape with index about 1.7, a positron annihilation component with a continuum from positronium and the line at 511 keV, and a second, roughly power-law component from detected point sources. Our analysis confirms the concentration of positron annihilation emission in the inner region (|l|<10°), the disk (10°<|l|<30°) being at least a factor 7 weaker in this emission. The power-law component in contrast drops by only a factor 2, showing a quite different longitude distribution and spatial origin. Detectable sources constitute about 90% of the total Galactic emission between 20 and 60 keV, but have a steeper spectrum than the diffuse emission, their contribution to the total emission dropping rapidly to a small fraction at higher energies. The spectrum of diffuse emission is compatible with RXTE and COMPTEL at lower and higher energies respectively. In the SPI energy range the flux is lower than found by OSSE, probably due to the more complete accounting for sources by SPI. The power-law emission is difficult to explain as of interstellar origin, inverse Compton giving at most 10%, and instead a population of unresolved point sources is proposed as a possible origin, AXPs with their spectral hardening above 100 keV being plausible candidates. We present a broadband spectrum of the Galactic emission from 10 keV to 100 GeV.

  4. The Infrared and Radio Flux Densities of Galactic H ii regions

    NASA Astrophysics Data System (ADS)

    Makai, Z.; Anderson, L. D.; Mascoop, J. L.; Johnstone, B.

    2017-09-01

    We derive infrared and radio flux densities of all ∼1000 known Galactic H ii regions in the Galactic longitude range 17\\buildrel{\\circ}\\over{.} 5< {\\ell }< 65^\\circ . Our sample comes from the Wide-Field Infrared Survey Explorer (WISE) catalog of Galactic H ii regions. We compute flux densities at six wavelengths in the infrared (Spitzer GLIMPSE 8 μm, WISE 12 μm and 22 μm, Spitzer MIPSGAL 24 μm, and Herschel Hi-GAL 70 μm and 160 μm) and two in the radio (MAGPIS 20 cm and VGPS 21 cm). All H ii region infrared flux densities are strongly correlated with their ∼20 cm flux densities. All H ii regions used here, regardless of physical size or Galactocentric radius, have similar infrared to radio flux density ratios and similar infrared colors, although the smallest regions (r < 1 pc), have slightly elevated IR to radio ratios. The colors {{log}}10({F}24μ {{m}}/{F}12μ {{m}})≥slant 0 and {{log}}10({F}70μ {{m}}/{F}12μ {{m}})≥slant 1.2, and {{log}}10({F}24μ {{m}}/{F}12μ {{m}})≥slant 0 and {{log}}10({F}160μ {{m}}/{F}70μ {{m}})≤slant 0.67 reliably select H ii regions, independent of size. The infrared colors of ∼22% of H ii regions, spanning a large range of physical sizes, satisfy the IRAS color criteria of Wood & Churchwell for H ii regions, after adjusting the criteria to the wavelengths used here. Because these color criteria are commonly thought to select only ultra-compact H ii regions, this result indicates that the true ultra-compact H ii region population is uncertain. Compared to a sample of IR color indices from star-forming galaxies, H ii regions show higher {{log}}10({F}70μ {{m}}/{F}12μ {{m}}) ratios. We find a weak trend of decreasing infrared to ∼20 cm flux density ratios with increasing R gal, in agreement with previous extragalactic results, possibly indicating a decreased dust abundance in the outer Galaxy.

  5. THE STELLAR CONTENT OF OBSCURED GALACTIC GIANT H II REGIONS. VII. W3

    SciTech Connect

    Navarete, F.; Figueredo, E.; Damineli, A.; Moises, A. P.; Blum, R. D.; Conti, P. S.

    2011-09-15

    Spectrophotometric distances in the K band have been reported by different authors for a number of obscured Galactic H II regions. Almost 50% of them show large discrepancies compared to the classical method using radial velocities measured in the radio spectral region. In order to provide a crucial test of both methods, we selected a target that does not present particular difficulty for any method and which has been measured by as many techniques as possible. The W3 star-forming complex, located in the Perseus arm, offers a splendid opportunity for such a task. We used the Near-Infrared Integral Field Spectrograph on the Frederick C. Gillett Gemini North telescope to classify candidate 'naked photosphere' OB stars based on Two Micron All Sky Survey photometry. Two of the targets are revealed to be mid-O-type main-sequence stars leading to a distance of d = 2.20 kpc. This is in excellent agreement with the spectrophotometric distance derived in the optical band (d = 2.18 pc) and with a measurement of the W3 trigonometric parallax (d = 1.95 kpc). Such results confirm that the spectrophotometric distances in the K band are reliable. The radio-derived kinematic distance, on the contrary, gives a distance twice as large (d = 4.2 kpc). This indicates that this region of the Perseus arm does not follow the Galactic rotation curve, and this may also be the case for other H II regions for which discrepancies have been found.

  6. VizieR Online Data Catalog: Galactic HII regions. I. Stellar distances (Foster+, 2015)

    NASA Astrophysics Data System (ADS)

    Foster, T.; Brunt, C. M.

    2016-04-01

    The cornerstone of our catalog of HII regions is the new systemic velocity measurements (with respect to the LSR), which come from high-resolution (1arcmin) λ21cm HI data and λ2.6mm 12CO (J=1-0) data. The HI data are entirely from the Canadian Galactic Plane Survey (CGPS; Taylor et al. 2003, cat. VI/128), whereas CO data are from either CGPS or the Exeter Five College Radio Astronomy Observatory (FCRAO) CO Galactic Plane Survey (described in Mottram & Brunt, 2010ASPC..438...98M; C. M. Brunt et al. 2013, in preparation), depending on longitude. Our catalog covers HII regions in the outer Galaxy only (R>R0) in the longitude range 90°{<=}l{<=}193° and mainly within a latitude of -3.5°{<=}b{<=}+5.5°. A high-latitude extension was also observed as part of the CGPS (99.85°{<=}l{<=}116.96°) up to b=+17.56°. The complete CGPS data set of 21cm line and continuum from 50.2°{<=}l{<=}193.3° and -3.55°{<=}b{<=}+5.55° are available at the Canadian Astronomy Data Centre (CADC; http://cadc.hia.nrc.ca/). 21cm HI line observations used herein were carried out with the seven-element interferometer and 26m radio telescopes at the Dominion Radio Astrophysical Observatory for the CGPS (Taylor et al. 2033, cat. VI/128). To trace molecular material in the second quadrant, we make use of the FCRAO Outer Galaxy Survey (OGS; Heyer et al., 1998ApJS..115..241H). We present our full catalog of 355 stars found in and around Galactic HII regions in Table1. Table2 in this paper gives the final heliocentric stellar distance to each of 103 nebulae in the outer Galaxy. (3 data files).

  7. Spectrum and variation of gamma-ray emission from the galactic center region

    NASA Technical Reports Server (NTRS)

    Riegler, G. R.; Ling, J. C.; Mahoney, W. A.; Wheaton, W. A.; Jacobson, A. S.

    1982-01-01

    Continuum emission at 60-300 keV from the galactic center region was observed to decrease in intensity by 45 percent and to show a spectrum steepening between fall 1979 and spring 1980. At the same time 511 keV positron annihilation radiation decreased by a comparable fraction. No variations over shorter time scales were detected. The observations are consistent with a model where positrons and hard X-rays are produced in an electromagnetic cascade near a massive black hole.

  8. Spectrum and variation of gamma-ray emission from the galactic center region

    NASA Technical Reports Server (NTRS)

    Riegler, G. R.; Ling, J. C.; Mahoney, W. A.; Wheaton, W. A.; Jacobson, A. S.

    1982-01-01

    Continuum emission at 60-300 keV from the galactic center region was observed to decrease in intensity by 45 percent and to show a spectrum steepening between fall 1979 and spring 1980. At the same time 511 keV positron annihilation radiation decreased by a comparable fraction. No variations over shorter time scales were detected. The observations are consistent with a model where positrons and hard X-rays are produced in an electromagnetic cascade near a massive black hole.

  9. A starburst region at the tip of the Galactic bar around l=347-350

    NASA Astrophysics Data System (ADS)

    Marco, Amparo; Negueruela, Ignacio; González-Fernández, Carlos; Maíz-Apellániz, Jesús; Dorda, Ricardo; Clark, J. Simon

    2015-08-01

    In the past few years, several clusters of red supergiants have been discovered in a small region of the Milky Way, close to the base of the Scutum-Crux Arm and the tip of the Long Bar, between l=24º and l=29º. According to the number of observed red supergiants and using population synthesis models, they must contain very large stellar populations to harbour so many RSGs, some of them being candidates to the most massive young clusters in the Galaxy. These massive open clusters are part of a huge structure most likely containing hundreds of red supergiants. These results suggest that the Scutum complex represents a giant star formation region triggered by dynamical excitation by the Galactic bar, whose tip is believed to intersect the Scutum-Crux Arm close to this region. If this scenario is correct, a similar structure would be expected close to the opposite end of the Galactic long bar. We must find in an area between l=347º-350º (these sight lines include the expected location of the far tip of the Galactic bar in the model of González-Fernández et al. (2012)) likely candidates to very massive open clusters.We are carrying out a comprehensive optical and infrared photometric and spectroscopic study of this region containing the open clusters VdBH 222, Teutsch 85 and their surroundings. We have analyzed the population of VdBH 222 and we have found a large population of luminous supergiants and OB stars. The cluster lies behind ~7.5 mag of extinction and has a probable distance of ~ 10 kpc and an age of ~12 Ma. VdBH 222 is a young massive cluster with a likely mass > 20000 Msolar. Now, we are analyzing the population of the open cluster Teutsch 85 and surroundings, finding a numerous population of supergiants.In this work, we will discuss the possible role of the Galactic bar in triggering the formation of starburst clusters.

  10. Energy spectrum of medium energy gamma-rays from the galactic center region. [experimental design

    NASA Technical Reports Server (NTRS)

    Palmeira, R. A. R.; Ramanujarao, K.; Dutra, S. L. G.; Bertsch, D. L.; Kniffen, D. A.; Morris, D. J.

    1978-01-01

    A balloon-borne magnetic core digitized spark chamber with two assemblies of spark-chambers above and below the scintillation counters was used to measure the medium energy gamma ray flux from the galactic center region. Gamma ray calculations are based on the multiple scattering of the pair electrons in 15 aluminum plates interleaved in the spark chamber modules. Counting rates determined during ascent and at ceiling indicate the presence of diffuse component in this energy range. Preliminary results give an integral flux between 15 and 70 MeV compared to the differential points in other results.

  11. Investigating the uniformity of the excess gamma rays towards the galactic center region

    NASA Astrophysics Data System (ADS)

    Horiuchi, Shunsaku; Kaplinghat, Manoj; Kwa, Anna

    2016-11-01

    We perform a composite likelihood analysis of subdivided regions within the central 26° × 20° of the Milky Way, with the aim of characterizing the spectrum of the gamma-ray galactic center excess in regions of varying galactocentric distance. Outside of the innermost few degrees, we find that the radial profile of the excess is background-model dependent and poorly constrained. The spectrum of the excess emission is observed to extend upwards of 10 GeV outside ~5° in radius, but cuts off steeply between 10-20 GeV only in the innermost few degrees. If interpreted as a real feature of the excess, this radial variation in the spectrum has important implications for both astrophysical and dark matter interpretations of the galactic center excess. Single-component dark matter annihilation models face challenges in reproducing this variation; on the other hand, a population of unresolved millisecond pulsars contributing both prompt and secondary inverse Compton emission may be able to explain the spectrum as well as its spatial dependency. We show that the expected differences in the photon-count distributions of a smooth dark matter annihilation signal and an unresolved point source population are an order of magnitude smaller than the fluctuations in residuals after fitting the data, which implies that mismodeling is an important systematic effect in point source analyses aimed at resolving the gamma-ray excess.

  12. Stellar populations in the Milky Way bulge region: towards solving the Galactic bulge and bar shapes using 2MASS data

    NASA Astrophysics Data System (ADS)

    Robin, A. C.; Marshall, D. J.; Schultheis, M.; Reylé, C.

    2012-02-01

    thicker population has a lower metallicity. It then naturally creates a vertical metallicity gradient by mixing the two populations. In the process of model fitting, we also determine the thin disc parameters. The thin disc is found to have a scale length of 2.2 kpc, in good agreement with previous estimates towards the anticentre, but with a large hole of scale length 1.3 kpc, giving a maximum density in the plane for this population at about 2.3 kpc from the Galactic centre. In the very central part of the bulge on top of our two populations, and by subtracting the fitted ellipsoids, we find evidence of an extra population in the nuclear region, at 2° in longitude and 1° of latitude from the Galactic centre. Its location corresponds well to the central molecular zone, and to the Alard nuclear bar.

  13. The Radio and IR Luminosity Function of compact Galactic HII regions

    NASA Astrophysics Data System (ADS)

    Paladini, R.; De Zotti, G.; Noriega-Crespo, A.; Carey, S. J.

    2009-01-01

    We present the radio luminosity function (LF) of compact Galactic HII regions, derived by using ˜ 200 sources from the recombination line survey by Caswell & Haynes (1987). The data set is complete for Speak > 1.3 Jy at 5 GHz, corresponding to an integrated flux density of ˜ 3 Jy. The LF is reconstructed by means of a generalized Schmidt's estimator which takes into account the actual spatial distribution of the HII regions along the plane of the Galaxy. The resulting LF is described by a two-component power-law, with a cut-off at log L(α) = ˜ 38.3 erg/sec. This work will be complemented with the derivation, by means of the MIPSGAL data set, of the IR counterpart of the radio LF here presented. An extension of this work will consist in deriving the IR counterpart of the radio LF here obtained, by making use of the MIPSGAL data set.

  14. Vertical flows and structures excited by magnetic activity in the Galactic center region

    NASA Astrophysics Data System (ADS)

    Kakiuchi, Kensuke; Suzuki, Takeru K.; Fukui, Yasuo; Torii, Kazufumi; Machida, Mami; Matsumoto, Ryoji

    2017-01-01

    Various observations show peculiar features in the Galactic Center region, such as loops and filamentary structure. It is still unclear how such characteristic features are formed. Magnetic field is believed to play very important roles in the dynamics of gas in the Galaxy Center. Suzuki et al. (2015) performed a global magneto-hydrodynamical simulation focusing on the Galactic Center with an axisymmetric gravitational potential and claimed that non-radial motion is excited by magnetic activity. We further analyzed their simulation data and found that vertical motion is also excited by magnetic activity. In particular, fast down flows with speed of ~100 km/s are triggered near the footpoint of magnetic loops that are buoyantly risen by Parker instability. These downward flows are accelerated by the vertical component of the gravity, falling along inclined field lines. As a result, the azimuthal and radial components of the velocity are also excited, which are observed as high velocity features in a simulated position-velocity diagram. Depending on the viewing angle, these fast flows will show a huge variety of characteristic features in the position-velocity diagram.

  15. Dynamics of Nuclear Regions of Galaxies

    NASA Technical Reports Server (NTRS)

    Miller, Richard H.

    1996-01-01

    Current research carried out with the help of the ASEE-NASA Summer Faculty Program, at NASA-Ames, is concentrated on the dynamics of nuclear regions of galaxies. From a dynamical point of view a galaxy is a collection of around 10(sup 11) stars like our Sun, each of which moves in the summed gravitational field of all the remaining stars. Thus galaxy dynamics becomes a self-consistent n-body problem with forces given by Newtonian gravitation. Strong nonlinearity in the gravitational force and the inherent nonlinearity of self-consistent problems both argue for a numerical approach. The technique of numerical experiments consis of constructing an environment in the computer that is as close as possible to the physical conditions in a real galaxy and then carrying out experiments much like laboratory experiments in physics or engineering, in this environment. Computationally, an experiment is an initial value problem, and a good deal of thought and effort goes into the design of the starting conditions that serve as initial values. Experiments are run at Ames because all the 'equipment' is in place-the programs, the necessary computational power, and good facilities for post-run analysis. Our goal for this research program is to study the nuclear regions in detail and this means replacing most of the galaxy by a suitable boundary condition to allow the full capability of numerical experiments to be brought to bear on a small region perhaps 1/1000 of the linear dimensions of an entire galaxy. This is an extremely delicate numerical problem, one in which some small feature overlook, can easily lead to a collapse or blow-up of the entire system. All particles attract each other in gravitational problems, and the 1/r(sup 2) force is: (1) nonlinear; (2) strong at short range; (3) long-range, and (4) unscreened at any distance.

  16. Deterring regional threats from nuclear proliferation

    SciTech Connect

    Spector, L.S.

    1992-03-12

    The most prominent shift in the National Military Strategy is from the global Soviet threat to a new focus on regional contingencies. No threat looms larger in these contingencies than the proliferation of nuclear weapons and ballistic missiles. This study examines proliferation trends and proposes a predominately diplomatic strategy for containing the problem. Dr. Spector identifies three waves of proliferation: the first is the five states with declared weapons and doctrine-the United States, Russia, Great Britain, France, and China; the second includes a less visible group that developed a covert capability, without testing weapons or declaring a doctrine of deterrence-for example, Israel, India, and probably Pakistan; and, a third wave of would-be proliferators includes radical states like Iraq, Iran, Libya, and North Korea. Spector's political approach is based on the common interest of wave one and two states to prevent further proliferation. Political-economic incentives have already worked in the cases of Brazil, Argentina, Taiwan, and South Africa-states which appear to have abandoned their nuclear weapons programs. Spector does not rule out the option of military force. Force, especially under international sanctions, can be a powerful tool to back diplomatic efforts. Use of force, however, remains a last resort.

  17. Detections of 2 cm formaldehyde emissions towards Galactic star-forming regions with 6 cm counterpart

    NASA Astrophysics Data System (ADS)

    Chen, Xi; Shen, Zhi-Qiang; Li, Xiao-Qiong; Yang, Kai; Li, Juan; Wang, Jun-Zhi; Wu, Ya-Jun; Zhao, Rong-Bin; Wang, Jin-Qing; Dong, Jian; Jiang, Dong-Rong; Li, Bin

    2017-01-01

    We report the detections of H2CO emission at the 2 cm transition towards Galactic star-forming regions with known 6 cm counterpart using the Shanghai Tianma Radio Telescope (TMRT). One significant detection (in NGC7538) and two possible detections (in G23.01-0.41 and G29.96-0.02) were made. Comparing with previous observations, we found that there is a time lag of appearance of 2 cm and 6 cm emissions detected in NGC7538, contradicting with the prediction of radiative pumping via radio continuum radiation. Combinations of the variability of 6 cm masers in NGC7538 suggest that collisional pumping via high-velocity shocks could better explain the 6 cm H2CO maser emission. Under this scheme, excitation of the 2 cm maser may require a higher collision energy compared to the 6 cm transition.

  18. Outflow and Metallicity in the Broad-Line Region of Low-Redshift Active Galactic Nuclei

    NASA Astrophysics Data System (ADS)

    Shin, Jaejin; nagao, Tohru; Woo, Jong-Hak

    2017-01-01

    Outflows in active galactic nuclei (AGNs) are crucial to understand in investigating the co-evolution of supermassive black holes (SMBHs) and their host galaxies since outflows may play an important role as an AGN feedback mechanism. Based on archival UV spectra obtained with the Hubble Space Telescope and IUE, we investigate outflows in the broad-line region (BLR) in low-redshift AGNs (z < 0.4) through detailed analysis of the velocity profile of the C iv emission line. We find a dependence of the outflow strength on the Eddington ratio and the BLR metallicity in our low-redshift AGN sample, which is consistent with earlier results obtained for high-redshift quasars. These results suggest that BLR outflows, gas accretion onto SMBHs, and past star formation activity in host galaxies are physically related in low-redshift AGNs as in powerful high-redshift quasars.

  19. A DEEP UBVRI CCD PHOTOMETRY OF SIX OPEN STAR CLUSTERS IN THE GALACTIC ANTICENTER REGION

    SciTech Connect

    Lata, Sneh; Pandey, Anil K.; Kumar, Brijesh; Bhatt, Himali; Pace, Giancarlo; Sharma, Saurabh

    2010-02-15

    We present deep UBVRI CCD photometry of six open star clusters situated in the Galactic anticenter region (l{approx} 120-200 deg.). The sample includes three unstudied (Be 6, Be 77, King 17) and three partly studied open clusters (Be 9, NGC 2186, and NGC 2304). The fundamental parameters have been determined by comparing color-color and color-magnitude diagrams with the theoretical models. The structural parameters and morphology of the clusters were discussed on the basis of radial density profiles and isodensity contours, respectively. The isodensity contours show that all the clusters have asymmetric shapes. An investigation of structural parameters indicates that the evolution of core and corona of the clusters is mainly controlled by internal relaxation processes.

  20. Determination of magnetic fields in broad line region of active galactic nuclei from polarimetric observations

    NASA Astrophysics Data System (ADS)

    Piotrovich, Mikhail; Silant'ev, Nikolai; Gnedin, Yuri; Natsvlishvili, Tinatin; Buliga, Stanislava

    2017-02-01

    Magnetic fields play an important role in confining gas clouds in the broad line region (BLR) of active galactic nuclei (AGN) and in maintaining the stability of these clouds. Without magnetic fields the clouds would not be stable, and soon after their formation they would expand and disperse. We show that the strength of the magnetic field can be derived from the polarimetric observations. Estimates of magnetic fields for a number of AGNs are based on the observed polarization degrees of broad Hα lines and nearby continuum. The difference between their values allows us to estimate the magnetic field strength in the BLR using the method developed by Silant'ev et al. (2013). Values of magnetic fields in BLR for a number of AGNs have been derived.

  1. Detections of 2 cm formaldehyde emissions towards Galactic star-forming regions with 6 cm counterpart

    NASA Astrophysics Data System (ADS)

    Chen, Xi; Shen, Zhi-Qiang; Li, Xiao-Qiong; Yang, Kai; Li, Juan; Wang, Jun-Zhi; Wu, Ya-Jun; Zhao, Rong-Bin; Wang, Jin-Qing; Dong, Jian; Jiang, Dong-Rong; Li, Bin

    2017-04-01

    We report the detections of H2CO emission at the 2 cm transition towards Galactic star-forming regions with known 6 cm counterpart using the Shanghai Tianma Radio Telescope. One significant detection (in NGC 7538) and two possible detections (in G23.01-0.41 and G29.96-0.02) were made. Comparing with previous observations, we found that there is a time lag of appearance of 2 and 6 cm emissions detected in NGC 7538, contradicting with the prediction of radiative pumping via radio continuum radiation. Combinations of the variability of 6 cm masers in NGC 7538 suggest that collisional pumping via high-velocity shocks could better explain the 6 cm H2CO maser emission. Under this scheme, excitation of the 2 cm maser may require a higher collision energy compared to the 6 cm transition.

  2. Observations of medium energy gamma ray emission from the galactic center region

    NASA Technical Reports Server (NTRS)

    Kniffen, D. A.; Bertsch, D. L.; Morris, D. J.; Palmeira, R. A. R.; Rao, K. R.

    1978-01-01

    Measurements of the gamma-ray emission in the medium energy range between 15 and 100 MeV, obtained during two ballon flights from Brazil are presented. The importance of this energy region in determining whether pi deg - decay of electron bremsstrahlung is the most likely dominant source mechanism is discussed along with the implications of such observations. Specifically, the data from this experiment suggest that emission from the galactic plane is similar to theoretical spectrum calculations including both sources mechanisms, but with the bremsstrahlung component enhanced by a factor of about 2. A spectral distribution of gamma-rays produced in the residual atmosphere above the instrument is also presented and compared with other data. A rather smooth spectral variation from high to low energies is found for the atmospheric spectrum.

  3. HOT DIFFUSE EMISSION IN THE NUCLEAR STARBURST REGION OF NGC 2903

    SciTech Connect

    Yukita, Mihoko; Irwin, Jimmy A.; Swartz, Douglas A.; Tennant, Allyn F.; Soria, Roberto

    2012-10-20

    We present a deep Chandra observation of the central regions of the late-type barred spiral galaxy NGC 2903. The Chandra data reveal soft (kT{sub e} {approx} 0.2-0.5 keV) diffuse emission in the nuclear starburst region and extending {approx}2' ({approx}5 kpc) to the north and west of the nucleus. Much of this soft hot gas is likely to be from local active star-forming regions; however, besides the nuclear region, the morphology of hot gas does not strongly correlate with the bar or other known sites of active star formation. The central {approx}650 pc radius starburst zone exhibits much higher surface brightness diffuse emission than the surrounding regions and a harder spectral component in addition to a soft component similar to the surrounding zones. We interpret the hard component as also being of thermal origin with kT{sub e} {approx} 3.6 keV and to be directly associated with a wind fluid produced by supernovae and massive star winds similar to the hard diffuse emission seen in the starburst galaxy M82. The inferred terminal velocity for this hard component, {approx}1100 km s{sup -1}, exceeds the local galaxy escape velocity suggesting a potential outflow into the halo and possibly escape from the galaxy gravitational potential. Morphologically, the softer extended emission from nearby regions does not display an obvious outflow geometry. However, the column density through which the X-rays are transmitted is lower in the zone to the west of the nucleus compared to that from the east and the surface brightness is relatively higher suggesting some of the soft hot gas originates from above the disk: viewed directly from the western zone but through the intervening disk of the host galaxy along sight lines from the eastern zone. There are several point-like sources embedded in the strong diffuse nuclear emission zone. Their X-ray spectra show them to likely be compact binaries. None of these detected point sources are coincident with the mass center of the

  4. The Fossil Nuclear Outflow in the Central 30 pc of the Galactic Center

    NASA Astrophysics Data System (ADS)

    Hsieh, Pei-Ying; Ho, Paul T. P.; Hwang, Chorng-Yuan; Shimajiri, Yoshito; Matsushita, Satoki; Koch, Patrick M.; Iono, Daisuke

    2016-11-01

    We report a new 1 pc (30″) resolution CS(J=2-1) line map of the central 30 pc of the Galactic center (GC), made with the Nobeyama 45 m telescope. We revisit our previous study of an extraplanar feature called the polar arc (PA), which is a molecular cloud located above SgrA*, with a velocity gradient perpendicular to the galactic plane. We find that the PA can be traced back to the galactic disk. This provides clues to the launching point of the PA, roughly 6 × 106 years ago. Implications of the dynamical timescale of the PA might be related to the Galactic center lobe at parsec scale. Our results suggest that, in the central 30 pc of the GC, the feedback from past explosions could alter the orbital path of molecular gas down to the central tenth of a parsec. In the follow-up work of our new CS(J=2-1) map, we also find that, near systemic velocity, the molecular gas shows an extraplanar hourglass-shaped feature (HG-feature) with a size of ˜13 pc. The latitude-velocity diagrams show that the eastern edge of the HG-feature is associated with an expanding bubble B1, ˜7 pc away from SgrA*. The dynamical timescale of this bubble is ˜3 × 105 years. This bubble is interacting with the 50 km s-1 cloud. Part of the molecular gas from the 50 km s-1 cloud was swept away by the bubble to b=-0\\buildrel{\\circ}\\over{.} 2. The western edge of the HG-feature seems to be molecular gas entrained from the 20 km s-1 cloud toward the north of the galactic disk. Our results suggest a fossil explosion in the central 30 pc of the GC, a few 105 years ago.

  5. CO observations of the galactic star-forming region W58

    NASA Technical Reports Server (NTRS)

    Israel, F. P.

    1980-01-01

    Observations of (C-12)O and (C-13)O have been made in the direction of the strong galactic radio source W58, which contains the compact H II regions K3-50 and ON-3. An extended molecular cloud with dimensions of 55 x 40 pc is associated with the northern part of the H II region complex. The density of the molecular cloud increases from west to east; the molecular cloud is bounded on the east by a larger H I cloud. Present star-formation activity is taking place at the position of maximum molecular density, at what appears to be the interface of the H I cloud and the H II region complex. The velocity structure of the CO cloud and the compact H II regions are in agreement with the blister model. Radio continuum and H I line observations show indications of a shell structure in the southwest of W58. Present star formation in W58 may be caused by this expanding shell.

  6. CO observations of the galactic star-forming region W58

    NASA Technical Reports Server (NTRS)

    Israel, F. P.

    1980-01-01

    Observations of (C-12)O and (C-13)O have been made in the direction of the strong galactic radio source W58, which contains the compact H II regions K3-50 and ON-3. An extended molecular cloud with dimensions of 55 x 40 pc is associated with the northern part of the H II region complex. The density of the molecular cloud increases from west to east; the molecular cloud is bounded on the east by a larger H I cloud. Present star-formation activity is taking place at the position of maximum molecular density, at what appears to be the interface of the H I cloud and the H II region complex. The velocity structure of the CO cloud and the compact H II regions are in agreement with the blister model. Radio continuum and H I line observations show indications of a shell structure in the southwest of W58. Present star formation in W58 may be caused by this expanding shell.

  7. ISOTOPIC RATIOS OF {sup 18}O/{sup 17}O IN THE GALACTIC CENTRAL REGION

    SciTech Connect

    Zhang, J. S.; Sun, L. L.; Riquelme, D.; Henkel, C.; Lu, D. R.; Zhang, Y.; Wang, J. Z.; Li, J.; Wang, M.

    2015-08-15

    The {sup 18}O/{sup 17}O isotopic ratio of oxygen is a crucial measure of the secular enrichment of the interstellar medium by ejecta from high-mass versus intermediate-mass stars. So far, however, there is a lack of data, particularly from the Galactic center (GC) region. Therefore, we have mapped typical molecular clouds in this region in the J = 1–0 lines of C{sup 18}O and C{sup 17}O with the Delingha 13.7 m telescope (DLH). Complementary pointed observations toward selected positions throughout the GC region were obtained with the IRAM 30 m and Mopra 22 m telescopes. C{sup 18}O/C{sup 17}O abundance ratios reflecting the {sup 18}O/{sup 17}O isotope ratios were obtained from integrated intensity ratios of C{sup 18}O and C{sup 17}O. For the first time, C{sup 18}O/C{sup 17}O abundance ratios are determined for Sgr C (V ∼ −58 km s{sup −1}), Sgr D (V ∼ 80 km s{sup −1}), and the 1.°3 complex (V ∼ 80 km s{sup −1}). Through our mapping observations, abundance ratios are also obtained for Sgr A (∼0 and ∼50 km s{sup −1} component) and Sgr B2 (∼60 km s{sup −1}), which are consistent with the results from previous single-point observations. Our frequency-corrected abundance ratios of the GC clouds range from 2.58 ± 0.07 (Sgr D, V ∼ 80 km s{sup −1}, DLH) to 3.54 ± 0.12 (Sgr A, ∼50 km s{sup −1}). In addition, strong narrow components (line width less than 5 km s{sup −1}) from the foreground clouds are detected toward Sgr D (−18 km s{sup −1}), the 1.°3 complex (−18 km s{sup −1}), and M+5.3−0.3 (22 km s{sup −1}), with a larger abundance ratio around 4.0. Our results show a clear trend of lower C{sup 18}O/C{sup 17}O abundance ratios toward the GC region relative to molecular clouds in the Galactic disk. Furthermore, even inside the GC region, ratios appear not to be uniform. The low GC values are consistent with an inside-out formation scenario for our Galaxy.

  8. Chandra Deep X-ray Observation of a Typical Galactic Plane Region and Near-Infrared Identification

    NASA Technical Reports Server (NTRS)

    Ebisawa, K.; Tsujimoto, M.; Paizis, A.; Hamaguichi, K.; Bamba, A.; Cutri, R.; Kaneda, H.; Maeda, Y.; Sato, G.; Senda, A.

    2004-01-01

    Using the Chandra Advanced CCD Imaging Spectrometer Imaging array (ACIS-I), we have carried out a deep hard X-ray observation of the Galactic plane region at (l,b) approx. (28.5 deg,0.0 deg), where no discrete X-ray source has been reported previously. We have detected 274 new point X-ray sources (4 sigma confidence) as well as strong Galactic diffuse emission within two partidly overlapping ACIS-I fields (approx. 250 sq arcmin in total). The point source sensitivity was approx. 3 x 10(exp -15)ergs/s/sq cm in the hard X-ray band (2-10 keV and approx. 2 x 10(exp -16) ergs/s/sq cm in the soft band (0.5-2 keV). Sum of all the detected point source fluxes account for only approx. 10 % of the total X-ray fluxes in the field of view. In order to explain the total X-ray fluxes by a superposition of fainter point sources, an extremely rapid increase of the source population is required below our sensitivity limit, which is hardly reconciled with any source distribution in the Galactic plane. Therefore, we conclude that X-ray emission from the Galactic plane has truly diffuse origin. Only 26 point sources were detected both in the soft and hard bands, indicating that there are two distinct classes of the X-ray sources distinguished by the spectral hardness ratio. Surface number density of the hard sources is only slightly higher than observed at the high Galactic latitude regions, strongly suggesting that majority of the hard X-ray sources are active galaxies seen through the Galactic plane. Following the Chandra observation, we have performed a near-infrared (NIR) survey with SOFI at ESO/NTT to identify these new X-ray sources. Since the Galactic plane is opaque in NIR, we did not see the background extragalactic sources in NIR. In fact, only 22 % of the hard sources had NIR counterparts which are most likely to be Galactic origin. Composite X-ray energy spectrum of those hard X-ray sources having NIR counterparts exhibits a narrow approx. 6.7 keV iron emission line, which

  9. Stochastic non-circular motion and outflows driven by magnetic activity in the Galactic bulge region

    NASA Astrophysics Data System (ADS)

    Suzuki, Takeru K.; Fukui, Yasuo; Torii, Kazufumi; Machida, Mami; Matsumoto, Ryoji

    2015-12-01

    By performing a global magnetohydrodynamical simulation for the Milky Way with an axisymmetric gravitational potential, we propose that spatially dependent amplification of magnetic fields possibly explains the observed noncircular motion of the gas in the Galactic centre region. The radial distribution of the rotation frequency in the bulge region is not monotonic in general. The amplification of the magnetic field is enhanced in regions with stronger differential rotation, because magnetorotational instability and field-line stretching are more effective. The strength of the amplified magnetic field reaches ≳0.5 mG, and radial flows of the gas are excited by the inhomogeneous transport of angular momentum through turbulent magnetic field that is amplified in a spatially dependent manner. In addition, the magnetic pressure-gradient force also drives radial flows in a similar manner. As a result, the simulated position-velocity diagram exhibits a time-dependent asymmetric parallelogram-shape owing to the intermittency of the magnetic turbulence; the present model provides a viable alternative to the bar-potential-driven model for the parallelogram shape of the central molecular zone. This is a natural extension into the central few 100 pc of the magnetic activity, which is observed as molecular loops at radii from a few 100 pc to 1 kpc. Furthermore, the time-averaged net gas flow is directed outward, whereas the flows are highly time dependent, which we discuss from a viewpoint of the outflow from the bulge.

  10. SUBMILLIMETER AND MOLECULAR VIEWS OF THREE GALACTIC RING-LIKE H II REGIONS

    SciTech Connect

    Arvidsson, K.; Kerton, C. R. E-mail: kerton@iastate.edu

    2011-05-15

    We use SCUBA 850 {mu}m and CO observations to analyze the surroundings of three Galactic ring-like H II regions, KR 7, KR 81, and KR 120 (Sh 2-124, Sh 2-165, and Sh 2-187), with the aim of finding sites of triggered star formation. We find one prominent submillimeter (sub-mm) source for each region, located at the interface between the H II region and its neutral surroundings. Using Two Micron All Sky Survey photometry, we find that the prominent sub-mm source for KR 120 probably contains an embedded cluster of young stellar objects (YSOs), making it a likely site for triggered star formation. The KR 7 sub-mm source could possibly contain embedded YSOs, while the KR 81 sub-mm source likely does not. The mass column densities for these dominant sub-mm sources fall in the {approx}0.1-0.6 g cm{sup -2} range. The mass of the cold, dense material (clumps) seen as the three dominant sub-mm sources falls around {approx}100 M{sub sun}. We use the SCUBA Legacy catalog to characterize the populations of sub-mm sources around the H II regions, and compare them to the sources found around a previously studied similar ring-like H II region (KR 140) and near a massive star-forming region (W3). Finally, we estimate the IR luminosities of the prominent newly detected sub-mm sources and find that they are correlated with the clump mass, consistent with a previously known luminosity-mass relationship which this study shows to be valid over four orders of magnitude in mass.

  11. Star Formation Activity in the Galactic H II Region Sh2-297

    NASA Astrophysics Data System (ADS)

    Mallick, K. K.; Ojha, D. K.; Samal, M. R.; Pandey, A. K.; Bhatt, B. C.; Ghosh, S. K.; Dewangan, L. K.; Tamura, M.

    2012-11-01

    We present a multiwavelength study of the Galactic H II region Sh2-297, located in the Canis Major OB1 complex. Optical spectroscopic observations are used to constrain the spectral type of ionizing star HD 53623 as B0V. The classical nature of this H II region is affirmed by the low values of electron density and emission measure, which are calculated to be 756 cm-3 and 9.15 × 105 cm-6 pc using the radio continuum observations at 610 and 1280 MHz, and Very Large Array archival data at 1420 MHz. To understand local star formation, we identified the young stellar object (YSO) candidates in a region of area ~7farcm5 × 7farcm5 centered on Sh2-297 using grism slitless spectroscopy (to identify the Hα emission line stars), and near infrared (NIR) observations. NIR YSO candidates are further classified into various evolutionary stages using color-color and color-magnitude (CM) diagrams, giving 50 red sources (H - K > 0.6) and 26 Class II-like sources. The mass and age range of the YSOs are estimated to be ~0.1-2 M ⊙ and 0.5-2 Myr using optical (V/V-I) and NIR (J/J-H) CM diagrams. The mean age of the YSOs is found to be ~1 Myr, which is of the order of dynamical age of 1.07 Myr of the H II region. Using the estimated range of visual extinction (1.1-25 mag) from literature and NIR data for the region, spectral energy distribution models have been implemented for selected YSOs which show masses and ages to be consistent with estimated values. The spatial distribution of YSOs shows an evolutionary sequence, suggesting triggered star formation in the region. The star formation seems to have propagated from the ionizing star toward the cold dark cloud LDN1657A located west of Sh2-297.

  12. GRIS detection of Al-26 1809 keV line emission from the Galactic center region as a broad line

    NASA Technical Reports Server (NTRS)

    Naya, Juan E.; Barthelmy, Scott D.; Bartlett, Lyle M.; Gehrels, Neil; Leventhal, Marvin; Parsons, Ann; Teegarden, Bonnard J.; Tueller, Jack

    1997-01-01

    The gamma ray imaging spectrometer (GRIS) was used to observe the 1809 keV emission from the Galactic center region. The observed line is broader than the instrument resolution. The measured intrinsic width is 5.4 +/- 1.4 keV full width half medium, which is more than three times the maximum Doppler broadening expected due to Galactic rotation. The detection of such a wide feature, suggesting a high dispersion velocity has implications for the origin of Galactic Al-26. It suggests a supernova explosion origin or a Wolf-Rayet stellar wind origin of Al-26. The fact that the Al-26 has not come to rest after 10(exp 6) years presents a challenge to the current understanding of the Al-26 production and propagation in the Galaxy.

  13. A new perspective on the radio active zone at the Galactic center - feedback from nuclear activities

    NASA Astrophysics Data System (ADS)

    Zhao, J.-H.; Morris, M. R.; Goss, W. M.

    2014-05-01

    Based on our deep image of Sgr A using broadband data observed with the VLA† at 6 cm, we present a new perspective of the radio bright zone at the Galactic center. We further show the radio detection of the X-ray Cannonball, a candidate neutron star associated with the Galactic center SNR Sgr A East. The radio image is compared with the Chandra X-ray image to show the detailed structure of the radio counterparts of the bipolar X-ray lobes. The bipolar lobes are likely produced by the winds from the activities within Sgr A West, which could be collimated by the inertia of gas in the CND, or by the momentum driving of Sgr A*; and the poloidal magnetic fields likely play an important role in the collimation. The less-collimated SE lobe, in comparison to the NW one, is perhaps due to the fact that the Sgr A East SN might have locally reconfigured the magnetic field toward negative galactic latitudes. In agreement with the X-ray observations, the time-scale of ˜1 × 104 yr estimated for the outermost radio ring appears to be comparable to the inferred age of the Sgr A East SNR.

  14. A New Perspective on the Radio Active Zone at The Galactic Center - Feedback from Nuclear Activities

    NASA Astrophysics Data System (ADS)

    Zhao, Jun-Hui; Morris, Mark R.; Goss, W. M.

    2013-11-01

    Based on our deep image of Sgr A using broadband data observed with the Jansky VLA at 6 cm, we present a new perspective of the radio bright zone at the Galactic center. We further show the radio detection of the X-ray Cannonball, a candidate neutron star associated with the Galactic center SNR Sgr A East. The radio image is compared with the Chandra X-ray image to show the detailed structure of the radio counterparts of the bipolar X-ray lobes. The bipolar lobes are likely produced by the winds from the activities within Sgr A West, which could be collimated by the inertia of gas in the CND, or by the momentum driving of Sgr A*; and the poloidal magnetic fields likely play an important role in the collimation. The less-collimated SE lobe, in comparison to the NW one, is perhaps due to the fact that the Sgr A East SN might have locally reconfigured the magnetic field toward negative galactic latitudes. In agreement with the X-ray observations, the time-scale of ~ $1\\times10^4$ yr estimated for the outermost radio ring appears to be comparable to the inferred age of the Sgr A East SNR.

  15. Stellar populations in the Carina region. The Galactic plane at l = 291°

    NASA Astrophysics Data System (ADS)

    Molina-Lera, J. A.; Baume, G.; Gamen, R.; Costa, E.; Carraro, G.

    2016-08-01

    Context. Previous studies of the Carina region have revealed its complexity and richness as well as a significant number of early-type stars. However, in many cases, these studies only concentrated on the central region (Trumpler 14/16) or were not homogeneous. This latter aspect, in particular, is crucial because very different ages and distances for key clusters have been claimed in recent years. Aims: The aim of this work is to study in detail an area of the Galactic plane in Carina, eastward η Carina. We analyze the properties of different stellar populations and focus on a sample of open clusters and their population of young stellar objects and highly reddened early stars. We also studied the stellar mass distribution in these clusters and the possible scenario of their formation. Finally, we outline the Galactic spiral structure in this direction. Methods: We obtained deep and homogeneous photometric data (UBVIKC) for six young open clusters: NGC 3752, Trumpler 18, NGC 3590, Hogg 10, 11, and 12, located in Carina at l ~ 291°, and their adjacent stellar fields, which we complemented with spectroscopic observations of a few selected targets. We also culled additional information from the literature, which includes stellar spectral classifications and near-infrared photometry from 2MASS. We finally developed a numerical code that allowed us to perform a homogeneous and systematic analysis of the data. Our results provide more reliable estimates of distances, color excesses, masses, and ages of the stellar populations in this direction. Results: We estimate the basic parameters of the studied clusters and find that they identify two overdensities of young stellar populations located at about 1.8 kpc and 2.8 kpc, with EB - V ~ 0.1 - 0.6. We find evidence of pre-main-sequence populations inside them, with an apparent coeval stellar formation in the most conspicuous clusters. We also discuss apparent age and distance gradients in the direction NW-SE. We study the

  16. The Dynamics of Molecular Clouds in the Galactic Bar Region on the Near-Side of the CMZ

    NASA Astrophysics Data System (ADS)

    Tolls, Volker; Smith, Howard Alan; HIGGS Team

    2017-01-01

    The inner Galaxy, the area inside the 3-kpc arms, can be divided into two main regions, the Central Molecular Zone (CMZ; Morris and Serabyn 1996) and the Galactic Bar region. Gas and dust moves from the end points of the Galactic Bar on dust lanes towards the CMZ, where it merges with the gas and dust forming a 100-pc molecular ring or stream around the central black hole. The stream of gas and dust on the dust lanes is not continuous, but fragmented into irregularly separated clumps of varying sizes and clustering. On the near side of the CMZ the most prominent cloud clusters are the l=1.6o complex, Clump 2, and the molecular clouds around l=5.5o. We are analyzing Herschel, MOPRA, APEx, and other archival observations in order a) to identify molecular clouds that are part of the gas and dust stream in the Galactic Bar region near the CMZ, b) to determine the dynamics of the Galactic Bar clouds, and c) to derive a gas and dust mass flow rate to the CMZ. This poster will present our initial results.

  17. The Schmidt Law in Six Galactic Massive Star-forming Regions

    NASA Astrophysics Data System (ADS)

    Willis, S.; Guzman, A.; Marengo, M.; Smith, H. A.; Martínez-Galarza, J. R.; Allen, L.

    2015-08-01

    We present a census of young stars in five massive star-forming regions in the 4th Galactic quadrant, G305, G326-4, G326-6, G333 (RCW 106), and G351, and combine this census with an earlier census of young stars in NGC 6334. Each region was observed at J, H, and Ks with the NOAO Extremely Wide-Field Infrared Imager and combined with deep observations taken with the Infrared Array Camera (IRAC) on board the Spitzer Space Telescope at the wavelengths 3.6 and 4.5 μm. We derived a five band point-source catalog containing >200,000 infrared sources in each region. We have identified a total of 2871 YSO candidates, 363 Class I YSOs, and 2508 Class II YSOs. We mapped the column density of each cloud using observations from Herschel between 160 and 500 μm and near-infrared extinction maps in order to determine the average gas surface density above AV > 2. We study the surface density of the YSOs and the star-formation rate as a function of the column density within each cloud and compare them to the results for nearby star-forming regions. We find a range in power-law indices across the clouds, with the dispersion in the local relations in an individual cloud much lower than the average over the six clouds. We find the average over the six clouds to be {{{Σ }}}{SFR}∼ {{{Σ }}}{gas}2.15+/- 0.41 and power-law exponents ranging from 1.77 to 2.86, similar to the values derived within nearby star-forming regions, including Taurus and Orion. The large dispersion in the power-law relations between individual Milky Way molecular clouds reinforces the idea that there is not a direct universal connection between Σgas and a cloud's observed star-formation rate.

  18. Unveiling the Star Formation History of the Massive Galactic Center H II Region Sagittarius B1

    NASA Astrophysics Data System (ADS)

    Simpson, Janet

    2015-10-01

    The proximity of the center of our Galaxy enables us to study star formation under conditions commonly found in other galaxies, but at spatial resolutions unachievable elsewhere. In the past few years, numerous large scale surveys of the inner regions of the Galaxy (~100 pc) have helped to create a possible unified picture of star formation in the Galactic Center (GC) as arising from an elliptical ring of orbiting gas. The proposed model envisions sequential star formation within the ring, with age a function of time since passage by the super massive black hole, Sgr A*, located at the center. The ~12 pc diameter H II region, Sgr B1, long thought to be associated with the more active and embedded region Sgr B2, however, does not fit well within this emerging picture, being either too old or in the wrong place. We propose to expand our ongoing investigation of star formation within Sgr B1 by adding FIFI-LS spectroscopy to our FORCAST and FLITECAM observations of the region. By combining observations of the [O III] (52 and 88 micron), [O I] (146 micron), and [C II] (158 micron) lines, with spectra of other fine structure lines available from the Spitzer Space Telescope archive, and our Cycle 3 SOFIA observations, we will be able to create a complete picture of the stellar population within this problematic region. We will therefore be able to address outstanding questions on the age and nature of Sgr B1, and its role in the large star formation history of the GC.

  19. Radiation pressure confinement - II. Application to the broad-line region in active galactic nuclei

    NASA Astrophysics Data System (ADS)

    Baskin, Alexei; Laor, Ari; Stern, Jonathan

    2014-02-01

    Active galactic nuclei (AGN) are characterized by similar broad emission lines properties at all luminosities (1039 - 1047 erg s-1). What produces this similarity over a vast range of 108 in luminosity? Photoionization is inevitably associated with momentum transfer to the photoionized gas. Yet, most of the photoionized gas in the broad-line region (BLR) follows Keplerian orbits, which suggests that the BLR originates from gas with a large enough column for gravity to dominate. The photoionized surface layer of the gas must develop a pressure gradient due to the incident radiation force. We present solutions for the structure of such a hydrostatic photoionized gas layer in the BLR. The gas is stratified, with a low-density highly ionized surface layer, a density rise inwards and a uniform-density cooler inner region, where the gas pressure reaches the incident radiation pressure. This radiation pressure confinement (RPC) of the photoionized layer leads to a universal ionization parameter U ˜ 0.1 in the inner photoionized layer, independent of luminosity and distance. Thus, RPC appears to explain the universality of the BLR properties in AGN. We present predictions for the BLR emission per unit covering factor, as a function of distance from the ionizing source, for a range of ionizing continuum slopes and gas metallicity. The predicted mean strength of most lines (excluding H β), and their different average-emission radii, are consistent with available observations.

  20. Far-infrared study of N/O abundance ratio in galactic H 2 regions

    SciTech Connect

    Lester, D.F.; Dinerstein, H.L.; Werner, M.W.; Watson, D.M.

    1983-03-01

    Far-infrared lines of N++ and O++ in several galactic H II regions were measured in an effort to probe the abundance ratio N/O. New measurements are presented for W32 (630.8-0.0), Orion A, and G75.84+0.4. The combination of (N III) 57.3 millimicrons and (O III) 88.4 and 51.8 millimicrons yields measurements of N++/O++ that are largely insensitive to electron temperature, density uncertainties, and to clumping of the ionized gas, due to the similarity of the critical densities for these transitions. In the observed nebulae, N++/O++ should be indicative of N/O, a ratio that is of special importance in nucleosynthesis theory. Measurements are compared with previous measurements of M17 and W51. For nebulae in the solar circle, N++/O++ is greater than the N/O values derived from optical studies of N+/O+ in low ionization zones of the same nebulae. We find that N++/O++ in W43 is significantly higher than for the other H II regions in the sample. Since W43 is located at R 5 kpc, which is the smallest galactocentric distance in our sample, our data appear consistent with the presence of a negative abundance gradient d(N/O)dR.

  1. THE COMPLEX NORTH TRANSITION REGION OF CENTAURUS A: A GALACTIC WIND

    SciTech Connect

    Neff, Susan G.; Eilek, Jean A.; Owen, Frazer N.

    2015-04-01

    We present deep GALEX images of NGC 5128, the parent galaxy of Centaurus A. We detect a striking “weather ribbon” of far-UV (FUV) and Hα emission which extends more than 35 kpc northeast of the galaxy. This ribbon is associated with a knotty ridge of radio/X-ray emission and is an extension of the previously known string of optical emission-line filaments. Many phenomena in the region are too short-lived to have survived transit out from the inner galaxy; something must be driving them locally. We also detect FUV emission from the galaxy’s central dust lane. Combining this with previous radio and far-IR measurements, we infer an active starburst in the central galaxy which is currently forming stars at ∼2 M{sub ☉} yr{sup −1}, and has been doing so for 50–100 Myr. If the wind from this starburst is enhanced by energy and mass driven out from the active galactic nucleus, the powerful augmented wind can be the driver needed for the northern weather system. We argue that both the diverse weather system, and the enhanced radio emission in the same region, result from the wind’s encounter with cool gas left by one of the recent merger/encounter events in the history of NGC 5128.

  2. A COMPLETE ATLAS OF H I ABSORPTION TOWARD H II REGIONS IN THE SOUTHERN GALACTIC PLANE SURVEY (SGPS I)

    SciTech Connect

    Brown, C.; Dickey, J. M.; Dawson, J. R.; McClure-Griffiths, N. M.

    2014-04-01

    We present a complete catalog of H I emission and absorption spectrum pairs, toward H II regions, detectable within the boundaries of the Southern Galactic Plane Survey (SGPS I), a total of 252 regions. The catalog is presented in graphical, numerical, and summary formats. We demonstrate an application of this new data set through an investigation of the locus of the Near 3 kpc Arm.

  3. LINE SHIFTS, BROAD-LINE REGION INFLOW, AND THE FEEDING OF ACTIVE GALACTIC NUCLEI

    SciTech Connect

    Gaskell, C. Martin; Goosmann, Rene W. E-mail: rene.goosmann@astro.unistra.fr

    2013-05-20

    Velocity-resolved reverberation mapping suggests that the broad-line regions (BLRs) of active galactic nuclei (AGNs) can have significant net inflow. We use the STOKES radiative transfer code to show that electron and Rayleigh scattering off the BLR and torus naturally explains the blueshifted profiles of high-ionization lines and the ionization dependence of the blueshifts. This result is insensitive to the geometry of the scattering region. If correct, then this model resolves the long-standing conflict between the absence of outflow implied by velocity-resolved reverberation mapping and the need for outflow if the blueshifting is the result of obscuration. The accretion rate implied by the inflow is sufficient to power the AGN. We suggest that the BLR is part of the outer accretion disk and that similar magnetohydrodynamic processes are operating. In the scattering model, the blueshifting is proportional to the accretion rate so high-accretion-rate AGNs will show greater high-ionization line blueshifts, as is observed. Scattering can lead to systematically too high black hole mass estimates from the C IV line. We note many similarities between narrow-line region (NLR) and BLR blueshiftings, and suggest that NLR blueshiftings have a similar explanation. Our model explains the higher blueshifts of broad absorption line QSOs if they are more highly inclined. Rayleigh scattering from the BLR and torus could be more important in the UV than electron scattering for predominantly neutral material around AGNs. The importance of Rayleigh scattering versus electron scattering can be assessed by comparing line profiles at different wavelengths arising from the same emission-line region.

  4. TRIGONOMETRIC PARALLAXES OF MASSIVE STAR-FORMING REGIONS. VI. GALACTIC STRUCTURE, FUNDAMENTAL PARAMETERS, AND NONCIRCULAR MOTIONS

    SciTech Connect

    Reid, M. J.; Sato, M.; Menten, K. M.; Brunthaler, A.; Xu, Y.; Choi, Y. K.; Zheng, X. W.; Zhang, B.; Moscadelli, L.; Honma, M.; Hirota, T.; Hachisuka, K.; Moellenbrock, G. A.; Bartkiewicz, A.

    2009-07-20

    We are using the Very Long Baseline Array and the Japanese VLBI Exploration of Radio Astronomy project to measure trigonometric parallaxes and proper motions of masers found in high-mass star-forming regions across the Milky Way. Early results from 18 sources locate several spiral arms. The Perseus spiral arm has a pitch angle of 16 deg. {+-} 3 deg., which favors four rather than two spiral arms for the Galaxy. Combining positions, distances, proper motions, and radial velocities yields complete three-dimensional kinematic information. We find that star-forming regions on average are orbiting the Galaxy {approx}15 km s{sup -1} slower than expected for circular orbits. By fitting the measurements to a model of the Galaxy, we estimate the distance to the Galactic center R {sub 0} = 8.4 {+-} 0.6 kpc and a circular rotation speed {theta}{sub 0} = 254 {+-} 16 km s{sup -1}. The ratio {theta}{sub 0}/R {sub 0} can be determined to higher accuracy than either parameter individually, and we find it to be 30.3 {+-} 0.9 km s{sup -1} kpc{sup -1}, in good agreement with the angular rotation rate determined from the proper motion of Sgr A*. The data favor a rotation curve for the Galaxy that is nearly flat or slightly rising with Galactocentric distance. Kinematic distances are generally too large, sometimes by factors greater than 2; they can be brought into better agreement with the trigonometric parallaxes by increasing {theta}{sub 0}/R {sub 0} from the IAU recommended value of 25.9 km s{sup -1} kpc{sup -1} to a value near 30 km s{sup -1} kpc{sup -1}. We offer a 'revised' prescription for calculating kinematic distances and their uncertainties, as well as a new approach for defining Galactic coordinates. Finally, our estimates of {theta}{sub 0} and {theta}{sub 0}/R{sub 0}, when coupled with direct estimates of R {sub 0}, provide evidence that the rotation curve of the Milky Way is similar to that of the Andromeda galaxy, suggesting that the dark matter halos of these two

  5. A viscous heating mechanism for the hot plasma in the Galactic center region

    NASA Astrophysics Data System (ADS)

    Belmont, R.; Tagger, M.

    2006-06-01

    In addition to lines originating in a soft phase at ~0.8 keV and to cold molecular clouds, the X-ray spectra from the Galactic center region also exhibit properties similar to those of a diffuse, thin, very hot plasma at 8 keV on a scale of hundreds of parsecs. This phase is surprising for more than one reason. First, such a hot plasma should not be bound to the Galactic plane and the power needed to sustain the escaping matter would be higher then any known source. Second, there is no known mechanism able to heat the plasma to more than a few keV. Recently we have suggested that, hydrogen having escaped, the hot plasma could be a helium plasma, heavy enough to be gravitationally confined. In this case, the required power is much more reasonable. We present here a possible heating mechanism which taps the gravitational energy of the molecular clouds. We note that the 8 keV plasma is highly viscous and we show how viscous friction of molecular clouds flowing within the hot phase can dissipate energy in the gas and heat it. We detail the MHD wake of a spherical cloud by considering the different MHD waves the cloud can excite. We find that most of the energy is dissipated by the damping of Alfvénic perturbations in two possible manners, namely by non-linear effects and by a large scale curvature of the field lines. We find that the total dissipation rate depends on the field strength. For fields B≲ 200~μG both mechanisms produce power comparable to or higher than the radiative losses; for strong fields B≳1 mG, only the curvature damping can balance the X-ray emission and requires a radius of curvature R_c≲ 100 pc; whereas for intermediate fields, the total dissipation is more than one order of magnitude smaller, requiring a higher accretion rate. We note that the plasma parameters may be optimal to make the dissipation most efficient, suggesting a self-regulation mechanism. The loss of kinetic and gravitational energy also causes accretion of the clouds and

  6. Effects of nuclear cross sections at different energies on the radiation hazard from galactic cosmic rays.

    PubMed

    Lin, Z W; Adams, J H

    2007-03-01

    The radiation hazard for astronauts from galactic cosmic rays (GCR) is a major obstacle to long-duration human space exploration. Space radiation transport codes have been developed to calculate the radiation environment on missions to the Moon, Mars, and beyond. We have studied how uncertainties in fragmentation cross sections at different energies affect the accuracy of predictions from such radiation transport calculations. We find that, in deep space, cross sections at energies between 0.3 and 0.85 GeV/nucleon have the largest effect in solar maximum GCR environments. At the International Space Station, cross sections at higher energies have the largest effect due to the geomagnetic cutoff.

  7. Origin of X-Ray and Gamma-Ray Emission from the Galactic Central Region

    NASA Astrophysics Data System (ADS)

    Chernyshov, D. O.; Cheng, K.-S.; Dogiel, V. A.; Ko, C. M.

    2017-02-01

    We study a possible connection between different non-thermal emissions from the inner few parsecs of the Galaxy. We analyze the origin of the gamma-ray source 2FGL J1745.6‑2858 (or 3FGL J1745.6‑2859c) in the Galactic Center (GC) and the diffuse hard X-ray component recently found by the Nuclear Spectroscopic Telescope Array, as well as the radio emission and processes of hydrogen ionization from this area. We assume that a source in the GC injected energetic particles with power-law spectrum into the surrounding medium in the past or continues to inject until now. The energetic particles may be protons, electrons, or a combination of both. These particles diffuse to the surrounding medium and interact with gas, magnetic field, and background photons to produce non-thermal emissions. We study the spectral and spatial features of the hard X-ray emission and gamma-ray emission by the particles from the central source. Our goal is to examine whether the hard X-ray and gamma-ray emissions have a common origin. Our estimations show that, in the case of pure hadronic models, the expected flux of hard X-ray emission is too low. Despite the fact that protons can produce a non-zero contribution in gamma-ray emission, it is unlikely that they and their secondary electrons can make a significant contribution in hard X-ray flux. In the case of pure leptonic models, it is possible to reproduce both X-ray and gamma-ray emissions for both transient and continuous supply models. However, in the case of the continuous supply model, the ionization rate of molecular hydrogen may significantly exceed the observed value.

  8. Evidence for a physical linkage between galactic cosmic rays and regional climate time series

    USGS Publications Warehouse

    Perry, C.A.

    2007-01-01

    The effects of solar variability on regional climate time series were examined using a sequence of physical connections between total solar irradiance (TSI) modulated by galactic cosmic rays (GCRs), and ocean and atmospheric patterns that affect precipitation and streamflow. The solar energy reaching the Earth's surface and its oceans is thought to be controlled through an interaction between TSI and GCRs, which are theorized to ionize the atmosphere and increase cloud formation and its resultant albedo. High (low) GCR flux may promote cloudiness (clear skies) and higher (lower) albedo at the same time that TSI is lowest (highest) in the solar cycle which in turn creates cooler (warmer) ocean temperature anomalies. These anomalies have been shown to affect atmospheric flow patterns and ultimately affect precipitation over the Midwestern United States. This investigation identified a relation among TSI and geomagnetic index aa (GI-AA), and streamflow in the Mississippi River Basin for the period 1878-2004. The GI-AA was used as a proxy for GCRs. The lag time between the solar signal and streamflow in the Mississippi River at St. Louis, Missouri is approximately 34 years. The current drought (1999-2007) in the Mississippi River Basin appears to be caused by a period of lower solar activity that occurred between 1963 and 1977. There appears to be a solar "fingerprint" that can be detected in climatic time series in other regions of the world, with each series having a unique lag time between the solar signal and the hydroclimatic response. A progression of increasing lag times can be spatially linked to the ocean conveyor belt, which may transport the solar signal over a time span of several decades. The lag times for any one region vary slightly and may be linked to the fluctuations in the velocity of the ocean conveyor belt.

  9. Examining molecular clouds in the Galactic Centre region using X-ray reflection spectra simulations

    NASA Astrophysics Data System (ADS)

    Walls, M.; Chernyakova, M.; Terrier, R.; Goldwurm, A.

    2016-12-01

    In the centre of our Galaxy lies a supermassive black hole, identified with the radio source Sagittarius A⋆. This black hole has an estimated mass of around 4 million solar masses. Although Sagittarius A⋆ is quite dim in terms of total radiated energy, having a luminosity that is a factor of 1010 lower than its Eddington luminosity, there is now compelling evidence that this source was far brighter in the past. Evidence derived from the detection of reflected X-ray emission from the giant molecular clouds in the Galactic Centre region. However, the interpretation of the reflected emission spectra cannot be done correctly without detailed modelling of the reflection process. Attempts to do so can lead to an incorrect interpretation of the data. In this paper, we present the results of a Monte Carlo simulation code we developed in order to fully model the complex processes involved in the emerging reflection spectra. The simulated spectra can be compared to real data in order to derive model parameters and constrain the past activity of the black hole. In particular, we apply our code to observations of Sagittarius B2, in order to constrain the position and density of the cloud and the incident luminosity of the central source. The results of the code have been adapted to be used in XSPEC by a large community of astronomers.

  10. Echo mapping of active galactic nuclei broad-line regions: Fundamental algorithms

    NASA Technical Reports Server (NTRS)

    Vio, Roberto; Horne, Keith; Wamsteker, Willem

    1994-01-01

    We formulate and test a series of algorithms for echo mapping the emission-line regions near active galactic nuclei from measurements of correlated variability in their line and continuum light curves. The linear regularization method (LRM) employs a direct inversion of evenly spaced light-curve data, with a regularization parameter that can be used to control the trade-off between noise and resolution. Matrix formulas express the formal solution as well as its variance and covariance in terms of uncertainties in the measurements. Unlike the maximum-entropy method (MEM), LRM applies to kernels with both positive and negative values, but the results are somewhat limited by ringing effects. A positivity constraint proves effective in controlling the ringing. MEM combines regularization and positivity in a natural way, but similar results are also found using positivity constraints with nonentropic regularization functions. Direct inversions of unevenly sampled light curves require interpolating the noisy data. In this case better results are found by solving for both the continuum light curve and kernel function in a simultaneous fit to the data. Our conclusion is that while echo mapping currently gives ambiguous results, the algorithms are not the limiting factor. Progress depends on efforts to increase the accuracy and completeness of sampling of the observed light curves.

  11. The galactic center region gamma ray excess from a supersymmetric leptophilic Higgs model

    NASA Astrophysics Data System (ADS)

    Marshall, Gardner; Primulando, Reinard

    2011-05-01

    In a recent paper by Hooper and Goodenough, data from the Fermi Gamma Ray Telescope was analyzed and an excess of gamma rays was claimed to be found in the emission spectrum from the Galactic Center Region. Hooper and Goodenough suggest that the claimed excess can be well explained by 7-10 GeV annihilating dark matter with a power law density profile if the dark matter annihilates predominantly to tau pairs. In this paper we present such a dark matter model by extending the MSSM to include four Higgs doublets and one scalar singlet. A {mathbb{Z}_2} symmetry is imposed that enforces a Yukawa structure so that the up quarks, down quarks, and leptons each receive mass from a distinct doublet. This leads to an enhanced coupling of scalars to leptons and allows the model to naturally achieve the required phenomenology in order to explain the gamma ray excess. Our model yields the correct dark matter thermal relic density and avoids collider bounds from measurements of the Z width as well as direct production at LEP.

  12. Stability of cloud orbits in the broad-line region of active galactic nuclei

    NASA Astrophysics Data System (ADS)

    Krause, Martin; Burkert, Andreas; Schartmann, Marc

    2011-02-01

    We investigate the global dynamic stability of spherical clouds in the broad-line region (BLR) of active galactic nuclei (AGN), exposed to radial radiation pressure, gravity of the central black hole (BH) and centrifugal forces assuming the clouds adapt their size according to the local pressure. We consider both isotropic and anisotropic light sources. In both cases, stable orbits exist also for very sub-Keplerian rotation for which the radiation pressure contributes substantially to the force budget. We demonstrate that highly eccentric, very sub-Keplerian stable orbits may be found. This gives further support for the model of Marconi et al., who pointed out that BH masses might be significantly underestimated if radiation pressure is neglected. That model improved the agreement between BH masses derived in certain active galaxies based on BLR dynamics, and BH masses derived by other means in other galaxies by inclusion of a luminosity-dependent term. For anisotropic illumination, energy is conserved for averages over long time intervals only, but not for individual orbits. This leads to Rosetta orbits that are systematically less extended in the direction of maximum radiation force. Initially isotropic relatively low column density systems would therefore turn into a disc when an anisotropic AGN is switched on.

  13. DETERMINING INCLINATIONS OF ACTIVE GALACTIC NUCLEI VIA THEIR NARROW-LINE REGION KINEMATICS. I. OBSERVATIONAL RESULTS

    SciTech Connect

    Fischer, T. C.; Crenshaw, D. M.; Kraemer, S. B.; Schmitt, H. R.

    2013-11-01

    Active galactic nuclei (AGNs) are axisymmetric systems to first order; their observed properties are likely strong functions of inclination with respect to our line of sight (LOS). However, except for a few special cases, the specific inclinations of individual AGNs are unknown. We have developed a promising technique for determining the inclinations of nearby AGNs by mapping the kinematics of their narrow-line regions (NLRs), which are often easily resolved with Hubble Space Telescope [O III] imaging and long-slit spectra from the Space Telescope Imaging Spectrograph. Our studies indicate that NLR kinematics dominated by radial outflow can be fit with simple biconical outflow models that can be used to determine the inclination of the bicone axis, and hence the obscuring torus, with respect to our LOS. We present NLR analysis of 53 Seyfert galaxies and the resulting inclinations from models of 17 individual AGNs with clear signatures of biconical outflows. Our model results agree with the unified model in that Seyfert 1 AGNs have NLRs inclined further toward our LOS than Seyfert 2 AGNs. Knowing the inclinations of these AGN NLRs, and thus their accretion disk and/or torus axes, will allow us to determine how their observed properties vary as a function of polar angle. We find no correlation between the inclinations of the AGN NLRs and the disks of their host galaxies, indicating that the orientation of the gas in the torus is independent of that of the host disk.

  14. Physical properties of the broad line region in active galactic nuclei

    NASA Astrophysics Data System (ADS)

    Ilić, Dragana; Popović, Luka Č.; Ciroi, Stefano; La Mura, Giovanni; Rafanelli, Piero

    2010-11-01

    We present here the study of the plasma in the broad line region (BLR) of active galactic nuclei (AGN). In order to probe the physical properties of the emitting plasma in the BLR we analyze the fluxes of the following broad emission lines (BELs): the hydrogen Balmer lines (Hα to Hɛ) and the helium lines from two subsequent ionization levels (He II λ4686 and He I λ5876). The BELs are obtained from the spectral synthesis photoionization code CLOUDY. We investigate these BELs in order to find conditions in the BLR where so-called Boltzmann-plot (BP) can be applied, and we found that in a number of modeled spectra it is working. We used these spectra to explore the dependence between plasma parameters (e.g. the averaged temperature, hydrogen density, etc.) and the ratio of He II λ4686 and He I λ5876 lines. In this progress report we present our investigation of the emitting plasma in the BLR using the most intensive broad spectral lines in AGN spectra.

  15. STAR FORMATION ACTIVITY IN THE GALACTIC H II REGION Sh2-297

    SciTech Connect

    Mallick, K. K.; Ojha, D. K.; Dewangan, L. K.; Samal, M. R.; Pandey, A. K.; Bhatt, B. C.; Ghosh, S. K.; Tamura, M.

    2012-11-01

    We present a multiwavelength study of the Galactic H II region Sh2-297, located in the Canis Major OB1 complex. Optical spectroscopic observations are used to constrain the spectral type of ionizing star HD 53623 as B0V. The classical nature of this H II region is affirmed by the low values of electron density and emission measure, which are calculated to be 756 cm{sup -3} and 9.15 Multiplication-Sign 10{sup 5} cm{sup -6} pc using the radio continuum observations at 610 and 1280 MHz, and Very Large Array archival data at 1420 MHz. To understand local star formation, we identified the young stellar object (YSO) candidates in a region of area {approx}7.'5 Multiplication-Sign 7.'5 centered on Sh2-297 using grism slitless spectroscopy (to identify the H{alpha} emission line stars), and near infrared (NIR) observations. NIR YSO candidates are further classified into various evolutionary stages using color-color and color-magnitude (CM) diagrams, giving 50 red sources (H - K > 0.6) and 26 Class II-like sources. The mass and age range of the YSOs are estimated to be {approx}0.1-2 M {sub Sun} and 0.5-2 Myr using optical (V/V-I) and NIR (J/J-H) CM diagrams. The mean age of the YSOs is found to be {approx}1 Myr, which is of the order of dynamical age of 1.07 Myr of the H II region. Using the estimated range of visual extinction (1.1-25 mag) from literature and NIR data for the region, spectral energy distribution models have been implemented for selected YSOs which show masses and ages to be consistent with estimated values. The spatial distribution of YSOs shows an evolutionary sequence, suggesting triggered star formation in the region. The star formation seems to have propagated from the ionizing star toward the cold dark cloud LDN1657A located west of Sh2-297.

  16. MODELING THE NUCLEAR INFRARED SPECTRAL ENERGY DISTRIBUTION OF TYPE II ACTIVE GALACTIC NUCLEI

    SciTech Connect

    Lira, Paulina; Videla, Liza; Wu, Yanling; Alonso-Herrero, Almudena; Alexander, David M.; Ward, Martin

    2013-02-20

    We present results from model fitting to the spectral energy distribution (SED) of a homogeneous sample of Seyfert II galaxies drawn from the 12 {mu}m Galaxy Sample. Imaging and nuclear flux measurements are presented in an accompanying paper. Here we add Spitzer/IRS observations to further constrain the SEDs after careful subtraction of a starburst component. We use the library of CLUMPY torus models from Nenkova et al. and also test the two-phase models recently produced by Stalevski et al. We find that photometric and spectroscopic observations in the mid-IR ({lambda} {approx}> 5 {mu}m) are crucial to properly constrain the best-fit torus models. About half of our sources show clear near-IR excess of their SEDs above the best-fit models. This problem can be less severe when using the Stalevski et al. models. The nature of this emission is not clear since best-fitted blackbody temperatures are very high ({approx}1700-2500 K) and the Type II classification of our sources would correspond to a small probability to peer directly into the hottest regions of the torus. Crucially, the derived torus parameters are quite robust when using CLUMPY models, independently of whether or not the sources require an additional blackbody component. Our findings suggest that tori are characterized by N{sub 0}{approx}>5, {sigma} {approx}> 40, {tau} {approx}< 25, Angle i {approx}> 40 Degree-Sign , Y {approx}< 50, and A {sup los} {sub v} {approx} 100-300, where N{sub 0} is the number of clouds in the equatorial plane of the torus, {sigma} is the characteristic opening angle of the cloud distribution, {tau} is the opacity of a single cloud, Angle i is the line-of-sight orientation of the torus, Y is the ratio of the inner to the outer radii, and A {sup los} {sub v} is the total opacity along the line of sight. From these, we can determine typical torus sizes and masses of 0.1-5.0 pc and 10{sup 4}-10{sup 6} M {sub Sun }, respectively. We find tentative evidence that those nuclei with

  17. Star formation towards the Galactic H II region RCW 120. Herschel observations of compact sources

    NASA Astrophysics Data System (ADS)

    Figueira, M.; Zavagno, A.; Deharveng, L.; Russeil, D.; Anderson, L. D.; Men'shchikov, A.; Schneider, N.; Hill, T.; Motte, F.; Mège, P.; LeLeu, G.; Roussel, H.; Bernard, J.-P.; Traficante, A.; Paradis, D.; Tigé, J.; André, P.; Bontemps, S.; Abergel, A.

    2017-04-01

    Context. The expansion of H ii regions can trigger the formation of stars. An overdensity of young stellar objects is observed at the edges of H ii regions but the mechanisms that give rise to this phenomenon are not clearly identified. Moreover, it is difficult to establish a causal link between H ii -region expansion and the star formation observed at the edges of these regions. A clear age gradient observed in the spatial distribution of young sources in the surrounding might be a strong argument in favor of triggering. Aims: We aim to characterize the star formation observed at the edges of H ii regions by studying the properties of young stars that form there. We aim to detect young sources, derive their properties and their evolution stage in order to discuss the possible causal link between the first-generation massive stars that form the H ii region and the young sources observed at their edges. Methods: We have observed the Galactic H ii region RCW 120 with Herschel PACS and SPIRE photometers at 70, 100, 160, 250, 350 and 500 μm. We produced temperature and H2 column density maps and use the getsources algorithm to detect compact sources and measure their fluxes at Herschel wavelengths. We have complemented these fluxes with existing infrared data. Fitting their spectral energy distributions with a modified blackbody model, we derived their envelope dust temperature and envelope mass. We computed their bolometric luminosities and discuss their evolutionary stages. Results: The overall temperatures of the region (without background subtraction) range from 15 K to 24 K. The warmest regions are observed towards the ionized gas. The coldest regions are observed outside the ionized gas and follow the emission of the cold material previously detected at 870 μm and 1.3 mm. The H2 column density map reveals the distribution of the cold medium to be organized in filaments and highly structured. Column densities range from 7 × 1021 cm-2 up to 9 × 1023 cm-2

  18. The Galactic Starburst Region NGC 3603 : exciting new insights on the formation of high mass stars

    NASA Astrophysics Data System (ADS)

    Nürnberger, D. E. A.

    2004-10-01

    powerful stellar winds which evaporate and disperse the surrounding interstellar medium, thus "lifting the courtains" around nearby young stars at a relatively early evolutionary stage. Such premises are given in the Galactic starburst region NGC 3603. Nevertheless, a large observational effort with different telescopes and instruments -- in particular, taking advantage of the high angular resolution and high sensitivity of near and mid IR instruments available at ESO -- was necessary to achieve the goals of my study. After a basic introduction on the topic of (high mass) star formation in Chapter 1, a short overview of the investigated region NGC 3603 and its importance for both galactic and extragalactic star formation studies is given in Chapter 2. Then, in Chapter 3, I report on a comprehensive investigation of the distribution and kinematics of the molecular gas and dust associated with the NGC 3603 region. In Chapter 4 I thoroughly address the radial extent of the NGC 3603 OB cluster and the spatial distribution of the cluster members. Together with deep Ks band imaging data, a detailed survey of NGC 3603 at mid IR wavelengths allows to search the neighbourhood of the cold molecular gas and dust for sources with intrinsic mid IR excess (Chapter 5). In Chapter 6 I characterize the most prominent sources of NGC 3603 IRS 9 and show that these sources are bona-fide candidates for high mass protostars. Finally, a concise summary as well as an outlook on future prospects in high mass star formation research is given in Chapter 7.

  19. THE Fe II EMISSION IN ACTIVE GALACTIC NUCLEI: EXCITATION MECHANISMS AND LOCATION OF THE EMITTING REGION

    SciTech Connect

    Marinello, M.; Rodríguez-Ardila, A.; Garcia-Rissmann, A.; Sigut, T. A. A.; Pradhan, A. K.

    2016-04-01

    We present a study of Fe ii emission in the near-infrared region (NIR) for 25 active galactic nuclei (AGNs) to obtain information about the excitation mechanisms that power it and the location where it is formed. We employ an NIR Fe ii template derived in the literature and find that it successfully reproduces the observed Fe ii spectrum. The Fe ii bump at 9200 Å detected in all objects studied confirms that Lyα fluorescence is always present in AGNs. The correlation found between the flux of the 9200 Å bump, the 1 μm lines, and the optical Fe ii implies that Lyα fluorescence plays an important role in Fe ii production. We determined that at least 18% of the optical Fe ii is due to this process, while collisional excitation dominates the production of the observed Fe ii. The line profiles of Fe ii λ10502, O i λ11287, Ca ii λ8664, and Paβ were compared to gather information about the most likely location where they are emitted. We found that Fe ii, O i and Ca ii have similar widths and are, on average, 30% narrower than Paβ. Assuming that the clouds emitting the lines are virialized, we show that the Fe ii is emitted in a region twice as far from the central source than Paβ. The distance, though, strongly varies: from 8.5 light-days for NGC 4051 to 198.2 light-days for Mrk 509. Our results reinforce the importance of the Fe ii in the NIR to constrain critical parameters that drive its physics and the underlying AGN kinematics, as well as more accurate models aimed at reproducing this complex emission.

  20. The Fe II Emission in Active Galactic Nuclei: Excitation Mechanisms and Location of the Emitting Region

    NASA Astrophysics Data System (ADS)

    Marinello, M.; Rodríguez-Ardila, A.; Garcia-Rissmann, A.; Sigut, T. A. A.; Pradhan, A. K.

    2016-04-01

    We present a study of Fe ii emission in the near-infrared region (NIR) for 25 active galactic nuclei (AGNs) to obtain information about the excitation mechanisms that power it and the location where it is formed. We employ an NIR Fe ii template derived in the literature and find that it successfully reproduces the observed Fe ii spectrum. The Fe ii bump at 9200 Å detected in all objects studied confirms that Lyα fluorescence is always present in AGNs. The correlation found between the flux of the 9200 Å bump, the 1 μm lines, and the optical Fe ii implies that Lyα fluorescence plays an important role in Fe ii production. We determined that at least 18% of the optical Fe ii is due to this process, while collisional excitation dominates the production of the observed Fe ii. The line profiles of Fe ii λ10502, O i λ11287, Ca ii λ8664, and Paβ were compared to gather information about the most likely location where they are emitted. We found that Fe ii, O i and Ca ii have similar widths and are, on average, 30% narrower than Paβ. Assuming that the clouds emitting the lines are virialized, we show that the Fe ii is emitted in a region twice as far from the central source than Paβ. The distance, though, strongly varies: from 8.5 light-days for NGC 4051 to 198.2 light-days for Mrk 509. Our results reinforce the importance of the Fe ii in the NIR to constrain critical parameters that drive its physics and the underlying AGN kinematics, as well as more accurate models aimed at reproducing this complex emission.

  1. Physical Properties Of The Broad Line Region In Active Galactic Nuclei

    NASA Astrophysics Data System (ADS)

    Ilic, D.; Popovic, L.; Ciroi, S.; Mura, G. L.; Rafanelli, P.

    2010-07-01

    One of the most intriguing objects in the Universe are active galactic nuclei (AGN), being the brightest and the most distant objects. The most accepted scenario of the structure of AGN is the one in which AGN are powered by the accretion of matter from the host galaxy on to super-massive black hole. One of the ways to study the inner emitting region of an AGN, one that is closest to the black hole, is by analyzing its broad emission lines (BELs). These lines originate in the broad line region (BLR), which physics is still not fully understood. In order to probe the physical properties of the emitting plasma in the BLR we analyze the ratios of the following BELs: the hydrogen Balmer lines (Ha to He) and the helium lines from two subsequent ionization levels (He II ?4686 and He I ?5876). We used two samples of the BELs, one obtained from the spectral synthesis photoionization code and the other taken from the Sloan Digital Sky Survey database. We investigate the above BELs in order to find conditions in the BLR where so-called Boltzmann-plot (BP) method might be applicable. For these special cases, we found relations between the average temperature, hydrogen density and He II/He I line ratio. We estimated the physical parameters in the BLR, the average temperature and hydrogen density, to be in the range Tav=5700-18700 K and nH=10^8.2 -10^11.1 cm-3. Moreover, we found relations between the BLR physical parameters and gas velocities, indicating that there should be some connection between the physics and kinematics in the BLR.

  2. Effects of Nuclear Cross Sections at Different Energies on the Radiation Hazard from Galactic Cosmic Rays

    NASA Technical Reports Server (NTRS)

    Lin, Z. W.; Adams, J. H., Jr.

    2006-01-01

    The radiation hazard for astronauts from galactic cosmic rays is a major obstacle in long duration human space explorations. Space radiation transport codes have been developed to calculate radiation environment on missions to the Moon, Mars or beyond. We have studied how uncertainties in fragmentation cross sections at different energies affect the accuracy of predictions from such radiation transport. We find that, in deep space, cross sections between 0.3 and 0.85 GeV/u usually have the largest effect on dose-equivalent behind shielding in solar minimum GCR environments, and cross sections between 0.85 and 1.2 GeV/u have the largest effect in solar maximum GCR environments. At the International Space Station, cross sections at higher energies have the largest effect due to the geomagnetic cutoff.

  3. Nuclear planetology: understanding habitable planets as Galactic bulge stellar remnants (black dwarfs) in a Hertzsprung-Russell (HR) diagram

    NASA Astrophysics Data System (ADS)

    Roller, Goetz

    2016-04-01

    model constraining the evolution of a rocky planet like Earth or Mercury from a stellar precursor of the oldest population to a Fe-C BLD, shifting through different spectral classes in a HR diagram after massive decompression and tremendous energy losses. In the light of WD/BLD cosmochronology [1], solar system bodies like Earth, Mercury and Moon are regarded as captured interlopers from the Galactic bulge, Earth and Moon possibly representing remnants of an old binary system. Such a preliminary scenario is supported by similar ages obtained from WD's for the Galactic halo [1] and, independently, by means of 187Re-232Th-238U nuclear geochronometry [2, 4, 5], together with recent observations extremely metal-poor stars from the cosmic dawn in the bulge of the Milky Way [6]. This might be further elucidated in the near future by Th/U cosmochronometry based upon a nuclear production ratio Th/U = 0.96 [5] and additionally by means of a newly developed nucleogeochronometric age dating method for stellar spectroscopy, which will be presented in a forthcoming paper. The model shall stimulate geochemical data interpretation from a different perspective to constrain the (thermal) evolution of a habitable planet as to its geo-, bio-, hydro- and atmosphere. [1] Fontaine et al. (2001), Public. Astron. Soc. of the Pacific 113, 409-435. [2] Roller (2015), Abstract T34B-0407, AGU Spring Meeting 2015. [3] Arevalo et al. (2010), Chem. Geol. 271, 70-85. [4] Roller (2015), Geophys. Res. Abstr. 17, EGU2015-2399. [5] Roller (2015), 78th Annu. Meeting Met. Soc., Abstract #5041. [6] Howes et al. (2015), Nature 527, 484-487.

  4. The Broad-Line Region and Dust Torus Structure of Active Galactic Nuclei

    NASA Astrophysics Data System (ADS)

    Pozo Nuñez, Francisco

    2014-06-01

    I present the results from optical and infrared multi-month monitoring campaigns at the Universitätssternwarte Bochum (USB) in Chile to explore the structure of the central engine in active galactic nuclei (AGN). I apply and test photometric reverberation mapping (PRM) for measuring the time delay between variations in the continuum and Hbeta, Halpha emission lines. This time delay is used to infer the size of the broad-line region (BLR) for three Seyfert 1 galaxies. I place the results in context of the known BLR size luminosity relationship from spectroscopic reverberation mapping (SRM) and discuss its potential application to constrain cosmological parameters. The BLR size and the velocity dispersion of the emission line are used to calculate the virial mass of the supermassive black hole (SMBH). Through the direct modelling of PRM data, I infer the geometry type of the BLR allowing the determination of the geometry scaling factor used to constrain the real black hole mass. I find strong evidence for a disk-like BLR geometry. If this result holds for Seyfert galaxies in general, then the determination of the geometry scaling factor and the black hole mass can be remarkably improved. I discuss deviations of Seyfert-1 galaxies from the SMBH-bulge velocity dispersion relation MBH - sigma* for quiescent galaxies. Finally, I perform dust-reverberation mapping to determine the dust-torus size for the Seyfert 1 galaxy WPVS48. The light curves in the optical and near-infrared revealed unexpected variations which allow to solve an old puzzle on the geometry of the dusttorus.

  5. Determining Inclinations of Active Galactic Nuclei via their Narrow-line Region Kinematics. I. Observational Results

    NASA Astrophysics Data System (ADS)

    Fischer, T. C.; Crenshaw, D. M.; Kraemer, S. B.; Schmitt, H. R.

    2013-11-01

    Active galactic nuclei (AGNs) are axisymmetric systems to first order; their observed properties are likely strong functions of inclination with respect to our line of sight (LOS). However, except for a few special cases, the specific inclinations of individual AGNs are unknown. We have developed a promising technique for determining the inclinations of nearby AGNs by mapping the kinematics of their narrow-line regions (NLRs), which are often easily resolved with Hubble Space Telescope [O III] imaging and long-slit spectra from the Space Telescope Imaging Spectrograph. Our studies indicate that NLR kinematics dominated by radial outflow can be fit with simple biconical outflow models that can be used to determine the inclination of the bicone axis, and hence the obscuring torus, with respect to our LOS. We present NLR analysis of 53 Seyfert galaxies and the resulting inclinations from models of 17 individual AGNs with clear signatures of biconical outflows. Our model results agree with the unified model in that Seyfert 1 AGNs have NLRs inclined further toward our LOS than Seyfert 2 AGNs. Knowing the inclinations of these AGN NLRs, and thus their accretion disk and/or torus axes, will allow us to determine how their observed properties vary as a function of polar angle. We find no correlation between the inclinations of the AGN NLRs and the disks of their host galaxies, indicating that the orientation of the gas in the torus is independent of that of the host disk. Based on observations made with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc. under NASA contract NAS 5-26555. These observations are associated with programs 11243, 11611, and 12212.

  6. Spatial distribution of star formation related to ionized regions throughout the inner Galactic plane

    NASA Astrophysics Data System (ADS)

    Palmeirim, P.; Zavagno, A.; Elia, D.; Moore, T. J. T.; Whitworth, A.; Tremblin, P.; Traficante, A.; Merello, M.; Russeil, D.; Pezzuto, S.; Cambrésy, L.; Baldeschi, A.; Bandieramonte, M.; Becciani, U.; Benedettini, M.; Buemi, C.; Bufano, F.; Bulpitt, A.; Butora, R.; Carey, D.; Costa, A.; Deharveng, L.; Di Giorgio, A.; Eden, D.; Hajnal, A.; Hoare, M.; Kacsuk, P.; Leto, P.; Marsh, K.; Mège, P.; Molinari, S.; Molinaro, M.; Noriega-Crespo, A.; Schisano, E.; Sciacca, E.; Trigilio, C.; Umana, G.; Vitello, F.

    2017-09-01

    We present a comprehensive statistical analysis of star-forming objects located in the vicinities of 1360 bubble structures throughout the Galactic plane and their local environments. The compilation of 70 000 star-forming sources, found in the proximity of the ionized (Hii) regions and detected in both Hi-GAL and GLIMPSE surveys, provided a broad overview of the different evolutionary stages of star-formation in bubbles, from prestellar objects to more evolved young stellar objects (YSOs). Surface density maps of star-forming objects clearly reveal an evolutionary trend where more evolved star-forming objects (Class II YSO candidates) are found spatially located near the center, while younger star-forming objects are found at the edge of the bubbles. We derived dynamic ages for a subsample of 182 H ii regions for which kinematic distances and radio continuum flux measurements were available. We detect approximately 80% more star-forming sources per unit area in the direction of bubbles than in the surrounding fields. We estimate the clump formation efficiency (CFE) of Hi-GAL clumps in the direction of the shell of the bubbles to be 15%, around twice the value of the CFE in fields that are not affected by feedback effects. We find that the higher values of CFE are mostly due to the higher CFE of protostellar clumps, in particular in younger bubbles, whose density of the bubble shells is higher. We argue that the formation rate from prestellar to protostellar phase is probably higher during the early stages of the (H ii ) bubble expansion. Furthermore, we also find a higher fraction of massive YSOs (MYSOs) in bubbles at the early stages of expansion (<2 Myr) than older bubbles. Evaluation of the fragmentation time inside the shell of bubbles advocates the preexistence of clumps in the medium before the bubble expansion in order to explain the formation of MYSOs in the youngest H ii regions (<1 Myr), as supported by numerical simulations. Approximately 23% of the Hi

  7. Time-dependent modulation of galactic cosmic rays by merged interaction regions

    NASA Technical Reports Server (NTRS)

    Perko, J. S.

    1993-01-01

    Models that solve the one-dimensional, solar modulation equation have reproduced the 11-year galactic cosmic ray using functional representations of global merged interaction regions (MIRs). This study extends those results to the solution of the modulation equation with explicit time dependence. The magnetometers on Voyagers 1 and 2 provide local magnetic field intensities at regular intervals, from which one calculates the ratio of the field intensity to the average local field. These ratios in turn are inverted to form diffusion coefficients. Strung together in radius and time, these coefficents then fall and rise with the strength of the interplanetary magnetic field, becoming representations of MIRs. These diffusion coefficients, calculated locally, propagate unchanged from approx. 10 AU to the outer boundary (120 AU). Inside 10 AU, all parameters, including the diffusion coefficient are assumed constant in time and space. The model reproduces the time-intensity profiles of Voyager 2 and Pioneer 10. Radial gradient data from 1982-1990 between Pioneer 10 and Voyager 2 are about the same magnitude as those calculated in the model. It is also shows agreement in rough magnitude with the radial gradient between Pioneer 10 and 1 AU. When coupled with enhanced, time-dependent solar wind speed at the probe's high latitude, as measured by independent observers, the model also follows Voyager 1's time-intensity profile reasonably well, providing a natural source the model also follows Voyager 1's time-intensity profile reasonably well, providing a natural source for the observed negative latitudinal gradients. The model exhibits the 11-year cyclical cosmic ray intensity behavior at all radii, including 1 AU, not just at the location of the spacecraft where the magnetic fields are measured. In addition, the model's point of cosmic ray maximum correctly travels at the solar wind speed, illustrating the well-known propagation of modulation. Finally, at least in the inner

  8. Time-dependent modulation of galactic cosmic rays by merged interaction regions

    NASA Technical Reports Server (NTRS)

    Perko, J. S.

    1993-01-01

    Models that solve the one-dimensional, solar modulation equation have reproduced the 11-year galactic cosmic ray using functional representations of global merged interaction regions (MIRs). This study extends those results to the solution of the modulation equation with explicit time dependence. The magnetometers on Voyagers 1 and 2 provide local magnetic field intensities at regular intervals, from which one calculates the ratio of the field intensity to the average local field. These ratios in turn are inverted to form diffusion coefficients. Strung together in radius and time, these coefficents then fall and rise with the strength of the interplanetary magnetic field, becoming representations of MIRs. These diffusion coefficients, calculated locally, propagate unchanged from approx. 10 AU to the outer boundary (120 AU). Inside 10 AU, all parameters, including the diffusion coefficient are assumed constant in time and space. The model reproduces the time-intensity profiles of Voyager 2 and Pioneer 10. Radial gradient data from 1982-1990 between Pioneer 10 and Voyager 2 are about the same magnitude as those calculated in the model. It is also shows agreement in rough magnitude with the radial gradient between Pioneer 10 and 1 AU. When coupled with enhanced, time-dependent solar wind speed at the probe's high latitude, as measured by independent observers, the model also follows Voyager 1's time-intensity profile reasonably well, providing a natural source the model also follows Voyager 1's time-intensity profile reasonably well, providing a natural source for the observed negative latitudinal gradients. The model exhibits the 11-year cyclical cosmic ray intensity behavior at all radii, including 1 AU, not just at the location of the spacecraft where the magnetic fields are measured. In addition, the model's point of cosmic ray maximum correctly travels at the solar wind speed, illustrating the well-known propagation of modulation. Finally, at least in the inner

  9. VizieR Online Data Catalog: RRL and continuum data of 21 Galactic H II regions (Balser+, 2015)

    NASA Astrophysics Data System (ADS)

    Balser, D. S.; Wenger, T. V.; Anderson, L. D.; Bania, T. M.

    2017-09-01

    We select 21 of the best continuum sources based on the following criteria. (1) Sources having a continuum intensity signal-to-noise ratio greater than 10. (2) Since we are probing trans-Galactic paths, source confusion can be a significant problem. We chose sources where the H II region was either isolated or where any blending of components could be well-fit by Gaussian profiles. (3) We select sources with either flat radio recombination line (RRL) spectral baselines or with baseline structure that could be well-fit by a low order polynomial function. (4) Since we seek to explore metallicity structure, we chose sources that span a wide range of Galactic radii over the specified azimuth range. (3 data files).

  10. X-ray filament with a strong 6.7-keV line in the Galactic center region

    NASA Astrophysics Data System (ADS)

    Yamauchi, Shigeo; Shimizu, Miku; Nakashima, Shinya; Nobukawa, Masayoshi; Tsuru, Takeshi Go; Koyama, Katsuji

    2014-12-01

    An elongated X-ray source with a strong K-shell line from He-like iron (Fe XXVI) is found at (RA, Dec)J2000.0 = (17h44m00{s.}0, - 29°13'40{^''.}9) in the Galactic center region. The position coincides with the X-ray thread, G359.55+0.16, which is aligned with the radio non-thermal filament. The X-ray spectrum is well fitted with an absorbed thin thermal plasma (apec) model. The best-fitting temperature, metal abundance, and column density are 4.1^{+2.7}_{-1.8} keV, 0.58^{+0.41}_{-0.32} solar, and 6.1^{+2.5}_{-1.3} × 10^{22} cm-2, respectively. These values are similar to those of the largely extended Galactic center X-ray emission.

  11. Spectral classification and distance determination of stars in nine southern Galactic H II regions

    NASA Astrophysics Data System (ADS)

    Pinheiro, M. C.; Copetti, M. V. F.; Oliveira, V. A.

    2010-10-01

    Aims: We attempt to identify the ionising stars and to determine the photometric distances of nine southern Galactic ion{H}{ii} regions. Methods: We carried out optical spectroscopy and UBV photometry of the stellar content of these objects. The distance of individual stars were obtained by spectroscopic parallax. To avoid using a fixed value for the total-to-selective extinction ratio RV, the reddening AV was determined directly by the colour-difference approach by comparing our V apparent magnitudes and the JHK magnitudes from the 2MASS survey with the intrinsic colour indices. Results: As types O or B, we classified 24 of the 31 stars for which optical spectra were obtained. In particular, we identified two new O stars, one in RCW 98 and the other in RCW 99. The values of reddening obtained correspond to a mean < R_V> = 3.44, which is about 10% higher than the value found for field stars. For three of the ion{H}{ii} regions studied (Bran 186, NGC 2626, and RCW 32), the distance estimates (with errors from 25% to 50%) were based on the data obtained for only one star. For the other six objects (NGC 3503, NGC 6334, RCW 55, RCW 87, RCW 98, and RCW 99), we obtained more precise photometric distances (with a mean error of ≈18%) calculated to be the median of the parallax distances obtained for two to six different stars in each nebulae. The parallax distances of individual stars belonging to a given nebula were similar to each other, with internal errors smaller than 5%, as a consequence of the method used to derive the reddening correction AV. The distance of 1.23 ± 0.30 kpc obtained for RCW 87 disagrees with the value of 7.6 kpc previously found. Conclusions: The dispersion in individual distance estimates for stars in a given nebula can be significantly reduced by calculating the reddening AV from a comparison between the V and the 2MASS JHK magnitudes instead of using AV = RV E(B-V) with a fixed value for RV. Therefore, more precise distances can be calculated

  12. Does atomic polarizability play a role in hydrogen radio recombination spectra from Galactic H II regions?

    NASA Astrophysics Data System (ADS)

    Hey, J. D.

    2013-09-01

    Since highly excited atoms, which contribute to the radio recombination spectra from Galactic H II regions, possess large polarizabilities, their lifetimes are influenced by ion (proton)-induced dipole collisions. It is shown that, while these ion-radiator collisional processes, if acting alone, would effectively limit the upper principal quantum number attainable for given plasma parameters, their influence is small relative to that of electron impacts within the framework of line broadening theory. The present work suggests that ion-permanent dipole interactions (Hey et al 2004 J. Phys. B: At. Mol. Opt. Phys. 37 2543) would also be of minor importance in limiting the occupation of highly excited states. On the other hand, the ion-induced dipole collisions are essential for ensuring equipartition of energy between atomic and electron kinetic distributions (Hey et al 1999 J. Phys. B: At. Mol. Opt. Phys. 32 3555; 2005 J. Phys. B: At. Mol. Opt. Phys. 38 3517), without which Voigt profile analysis to extract impact broadening widths would not be possible. Electron densities deduced from electron impact broadening of individual lines (Griem 1967 Astrophys. J. 148 547; Watson 2006 J. Phys. B: At. Mol. Opt. Phys. 39 1889) may be used to check the significance of the constraints arising from the present analysis. The spectra of Bell et al (2000 Publ. Astron. Soc. Pac. 112 1236; 2011 Astrophys. Space Sci. 333 377; 2011 Astrophys. Space Sci. 335 451) for Orion A and W51 in the vicinity of 6.0 and 17.6 GHz are examined in this context, and also in terms of a possible role of the background ion microfield in reducing the near-elastic contributions to the electron impact broadening below the predictions of theory (Hey 2012 J. Phys. B: At. Mol. Opt. Phys. 45 065701). These spectra are analysed, subject to the constraint that calculated relative intensities of lines, arising from upper states in collisional-radiative equilibrium, should be consistent with those obtained from

  13. Observational studies on the near-infrared unidentified emission bands in galactic H II regions

    SciTech Connect

    Mori, Tamami I.; Onaka, Takashi; Sakon, Itsuki; Ohsawa, Ryou; Bell, Aaron C.; Ishihara, Daisuke; Shimonishi, Takashi

    2014-03-20

    Using a large collection of near-infrared spectra (2.5-5.4 μm) of Galactic H II regions and H II region-like objects, we perform a systematic investigation of astronomical polycyclic aromatic hydrocarbon (PAH) features. Thirty-six objects were observed using the infrared camera on board the AKARI satellite as a part of a director's time program. In addition to the well known 3.3-3.6 μm features, most spectra show a relatively weak emission feature at 5.22 μm with sufficient signal-to-noise ratios, which we identify as the PAH 5.25 μm band (previously reported). By careful analysis, we find good correlations between the 5.25 μm band and both the aromatic hydrocarbon feature at 3.3 μm and the aliphatic hydrocarbon features at around 3.4-3.6 μm. The present results give us convincing evidence that the astronomical 5.25 μm band is associated with C-H vibrations, as suggested by previous studies, and show its potential to probe the PAH size distribution. The analysis also shows that the aliphatic-to-aromatic ratio of I {sub 3.4-3.6} {sub μm}/I {sub 3.3} {sub μm} decreases against the ratio of the 3.7 μm continuum intensity to the 3.3 μm band, I {sub cont,} {sub 3.7} {sub μm}/I {sub 3.3} {sub μm}, which is an indicator of the ionization fraction of PAHs. The midinfrared color of I {sub 9} {sub μm}/I {sub 18} {sub μm} also declines steeply against the ratio of the hydrogen recombination line Brα at 4.05 μm to the 3.3 μm band, I {sub Brα}/I {sub 3.3} {sub μm}. These facts indicate possible dust processing inside or at the boundary of ionized gas.

  14. Stellar Population and Star Formation History of the Distant Galactic H II Regions NGC 2282 and Sh2-149

    NASA Astrophysics Data System (ADS)

    Dutta, S.; Mondal, S.; Jose, J.; Das, R. K.

    2017-06-01

    We present here the recent results on two distant Galactic H II regions, namely NGC 2282 and Sh2-149, obtained with multiwavelength observations. Our optical spectroscopic analysis of the bright sources have been used to identify the massive members, and to derive the fundamental parameters such as age and distance of these regions. Using IR color-color criteria and Hα-emission properties, we have identified and classified the candidate young stellar objects (YSOs) in these regions. The 12CO(1-0) continuum maps along with the K-band extinction maps, and spatial distribution of YSOs are used to investigate the structure and morphology of the molecular cloud associated with these H II regions. Overall analysis of these regions suggests that the star formation occurs at the locations of the denser gas, and we also find possible evidences of the induced star formation due to the feedback from massive stars to its surrounding molecular medium.

  15. Tables of nuclear cross sections for galactic cosmic rays: Absorption cross sections

    NASA Technical Reports Server (NTRS)

    Townsend, L. W.; Wilson, J. W.

    1985-01-01

    A simple but comprehensive theory of nuclear reactions is presented. Extensive tables of nucleon, deuteron, and heavy-ion absorption cross sections over a broad range of energies are generated for use in cosmic ray shielding studies. Numerous comparisons of the calculated values with available experimental data show agreement to within 3 percent for energies above 80 MeV/nucleon and within approximately 10 percent for energies as low as 30 MeV/nucleon. These tables represent the culmination of the development of the absorption cross section formalism and supersede the preliminary absorption cross sections published previously in NASA TN D-8107, NASA TP-2138, and NASA TM-84636.

  16. Tables of nuclear cross sections for galactic cosmic rays: Absorption cross sections

    NASA Astrophysics Data System (ADS)

    Townsend, L. W.; Wilson, J. W.

    1985-05-01

    A simple but comprehensive theory of nuclear reactions is presented. Extensive tables of nucleon, deuteron, and heavy-ion absorption cross sections over a broad range of energies are generated for use in cosmic ray shielding studies. Numerous comparisons of the calculated values with available experimental data show agreement to within 3 percent for energies above 80 MeV/nucleon and within approximately 10 percent for energies as low as 30 MeV/nucleon. These tables represent the culmination of the development of the absorption cross section formalism and supersede the preliminary absorption cross sections published previously in NASA TN D-8107, NASA TP-2138, and NASA TM-84636.

  17. The stellar content of the nuclear regions of Sc galaxies

    NASA Technical Reports Server (NTRS)

    Turnrose, B. E.

    1976-01-01

    Stellar-population syntheses based on absolute spectral energy distributions over the wavelength range from 3300 to 10,400 A are used to determine the stellar content of the nuclear regions of seven nearby Sc galaxies (NGC 628, 1073, 1084, 1637, 2903, 4321, and 5194). A linear-programming procedure is employed to construct models of the overall stellar populations whose spectra closely match those of the seven galaxies. Absolute measurements of the emission-line spectra of the nuclear regions are also provided. It is found that: (1) intrinsic reddening is probably present in each nuclear region; (2) the upper main sequence is substantially populated in most of the models; (3) the lower main sequence contributes insignificantly to the luminosity in all optimal solutions; (4) substantial contributions are made by evolved M stars at long wavelengths in all the models; (5) the model photometric M/L ratios are low, of the order of unity; and (6) the O-B stars arising naturally in the population models are just sufficient to provide the observed nuclear ionization in all the galaxies except NGC 5194, which may be collisionally ionized. The properties of the nuclear regions are shown to be consistent with the existence of a common initial mass function for star formation and a variety of time dependences for the star-formation process. A possibly significant correlation is noted between nuclear stellar content and overall dynamical properties in four of the galaxies.

  18. The stellar content of the nuclear regions of Sc galaxies

    NASA Technical Reports Server (NTRS)

    Turnrose, B. E.

    1976-01-01

    Stellar-population syntheses based on absolute spectral energy distributions over the wavelength range from 3300 to 10,400 A are used to determine the stellar content of the nuclear regions of seven nearby Sc galaxies (NGC 628, 1073, 1084, 1637, 2903, 4321, and 5194). A linear-programming procedure is employed to construct models of the overall stellar populations whose spectra closely match those of the seven galaxies. Absolute measurements of the emission-line spectra of the nuclear regions are also provided. It is found that: (1) intrinsic reddening is probably present in each nuclear region; (2) the upper main sequence is substantially populated in most of the models; (3) the lower main sequence contributes insignificantly to the luminosity in all optimal solutions; (4) substantial contributions are made by evolved M stars at long wavelengths in all the models; (5) the model photometric M/L ratios are low, of the order of unity; and (6) the O-B stars arising naturally in the population models are just sufficient to provide the observed nuclear ionization in all the galaxies except NGC 5194, which may be collisionally ionized. The properties of the nuclear regions are shown to be consistent with the existence of a common initial mass function for star formation and a variety of time dependences for the star-formation process. A possibly significant correlation is noted between nuclear stellar content and overall dynamical properties in four of the galaxies.

  19. Voyager 1 observes low-energy galactic cosmic rays in a region depleted of heliospheric ions.

    PubMed

    Stone, E C; Cummings, A C; McDonald, F B; Heikkila, B C; Lal, N; Webber, W R

    2013-07-12

    On 25 August 2012, Voyager 1 was at 122 astronomical units when the steady intensity of low-energy ions it had observed for the previous 6 years suddenly dropped for a third time and soon completely disappeared as the ions streamed away into interstellar space. Although the magnetic field observations indicate that Voyager 1 remained inside the heliosphere, the intensity of cosmic ray nuclei from outside the heliosphere abruptly increased. We report the spectra of galactic cosmic rays down to ~3 × 10(6) electron volts per nucleon, revealing H and He energy spectra with broad peaks from 10 × 10(6) to 40 × 10(6) electron volts per nucleon and an increasing galactic cosmic-ray electron intensity down to ~10 × 10(6) electron volts.

  20. Nuclear Deterrence in a Regional Context

    DTIC Science & Technology

    1994-01-01

    with these questions. The first report’ presents a general re- formulation of deterrence geared toward potential regional adver - saries. The second... adver - saries are willing to take substantial risks because they frequently enter crises out of a desire to avert some loss, e.g., a loss of territory...the specific motivations of the adver - sary, the interests and reputation that affect the resolve of each con- testant (these may change as the

  1. Consequences of Regional Scale Nuclear Conflicts and Acts of Individual Nuclear Terrorism

    NASA Astrophysics Data System (ADS)

    Toon, O. B.; Turco, R. P.; Robock, A.; Bardeen, C.; Oman, L.; Stenchikov, G. L.

    2006-12-01

    The number of nuclear warheads in the world has fallen by about a factor of three since its peak in 1986. However, the potential exists for numerous regional nuclear arms races, and for a significant expansion in the number of nuclear weapons states. Eight countries are known to have nuclear weapons, 2 are constructing them, and an additional 32 nations already have the fissile material needed to build weapons if they so desire. Population and economic activity worldwide are congregated to an increasing extent in "megacities", which are ideal targets for nuclear weapons. We find that low yield weapons, which new nuclear powers are likely to construct, can produce 100 times as many fatalities and 100 times as much smoke from fires per kt yield as high-yield weapons, if they are targeted at city centers. A single low-yield nuclear detonation in an urban center could lead to more fatalities, in some cases by orders of magnitude, than have occurred in major historical conflicts. A regional war between the smallest current nuclear states involving 100 15-kt explosions (less than 0.1% of the explosive yield of the current global nuclear arsenal) could produce direct fatalities comparable to all of those worldwide in World War II (WW-II), or to those once estimated for a "counterforce" nuclear war between the superpowers. Portions of megacities attacked with nuclear devices or exposed to fallout of long-lived isotopes, through armed conflict or terrorism, would likely be abandoned indefinitely, with severe national and international implications. Smoke from urban firestorms in a regional war might induce significant climatic and ozone anomalies on global scales. While there are many uncertainties in the issues we discuss here, the major uncertainties are the type and scale of conflict that might occur. Each of these potential hazards deserves careful analysis by governments worldwide advised by a broad section of the world scientific community, as well as widespread

  2. Hydrogen Emission Line n110 rarr n109: Detection at 5009 Megahertz in Galactic H II Regions.

    PubMed

    Höglund, B; Mezger, P G

    1965-10-15

    The hydrogen emission line n(1l0) --> n(109) at the frequency 5009 megahertz which was predicted by Kardashev has been detected in M 17, Orion, and nine other galactic H II regions with the 42.7-m (140-foot) telescope and a 20-channel receiver at the National Radio Astronomy Observatory. The measured product of the half-power width of the line times the ratio of line-to-continuum brightness temperature is larger than that predicted by Kardashev's theory. The radial velocity obtained for M 17 and Orion agrees well with optical measurements. The search for a similar line of excited helium was without success.

  3. Kinematics of the nuclear region of M83

    NASA Astrophysics Data System (ADS)

    Rodrigues, I.; Díaz, R. J.; Dottori, H.; Mediavilla, E.; Agüero, M. P.; Mast, D.

    2006-06-01

    The enormous energy output detected in many cores of galaxies is one of the key issues in the studies of galaxies and their evolution, notwithstanding several questions remain unsolved: Are accretion onto super-massive black holes and violent star formation just coevolving phenomena or necessary partners of the activity? How is the detailed physics of the mechanisms triggering the nuclear extended violent star formation? Which is the relationship of the triggering mechanisms with galaxy evolution? The main drawback to face these issues is that developed stages of large star formation events at galactic centres do not provide enough clues about their origin, since the morphological signatures of the triggering mechanism are smeared out in the time scale of a few orbital revolutions of the galaxy core. Here we present the onset of such an event undergone by M83, a galaxy nearby enough to allow detailed spatial cinematic and morphological studies. High resolution 3D near-IR spectroscopy sugests the capture of a satellite galaxy, whose spur left behind a giant nuclear arc of violent star formation. The age gradient within the arc supports that this structure traces the orbital path of the intruder. Our numerical modelling indicates that the two nuclei would coalesce in less than 50 Myr.

  4. 74 MHz Nonthermal Emission from Molecular Clouds: Evidence for a Cosmic Ray Dominated Region at the Galactic Center

    NASA Astrophysics Data System (ADS)

    Yusef-Zadeh, F.; Wardle, M.; Lis, D.; Viti, S.; Brogan, C.; Chambers, E.; Pound, M.; Rickert, M.

    2013-10-01

    We present 74 MHz radio continuum observations of the Galactic center region. These measurements show nonthermal radio emission arising from molecular clouds that is unaffected by free-free absorption along the line of sight. We focus on one cloud, G0.13-0.13, representative of the population of molecular clouds that are spatially correlated with steep spectrum (α327MHz74MHz = 1.3 ± 0.3) nonthermal emission from the Galactic center region. This cloud lies adjacent to the nonthermal radio filaments of the Arc near l - 0.2° and is a strong source of 74 MHz continuum, SiO (2-1), and Fe I Kα 6.4 keV line emission. This three-way correlation provides the most compelling evidence yet that relativistic electrons, here traced by 74 MHz emission, are physically associated with the G0.13-0.13 molecular cloud and that low-energy cosmic ray electrons are responsible for the Fe I Kα line emission. The high cosmic ray ionization rate -10-13 s-1 H-1 is responsible for heating the molecular gas to high temperatures and allows the disturbed gas to maintain a high-velocity dispersion. Large velocity gradient (LVG) modeling of multitransition SiO observations of this cloud implies H2 densities -104-5 cm-3 and high temperatures. The lower limit to the temperature of G0.13-0.13 is -100 K, whereas the upper limit is as high as 1000 K. Lastly, we used a time-dependent chemical model in which cosmic rays drive the chemistry of the gas to investigate for molecular line diagnostics of cosmic ray heating. When the cloud reaches chemical equilibrium, the abundance ratios of HCN/HNC and N2H+/HCO+ are consistent with measured values. In addition, significant abundance of SiO is predicted in the cosmic ray dominated region of the Galactic center. We discuss different possibilities to account for the origin of widespread SiO emission detected from Galactic center molecular clouds.

  5. 74 MHz nonthermal emission from molecular clouds: evidence for a cosmic ray dominated region at the galactic center.

    PubMed

    Yusef-Zadeh, F; Wardle, M; Lis, D; Viti, S; Brogan, C; Chambers, E; Pound, M; Rickert, M

    2013-10-03

    We present 74 MHz radio continuum observations of the Galactic center region. These measurements show nonthermal radio emission arising from molecular clouds that is unaffected by free–free absorption along the line of sight. We focus on one cloud, G0.13-0.13, representative of the population of molecular clouds that are spatially correlated with steep spectrum (α(327MHz)(74MHz) = 1.3 ± 0.3) nonthermal emission from the Galactic center region. This cloud lies adjacent to the nonthermal radio filaments of the Arc near l 0.2° and is a strong source of 74 MHz continuum, SiO (2-1), and Fe I Kα 6.4 keV line emission. This three-way correlation provides the most compelling evidence yet that relativistic electrons, here traced by 74 MHz emission, are physically associated with the G0.13-0.13 molecular cloud and that low-energy cosmic ray electrons are responsible for the Fe I Kα line emission. The high cosmic ray ionization rate 10(–1)3 s(–1) H(–1) is responsible for heating the molecular gas to high temperatures and allows the disturbed gas to maintain a high-velocity dispersion. Large velocity gradient (LVG) modeling of multitransition SiO observations of this cloud implies H2 densities 10(4–5) cm(–3) and high temperatures. The lower limit to the temperature of G0.13-0.13 is 100 K, whereas the upper limit is as high as 1000 K. Lastly, we used a time-dependent chemical model in which cosmic rays drive the chemistry of the gas to investigate for molecular line diagnostics of cosmic ray heating. When the cloud reaches chemical equilibrium, the abundance ratios of HCN/HNC and N2H+/HCO+ are consistent with measured values. In addition, significant abundance of SiO is predicted in the cosmic ray dominated region of the Galactic center. We discuss different possibilities to account for the origin of widespread SiO emission detected from Galactic center molecular clouds.

  6. Galaxy gas as obscurer - II. Separating the galaxy-scale and nuclear obscurers of active galactic nuclei

    NASA Astrophysics Data System (ADS)

    Buchner, Johannes; Bauer, Franz E.

    2017-03-01

    The 'torus' obscurer of active galactic nuclei (AGN) is poorly understood in terms of its density, sub-structure and physical mechanisms. Large X-ray surveys provide model boundary constraints, for both Compton-thin and Compton-thick levels of obscuration, as obscured fractions are mean covering factors fcov. However, a major remaining uncertainty is host-galaxy obscuration. In Paper I, we discovered a relation of {NH} ∝ M_{star }^{1/3} for the obscuration of galaxy-scale gas. Here, we apply this observational relation to the AGN population, and find that galaxy-scale gas is responsible for a luminosity-independent fraction of Compton-thin AGN, but does not produce Compton-thick columns. With the host-galaxy obscuration understood, we present a model of the remaining nuclear obscurer, which is consistent with a range of observations. Our radiation-lifted torus model consists of a Compton-thick component (fcov ∼ 35 per cent) and a Compton-thin component (fcov ∼ 40 per cent), which depends on both black hole mass and luminosity. This provides a useful summary of observational constraints for torus modellers who attempt to reproduce this behaviour. It can also be employed as a sub-grid recipe in cosmological simulations that do not resolve the torus. We also investigate host-galaxy X-ray obscuration inside cosmological, hydrodynamic simulations (Evolution and Assembly of Galaxies and their Environment; Illustris). The obscuration from ray-traced galaxy gas can agree with observations, but is highly sensitive to the chosen feedback assumptions.

  7. THE BOLOCAM GALACTIC PLANE SURVEY. VII. CHARACTERIZING THE PROPERTIES OF MASSIVE STAR-FORMING REGIONS

    SciTech Connect

    Dunham, Miranda K.; Rosolowsky, Erik; Evans II, Neal J.; Cyganowski, Claudia; Urquhart, James S.

    2011-11-10

    We present the results of a Green Bank Telescope survey of NH{sub 3}(1,1), (2,2), (3,3) lines toward 631 Bolocam Galactic Plane Survey (BGPS) sources at a range of Galactic longitudes in the inner Galaxy. We have detected the NH{sub 3}(1,1) line toward 72% of our targets (456), demonstrating that the high column density features identified in the BGPS and other continuum surveys accurately predict the presence of dense gas. We have determined kinematic distances and resolved the distance ambiguity for all BGPS sources detected in NH{sub 3}. The BGPS sources trace the locations of the Scutum and Sagittarius spiral arms, with the number of sources. We measure the physical properties of each source and find that depending on the distance, BGPS sources are primarily clumps, with some cores and clouds. We have examined the physical properties as a function of Galactocentric distance, and find a mean gas kinetic temperature of 15.6 K, and that the NH{sub 3} column density and abundance decrease by nearly an order of magnitude. Comparing sources at similar distances demonstrates that the physical properties are indistinguishable, which suggests a similarity in clump structure across the Galactic disk. We have also compared the BGPS sources to criteria for efficient star formation presented independently by Heiderman et al. and Lada et al., and for massive star formation presented by Kauffmann et al. Forty-eight percent of our sample should be forming stars (including massive stars) with high efficiency, and 87% contain subregions that should be efficiently forming stars. Indeed, we find that 67% of the sample exhibit signs of star formation activity based on an association with a mid-infrared source.

  8. Formation of the twin galactic starburst regions NGC 6357 and NGC 6334

    NASA Astrophysics Data System (ADS)

    Torii, Kazufumi; Hasegawa, Keisuke; Ohama, Akio; Yamamoto, Hiroaki; Tachihara, Kengo; Fukui, Yasuo

    2017-03-01

    New CO J=1-0 observations with NANTEN and NANTEN2 reveal that extensive collisions between two molecular clouds at relative velocity of 15 km s-1 triggered the O star formation in the Galactic mini-starbursts NGC 6357 and NGC 6334. Correlated/anti-correlated gas distributions and intermediate velocity features between the two clouds lend support for the cloud-cloud collision scenario. The timescale of the collision and high-mass star formation is as short as less than 0.5 Myrs, suggesting rapid O star formation.

  9. Magnetically elevated accretion discs in active galactic nuclei: broad emission-line regions and associated star formation

    NASA Astrophysics Data System (ADS)

    Begelman, Mitchell C.; Silk, Joseph

    2017-01-01

    We propose that the accretion discs fueling active galactic nuclei (AGN) are supported vertically against gravity by a strong toroidal (φ-direction) magnetic field that develops naturally as the result of an accretion disc dynamo. The magnetic pressure elevates most of the gas carrying the accretion flow at R to large heights z ≳ 0.1R and low densities, while leaving a thin dense layer containing most of the mass - but contributing very little accretion - around the equator. We show that such a disc model leads naturally to the formation of a broad emission-line region through thermal instability. Extrapolating to larger radii, we demonstrate that local gravitational instability and associated star formation are strongly suppressed compared to standard disc models for AGN, although star formation in the equatorial zone is predicted for sufficiently high mass supply rates. This new class of accretion disc models thus appears capable of resolving two longstanding puzzles in the theory of AGN fueling: the formation of broad emission-line regions and the suppression of fragmentation thought to inhibit accretion at the required rates. We show that the disc of stars that formed in the Galactic Center a few million years ago could have resulted from an episode of magnetically elevated accretion at ≳ 0.1 of the Eddington limit.

  10. THE WMAP HAZE FROM THE GALACTIC CENTER REGION DUE TO MASSIVE STAR EXPLOSIONS AND A REDUCED COSMIC RAY SCALE HEIGHT

    SciTech Connect

    Biermann, Peter L.; Becker, Julia K.; Caceres, Gabriel; Meli, Athina; Seo, Eun-Suk; Stanev, Todor

    2010-02-10

    One important prediction of acceleration of particles in the supernova caused shock in the magnetic wind of exploding Wolf-Rayet and red supergiant stars is the production of an energetic particle component with an E {sup -2} spectrum at a level on the order of 1% of the full cosmic ray electron population. After allowing for transport effects, so steepening the spectrum to E {sup -7/3}, this component as cosmic ray electrons readily explains the WMAP haze from the Galactic center region in spectrum, intensity, and radial profile; this requires the diffusion timescale for cosmic rays in the Galactic center region to be much shorter than in the solar neighborhood: the energy for cosmic ray electrons at the transition between diffusion dominance and loss dominance is shifted to considerably higher particle energy. We predict that more precise observations will find a radio spectrum of {nu}{sup -2/3}, at higher frequencies {nu}{sup -1}, and at yet higher frequencies finally {nu}{sup -3/2}.

  11. The Sins/zC-Sinf Survey of z ~ 2 Galaxy Kinematics: Evidence for Powerful Active Galactic Nucleus-Driven Nuclear Outflows in Massive Star-Forming Galaxies

    NASA Astrophysics Data System (ADS)

    Förster Schreiber, N. M.; Genzel, R.; Newman, S. F.; Kurk, J. D.; Lutz, D.; Tacconi, L. J.; Wuyts, S.; Bandara, K.; Burkert, A.; Buschkamp, P.; Carollo, C. M.; Cresci, G.; Daddi, E.; Davies, R.; Eisenhauer, F.; Hicks, E. K. S.; Lang, P.; Lilly, S. J.; Mainieri, V.; Mancini, C.; Naab, T.; Peng, Y.; Renzini, A.; Rosario, D.; Shapiro Griffin, K.; Shapley, A. E.; Sternberg, A.; Tacchella, S.; Vergani, D.; Wisnioski, E.; Wuyts, E.; Zamorani, G.

    2014-05-01

    We report the detection of ubiquitous powerful nuclear outflows in massive (>=1011 M ⊙) z ~ 2 star-forming galaxies (SFGs), which are plausibly driven by an active galactic nucleus (AGN). The sample consists of the eight most massive SFGs from our SINS/zC-SINF survey of galaxy kinematics with the imaging spectrometer SINFONI, six of which have sensitive high-resolution adaptive optics-assisted observations. All of the objects are disks hosting a significant stellar bulge. The spectra in their central regions exhibit a broad component in Hα and forbidden [N II] and [S II] line emission, with typical velocity FWHM ~ 1500 km s-1, [N II]/Hα ratio ≈ 0.6, and intrinsic extent of 2-3 kpc. These properties are consistent with warm ionized gas outflows associated with Type 2 AGN, the presence of which is confirmed via independent diagnostics in half the galaxies. The data imply a median ionized gas mass outflow rate of ~60 M ⊙ yr-1 and mass loading of ~3. At larger radii, a weaker broad component is detected but with lower FWHM ~485 km s-1 and [N II]/Hα ≈ 0.35, characteristic for star formation-driven outflows as found in the lower-mass SINS/zC-SINF galaxies. The high inferred mass outflow rates and frequent occurrence suggest that the nuclear outflows efficiently expel gas out of the centers of the galaxies with high duty cycles and may thus contribute to the process of star formation quenching in massive galaxies. Larger samples at high masses will be crucial in confirming the importance and energetics of the nuclear outflow phenomenon and its connection to AGN activity and bulge growth. Based on observations obtained at the Very Large Telescope of the European Southern Observatory, Paranal, Chile (ESO program IDs 074.A-0911, 075.A-0466, 076.A-0527, 078.A-0600, 082.A-0396, 183.A-0781, 088.A-0202, 091.A-0126). Also based on observations made with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the

  12. VizieR Online Data Catalog: G5 and later stars in a North Galactic Pole region (Upgren 1962)

    NASA Astrophysics Data System (ADS)

    Upgren, A. R., Jr.

    2015-11-01

    The catalog is an objective-prism survey of late-type stars in a region of 396 square degrees surrounding the north galactic pole. The objective-prism spectra employed have a dispersion of 58 nm/mm at H-γ and extend into the ultraviolet region. The catalog contains the magnitudes and spectral classes of 4027 stars of class G5 and later, complete to a limiting photographic magnitude of 13.0. The spectral classification of the stars is based on the Yerkes system. The catalog includes the serial numbers of the stars corresponding to the numbers on the identification charts in Upgren (1984), BD and HD numbers, B magnitudes, spectral classes, and letters designating the subregion and identification chart on which each star is located. This survey was undertaken to determine the space densities at varying distances from the galactic plane. Accurate separation of the surveyed stars of G5 and later into giants and dwarfs was achieved through the use of the UV region as well as conventional methods of classification. The resulting catalog of 4027 stars is probably complete over the region to a limiting photographic magnitude of 13.0. The region covered by the survey is the same as that discussed by Slettebak and Stock (1959) and is in the approximate range RA 11:30 to 13:00, Declination +25 to +50 (B1950.0). The catalog includes all M and Carbon stars previously published by Upgren (1960). For a discussion of the classification criteria, the combining of multiple classifications (each spectral image was classified twice), the determination of magnitudes, and additional details about the catalog, the source reference should be consulted. Corrections, accurate positions, more identifications, and remarks have been added in Nov. 2015 by B. Skiff in the file "positions.dat"; see the "History" section below for details. (3 data files).

  13. Nuclear Hybrid Energy Systems Regional Studies: West Texas & Northeastern Arizona

    SciTech Connect

    Garcia, Humberto E.; Chen, Jun; Kim, Jong Suk; McKellar, Michael George; Deason, Wesley R; Richard B. Vilim; Bragg-Sitton, Shannon M.; Boardman, Richard D.

    2015-04-01

    The primary objective of this study is to conduct a preliminary dynamic analysis of two realistic hybrid energy systems (HES) including a nuclear reactor as the main baseload heat generator (denoted as nuclear HES or nuclear hybrid energy systems [[NHES]) and to assess the local (e.g., HES owners) and system (e.g., the electric grid) benefits attainable by the application of NHES in scenarios with multiple commodity production and high penetration of renewable energy. It is performed for regional cases not generic examples based on available resources, existing infrastructure, and markets within the selected regions. This study also briefly addresses the computational capabilities developed to conduct such analyses, reviews technical gaps, and suggests some research paths forward.

  14. X-Ray Emission from the Nuclear Region of Arp 220

    NASA Astrophysics Data System (ADS)

    Paggi, Alessandro; Fabbiano, Giuseppina; Risaliti, Guido; Wang, Junfeng; Karovska, Margarita; Elvis, Martin; Maksym, W. Peter; McDowell, Jonathan; Gallagher, Jay

    2017-05-01

    We present an imaging and spectral analysis of the nuclear region of the ultraluminous infrared galaxy merger of Arp 220, using deep Chandra-ACIS observations summing up to ˜ 300 {{ks}}. Narrowband imaging with subpixel resolution of the innermost nuclear region reveals two distinct Fe-K emitting sources, coincident with the infrared and radio nuclear clusters. These sources are separated by 1‧ (˜380 pc). The X-ray emission is extended and elongated in the eastern (E) nucleus, like the disk emission observed in millimeter radio images, suggesting a starburst dominance in this region. We estimate an Fe-K equivalent width of ≳ 1 {keV} for both sources and observe 2-10 keV luminosities of ˜ 2× {10}40 {{erg}} {{{s}}}-1 (western, W) and ˜ 3× {10}40 {{erg}} {{{s}}}-1 (E). In the 6-7 keV band the emission from these regions is dominated by the 6.7 keV Fe xxv line, suggesting a contribution from collisionally ionized gas. The thermal energy content of this gas is consistent with the kinetic energy injection in the interstellar medium by SNe II. However, nuclear winds from a hidden active galactic nucleus (AGN) (\\upsilon ˜ 2000 {{km}} {{{s}}}-1) cannot be excluded. The 3σ upper limits on the neutral Fe-Kα flux of the nuclear regions correspond to the intrinsic AGN 2-10 keV luminosities of < 1× {10}42 {{erg}} {{{s}}}-1 (W) and < 0.4× {10}42 {{erg}} {{{s}}}-1 (E). For typical AGN spectral energy distributions the bolometric luminosities are < 3× {10}43 {{erg}} {{{s}}}-1 (W) and < 8× {10}43 {{erg}} {{{s}}}-1 (E), and black hole masses of < 1× {10}5 {M}⊙ (W) and < 5× {10}5 {M}⊙ (E) are evaluated for Eddington limited AGNs with a standard 10% efficiency.

  15. Regional and temporal variability of solar activity and galactic cosmic ray effects on the lower atmosphere circulation

    NASA Astrophysics Data System (ADS)

    Veretenenko, S.; Ogurtsov, M.

    2012-02-01

    In this work we studied the spatial and temporal structure of long-term effects of solar activity (SA) and galactic cosmic ray (GCR) variations on the lower atmosphere circulation as well as possible reasons for the peculiarities of this structure. The study revealed a strong latitudinal and regional dependence of SA/GCR effects on pressure variations in the lower troposphere which seems to be determined by specific features of baric systems formed in different regions. The temporal structure of SA/GCR effects on the troposphere circulation at high and middle latitudes is characterized by a roughly 60-year periodicity which is apparently due to the epochs of the large-scale atmospheric circulation. It is suggested that a possible mechanism of long-term effects of solar activity and cosmic ray variations on the troposphere circulation involves changes in the evolution of the polar vortex in the stratosphere of high latitudes, as well as planetary frontal zones.

  16. Determining inclinations of active galactic nuclei via their narrow-line region kinematics. II. Correlation with observed properties

    SciTech Connect

    Fischer, T. C.; Crenshaw, D. M.; Kraemer, S. B.; Schmitt, H. R.; Turner, T. J.

    2014-04-10

    Active galactic nuclei (AGNs) are axisymmetric systems to first order; their observed properties are likely strong functions of inclination with respect to our line of sight, yet the specific inclinations of all but a few AGNs are generally unknown. By determining the inclinations and geometries of nearby Seyfert galaxies using the kinematics of their narrow-line regions (NLRs) and comparing them with observed properties, we find strong correlations between inclination and total hydrogen column density, infrared color, and Hβ FWHM. These correlations provide evidence that the orientation of AGNs with respect to our line of sight affects how we perceive them beyond the Seyfert 1/2 dichotomy. They can also be used to constrain three-dimensional models of AGN components such as the broad-line region and torus. Additionally, we find weak correlations between AGN luminosity and several modeled NLR parameters, which suggests that the NLR geometry and kinematics are dependent to some degree on the AGN's radiation field.

  17. Atmospheric effects and societal consequences of regional scale nuclear conflicts and acts of individual nuclear terrorism

    NASA Astrophysics Data System (ADS)

    Toon, O. B.; Turco, R. P.; Robock, A.; Bardeen, C.; Oman, L.; Stenchikov, G. L.

    2007-04-01

    We assess the potential damage and smoke production associated with the detonation of small nuclear weapons in modern megacities. While the number of nuclear warheads in the world has fallen by about a factor of three since its peak in 1986, the number of nuclear weapons states is increasing and the potential exists for numerous regional nuclear arms races. Eight countries are known to have nuclear weapons, 2 are constructing them, and an additional 32 nations already have the fissile material needed to build substantial arsenals of low-yield (Hiroshima-sized) explosives. Population and economic activity worldwide are congregated to an increasing extent in megacities, which might be targeted in a nuclear conflict. We find that low yield weapons, which new nuclear powers are likely to construct, can produce 100 times as many fatalities and 100 times as much smoke from fires per kt yield as previously estimated in analyses for full scale nuclear wars using high-yield weapons, if the small weapons are targeted at city centers. A single "small" nuclear detonation in an urban center could lead to more fatalities, in some cases by orders of magnitude, than have occurred in the major historical conflicts of many countries. We analyze the likely outcome of a regional nuclear exchange involving 100 15-kt explosions (less than 0.1% of the explosive yield of the current global nuclear arsenal). We find that such an exchange could produce direct fatalities comparable to all of those worldwide in World War II, or to those once estimated for a "counterforce" nuclear war between the superpowers. Megacities exposed to atmospheric fallout of long-lived radionuclides would likely be abandoned indefinitely, with severe national and international implications. Our analysis shows that smoke from urban firestorms in a regional war would rise into the upper troposphere due to pyro-convection. Robock et al. (2007) show that the smoke would subsequently rise deep into the stratosphere due

  18. Heating of H II regions with application to the Galactic center

    NASA Technical Reports Server (NTRS)

    Maloney, Philip R.; Hollenbach, David J.; Townes, Charles H.

    1992-01-01

    The heating and thermal equilibrium of photoionized gas is reviewed. Photon-heating mechanisms (UV photoionization heating, grain photoelectric heating, and X-ray heating) either fail to provide the required heating rates or else require that the ionization state of the gas is very high. Specific application to the Galactic center observations show that the total heating power required to maintain the gas at the derived temperatures, using the observed emission measure in the bar and the temperature distribution derived from the radio recombination lines, is about 7 x 10 exp 6 solar luminosities, comparable to the bolometric luminosity of the central source as measured by the FIR flux from grains. Thus, the cooling emission from this hot gas, if LTE-derived temperatures are correct, would supply a major fraction of the bolometric and ionizing luminosity inferred from the ionized gas in the central 1 pc cavity and the dust and neutral gas in the surrounding torus.

  19. The Power Source(s) of Nearby Low-Ionization Nuclear Emission Regions

    NASA Astrophysics Data System (ADS)

    Molina, Mallory; Eracleous, Michael; Maoz, Dan; Barth, Aaron J.; Walsh, Jonelle; Ho, Luis C.; Shields, Joseph C.

    2015-01-01

    The majority of low-ionization nuclear emission regions (LINERs) harbor supermassive black holes (SMBHs) with very low accretion rates. Since SMBHs spend most of their lifetimes in these low-accretion rate states, understanding LINERs is important for understanding active galactic nuclei (AGN) in the context of galaxy evolution. On scales of ~100 pc, the energy budget of LINERs appears to be deficient when the only source of power considered is the AGN. Thus, other energy sources are likely to contribute to the excitation of the emission-line gas. To probe these sources, we observed three nearby, bright LINERs, NGC 1052, NGC 4278 and NGC 4579, with the Space Telescope Imaging Spectrograph (STIS) on the Hubble Space Telescope (HST). We specifically looked at the 0.1-1 arcsecond (corresponding to 5-50 pc) scale to find what and how far from the nucleus these other energy sources are. After subtracting both the unresolved nuclear light and the spatially-extended starlight, we measured a number of diagnostic emission line ratios. We find that line ratios, such as [O III]/[O II] and [O III]/H-beta change as a function of distance from the nucleus. Within 5 pc, the line ratios suggest AGN photoionization. At larger distances the line ratios seem to be inconsistent with AGN photoionization, but they appear to be consistent with excitation by hot stars or shocks.

  20. The planetary nebulae population in the nuclear regions of M31: the SAURON view

    NASA Astrophysics Data System (ADS)

    Pastorello, Nicola; Sarzi, Marc; Cappellari, Michele; Emsellem, Eric; Mamon, Gary A.; Bacon, Roland; Davies, Roger L.; de Zeeuw, P. Tim

    2013-04-01

    The study of extragalactic planetary nebulae (PNe) in the optical regions of galaxies, where the properties of their stellar population can be best characterized, is a promising ground to better understand the late evolution of stars across different galactic environments. Following a first study of the central regions of M32 that illustrated the power of integral field spectroscopy (IFS) in detecting and measuring the [O III] λ5007 emission of PNe against a strong stellar background, we turn to the very nuclear PN population of M31, within ˜80 pc of its centre. We show that PNe can also be found in the presence of emission from diffuse gas, as commonly observed in early-type galaxies and in the bulge of spirals, and further illustrate the excellent sensitivity of IFS in detecting extragalactic PNe through a comparison with narrow-band images obtained with the Hubble Space Telescope. Contrary to the case of the central regions of M32, the nuclear PNe population of M31 is only marginally consistent with the generally adopted form of the PNe luminosity function (PNLF). In particular, this is due to a lack of PNe with absolute magnitude M5007 brighter than -3, which would only result from a rather unfortunate draw from such a model PNLF. The nuclear stellar population of M31 is quite different from that of the central regions of M32, which is characterized in particular by a larger metallicity and a remarkable ultraviolet (UV) upturn. We suggest that the observed lack of bright PNe in the nuclear regions of M31 is due to a horizontal-branch population that is more tilted towards less massive and hotter He-burning stars, so that its progeny consists mostly of UV-bright stars that fail to climb back up the asymptotic giant branch (AGB) and only a few, if any, bright PNe powered by central post-AGB stars. These results are also consistent with recent reports on a dearth of bright post-AGB stars towards the nucleus of M31, and lend further support to the idea that the

  1. COEXISTENCE OF GRAVITATIONALLY-BOUND AND RADIATION-DRIVEN C IV EMISSION LINE REGIONS IN ACTIVE GALACTIC NUCLEI

    SciTech Connect

    Wang Huiyuan; Wang Tinggui; Zhou Hongyan; Liu Bo; Dong Xiaobo; Wang Jianguo

    2011-09-01

    There are mutually contradictory views in the literature of the kinematics and structure of high-ionization line (e.g., C IV) emitting regions in active galactic nuclei (AGNs). Two kinds of broad emission line region (BELR) models have been proposed, outflow and gravitationally-bound BELR, which are supported, respectively, by blueshift of the C IV line and reverberation mapping observations. To reconcile these two apparently different models, we present a detailed comparison study between the C IV and Mg II lines using a sample of AGNs selected from the Sloan Digital Sky Survey. We find that the kinematics of the C IV region is different from that of Mg II, which is thought to be controlled by gravity. A strong correlation is found between the blueshift and asymmetry of the C IV profile and the Eddington ratio. This provides strong observational support for the postulation that the outflow is driven by radiation pressure. In particular, we find robust evidence that the C IV line region is largely dominated by outflow at high Eddington ratios, while it is primarily gravitationally-bounded at low Eddington ratios. Our results indicate that these two emitting regions coexist in most AGNs. The emission strength from these two gases varies smoothly with Eddington ratio in opposite ways. This explanation naturally reconciles the apparently contradictory views proposed in previous studies. Finally, candidate models are discussed which can account for both the enhancement of outflow emission and suppression of normal BEL in AGNs with high Eddington ratios.

  2. Climatic Consequences and Agricultural Impact of Regional Nuclear Conflict

    NASA Astrophysics Data System (ADS)

    Robock, Alan; Mills, Michael; Toon, Owen Brian; Xia, Lili

    2013-04-01

    A nuclear war between India and Pakistan, with each country using 50 Hiroshima-sized atom bombs as airbursts on urban areas, would inject smoke from the resulting fires into the stratosphere. This could produce climate change unprecedented in recorded human history and global-scale ozone depletion, with enhanced ultraviolet (UV) radiation reaching the surface. Simulations with the NCAR Whole Atmosphere Community Climate Model (WACCM), run at higher vertical and horizontal resolution than a previous simulation with the NASA Goddard Institute for Space Studies ModelE, and incorporating ozone chemistry for the first time, show a longer stratospheric residence time for smoke and hence a longer-lasting climate response, with global average surface air temperatures still 1.1 K below normal and global average precipitation 4% below normal after a decade. The erythemal dose from the enhanced UV radiation would greatly increase, in spite of enhanced absorption by the remaining smoke, with the UV index more than 3 units higher in the summer midlatitudes, even after a decade. Scenarios of changes in temperature, precipitation, and downward shortwave radiation from the ModelE and WACCM simulations, applied to the Decision Support System for Agrotechnology Transfer crop model for winter wheat, rice, soybeans, and maize by perturbing observed time series with anomalies from the regional nuclear war simulations, produce decreases of 10-50% in yield averaged over a decade, with larger decreases in the first several years, over several regions in the midlatitudes of the Northern Hemisphere. The impact of the nuclear war simulated here, using much less than 1% of the global nuclear arsenal, would be devastating to world agricultural production and trade, possibly sentencing a billion people now living marginal existences to starvation. The continued environmental threat of the use of even a small number of nuclear weapons must be considered in nuclear policy deliberations in Russia

  3. Atmospheric effects and societal consequences of regional scale nuclear conflicts and acts of individual nuclear terrorism

    NASA Astrophysics Data System (ADS)

    Toon, O. B.; Turco, R. P.; Robock, A.; Bardeen, C.; Oman, L.; Stenchikov, G. L.

    2006-11-01

    We assess the potential damage and smoke production associated with the detonation of small nuclear weapons in modern megacities. While the number of nuclear warheads in the world has fallen by about a factor of three since its peak in 1986, the number of nuclear weapons states is increasing and the potential exists for numerous regional nuclear arms races. Eight countries are known to have nuclear weapons, 2 are constructing them, and an additional 32 nations already have the fissile material needed to build substantial arsenals of low-yield (Hiroshima-sized) explosives. Population and economic activity worldwide are congregated to an increasing extent in megacities, which might be targeted in a nuclear conflict. Our analysis shows that, per kiloton of yield, low yield weapons can produce 100 times as many fatalities and 100 times as much smoke from fires as high-yield weapons, if they are targeted at city centers. A single "small'' nuclear detonation in an urban center could lead to more fatalities, in some cases by orders of magnitude, than have occurred in the major historical conflicts of many countries. We analyze the likely outcome of a regional nuclear exchange involving 100 15-kt explosions (less than 0.1% of the explosive yield of the current global nuclear arsenal). We find that such an exchange could produce direct fatalities comparable to all of those worldwide in World War II, or to those once estimated for a "counterforce'' nuclear war between the superpowers. Megacities exposed to atmospheric fallout of long-lived radionuclides would likely be abandoned indefinitely, with severe national and international implications. Our analysis shows that smoke from urban firestorms in a regional war would rise into the upper troposphere due to pyro-convection. Robock et al. (2006) show that the smoke would subsequently rise deep into the stratosphere due to atmospheric heating, and then might induce significant climatic anomalies on global scales.We also

  4. The 6-GHz methanol multibeam maser catalogue - IV. Galactic longitudes 186°-330° including the Orion-Monoceros region

    NASA Astrophysics Data System (ADS)

    Green, J. A.; Caswell, J. L.; Fuller, G. A.; Avison, A.; Breen, S. L.; Ellingsen, S. P.; Gray, M. D.; Pestalozzi, M.; Quinn, L.; Thompson, M. A.; Voronkov, M. A.

    2012-03-01

    We present the fourth portion of a Galactic plane survey of methanol masers at 6668 MHz, spanning the longitude range 186°-330°. We report 207 maser detections, 89 new to the survey. This completes the southern sky part of the methanol multibeam survey and includes a large proportion of new sources, 43 per cent. We also include results from blind observations of the Orion-Monoceros star-forming region, formally outside the latitude range of the methanol multibeam survey; only the four previously known methanol emitting sites were detected, of which we present new positions and spectra for masers at Orion A (south) and Orion B, obtained with the Multi-Element Radio Linked Interferometer Network (MERLIN) array.

  5. Discovery of excess fluorescence Fe emission in the 3-4 degree eastern region of the Galactic center: Evidence for cosmic-ray bombardment on interstellar gas?

    NASA Astrophysics Data System (ADS)

    Nobukawa, Kumiko

    The diffuse X-ray emission, which connote be resolved into individual sources, has been known to exist along the galactic ridge (Galactic ridge X-ray emission; GRXE). One of the most unique characteristics of GRXE is an Kalpha line from neutral and highly ionized (He-like and H-like) iron. We have observed the ± 4(°) central region from the Galactic center. With comparison between the eastern and western regions of |l|=3-4(°) , we discovered an excess of neutral Fe emission line in the eastern side, while the ionized Fe emission line exhibits symmetrical distribution. This fact may at least suggest that the excess emission comes from diffuse interstellar medium, may be related with cosmic-rays or X-ray reflection of the past Sgr A* flare. We will discuss the origin from our obtained results.

  6. Investigating Molecular Inheritance of Carbon in Star-forming Regions along a Galactic Gradient

    NASA Astrophysics Data System (ADS)

    Smith, Rachel L.; Blake, Geoffrey; Boogert, Adwin; Pontoppidan, Klaus Martin; Lockwood, Alexandra C.

    2015-08-01

    Observations of CO isotopologues taken at high spectral resolution toward young stellar objects (YSOs) are valuable tools for investigating protoplanetary chemical reservoirs, and enable robust comparisons between YSOs and solar system material (meteorites and the Sun). Investigating a range of YSO environments also helps parameterize variations in the distribution and evolution of carbon-based molecules, furthering an understanding of prebiotic chemistry. We have begun a wide survey of massive YSOs using Keck-NIRSPEC at high spectral resolution (R=25,000). Fundamental and first-overtone near-IR CO rovibrational absorption spectra have thus far been obtained toward 14 massive, luminous YSOs at Galactocentric radii (RGC) ranging from ~4.5 to 9.7 kpc. From these data we can obtain precise [12CO]/[13CO] gas-phase abundance ratios along a Galactic gradient, and [12CO]/[13CO]Gas can be further evaluated against published [12CO2]/[13CO2]Ice and [12CO]/[13CO]Ice because all observations are in absorption, a robust study of molecular inheritance is possible by virtue of comparing 12C/13C along the same lines-of-sight. Initial results for cold CO gas at RGC ~ 6.1 kpc and 9.4 kpc reveal [12C16O]/[13C16O] of 59+/-8 and 74+/-3, respectively, roughly following an expected 12C/13C Galactic gradient. Thus far, we find [12CO]/[13CO] in the cold CO gas to be lower than [12CO2]/[13CO2]Ice, suggesting that CO2 may not originate from CO reservoirs as often assumed. While very high-resolution observations of CO gas toward low-mass YSOs observed with VLT-CRIRES show significant heterogeneity in [12CO]/[13CO] at RGC ~ 8 kpc, this dispersion is not found for the massive YSOs. Both the low-mass and massive YSOs have higher [12CO]/[13CO] in warm vs. cold gas, and both show signatures suggesting possible interplay between CO ice and gas reservoirs. Overall, our results indicate that carbon isotopic evolution in massive YSO environments may follow different paths compared to low-mass YSOs

  7. Ice Mapping Observations in Galactic Star-Forming Regions: the AKARI Legacy

    NASA Astrophysics Data System (ADS)

    Fraser, Helen Jane; Suutarinnen, Aleksi; Noble, Jennifer

    2015-08-01

    It is becoming increasingly clear that explaining the small-scale distribution of many gas-phase molecules relies on our interpretation of the complex inter-connectivity between gas- and solid-phase interstellar chemistries. Inputs to proto-stellar astrochemical models are required that exploit ice compositions reflecting the historical physical conditions in pre-stellar environments when the ices first formed. Such data are required to translate the near-universe picture of ice-composition to our understanding of the role of extra-galactic ices in star-formation at higher redshifts.Here we present the first attempts at multi-object ice detections, and the subsequent ice column density mapping. The AKARI space telescope was uniquely capable of observing all the ice features between 2 and 5 microns, thereby detecting H2O, CO and CO2 ices concurrently, through their stretching vibrational features. Our group has successfully extracted an unprecedented volume of ice spectra from AKARI, including sources with not more than 2 mJy flux at 3 microns, showing:(a) H2O CO and CO2 ices on 30 lines of sight towards pre-stellar and star-forming cores, which when combined with laboratory experiments indicate how the chemistries of these three ices are interlinked (Noble et al (2013)),(b) ice maps showing the spatial distribution of water ice across 12 pre-stellar cores, in different molecular clouds (Suutarinnen et al (2015)), and the distribution of ice components within these cores on 1000 AU scales (Noble et al (2015)),(c) over 200 new detections of water ice, mostly on lines of sight towards background sources (> 145), indicating that water ice column density has a minimum value as a function of Av, but on a cloud-by-cloud basis typically correlates with Av, and dust emissivity at 250 microns (Suutarinnen et al (2015)),(d) the first detections of HDO ice towards background stars (Fraser et al (2015)).We discuss whether these results support the picture of a generic chemical

  8. Decadal reduction of Chinese agriculture after a regional nuclear war

    NASA Astrophysics Data System (ADS)

    Xia, Lili; Robock, Alan; Mills, Michael; Stenke, Andrea; Helfand, Ira

    2015-02-01

    A regional nuclear war between India and Pakistan could decrease global surface temperature by 1°C-2°C for 5-10 years and have major impacts on precipitation and solar radiation reaching Earth's surface. Using a crop simulation model forced by three global climate model simulations, we investigate the impacts on agricultural production in China, the largest grain producer in the world. In the first year after the regional nuclear war, a cooler, drier, and darker environment would reduce annual rice production by 30 megaton (Mt) (29%), maize production by 36 Mt (20%), and wheat production by 23 Mt (53%). With different agriculture management—no irrigation, auto irrigation, 200 kg/ha nitrogen fertilizer, and 10 days delayed planting date—simulated national crop production reduces 16%-26% for rice, 9%-20% for maize, and 32%-43% for wheat during 5 years after the nuclear war event. This reduction of food availability would continue, with gradually decreasing amplitude, for more than a decade. Assuming these impacts are indicative of those in other major grain producers, a nuclear war using much less than 1% of the current global arsenal could produce a global food crisis and put a billion people at risk of famine.

  9. ISOLATED WOLF-RAYET STARS AND O SUPERGIANTS IN THE GALACTIC CENTER REGION IDENTIFIED VIA PASCHEN-{alpha} EXCESS

    SciTech Connect

    Mauerhan, J. C.; Stolovy, S. R.; Cotera, A.; Dong, H.; Wang, Q. D.; Morris, M. R.; Lang, C.

    2010-12-10

    We report the discovery of 19 hot, evolved, massive stars near the Galactic center region (GCR). These objects were selected for spectroscopy owing to their detection as strong sources of Paschen-{alpha} (P{alpha}) emission-line excess, following a narrowband imaging survey of the central 0.{sup 0}65 x 0.{sup 0}25 (l, b) around Sgr A* with the Hubble Space Telescope. Discoveries include six carbon-type (WC) and five nitrogen-type (WN) Wolf-Rayet stars, six O supergiants, and two B supergiants. Two of the O supergiants have X-ray counterparts having properties consistent with solitary O stars and colliding-wind binaries. The infrared photometry of 17 stars is consistent with the Galactic center distance, but 2 of them are located in the foreground. Several WC stars exhibit a relatively large infrared excess, which is possibly thermal emission from hot dust. Most of the stars appear scattered throughout the GCR, with no relation to the three known massive young clusters; several others lie near the Arches and Quintuplet clusters and may have originated within one of these systems. The results of this work bring the total sample of Wolf-Rayet (WR) stars in the GCR to 88. All sources of strong P{alpha} excess have been identified in the area surveyed with HST, which implies that the sample of WN stars in this region is near completion, and is dominated by late (WNL) types. The current WC sample, although probably not complete, is almost exclusively dominated by late (WCL) types. The observed WR subtype distribution in the GCR is a reflection of the intrinsic rarity of early subtypes (WNE and WCE) in the inner Galaxy, an effect that is driven by metallicity.

  10. Dusty Cradles in a Turbulent Nursery: The Sgr A East HII Region Complex at the Galactic Center

    NASA Astrophysics Data System (ADS)

    Lau, Ryan M.; Herter, Terry; Morris, Mark; Adams, Joseph

    2015-08-01

    We present high spatial resolution (FWHM ~ 3.2’’ - 3.8’’) imaging performed by the FORCAST instrument on SOFIA at 19, 25, 31, and 37 μm of the compact HII region complex G-0.02-0.07, the site of the most recent confirmed star formation within ~10 pc of the Galactic center. G-0.02-0.07 contains three compact HII regions (A, B, and C) and one ultra-compact HII region (D). Using this multiband imaging along with DustEM, we constrain the gas-to-dust mass ratios (~45 - 65) and the relative mass abundances of large grains, very small grains, and PAHs in the emitting dust from each region. Combining the inferred stellar luminosities, the expected and observed 1.90 μm fluxes and the observed dust thermal structure, the previously suggested heating sources for regions A, B, and C are confirmed. However, for region D, the observed fluxes at 1.87 and 1.90 μm of the previously proposed ionizing star are a factor of ~40 times too bright to be the heating source. We find that the location of the Region A heating source and the morphology of surrounding dust emission is consistent with that of a bow-shock, which suggests the heating source may have been ejected from its initial birth site rather than forming in-situ. In the ejection scenario for the Region A heating source, we estimate a lower limit on its age of ~104 yrs based on the size of the bow-shock.

  11. THE OFF-CENTERED SEYFERT-LIKE COMPACT EMISSION IN THE NUCLEAR REGION OF NGC 3621

    SciTech Connect

    Menezes, R. B.; Steiner, J. E.; Silva, Patricia da

    2016-02-01

    We analyze an optical data cube of the nuclear region of NGC 3621, taken with the integral field unit of the Gemini Multi-object Spectrograph. We found that the previously detected central line emission in this galaxy actually comes from a blob, located at a projected distance of 2.″14 ± 0.″08 (70.1 ± 2.6 pc) from the stellar nucleus. Only diffuse emission was detected in the rest of the field of view, with a deficit of emission at the position of the stellar nucleus. Diagnostic diagram analysis reveals that the off-centered emitting blob has a Seyfert 2 spectrum. We propose that the line-emitting blob may be a “fossil” emission-line region or a light “echo” from an active galactic nucleus (AGN), which was significantly brighter in the past. Our estimates indicate that the bolometric luminosity of the AGN must have decreased by a factor of ∼13–500 during the past ∼230 yr. A second scenario to explain the morphology of the line-emitting areas in the nuclear region of NGC 3621 involves no decrease of the AGN bolometric luminosity and establishes that the AGN is highly obscured toward the observer but not toward the line-emitting blob. The third scenario proposed here assumes that the off-centered line-emitting blob is a recoiling supermassive black hole, after the coalescence of two black holes. Finally, an additional hypothesis is that the central X-ray source is not an AGN, but an X-ray binary. This idea is consistent with all the scenarios we proposed.

  12. Climatic Consequences and Agricultural Impact of Regional Nuclear Conflict

    NASA Astrophysics Data System (ADS)

    Toon, O. B.; Robock, A.; Mills, M. J.; Xia, L.

    2013-05-01

    A nuclear war between India and Pakistan, with each country using 50 Hiroshima-sized atom bombs as airbursts on urban areas, would inject smoke from the resulting fires into the stratosphere.This could produce climate change unprecedented in recorded human history and global-scale ozone depletion, with enhanced ultraviolet (UV) radiation reaching the surface.Simulations with the Whole Atmosphere Community Climate Model (WACCM), run at higher vertical and horizontal resolution than a previous simulation with the NASA Goddard Institute for Space Studies ModelE, and incorporating ozone chemistry for the first time, show a longer stratospheric residence time for smoke and hence a longer-lasting climate response, with global average surface air temperatures still 1.1 K below normal and global average precipitation 4% below normal after a decade.The erythemal dose from the enhanced UV radiation would greatly increase, in spite of enhanced absorption by the remaining smoke, with the UV index more than 3 units higher in the summer midlatitudes, even after a decade. Scenarios of changes in temperature, precipitation, and downward shortwave radiation from the ModelE and WACCM simulations, applied to the Decision Support System for Agrotechnology Transfer crop model for winter wheat, rice, soybeans, and maize by perturbing observed time series with anomalies from the regional nuclear war simulations, produce decreases of 10-50% in yield averaged over a decade, with larger decreases in the first several years, over the midlatitudes of the Northern Hemisphere. The impact of the nuclear war simulated here, using much less than 1% of the global nuclear arsenal, would be devastating to world agricultural production and trade, possibly sentencing a billion people now living marginal existences to starvation.The continued environmental threat of the use of even a small number of nuclear weapons must be considered in nuclear policy deliberations in Russia, the U.S., and the rest of

  13. Active Galactic Nuclei with a Low-metallicity Narrow-line Region

    NASA Astrophysics Data System (ADS)

    Kawasaki, Kota; Nagao, Tohru; Toba, Yoshiki; Terao, Koki; Matsuoka, Kenta

    2017-06-01

    Low-metallicity active galactic nuclei (AGNs) are interesting to study for the early phase of AGN evolution. However, most AGNs are chemically matured, and accordingly, low-metallicity AGNs are extremely rare. One approach to search for low-metallicity AGNs systematically is utilizing the so-called BPT diagram that consists of the [O iii]λ5007/Hβ λ 4861 and [N ii]λ 6584/Hα λ 6563 flux ratios. Specifically, photoionization models predict that low-metallicity AGNs show a high [O iii]λ5007/Hβλ4861 ratio and a relatively low [N ii]λ6584/Hαλ6563 ratio that corresponds to the location between the sequence of star-forming galaxies and that of usual AGNs on the BPT diagram (hereafter “the BPT valley”). However, other populations of galaxies such as star-forming galaxies and AGNs with a high electron density or a high-ionization parameter could be also located in the BPT valley, not only low-metallicity AGNs. In this paper, we examine whether most of the emission-line galaxies at the BPT valley are low-metallicity AGNs or not. We select 70 BPT-valley objects from 212,866 emission-line galaxies obtained by the Sloan Digital Sky Survey. Among the 70 BPT-valley objects, 43 objects show firm evidence of the AGN activity, i.e., the He ii λ4686 emission and/or weak but significant broad Hα emission. Our analysis shows that those 43 BPT-valley AGNs are not characterized by a very high gas density nor ionization parameter, inferring that at least 43 among 70 BPT-valley objects (i.e., > 60%) are low-metallicity AGNs. This suggests that the BPT diagram is an efficient tool to search for low-metallicity AGNs.

  14. Nuclear ribosomal spacer regions in plant phylogenetics: problems and prospects.

    PubMed

    Poczai, Péter; Hyvönen, Jaakko

    2010-04-01

    The nuclear ribosomal locus coding for the large subunit is represented in tandem arrays in the plant genome. These consecutive gene blocks, consisting of several regions, are widely applied in plant phylogenetics. The regions coding for the subunits of the rRNA have the lowest rate of evolution. Also the spacer regions like the internal transcribed spacers (ITS) and external transcribed spacers (ETS) are widely utilized in phylogenetics. The fact, that these regions are present in many copies in the plant genome is an advantage for laboratory practice but might be problem for phylogenetic analysis. Beside routine usage, the rDNA regions provide the great potential to study complex evolutionary mechanisms, such as reticulate events or array duplications. The understanding of these processes is based on the observation that the multiple copies of rDNA regions are homogenized through concerted evolution. This phenomenon results to paralogous copies, which can be misleading when incorporated in phylogenetic analyses. The fact that non-functional copies or pseudogenes can coexist with ortholougues in a single individual certainly makes also the analysis difficult. This article summarizes the information about the structure and utility of the phylogenetically informative spacer regions of the rDNA, namely internal- and external transcribed spacer regions as well as the intergenic spacer (IGS).

  15. New Measurements of the ^4He Abundance in Galactic HII Regions

    NASA Astrophysics Data System (ADS)

    Cioni, M. R.; Cortiglioni, S.; Orsini, M.; Palazzi, E.; Palumbo, G. G. C.; Sorochenko, R. L.; Tsivilev, A. P.

    Preliminary results of the ^4He relative abundance determination from Radio Recombination Lines observations at different frequencies in the Orion, Rosette and W3 HII regions are presented. The Orion HII region has been mapped at both 22 GHz and 36 GHz with the same beamwidth (2 arcmin) using the Medicina and Puschino radio telescopes respectively. The RRLs parameters, together with their variation with frequency and with distance were determined by centering the map on the star theta^1Ori C. Three positions were observed in the Rosette HII region at 8.3 GHz leading to the first detection in this region of the transition He92alpha . The derived ^4He relative abundance is considerably greater than the ones obtained from previous measurements. The W3 HII region was observed at 36 GHz and the ^4He/H value derived was compared with previous measurements performed with higher spatial resolution.

  16. Galactic cosmic rays and nucleosynthesis

    SciTech Connect

    Kiener, Juergen

    2010-03-01

    The nucleosynthesis of the light elements Li, Be and B by galactic cosmic rays is presented. Observations of cosmic rays and the nuclear reactions responsible for Li, Be and B nucleosynthesis are described, followed by some words on propagation. At the end, some open questions concerning galactic cosmic rays are discussed.

  17. Optical spectrophotometry of the nuclear region of M51. II - Further evidence for nuclear activity

    NASA Astrophysics Data System (ADS)

    Rose, J. A.; Cecil, G.

    1983-03-01

    Spectrophotometric observations of the spiral galaxy M51 conducted by Rose and Searle (1982) have revealed that the ionized gas within the central region exhibits a peculiar emission-line spectrum and is undergoing large chaotic motions. These phenomena appear to result from low-level nuclear activity qualitatively similar to that seen in Seyfert galaxy nuclei and QSOs. It has been proposed that the gas is photoionized by a central nonstellar ultraviolet continuum. The present study is concerned with a further investigation of the ionization source in the nuclear region of M51, taking into account high signal-to-noise spectra obtained with an intensified Reticon detector on the 2.24 m telescope at the Mauna Kea Observatory. It is found that photoionization by a central nonstellar ionizing continuum source provides the most consistent explanation for the observed anomalous emission-line spectrum.

  18. Using SOFIA to Unveil the Star Formation History of the Massive Galactic Center H II Region Sagittarius B1

    NASA Astrophysics Data System (ADS)

    Simpson, Janet

    The proximity of the center of our Galaxy enables us to study star formation under conditions commonly found in other galaxies, but at spatial resolutions unachievable elsewhere. In the past few years, numerous large scale surveys of the inner regions of the Galaxy ( 100 pc) have helped to create a possible unified picture of star formation in the Galactic Center (GC) as arising from streams of gas passing near the super massive black hole, Sgr A*, located at the center. The proposed model envisions sequential star formation within the streams, with age a function of time since closest approach to Sgr A*. The 15 pc diameter H II region, Sgr B1, long thought to be associated with the more active and embedded region Sgr B2, however, does not fit well within this emerging picture, being either too old or in the wrong place. We propose to expand our ongoing investigation of star formation within Sgr B1 by adding additional FIFI-LS spectroscopy to our Cycle 3 FORCAST and Cycle 4 FIFI-LS observations of the region. By combining observations of the [O III] (52 and 88 micron), [O I] (146 micron), and [C II] (158 micron) lines, with spectra of other emission lines available from the Spitzer Space Telescope archive and our Cycles 3 and 4 SOFIA observations, we will be able to create a complete picture of the stellar population within this problematic region. We will therefore be able to address outstanding questions on the age and nature of Sgr B1, and its role in the large star formation history of the GC.

  19. Cosmic rays and the emission line regions of active galactic nuclei

    NASA Technical Reports Server (NTRS)

    Ferland, G. J.; Mushotzky, R. F.

    1984-01-01

    The effects that the synchrotron emitting relativistic electrons could have on the emission line regions which characterize active nuclei are discussed. Detailed models of both the inner, dense, broad line region and the outer, lower density, narrow line region are presented, together with the first models of the optically emitting gas often found within extended radio lobes. If the relativistic gas which produces the synchrotron radio emission is mixed with the emission line region gas then significant changes in the emission line spectrum will result. The effects of the synchrotron emitting electrons on filaments in the Crab Nebula are discussed in an appendix, along with a comparison between the experimental calculations, which employ the mean escape probability formalism, and recent Hubbard and Puetter models.

  20. A RAPIDLY EVOLVING REGION IN THE GALACTIC CENTER: WHY S-STARS THERMALIZE AND MORE MASSIVE STARS ARE MISSING

    SciTech Connect

    Chen, Xian; Amaro-Seoane, Pau E-mail: Pau.Amaro-Seoane@aei.mpg.de

    2014-05-10

    The existence of ''S-stars'' within a distance of 1'' from Sgr A* contradicts our understanding of star formation, due to Sgr A* 's forbiddingly violent environment. A suggested possibility is that they form far away and were brought in by some fast dynamical process, since they are young. Nonetheless, all conjectured mechanisms either fail to reproduce their eccentricities—without violating their young age—or cannot explain the problem of {sup i}nverse mass segregation{sup :} the fact that lighter stars (the S-stars) are closer to Sgr A* and more massive ones, Wolf-Rayet (WR) and O-stars, are farther out. In this Letter we propose that the mechanism responsible for both the distribution of the eccentricities and the paucity of massive stars is the Kozai-Lidov-like resonance induced by a sub-parsec disk recently discovered in the Galactic center. Considering that the disk probably extended to a smaller radius in the past, we show that in as short as (a few) 10{sup 6} yr, the stars populating the innermost 1'' region would redistribute in angular-momentum space and recover the observed ''super-thermal'' distribution. Meanwhile, WR and O-stars in the same region intermittently attain ample eccentricities that will lead to their tidal disruptions by the central massive black hole. Our results provide new evidences that Sgr A* was powered several millions years ago by an accretion disk as well as by tidal stellar disruptions.

  1. A Rapidly Evolving Region in the Galactic Center: Why S-stars Thermalize and More Massive Stars are Missing

    NASA Astrophysics Data System (ADS)

    Chen, Xian; Amaro-Seoane, Pau

    2014-05-01

    The existence of "S-stars" within a distance of 1'' from Sgr A* contradicts our understanding of star formation, due to Sgr A* 's forbiddingly violent environment. A suggested possibility is that they form far away and were brought in by some fast dynamical process, since they are young. Nonetheless, all conjectured mechanisms either fail to reproduce their eccentricities—without violating their young age—or cannot explain the problem of "inverse mass segregation": the fact that lighter stars (the S-stars) are closer to Sgr A* and more massive ones, Wolf-Rayet (WR) and O-stars, are farther out. In this Letter we propose that the mechanism responsible for both the distribution of the eccentricities and the paucity of massive stars is the Kozai-Lidov-like resonance induced by a sub-parsec disk recently discovered in the Galactic center. Considering that the disk probably extended to a smaller radius in the past, we show that in as short as (a few) 106 yr, the stars populating the innermost 1'' region would redistribute in angular-momentum space and recover the observed "super-thermal" distribution. Meanwhile, WR and O-stars in the same region intermittently attain ample eccentricities that will lead to their tidal disruptions by the central massive black hole. Our results provide new evidences that Sgr A* was powered several millions years ago by an accretion disk as well as by tidal stellar disruptions.

  2. Failed Radiatively Accelerated Dusty Outflow Model of the Broad Line Region in Active Galactic Nuclei. I. Analytical Solution

    NASA Astrophysics Data System (ADS)

    Czerny, B.; Li, Yan-Rong; Hryniewicz, K.; Panda, S.; Wildy, C.; Sniegowska, M.; Wang, J.-M.; Sredzinska, J.; Karas, V.

    2017-09-01

    The physical origin of the broad line region in active galactic nuclei is still unclear despite many years of observational studies. The reason is that the region is unresolved, and the reverberation mapping results imply a complex velocity field. We adopt a theory-motivated approach to identify the principal mechanism responsible for this complex phenomenon. We consider the possibility that the role of dust is essential. We assume that the local radiation pressure acting on the dust in the accretion disk atmosphere launches the outflow of material, but higher above the disk the irradiation from the central parts causes dust evaporation and a subsequent fallback. This failed radiatively accelerated dusty outflow is expected to represent the material forming low ionization lines. In this paper we formulate simple analytical equations to describe the cloud motion, including the evaporation phase. The model is fully described just by the basic parameters of black hole mass, accretion rate, black hole spin, and viewing angle. We study how the spectral line generic profiles correspond to this dynamic. We show that the virial factor calculated from our model strongly depends on the black hole mass in the case of enhanced dust opacity, and thus it then correlates with the line width. This could explain why the virial factor measured in galaxies with pseudobulges differs from that obtained from objects with classical bulges, although the trend predicted by the current version of the model is opposite to the observed trend.

  3. GALACTIC ALL-SKY SURVEY HIGH-VELOCITY CLOUDS IN THE REGION OF THE MAGELLANIC LEADING ARM

    SciTech Connect

    For, Bi-Qing; Staveley-Smith, Lister; McClure-Griffiths, N. M.

    2013-02-10

    We present a catalog of high-velocity clouds in the region of the Magellanic Leading Arm. The catalog is based on neutral hydrogen (H I) observations from the Parkes Galactic All-Sky Survey. Excellent spectral resolution allows clouds with narrow-line components to be resolved. The total number of detected clouds is 419. We describe the method of cataloging and present the basic parameters of the clouds. We discuss the general distribution of the high-velocity clouds and classify the clouds based on their morphological type. The presence of a significant number of head-tail clouds and their distribution in the region is discussed in the context of Magellanic System simulations. We suggest that ram-pressure stripping is a more important factor than tidal forces for the morphology and formation of the Magellanic Leading Arm and that different environmental conditions might explain the morphological difference between the Magellanic Leading Arm and Magellanic Stream. We also discuss a newly identified population of clouds that forms the LA IV and a new diffuse bridge-like feature connecting the LA II and III complexes.

  4. Effects of interplanetary magnetic clouds, interaction regions, and high-speed streams on the transient modulation of galactic cosmic rays

    NASA Astrophysics Data System (ADS)

    Singh, Y. P.; Badruddin

    2007-02-01

    Interplanetary manifestations of coronal mass ejections (CMEs) with specific plasma and field properties, called ``interplanetary magnetic clouds,'' have been observed in the heliosphere since the mid-1960s. Depending on their associated features, a set of observed magnetic clouds identified at 1 AU were grouped in four different classes using data over 4 decades: (1) interplanetary magnetic clouds moving with the ambient solar wind (MC structure), (2) magnetic clouds moving faster than the ambient solar wind and forming a shock/sheath structure of compressed plasma and field ahead of it (SMC structure), (3) magnetic clouds ``pushed'' by the high-speed streams from behind, forming an interaction region between the two (MIH structure), and (4) shock-associated magnetic clouds followed by high-speed streams (SMH structure). This classification into different groups led us to study the role, effect, and the relative importance of (1) closed field magnetic cloud structure with low field variance, (2) interplanetary shock and magnetically turbulent sheath region, (3) interaction region with large field variance, and (4) the high-speed solar wind stream coming from the open field regions, in modulating the galactic cosmic rays (GCRs). MC structures are responsible for transient decrease with fast recovery. SMC structures are responsible for fast decrease and slow recovery, MIH structures produce depression with slow decrease and slow recovery, and SMH structures are responsible for fast decrease with very slow recovery. Simultaneous variations of GCR intensity, solar plasma velocity, interplanetary magnetic field strength, and its variance led us to study the relative effectiveness of different structures as well as interplanetary plasma/field parameters. Possible role of the magnetic field, its topology, field turbulence, and the high-speed streams in influencing the amplitude and time profile of resulting decreases in GCR intensity have also been discussed.

  5. Discovery in the Galactic Bulge

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2015-11-01

    In our efforts to map our galaxys structure, one region has remained very difficult to probe: the galactic center. A new survey, however, uses infrared light to peer through the gas and dust in the galactic plane, searching for variable stars in the bulge of the galaxy. This study has discovered a population of very young stars in a thin disk in the galactic center, providing clues to the star formation history of the Milky Way over the last 100 million years.Obscured CenterThe center of the Milky Way is dominated by a region known as the galactic bulge. Efforts to better understand this region in particular, its star formation history have been hindered by the stars, gas, and dust of the galactic disk, which prevent us from viewing the galactic bulge at low latitudes in visible light.The positions of the 35 classical Cepheids discovered in VVV data, projected onto an image of the galactic plane. Click for a better look! The survey area is bounded by the blue lines, and the galactic bar is marked with a red curve. The bottom panel shows the position of the Cepheids overlaid on the VVV bulge extinction map. [Dkny et al. 2015]Infrared light, however, can be used to probe deeper through the dust than visible-light searches. A new survey called VISTA Variables in the Via Lactea (VVV) uses the VISTA telescope in Chile to search, in infrared, for variable stars in the inner part of the galaxy. The VVV survey area spans the Milky Way bulge and an adjacent section of the mid-plane where star formation activity is high.Led by Istvn Dkny, a researcher at the Millennium Institute of Astrophysics and the Pontifical Catholic University of Chile, a team has now used VVV data to specifically identify classical Cepheid variable stars in the bulge. Why? Cepheids are pulsating stars with a very useful relation between their periods and luminosities that allows them to be used as distance indicators. Moreover, classical Cepheids are indicators of young stellar populations which can

  6. Shocks and angular momentum flips: a different path to feeding the nuclear regions of merging galaxies

    NASA Astrophysics Data System (ADS)

    Capelo, Pedro R.; Dotti, Massimo

    2017-03-01

    We study the dynamics of galaxy mergers, with emphasis on the gas feeding of nuclear regions, using a suite of hydrodynamical simulations of galaxy encounters. The high spatial and temporal resolution of the simulations allows us to not only recover the standard picture of tidal-torque-induced inflows, but also to detail another, important feeding path produced by ram pressure. The induced shocks effectively decouple the dynamics of the gas from that of the stars, greatly enhancing the loss of gas angular momentum and leading to increased central inflows. The ram-pressure shocks also cause, in many cases, the entire galactic gas disc of the smaller galaxy to abruptly change its direction of rotation, causing a complete 'flip' and, several 108 yr later, a subsequent 'counter-flip'. This phenomenon results in the existence of long-lived decoupled gas-stellar and stellar-stellar discs, which could hint at a new explanation for the origin of some of the observed kinematically decoupled cores/counter-rotating discs. Lastly, we speculate, in the case of non-coplanar mergers, on the possible existence of a new class of remnant systems similar to some of the observed X-shaped radio galaxies.

  7. Massive global ozone loss predicted following regional nuclear conflict.

    PubMed

    Mills, Michael J; Toon, Owen B; Turco, Richard P; Kinnison, Douglas E; Garcia, Rolando R

    2008-04-08

    We use a chemistry-climate model and new estimates of smoke produced by fires in contemporary cities to calculate the impact on stratospheric ozone of a regional nuclear war between developing nuclear states involving 100 Hiroshima-size bombs exploded in cities in the northern subtropics. We find column ozone losses in excess of 20% globally, 25-45% at midlatitudes, and 50-70% at northern high latitudes persisting for 5 years, with substantial losses continuing for 5 additional years. Column ozone amounts remain near or <220 Dobson units at all latitudes even after three years, constituting an extratropical "ozone hole." The resulting increases in UV radiation could impact the biota significantly, including serious consequences for human health. The primary cause for the dramatic and persistent ozone depletion is heating of the stratosphere by smoke, which strongly absorbs solar radiation. The smoke-laden air rises to the upper stratosphere, where removal mechanisms are slow, so that much of the stratosphere is ultimately heated by the localized smoke injections. Higher stratospheric temperatures accelerate catalytic reaction cycles, particularly those of odd-nitrogen, which destroy ozone. In addition, the strong convection created by rising smoke plumes alters the stratospheric circulation, redistributing ozone and the sources of ozone-depleting gases, including N(2)O and chlorofluorocarbons. The ozone losses predicted here are significantly greater than previous "nuclear winter/UV spring" calculations, which did not adequately represent stratospheric plume rise. Our results point to previously unrecognized mechanisms for stratospheric ozone depletion.

  8. On the possibility of investigating the galactic center region with the integral observatory by the method of lunar and terrestrial occultations

    NASA Astrophysics Data System (ADS)

    Eismont, N. A.; Ledkov, A. A.; Grebenev, S. A.; Sunyaev, R. A.

    2012-09-01

    The possibility of investigating the sky region near the Galactic center with instruments of the INTEGRAL orbital astrophysical gamma-ray observatory by the method of its occultation by the Earth and the Moon is considered. Existing engineering constraints on the observing conditions, such as the admissible orientation of the INTEGRAL satellite relative to the direction to the Sun and the performance of measurements only outside the Earth's radiation belts, are taken into account. Long time intervals during which the lunar occultation center passes at angular distances of less than 2° from the Galactic center have been found. Such events occur under the adopted constraints two or three times per year without any correction of the INTEGRAL satellite orbit. The orbit can be corrected to reduce the angular distance between the Moon and the Galactic center in occultation events. The required velocity impulses do not exceed several meters per second. The possibility of the Galactic center being occulted by the Earth has been analyzed. In this case, to perform measurements, the admissible (in radiation exposure) height of the working segment of the orbit should be reduced to 25 000 km, which can be problematic. At the same time, part of the Galaxy's equatorial region is shadowed by the Earth for a time long enough to carry out the corresponding experiments.

  9. Hydrodynamic Simulations of the Central Molecular Zone with a Realistic Galactic Potential

    NASA Astrophysics Data System (ADS)

    Shin, Jihye; Kim, Sungsoo S.; Baba, Junichi; Saitoh, Takayuki R.; Hwang, Jeong-Sun; Chun, Kyungwon; Hozumi, Shunsuke

    2017-06-01

    We present hydrodynamic simulations of gas clouds inflowing from the disk to a few hundred parsec region of the Milky Way. A gravitational potential is generated to include realistic Galactic structures by using thousands of multipole expansions (MEs) that describe 6.4 million stellar particles of a self-consistent Galaxy simulation. We find that a hybrid ME model, with two different basis sets and a thick-disk correction, accurately reproduces the overall structures of the Milky Way. Through non-axisymmetric Galactic structures of an elongated bar and spiral arms, gas clouds in the disk inflow to the nuclear region and form a central molecular zone-like nuclear ring. We find that the size of the nuclear ring evolves into ˜ 240 {pc} at T˜ 1500 {Myr}, regardless of the initial size. For most simulation runs, the rate of gas inflow to the nuclear region is equilibrated to ˜ 0.02 {M}⊙ {{yr}}-1. The nuclear ring is off-centered, relative to the Galactic center, by the lopsided central mass distribution of the Galaxy model, and thus an asymmetric mass distribution of the nuclear ring arises accordingly. The vertical asymmetry of the Galaxy model also causes the nuclear ring to be tilted along the Galactic plane. During the first ˜100 Myr, the vertical frequency of the gas motion is twice that of the orbital frequency, thus the projected nuclear ring shows a twisted, ∞ -like shape.

  10. Ring currents and poloidal magnetic fields in nuclear regions of galaxies

    NASA Astrophysics Data System (ADS)

    Lesch, H.; Crusius, A.; Schlickeiser, R.; Wielebinski, R.

    1989-06-01

    The origin of observed strong poloidal magnetic fields R(z) in the central regions of galaxies which have gaseous rings is discussed. In the context of galactic disk dynamo models only weak poloidal fields but strong toroidal fields result. The strength of the poloidal fields is tied to the central activity and apply known and tested ideas rigorously. A battery process on galactic scales is discussed which ensures the existence of a large-scale magnetic field in the inner galactic region. The frozen-in field may be amplified by v x B compression and turbulent stretching; the resulting field is poloidal. The central activity provides a flow field which can produce B(z) equal to or greater than B(phi).

  11. Characterization of nuclear localization signals and cytoplasmic retention region in the nuclear receptor CAR.

    PubMed

    Kanno, Yuichiro; Suzuki, Motoyoshi; Nakahama, Takayuki; Inouye, Yoshio

    2005-09-10

    The constitutive androstane receptor (CAR) is a ligand/activator-dependent transactivation factor that resides in the cytoplasm and forms part of an as yet unidentified protein complex. Upon stimulation, CAR translocates into the nucleus where it modulates the transactivation of target genes. However, CAR exogenously expressed in rat liver RL-34 cells is located in the nucleus even in the absence of activators. By transiently transfecting RL-34 cells with various mutated rat CAR segments, we identified two nuclear localization signals: a basic amino acid-rich sequence (RRARQARRR) between amino acids 100 and 108; and an assembly of noncontiguous residues widely spread over amino acid residues 111 to 320 within the ligand binding domain. A C-terminal leucine-rich segment corresponding to a previously reported murine xenochemical response signal was not found to exhibit nuclear import activity in cultured cells. Using rat primary hepatocytes transfected with various CAR segments, we identified the region required for the cytoplasmic retention of CAR. Based on these results, the intracellular localization of CAR would be determined by the combined effects of nuclear localization signals, the xenochemical response signal, and the cytoplasmic retention region.

  12. VizieR Online Data Catalog: Radio observations of Galactic WISE HII regions (Anderson+, 2015)

    NASA Astrophysics Data System (ADS)

    Anderson, L. D.; Armentrout, W. P.; Johnstone, B. M.; Bania, T. M.; Balser, D. S.; Wenger, T. V.; Cunningham, V.

    2016-01-01

    We draw our targets from the MIR objects in the WISE catalog of Anderson+, 2014, J/ApJS/212/1. We also include in our sample Sharpless H II regions (Sharpless 1959, VII/20). See section 2 for further details. Our observations were made with the GBT 100m telescope from 2012 July through 2014 August. There are seven radio recombination lines (RRLs) that can be cleanly observed simultaneously with the GBT in the X-band: H87α to H93α. We average these seven RRLs (each at two orthogonal polarizations) to create a single average RRL spectrum. We followed the same GBT observational procedure as in the original HRDS (Green Bank Telescope H II Region Discovery Survey (GBT HRDS; Bania et al. 2010ApJ...718L.106B). (3 data files).

  13. Sgr A* as Source of the Positrons Observed in the Galactic Center Region

    NASA Astrophysics Data System (ADS)

    Jean, Pierre; Guessoum, Nidhal; Ferrière, Katia

    2017-01-01

    We explore the possibility that a substantial fraction of the positrons observed to annihilate in the central region of our Galaxy come from the supermassive black hole Sgr A* that lies at the center. This idea was proposed by several authors, but the propagation of the emitted positrons into the bulge and beyond remained a serious problem for models of the origin of GC positrons. We assume models of positron production with different energies. The propagation of positrons from their production site is followed in detail with Monte-Carlo simulations, taking into account the physical conditions of the propagation regions as well as various physical interactions. Using the known physics of positron annihilation in astrophysical environments, we calculate the properties of the annihilation emission (time evolution and spatial distribution) for the different models under consideration. We present the results of these simulations and the conclusions/constraints that can be inferred from them.

  14. IRTF/TEXES observations of the H ii regions H1 and H2 in the Galactic Centre

    NASA Astrophysics Data System (ADS)

    Dong, Hui; Lacy, John H.; Schödel, Rainer; Nogueras-Lara, Francisco; Gallego-Calvente, Teresa; Mauerhan, Jon; Wang, Q. Daniel; Cotera, Angela; Gallego-Cano, Eulalia

    2017-09-01

    We present new [Ne ii] (12.8 μm) IRTF/TEXES observations of the Galactic Center H ii regions H1 and H2, which are at a projected distance of ∼11 pc from the centre of the Galaxy. The new observations allow us to map the radial velocity distributions of ionized gas. The high spectroscopic resolution (∼4 km s-1) helps us to disentangle different velocity components and enables us to resolve previous ambiguity regarding the nature of these sources. The spatial distributions of the intensity and radial velocity of the [Ne ii] line are mapped. In H1, the intensity distributions of the Paschen-α (1.87 μm) and [Ne ii] lines are significantly different, which suggests a strong variation of extinction across the H ii region of AK ∼ 0.56. The radial velocity distributions across these H ii regions are consistent with the predictions of a bow-shock model for H1 and the pressure-driven model for H2. Furthermore, we find a concentration of bright stars in H2. These stars have similar H - Ks colours and can be explained as part of a 2-Myr-old stellar cluster. H2 also falls on the orbit of the molecular clouds, suggested to be around Sgr A*. Our new results confirm what we had previously suggested: The O supergiant P114 in H1 is a runaway star, moving towards us through the -30 to 0 km s-1 molecular cloud, whereas the O If star P35 in H2 formed in situ, and may mark the position of a so-far unknown small star cluster formed within the central 30 pc of the Galaxy.

  15. Characterization of functional regions for nuclear localization of NPAT.

    PubMed

    Sagara, Masashi; Takeda, Eri; Nishiyama, Akiyo; Utsumi, Syunsaku; Toyama, Yoshiroh; Yuasa, Shigeki; Ninomiya, Yasuharu; Imai, Takashi

    2002-12-01

    NPAT plays a role in S phase entry as a substrate of cyclin E-CDK2 and activation of histone gene transcription. Although analysis of its sequence indicates that NPAT contains typical nuclear localization signals (NLS) comprising segments of positively charged amino acids, there are currently no experimental data to show that these predictive NLS are functional. To investigate whether these sequences are effective for nuclear transport of NPAT, an NPAT-green fluorescent protein fusion (NP-GFP) was constructed. After transfection of the fusion gene containing the full coding region of NPAT into cultured cells, the NP-GFP product was found exclusively in the nucleus. As expected, some deletion mutants that retained the basic amino acid clusters at the carboxyl terminus also localize the fusion protein in the nucleus. However, other fusions that lacked one of the three basic amino acid-clusters were distributed throughout the nucleus and cytoplasm. Therefore all three clusters of basic residues are necessary for localization of NPAT to the nucleus. However, another sequence outside the carboxyl terminal region functions similarly to NLS. Construction of GFP fusions with a series of truncated forms of NPAT indicated that a short peptide sequence consisting of mainly hydrophobic amino acids near the central domain of NPAT also contributes to localizing the protein in the nucleus.

  16. FEEDBACK FROM MASS OUTFLOWS IN NEARBY ACTIVE GALACTIC NUCLEI. II. OUTFLOWS IN THE NARROW-LINE REGION OF NGC 4151

    SciTech Connect

    Crenshaw, D. Michael; Fischer, Travis C.; Kraemer, Steven B.; Schmitt, Henrique R. E-mail: fischer@astro.gsu.edu E-mail: schmitt.henrique@gmail.com

    2015-01-20

    We present a detailed study of active galactic nucleus feedback in the narrow-line region (NLR) of the Seyfert 1 galaxy NGC 4151. We illustrate the data and techniques needed to determine the mass outflow rate ( M-dot {sub out}) and kinetic luminosity (L {sub KE}) of the outflowing ionized gas as a function of position in the NLR. We find that M-dot {sub out} peaks at a value of 3.0 M {sub ☉} yr{sup –1} at a distance of 70 pc from the central supermassive black hole (SMBH), which is about 10 times the outflow rate coming from inside 13 pc, and 230 times the mass accretion rate inferred from the bolometric luminosity of NGC 4151. Thus, most of the outflow must arise from in situ acceleration of ambient gas throughout the NLR. L {sub KE} peaks at 90 pc and drops rapidly thereafter, indicating that most of the kinetic energy is deposited within about 100 pc from the SMBH. Both values exceed the M-dot {sub out} and L {sub KE} determined for the UV/X-ray absorber outflows in NGC 4151, indicating the importance of NLR outflows in providing feedback on scales where circumnuclear star formation and bulge growth occur.

  17. Galactic politics

    NASA Image and Video Library

    2015-12-07

    Only rarely does an astronomical object have a political association. However, the spiral galaxy NGC 7252 acquired exactly that when it was given an unusual nickname. In December 1953, the US President Dwight D. Eisenhower gave a speech advocating the use of nuclear power for peaceful purposes. This  “Atoms for Peace” speech was significant for the scientific community, as it brought nuclear research into the public domain, and NGC 7252, which has a superficial resemblance to an atomic nucleus surrounded by the loops of electronic orbits, was dubbed the Atoms for Peace galaxy in honour of this. These loops are well visible in a wider field of view image. This nickname is quite ironic, as the galaxy’s past was anything but peaceful. Its peculiar appearance is the result of a collision between two galaxies that took place about a billion years ago, which ripped both galaxies apart. The loop-like outer structures, likely made up of dust and stars flung outwards by the crash, but recalling orbiting electrons in an atom, are partly responsible for the galaxy’s nickname. This NASA/ESA Hubble Space Telescope image shows the inner parts of the galaxy, revealing a pinwheel-shaped disc that is rotating in a direction opposite to the rest of the galaxy. This disc resembles a spiral galaxy like our own galaxy, the Milky Way, but is only about 10 000 light-years across — about a tenth of the size of the Milky Way. It is believed that this whirling structure is a remnant of the galactic collision. It will most likely have vanished in a few billion years’ time, when NGC 7252 will have completed its merging process.

  18. Young open clusters in the Galactic star forming region NGC 6357

    NASA Astrophysics Data System (ADS)

    Massi, F.; Giannetti, A.; Di Carlo, E.; Brand, J.; Beltrán, M. T.; Marconi, G.

    2015-01-01

    Context. NGC 6357 is an active star forming region with very young massive open clusters. These clusters contain some of the most massive stars in the Galaxy and strongly interact with nearby giant molecular clouds. Aims: We study the young stellar populations of the region and of the open cluster Pismis 24, focusing on their relationship with the nearby giant molecular clouds. We seek evidence of triggered star formation "propagating" from the clusters. Methods: We used new deep JHKs photometry, along with unpublished deep Spitzer/IRAC mid-infrared photometry, complemented with optical HST/WFPC2 high spatial resolution photometry and X-ray Chandra observations, to constrain age, initial mass function, and star formation modes in progress. We carefully examine and discuss all sources of bias (saturation, confusion, different sensitivities, extinction). Results: NGC 6357 hosts three large young stellar clusters, of which Pismis 24 is the most prominent. We found that Pismis 24 is a very young (~1-3 Myr) open cluster with a Salpeter-like initial mass function and a few thousand members. A comparison between optical and infrared photometry indicates that the fraction of members with a near-infrared excess (i.e., with a circumstellar disk) is in the range 0.3-0.6, consistent with its photometrically derived age. We also find that Pismis 24 is likely subdivided into a few different subclusters, one of which contains almost all the massive members. There are indications of current star formation triggered by these massive stars, but clear age trends could not be derived (although the fraction of stars with a near-infrared excess does increase towards the Hii region associated with the cluster). The gas out of which Pismis 24 formed must have been distributed in dense clumps within a cloud of less dense gas ~1 pc in radius. Conclusions: Our findings provide some new insight into how young stellar populations and massive stars emerge, and evolve in the first few Myr after

  19. Massive Star Formation of the SGR a East H (sub II) Regions Near the Galactic Center

    NASA Technical Reports Server (NTRS)

    Yusef-Zadeh, F.; Lacy, J. H.; Wardle, M.; Whitney, B.; Bushouse, H.; Roberts, D. A.; Arendt, R. G.

    2010-01-01

    A group of four compact H II regions associated with the well-known 50 km/s molecular cloud is the closest site of on-going star formation to the dynamical center of the Galaxy, at a projected distance of approximately 6 pc. We present a study of ionized gas based on the [Ne II] (12.8 micron) line, as well as multi-frequency radio continuum, Hubble Space Telescope Pa alpha, and Spitzer Infrared Array Camera observations of the most compact member of the H II group, Sgr A East H II D. The radio continuum image at 6 cm shows that this source breaks up into two equally bright ionized features, D1 and D2. The spectral energy distribution of the D source is consistent with it being due to a 25 =/- 3 solar mass star with a luminosity of 8 +/- 3 x 10(exp 4) Solar luminosity . The inferred mass, effective temperature of the UV source, and the ionization rate are compatible with a young O9-B0 star. The ionized features D1 and D2 are considered to be ionized by UV radiation collimated by an accretion disk. We consider that the central massive star photoevaporates its circumstellar disk on a timescale of 3x (exp 4) years giving a mass flux approximately 3 x 10(exp -5) Solar Mass / year and producing the ionized material in D1 and D2 expanding in an inhomogeneous medium. The ionized gas kinematics, as traced by the [Ne II] emission, is difficult to interpret, but it could be explained by the interaction of a bipolar jet with surrounding gas along with what appears to be a conical wall of lower velocity gas. The other H II regions, Sgr A East A-C, have morphologies and kinematics that more closely resemble cometary flows seen in other compact H II regions, where gas moves along a paraboloidal surface formed by the interaction of a stellar wind with a molecular cloud.

  20. Observational analysis of the physical conditions in galactic and extragalactic active star forming regions

    NASA Astrophysics Data System (ADS)

    Kristensen, L. E.

    2007-10-01

    In my thesis observations of near-infrared rovibrational H_2 emission in active star-forming regions are presented and analysed. The main subject of this work concerns new observations of the Orion Molecular Cloud (OMC1) and in particular the BN-KL region. Data consist of images of individual H_2 lines with high spatial resolution obtained both at the Canada-France-Hawaii Telescope and at the ESO Very Large Telescope (VLT). With the high spatial resolution of the VLT it is possible to analyse in detail (down to 60 AU ~ 0.13") individual objects in the region. I have also analysed H_2 and [FeII] emission from outflows in two dark clouds (Bok globules BHR71 and BHR137) and a high excitation blob in the Magellanic Clouds (N159-5). In the latter, data consist of long-slit spectra obtained at the ESO-VLT. In order to facilitate this work I ran a large grid of ~25000 shock models, producing almost 400 Gb of results. These models are state-of-the-art and there is a large number of free parameters which can be adjusted. A big part of my project has been to analyse the results from this grid and make it publically available. Furthermore, as it turned out, not all results are equally reliable and I have had to develop methods for checking the consistency of the wealth of results obtained. But with the model results and a sound knowledge of shock physics it is now relatively straightforward to interpret the H_2 and [FeII] data. The models allow me to predict the large-scale physical conditions in OMC1 such as density, shock velocities, magnetic field strengths, etc. Overall the preshock density is of the order of ~10^5-10^7 cm(-3) and shock velocities are in the interval 10-40 km/s. Another very interesting result is a new method developed for analysing bow shocks observed at high spatial resolution. For one isolated bow shock in OMC1 I predict a shock velocity of 50 km/s and a preshock density of the order of 5x10^5 cm(-3). The 3D velocity has recently been measured to 55 km

  1. SPECTRAL CLASSIFICATION OF THE BRIGHTEST OBJECTS IN THE GALACTIC STAR-FORMING REGION W40

    SciTech Connect

    Shuping, R. Y.; Vacca, William D.; Kassis, Marc; Yu, Ka Chun

    2012-10-01

    We present high signal-to-noise, moderate resolution (R Almost-Equal-To 2000) near-infrared spectra, as well as 10 {mu}m imaging, for the brightest members of the central stellar cluster in the W40 H II region, obtained using the SpeX and MIRSI instruments at NASA's Infrared Telescope Facility. Using these observations combined with archival Spitzer Space Telescope data, we have determined the spectral classifications, extinction, distances, and spectral energy distributions (SEDs) for the brightest members of the cluster. Of the eight objects observed, we identify four main-sequence (MS) OB stars (one late-O, three early-B), two Herbig Ae/Be stars, and two low-mass young stellar objects (Class II). Strong He I absorption at 1.083 {mu}m in the MS star spectra strongly suggests that at least some of these sources are in fact close binaries. Two out of the four MS stars also show significant infrared excesses typical of circumstellar disks. Extinctions and distances were determined for each MS star by fitting model stellar atmospheres to the SEDs. We estimate a distance to the cluster of between 455 and 535 pc, which agrees well with earlier (but far less precise) distance estimates. We conclude that the late-O star we identify is the dominant source of Lyman continuum luminosity needed to power the W40 H II region and is the likely source of the stellar wind that has blown a large ( Almost-Equal-To 4 pc) pinched-waist bubble observed in wide-field mid-IR images. We also suggest that 3.6 cm radio emission observed from some of the sources in the cluster is likely not due to emission from ultracompact H II regions, as suggested in other work, due to size constraints based on our derived distance to the cluster. Finally, we also present a discussion of the curious source IRS 3A, which has a very strong mid-IR excess (despite its B3 MS classification) and appears to be embedded in a dusty envelope roughly 2700 AU in size.

  2. MASSIVE STAR FORMATION OF THE SGR A EAST H II REGIONS NEAR THE GALACTIC CENTER

    SciTech Connect

    Yusef-Zadeh, F.; Lacy, J. H.; Wardle, M.; Whitney, B.; Bushouse, H.; Roberts, D. A.; Arendt, R. G.

    2010-12-20

    A group of four compact H II regions associated with the well-known 50 km s{sup -1} molecular cloud is the closest site of on-going star formation to the dynamical center of the Galaxy, at a projected distance of {approx}6 pc. We present a study of ionized gas based on the [Ne II] (12.8 {mu}m) line, as well as multi-frequency radio continuum, Hubble Space Telescope Pa{alpha}, and Spitzer Infrared Array Camera observations of the most compact member of the H II group, Sgr A East H II D. The radio continuum image at 6 cm shows that this source breaks up into two equally bright ionized features, D1 and D2. The spectral energy distribution of the D source is consistent with it being due to a 25 {+-} 3 M{sub sun} star with a luminosity of 8 {+-} 3 x 10{sup 4} L{sub sun}. The inferred mass, effective temperature of the UV source, and the ionization rate are compatible with a young O9-B0 star. The ionized features D1 and D2 are considered to be ionized by UV radiation collimated by an accretion disk. We consider that the central massive star photoevaporates its circumstellar disk on a timescale of 3 x 10{sup 4} years giving a mass flux {approx}3 x 10{sup -5} M{sub sun} yr{sup -1} and producing the ionized material in D1 and D2 expanding in an inhomogeneous medium. The ionized gas kinematics, as traced by the [Ne II] emission, is difficult to interpret, but it could be explained by the interaction of a bipolar jet with surrounding gas along with what appears to be a conical wall of lower velocity gas. The other H II regions, Sgr A East A-C, have morphologies and kinematics that more closely resemble cometary flows seen in other compact H II regions, where gas moves along a paraboloidal surface formed by the interaction of a stellar wind with a molecular cloud.

  3. NuSTAR Hard X-Ray Survey of the Galactic Center Region. II. X-Ray Point Sources

    NASA Astrophysics Data System (ADS)

    Hong, JaeSub; Mori, Kaya; Hailey, Charles J.; Nynka, Melania; Zhang, Shuo; Gotthelf, Eric; Fornasini, Francesca M.; Krivonos, Roman; Bauer, Franz; Perez, Kerstin; Tomsick, John A.; Bodaghee, Arash; Chiu, Jeng-Lun; Clavel, Maïca; Stern, Daniel; Grindlay, Jonathan E.; Alexander, David M.; Aramaki, Tsuguo; Baganoff, Frederick K.; Barret, Didier; Barrière, Nicolas; Boggs, Steven E.; Canipe, Alicia M.; Christensen, Finn E.; Craig, William W.; Desai, Meera A.; Forster, Karl; Giommi, Paolo; Grefenstette, Brian W.; Harrison, Fiona A.; Hong, Dooran; Hornstrup, Allan; Kitaguchi, Takao; Koglin, Jason E.; Madsen, Kristen K.; Mao, Peter H.; Miyasaka, Hiromasa; Perri, Matteo; Pivovaroff, Michael J.; Puccetti, Simonetta; Rana, Vikram; Westergaard, Niels J.; Zhang, William W.; Zoglauer, Andreas

    2016-07-01

    We present the first survey results of hard X-ray point sources in the Galactic Center (GC) region by NuSTAR. We have discovered 70 hard (3-79 keV) X-ray point sources in a 0.6 deg{}2 region around Sgr A* with a total exposure of 1.7 Ms, and 7 sources in the Sgr B2 field with 300 ks. We identify clear Chandra counterparts for 58 NuSTAR sources and assign candidate counterparts for the remaining 19. The NuSTAR survey reaches X-ray luminosities of ˜4× and ˜8 × 10{}32 erg s{}-1 at the GC (8 kpc) in the 3-10 and 10-40 keV bands, respectively. The source list includes three persistent luminous X-ray binaries (XBs) and the likely run-away pulsar called the Cannonball. New source-detection significance maps reveal a cluster of hard (>10 keV) X-ray sources near the Sgr A diffuse complex with no clear soft X-ray counterparts. The severe extinction observed in the Chandra spectra indicates that all the NuSTAR sources are in the central bulge or are of extragalactic origin. Spectral analysis of relatively bright NuSTAR sources suggests that magnetic cataclysmic variables constitute a large fraction (>40%-60%). Both spectral analysis and logN-logS distributions of the NuSTAR sources indicate that the X-ray spectra of the NuSTAR sources should have kT > 20 keV on average for a single temperature thermal plasma model or an average photon index of Γ = 1.5-2 for a power-law model. These findings suggest that the GC X-ray source population may contain a larger fraction of XBs with high plasma temperatures than the field population.

  4. The Baryon Cycle at High Redshifts: Effects of Galactic Winds on Galaxy Evolution in Overdense and Average Regions

    NASA Astrophysics Data System (ADS)

    Sadoun, Raphael; Shlosman, Isaac; Choi, Jun-Hwan; Romano-Díaz, Emilio

    2016-10-01

    We employ high-resolution cosmological zoom-in simulations focusing on a high-sigma peak and an average cosmological field at z ˜ 6-12 in order to investigate the influence of environment and baryonic feedback on galaxy evolution in the reionization epoch. Strong feedback, e.g., galactic winds, caused by elevated star formation rates (SFRs) is expected to play an important role in this evolution. We compare different outflow prescriptions: (i) constant wind velocity (CW), (ii) variable wind scaling with galaxy properties (VW), and (iii) no outflows (NW). The overdensity leads to accelerated evolution of dark matter and baryonic structures, absent from the “normal” region, and to shallow galaxy stellar mass functions at the low-mass end. Although CW shows little dependence on the environment, the more physically motivated VW model does exhibit this effect. In addition, VW can reproduce the observed specific SFR (sSFR) and the sSFR-stellar mass relation, which CW and NW fail to satisfy simultaneously. Winds also differ substantially in affecting the state of the intergalactic medium (IGM). The difference lies in the volume-filling factor of hot, high-metallicity gas, which is near unity for CW, while such gas remains confined in massive filaments for VW, and locked up in galaxies for NW. Such gas is nearly absent from the normal region. Although all wind models suffer from deficiencies, the VW model seems to be promising in correlating the outflow properties with those of host galaxies. Further constraints on the state of the IGM at high z are needed to separate different wind models.

  5. NuSTAR Hard X-Ray Survey of the Galactic Center Region. II. X-Ray Point Sources

    NASA Technical Reports Server (NTRS)

    Hong, Jaesub; Mori, Kaya; Hailey, Charles J.; Nynka, Melania; Zhang, Shou; Gotthelf, Eric; Fornasini, Francesca M.; Krivonos, Roman; Bauer, Franz; Perez, Kerstin; hide

    2016-01-01

    We present the first survey results of hard X-ray point sources in the Galactic Center (GC) region by NuSTAR. We have discovered 70 hard (3-79 keV) X-ray point sources in a 0.6 deg(sup 2) region around Sgr?A* with a total exposure of 1.7 Ms, and 7 sources in the Sgr B2 field with 300 ks. We identify clear Chandra counterparts for 58 NuSTAR sources and assign candidate counterparts for the remaining 19. The NuSTAR survey reaches X-ray luminosities of approx. 4× and approx. 8 ×10(exp 32) erg/s at the GC (8 kpc) in the 3-10 and 10-40 keV bands, respectively. The source list includes three persistent luminous X-ray binaries (XBs) and the likely run-away pulsar called the Cannonball. New source-detection significance maps reveal a cluster of hard (>10 keV) X-ray sources near the Sgr A diffuse complex with no clear soft X-ray counterparts. The severe extinction observed in the Chandra spectra indicates that all the NuSTAR sources are in the central bulge or are of extragalactic origin. Spectral analysis of relatively bright NuSTAR sources suggests that magnetic cataclysmic variables constitute a large fraction (>40%-60%). Both spectral analysis and logN-logS distributions of the NuSTAR sources indicate that the X-ray spectra of the NuSTAR sources should have kT > 20 keV on average for a single temperature thermal plasma model or an average photon index of Lambda = 1.5-2 for a power-law model. These findings suggest that the GC X-ray source population may contain a larger fraction of XBs with high plasma temperatures than the field population.

  6. Logarithmic Spiral Arm Pitch Angle of Spiral Galaxies: Measurement and Relationship to Galactic Structure and Nuclear Supermassive Black Hole Mass

    NASA Astrophysics Data System (ADS)

    Davis, Benjamin

    In this dissertation, I explore the geometric structure of spiral galaxies and how the visible structure can provide information about the central mass of a galaxy, the density of its galactic disk, and the hidden mass of the supermassive black hole in its nucleus. In order to quantitatively measure the logarithmic spiral pitch angle (a measurement of tightness of the winding) of galactic spiral arms, I led an effort in our research group (the Arkansas Galaxy Evolution Survey) to modify existing two-dimensional fast Fourier transform software to increase its efficacy and accuracy. Using this software, I was able to lead an effort to calculate a black hole mass function (BHMF) for spiral galaxies in our local Universe. This work effectively provides us with a census of local black holes and establishes an endpoint on the evolutionary history of the BHMF for spiral galaxies. Furthermore, my work has indicated a novel fundamental relationship between the pitch angle of a galaxy's spiral arms, the maximum density of neutral atomic hydrogen in its disk, and the stellar mass of its bulge. This result provides strong support for the density wave theory of spiral structure in disk galaxies and poses a critical question of the validity of rival theories for the genesis of spiral structure in disk galaxies.

  7. 10 CFR Appendix D to Part 20 - United States Nuclear Regulatory Commission Regional Offices

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 1 2014-01-01 2014-01-01 false United States Nuclear Regulatory Commission Regional Offices D Appendix D to Part 20 Energy NUCLEAR REGULATORY COMMISSION STANDARDS FOR PROTECTION AGAINST RADIATION Pt. 20, App. D Appendix D to Part 20—United States Nuclear Regulatory Commission Regional Offices...

  8. 10 CFR Appendix D to Part 20 - United States Nuclear Regulatory Commission Regional Offices

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 1 2011-01-01 2011-01-01 false United States Nuclear Regulatory Commission Regional Offices D Appendix D to Part 20 Energy NUCLEAR REGULATORY COMMISSION STANDARDS FOR PROTECTION AGAINST RADIATION Pt. 20, App. D Appendix D to Part 20—United States Nuclear Regulatory Commission Regional Offices...

  9. 10 CFR Appendix D to Part 20 - United States Nuclear Regulatory Commission Regional Offices

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 1 2013-01-01 2013-01-01 false United States Nuclear Regulatory Commission Regional Offices D Appendix D to Part 20 Energy NUCLEAR REGULATORY COMMISSION STANDARDS FOR PROTECTION AGAINST RADIATION Pt. 20, App. D Appendix D to Part 20—United States Nuclear Regulatory Commission Regional Offices...

  10. 10 CFR Appendix D to Part 20 - United States Nuclear Regulatory Commission Regional Offices

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 1 2010-01-01 2010-01-01 false United States Nuclear Regulatory Commission Regional Offices D Appendix D to Part 20 Energy NUCLEAR REGULATORY COMMISSION STANDARDS FOR PROTECTION AGAINST RADIATION Pt. 20, App. D Appendix D to Part 20—United States Nuclear Regulatory Commission Regional...

  11. Spatial Variations of Galaxy Number Counts in the Sloan Digital Sky Survey. II. Test of Galactic Extinction in High-Extinction Regions

    NASA Astrophysics Data System (ADS)

    Yasuda, Naoki; Fukugita, Masataka; Schneider, Donald P.

    2007-08-01

    Galactic extinction is tested using galaxy number counts at low Galactic latitude obtained from five-band photometry of the Sloan Digital Sky Survey. The spatial variation of galaxy number counts for low-extinction regions of E(B-V)<0.15 is consistent with the all-sky reddening map of Schlegel and coworkers and the standard extinction law. For higher extinction regions of E(B-V)>0.15, however, the map of Schlegel and coworkers overestimates the reddening by a factor of up to 1.4, which can likely be ascribed to the departure from proportionality of reddening to infrared emissivity of dust. This result is consistent with the analysis of Arce & Goodman for the Taurus dark cloud complex.

  12. Massive global ozone loss predicted following regional nuclear conflict

    PubMed Central

    Mills, Michael J.; Toon, Owen B.; Turco, Richard P.; Kinnison, Douglas E.; Garcia, Rolando R.

    2008-01-01

    We use a chemistry-climate model and new estimates of smoke produced by fires in contemporary cities to calculate the impact on stratospheric ozone of a regional nuclear war between developing nuclear states involving 100 Hiroshima-size bombs exploded in cities in the northern subtropics. We find column ozone losses in excess of 20% globally, 25–45% at midlatitudes, and 50–70% at northern high latitudes persisting for 5 years, with substantial losses continuing for 5 additional years. Column ozone amounts remain near or <220 Dobson units at all latitudes even after three years, constituting an extratropical “ozone hole.” The resulting increases in UV radiation could impact the biota significantly, including serious consequences for human health. The primary cause for the dramatic and persistent ozone depletion is heating of the stratosphere by smoke, which strongly absorbs solar radiation. The smoke-laden air rises to the upper stratosphere, where removal mechanisms are slow, so that much of the stratosphere is ultimately heated by the localized smoke injections. Higher stratospheric temperatures accelerate catalytic reaction cycles, particularly those of odd-nitrogen, which destroy ozone. In addition, the strong convection created by rising smoke plumes alters the stratospheric circulation, redistributing ozone and the sources of ozone-depleting gases, including N2O and chlorofluorocarbons. The ozone losses predicted here are significantly greater than previous “nuclear winter/UV spring” calculations, which did not adequately represent stratospheric plume rise. Our results point to previously unrecognized mechanisms for stratospheric ozone depletion. PMID:18391218

  13. Kinematics and structure of clumps in broad-line regions in active galactic nuclei

    NASA Astrophysics Data System (ADS)

    Ghayuri, Mohammad

    2016-10-01

    We use the Jeans equations for an ensemble of collisionless particles to describe the distribution of broad-line region (BLR) cloud in three classes: (A) non-disc (B) disc-wind (C) pure disc structure. We propose that clumpy structures in the brightest quasars belong to class A, fainter quasars and brighter Seyferts belong to class B, and dimmer Seyfert galaxies and all low-luminosity AGNs (LLAGNs) belong to class C. We derive the virial factor, f, for disc-like structures and find a negative correlation between the inclination angle, θ0, and f. We find similar behaviour for f as a function of the FWHM and σz, the z component of velocity dispersion. For different values of θ0 we find that 1.0 ≲ f ≲ 9.0 in type1 AGNs and 0.5 ≲ f ≲ 1.0 in type2 AGNs. Moreover we have 0.5 ≲ f ≲ 6.5 for different values of FWHM and 1.4 ≲ f ≲ 1.8 for different values of σz. We also find that f is relatively insensitive to the variations of bolometric luminosity and column density of each cloud and the range of variation of f is in order of 0.01. Considering wide range of f we see the use of average virial factor is not very safe. Therefore we propose AGN community to divide a sample into a few subsamples based on the value of θ0 and FWHM of members and calculate for each group separately to reduce uncertainty in black hole mass estimation.

  14. Climate and chemistry effects of a regional scale nuclear conflict

    NASA Astrophysics Data System (ADS)

    Stenke, A.; Hoyle, C. R.; Luo, B.; Rozanov, E.; Gröbner, J.; Maag, L.; Brönnimann, S.; Peter, T.

    2013-05-01

    Previous studies have highlighted the severity of detrimental effects for life on Earth after an assumed regionally limited nuclear war. These effects are caused by climatic, chemical and radiative changes persisting for up to one decade. However, so far only a very limited number of climate model simulations have been performed, giving rise to the question how realistic previous computations have been. This study uses the coupled chemistry climate model (CCM) SOCOL, which belongs to a different family of CCMs than previously used, to investigate the consequences of such a hypothetical nuclear conflict. In accordance with previous studies, the present work assumes a scenario of a nuclear conflict between India and Pakistan, each applying 50 warheads with an individual blasting power of 15 kt ("Hiroshima size") against the major population centers, resulting in the emission of tiny soot particles, which are generated in the firestorms expected in the aftermath of the detonations. Substantial uncertainties related to the calculation of likely soot emissions, particularly concerning assumptions of target fuel loading and targeting of weapons, have been addressed by simulating several scenarios, with soot emissions ranging from 1 to 12 Tg. Their high absorptivity with respect to solar radiation leads to a tremendous self-lofting of the soot particles into the strato- and mesosphere, where they remain for several years. Consequently, the model suggests Earth's surface temperatures to drop by several degrees Celsius due to the shielding of solar irradiance by the soot, indicating a major global cooling. In addition, there is a substantial reduction of precipitation lasting 5 to 10 yr after the conflict, depending on the magnitude of the initial soot release. Extreme cold spells associated with massive sea ice formation are found during Northern Hemisphere winter, which expose the continental land masses of Northern America and Eurasia to chilling coldness. In the

  15. CONNECTION BETWEEN MID-INFRARED EMISSION PROPERTIES AND NARROW-LINE REGION OUTFLOWS IN TYPE 1 ACTIVE GALACTIC NUCLEI

    SciTech Connect

    Zhang Kai; Wang Tinggui; Dong Xiaobo; Yan Lin

    2013-05-01

    The location of warm dust producing the mid-infrared (MIR) emission in type 1 active galactic nuclei (AGNs) is complex and not yet fully known. We explore this problem by studying how the MIR covering factor (CF{sub MIR} = L{sub MIR}/L{sub bol}) correlates with the fundamental parameters of AGN accretion process (such as L{sub bol}, black hole mass M{sub BH}, and Eddington ratio L/L{sub Edd}) and the properties of narrow emission lines (as represented by [O III] {lambda}5007), using large data sets derived from the Sloan Digital Sky Spectroscopic Survey (SDSS) and the Wide Infrared Sky Survey (WISE). First, we find that the luminosity of the [O III] wing component (L{sub wing}) correlates more tightly with the continuum luminosity ({lambda}L{sub {lambda}}(5100)) than the luminosity of the line core component (L{sub core}) does, which is in line with our previous conclusion that the wing component, generally blueshifted, originates from the polar outflows in the inner narrow-line region (NLR). We then find that the MIR CF shows the strongest correlation with L{sub wing}/L{sub bol} rather than with L{sub core}/L{sub bol} or the above fundamental AGN parameters, and the correlation becomes stronger as the infrared wavelength increases. We also confirm the anti-correlations of CF{sub MIR} with L{sub bol} and M{sub BH}, and the lack of dependence of CF{sub MIR} on the Eddington ratio. These results suggest that a large fraction of the warm dust producing MIR emission in AGNs is likely embedded in polar outflows in the NLR instead of in the torus.

  16. Exploring the crowded central region of ten Galactic globular clusters using EMCCDs. Variable star searches and new discoveries

    NASA Astrophysics Data System (ADS)

    Figuera Jaimes, R.; Bramich, D. M.; Skottfelt, J.; Kains, N.; Jørgensen, U. G.; Horne, K.; Dominik, M.; Alsubai, K. A.; Bozza, V.; Calchi Novati, S.; Ciceri, S.; D'Ago, G.; Galianni, P.; Gu, S.-H.; Harpsøe, K. B. W.; Haugbølle, T.; Hinse, T. C.; Hundertmark, M.; Juncher, D.; Korhonen, H.; Mancini, L.; Popovas, A.; Rabus, M.; Rahvar, S.; Scarpetta, G.; Schmidt, R. W.; Snodgrass, C.; Southworth, J.; Starkey, D.; Street, R. A.; Surdej, J.; Wang, X.-B.; Wertz, O.

    2016-04-01

    Aims: We aim to obtain time-series photometry of the very crowded central regions of Galactic globular clusters; to obtain better angular resolution thanhas been previously achieved with conventional CCDs on ground-based telescopes; and to complete, or improve, the census of the variable star population in those stellar systems. Methods: Images were taken using the Danish 1.54-m Telescope at the ESO observatory at La Silla in Chile. The telescope was equipped with an electron-multiplying CCD, and the short-exposure-time images obtained (ten images per second) were stacked using the shift-and-add technique to produce the normal-exposure-time images (minutes). Photometry was performed via difference image analysis. Automatic detection of variable stars in the field was attempted. Results: The light curves of 12 541 stars in the cores of ten globular clusters were statistically analysed to automatically extract the variable stars. We obtained light curves for 31 previously known variable stars (3 long-period irregular, 2 semi-regular, 20 RR Lyrae, 1 SX Phoenicis, 3 cataclysmic variables, 1 W Ursae Majoris-type and 1 unclassified) and we discovered 30 new variables (16 long-period irregular, 7 semi-regular, 4 RR Lyrae, 1 SX Phoenicis and 2 unclassified). Fluxes and photometric measurements for these stars are available in electronic form through the Strasbourg astronomical Data Center. Based on data collected by the MiNDSTEp team with the Danish 1.54m telescope at ESO's La Silla observatory in Chile.Full Table 1 is only available at CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/588/A128

  17. STAR FORMATION IN SELF-GRAVITATING DISKS IN ACTIVE GALACTIC NUCLEI. II. EPISODIC FORMATION OF BROAD-LINE REGIONS

    SciTech Connect

    WangJianmin; Du Pu; Ge Junqiang; Hu Chen; Baldwin, Jack A.; Ferland, Gary J.

    2012-02-20

    This is the second in a series of papers discussing the process and effects of star formation in the self-gravitating disk around the supermassive black holes in active galactic nuclei (AGNs). We have previously suggested that warm skins are formed above the star-forming (SF) disk through the diffusion of warm gas driven by supernova explosions. Here we study the evolution of the warm skins when they are exposed to the powerful radiation from the inner part of the accretion disk. The skins initially are heated to the Compton temperature, forming a Compton atmosphere (CAS) whose subsequent evolution is divided into four phases. Phase I is the duration of pure accumulation supplied by the SF disk. During phase II clouds begin to form due to line cooling and sink to the SF disk. Phase III is a period of preventing clouds from sinking to the SF disk through dynamic interaction between clouds and the CAS because of the CAS overdensity driven by continuous injection of warm gas from the SF disk. Finally, phase IV is an inevitable collapse of the entire CAS through line cooling. This CAS evolution drives the episodic appearance of broad-line regions (BLRs). We follow the formation of cold clouds through the thermal instability of the CAS during phases II and III, using linear analysis. Since the clouds are produced inside the CAS, the initial spatial distribution of newly formed clouds and angular momentum naturally follow the CAS dynamics, producing a flattened disk of clouds. The number of clouds in phases II and III can be estimated, as well as the filling factor of clouds in the BLR. Since the cooling function depends on the metallicity, the metallicity gradients that originate in the SF disk give rise to different properties of clouds in different radial regions. We find from the instability analysis that clouds have column density N{sub H} {approx}< 10{sup 22} cm{sup -2} in the metal-rich regions whereas they have N{sub H} {approx}> 10{sup 22} cm{sup -2} in the

  18. Star Formation in Self-gravitating Disks in Active Galactic Nuclei. II. Episodic Formation of Broad-line Regions

    NASA Astrophysics Data System (ADS)

    Wang, Jian-Min; Du, Pu; Baldwin, Jack A.; Ge, Jun-Qiang; Hu, Chen; Ferland, Gary J.

    2012-02-01

    This is the second in a series of papers discussing the process and effects of star formation in the self-gravitating disk around the supermassive black holes in active galactic nuclei (AGNs). We have previously suggested that warm skins are formed above the star-forming (SF) disk through the diffusion of warm gas driven by supernova explosions. Here we study the evolution of the warm skins when they are exposed to the powerful radiation from the inner part of the accretion disk. The skins initially are heated to the Compton temperature, forming a Compton atmosphere (CAS) whose subsequent evolution is divided into four phases. Phase I is the duration of pure accumulation supplied by the SF disk. During phase II clouds begin to form due to line cooling and sink to the SF disk. Phase III is a period of preventing clouds from sinking to the SF disk through dynamic interaction between clouds and the CAS because of the CAS overdensity driven by continuous injection of warm gas from the SF disk. Finally, phase IV is an inevitable collapse of the entire CAS through line cooling. This CAS evolution drives the episodic appearance of broad-line regions (BLRs). We follow the formation of cold clouds through the thermal instability of the CAS during phases II and III, using linear analysis. Since the clouds are produced inside the CAS, the initial spatial distribution of newly formed clouds and angular momentum naturally follow the CAS dynamics, producing a flattened disk of clouds. The number of clouds in phases II and III can be estimated, as well as the filling factor of clouds in the BLR. Since the cooling function depends on the metallicity, the metallicity gradients that originate in the SF disk give rise to different properties of clouds in different radial regions. We find from the instability analysis that clouds have column density N H <~ 1022 cm-2 in the metal-rich regions whereas they have N H >~ 1022 cm-2 in the metal-poor regions. The metal-rich clouds compose

  19. THE GALACTIC CENTER: NOT AN ACTIVE GALACTIC NUCLEUS

    SciTech Connect

    An, Deokkeun; Ramirez, Solange V.; Sellgren, Kris

    2013-06-01

    We present 10 {mu}m-35 {mu}m Spitzer spectra of the interstellar medium in the Central Molecular Zone (CMZ), the central 210 pc Multiplication-Sign 60 pc of the Galactic center (GC). We present maps of the CMZ in ionic and H{sub 2} emission, covering a more extensive area than earlier spectroscopic surveys in this region. The radial velocities and intensities of ionic lines and H{sub 2} suggest that most of the H{sub 2} 0-0 S(0) emission comes from gas along the line-of-sight, as found by previous work. We compare diagnostic line ratios measured in the Spitzer Infrared Nearby Galaxies Survey to our data. Previous work shows that forbidden line ratios can distinguish star-forming galaxies from low-ionization nuclear emission-line regions (LINERs) and active galactic nuclei (AGNs). Our GC line ratios agree with star-forming galaxies and not with LINERs or AGNs.

  20. American Nuclear Society 1994 student conference eastern region

    SciTech Connect

    1994-12-31

    This report contains abstracts from the 1994 American Nuclear Society Student Conference. The areas covered by these abstracts are: fusion and plasma physics; nuclear chemistry; radiation detection; reactor physics; thermal hydraulics; and corrosion science and waste issues.

  1. The SINS/zC-SINF survey of z ∼ 2 galaxy kinematics: Evidence for powerful active galactic nucleus-driven nuclear outflows in massive star-forming galaxies

    SciTech Connect

    Förster Schreiber, N. M.; Genzel, R.; Kurk, J. D.; Lutz, D.; Tacconi, L. J.; Wuyts, S.; Bandara, K.; Buschkamp, P.; Davies, R.; Eisenhauer, F.; Lang, P.; Newman, S. F.; Burkert, A.; Carollo, C. M.; Lilly, S. J.; Cresci, G.; Daddi, E.; Mainieri, V.; Mancini, C.; and others

    2014-05-20

    We report the detection of ubiquitous powerful nuclear outflows in massive (≥10{sup 11} M {sub ☉}) z ∼ 2 star-forming galaxies (SFGs), which are plausibly driven by an active galactic nucleus (AGN). The sample consists of the eight most massive SFGs from our SINS/zC-SINF survey of galaxy kinematics with the imaging spectrometer SINFONI, six of which have sensitive high-resolution adaptive optics-assisted observations. All of the objects are disks hosting a significant stellar bulge. The spectra in their central regions exhibit a broad component in Hα and forbidden [N II] and [S II] line emission, with typical velocity FWHM ∼ 1500 km s{sup –1}, [N II]/Hα ratio ≈ 0.6, and intrinsic extent of 2-3 kpc. These properties are consistent with warm ionized gas outflows associated with Type 2 AGN, the presence of which is confirmed via independent diagnostics in half the galaxies. The data imply a median ionized gas mass outflow rate of ∼60 M {sub ☉} yr{sup –1} and mass loading of ∼3. At larger radii, a weaker broad component is detected but with lower FWHM ∼485 km s{sup –1} and [N II]/Hα ≈ 0.35, characteristic for star formation-driven outflows as found in the lower-mass SINS/zC-SINF galaxies. The high inferred mass outflow rates and frequent occurrence suggest that the nuclear outflows efficiently expel gas out of the centers of the galaxies with high duty cycles and may thus contribute to the process of star formation quenching in massive galaxies. Larger samples at high masses will be crucial in confirming the importance and energetics of the nuclear outflow phenomenon and its connection to AGN activity and bulge growth.

  2. The Galactic plane region near ℓ = 93°. III. Multi-wavelength emission from SNR 3C 434.1

    NASA Astrophysics Data System (ADS)

    Foster, T.

    2005-10-01

    New Canadian Galactic Plane Survey radio continuum, ROSAT X-ray, and optical line observations of supernova remnant (SNR) 3C 434.1 (G94.0+1.0) are presented. A radio spectrum of index α=0.4 (where S∝ ν -α ) confirms this SNR's emission signature as predominantly synchrotron, and suggests the SNR is in the Sedov expansion phase. The morphology of the remnant is compared in X-ray, optical, and radio continuum, and the brightest emission in all three wavelength regimes is from the eastern hemisphere of 3C 434.1, which marks where the SNR shock is interacting with the inside wall of its stellar wind bubble (SWB) home. The system is determined to be 4.5 kpc distant, residing in the Perseus Arm Spiral shock. From a deep Hα mosaic of the region, λ 656 nm Hα line emission is observed that correlates well with radio synchrotron emission and anticorrelates with X-ray emission from the SNR. The origin of this optical emission is likely dense (ne=40 cm-3) cooling H II from the wall of the SWB, where the SNR shock has penetrated and become radiative (vs˜ 100 km s-1). The X-ray spectrum of this SNR between 0.5 and 2.4 keV is well modelled by a single-temperature thermal plasma (Te=4.5×106 K, ne=0.2 cm-3). The magnetic field of the bright radio synchrotron emission region is found (under the assumption of near equipartition) to be B˜ 15 μ G, a factor of 3 compression of the ambient ISM field (5 μ G). The westward extension of 3C 434.1 is the result of ongoing free expansion of the shock into the lower density interior of the SWB. I use multiwavelength observations to arrive at a unique solution for an interaction model of 3C 434.1 with the SWB, from which the age (t=25 000 yr) and mass ejected in the explosion (Mej=15.5 M⊙ ) are determined. I also find an initial blast-wave velocity of 1350 km s-1, typical of type 1b SNe.

  3. The mid-infrared emission of narrow-line active galactic nuclei: Star formation, nuclear activity, and two populations revealed by WISE

    SciTech Connect

    Rosario, David J.; Burtscher, Leonard; Davies, Richard; Genzel, Reinhard; Lutz, Dieter; Tacconi, Linda J.

    2013-12-01

    We explore the nature of the long-wavelength mid-infrared (MIR) emission of a sample of 13,000 local Type II (narrow-line) active galactic nuclei (AGNs) from the Sloan Digital Sky Survey (SDSS) using 12 μm and 22 μm photometry from the WISE all-sky survey. In combination with FIRST 1.4 GHz photometry, we show that AGNs divide into two relatively distinct populations or 'branches' in the plane of MIR and radio luminosity. Seyfert galaxies lie almost exclusively on an MIR-bright branch (Branch A), while low-ionization nuclear emission line galaxies (LINERs) are split evenly into Branch A and the MIR-faint Branch B. We devise various tests to constrain the processes that define the branches, including a comparison to the properties of pure star-forming inactive galaxies on the MIR-radio plane. We demonstrate that the total MIR emission of objects on Branch A, including most Seyfert galaxies, is governed primarily by host star formation, with ≈15% of the 22 μm luminosity coming from AGN-heated dust. This implies that ongoing dusty star formation is a general property of Seyfert host galaxies. We show that the 12 μm broadband luminosity of AGNs on Branch A is suppressed with respect to star-forming galaxies, possibly due to the destruction of PAHs or deeper 10 μm Si absorption in AGNs. We uncover a correlation between the MIR luminosity and [O III] λ5007 luminosity in AGNs. This suggests a relationship between the star formation rate and nuclear luminosity in the AGN population, but we caution on the importance of selection effects inherent to such AGN-dominated emission-line galaxies in driving such a correlation. We highlight the MIR-radio plane as a useful tool in comparative studies of star formation and nuclear activity in AGNs.

  4. Climate and chemistry effects of a regional scale nuclear conflict

    NASA Astrophysics Data System (ADS)

    Stenke, A.; Hoyle, C. R.; Luo, B.; Rozanov, E.; Gröbner, J.; Maag, L.; Brönnimann, S.; Peter, T.

    2013-10-01

    Previous studies have highlighted the severity of detrimental effects for life on earth after an assumed regionally limited nuclear war. These effects are caused by climatic, chemical and radiative changes persisting for up to one decade. However, so far only a very limited number of climate model simulations have been performed, giving rise to the question how realistic previous computations have been. This study uses the coupled chemistry climate model (CCM) SOCOL, which belongs to a different family of CCMs than previously used, to investigate the consequences of such a hypothetical nuclear conflict. In accordance with previous studies, the present work assumes a scenario of a nuclear conflict between India and Pakistan, each applying 50 warheads with an individual blasting power of 15 kt ("Hiroshima size") against the major population centers, resulting in the emission of tiny soot particles, which are generated in the firestorms expected in the aftermath of the detonations. Substantial uncertainties related to the calculation of likely soot emissions, particularly concerning assumptions of target fuel loading and targeting of weapons, have been addressed by simulating several scenarios, with soot emissions ranging from 1 to 12 Tg. Their high absorptivity with respect to solar radiation leads to a rapid self-lofting of the soot particles into the strato- and mesosphere within a few days after emission, where they remain for several years. Consequently, the model suggests earth's surface temperatures to drop by several degrees Celsius due to the shielding of solar irradiance by the soot, indicating a major global cooling. In addition, there is a substantial reduction of precipitation lasting 5 to 10 yr after the conflict, depending on the magnitude of the initial soot release. Extreme cold spells associated with an increase in sea ice formation are found during Northern Hemisphere winter, which expose the continental land masses of North America and Eurasia to a

  5. Spatial Analysis of Spectra from Galactic Planetary Nebulae and Extragalactic H II Regions: Testing for Abundance Variations

    NASA Astrophysics Data System (ADS)

    Miller, Timothy R.

    2017-01-01

    Presented here is a spatial analysis of spectra for seven planetary nebulae (NGC 2440, NGC 3242, NGC 5315, NGC 5882, NGC 7662, IC 2165, and IC 3568) as well as H II regions from six nearly face-on, spiral galaxies (NGC 2403, NGC 3310, NGC 4321, NGC 5194, NGC 5236, and NGC 5457). The two main goals of the study were (1) to investigate whether or not each planetary nebula (PN) is chemically homogeneous; and (2) to search for evidence of azimuthal abundance gradients in the disks of the galaxies. Each of these test the validity of assumptions commonly made for these two object types, i.e., (1) Ejecta from asymptotic giant branch stars are well mixed and (2) elements returned to the interstellar medium of a spiral galaxy are “instantaneously” distributed around the disk for a fixed distance from the center.The PN homogeneity problem was addressed by spatially dividing each long-slit HST/STIS spectrum into many smaller regions across each object and calculating the abundances of each region. The major result is that the ejecta are indeed homogeneous in each planetary nebula for the elements probed. A secondary goal was to constrain the temperature and luminosity of each PN central star, which was accomplished by modeling each object using the photoionization code CLOUDY.The spectra for the galaxies are from the VIRUS-P spectrograph, an integral field unit consisting of 246 fibers arranged in a square, with the observations centered on or near the nuclear bulge, covering a full 360 degrees around each galaxy and encompassing numerous H II regions located near the bulge. Additional goals for each galaxy included obtaining radial abundance gradients and accurate carbon and neon abundances for high metallicity H II regions.

  6. Empirical Proton-Neutron Interactions and Nuclear Density Functional Theory: Global, Regional, and Local Comparisons

    SciTech Connect

    Stoitsov, Mario; Cakirli, R. B.; Casten, R. F.; Nazarewicz, Witold; Satula, W.

    2007-01-01

    Calculations of nuclear masses, using nuclear density functional theory, are presented for even-even nuclei spanning the nuclear chart. The resulting binding energy differences can be interpreted in terms of valence proton-neutron interactions. These are compared globally, regionally, and locally with empirical values. Overall, excellent agreement is obtained. Discrepancies highlight neglected degrees of freedom and can point to improved density functionals.

  7. Empirical Proton-Neutron Interactions and Nuclear Density Functional Theory: Global, Regional, and Local Comparisons

    SciTech Connect

    Stoitsov, M.; Cakirli, R. B.; Casten, R. F.; Nazarewicz, W.; Satula, W.

    2007-03-30

    Calculations of nuclear masses, using nuclear density functional theory, are presented for even-even nuclei spanning the nuclear chart. The resulting binding energy differences can be interpreted in terms of valence proton-neutron interactions. These are compared globally, regionally, and locally with empirical values. Overall, excellent agreement is obtained. Discrepancies highlight neglected degrees of freedom and can point to improved density functionals.

  8. Empirical proton-neutron interactions and nuclear density functional theory: global, regional, and local comparisons.

    PubMed

    Stoitsov, M; Cakirli, R B; Casten, R F; Nazarewicz, W; Satuła, W

    2007-03-30

    Calculations of nuclear masses, using nuclear density functional theory, are presented for even-even nuclei spanning the nuclear chart. The resulting binding energy differences can be interpreted in terms of valence proton-neutron interactions. These are compared globally, regionally, and locally with empirical values. Overall, excellent agreement is obtained. Discrepancies highlight neglected degrees of freedom and can point to improved density functionals.

  9. Novel nuclear barcode regions for the identification of flatfish species.

    PubMed

    Paracchini, Valentina; Petrillo, Mauro; Lievens, Antoon; Puertas Gallardo, Antonio; Martinsohn, Jann Thorsten; Hofherr, Johann; Maquet, Alain; Silva, Ana Paula Barbosa; Kagkli, Dafni Maria; Querci, Maddalena; Patak, Alex; Angers-Loustau, Alexandre

    2017-09-01

    The development of an efficient seafood traceability framework is crucial for the management of sustainable fisheries and the monitoring of potential substitution fraud across the food chain. Recent studies have shown the potential of DNA barcoding methods in this framework, with most of the efforts focusing on using mitochondrial targets such as the cytochrome oxidase 1 and cytochrome b genes. In this article, we show the identification of novel targets in the nuclear genome, and their associated primers, to be used for the efficient identification of flatfishes of the Pleuronectidae family. In addition, different in silico methods are described to generate a dataset of barcode reference sequences from the ever-growing wealth of publicly available sequence information, replacing, where possible, labour-intensive laboratory work. The short amplicon lengths render the analysis of these new barcode target regions ideally suited to next-generation sequencing techniques, allowing characterisation of multiple fish species in mixed and processed samples. Their location in the nucleus also improves currently used methods by allowing the identification of hybrid individuals.

  10. A high spectral resolution map of the nuclear emitting regions of NGC 7582

    NASA Astrophysics Data System (ADS)

    Braito, Valentina; Reeves, J. N.; Bianchi, S.; Nardini, E.; Piconcelli, E.

    2017-04-01

    We present the results of the spatial and spectral analysis of the deep ( 200 ks) Chandra HETG observation of the changing look AGN NGC 7582. During this long Chandra observation, NGC 7582 was in a highly obscured state. Therefore, we also consider a short ( 24 ks) Suzaku observation, which caught NGC 7582 in a Compton thick state. This allows us to determine the underlying continuum model and the amount of absorption [NH = (1.2 ± 0.2) × 1024 cm-2]. A wealth of emission lines (from Mg, Si, S, and Fe) are detected in the Chandra data, which allows us to map the structure of the circumnuclear emitters. The high resolution spectrum reveals that the soft X-ray emission originates in a hybrid gas, which is ionized in part by the strong circumnuclear star-forming activity and in part by the central AGN. The high resolution images confirm that the emitting region is highly inhomogeneous and extends up to a few hundred pc from the nuclear source. The X-ray images are more extended in the lower energy lines (Ne and Mg) than in the higher energy lines (Si, Fe); the former are dominated by the collisionally ionized gas from the starburst and the latter by the photoionized AGN emission. This is supported by the analysis of the He-like triplets in the grating spectra. We deduce that a low density (ne 0.3-1 cm-3) photoionized gas is responsible for the strong forbidden components, which is likely to originate from extended AGN narrow line region gas at distances of 200-300 pc from the black hole. We also detect an absorption feature at 6.7 keV that is consistent with the rest frame energy of the resonance absorption line from Fe xxv (Elab = 6.7 keV), which traces the presence of a sub-parsec scale ionized circumnuclear absorber. The emerging picture is in agreement with our new view of the circumnuclear gas in AGN, where the medium is clumpy and stratified in both density and ionization. These absorbers and emitters are located on different scales, from the sub-pc broad line

  11. Neutrinos and γ -rays from the Galactic Center Region after H.E.S.S. multi-TeV measurements

    NASA Astrophysics Data System (ADS)

    Celli, Silvia; Palladino, Andrea; Vissani, Francesco

    2017-02-01

    The hypothesis of a PeVatron in the Galactic Center, emerged with the recent γ -ray measurements of H.E.S.S. [1], motivates the search for neutrinos from this source. The effect of γ -ray absorption is studied: at the energies currently probed, the known background radiation fields lead to small effects, whereas it is not possible to exclude large effects due to new IR radiation fields near the very center. Precise upper limits on neutrino fluxes are derived and the underlying hypotheses are discussed. The expected number of events for ANTARES, IceCube and KM3NeT, based on the H.E.S.S. measurements, are calculated. It is shown that km^3-class telescopes in the Northern hemisphere have the potential of observing high-energy neutrinos from this important astronomical object and can check the existence of a hadronic PeV galactic accelerator.

  12. Radiogenic p-isotopes from type Ia supernova, nuclear physics uncertainties, and galactic chemical evolution compared with values in primitive meteorites

    SciTech Connect

    Travaglio, C.; Gallino, R.; Rauscher, T.; Dauphas, N.; Röpke, F. K.; Hillebrandt, W. E-mail: claudia.travaglio@b2fh.org

    2014-11-10

    The nucleosynthesis of proton-rich isotopes is calculated for multi-dimensional Chandrasekhar-mass models of Type Ia supernovae (SNe Ia) with different metallicities. The predicted abundances of the short-lived radioactive isotopes {sup 92}Nb, {sup 97,} {sup 98}Tc, and {sup 146}Sm are given in this framework. The abundance seeds are obtained by calculating s-process nucleosynthesis in the material accreted onto a carbon-oxygen white dwarf from a binary companion. A fine grid of s-seeds at different metallicities and {sup 13}C-pocket efficiencies is considered. A galactic chemical evolution model is used to predict the contribution of SN Ia to the solar system p-nuclei composition measured in meteorites. Nuclear physics uncertainties are critical to determine the role of SNe Ia in the production of {sup 92}Nb and {sup 146}Sm. We find that, if standard Chandrasekhar-mass SNe Ia are at least 50% of all SN Ia, they are strong candidates for reproducing the radiogenic p-process signature observed in meteorites.

  13. New Wolf-Rayet stars in Galactic open clusters - Sher 1 and the giant H II region core Westerlund 2

    NASA Technical Reports Server (NTRS)

    Moffat, Anthony F. J.; Shara, Michael M.; Potter, Michael

    1991-01-01

    Two new Galactic Wolf-Rayet stars were found in open clusters: a WN4 star in the O9 cluster Sher 1 and a WN7 star in the O7 cluster Westerlund 2. This confirms a previous trend, namely that fainter, hotter WN stars tend to be older than brighter, cooler WN stars. This may be a consequence of evolution via extreme mass loss.

  14. New Wolf-Rayet stars in Galactic open clusters - Sher 1 and the giant H II region core Westerlund 2

    SciTech Connect

    Moffat, A.F.J.; Shara, M.M.; Potter, M. Space Telescope Science Institute, Baltimore, MD )

    1991-08-01

    Two new Galactic Wolf-Rayet stars were found in open clusters: a WN4 star in the O9 cluster Sher 1 and a WN7 star in the O7 cluster Westerlund 2. This confirms a previous trend, namely that fainter, hotter WN stars tend to be older than brighter, cooler WN stars. This may be a consequence of evolution via extreme mass loss. 18 refs.

  15. CHANDRA X-RAY AND HUBBLE SPACE TELESCOPE IMAGING OF OPTICALLY SELECTED KILOPARSEC-SCALE BINARY ACTIVE GALACTIC NUCLEI. I. NATURE OF THE NUCLEAR IONIZING SOURCES

    SciTech Connect

    Liu, Xin; Civano, Francesca; Shen, Yue; Green, Paul; Greene, Jenny E.; Strauss, Michael A.

    2013-01-10

    Kiloparsec-scale binary active galactic nuclei (AGNs) signal active supermassive black hole (SMBH) pairs in merging galaxies. Despite their significance, unambiguously confirmed cases remain scarce and most have been discovered serendipitously. In a previous systematic search, we optically identified four kpc-scale binary AGNs from candidates selected with double-peaked narrow emission lines at z = 0.1-0.2. Here, we present Chandra and Hubble Space Telescope Wide Field Camera 3 (WFC3) imaging of these four systems. We critically examine and confirm the binary-AGN scenario for two of the four targets, by combining high angular resolution X-ray imaging spectroscopy with Chandra ACIS-S, better nuclear position constraints from WFC3 F105W imaging, and direct starburst estimates from WFC3 F336W imaging; for the other two targets, the existing data are still consistent with the binary-AGN scenario, but we cannot rule out the possibility of only one AGN ionizing gas in both merging galaxies. We find tentative evidence for a systematically smaller X-ray-to-[O III] luminosity ratio and/or higher Compton-thick fraction in optically selected kpc-scale binary AGNs than in single AGNs, possibly caused by a higher nuclear gas column due to mergers and/or a viewing angle bias related to the double-peak narrow-line selection. While our result lends some further support to the general approach of optically identifying kpc-scale binary AGNs, it also highlights the challenge and ambiguity of X-ray confirmation.

  16. Near-infrared surface photometry and morphology in virgo cluster spiral galaxy nuclear regions

    NASA Astrophysics Data System (ADS)

    Rauscher, Bernard J.

    1995-04-01

    This paper presents very high spatial resolution (seeing 0.75 arcsec FWHM) K band surface photometry of 15 Virgo cluster spiral galaxy nuclear regions (radii less then 1 kpc). It presents B and I CCD images of 13 of these galaxies. The goals of the study were: (1) to begin to establish a K band baseline of normal spiral galaxy nuclear regions against which peculiar galaxies may be compared, (2) to provide better contsraints on N-body models, and (3) to complement near-infrared studies of large scale structure in spiral galaxies with very high resolution imaging of the important nuclear regions. The principle findings are (1) between 1/4 and 1/3 of these nuclear regions show K band evidence of traxiality, (2) approximately 1/2 of these galaxies have axisymmetric nuclear regions, and (3) NGC 4321 has a bar that is not detectable in the optical images.

  17. Active Galactic Nuclei Feedback and Galactic Outflows

    NASA Astrophysics Data System (ADS)

    Sun, Ai-Lei

    Feedback from active galactic nuclei (AGN) is thought to regulate the growth of supermassive black holes (SMBHs) and galaxies. The most direct evidence of AGN feedback is probably galactic outflows. This thesis addresses the link between SMBHs and their host galaxies from four different observational perspectives. First, I study the local correlation between black hole mass and the galactic halo potential (the MBH - Vc relation) based on Very Large Array (VLA) HI observations of galaxy rotation curves. Although there is a correlation, it is no tighter than the well-studied MBH - sigma* relation between the black hole mass and the potential of the galactic bulge, indicating that physical processes, such as feedback, could link the evolution of the black hole to the baryons in the bulge. In what follows, I thus search for galactic outflows as direct evidence of AGN feedback. Second, I use the Atacama Large Millimeter Array (ALMA) to observe a luminous obscured AGN that hosts an ionized galactic outflow and find a compact but massive molecular outflow that can potentially quench the star formation in 10. 6 years.The third study extends the sample of known ionized outflows with new Magellan long-slit observations of 12 luminous obscured AGN. I find that most luminous obscured AGN (Lbol > 1046 ergs s-1) host ionized outflows on 10 kpc scales, and the size of the outflow correlates strongly with the luminosity of the AGN. Lastly, to capitalize on the power of modern photometric surveys, I experiment with a new broadband imaging technique to study the morphology of AGN emission line regions and outflows. With images from the Sloan Digital Sky Survey (SDSS), this method successfully constructs images of the [OIII]lambda5007 emission line and reveals hundreds of extended emission-line systems. When applied to current and future surveys, such as the Large Synoptic Survey Telescope (LSST), this technique could open a new parameter space for the study of AGN outflows. In

  18. AN ASSESSMENT OF THE ENERGY BUDGETS OF LOW-IONIZATION NUCLEAR EMISSION REGIONS

    SciTech Connect

    Eracleous, Michael; Hwang, Jason A.; Flohic, Helene M. L. G.

    2010-03-10

    Using the spectral energy distributions (SEDs) of the weak active galactic nuclei (AGNs) in 35 low-ionization nuclear emission regions (LINERs) presented in a companion paper, we assess whether photoionization by the weak AGN can power the emission-line luminosities measured through the large (few-arcsecond) apertures used in ground-based spectroscopic surveys. Spectra taken through such apertures are used to define LINERs as a class and constrain non-stellar photoionization models for LINERs. Therefore, our energy budget test is a self-consistency check of the idea that the observed emission lines are powered by an AGN. We determine the ionizing luminosities and photon rates by integrating the observed SEDs and by scaling a template SED. We find that even if all ionizing photons are absorbed by the line-emitting gas, more than half of the LINERs in this sample suffer from a deficit of ionizing photons. In 1/3 of LINERs the deficit is severe. If only 10% of the ionizing photons are absorbed by the gas, there is an ionizing photon deficit in 85% of LINERs. We disfavor the possibility that additional electromagnetic power, either obscured or emitted in the unobservable far-UV band, is available from the AGN. Therefore, we consider other power sources such as mechanical heating by compact jets from the AGN and photoionization by either young or old stars. Photoionization by young stars may be important in a small fraction of cases. Mechanical heating can provide enough power in most cases but it is not clear how this power would be transferred to the emission-line gas. Photoionization by post asymptotic giant branch stars is an important power source; it provides more ionizing photons than the AGN in more than half of the LINERs and enough ionizing photons to power the emission lines in 1/3 of the LINERs. It appears likely that the emission-line spectra of LINERs obtained from the ground include the sum of emission from different regions where different power sources

  19. Galactic arm structure and gamma ray astronomy

    NASA Technical Reports Server (NTRS)

    Bignami, G. F.; Fichtel, C. E.

    1974-01-01

    Unexpectedly high energy gamma radiation over a broad region of the galactic plane in the general direction of the galactic center was observed. A model is proposed wherein the galactic cosmic rays are preferentially located in the high matter density regions of galactic arm segments, as a result of the weight of the matter in these arms tieing the magnetic fields and hence the cosmic rays to these regions. The presently observed galactic gamma ray longitudinal distribution can be explained with the current estimate of the average galactic matter density: if the average arm to interarm matter ratio is five to one for the major arm segments toward the galactic center from the sun; and if the cosmic ray density normalized to its local value is assumed to be directly proportional to the matter density.

  20. Galactic Winds

    NASA Astrophysics Data System (ADS)

    Veilleux, Sylvain

    Galactic winds have become arguably one of the hottest topics in extragalactic astronomy. This enthusiasm for galactic winds is due in part to the detection of winds in many, if not most, high-redshift galaxies. Galactic winds have also been invoked by theorists to (1) suppress the number of visible dwarf galaxies and avoid the "cooling catastrophe" at high redshift that results in the overproduction of massive luminous galaxies, (2) remove material with low specific angular momentum early on and help enlarge gas disks in CDM + baryons simulations, (3) reduce the dark mass concentrations in galaxies, (4) explain the mass-metallicity relation of galaxies from selective loss of metal-enriched gas from smaller galaxies, (5) enrich and "preheat" the ICM, (6) enrich the IGM without disturbing the Lyαforest significantly, and (7) inhibit cooling flows in galaxy clusters with active cD galaxies. The present paper highlights a few key aspects of galactic winds taken from a recent ARAA review by Veilleux, Cecil, &Bland-Hawthorn (2005; herafter VCBH). Readers interested in a more detailed discussion of this topic are encouraged to refer to the original ARAA article.

  1. SNRs in the MOST Galactic Centre Survey

    NASA Astrophysics Data System (ADS)

    Gray, A. D.

    1994-04-01

    The Molonglo Observatory Synthesis Telescope (MOST) has been used to make an 843 MHz survey of the Galactic Center region. This survey has excellent sensitivity to structures up to approximately 30 min in size and has given an unprecedented view of the region between longitudes l = 5 deg and l = 355 deg, with latitudes in the range absolute value of b less than or equal to 2.5 deg (see Gray, 1993, PhD thesis, University of Sydney). Using these data, a detailed study of the supernova remannts (SNRs) in the inner Galaxy--both known objects and new identifications--was possible. Nine objects in the survey region are catalogued as SNRs, only one of which, G358.4-1.9, had properties inconsistent with those previously published (Green, 1991 Proc. Astron. Soc. Pacific, 103, 209). It was, in fact, totally absent from the MOST images, although it is quite prominent in single-dish images (e.g., Reich et al., 1990, Astron. Astrophys. Suppl., 85, 633). No other SNR in the southern Galaxy exhibits this behavior (Anne Green, private communication). Comparisons with data from other wave-bands, notably Parkes 6 and 13 cm images and IRAS 60 micrometers plates, suggest that this object is in fact thermal, as was originally suggested by Westerhout (1958, Bull. Astron. Inst. Netherlands, 14, 215). In addition to the known objects, seventeen new objects were identified as SNR candidates on the basis of their morphological features and/or nonthermal emission properties. A comparison of the longitude distribution of SNRs before and after the MOST surveys (including the MOST Galactic Plane Survey; see the previous Abstract by Green) showed that, on the whole, the distribution does not deviate significantly from that expected from a random distribution of SNRs in the Galactic disc. However, an excess of 14 SNRs is present in the Galactic Center. nuclear region, which may be due to anomalous SNR rates and

  2. Nuclear wastes in the arctic: An analysis of arctic and other regional impacts from Soviet nuclear contamination

    SciTech Connect

    1995-09-01

    One of the lasting legacies of the Cold War, and the buildup in nuclear weaponry and military over the past 50 years, is nuclear waste and its threat to human health and the environment. Notable examples of waste dumped into the open environment have caused people and nations to demand information about what was done and what health risks may result. In 1993, disclosures about Russian dumping of submarine reactors, nuclear fuel, and other wastes into the Arctic and North Pacific Oceans brought this region and its problems into the world spotlight. This report examines the environmental and human health impacts from wastes dumped into the Arctic and North Pacific regions, from nuclear contaminants discharged into these environments, and from radioactive releases from both past and future nuclear activities in the region. The report presents what is known and unknown about this waste and contamination and how it may affect public health. It also stresses the need for a stable and enduring institutional framework and international cooperation for long-term observation and monitoring.

  3. Massive accretion disks in galactic nuclei

    NASA Astrophysics Data System (ADS)

    Scoville, N. Z.

    In the luminous infrared galaxies, very large masses of interstellar matter have been concentrated in the galactic nuclei at radii less than 300 pc as a result of galactic merging, while in lower luminosity systems, this material is probably concentrated by stellar bars and viscous accretion. In both cases, the nuclear region will be highly obscured by dust at visible wavelengths, forcing studies to longer wavelengths where the extinction is reduced. We review recent high resolution near infrared (HST-NICMOS) and mm-interferometric imaging of the dense gas and dust accretion disks in nearby luminous galactic nuclei. Since this nuclear ISM is the active ingredient for both starburst activity and a likely fuel for central AGNs, the nuclear accretion disks are critical to both the activity and the optical appearance of the nucleus. For a sample of 24 luminous galaxies imaged with NICMOS at 1-2μm, approximately 13 show nuclear point sources, indicating the existence of a central AGN or an intense starburst at <= 50 pc radius. Approximately 14 of the sample galaxies have apparent central dust disks. In the best studied ultraluminous IR galaxy, Arp 220, the 2μm imaging shows dust disks in both of the merging galactic nuclei and mm-CO line imaging indicates molecular gas masses ~ 109Msolar for each disk. The two gas disks in Arp 220 are counterrotating and their dynamical masses are ~ 2×109Msolar, that is, only slightly larger than the gas masses. These disks have radii ~ 100 pc and thickness 10-50 pc. The high brightness temperatures of the CO lines indicate that the gas in the disks has area filling factors ~25-50% and mean densities of >= 104 cm-3. Within these nuclear disks, the rate of massive star formation is undoubtedly prodigious and, given the high viscosity of the gas, there will also be high radial accretion rates, perhaps >= 10 Msolar yr-1. If this inflow persists to very small radii, it is enough to feed even the highest

  4. Western Region American Nuclear Society regional student conference, April 12-14, 1985

    SciTech Connect

    Not Available

    1985-01-01

    Abstracts of papers presented at the conference are contained in this proceedings. Topics of technical sessions included fusion and space reactors, numerical and computer modeling, nuclear medicine and radiation effects, and general nuclear technology. (GHT)

  5. Searching for dark clouds in the outer galactic plane. I. A statistical approach for identifying extended red(dened) regions in 2MASS

    NASA Astrophysics Data System (ADS)

    Frieswijk, W. W. F.; Shipman, R. F.

    2010-06-01

    Context. Most of what is known about clustered star formation to date comes from well studied star forming regions located relatively nearby, such as Rho-Ophiuchus, Serpens and Perseus. However, the recent discovery of infrared dark clouds may give new insights in our understanding of this dominant mode of star formation in the Galaxy. Though the exact role of infrared dark clouds in the formation process is still somewhat unclear, they seem to provide useful laboratories to study the very early stages of clustered star formation. Infrared dark clouds have been identified predominantly toward the bright inner parts of the galactic plane. The low background emission makes it more difficult to identify similar objects in mid-infrared absorption in the outer parts. This is unfortunate, because the outer Galaxy represents the only nearby region where we can study effects of different (external) conditions on the star formation process. Aims: The aim of this paper is to identify extended red regions in the outer galactic plane based on reddening of stars in the near-infrared. We argue that these regions appear reddened mainly due to extinction caused by molecular clouds and young stellar objects. The work presented here is used as a basis for identifying star forming regions and in particular the very early stages. An accompanying paper describes the cross-identification of the identified regions with existing data, uncovering more on the nature of the reddening. Methods: We use the Mann-Whitney U-test, in combination with a friends-of-friends algorithm, to identify extended reddened regions in the 2MASS all-sky JHK survey. We process the data on a regular grid using two different resolutions, 60´´ and 90´´. The two resolutions have been chosen because the stellar surface density varies between the crowded spiral arm regions and the sparsely populated galactic anti-center region. Results: We identify 1320 extended red regions at the higher resolution and 1589 in the

  6. The UKIDSS Galactic Plane Survey

    NASA Astrophysics Data System (ADS)

    Lucas, P. W.; Hoare, M. G.; Longmore, A.; Schröder, A. C.; Davis, C. J.; Adamson, A.; Bandyopadhyay, R. M.; de Grijs, R.; Smith, M.; Gosling, A.; Mitchison, S.; Gáspár, A.; Coe, M.; Tamura, M.; Parker, Q.; Irwin, M.; Hambly, N.; Bryant, J.; Collins, R. S.; Cross, N.; Evans, D. W.; Gonzalez-Solares, E.; Hodgkin, S.; Lewis, J.; Read, M.; Riello, M.; Sutorius, E. T. W.; Lawrence, A.; Drew, J. E.; Dye, S.; Thompson, M. A.

    2008-11-01

    The UKIDSS Galactic Plane Survey (GPS) is one of the five near-infrared Public Legacy Surveys that are being undertaken by the UKIDSS consortium, using the Wide Field Camera on the United Kingdom Infrared Telescope. It is surveying 1868 deg2 of the northern and equatorial Galactic plane at Galactic latitudes -5° < b < 5° in the J, H and K filters and a ~200-deg2 area of the Taurus-Auriga-Perseus molecular cloud complex in these three filters and the 2.12 μm (1-0) H2 filter. It will provide data on ~2 × 109 sources. Here we describe the properties of the data set and provide a user's guide for its exploitation. We also present brief Demonstration Science results from DR2 and from the Science Verification programme. These results illustrate how GPS data will frequently be combined with data taken in other wavebands to produce scientific results. The Demonstration Science comprises six studies. (1) A GPS-Spitzer-GLIMPSE cross-match for the star formation region G28.983-0.603 to identify YSOs. This increases the number of YSOs identified by a factor of 10 compared to GLIMPSE alone. (2) A wide-field study of the M17 nebula, in which an extinction map of the field is presented and the effect of source confusion on luminosity functions in different subregions is noted. (3) H2 emission in the ρ Ophiuchi dark cloud. All the molecular jets are traced back to a single active clump containing only a few protostars, which suggests that the duration of strong jet activity and associated rapid accretion in low-mass protostars is brief. (4) X-ray sources in the nuclear bulge. The GPS data distinguishes local main-sequence counterparts with soft X-ray spectra from nuclear bulge giant counterparts with hard X-ray spectra. (5) External galaxies in the zone of avoidance. The galaxies are clearly distinguished from stars in fields at longitudes l > 90°. (6) IPHAS-GPS optical-infrared spectrophotometric typing. The (i' - J) versus (J - H) diagram is used to distinguish A-F type

  7. Cloud Structure of Galactic OB Cluster-forming Regions from Combining Ground- and Space-based Bolometric Observations

    NASA Astrophysics Data System (ADS)

    Lin, Yuxin; Liu, Hauyu Baobab; Li, Di; Zhang, Zhi-Yu; Ginsburg, Adam; Pineda, Jaime E.; Qian, Lei; Galván-Madrid, Roberto; McLeod, Anna Faye; Rosolowsky, Erik; Dale, James E.; Immer, Katharina; Koch, Eric; Longmore, Steve; Walker, Daniel; Testi, Leonardo

    2016-09-01

    We have developed an iterative procedure to systematically combine the millimeter and submillimeter images of OB cluster-forming molecular clouds, which were taken by ground-based (CSO, JCMT, APEX, and IRAM-30 m) and space telescopes (Herschel and Planck). For the seven luminous (L\\gt {10}6 L ⊙) Galactic OB cluster-forming molecular clouds selected for our analyses, namely W49A, W43-Main, W43-South, W33, G10.6-0.4, G10.2-0.3, and G10.3-0.1, we have performed single-component, modified blackbody fits to each pixel of the combined (sub)millimeter images, and the Herschel PACS and SPIRE images at shorter wavelengths. The ˜10″ resolution dust column density and temperature maps of these sources revealed dramatically different morphologies, indicating very different modes of OB cluster-formation, or parent molecular cloud structures in different evolutionary stages. The molecular clouds W49A, W33, and G10.6-0.4 show centrally concentrated massive molecular clumps that are connected with approximately radially orientated molecular gas filaments. The W43-Main and W43-South molecular cloud complexes, which are located at the intersection of the Galactic near 3 kpc (or Scutum) arm and the Galactic bar, show a widely scattered distribution of dense molecular clumps/cores over the observed ˜10 pc spatial scale. The relatively evolved sources G10.2-0.3 and G10.3-0.1 appear to be affected by stellar feedback, and show a complicated cloud morphology embedded with abundant dense molecular clumps/cores. We find that with the high angular resolution we achieved, our visual classification of cloud morphology can be linked to the systematically derived statistical quantities (i.e., the enclosed mass profile, the column density probability distribution function (N-PDF), the two-point correlation function of column density, and the probability distribution function of clump/core separations). In particular, the massive molecular gas clumps located at the center of G10.6-0.4 and

  8. Galactic plane gamma-radiation

    NASA Technical Reports Server (NTRS)

    Hartman, R. C.; Kniffen, D. A.; Thompson, D. J.; Fichtel, C. E.; Ogelman, H. B.; Tumer, T.; Ozel, M. E.

    1979-01-01

    Analysis of the SAS 2 data together with the COS B results shows that the distribution of galactic gamma-radiation has several similarities to that of other large-scale tracers of galactic structure. The radiation is primarily confined to a thin disc which exhibits offsets from b = 0 degrees similar to warping at radio frequencies. The principal distinction of the gamma-radiation is a stronger contrast in intensity between the region from 310 to 45 degrees in longitude and the regions away from the center that can be attributed to a variation in cosmic-ray density as a function of position in Galaxy. The diffuse galactic gamma-ray energy spectrum shows no significant variation in direction, and the spectrum seen along the plane is the same as that for the galactic component of the gamma-radiation at high altitudes. The uniformity of the galactic gamma-ray spectrum, the smooth decrease in intensity as a function of altitude, and the absence of any galactic gamma-ray sources at high altitudes indicate a diffuse origin for bulk of the galactic gamma-radiation rather than a collection of localized sources.

  9. The Galactic Plane region near ℓ = 93°. II. A stellar wind bubble surrounding SNR 3C 434.1

    NASA Astrophysics Data System (ADS)

    Foster, T.; Routledge, D.; Kothes, R.

    2004-04-01

    New Canadian Galactic Plane Survey λ 21 cm H I line observations towards supernova remnant (SNR) 3C 434.1 (G94.0+1.0) are presented. We find a fragmented and thin-walled atomic hydrogen shell inside which the SNR is seen to be contained at v≃ -80 km s-1, which we report to be a highly evolved stellar wind bubble (SWB) associated with the remnant. A dark area in the midst of otherwise bright line emission is also seen near -71 km s-1. An absorption profile to the extragalactic continuum source 4C 51.45 (superimposed on the shell's north face) allows us to probe the shell's optical depth, kinetic temperature and expansion velocity. The material in the dark area has the same properties as material in the fragmented shell, suggesting that the dark area is actually the far-side ``cap'' of the shell seen absorbing emission from warm background gas, the first instance of H I Self Absorption (HISA) seen in such a structure. We show that the kinematic distance of 10 kpc derived from a flat Galactic rotation model is highly improbable, and that this bubble/SNR system is most likely resident in the Perseus Spiral Arm, lying 5.2 kpc distant. We model the SWB shell in three dimensions as a homologously expanding ellipsoid. Physical and dynamical characteristics of the bubble are determined, showing its advanced evolutionary state. Finally, from a photometric search for one or more stars associated with the SWB, we determine that three B0V stars and one O4V star currently inhabit this bubble, and that the progenitor of 3C 434.1 was at latest also an O4 type star.

  10. Peculiarities of α-element abundances in Galactic open clusters

    NASA Astrophysics Data System (ADS)

    Marsakov, V. A.; Gozha, M. L.; Koval', V. V.; Shpigel', L. V.

    2016-01-01

    A catalog compiling the parameters of 346 open clusters, including their metallicities, positions, ages, and velocities has been composed. The elements of the Galactic orbits for 272 of the clusters have been calculated. Spectroscopic determinations of the relative abundances, [el/Fe], for 14 elements synthesized in various nuclear processes averaged over data from 109 publications are presented for 90 clusters. The compiled data indicate that the relative abundances of primary α elements (oxygen and magnesium) exhibit different dependences on metallicity, age, Galactocentric distance, and the elements of the Galactic orbits in clusters with high, elongated orbits satisfying the criterion ( Z max 2 + 4 e 2)1/2 > 0.40 and in field stars of the Galactic thin disk ( Z max is the maximum distance of the orbit from the Galactic plane in kiloparsec and e is the eccentricity of the Galactic orbit). Since no systematic effects distorting the relative abundances of the studied elements in these clusters have been found, these difference suggest real differences between clusters with high, elongated orbits and field stars. In particular, this supports the earlier conclusion, based on an analysis of the elements of the Galactic orbits, that some clusters formed as a result of interactions between high-velocity,metal-poor clouds and the interstellar mediumof theGalactic thin disk. On average, clusters with high, elongated orbits and metallicities [Fe/H] < -0.1 display lower relative abundances of the primary a elements than do field stars. The low [O, Mg/Fe] ratios of these clusters can be understood if the high-velocity clouds that gave rise to them were formed of interstellar material from regions where the star-formation rate and/or the masses of Type II supernovae were lower than near the Galactic plane. It is also shown that, on average, the relative abundances of the primary a elements are higher in relatively metal-rich clusters with high, elongated orbits than in

  11. Comparison of the activity measurements in nuclear medicine services in the Brazilian northeast region.

    PubMed

    de Farias Fragoso, Maria da Conceição; de Albuquerque, Antônio Morais; de Oliveira, Mércia L; de Lima, Fabiana Farias; Barreto, Flávio Chiappetta Paes; de Andrade Lima, Ricardo

    2013-12-01

    The Northeastern Regional Centre for Nuclear Sciences (CRCN-NE), National Nuclear Energy Commission, has organized for the first time in nuclear medicine services (NMSs) in the Brazilian northeast region a comparison of activity measurements for (99m)Tc, (131)I, (67)Ga, (201)Tl and (57)Co. This tool is widely utilized to evaluate not only the accuracy of radionuclide calibrators, but also the competence of NMSs to measure the activity of the radiopharmaceuticals and the performance of the personnel involved in these measurements. The comparison results showed that 90% of the results received from participants are within the ±10% limit established by the Brazilian Norm.

  12. Regional nuclear proliferation and future conflict: Implications for the operational commander. Final report

    SciTech Connect

    Swicker, C.C.

    1995-02-13

    The end of the Cold War is thought to signal a watershed in American military thought, allowing the practical application of operational art in conventional conflict, unshackled by the doctrine of the strategic defensive imposed by the nuclear stalemate of a bipolar world. This thesis is proven by the success of the U.S.-led coalition in Operation DESERT STORM. But what if Iraq had had a deliverable nuclear capability. The operational impact of a nuclear-capable regional predator on U.S. power projection capabilities is examined in the context of three assumptions: (1) Nuclear proliferation into the ranks of the regional powers is inevitable, given the present dynamics of power, politics and economics. (2) Given the concomitant inevitability of United States engagement in future regional conflicts throughout the world, American forces (either unilaterally or as part of a coalition) will eventually have to confront a regional nuclear power. (3) For a variety of reasons, the United States will not elect a nuclear response to such a challenge. Given these assumptions, the impact of a credible, localized nuclear threat on the operational commander is examined, concentrating on the extent to which such a threat might constrain his free exercise of classical operational art.

  13. Gamma ray constraints on the Galactic supernova rate

    NASA Technical Reports Server (NTRS)

    Hartmann, D.; The, L.-S.; Clayton, Donald D.; Leising, M.; Mathews, G.; Woosley, S. E.

    1991-01-01

    We perform Monte Carlo simulations of the expected gamma ray signatures of Galactic supernovae of all types to estimate the significance of the lack of a gamma ray signal due to supernovae occurring during the last millenium. Using recent estimates of the nuclear yields, we determine mean Galactic supernova rates consistent with the historic supernova record and the gamma ray limits. Another objective of these calculations of Galactic supernova histories is their application to surveys of diffuse Galactic gamma ray line emission.

  14. Galactic oscillator symmetry

    NASA Technical Reports Server (NTRS)

    Rosensteel, George

    1995-01-01

    Riemann ellipsoids model rotating galaxies when the galactic velocity field is a linear function of the Cartesian coordinates of the galactic masses. In nuclear physics, the kinetic energy in the linear velocity field approximation is known as the collective kinetic energy. But, the linear approximation neglects intrinsic degrees of freedom associated with nonlinear velocity fields. To remove this limitation, the theory of symplectic dynamical symmetry is developed for classical systems. A classical phase space for a self-gravitating symplectic system is a co-adjoint orbit of the noncompact group SP(3,R). The degenerate co-adjoint orbit is the 12 dimensional homogeneous space Sp(3,R)/U(3), where the maximal compact subgroup U(3) is the symmetry group of the harmonic oscillator. The Hamiltonian equations of motion on each orbit form a Lax system X = (X,F), where X and F are elements of the symplectic Lie algebra. The elements of the matrix X are the generators of the symplectic Lie algebra, viz., the one-body collective quadratic functions of the positions and momenta of the galactic masses. The matrix F is composed from the self-gravitating potential energy, the angular velocity, and the hydostatic pressure. Solutions to the hamiltonian dynamical system on Sp(3,R)/U(3) are given by symplectic isospectral deformations. The Casimirs of Sp(3,R), equal to the traces of powers of X, are conserved quantities.

  15. THREE-DIMENSIONAL STELLAR KINEMATICS AT THE GALACTIC CENTER: MEASURING THE NUCLEAR STAR CLUSTER SPATIAL DENSITY PROFILE, BLACK HOLE MASS, AND DISTANCE

    SciTech Connect

    Do, T.; Martinez, G. D.; Bullock, J.; Kaplinghat, M.; Peter, A. H. G.; Yelda, S.; Ghez, A.; Phifer, K.; Lu, J. R.

    2013-12-10

    We present three-dimensional (3D) kinematic observations of stars within the central 0.5 pc of the Milky Way (MW) nuclear star cluster (NSC) using adaptive optics imaging and spectroscopy from the Keck telescopes. Recent observations have shown that the cluster has a shallower surface density profile than expected for a dynamically relaxed cusp, leading to important implications for its formation and evolution. However, the true 3D profile of the cluster is unknown due to the difficulty in de-projecting the stellar number counts. Here, we use spherical Jeans modeling of individual proper motions and radial velocities to constrain, for the first time, the de-projected spatial density profile, cluster velocity anisotropy, black hole mass (M {sub BH}), and distance to the Galactic center (R {sub 0}) simultaneously. We find that the inner stellar density profile of the late-type stars, ρ(r)∝r {sup –γ}, have a power law slope γ=0.05{sub −0.60}{sup +0.29}, much more shallow than the frequently assumed Bahcall-Wolf slope of γ = 7/4. The measured slope will significantly affect dynamical predictions involving the cluster, such as the dynamical friction time scale. The cluster core must be larger than 0.5 pc, which disfavors some scenarios for its origin. Our measurement of M{sub BH}=5.76{sub −1.26}{sup +1.76}×10{sup 6} M {sub ☉} and R{sub 0}=8.92{sub −0.55}{sup +0.58} kpc is consistent with that derived from stellar orbits within 1'' of Sgr A*. When combined with the orbit of S0-2, the uncertainty on R {sub 0} is reduced by 30% (8.46{sub −0.38}{sup +0.42} kpc). We suggest that the MW NSC can be used in the future in combination with stellar orbits to significantly improve constraints on R {sub 0}.

  16. THE STRUCTURE OF THE BROAD-LINE REGION IN ACTIVE GALACTIC NUCLEI. I. RECONSTRUCTED VELOCITY-DELAY MAPS

    SciTech Connect

    Grier, C. J.; Peterson, B. M.; Pogge, R. W.; De Rosa, G.; Martini, Paul; Kochanek, C. S.; Zu, Y.; Shappee, B.; Beatty, T. G.; Salvo, C. Araya; Bird, J. C.; Horne, Keith; Bentz, M. C.; Denney, K. D.; Siverd, R.; Sergeev, S. G.; Borman, G. A.; Bord, D. J.; Che, X.; and others

    2013-02-10

    We present velocity-resolved reverberation results for five active galactic nuclei. We recovered velocity-delay maps using the maximum entropy method for four objects: Mrk 335, Mrk 1501, 3C 120, and PG 2130+099. For the fifth, Mrk 6, we were only able to measure mean time delays in different velocity bins of the H{beta} emission line. The four velocity-delay maps show unique dynamical signatures for each object. For 3C 120, the Balmer lines show kinematic signatures consistent with both an inclined disk and infalling gas, but the He II {lambda}4686 emission line is suggestive only of inflow. The Balmer lines in Mrk 335, Mrk 1501, and PG 2130+099 show signs of infalling gas, but the He II emission in Mrk 335 is consistent with an inclined disk. We also see tentative evidence of combined virial motion and infalling gas from the velocity-binned analysis of Mrk 6. The maps for 3C 120 and Mrk 335 are two of the most clearly defined velocity-delay maps to date. These maps constitute a large increase in the number of objects for which we have resolved velocity-delay maps and provide evidence supporting the reliability of reverberation-based black hole mass measurements.

  17. Parameters of the Galactic density-wave spiral structure: Line-of-sight velocities of 156 star-forming regions

    NASA Astrophysics Data System (ADS)

    Griv, Evgeny; Jiang, Ing-Guey; Russeil, Delphine

    2015-02-01

    This paper is the third in a series of articles devoted to the determination of the Milky Way's spiral density-wave structure from the kinematics of the Galactic objects, using the ordinary Oort equation. The minor effects caused by the Lin-Shu type two-dimensional density waves are also taken into account. The results obtained allow us to conclude that (a) several low-m spiral patterns with different number of spiral arms m and amplitudes of the perturbed gravitational potential may coexist in the Galaxy. (b) the single-armed m=1 spiral mode dominates the pattern. The distribution of stars and gas in outer parts of the system is thus asymmetric (“lopsided”), (c) the phase velocity of spiral waves (or the pattern rotation speed) does not depend on m and therefore each Fourier component of a gravity perturbation rotates with the same angular velocity, (d) the Sun lies between the main trailing spiral-arm segments in Carina-Sagittarius and Perseus, closer to the inner Carina-Sagittarius one. The local Cygnus-Orion arm in which the Sun is located is thus not a part of the main spiral pattern, and finally (e) the Galaxy seems to be more homogeneous and rotating more like a solid body than in the standard m=0 model (i.e. spiral arms not included in the model).

  18. A Large-Scale, Low-Frequency Murchison Widefield Array Survey of Galactic H ii Regions between 260 < l < 340

    NASA Astrophysics Data System (ADS)

    Hindson, L.; Johnston-Hollitt, M.; Hurley-Walker, N.; Callingham, J. R.; Su, H.; Morgan, J.; Bell, M.; Bernardi, G.; Bowman, J. D.; Briggs, F.; Cappallo, R. J.; Deshpande, A. A.; Dwarakanath, K. S.; For, B.-Q.; Gaensler, B. M.; Greenhill, L. J.; Hancock, P.; Hazelton, B. J.; Kapińska, A. D.; Kaplan, D. L.; Lenc, E.; Lonsdale, C. J.; Mckinley, B.; McWhirter, S. R.; Mitchell, D. A.; Morales, M. F.; Morgan, E.; Oberoi, D.; Offringa, A.; Ord, S. M.; Procopio, P.; Prabu, T.; Shankar, N. Udaya; Srivani, K. S.; Staveley-Smith, L.; Subrahmanyan, R.; Tingay, S. J.; Wayth, R. B.; Webster, R. L.; Williams, A.; Williams, C. L.; Wu, C.; Zheng, Q.

    2016-05-01

    We have compiled a catalogue of H ii regions detected with the Murchison Widefield Array between 72 and 231 MHz. The multiple frequency bands provided by the Murchison Widefield Array allow us identify the characteristic spectrum generated by the thermal Bremsstrahlung process in H ii regions. We detect 306 H ii regions between 260° < l < 340° and report on the positions, sizes, peak, integrated flux density, and spectral indices of these H ii regions. By identifying the point at which H ii regions transition from the optically thin to thick regime, we derive the physical properties including the electron density, ionised gas mass, and ionising photon flux, towards 61 H ii regions. This catalogue of H ii regions represents the most extensive and uniform low frequency survey of H ii regions in the Galaxy to date.

  19. PCR primers for 30 novel gene regions in the nuclear genomes of Lepidoptera.

    PubMed

    Wahlberg, Niklas; Peña, Carlos; Ahola, Milla; Wheat, Christopher W; Rota, Jadranka

    2016-01-01

    We report primer pairs for 30 new gene regions in the nuclear genomes of Lepidoptera that can be amplified using a standard PCR protocol. The new primers were tested across diverse Lepidoptera, including nonditrysians and a wide selection of ditrysians. These new gene regions give a total of 11,043 bp of DNA sequence data and they show similar variability to traditionally used nuclear gene regions in studies of Lepidoptera. We feel that a PCR-based approach still has its place in molecular systematic studies of Lepidoptera, particularly at the intrafamilial level, and our new set of primers now provides a route to generating phylogenomic datasets using traditional methods.

  20. The Galactic Center compared with nuclei of nearby galaxies

    NASA Astrophysics Data System (ADS)

    Combes, Francoise

    2017-01-01

    Understanding our Galactic Center is easier with insights from nearby galactic nuclei. Both the star formation activity in nuclear gas disks, driven by bars and nuclear bars, and the fueling of low-luminosity AGN, followed by feedback of jets, driving molecular outflows, were certainly present in our Galactic Center, which appears now quenched. Comparisons and diagnostics are reviewed, in particular of m = 2 and m = 1 modes, lopsidedness, different disk orientations, and fossil evidences of activity and feedback.

  1. SAS-2 galactic gamma ray results, 1

    NASA Technical Reports Server (NTRS)

    Thompson, D. J.; Fichtel, C. E.; Hartman, R. C.; Kniffen, D. A.; Bignami, G. F.; Lamb, R. C.; Oegelman, H.; Oezel, M. E.; Tuemer, T.

    1976-01-01

    Continuing analysis of the data from the SAS-2 high energy gamma-ray experiment has produced an improved picture of the sky at photon energies above 35 MeV. On a large scale, the diffuse emission from the galactic plane is the dominant feature observed by SAS-2. This galactic plane emission is most intense between galactic longitude 310 and 45 deg, corresponding to a region within 7kpc of the galactic center. Within the high-intensity region, SAS-2 observes peaks around galactic longitudes 315 deg, 330 deg, 345 deg, 0 deg, and 35 deg. These peaks appear to be correlated with such galactic features and components as molecular hydrogen, atomic hydrogen, magnetic fields, cosmic ray concentrations, and photon fields.

  2. Extension of chromatin accessibility by nuclear matrix attachment regions

    NASA Astrophysics Data System (ADS)

    Jenuwein, Thomas; Forrester, William C.; Fernández-Herrero, Luis A.; Laible, Götz; Dull, Maude; Grosschedl, Rudolf

    1997-01-01

    Transcription of the variable region of the rearranged immunoglobulin μ gene is dependent on an enhancer sequence situated within one of the introns of the gene. Experiments with transgenic mice have shown that activation of the promoter controlling this transcription also requires the matrix-attachment regions (MARs) that flank the intronic enhancer1. As this μ gene enhancer can establish local areas of accessible chromatin2, we investigated whether the MARs can extend accessibility to more distal positions. We eliminated interactions between enhancer- and promoter-bound factors by linking μ enhancer/MAR fragments to the binding sites for bacteriophage RNA polymerases that were either close to or one kilobase distal to the enhancer. The μ enhancer alone mediated chromatin accessibility at the proximal site but required a flanking MAR to confer accessibility upon the distal promoter. This long-range accessibilty correlates with extended demethylation of the geμ enhancer to generate an extended domain of accessible chromatin.

  3. Radio structure at 8.4 GHz in Sagittarius A, the compact radio source at the Galactic center

    NASA Technical Reports Server (NTRS)

    Jauncey, David L.; Batchelor, Robert A.; Gates, John; Preston, Robert A.; Meier, David L.; Morabito, David D.; Skjerve, Lyle; Slade, Martin A.; Niell, Arthur E.; Wehrle, Ann E.

    1989-01-01

    VLBI observations of the compact, nonthermal radio source at the Galactic center show it to be elongated at 8.4 GHz along a position angle of 82 + or - 6 deg. The source has an axial ratio of 0.53 + or - 0.10 with a major axis of 17.4 + or - 0.5 mas. Examination of VLA maps of the Galactic center region indicate no obvious alignment with this smaller-scale elongation of the nuclear region, nor is the nuclear position angle aligned with the axis of Galactic rotation. Comparison with the size measured at frequencies from 1 to 22 GHz shows that the size follows very closely the lambda-squared dependence expected from interstellar scattering. The alongated nature of the source implies either that the scattering medium is anisotropic or that some remnant of the intrinsic structure remains visible through the scattering medium.

  4. Dusty cradles in a turbulent nursery: the SGR A east H II region complex at the galactic center

    SciTech Connect

    Lau, R. M.; Herter, T. L.; Adams, J. D.; Morris, M. R.

    2014-10-20

    We present imaging at 19, 25, 31, and 37 μm of the compact H II region complex G-0.02-0.07 located 6 pc in projection from the center of the Galaxy obtained with SOFIA using FORCAST. G-0.02-0.07 contains three compact H II regions (A, B, and C) and one ultra-compact H II region (D). Our observations reveal the presence of two faint, infrared sources located 23'' and 35'' to the east of region C (FIRS 1 and 2) and detect dust emission in two of the three 'ridges' of ionized gas west of region A. The 19/37 color temperature and 37 μm optical depth maps of regions A-C are used to characterize the dust energetics and morphology. Regions A and B exhibit average 19/37 color temperatures of ∼105 K, and regions C and D exhibit color temperatures of ∼115 K and ∼130 K, respectively. Using the DustEM code, we model the SEDs of regions A-D and FIRS 1, all of which require populations of very small, transiently heated grains and large, equilibrium-heated grains. We also require the presence of polycyclic aromatic hydrocarbons in regions A-C in order to fit the 3.6, 4.5, 5.8, and 8.0 μm fluxes observed by Spitzer/IRAC. The location of the heating source for region A is determined by triangulation from distances and temperatures derived from DustEM models fit to SEDs of three different points around the region, and it is found to be displaced to the northeast of the center of curvature near the color temperature peak. Based on total luminosity, expected 1.90 μm fluxes, and proximity to the mid-IR color temperature peaks, we identify heating source candidates for regions A, B, and C. However, for region D, the observed fluxes at 1.87 and 1.90 μm of the previously proposed ionizing star are a factor of ∼40 times too bright to be the heating source and hence is likely just a star lying along the line of sight toward region D.

  5. The distribution of cosmic rays in the galaxy and their dynamics as deduced from recent gamma ray observations. [noting maximum in toroidal region between 4 and 5 kpc from galactic center

    NASA Technical Reports Server (NTRS)

    Puget, J. L.; Stecker, F. W.

    1974-01-01

    Data from SAS-2 on the galactic gamma ray line flux as a function of longitude is examined. It is shown that the gamma ray emissivity varies with galactocentric distance and is about an order of magnitude higher than the local value in a toroidal region between 4 and 5 kpc from the galactic center. This enhancement is accounted for in part by first-order Fermi acceleration, compression, and trapping of cosmic rays consistent with present ideas of galactic dynamics and galactic structure theory. Calculations indicate that cosmic rays in the 4 to 5 kpc region are trapped and accelerated over a mean time of the order of a few million years or about 2 to 4 times the assumed trapping time in the solar region of the galaxy on the assumption that only an increased cosmic ray flux is responsible for the observed emission. Cosmic ray nucleons, cosmic ray electrons, and ionized hydrogen gas were found to have a strikingly similar distribution in the galaxy according to both the observational data and the theoretical model discussed.

  6. Near infrared study of shrouded active galactic nuclei

    NASA Astrophysics Data System (ADS)

    Hearty, Frederick R.

    2007-08-01

    In this work, I consider the astronomical search for active galactic nuclei which has been predominately conducted in the optical portion of the electromagnetic spectrum and propose a multi-wavelength approach. I describe the opto-mechanical systems of the Near Infrared Camera and Fabry-Perot Spectrometer (NIC-FPS) which I, as part of a team, designed, built, and commissioned, and which I then used for this scientific investigation. This investigation had two purposes: (1) to demonstrate the state-of-theart capability of NIC-FPS, and (2) to examine the large population of astronomical radio sources that remain undetected in optical observations. My broadband near infrared imaging, when combined with archival optical, mid-infrared, and radio data, revealed large numbers of active galactic nuclei and related quasi- stellar objects which may, in part, be hidden by shrouds of gas and dust. This newly revealed population is likely to outnumber the optically selected population, and may indicate a phase of galactic nuclear activation which has been strongly selected against by existing surveys. Such objects are critical to our scientific understanding because they can be used as probes of the most distant regions of the observable Universe. Additionally, I propose a life cycle model for active galactic nuclei which accounts for the shrouded phase and for the disparity between the optically detected and near infrared detected radio sources.

  7. THE ORIGIN OF THE 6.4 keV LINE EMISSION AND H{sub 2} IONIZATION IN THE DIFFUSE MOLECULAR GAS OF THE GALACTIC CENTER REGION

    SciTech Connect

    Dogiel, V. A.; Chernyshov, D. O.; Tatischeff, V.; Terrier, R.

    2013-07-10

    We investigate the origin of the diffuse 6.4 keV line emission recently detected by Suzaku and the source of H{sub 2} ionization in the diffuse molecular gas of the Galactic center (GC) region. We show that Fe atoms and H{sub 2} molecules in the diffuse interstellar medium of the GC are not ionized by the same particles. The Fe atoms are most likely ionized by X-ray photons emitted by Sgr A* during a previous period of flaring activity of the supermassive black hole. The measured longitudinal intensity distribution of the diffuse 6.4 keV line emission is best explained if the past activity of Sgr A* lasted at least several hundred years and released a mean 2-100 keV luminosity {approx}> 10{sup 38} erg s{sup -1}. The H{sub 2} molecules of the diffuse gas cannot be ionized by photons from Sgr A*, because soft photons are strongly absorbed in the interstellar gas around the central black hole. The molecular hydrogen in the GC region is most likely ionized by low-energy cosmic rays, probably protons rather than electrons, whose contribution into the diffuse 6.4 keV line emission is negligible.

  8. A Multiwavelength Study of Star Formation in the Vicinity of Galactic H II Region Sh 2-100

    NASA Astrophysics Data System (ADS)

    Samal, M. R.; Pandey, A. K.; Ojha, D. K.; Ghosh, S. K.; Kulkarni, V. K.; Kusakabe, N.; Tamura, M.; Bhatt, B. C.; Thompson, M. A.; Sagar, R.

    2010-05-01

    We present multiwavelength investigation of morphology, physical-environment, stellar contents, and star formation activity in the vicinity of star-forming region Sh 2-100. It is found that the Sh 2-100 region contains seven H II regions of ultracompact and compact nature. The present estimation of distance for three H II regions, along with the kinematic distance for others, suggests that all of them belong to the same molecular cloud complex. Using near-infrared photometry, we identified the most probable ionizing sources of six H II regions. Their approximate photometric spectral type estimates suggest that they are massive early-B to mid-O zero-age-main-sequence stars and agree well with radio continuum observations at 1280 MHz, for sources whose emissions are optically thin at this frequency. The morphology of the complex shows a non-uniform distribution of warm and hot dust, well mixed with the ionized gas, which correlates well with the variation of average visual extinction (~4.2-97 mag) across the region. We estimated the physical parameters of ionized gas with the help of radio continuum observations. We detected an optically visible compact nebula located to the south of the 850 μm emission associated with one of the H II regions and the diagnostic of the optical emission line ratios gives electron density and electron temperature of ~0.67 × 103 cm-3 and ~104 K, respectively. The physical parameters suggest that all the H II regions are in different stages of evolution, which correlate well with the probable ages in the range ~0.01-2 Myr of the ionizing sources. The spatial distribution of infrared excess stars, selected from near-infrared and Infrared Array Camera color-color diagrams, correlates well with the association of gas and dust. The positions of infrared excess stars, ultracompact and compact H II regions at the periphery of an H I shell, possibly created by a WR star, indicate that star formation in Sh 2-100 region might have been induced

  9. Induced starburst and nuclear activity: Faith, facts, and theory

    NASA Technical Reports Server (NTRS)

    Shlosman, Isaac

    1990-01-01

    The problem of the origin of starburst and nuclear (nonstellar) activity in galaxies is reviewed. A physical understanding of the mechanism(s) that induce both types of activity requires one to address the following issues: (1) what is the source of fuel that powers starbursts and active galactic nuclei; and (2) how is it channeled towards the central regions of host galaxies? As a possible clue, the author examines the role of non-axisymmetric perturbations of galactic disks and analyzes their potential triggers. Global gravitational instabilities in the gas on scales approx. 100 pc appear to be crucial for fueling the active galactic nuclei.

  10. TESTING 24 {mu}m AND INFRARED LUMINOSITY AS STAR FORMATION TRACERS FOR GALACTIC STAR-FORMING REGIONS

    SciTech Connect

    Vutisalchavakul, Nalin; Evans, Neal J. II

    2013-03-10

    We have tested some relations for star formation rates used in extragalactic studies for regions within the Galaxy. In nearby molecular clouds, where the initial mass function is not fully sampled, the dust emission at 24 {mu}m greatly underestimates star formation rates (by a factor of 100 on average) when compared to star formation rates determined from counting young stellar objects. The total infrared emission does no better. In contrast, the total far-infrared method agrees within a factor of two on average with star formation rates based on radio continuum emission for massive, dense clumps that are forming enough massive stars to have L{sub TIR} exceed 10{sup 4.5} L{sub Sun }. The total infrared and 24 {mu}m also agree well with each other for both nearby, low-mass star-forming regions and the massive, dense clump regions.

  11. Self-shadowing effects of slim accretion disks in active galactic nuclei: the diverse appearance of the broad-line region

    SciTech Connect

    Wang, Jian-Min; Qiu, Jie; Du, Pu; Ho, Luis C.

    2014-12-10

    Supermassive black holes in active galactic nuclei (AGNs) undergo a wide range of accretion rates, which lead to diversity of appearance. We consider the effects of anisotropic radiation from accretion disks on the broad-line region (BLR) from the Shakura-Sunyaev regime to slim disks with super-Eddington accretion rates. The geometrically thick funnel of the inner region of slim disks produces strong self-shadowing effects that lead to very strong anisotropy of the radiation field. We demonstrate that the degree of anisotropy of the radiation fields grows with increasing accretion rate. As a result of this anisotropy, BLR clouds receive different spectral energy distributions depending on their location relative to the disk, resulting in the diverse observational appearance of the BLR. We show that the self-shadowing of the inner parts of the disk naturally produces two dynamically distinct regions of the BLR, depending on accretion rate. These two regions manifest themselves as kinematically distinct components of the broad Hβ line profile with different line widths and fluxes, which jointly account for the Lorentzian profile generally observed in narrow-line Seyfert 1 galaxies. In the time domain, these two components are expected to reverberate with different time lags with respect to the varying ionizing continuum, depending on the accretion rate and the viewing angle of the observer. The diverse appearance of the BLR due to the anisotropic ionizing energy source can be tested by reverberation mapping of Hβ and other broad emission lines (e.g., Fe II), providing a new tool to diagnose the structure and dynamics of the BLR. Other observational consequences of our model are also explored.

  12. Molecular cloud shredding in the Galactic Bar

    NASA Astrophysics Data System (ADS)

    Liszt, H. S.

    2006-02-01

    Seen just outside the innermost regions of the galactic center, the kinematics of molecular gas are dominated by a handful of compact but unusually broad-lined features of enigmatic origin. We show, using previous data, that there is a family of such features whose members are distinguished morphologically by their extreme vertical extension, perpendicular to the inclined plane of the overall gas tilt. Having isolated the features spatially, we mapped them with varying degrees of completeness at high resolution (1´) in lines of 12CO, 13CO and CS. Although very broad profiles exist in some individual beams, more generally we resolved the kinematics into spatial gradients which earlier were smeared in broader beams to form wider lines. The largest apparent velocity gradients are typically with respect to galactic latitude but motions are confined to the range of velocities inside the galactic terminal velocity, indicating that it is the galactic gravitational potential which is being tapped to create the observed kinematics. We interpret the broad-lined features qualitatively in terms of recent hydrodynamical models of gas flow in strongly barred galaxies: standing shocks which occur where gas enters the Galactic dust lane can account for the presence of broad lines over small spatial volumes wherever molecular gas is actually engaged in this process. To interpret the dynamical sequencing of the complex behaviour seen within the broad-line features we discuss how the Sun must be oriented with respect to the bar. In doing so, we identify the nuclear star-forming rings seen in other galaxies with the complex of giant H II regions Sgr A, B, C etc. and show that the kinematics are as expected for a ring of radius 175 pc (for a Sun-center distance of 8.5 kpc) rotating at about 210 km s-1. Gas having clear and strong outward-directed non-circular motion around l=0° (the famous "expanding molecular ring") is then associated with the "spray" of incoming gas at the inner

  13. Upper Limit on Transient Emission of a Broad, Redshifted 0.511 MeV gamma -Ray Line from the Galactic Center Region

    NASA Astrophysics Data System (ADS)

    Harris, M. J.; Share, G. H.; Leising, M. D.

    1993-05-01

    A broad gamma -ray line (FWHM >200 keV) has been reported on two separate occasions from distinct sources in the Galactic Center region, at energies below 0.511 MeV: at ~ 0.46 MeV from V1223 Sgr in 1977 by HEAO-1 (Briggs 1990, Briggs et al. 1991) and at ~ 0.48 MeV from 1E 1740.7--2942 on 1990 13 October by SIGMA (Bouchet et al. 1991). These features have been interpreted as a 0.511 MeV line arising from annihilation of positrons in a hot accretion disk surrounding a black hole, thermally broadened and gravitationally redshifted (reviewed by Ramaty et al. 1992). We have searched in SMM Gamma Ray Spectrometer (GRS) data for transient emission of this feature from the broad region of the Galactic Center containing the two sources (which, at ~ 12 deg apart, are not resolved by the GRS). The data were obtained between 1981 and 1989, and were searched for transient emission of the feature on time-scales between ~ 1 d and ~ 1 yr by the method of Harris et al. (1991, 1993). We find no evidence for significant emission in such a feature, down to 3 sigma upper limits which are characteristically \\(\\simeq 3 \\times 10^{-3} \\) gamma cm(-2) s(-1) over time-scales 12 d or greater, and \\(\\simeq 1.2 \\times 10^{-2} \\) gamma cm(-2) s(-1) over time-scales ~ 1 d. For comparison, Briggs (1990) measured a transient flux of \\(6 \\times 10^{-3} \\) gamma cm(-2) s(-1) from V1223 Sgr on a time-scale of a few months, and Bouchet et al. (1991) detected \\(1.3 \\times 10^{-2} \\) gamma cm(-2) s(-1) from 1E 1740.7--2942 on a time-scale ~ 1 d. We deduce a duty cycle for this transient at the reported intensities, from either source, of < 1.3% on ~ 12 d time-scales, or of <= 0.3% on ~ 1 d time-scales. This work was supported by NASA grant DPR--W17, 808. L. Bouchet et al., 1991, ApJ 383, L45 M.S. Briggs, PhD Thesis, Univ. of California, San Diego M.S. Briggs et al., IAUC 5229 M.J. Harris et al., 1991, Bull AAS 23, 1440 M.J. Harris et al., 1993, ApJ in press R. Ramaty et al., 1992, ApJ 392

  14. Atomic Hydrogen in a Galactic Center Outflow

    NASA Astrophysics Data System (ADS)

    McClure-Griffiths, N. M.; Green, J. A.; Hill, A. S.; Lockman, F. J.; Dickey, J. M.; Gaensler, B. M.; Green, A. J.

    2013-06-01

    We describe a population of small, high-velocity, atomic hydrogen clouds, loops, and filaments found above and below the disk near the Galactic center. The objects have a mean radius of 15 pc, velocity widths of ~14 km s-1, and are observed at |z| heights up to 700 pc. The velocity distribution of the clouds shows no signature of Galactic rotation. We propose a scenario where the clouds are associated with an outflow from a central star-forming region at the Galactic center. We discuss the clouds as entrained material traveling at ~200 km s-1 in a Galactic wind.

  15. A lack of classical Cepheids in the inner part of the Galactic disc

    NASA Astrophysics Data System (ADS)

    Matsunaga, Noriyuki; Feast, Michael W.; Bono, Giuseppe; Kobayashi, Naoto; Inno, Laura; Nagayama, Takahiro; Nishiyama, Shogo; Matsuoka, Yoshiki; Nagata, Tetsuya

    2016-10-01

    Recent large-scale infrared surveys have been revealing stellar populations in the inner Galaxy seen through strong interstellar extinction in the disc. In particular, classical Cepheids with their period-luminosity and period-age relations are useful tracers of Galactic structure and evolution. Interesting groups of Cepheids reported recently include four Cepheids in the nuclear stellar disc (NSD), about 200 pc around the Galactic Centre, found by Matsunaga et al. and those spread across the inner part of the disc reported by Dékány and collaborators. We here report our discovery of nearly 30 classical Cepheids towards the bulge region, some of which are common with Dékány et al., and discuss the large impact of the reddening correction on distance estimates for these objects. Assuming that the four Cepheids in the NSD are located at the distance of the Galactic Centre and that the near-infrared extinction law, i.e. wavelength dependency of the interstellar extinction, is not systematically different between the NSD and other bulge lines of sight, most of the other Cepheids presented here are located significantly further than the Galactic Centre. This suggests a lack of Cepheids in the inner 2.5 kpc region of the Galactic disc except the NSD. Recent radio observations show a similar distribution of star-forming regions.

  16. Influence of nuclear data on uranium enrichment results obtained by XKalpha spectral region analysis.

    PubMed

    Morel, Jean; Clark, DeLynn

    2002-01-01

    During the recent international uranium exercise organized by the ESARDA NDA Working Group, several participants determined the uranium enrichment of samples using methods based on analysis of the XKalpha region of the uranium spectrum. For these methods, no calibration with known enrichment standards is required but accurate knowledge of nuclear data is needed. Despite this requirement, it appeared that during the exercise, four different sets of nuclear data were used by the participants. In view of this fact, it was decided to introduce these nuclear data sets into some computer codes in order to check their effects on the enrichment results. Two participants agreed to cooperate, and the main results of this test are presented here. It can be seen that three nuclear data sets, although different, give satisfactory results with no significant bias. Nevertheless, a more accurate characterization of X- and gamma-ray emission from 235U, 235U and their daughters appears necessary.

  17. Multi-frequency polarimetry of the Galactic radio background around 350 MHz. I. A region in Auriga around l = 161 deg, b = 16 deg

    NASA Astrophysics Data System (ADS)

    Haverkorn, M.; Katgert, P.; de Bruyn, A. G.

    2003-06-01

    With the Westerbork Synthesis Radio Telescope (WSRT), multi-frequency polarimetric images were taken of the diffuse radio synchrotron background in a ~ 5 deg times 7 deg region centered on (l,b) = (161 deg ,16 deg ) in the constellation of Auriga. The observations were done simultaneously in 5 frequency bands, from 341 MHz to 375 MHz, and have a resolution of ~ 5.0arcminx5 .0arcmin cosec delta . The polarized intensity P and polarization angle phi show ubiquitous structure on arcminute and degree scales, with polarized brightness temperatures up to about 13 K. On the other hand, no structure at all is observed in total intensity I to an rms limit of 1.3 K, indicating that the structure in the polarized radiation must be due to Faraday rotation and depolarization mostly in the warm component of the nearby Galactic interstellar medium (ISM). Different depolarization processes create structure in polarized intensity P. Beam depolarization creates ``depolarization canals'' of one beam wide, while depth depolarization is thought to be responsible for creating most of the structure on scales larger than a beam width. Rotation measures (RM) can be reliably determined, and are in the range -17 <~ RM <~ 10 rad m-2 with a non-zero average RM0 ~ -3.4 rad m-2. The distribution of RMs on the sky shows both abrupt changes on the scales of the beam and a gradient in the direction of positive Galactic longitude of ~ 1 rad m-2 per degree. The gradient and average RM are consistent with a regular magnetic field of ~ 1 mu G which has a pitch angle of p = -14 deg. There are 13 extragalactic sources in the field for which RMs could be derived, and those have |RM| <~ 13 rad m-2, with an estimated intrinsic source contribution of ~ 3.6 rad m-2. The RMs of the extragalactic sources show a gradient that is about 3 times larger than the gradient in the RMs of the diffuse emission and that is approximately in Galactic latitude. This difference is ascribed to a vastly different effective

  18. Nuclear Hybrid Energy Systems - Regional Studies. West Texas and Northeastern Arizona

    SciTech Connect

    Garcia, Humberto E.; Chen, Jun; Kim, Jong S.; McKellar, Michael G.; Deason, Wesley R.; Vilim, Richard B.; Bragg-Sitton, Shannon M.; Boardman, Richard D.

    2015-04-01

    The primary objective of this study is to conduct a preliminary dynamic analysis of two realistic hybrid energy systems (HES) including a nuclear reactor as the main baseload heat generator (denoted as nuclear HES or nuclear hybrid energy systems [NHES]) and to assess the local (e.g., HES owners) and system (e.g., the electric grid) benefits attainable by the application of NHES in scenarios with multiple commodity production and high penetration of renewable energy. It is performed for regional cases - not generic examples - based on available resources, existing infrastructure, and markets within the selected regions. This study also briefly addresses the computational capabilities developed to conduct such analyses, reviews technical gaps, and suggests some research paths forward.

  19. Nuclear-Spin-Induced Circular Dichroism in the Infrared Region for Liquids.

    PubMed

    Chen, Fang; Yao, Guo-hua; Zhang, Zhen-lin; Liu, Fan-chen; Chen, Dong-ming

    2015-06-22

    Recently, the nuclear-spin-induced optical rotation (NSOR) and circular dichroism (NSCD) for liquids were discovered and extensively studied and developed. However, so far, nuclear-spin-induced magnetic circular dichroism in the IR region (IR-NSCD) has not been explored, even though all polyatomic molecules exhibit extensive IR spectra. Herein, IR-NSCD is proposed and discussed theoretically. The results indicate that in favorable conditions the IR-NSCD angle may be much larger than the NSOR angle in the UV/Vis region due to a vibrational resonance effect and can be measurable by using the NSOR experiment scheme. IR-NSCD can automatically combine and give NMR spectra and IRCD spectra of the nuclear spin prepolarized samples in liquids, which, in principle, could be developed to become a unique, novel analytical tool.

  20. SOAR Near-Infrared and Optical Survey of OIf* and OIf*/WN Stars in the Periphery of Galactic Massive Star Forming Regions

    NASA Astrophysics Data System (ADS)

    Roman-Lopes, A.; Franco, G. A. P.; Sanmartin, D.

    In this contribution we present some preliminary results obtained from a SOAR-Goodman optical spectroscopic survey aimed to confirm the OIf* - OIf*/WN nature of a sample of Galactic candidates that were previously confirmed as massive stars based on near-infrared spectra taken with OSIRIS at SOAR. With only a few of such stars known in the Galaxy to date, our study significantly contributes to improve the number of known Galactic O2If* stars, as well as almost doubling the number of known members of the galactic sample of the rare type OIf*/WN.

  1. A study of four galactic small H II regions: Searching for spontaneous and sequential star formation scenarios

    NASA Astrophysics Data System (ADS)

    Kang, Sung-Ju

    This thesis describes observational studies of four small star-forming H II regions (KR 7, KR 81, KR 120 and KR 140) and star-formation scenario associated with the Young Stellar Objects (YSOs) in each region. In addition to that, we also present an analysis of HCO+ (J=3→2) and H13CO+ (J=3→2) observations of the Massive (M ˜ 20 M[special character omitted] ) submillimeter/infrared source IRAS 01202+6133 located on the periphery of the H II region. In this research, we improved existing 1-D radiative transfer model for a collapsing core that happens in the early phase -- Class I protostar -- of star formation. The molecular gas surrounding an H II region is thought to be a place where star formation can be induced. We selected four small H II region in order to minimize the feedbacks and dynamics from multiple exciting sources. These regions are very young and ionized by the single O or B spectral type stars. A space based telescope Wide-field Infrared Survey Explorer (WISE) used for identifying and classifying the YSOs population surrounding a sample of H II regions. First, we used WISE data from AllWISE catalog with some constrains such as spatial coordinates, signal-to-noise ratio and contaminations. After we retrieved sources from catalog in each region, we classified YSOs with two different methods; color-color diagram and spectral index (alpha). Based on the color-color diagram using WISE 3.4 mum, 4.6 mum and 12 mum bands, we classified the YSOs as Class I, Class II and using 3.4 mum, 4.6 mum and 22 mum, we were able to classify Transition Disks and Class III YSOs. 2MASS and WISE combined color-color diagram also used in order to compare the classification only use of WISE color-color diagram. Considering a reddening effect from 2MASS Ks band, the classification from both WISE only and 2MASS, WISE combined color-colordiagram. A spectral index (alpha) also can be used as classifying YSOs. Based on the WISE magnitude, spectral index (alpha) can be derived

  2. Galactic onion

    NASA Image and Video Library

    2015-05-11

    The glowing object in this image is an elliptical galaxy called NGC 3923. It is located over 90 million light-years away in the constellation of Hydra. NGC 3923 is an example of a shell galaxy where the stars in its halo are arranged in layers. Finding concentric shells of stars enclosing a galaxy is quite common and is observed in many elliptical galaxies. In fact, every tenth elliptical galaxy exhibits this onion-like structure, which has never been observed in spiral galaxies. The shell-like structures are thought to develop as a consequence of galactic cannibalism, when a larger galaxy ingests a smaller companion. As the two centres approach, they initially oscillate about a common centre, and this oscillation ripples outwards forming the shells of stars just as ripples on a pond spread when the surface is disturbed. NGC 3923 has over twenty shells, with only a few of the outer ones visible in this image and its shells are much more subtle than those of other shell galaxies. The shells of this galaxy are also interestingly symmetrical, while other shell galaxies are more skewed. A version of this image was entered into the Hubble’s Hidden Treasures image processing competition by contestant Judy Schmidt.

  3. Proliferation concerns in the Russian closed nuclear weapons complex cities : a study of regional migration behavior.

    SciTech Connect

    Flores, Kristen Lee

    2004-07-01

    The collapse of the Soviet Union in 1991 left the legacy of the USSR weapons complex with an estimated 50 nuclear, chemical, and biological weapons cities containing facilities responsible for research, production, maintenance, and destruction of the weapons stockpile. The Russian Federation acquired ten such previously secret, closed nuclear weapons complex cities. Unfortunately, a lack of government funding to support these facilities resulted in non-payment of salaries to employees and even plant closures, which led to an international fear of weapons material and knowledge proliferation. This dissertation analyzes migration in 33 regions of the Russian Federation, six of which contain the ten closed nuclear weapons complex cities. This study finds that the presence of a closed nuclear city does not significantly influence migration. However, the factors that do influence migration are statistically different in regions containing closed nuclear cities compared to regions without closed nuclear cities. Further, these results show that the net rate of migration has changed across the years since the break up of the Soviet Union, and that the push and pull factors for migration have changed across time. Specifically, personal and residential factors had a significant impact on migration immediately following the collapse of the Soviet Union, but economic infrastructure and societal factors became significant in later years. Two significant policy conclusions are derived from this research. First, higher levels of income are found to increase outmigration from regions, implying that programs designed to prevent migration by increasing incomes for closed city residents may be counter-productive. Second, this study finds that programs designed to increase capital and build infrastructure in the new Russian Federation will be more effective for employing scientists and engineers from the weapons complex, and consequently reduce the potential for emigration of

  4. The Galactic Center Seen Through the Precise, Multiplexed Eye of JWST

    NASA Astrophysics Data System (ADS)

    Lu, Jessica R.

    2013-01-01

    The Galactic center harbors the closest supermassive black hole and contains warm, turbulent molecular clouds, dense stellar populations, and some of the most active star forming regions in the Milky Way. These unique conditions make the Galactic Center a compelling target for understanding how star formation varies with environment, how nuclear star clusters in galaxies evolve, and how supermassive black holes influence their surroundings. Detailed studies of the Galactic center have previously been conducted with ground-based telescopes equipped with adaptive optics in pencil-beam studies. However, Galactic center studies can be dramatically expanded with JWST's combination of large fields-of-view (FOV) and high spatial resolution in the infrared. Of particular relevance for the Galactic Center are NIRCam's suite of narrow-band imaging filters and NIRSpec's IFU spectrograph. The narrow-band imaging should provide precise astrometry, rough spectral types, and emission line maps for ~50,000 stars within a 2' x 2' FOV, while follow up IFU spectroscopy will give precise types and radial velocities for the most interesting subsets of stars. Potential results include: (1) counting the intermediate age red and yellow supergiants that will give information about the recent star formation history; (2) measuring the initial mass function below 1 Msun and studying young stellar objects in known and new young star clusters; (3) using 3D dynamics to model the kinematic evolution of the entire nuclear cluster, find hypervelocity stars, and trace the orbits of gas features and clusters in the region. Galactic Center observations with JWST will give us a more complete picture of the gas, stars, black hole, and their interactions in this dynamic region.

  5. Constraining UV continuum slopes of active galactic nuclei with cloudy models of broad-line region extreme-ultraviolet emission lines

    SciTech Connect

    Moloney, Joshua; Michael Shull, J. E-mail: michael.shull@colorado.edu

    2014-10-01

    Understanding the composition and structure of the broad-line region (BLR) of active galactic nuclei (AGNs) is important for answering many outstanding questions in supermassive black hole evolution, galaxy evolution, and ionization of the intergalactic medium. We used single-epoch UV spectra from the Cosmic Origins Spectrograph (COS) on the Hubble Space Telescope to measure EUV emission-line fluxes from four individual AGNs with 0.49 ≤ z ≤ 0.64, two AGNs with 0.32 ≤ z ≤ 0.40, and a composite of 159 AGNs. With the CLOUDY photoionization code, we calculated emission-line fluxes from BLR clouds with a range of density, hydrogen ionizing flux, and incident continuum spectral indices. The photoionization grids were fit to the observations using single-component and locally optimally emitting cloud (LOC) models. The LOC models provide good fits to the measured fluxes, while the single-component models do not. The UV spectral indices preferred by our LOC models are consistent with those measured from COS spectra. EUV emission lines such as N IV λ765, O II λ833, and O III λ834 originate primarily from gas with electron temperatures between 37,000 K and 55,000 K. This gas is found in BLR clouds with high hydrogen densities (n {sub H} ≥ 10{sup 12} cm{sup –3}) and hydrogen ionizing photon fluxes (Φ{sub H} ≥ 10{sup 22} cm{sup –2} s{sup –1}).

  6. Type 2 Active Galactic Nuclei with Double-Peaked [O III] Lines: Narrow-Line Region Kinematics or Merging Supermassive Black Hole Pairs?

    NASA Astrophysics Data System (ADS)

    Liu, Xin; Shen, Yue; Strauss, Michael A.; Greene, Jenny E.

    2010-01-01

    We present a sample of 167 type 2 active galactic nuclei (AGNs) with double-peaked [O III] λλ4959,5007 narrow emission lines, selected from the Seventh Data Release of the Sloan Digital Sky Survey. The double-peaked profiles can be well modeled by two velocity components, blueshifted and redshifted from the systemic velocity. Half of these objects have a more prominent redshifted component. In cases where the Hβ emission line is strong, it also shows two velocity components whose line-of-sight (LOS) velocity offsets are consistent with those of [O III]. The relative LOS velocity offset between the two components is typically a few hundred km s-1, larger by a factor of ~1.5 than the line full width at half maximum of each component. The offset correlates with the host stellar velocity dispersion σ*. The host galaxies of this sample show systematically larger σ*, stellar masses, and concentrations, and older luminosity-weighted mean stellar ages than a regular type 2 AGN sample matched in redshift, [O III] λ5007 equivalent width, and luminosity; they show no significant difference in radio properties. These double-peaked features could be due to narrow-line region kinematics, or binary black holes. The statistical properties do not show strong preference for or against either scenario, and spatially resolved optical imaging, spectroscopy, radio or X-ray follow-up are needed to draw firm conclusions.

  7. Modeling the Destruction and Survival of PAHs in Astrophysical Regions: from Low-metallicity Galaxies to Elliptical Galaxies and Galactic Halos

    NASA Astrophysics Data System (ADS)

    Li, Aigen

    2006-05-01

    The 3.3, 6.2, 7.7, 8.6 and 11.3 micron emission features of polycyclic aromatic hydrocarbon (PAH) molecules have been seen in a wide variety of Galactic and extragalactic objects. However, the PAH features are weak or absent in low-metallicity galaxies and AGN, as generally interpreted as the destruction of PAHs by hard UV photons in metal-poor galaxies or by extreme UV and soft X-ray photons in AGN. On the other hand, the PAH emission features have recently been detected in elliptical galaxies, tidal dwarf galaxies, galaxy halos, and distant galaxies at redshift >=2. However, it is not clear how PAHs can survive in elliptical galaxies containing X-ray emitting hot gas where PAHs are expected to be easily destroyed through sputtering by hot plasma ions. It is also not clear how PAHs get ``levitated'' and survive from galactic plane to galaxy halo where the physical conditions are similar to those of elliptical galaxies. We propose to study the destruction of PAHs (1) by UV photons in low-metallicity galaxies, (2) by extreme UV and X-ray photons in AGN, (3) by intense UV radiation in regions with strong star-forming activities, and (4) through sputtering by plasma ions in hot gas. This will allow us, by the first time, to quantitatively investigate the deficiency or lack of PAHs in AGN and low-metallicity galaxies, as well as the survivability of PAHs in elliptical galaxies, galaxy halo, and superwind, and the method of using the IRAC 8 micron photometry as a tracer of star formation rates. This program will create a web-based ``library'' of the destruction rates of PAHs by UV and X-ray photons as a function of size, intensity and hardness of the radiation field, and the sputtering rates of PAHs by plasma ions as a function of size, gas density and temperature. This library will be made publicly available to the astronomical community by May 2007 on the internet at http://www.missouri.edu/~lia/.

  8. Radial metallicity gradients in spiral galaxies from H II regions and planetary nebulae: probing galactic chemical evolution

    NASA Astrophysics Data System (ADS)

    Stanghellini, Letizia

    2015-08-01

    Radial metallicity gradients, typically observed in spiral galaxies, are excellent constraints for chemical evolution models. The contemporary studies of the two stellar populations, whose progenitors have formed at different times, yield to the chemical and time constraining of the models. In this context, planetary nebula and HII region analysis proved to be ideal two-epochs test populations. We present an assortment of galaxies whose oxygen abundances have been determined both with weak- and strong-line methods, and whose radial metallicity gradients and their evolution in time have disclosed very interesting correlations with the galaxy characteristics. New results from our Gemini/GMOS observations, and a review of the best literature data, set the stage for a better understanding of spiral galaxy evolution.

  9. Keplerian Motion of Broad-Line Region Gas as Evidence for Supermassive Black Holes in Active Galactic Nuclei

    NASA Technical Reports Server (NTRS)

    Peterson, Bradley M.; Wandel, Amri

    1999-01-01

    Emission-line variability data on NGC 5548 argue strongly for the existence of a mass of order 7 x l0(exp 7) solar mass, within the inner few light-days of the nucleus in the Seyfert 1 galaxy NGC 5548. The time-delayed response of the emission lines to continuum variations is used to infer the size of the line-emitting region, and these determinations are combined with measurements of the Doppler widths of the variable line components to estimate a virial mass. The data for several different emission lines spanning an order of magnitude in distance from the central source show the expected V proportional to r(sup -1/2) correlation and are consistent with a single value for the mass.

  10. Keplerian Motion of Broad-Line Region Gas as Evidence for Supermassive Black Holes in Active Galactic Nuclei

    NASA Technical Reports Server (NTRS)

    Peterson, Bradley M.; Wandel, Amri

    1999-01-01

    Emission-line variability data on NGC 5548 argue strongly for the existence of a mass of order 7 x l0(exp 7) solar mass, within the inner few light-days of the nucleus in the Seyfert 1 galaxy NGC 5548. The time-delayed response of the emission lines to continuum variations is used to infer the size of the line-emitting region, and these determinations are combined with measurements of the Doppler widths of the variable line components to estimate a virial mass. The data for several different emission lines spanning an order of magnitude in distance from the central source show the expected V proportional to r(sup -1/2) correlation and are consistent with a single value for the mass.

  11. REGIONAL BINNING FOR CONTINUED STORAGE OF SPENT NUCLEAR FUEL AND HIGH-LEVEL WASTES

    SciTech Connect

    W. Lee Poe, Jr

    1998-10-01

    In the Continued Storage Analysis Report (CSAR) (Reference 1), DOE decided to analyze the environmental consequences of continuing to store the commercial spent nuclear fuel (SNF) at 72 commercial nuclear power sites and DOE-owned spent nuclear fuel and high-level waste at five Department of Energy sites by region rather than by individual site. This analysis assumes that three commercial facilities pairs--Salem and Hope Creek, Fitzpatrick and Nine-Mile Point, and Dresden and Moms--share common storage due to their proximity to each other. The five regions selected for this analysis are shown on Figure 1. Regions 1, 2, and 3 are the same as those used by the Nuclear Regulatory Commission in their regulatory oversight of commercial power reactors. NRC Region 4 was subdivided into two regions to more appropriately define the two different climates that exist in NRC Region 4. A single hypothetical site in each region was assumed to store all the SNF and HLW in that region. Such a site does not exist and has no geographic location but is a mathematical construct for analytical purposes. To ensure that the calculated results for the regional analyses reflect appropriate inventory, facility and material degradation, and radionuclide transport, the waste inventories, engineered barriers, and environmental conditions for the hypothetical sites were developed from data for each of the existing sites within the given region. Weighting criteria to account for the amount and types of SNF and HLW at each site were used in the development of the environmental data for the regional site, such that the results of the analyses for the hypothetical site were representative of the sum of the results of each actual site if they had been modeled independently. This report defines the actual site data used in development of this hypothetical site, shows how the individual site data was weighted to develop the regional site, and provides the weighted data used in the CSAR analysis. It is

  12. Multi-Decadal Global Cooling and Unprecedented Ozone Loss Following a Regional Nuclear Conflict

    NASA Astrophysics Data System (ADS)

    Mills, M. J.; Toon, O. B.; Lee-Taylor, J. M.; Robock, A.

    2014-12-01

    We present the first study of the global impacts of a regional nuclear war with an Earth system model including atmospheric chemistry, ocean dynamics, and interactive sea-ice and land models (Mills et al., 2014). A limited, regional nuclear war between India and Pakistan in which each side detonates 50 15-kt weapons could produce about 5 Tg of black carbon. This would self-loft to the stratosphere, where it would spread globally, producing a sudden drop in surface temperatures and intense heating of the stratosphere. Using the Community Earth System Model with the Whole Atmosphere Community Climate Model (CESM1(WACCM)), we calculate an e-folding time of 8.7 years for stratospheric black carbon, compared to 4-6.5 years for previous studies (figure panel a). Our calculations show that global ozone losses of 20-50% over populated areas, levels unprecedented in human history, would accompany the coldest average surface temperatures in the last 1000 years (figure panel c). We calculate summer enhancements in UV indices of 30-80% over Mid-Latitudes, suggesting widespread damage to human health, agriculture, and terrestrial and aquatic ecosystems. Killing frosts would reduce growing seasons by 10-40 days per year for 5 years. Surface temperatures would be reduced for more than 25 years, due to thermal inertia and albedo effects in the ocean and expanded sea ice. The combined cooling and enhanced UV would put significant pressures on global food supplies and could trigger a global nuclear famine. Knowledge of the impacts of 100 small nuclear weapons should motivate the elimination of the more than 17,000 nuclear weapons that exist today. Mills, M. J., O. B. Toon, J. Lee-Taylor, and A. Robock (2014), Multidecadal global cooling and unprecedented ozone loss following a regional nuclear conflict, Earth's Future, 2(4), 161-176, doi:10.1002/2013EF000205.

  13. Gravitational instability of polytropic spheres containing region of trapped null geodesics: a possible explanation of central supermassive black holes in galactic halos

    NASA Astrophysics Data System (ADS)

    Stuchlík, Zdeněk; Schee, Jan; Toshmatov, Bobir; Hladík, Jan; Novotný, Jan

    2017-06-01

    We study behaviour of gravitational waves in the recently introduced general relativistic polytropic spheres containing a region of trapped null geodesics extended around radius of the stable null circular geodesic that can exist for the polytropic index N > 2.138 and the relativistic parameter, giving ratio of the central pressure pc to the central energy density ρc, higher than σ = 0.677. In the trapping zones of such polytropes, the effective potential of the axial gravitational wave perturbations resembles those related to the ultracompact uniform density objects, giving thus similar long-lived axial gravitational modes. These long-lived linear perturbations are related to the stable circular null geodesic and due to additional non-linear phenomena could lead to conversion of the trapping zone to a black hole. We give in the eikonal limit examples of the long-lived gravitational modes, their oscillatory frequencies and slow damping rates, for the trapping zones of the polytropes with N in (2.138,4). However, in the trapping polytropes the long-lived damped modes exist only for very large values of the multipole number l > 50, while for smaller values of l the numerical calculations indicate existence of fast growing unstable axial gravitational modes. We demonstrate that for polytropes with N >= 3.78, the trapping region is by many orders smaller than extension of the polytrope, and the mass contained in the trapping zone is about 10-3 of the total mass of the polytrope. Therefore, the gravitational instability of such trapping zones could serve as a model explaining creation of central supermassive black holes in galactic halos or galaxy clusters.

  14. np Pairing Correlations in Low-Density Region of Nuclear Matter

    SciTech Connect

    Isayev, A.A.; Bastrukov, S.I.; Yang, J.

    2004-10-01

    In the framework of Green's function formalism at finite temperatures, superfluidity of nuclear matter with np pairing correlations is studied. It is shown that, at low densities, equations for the energy gap in the spectrum of quasiparticles and chemical potentials of protons and neutrons allow solutions with negative chemical potential, which corresponds to appearance of Bose-Einstein condensation of deuterons in the low-density region of nuclear matter. In this region, np pairing correlations survive even for large isospin asymmetry. Interaction between nucleons is described by the effective zero range force, developed to reproduce the energy gap in the isospin singlet pairing channel, calculated with the use of the Paris NN potential. The obtained results may be of importance for description of thermal properties of outer low-density regions of neutron stars.

  15. PCR primers for 30 novel gene regions in the nuclear genomes of Lepidoptera

    PubMed Central

    Wahlberg, Niklas; Peña, Carlos; Ahola, Milla; Wheat, Christopher W.; Rota, Jadranka

    2016-01-01

    Abstract We report primer pairs for 30 new gene regions in the nuclear genomes of Lepidoptera that can be amplified using a standard PCR protocol. The new primers were tested across diverse Lepidoptera, including nonditrysians and a wide selection of ditrysians. These new gene regions give a total of 11,043 bp of DNA sequence data and they show similar variability to traditionally used nuclear gene regions in studies of Lepidoptera. We feel that a PCR-based approach still has its place in molecular systematic studies of Lepidoptera, particularly at the intrafamilial level, and our new set of primers now provides a route to generating phylogenomic datasets using traditional methods. PMID:27408580

  16. Perspective on Advances in Resonance-Region Nuclear Modeling and Opportunities for Future Research

    SciTech Connect

    Dunn, Michael E; Larson, Nancy M; Derrien, Herve; Leal, Luiz C

    2007-01-01

    The advent of high-fidelity radiation-transport modeling capabilities, coupled with the need to analyze complex nuclear systems, has served to emphasize the importance of high-precision cross section data, including the associated covariance information. Due to the complex nature of resonance-region interactions, cross section data cannot be calculated directly from theory; rather, high-precision resonance-region cross section measurements must be made at facilities such as the Oak Ridge Electron Linear Accelerator (ORELA) at Oak Ridge National Laboratory (ORNL), Geel Electron Linear Accelerator (GELINA), Rensselaer Polytechnic Institute (RPI). To extract accurate cross section data from these measurements, detailed nuclear modeling of the measured data is performed to parameterize the cross section behavior in the resonance range. The objective of this paper is to highlight recent advances in resonance-region nuclear modeling with particular emphasis on the covariance analysis capabilities. Opportunities for future research are identified in an effort to stimulate further advances in the state of the art nuclear modeling capabilities.

  17. Investigating the Local Physical and Chemical Environments toward the Galactic Center Region - SgrB2(N)

    NASA Astrophysics Data System (ADS)

    Remijan, Anthony; Jones, Paul; Cunningham, Maria; Thorwirth, Sven; Menten, Karl; Schilke, Peter; Belloche, Arnaud; Meier, David; Walsh, Andrew; Kurtz, Stan; Bruenken, Sandra; Mccarthy, Michael C.; Liu, Sheng-Yuan; Pate, Brooks; Corby, Joanna`; Steber, Amanda

    2011-04-01

    The proposed observation will image multiple transitions of four structurally diverse molecules (methanol, formamide, methylamine, and cyanoacetylene) toward the pre-eminent source of molecular emission in the Galaxy, Sgr B2(N). The overall goal is to investigate the local physical and chemical environment of this highly complex region of space. Our hypthesis is that the spatial distributions and localized physical environments of each molecule will help predict the most favorable chemical formation pathways for these species and eventually others. The improved capabilities of the ATCA allow for simultaneous observation of ten 3-cm band transitions of the target molecules using the 64MHz x 32kHz zoom modes of the CABB. This project is an essential extension of the Green Bank Telescope (GBT) PRebiotic Interstellar MOlecular Survey (PRIMOS) toward Sgr B2(N) which has previously been observed across the full 2GHz of the 3-cm band. We will analyze ATCA data from the proposed observation, together with the single dish data from PRIMOS, to obtain a more complete understanding of the compact and extended distributions of these four abundant complex molecules as we work towards the broader goal of determining chemical formation pathways in space.

  18. A New Database of Digitized Regional Seismic Waveforms from Nuclear Explosions in Eurasia

    NASA Astrophysics Data System (ADS)

    Sokolova, I. N.; Richards, P. G.; Kim, W. Y.; Mikhailova, N. N.

    2014-12-01

    Seismology is an observational science. Hence, the effort to understand details of seismic signals from underground nuclear explosions requires analysis of waveforms recorded from past nuclear explosions. Of principal interest, are regional signals from explosions too small to be reliably identified via teleseismic recording. But the great majority of stations operated today, even those in networks for nuclear explosion monitoring, have never recorded explosion signals at regional distances, because most stations were installed long after the period when most underground nuclear explosions were conducted; and the few nuclear explosions since the early 1990s were mostly recorded only at teleseismic distances. We have therefore gathered thousands of nuclear explosion regional seismograms from more than 200 analog stations operated in the former Soviet Union. Most of them lie in a region stretching approximately 6000 km East-West and 2000 km North-South and including much of Central Asia. We have digitized them and created a modern digital database, including significant metadata. Much of this work has been done in Kazakhstan. Most of the explosions were underground, but several were conducted in the atmosphere. This presentation will characterize the content and overall quality of the new database for signals from nuclear explosions in Eurasia, which were conducted across substantial ranges of yield and shot-point depth, and under a great variety of different geological conditions. This work complements a 20-year collaborative effort which made the original digital recordings of the Borovoye Geophysical Observatory, Kazakhstan, openly available in a modern format (see http://www.ldeo.columbia.edu/res/pi/Monitoring/Data/). For purposes of characterizing explosive sources, it would be of assistance to have seismogram archives from explosions conducted in all regions including the Pacific, North Africa, and the United States (including the Aleutians). Openly available

  19. Extreme Ground Motion Recorded in the Near-Source Region of Underground Nuclear Explosions

    SciTech Connect

    Foxall, W

    2005-01-04

    Free-field recordings of underground nuclear explosions constitute a unique data set within the near-source region of seismic events ranging in magnitude from M3 to M6.5. The term ''free-field'' in this context refers to recordings from instruments emplaced in boreholes or tunnel walls such that the initial portions of the records ({approx}0.1 to 1 second) do not contain effects resulting from reflections at the free surface. In addition to the free-field instruments deployed to record ground motions from selected underground nuclear explosions at the Nevada Test Site (NTS) and elsewhere, surface arrays were routinely deployed to record surface accelerations and velocities from underground nuclear tests conducted at NTS.

  20. Infrared Study of the Southern Galactic Star-Forming Regions Associated with IRAS 10049-5657 and IRAS 10031-5632

    NASA Astrophysics Data System (ADS)

    Vig, S.; Ghosh, S. K.; Ojha, D. K.; Verma, R. P.

    2008-10-01

    We investigate the physical conditions of the interstellar medium and stellar components in the regions of the southern Galactic star-forming complexes associated with IRAS 10049-5657 and IRAS 10031-5632. These regions have been mapped simultaneously in two far-infrared bands (λeff ~ 150 and 210 μm), with ~1' angular resolution using the Tata Institute of Fundamental Research 1 m balloon-borne telescope. Spatial distribution of the temperature of cool dust and optical depth at 200 μm have been obtained taking advantage of the similar beams in the two bands. The HIRES processed Infrared Astronomical Satellite (IRAS) maps at 12, 25, 60, and 100 μm have been used for comparison. Using the Two Micron All Sky Survey near-infrared sources, we find the stellar populations of the embedded young clusters. A rich cluster of OB stars is seen in the IRAS 10049-5657 region. The fits to the stellar density radial profile of the cluster associated with IRAS 10049-5657 have been explored with the inverse radius profile as well as the King's profile; the cluster radius is ~2 pc. The source in the cluster closest to the IRAS peak is IRA-7, which lies above the zero-age main-sequence curve of spectral type O5 in the color-magnitude diagram. Unlike IRAS 10049-5657, a small cluster comprising a few deeply embedded sources is seen at the location of IRAS 10031-5632. Self-consistent radiative transfer modeling aimed at extracting important physical and geometrical details of the two IRAS sources shows that the best-fit models are in good agreement with the observed spectral energy distributions. The geometric details of the associated cloud and optical depths (τ100) have been estimated. A uniform density distribution of dust and gas is implied for both the sources. In addition, the infrared ionic fine-structure line emission from gas has been modeled for both the regions and compared with data from the IRAS low-resolution spectrometer. For IRAS 10049-5657, the observed and modeled

  1. Shifts of the Al-26 line due to Galactic rotation

    NASA Technical Reports Server (NTRS)

    Skibo, Jeff; Ramaty, Reuven

    1991-01-01

    The shape of the Al-26 line is evaluated using a Galactic disk rotation curve and assuming various galactic distributions of radioactive aluminum. The line shape depends on galactic longitude, detector opening angle, and the assumed aluminum distribution. For a detector of 20 deg aperture and 2.5 keV resolution, the shift of the line peak can be as large as 0.4 keV. Such a shift could be detected with the proposed nuclear astrophysics explorer.

  2. Nuclear deformation and neutron excess as competing effects for dipole strength in the pygmy region.

    PubMed

    Massarczyk, R; Schwengner, R; Dönau, F; Frauendorf, S; Anders, M; Bemmerer, D; Beyer, R; Bhatia, C; Birgersson, E; Butterling, M; Elekes, Z; Ferrari, A; Gooden, M E; Hannaske, R; Junghans, A R; Kempe, M; Kelley, J H; Kögler, T; Matic, A; Menzel, M L; Müller, S; Reinhardt, T P; Röder, M; Rusev, G; Schilling, K D; Schmidt, K; Schramm, G; Tonchev, A P; Tornow, W; Wagner, A

    2014-02-21

    The electromagnetic dipole strength below the neutron-separation energy has been studied for the xenon isotopes with mass numbers A=124, 128, 132, and 134 in nuclear resonance fluorescence experiments using the γELBE bremsstrahlung facility at Helmholtz-Zentrum Dresden-Rossendorf and the HIγS facility at Triangle Universities Nuclear Laboratory Durham. The systematic study gained new information about the influence of the neutron excess as well as of nuclear deformation on the strength in the region of the pygmy dipole resonance. The results are compared with those obtained for the chain of molybdenum isotopes and with predictions of a random-phase approximation in a deformed basis. It turned out that the effect of nuclear deformation plays a minor role compared with the one caused by neutron excess. A global parametrization of the strength in terms of neutron and proton numbers allowed us to derive a formula capable of predicting the summed E1 strengths in the pygmy region for a wide mass range of nuclides.

  3. Telomere-surrounding regions are transcription-permissive 3D nuclear compartments in human cells

    SciTech Connect

    Quina, Ana Sofia; Parreira, Leonor . E-mail: lparreir@igc.gulbenkian.pt

    2005-07-01

    Positioning of genes relative to nuclear heterochromatic compartments is thought to help regulate their transcriptional activity. Given that human subtelomeric regions are rich in highly expressed genes, we asked whether human telomeres are related to transcription-permissive nuclear compartments. To address this question, we investigated in the nuclei of normal human lymphocytes the spatial relations of two constitutively expressed genes (ACTB and RARA) and three nuclear transcripts (ACTB, IL2RA and TCRB) to telomeres and centromeres, as a function of gene activity and transcription levels. We observed that genes and gene transcripts locate close to telomere clusters and away from chromocenters upon activation of transcription. These findings, together with the observation that SC35 domains, which are enriched in pre-mRNA processing factors, are in close proximity to telomeres, indicate that telomere-neighboring regions are permissive to gene expression in human cells. Therefore, the associations of telomeres observed in the interphase nucleus might contribute, as opposed to chromocenters, for the establishment of transcription-permissive 3D nuclear compartments.

  4. Nuclear event time histories and computed site transfer functions for locations in the Los Angeles region

    USGS Publications Warehouse

    Rogers, A.M.; Covington, P.A.; Park, R.B.; Borcherdt, R.D.; Perkins, D.M.

    1980-01-01

    This report presents a collection of Nevada Test Site (NTS) nuclear explosion recordings obtained at sites in the greater Los Angeles, Calif., region. The report includes ground velocity time histories, as well as, derived site transfer functions. These data have been collected as part of a study to evaluate the validity of using low-level ground motions to predict the frequency-dependent response of a site during an earthquake. For this study 19 nuclear events were recorded at 98 separate locations. Some of these sites have recorded more than one of the nuclear explosions, and, consequently, there are a total of 159, three-component station records. The location of all the recording sites are shown in figures 1–5, the station coordinates and abbreviations are given in table 1. The station addresses are listed in table 2, and the nuclear explosions that were recorded are listed in table 3. The recording sites were chosen on the basis of three criteria: (1) that the underlying geological conditions were representative of conditions over significant areas of the region, (2) that the site was the location of a strong-motion recording of the 1971 San Fernando earthquake, or (3) that more complete geographical coverage was required in that location.

  5. Nuclear Deformation and Neutron Excess as Competing Effects for Dipole Strength in the Pygmy Region

    NASA Astrophysics Data System (ADS)

    Massarczyk, R.; Schwengner, R.; Dönau, F.; Frauendorf, S.; Anders, M.; Bemmerer, D.; Beyer, R.; Bhatia, C.; Birgersson, E.; Butterling, M.; Elekes, Z.; Ferrari, A.; Gooden, M. E.; Hannaske, R.; Junghans, A. R.; Kempe, M.; Kelley, J. H.; Kögler, T.; Matic, A.; Menzel, M. L.; Müller, S.; Reinhardt, T. P.; Röder, M.; Rusev, G.; Schilling, K. D.; Schmidt, K.; Schramm, G.; Tonchev, A. P.; Tornow, W.; Wagner, A.

    2014-02-01

    The electromagnetic dipole strength below the neutron-separation energy has been studied for the xenon isotopes with mass numbers A =124, 128, 132, and 134 in nuclear resonance fluorescence experiments using the γELBE bremsstrahlung facility at Helmholtz-Zentrum Dresden-Rossendorf and the HIγS facility at Triangle Universities Nuclear Laboratory Durham. The systematic study gained new information about the influence of the neutron excess as well as of nuclear deformation on the strength in the region of the pygmy dipole resonance. The results are compared with those obtained for the chain of molybdenum isotopes and with predictions of a random-phase approximation in a deformed basis. It turned out that the effect of nuclear deformation plays a minor role compared with the one caused by neutron excess. A global parametrization of the strength in terms of neutron and proton numbers allowed us to derive a formula capable of predicting the summed E1 strengths in the pygmy region for a wide mass range of nuclides.

  6. Regional Seismic Discrimination Optimization With and Without Nuclear Test Data: Western U.S. Examples

    SciTech Connect

    Walter, W R; Mayeda, K; Gok, R; Rodgers, A J; Sicherman, A; Hickling, T; Dodge, D; Matzel, E; Ganzberger, M; Parker, V

    2005-06-30

    The western U.S. has abundant natural seismicity, historic nuclear explosion data, and widespread mine blasts, making it a good testing ground to study the performance of regional source-type discrimination techniques. We have assembled and measured a large set of these events to systematically explore how to best optimize discrimination performance. Nuclear explosions can be discriminated from a background of earthquakes using regional phase (Pn, Pg, Sn, Lg) amplitude measures such as high frequency P/S ratios. The discrimination performance is improved if the amplitudes can be corrected for source size and path length effects. We show good results are achieved using earthquakes alone to calibrate for these effects with the MDAC technique (Walter and Taylor, 2001). We show significant further improvement is then possible by combining multiple MDAC amplitude ratios using an optimized weighting technique such as Linear Discriminant Analysis (LDA). However this requires data or models for both earthquakes and explosions. In many areas of the world regional distance nuclear explosion data is lacking, but mine blast data is available. Mine explosions are often designed to fracture and/or move rock, giving them different frequency and amplitude behavior than contained chemical shots, which seismically look like nuclear tests. Here we explore discrimination performance differences between explosion types, the possible disparity in the optimization parameters that would be chosen if only chemical explosions were available and the corresponding effect of that disparity on nuclear explosion discrimination. There are a variety of additional techniques in the literature also having the potential to improve regional high frequency P/S discrimination. We explore two of these here: three-component averaging and maximum phase amplitude measures. Typical discrimination studies use only the vertical component measures and for some historic regional nuclear records these are all

  7. Supermassive Black Holes with High Accretion Rates in Active Galactic Nuclei. V. A New Size-Luminosity Scaling Relation for the Broad-line Region

    NASA Astrophysics Data System (ADS)

    Du, Pu; Lu, Kai-Xing; Zhang, Zhi-Xiang; Huang, Ying-Ke; Wang, Kai; Hu, Chen; Qiu, Jie; Li, Yan-Rong; Fan, Xu-Liang; Fang, Xiang-Er; Bai, Jin-Ming; Bian, Wei-Hao; Yuan, Ye-Fei; Ho, Luis C.; Wang, Jian-Min; SEAMBH Collaboration

    2016-07-01

    This paper reports results of the third-year campaign of monitoring super-Eddington accreting massive black holes (SEAMBHs) in active galactic nuclei (AGNs) between 2014 and 2015. Ten new targets were selected from the quasar sample of the Sloan Digital Sky Survey (SDSS), which have generally been more luminous than the SEAMBH candidates in the last two years. Hβ lags ({τ }{{H}β }) in five of the 10 quasars have been successfully measured in this monitoring season. We find that the lags are generally shorter, by large factors, than those of objects with same optical luminosity, in light of the well-known R H β-L 5100 relation. The five quasars have dimensionless accretion rates of \\dot{{M}\\quad }=10-103. Combining these with measurements of the previous SEAMBHs, we find that the reduction of Hβ lags depends tightly on accretion rates, {τ }{{H}β }/{τ }R-L\\propto {\\dot{{M}}}-0.42, where {τ }R-L is the Hβ lag from the normal R H β-L 5100 relation. Fitting 63 mapped AGNs, we present a new scaling relation for the broad-line region: {R}{{H}β }={α }1{{\\ell }}44{β 1} {min} [1,{(\\dot{{M}}/{\\dot{{M}}}c)}-{γ 1}], where {{\\ell }}44={L}5100/{10}44 {erg} {{{s}}}-1 is the 5100 Å continuum luminosity, and the coefficients are {α }1={29.6}-2.8+2.7 lt-day, {β }1={0.56}-0.03+0.03, {γ }1={0.52}-0.16+0.33, and {\\dot{{M}}}c={11.19}-6.22+2.29. This relation is applicable to AGNs over a wide range of accretion rates, from 10-3 to 103. Implications of this new relation are briefly discussed.

  8. NuSTAR Hard X-Ray Survey of the Galactic Center Region I: Hard X-Ray Morphology and Spectroscopy of the Diffuse Emission

    NASA Astrophysics Data System (ADS)

    Mori, Kaya; Hailey, Charles J.; Krivonos, Roman; Hong, Jaesub; Ponti, Gabriele; Bauer, Franz; Perez, Kerstin; Nynka, Melania; Zhang, Shuo; Tomsick, John A.; Alexander, David M.; Baganoff, Frederick K.; Barret, Didier; Barrière, Nicolas; Boggs, Steven E.; Canipe, Alicia M.; Christensen, Finn E.; Craig, William W.; Forster, Karl; Giommi, Paolo; Grefenstette, Brian W.; Grindlay, Jonathan E.; Harrison, Fiona A.; Hornstrup, Allan; Kitaguchi, Takao; Koglin, Jason E.; Luu, Vy; Madsen, Kristen K.; Mao, Peter H.; Miyasaka, Hiromasa; Perri, Matteo; Pivovaroff, Michael J.; Puccetti, Simonetta; Rana, Vikram; Stern, Daniel; Westergaard, Niels J.; Zhang, William W.; Zoglauer, Andreas

    2015-12-01

    We present the first sub-arcminute images of the Galactic Center above 10 keV, obtained with NuSTAR. NuSTAR resolves the hard X-ray source IGR J17456-2901 into non-thermal X-ray filaments, molecular clouds, point sources, and a previously unknown central component of hard X-ray emission (CHXE). NuSTAR detects four non-thermal X-ray filaments, extending the detection of their power-law spectra with Γ ˜ 1.3-2.3 up to ˜50 keV. A morphological and spectral study of the filaments suggests that their origin may be heterogeneous, where previous studies suggested a common origin in young pulsar wind nebulae (PWNe). NuSTAR detects non-thermal X-ray continuum emission spatially correlated with the 6.4 keV Fe Kα fluorescence line emission associated with two Sgr A molecular clouds: MC1 and the Bridge. Broadband X-ray spectral analysis with a Monte-Carlo based X-ray reflection model self-consistently determined their intrinsic column density (˜1023 cm-2), primary X-ray spectra (power-laws with Γ ˜ 2) and set a lower limit of the X-ray luminosity of Sgr A* flare illuminating the Sgr A clouds to LX ≳ 1038 erg s-1. Above ˜20 keV, hard X-ray emission in the central 10 pc region around Sgr A* consists of the candidate PWN G359.95-0.04 and the CHXE, possibly resulting from an unresolved population of massive CVs with white dwarf masses MWD ˜ 0.9 M⊙. Spectral energy distribution analysis suggests that G359.95-0.04 is likely the hard X-ray counterpart of the ultra-high gamma-ray source HESS J1745-290, strongly favoring a leptonic origin of the GC TeV emission.

  9. [Fe II] 1.64 μm IMAGING OBSERVATIONS OF THE OUTFLOW FEATURES AROUND ULTRACOMPACT H II REGIONS IN THE FIRST GALACTIC QUADRANT

    SciTech Connect

    Shinn, Jong-Ho; Kim, Kee-Tae; Lee, Jae-Joon; Kyeong, Jaemann; Hwang, Narae; Park, Byeong-Gon; Lee, Yong-Hyun; Kim, Hyun-Jeong; Koo, Bon-Chul; Pyo, Tae-Soo

    2014-09-01

    We present [Fe II] 1.644 μm features around ultracompact H II regions (UCHIIs) found on a quest for the ''footprint'' outflow features of UCHIIs—the features produced by outflowing materials ejected during an earlier, active accretion phase of massive young stellar objects (MYSOs). We surveyed 237 UCHIIs in the first Galactic quadrant, employing the CORNISH UCHII catalog and UWIFE data, which is an imaging survey in [Fe II] 1.644 μm performed with UKIRT-WFCAM under ∼0.''8 seeing conditions. The [Fe II] features were found around five UCHIIs, one of which was less plausible. We interpret the [Fe II] features to be shock-excited by outflows from YSOs and estimate the outflow mass-loss rates from the [Fe II] flux which are ∼1 × 10{sup –6}-4 × 10{sup –5} M {sub ☉} yr{sup –1}. We propose that the [Fe II] features might be the ''footprint'' outflow features, but more studies are required to clarify whether or not this is the case. This is based on the morphological relation between the [Fe II] and 5 GHz radio features, the outflow mass-loss rate, the travel time of the [Fe II] features, and the existence of several YSO candidates near the UCHIIs. The UCHIIs accompanying the [Fe II] features have relatively higher peak flux densities. The fraction of UCHIIs accompanying the [Fe II] features, 5/237, is small when compared to the ∼90% detection rate of high-velocity CO gas around UCHIIs. We discuss some possible explanations for the low detection rate.

  10. Angular momentum dependence of the nuclear level density in the A ≈170 -200 region

    NASA Astrophysics Data System (ADS)

    Gohil, M.; Roy, Pratap; Banerjee, K.; Bhattacharya, C.; Kundu, S.; Rana, T. K.; Ghosh, T. K.; Mukherjee, G.; Pandey, R.; Pai, H.; Srivastava, V.; Meena, J. K.; Banerjee, S. R.; Mukhopadhyay, S.; Pandit, D.; Pal, S.; Bhattacharya, S.

    2015-01-01

    Neutron evaporation spectra along with γ multiplicity has been measured from 201Tl*,185Re*, and 169Tm* compound nuclei at the excitation energies of ˜27 and 37 MeV. Statistical model analysis of the experimental data has been carried out to extract the value of the inverse level density parameter k at different angular-momentum (J ) regions corresponding to different γ multiplicities. It is observed that, for the present systems the value of k remains almost constant for different J . The present results for the angular-momentum dependence of the nuclear level density (NLD) parameter a ˜(=A /k ) , for nuclei with A ˜180 are quite different from those obtained in earlier measurements in the case of light- and medium-mass systems. The present study provides useful information to understand the angular-momentum dependence of the NLD at different nuclear mass regions.

  11. Nuclear astrophysics

    SciTech Connect

    Haxton, W.C.

    1992-01-01

    The problem of core-collapse supernovae is used to illustrate the many connections between nuclear astrophysics and the problems nuclear physicists study in terrestrial laboratories. Efforts to better understand the collapse and mantle ejection are also motivated by a variety of interdisciplinary issues in nuclear, particle, and astrophysics, including galactic chemical evolution, neutrino masses and mixing, and stellar cooling by the emission of new particles. The current status of theory and observations is summarized.

  12. Nuclear astrophysics

    SciTech Connect

    Haxton, W.C.

    1992-12-31

    The problem of core-collapse supernovae is used to illustrate the many connections between nuclear astrophysics and the problems nuclear physicists study in terrestrial laboratories. Efforts to better understand the collapse and mantle ejection are also motivated by a variety of interdisciplinary issues in nuclear, particle, and astrophysics, including galactic chemical evolution, neutrino masses and mixing, and stellar cooling by the emission of new particles. The current status of theory and observations is summarized.

  13. Nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode marker for Fungi.

    PubMed

    Schoch, Conrad L; Seifert, Keith A; Huhndorf, Sabine; Robert, Vincent; Spouge, John L; Levesque, C André; Chen, Wen

    2012-04-17

    Six DNA regions were evaluated as potential DNA barcodes for Fungi, the second largest kingdom of eukaryotic life, by a multinational, multilaboratory consortium. The region of the mitochondrial cytochrome c oxidase subunit 1 used as the animal barcode was excluded as a potential marker, because it is difficult to amplify in fungi, often includes large introns, and can be insufficiently variable. Three subunits from the nuclear ribosomal RNA cistron were compared together with regions of three representative protein-coding genes (largest subunit of RNA polymerase II, second largest subunit of RNA polymerase II, and minichromosome maintenance protein). Although the protein-coding gene regions often had a higher percent of correct identification compared with ribosomal markers, low PCR amplification and sequencing success eliminated them as candidates for a universal fungal barcode. Among the regions of the ribosomal cistron, the internal transcribed spacer (ITS) region has the highest probability of successful identification for the broadest range of fungi, with the most clearly defined barcode gap between inter- and intraspecific variation. The nuclear ribosomal large subunit, a popular phylogenetic marker in certain groups, had superior species resolution in some taxonomic groups, such as the early diverging lineages and the ascomycete yeasts, but was otherwise slightly inferior to the ITS. The nuclear ribosomal small subunit has poor species-level resolution in fungi. ITS will be formally proposed for adoption as the primary fungal barcode marker to the Consortium for the Barcode of Life, with the possibility that supplementary barcodes may be developed for particular narrowly circumscribed taxonomic groups.

  14. Nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode marker for Fungi

    PubMed Central

    Schoch, Conrad L.; Seifert, Keith A.; Huhndorf, Sabine; Robert, Vincent; Spouge, John L.; Levesque, C. André; Chen, Wen; Bolchacova, Elena; Voigt, Kerstin; Crous, Pedro W.; Miller, Andrew N.; Wingfield, Michael J.; Aime, M. Catherine; An, Kwang-Deuk; Bai, Feng-Yan; Barreto, Robert W.; Begerow, Dominik; Bergeron, Marie-Josée; Blackwell, Meredith; Boekhout, Teun; Bogale, Mesfin; Boonyuen, Nattawut; Burgaz, Ana R.; Buyck, Bart; Cai, Lei; Cai, Qing; Cardinali, G.; Chaverri, Priscila; Coppins, Brian J.; Crespo, Ana; Cubas, Paloma; Cummings, Craig; Damm, Ulrike; de Beer, Z. Wilhelm; de Hoog, G. Sybren; Del-Prado, Ruth; Dentinger, Bryn; Diéguez-Uribeondo, Javier; Divakar, Pradeep K.; Douglas, Brian; Dueñas, Margarita; Duong, Tuan A.; Eberhardt, Ursula; Edwards, Joan E.; Elshahed, Mostafa S.; Fliegerova, Katerina; Furtado, Manohar; García, Miguel A.; Ge, Zai-Wei; Griffith, Gareth W.; Griffiths, K.; Groenewald, Johannes Z.; Groenewald, Marizeth; Grube, Martin; Gryzenhout, Marieka; Guo, Liang-Dong; Hagen, Ferry; Hambleton, Sarah; Hamelin, Richard C.; Hansen, Karen; Harrold, Paul; Heller, Gregory; Herrera, Cesar; Hirayama, Kazuyuki; Hirooka, Yuuri; Ho, Hsiao-Man; Hoffmann, Kerstin; Hofstetter, Valérie; Högnabba, Filip; Hollingsworth, Peter M.; Hong, Seung-Beom; Hosaka, Kentaro; Houbraken, Jos; Hughes, Karen; Huhtinen, Seppo; Hyde, Kevin D.; James, Timothy; Johnson, Eric M.; Johnson, Joan E.; Johnston, Peter R.; Jones, E.B. Gareth; Kelly, Laura J.; Kirk, Paul M.; Knapp, Dániel G.; Kõljalg, Urmas; Kovács, Gábor M.; Kurtzman, Cletus P.; Landvik, Sara; Leavitt, Steven D.; Liggenstoffer, Audra S.; Liimatainen, Kare; Lombard, Lorenzo; Luangsa-ard, J. Jennifer; Lumbsch, H. Thorsten; Maganti, Harinad; Maharachchikumbura, Sajeewa S. N.; Martin, María P.; May, Tom W.; McTaggart, Alistair R.; Methven, Andrew S.; Meyer, Wieland; Moncalvo, Jean-Marc; Mongkolsamrit, Suchada; Nagy, László G.; Nilsson, R. Henrik; Niskanen, Tuula; Nyilasi, Ildikó; Okada, Gen; Okane, Izumi; Olariaga, Ibai; Otte, Jürgen; Papp, Tamás; Park, Duckchul; Petkovits, Tamás; Pino-Bodas, Raquel; Quaedvlieg, William; Raja, Huzefa A.; Redecker, Dirk; Rintoul, Tara L.; Ruibal, Constantino; Sarmiento-Ramírez, Jullie M.; Schmitt, Imke; Schüßler, Arthur; Shearer, Carol; Sotome, Kozue; Stefani, Franck O.P.; Stenroos, Soili; Stielow, Benjamin; Stockinger, Herbert; Suetrong, Satinee; Suh, Sung-Oui; Sung, Gi-Ho; Suzuki, Motofumi; Tanaka, Kazuaki; Tedersoo, Leho; Telleria, M. Teresa; Tretter, Eric; Untereiner, Wendy A.; Urbina, Hector; Vágvölgyi, Csaba; Vialle, Agathe; Vu, Thuy Duong; Walther, Grit; Wang, Qi-Ming; Wang, Yan; Weir, Bevan S.; Weiß, Michael; White, Merlin M.; Xu, Jianping; Yahr, Rebecca; Yang, Zhu L.; Yurkov, Andrey; Zamora, Juan-Carlos; Zhang, Ning; Zhuang, Wen-Ying; Schindel, David

    2012-01-01

    Six DNA regions were evaluated as potential DNA barcodes for Fungi, the second largest kingdom of eukaryotic life, by a multinational, multilaboratory consortium. The region of the mitochondrial cytochrome c oxidase subunit 1 used as the animal barcode was excluded as a potential marker, because it is difficult to amplify in fungi, often includes large introns, and can be insufficiently variable. Three subunits from the nuclear ribosomal RNA cistron were compared together with regions of three representative protein-coding genes (largest subunit of RNA polymerase II, second largest subunit of RNA polymerase II, and minichromosome maintenance protein). Although the protein-coding gene regions often had a higher percent of correct identification compared with ribosomal markers, low PCR amplification and sequencing success eliminated them as candidates for a universal fungal barcode. Among the regions of the ribosomal cistron, the internal transcribed spacer (ITS) region has the highest probability of successful identification for the broadest range of fungi, with the most clearly defined barcode gap between inter- and intraspecific variation. The nuclear ribosomal large subunit, a popular phylogenetic marker in certain groups, had superior species resolution in some taxonomic groups, such as the early diverging lineages and the ascomycete yeasts, but was otherwise slightly inferior to the ITS. The nuclear ribosomal small subunit has poor species-level resolution in fungi. ITS will be formally proposed for adoption as the primary fungal barcode marker to the Consortium for the Barcode of Life, with the possibility that supplementary barcodes may be developed for particular narrowly circumscribed taxonomic groups. PMID:22454494

  15. Multidecadal global cooling and unprecedented ozone loss following a regional nuclear conflict

    NASA Astrophysics Data System (ADS)

    Mills, Michael J.; Toon, Owen B.; Lee-Taylor, Julia; Robock, Alan

    2014-04-01

    We present the first study of the global impacts of a regional nuclear war with an Earth system model including atmospheric chemistry, ocean dynamics, and interactive sea ice and land components. A limited, regional nuclear war between India and Pakistan in which each side detonates 50 15 kt weapons could produce about 5 Tg of black carbon (BC). This would self-loft to the stratosphere, where it would spread globally, producing a sudden drop in surface temperatures and intense heating of the stratosphere. Using the Community Earth System Model with the Whole Atmosphere Community Climate Model, we calculate an e-folding time of 8.7 years for stratospheric BC compared to 4-6.5 years for previous studies. Our calculations show that global ozone losses of 20%-50% over populated areas, levels unprecedented in human history, would accompany the coldest average surface temperatures in the last 1000 years. We calculate summer enhancements in UV indices of 30%-80% over midlatitudes, suggesting widespread damage to human health, agriculture, and terrestrial and aquatic ecosystems. Killing frosts would reduce growing seasons by 10-40 days per year for 5 years. Surface temperatures would be reduced for more than 25 years due to thermal inertia and albedo effects in the ocean and expanded sea ice. The combined cooling and enhanced UV would put significant pressures on global food supplies and could trigger a global nuclear famine. Knowledge of the impacts of 100 small nuclear weapons should motivate the elimination of more than 17,000 nuclear weapons that exist today.

  16. New symmetry regions in the IBA and a simplified approach to nuclear phase transitions

    SciTech Connect

    Casten, R.F.

    1984-01-01

    The IBA treatment of nuclear symmetries and transition regions is discussed. A new, extensive region of O(6) nuclei near A = 130 is presented and compared with the Pt isotopes. Nearly identical level schemes characterize both regions, including similar relations between the O(6) and O(5) steps in the dynamical symmetry chain decomposition, and similar discrepancies with the O(6) limit. Simple calculations that incorporate a triaxial component as an O(6) symmetry breaking mechanism remove these discrepancies in both regions. The evidence for a new, and perhaps the only, good region of SU(3) symmetry is given and discussed in a context of mixing with non-collective degrees of freedom. Finally, a systematic approach to transition regions is presented in which the key determinant of structure is the product N/sub ..pi../.N/sub ..nu../ of the number of valence proton and neutron bosons. Recognition of this allows an extremely simple treatment of complex transition regions. As an example, calculations for the U(5)..-->..O(6)..-->..SU(3) sequence from A = 120-140, which involve only six constants for the entire region of approx. = 30 nuclei, are discussed. The use of N/sub ..pi../.N/sub ..nu../ plots allows the study of the dissipation of shell and subshell gaps. Results for the A approx. = 100 and A approx. = 150 regions are presented and effective proton-boson numbers are extracted and compared with earlier results from g factor measurements and from microscopic calculations. 43 references.

  17. Analysis of sheltering and evacuation strategies for a national capital region nuclear detonation scenario.

    SciTech Connect

    Yoshimura, Ann S.; Brandt, Larry D.

    2011-12-01

    Development of an effective strategy for shelter and evacuation is among the most important planning tasks in preparation for response to a low yield, nuclear detonation in an urban area. Extensive studies have been performed and guidance published that highlight the key principles for saving lives following such an event. However, region-specific data are important in the planning process as well. This study examines some of the unique regional factors that impact planning for a 10 kT detonation in the National Capital Region. The work utilizes a single scenario to examine regional impacts as well as the shelter-evacuate decision alternatives at one exemplary point. For most Washington, DC neighborhoods, the excellent assessed shelter quality available make shelter-in-place or selective transit to a nearby shelter a compelling post-detonation strategy.

  18. Steps toward Determination of the Size and Structure of the Broad-Line Region in Active Galactic Nuclei. IX. Ultraviolet Observations of Fairall 9

    NASA Astrophysics Data System (ADS)

    Rodríguez-Pascual, P. M.; Alloin, D.; Clavel, J.; Crenshaw, D. M.; Horne, K.; Kriss, G. A.; Krolik, J. H.; Malkan, M. A.; Netzer, H.; O'Brien, P. T.; Peterson, B. M.; Reichert, G. A.; Wamsteker, W.; Alexander, T.; Barr, P.; Blandford, R. D.; Bregman, J. N.; Carone, T. E.; Clements, S.; Courvoisier, T.-J.; Robertis, M. M. De; Dietrich, M.; Dottori, H.; Edelson, R. A.; Filippenko, A. V.; Gaskell, C. M.; Huchra, J. P.; Hutchings, J. B.; Kollatschny, W.; Koratkar, A. P.; Korista, K. T.; Laor, A.; MacAlpine, G. M.; Martin, P. G.; Maoz, D.; McCollum, B.; Morris, S. L.; Perola, G. C.; Pogge, R. W.; Ptak, R. L.; Recondo-González, M. C.; J. M. Rodríguez-Espinoza; Rokaki, E. L.; Santos-Lleó, M.; Sekiguchi, K.; Shull, J. M.; Snijders, M. A. J.; Sparke, L. S.; Stirpe, G. M.; Stoner, R. E.; Sun, W.-H.; Wagner, S. J.; Wanders, I.; Wilkes, J.; Winge, C.; Zheng, W.

    1997-05-01

    An 8 month monitoring campaign on the Seyfert 1 galaxy Fairall 9 has been conducted with the International Ultraviolet Explorer in an attempt to obtain reliable estimates of continuum-continuum and continuum-emission-line delays for a high-luminosity active galactic nucleus (AGN). While the results of this campaign are more ambiguous than those of previous monitoring campaigns on lower luminosity sources, we find general agreement with the earlier results: (1) there is no measurable lag between ultraviolet continuum bands, and (2) the measured emission-line time lags are very short. It is especially notable that the Lyα + N V emission-line lag is about 1 order of magnitude smaller than determined from a previous campaign by Clavel, Wamsteker, & Glass (1989) when Fairall 9 was in a more luminous state. In other well-monitored sources, specifically NGC 5548 and NGC 3783, the highest ionization lines are found to respond to continuum variations more rapidly than the lower ionization lines, which suggests a radially ionization-stratified broad-line region. In this case, the results are less certain, since none of the emission-line lags are very well determined. The best-determined emission line lag is Lyα + N V, for which we find that the centroid of the continuum-emission-line cross-correlation function is τcent ~ 14-20 days. We measure a lag τcent <~ 4 days for He II λ1640 this result is consistent with the ionization-stratification pattern seen in lower luminosity sources, but the relatively large uncertainties in the emission-line lags measured here cannot rule out similar lags for Lyα + N V and He II λ1640 at a high level of significance. We are unable to determine a reliable lag for C IV λ1550, but we note that the profiles of the variable parts of Lyα and C IV λ1550 are not the same, which does not support the hypothesis that the strongest variations in these two lines arise in the same region.

  19. The Galactic Habitable Zone: Galactic Chemical Evolution

    NASA Astrophysics Data System (ADS)

    Gonzalez, Guillermo; Brownlee, Donald; Ward, Peter

    2001-07-01

    We propose the concept of a "Galactic Habitable Zone" (GHZ). Analogous to the Circumstellar Habitable Zone (CHZ), the GHZ is that region in the Milky Way where an Earth-like planet can retain liquid water on its surface and provide a long-term habitat for animal-like aerobic life. In this paper we examine the dependence of the GHZ on Galactic chemical evolution. The single most important factor is likely the dependence of terrestrial planet mass on the metallicity of its birth cloud. We estimate, very approximately, that a metallicity at least half that of the Sun is required to build a habitable terrestrial planet. The mass of a terrestrial planet has important consequences for interior heat loss, volatile inventory, and loss of atmosphere. A key issue is the production of planets that sustain plate tectonics, a critical recycling process that provides feedback to stabilize atmospheric temperatures on planets with oceans and atmospheres. Due to the more recent decline from the early intense star formation activity in the Milky Way, the concentration in the interstellar medium of the geophysically important radioisotopes 40K, 235,238U, and 232Th has been declining relative to Fe, an abundant element in the Earth. Also likely important are the relative abundances of Si and Mg to Fe, which affects the mass of the core relative to the mantle in a terrestrial planet. All these elements and isotopes vary with time and location in the Milky Way; thus, planetary systems forming in other locations and times in the Milky Way with the same metallicity as the Sun will not necessarily form habitable Earth-like planets. As a result of the radial Galactic metallicity gradient, the outer limit of the GHZ is set primarily by the minimum required metallicity to build large terrestrial planets. Regions of the Milky Way least likely to contain Earth-mass planets are the halo (including globular clusters), the thick disk, and the outer thin disk. The bulge should contain Earth

  20. The Structure of Active Galactic Nuclei

    NASA Technical Reports Server (NTRS)

    Kriss, Gerard A.

    1997-01-01

    We are continuing our systematic investigation of the nuclear structure of nearby active galactic nuclei (AGN). Upon completion, our study will characterize hypothetical constructs such as narrow-line clouds, obscuring tori, nuclear gas disks. and central black holes with physical measurements for a complete sample of nearby AGN. The major scientific goals of our program are: (1) the morphology of the NLR; (2) the physical conditions and dynamics of individual clouds in the NLR; (3) the structure and physical conditions of the warm reflecting gas; (4) the structure of the obscuring torus; (5) the population and morphology of nuclear disks/tori in AGN; (6) the physical conditions in nuclear disks; and (7) the masses of central black holes in AGN. We will use the Hubble Space Telescope (HST) to obtain high-resolution images and spatially resolved spectra. Far-UV spectroscopy of emission and absorption in the nuclear regions using HST/FOS and the Hopkins Ultraviolet Telescope (HUT) will help establish physical conditions in the absorbing and emitting gas. By correlating the dynamics and physical conditions of the gas with the morphology revealed through our imaging program, we will be able to examine mechanisms for fueling the central engine and transporting angular momentum. The kinematics of the nuclear gas disks may enable us to measure the mass of the central black hole. Contemporaneous X-ray observations using ASCA will further constrain the ionization structure of any absorbing material. Monitoring of variability in the UV and X-ray absorption will be used to determine the location of the absorbing gas, possibly in the outflowing warm reflecting gas, or the broad-line region, or the atmosphere of the obscuring torus. Supporting ground-based observations in the optical, near-IR, imaging polarimetry, and the radio will complete our picture of the nuclear structures. With a comprehensive survey of these characteristics in a complete sample of nearby AGN, our

  1. Mapping regions in Ste5 that support Msn5-dependent and -independent nuclear export.

    PubMed

    Hu, Zhenhua; Wang, Yunmei; Yu, Lu; Mahanty, Sanjoy K; Mendoza, Natalia; Elion, Elaine A

    2016-04-01

    Careful control of the available pool of the MAPK scaffold Ste5 is important for mating-pathway activation and the prevention of inappropriate mating differentiation in haploid Saccharomyces cerevisiae. Ste5 shuttles constitutively through the nucleus, where it is degraded by a ubiquitin-dependent mechanism triggered by G1 CDK phosphorylation. Here we narrow-down regions of Ste5 that mediate nuclear export. Four regions in Ste5 relocalize SV40-TAgNLS-GFP-GFP from nucleus to cytoplasm. One region is N-terminal, dependent on exportin Msn5/Ste21/Kap142, and interacts with Msn5 in 2 hybrid assays independently of mating pheromone, Fus3, Kss1, Ptc1, the NLS/PM, and RING-H2. A second region overlaps the PH domain and Ste11 binding site and 2 others are on the vWA domain and include residues essential for MAPK activation. We find no evidence for dependence on Crm1/Xpo1, despite numerous potential nuclear export sequences (NESs) detected by LocNES and NetNES1.1 predictors. Thus, Msn5 (homolog of human Exportin-5) and one or more exportins or adaptor molecules besides Crm1/Xpo1 may regulate Ste5 through multiple recognition sites.

  2. Gamma ray constraints on the galactic supernova rate

    NASA Technical Reports Server (NTRS)

    Hartmann, D.; The, L.-S.; Clayton, D. D.; Leising, M.; Mathews, G.; Woosley, S. E.

    1992-01-01

    Monte Carlo simulations of the expected gamma-ray signatures of galactic supernovae of all types are performed in order to estimate the significance of the lack of a gamma-ray signal due to supernovae occurring during the last millenium. Using recent estimates of nuclear yields, we determine galactic supernova rates consistent with the historic supernova record and the gamma-ray limits. Another objective of these calculations of galactic supernova histories is their application to surveys of diffuse galactic gamma-ray line emission.

  3. The Galactic Nucleus

    NASA Astrophysics Data System (ADS)

    Melia, Fulvio

    Exciting new broadband observations of the galactic nucleus have placed the heart of the Milky Way under intense scrutiny in recent years. This has been due in part to the growing interest from theorists motivated to study the physics of black hole accretion, magnetized gas dynamics, and unusual star formation. The center of our Galaxy is now known to harbor the most compelling supermassive black hole candidate, weighing in at 3-4 million solar masses. Its nearby environment is comprised of a molecular dusty ring, clusters of evolved and young stars, diffuse hot gas, ionized gas streamers, and several supernova remnants. This chapter will focus on the physical makeup of this dynamic region and the feasibility of actually imaging the black hole's shadow in the coming decade with mm interferometry.

  4. THE BOLOCAM GALACTIC PLANE SURVEY. III. CHARACTERIZING PHYSICAL PROPERTIES OF MASSIVE STAR-FORMING REGIONS IN THE GEMINI OB1 MOLECULAR CLOUD

    SciTech Connect

    Dunham, Miranda K.; Evans, Neal J.; Harvey, Paul; Merello, Manuel; Rosolowsky, Erik; Cyganowski, Claudia J.; Aguirre, James; Bally, John; Battersby, Cara; Ginsburg, Adam; Glenn, Jason; Stringfellow, Guy S.; Bradley, Eric Todd; Dowell, Darren; Drosback, Meredith; Schlingman, Wayne; Shirley, Yancy L.; Walawender, Josh; Williams, Jonathan P.

    2010-07-10

    We present the 1.1 mm Bolocam Galactic Plane Survey (BGPS) observations of the Gemini OB1 molecular cloud complex, and targeted NH{sub 3} observations of the BGPS sources. When paired with molecular spectroscopy of a dense gas tracer, millimeter observations yield physical properties such as masses, radii, mean densities, kinetic temperatures, and line widths. We detect 34 distinct BGPS sources above 5{sigma} = 0.37 Jy beam{sup -1} with corresponding 5{sigma} detections in the NH{sub 3}(1,1) transition. Eight of the objects show water maser emission (20%). We find a mean millimeter source FWHM of 1.12 pc and a mean gas kinetic temperature of 20 K for the sample of 34 BGPS sources with detections in the NH{sub 3}(1,1) line. The observed NH{sub 3} line widths are dominated by non-thermal motions, typically found to be a few times the thermal sound speed expected for the derived kinetic temperature. We calculate the mass for each source from the millimeter flux assuming the sources are isothermal and find a mean isothermal mass within a 120'' aperture of 230 {+-} 180 M{sub sun}. We find a total mass of 8400 M{sub sun} for all BGPS sources in the Gemini OB1 molecular cloud, representing 6.5% of the cloud mass. By comparing the millimeter isothermal mass to the virial mass calculated from the NH{sub 3} line widths within a radius equal to the millimeter source size, we find a mean virial parameter (M{sub vir}/M {sub iso}) of 1.0 {+-} 0.9 for the sample. We find mean values for the distributions of column densities of 1.0 x 10{sup 22} cm{sup -2} for H{sub 2}, and 3.0 x 10{sup 14} cm{sup -2} for NH{sub 3}, giving a mean NH{sub 3} abundance of 3.0 x 10{sup -8} relative to H{sub 2}. We find volume-averaged densities on the order of 10{sup 3}-10{sup 4} cm{sup -3}. The sizes and densities suggest that in the Gem OB1 region the BGPS is detecting the clumps from which stellar clusters form, rather than smaller, higher density cores where single stars or small multiple systems

  5. NuSTAR HARD X-RAY SURVEY OF THE GALACTIC CENTER REGION. I. HARD X-RAY MORPHOLOGY AND SPECTROSCOPY OF THE DIFFUSE EMISSION

    SciTech Connect

    Mori, Kaya; Hailey, Charles J.; Perez, Kerstin; Nynka, Melania; Zhang, Shuo; Canipe, Alicia M.; Krivonos, Roman; Tomsick, John A.; Barrière, Nicolas; Boggs, Steven E.; Craig, William W.; Hong, Jaesub; Ponti, Gabriele; Bauer, Franz; Alexander, David M.; Baganoff, Frederick K.; Barret, Didier; Christensen, Finn E.; Forster, Karl; Giommi, Paolo; and others

    2015-12-01

    We present the first sub-arcminute images of the Galactic Center above 10 keV, obtained with NuSTAR. NuSTAR resolves the hard X-ray source IGR J17456–2901 into non-thermal X-ray filaments, molecular clouds, point sources, and a previously unknown central component of hard X-ray emission (CHXE). NuSTAR detects four non-thermal X-ray filaments, extending the detection of their power-law spectra with Γ ∼ 1.3–2.3 up to ∼50 keV. A morphological and spectral study of the filaments suggests that their origin may be heterogeneous, where previous studies suggested a common origin in young pulsar wind nebulae (PWNe). NuSTAR detects non-thermal X-ray continuum emission spatially correlated with the 6.4 keV Fe Kα fluorescence line emission associated with two Sgr A molecular clouds: MC1 and the Bridge. Broadband X-ray spectral analysis with a Monte-Carlo based X-ray reflection model self-consistently determined their intrinsic column density (∼10{sup 23} cm{sup −2}), primary X-ray spectra (power-laws with Γ ∼ 2) and set a lower limit of the X-ray luminosity of Sgr A* flare illuminating the Sgr A clouds to L{sub X} ≳ 10{sup 38} erg s{sup −1}. Above ∼20 keV, hard X-ray emission in the central 10 pc region around Sgr A* consists of the candidate PWN G359.95–0.04 and the CHXE, possibly resulting from an unresolved population of massive CVs with white dwarf masses M{sub WD} ∼ 0.9 M{sub ⊙}. Spectral energy distribution analysis suggests that G359.95–0.04 is likely the hard X-ray counterpart of the ultra-high gamma-ray source HESS J1745–290, strongly favoring a leptonic origin of the GC TeV emission.

  6. Distance effects on regional discriminants along a seismic profile in Northwest Nevada; NPE and nuclear results

    SciTech Connect

    McCormack, D.A.; Priestley, K.F.; Patton, H.J.

    1994-12-31

    To address questions of discriminant transportability, it is important to understand how discriminants based on regional seismic phases are affected by regional variations in velocity structure. To examine this issue, we have recorded two explosions, the nuclear explosion Kinibito and the Non-Proliferation Experiment along a 300 km-long profile through western Nevada. We use these data to investigate the stability with distance of several proposed seismic discriminants. In this study we first estimate the apparent attenuation of the regional phases. We compare attenuation corrected amplitude ratios for P{sub n}/L{sub g} and P{sub g}/L{sub g}, and spectral ratios for P{sub n}, P{sub g}, and L{sub g}, as a function of distance along the profile. We make these comparisons for the vertical component and for the total vector resultant using all three components of motion.

  7. The source and distribution of Galactic positrons

    NASA Technical Reports Server (NTRS)

    Purcell, W. R.; Dixon, D. D.; Cheng, L.-X.; Leventhal, M.; Kinzer, R. L.; Kurfess, J. D.; Skibo, J. G.; Smith, D. M.; Tueller, J.

    1997-01-01

    The oriented scintillation spectrometer experiment (OSSE) observations of the Galactic plane and the Galactic center region were combined with observations acquired with other instruments in order to produce a map of the Galactic 511 keV annihilation radiation. Two mapping techniques were applied to the data: the maximum entropy method, and the basis pursuit inversion method. The resulting maps are qualitatively similar and show evidence for a central bulge and a weak galactic disk component. The weak disk is consistent with that expected from positrons produced by the decay of radioactive Al-26 in the interstellar medium. Both maps suggest an enhanced region of emission near l = -4 deg, b = 7 deg, with a flux of approximately 50 percent of that of the bulge. The existence of this emission appears significant, although the location is not well determined. The source of this enhanced emission is presently unknown.

  8. Alimentary tract absorption (f1 values) for radionuclides in local and regional fallout from nuclear tests.

    PubMed

    Ibrahim, Shawki A; Simon, Steven L; Bouville, André; Melo, Dunstana; Beck, Harold L

    2010-08-01

    This paper presents gastrointestinal absorption fractions (f1 values) for estimating internal doses from local and regional fallout radionuclides due to nuclear tests. The choice of f1 values are based on specific circumstances of weapons test conditions and a review of reported f1 values for elements in different physical and chemical states. Special attention is given to fallout from nuclear tests conducted at the Marshall Islands. We make a distinction between the f1 values for intakes of radioactive materials immediately after deposition (acute intakes) and intakes that occur in the course of months and years after deposition, following incorporation into terrestrial and aquatic foodstuffs (chronic intakes). Multiple f1 values for different circumstances where persons are exposed to radioactive fallout (e.g., local vs. regional fallout and coral vs. continental tests) are presented when supportive information is available. In some cases, our selected f1 values are similar to those adopted by the International Commission on Radiological Protection (ICRP) (e.g., iodine and most actinides). However, f1 values for cesium and strontium derived from urine bioassay data of the Marshallese population are notably lower than the generic f1 values recommended by ICRP, particularly for acute intakes from local fallout (0.4 and 0.05 for Cs and Sr, respectively). The f1 values presented here form the first complete set of values relevant to realistic dose assessments for exposure to local or regional radioactive fallout.

  9. Resonance Region Nuclear Data Analysis to Support Advanced Fuel Cycle Development

    SciTech Connect

    Dunn, Michael E; Derrien, Herve; Leal, Luiz C; Gil, Choong-Sup; Kim, D.

    2011-01-01

    The Oak Ridge National Laboratory (ORNL) and the Korean Atomic Energy Research Institute (KAERI) are performing collaborative research as part of a three-year United States (U.S.) / Republic of Korea (ROK) International Nuclear Energy Research Initiative (I-NERI) project to provide improved neutron cross-section data with uncertainty or covariance data important for advanced fuel cycle and nuclear safeguards applications. ORNL and KAERI have initiated efforts to prepare new cross-section evaluations for 240Pu, 237Np, and the stable Cm isotopes. At the current stage of the I-NERI project, ORNL has recently completed a preliminary resonance-region cross-section evaluation with covariance data for 240Pu and initiated resonance evaluation efforts for 237Np and 244Cm. Likewise, KAERI is performing corresponding high-energy cross-section analyses (i.e., above the resonance region) for the noted isotopes. The paper provides results pertaining to the new resonance region evaluation efforts with emphasis on the new 240Pu evaluation.

  10. Alimentary Tract Absorption (f1 Values) for Radionuclides in Local and Regional Fallout from Nuclear Tests

    PubMed Central

    Ibrahim, Shawki; Simon, Steven L; Bouville, André; Melo, Dunstana; Beck, Harold

    2009-01-01

    This paper presents gastrointestinal absorption fractions (f1 values) for estimating internal doses from local and regional fallout radionuclides due to nuclear tests. The choice of f1 values are based on specific circumstances of weapons test conditions and a review of reported f1 values for elements in different physical and chemical states. Special attention is given to fallout from nuclear tests conducted at the Marshall Islands. We make a distinction between the f1 values for intakes of radioactive materials immediately after deposition (acute intakes) and intakes that occur in the course of months and years after deposition, following incorporation into terrestrial and aquatic foodstuffs (chronic intakes). Multiple f1 values for different circumstances where persons are exposed to radioactive fallout (e.g. local vs. regional fallout and coral vs. continental tests) are presented when supportive information is available. In some cases, our selected f1 values are similar to those adopted by the ICRP (e.g. iodine and most actinides). However, f1 values for cesium and strontium derived from urine bioassay data of the Marshallese population are notably lower than the generic f1 values recommended by ICRP, particularly for acute intakes from local fallout (0.4 and 0.05 for Cs and Sr, respectively. The f1 values presented here form the first complete set of values relevant to realistic dose assessments for exposure to local or regional radioactive fallout. PMID:20622554

  11. Star formation in the Galactic Center GMC cores: Sagittarius B2 and the dust ridge

    NASA Technical Reports Server (NTRS)

    Lis, D. C.; Menten, K. M.

    1995-01-01

    The total far-infrared luminosity and the ionizing flux inferred from radio continuum observations of the Galactic center region imply a rate of star formation per unit mass of molecular material comparable to that in the Galactic disk. However, H2O and OH masers commonly found in sites of high-mass star formation are relatively rare in the nuclear disk. Far-infrared studies suggest that the formation rate of stars with masses greater than approximately 20 Solar Mass is reduced in the central region compared to the Galactic disk. Star formation might be suppressed currently in the central region as a result of the different geometry and strength of the magnetic fields there, which arguably might tend to inhibit cloud collapse. High gas pressures implied by observations of the diffuse X-ray emission suggest that giant molecular clouds (GMCs) in the nuclear disk may be held together by external pressure rather than self-gravity. The gravitational collapse leading to the formation of high density cores may thus be suppressed in all but the most massive clouds.

  12. Relativistic Dark Matter at the Galactic Center

    SciTech Connect

    Amin, Mustafa A.; Wizansky, Tommer; /SLAC

    2007-11-16

    In a large region of the supersymmetry parameter space, the annihilation cross section for neutralino dark matter is strongly dependent on the relative velocity of the incoming particles. We explore the consequences of this velocity dependence in the context of indirect detection of dark matter from the galactic center. We find that the increase in the annihilation cross section at high velocities leads to a flattening of the halo density profile near the galactic center and an enhancement of the annihilation signal.

  13. Facioscapulohumeral muscular dystrophy (FSHD) region gene 1 (FRG1) is a dynamic nuclear and sarcomeric protein.

    PubMed

    Hanel, Meredith L; Sun, Chia-Yun Jessica; Jones, Takako I; Long, Steven W; Zanotti, Simona; Milner, Derek; Jones, Peter L

    2011-02-01

    Facioscapulohumeral muscular dystrophy (FSHD) region gene 1 (FRG1) is a candidate gene for mediating FSHD pathophysiology, however, very little is known about the endogenous FRG1 protein. This study uses immunocytochemistry (ICC) and histology to provide insight into FRG1's role in vertebrate muscle development and address its potential involvement in FSHD pathophysiology. In cell culture, primary myoblast/myotube cultures, and mouse and human muscle sections, FRG1 showed distinct nuclear and cytoplasmic localizations and nuclear shuttling assays indicated the subcellular pools of FRG1 are linked. During myoblast differentiation, FRG1's subcellular distribution changed dramatically with FRG1 eventually associating with the matured Z-discs. This Z-disc localization was confirmed using isolated mouse myofibers and found to be maintained in adult human skeletal muscle biopsies. Thus, FRG1 is not likely involved in the initial assembly and alignment of the Z-disc but may be involved in sarcomere maintenance or signaling. Further analysis of human tissue showed FRG1 is strongly expressed in arteries, veins, and capillaries, the other prominently affected tissue in FSHD. Overall, we show that in mammalian cells, FRG1 is a dynamic nuclear and cytoplasmic protein, however in muscle, FRG1 is also a developmentally regulated sarcomeric protein suggesting FRG1 may perform a muscle-specific function. Thus, FRG1 is the only FSHD candidate protein linked to the muscle contractile machinery and may address why the musculature and vasculature are specifically susceptible in FSHD.

  14. Geology of the Chinese nuclear test site near Lop Nor, Xinjiang Uygur Autonomous Region, China

    USGS Publications Warehouse

    Matzko, J.R.

    1994-01-01

    The Chinese underground nuclear test site in the Kuruktag and Kyzyltag mountains of the Xinjiang Uygur Autonomous Region of northwest China, is the location of sixteen underground tests that occurred between 1969 and 1992. The largest test to date, conducted on 21 May 1992, had a reported yield of about one megaton. Geophysical properties of the rocks and a large-scale geologic map of part of the test area were published by the Chinese in 1986 and 1987 and are the first site-specific data available for this test site. In areas of low relief, underground nuclear testing has occurred below the water table, in shafts drilled vertically into dense, low porosity Paleozoic granitic and metasedimentary rocks. Additional testing in areas of more rugged terrain has occurred in horizontal tunnels, probably above the water table. At least one of these tunnels was driven into granite. The upper 50 m of the rock in the area of the vertical tests is weathered and fractured; these conditions have been shown to influence the magnitude of the disturbance of the land surface after a nuclear explosion. These descriptions suggest hard rock coupling at depth and a closer resemblance to the former Soviet test site in eastern Kazakhstan than to the U.S. test site in Nevada. ?? 1994.

  15. The signal sequence coding region promotes nuclear export of mRNA.

    PubMed

    Palazzo, Alexander F; Springer, Michael; Shibata, Yoko; Lee, Chung-Sheng; Dias, Anusha P; Rapoport, Tom A

    2007-12-01

    In eukaryotic cells, most mRNAs are exported from the nucleus by the transcription export (TREX) complex, which is loaded onto mRNAs after their splicing and capping. We have studied in mammalian cells the nuclear export of mRNAs that code for secretory proteins, which are targeted to the endoplasmic reticulum membrane by hydrophobic signal sequences. The mRNAs were injected into the nucleus or synthesized from injected or transfected DNA, and their export was followed by fluorescent in situ hybridization. We made the surprising observation that the signal sequence coding region (SSCR) can serve as a nuclear export signal of an mRNA that lacks an intron or functional cap. Even the export of an intron-containing natural mRNA was enhanced by its SSCR. Like conventional export, the SSCR-dependent pathway required the factor TAP, but depletion of the TREX components had only moderate effects. The SSCR export signal appears to be characterized in vertebrates by a low content of adenines, as demonstrated by genome-wide sequence analysis and by the inhibitory effect of silent adenine mutations in SSCRs. The discovery of an SSCR-mediated pathway explains the previously noted amino acid bias in signal sequences and suggests a link between nuclear export and membrane targeting of mRNAs.

  16. REGIONAL SEISMIC CHEMICAL AND NUCLEAR EXPLOSION DISCRIMINATION: WESTERN U.S. EXAMPLES

    SciTech Connect

    Walter, W R; Taylor, S R; Matzel, E; Gok, R; Heller, S; Johnson, V

    2006-07-07

    We continue exploring methodologies to improve regional explosion discrimination using the western U.S. as a natural laboratory. The western U.S. has abundant natural seismicity, historic nuclear explosion data, and widespread mine blasts, making it a good testing ground to study the performance of regional explosion discrimination techniques. We have assembled and measured a large set of these events to systematically explore how to best optimize discrimination performance. Nuclear explosions can be discriminated from a background of earthquakes using regional phase (Pn, Pg, Sn, Lg) amplitude measures such as high frequency P/S ratios. The discrimination performance is improved if the amplitudes can be corrected for source size and path length effects. We show good results are achieved using earthquakes alone to calibrate for these effects with the MDAC technique (Walter and Taylor, 2001). We show significant further improvement is then possible by combining multiple MDAC amplitude ratios using an optimized weighting technique such as Linear Discriminant Analysis (LDA). However this requires data or models for both earthquakes and explosions. In many areas of the world regional distance nuclear explosion data is lacking, but mine blast data is available. Mine explosions are often designed to fracture and/or move rock, giving them different frequency and amplitude behavior than contained chemical shots, which seismically look like nuclear tests. Here we explore discrimination performance differences between explosion types, the possible disparity in the optimization parameters that would be chosen if only chemical explosions were available and the corresponding effect of that disparity on nuclear explosion discrimination. Even after correcting for average path and site effects, regional phase ratios contain a large amount of scatter. This scatter appears to be due to variations in source properties such as depth, focal mechanism, stress drop, in the near source

  17. Climate effects of a hypothetical regional nuclear war: Sensitivity to emission duration and particle composition

    NASA Astrophysics Data System (ADS)

    Pausata, Francesco S. R.; Lindvall, Jenny; Ekman, Annica M. L.; Svensson, Gunilla

    2016-11-01

    Here, we use a coupled atmospheric-ocean-aerosol model to investigate the plume development and climate effects of the smoke generated by fires following a regional nuclear war between emerging third-world nuclear powers. We simulate a standard scenario where 5 Tg of black carbon (BC) is emitted over 1 day in the upper troposphere-lower stratosphere. However, it is likely that the emissions from the fires ignited by bomb detonations include a substantial amount of particulate organic matter (POM) and that they last more than 1 day. We therefore test the sensitivity of the aerosol plume and climate system to the BC/POM ratio (1:3, 1:9) and to the emission length (1 day, 1 week, 1 month). We find that in general, an emission length of 1 month substantially reduces the cooling compared to the 1-day case, whereas taking into account POM emissions notably increases the cooling and the reduction of precipitation associated with the nuclear war during the first year following the detonation. Accounting for POM emissions increases the particle size in the short-emission-length scenarios (1 day/1 week), reducing the residence time of the injected particle. While the initial cooling is more intense when including POM emission, the long-lasting effects, while still large, may be less extreme compared to the BC-only case. Our study highlights that the emission altitude reached by the plume is sensitive to both the particle type emitted by the fires and the emission duration. Consequently, the climate effects of a nuclear war are strongly dependent on these parameters.

  18. Warm Nuclei: Nuclear Structure Effects on the Order-to-Chaos Transition Region

    NASA Astrophysics Data System (ADS)

    Leoni, S.; Benzoni, G.; Blasi, N.; Bracco, A.; Brambilla, S.; Camera, F.; Corsi, A.; Crespi, F. C. L.; Mason, P.; Million, B.; Montanari, D.; Pignanelli, M.; Vigezzi, E.; Wieland, O.; Matsuo, M.; Shimizu, Y. R.; Bednarczyk, P.; Castoldi, M.; Curien, D.; Duch{ÊNe, G. G.; Herskind, B.; Kmiecik, M.; Maj, A.; Meczynski, W.; Robin, J.; Styczen, J.; Zieblinski, M.; Zuber, K.; Zucchiatti, A.

    2009-03-01

    The gamma -decay from the warm rotation in the transition region between order and chaos is studied in the superdeformed (SD) nuclei 151Tb and 196Pb, using the EUROBALL IV array. A number of observables, testing the decay dynamics in the SD well, are compared with predictions from a Monte Carlo simulation of the gamma -decay based on microscopic calculations of discrete levels and decay probabilities. Agreement with the data is found only assuming an enhancement of the B(E1) strength around 1 MeV by a factor of 10-100, which is consistent with the evidence for octupole vibrations in both mass regions. The work shows the relevance of gamma -spectroscopy in the order-to-chaos regime to highlight specific nuclear structure effects.

  19. Structure of the disturbed region of the atmosphere after the nuclear explosion in Hiroshima

    NASA Astrophysics Data System (ADS)

    Shcherbin, M. D.; Pavlyukov, K. V.; Salo, A. A.; Pertsev, S. F.; Rikunov, A. V.

    2013-09-01

    An attempt is undertaken to describe the development of the disturbed region of the atmosphere caused by the nuclear explosion over Hiroshima on August 6, 1945. Numerical simulation of the phenomenon is performed using the dynamic equations for a nonconducting inviscid gas taking into account the combustion of urban buildings, phase changes of water, electrification of ice particles, and removal of soot particles. The results of the numerical calculation of the development of the disturbed region indicate heavy rainfall, the formation of a storm cloud with lightning discharges, removal of soot particles, and the formation of vertical vortices. The temporal sequence of these meteorological phenomena is consistent with the data of observations. Because of the assumptions and approximations used in solving the problem, the results are of qualitative nature. Refinement of the results can be obtained by a more detailed study of the approximate initial and boundary conditions of the problem.

  20. Nuclear energy surfaces at high-spin in the A{approximately}180 mass region

    SciTech Connect

    Chasman, R.R.; Egido, J.L.; Robledo, L.M.

    1995-08-01

    We are studying nuclear energy surfaces at high spin, with an emphasis on very deformed shapes using two complementary methods: (1) the Strutinsky method for making surveys of mass regions and (2) Hartree-Fock calculations using a Gogny interaction to study specific nuclei that appear to be particularly interesting from the Strutinsky method calculations. The great advantage of the Strutinsky method is that one can study the energy surfaces of many nuclides ({approximately}300) with a single set of calculations. Although the Hartree-Fock calculations are quite time-consuming relative to the Strutinsky calculations, they determine the shape at a minimum without being limited to a few deformation modes. We completed a study of {sup 182}Os using both approaches. In our cranked Strutinsky calculations, which incorporate a necking mode deformation in addition to quadrupole and hexadecapole deformations, we found three well-separated, deep, strongly deformed minima. The first is characterized by nuclear shapes with axis ratios of 1.5:1; the second by axis ratios of 2.2:1 and the third by axis ratios of 2.9:1. We also studied this nuclide with the density-dependent Gogny interaction at I = 60 using the Hartree-Fock method and found minima characterized by shapes with axis ratios of 1.5:1 and 2.2:1. A comparison of the shapes at these minima, generated in the two calculations, shows that the necking mode of deformation is extremely useful for generating nuclear shapes at large deformation that minimize the energy. The Hartree-Fock calculations are being extended to larger deformations in order to further explore the energy surface in the region of the 2.9:1 minimum.

  1. Phylogenetic patterns in the genus Manihot (Euphorbiaceae) inferred from analyses of nuclear and chloroplast DNA regions.

    PubMed

    Chacón, Juliana; Madriñán, Santiago; Debouck, Daniel; Rodriguez, Fausto; Tohme, Joe

    2008-10-01

    From a phylogenetic perspective, the genus Manihot can be considered as an orphan group of plants, and the scientific knowledge acquired has been mainly related to cassava, one of the most important crops in poor tropical countries. The goal of the majority of evolutionary studies in the genus has been to decipher the domestication process and identify the closest relatives of cassava. Few investigations have focused on wild Manihot species, and the phylogeny of the genus is still unclear. In this study the DNA sequence variation from two chloroplast regions, the nuclear DNA gene G3pdh and two nuclear sequences derived from the 3'-end of two cassava ESTs, were used in order to infer the phylogenetic relationships among a subset of wild Manihot species, including two species from Cnidoscolus as out-groups. Maximum parsimony and Bayesian analyses were conducted for each data set and for a combined matrix due to the low variation of each region when analyzed independently. A penalized likelihood analysis of the chloroplast region trnL-trnF, calibrated with various age estimates for genera in the Euphorbiaceae extracted from the literature was used to determine the ages of origin and diversification of the genus. The two Mesoamerican species sampled form a well-defined clade. The South American species can be grouped into clades of varying size, but the relationships amongst them cannot be established with the data available. The age of the crown node of Manihot was estimated at 6.6 million years ago. Manihot esculenta varieties do not form a monophyletic group that is consistent with the possibility of multiple introgressions of genes from other wild species. The low levels of variation observed in the DNA regions sampled suggest a recent and explosive diversification of the genus, which is confirmed by our age estimates.

  2. Nuclear-waste isolation in the unsaturated zone of arid regions

    SciTech Connect

    Wollenberg, H.A.; Wang, J.S.Y.; Korbin, G.

    1982-05-01

    The vadose zone in arid regions is considered as a possible environment for geologic isolation of nuclear waste. There are several topographic and lithologic combinations in the vadose zone of arid regions that may lend themselves to waste isolation considerations. In some cases, topographic highs such as mesas and interbasin ranges - comprised of several rock types, may contain essentially dry or partially saturated conditions favorable for isolation. The adjacent basins, especially in the far western and southwestern US, may have no surface or subsurface hydrologic connections with systems ultimately leading to the ocean. Some rock types may have the favorable characteristics of very low permeability and contain appropriate minerals for the strong chemical retardation of radionuclides. Environments exhibiting these hydrologic and geochemical attributes are the areas underlain by tuffaceous rocks, relatively common in the Basin and Range geomorphic province. Adjacent valley areas, where tuffaceous debris makes up a significant component of valley fill alluvium, may also contain thick zones of unsaturated material, and as such also lend themselves to strong consideration as respository environments. This paper summarizes the aspects of nuclear waste isolation in unsaturated regimes in alluvial-filled valleys and tuffaceous rocks of the Basin and Range province.

  3. Magnon-induced nuclear relaxation in the quantum critical region of a Heisenberg linear chain

    NASA Astrophysics Data System (ADS)

    Hoch, M. J. R.

    2017-07-01

    The low-temperature properties of spin-1/2 one-dimensional (1D) Heisenberg antiferromagnetic (HAF) chains which have relatively small exchange couplings between the spins can be tuned using laboratory-scale magnetic fields. Magnetization measurements, made as a function of temperature, provide phase diagrams for these systems and establish the quantum critical point (QCP). The evolution of the spin dynamics behavior with temperature and applied field in the quantum critical (QC) region, near the QCP, is of particular interest and has been experimentally investigated in a number of 1D HAFs using neutron scattering and nuclear magnetic resonance as the preferred techniques. In the QC phase both quantum and thermal spin fluctuations are present. As a result of extended spin correlations in the chains, magnon excitations are important at finite temperatures. An expression for the NMR spin-lattice relaxation rate 1 /T1 of probe nuclei in the QC phase of 1D HAFs is obtained by considering Raman scattering processes which induce nuclear spin flips. The relaxation rate expression, which involves the temperature and the chemical potential, predicts scaling behavior of 1 /T1 consistent with recent experimental findings for quasi-1D HAF systems. A simple relationship between 1 /T1 and the deviation of the magnetization from saturation (MS-M ) is predicted for the QC region.

  4. AST/RO Observations of CO J=7-6 Emission from the Galactic Center

    NASA Astrophysics Data System (ADS)

    Kim, S.; Martin, C. L.; Stark, A. A.; Lane, A. P.

    2000-12-01

    We present a map of the Galactic Center region in the CO J=7-6 transition observed with the Antarctic Submillimeter Telescope and Remote Observatory (AST/RO) located at Amundsen-Scott South Pole Station. Emission from the 809 GHz J=7-6 transition of 12CO was mapped over the region -2.7 < l < 3.6, -1.0 < b < 1.0, on a 1' grid with a spatial resolution of ~ 85''. The CO J=4-3 and [CI] emissions from this region have been mapped with AST/RO by Martin et al. (2001) and Ojha et al. (2000). These two spectral lines are distributed throughout the Galactic Center region in a manner almost identical to that of CO J=1-0; the CO(4-3)/ CO(1-0) line ratio and the [CI]/CO line ratios are remarkably uniform across a wide variety of Galactic Center features. In contrast, the CO J=7-6 emission from the Galactic Center region is confined to the Sgr A and Sgr B2 complexes. The implication is that the photon-dominated regions surrounding the Galactic Center are remarkably similar in mean density and kinetic temperature at n = 3000 cm-3 and T = 35 K, except for the two special regions Sgr A and Sgr B2, which are denser. The CO(7-6)/CO(4-3) line temperature ratios near Sgr B2 are similar to those observed in the nuclear region of the starburst galaxy M82 (Mao et al. 2000), while the CO(7-6)/CO(4-3) line temperature ratios around Sgr A are a factor of three lower than those near Sgr B2. The CO(7-6)/CO(4-3) line ratio in the Galactic Center region as a whole is at least an order of magnitude less than that in a comparable region near the center of M82. This research was supported in part by the National Science Foundation under a cooperative agreement with the Center for Astrophysical Research in Antarctica (CARA), grant number NSF OPP 89-20223. CARA is a National Science Foundation Science and Technology Center.

  5. COS-B observations of the high-energy gamma radiation from the galactic disk

    NASA Technical Reports Server (NTRS)

    1977-01-01

    The COS-B experiment has observed approximately one-fourth of the galactic disk, including the galactic-center region, the galactic anticenter, and the Vela region. A completely automatic analysis of the events recorded during these observations reveals a galactic gamma ray emission from the three regions. In the galactic center and Vela regions, the disk emission distribution was measured. From these data, the existence of a local (less than 1 kpc) and a distant (greater than 3 kpc) emitting region is apparent in the general direction of the inner galaxy.

  6. Duelling winds: a model for broad-line regions.

    NASA Astrophysics Data System (ADS)

    Smith, M. D.; Raine, D. J.

    A model for broad-line regions in active galactic nuclei is discussed. When the X-ray flux from a galactic nucleus Compton-heats an accretion disc a large amount of hot gas can be released in the form of a wind. This material becomes entrained into a wind blowing from the nucleus. Provided the ram pressure of the nuclear wind exceeds that of the disc wind, it will collapse into clouds. The nuclear wind accelerates small clouds to higher velocities, corresponding to observed line widths. Large clouds fall inwards. Cloud sizes, line asymmetries and variability characteristics are determined.

  7. Active galactic nuclei

    PubMed Central

    Fabian, Andrew C.

    1999-01-01

    Active galactic nuclei are the most powerful, long-lived objects in the Universe. Recent data confirm the theoretical idea that the power source is accretion into a massive black hole. The common occurrence of obscuration and outflows probably means that the contribution of active galactic nuclei to the power density of the Universe has been generally underestimated. PMID:10220363

  8. Local, Regional and National Responses for Medical Management of a Radiological/Nuclear Incident

    PubMed Central

    Dainiak, Nicholas; Skudlarska, Beata; Albanese, Joseph

    2013-01-01

    Radiological and nuclear devices may be used by terrorists or may be the source of accidental exposure. A tiered approach has been recommended for response to a terrorist event wherein local, regional, state and federal assets become involved sequentially, as the magnitude in severity of the incident increases. State-wide hospital plans have been developed and published for Connecticut, New York and California. These plans address delineation of responsibilities of various categories of health professionals, protection of healthcare providers, identification and classification of individuals who might have been exposed to and/or contaminated by radiation and, in the case of Connecticut response plan, early management of victims. Regional response programs such as the New England Regional Health Compact (consisting of 6 member states) have been developed to manage consequences of radiation injury. The Department of Homeland Security is ultimately responsible for managing both health consequences and the crisis. Multiple US national response assets may be called upon for use in radiological incidents. These include agencies and programs that have been developed by the Department of Energy, the Environmental Protection Agency and the Department of Defense. Coordination of national, regional and state assets with local response efforts is necessary to provide a timely and efficient response. PMID:23447742

  9. SAS-2 galactic gamma-ray results. 1: Diffuse emission

    NASA Technical Reports Server (NTRS)

    Thompson, D. J.; Fichtel, C. E.; Hartman, R. C.; Kniffen, D. A.; Bignami, G. F.; Lamb, R. C.; Oegelman, H.; Oezel, M. E.; Tuemer, T.

    1977-01-01

    Continuing analysis of the data from the SAS-2 high energy gamma ray experiment has produced an improved picture of the sky at photon energies above 35 MeV. On a large scale, the diffuse emission from the galactic plane is the dominant feature observed by SAS-2. This galactic plane emission is most intense between galactic longitudes 310 deg and 45 deg, corresponding to a region within 7 kpc of the galactic center. Within the high-intensity region, SAS-2 observes peaks around galactic longitudes 315, 330, 345, 0, and 35 deg. These peaks appear to be correlated with galactic features and components such as molecular hydrogen, atomic hydrogen, magnetic fields, cosmic-ray concentrations, and photon fields.

  10. COS-B observations of the high energy gamma radiation from the galactic disc

    NASA Technical Reports Server (NTRS)

    Paul, J.

    1976-01-01

    During the first months of operation, COS-B has observed galactic high energy gamma rays from the galactic disc. In the galactic center and Vela regions the disc emission distribution was measured. From these data the existence of a local ( 1 kpc) and a distant ( 3 kpc) emitting region is apparent in the general direction of the inner galaxy.

  11. Planetary nebulae near the Galactic Centre: chemical abundances

    NASA Astrophysics Data System (ADS)

    Cavichia, O.; Costa, R. D. D.; Maciel, W. J.; Mollá, M.

    2014-10-01

    In this work, we report physical parameters and abundances derived for a sample of high extinction planetary nebulae located in the Galactic bulge, near the Galactic Centre, based on low dispersion spectroscopy secured at the SOAR telescope using the Goodman spectrograph. The results show that the abundances of our sample are similar to those from other regions of the bulge. Nevertheless, the average abundances of the Galactic bulge do not follow the observed trend of the radial abundance gradient in the disk.

  12. Far-infrared and submillimeter survey of the galactic center and nearby galactic plane

    NASA Technical Reports Server (NTRS)

    Campbell, M. F.; Niles, D. W.; Kanskar, M.; Hoffmann, W. F.; Thronson, H. A.

    1985-01-01

    Maps are presented with 12-arcmin resolution of the Galactic Center and adjacent galactic plane, from l(Pc) = 359 deg to l(Pc) = 5 deg. The data were obtained with the Steward Observatory's cryogenically-cooled, balloon-borne telescope. The data are from channels filtered for a bandpass of 70 to 110 microns and for a longpass of wavelength greater than 80 microns. For the typical effective temperature of 25 K of a galactic H II region at this spatial resolution, the effective wavelengths of the channels are 93 microns and 145 microns. Continuous emission is mapped along the galactic plane in both wavelengths. There are two contrasts between the immediate vicinity of SgrA l(Pc) smaller than 1 deg, and the galactic plane in general. Firstly, for l(Pi) greater than 1 deg the galactic plane narrows dramatically at 93 microns, while retaining its width at 145 microns. Secondly, the individual sources at l(Pc) (which are associated with H II regions) have greater peak brightness in the 145-micron channel than the 93-micron channel, while SgrA has approximately equal peak brightness in each. The maps demonstrate the importance of submillimeter wavelengths to galactic surveys.

  13. FAST TRACK PAPER: Regional observations of the second North Korean nuclear test on 2009 May 25

    NASA Astrophysics Data System (ADS)

    Shin, Jin Soo; Sheen, Dong-Hoon; Kim, Geunyoung

    2010-01-01

    The suspicious seismic event that occurred in the northern Korean Peninsula on 2009 May 25 was declared to be the second underground nuclear test (NK2ND) by North Korea. We investigated the characteristics of NK2ND using seismic signals recorded at regional-distance stations in South Korea and China. The Pn/Lg ratios of NK2ND definitely discriminate this event from two nearby natural earthquakes at frequencies above 4 Hz. Full moment tensor inversion of full waveform data shows that NK2ND had a very large isotropic component. Pure isotropic moment tensor inversion also resulted in good recovery of observed waveforms, with clear indication that NK2ND was explosive in origin. The moment magnitude (Mw) from the full moment tensor inversion was estimated to be 4.5 and network-averaged values of 4.6 and 3.6 were calculated for rms mb(Lg) and Ms(VMAX), respectively. Although mb - Ms signature has been considered one of the most reliable discriminants for separating explosions and earthquakes, this signature showed poor discrimination in the case of NK2ND. The Pn/Lg ratios and moment tensor inversion give more reliable evidence than does the mb - Ms for classifying the suspicious event in the northern Korean Peninsula as a possible explosion. The characteristics of NK2ND are also quite similar to those of the first North Korean nuclear test on 2006 October 9.

  14. Expression, function, and targeting of the nuclear exporter chromosome region maintenance 1 (CRM1) protein.

    PubMed

    Ishizawa, Jo; Kojima, Kensuke; Hail, Numsen; Tabe, Yoko; Andreeff, Michael

    2015-09-01

    Nucleocytoplasmic trafficking of proteins/RNAs is essential to normal cellular function. Indeed, accumulating evidence suggests that cancer cells escape anti-neoplastic mechanisms and benefit from pro-survival signals via the dysregulation of this system. The nuclear exporter chromosome region maintenance 1 (CRM1) protein is the only protein in the karyopherin-β protein family that contributes to the trafficking of numerous proteins and RNAs from the nucleus. It is considered to be an oncogenic, anti-apoptotic protein in transformed cells, since it reportedly functions as a gatekeeper for cell survival, including affecting p53 function, and ribosomal biogenesis. Furthermore, abnormally high expression of CRM1 is correlated with poor patient prognosis in various malignancies. Therapeutic targeting of CRM1 has emerged as a novel cancer treatment strategy, starting with a clinical trial with leptomycin B, the original specific inhibitor of CRM1, followed by development of several next-generation small molecules. KPT-330, a novel member of the CRM1-selective inhibitors of nuclear export (SINE) class of compounds, is currently undergoing clinical evaluation for the therapy of various malignancies. Results from these trials suggest that SINE compounds may be particularly useful against hematological malignancies, which often become refractory to standard chemotherapeutic agents. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. Expression, function, and targeting of the nuclear exporter chromosome region maintenance 1 (CRM1) protein

    PubMed Central

    Ishizawa, Jo; Kojima, Kensuke; Hail, Numsen; Tabe, Yoko; Andreeff, Michael

    2015-01-01

    Nucleocytoplasmic trafficking of proteins/RNAs is essential to normal cellular function. Indeed, accumulating evidence suggests that cancer cells escape anti-neoplastic mechanisms and benefit from pro-survival signals via the dysregulation of this system. The nuclear exporter chromosome region maintenance 1 (CRM1) protein is the only protein in the karyopherin-β protein family that contributes to the trafficking of numerous proteins and RNAs from the nucleus. It is considered to be an oncogenic, anti-apoptotic protein in transformed cells, since it reportedly functions as a gatekeeper for cell survival, including affecting p53 function, and ribosomal biogenesis. Furthermore, abnormally high expression of CRM1 is correlated with poor patient prognosis in various malignancies. Therapeutic targeting of CRM1 has emerged as a novel cancer treatment strategy, starting with a clinical trial with leptomycin B, the original specific inhibitor of CRM1, followed by development of several next-generation small molecules. KPT-330, a novel member of the CRM1-selective inhibitors of nuclear export (SINE) class of compounds, is currently undergoing clinical evaluation for the therapy of various malignancies. Results from these trials suggest that SINE compounds may be particularly useful against hematological malignancies, which often become refractory to standard chemotherapeutic agents. PMID:26048327

  16. Investigation of nuclear shell structure far from stability in the region of {sup 78}Ni

    SciTech Connect

    Sahin, E.

    2008-11-11

    Neutron rich nuclei close to shell closures play an important role on recent nuclear structure studies since they allow to search for possible modifications of single-particle energies, thus a possible shell evolution with increasing N/Z ratio. Their high-spin states will be unique observable in order to understand the size and eventually the evolution of the energy gaps far from stability. In such context, the {sup 83}As, {sup 82}Ge, and {sup 81}Ga nuclei located in the {sup 78}Ni region have been studied in Legnaro National Laboratory (LNL) and we will present our experimental results on the single-particle structure of these nuclei as well as the evolution of the N = 50 shell gap size.

  17. 137Cs in the Ground Level Air and Deposition in the Ignalina Nuclear Power Plant Region

    NASA Astrophysics Data System (ADS)

    Jasiulionis, R.; Rozkov, A.

    2007-04-01

    Results of 137Cs activity concentration measurements in the ground level air and deposition at the station of the Institute of Physics situated 3.5 km from the Ignalina Nuclear Power Plant (Ignalina NPP), Lithuania, in 2002-2006 are analyzed. 137Cs atmospheric depositional fluxes are estimated, and particle deposition rates are calculated. Results on solubility in water of atmospheric aerosols - carriers of 137Cs - are discussed. The Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) model of the global dispersion and deposition is used to explain increases in 137Cs activity concentration in the ground-level air and deposition in the Ignalina NPP region. Modelling results show that the Chernobyl NPP Unit 4 Sarcophagus can be a source of 137Cs to the environment of the Ignalina NPP.

  18. Systematic nuclear structure studies using relativistic mean field theory in mass region A ˜ 130

    NASA Astrophysics Data System (ADS)

    Shukla, A.; Åberg, Sven; Bajpeyi, Awanish

    2017-02-01

    Nuclear structure studies for even-even nuclei in the mass region \\backsim 130, have been performed, with a special focus around N or Z = 64. On the onset of deformation and lying between two closed shell, these nuclei have attracted attention in a number of studies. A revisit to these experimentally accessible nuclei has been made via the relativistic mean field. The role of pairing and density depletion in the interior has been specially investigated. Qualitative analysis between two versions of relativistic mean field suggests that there is no significant difference between the two approaches. Moreover, the role of the filling {{{s}}}1/2 orbital in density depletion towards the centre has been found to be consistent with our earlier work on the subject Shukla and Åberg (2014 Phys. Rev. C 89 014329).

  19. The nuclear region of low luminosity flat radio spectrum sources. II. Emission-line spectra

    NASA Astrophysics Data System (ADS)

    Gonçalves, A. C.; Serote Roos, M.

    2004-01-01

    We report on the spectroscopic study of 19 low luminosity Flat Radio Spectrum (LL FRS) sources selected from Marchã's et al. (\\cite{March96}) 200 mJy sample. In the optical, these objects are mainly dominated by the host galaxy starlight. After correcting the data for this effect, we obtain a new set of spectra clearly displaying weak emission lines; such features carry valuable information concerning the excitation mechanisms at work in the nuclear regions of LL FRS sources. We have used a special routine to model the spectra and assess the intensities and velocities of the emission lines; we have analyzed the results in terms of diagnostic diagrams. Our analysis shows that 79% of the studied objects harbour a Low Ionization Nuclear Emission-line Region (or LINER) whose contribution was swamped by the host galaxy starlight. The remaining objects display a higher ionization spectrum, more typical of Seyferts; due to the poor quality of the spectra, it was not possible to identify any possible large Balmer components. The fact that we observe a LINER-type spectrum in LL FRS sources supports the idea that some of these objects could be undergoing an ADAF phase; in addition, such a low ionization emission-line spectrum is in agreement with the black hole mass values and sub-Eddington accretion rates published for some FRS sources. Based on observations collected at the Multiple Mirror Telescope on Mt. Hopkins. Full Fig. 1 is only available in electronic form at http://www.edpsciences.org

  20. The Molecular Structures of the Local Arm and Perseus Arm in the Galactic Region of l = [139.°75, 149.°75], b = [‑5.°25, 5.°25

    NASA Astrophysics Data System (ADS)

    Du, Xinyu; Xu, Ye; Yang, Ji; Sun, Yan

    2017-04-01

    Using the Purple Mountain Observatory Delingha (PMODLH) 13.7 m telescope, we report a 96 deg2 12CO/13CO/C18O mapping observation toward the Galactic region of l = [139.°75,149.°75], b = [‑5.°25, 5.°25]. The molecular structures of the Local Arm and Perseus Arm are presented. Combining H i data and part of the Outer Arm results, we obtain that the warp structure of both atomic and molecular gas is obvious, while the flare structure only exists in atomic gas in this observing region. In addition, five filamentary giant molecular clouds on the Perseus Arm are identified. Among them, four are newly identified. Their relations with the Milky Way large-scale structure are discussed.

  1. An instability of feedback-regulated star formation in galactic nuclei

    NASA Astrophysics Data System (ADS)

    Torrey, Paul; Hopkins, Philip F.; Faucher-Giguère, Claude-André; Vogelsberger, Mark; Quataert, Eliot; Kereš, Dušan; Murray, Norman

    2017-05-01

    We examine the stability of feedback-regulated star formation (SF) in galactic nuclei and contrast it to SF in extended discs. In galactic nuclei, the orbital time becomes shorter than the time over which feedback from young stars evolves. We argue analytically that traditional feedback-regulated SF equilibrium models break down in the regime. We study this using numerical simulations with the pc-scale resolution and explicit stellar feedback taken from stellar evolution models. The nuclear gas mass, young stellar mass and star formation rate (SFR) within the central ˜100 pc (the short-time-scale regime) never reach steady state, but instead go through dramatic, oscillatory cycles. Stars form until a critical surface density of young stars is present (where feedback overwhelms gravity), at which point they expel gas from the nucleus. Since the dynamical times are shorter than the stellar evolution times, the stars do not die as the gas is expelled, but continue to push, triggering a runaway quenching of SF in the nucleus. However, the expelled gas is largely not unbound from the galaxy, but goes into a galactic fountain that re-fills the nuclear region after the massive stars from the previous burst cycle have died off (˜50-Myr time-scale). On large scales (>1 kpc), the galaxy-scale gas content and SFR is more stable. We examine the consequences of this episodic nuclear SF for the Kennicutt-Schmidt (KS) relation: While a tight KS relation exists on ˜1-kpc scales, the scatter increases dramatically in smaller apertures centred on galactic nuclei.

  2. Close but Distinct Regions of Human Herpesvirus 8 Latency-Associated Nuclear Antigen 1 Are Responsible for Nuclear Targeting and Binding to Human Mitotic Chromosomes

    PubMed Central

    Piolot, Tristan; Tramier, Marc; Coppey, Maité; Nicolas, Jean-Claude; Marechal, Vincent

    2001-01-01

    Human herpesvirus 8 is associated with all forms of Kaposi's sarcoma, AIDS-associated body cavity-based lymphomas, and some forms of multicentric Castleman's disease. Herpesvirus 8, like other gammaherpesviruses, can establish a latent infection in which viral genomes are stably maintained as multiple episomes. The latent nuclear antigen (LANA or LNAI) may play an essential role in the stable maintenance of latent episomes, notably by interacting concomitantly with the viral genomes and the metaphase chromosomes, thus ensuring an efficient transmission of the neoduplicated episomes to the daughter cells. To identify the regions responsible for its nuclear and subnuclear localization in interphase and mitotic cells, LNAI and various truncated forms were fused to a variant of green fluorescent protein. This enabled their localization and chromosome binding activity to be studied by low-light-level fluorescence microscopy in living HeLa cells. The results demonstrate that nuclear localization of LNAI is due to a unique signal, which maps between amino acids 24 and 30. Interestingly, this nuclear localization signal closely resembles those identified in EBNA1 from Epstein-Barr virus and herpesvirus papio. A region encompassing amino acids 5 to 22 was further proved to mediate the specific interaction of LNA1 with chromatin during interphase and the chromosomes during mitosis. The presence of putative phosphorylation sites in the chromosome binding sites of LNA1 and EBNA1 suggests that their activity may be regulated by specific cellular kinases. PMID:11264383

  3. New Resolved Resonance Region Evaluation for 63Cu and 65Cu for Nuclear Criticality Safety Program

    SciTech Connect

    Sobes, Vladimir; Leal, Luiz C; Guber, Klaus H; Forget, Benoit; Kopecky, S.; Schillebeeckx, P.; Siegler, P.

    2014-01-01

    A new resolved resonance region evaluation of 63Cu and 65Cu was done in the energy region from 10-5 eV to 99.5 keV. The R-Matrix SAMMY method using the Reich-Moore approximation was used to create a new set of consistent resonance parameters. The new evaluation was based on three experimental transmission data sets; two measured at ORELA and one from MITR, and two radiative capture experimental data sets from GELINA. A total of 141 new resonances were identied for 63Cu and 117 for 65Cu. The corresponding set of external resonances for each isotope was based on the identied resonances above 99.5 keV from the ORELA transmission data. The negative external levels (bound levels) were determined to match the dierential thermal cross section measured at the MITR. Double dierential elastic scattering cross sections were calculated from the new set of resonance parameters. Benchmarking calculations were carried out on a set of ICSBEP benchmarks. This work is in support of the DOE Nuclear Criticality Safety Program.

  4. On the diffuse soft X-ray emission from the nuclear region of M51

    NASA Astrophysics Data System (ADS)

    Liu, Ji-Ren; Mao, Shu-De

    2015-12-01

    We present an analysis of the diffuse soft X-ray emission from the nuclear region of M51 combining both XMM-Newton RGS and Chandra data. Most of the RGS spectrum of M51 can be fitted with a thermal model with a temperature of ∼ 0.5 keV except for the O VII triplet, which is forbidden-line dominated. The Fe L-shell lines peak around the southern cloud, where the O VIII and N VII Lyα lines also peak. In contrast, the peak of the O VII forbidden line is about 10″ offset from that of the other lines, indicating that it is from a spatially distinct component. The spatial distribution of the O VII triplet mapped by the Chandra data shows that most of the O VII triplet flux is located at faint regions near edges, instead of the southern cloud where other lines peak. This distribution of the O VII triplet is inconsistent with the photoionization model. Other mechanisms that could produce the anomalous O VII triplet, including a recombining plasma and charge exchange X-ray emission, are discussed.

  5. Galactic Train Wrecks

    NASA Image and Video Library

    2011-05-25

    This montage combines observations from NASA Spitzer Space Telescope and NASA Galaxy Evolution Explorer GALEX spacecraft showing three examples of colliding galaxies from a new photo atlas of galactic train wrecks.

  6. Fermi Galactic Center Zoom

    NASA Image and Video Library

    This animation zooms into an image of the Milky Way, shown in visible light, and superimposes a gamma-ray map of the galactic center from NASA's Fermi. Raw data transitions to a view with all known...

  7. Nuclear Weapons and Coercive Escalation in Regional Conflicts: Lessons from North Korea and Pakistan

    DTIC Science & Technology

    2014-11-01

    15 Victor A. Utgoff and Michael O. Wheeler. On Deterring and Defeating Attempts to Exploit a Nuclear Theory of Victory. Insitute for Defense...On Deterring and Defeating Attempts to Exploit a Nuclear Theory of Victory, 2013, 23. Joshua Rovner. “After Proliferation: Deterrence Theory and...After Proliferation: Deterrence Theory and Emerging Nuclear Powers,” 2012, 18. 25 Geller, “ Nuclear Weapons, Deterrence and Crisis Escalation,” 1990

  8. Galactic cosmic ray composition

    NASA Technical Reports Server (NTRS)

    Meyer, J. P.

    1986-01-01

    An assessment is given of the galactic cosmic ray source (GCRS) elemental composition and its correlation with first ionization potential. The isotopic composition of heavy nuclei; spallation cross sections; energy spectra of primary nuclei; electrons; positrons; local galactic reference abundances; comparison of solar energetic particles and solar coronal compositions; the hydrogen; lead; nitrogen; helium; and germanium deficiency problems; and the excess of elements are among the topics covered.

  9. On the biological hazard of galactic antinuclei

    NASA Technical Reports Server (NTRS)

    Wilson, J. W.; Townsend, L. W.; Buck, W. W.

    1986-01-01

    The interaction of antinuclei in the galactic cosmic-ray beam with biological systems is studied. A nuclei-antinuclei annihilation event observed in nuclear emulsion near the end of the slowing-down trajectories of singly charged particle is discussed. An annihilation event that occurred by capture of the antinucleus into an atomic orbital followed by cascade to or near the ground atomic state and subsequent annihilation with the nuclear material of the atom is described. Microdosimetric quantities relevant to potential biological hazards are estimated. The average linear-energy-transfer spectrum for galactic cosmic ray antinuclei annihilation events in tissues is presented. It is observed that the annihilation in tissues occurs mainly in O and the heavier elements around K.

  10. Detection of sulphur in the galactic center

    NASA Technical Reports Server (NTRS)

    Herter, T.; Briotta, D. A., Jr.; Gull, G. E.; Shure, M. A.; Houck, J. R.

    1983-01-01

    A strong detection at the (SIII) 18.71 micron line is reported for the Galactic Center region, Sgr A West. A line flux of 1.7 + or - 0.2x10 to the -17th power W cm(-2) is found for a 20-arc second beam-size measurement centered on IRS 1. A preliminary analysis indicates that the SIII abundance relative to hydrogen is consistent with the cosmic abundance of sulfur, 1.6x10 to the -5th power, if a filling factor of unity within the known clumps is assumed. However, the sulfur abundance in the Galactic Center may be as much as a factor of 3 overabundant if a filling factor of 0.03 is adopted, a value found to hold for some galactic HII regions.

  11. (137)Cs contamination over Transylvania region (Romania) after Chernobyl Nuclear Power Plant Accident.

    PubMed

    Begy, R Cs; Simon, H; Vasilache, D; Kelemen, Sz; Cosma, C

    2017-12-01

    Following the radionuclide releases due to Chernobyl Nuclear Power Plant accident, various studies were completed by researchers all over the world in order to measure the surface contaminations by artificial radionuclides. The aim of this study was to evaluate (137)Cs surface contamination and to create an inventory distribution for Transylvania region (Romania) after the Chernobyl event using γ spectrometric measurements on soil samples collected from 153 locations. The results were compared to measured data from the Danube Delta and Moldova Republic, as well as to (137)Cs concentrations from the rest of Europe reported by literature. The (137)Cs surface concentrations in soil samples ranged between 0.4±0.1kBqm(-2) and 301.1±3.0kBqm(-2), having an average of 8.3±0.2kBqm(-2), with more elevated values in the mountain areas (18.3±0.6kBqm(-2)) compared to the hills and plains (2.6±0.1kBqm(-2)). Taking into consideration the cardinal regions, the northern and western regions received the least amount of (137)Cs (2.9±0.1kBqm(-2)), while the southern part received 16.3±0.6kBqm(-2). Sampling points with eastern slope exposure received the highest average (27.8±0.5kBqm(-2)), while southern, north-western and north-eastern ones received less than 8kBqm(-2). Two hotspots are reported at Iezer-Ighiel (72.7±5.9kBqm(-2)) and Tulgheș areas (51.5±0.6kBqm(-2)). Copyright © 2017 Elsevier B.V. All rights reserved.

  12. The value of cine nuclear magnetic resonance imaging for assessing regional ventricular function.

    PubMed

    Lotan, C S; Cranney, G B; Bouchard, A; Bittner, V; Pohost, G M

    1989-12-01

    Previous nuclear magnetic resonance (NMR) imaging studies to assess left ventricular function have used multiple axial planes, which are compromised by partial volume effects and are time consuming to acquire and analyze. Accordingly, an imaging approach using cine NMR and planes aligned with the true cardiac axes of the left ventricle was developed in views comparable with left ventricular cineangiography. Cine NMR imaging was used to assess regional wall motion and was validated by comparison with biplane left ventricular cineangiography. Fifty-nine patients underwent cineangiographic and NMR studies within 72 h. A poor quality NMR study precluded analysis in 4. leaving a study group of 55 patients (mean age 58 +/- 12: 17 women). Cine NMR movie loops were acquired in two long-axis planes: 1) right anterior oblique plane, parallel to the septum, and 2) four chamber orthogonal plane, perpendicular to the septum (this view is comparable to the angiographic left anterior oblique view). To assess regional wall motion, the left ventricle in both cine NMR and cineangiographic images was divided into five segments and graded on a five point grading scale from 3 for normal through 0 for akinesia and -1 for dyskinesia. Regional wall thickening was used qualitatively to aid in the analysis of wall motion. For the 275 segments compared in the right anterior oblique view, agreement was within one grade in 263 (95.6%) of 275 segments, whereas absolute agreement was observed in 171 (62%) of 275 segments. In the left anterior oblique view, of 200 segments evaluated, agreement within one grade was achieved in 184 segments (92%) and agreement was complete in 132 (66%).(ABSTRACT TRUNCATED AT 250 WORDS)

  13. a Study of Proton Induced Nuclear Fragmentation in the Threshold Region: 1 TO 20 GEV

    NASA Astrophysics Data System (ADS)

    Sangster, Thomas Craig

    This thesis contains the details of the experimental set-up and final results of BNL E-778. The experimental objective was to study proton induced nuclear fragmentation using an internal gas jet target facility that was specifically designed for this experiment and installed in the AGS main ring. The fragment telescopes were designed to measure a broad range of fragment charge (2 to 14) and kinetic energy (5 to 100 MeV). Using a mixed gas target (1% or 3% Xe with H(,2)), normalized fragment production cross sections were obtained by separately measuring p-p elastic production from the H(,2) component. Fragment production cross sections are observed to rise dramatically ((TURN) x 10) for incident proton energies between 1 and 10 GeV, while above 10 GeV, fragment production appears to be independent of the incident proton energy. The measured differential cross sections (above 10 GeV) are found to agree (within 20%) with the differential cross sections measured during a previous internal target experiment (E-591) conducted at FNAL, where the lowest available proton energies were 50 GeV. The measured fragment kinetic energy spectra (above 10 GeV) are fit with a functional form motivated by the observation that fragment production in an excited nuclear system is consistent with a critical phenomenon (a liquid -gas phase transition). The failure of this functional form at the lowest available incident energies (below 10 GeV) is interpreted as the observation of an additional fragment production mechanism. Recent theoretical and experimental evidence for an asymmetric fission process (binary decay), is used to modify the original functional form for the two-component spectra. It is concluded that, in the threshold region, two fragment production mechanisms are observed. Although insufficient information is available to uniquely separate the two components, certain features of the asymmetric fission mechanism are identified. The observed p-nucleus systematics are also

  14. A new nuclear DNA marker from ubiquitin ligase gene region for genetic diversity detection of walnut germplasm resources.

    PubMed

    Suo, Zhili; Chen, Lingna; Pei, Dong; Jin, Xiaobai; Zhang, Huijin

    2015-03-01

    Development of more sensitive nuclear DNA markers for identification of species, particularly closely allied taxa has been a challenging task that has attracted interest from scientists in fields of biotechnological development and genetic diversity detection. In this study, the sequence of the ubiquitin ligase gene (UBE3) region of nuclear DNA was tested for applicability and efficacy in revealing genetic diversity of walnut resources, with an emphasis on inter- and intra-specific levels. Analysis on genetic relationship among the taxa was conducted with the neighbor-joining (NJ) method. The number of variable bases in the UBE3 region was 20 sites. All nine taxa (species/variety/cultivars) were distinguished using the UBE3 sequence. In addition, each taxon was characterized molecularly with a unique nucleotide molecular formula using ten variable base sites derived from the nuclear DNA UBE3 gene sequence. This study presents a good complementary methodology for developing new DNA markers for identification of genus Juglans.

  15. Chemical complexity in galactic nuclei

    NASA Astrophysics Data System (ADS)

    Martin-Pintado, Jesus

    2007-12-01

    In recent years our knowledge of the chemical complexity in the nuclei of galaxies has dramatically changed. Recent observations of the nucleus of the Milky Way, of the starburst galaxy NGC253 and of the ultraluminous infrared galaxy (ULIRG) Arp220 have shown large abundance of complex organic molecules believed to be formed on grains. The Galactic center appears to be the largest repository of complex organic molecule like aldehydes and alcohols in the galaxy. We also measure large abundance of methanol in starburst galaxies and in ULIRGs suggesting that complex organic molecules are also efficiently produced in the central region of galaxies with strong star formation activity. From the systematic observational studies of molecular abundance in regions dominated by different heating processes like shocks, UV radiation, X-rays and cosmic rays in the center of the Milky Way, we are opening the possibility of using chemistry as a diagnostic tool to study the highly obscured regions of galactic centers. The templates found in the nucleus of the Milky Way will be used to establish the main mechanisms driving the heating and the chemistry of the molecular clouds in galaxies with different type of activity. The role of grain chemistry in the chemical complexity observed in the center of galaxies will be also briefly discussed.

  16. The Bolocam Galactic Plane Survey

    NASA Technical Reports Server (NTRS)

    Glenn, Jason; Aguirre, James; Bally, John; Battersby, Cara; Bradley, Eric Todd; Cyganowski, Claudia; Dowell, Darren; Drosback, Meredith; Dunham, Miranda K.; Evans, Neal J., II; hide

    2009-01-01

    The Bolocam Galactic Plane Survey (BGPS) is a 1.1 millimeter continuum survey of the northern Galactic Plane made with Bolocam and the Caltech Submillimeter Observatory. The coverage totals 170 square degrees, comprised of a contiguous range from -10.5 deg is less than or equal to 90.5 deg, 0.5 deg is less than or equal to b is less than or equal to 0.5 deg, with extended coverage in b in selected regions, and four targeted regions in the outer Galaxy, including: IC1396, toward the Perseus arm at l is approximately 111 deg, W3/4/5, and Gem OB1. Depths of the maps range from 30 to 60 mJy beam (sup 1). Approximately 8,400 sources were detected and the maps and source catalog have been made publicly available. Millimeter-wave thermal dust emission reveals dense regions within molecular clouds, thus the BGPS serves as a database for studies of the dense interstellar medium and star formation within the Milky Way.

  17. The Bolocam Galactic Plane Survey

    NASA Technical Reports Server (NTRS)

    Glenn, Jason; Aguirre, James; Bally, John; Battersby, Cara; Bradley, Eric Todd; Cyganowski, Claudia; Dowell, Darren; Drosback, Meredith; Dunham, Miranda K.; Evans, Neal J., II; Ginsburg, Adam; Harvey, Paul; Rosolowsky, Erik; Schlingman, Wayne; Shirley, Yancy L.; Stringfellow, Guy S.; Walawender, Josh; Williams, Jonathan

    2009-01-01

    The Bolocam Galactic Plane Survey (BGPS) is a 1.1 millimeter continuum survey of the northern Galactic Plane made with Bolocam and the Caltech Submillimeter Observatory. The coverage totals 170 square degrees, comprised of a contiguous range from -10.5 deg is less than or equal to 90.5 deg, 0.5 deg is less than or equal to b is less than or equal to 0.5 deg, with extended coverage in b in selected regions, and four targeted regions in the outer Galaxy, including: IC1396, toward the Perseus arm at l is approximately 111 deg, W3/4/5, and Gem OB1. Depths of the maps range from 30 to 60 mJy beam (sup 1). Approximately 8,400 sources were detected and the maps and source catalog have been made publicly available. Millimeter-wave thermal dust emission reveals dense regions within molecular clouds, thus the BGPS serves as a database for studies of the dense interstellar medium and star formation within the Milky Way.

  18. NuSTAR results from the Galactic Center - diffuse emission

    NASA Astrophysics Data System (ADS)

    Hailey, Charles

    2016-03-01

    The Nuclear Spectroscopic Telescope Array (NuSTAR) was launched in June 2012. It carried the first true, hard X-ray (>~10 keV-79 keV) focusing telescopes into orbit. Its twin telescopes provide 10 times better angular resolution and 100 times better sensitivity than previously obtainable in the hard X-ray band. Consequently NuSTAR is able to resolve faint diffuse structures whose hard X-rays offer insight into some of the most energetic processes in the Galactic Center. One of the surprising discoveries that NuSTAR made in the Galactic Center is the central hard X-ray emission (CHXE). The CHXE is a diffuse emission detected from ~10 keV to beyond 50 keV in X-ray energy, and extending spatially over a region ~8 parsecs x ~4 parsecs in and out of the plane of the galaxy respectively, and centered on the supermassive black hole Sgr A*. The CHXE was speculated to be due to a large population of unresolved black hole X-ray binaries, millisecond pulsars (MSP), a class of highly magnetized white dwarf binaries called intermediate polars, or to particle outflows from Sgr A*. The presence of an unexpectedly large population of MSP in the Galactic Center would be particularly interesting, since MSP emitting at higher energies and over a much larger region have been posited to be the origin of the gamma-ray emission that is also ascribed to dark matter annihilation in the galaxy. In addition, the connection of the CHXE to the ~9000 unidentified X-ray sources in the central the the ~100 pc detected by the Chandra Observatory, to the soft X-ray emission detected by the Chandra and XMM/Newton observatories in the Galactic Center, and to the hard X-ray emission detected by both the RXTE and INTEGRAL observatories in the Galactic Ridge, is unclear. I review these results and present recent NuSTAR observations that potentially resolve the origin of the CHXE and point to a unified origin for all these X-ray emissions. Two other noteworthy classes of diffuse structures in the

  19. A Green Bank Telescope 21cm survey of HI clouds in the Milky Way's nuclear wind

    NASA Astrophysics Data System (ADS)

    Denbo, Sara; Endsley, Ryan; Lockman, Felix J.; Ford, Alyson

    2015-01-01

    Feedback processes such as large-scale galactic winds are thought to be responsible for distributing enriched gas throughout a galaxy and even into the IGM. Such winds have been found in many galaxies with active star formation near their center, and the Fermi bubbles provide evidence for such a nuclear wind in our own Milky Way. A recent 21 cm HI survey by the Australia Telescope Compact Array discovered a population of compact, isolated clouds surrounding the Galactic Center that may be entrained in the Fermi bubble wind. We present data from a survey of 21cm HI over an extended region around the Galactic Center using the Green Bank Telescope. These observations provide more strict constraints on neutral clouds in the Fermi bubble wind, and a more robust description of the parameters of HI clouds (i.e., mass, column density, and lifetime) near the Galactic Center.

  20. Molecular Gas Feeding the Circumnuclear Disk of the Galactic Center

    NASA Astrophysics Data System (ADS)

    Hsieh, Pei-Ying; Koch, Patrick M.; Ho, Paul T. P.; Kim, Woong-Tae; Tang, Ya-Wen; Wang, Hsiang-Hsu; Yen, Hsi-Wei; Hwang, Chorng-Yuan

    2017-09-01

    The interaction between a supermassive black hole (SMBH) and the surrounding material is of primary importance in modern astrophysics. The detection of the molecular 2 pc circumnuclear disk (CND) immediately around the Milky Way SMBH, SgrA*, provides a unique opportunity to study SMBH accretion at subparsec scales. Our new wide-field CS(J = 2 ‑ 1) map toward the Galactic center (GC) reveals multiple dense molecular streamers that originated from the ambient clouds 20 pc further out, and that are connected to the central 2 pc of the CND. These dense gas streamers appear to carry gas directly toward the nuclear region and might be captured by the central potential. Our phase-plot analysis indicates that these streamers show a signature of rotation and inward radial motion with progressively higher velocities as the gas approaches the CND and finally ends up corotating with the CND. Our results might suggest a possible mechanism of gas feeding the CND from 20 pc around 2 pc in the GC. In this paper, we discuss the morphology and the kinematics of these streamers. As the nearest observable Galactic nucleus, this feeding process may have implications for understanding the processes in extragalactic nuclei.

  1. Identification of the methylation preference region in heterogeneous nuclear ribonucleoprotein K by protein arginine methyltransferase 1 and its implication in regulating nuclear/cytoplasmic distribution

    SciTech Connect

    Chang, Yuan-I; Hsu, Sheng-Chieh; Chau, Gar-Yang; Huang, Chi-Ying F.; Sung, Jung-Sung; Hua, Wei-Kai; Lin, Wey-Jinq

    2011-01-21

    Research highlights: {yields} Verifying by direct methylation assay the substrate sites of PRMT1 in the hnRNP K protein. {yields} Identifying the preferred PMRT1 methylation regions in hnRNP K by kinetic analysis. {yields} Linking methylation in regulating nuclear localization of hnRNP K. -- Abstract: Protein arginine methylation plays crucial roles in numerous cellular processes. Heterogeneous nuclear ribonucleoprotein K (hnRNP K) is a multi-functional protein participating in a variety of cellular functions including transcription and RNA processing. HnRNP K is methylated at multiple sites in the glycine- and arginine-rich (RGG) motif. Using various RGG domain deletion mutants of hnRNP K as substrates, here we show by direct methylation assay that protein arginine methyltransferase 1 (PRMT1) methylated preferentially in a.a. 280-307 of the RGG motif. Kinetic analysis revealed that deletion of a.a. 280-307, but not a.a. 308-327, significantly inhibited rate of methylation. Importantly, nuclear localization of hnRNP K was significantly impaired in mutant hnRNP K lacking the PRMT1 methylation region or upon pharmacological inhibition of methylation. Together our results identify preferred PRMT1 methylation sequences of hnRNP K by direct methylation assay and implicate a role of arginine methylation in regulating intracellular distribution of hnRNP K.

  2. Determining Bond Sodium Remaining in Plenum Region of Spent Nuclear Driver Fuel

    SciTech Connect

    D. Vaden; S. X. Li

    2008-06-01

    The Fuel Conditioning Facility (FCF) at the Idaho National Laboratory (INL) treats spent nuclear fuel using an electro-chemical process that separates the uranium from the fission products, sodium thermal bond, and cladding materials [REF 1]. Upon immersion into the ER electrolyte, the sodium used to thermally bond the fuel to the clad jacket chemically reacts with the UCl3 in the electrolyte producing NaCl and uranium metal. The uranium in the spent fuel is separated from the cladding and fission products by taking advantage of the electro-chemical potential differences between uranium and the other fuel components. Assuming all the sodium in the thermal bond is converted to NaCl in the ER, the difference between the cumulative bond sodium mass in the fuel elements and the cumulative sodium mass found in the driver ER electrolyte inventory provides an upper mass limit for the sodium that migrated to the upper gas region, or plenum section, of the fuel element during irradiation in the reactor. The plenums are to be processed as metal waste via melting and metal consolidation operations. However, depending on the amount of sodium in the plenums, additional processing may be required to remove the sodium before metal waste processing.

  3. Thermodynamic coupling of heat and matter flows in near-field regions of nuclear waste repositories

    SciTech Connect

    Carnahan, C.L.

    1983-11-01

    In near-field regions of nuclear waste repositories, thermodynamically coupled flows of heat and matter can occur in addition to the independent flows in the presence of gradients of temperature, hydraulic potential, and composition. The following coupled effects can occur: thermal osmosis, thermal diffusion, chemical osmosis, thermal filtration, diffusion thermal effect, ultrafiltration, and coupled diffusion. Flows of heat and matter associated with these effects can modify the flows predictable from the direct effects, which are expressed by Fourier's law, Darcy's law, and Fick's law. The coupled effects can be treated quantitatively together with the direct effects by the methods of the thermodynamics of irreversible processes. The extent of departure of fully coupled flows from predictions based only on consideration of direct effects depends on the strengths of the gradients driving flows, and may be significant at early times in backfills and in near-field geologic environments of repositories. Approximate calculations using data from the literature and reasonable assumptions of repository conditions indicate that thermal-osmotic and chemical-osmotic flows of water in semipermeable backfills may exceed Darcian flows by two to three orders of magnitude, while flows of solutes may be reduced greatly by ultrafiltration and chemical osmosis, relative to the flows predicted by advection and diffusion alone. In permeable materials, thermal diffusion may contribute to solute flows to a smaller, but still significant, extent.

  4. Monitoring of the North Korea's 3rd Nuclear Test using Regional Seismic Network

    NASA Astrophysics Data System (ADS)

    Chi, H.; Kim, G.; Shin, J.; Kim, T.; Che, I.

    2013-12-01

    Through seismic data exchange with China, Russia and Japan, KIGAM could precisely monitor for the more recent North Korea nuclear test with full azimuthal coverage from the test site. The high coherence of collocated stations' seismograms to the previous two events allowed us to infer the tiny difference in the source locations. By estimating relative location to the 3 event s with minimizing 1st P wave arrival time differences, the 3rd test's location was determined to be at the latitude of 41.275N, longitude of 129.064E which is 400 meter south from the 2009 test. A network averaged body wave magnitude, mb(Pn) was evaluated as 4.9, which varies with directional location of stations widely from 4.2 to 5.5. A network averaged surface wave magnitude was estimated to be 3.9. Moment tensor inversion with data from the regional stations gives us source analysis results with high fidelity. The result shows the 3rd test had a very large isotropic component, indicative of an explosion source, similar inversion results were also obtained from previous 2 tests KIGAM evaluated the yield of the test to be 6~7kTon(×3 kTon) by combining Magnitude-Yield Relationships.

  5. Establishment of data base of regional seismic recordings from earthquakes, chemical explosions and nuclear explosions in the Former Soviet Union

    SciTech Connect

    Ermolenko, N.A.; Kopnichev, Yu.F.; Kunakov, V.G.; Kunakova, O.K.; Rakhmatullin, M.Kh.; Sokolova, I.N.; Vybornyy, Zh.I.

    1995-06-01

    In this report results of work on establishment of a data base of regional seismic recordings from earthquakes, chemical explosions and nuclear explosions in the former Soviet Union are described. This work was carried out in the Complex Seismological Expedition (CSE) of the Joint Institute of Physics of the Earth of the Russian Academy of Sciences and Lawrence Livermore National Laboratory. The recording system, methods of investigations and primary data processing are described in detail. The largest number of digital records was received by the permanent seismic station Talgar, situated in the northern Tien Shan, 20 km to the east of Almaty city. More than half of the records are seismograms of underground nuclear explosions and chemical explosions. The nuclear explosions were recorded mainly from the Semipalatinsk test site. In addition, records of the explosions from the Chinese test site Lop Nor and industrial nuclear explosions from the West Siberia region were obtained. Four records of strong chemical explosions were picked out (two of them have been produced at the Semipalatinsk test site and two -- in Uzbekistan). We also obtained 16 records of crustal earthquakes, mainly from the Altai region, close to the Semipalatinsk test site, and also from the West China region, close to the Lop Nor test site. In addition, a small number of records of earthquakes and underground nuclear explosions, received by arrays of temporary stations, that have been working in the southern Kazakhstan region are included in this report. Parameters of the digital seismograms and file structure are described. Possible directions of future work on the digitizing of unique data archive are discussed.

  6. Argon and neon in Galactic nebulae

    NASA Technical Reports Server (NTRS)

    Simpson, Janet P.; Bregman, Jesse D.; Dinerstein, H. L.; Lester, Dan F.; Rank, David M.; Witteborn, F. C.; Wooden, D. H.

    1995-01-01

    KAO observations of the 6.98 micron line of (Ar II), and KAO and ground-based observations of the 8.99 micron line of (Ar III) and the 12.8 micron line of (Ne II) are presented for a number of Galactic H II regions and planetary nebulae.

  7. Argon and neon in Galactic nebulae

    NASA Technical Reports Server (NTRS)

    Simpson, Janet P.; Bregman, Jesse D.; Dinerstein, H. L.; Lester, Dan F.; Rank, David M.; Witteborn, F. C.; Wooden, D. H.

    1995-01-01

    KAO observations of the 6.98 micron line of (Ar II), and KAO and ground-based observations of the 8.99 micron line of (Ar III) and the 12.8 micron line of (Ne II) are presented for a number of Galactic H II regions and planetary nebulae.

  8. SPI Observations of Positron Annihilation Radiation from the 4th Galactic Quadrant: Sky Distribution

    NASA Astrophysics Data System (ADS)

    Weidenspointner, G.; Lonjou, V.; Knödlseder, J.; Jean, P.; Allain, M.; von Ballmoos, P.; Harris, M. J.; Vedrenne, G.; Teegarden, B. J.; Gehrels, N.; Guessoum, N.; Schönfelder, V.; Chapuis, C.; Durouchoux, Ph.; Cisana, E.; Valsesia, M.

    2004-10-01

    During its first year in orbit the INTEGRAL observatory performed deep exposures of the Galactic Center region and scanning observations of the Galactic plane. We report on the status of our analysis of the positron annihilation radiation from the 4th Galactic quadrant with the spectrometer SPI, focusing on the sky distribution of the 511 keV line emission. The analysis methods are described; current constraints and limits on the Galactic bulge emission and the bulge-to-disk ratio are presented.

  9. Mapping of nuclear import signal and importin {alpha}3 binding regions of 52K protein of bovine adenovirus-3

    SciTech Connect

    Paterson, Carolyn P.; Ayalew, Lisanework E.; Tikoo, Suresh K.

    2012-10-10

    The L1 region of bovine adenovirus (BAdV)-3 encodes a non-structural protein designated 52K. Anti-52K serum detected a protein of 40 kDa, which localized to the nucleus but not to the nucleolus in BAdV-3-infected or transfected cells. Analysis of mutant 52K proteins suggested that three basic residues ({sup 105}RKR{sup 107}) of the identified domain (amino acids {sup 102}GMPRKRVLT{sup 110}) are essential for nuclear localization of 52K. The nuclear import of a GST-52K fusion protein utilizes the classical importin {alpha}/{beta}-dependent nuclear transport pathway. The 52K protein is preferentially bound to the cellular nuclear import receptor importin {alpha}3. Although deletion of amino acid 102-110 is sufficient to abrogate the nuclear localization of 52K, amino acid 90-133 are required for interaction with importin-{alpha}3 and localizing a cytoplasmic protein to the nucleus. These results suggest that 52K contains a bipartite NLS, which preferentially utilize an importin {alpha}3 nuclear import receptor-mediated pathway to transport 52K to the nucleus.

  10. Metallicity of the Stars at the Galactic Center

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2015-08-01

    A recent study suggests that the stars in the central parsec of our galaxy are not a single, roughly solar-metallicity population, as previously thought. Instead, these stars have a large variation in metallicities which has interesting implications for the formation history of the Milky Ways nuclear star cluster.Clues from AbundancesWhy do we care about the metallicity of stars and stellar populations? Metallicity measurements can help us to separate multiple populations of stars and figure out when and where they were formed.Measurements of the chemical abundances of stars in the Milky Way have demonstrated that theres a metallicity gradient in the galaxy: on average, its below solar metallicity at the outer edges of the disk and increases to above solar metallicity within the central 5 kpc of the galaxy.So far, measurements of stars in the very center of the galaxy are consistent with this galactic trend: theyre all slightly above solar metallicity, with little variation between them. But these measurements exist for only about a dozen stars within the central 10 pc of the galaxy! Due to the high stellar density in this region, a larger sample is needed to get a complete picture of the abundances and thats what this study set out to find.Different PopulationsLed by Tuan Do (Dunlap Fellow at the University of Toronto and member of the Galactic Center Group at UCLA), the authors of this study determined the metallicities of 83 late-type giant stars within the central parsec of the galaxy. The metallicities were found by fitting the stars K-band spectra from observations by the NIFS instrument on the Gemini North telescope.In contrast to the previous studies, the authors found that the 83 stars exhibited a wide range of metallicities, from a tenth of solar metallicity all the way to super-solar metallicities.The abundances of the low-metallicity stars they found are consistent with globular cluster metallicities, suggesting that these stars (about 6% of the sample

  11. Development of RF plasma simulations of in-reactor tests of small models of the nuclear light bulb fuel region

    NASA Technical Reports Server (NTRS)

    Roman, W. C.; Jaminet, J. F.

    1972-01-01

    Experiments were conducted to develop test configurations and technology necessary to simulate the thermal environment and fuel region expected to exist in in-reactor tests of small models of nuclear light bulb configurations. Particular emphasis was directed at rf plasma tests of approximately full-scale models of an in-reactor cell suitable for tests in Los Alamos Scientific Laboratory's Nuclear Furnace. The in-reactor tests will involve vortex-stabilized fissioning uranium plasmas of approximately 200-kW power, 500-atm pressure and equivalent black-body radiating temperatures between 3220 and 3510 K.

  12. DICOM image quantification secondary capture (DICOM IQSC) integrated with numeric results, regions, and curves: implementation and applications in nuclear medicine

    NASA Astrophysics Data System (ADS)

    Cao, Xinhua; Xu, Xiaoyin; Voss, Stephan

    2017-03-01

    In this paper, we describe an enhanced DICOM Secondary Capture (SC) that integrates Image Quantification (IQ) results, Regions of Interest (ROIs), and Time Activity Curves (TACs) with screen shots by embedding extra medical imaging information into a standard DICOM header. A software toolkit of DICOM IQSC has been developed to implement the SC-centered information integration of quantitative analysis for routine practice of nuclear medicine. Primary experiments show that the DICOM IQSC method is simple and easy to implement seamlessly integrating post-processing workstations with PACS for archiving and retrieving IQ information. Additional DICOM IQSC applications in routine nuclear medicine and clinic research are also discussed.

  13. Diffuse Galactic Soft Gamma-Ray Emission

    NASA Astrophysics Data System (ADS)

    Boggs, S. E.; Lin, R. P.; Slassi-Sennou, S.; Coburn, W.; Pelling, R. M.

    2000-11-01

    The Galactic diffuse soft gamma-ray (30-800 keV) emission has been measured from the Galactic center by the High Resolution Gamma-Ray and Hard X-Ray Spectrometer balloon-borne germanium instrument to determine the spectral characteristics and origin of the emission. The resulting Galactic diffuse continuum is found to agree well with a single power law (plus positronium) over the entire energy range, consistent with RXTE and COMPTEL/Compton Gamma Ray Observatory observations at lower and higher energies, respectively. We find no evidence of spectral steepening below 200 keV, as has been reported in previous observations. The spatial distribution along the Galactic ridge is found to be nearly flat, with upper limits set on the longitudinal gradient and with no evidence of an edge in the observed region. The soft gamma-ray diffuse spectrum is well modeled by inverse Compton scattering of interstellar radiation off of cosmic-ray electrons, minimizing the need to invoke inefficient nonthermal bremsstrahlung emission. The resulting power requirement is well within that provided by Galactic supernovae. We speculate that the measured spectrum provides the first direct constraints on the cosmic-ray electron spectrum below 300 MeV.

  14. Can Galactic H I be radiatively supported?

    NASA Astrophysics Data System (ADS)

    Ferrara, A.

    1993-04-01

    I explore the effect of the photolevitation process, through which dusty diffuse clouds can rise to considerable high Galactic latitudes, on the global vertical distribution of the H I in the Galaxy. It is shown that the vertical support may be completely provided by the turbulence in the lower effective gravitational potential determined by the Galactic radiation field. The requirement of a population of fast clouds to match the observed profiles can be relaxed to consider only moderate-to-low values of the dispersion velocities of the neutral gas. In addition, the apparent observed constancy of the H I scale height with galactocentric radius is naturally explained by the model in terms of the similar behavior of the Galactic radiative (inclusive of the H II region distribution) and gravitational fields. Some discussion on the general validity of the study and on possible relevant additional effects is also given.

  15. The Extreme Nuclear Environments of Sgr A^* and Arp 220

    NASA Astrophysics Data System (ADS)

    Scoville, N. Z.

    2009-10-01

    The dense ISM which is the fuel for both nuclear starbursts is believed to be accreted to the nucleus by stellar bars and galactic interactions. In this contribution, I summarize the observational results for two galactic nuclei at the extreme ends of starburst/AGN activity - our own Galactic nucleus with SgrA^* and the ULIRG Arp 220. I discuss theoretical considerations for the properties of the ISM - it's density and scale height, whether it is likely to clump into gravitational bound GMCs - and the self-regulation of SB and AGN fueling due to radiation pressure support of the ISM. The latter yields an Eddington-like limit on the activity for both SB and AGN, corresponding to approximately 500 lsun/msun for optically thick regions in which the radiation has been degraded to the NIR.

  16. The case for cases B and C: intrinsic hydrogen line ratios of the broad-line region of active galactic nuclei, reddenings, and accretion disc sizes

    NASA Astrophysics Data System (ADS)

    Gaskell, C. Martin

    2017-01-01

    Low-redshift active galactic nuclei (AGNs) with extremely blue optical spectral indices are shown to have a mean, velocity-averaged, broad-line Hα/Hβ ratio of ≈2.72 ± 0.04, consistent with a Baker-Menzel Case B value. Comparison of a wide range of properties of the very bluest AGNs with those of a luminosity-matched subset of the Dong et al. blue AGN sample indicates that the only difference is the internal reddening. Ultraviolet fluxes are brighter for the bluest AGNs by an amount consistent with the flat AGN reddening curve of Gaskell et al. (2004). The lack of a significant difference in the GALEX (FUV-NUV) colour index strongly rules out a steep SMC-like reddening curve and also argues against an intrinsically harder spectrum for the bluest AGNs. For very blue AGNs the Lyα/Hβ ratio is also consistent with being the Case B value. The Case B ratios provide strong support for the self-shielded broad-line model of Gaskell, Klimek & Nazarova. It is proposed that the greatly enhanced Lyα/Hβ ratio at very high velocities is a consequence of continuum fluorescence in the Lyman lines (Case C). Reddenings of AGNs mean that the far-UV luminosity is often underestimated by up to an order of magnitude. This is a major factor causing the discrepancies between measured accretion disc sizes and the predictions of simple accretion disc theory. Dust covering fractions for most AGNs are lower than has been estimated. The total mass in lower mass supermassive black holes must be greater than hitherto estimated.

  17. The case for cases B and C: intrinsic hydrogen line ratios of the broad-line region of active galactic nuclei, reddenings, and accretion disc sizes

    NASA Astrophysics Data System (ADS)

    Gaskell, C. Martin

    2017-05-01

    Low-redshift active galactic nuclei (AGNs) with extremely blue optical spectral indices are shown to have a mean, velocity-averaged, broad-line Hα/Hβ ratio of ≈2.72 ± 0.04, consistent with a Baker-Menzel Case B value. Comparison of a wide range of properties of the very bluest AGNs with those of a luminosity-matched subset of the Dong et al. blue AGN sample indicates that the only difference is the internal reddening. Ultraviolet fluxes are brighter for the bluest AGNs by an amount consistent with the flat AGN reddening curve of Gaskell et al. The lack of a significant difference in the GALEX (far-ultraviolet-near-ultraviolet) colour index strongly rules out a steep Small Magellanic Cloud-like reddening curve and also argues against an intrinsically harder spectrum for the bluest AGNs. For very blue AGNs, the Ly α/Hβ ratio is also consistent with being the Case B value. The Case B ratios provide strong support for the self-shielded broad-line model of Gaskell, Klimek & Nazarova. It is proposed that the greatly enhanced Ly α/Hβ ratio at very high velocities is a consequence of continuum fluorescence in the Lyman lines (Case C). Reddenings of AGNs mean that the far-UV luminosity is often underestimated by up to an order of magnitude. This is a major factor causing the discrepancies between measured accretion disc sizes and the predictions of simple accretion disc theory. Dust covering fractions for most AGNs are lower than has been estimated. The total mass in lower mass supermassive black holes must be greater than hitherto estimated.

  18. The diffuse galactic far-ultraviolet sky

    SciTech Connect

    Hamden, Erika T.; Schiminovich, David; Seibert, Mark

    2013-12-20

    We present an all-sky map of the diffuse Galactic far ultraviolet (1344-1786 Å) background using Galaxy Evolution Explorer data, covering 65% of the sky with 11.79 arcmin{sup 2} pixels. We investigate the dependence of the background on Galactic coordinates, finding that a standard cosecant model of intensity is not a valid fit. Furthermore, we compare our map to Galactic all-sky maps of 100 μm emission, N {sub H} {sub I} column, and Hα intensity. We measure a consistent low level far-UV (FUV) intensity at zero points for other Galactic quantities, indicating a 300 photons cm{sup –2} s{sup –1} sr{sup –1} Å{sup –1} non-scattered isotropic component to the diffuse FUV. There is also a linear relationship between FUV and 100 μm emission below 100 μm values of 8 MJy sr{sup –1}. We find a similar linear relationship between FUV and N {sub H} {sub I} below 10{sup 21} cm{sup –2}. The relationship between FUV and Hα intensity has no such constant cutoff. For all Galactic quantities, the slope of the linear portion of the relationship decreases with Galactic latitude. A modified cosecant model, taking into account dust scattering asymmetry and albedo, is able to accurately fit the diffuse FUV at latitudes above 20°. The best fit model indicates an albedo, a, of 0.62 ± 0.04 and a scattering asymmetry function, g, of 0.78 ± 0.05. Deviations from the model fit may indicate regions of excess FUV emission from fluorescence or shock fronts, while low latitude regions with depressed FUV emission are likely the result of self-shielding dusty clouds.

  19. Where Galactic Snakes Live

    NASA Technical Reports Server (NTRS)

    2006-01-01

    This infrared image from NASA's Spitzer Space Telescope shows what astronomers are referring to as a 'snake' (upper left) and its surrounding stormy environment. The sinuous object is actually the core of a thick, sooty cloud large enough to swallow dozens of solar systems. In fact, astronomers say the 'snake's belly' may be harboring beastly stars in the process of forming.

    The galactic creepy crawler to the right of the snake is another thick cloud core, in which additional burgeoning massive stars might be lurking. The colorful regions below the two cloud cores are less dense cloud material, in which dust has been heated by starlight and glows with infrared light. Yellow and orange dots throughout the image are monstrous developing stars; the red star on the 'belly' of the snake is 20 to 50 times as massive as our sun. The blue dots are foreground stars.

    The red ball at the bottom left is a 'supernova remnant,' the remains of massive star that died in a fiery blast. Astronomers speculate that radiation and winds from the star before it died, in addition to a shock wave created when it exploded, might have played a role in creating the snake.

    Spitzer was able to spot the two black cloud cores using its heat-seeking infrared vision. The objects are hiding in the dusty plane of our Milky Way galaxy, invisible to optical telescopes. Because their heat, or infrared light, can sneak through the dust, they first showed up in infrared images from past missions. The cloud cores are so thick with dust that if you were to somehow transport yourself into the middle of them, you would see nothing but black, not even a star in the sky. Now, that's spooky!

    Spitzer's new view of the region provides the best look yet at the massive embryonic stars hiding inside the snake. Astronomers say these observations will ultimately help them better understand how massive stars form. By studying the clustering and range of masses of the stellar embryos, they hope

  20. Where Galactic Snakes Live

    NASA Image and Video Library

    2006-10-27

    This infrared image from NASA's Spitzer Space Telescope shows what astronomers are referring to as a "snake" (upper left) and its surrounding stormy environment. The sinuous object is actually the core of a thick, sooty cloud large enough to swallow dozens of solar systems. In fact, astronomers say the "snake's belly" may be harboring beastly stars in the process of forming. The galactic creepy crawler to the right of the snake is another thick cloud core, in which additional burgeoning massive stars might be lurking. The colorful regions below the two cloud cores are less dense cloud material, in which dust has been heated by starlight and glows with infrared light. Yellow and orange dots throughout the image are monstrous developing stars; the red star on the "belly" of the snake is 20 to 50 times as massive as our sun. The blue dots are foreground stars. The red ball at the bottom left is a "supernova remnant," the remains of massive star that died in a fiery blast. Astronomers speculate that radiation and winds from the star before it died, in addition to a shock wave created when it exploded, might have played a role in creating the snake. Spitzer was able to spot the two black cloud cores using its heat-seeking infrared vision. The objects are hiding in the dusty plane of our Milky Way galaxy, invisible to optical telescopes. Because their heat, or infrared light, can sneak through the dust, they first showed up in infrared images from past missions. The cloud cores are so thick with dust that if you were to somehow transport yourself into the middle of them, you would see nothing but black, not even a star in the sky. Now, that's spooky! Spitzer's view of the region provides the best look yet at the massive embryonic stars hiding inside the snake. Astronomers say these observations will ultimately help them better understand how massive stars form. By studying the clustering and range of masses of the stellar embryos, they hope to determine if the stars were

  1. Where Galactic Snakes Live

    NASA Technical Reports Server (NTRS)

    2006-01-01

    This infrared image from NASA's Spitzer Space Telescope shows what astronomers are referring to as a 'snake' (upper left) and its surrounding stormy environment. The sinuous object is actually the core of a thick, sooty cloud large enough to swallow dozens of solar systems. In fact, astronomers say the 'snake's belly' may be harboring beastly stars in the process of forming.

    The galactic creepy crawler to the right of the snake is another thick cloud core, in which additional burgeoning massive stars might be lurking. The colorful regions below the two cloud cores are less dense cloud material, in which dust has been heated by starlight and glows with infrared light. Yellow and orange dots throughout the image are monstrous developing stars; the red star on the 'belly' of the snake is 20 to 50 times as massive as our sun. The blue dots are foreground stars.

    The red ball at the bottom left is a 'supernova remnant,' the remains of massive star that died in a fiery blast. Astronomers speculate that radiation and winds from the star before it died, in addition to a shock wave created when it exploded, might have played a role in creating the snake.

    Spitzer was able to spot the two black cloud cores using its heat-seeking infrared vision. The objects are hiding in the dusty plane of our Milky Way galaxy, invisible to optical telescopes. Because their heat, or infrared light, can sneak through the dust, they first showed up in infrared images from past missions. The cloud cores are so thick with dust that if you were to somehow transport yourself into the middle of them, you would see nothing but black, not even a star in the sky. Now, that's spooky!

    Spitzer's new view of the region provides the best look yet at the massive embryonic stars hiding inside the snake. Astronomers say these observations will ultimately help them better understand how massive stars form. By studying the clustering and range of masses of the stellar embryos, they hope

  2. Basic amino acid residues located in the N-terminal region of BEND3 are essential for its nuclear localization.

    PubMed

    Shiheido, Hirokazu; Shimizu, Jun

    2015-02-20

    BEN domain-containing protein 3 (BEND3) has recently been reported to function as a heterochromatin-associated protein in transcriptional repression in the nucleus. BEND3 should have nuclear localization signals (NLSs) to localize to the nucleus in light of its molecular weight, which is higher than that allowed to pass through nuclear pore complexes. We here analyzed the subcellular localization of deletion/site-directed mutants of human BEND3 by an immunofluorescence assay in an attempt to identify the amino acids essential for its nuclear localization. We found that three basic amino acid residues located in the N-terminal region of BEND3 (BEND356-58, KRK) are essential, suggesting that these residues play a role as a functional NLS. These results provide valuable information for progressing research on BEND3.

  3. Seismic and Infrasound Characteristics of North Korean Nuclear Explosions Utilizing Regional Data

    NASA Astrophysics Data System (ADS)

    Stump, B. W.; Park, J.; Che, I. Y.; Hayward, C.

    2016-12-01

    This work analyzes seismic and infrasound signals from four underground nuclear tests by North Korea in 2006, 2009, 2013, and 2016. Regional data from eight seismo-acoustic arrays, operated by Southern Methodist University (SMU) and Korea Institute of Geosciences and Mineral Resources (KIGAM) located in the Korean peninsula, a seismic station in China (MDJ), and two nearby International Monitoring System (IMS) infrasound arrays in Russia (IS45) and Japan (IS30) are used. Infrasound signals at the arrays are detected using the progressive multi-channel correlation (PMCC; Cansi, 1995) followed by analyst review and compared to model predictions based on the method of Blom and Waxler (2012) using Ground-to-Space (G2S) specifications (Drob et al., 2003). This comparison documents that infrasound detection and event locations are dependent on the atmospheric conditions and local noise levels at the time of each explosion. Based on empirical yield-scaling relation of Whitaker et al. (2003), infrasound source energies are estimated at the closest array (KSGAR) to be 0.6, 23.5, and 8.2 tons of TNT for 2009, 2013, and 2016, respectively (no clear observations from 2006). The relative seismic source scaling of the four explosions is assessed using Mueller and Murphy source model (1971) based upon regional seismic station spectral ratios of Pn, Pg, Sn, and Lg. Using a grid search method, we explore the range of acceptable source models in terms of depth of burial and yields for 2009/2006, 2013/2006, 2016/2006, 2013/2009, 2016/2009, and 2013/2016. Using this methodology the 2013/2016-yield ratio is from 1.05-1.30 with an estimated depth range from 0.71-1.15. The small infrasound yield is a reflection of the fact that the infrasound signal is a result of coupling from strong ground motion directly above the explosion and the atmosphere. Differences in relative yield ratios for seismic and infrasound provide constraints on source depth as well as free surface interactions.

  4. Gene-rich chromosomal regions are preferentially localized in the lamin B deficient nuclear blebs of atypical progeria cells.

    PubMed

    Bercht Pfleghaar, Katrin; Taimen, Pekka; Butin-Israeli, Veronika; Shimi, Takeshi; Langer-Freitag, Sabine; Markaki, Yolanda; Goldman, Anne E; Wehnert, Manfred; Goldman, Robert D

    2015-01-01

    More than 20 mutations in the gene encoding A-type lamins (LMNA) cause progeria, a rare premature aging disorder. The major pathognomonic hallmarks of progeria cells are seen as nuclear deformations or blebs that are related to the redistribution of A- and B-type lamins within the nuclear lamina. However, the functional significance of these progeria-associated blebs remains unknown. We have carried out an analysis of the structural and functional consequences of progeria-associated nuclear blebs in dermal fibroblasts from a progeria patient carrying a rare point mutation p.S143F (C428T) in lamin A/C. These blebs form microdomains that are devoid of major structural components of the nuclear envelope (NE)/lamina including B-type lamins and nuclear pore complexes (NPCs) and are enriched in A-type lamins. Using laser capture microdissection and comparative genomic hybridization (CGH) analyses, we show that, while these domains are devoid of centromeric heterochromatin and gene-poor regions of chromosomes, they are enriched in gene-rich chromosomal regions. The active form of RNA polymerase II is also greatly enriched in blebs as well as nascent RNA but the nuclear co-activator SKIP is significantly reduced in blebs compared to other transcription factors. Our results suggest that the p.S143F progeria mutation has a severe impact not only on the structure of the lamina but also on the organization of interphase chromatin domains and transcription. These structural defects are likely to contribute to gene expression changes reported in progeria and other types of laminopathies.

  5. Gene-rich chromosomal regions are preferentially localized in the lamin B deficient nuclear blebs of atypical progeria cells

    PubMed Central

    Bercht Pfleghaar, Katrin; Taimen, Pekka; Butin-Israeli, Veronika; Shimi, Takeshi; Langer-Freitag, Sabine; Markaki, Yolanda; Goldman, Anne E; Wehnert, Manfred; Goldman, Robert D

    2015-01-01

    More than 20 mutations in the gene encoding A-type lamins (LMNA) cause progeria, a rare premature aging disorder. The major pathognomonic hallmarks of progeria cells are seen as nuclear deformations or blebs that are related to the redistribution of A- and B-type lamins within the nuclear lamina. However, the functional significance of these progeria-associated blebs remains unknown. We have carried out an analysis of the structural and functional consequences of progeria-associated nuclear blebs in dermal fibroblasts from a progeria patient carrying a rare point mutation p.S143F (C428T) in lamin A/C. These blebs form microdomains that are devoid of major structural components of the nuclear envelope (NE)/lamina including B-type lamins and nuclear pore complexes (NPCs) and are enriched in A-type lamins. Using laser capture microdissection and comparative genomic hybridization (CGH) analyses, we show that, while these domains are devoid of centromeric heterochromatin and gene-poor regions of chromosomes, they are enriched in gene-rich chromosomal regions. The active form of RNA polymerase II is also greatly enriched in blebs as well as nascent RNA but the nuclear co-activator SKIP is significantly reduced in blebs compared to other transcription factors. Our results suggest that the p.S143F progeria mutation has a severe impact not only on the structure of the lamina but also on the organization of interphase chromatin domains and transcription. These structural defects are likely to contribute to gene expression changes reported in progeria and other types of laminopathies. PMID:25738644

  6. Astrometry in the Galactic Center with the Thirty Meter Telescope

    NASA Astrophysics Data System (ADS)

    Yelda, Sylvana; Meyer, L.; Ghez, A. M.; Do, T.

    2014-01-01

    We report on the expected astrometric performance of the imaging capabilities of the Thirty Meter Telescope's InfraRed Imaging Spectrometer (IRIS), which will be behind a multi-conjugate adaptive optics (AO) system, as determined using simulated images of the Galactic center. This region of the Galaxy harbors a supermassive black hole and a dense nuclear stellar cluster, thus providing an ideal laboratory for testing crowded-field astrometry with the IRIS imager. Accounting for the various sources of astrometric error is important for making precision measurements of the short-period stars orbiting the supermassive black hole in order to probe the curvature of space-time as predicted by General Relativity and to understand the origin of the nuclear star cluster. In the simulated images, which cover a field of view of 17" × 17" (4096 × 4096 pixels), several sources of astrometric error are incorporated, including spatially variable point spread functions, confusion, the static geometric optical distortion from the IRIS imager, and the time-variable distortion introduced by the on-instrument wave front sensor. Because of the higher resolution of the TMT, it will detect stars down to K˜24 (˜0.1 Msun for main sequence stars), which is ˜3 magnitudes fainter than what is seen today with current 8-10 m class telescopes. Optical distortion is the limiting source of error for bright stars (K < 15), while fainter sources will be limited by the effects of source confusion. A detailed astrometric error budget for the Galactic center science case is presented.

  7. Implementation process and deployment initiatives for the regionalized storage of DOE-owned spent nuclear fuel

    SciTech Connect

    Dearien, J.A.; Smith, N.E.L.

    1995-12-31

    This report describes how DOE-owned spent nuclear fuel (SNF) will be stored in the interim 40-year period from 1996 to 2035, by which time it is expected to be in a National Nuclear Repository. The process is described in terms of its primary components: fuel inventory, facilities where it is stored, how the fuel will be moved, and legal issues associated with the process. Tools developed to deploy and fulfill the implementation needs of the National Spent Nuclear Fuel Program are also discussed.

  8. Nuclear dependence of structure functions in the shadowing region of deep inelastic scattering

    SciTech Connect

    Berger, E.L.; Qiu, Jianwei

    1988-07-27

    A discussion of nuclear shadowing in deep inelastic lepton scattering is presented. We show that the parton recombination model suggests that shadowing should begin to occur at larger values of Bjorken x as A increases. This expectation as well as that of weak dependence on Q/sup 2/, and the trend of the x dependence of the shadowing phenomenon are consistent with recent data. Shadowing at small x is combined with nuclear bound state effects, responsible for nuclear dependence at larger x, to provide description of the A dependence of the structure function for the entire range of x. 21 refs., 5 figs.

  9. Candidate Selection for the FLAMINGOS-2 Galactic Center Survey

    SciTech Connect

    DeWitt, Curtis; Eikenberry, Stephen; Bandyopadhyay, Reba; Blum, Robert; Muno, Michael; Sellgren, Kris

    2008-05-23

    We present a JHK{sub s} catalog of a 20'x20' region around the Galactic Center observed with the ISPI camera on the 4 m CTIO telescope. The data is being used to select targets for the FLAMINGOS-2 Galactic Center Survey, which will take near-infrared spectra of thousands of GC sources in an effort to identify and characterize the unique X-ray binary source population in this region.

  10. Candidate Selection for the FLAMINGOS-2 Galactic Center Survey

    NASA Astrophysics Data System (ADS)

    Dewitt, Curtis; Eikenberry, Stephen; Bandyopadhyay, Reba; Blum, Robert; Muno, Michael; Sellgren, Kris

    2008-05-01

    We present a JHKs catalog of a 20'×20' region around the Galactic Center observed with the ISPI camera on the 4 m CTIO telescope. The data is being used to select targets for the FLAMINGOS-2 Galactic Center Survey, which will take near-infrared spectra of thousands of GC sources in an effort to identify and characterize the unique X-ray binary source population in this region.

  11. Active Galactic Nucleus

    NASA Image and Video Library

    2017-09-14

    SCI2017_0007: Artist illustration of the thick ring of dust that can obscure the energetic processes that occur near the supermassive black hole of an active galactic nuclei. The SOFIA studies suggest that the dust distribution is about 30 percent smaller than previously thought. Credit: NASA/SOFIA/Lynette Cook

  12. Functional analysis of the C-terminal region of human adenovirus E1A reveals a misidentified nuclear localization signal

    SciTech Connect

    Cohen, Michael J.; King, Cason R.; Dikeakos, Jimmy D.; Mymryk, Joe S.

    2014-11-15

    The immortalizing function of the human adenovirus 5 E1A oncoprotein requires efficient localization to the nucleus. In 1987, a consensus monopartite nuclear localization sequence (NLS) was identified at the C-terminus of E1A. Since that time, various experiments have suggested that other regions of E1A influence nuclear import. In addition, a novel bipartite NLS was recently predicted at the C-terminal region of E1A in silico. In this study, we used immunofluorescence microscopy and co-immunoprecipitation analysis with importin-α to verify that full nuclear localization of E1A requires the well characterized NLS spanning residues 285–289, as well as a second basic patch situated between residues 258 and 263 ({sup 258}RVGGRRQAVECIEDLLNEPGQPLDLSCKRPRP{sup 289}). Thus, the originally described NLS located at the C-terminus of E1A is actually a bipartite signal, which had been misidentified in the existing literature as a monopartite signal, altering our understanding of one of the oldest documented NLSs. - Highlights: • Human adenovirus E1A is localized to the nucleus. • The C-terminus of E1A contains a bipartite nuclear localization signal (NLS). • This signal was previously misidentified to be a monopartite NLS. • Key basic amino acid residues within this sequence are highly conserved.

  13. Synchrotron Emission Model from a Hypothetical Galactic Wind

    NASA Astrophysics Data System (ADS)

    Schiller, Quintin; Everett, J.; Zwiebel, E.

    2007-12-01

    The ROSAT All Sky Survey (Snowden et al. 1993) discovered a pill-box shaped region of X-ray emission towards the galactic center. Elsewhere, we postulate that the emission is caused by a cosmic-ray and thermally driven Galactic wind (Everett et al, submitted). The objective of this project is to model synchrotron emission from a hypothetical Galactic wind to see whether the model can be tested with radio observations. The wind is launched from the Galactic disk from Galactic radii 1.5 kpc < R < 4.5 kpc to 1 Mpc in height. Observations of the corresponding cylindrical annulus geometry are simulated from Earth at z=0 height and R=8 kpc. We begin with a Galactic wind model fit by Everett et al. to the X-ray emission and integrate the equation for synchrotron intensity on lines of sight through the wind. Initially, we model simple launch geometry to validate our tools and compare the results with analytic single-ray calculations to verify accuracy. We choose to model synchrotron radiation at 1.5 GHz as all-sky surveys observe near this frequency. The result of the model currently predicts that the synchrotron flux from the Galactic wind should be observable using radio telescopes, such as the Green Bank Telescope in West Virginia, to Galactic latitude b +/- 20 degrees and Galactic longitude l +/- 35 degrees. Comparisons to all-sky surveys will test the existence of a wind-driven synchrotron spectrum. If a synchrotron spectrum comparable to the Galactic wind model is observed, it could provide evidence for the existence of a cosmic-ray and thermally driven Galactic wind.

  14. Nuclear Cardiology Practices and Radiation Exposure in the Oceania Region: Results From the IAEA Nuclear Cardiology Protocols Study (INCAPS).

    PubMed

    Biswas, Sinjini; Better, Nathan; Pascual, Thomas N B; Mercuri, Mathew; Vitola, João V; Karthikeyan, Ganesan; Westcott, James; Alexánderson, Erick; Allam, Adel H; Al-Mallah, Mouaz H; Bom, Henry Hee-Seung; Bouyoucef, Salah E; Flotats, Albert; Jerome, Scott; Kaufman, Philip A; Lele, Vikram; Luxenburg, Osnat; Mahmarian, John J; Shaw, Leslee J; Underwood, S Richard; Rehani, Madan; Kashyap, Ravi; Dondi, Maurizio; Paez, Diana; Einstein, Andrew J

    2017-01-01

    There is concern about radiation exposure with radionuclide myocardial perfusion imaging (MPI). This sub-study of the International Atomic Energy Agency (IAEA) Nuclear Cardiology Protocols Study reports radiation doses from MPI, and use of dose-optimisation protocols in Australia and New Zealand (ANZ), and compares them with data from the rest of the world. Data were collected from 7911 MPI studies performed in 308 laboratories worldwide in one week in 2013, including 439 MPI studies from 34 ANZ laboratories. For each laboratory, effective radiation dose (ED) and a quality index (QI) score (out of 8) based on pre-specified "best practices" was determined. In ANZ patients, ED ranged from 0.9-17.9 milliSievert (mSv). Median ED was similar in ANZ compared with the rest of the world (10.0 (IQR: 6.5-11.7) vs. 10.0 (IQR 6.4-12.6, P=0.15), as were mean QI scores (5.5±0.7 vs. 5.4±1.3, P=0.84). Use of stress-only imaging (17.6% vs. 31.8% of labs, P=0.09) and weight-based dosing of technetium-99m (14.7% vs. 30.3%, P=0.07) was lower in ANZ compared with the rest of the world but this difference was not statistically significant. Median ED was significantly lower in metropolitan versus non-metropolitan laboratories (10.1 mSv vs. 11.6 mSv, P<0.01), although mean QI scores were similar (5.4±0.8 vs. 5.5±0.7, P=0.75). Across ANZ, there is variability in ED from MPI, and use of radiation safety practices, particularly between metropolitan and non-metropolitan laboratories. Overall, ANZ laboratories have a similar median ED to laboratories in the rest of the world. Copyright © 2016 Australian and New Zealand Society of Cardiac and Thoracic Surgeons (ANZSCTS) and the Cardiac Society of Australia and New Zealand (CSANZ). Published by Elsevier B.V. All rights reserved.

  15. Production and dissolution of nuclear explosive melt glasses at underground test sites in the Pacific Region

    SciTech Connect

    Bourcier, W.L.; Smith, D.K.

    1998-11-06

    From 1975 to 1996 the French detonated 140 underground nuclear explosions beneath the atolls of Mururoa and Fangataufa in the South Pacific; from 1965 to 1971 the United States detonated three high yield nuclear tests beneath Amchitka Island in the Aleutian chain. Approximately 800 metric tons of basalt is melted per kiloton of nuclear yield; almost lo7 metric tons of basalt were melted in these tests. Long-lived and toxic radionuclides are partitioned into the melt glass at the time of explosion and are released by dissolution with seawater under saturated conditions. A glass dissolution model predicts that nuclear melt glasses at these sites will dissolve in lo6 to lo7 yea

  16. Modeled Neutron Induced Nuclear Reaction Cross Sections for Radiochemistry in the region of Iriduim and Gold

    SciTech Connect

    Hoffman, R D; Dietrich, F S; Kelley, K; Escher, J; Bauer, R; Mustafa, M

    2008-02-26

    We have developed a set of modeled nuclear reaction cross sections for use in radiochemical diagnostics. Systematics for the input parameters required by the Hauser-Feshbach statistical model were developed and used to calculate neutron induced nuclear reaction cross sections for targets ranging from osmium (Z = 76) to gold (Z = 79). Of particular interest are the cross sections on Ir and Au including reactions on isomeric targets.

  17. THE EDGE OF THE YOUNG GALACTIC DISK

    SciTech Connect

    Carraro, Giovanni; Vazquez, Ruben A.; Perren, Gabriel; Moitinho, Andre

    2010-08-01

    In this work, we report and discuss the detection of two distant diffuse stellar groups in the third Galactic quadrant. They are composed of young stars, with spectral types ranging from late O to late B, and lie at galactocentric distances between 15 and 20 kpc. These groups are located in the area of two cataloged open clusters (VdB-Hagen 04 and Ruprecht 30), projected toward the Vela-Puppis constellations, and within the core of the Canis Major overdensity. Their reddening and distances have been estimated by analyzing their color-color and color-magnitude diagrams, derived from deep UBV photometry. The existence of young star aggregates at such extreme distances from the Galactic center challenges the commonly accepted scenario in which the Galactic disk has a sharp cutoff at about 14 kpc from the Galactic center and indicates that it extends to much greater distances (as also supported by the recent detection of CO molecular complexes well beyond this distance). While the groups we find in the area of Ruprecht 30 are compatible with the Orion and Norma-Cygnus spiral arms, respectively, the distant group we identify in the region of VdB-Hagen 04 lies in the external regions of the Norma-Cygnus arm, at a galactocentric distance ({approx}20 kpc) where no young stars have been detected so far in the optical.

  18. AN ABSENCE OF FAST RADIO BURSTS AT INTERMEDIATE GALACTIC LATITUDES

    SciTech Connect

    Petroff, E.; Van Straten, W.; Bailes, M.; Barr, E. D.; Coster, P.; Flynn, C.; Keane, E. F.; Johnston, S.; Bates, S. D.; Keith, M. J.; Kramer, M.; Stappers, B. W.; Bhat, N. D. R.; Burgay, M.; Possenti, A.; Tiburzi, C.; Burke-Spolaor, S.; Champion, D.; Ng, C.; Levin, L.; and others

    2014-07-10

    Fast radio bursts (FRBs) are an emerging class of bright, highly dispersed radio pulses. Recent work by Thornton et al. has revealed a population of FRBs in the High Time Resolution Universe (HTRU) survey at high Galactic latitudes. A variety of progenitors have been proposed, including cataclysmic events at cosmological distances, Galactic flare stars, and terrestrial radio frequency interference. Here we report on a search for FRBs at intermediate Galactic latitudes (–15° region. Several effects such as dispersion, scattering, sky temperature, and scintillation decrease the sensitivity by more than 3σ in ∼20% of survey pointings. Including all of these effects, we exclude the hypothesis that FRBs are uniformly distributed on the sky with 99% confidence. This low probability implies that additional factors—not accounted for by standard Galactic models—must be included to ease the discrepancy between the detection rates at high and low Galactic latitudes. A revised rate estimate or another strong and heretofore unknown selection effect in Galactic latitude would provide closer agreement between the surveys' detection rates. The dearth of detections at low Galactic latitude disfavors a Galactic origin for these bursts.

  19. X-ray narrow emission lines from the nuclear region of NGC 1365

    NASA Astrophysics Data System (ADS)

    Whewell, M.; Branduardi-Raymont, G.; Page, M. J.

    2016-11-01

    Context. NGC 1365 is a Seyfert 2 galaxy with a starburst ring in its nuclear region. In this work we look at the XMM-Newton Reflection Grating Spectrometer (RGS) data from four 2012-13, three 2007 and two 2004 observations of NGC 1365, in order to analyse and characterise in a uniform way the soft X-ray narrow-line emitting gas in the nucleus. Aims: We characterise the narrow-line emitting gas visible by XMM-Newton RGS and make comparisons between the 2012-13 spectra and those from 2004-07, already published. Methods: This source is usually absorbed within the soft X-ray band, with a typical neutral column density of >1.5 × 1023 cm-2, and only one observation of the nine we investigate shows low enough absorption for the continuum to emerge in the soft X-rays. We stack all observations from 2004-07, and separately three of the four observations from 2012-13, analysing the less absorbed observation separately. We first model the spectra using Gaussian profiles representing the narrow line emission. We fit physically motivated models to the 2012-13 stacked spectra, with collisionally ionised components representing the starburst emission and photoionised line emission models representing the AGN line emission. The collisional and photoionised emission line models are fitted together (rather than holding either one constant), on top of a physical continuum and absorption model. Results: The X-ray narrow emission line spectrum of NGC 1365 is well represented by a combination of two collisionally ionised (kT of 220 ± 10 and 570 ± 15 eV) and three photoionised (log ξ of 1.5 ± 0.2, 2.5 ± 0.2, 1.1 ± 0.2) phases of emitting gas, all with higher than solar nitrogen abundances. This physical model was fitted to the 2012-13 stacked spectrum, and yet also fits well to the 2004-07 stacked spectrum, without changing any characteristics of the emitting gas phases. Our 2004-07 results are consistent with previous emission line work using these data, with five additional

  20. Large beam observations of the galactic center at 150, 200, and 300 microns

    NASA Technical Reports Server (NTRS)

    Stier, M. T.; Dwek, E.; Silverberg, R. F.; Hauser, M. G.; Cheung, L.; Kelsall, T.; Gezari, D. Y.

    1982-01-01

    Observations with 10 arcmin resolution of a 2 sq deg portion of the galactic plane around the galactic center at 150, 200, and 300 microns are presented, obtained as part of a galactic plane survey. In the galactic center region the mean dust temperature is about 30 K. Both the temperature and the dust-to-gas mass ratio in the galactic center region are typical of a large portion of the galactic plane. Three main emission peaks, Sgr A, B, and C, are detected; these peaks appear as dust column density enhancements rather than temperature enhancements. The dust responsible for the FIR emission may only be a fraction of the dust responsible for the visual extinction toward the galactic center.

  1. Revealing the Galactic H II Region G84.9+0.5 through 5 GHz Continuum and Polarization Emission and a Voigt Profile Analysis of Radio Recombination Line Observations

    NASA Astrophysics Data System (ADS)

    Foster, T. J.; Kothes, R.; Kerton, C. R.; Arvidsson, K.

    2007-09-01

    We present new λ = 6 cm radio observations (Stokes I, Q, and U and hydrogen recombination line) of the Galactic object G84.9+0.5, previously classified as a supernova remnant. Radio recombination line (RRL) emission near 6 cm is detected in deep GBT observations, and we are able to separate the 7.6 mK line detected from this object (appearing at vLSR=-40 km s-1) from the line emitted by ionized gas of W80 in the foreground (Tl=5.4 mK; vLSR~0 km s-1) along the same line of sight (LOS). Detection of RRL emission from G84.9+0.5 and the absence of polarized emission at 6 cm imply that this object is an H II region. Rather than a Gaussian, a Voigt function better describes the extended line profile of G84.9+0.5, which has a low-level ``wing'' extending into its negative-velocity end. A Monte Carlo analysis of noisy synthetic spectra is presented, and it is concluded the wing is not spurious. Two physical explanations for the wing (pressure broadening and an outflow of gas) are considered. We favor that of a champagne-type outflow in the gas flowing along the inside wall of a known molecular cloud in the vicinity of the nebula (at -40 km s-1), making G84.9+0.5 a ``blister'' type H II region viewed face-on. We find Te=9900 K and ne=20 cm-3 from a non-LTE analysis of the peak toward the RRL, and a total H II mass of 440 Msolar. A distance of 4.9 kpc is determined for this object. An IR analysis using MSX and 2MASS data is presented, showing H II region colors for G84.9+0.5 and identifying a possible exciting star for this H II region.

  2. Lessons Learned from the Fukushima Nuclear Accident due to Tohoku Region Pacific Coast Earthquake

    NASA Astrophysics Data System (ADS)

    Miki, M.; Wada, M.; Takeuchi, N.

    2012-01-01

    On March 11 2011, Great Eastern Japan Earthquake hit Japan and caused the devastating damage. Fukushima Nuclear Power Station (NPS) also suffered damages and provided the environmental effect with radioactive products. The situation has been settled to some extent about two months after the accidents, and currently, the cooling of reactor is continuing towards settling the situation. Japanese NPSs are designed based on safety requirements and have multiple-folds of hazard controls. However, according to publicly available information, due to the lager-than-anticipated Tsunami, all the power supply were lost, which resulted in loss of hazard controls. Also, although nuclear power plants are equipped with system/procedure in case of loss of all controls, recovery was not made as planned in Fukushima NPSs because assumptions for hazard controls became impractical or found insufficient. In consequence, a state of emergency was declared. Through this accident, many lessons learned have been obtained from the several perspectives. There are many commonality between nuclear safety and space safety. Both industries perform thorough hazard assessments because hazards in both industries can result in loss of life. Therefore, space industry must learn from this accident and reconsider more robust space safety. This paper will introduce lessons learned from Fukushima nuclear accident described in the "Report of the Japanese Government to the IAEA Ministerial Conference on Nuclear Safety" [1], and discuss the considerations to establish more robust safety in the space systems. Detailed information of Fukushima Dai-ichi NPS are referred to this report.

  3. Galactic supernova remnant candidates discovered by THOR

    NASA Astrophysics Data System (ADS)

    Anderson, L. D.; Wang, Y.; Bihr, S.; Rugel, M.; Beuther, H.; Bigiel, F.; Churchwell, E.; Glover, S. C. O.; Goodman, A. A.; Henning, Th.; Heyer, M.; Klessen, R. S.; Linz, H.; Longmore, S. N.; Menten, K. M.; Ott, J.; Roy, N.; Soler, J. D.; Stil, J. M.; Urquhart, J. S.

    2017-09-01

    Context. There is a considerable deficiency in the number of known supernova remnants (SNRs) in the Galaxy compared to that expected. This deficiency is thought to be caused by a lack of sensitive radio continuum data. Searches for extended low-surface brightness radio sources may find new Galactic SNRs, but confusion with the much larger population of H ii regions makes identifying such features challenging. SNRs can, however, be separated from H ii regions using their significantly lower mid-infrared (MIR) to radio continuum intensity ratios. Aims: Our goal is to find missing SNR candidates in the Galactic disk by locating extended radio continuum sources that lack MIR counterparts. Methods: We use the combination of high-resolution 1-2 GHz continuum data from The HI, OH, Recombination line survey of the Milky Way (THOR) and lower-resolution VLA 1.4 GHz Galactic Plane Survey (VGPS) continuum data, together with MIR data from the Spitzer GLIMPSE, Spitzer MIPSGAL, and WISE surveys to identify SNR candidates. To ensure that the candidates are not being confused with H ii regions, we exclude radio continuum sources from the WISE Catalog of Galactic H ii Regions, which contains all known and candidate H ii regions in the Galaxy. Results: We locate 76 new Galactic SNR candidates in the THOR and VGPS combined survey area of 67.4° > ℓ > 17.5°, | b | ≤ 1.25° and measure the radio flux density for 52 previously-known SNRs. The candidate SNRs have a similar spatial distribution to the known SNRs, although we note a large number of new candidates near ℓ ≃ 30°, the tangent point of the Scutum spiral arm. The candidates are on average smaller in angle compared to the known regions, 6.4' ± 4.7' versus 11.0' ± 7.8', and have lower integrated flux densities. Conclusions: The THOR survey shows that sensitive radio continuum data can discover a large number of SNR candidates, and that these candidates can be efficiently identified using the combination of radio and

  4. STABILITY OF GAS CLOUDS IN GALACTIC NUCLEI: AN EXTENDED VIRIAL THEOREM

    SciTech Connect

    Chen, Xian; Cuadra, Jorge; Amaro-Seoane, Pau E-mail: jcuadra@astro.puc.cl

    2016-03-10

    Cold gas entering the central 1–10{sup 2} pc of a galaxy fragments and condenses into clouds. The stability of the clouds determines whether they will be turned into stars or can be delivered to the central supermassive black hole (SMBH) to turn on an active galactic nucleus (AGN). The conventional criteria to assess the stability of these clouds, such as the Jeans criterion and Roche (or tidal) limit, are insufficient here, because they assume the dominance of self-gravity in binding a cloud, and neglect external agents, such as pressure and tidal forces, which are common in galactic nuclei. We formulate a new scheme for judging this stability. We first revisit the conventional Virial theorem, taking into account an external pressure, to identify the correct range of masses that lead to stable clouds. We then extend the theorem to further include an external tidal field, which is equally crucial for the stability in the region of our interest—in dense star clusters, around SMBHs. We apply our extended Virial theorem to find new solutions to controversial problems, namely, the stability of the gas clumps in AGN tori, the circum-nuclear disk in the Galactic Center, and the central molecular zone of the Milky Way. The masses we derive for these structures are orders of magnitude smaller than the commonly used Virial masses (equivalent to the Jeans mass). Moreover, we prove that these clumps are stable, contrary to what one would naively deduce from the Roche (tidal) limit.

  5. The Case Low-Dispersion Northern Sky Survey. X. A--F Stars in a Region at Intermediate Galactic Latitude Primarily in Lynx and Leo Minor: Erratum

    NASA Astrophysics Data System (ADS)

    Pesch, Peter; Sanduleak, N.

    1996-02-01

    In the paper "The Case Low-Dispersion Northern Sky Survey. XII. A Region in Southern Canes Venatici" by Peter Pesch, N..Sanduleak, and C. B. Stephenson (ApJS, 76,1043(1991]), the finding chart (Fig. 4, Pl. [43]) for CG 1064 has the wrong object marked. CG 1064 is the bright galaxy due west of the object marked.

  6. Nuclear Translocation Sequence and Region in Autographa californica Multiple Nucleopolyhedrovirus ME53 That Are Important for Optimal Baculovirus Production

    PubMed Central

    Liu, Yang; de Jong, Jondavid; Nagy, Éva; Theilmann, David A.

    2016-01-01

    ABSTRACT Autographa californica multiple nucleopolyhedrovirus (AcMNPV) is in the family Baculoviridae, genus Alphabaculovirus. AcMNPV me53 is a highly conserved immediate early gene in all lepidopteran baculoviruses that have been sequenced and is transcribed up to late times postinfection. Although me53 is not essential for viral DNA synthesis, infectious budded virus (BV) production is greatly attenuated when it is deleted. ME53 associates with the nucleocapsid on both budded virus and occlusion-derived virus, but not with the virus envelope. ME53 colocalizes in plasma membrane foci with the envelope glycoprotein GP64 in a GP64-dependent manner. ME53 localizes in the cytoplasm early postinfection, and despite the lack of a reported nuclear localization signal (NLS), ME53 translocates to the nucleus at late times postinfection. To map determinants of ME53 that facilitate its nuclear translocation, recombinant AcMNPV bacmids containing a series of ME53 truncations, internal deletions, and peptides fused with hemagglutinin (HA) or green fluorescent protein (GFP) tags were constructed. Intracellular-localization studies identified residues within amino acids 109 to 137 at the N terminus of ME53 that acted as the nuclear translocation sequence (NTS), facilitating its nuclear transport at late times postinfection. The first 100 N-terminal amino acids and the last 50 C-terminal amino acids of ME53 are dispensable for high levels of budded virus production. The region within amino acids 101 to 398, which also contains the NTS, is critical for optimal levels of budded virus production. IMPORTANCE Baculovirus me53 is a conserved immediate early gene found in all sequenced lepidopteran alpha- and betabaculoviruses. We first identified residues within amino acids 109 to 137 at the N terminus that act as the ME53 nuclear translocation sequence (NTS) to facilitate its nuclear translocation and defined an internal region within amino acids 101 to 398, which includes the NTS, as

  7. The nuclear regions of NGC 3311 and NGC 7768 imaged with the Hubble Space Telescope Planetary Camera

    NASA Technical Reports Server (NTRS)

    Grillmair, Carl J.; Faber, S.M.; Lauer, Tod R.; Baum, William A.; Lynds, Roger C.; O'Neil, Earl J., Jr.; Shaya, Edward J.

    1994-01-01

    We present high-resolution, V band images of the central regions of the brightest cluster ellipticals NGC 3311 and NGC 7768 taken with the Planetary Camera of the Hubble Space Telescope. The nuclei of both galaxies are found to be obscured by dust, though the morphology of the dust is quite different in the two cases. The dust cloud which obscures the central 3 arcsec of NGC 3311 is complex and irregular, while the central region of NGC 7768 contains a disk of material similar in appearance and scale to that recently observed in HST images of NGC 4261. The bright, relatively blue source detected in ground-based studies of NGC 3311 is marginally resolved and is likely to be a site of ongoing star formation. We examine the distribution of globular clusters in the central regions of NGC 3311. The gradient in the surface density profile of the cluster system is significantly shallower than that found by previous investigators at larger radii. We find a core radius for the cluster distribution of 12 plus or minus 3 kpc, which is even larger than the core radius of the globular cluster system surrounding M87. It is also an order of magnitude larger than the upper limit on the core radius of NGC 3311's stellar light and suggests that the central field-star population and the globular cluster system are dynamically distinct. We briefly discuss possible sources for the cold/warm interstellar material in early-type galaxies. While the issue has not been resolved, models which involve galactic wind failure appear to be mo st naturally consistent with the observations.

  8. NGC 1566: analysis of the nuclear region from optical and near-infrared Integral Field Unit spectroscopy

    NASA Astrophysics Data System (ADS)

    da Silva, Patrícia; Steiner, J. E.; Menezes, R. B.

    2017-10-01

    We analysed the centre of NGC 1566, which hosts a well-studied active galactic nucleus (AGN), known for its variability. With the aid of techniques such as Principal Component Analysis Tomography, analysis of the emission-line spectra, channel maps, Penalized Pixel Fitting and spectral synthesis applied to the optical and near-infrared data cubes, besides the analysis of Hubble Space Telescope images, we found that: (1) the AGN has a Seyfert 1 emission, with a very strong featureless continuum that we described as a power law with spectral index of 1.7. However, this emission may come not only from the AGN [as its point spread function (PSF) is broader than the PSF of the broad-line region (BLR)], but from hot and young stars, the same ones that probably account for the observed σ-drop. (2) There is a correlation between redshift and the full width at half-maximum of the BLR emission lines. With a simple model assuming gravitational redshift, we described it as an emitting ring with varying emitting radii and small inclination angles. (3) There is an H ii region close to the AGN, which is composed of many substructures forming an apparent spiral with a velocity gradient. (4) We also detected a probable outflow coming from the AGN and it seems to contaminate the H ii region emission. (5) We identified an H2 rotating disc with orientation approximately perpendicular to this outflow. This suggests that the rotating disc is an extension of an inner torus/disc structure, which collimates the outflow emission, according to the Unified Model.

  9. The nuclear regions of NGC 3311 and NGC 7768 imaged with the Hubble Space Telescope Planetary Camera

    NASA Astrophysics Data System (ADS)

    Grillmair, Carl J.; Faber, S. M.; Lauer, Tod R.; Baum, William A.; Lynds, Roger C.; O'Neil, Earl J., Jr.; Shaya, Edward J.

    1994-07-01

    We present high-resolution, V band images of the central regions of the brightest cluster ellipticals NGC 3311 and NGC 7768 taken with the Planetary Camera of the Hubble Space Telescope. The nuclei of both galaxies are found to be obscured by dust, though the morphology of the dust is quite different in the two cases. The dust cloud which obscures the central 3 arcsec of NGC 3311 is complex and irregular, while the central region of NGC 7768 contains a disk of material similar in appearance and scale to that recently observed in HST images of NGC 4261. The bright, relatively blue source detected in ground-based studies of NGC 3311 is marginally resolved and is likely to be a site of ongoing star formation. We examine the distribution of globular clusters in the central regions of NGC 3311. The gradient in the surface density profile of the cluster system is significantly shallower than that found by previous investigators at larger radii. We find a core radius for the cluster distribution of 12 plus or minus 3 kpc, which is even larger than the core radius of the globular cluster system surrounding M87. It is also an order of magnitude larger than the upper limit on the core radius of NGC 3311's stellar light and suggests that the central field-star population and the globular cluster system are dynamically distinct. We briefly discuss possible sources for the cold/warm interstellar material in early-type galaxies. While the issue has not been resolved, models which involve galactic wind failure appear to be mo st naturally consistent with the observations.

  10. The nuclear regions of NGC 3311 and NGC 7768 imaged with the Hubble Space Telescope Planetary Camera

    NASA Technical Reports Server (NTRS)

    Grillmair, Carl J.; Faber, S.M.; Lauer, Tod R.; Baum, William A.; Lynds, Roger C.; O'Neil, Earl J., Jr.; Shaya, Edward J.

    1994-01-01

    We present high-resolution, V band images of the central regions of the brightest cluster ellipticals NGC 3311 and NGC 7768 taken with the Planetary Camera of the Hubble Space Telescope. The nuclei of both galaxies are found to be obscured by dust, though the morphology of the dust is quite different in the two